
Mac OS X Technology Overview
Mac OS X

2007-10-31



Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled
computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple
Inc.

Apple, the Apple logo, AirPort, AirPort
Extreme, AppleScript, AppleScript Studio,
AppleShare, AppleTalk, Aqua, Bonjour,
Carbon, Cocoa, ColorSync, Dashcode, eMac,
Final Cut, Final Cut Pro, FireWire, iBook,
iCal, iChat, iTunes, Keychain, Mac, Mac OS,
Macintosh, Objective-C, Pages, Quartz,
QuickDraw, QuickTime, Rosetta, Safari,
Sherlock, Tiger, TrueType, Velocity Engine,
WebObjects, Xcode, and Xgrid are

trademarks of Apple Inc., registered in the
United States and other countries.

Finder, Spotlight, Time Machine, and Xserve
are trademarks of Apple Inc.

Adobe, Acrobat, and PostScript are
trademarks or registered trademarks of
Adobe Systems Incorporated in the U.S.
and/or other countries.

Intel and Intel Core are registered
trademarks of Intel Corportation or its
subsidiaries in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.



Contents

Introduction Introduction to Mac OS X Technology Overview 13

Who Should Read This Document 13
Organization of This Document 13
Getting the Xcode Tools 14
Reporting Bugs 15
See Also 15

Developer Documentation 15
Information on BSD 16
Darwin and Open Source Development 16
Other Information on the Web 16

Chapter 1 Mac OS X System Overview 19

A Layered Approach 19
The Advantage of Layers 20
Developer Tools 21

Chapter 2 Darwin and Core Technologies 23

Darwin 23
Mach 23
Device-Driver Support 24
BSD 24
File-System Support 25
Network Support 27
Scripting Support 30
Threading Support 31
X11 31

Binary File Architecture 31
Hardware Architectures 32
64-Bit Support 32
Object File Formats 33
Debug File Formats 34
Runtime Environments 34

Security 36
IPC and Notification Mechanisms 36

FSEvents API 36

3
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.



Kernel Queues and Kernel Events 37
BSD Notifications 37
Sockets, Ports, and Streams 37
BSD Pipes 38
Shared Memory 38
Apple Events 39
Distributed Notifications 39
Distributed Objects for Cocoa 40
Mach Messaging 40

Core Foundation 40
Objective-C 41
Java Support 41

The Java Environment 41
Java and Other Application Environments 42

Chapter 3 Graphics and Multimedia Technologies 43

Drawing Technologies 43
Quartz 43
Cocoa Drawing 46
OpenGL 46
Core Animation 47
Core Image 48
Image Kit 48
QuickDraw 49

Text and Fonts 49
Cocoa Text 49
Core Text 50
Apple Type Services 50
Apple Type Services for Unicode Imaging 50
Multilingual Text Engine 51

Audio Technologies 51
Core Audio 51
OpenAL 52

Video Technologies 52
QuickTime 52
QuickTime Kit 54
Core Video 54
DVD Playback 54

Color Management 55
Printing 55
Accelerating Your Multimedia Operations 56

Chapter 4 Application Technologies 59

Application Environments 59

4
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S



Cocoa 59
Carbon 60
Java 61
AppleScript 62
WebObjects 62
BSD and X11 62

Application Technologies 63
Address Book Framework 63
Automator Framework 64
Bonjour 64
Calendar Store Framework 64
Core Data Framework 65
Disc Recording Framework 65
Help Support 66
Human Interface Toolbox 66
Identity Services 67
Instant Message Framework 67
Image Capture Services 67
Ink Services 68
Input Method Kit Framework 68
Keychain Services 68
Latent Semantic Mapping Services 69
Launch Services 69
Open Directory 69
PDF Kit Framework 69
Publication Subscription Framework 70
Search Kit Framework 70
Security Services 70
Speech Technologies 71
SQLite Library 71
Sync Services Framework 72
Web Kit Framework 72
Time Machine Support 73
Web Service Access 73
XML Parsing Libraries 73

Chapter 5 User Experience 75

Technologies 75
Aqua 75
Quick Look 76
Resolution-Independent User Interface 76
Spotlight 77
Bundles and Packages 77
Code Signing 77
Internationalization and Localization 78

5
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S



Software Configuration 78
Fast User Switching 79
Spaces 79
Accessibility 79
AppleScript 80

System Applications 80
The Finder 80
The Dock 81
Dashboard 81
Automator 82
Time Machine 83

Chapter 6 Software Development Overview 85

Applications 85
Frameworks 85
Plug-ins 86

Address Book Action Plug-Ins 86
Application Plug-Ins 87
Automator Plug-Ins 87
Contextual Menu Plug-Ins 87
Core Audio Plug-Ins 87
Image Units 88
Input Method Components 88
Interface Builder Plug-Ins 88
Metadata Importers 89
QuickTime Components 89
Safari Plug-ins 89

Dashboard Widgets 90
Agent Applications 90
Screen Savers 90

Slideshows 91
Programmatic Screen Savers 91

Services 91
Preference Panes 92
Web Content 92

Dynamic Websites 92
SOAP and XML-RPC 93
Sherlock Channels 93

Mail Stationery 93
Command-Line Tools 94
Launch Items, Startup Items, and Daemons 94
Scripts 95
Scripting Additions for AppleScript 96
Kernel Extensions 96
Device Drivers 97

6
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S



Chapter 7 Choosing Technologies to Match Your Design Goals 99

High Performance 99
Easy to Use 101
Attractive Appearance 102
Reliability 103
Adaptability 104
Interoperability 105
Mobility 106

Chapter 8 Porting Tips 109

64-Bit Considerations 109
Windows Considerations 110
Carbon Considerations 111

Migrating From Mac OS 9 111
Use the Carbon Event Manager 112
Use the HIToolbox 113
Use Nib Files 113

Appendix A Command Line Primer 115

Basic Shell Concepts 115
Getting Information 115
Specifying Files and Directories 116
Accessing Files on Volumes 117
Flow Control 117

Frequently Used Commands 118
Environment Variables 119
Running Programs 120

Appendix B Mac OS X Frameworks 123

System Frameworks 123
Accelerate Framework 129
Application Services Framework 129
Automator Framework 130
Carbon Framework 130
Core Services Framework 131
Quartz Framework 132
Web Kit Framework 132

Xcode Frameworks 133
System Libraries 133

7
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S



Appendix C Mac OS X Developer Tools 135

Applications 135
Xcode 135
Interface Builder 141
Dashcode 142
Instruments 143
Quartz Composer 144
AppleScript Studio 144
Audio Applications 145
Graphics Applications 145
Java 146
Performance Applications 147
Utility Applications 148

Command-Line Tools 151
Compiler, Linker, and Source Code Tools 152
Debugging and Tuning Tools 154
Documentation and Help Tools 157
Localization Tools 158
Version Control Tools 158
Packaging Tools 161
Scripting Tools 161
Java Tools 164
Kernel Extension Tools 166
I/O Kit Driver Tools 166

Glossary 167

Document Revision History 179

Index 181

8
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S



Figures and Tables

Chapter 1 Mac OS X System Overview 19

Figure 1-1 Layers of Mac OS X 19

Chapter 2 Darwin and Core Technologies 23

Table 2-1 Supported local volume formats 25
Table 2-2 Supported network file-sharing protocols 26
Table 2-3 Network protocols 27
Table 2-4 Network technology support 29

Chapter 3 Graphics and Multimedia Technologies 43

Figure 3-1 Quartz Compositor and the rendering APIs in Mac OS X 46
Table 3-1 Quartz technical specifications 45
Table 3-2 Partial list of formats supported by QuickTime 53
Table 3-3 Features of the Mac OS X printing system 55

Chapter 5 User Experience 75

Figure 5-1 Automator main window 82

Chapter 6 Software Development Overview 85

Table 6-1 Scripting language summary 95

Chapter 7 Choosing Technologies to Match Your Design Goals 99

Table 7-1 Technologies for improving performance 99
Table 7-2 Technologies for achieving ease of use 101
Table 7-3 Technologies for achieving an attractive appearance 102
Table 7-4 Technologies for achieving reliability 104
Table 7-5 Technologies for achieving adaptability 105
Table 7-6 Technologies for achieving interoperability 105
Table 7-7 Technologies for achieving mobility 106

9
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.



Chapter 8 Porting Tips 109

Table 8-1 Required replacements for Carbon 111
Table 8-2 Recommended replacements for Carbon 112

Appendix A Command Line Primer 115

Table A-1 Getting a list of built-in commands 116
Table A-2 Special path characters and their meaning 116
Table A-3 Input and output sources for programs 117
Table A-4 Frequently used commands and programs 118

Appendix B Mac OS X Frameworks 123

Table B-1 System frameworks 123
Table B-2 Subframeworks of the Accelerate framework 129
Table B-3 Subframeworks of the Application Services framework 129
Table B-4 Subframeworks of the Automator framework 130
Table B-5 Subframeworks of the Carbon framework 130
Table B-6 Subframeworks of the Core Services framework 131
Table B-7 Subframeworks of the Quartz framework 132
Table B-8 Subframeworks of the Web Kit framework 132
Table B-9 Xcode frameworks 133

Appendix C Mac OS X Developer Tools 135

Figure C-1 Xcode application 137
Figure C-2 Xcode documentation window 139
Figure C-3 Interface Builder 3.0 141
Figure C-4 Dashcode canvas 142
Figure C-5 The Instruments application interface 143
Figure C-6 Quartz Composer editor window 144
Figure C-7 AU Lab mixer and palettes 145
Figure C-8 iSync Plug-in Maker application 150
Figure C-9 PackageMaker application 151
Table C-1 Graphics applications 146
Table C-2 Java applications 146
Table C-3 Performance applications 147
Table C-4 CHUD applications 148
Table C-5 Utility applications 148
Table C-6 Compilers, linkers, and build tools 152
Table C-7 Tools for creating and updating libraries 153
Table C-8 Code utilities 153
Table C-9 General debugging tools 155
Table C-10 Memory debugging and tuning tools 155

10
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

F I G U R E S A N D T A B L E S



Table C-11 Tools for examining code 155
Table C-12 Performance tools 156
Table C-13 Instruction trace tools 157
Table C-14 Documentation and help tools 157
Table C-15 Localization tools 158
Table C-16 Subversion tools 158
Table C-17 RCS tools 159
Table C-18 CVS tools 160
Table C-19 Comparison tools 160
Table C-20 Packaging tools 161
Table C-21 Script interpreters and compilers 162
Table C-22 Script language converters 162
Table C-23 Perl tools 163
Table C-24 Parsers and lexical analyzers 163
Table C-25 Scripting documentation tools 164
Table C-26 Java tools 164
Table C-27 Java utilities 165
Table C-28 JAR file tools 165
Table C-29 Kernel extension tools 166
Table C-30 Driver tools 166

11
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

F I G U R E S A N D T A B L E S



12
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

F I G U R E S A N D T A B L E S



Mac OS X is a modern operating system that combines a stable core with advanced technologies to
help you deliver world-class products. The technologies in Mac OS X help you do everything from
manage your data to display high-resolution graphics and multimedia content, all while delivering
the consistency and ease of use that are hallmarks of the Macintosh experience. Knowing how to use
these technologies can help streamline your own development process, while providing you access
to key Mac OS X features.

Who Should Read This Document

Mac OS X Technology Overview is an essential guide for anyone looking to develop software for Mac
OS X. It provides an overview of the technologies and tools that have an impact on the development
process and provides links to relevant documents and other sources of information. You should use
this document to do the following:

 ■ Orient yourself to the Mac OS X platform.

 ■ Learn about Mac OS X software technologies, why you might want to use them, and when.

 ■ Learn about the development opportunities for the platform.

 ■ Get tips and guidelines on how to move to Mac OS X from other platforms.

 ■ Find key documents relating to the technologies you are interested in.

This document does not provide information about user-level system features or about features that
have no impact on the software development process.

New developers should find this document useful for getting familiar with Mac OS X. Experienced
developers can use it as a road map for exploring specific technologies and development techniques.

Organization of This Document

This document has the following chapters and appendixes:

Who Should Read This Document 13
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Mac OS X Technology
Overview



 ■ “Mac OS X System Overview” (page 19) provides background information for understanding
the terminology and basic development environment of Mac OS X. It also provides a high-level
overview of the Mac OS X system architecture.

 ■ “Darwin and Core Technologies” (page 23) describes the technologies that comprise the Darwin
environment along with other key technologies that are used throughout the system.

 ■ “Graphics and Multimedia Technologies” (page 43) describes the graphics foundations of the
system, including the technologies you use for drawing to the screen and for creating audio and
video content.

 ■ “Application Technologies” (page 59) describes the development environments (like Carbon and
Cocoa) and individual technologies (like Address Book) that you use to create your applications.

 ■ “User Experience” (page 75) describes the technologies that your application should use to
provide the best user experience for the platform. This chapter also describes some of the system
technologies with which your software interacts to create that experience.

 ■ “Software Development Overview” (page 85) describes the types of software you can create for
Mac OS X and when you might use each type.

 ■ “Choosing Technologies to Match Your Design Goals” (page 99) provides tips and guidance to
help you choose the technologies that best support the design goals of your application.

 ■ “Porting Tips” (page 109) provides starter advice for developers who are porting applications
from Mac OS 9, Windows, and UNIX platforms.

 ■ “Command Line Primer” (page 115) provides an introduction to the command-line interface for
developers who have never used it before.

 ■ “Mac OS X Frameworks” (page 123) describes the frameworks you can use to develop your
software. Use this list to find specific technologies or to find when a given framework was
introduced to Mac OS X.

 ■ “Mac OS X Developer Tools” (page 135) provides an overview of the available applications and
command-line tools you can use to create software for Mac OS X.

Getting the Xcode Tools

Apple provides a comprehensive suite of developer tools for creating Mac OS X software. The Xcode
Tools include applications to help you design, create, debug, and optimize your software. This tools
suite also includes header files, sample code, and documentation for Apple technologies. You can
download the Xcode Tools from the members area of the Apple Developer Connection (ADC) website
(http://connect.apple.com/). Registration is required but free.

For additional information about the tools available for working with Mac OS X and its technologies,
see “Mac OS X Developer Tools” (page 135).

14 Getting the Xcode Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Mac OS X Technology Overview

http://connect.apple.com/


Reporting Bugs

If you encounter bugs in Apple software or documentation, you are encouraged to report them to
Apple. You can also file enhancement requests to indicate features you would like to see in future
revisions of a product or document. To file bugs or enhancement requests, go to the Bug Reporting
page of the ADC website, which is at the following URL:

http://developer.apple.com/bugreporter/

You must have a valid ADC login name and password to file bugs. You can obtain a login name for
free by following the instructions found on the Bug Reporting page.

See Also

This document does not provide in-depth information on any one technology. However, it does point
to relevant documents in the ADC Reference Library. References of the form “<title> in <category>
Documentation” refer to documents in specific sections of the reference library.

For information about new features introduced in different versions of Mac OS X, see What's New In
Mac OS X.

The following sections list additional sources of information about Mac OS X and its technologies.

Developer Documentation

When you install Xcode, the installer places the tools you need for development as well as sample
code and developer documentation on your local hard drive. The default installation directory for
Xcode is /Developer but in Mac OS X v10.5 and later you can specify a custom installation directory
if desired. (This document uses the term <Xcode> to represent the root directory of your Xcode
installation.) The Installer application puts developer documentation into the following locations:

 ■ General documentation. Most documentation and sample code is installed in the
<Xcode>/Documentation/DocSets directory. All documents are available in HTML format,
which you can view from any web browser. To view the documentation, open the Xcode IDE
and choose Help > Show Documentation Window.

 ■ Additional sample code. Some additional sample programs are installed in <Xcode>/Examples.
These samples demonstrate different tasks involving Mac OS X technologies.

You can also get the latest documentation, release notes, Tech Notes, technical Q&As, and sample
code from the ADC Reference Library (http://developer.apple.com/referencelibrary). All documents
are available in HTML and most are also available in PDF format.

Reporting Bugs 15
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Mac OS X Technology Overview

http://developer.apple.com/bugreporter/
http://developer.apple.com/referencelibrary


Information on BSD

Many developers who are new to Mac OS X are also new to BSD, an essential part of the operating
system’s kernel environment. BSD (for Berkeley Software Distribution) is based on UNIX. Several
excellent books on BSD and UNIX are available in bookstores.

You can also use the World Wide Web as a resource for information on BSD. Several organizations
maintain websites with manuals, FAQs, and other sources of information on the subject. For
information about related projects, see:

 ■ Apple’s Open Source page (http://developer.apple.com/opensource/)

 ■ The FreeBSD project (http://www.freebsd.org)

 ■ The NetBSD project (http://www.netbsd.org)

 ■ The OpenBSD project (http://www.openbsd.org)

For more references, see the bibliography in Kernel Programming Guide.

Darwin and Open Source Development

Apple is the first major computer company to make open source development a key part of its ongoing
operating system strategy. Apple has released the source code to virtually all of the components of
Darwin to the developer community and continues to update the Darwin code base to include
improvements as well as security updates, bug fixes, and other important changes.

Darwin consists of the Mac OS X kernel environment, BSD libraries, and BSD command environment.
For more information about Darwin and what it contains, see “Darwin” (page 23). For detailed
information about the kernel environment, see Kernel Programming Guide.

Information about the Darwin open source efforts is available at http://developer.apple.com/darwin/
and at http://www.macosforge.org/.

Other Information on the Web

Apple maintains several websites where developers can go for general and technical information
about Mac OS X.

 ■ The Apple Macintosh products site (http://www.apple.com/mac) provides general information
about Macintosh hardware and software.

 ■ The Apple product information site (http://www.apple.com/macosx) provides information
about Mac OS X.

 ■ The ADC Reference Library (http://developer.apple.com/referencelibrary) features the same
documentation that is installed with the developer tools. It also includes new and regularly
updated documents as well as legacy documentation.

16 Information on BSD
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Mac OS X Technology Overview

http://developer.apple.com/opensource/
http://www.freebsd.org
http://www.netbsd.org
http://www.openbsd.org
http://developer.apple.com/darwin/
http://www.macosforge.org/
http://www.apple.com/mac
http://www.apple.com/macosx
http://developer.apple.com/referencelibrary


 ■ The Apple Care Knowledge Base (http://www.apple.com/support/) contains technical articles,
tutorials, FAQs, and other information.

Other Information on the Web 17
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Mac OS X Technology Overview

http://www.apple.com/support/


18 Other Information on the Web
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Mac OS X Technology Overview



This chapter provides a high-level introduction to Mac OS X, describing its overall architecture and
development tools support. The goal of this chapter is to orient you to the Mac OS X operating system
and to give you a reference point from which to explore the available tools and technologies described
throughout this document. Developers who are already familiar with the Mac OS X system architecture
and technologies may want to skip this chapter.

Note: For a listing of commonly used Mac OS X terms, see “Glossary” (page 167).

A Layered Approach

The implementation of Mac OS X can be viewed as a set of layers. At the lower layers of the system
are the fundamental services on which all software relies. Subsequent layers contain more sophisticated
services and technologies that build on (or complement) the layers below. Figure 1-1 provides a
graphical view of this layered approach, highlighting a few of the key technologies found in each
layer of Mac OS X.

Figure 1-1 Layers of Mac OS X

User Experience

Aqua Dashboard Spotlight Accessibility

Application Frameworks

Cocoa Carbon Java

Darwin

Graphics and Media

OpenGL Quartz Core Audio

Core Animation Core Image Core Video QuickTime

A Layered Approach 19
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Mac OS X System Overview



The bottom layer consists of the core environment layer, of which Darwin is the most significant
component. Darwin is the name given to the FreeBSD environment that comprises the heart of Mac
OS X. FreeBSD is a variant of the Berkeley Software Distribution UNIX environment, which provides
a secure and stable foundation for building software. Included in this layer are the kernel environment,
device drivers, security support, interprocess communication support, and low-level commands and
services used by all programs on the system. Besides Darwin, this layer contains several core services
and technologies, many of which are simply higher-level wrappers for the data types and functions
in the Darwin layer. Among the available core services are those for doing collection management,
data formatting, memory management, string manipulation, process management, XML parsing,
stream-based I/O, and low-level network communication. For details about the technologies in this
layer, see “Darwin and Core Technologies” (page 23).

The Graphics and Media layer implements specialized services for playing audio and video and for
rendering 2D and 3D graphics. One of the key technologies in this layer is Quartz, which provides
the main rendering environment and window management support for Mac OS X applications.
QuickTime is Apple’s technology for displaying video, audio, virtual reality, and other
multimedia-related information. Apple’s core technologies, including Core Image, Core Video, Core
Animation, and Core Audio, provide advanced behavior for different types of media. OpenGL is an
implementation of the industry-standard application programming interface (API) for rendering
graphics and is used both as a standalone technology and as an underlying technology for accelerating
all graphics operations. For details about the technologies in this layer, see “Graphics and Multimedia
Technologies” (page 43).

The Application Frameworks layer embodies the technologies for building applications. At the heart
of this layer are the basic environments used to develop applications: Cocoa, Carbon, Java, and others.
Each environment is designed to provide a level of familiarity to certain types of developers. For
example, Cocoa and Java provide object-oriented environments using the Objective-C and Java
languages while Carbon provides a C-based environment. This layer also contains numerous
supporting technologies, such as Core Data, Address Book, Image Services, Keychain Services, Launch
Services, HTML rendering, and many others. These technologies provide advanced user features and
can be used to shorten your overall development cycle. For details about the technologies in this layer,
see “Application Technologies” (page 59).

The User Experience layer identifies the methodologies, technologies, and applications that make
Mac OS X software unique. Apple provides countless technologies to implement the overall user
experience. Many of these technologies simply work, but some require interactions with the software
you create. Understanding what interactions are expected of your software can help you integrate it
more smoothly into the Mac OS X ecosystem. For details about the technologies in this layer, see
“User Experience” (page 75).

The Advantage of Layers

The nice thing about the Mac OS X layered design is that writing software in one layer does not
preclude you from using technologies in other layers. Mac OS X technologies were built to interoperate
with each other whenever possible. In cases where a given technology is unsuitable, you can always
use a different technology that is suitable. For example, Cocoa applications can freely use Carbon
frameworks and BSD function calls. Similarly, Carbon applications can use Objective-C based
frameworks in addition to other object-oriented and C-based frameworks. Of course, in the case of
Carbon, you might have to set up some Cocoa-specific structures before creating any Cocoa objects,
but doing so is relatively trivial.

20 The Advantage of Layers
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Mac OS X System Overview



Although you may feel more comfortable sticking with your chosen development environment, there
are advantages to straying outside of that environment. You might find that technologies in other
layers offer better performance or more flexibility. For example, using the POSIX interfaces in the
Darwin layer might make it easier to port your application to other platforms that conform to the
POSIX specification. Having access to technologies in other layers gives you options in your
development process. You can pick and choose the technologies that best suit your development
needs.

Developer Tools

Mac OS X provides you with a full suite of free developer tools to prototype, compile, debug, and
optimize your applications. At the heart of Apple’s developer tools solution is Xcode, Apple’s integrated
development environment. You use Xcode to organize and edit your source files, compile and debug
your code, view documentation, and build all manner of software products.

In addition to the Xcode application, Mac OS X also provides you with a wide selection of open source
tools, such as the GNU Compiler Collection (GCC), which you use to build Mach-O programs, the
native binary format of Mac OS X. If you are used to building programs from the command line, all
of the familiar tools are there for you to use, including makefiles, the gdb debugger, analysis tools,
performance tools, source-code management tools, and many other code utilities.

