Index
A  B  C  D  E  F  G  I  J  K  L  M  N  O  P  R  S  T  U  
A
- Adaptive Bayes Network (ABN), 1-2, 1-10
 
- algorithms, 1-9 
- settings for, 1-20, 1-26
 
 
- apply model, 2-5
 
- apply result object, 1-29
 
- ApplyContentItem, 3-12
 
- Apriori algorithm, 1-4, 1-18
 
- Association Rules, 1-2, 1-4, 1-7 
- sample programs, A-6
 
- support and confidence, 1-8
 
 
- Attribute Importance, 1-2, 1-4, 1-8, 1-18 
- sample programs, A-6
 
- using, 2-4
 
 
- attribute names and case, 1-28
 
- attributes 
- find, 2-4
 
- use, 2-4
 
 
- automated binning (see also discretization), 1-2
 
 
B
- balance 
- in data sample, 1-6
 
 
- Bayes' Theorem, 1-12, 1-13
 
- best model 
- find, 2-3
 
- in Model Seeker, 1-14
 
 
- binning, 1-32 
- automated, 1-2
 
- for k-means, 1-16
 
- for O-Cluster, 1-17
 
- manual, 1-32
 
- sample programs, A-7
 
 
- build data 
- describe, 3-4
 
 
- build model, 3-7
 
- build result object, 1-29
 
 
C
- categorical data type, 1-2
 
- character sets 
- CLASSPATH, 2-1
 
 
- classification, 1-4 
- specifying default algorithm, 3-5
 
- specifying Naive Bayes, 3-6
 
 
- CLASSPATH for ODM, 2-1
 
- clustering, 1-2, 1-4, 1-6, 1-15 
- sample programs, A-5
 
 
- compiling sample programs, A-22
 
- Complete single feature, ABN parameter, 1-12
 
- computing Lift, 1-22
 
- confidence 
- of association rule, 1-8
 
 
- confusion matrix, 1-29 
- figure, 1-29
 
 
- continuous data type, 1-17
 
- costs 
- of incorrect decision, 1-5
 
 
- cross-validation, 1-13
 
 
D
- data 
- scoring, 3-8
 
 
- data format 
- figure, 1-25
 
 
- data mining API, 1-3
 
- data mining components, 1-3
 
- data mining functions, 1-4
 
- data mining server (DMS), 1-3, 1-20, 1-25 
- connect to, 3-3, 3-9
 
 
- data mining tasks, 1-19
 
- data mining tasks per function, 1-20
 
- data preprocessing, 1-6
 
- data scoring 
- main steps, 3-9
 
- output data, 3-11
 
- prerequisites, 3-8
 
 
- data types, 1-2
 
- data usage specification (DUS) object, 1-27
 
- decision trees, 1-2, 1-10
 
- discretization (binning), 1-32 
- sample programs, A-7
 
 
- distance-based clustering model, 1-15
 
- DMS 
- connect to, 3-3, 3-9
 
 
 
E
- enhanced k-means algorithm, 1-15
 
- executing sample programs, A-22
 
 
F
- feature 
- definition, 1-10
 
 
- feature selection, 1-2
 
- features 
- new, 1-2
 
 
- function settings, 1-20
 
- functions 
- data mining, 1-4
 
 
 
G
- global property file, A-11
 
- grid-based clustering model, 1-17
 
 
I
- incremental approach 
- in k-means, 1-15
 
 
- input 
- to apply phase, 1-30
 
 
- input columns 
- including in mining apply output, 3-13
 
 
- input data 
- data scoring, 3-10
 
- describe, 3-10
 
 
 
