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Computational CModelling of ~Sflow in a Gavitator
M. S. Angelov

In many processing equipment the cavitation is an injurious phenomenon, but over the last
years this phenomenon was found to have an useful application. In the food industry the
hydrodynamic cavitation is utilised for the purification of alcohol solutions and liquid foods, to
produce suspensions and in fine grinding of bioproducts and medicines. Flow through passages
with a specific shape are used to achieve the phenomenon of hydrodynamic cavitation with
minimum consumption of energy. The application of computational modelling to the flow of a

liquid fluid product through a cavitator with a specific geometry is the main objective of the
present paper. To model the turbulent characteristies of the flow, the k-e model of turbulence
(Launder - Sharma medel) was applied. The calculations were performed with the non-
orthogonal finite-volume procedure "STREAM". The flow around a step with a different angle

of incidence of the opposite wall was analysed as a case-study. The flow in this cavitator was
characterised by the existence of two circulation zones. Being the circulation zone closest to
the step of great importance for the intensification of the exchange processes. The results show
the general and turbulent characteristics of the flow upon change of the flow on the cavitator

The influence of the geometry of the cavitator on the flow characteristics energy and the

dissipation rate, is also-discussed.
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ABSTRACT

In a row of technical equipment the cavitation is an injurious phenomenon. Over the last years a new
application of this phenomenon has been observed as useful. In food industry the hydrodynamic cavitation is
utilized as a useful phenomenon in the process of purification of alcohol solutions, liquid food staff, to
produce suspensions, in fine grinding of bio-products and medicines. Passing passages with a specific form
are used to achieve the phenomenon of hydrodynamic cavitation. Their form is constructed in a way that
allows cavitation development and minimum consumption of energy. The possibility of computational
modeling of the flow in a cavitator of a specific form is the main point of the present paper. The cavitator is
used for cavitation treatment of liquid food products. To model the turbulent character of the flow, the k-¢
model of turbulence (Launder - Sharma model) was applied. The present calculations were performed with
the non-orthogonal finite-volume procedure STREAM. As a test case was used the flow around a step with
a different angle of incidence of the opposite wall. The flow in the studied cavitator was characterized by the
existence of two circulation zones. Of great importance for the intensification of the exchange processes is the
circulation zone closest to the step. The results are the basic, general and turbulent characteristics of the flow
upon change of the flow of the passing passage. The opportunity of optimization of the form of the cavitator
was shown: through alteration of the basic turbulent characteristics - the kinetic turbulent energy and the
dissipation rate. The results of the computational modeling show the possibility for model investigation of

complex turbulent flows, which replaces the highly expensive experimental tests.

NOMENCLATURE

- Cy, Gy Cy - empirical constant appearing in k-e turbulence model;
- k- turbulence kinetic energy

- Rt - Reynolds number of turbulence

- - rate of dissipation of turbulence kinetic energy;
- u-dynamic viscosity

- v -kinematic viscosity

- p-density

- x - Cartesian coordinate in the main flow direction
-y - Cartesian coordinate normal to the wall

- u-streamwise velocity

- v-cross stream velocity



1. INTRODUCTION

Passing passages with a specific form are used to achieve the phenomenon of hydrodynamic cavitation.
Their form is constructed in a way that allows cavitation development and minimum consumption of energy.
The possibility of computational modeling of the flow in a cavitator of a specific form is the main point of the
present paper. Separation, recirculation and reattachment are features encountered in numerous practical
situation such as the cavitator. Recirculation has profound consequences in relation to pressure recovery,
pressure drag, wall friction and heat transfer characteristics. It is also a powerful generator of turbulence and
hence mixing and losses. Separated flows have thus naturally been the subject of many studies, both
experimental and computational (Eaton J.K., Johnston J. P., 1980). The general emphasis has been on
understanding and capturing the separation process, on resolving the structure of the separated shear layer and
the recirculated zone it envelops, on describing the location of reattachment region and predicting the process

governing the flow recovery in the wake region following the reattachment.

2. MODEL OF TURBULENCE

In the last few years a number of models of turbulent momentum transport have been developed in
which the effective transport coefficients are related to local values of certain turbulent correlations. These
correlations are computed simultaneously with the main field variables. In order to provide prediction of the
flow within the viscous layer adjacent to the wall the following set of equations was considered (Jones W.P.,
Launder B.E., 1972). To model the turbulent character of the flow, the energy-dissipation model - k-€ model
- of turbulence (Launder B, Sharma L. 1974) was applied.

The equation for the turbulence energy:
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The equation for the energy dissipation:
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Turbulent viscosity hypothesis
n, =c,pk?/e 3)

and R, = pk2 / ue , the turbulent Reynolds number.



At the low Reynolds number Cy, and C; become dependent upon the value of the turbulence Reynolds
number. The influence of Reynolds number is introduced by the way of the functions which are assigned the

following forms:

¢, =0.09exp|-3.4/(1+ R, /50)]

¢; =192 [1 -0.3 exp(— R%) ]

In the above equations the C's and c's retain the following values:
c=144,0,=1.0;0, =1.3.

The present calculations were performed with the non-orthogonal finite-volume procedure
STREAM developed by Lien and Leschziner (Lien F. and Leschziner M., 1994). This method adopts the high
order QUICK approximation and the MUSCL/TVD scheme to approximate advective volume-face fluxes.
The solution is iterated to the steady state by means of pressure-correction scheme. The numerical grid used
to obtain the solution contained 61x41 grid lines. This density was selected on the bases of grid-independence
tests. The grid was arranged to cover a domain from 24 steps heights and additional transverse lines were
arranged so as to give preferential support to the separated flow in the two zones. The grid is shown in Fig. 1.
and also identify the geometry of the flow domain.

The solution was assumed to have converged when the maximum residuals for mass and momentum
normalized by the respective inlet fluxes fell below 0.1 %. To achieve this state with the grid given above
required between 2500 and 3000 iteration. Execution times varied between 15 and 20 CPU minutes on a Intel
Pentium processor.

As a test case was used the flow around a step with a different angle of incidence of the opposite

wall.

3. RESULTS AND DISCUSIONS

The flow in the studied cavitator was characterized by the existence of two circulation zones. Of
great importance for the intensification of the exchange processes is the circulation zone closest to the step.
The results are the basic, general and turbulent characteristics of the flow upon change of the flow of the
passing passage.

We chose different, but typical sections for analysis the characteristics of the flow. One section is
close to input (x=0.020), the second is close to the step (x=0.046), where the flow is separated. The next
sections characterized the two circulation zones (x=0.067, x=0.075), the section close to the reattachment
(x=0.154) point and fully developed flow (x=0.209).

The velocity distribution as a vector is shown in fig.2. The profiles of the velocity down the stream
is shown in fig. 3 and cross stream velocity distribution in fig. 4. The distribution of the kinetic energy is
shown in fig. 5 and the distribution of the energy dissipation rate is shown in fig. 6. We can receive
information concerning the circulation zone and attachment points analyzing these figures.

The opportunity of optimization of the form of the cavitator was shown: through alteration of the

basic turbulent characteristics - the kinetic turbulent energy and the dissipation rate. The results of the



computational modeling show the possibility for model investigation of complex turbulent flows, which
replaces the highly expensive experimental tests. The future plans of investigation are to use more

complicated turbulence models (non-linear) for predicting the flow in the cavitator.
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FIGURE 2. Velocity distribution as a vector
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FIGURE 3. The profiles of the velocity down the stream
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