Mac OS X also provides many other tools to make the development process easier:

 ■ Interface Builder lets you design your application’s user interface graphically and save those
designs as resource files that you can load into your program at runtime.

 ■ Instruments is a powerful performance analysis and debugging tool that lets you peer into your
code as it’s running and gather important metrics about what it is doing.

 ■ Shark is an advanced statistical analysis tool that turns your code inside out to help you find any
performance bottlenecks.

 ■ PackageMaker helps you build distributable packages for delivering your software to customers.

 ■ Mac OS X includes several OpenGL tools to help you analyze the execution patterns and
performance of your OpenGL rendering calls.

 ■ Mac OS X supports various scripting languages, including Perl, Python, Ruby, and others.

 ■ Mac OS X includes tools for creating and working with Java programs.

For more information about the available tools in Mac OS X, see “Mac OS X Developer Tools” (page
135).

Developer Tools 21
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Mac OS X System Overview



22 Developer Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Mac OS X System Overview



This chapter summarizes the fundamental system technologies and facilities that are available to
developers in Mac OS X. If you are new to developing Mac OS X software, you should read through
this chapter at least once to understand the available technologies and how you might use them in
your software. Even experienced developers should revisit this chapter periodically to remind
themselves of the available technologies and look for recently introduced technologies.

Darwin

Beneath the appealing, easy-to-use interface of Mac OS X is a rock-solid, UNIX-based foundation
called Darwin that is engineered for stability, reliability, and performance. Darwin integrates a number
of technologies, the most important of which are Mach 3.0, operating-system services based on FreeBSD
5, high-performance networking facilities, and support for multiple, integrated file systems. Because
the design of Darwin is highly modular, you can dynamically add such things as device drivers,
networking extensions, and new file systems.

The following sections describe some of the key features of Darwin. For pointers to more information,
see Getting Started with Darwin.

Mach

Mach is at the heart of Darwin because it provides some of the most critical functions of the operating
system. Much of what Mach provides is transparent to applications. It manages processor resources
such as CPU usage and memory, handles scheduling, enforces memory protection, and implements
a messaging-centered infrastructure for untyped interprocess communication, both local and remote.
Mach provides many important advantages to Macintosh computing:

 ■ Protected memory. The stability of an operating system should not depend on all executing
applications being good citizens. Even a well-behaved process can accidentally write data into
the address space of the system or another process, which can result in the loss or corruption of
data or even precipitate system crashes. Mach ensures that an application cannot write in another
application’s memory or in the operating system’s memory. By walling off applications from
each other and from system processes, Mach makes it virtually impossible for a single poorly
behaved application to damage the rest of the system. Best of all, if an application crashes as the
result of its own misbehavior, the crash affects only that application and not the rest of the system.

Darwin 23
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



 ■ Preemptive multitasking. With Mach, processes share the CPU efficiently. Mach watches over
the computer’s processor, prioritizing tasks, making sure activity levels are at the maximum, and
ensuring that every task gets the resources it needs. It uses certain criteria to decide how important
a task is and therefore how much time to allocate to it before giving another task its turn. Your
process is not dependent on another process yielding its processing time.

 ■ Advanced virtual memory. In Mac OS X, virtual memory is “on” all the time. The Mach virtual
memory system gives each process its own private virtual address space. For 32-bit applications,
this virtual address space is 4 GB. For 64-bit applications, the theoretical maximum is approximately
18 exabytes, or 18 billion billion bytes. Mach maintains address maps that control the translation
of a task’s virtual addresses into physical memory. Typically only a portion of the data or code
contained in a task’s virtual address space resides in physical memory at any given time. As pages
are needed, they are loaded into physical memory from storage. Mach augments these semantics
with the abstraction of memory objects. Named memory objects enable one task (at a sufficiently
low level) to map a range of memory, unmap it, and send it to another task. This capability is
essential for implementing separate execution environments on the same system.

 ■ Real-time support. This feature guarantees low-latency access to processor resources for
time-sensitive media applications.

Mach also enables cooperative multitasking, preemptive threading, and cooperative threading.

Device-Driver Support

Darwin offers an object-oriented framework for developing device drivers called the I/O Kit
framework. This framework facilitates the creation of drivers for Mac OS X and provides much of
the infrastructure that they need. It is written in a restricted subset of C++. Designed to support a
range of device families, the I/O Kit is both modular and extensible.

Device drivers created with the I/O Kit acquire several important features:

 ■ True plug and play

 ■ Dynamic device management (“hot plugging”)

 ■ Power management (for both desktops and portables)

If your device conforms to standard specifications, such as those for mice, keyboards, audio input
devices, modern MIDI devices, and so on, it should just work when you plug it in. If your device
doesn’t conform to a published standard, you can use the I/O Kit resources to create a custom driver
to meet your needs. Devices such as AGP cards, PCI and PCIe cards, scanners, and printers usually
require custom drivers or other support software in order to work with Mac OS X.

For information on creating device drivers, see I/O Kit Device Driver Design Guidelines.

BSD

Integrated with Mach is a customized version of the Berkeley Software Distribution (BSD) operating
system (currently FreeBSD 5). Darwin’s implementation of BSD includes much of the POSIX API,
which higher-level applications can also use to implement basic application features. BSD serves as
the basis for the file systems and networking facilities of Mac OS X. In addition, it provides several
programming interfaces and services, including:

24 Darwin
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



 ■ The process model (process IDs, signals, and so on)

 ■ Basic security policies such as file permissions and user and group IDs

 ■ Threading support (POSIX threads)

 ■ Networking support (BSD sockets)

For more information about the FreeBSD operating system, go to http://www.freebsd.org/. For more
information about the boot process of Mac OS X, including how it launches the daemons used to
implement key BSD services, see System Startup Programming Topics.

File-System Support

The file-system component of Darwin is based on extensions to BSD and an enhanced Virtual File
System (VFS) design. The file-system component includes the following features:

 ■ Permissions on removable media. This feature is based on a globally unique ID registered for
each connected removable device (including USB and FireWire devices) in the system.

 ■ Access control lists (available in Mac OS X version 10.4 and later)

 ■ URL-based volume mount, which enables users (via a Finder command) to mount such things
as AppleShare and web servers

 ■ Unified buffer cache, which consolidates the buffer cache with the virtual-memory cache

 ■ Long filenames (255 characters or 755 bytes, based on UTF-8)

 ■ Support for hiding filename extensions on a per-file basis

 ■ Journaling of all file-system types to aid in data recovery after a crash

Because of its multiple application environments and the various kinds of devices it supports, Mac
OS X handles file data in many standard volume formats. Table 2-1 lists the supported formats.

Table 2-1 Supported local volume formats

DescriptionVolume format

Also called HFS (hierarchical file system) Plus, or HFS+. This is the default root
and booting volume format in Mac OS X. This extended version of HFS optimizes
the storage capacity of large hard disks by decreasing the minimum size of a
single file.

Mac OS Extended
Format

Also called hierarchical file system, or HFS. This is the volume format in Mac
OS systems prior to Mac OS 8.1. HFS (like HFS+) stores resources and data in
separate forks of a file and makes use of various file attributes, including type
and creator codes.

Mac OS Standard
Format

Darwin 25
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies

http://www.freebsd.org/


DescriptionVolume format

Universal Disk Format, used for hard drives and optical disks, including most
types of CDs and DVDs. Mac OS X v10.4 supports UDF revisions 1.02 through
1.50 (although you cannot write out Finder Info, resource forks, and other
extended attributes in these revisions). Mac OS X v10.5 and later supports reading
UDF revisions 1.02 through 2.60 on both block devices and most optical media,
and it supports writing to block devices and to DVD-RW and DVD+RW media
using UDF 2.00 through 2.50 (except for mirrored metadata partions in 2.50).
You can find the UDF specification at http://www.osta.org.

UDF

The standard format for CD-ROM volumes.ISO 9660

The NT File System, used by Windows computers. Mac OS X can read
NTFS-formatted volumes but cannot write to them.

NTFS

UNIX File System is a flat (that is, single-fork) disk volume format, based on the
BSD FFS (Fast File System), that is similar to the standard volume format of most
UNIX operating systems; it supports POSIX file-system semantics, which are
important for many server applications. Although UFS is supported in Mac OS
X, its use is discouraged.

UFS

Mac OS X supports the FAT file systems used by many Windows computers. It
can read and write FAT-formatted volumes.

MS-DOS (FAT)

HFS+ volumes support aliases, symbolic links, and hard links, whereas UFS volumes support symbolic
links and hard links but not aliases. Although an alias and a symbolic link are both lightweight
references to a file or directory elsewhere in the file system, they are semantically different in significant
ways. For more information, see “Aliases and Symbolic Links” in File System Overview.

Note: Mac OS X does not support stacking in its file-system design.

Because Mac OS X is intended to be deployed in heterogeneous networks, it also supports several
network file-sharing protocols. Table 2-2 lists these protocols.

Table 2-2 Supported network file-sharing protocols

DescriptionFile protocol

Apple Filing Protocol, the principal file-sharing protocol in Mac OS 9 systems (available
only over TCP/IP transport).

AFP client

Network File System, the dominant file-sharing protocol in the UNIX world.NFS client

Web-based Distributed Authoring and Versioning, an HTTP extension that allows
collaborative file management on the web.

WebDAV

SMB/CIFS, a file-sharing protocol used on Windows and UNIX systems.SMB/CIFS

26 Darwin
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies

http://www.osta.org


Network Support

Mac OS X is one of the premier platforms for computing in an interconnected world. It supports the
dominant media types, protocols, and services in the industry as well as differentiated and innovative
services from Apple.

The Mac OS X network protocol stack is based on BSD. The extensible architecture provided by
network kernel extensions, summarized in “Networking Extensions” (page 30), facilitates the creation
of modules implementing new or existing protocols that can be added to this stack.

Standard Network Protocols

Mac OS X provides built-in support for a large number of network protocols that are standard in the
computing industry. Table 2-3 summarizes these protocols.

Table 2-3 Network protocols

DescriptionProtocol

802.1x is a protocol for implementing port-based network access over wired or
wireless LANs. It supports a wide range of authentication methods, including
TLS, TTLS, LEAP, MDS, and PEAP (MSCHAPv2, MD5, GTC).

802.1x

The Dynamic Host Configuration Protocol and the Bootstrap Protocol automate
the assignment of IP addresses in a particular network.

DHCP and
BOOTP

Domain Name Services is the standard Internet service for mapping host names
to IP addresses.

DNS

The File Transfer Protocol and Secure File Transfer Protocol are two standard
means of moving files between computers on TCP/IP networks. (SFTP support
was added in Mac OS X version 10.3.)

FTP and SFTP

The Hypertext Transport Protocol is the standard protocol for transferring
webpages between a web server and browser. Mac OS X provides support for
both the insecure and secure versions of the protocol.

HTTP and HTTPS

The Lightweight Directory Access Protocol lets users locate groups, individuals,
and resources such as files and devices in a network, whether on the Internet
or on a corporate intranet.

LDAP

The Name Binding Protocol is used to bind processes across a network.NBP

The Network Time Protocol is used for synchronizing client clocks.NTP

The Printer Access Protocol is used for spooling print jobs and printing to
network printers.

PAP

For dialup (modem) access, Mac OS X includes PPP (Point-to-Point Protocol).
PPP support includes TCP/IP as well as the PAP and CHAP authentication
protocols.

PPP

Darwin 27
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



DescriptionProtocol

The Point-to-Point Protocol over Ethernet protocol provides an Ethernet-based
dialup connection for broadband users.

PPPoE

The Secure MIME protocol supports encryption of email and the attachment of
digital signatures to validate email addresses. (S/MIME support was added in
Mac OS X version 10.3.)

S/MIME

Service Location Protocol is designed for the automatic discovery of resources
(servers, fax machines, and so on) on an IP network.

SLP

The Simple Object Access Protocol is a lightweight protocol for exchanging
encapsulated messages over the web or other networks.

SOAP

The Secure Shell protocol is a safe way to perform a remote login to another
computer. Session information is encrypted to prevent unauthorized snooping
of data.

SSH

Mac OS X provides two transmission-layer protocols, TCP (Transmission Control
Protocol) and UDP (User Datagram Protocol), to work with the network-layer
Internet Protocol (IP). (Mac OS X 10.2 and later includes support for IPv6 and
IPSec.)

TCP/IP and
UDP/IP

XML-RPC is a protocol for sending remote procedure calls using XML over the
web.

XML-RPC

Apple also implements a number of file-sharing protocols; see Table 2-2 (page 26) for a summary of
these protocols.

Legacy Network Services and Protocols

Apple includes the following legacy network products in Mac OS X to ease the transition from earlier
versions of the Mac OS.

 ■ AppleTalk is a suite of network protocols that is standard on the Macintosh and can be integrated
with other network systems. Mac OS X includes minimal support for compatibility with legacy
AppleTalk environments and solutions.

 ■ Open Transport implements industry-standard communications and network protocols as part
of the I/O system. It helps developers incorporate networking services in their applications
without having to worry about communication details specific to any one network.

These protocols are provided to support legacy applications, such as those running in the Classic
environment. You should never use these protocols for any active development. Instead, you should
use newer networking technologies such as CFNetwork.

Network Technologies

Mac OS X supports the network technologies listed in Table 2-4.

28 Darwin
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



Table 2-4 Network technology support

DescriptionTechnology

For the Ethernet ports built into every new Macintosh.Ethernet 10/100Base-T

Also known as Gigabit Ethernet. For data transmission over fiber-optic
cable and standardized copper wiring.

Ethernet 1000Base-T

This Ethernet format uses 9 KB frames for interserver links rather than the
standard 1.5 KB frame. Jumbo Frame decreases network overhead and
increases the flow of server-to-server and server-to-application data. Jumbo
frames are supported in Mac OS X version 10.3 and later. Systems running
Mac OS X versions 10.2.4 to 10.3 can use jumbo frames only on third-party
Ethernet cards that support them.

Jumbo Frame

Supports modem and ISDN capabilities.Serial

Supports the 802.11b, 802.11g, and 802.11n wireless network technology
using AirPort and AirPort Extreme.

Wireless

Routing and Multihoming

Mac OS X is a powerful and easy-to-use desktop operating system but can also serve as the basis for
powerful server solutions. Some businesses or organizations have small networks that could benefit
from the services of a router, and Mac OS X offers IP routing support for just these occasions. With
IP routing, a Mac OS X computer can act as a router or even as a gateway to the Internet. The Routing
Information Protocol (RIP) is used in the implementation of this feature.

Mac OS X also allows multihoming and IP aliasing. With multihoming, a computer host is physically
connected to multiple data links that can be on the same or different networks. IP aliasing allows a
network administrator to assign multiple IP addresses to a single network interface. Thus one computer
running Mac OS X can serve multiple websites by acting as if it were multiple servers.

Zero-Configuration Networking

Introduced in Mac OS X version 10.2, Bonjour is Apple’s implementation of zero-configuration
networking. Bonjour enables the dynamic discovery of computer services over TCP/IP networks
without the need for any complex user configuration of the associated hardware. Bonjour helps to
connect computers and other electronic devices by providing a mechanism for them to advertise and
browse for network-based services. See “Bonjour” (page 64) for more information.

NetBoot

NetBoot is most often used in school or lab environments where the system administrator needs to
manage the configuration of multiple computers. NetBoot computers share a single System folder,
which is installed on a centralized server that the system administrator controls. Users store their
data in home directories on the server and have access to a common Applications folder, both of
which are also commonly installed on the server.

Darwin 29
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



To support NetBoot, applications must be able to run from a shared, locked volume and write a user’s
personal data to a different volume. Preferences and user-specific data should always be stored in
the Preferences folder of the user’s home directory. Users should also be asked where they want to
save their data, with the user’s Documents folder being the default location. Applications must also
remember that multiple users may run the application simultaneously.

See Technical Note TN1151, “Creating NetBoot Server–Friendly Applications,” for additional
information. For information on how to write applications that support multiple simultaneous users,
see Multiple User Environments.

Personal Web Sharing

Personal Web Sharing allows users to share information with other users on an intranet, no matter
what type of computer or browser they are using. Basically, it lets users set up their own intranet site.
Apache, the most popular web server on the Internet, is integrated as the system’s HTTP service. The
host computer on which the Personal Web Sharing server is running must be connected to a TCP/IP
network.

Networking Extensions

Darwin offers kernel developers a technology for adding networking capabilities to the operating
system: network kernel extensions (NKEs). The NKE facility allows you to create networking modules
and even entire protocol stacks that can be dynamically loaded into the kernel and unloaded from it.
NKEs also make it possible to configure protocol stacks automatically.

NKE modules have built-in capabilities for monitoring and modifying network traffic. At the data-link
and network layers, they can also receive notifications of asynchronous events from device drivers,
such as when there is a change in the status of a network interface.

For information on how to write an NKE, see Network Kernel Extensions Programming Guide.

Network Diagnostics

Introduced in Mac OS X version 10.4, network diagnostics is a way of helping the user solve network
problems. Although modern networks are generally reliable, there are still times when network
services may fail. Sometimes the cause of the failure is beyond the ability of the desktop user to fix,
but sometimes the problem is in the way the user’s computer is configured. The network diagnostics
feature provides a diagnostic application to help the user locate problems and correct them.

If your application encounters a network error, you can use the new diagnostic interfaces of CFNetwork
to launch the diagnostic application and attempt to solve the problem interactively. You can also
choose to report diagnostic problems to the user without attempting to solve them.

For more information on using this feature, see the header files of CFNetwork.

Scripting Support

Darwin includes all of the scripting languages commonly found in UNIX-based operating systems.
In addition to the scripting languages associated with command-line shells (such as bash and csh),
Darwin also includes support for Perl, Python, Ruby, and others.

30 Darwin
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies

http://developer.apple.com/technotes/tn/tn1151.html


In Mac OS X v10.5, Darwin added support for several new scripting features. In addition to adding
support for Ruby on Rails, Mac OS X also added scripting bridges to the Objective-C classes of Cocoa.
These bridges let you use Cocoa classes from within your Python and Ruby scripts. For information
about using these bridges, see Ruby and Python Programming Topics for Mac OS X.

For information about scripting tools, see “Scripting Tools” (page 161). For information on using
command-line shells, see “Command Line Primer” (page 115).

Threading Support

Mac OS X provides full support for creating multiple preemptive threads of execution inside a single
process. Threads let your program perform multiple tasks in parallel. For example, you might create
a thread to perform some lengthy calculations in the background while a separate thread responds
to user events and updates the windows in your application. Using multiple threads can often lead
to significant performance improvements in your application, especially on computers with multiple
CPU cores. Multithreaded programming is not without its dangers though and requires careful
coordination to ensure your application’s state does not get corrupted.

All user-level threads in Mac OS X are based on POSIX threads (also known as pthreads). A pthread
is a lightweight wrapper around a Mach thread, which is the kernel implementation of a thread. You
can use the pthreads API directly or use any of the threading packages offered by Cocoa, Carbon, or
Java, all of which are implemented using pthreads. Each threading package offers a different
combination of flexibility versus ease-of-use. All offer roughly the same performance, however.

For more information about threading support and guidelines on how to use threads safely, see
Threading Programming Guide.

X11

In Mac OS X v10.3 and later, the X11 windowing system is provided as an optional installation
component for the system. This windowing system is used by many UNIX applications to draw
windows, controls, and other elements of graphical user interfaces. The Mac OS X implementation
of X11 uses the Quartz drawing environment to give X11 windows a native Mac OS X feel. This
integration also makes it possible to display X11 windows alongside windows from native applications
written in Carbon and Cocoa.

Binary File Architecture

The underlying architecture of Mac OS X executables was built from the beginning with flexibility
in mind. This flexibility has become important as Macintosh computers have transitioned from using
PowerPC to Intel CPUs and from supporting only 32-bit applications to 64-bit applications in Mac
OS X v10.5. The following sections provide an overview of the types of architectures you can support
in your Mac OS X executables and how

Binary File Architecture 31
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



Hardware Architectures

When Mac OS X was first introduced, it was built to support a 32-bit PowerPC hardware architecture.
With Apple’s transition to Intel-based Macintosh computers, Mac OS X added initial support for
32-bit Intel hardware architectures. In addition to 32-bit support, Mac OS X v10.4 added some basic
support for 64-bit architectures as well and this support was expanded in Mac OS X v10.5. This means
that applications and libraries can now support four different architectures:

 ■ 32-bit Intel (i386)

 ■ 32-bit PowerPC (ppc)

 ■ 64-bit Intel (x86_64)

 ■ 64-bit PowerPC (ppc64)

Although applications can support all of these architectures in a single binary, doing so is not required.
That does not mean application developers can pick a single architecture and use that alone, however.
It is recommended that developers create their applications as “universal binaries” so that they run
natively on both 32-bit Intel and PowerPC processors. If performance or development need warrants
it, you might also add support for the 64-bit versions of each architecture.

Because libraries can be linked into multiple applications, you might consider supporting all of the
available architectures when creating them. Although supporting all architectures is not required, it
does give developers using your library more flexibility in how they create their applications and is
recommended.

Supporting multiple architectures requires careful planning and testing of your code for each
architecture. There are subtle differences from one architecture to the next that can cause problems
if not accounted for in your code. For example, the PowerPC and Intel architectures use different
endian structures for multi-byte data. In addition, some built-in data types have different sizes in
32-bit and 64-bit architectures. Accounting for these differences is not difficult but requires
consideration to avoid coding errors.

Xcode provides integral support for creating applications that support multiple hardware architectures.
For information about tools support and creating universal binaries to support both PowerPC and
Intel architectures, see Universal Binary Programming Guidelines, Second Edition. For information about
64-bit support in Mac OS X, including links to documentation for how to make the transition, see
“64-Bit Support” (page 32).

64-Bit Support

Mac OS X was initially designed to support binary files on computers using a 32-bit architecture. In
Mac OS X version 10.4, however, support was introduced for compiling, linking, and debugging
binaries on a 64-bit architecture. This initial support was limited to code written using C or C++ only.
In addition, 64-bit binaries could link against the Accelerate framework and libSystem.dylib only.

In Mac OS X v10.5, most system libraries and frameworks are now 64-bit ready, meaning they can
be used in both 32-bit and 64-bit applications. The conversion of frameworks to support 64-bit required
some implementation changes to ensure the proper handling of 64-bit data structures; however, most
of these changes should be transparent to your use of the frameworks. Building for 64-bit means you

32 Binary File Architecture
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



can create applications that address extremely large data sets, up to 128TB on the current Intel-based
CPUs. On Intel-based Macintosh computers, some 64-bit applications may even run faster than their
32-bit equivalents because of the availability of extra processor resources in 64-bit mode.

Although most APIs support 64-bit development, some older APIs were not ported to 64-bit or offer
restricted support for 64-bit applications. Many of these APIs are legacy Carbon managers that have
been either wholly or partially deprecated in favor of more modern equivalents. What follows is a
partial list of APIs that will not support 64-bit. For a complete description of 64-bit support in Carbon,
see 64-Bit Guide for Carbon Developers.

 ■ Code Fragment Manager (use the Mach-O executable format instead)

 ■ Desktop Manager (use Icon Services and Launch Services instead)

 ■ Display Manager (use Quartz Services instead)

 ■ QuickDraw (use Quartz or Cocoa instead)

 ■ QuickTime Musical Instruments (use Core Audio instead)

 ■ Sound Manager (use Core Audio instead)

In addition to the list of deprecated APIs, there are a few modern APIs that are not deprecated, but
which have not been ported to 64-bit. Development of 32-bit applications with these APIs is still
supported, but if you want to create a 64-bit application, you must use alternative technologies.
Among these APIs are the following:

 ■ The entire QuickTime C API (not deprecated, but developers should use QuickTime Kit instead
in 64-bit applications)

 ■ HIToolbox, Window Manager, and most other Carbon user interface APIs (not deprecated, but
developers should use Cocoa user interface classes and other alternatives); see 64-Bit Guide for
Carbon Developers for the list of specific APIs and transition paths.