J
- jar files 
- ODM, 2-1
 
 
- Java Data Mining (JDM), 1-3
 
- Java Specification Request (JSR-73), 1-3
 
 
K
- key fields, 1-2
 
- k-means, 1-2
 
- k-means algorithm, 1-4, 1-15 
- binning for, 1-16
 
 
- k-means and O-Cluster (table), 1-17
 
 
L
- learning 
- supervised, 1-2, 1-4
 
- unsupervised, 1-2, 1-4
 
 
- leave-one-out cross-validation, 1-13
 
- lift result object, 1-29
 
- location access data 
- apply output, 3-11
 
- build, 3-4
 
- data scoring, 3-10
 
 
- logical data specification (LDS) object, 1-27
 
 
M
- market basket analysis, 1-7
 
- max build parameters 
- in ABN, 1-11
 
 
- MaximumNetworkFeatureDepth, ABN parameter, 1-11
 
- metadata repository, 1-3
 
- MFS, 3-5 
- validate, 3-6
 
 
- mining algorithm settings object, 1-26
 
- mining apply 
- output data, 3-11
 
 
- mining apply output, 1-30
 
- mining attribute, 1-27
 
- mining function settings 
- build, 3-5
 
- creating, 3-5
 
- validate, 3-6
 
 
- mining function settings (MFS) object, 1-25
 
- mining model object, 1-28
 
- mining result object, 1-28
 
- mining tasks, 1-3
 
- MiningApplyOutput object, 3-11
 
- MiningFunctionSettings object, 3-5
 
- missing values, 1-32
 
- mixture model, 1-16
 
- model 
- apply, 3-1
 
- build 
- synchronous, 3-7
 
 
- building, 3-1
 
- score, 3-1
 
 
- model apply, 2-5, 3-8, 3-14 
- ApplyContentItem, 3-12
 
- ApplyMutipleScoringItem, 3-12
 
- ApplyTargetProbabilityItem, 3-12
 
- asynchronous, 3-15
 
- data format, 2-5
 
- generated columns in output, 3-12
 
- including input columns in output, 3-13
 
- input data, 3-10
 
- main steps, 3-9
 
- physical data specification, 3-10
 
- specify output format, 3-11
 
- synchronous, 3-14
 
- validate output object, 3-14
 
 
- model apply (figure), 1-23
 
- model apply (scoring), 1-22
 
- model build 
- asynchronous, 3-7
 
 
- model building, 1-20 
- main steps, 3-3
 
- outline, 2-2
 
- overview, 3-3
 
- prerequisites, 3-2
 
 
- model building (figure), 1-21
 
- Model Seeker, 1-2, 1-14 
- sample programs, A-5
 
- using, 2-3
 
 
- model testing, 1-21
 
- multi-record case (transactional format), 1-24
 
 
N
- Naive Bayes, 1-2 
- algorithm, 1-12
 
- building models, 3-2
 
- sample programs, 3-1, A-4
 
- specifying, 3-6
 
 
- nontransactional data format, 1-24
 
- numerical data type, 1-2, 1-15, 1-17
 
 
O
- O-Cluster, 1-2 
- algorithm, 1-17
 
- sample programs, A-5
 
 
- ODM 
- basic usage, 3-1
 
 
- ODM algorithms, 1-9
 
- ODM functionality, 1-24
 
- ODM functions, 1-4
 
- ODM jar files, 2-1
 
- ODM models 
- building, 3-2
 
 
- ODM objects, 1-24
 
- ODM programming, 2-1 
- basic usage, 3-1
 
- common tasks, 2-2
 
- overview, 2-1
 
 
- ODM programs 
- compiling, 2-1
 
- executing, 2-1
 
 
- ODM sample programs, A-1
 
- Oracle9i Data Mining API, 1-3
 
 
P
- physical data specification 
- build 
- nontransactional, 3-4
 
- transactional, 3-5
 
 
- data scoring, 3-10
 
- model apply, 3-10
 
- nontransactional, 3-10
 
- transactional, 3-10
 
 
- physical data specification (PDS), 1-24
 
- PhysicalDataSpecification, 3-10
 
- PMML 
- sample programs, A-6
 
 
- PMML export 
- sample program, A-6
 
 
- PMML import 
- sample program, A-6
 
 
- Predictive Model Markup Language (PMML), 1-2, 1-3, 1-37
 
- Predictor Variance algorithm, 1-18
 
- preprocessing 
- data, 1-6
 
 
- priors information, 1-5
 
- property files 
- sample programs, A-10
 
 
 
R
- rules 
- decision tree, 1-10
 
 
 
S
- sample 
- programs 
- Naive Bayes, 3-1
 
 
 
- sample programs, A-1 
- Association Rules, A-6
 
- Attribute Importance, A-6
 
- basic usage, A-3
 
- binning, A-7
 
- classification, 3-5
 
- clustering, A-5
 
- compiling all, A-25
 
- compiling and executing, A-22
 
- data, A-9
 
- discretization, A-7
 
- executing all, A-26
 
- global property file, A-11
 
- Model Seeker, A-5
 
- Naive Bayes, A-3, A-4
 
- Naive Bayes models, A-4
 
- O-Cluster, A-5
 
- overview, A-1
 
- PMML export, A-6
 
- PMML import, A-6
 
- property files, A-10
 
- requirements, A-2
 
- short, 3-1
 
- short programs, A-3
 
- summary, A-3
 
- using, A-7
 
 
- score data, 2-5
 
- scoring, 1-5, 1-16, 1-22 
- by O-Cluster, 1-17
 
- output data, 3-11
 
- prerequisites, 3-8
 
 
- scoring data, 3-8
 
- sequence of ODM tasks, 2-3
 
- short sample programs, 3-1, A-3 
- compiling and executing, A-22
 
 
- single-record case (nontransactional format), 1-24
 
- skewed data sample, 1-5
 
- SQL/MM for Data Mining, 1-3
 
- summarization, 1-18 
- in k-means, 1-16
 
 
- supervised learning, 1-2, 1-4
 
- support 
- of association rule, 1-8
 
 
 
T
- test result object, 1-29
 
- transactional data format, 1-24
 
 
U
- unsupervised learning, 1-2, 1-4
 
- unsupervised model, 1-14