bind1st (3C++std) - Tru64 UNIX
Standard C++ LibraryCopyright 1996, Rogue Wave Software, Inc.
NAME
bind1st, bind2nd, binder1st, binder2nd - Templatized utilities to bind
values to function objects
SYNOPSIS
#include <functional>
template <class Operation>
class binder1st : public unary_function<typename
Operation::second_argument_type,
typename Operation::result_type> ;
template <class Operation, class T>
binder1st<Operation> bind1st (const Operation&, const T&);
template <class Operation>
class binder2nd : public unary_function<typename
Operation::first_argument_type,
typename Operation::result_type> ;
template <class Operation, class T>
binder2nd<Operation> bind2nd (const Operation&, const T&);
DESCRIPTION
Because so many functions provided by the standard library take other
functions as arguments, the library includes classes that let you build new
function objects out of old ones. Both bind1st() and bind2nd() are
functions that take as arguments a binary function object f and a value x,
and return, respectively, classes binder1st and binder2nd. The underlying
function object must be a subclass of binary_function.
Class binder1st binds the value to the first argument of the binary
function, and binder2nd does the same thing for the second argument of the
function. The resulting classes can be used in place of a unary predicate
in other function calls.
For example, you could use the count_if algorithm to count all elements in
a vector that are less than or equal to 7, using the following:
count_if (v.begin, v.end, bind1st(greater<int> (),7), littleNums)
This function adds one to littleNums each time the predicate is true, i.e.,
each time 7 is greater than the element.
INTERFACE
// Class binder1st
template <class Operation>
class binder1st
: public unary_function<typename
Operation::second_argument_type,
typename Operation::result_type>
{
public:
typedef typename unary_function<typename
Operation::second_argument_type, typename
Operation::result_type>::argument_type argument_type;
typedef typename unary_function<typename
Operation::second_argument_type, typename
Operation::result_type>::result_type result_type;
binder1st(const Operation&,
const typename Operation::first_argument_type&);
result_type operator() (const argument_type&) const;
};
// Class binder2nd
template <class Operation>
class binder2nd
: public unary_function<typename
Operation::first_argument_type,
typename Operation::result_type>
{
public:
typedef typename unary_function<typename
Operation::first_argument_type, typename
Operation::result_type>::argument_type argument_type;
typedef typename unary_function<typename
Operation::first_argument_type, typename
Operation::result_type>::result_type result_type;
binder2nd(const Operation&,
const typename Operation::second_argument_type&);
result_type operator() (const argument_type&) const;
};
// Creator bind1st
template <class Operation, class T>
binder1st<Operation> bind1st (const Operation&, const T&);
// Creator bind2nd
template<class Operation, class T>
binder2nd <Operation> bind2nd(const Operation&, const T&);
EXAMPLE
//
// binders.cpp
//
#include <functional>
#include <algorithm>
#include <vector>
#include <iostream.h>
int main()
{
typedef vector<int>::iterator iterator;
int d1[4] = {1,2,3,4};
//
// Set up a vector
//
vector<int> v1(d1,d1 + 4);
//
// Create an 'equal to 3' unary predicate by binding 3 to
// the equal_to binary predicate.
//
binder1st<equal_to<int> > equal_to_3 =
bind1st(equal_to<int>(),3);
//
// Now use this new predicate in a call to find_if
//
iterator it1 = find_if(v1.begin(),v1.end(),equal_to_3);
//
// Even better, construct the new predicate on the fly
//
iterator it2 =
find_if(v1.begin(),v1.end(),bind1st(equal_to<int>(),3));
//
// And now the same thing using bind2nd
// Same result since == is commutative
//
iterator it3 =
find_if(v1.begin(),v1.end(),bind2nd(equal_to<int>(),3));
//
// it3 = v1.begin() + 2
//
// Output results
//
cout << *it1 << " " << *it2 << " " << *it3 << endl;
return 0;
}
Output : 3 3 3
WARNINGS
If your compiler does not support default template parameters then you need
to always supply the Allocator template argument. For instance you'll have
to write:
vector<int,allocator<int> > instead of:
vector<int>
SEE ALSO
Function Object
STANDARDS CONFORMANCE
ANSI X3J16/ISO WG21 Joint C++ Committee
privacy and legal statement