Mac OS X uses the LP64 model that is in use by other 64-bit UNIX systems, which means fewer
headaches when porting from other operating systems. For general information on the LP64 model
and how to write 64-bit applications, see 64-Bit Transition Guide. For Cocoa-specific transition
information, see 64-Bit Transition Guide for Cocoa. For Carbon-specific transition information, see 64-Bit
Guide for Carbon Developers.

Object File Formats

Mac OS X is capable of loading object files that use several different object-file formats, including the
following:

 ■ Mach-O

 ■ Java bytecode

 ■ Preferred Executable Format (PEF)

Of these formats, the Mach-O format is the format used for all native Mac OS X application
development. The Java bytecode format is a format executed through the Hotspot Java virtual machine
and used exclusively for Java-based programs. The PEF format is handled by the Code Fragment
Manager and is a legacy format that was used for transitioning Mac OS 9 applications to Mac OS X.

Binary File Architecture 33
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



For information about the Mach-O file format, see Mac OS X ABI Mach-O File Format Reference. For
additional information about using Mach-O files, see Mach-O Programming Topics. For information
about Java support in Mac OS X, see “Java Support” (page 41). For information about the PEF format
and Code Fragment Manager, see “CFM Runtime Environment” (page 35)

Debug File Formats

Whenever you debug an executable file, the debugger uses symbol information generated by the
compiler to associate user-readable names with the procedure and data address it finds in memory.
Normally, this user-readable information is not needed by a running program and is stripped out (or
never generated) by the compiler to save space in the resulting binary file. For debugging, however,
this information is very important to be able to understand what the program is doing.

Mac OS X supports two different debug file formats for compiled executables: stabs and DWARF.
The stabs format is present in all versions of Mac OS X and until the introduction of Xcode 2.4 was
the default debugging format. Code compiled with Xcode 2.4 and later uses the DWARF debugging
format by default. When using the stabs format, debugging symbols, like other symbols are stored
in the symbol table of the executable; see Mac OS X ABI Mach-O File Format Reference. With the DWARF
format, however, debugging symbols are stored either in a specialized segment of the executable or
in a separate debug-information file.

For information about the DWARF standard, go to http://www.dwarfstd.org. For information about
the stabs debug file format, see STABS Debug Format. For additional information about Mach-O files
and their stored symbols, see Mach-O Programming Topics.

Runtime Environments

Since its first release, Mac OS X has supported several different environments for running applications.
The most prominent of these environments is the Dyld environment, which is also the only environment
supported for active development. Most of the other environments provided legacy support during
the transition from Mac OS 9 to Mac OS X and are no longer supported for active development. The
following sections describe the runtime environments you may encounter in various versions of Mac
OS X.

Dyld Runtime Environment

The dyld runtime environment is the native environment in Mac OS X and is used to load, link, and
execute Mach-O files. At the heart of this environment is the dyld dynamic loader program, which
handles the loading of a program’s code modules and associated dynamic libraries, resolves any
dependencies between those libraries and modules, and begins the execution of the program.

Upon loading a program’s code modules, the dynamic loader performs the minimal amount of symbol
binding needed to launch your program and get it running. This binding process involves resolving
links to external libraries and loading them as their symbols are used. The dynamic loader takes a
lazy approach to binding individual symbols, doing so only as they are used by your code. Symbols
in your code can be strongly-linked or weakly-linked. Strongly-linked symbols cause the dynamic
loader to terminate your program if the library containing the symbol cannot be found or the symbol
is not present in the library. Weakly-linked symbols terminate your program only if the symbol is
not present and an attempt is made to use it.

34 Binary File Architecture
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies

http://www.dwarfstd.org


For more information about the dynamic loader program, see dyld. For information about building
and working with Mach-O executable files, see Mach-O Programming Topics.

Java Runtime Environment

The Java runtime environment consists of the HotSpot Java virtual machine, the “just-in-time” (JIT)
bytecode compiler, and code packages containing the standard Java classes. For more information
about Java support in Mac OS X, see “Java Support” (page 41).

CFM Runtime Environment

The Code Fragment Manager (CFM) runtime environment is a legacy environment inherited from
Mac OS 9. Mac OS X provides this environment to support applications that want to use the modern
features of Mac OS X but have not yet been converted over to the dyld environment for various
reasons. The CFM runtime environment expects code modules to be built using the Preferred
Executable Format (PEF).

Unlike the dyld environment, the CFM runtime environment takes a static approach to symbol
binding. At runtime, the CFM library manager binds all referenced symbols when the code modules
are first loaded into memory. This binding occurs regardless of whether those symbols are actually
used during the program’s course of execution. If a particular symbol is missing, the program does
not launch. (An exception to this rule occurs when code modules are bound together using weak
linking, which explicitly permits symbols to be missing as long as they are never used.)

Because all system libraries are implemented using Mach-O and dyld, Mac OS X provides a set of
libraries to bridge calls between CFM code and system libraries. This bridging is transparent but
incurs a small amount of overhead for CFM-based programs. The Carbon library is one example of
a bridged library.

Note: The libraries bridge only from CFM to dyld; they do not bridge calls going in the opposite
direction. It is possible for a dyld-based application to make calls into a CFM-based library using the
CFBundle facility, but this solution is not appropriate for all situations. If you want a library to be
available to all Mac OS X execution environments, build it as a dyld-based library.

On Intel-based Macintosh computers, CFM binaries are run under the Rosetta environment.

The Classic Environment

The Classic compatibility environment (or simply, Classic environment) is called a “software
compatibility” environment because it enabled Mac OS X to run applications built for Mac OS 9.1 or
9.2. The Classic environment is not an emulator; it is a hardware abstraction layer between an installed
Mac OS 9 System Folder and the Mac OS X kernel environment. Because of architectural differences,
applications running in the Classic environment do not share the full advantages of the kernel
environment.

The Classic environment is supported only on PowerPC-based Macintosh computers and is deprecated
in Mac OS X v10.5 and later. You should not be doing any active development using the Classic
environment. If you want to write programs to run in Mac OS X, you should use the dyld environment
instead.

The Classic environment is not supported on Intel-based Macintosh computers.

Binary File Architecture 35
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



Security

The roots of Mac OS X in the UNIX operating system provide a robust and secure computing
environment whose track record extends back many decades. Mac OS X security services are built
on top of two open-source standards: BSD (Berkeley Software Distribution) and CDSA (Common
Data Security Architecture). BSD is a form of the UNIX operating system that provides basic security
for fundamental services, such as file and network access. CDSA provides a much wider array of
security services, including finer-grained access permissions, authentication of users’ identities,
encryption, and secure data storage. Although CDSA has its own standard API, it is complex and
does not follow standard Macintosh programming conventions. Therefore, Mac OS X includes its
own security APIs that call through to the CDSA API for you.

In Mac OS X v10.5 several improvements were made to the underlying operating system security,
including the addition of the following features:

 ■ Adoption of the Mandatory Access Control (MAC) framework, which provides a fine-grained
security architecture for controlling the execution of processes at the kernel level. This feature
enables the “sandboxing” of applications, which lets you limit the access of a given application
to only those features you designate.

 ■ Support for code signing and installer package signing. This feature lets the system validate
applications using a digital signature and warn the user if an application is tampered with.

 ■ Compiler support for fortifying your source code against potential security threats. This support
includes options to disallow the execution of code located on the stack or other portions of memory
containing data. It also includes some new GCC compiler warnings.

 ■ Support for putting unknown files into quarantine. This is especially useful for developers of
web browsers or other network-based applications that receive files from unknown sources. The
system prevents access to quarantined files unless the user explicitly approves that access.

For an introduction to Mac OS X security features, see Security Overview.

IPC and Notification Mechanisms

Mac OS X supports numerous technologies for interprocess communication (IPC) and for delivering
notifications across the system. The following sections describe the available technologies.

FSEvents API

Introduced in Mac OS X v10.5, the FSEvents API notifies your application when changes occur in the
file system. You can use file system events to monitor directories for any changes, such as the creation,
modification, or removal of contained files and directories. Although kqueues provide similar behavior,
the FSEvents API provides a much simpler way to monitor many directories at once. For example,
you can use file system events to monitor entire file system hierarchies rooted at a specific directory
and still receive notifications about individual directories in the hierarchy. The implementation of
file system events is lightweight and efficient, providing built-in coalescing when multiple changes
occur within a short period of time to one or many directories.

36 Security
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



The FSEvents API is not intended for detecting fine-grained changes to individual files. You would
not use this to detect changes to an individual file as in a virus checker program. Instead, you might
use FSEvents to detect general changes to a file hierarchy. For example, you might use this technology
in backup software to detect what files changed. You might also use it to monitor a set of data files
your application uses, but which can be modified by other applications as well.

For information on how to use the FSEvents API, see File System Events Programming Guide.

Kernel Queues and Kernel Events

Kernel queues (also known as kqueues) and kernel events (also known as kevents) are an extremely
powerful technology you use to intercept kernel-level events. Although often used to detect file-system
changes, you can also use this technology to receive notifications about changes to sockets, processes,
and other aspects of the system. For example, you could use them to detect when a process exits or
when it issues fork and exec calls. Kernel queues and events are part of the FreeBSD layer of the
operating system and are described in the kqueue and kevent man pages.

BSD Notifications

Starting with Mac OS X version 10.3, applications can take advantage of a system-level notification
API. This notification mechanism is defined in the /usr/include/notify.h system header. BSD
notifications offer some advantages over the Core Foundation notification mechanism, including the
following:

 ■ Clients can receive BSD notifications through several different mechanisms, including Mach ports,
signals, and file descriptors.

 ■ BSD notifications are more lightweight and efficient than other notification techniques.

 ■ BSD notifications can be coalesced if multiple notifications are received in quick succession.

You can add support for BSD notifications to any type of program, including Carbon and Cocoa
applications. For more information, see Mac OS X Notification Overview or the notify man page.

Sockets, Ports, and Streams

Sockets and ports provide a portable mechanism for communicating between applications in Mac
OS X. A socket represents one end of a communications channel between two processes either locally
or across the network. A port is a channel between processes or threads on the local computer.
Applications can set up sockets and ports to implement fast, efficient messaging between processes.

The Core Foundation framework includes abstractions for sockets (CFSocket/CFRunLoop) and ports
(CFMessagePort). You can use CFSocket with CFRunLoop to multiplex data received from a socket
with data received from other sources. This allows you to keep the number of threads in your
application to an absolute minimum, which conserves system resources and thus aids performance.
Core Foundation sockets are also much simpler to use than the raw socket interfaces provided by
BSD. CFMessagePort provides similar features for ports.

IPC and Notification Mechanisms 37
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



If you are communicating using an established transport mechanism such as Bonjour or HTTP, a
better way to transfer data between processes is with the Core Foundation or Cocoa stream interfaces.
These interfaces work with CFNetwork to provide a stream-based way to read and write network
data. Like sockets, streams and CFNetwork were designed with run loops in mind and operate
efficiently in that environment.

CFSocket and its related functions are documented in CFSocket Reference. For information about Core
Foundation streams, see CFReadStream Reference and CFWriteStream Reference. For information about
Cocoa streams, see the description of the NSStream class in Foundation Framework Reference.

BSD Pipes

A pipe is a communications channel typically created between a parent and a child process when the
child process is forked. Data written to a pipe is buffered and read in first-in, first-out (FIFO) order.
You create unnamed pipes between a parent and child using the pipe function declared in
/usr/include/unistd.h. This is the simplest way to create a pipe between two processes; the
processes must, however, be related.

You can also create named pipes to communicate between any two processes. A named pipe is
represented by a file in the file system called a FIFO special file. A named pipe must be created with
a unique name known to both the sending and the receiving process.

Note: Make sure you give your named pipes appropriate names to avoid unwanted collisions caused
by the presence of multiple simultaneous users.

Pipes are a convenient and efficient way to create a communications channel between related processes.
However, in general use, pipes are still not as efficient as using CFStream. The run loop support
offered by CFStream makes it a better choice when you have multiple connections or plan to maintain
an open channel for an extended period of time.

The interfaces for CFStream are documented in CFNetwork Programming Guide.

Shared Memory

Shared memory is a region of memory that has been allocated by a process specifically for the purpose
of being readable and possibly writable among several processes. You create regions of shared memory
in several different ways. Among the available options are the functions in /usr/include/sys/shm.h,
the shm_open and shm_unlink routines, and the mmap routine. Access to shared memory is controlled
through POSIX semaphores, which implement a kind of locking mechanism. Shared memory has
some distinct advantages over other forms of interprocess communication:

 ■ Any process with appropriate permissions can read or write a shared memory region.

 ■ Data is never copied. Each process reads the shared memory directly.

 ■ Shared memory offers excellent performance.

38 IPC and Notification Mechanisms
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



The disadvantage of shared memory is that it is very fragile. When a data structure in a shared memory
region becomes corrupt, all processes that refer to the data structure are affected. In most cases, shared
memory regions should also be isolated to a single user session to prevent security issues. For these
reasons, shared memory is best used only as a repository for raw data (such as pixels or audio), with
the controlling data structures accessed through more conventional interprocess communication.

For information about shm_open, shm_unlink, and mmap, see the shm_open, shm_unlink, and mmap
man pages.

Apple Events

An Apple event is a high-level semantic event that an application can send to itself, to other applications
on the same computer, or to applications on a remote computer. Apple events are the primary
technology used for scripting and interapplication communication in Mac OS X. Applications can
use Apple events to request services and information from other applications. To supply services,
you define objects in your application that can be accessed using Apple events and then provide
Apple event handlers to respond to requests for those objects.

Apple events have a well-defined data structure that supports extensible, hierarchical data types. To
make it easier for scripters and other developers to access it, your application should generally support
the standard set of events defined by Apple. If you want to support additional features not covered
by the standard suite, you can also define custom events as needed.

Apple events are part of the Application Services umbrella framework. For information on how to
use Apple events, see Apple Events Programming Guide. See also Apple Event Manager Reference for
information about the functions and constants used to create, send, and receive Apple events.

Distributed Notifications

A distributed notification is a message posted by any process to a per-computer notification center,
which in turn broadcasts the message to any processes interested in receiving it. Included with the
notification is the ID of the sender and an optional dictionary containing additional information. The
distributed notification mechanism is implemented by the Core Foundation CFNotificationCenter
object and by the Cocoa NSDistributedNotificationCenter class.

Distributed notifications are ideal for simple notification-type events. For example, a notification
might communicate the status of a certain piece of hardware, such as the network interface or a
typesetting machine. However, notifications should not be used to communicate critical information
to a specific process. Although Mac OS X makes every effort possible, it does not guarantee the delivery
of a notification to every registered receiver.

Distributed notifications are true notifications because there is no opportunity for the receiver to reply
to them. There is also no way to restrict the set of processes that receive a distributed notification.
Any process that registers for a given notification may receive it. Because distributed notifications
use a string for the unique registration key, there is also a potential for namespace conflicts.

For information on Core Foundation support for distributed notifications, see CFNotificationCenter
Reference. For information about Cocoa support for distributed notifications, see Notification
Programming Topics for Cocoa.

IPC and Notification Mechanisms 39
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



Distributed Objects for Cocoa

Cocoa distributed objects provide a transparent mechanism that allows different applications (or
threads in the same application) to communicate on the same computer or across the network. The
implementation of distributed objects lets you focus on the data being transferred rather than the
connection. As a result, implementing distributed objects takes less time than most other IPC
mechanisms; however, this ease of implementation comes at the cost of performance. Distributed
objects are typically not as efficient as many other techniques.

For information on how to use distributed objects in your Cocoa application, see Distributed Objects
Programming Topics.

Mach Messaging

Mach port objects implement a standard, safe, and efficient construct for transferring messages
between processes. Despite these benefits, messaging with Mach port objects is the least desirable
way to communicate between processes. Mach port messaging relies on knowledge of the kernel
interfaces, which may change in a future version of Mac OS X.

All other interprocess communications mechanisms in Mac OS X are implemented using Mach ports
at some level. As a result, low-level technologies such as sockets, ports, and streams all offer efficient
and reliable ways to communicate with other processes. The only time you might consider using
Mach ports directly is if you are writing software that runs in the kernel.

Core Foundation

The Core Foundation framework (CoreFoundation.framework) is a set of C-based interfaces that
provide basic data management features for Mac OS X programs. Among the data types you can
manipulate with Core Foundation are the following:

 ■ Collections

 ■ Bundles and plug-ins

 ■ Strings

 ■ Raw data blocks

 ■ Dates and times

 ■ Preferences

 ■ Streams

 ■ URLs

 ■ XML data

 ■ Locale information

 ■ Run loops

 ■ Ports and sockets

40 Core Foundation
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



Although it is C-based, the design of the Core Foundation interfaces is more object-oriented than C.
As a result, the opaque types you create with Core Foundation interfaces operate seamlessly with the
Cocoa Foundation interfaces. Core Foundation is used extensively in Mac OS X to represent
fundamental types of data, and its use in Carbon and other non-Cocoa applications is highly
recommended. (For Cocoa applications, use the Cocoa Foundation framework instead.)

For an overview of Core Foundation, see Core Foundation Design Concepts. For additional conceptual
and reference material, see the categories of Reference Library > Core Foundation.

Objective-C

Objective-C is a C-based programming language with object-oriented extensions. It is also the primary
development language for Cocoa applications. Unlike C++ and some other object-oriented languages,
Objective-C comes with its own dynamic runtime environment. This runtime environment makes it
much easier to extend the behavior of code at runtime without having access to the original source.

In Mac OS X v10.5, an update to the Objective-C language (called Objective-C 2.0) was introduced,
adding support for the following features:

 ■ Object properties, which offer an alternative way to declare member variables

 ■ Support for garbage collection; see Garbage Collection Programming Guide

 ■ A new for operator syntax for performing fast enumerations of collections

 ■ Protocol enhancements

 ■ Deprecation syntax

For information about the Objective-C language, see The Objective-C 2.0 Programming Language.

Java Support

The following sections outline the support provided by Mac OS X for creating Java-based programs.

Note: The developer documentation on the Apple website contains an entire section devoted to Java.
There you can find detailed information on the Java environment and accompanying technologies
for operating in Mac OS X. For an introduction to the Java environment and pointers to relevant
documentation on Java programming in Mac OS X, see Getting Started with Java.

The Java Environment

The libraries, JAR files, and executables for the Java application environment are located in the
/System/Library/Frameworks/JavaVM.framework directory. The Java application environment
has three major components:

Objective-C 41
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



 ■ A development environment, comprising the Java compiler (javac) and debugger (jdb) as well
as other tools, including javap, javadoc, and appletviewer. You can also build Java applications
using Xcode.

 ■ A runtime environment consisting of Sun’s high-performance HotSpot Java virtual machine, the
“just-in-time” (JIT) bytecode compiler, and several basic packages, including java.lang,
java.util, java.io, and java.net.

 ■ An application framework containing the classes necessary for building a Java application. This
framework contains the Abstract Windowing Toolkit (java.awt) and Swing (javax.swing)
packages, among others. These packages provide user interface components, basic drawing
capabilities, a layout manager, and an event-handling mechanism.

Like Carbon and Cocoa applications, a Java application can be distributed as a double-clickable
bundle. The Jar Bundler tool takes your Java packages and produces a Mac OS X bundle. This tool is
installed along with Xcode and the rest of the Apple developer tools on the Xcode Tools CD.

If you want to run your Java application from the command line, you can use the java command. To
launch a Java application from another program, use the system exec call or the Java Runtime.exec
method. To run applets, embed the applet into an HTML page and open the page in Safari.

Java and Other Application Environments

Java applications can take advantage of Mac OS X technologies such as Cocoa and QuickTime through
Sun’s Java Native Interface (JNI). For details on using the JNI on Mac OS X, see Technical Note 2147.

42 Java Support
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Darwin and Core Technologies



The graphics and multimedia capabilities of Mac OS X set it apart from other operating systems. Mac
OS X is built on a modern foundation that includes support for advanced compositing operations
with support for hardware-based rendering on supported graphics hardware. On top of this core are
an array of technologies that provide support for drawing 2D, 3D, and video-based content. The
system also provides an advanced audio system for the generation, playback, and manipulation of
multichannel audio.

Drawing Technologies

Mac OS X includes numerous technologies for rendering 2D and 3D content and for animating that
content dynamically at runtime.

Quartz

Quartz is at the heart of the Mac OS X graphics and windowing environment. Quartz provides
rendering support for 2D content and combines a rich imaging model with on-the-fly rendering,
compositing, and anti-aliasing of content. It also implements the windowing system for Mac OS X
and provides low-level services such as event routing and cursor management.

Quartz comprises both a client API (Quartz 2D) and a window server (Quartz Compositor). The client
API provides commands for managing the graphics context and for drawing primitive shapes, images,
text, and other content. The window server manages the display and device driver environment and
provides essential services to clients, including basic window management, event routing, and cursor
management behaviors.

The Quartz 2D client API is implemented as part of the Application Services umbrella framework
(ApplicationServices.framework), which is what you include in your projects when you want to
use Quartz. This umbrella framework includes the Core Graphics framework
(CoreGraphics.framework), which defines the Quartz 2D interfaces, types, and constants you use
in your applications.

Drawing Technologies 43
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



The Quartz Services API (which is also part of the Core Graphics framework) provides direct access
to some low-level features of the window server. You can use this API to get information about the
currently connected display hardware, capture a display for exclusive use, or adjust display attributes,
such as its resolution, pixel depth, and refresh rate. Quartz Services also provides some support for
operating a Mac OS X system remotely.

For information about the Quartz 2D API, see Quartz 2D Programming Guide. For information about
the Quartz Services API, see Quartz Display Services Programming Topics.

Digital Paper Metaphor

The Quartz imaging architecture is based on a digital paper metaphor. In this case, the digital paper
is PDF, which is also the internal model used by Quartz to store rendered content. Content stored in
this medium has a very high fidelity and can be reproduced on many different types of devices,
including displays, printers, and fax machines. This content can also be written to a PDF file and
viewed by any number of applications that display the PDF format.

The PDF model gives application developers much more control over the final appearance of their
content. PDF takes into account the application’s choice of color space, fonts, image compression, and
resolution. Vector artwork can be scaled and manipulated during rendering to implement unique
effects, such as those that occur when the system transitions between users with the fast user switching
feature.

Mac OS X also takes advantage of the flexibility of PDF in implementing some system features. For
example, in addition to printing, the standard printing dialogs offer options to save a document as
PDF, preview the document before printing, or transmit the document using a fax machine. The PDF
used for all of these operations comes from the same source: the pages formatted for printing by the
application’s rendering code. The only difference is the device to which that content is sent.

Quartz 2D Features

Quartz 2D provides many important features to user applications, including the following:

 ■ High-quality rendering on the screen

 ■ Resolution independent UI support

 ■ Anti-aliasing for all graphics and text

 ■ Support for adding transparency information to windows

 ■ Internal compression of data

 ■ A consistent feature set for all printers

 ■ Automatic PDF generation and support for printing, faxing, and saving as PDF

 ■ Color management through ColorSync

Table 3-1 describes some of technical specifications for Quartz.

44 Drawing Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



Table 3-1 Quartz technical specifications

A minimum bit depth of 16 bits for typical users. An 8-bit depth in
full-screen mode is available for Classic applications, games, and other
multimedia applications.

Bit depth

Supports 800 pixels by 600 pixels as the minimum screen resolution for
typical users. A resolution of 640 x 480 is available for the iBook as well
as for Classic applications, games, and other multimedia applications.

Minimum resolution

Quartz takes advantage of any available vector unit hardware to boost
performance.

Velocity Engine and SSE
support

Quartz Extreme uses OpenGL to draw the entire Mac OS X desktop.
Graphics calls render in supported video hardware, freeing up the CPU
for other tasks.

Quartz Extreme

Quartz Compositor

Quartz Compositor, the window server for Mac OS X, coordinates all of the low-level windowing
behavior and enforces a fundamental uniformity in what appears on the screen. It manages the
displays available on the user’s system, interacting with the necessary device drivers. It also provides
window management, event-routing, and cursor management behaviors.

In addition to window management, Quartz Compositor handles the compositing of all visible content
on the user’s desktop. It supports transparency effects through the use of alpha channel information,
which makes it possible to display drop shadows, cutouts, and other effects that add a more realistic
and dimensional texture to the windows.

The performance of Quartz Compositor remains consistently high because of several factors. To
improve window redrawing performance, Quartz Compositor supports buffered windows and the
layered compositing of windows and window content. Thus, windows that are hidden behind opaque
content are never composited. Quartz Compositor also incorporates Quartz Extreme, which speeds
up rendering calls by handing them off to graphics hardware whenever possible.

Figure 3-1 shows the high-level relationships between Quartz Compositor and the rendering
technologies available on Mac OS X. QuickTime and OpenGL have fewer dependencies on Quartz
Compositor because they implement their own versions of certain windowing capabilities.

Drawing Technologies 45
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



Figure 3-1 Quartz Compositor and the rendering APIs in Mac OS X

Graphics hardware

Quartz Extreme
(hardware acceleration)

Quartz Compositor
(window server)

QuickTime
(streaming, multimedia)

OpenGL
(3D)

Quartz 2D

Graphics rendering libraries

Cocoa Drawing

The Cocoa application environment provides object-oriented wrappers for many of the features found
in Quartz. Cocoa provides support for drawing primitive shapes such as lines, rectangles, ovals, arcs,
and Bezier paths. It supports drawing in both standard and custom color spaces and it supports
content manipulations using graphics transforms. Because it is built on top of Quartz, drawing calls
made from Cocoa are composited along with all other Quartz 2D content. You can even mix Quartz
drawing calls (and drawing calls from other system graphics technologies) with Cocoa calls in your
code if you wish.

For more information on how to draw using Cocoa, see Cocoa Drawing Guide.

OpenGL

OpenGL is an industry-wide standard for developing portable three-dimensional (3D) graphics
applications. It is specifically designed for games, animation, CAD/CAM, medical imaging, and other
applications that need a rich, robust framework for visualizing shapes in two and three dimensions.
The OpenGL API is one of the most widely adopted graphics API standards, which makes code
written for OpenGL portable and consistent across platforms. The OpenGL framework
(OpenGL.framework) in Mac OS X includes a highly optimized implementation of the OpenGL libraries
that provides high-quality graphics at a consistently high level of performance.

OpenGL offers a broad and powerful set of imaging functions, including texture mapping, hidden
surface removal, alpha blending (transparency), anti-aliasing, pixel operations, viewing and modeling
transformations, atmospheric effects (fog, smoke, and haze), and other special effects. Each OpenGL
command directs a drawing action or causes a special effect, and developers can create lists of these
commands for repetitive effects. Although OpenGL is largely independent of the windowing
characteristics of each operating system, the standard defines special glue routines to enable OpenGL
to work in an operating system’s windowing environment. The Mac OS X implementation of OpenGL
implements these glue routines to enable operation with the Quartz Compositor.

46 Drawing Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



In Mac OS X v10.5 and later, OpenGL supports the ability to use multiple threads to process graphics
data. OpenGL also supports pixel buffer objects, color managed texture images in the sRGB color
space, support for 64-bit addressing, and improvements in the shader programming API. You can
also attach an AGL context to WindowRef and HIView objects and thereby avoid using QuickDraw
ports.

For information about using OpenGL in Mac OS X, see OpenGL Programming Guide for Mac OS X.

Core Animation

Introduced in Mac OS X v10.5, Core Animation is a set of Objective-C classes for doing sophisticated
2D rendering and animation. Using Core Animation, you can create everything from basic window
content to Front Row–style user interfaces, and achieve respectable animation performance, without
having to tune your code using OpenGL or other low-level drawing routines. This performance is
achieved using server-side content caching, which restricts the compositing operations performed
by the server to only those parts of a view or window whose contents actually changed.

At the heart of the Core Animation programming model are layer objects, which are similar in many
ways to Cocoa views. Like views, you can arrange layers in hierarchies, change their size and position,
and tell them to draw themselves. Unlike views, layers do not support event-handling, accessibility,
or drag and drop. You can also manipulate the layout of layers in more ways than traditional Cocoa
views. In addition to positioning layers using a layout manager, you can apply 3D transforms to
layers to rotate, scale, skew, or translate them in relation to their parent layer.

Layer content can be animated implicitly or explicitly depending on the actions you take. Modifying
specific properties of a layer, such as its geometry, visual attributes, or children, typically triggers an
implicit animation to transition from the old state to the new state of the property. For example,
adding a child layer triggers an animation that causes the child layer to fade gradually into view. You
can also trigger animations explicitly in a layer by modifying its transformation matrix.

You can manipulate layers independent of, or in conjunction with, the views and windows of your
application. Both Cocoa and Carbon applications can take advantage of the Core Animation’s
integration with the NSView class to add animation effects to windows. Layers can also support the
following types of content:

 ■ Quartz Composer compositions

 ■ OpenGL content

 ■ Core Image filter effects

 ■ Quartz and Cocoa drawing content

 ■ QuickTime playback and capture

The Core Animation features are part of the Quartz Core framework (QuartzCore.framework). For
information about Core Animation, see Animation Overview.

Drawing Technologies 47
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



Core Image

Introduced in Mac OS X version 10.4, Core Image extends the basic graphics capabilities of the system
to provide a framework for implementing complex visual behaviors in your application. Core Image
uses GPU-based acceleration and 32-bit floating-point support to provide fast image processing and
pixel-level accurate content. The plug-in based architecture lets you expand the capabilities of Core
Image through the creation of image units, which implement the desired visual effects.

Core Image includes built-in image units that allow you to:

 ■ Crop images

 ■ Correct color, including perform white-point adjustments

 ■ Apply color effects, such as sepia tone

 ■ Blur or sharpen images

 ■ Composite images

 ■ Warp the geometry of an image by applying an affine transform or a displacement effect

 ■ Generate color, checkerboard patterns, Gaussian gradients, and other pattern images

 ■ Add transition effects to images or video

 ■ Provide real-time control, such as color adjustment and support for sports, vivid, and other video
modes

 ■ Apply linear lighting effects, such as spotlight effects

You define custom image units using the classes of the Core Image framework. You can use both the
built-in and custom image units in your application to implement special effects and perform other
types of image manipulations. Image units take full advantage of hardware vector units, Quartz,
OpenGL, and QuickTime to optimize the processing of video and image data. Rasterization of the
data is ultimately handled by OpenGL, which takes advantage of graphics hardware acceleration
whenever it is available.

Core Image is part of the Quartz Core framework (QuartzCore.framework). For information about
how to use Core Image or how to write custom image units, see Core Image Programming Guide and
Core Image Reference Collection. For information about the built-in filters in Core Image, see Core Image
Filter Reference.

Image Kit

Introduced in Mac OS X v10.5, the Image Kit framework is an Objective-C framework that makes it
easy to incorporate powerful imaging services into your applications. This framework takes advantage
of features in Quartz, Core Image, OpenGL, and Core Animation to provide an advanced and highly
optimized development path for implementing the following features:

 ■ Displaying images

 ■ Rotating, cropping, and performing other image-editing operations

 ■ Browsing for images

 ■ Taking pictures using the built-in picture taker panel

48 Drawing Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



 ■ Displaying slideshows

 ■ Browsing for Core Image filters

 ■ Displaying custom views for Core Image filters

The Image Kit framework is included as a subframework of the Quartz framework
(Quartz.framework). For more information on how to use Image Kit, see Image Kit Programming Guide
and Image Kit Reference Collection

QuickDraw

QuickDraw is a legacy technology adapted from earlier versions of the Mac OS that lets you construct,
manipulate, and display two-dimensional shapes, pictures, and text. Because it is a legacy technology,
QuickDraw should not be used for any active development. Instead, you should use Quartz.

If your code currently uses QuickDraw, you should begin converting it to Quartz 2D as soon as
possible. The QuickDraw API includes features to make transitioning your code easier. For example,
QuickDraw includes interfaces for getting a Quartz graphics context from a GrafPort structure. You
can use these interfaces to transition your QuickDraw code in stages without radically impacting the
stability of your builds.

Important: QuickDraw is deprecated in Mac OS X v10.5 and later. QuickDraw is not available for
64-bit applications.

Text and Fonts

Mac OS X provides extensive support for advanced typography for both Carbon and Cocoa programs.
These APIs let you control the fonts, layout, typesetting, text input, and text storage in your programs
and are described in the following sections. For guidance on choosing the best technology for your
needs, see Getting Started with Text and Fonts.

Cocoa Text

Cocoa provides advanced text-handling capabilities in the Application Kit framework. Based on Core
Text, the Cocoa text system provides a multilayered approach to implementing a full-featured text
system using Objective-C. This layered approach lets you customize portions of the system that are
relevant to your needs while using the default behavior for the rest of the system. You can use Cocoa
Text to display small or large amounts of text and can customize the default layout manager classes
to support custom layout.

Although part of Cocoa, the Cocoa text system can also be used in Carbon-based applications. If your
Carbon application displays moderate amounts of read-only or editable text, you can use HIView
wrappers for the NSString, NSTextField, and NSTextView classes to implement that support. Using
wrappers is much easier than trying to implement the same behavior using lower-level APIs, such
as Core Text, ATSUI, or MLTE. For more information on using wrapper classes, see Carbon-Cocoa
Integration Guide.

Text and Fonts 49
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



For an overview of the Cocoa text system, see Text System Overview.

Core Text

Introduced in Mac OS X v10.5, Core Text is a C-based API that provides you with precise control over
text layout and typography. Core Text provides a layered approach to laying out and displaying
Unicode text. You can modify as much or as little of the system as is required to suit your needs. Core
Text also provides optimized configurations for common scenarios, saving setup time in your
application. Designed for performance, Core Text is up to twice as fast as ATSUI (see “Apple Type
Services for Unicode Imaging” (page 50)), the text-handling technology that it replaces.

The Core Text font API is complementary to the Core Text layout engine. Core Text font technology
is designed to handle Unicode fonts natively and comprehensively, unifying disparate Mac OS X font
facilities so that developers can do everything they need to do without resorting to other APIs.

Carbon and Cocoa developers who want a high-level text layout API should consider using the Cocoa
text system and the supporting Cocoa text views. Unless you need low-level access to the layout
manager routines, the Cocoa text system should provide most of the features and performance you
need. If you need a lower-level API for drawing any kind of text into a CGContext, then you should
consider using the Core Text API.

For more information about Core Text, see Core Text Programming Guide and Core Text Reference
Collection.

Apple Type Services

Apple Type Services (ATS) is an engine for the systemwide management, layout, and rendering of
fonts. With ATS, users can have a single set of fonts distributed over different parts of the file system
or even over a network. ATS makes the same set of fonts available to all clients. The centralization of
font rendering and layout contributes to overall system performance by consolidating expensive
operations such as synthesizing font data and rendering glyphs. ATS provides support for a wide
variety of font formats, including TrueType, PostScript Type 1, and PostScript OpenType. For more
information about ATS, see Apple Type Services for Fonts Programming Guide.

Note: In Mac OS X v10.5 and later, you should consider using the Core Text font-handling API instead
of this technology. For more information, see “Core Text” (page 50).

Apple Type Services for Unicode Imaging

Apple Type Services for Unicode Imaging (ATSUI) is the technology behind all text drawing in Mac
OS X. ATSUI gives developers precise control over text layout features and supports high-end
typography. It is intended for developers of desktop publishing applications or any application that
requires the precise manipulation of text. For information about ATSUI, see ATSUI Programming
Guide.

50 Text and Fonts
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



Note: In Mac OS X v10.5 and later, you should consider using the Core Text API instead of this
technology. For more information, see “Core Text” (page 50).

Multilingual Text Engine

The Multilingual Text Engine (MLTE) is an API that provides Carbon-compliant Unicode text editing.
MLTE replaces TextEdit and provides an enhanced set of features, including document-wide tabs,
text justification, built-in scroll bar handing, built-in printing support, inline input, multiple levels of
undo, support for more than 32 KB of text, and support for Apple Type Services. This API is designed
for developers who want to incorporate a full set of text editing features into their applications but
do not want to worry about managing the text layout or typesetting. For more information about
MLTE, see Handling Unicode Text Editing With MLTE.

In Mac OS X v10.5 and later, the QuickDraw-related features of MLTE are deprecated. The features
that use HITextView are still supported, however.

Note: In Mac OS X v10.5 and later, you should consider using the Core Text API instead of this
technology. For more information, see “Core Text” (page 50).

Audio Technologies

Mac OS X includes support for high-quality audio creation and reproduction.

Core Audio

The Core Audio frameworks of Mac OS X offer a sophisticated set of services for manipulating
multichannel audio. You can use Core Audio to generate, record, mix, edit, process, and play audio.
You can also use Core Audio to generate, record, process, and play MIDI data using both hardware
and software MIDI instruments.

For the most part, the interfaces of the Core Audio frameworks are C-based, although some of the
Cocoa-related interfaces are implemented in Objective-C. The use of C-based interfaces results in a
low-latency, flexible programming environment that you can use from both Carbon and Cocoa
applications. Some of the benefits of Core Audio include the following:

 ■ Built-in support for reading and writing a wide variety of audio file and data formats

 ■ Plug-in interfaces for handling custom file and data formats

 ■ Plug-in interfaces for performing audio synthesis and audio digital signal processing (DSP)

 ■ A modular approach for constructing audio signal chains

 ■ Scalable multichannel input and output

 ■ Easy synchronization of audio MIDI data during recording or playback

 ■ Support for playing and recording digital audio, including support for scheduled playback and
synchronization and for getting timing and control information

Audio Technologies 51
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



 ■ A standardized interface to all built-in and external hardware devices, regardless of connection
type (USB, Firewire, PCI, and so on)

For an overview of Core Audio and its features, see Core Audio Overview. For reference information,
see Core Audio Framework Reference.

OpenAL

Introduced in Mac OS X v10.4, the Open Audio Library (OpenAL) audio system adds another way
to create audio for your software. The OpenAL interface is a cross-platform standard for delivering
3D audio in applications. It lets you implement high-performance positional audio in games and
other programs that require high-quality audio output. Because it is a cross-platform standard, the
applications you write using OpenAL on Mac OS X can be ported to run on many other platforms.

In Mac OS X v10.5, several features were incorporated into the existing OpenAL framework. Among
these features are support for audio capture, exponential and linear distance models, location offsets,
and spatial effects such as reverb and occlusion. In addition, more control is provided for some Core
Audio features such as mixer sample rates.

Apple’s implementation of OpenAL is based on Core Audio, so it delivers high-quality sound and
performance on all Mac OS X systems. To use OpenAL in a Mac OS X application, include the OpenAL
framework (OpenAL.framework) in your Xcode project. This framework includes header files whose
contents conform to the OpenAL specification, which is described at http://www.openal.org.

For more information on the Mac OS X implementation of OpenAL, go to http://developer.ap-
ple.com/audio/openal.html.

Video Technologies

The video technologies in Mac OS X allow you to work with movies and other time-based content,
including audio.

QuickTime

QuickTime is a powerful multimedia technology for manipulating, enhancing, and storing video,
sound, animation, graphics, text, music, and even 360-degree virtual reality content. It allows you to
stream digital video, where the data stream can be either live or stored. QuickTime is a cross-platform
technology, supporting Mac OS X, Mac OS 9, Windows 98, Windows Me, Windows 2000, Windows
XP, and Windows Vista. Using QuickTime, developers can perform actions such as the following:

 ■ Open and play movie files

 ■ Open and play audio files

 ■ Display still images

 ■ Translate still images from one format to another

 ■ Compress audio, video, and still images

52 Video Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies

http://www.openal.org
http://developer.apple.com/audio/openal.html
http://developer.apple.com/audio/openal.html


 ■ Synchronize multiple media to a common timeline

 ■ Capture audio and video from an external device

 ■ Stream audio and video over a LAN or the Internet

 ■ Create and display virtual reality objects and panoramas

For a long time, QuickTime has included programming interfaces for the C and C++ languages.
Beginning with Mac OS X v10.4, the QuickTime Kit provides an Objective-C based set of classes for
managing QuickTime content. For more information about QuickTime Kit, see “QuickTime Kit” (page
54).

Note: In Mac OS X v10.5 and later, you must use the QuickTime Kit framework to create 64-bit
applications. The QuickTime C-based APIs are not supported in 64-bit applications.

Supported Media Formats

QuickTime supports more than a hundred media types, covering a range of audio, video, image, and
streaming formats. Table 3-2 lists some of the more common file formats it supports. For a complete
list of supported formats, see the QuickTime product specification page at http://www.ap-
ple.com/quicktime/pro/specs.html.

Table 3-2 Partial list of formats supported by QuickTime

PICT, BMP, GIF, JPEG, TIFF, PNGImage formats

AAC, AIFF, MP3, WAVE, uLawAudio formats

AVI, AVR, DV, M-JPEG, MPEG-1, MPEG-2, MPEG-4, AAC, OpenDML,
3GPP, 3GPP2, AMC, H.264

Video formats

HTTP, RTP, RTSPWeb streaming formats

Extending QuickTime

The QuickTime architecture is very modular. QuickTime includes media handler components for
different audio and video formats. Components also exist to support text display, Flash media, and
codecs for different media types. However, most applications do not need to know about specific
components. When an application tries to open and play a specific media file, QuickTime automatically
loads and unloads the needed components. Of course, applications can specify components explicitly
for many operations.

You can extend QuickTime by writing your own component. You might write your own QuickTime
component to support a new media type or to implement a new codec. You might also write
components to support a custom video capture card. By implementing your code as a QuickTime
component that you enable, other applications take advantage of your code and use it to support
your hardware or media file formats. See “QuickTime Components” (page 89) for more information.

Video Technologies 53
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies

http://www.apple.com/quicktime/pro/specs.html
http://www.apple.com/quicktime/pro/specs.html


QuickTime Kit

Introduced in Mac OS X version 10.4, the QuickTime Kit (QTKit.framework), is an Objective-C
framework for manipulating QuickTime-based media. This framework lets you incorporate movie
playback, movie editing, export to standard media formats, and other QuickTime behaviors easily
into your applications. The classes in this framework open up a tremendous amount of QuickTime
behavior to both Carbon and Cocoa developers. Instead of learning how to use the more than 2500
functions in QuickTime, you can now use a handful of classes to implement the features you need.

In Mac OS X v10.5, support was added for capturing professional-quality audio and video content
from one or more external sources, including cameras, microphones, USB and Firewire devices, DV
media devices, QuickTime streams, data files, and the screen. The input and output classes included
with the framework provide all of the components necessary to implement the most common use
case for a media capture system: recording from a camera to a QuickTime file. Video capture includes
frame accurate audio/video synchronization, plus you can preview captured content and save it to
a file or stream.

Note: The QuickTime Kit framework supersedes the NSMovie and NSMovieView classes available in
Cocoa. If your code uses these older classes, you should change your code to use the QuickTime Kit
instead.

For information on how to use the QuickTime Kit, see QuickTime Kit Programming Guide and QTKit
Capture Programming Guide. For reference information about the QuickTime Kit classes, see QuickTime
Kit Framework Reference.

Core Video

Introduced in Mac OS X version 10.4, Core Video provides a modern foundation for delivering video
in your applications. It creates a bridge between QuickTime and the GPU to deliver
hardware-accelerated video processing. By offloading complex processing to the GPU, you can
significantly increase performance and reduce the CPU load of your applications. Core Video also
allows developers to apply all the benefits of Core Image to video, including filters and effects,
per-pixel accuracy, and hardware scalability.

In Mac OS X v10.4, Core Video is part of the Quartz Core framework (QuartzCore.framework). In
Mac OS X v10.5 and later, the interfaces are duplicated in the Core Video framework
(CoreVideo.framework).

For information about using the Core Video framework, see Core Video Programming Guide.

DVD Playback

Mac OS X version 10.3 and later includes the DVD Playback framework for embedding DVD viewer
capabilities into an application. In addition to playing DVDs, you can use the framework to control
various aspects of playback, including menu navigation, viewer location, angle selection, and audio
track selection. You can play back DVD data from disc or from a local VIDEO_TS directory.

For more information about using the DVD Playback framework, seeDVD Playback Services Programming
Guide.

54 Video Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



Color Management

ColorSync is the color management system for Mac OS X. It provides essential services for fast,
consistent, and accurate color calibration, proofing, and reproduction as well as an interface for
accessing and managing systemwide color management settings. It also supports color calibration
with hardware devices such as printers, scanners, and displays.

Beginning with Mac OS X version 10.3, the system provides improved support for ColorSync. In most
cases, you do not need to call ColorSync functions at all. Quartz and Cocoa automatically use ColorSync
to manage pixel data when drawing on the screen. They also respect ICC (International Color
Consortium) profiles and apply the system’s monitor profile as the source color space. However, you
might need to use ColorSync directly if you define a custom color management module (CMM),
which is a component that implements color-matching, color-conversion, and gamut-checking services.

For information about the ColorSync API, see ColorSync Manager Reference.

Printing

Printing support in Mac OS X is implemented through a collection of APIs and system services
available to all application environments. Drawing on the capabilities of Quartz, the printing system
delivers a consistent human interface and makes shorter development cycles possible for printer
vendors. It also provides applications with a high degree of control over the user interface elements
in printing dialogs. Table 3-3 describes some other features of the Mac OS X printing system.

Table 3-3 Features of the Mac OS X printing system

DescriptionFeature

The Common Unix Printing System (CUPS) provides the underlying support
for printing. It is an open-source architecture used commonly by the UNIX
community to handle print spooling and other low-level features.

CUPS

In Mac OS X v10.3 and later, the system supports desktop printers, which offer
users a way to manage printing from the Dock or desktop. Users can print
natively supported files (like PostScript and PDF) by dragging them to a
desktop printer. Users can also manage print jobs.

Desktop printers

In Mac OS X v10.3 and later, users can fax documents directly from the Print
dialog.

Fax support

In Mac OS X v10.3 and later, the system includes drivers for many older
printers through the print facility of the GNU Image Manipulation Program
(GIMP).

GIMP-Print drivers

Supports PDF as a native data type. Any application (except for Classic
applications) can easily save textual and graphical data to device-independent
PDF where appropriate. The printing system provides this capability from a
standard printing dialog.

Native PDF

Color Management 55
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



DescriptionFeature

Mac OS X prints to PostScript Level 2–compatible and Level 3–compatible
printers. In Mac OS X v10.3 and later, support is also provided to convert
PostScript files directly to PDF.

PostScript support

Provides a print preview capability in all environments, except in Classic. The
printing system implements this feature by launching a PDF viewer application.
This preview is color-managed by ColorSync.

Print preview

Printers implementing Bluetooth or Bonjour can be detected, configured, and
added to printer lists automatically.

Printer discovery

Supports printing to raster printers in all environments, except in the Classic
environment.

Raster printers

In Mac OS X v10.3 and later, applications that use PDF can submit PDF files
directly to the printing system instead of spooling individual pages. This
simplifies printing for applications that already store data as PDF.

Speedy spooling

For an overview of the printing architecture and how to support it, see Mac OS X Printing System
Overview.

Accelerating Your Multimedia Operations

Mac OS X takes advantage of hardware wherever it can to improve performance wherever it can. In
the case of repetitive tasks operating on large data sets, Mac OS X uses the vector-oriented extensions
provided by the processor. (Mac OS X currently supports the PowerPC AltiVec extensions and the
Intel x86 SSE extensions.) Hardware-based vector units boost the performance of any application that
exploits data parallelism, such as those that perform 3D graphic imaging, image processing, video
processing, audio compression, and software-based cell telephony. Quartz and QuickTime incorporate
vector capabilities, thus any application using these APIs can tap into this hardware acceleration
without making any changes.

In Mac OS X v10.3 and later, you can use the Accelerate framework (Accelerate.framework) to
accelerate complex operations using the available vector unit. This framework supports both the
PowerPC AltiVec and Intel x86 SSE extensions internally but provides a single interface for you to
use in your application. The advantage of using this framework is that you can simply write your
code once without having to code different execution paths for each hardware platform. The functions
of this framework are highly tuned for the specific platforms supported by Mac OS X and in many
cases can offer better performance than hand-rolled code.

The Accelerate framework is an umbrella framework that wraps the vecLib and vImage frameworks
into a single package. The vecLib framework contains vector-optimized routines for doing digital
signal processing, linear algebra, and other computationally expensive mathematical operations. (The
vecLib framework is also a top-level framework for applications running on versions of Mac OS X
up to and including version 10.5.) The vImage framework supports the visual realm, adding routines
for morphing, alpha-channel processing, and other image-buffer manipulations.

56 Accelerating Your Multimedia Operations
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



For information on how to use the components of the Accelerate framework, see vImage Programming
Guide, vImage Reference Collection, and vecLib Framework Reference. For general performance-related
information, see Reference Library > Performance.

Accelerating Your Multimedia Operations 57
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



58 Accelerating Your Multimedia Operations
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Graphics and Multimedia Technologies



This chapter summarizes the application-level technologies that are most relevant to developers—that
is, that have programmatic interfaces or have an impact on how you write software. It does not
describe user-level technologies, such as Exposé, unless there is some aspect of the technology that
allows developer involvement.

Application Environments

Applications are by far the predominant type of software created for Mac OS X, or for any platform.
Mac OS X provides numerous environments for developing applications, each of which is suited for
specific types of development. The following sections describe each of the primary application
environments and offer guidelines to help you choose an environment that is appropriate for your
product requirements.

Important: With the transition to Intel-based processors, developers should always create universal
binaries for their Carbon, Cocoa, and BSD applications. Java and WebObjects may also need to create
universal binaries for bridged code. For information on how to create universal binaries, see Universal
Binary Programming Guidelines, Second Edition.

Cocoa

Cocoa is an object-oriented environment designed for rapid application development. It features a
sophisticated framework of objects for implementing your application and takes full advantage of
graphical tools such as Interface Builder to enable you to create full-featured applications quickly
and without a lot of code. The Cocoa environment is especially suited for:

 ■ New developers

 ■ Developers who prefer working with object-oriented systems

 ■ Developers who need to prototype an application quickly

 ■ Developers who prefer to leverage the default behavior provided by the Cocoa frameworks so
they can focus on the features unique to their application

 ■ Objective-C or Objective-C++ developers

Application Environments 59
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



 ■ Python and Ruby developers who want to take advantage of Cocoa features; see Ruby and Python
Programming Topics for Mac OS X

The objects in the Cocoa framework handle much of the behavior required of a well-behaved Mac
OS X application, including menu management, window management, document management, Open
and Save dialogs, and pasteboard (clipboard) behavior. Cocoa’s support for Interface Builder means
that you can create most of your user interface (including much of its behavior) graphically rather
than programatically. With the addition of Cocoa bindings and Core Data, you can also implement
most of the rest of your application graphically as well.

The Cocoa application environment consists of two object-oriented frameworks: Foundation
(Foundation.framework) and the Application Kit (AppKit.framework). The classes in the Foundation
framework implement data management, file access, process notification, memory management,
network communication, and other low-level features. The classes in the Application Kit framework
implement the user interface layer of an application, including windows, dialogs, controls, menus,
and event handling. If you are writing an application, link with the Cocoa framework
(Cocoa.framework), which imports both the Foundation and Application Kit frameworks. If you are
writing a Cocoa program that does not have a graphical user interface (a background server, for
example), you can link your program solely with the Foundation framework.

Apple’s developer documentation contains a section devoted to Cocoa where you can find conceptual
material, reference documentation, and tutorials showing how to write Cocoa applications. If you
are a new Cocoa developer, be sure to read Cocoa Fundamentals Guide, which provides an in-depth
overview of the development process for Cocoa applications. For information about the development
tools, including Interface Builder, see “Mac OS X Developer Tools” (page 135).

Carbon

Based on the original Mac OS 9 interfaces, the Carbon application environment is a set of C APIs used
to create full-featured applications for all types of users. The Carbon environment includes support
for all of the standard Aqua user interface elements such as windows, controls, and menus. It also
provides an extensive infrastructure for handling events, managing data, and using system resources.

The Carbon environment is especially suited for:

 ■ Mac OS 9 developers porting their applications to Mac OS X

 ■ Developers who prefer to work solely in C or C++

 ■ Developers who are porting commercial applications from other procedural-based systems and
want to use as much of their original code as possible

Because the Carbon interfaces are written in C, some developers may find them more familiar than
the interfaces in the Cocoa or Java environments. Some C++ developers may also prefer the Carbon
environment for development, although C++ code can be integrated seamlessly into Cocoa applications
as well.

The Carbon APIs offer you complete control over the features in your application; however, that
control comes at the cost of added complexity. Whereas Cocoa provides many features for you
automatically, with Carbon you must write the code to support those features yourself. For example,
Cocoa applications automatically implement support for default event handlers, the pasteboard, and
Apple events, but Carbon developers must add support for these features themselves.

60 Application Environments
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



In Mac OS X v10.5 and later, Carbon includes support for integrating Cocoa views into your Carbon
applications. After creating the Cocoa view, you can wrap it in an HIView object and embed that
object in your window. Once embedded, you use the standard HIView functions to manipulate the
view. Wrapped Cocoa views can be used in both composited and noncomposited windows to support
views and controls that are available in Cocoa but are not yet available in Carbon. For more information,
see Carbon-Cocoa Integration Guide and HIView Reference.

The Carbon application environment comprises several key umbrella frameworks, including the
Carbon framework (Carbon.framework), the Core Services framework (CoreServices.framework),
and the Application Services framework (ApplicationServices.framework). The Carbon environment
also uses the Core Foundation framework (CoreFoundation.framework) extensively in its
implementation.

Apple’s developer documentation contains a section devoted to Carbon, where you can find conceptual
material, reference documentation, and tutorials showing how to write applications using Carbon.
See Getting Started with Carbon in Carbon Documentation for an overview of the available Carbon
documentation.

If you are migrating a Mac OS 9 application to Mac OS X, read Carbon Porting Guide. If you are migrating
from Windows, see Porting to Mac OS X from Windows Win32 API. If you are migrating from UNIX,
see Porting UNIX/Linux Applications to Mac OS X.

Java

The Java application environment is a runtime environment and set of objects for creating applications
that run on multiple platforms. The Java environment is especially suited for:

 ■ Experienced Java Platform, Standard Edition/Java SE developers

 ■ Developers writing applications to run on multiple platforms

 ■ Developers writing Java applets for inclusion in web-based content

 ■ Developers familiar with the Swing or AWT toolkits for creating graphical interfaces

The Java application environment lets you develop and execute 100% pure Java applications and
applets. This environment conforms to the specifications laid out by the J2SE platform, including
those for the Java virtual machine (JVM), making applications created with this environment very
portable. You can run them on computers with a different operating system and hardware as long
as that system is running a compatible version of the JVM. Java applets should run in any Internet
browser that supports them.

Note: Any Mach-O binaries that interact with the JVM must be universal binaries. This includes JNI
libraries as well as traditional applications that invoke the JVM. For more information, see Universal
Binary Programming Guidelines, Second Edition.

For details on the tools and support provided for Java developers, see “Java Support” (page 41).

Application Environments 61
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



AppleScript

The AppleScript application environment lets you use AppleScript scripts to quickly create native
Mac OS X applications that support the Aqua user interface guidelines. At the heart of this environment
is AppleScript Studio, which combines features from AppleScript with Xcode, Interface Builder, and
the Cocoa application framework. Using these tools, you can create applications that use AppleScript
scripts to control a broad range of Cocoa user-interface objects.

AppleScript Studio has something to offer both to scripters and to those with Cocoa development
experience. In addition to AppleScript’s ability to control multiple applications, including parts of
the Mac OS itself, you can use it for the following:

 ■ Scripters can now create applications with windows, buttons, menus, text fields, tables, and much
more. Scripts have full access to user interface objects.

 ■ Cocoa developers can take advantage of AppleScript Studio’s enhanced Cocoa scripting support,
which can be useful in prototyping, testing, and deploying applications.

For information on how to create applications using AppleScript Studio, see AppleScript Studio
Programming Guide.

WebObjects

The WebObjects application environment is a set of tools and object-oriented frameworks targeted
at developers creating web services and web-based applications. The WebObjects environment
provides a set of flexible tools for creating full-featured web applications. Common uses for this
environment include the following:

 ■ Creating a web-based interface for dynamic content, including programmatically generated
content or content from a database

 ■ Creating web services based on SOAP, XML, and WSDL

WebObjects is a separate product sold by Apple. If you are thinking about creating a web storefront
or other web-based services, see the information available at http://developer.apple.com/tools/we-
bobjects.

Note: If your WebObjects application includes bridged code in a Mach-O binary, you need to create
a universal binary for the Mach-O binary code. For more information, see Universal Binary Programming
Guidelines, Second Edition.

BSD and X11

The BSD application environment is a set of low-level interfaces for creating shell scripts, command-line
tools, and daemons. The BSD environment is especially suited for:

 ■ UNIX developers familiar with the FreeBSD and POSIX interfaces

 ■ Developers who want to create text-based scripts and tools, rather than tools that have a graphical
user interface

62 Application Environments
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies

http://developer.apple.com/tools/webobjects/
http://developer.apple.com/tools/webobjects/


 ■ Developers who want to provide fundamental system services through the use of daemons or
other root processes

The BSD environment is for developers who need to work below the user interface layers provided
by Carbon, Cocoa, and WebObjects. Developers can also use this environment to write command-line
tools or scripts to perform specific user-level tasks.

X11 extends the BSD environment by adding a set of programming interfaces for creating graphical
applications that can run on a variety of UNIX implementations. The X11 environment is especially
suited for developers who want to create graphical applications that are also portable across different
varieties of UNIX.

The BSD environment is part of the Darwin layer of Mac OS X. For information about Darwin, see
Reference Library > Darwin. For more information about X11 development, see http://developer.ap-
ple.com/darwin/projects/X11. See also “Information on BSD” (page 16) for links to additional BSD
resources.

Application Technologies

Mac OS X includes several technologies that make developing applications easier. These technologies
range from utilities for managing your internal data structures to high-level frameworks for burning
CDs and DVDs. This section summarizes the application-level technologies that are relevant to
developers—that is, that have programmatic interfaces or have an impact on how you write software.
It does not describe user-level technologies, such as Exposé, unless there is some aspect of the
technology that allows developer involvement.

If you are new to developing Mac OS X software, you should read through this chapter at least once
to understand the available technologies and how you might use them in your software. Even
experienced developers should revisit this chapter periodically to remind themselves of the available
technologies.

Address Book Framework

Introduced in Mac OS X v10.2, Address Book is technology that encompasses a centralized database
for contact and group information, an application for viewing that information, and a programmatic
interface for accessing that information in your own programs. The database contains information
such as user names, street addresses, email addresses, phone numbers, and distribution lists.
Applications that support this type of information can use this data as is or extend it to include
application-specific information.

The Address Book framework (AddressBook.framework) provides your application with a way to
access user records and create new ones. Applications that support this framework gain the ability
to share user records with other applications, such as the Address Book application and the Apple
Mail program. The framework also supports the concept of a “Me” record, which contains information
about the currently logged-in user. You can use this record to provide information about the current
user automatically; for example, a web browser might use it to populate a web form with the user’s
address and phone number.

Application Technologies 63
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies

http://developer.apple.com/darwin/projects/X11
http://developer.apple.com/darwin/projects/X11


For more information about this technology, see Address Book Programming Guide and either Address
Book Objective-C Framework Reference or Address Book C Framework Reference.

Automator Framework

Introduced in Mac OS X v10.5, the Automator framework (Automator.framework) adds support for
running workflows from your applications. Workflows are products of the Automator application;
they string together the actions defined by various applications to perform complex tasks automatically.
Unlike AppleScript, which uses a scripting language to implement the same behavior, workflows are
constructed visually, requiring no coding or scripting skills to create.

For information about incorporating workflows into your own applications, see Automator Framework
Reference.

Bonjour

Introduced in Mac OS X version 10.2, Bonjour is Apple’s implementation of the zero-configuration
networking architecture, a powerful system for publishing and discovering services over an IP
network. It is relevant to both software and hardware developers.

Incorporating Bonjour support into your software offers a significant improvement to the overall user
experience. Rather than prompt the user for the exact name and address of a network device, you
can use Bonjour to obtain a list of available devices and let the user choose from that list. For example,
you could use it to look for available printing services, which would include any printers or
software-based print services, such as a service to create PDF files from print jobs.

Developers of network-based hardware devices are strongly encouraged to support Bonjour. Bonjour
alleviates the need for complicated setup instructions for network-based devices such as printers,
scanners, RAID servers, and wireless routers. When plugged in, these devices automatically publish
the services they offer to clients on the network.

For information on how to incorporate Bonjour services into a Cocoa application, see Bonjour Overview.
Bonjour for non-Cocoa applications is described in DNS Service Discovery Programming Guide.

Calendar Store Framework

Introduced in Mac OS X v10.5, the Calendar Store framework (CalendarStore.framework) lets you
access iCal data from an Objective-C based application. You can use this framework to fetch user
calendars, events, and tasks from the iCal data storage, receive notifications when those objects change,
and make changes to the user’s calendar.

For information about using the Calendar Store framework, see [Calendar Store Programming Guide]
and Calendar Store Programming Guide.

64 Application Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



Core Data Framework

Introduced in Mac OS X version 10.4, the Core Data framework (CoreData.framework) manages the
data model of a Cocoa-based Model-View-Controller application. Core Data is intended for use in
applications where the data model is already highly structured. Instead of defining data structures
programmatically, you use the graphical tools in Xcode to build a schema representing your data
model. At runtime, instances of your data-model entities are created, managed, and made available
through the Core Data framework with little or no coding on your part.

By managing your application’s data model for you, Core Data significantly reduces the amount of
code you have to write for your application. Core Data also provides the following features:

 ■ Storage of object data in mediums ranging from an XML file to a SQLite database

 ■ Management of undo/redo beyond basic text editing

 ■ Support for validation of property values

 ■ Support for propagating changes and ensuring that the relationships between objects remain
consistent

 ■ Grouping, filtering, and organizing data in memory and transferring those changes to the user
interface through Cocoa bindings

If you are starting to develop a new application, or are planning a significant update to an existing
application, you should consider using Core Data. For more information about Core Data, including
how to use it in your applications, see Core Data Programming Guide.

Disc Recording Framework

Introduced in Mac OS X version 10.2, the Disc Recording framework (DiscRecording.framework)
gives applications the ability to burn and erase CDs and DVDs. This framework was built to satisfy
the simple needs of a general application, making it easy to add basic audio and data burning
capabilities. At the same time, the framework is flexible enough to support professional CD and DVD
mastering applications.

The Disc Recording framework minimizes the amount of work your application must perform to
burn optical media. Your application is responsible for specifying the content to be burned but the
framework takes over the process of buffering the data, generating the proper file format information,
and communicating everything to the burner. In addition, the Disc Recording UI framework
(DiscRecordingUI.framework) provides a complete, standard set of windows for gathering
information from the user and displaying the progress of the burn operation.

The Disc Recording framework supports applications built using Carbon and Cocoa. The Disc
Recording UI framework currently provides user interface elements for Cocoa applications only.

For more information, see Disc Recording Framework Reference and Disc Recording UI Framework Reference.

Application Technologies 65
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



Help Support

Although some applications are extremely simple to use, most require some documentation. Help
tags (also called tooltips) and documentation are the best ways to provide users with immediate
answers to questions. Help tags provide descriptive information about your user interface quickly
and unobtrusively. Documentation provides more detailed solutions to problems, including conceptual
material and task-based examples. Both of these elements help the user understand your user interface
better and should be a part of every application.

In Mac OS X v10.5 and later, the Spotlight for Help feature makes it easier for users to locate items in
complex menu bars. For applications with a Help menu, Mac OS X automatically inserts a special
search field menu item at the top of the menu. When the user enters a string in this search field, the
system searches the application menus for commands containing the specified string. Moving the
mouse over a search result reveals the location of that item in the menus. Developers do not need to
add any code to their applications to support this feature.

For information on adding help to a Cocoa application, see Online Help. For information on adding
help to a Carbon application, see Apple Help Programming Guide.

Human Interface Toolbox

Introduced in Mac OS X version 10.2, the Human Interface Toolbox (HIToolbox) provides a modern
set of interfaces for creating and managing windows, controls, and menus in Carbon applications.
The HIObject model builds on Core Foundation data types to bring a modern, object-oriented approach
to the HIToolbox. Although the model is object-oriented, access to the objects is handled by a set of
C interfaces. Using the HIToolbox interfaces is recommended for the development of new Carbon
applications. Some benefits of this technology include the following:

 ■ Drawing is handled natively using Quartz.

 ■ A simplified, modern coordinate system is used that is not bounded by the 16-bit space of
QuickDraw.

 ■ Support for arbitrary views is provided.

 ■ Layering of views is handled automatically.

 ■ Views can be attached and detached from windows.

 ■ Views can be hidden temporarily.

 ■ You can use Interface Builder to create your interfaces.

Note: The HIToolbox interfaces are available for creating 32-bit applications only. If you are creating
64-bit applications, you should use Cocoa for your user interface instead.

For reference material and an overview of HIObject and other HIToolbox objects, see the documents
in Reference Library > Carbon > Human Interface Toolbox.

66 Application Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



Identity Services

Introduced in Mac OS X v10.5, Identity Services encompasses features located in the Collaboration
and Core Services frameworks. Identity Services provides a way to manage groups of users on a local
system. In addition to standard login accounts, administrative users can now create sharing accounts,
which use access control lists to restrict access to designated system or application resources. Sharing
accounts do not have an associated home directory on the system and have much more limited
privileges than traditional login accounts.

The Collaboration framework (Collaboration.framework) provides a set of Objective-C classes for
displaying sharing account information and other identity-related user interfaces. The classes
themselves are wrappers for the C-based identity management routines found in the Core Services
framework. Applications can use either the Objective-C or C-based APIs to display information about
users and groups and display a panel for selecting users and groups during the editing of access
control lists.

For more information about the features of Identity Services and how you use those features in your
applications, see Identity Services Programming Guide and Identity Services Reference Collection.

Instant Message Framework

Introduced in Mac OS X version 10.4, the Instant Message framework (InstantMessage.framework)
supports the detection and display of a user’s online presence in applications other than iChat. You
can find out the current status of a user connected to an instant messaging service, obtain the user’s
custom icon and status message, or obtain a URL to a custom image that indicates the user’s status.
You can use this information to display the user’s status in your own application. For example, Mail
identifies users who are currently online by tagging that user’s email address with a special icon.

In Mac OS X v10.5, you can use the Instant Message framework to support iChat Theater. This feature
gives your application the ability to inject audio or video content into a running iChat conference.
The content you provide is then mixed with the user’s live microphone and encoded automatically
into the H.264 video format for distribution to conference attendees.

For more information about using the Instant Message framework, see Instant Message Programming
Guide.

Image Capture Services

The Image Capture Services framework (part of Carbon.framework) is a high-level framework for
capturing image data from scanners and digital cameras. The interfaces of the framework are
device-independent, so you can use it to gather data from any devices connected to the system. You
can get a list of devices, retrieve information about a specific device or image, and retrieve the image
data itself.

This framework works in conjunction with the Image Capture Devices framework
(ICADevices.framework) to communicate with imaging hardware. For information on how to use
the Image Capture Services framework, see Image Capture Applications Programming Guide.

Application Technologies 67
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



Ink Services

The Ink feature of Mac OS X provides handwriting recognition for applications that support the
Carbon and Cocoa text systems (although the automatic support provided by these text systems is
limited to basic recognition). The Ink framework offers several features that you can incorporate into
your applications, including the following:

 ■ Enable or disable handwriting recognition programmatically.

 ■ Access Ink data directly.

 ■ Support either deferred recognition or recognition on demand.

 ■ Support the direct manipulation of text by means of gestures.

The Ink framework is not limited to developers of end-user applications. Hardware developers can
also use it to implement a handwriting recognition solution for a new input device. You might also
use the Ink framework to implement your own correction model to provide users with a list of alternate
interpretations for handwriting data.

Ink is included as a subframework of Carbon.framework. For more information on using Ink in
Carbon and Cocoa applications, see Using Ink Services in Your Application.

Input Method Kit Framework

Introduced in Mac OS X v10.5, the Input Method Kit (InputMethodKit.framework) is an Objective-C
framework for building input methods for Chinese, Japanese, and other languages. The Input Method
Kit framework lets developers focus exclusively on the development of their input method product's
core behavior: the text conversion engine. The framework handles tasks such as connecting to clients,
running candidate windows, and several other common tasks that developers would normally have
to implement themselves.

For information about its classes, see Input Method Kit Framework Reference.

Keychain Services

Keychain Services provides a secure way to store passwords, keys, certificates, and other sensitive
information associated with a user. Users often have to manage multiple user IDs and passwords to
access various login accounts, servers, secure websites, instant messaging services, and so on. A
keychain is an encrypted container that holds passwords for multiple applications and secure services.
Access to the keychain is provided through a single master password. Once the keychain is unlocked,
Keychain Services–aware applications can access authorized information without bothering the user.

Users with multiple accounts tend to manage those accounts in the following ways:

 ■ They create a simple, easily remembered password.

 ■ They repeatedly use the same password.

 ■ They write the password down where it can easily be found.

68 Application Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



If your application handles passwords or sensitive information, you should add support for Keychain
Services into your application. For more information on this technology, see Keychain Services
Programming Guide.

Latent Semantic Mapping Services

Introduced in Mac OS X v10.5, the Latent Semantic Mapping framework
(LatentSemanticMapping.framework) contains a Unicode-based API that supports the classification
of text and other token-based content into developer-defined categories, based on semantic information
latent in the text. Using this API and text samples with known characteristics, you create and train
maps, which you can use to analyze and classify arbitrary text. You might use such a map to determine,
for example, if an email message is consistent with the user’s interests.

For information about the Latent Semantic Mapping framework, see Latent Semantic Mapping Reference.

Launch Services

Launch Services provides a programmatic way for you to open applications, documents, URLs, or
files with a given MIME type in a way similar to the Finder or the Dock. It makes it easy to open
documents in the user’s preferred application or open URLs in the user’s favorite web browser. The
Launch Services framework also provides interfaces for programmatically registering the document
types your application supports.

For information on how to use Launch Services, see Launch Services Programming Guide.

Open Directory

Open Directory is a directory services architecture that provides a centralized way to retrieve
information stored in local or network databases. Directory services typically provide access to
collected information about users, groups, computers, printers, and other information that exists in
a networked environment (although they can also store information about the local system). You use
Open Directory in your programs to retrieve information from these local or network databases. For
example, if you’re writing an email program, you can use Open Directory to connect to a corporate
LDAP server and retrieve the list of individual and group email addresses for the company.

Open Directory uses a plug-in architecture to support a variety of retrieval protocols. Mac OS X
provides plug-ins to support LDAPv2, LDAPv3, NetInfo, AppleTalk, SLP, SMB, DNS, Microsoft
Active Directory, and Bonjour protocols, among others. You can also write your own plug-ins to
support additional protocols.

For more information on this technology, see Open Directory Programming Guide. For information on
how to write Open Directory plug-ins, see Open Directory Plug-in Programming Guide.

PDF Kit Framework

Introduced in Mac OS X version 10.4, PDF Kit is a Cocoa framework for managing and displaying
PDF content directly from your application’s windows and dialogs. Using the classes of the PDF Kit,
you can embed a PDFView in your window and give it a PDF file to display. The PDFView class

Application Technologies 69
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



handles the rendering of the PDF content, handles copy-and-paste operations, and provides controls
for navigating and setting the zoom level. Other classes let you get the number of pages in a PDF file,
find text, manage selections, add annotations, and specify the behavior of some graphical elements,
among other actions. Users can also copy selected text in a PDFView to the pasteboard.

Note: Although it is written in Objective-C, you can use the classes of the PDF Kit in both Carbon
and Cocoa applications. For information on how to do this, see Carbon-Cocoa Integration Guide.

If you need to display PDF data directly from your application, the PDF Kit is highly recommended.
It hides many of the intricacies of the Adobe PDF specification and provides standard PDF viewing
controls automatically. The PDF Kit is part of the Quartz framework (Quartz.framework). For more
information, see PDF Kit Programming Guide.

Publication Subscription Framework

Introduced in Mac OS X v10.5, the Publication Subscription framework (PubSub.framework) is a new
framework that provides high-level support for subscribing to RSS and Atom feeds. You can use the
framework to subscribe to podcasts, photocasts, and any other feed-based document. The framework
handles all the feed downloads and updates automatically and provides your application with the
data from the feed.

For information about the Publication Subscription framework, see Publication Subscription Programming
Guide and Publication Subscription Framework Reference.

Search Kit Framework

Introduced in Mac OS X version 10.3, the Search Kit framework lets you search, summarize, and
retrieve documents written in most human languages. You can incorporate these capabilities into
your application to support fast searching of content managed by your application.

The Search Kit framework is part of the Core Services umbrella framework. The technology is derived
from the Apple Information Access Toolkit, which is often referred to by its code name V-Twin. Many
system applications, including Spotlight, Finder, Address Book, Apple Help, and Mail use this
framework to implement searching.

Search Kit is an evolving technology and as such continues to improve in speed and features. For
detailed information about the available features, see Search Kit Reference.

Security Services

Mac OS X security is built using several open source technologies, including BSD, Common Data
Security Architecture (CDSA), and Kerberos. Mac OS X builds on these basic technologies by
implementing a layer of high-level services to simplify your security solutions. These high-level
services provide a convenient abstraction and make it possible for Apple and third parties to implement
new security features without breaking your code. They also make it possible for Apple to combine
security technologies in unique ways; for example, Keychain Services provides encrypted data storage
with authenticated access using several CDSA technologies.

70 Application Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



Mac OS X provides high-level interfaces for the following features:

 ■ User authentication

 ■ Certificate, key, and trust services

 ■ Authorization services

 ■ Secure transport

 ■ Keychain Services

Mac OS X supports many network-based security standards, including SFTP, S/MIME, and SSH. For
a complete list of network protocols, see “Standard Network Protocols” (page 27).

For more information about the security architecture and security-related technologies of Mac OS X,
see Security Overview. For additional information about CDSA, see the following page of the Open
Group’s website: http://www.opengroup.org/security/cdsa.htm.

Speech Technologies

Mac OS X contains speech technologies that recognize and speak U.S. English. These technologies
provide benefits for users and present the possibility of a new paradigm for human-computer
interaction.

Speech recognition is the ability for the computer to recognize and respond to a person’s speech.
Using speech recognition, users can accomplish tasks comprising multiple steps with one spoken
command. Because users control the computer by voice, speech-recognition technology is very
important for people with special needs. You can take advantage of the speech engine and API
included with Mac OS X to incorporate speech recognition into your applications.

Speech synthesis, also called text-to-speech (TTS), converts text into audible speech. TTS provides a
way to deliver information to users without forcing them to shift attention from their current task.
For example, the computer could deliver messages such as “Your download is complete” and “You
have email from your boss; would you like to read it now?” in the background while you work. TTS
is crucial for users with vision or attention disabilities. As with speech recognition, Mac OS X TTS
provides an API and several user interface features to help you incorporate speech synthesis into
your applications. You can also use speech synthesis to replace digital audio files of spoken text.
Eliminating these files can reduce the overall size of your software bundle.

For more information, see Reference Library > User Experience > Speech Technologies.

SQLite Library

Introduced in Mac OS X version 10.4, the SQLite library lets you embed a SQL database engine into
your applications. Programs that link with the SQLite library can access SQL databases without
running a separate RDBMS process. You can create local database files and manage the tables and
records in those files. The library is designed for general purpose use but is still optimized to provide
fast access to database records.

Application Technologies 71
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies

http://www.opengroup.org/security/cdsa.htm


The SQLite library is located at /usr/lib/libsqlite3.dylib and the sqlite3.h header file is in
/usr/include. A command-line interface (sqlite3) is also available for communicating with SQLite
databases using scripts. For details on how to use this command-line interface, see sqlite3 man
page.

For more information about using SQLite, go to http://www.sqlite.org.

Sync Services Framework

Introduced in Mac OS X version 10.4, the Sync Services framework gives you access to the data
synchronization engine built-in to Mac OS X. You can use this framework to synchronize your
application data with system databases, such as those provided by Address Book and iCal. You can
also publish your application’s custom data types and make them available for syncing. You might
do this to share your application’s data with other applications on the same computer or with
applications on multiple computers (through the user’s .Mac account).

With the Sync Services framework, applications can directly initiate the synchronization process.
Prior to Mac OS X v10.4, synchronization occurred only through the iSync application. In Mac OS X
v10.4 and later, the iSync application still exists but is used to initiate the synchronization process for
specific hardware devices, like cell phones.

The Sync Services framework (SyncServices.framework) provides an Objective-C interface but can
be used by both Carbon and Cocoa applications. Applications can use this framework to initiate sync
sessions and to push and pull records from the central “truth” database, which the sync engine uses
to maintain the master copy of the synchronized records. The system provides predefined schemas
for contacts, calendars, bookmarks, and mail notes (see Apple Applications Schema Reference). You can
also distribute custom schemas for your own data types and register them with Sync Services.

For more information about using Sync Services in your application, see Sync Services Programming
Guide and Sync Services Framework Reference.

Web Kit Framework

Introduced in Mac OS X version 10.3, the Web Kit framework provides an engine for displaying
HTML-based content. The Web Kit framework is an umbrella framework containing two
subframeworks: Web Core and JavaScript Core. The Web Core framework is based on the kHTML
rendering engine, an open source engine for parsing and displaying HTML content. The JavaScript
Core framework is based on the KJS open source library for parsing and executing JavaScript code.

Starting with Mac OS X version 10.4, Web Kit also lets you create text views containing editable
HTML. The editing support is equivalent to the support available in Cocoa for editing RTF-based
content. With this support, you can replace text and manipulate the document text and attributes,
including CSS properties. Although it offers many features, the Web Kit editing support is not intended
to provide a full-featured editing facility like you might find in professional HTML editing applications.
Instead, it is aimed at developers who need to display HTML and handle the basic editing of HTML
content.

72 Application Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies

http://www.sqlite.org


Also introduced in Mac OS X version 10.4, Web Kit includes support for creating and editing content
at the DOM level of an HTML document. You can use this support to navigate DOM nodes and
manipulate those nodes and their attributes. You can also use the framework to extract DOM
information. For example, you could extract the list of links on a page, modify them, and replace them
prior to displaying the document in a web view.

For information on how to use Web Kit from both Carbon and Cocoa applications, see Web Kit
Objective-C Programming Guide. For information on the classes and protocols in the Web Kit framework,
see Web Kit Objective-C Framework Reference.

Time Machine Support

Introduced in Mac OS X v10.5, the Time Machine feature protects user data from accidental loss by
automatically backing up data to a different hard drive. Included with this feature is a set of
programmer-level functions that you can use to exclude unimportant files from the backup set. For
example, you might use these functions to exclude your application’s cache files or any files that can
be recreated easily. Excluding these types of files improves backup performance and reduces the
amount of space required to back up the user’s system.

For information about the new functions, see Backup Core Reference.

Web Service Access

Many businesses provide web services for retrieving data from their websites. The available services
cover a wide range of information and include things such as financial data and movie listings. Mac
OS X has included support for calling web-based services using Apple events since version 10.1.
However, starting with version 10.2, the Web Services Core framework (part of the Core Services
umbrella framework) provides support for the invocation of web services using CFNetwork.

For a description of web services and information on how to use the Web Services Core framework,
see Web Services Core Programming Guide.

XML Parsing Libraries

In Mac OS X v10.3, the Darwin layer began including the libXML2 library for parsing XML data. This
is an open source library that you can use to parse or write arbitrary XML data quickly. The headers
for this library are located in the /usr/include/libxml2 directory.

Several other XML parsing technologies are also included in Mac OS X. For arbitrary XML data, Core
Foundation provides a set of functions for parsing the XML content from Carbon or other C-based
applications. Cocoa provides several classes to implement XML parsing. If you need to read or write
a property list file, you can use either the Core Foundation CFPropertyList functions or the Cocoa
NSDictionary object to build a set of collection objects with the XML data.

For information on Core Foundation support for XML parsing, see the documents in Reference Library
> Core Foundation > Data Management. For information on parsing XML from a Cocoa application,
see Tree-Based XML Programming Guide for Cocoa.

Application Technologies 73
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



74 Application Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Application Technologies



One reason users choose the Macintosh over other platforms is that it provides a compelling user
experience. This user experience is defined partly by the technologies and applications that are built-in
to Mac OS X and partly by the applications you create. Your applications play a key role in delivering
the experience users expect. This means that your applications need to support the features that help
them blend into the Mac OS X ecosystem and create a seamless user experience.

Technologies

The following sections describe technologies that form a key part of the Mac OS X user experience.
If you are developing an application, you should consider adopting these technologies to make sure
your application integrates cleanly into Mac OS X. Most of these technologies require little effort to
support but provide big advantages in your software’s usability and in the likelihood of user adoption.

Aqua

Aqua defines the appearance and overall behavior of Mac OS X applications. Aqua applications
incorporate color, depth, translucence, and complex textures into a visually appealing interface. The
behavior of Aqua applications is consistent, providing users with familiar paradigms and expected
responses to user-initiated actions.

Applications written using modern Mac OS X interfaces (such as those provided by Carbon and
Cocoa) get much of the Aqua appearance automatically. However, there is more to Aqua than that.
Interface designers must still follow the Aqua guidelines to position windows and controls in
appropriate places. Designers must take into account features such as text, keyboard, and mouse
usage and make sure their designs work appropriately for Aqua. The implementers of an interface
must then write code to provide the user with appropriate feedback and to convey what is happening
in an informative way.

Apple provides the Interface Builder application to assist developers with the proper layout of
interfaces. However, you should also be sure to read Apple Human Interface Guidelines, which provides
invaluable advice on how to create Aqua-compliant applications and on the best Mac OS X interface
technologies to use.

Technologies 75
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



Quick Look

Introduced in Mac OS X v10.5, Quick Look is a technology that enables client applications, such as
Spotlight and the Finder, to display thumbnail images and full-size previews of documents. Mac OS
X provides automatic support for many common content types, including HTML, RTF, plain text,
TIFF, PNG, JPEG, PDF, and QuickTime movies. If your application defines custom document formats,
you should provide a Quick Look generator for those formats. Generators are plug-ins that convert
documents of the appropriate type from their native format to a format that Quick Look can display
to users. Mac OS X makes extensive use of generators to give users quick previews of documents
without having to open the corresponding applications.

For information about supporting Quick Look for your custom document types, see Quick Look
Programming Guide and Quick Look Framework Reference.

Resolution-Independent User Interface

Resolution independence decouples the resolution of the user's screen from the units you use in your
code’s drawing operations. While Mac OS X version 10.4 and earlier assumed a screen resolution of
72 dots per inch (dpi), most modern screens actually have resolutions that are 100 dpi or more. The
result of this difference is that content rendered for a 72 dpi screen appears smaller on such screens—a
problem that will only get worse as screen resolutions increase.

In Mac OS X v10.4, steps were taken to support content scaling for screen-based rendering. In particular,
the notion of a scale factor was introduced to the system, although not heavily publicized. This scale
factor was fixed at 1.0 by default but could be changed by developers using the Quartz Debug
application. In addition, Carbon and Cocoa frameworks were updated to support scale factors and
interfaces were introduced to return the current screen scale factor so that developers could begin
testing their applications in a content-scaled world.

Although the Mac OS X frameworks handle many aspects related to resolution-independent drawing,
there are still things you need to do in your drawing code to support resolution independence:

 ■ Update the images and artwork in your user interface. As the pixel density of displays increases,
you need to make sure your application's custom artwork can scale accordingly—that is, your
art needs to be larger in terms of pixel dimensions to avoid looking pixellated at higher scale
factors. This includes changing:

 ❏ Application icons

 ❏ Images that appear in buttons or other controls

 ❏ Other custom images you use in your interface

 ■ Update code that relies on precise pixel alignment to take the current scale factor into account.
Both Cocoa and Carbon provide ways to access the current scale factor.

 ■ Consider drawing lines, fills, and gradients programmatically instead of using prerendered
images. Shapes drawn using Quartz and Cocoa always scale appropriately to the screen resolution.

When scaling your images, be sure to cache the scaled versions of frequently-used images to increase
drawing efficiency. For more information about resolution-independence and how to support it in
your code, see Resolution Independence Guidelines.

76 Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



Spotlight

Introduced in Mac OS X version 10.4, Spotlight provides advanced search capabilities for applications.
The Spotlight server gathers metadata from documents and other relevant user files and incorporates
that metadata into a searchable index. The Finder uses this metadata to provide users with more
relevant information about their files. For example, in addition to listing the name of a JPEG file, the
Finder can also list its width and height in pixels.

Application developers use Spotlight in two different ways. First, you can search for file attributes
and content using the Spotlight search API. Second, if your application defines its own custom file
formats, you should incorporate any appropriate metadata information in those formats and provide
a Spotlight importer plug-in to return that metadata to Spotlight.

Note: You should not use Spotlight for indexing and searching the general content of a file. Spotlight
is intended for searching only the meta information associated with files. To search the actual contents
of a file, use the Search Kit API. For more information, see “Search Kit Framework” (page 70).

In Mac OS X v10.5 and later, several new features were added to make working with Spotlight easier.
The File manager includes functions for swapping the contents of a file while preserving its original
metadata; see theFiles.h header file in the Core Services framework. Spotlight also defines functions
for storing lineage information with a file so that you can track modifications to that file.

For more information on using Spotlight in your applications, see Spotlight Overview.

Bundles and Packages

A feature integral to Mac OS X software distribution is the bundle mechanism. Bundles encapsulate
related resources in a hierarchical file structure but present those resources to the user as a single
entity. Programmatic interfaces make it easy to find resources inside a bundle. These same interfaces
form a significant part of the Mac OS X internationalization strategy.

Applications and frameworks are only two examples of bundles in Mac OS X. Plug-ins, screen savers,
and preference panes are all implemented using the bundle mechanism as well. Developers can also
use bundles for their document types to make it easier to store complex data.

Packages are another technology, similar to bundles, that make distributing software easier. A
package—also referred to as an installation package—is a directory that contains files and directories
in well-defined locations. The Finder displays packages as files. Double-clicking a package launches
the Installer application, which then installs the contents of the package on the user’s system.

For an overview of bundles and how they are constructed, see Bundle Programming Guide. For
information on how to package your software for distribution, see Software Delivery Guide.

Code Signing

In Mac OS X v10.5 and later, it is possible to associate a digital signature with your application using
the codesign command-line tool. If you have a certificate that is authorized for signing, you can use
that certificate to sign your application’s code file. Signing your application makes it possible for Mac
OS X to verify the source of the application and ensure the application has not changed since it was

Technologies 77
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



shipped. If the application has been tampered with, Mac OS X detects the change and can alert the
user to the problem. Signed applications also make it harder to circumvent parental controls and
other protection features of the system.

For information on signing your application, see Code Signing Guide.

Internationalization and Localization

Localizing your application is necessary for success in many foreign markets. Users in other countries
are much more likely to buy your software if the text and graphics reflect their own language and
culture. Before you can localize an application, though, you must design it in a way that supports
localization, a process called internationalization. Properly internationalizing an application makes
it possible for your code to load localized content and display it correctly.

Internationalizing an application involves the following steps:

 ■ Use Unicode strings for storing user-visible text.

 ■ Extract user-visible text into “strings” resource files.

 ■ Use nib files to store window and control layouts whenever possible.

 ■ Use international or culture-neutral icons and graphics whenever possible.

 ■ Use Cocoa or Core Text to handle text layout.

 ■ Support localized file-system names (also known as “display names”).

 ■ Use formatter objects in Core Foundation and Cocoa to format numbers, currencies, dates, and
times based on the current locale.

For details on how to support localized versions of your software, see Internationalization Programming
Topics. For information on Core Foundation formatters, see Data Formatting Guide for Core Foundation.

Software Configuration

Mac OS X programs commonly use property list files (also known as plist files) to store configuration
data. A property list is a text or binary file used to manage a dictionary of key-value pairs. Applications
use a special type of property list file, called an information property list (Info.plist) file, to
communicate key attributes of the application to the system, such as the application’s name, unique
identification string, and version information. Applications also use property list files to store user
preferences or other custom configuration data. If your application stores custom configuration data,
you should consider using property lists files as well.

The advantage of property list files is that they are easy to edit and modify from outside the runtime
environment of your application. Mac OS X provides several tools for creating and modifying property
list files. The Property List Editor application that comes with Xcode is the main application for editing
the contents of property lists. Xcode also provides a custom interface for editing your application’s
Info.plist file. (For information about information property lists files and the keys you put in them,
see Runtime Configuration Guidelines.)

78 Technologies
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



Inside your program, you can read and write property list files programmatically using facilities
found in both Core Foundation and Cocoa. For more information on creating and using property lists
programmatically, see Property List Programming Guide for Cocoa or Property List Programming Topics
for Core Foundation.

Fast User Switching

Introduced in Mac OS X version 10.3, fast user switching lets multiple users share physical access to
a single computer without logging out. Only one user at a time can access the computer using the
keyboard, mouse, and display; however, one user’s session can continue to run while another user
accesses the computer. The users can then trade access to the computer and toggle sessions back and
forth without disturbing each other’s work.

When fast user switching is enabled, an application must be careful not to do anything that might
affect another version of that application running in a different user’s session. In particular, your
application should avoid using or creating any shared resources unless those resources are associated
with a particular user session. As you design your application, make sure that any shared resources
you use are protected appropriately. For more information on how to do this, see Multiple User
Environments.

Spaces

Introduced in Mac OS X version 10.5, Spaces lets the user organize windows into groups and switch
back and forth between groups to avoid cluttering up the desktop. Most application windows appear
in only one space at a time, but there may be times when you need to share a window among multiple
spaces. For example, if your application has a set of shared floating palettes, you might need those
palettes to show up in every space containing your application’s document windows.

Cocoa provides support for sharing windows across spaces through the use of collection behavior
attributes on the window. For information about setting these attributes, see NSWindow Class Reference.

Accessibility

Millions of people have some type of disability or special need. Federal regulations in the United
States stipulate that computers used in government or educational settings must provide reasonable
access for people with disabilities. Mac OS X includes built-in functionality to accommodate users
with special needs. It also provides software developers with the functions they need to support
accessibility in their own applications.

Applications that use Cocoa or modern Carbon interfaces receive significant support for accessibility
automatically. For example, applications get the following support for free:

 ■ Zoom features let users increase the size of onscreen elements.

 ■ Sticky keys let users press keys sequentially instead of simultaneously for keyboard shortcuts.

 ■ Mouse keys let users control the mouse with the numeric keypad.

 ■ Full keyboard access mode lets users complete any action using the keyboard instead of the
mouse.

Technologies 79
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



 ■ Speech recognition lets users speak commands rather than type them.

 ■ Text-to-speech reads text to users with visual disabilities.

 ■ VoiceOver provides spoken user interface features to assist visually impaired users.

If your application is designed to work with assistive devices (such as screen readers), you may need
to provide additional support. Both Cocoa and Carbon integrate support for accessibility protocols
in their frameworks; however, there may still be times when you need to provide additional
descriptions or want to change descriptions associated with your windows and controls. In those
situations, you can use the appropriate accessibility interfaces to change the settings.

For more information about accessibility, see Accessibility Overview.

AppleScript

Mac OS X employs AppleScript as the primary language for making applications scriptable. AppleScript
is supported in all application environments as well as in the Classic compatibility environment.
Thus, users can write scripts that link together the services of multiple scriptable applications across
different environments.

When designing new applications, you should consider AppleScript support early in the process.
The key to good AppleScript design is choosing an appropriate data model for your application. The
design must not only serve the purposes of your application but should also make it easy for
AppleScript implementers to manipulate your content. Once you settle on a model, you can implement
the Apple event code needed to support scripting.

For information about AppleScript in Mac OS X, go to http://www.apple.com/applescript. For
developer documentation explaining how to support AppleScript in your programs, see Reference
Library > Scripting & Automation.

System Applications

Mac OS X provides many applications to help both developers and users implement their projects.
A default Mac OS X installation includes an Applications directory containing many user and
administrative tools that you can use in your development. In addition, there are two special
applications that are relevant to running programs: the Finder and the Dock. Understanding the
purpose of these applications can help when it comes to designing your own applications.

The Finder

The Finder has many functions in the operating system:

 ■ It is the primary file browser. As such, it is the first tool users see, and one they use frequently to
find applications and other files.

 ■ It provides an interface for Spotlight—a powerful search tool for finding files not easily found
by browsing.

 ■ It provides a way to access servers and other remote volumes, including a user’s iDisk.

80 System Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience

http://www.apple.com/applescript


 ■ It determines the application in which to open a document when a user double-clicks a document
icon.

 ■ It allows users to create file archives.

 ■ It provides previews of images, movies, and sounds in its preview pane.

 ■ It lets users burn content onto CDs and DVDs.

 ■ It provides an AppleScript interface for manipulating files and the Finder user interface.

Keep the Finder in mind as you design your application’s interface. Understand that any new behaviors
you introduce should follow patterns users have grown accustomed to in their use of the Finder.
Although some of the functionality of the Finder, like file browsing, is replicated through the Carbon
and Cocoa frameworks, the Finder may be where users feel most comfortable performing certain
functions. Your application should interact with the Finder gracefully and should communicate
changes to the Finder where appropriate. For example, you might want to embed content by allowing
users to drag files from the Finder into a document window of your application.

Another way your application interacts with the Finder is through configuration data. The information
property list of your bundled application communicates significant information about the application
to the Finder. Information about your application’s identity and the types of documents it supports
are all part of the information property list file.

For information about the Finder and its relationship to the file system, see File System Overview.

The Dock

Designed to help prevent onscreen clutter and aid in organizing work, the always available Dock
displays an icon for each open application and minimized document. It also contains icons for
commonly used applications and for the Trash. Applications can use the Dock to convey information
about the application and its current state.

For guidelines on how to work with the Dock within your program, see Apple Human Interface
Guidelines. For information on how to manipulate Dock tiles in a Carbon application, see Dock Tile
Programming Guide and Application Manager Reference. To manipulate Dock tiles from a Cocoa
application, use the methods of the NSApplication and NSWindow classes.

Dashboard

Introduced in Mac OS X v10.4, Dashboard provides a lightweight desktop environment for running
widgets. Widgets are lightweight web applications that display information a user might use
occasionally. You can write widgets to track stock quotes, view the current time, or access key features
of a frequently used application. Widgets reside in the Dashboard layer, which is activated by the
user and comes into the foreground in a manner similar to Exposé. Mac OS X comes with several
standard widgets, including a calculator, clock, and iTunes controller.

For information about developing Dashboard widgets, see “Dashboard Widgets” (page 90).

System Applications 81
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



Automator

Introduced in Mac OS X version 10.4, Automator lets you automate common workflows on your
computer without writing any code. The workflows you create can take advantage of many features
of Mac OS X and any standard applications for which predefined actions are available. Actions are
building blocks that represent tangible tasks, such as opening a file, saving a file, applying a filter,
and so on. The output from one action becomes the input to another and you assemble the actions
graphically with the Automator application. Figure 5-1 shows the Automator main window and a
workflow containing some actions.

Figure 5-1 Automator main window

In cases where actions are not available for the tasks you want, you can often create them yourself.
Automator supports the creation of actions using Objective-C code or AppleScript. You can also create
actions that are based on shell scripts, Perl, and Python.

In Mac OS X v10.5 and later, Automator supports the “Watch Me Do” feature, which lets you build
an action by recording your interactions with Mac OS X and any open applications. You can use
workflow variables as placeholders for dynamically changing values or pieces of text in your script.
You can also integrate workflows into your applications using the classes of the Automator framework.

82 System Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



For more information about using Automator, see the Automator Help. For information on how to
create new Automator actions, see Automator Programming Guide. For information about how to
integrate workflows into your applications, see the classes in Automator Framework Reference.

Time Machine

Introduced in Mac OS X v10.5, Time Machine is an application that automatically and transparently
backs up the user’s files to a designated storage system. Time Machine integrates with the Finder to
provide an intuitive interface for locating lost or old versions of files quickly and easily. Time Machine
also provides an interface that applications can use to exclude files that should not be backed up. For
more information on using this interface, see “Time Machine Support” (page 73).

System Applications 83
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



84 System Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

User Experience



There are many ways to create an application in Mac OS X. There are also many types of software
that you can create besides applications. The following sections introduce the types of software you
can create in Mac OS X and when you might consider doing so.

Applications

Applications are by far the predominant type of software created for Mac OS X, or for any platform.
Mac OS X provides numerous environments for developing applications, each of which is suited for
specific types of development. For information about these environments and the technologies you
can use to build your applications, see “Application Technologies” (page 59).

Important: You should always create universal binaries for Carbon, Cocoa, and BSD applications.
Java and WebObjects may also need to create universal binaries for bridged code. For information
on how to create universal binaries, see Universal Binary Programming Guidelines, Second Edition.

Frameworks

A framework is a special type of bundle used to distribute shared resources, including library code,
resource files, header files, and reference documentation. Frameworks offer a more flexible way to
distribute shared code that you might otherwise put into a dynamic shared library. Whereas image
files and localized strings for a dynamic shared library would normally be installed in a separate
location from the library itself, in a framework they are integral to the framework bundle. Frameworks
also have a version control mechanism that makes it possible to distribute multiple versions of a
framework in the same framework bundle.

Apple uses frameworks to distribute the public interfaces of Mac OS X. You can use frameworks to
distribute public code and interfaces created by your company. You can also use frameworks to
develop private shared libraries that you can then embed in your applications.

Applications 85
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



Note: Mac OS X also supports the concept of “umbrella” frameworks, which encapsulate multiple
subframeworks in a single package. However, this mechanism is used primarily for the distribution
of Apple software. The creation of umbrella frameworks by third-party developers is not recommended.

You can develop frameworks using any programming language you choose; however, it is best to
choose a language that makes it easy to update the framework later. Apple frameworks generally
export programmatic interfaces in either ANSI C or Objective-C. Both of these languages have a
well-defined export structure that makes it easy to maintain compatibility between different revisions
of the framework. Although it is possible to use other languages when creating frameworks, you may
run into binary compatibility problems later when you update your framework code.

For information on the structure and composition of frameworks, see Framework Programming Guide.
That document also contains details on how to create public and private frameworks with Xcode.

Important: You should always create universal binaries for frameworks written with Carbon, Cocoa,
or BSD APIs. For information on how to create universal binaries, see Universal Binary Programming
Guidelines, Second Edition.

Plug-ins

Plug-ins are the standard way to extend many applications and system behaviors. Plug-ins are bundles
whose code is loaded dynamically into the runtime of an application. Because they are loaded
dynamically, they can be added and removed by the user.

There are many opportunities for developing plug-ins for Mac OS X. Developers can create plug-ins
for third-party applications or for Mac OS X itself. Some parts of Mac OS X define plug-in interfaces
for extending the basic system behavior. The following sections list many of these opportunities for
developers, although other software types may also use the plug-in model.

Important: With the transition to Intel-based processors, developers should always create universal
binaries for plug-ins written with Carbon, Cocoa, or BSD APIs. For information on how to create
universal binaries, see Universal Binary Programming Guidelines, Second Edition.

Address Book Action Plug-Ins

An Address Book action plug-in lets you populate the pop-up menus of the Address Book application
with custom menu items that use Address Book data to trigger a specific event. For example, you
could add an action to a phone number field to trigger the dialing of the number using a
Bluetooth-enabled phone.

Address Book action plug-ins are best suited for developers who want to extend the behavior of the
Address Book application to support third-party hardware or software. For more information on
creating an Address Book action plug-in, see the documentation for the ABActionDelegate class.

86 Plug-ins
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



Application Plug-Ins

Several applications, including iTunes, Final Cut Pro, and Final Cut Express, use plug-ins to extend
the features available from the application. You can create plug-ins to implement new effects for these
applications or for other applications that support a plug-in model. For information about developing
plug-ins for Apple applications, visit the ADC website at http://developer.apple.com/.

Automator Plug-Ins

Introduced in Mac OS X version 10.4, Automator is a workflow-based application that lets users
assemble complex scripts graphically using a palette of available actions. You can extend the default
set of actions by creating Automator plug-ins to support new actions. Because they can be written in
AppleScript or Objective-C, you can write plug-ins for your own application’s features or for the
features of other scriptable applications.

If you are developing an application, you should think about providing Automator plug-ins for your
application’s most common tasks. AppleScript is one of the easiest ways for you to create Automator
plug-ins because it can take advantage of existing code in your application. If you are an Objective-C
developer, you can also use that language to create plug-ins.

For information on how to write an Automator plug-in, see Automator Programming Guide.

Contextual Menu Plug-Ins

The Finder associates contextual menus with file-system items to give users a way to access frequently
used commands quickly. Third-party developers can extend the list of commands found on these
menus by defining their own contextual menu plug-ins. You might use this technique to make
frequently used features available to users without requiring them to launch your application. For
example, an archiving program might provide commands to compress a file or directory.

The process for creating a contextual menu plug-in is similar to that for creating a regular plug-in.
You start by defining the code for registering and loading your plug-in, which might involve creating
a factory object or explicitly specifying entry points. To implement the contextual menu behavior,
you must then implement several callback functions defined by the Carbon Menu Manager for that
purpose. Once complete, you install your plug-in in the Library/Contextual Menu Items directory
at the appropriate level of the system, usually the local or user level.

For information on how to create a plug-in, see Plug-ins. For information on the Carbon Menu Manager
functions you need to implement, see Menu Manager Reference.

Core Audio Plug-Ins

The Core Audio system supports plug-ins for manipulating audio streams during most processing
stages. You can use plug-ins to generate, process, receive, or otherwise manipulate an audio stream.
You can also create plug-ins to interact with new types of audio-related hardware devices.

For an introduction to the Core Audio environment, download the Core Audio SDK from
http://developer.apple.com/sdk/ and read the documentation that comes with it. Information is
also available in Reference Library > Audio > Core Audio.

Plug-ins 87
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview

http://developer.apple.com/
http://developer.apple.com/sdk/


Image Units

In Mac OS X version 10.4 and later, you can create image units for the Core Image and Core Video
technologies. An image unit is a collection of filters packaged together in a single bundle. Each filter
implements a specific manipulation for image data. For example, you could write a set of filters that
perform different kinds of edge detection and package them as one image unit.

For more information about Core Image, see Core Image Programming Guide.

Input Method Components

An input method component is a code module that processes incoming data and returns an adjusted
version of that data. A common example of an input method is an interface for typing Japanese or
Chinese characters using multiple keystrokes. The input method processes the user keystrokes and
returns the complex character that was intended. Other examples of input methods include spelling
checkers and pen-based gesture recognition systems.

Input method components are implemented using the Carbon Component Manager. An input method
component provides the connection between Mac OS X and any other programs your input method
uses to process the input data. For example, you might use a background application to record the
input keystrokes and compute the list of potential complex characters that those keystrokes can create.

In Mac OS X v10.5 and later, you can create input methods using the Input Method Kit
(InputMethodKit.framework). For information on how to use this framework, see Input Method Kit
Framework Reference. For information on how to create an input method in earlier versions of Mac OS
X, see the BasicInputMethod sample code and the Component Manager Reference.

Interface Builder Plug-Ins

If you create any custom controls for your application, you can create an Interface Builder plug-in to
make those controls available in the Interface Builder design environment. Creating plug-ins for your
controls lets you go back and redesign your application’s user interface using your actual controls,
as opposed to generic custom views. For controls that are used frequently in your application, being
able to see and manipulate your controls directly can eliminate the need to build your application to
see how your design looks.

In Mac OS X v10.5, you should include plug-ins for any of your custom controls inside the framework
bundle that implements those controls. Bundling your plug-in with your framework is not required
but does make it easier for users. When the user adds your framework to their Xcode project, Interface
Builder automatically scans the framework and loads the corresponding plug-in if it is present. If you
did not use a framework for the implementation of your controls, you must distribute the plug-in
yourself and instruct users to load it using the Interface Builder preferences window.

For information on how to create plug-ins that support Interface Builder 3.0 and later, see Interface
Builder Plug-In Programming Guide and Interface Builder Kit Framework Reference. For information on
how to create plug-ins for earlier versions of Interface Builder, see the header files for Interface Builder
framework (InterfaceBuilder.framework) or the examples in <Xcode>/Examples/Interface
Builder.

88 Plug-ins
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



Metadata Importers

In Mac OS X version 10.4 and later, you can create a metadata importer for your application’s file
formats. Metadata importers are used by Spotlight to gather information about the user’s files and
build a systemwide index. This index is then used for advanced searching based on more user-friendly
information.

If your application defines a custom file format, you should always provide a metadata importer for
that file format. If your application relies on commonly used file formats, such as JPEG, RTF, or PDF,
the system provides a metadata importer for you.

For information on creating metadata importers, see Spotlight Importer Programming Guide.

QuickTime Components

A QuickTime component is a plug-in that provides services to QuickTime-savvy applications. The
component architecture of QuickTime makes it possible to extend the support for new media formats,
codecs, and hardware. Using this architecture, you can implement components for the following
types of operations:

 ■ Compressing/decompressing media data

 ■ Importing/exporting media data

 ■ Capturing media data

 ■ Generating timing signals

 ■ Controlling movie playback

 ■ Implementing custom video effects, filters, and transitions

 ■ Streaming custom media formats

For an overview of QuickTime components, see QuickTime Overview. For information on creating
specific component types, see the subcategories in Reference Library > QuickTime.

Safari Plug-ins

Beginning with Mac OS X version 10.4, Safari supports a new plug-in model for tying in additional
types of content to the web browser. This new model is based on an Objective-C interface and offers
significant flexibility to plug-in developers. In particular, the new model lets plug-in developers take
advantage of the Tiger API for modifying DOM objects in an HTML page. It also offers hooks so that
JavaScript code can interact with the plug-in at runtime.

Safari plug-in support is implemented through the new WebPlugIn object and related objects defined
in Web Kit. For information about how to use these objects, see Web Kit Plug-In Programming Topics
and Web Kit Objective-C Framework Reference.

Plug-ins 89
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



Dashboard Widgets

Introduced in Mac OS X version 10.4 and later, Dashboard provides a lightweight desktop layer for
running widgets. Widgets are lightweight web applications that display information a user might
use occasionally. You could write widgets to track stock quotes, view the current time, or access key
features of a frequently used application. Widgets reside in the Dashboard layer, which is activated
by the user and comes into the foreground in a manner similar to Exposé. Mac OS X comes with
several standard widgets, including a calculator, clock, and iTunes controller.

Creating widgets is simpler than creating most applications because widgets are effectively
HTML-based applications with optional JavaScript code to provide dynamic behavior. Dashboard
uses the Web Kit to provide the environment for displaying the HTML and running the JavaScript
code. Your widgets can take advantage of several extensions provided by that environment, including
a way to render content using Quartz-like JavaScript functions. In Mac OS X v10.5 and later, you can
create widgets using the Dashcode application, which is described in “Dashcode” (page 142).

For information on how to create widgets, see Dashboard Programming Topics.

Agent Applications

An agent is a special type of application designed to help the user in an unobtrusive manner. Agents
typically run in the background, providing information as needed to the user or to another application.
Agents can display panels occasionally or come to the foreground to interact with the user if necessary.
User interactions should always be brief and have a specific goal, such as setting preferences or
requesting a piece of needed information.

An agent may be launched by the user but is more likely to be launched by the system or another
application. As a result, agents do not show up in the Dock or the Force Quit window. Agents also
do not have a menu bar for choosing commands. User manipulation of an agent typically occurs
through dialogs or contextual menus in the agent user interface. For example, the iChat application
uses an agent to communicate with the chat server and notify the user of incoming chat requests. The
Dock is another agent program that is launched by the system for the benefit of the user.

The way to create an agent application is to create a bundled application and include the LSUIElement
key in its Info.plist file. The LSUIElement key notifies the Dock that it should treat the application
as an agent when double-clicked by the user. For more information on using this key, see Runtime
Configuration Guidelines.

Screen Savers

Screen savers are small programs that take over the screen after a certain period of idle activity. Screen
savers provide entertainment and also prevent the screen image from being burned into the surface
of a screen permanently. Mac OS X supports both slideshows and programmatically generated
screen-saver content.

90 Dashboard Widgets
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



Slideshows

A slideshow is a simple type of screen saver that does not require any code to implement. To create
a slideshow, you create a bundle with an extension of .slideSaver. Inside this bundle, you place a
Resources directory containing the images you want to display in your slideshow. Your bundle should
also include an information property list that specifies basic information about the bundle, such as
its name, identifier string, and version.

Mac OS X includes several slideshow screen savers you can use as templates for creating your own.
These screen savers are located in /System/Library/Screen Savers. You should put your own
slideshows in either /Library/Screen Savers or in the ~/Library/Screen Savers directory of a
user.

Programmatic Screen Savers

A programmatic screen saver is one that continuously generates content to appear on the screen. You
can use this type of screen saver to create animations or to create a screen saver with user-configurable
options. The bundle for a programmatic screen saver ends with the .saver extension.

You create programmatic screen savers using Cocoa and the Objective-C language. Specifically, you
create a custom subclass of ScreenSaverView that provides the interface for displaying the screen
saver content and options. The information property list of your bundle provides the system with
the name of your custom subclass.

For information on creating programmatic screen savers, see Screen Saver Framework Reference.

Important: You should always create universal binaries for program-based screensavers written with
Carbon, Cocoa, or BSD APIs. For information on how to create universal binaries, see Universal Binary
Programming Guidelines, Second Edition.

Services

Services are not separate programs that you write; instead, they are features exported by your
application for the benefit of other applications. Services let you share the resources and capabilities
of your application with other applications in the system.

Services typically act on the currently selected data. Upon initiation of a service, the application that
holds the selected data places it on the pasteboard. The application whose service was selected then
takes the data, processes it, and puts the results (if any) back on the pasteboard for the original
application to retrieve. For example, a user might select a folder in the Finder and choose a service
that compresses the folder contents and replaces them with the compressed version. Services can
represent one-way actions as well. For example, a service could take the currently selected text in a
window and use it to create the content of a new email message.

For information on how to implement services in your Cocoa application, see System Services. For
information on how to implement services in a Carbon application, see Setting Up Your Carbon
Application to Use the Services Menu.

Services 91
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



Preference Panes

Preference panes are used primarily to modify system preferences for the current user. Preference
panes are implemented as plug-ins and installed in /Library/PreferencePanes on the user’s system.
Application developers can also take advantage of these plug-ins to manage per-user application
preferences; however, most applications manage preferences using the code provided by the application
environment.

You might need to create preference panes if you create:

 ■ Hardware devices that are user-configurable

 ■ Systemwide utilities, such as virus protection programs, that require user configuration

If you are an application developer, you might want to reuse preference panes intended for the System
Preferences application or use the same model to implement your application preferences.

Because the interfaces are based on Objective-C, you write preference panes primarily using Cocoa.
For more information, see Preference Panes.

Important: With the transition to Intel-based processors, developers should always create universal
binaries for preference panes. For information on how to create universal binaries, see Universal Binary
Programming Guidelines, Second Edition.

Web Content

Mac OS X supports a variety of techniques and technologies for creating web content. Dynamic
websites and web services offer web developers a way to deliver their content quickly and easily.

In addition to “WebObjects” (page 62) and “Dashboard Widgets” (page 90), the following sections
list ways to deliver web content in Mac OS X. For more information about developing web content,
see Getting Started with Internet and Web.

Dynamic Websites

Mac OS X provides support for creating and testing dynamic content in web pages. If you are
developing CGI-based web applications, you can create websites using a variety of scripting
technologies, including Perl and PHP. A complete list of scripting technologies is provided in
“Scripts” (page 95). You can also create and deploy more complex web applications using JBoss,
Tomcat, and WebObjects. To deploy your webpages, use the built-in Apache web server.

Safari, Apple’s web browser, provides standards-compliant support for viewing pages that incorporate
numerous technologies, including HTML, XML, XHTML, DOM, CSS, Java, and JavaScript. You can
also use Safari to test pages that contain multimedia content created for QuickTime, Flash, and
Shockwave.

92 Preference Panes
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



SOAP and XML-RPC

The Simple Object Access Protocol (SOAP) is an object-oriented protocol that defines a way for
programs to communicate over a network. XML-RPC is a protocol for performing remote procedure
calls between programs. In Mac OS X, you can create clients that use these protocols to gather
information from web services across the Internet. To create these clients, you use technologies such
as PHP, JavaScript, AppleScript, and Cocoa.

If you want to provide your own web services in Mac OS X, you can use WebObjects or implement
the service using the scripting language of your choice. You then post your script code to a web server,
give clients a URL, and publish the message format your script supports.

For information on how to create client programs using AppleScript, see XML-RPC and SOAP
Programming Guide. For information on how to create web services, see WebObjects Web Services
Programming Guide.

Sherlock Channels

In Mac OS X v10.4 and earlier, the Sherlock application was a host for Sherlock channels. A Sherlock
channel is a developer-created module that combines web services with an Aqua interface to provide
a unique way for users to find information. Sherlock channels combined related, but different, types
of information in one window.

Sherlock channels are not supported in Mac OS X v10.5 and later.

Mail Stationery

The Mail application in Mac OS X v10.5 and later supports the creation of email messages using
templates. Templates provide the user with prebuilt email messages that can be customized quickly
before being sent. Because templates are HTML-based, they can incorporate images and advanced
formatting to give the user’s email a much more stylish and sophisticated appearance.

Developers and web designers can create custom template packages for external or internal users.
Each template consists of an HTML page, property list file, and images packaged together in a bundle,
which is then stored in the Mail application’s stationery directory. The HTML page and images define
the content of the email message and can include drop zones for custom user content. The property
list file provides Mail with information about the template, such as its name, ID, and the name of its
thumbnail image.

For information about how to create new stationery templates, see Mail Stationery Release Notes for
Mac OS X v10.5.

Mail Stationery 93
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



Command-Line Tools

Command-line tools are simple programs that manipulate data using a text-based interface. These
tools do not use windows, menus, or other user interface elements traditionally associated with
applications. Instead, they run from the command-line environment of the Terminal application.
Command-line tools require less explicit knowledge of the system to develop and because of that are
often simpler to write than many other types of applications. However, command-line tools usually
serve a more technically savvy crowd who are familiar with the conventions and syntax of the
command-line interface.

Xcode supports the creation of command-line tools from several initial code bases. For example, you
can create a simple and portable tool using standard C or C++ library calls, or a more Mac OS X–specific
tool using frameworks such as Core Foundation, Core Services, or Cocoa Foundation.

Important: With the transition to Intel-based processors, developers should always create universal
binaries for command-line tools written with Carbon, Cocoa, or BSD APIs. For information on how
to create universal binaries, see Universal Binary Programming Guidelines, Second Edition.

Command-line tools are ideal for implementing simple programs quickly. You can use them to
implement low-level system or administrative tools that do not need (or cannot have) a graphical
user interface. For example, a system administrator might use command-line tools to gather status
information from an Xserve system. You might also use them to test your program’s underlying code
modules in a controlled environment.

Note: Daemons are a special type of command-line program that run in the background and provide
services to system and user-level programs. Developing daemons is not recommended, or necessary,
for most developers.

Launch Items, Startup Items, and Daemons

Launch items and startup items are special programs that launch other programs or perform one-time
operations during startup and login periods. Daemons are programs that run continuously and act
as servers for processing client requests. You typically use launch items and startup items to launch
daemons or perform periodic maintenance tasks, such as checking the hard drive for corrupted
information. Launch items run under the launchd system process and are supported only in Mac OS
X v10.4 and later. Startup items are also used to launch system and user-level processes but are
deprecated in current versions of Mac OS X. They may be used to launch daemons and run scripts
in Mac OS X v10.3.9 and earlier.

Launch items and startup items should not be confused with the login items found in the Accounts
system preferences. Login items are typically agent applications that run within a given user’s session
and can be configured by that user. Launch items and startup items are not user-configurable.

Few developers should ever need to create launch items or daemons. They are reserved for the special
case where you need to guarantee the availability of a particular service. For example, Mac OS X
provides a launch item to run the DNS daemon. Similarly, a virus-detection program might install a

94 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



launch item to launch a daemon that monitors the system for virus-like activity. In both cases, the
launch item would run its daemon in the root session, which provides services to all users of the
system.

For more information about launch items, startup items, and daemons, see System Startup Programming
Topics.

Important: With the transition to Intel-based processors, developers should always create universal
binaries for launch items written with Carbon, Cocoa, or BSD APIs. For information on how to create
universal binaries, see Universal Binary Programming Guidelines, Second Edition.

Scripts

A script is a set of text commands that are interpreted at runtime and turned into a sequence of actions.
Most scripting languages provide high-level features that make it easy to implement complex
workflows very quickly. Scripting languages are often very flexible, letting you call other programs
and manipulate the data they return. Some scripting languages are also portable across platforms, so
that you can use your scripts anywhere.

Table 6-1 lists many of the scripting languages supported by Mac OS X along with a description of
the strengths of each language.

Table 6-1 Scripting language summary

DescriptionScript
language

An English-based language for controlling scriptable applications in Mac OS X. Use
it to tie together applications involved in a custom workflow or repetitive job. You
can also use AppleScript Studio to create standalone applications whose code consists
primarily of scripts. See Getting Started With AppleScript for more information.

AppleScript

A Bourne-compatible shell script language used to build programs on UNIX-based
systems.

bash

The C shell script language used to build programs on UNIX-based systems.csh

A general-purpose scripting language supported on many platforms. It comes with
an extensive set of features suited for text parsing and pattern matching and also
has some object-oriented features. See http://www.perl.org/ for more information.

Perl

A cross-platform, general-purpose scripting language that is especially suited for
web development. See http://www.php.net/ for more information.

PHP

A general-purpose, object-oriented scripting language implemented for many
platforms. See http://www.python.org/ for more information. In Mac OS X v10.4
and later, you can also use Python with the Cocoa scripting bridge; see Ruby and
Python Programming Topics for Mac OS X.

Python

Scripts 95
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview

http://www.perl.org/
http://www.php.net/
http://www.python.org/


DescriptionScript
language

A general-purpose, object-oriented scripting language implemented for many
platforms. See http://www.ruby-lang.org/ for more information. In Mac OS X
v10.5 and later, you can also use Ruby with the Cocoa scripting bridge; see Ruby
and Python Programming Topics for Mac OS X.

Ruby

The Bourne shell script language used to build programs on UNIX-based systems.sh

Tool Command Language. A general-purpose language implemented for many
platforms. It is often used to create graphical interfaces for scripts. See
http://www.tcl.tk/ for more information.

Tcl

A variant of the C shell script language used to build programs on UNIX-based
systems.

tcsh

The Z shell script language used to build programs on UNIX-based systems.zsh

For introductory material on using the command line, see “Command Line Primer” (page 115).

Scripting Additions for AppleScript

A scripting addition is a way to deliver additional functionality for AppleScript scripts. It extends
the basic AppleScript command set by adding systemwide support for new commands or data types.
Developers who need features not available in the current command set can use scripting additions
to implement those features and make them available to all programs. For example, one of the built-in
scripting additions extends the basic file-handling commands to support the reading and writing of
file contents from an AppleScript script.

For information on how to create a scripting addition, see Technical Note TN1164, “Native Scripting
Additions.”

Important: With the transition to Intel-based processors, developers should always create universal
binaries for scripting additions written with Carbon, Cocoa, or BSD APIs. For information on how to
create universal binaries, see Universal Binary Programming Guidelines, Second Edition.

Kernel Extensions

Most developers have little need to create kernel extensions. Kernel extensions are code modules that
load directly into the kernel process space and therefore bypass the protections offered by the Mac
OS X core environment. The situations in which you might need a kernel extension are the following:

 ■ Your code needs to handle a primary hardware interrupt.

 ■ The client of your code is inside the kernel.

96 Scripting Additions for AppleScript
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview

http://www.ruby-lang.org/
http://www.tcl.tk/
http://developer.apple.com/technotes/tn/tn1164.html
http://developer.apple.com/technotes/tn/tn1164.html


 ■ A large number of applications require a resource your code provides. For example, you might
implement a file-system stack using a kernel extension.

 ■ Your code has special requirements or needs to access kernel interfaces that are not available in
the user space.

Kernel extensions are typically used to implement new network stacks or file systems. You would
not use kernel extensions to communicate with external devices such as digital cameras or printers.
(For information on communicating with external devices, see “Device Drivers” (page 97).)

Note: Beginning with Mac OS X version 10.4, the design of the kernel data structures is changing to
a more opaque access model. This change makes it possible for kernel developers to write nonfragile
kernel extensions—that is, kernel extensions that do not break when the kernel data structures change.
Developers are highly encouraged to use the new API for accessing kernel data structures.

For information about writing kernel extensions, see Kernel Programming Guide.

Important: With the transition to Intel-based processors, developers should always create universal
binaries for kernel extensions. For information on how to create universal binaries, see Universal Binary
Programming Guidelines, Second Edition.

Device Drivers

Device drivers are a special type of kernel extension that enable Mac OS X to communicate with all
manner of hardware devices, including mice, keyboards, and FireWire drives. Device drivers
communicate hardware status to the system and facilitate the transfer of device-specific data to and
from the hardware. Mac OS X provides default drivers for many types of devices, but these may not
meet the needs of all developers.

Although developers of mice and keyboards may be able to use the standard drivers, many other
developers require custom drivers. Developers of hardware such as scanners, printers, AGP cards,
and PCI cards typically have to create custom drivers for their devices. These devices require more
sophisticated data handling than is usually needed for mice and keyboards. Hardware developers
also tend to differentiate their hardware by adding custom features and behavior, which makes it
difficult for Apple to provide generic drivers to handle all devices.

Apple provides code you can use as the basis for your custom drivers. The I/O Kit provides an
object-oriented framework for developing device drivers using C++. For information on developing
device drivers, see I/O Kit Fundamentals.

Important: With the transition to Intel-based processors, developers should always create universal
binaries for device drivers. For information on how to create universal binaries, see Universal Binary
Programming Guidelines, Second Edition.

Device Drivers 97
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



98 Device Drivers
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Software Development Overview



Mac OS X has many layers of technology. Before choosing a specific technology to implement a
solution, think about the intended role for that technology. Is that technology appropriate for your
needs? Is there a better technology available? In some cases, Mac OS X offers several technologies
that implement the same behavior but with varying levels of complexity and flexibility. Understanding
your operational needs can help you make appropriate choices during design.

As you consider the design of your software, think about your overall goals. The following sections
list some of the high-level goals you should strive for in your Mac OS X software. Along with each
goal are a list of some technologies that can help you achieve that goal. These lists are not exhaustive
but provide you with ideas you might not have considered otherwise. For specific design tips related
to these goals, see Apple Human Interface Guidelines.

High Performance

Performance is the perceived measure of how fast or efficient your software is, and it is critical to the
success of all software. If your software seems slow, users may be less inclined to buy it. Even software
that uses the most optimal algorithms may seem slow if it spends more time processing data than
responding to the user.

Developers who have experience programming on other platforms (including Mac OS 9) should take
the time to learn about the factors that influence performance on Mac OS X. Understanding these
factors can help you make better choices in your design and implementation. For information about
performance factors and links to performance-related documentation, see Performance Overview.

Table 7-1 lists several Mac OS X technologies that you can use to improve the performance of your
software.

Table 7-1 Technologies for improving performance

DescriptionTechnology

Because Macintosh computers may contain PowerPC or Intel processors, it is
important to create universal binaries to ensure that your code always runs
natively on the user’s computer. Native code runs much faster than emulated
code and the Mach-O file format can easily accommodate multiple copies of
your executable code in a single package. For information on how to create
universal binaries, see Universal Binary Programming Guidelines, Second Edition.

Universal Binaries

High Performance 99
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your
Design Goals



DescriptionTechnology

Although not appropriate in all cases, providing a 64-bit version of your
application can improve performance, especially on Intel-based Macintosh
computers. The 64-bit capable Intel processors typically have more hardware
registers available for performing calculations and passing function parameters.
More registers often leads to better performance. As always, test your code
in both 32-bit and 64-bit modes to see if providing a 64-bit version is
worthwhile. For more information, see 64-Bit Transition Guide.

64-bit

Mac OS X v10.5 includes two new Cocoa classes that simplify the process of
supporting multiple threads in your application. The NSOperation object acts
as a wrapper for encapsulated tasks while the NSOperationQueue object
manages the execution of those tasks. Operations support dependency and
priority ordering and can be customized to configure the threading
environment as needed. For more information about these classes, see Threading
Programming Guide.

NSOperation and
NSOperationQueue

With all new Macintosh computers shipping with multi-core processors, one
way to take advantage of the extra computing power of these machines is to
use threads to exploit any inherent parallelism in your software. Mac OS X
implements user-level threads using the POSIX threading package but also
supports several higher-level APIs for managing threads. For information
about these APIs and threading support in general, see “Threading
Support” (page 31) and Threading Programming Guide.

Threads

Apple provides a suite of performance tools for measuring many aspects of
your software. Instruments and Shark in particular provide new ways of
looking at your application while it runs and analyzing its performance. Use
these tools to identify hot spots and gather performance metrics that can help
identify potential problems. For more information Instruments, see
“Instruments” (page 143). For information about Shark and the other
performance tools that come with Mac OS X, see “Performance Tools” (page
156).

Instruments and
Shark

The Accelerate framework provides an API for performing multiple scalar or
floating-point operations in parallel by taking advantage of the underlying
processor’s vector unit. Because it is tuned for both PowerPC and Intel
processor architectures, using the Accelerate framework eliminates the need
for you to write custom code for both the AltiVec and SSE vector units. For
more information about using this framework, see Accelerate Release Notes.

Accelerate
Framework

Mac OS X provides many layers of APIs. As you consider the design of your
application, examine the available APIs to find the appropriate tradeoff
between performance, simplicity, and flexibility that you need. Usually,
lower-level system APIs offer the best performance but are more complicated
to use. Conversely, higher-level APIs may be simpler to use but be less flexible.
Whenever possible, choose the lowest-level API that you feel comfortable
using.

Lower-level APIs

100 High Performance
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



Mac OS X supports many modern and legacy APIs. Most of the legacy APIs derive from the assorted
managers that were part of the original Macintosh Toolbox and are now a part of Carbon. While many
of these APIs still work in Mac OS X, they are not as efficient as APIs created specifically for Mac OS
X. In fact, many APIs that provided the best performance in Mac OS 9 now provide the worst
performance in Mac OS X because of fundamental differences in the two architectures.

Note: For specific information about legacy Carbon managers and the recommended replacements
for them, see “Carbon Considerations” (page 111).

As Mac OS X evolves, the list of APIs and technologies it encompasses may change to meet the needs
of developers. As part of this evolution, less efficient interfaces may be deprecated in favor of newer
ones. Apple makes these changes only when deemed absolutely necessary and uses the availability
macros (defined in /usr/include/AvailabilityMacros.h) to identify deprecated interfaces. When
you compile your code, deprecated interfaces also trigger the generation of compiler warnings. Use
these warnings to find deprecated interfaces, and then check the corresponding reference
documentation or header files to see if there are recommended replacements.

Easy to Use

An easy-to-use program offers a compelling, intuitive experience for the user. It offers elegant solutions
to complex problems and has a well thought out interface that uses familiar paradigms. It is easy to
install and configure because it makes intelligent choices for the user, but it also gives the user the
option to override those choices when needed. It presents the user with tools that are relevant in the
current context, eliminating or disabling irrelevant tools. It also warns the user against performing
dangerous actions and provides ways to undo those actions if taken.

Table 7-2 lists several Mac OS X technologies that you can use to make your software easier to use.

Table 7-2 Technologies for achieving ease of use

DescriptionTechnology

If your program has a visual interface, it should adhere to the human interface
guidelines for Aqua, which include tips for how to lay out your interface and
manage its complexity. For more information, see “Aqua” (page 75).

Aqua

Introduced in Mac OS X v10.5, Quick Look generates previews of user
documents that can be displayed in the Finder and Dock. These previews
make it easier for the user to find relevant information quickly without
launching any applications. For more information, see “Quick Look” (page
76).

Quick Look

Bonjour simplifies the process of configuring and detecting network services.
Your program can vend network services or use Bonjour to be a client of an
existing network service. For more information, see “Bonjour” (page 64).

Bonjour

The Accessibility interfaces for Carbon and Cocoa make it easier for people
with disabilities to use your software. For more information, see
“Accessibility” (page 79).

Accessibility
technologies

Easy to Use 101
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



DescriptionTechnology

AppleScript makes it possible for users to automate complex workflows
quickly. It also gives users a powerful tool for controlling your application.
For more information, see “AppleScript” (page 80).

AppleScript

Mac OS X provides significant infrastructure for internationalizing software
bundles. For more information, see “Internationalization and
Localization” (page 78).

Internationalization

Keychains provide users with secure access to passwords, certificates, and
other secret information. Adding support for Keychain Services in your
program can reduce the number of times you need to prompt the user for
passwords and other secure information. For more information, see “Keychain
Services” (page 68).

Keychain Services

For information on designing an easy-to-use interface, see Apple Human Interface Guidelines.

Attractive Appearance

One feature that draws users to the Macintosh platform, and to Mac OS X in particular, is the stylish
design and attractive appearance of the hardware and software. Although creating attractive hardware
and system software is Apple’s job, you should take advantage of the strengths of Mac OS X to give
your own programs an attractive appearance.

The Finder and other programs that come with Mac OS X use high-resolution, high-quality graphics
and icons that include 32-bit color and transparency. You should make sure that your programs also
use high-quality graphics both for the sake of appearance and to better convey relevant information
to users. For example, the system uses pulsing buttons to identify the most likely choice and
transparency effects to add a dimensional quality to windows.

Table 7-3 lists several Mac OS X technologies you can use to ensure that your software has an attractive
appearance.

Table 7-3 Technologies for achieving an attractive appearance

DescriptionTechnology

Aqua defines the guidelines all developers should follow when crafting their
application’s user interface. Following these guidelines ensures that your application
looks and feels like a Mac OS X application. For more information, see “Aqua” (page
75).

Aqua

Screen resolutions continue to increase with most screens now supporting over
100 pixels per inch. In order to prevent content from shrinking too much, Mac OS
X will soon apply a scaling factor to drawing operations to keep them at an
appropriate size. Your software needs to be ready for this scaling factor by being
able to draw more detailed content in the same “logical” drawing area. For more
information, see “Resolution-Independent User Interface” (page 76).

Resolution
independence

102 Attractive Appearance
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



DescriptionTechnology

In Mac OS X v10.5 and later, you can use Core Animation to add advanced graphics
behaviors to your software. Core Animation a lightweight mechanism for
performing advanced animations in your Cocoa views. For more information, see
“Core Animation” (page 47).

Core
Animation

Quartz is the native (and preferred) 2D rendering API for Mac OS X. It provides
primitives for rendering text, images, and vector shapes and includes integrated
color management and transparency support. For more information, see
“Quartz” (page 43).

Quartz

In Mac OS X v10.5 and later, Core Text replaces the ATSUI and MLTE technologies
as the way to high quality rendering and layout of Unicode text for Carbon and
Cocoa applications. The Cocoa text system uses Core Text for its implementation.
For more information, see “Core Text” (page 50).

Core Text

In Mac OS X v10.4 and later, Core Image provides advanced image processing
effects for your application. Core Image makes it possible to manipulate image
data in real time using the available hardware rendering and to perform complex
manipulations that make your application look stunning. For more information,
see “Core Image” (page 48).

Core Image

OpenGL is the preferred 3D rendering API for Mac OS X. The Mac OS X
implementation of OpenGL is hardware accelerated on many systems and has all
of the standard OpenGL support for shading and textures. See OpenGL Programming
Guide for Mac OS X for an overview of OpenGL and guidelines on how to use it.
For information about using OpenGL with Cocoa, see Cocoa OpenGL.

OpenGL

Reliability

A reliable program is one that earns the user’s trust. Such a program presents information to the user
in an expected and desired way. A reliable program maintains the integrity of the user’s data and
does everything possible to prevent data loss or corruption. It also has a certain amount of maturity
to it and can handle complex situations without crashing.

Reliability is important in all areas of software design, but especially in areas where a program may
be running for an extended period of time. For example, scientific programs often perform calculations
on large data sets and can take a long time to complete. If such a program were to crash during a long
calculation, the scientist could lose days or weeks worth of work.

As you start planning a new project, put some thought into what existing technologies you can
leverage from both Mac OS X and the open-source community. For example, if your application
displays HTML documents, it doesn’t make sense to write your own HTML parsing engine when
you can use the Web Kit framework instead.

By using existing technologies, you reduce your development time by reducing the amount of new
code you have to write and test. You also improve the reliability of your software by using code that
has already been designed and tested to do what you need.

Reliability 103
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



Using existing technologies has other benefits as well. For many technologies, you may also be able
to incorporate future updates and bug fixes for free. Apple provides periodic updates for many of its
shipping frameworks and libraries, either through software updates or through new versions of Mac
OS X. If your application links to those frameworks, it receives the benefit of those updates
automatically.

All of the technologies of Mac OS X offer a high degree of reliability. However, Table 7-4 lists some
specific technologies that improve reliability by reducing the amount of complex code you have to
write from scratch.

Table 7-4 Technologies for achieving reliability

DescriptionTechnology

Code signing associates a digital signature with your application and helps the
system determine when your application has changed, possibly because of
tampering. When changes occur, the system can warn the user and provide an
option for disabling the application. For more information, see “Code
Signing” (page 77).

Code signing

Authorization Services provides a way to ensure that only authorized operations
take place. Preventing unauthorized access helps protect your program as well
as the rest of the system. See Performing Privileged Operations With Authorization
Services for more information.

Authorization
Services

Core Foundation supports basic data types and eliminates the need for you to
implement string and collection data types, among others. Both Carbon and
Cocoa support the Core Foundation data types, which makes it easier for you
to integrate them into your own data structures. See Getting Started with Core
Foundation for more information.

Core Foundation

The Web Kit provides a reliable, standards-based mechanism for rendering
HTML content (including JavaScript code) in your application.

Web Kit

Adaptability

An adaptable program is one that adjusts appropriately to its surroundings; that is, it does not stop
working when the current conditions change. If a network connection goes down, an adaptable
program lets the user continue to work offline. Similarly, if certain resources are locked or become
unavailable, an adaptable program finds other ways to meet the user’s request.

One of the strengths of Mac OS X is its ability to adapt to configuration changes quickly and easily.
For example, if the user changes a computer’s network configuration from the system preferences,
the changes are automatically picked up by applications such as Safari and Mail, which use CFNetwork
to handle network configuration changes automatically.

Table 7-5 lists some Mac OS X technologies that you can use to improve the overall adaptability of
your software.

104 Adaptability
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



Table 7-5 Technologies for achieving adaptability

DescriptionTechnology

The FSEvents API lets you detect changes to the file system easily and
efficiently. You might use this technology to update your application’s internal
data structures whenever changes occur to specific directories or directory
hierarchies. For more information, see “FSEvents API” (page 36).

FSEvents API

Core Foundation provides services for managing date, time, and number
formats based on any locale. See Reference Library > Core Foundation for
specific reference documents.

Core Foundation

Quartz Services provides access to screen information and provides
notifications when screen information changes. See Quartz Display Services
Reference for more information.

Quartz Services

Bonjour simplifies the process of configuring and detecting network services.
Your program can vend network services or use Bonjour to be a client of an
existing network service. For more information, see “Bonjour” (page 64).

Bonjour

The System Configuration framework provides information about availability
of network entities. See System Configuration Framework Reference and System
Configuration Programming Guidelines for more information.

System
Configuration

Interoperability

Interoperability refers to a program’s ability to communicate across environments. This communication
can occur at either the user or the program level and can involve processes on the current computer
or on remote computers. At the program level, an interoperable program supports ways to move
data back and forth between itself and other programs. It might therefore support the pasteboard
and be able to read file formats from other programs on either the same or a different platform. It
also makes sure that the data it creates can be read by other programs on the system.

Users see interoperability in features such as the pasteboard (the Clipboard in the user interface),
drag and drop, AppleScript, Bonjour, and services in the Services menu. All of these features provide
ways for the user to get data into or out of an application.

Table 7-6 lists some Mac OS X technologies that you can use to improve the interoperability of your
software.

Table 7-6 Technologies for achieving interoperability

DescriptionTechnology

AppleScript is a scripting system that gives users direct control over your
application as well as parts of Mac OS X. See AppleScript Overview for information
on supporting AppleScript.

AppleScript

Interoperability 105
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



DescriptionTechnology

Although primarily implemented in applications, you can add drag and drop
support to any program with a user interface. See Drag Manager Reference or Drag
and Drop Programming Topics for Cocoa for information on how to integrate drag
and drop support into your program.

Drag and drop

Both Carbon and Cocoa support cut, copy, and paste operations through the
pasteboard. See the Pasteboard.h header file in the HIServices framework or
Pasteboard Programming Topics for Cocoa for information on how to support the
pasteboard in your program.

Pasteboard

Your program can vend network services or use Bonjour to be a client of an existing
network service. For more information, see “Bonjour” (page 64).

Bonjour

Services let the user perform a specific operation in your application using data
on the pasteboard. Services use the pasteboard to exchange data but act on that
data in a more focused manner than a standard copy-and-paste operation. For
example, a service might create a new mail message and paste the data into the
message body. See Setting Up Your Carbon Application to Use the Services Menu or
System Services for information on setting up an application to use services.

Services

XML is a structured format that can be used for data interchange. Mac OS X
provides extensive support for reading, writing, and parsing XML data. For more
information, see “XML Parsing Libraries” (page 73).

XML

Mobility

Designing for mobility has become increasingly important as laptop usage soars. A program that
supports mobility doesn’t waste battery power by polling the system or accessing peripherals
unnecessarily, nor does it break when the user moves from place to place, changes monitor
configurations, puts the computer to sleep, or wakes the computer up.

To support mobility, programs need to be able to adjust to different system configurations, including
network configuration changes. Many hardware devices can be plugged in and unplugged while the
computer is still running. Mobility-aware programs should respond to these changes gracefully. They
should also be sensitive to issues such as power usage. Constantly accessing a hard drive or optical
drive can drain the battery of a laptop quickly. Be considerate of mobile users by helping them use
their computer longer on a single battery charge.

Table 7-7 lists some Mac OS X technologies that you can use to improve the mobility of your software.

Table 7-7 Technologies for achieving mobility

DescriptionTechnology

An efficient application uses fewer instructions to compute its data. On portable
computers, this improved efficiency translates to power savings and a longer
battery life. You should strive to make your applications as efficient as possible
using the available system technologies and tools. For more information, see
“High Performance” (page 99).

Performance

106 Mobility
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



DescriptionTechnology

CFNetwork provides a modern interface for accessing network services and
handling changes in the network configuration. See CFNetwork Programming
Guide for an introduction to the CFNetwork API.

CFNetwork

Quartz Services provides access to screen information and provides notifications
when screen information changes. See Quartz Display Services Reference for
information about the API.

Quartz Services

Bonjour lets mobile users find services easily or vend their own services for
others to use. For more information, see “Bonjour” (page 64).

Bonjour

The System Configuration framework is the foundation for Apple’s mobility
architecture. You can use its interfaces to get configuration and status
information for network entities. It also sends out notifications when the
configuration or status changes. See System Configuration Programming Guidelines
for more information.

System
Configuration

Mobility 107
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



108 Mobility
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Choosing Technologies to Match Your Design Goals



Although many applications have been created from scratch for Mac OS X, many more have been
ported from existing Windows, UNIX, or Mac OS 9 applications. With the introduction of the G5
processor, some application developers are even taking the step of porting their 32-bit applications
to the 64-bit memory space offered by the new architecture.

The Reference Library > Porting section of the Apple Developer Connection Reference Library contains
documents to help you in your porting efforts. The following sections also provide general design
guidelines to consider when porting software to Mac OS X.

64-Bit Considerations

With Macintosh computers using 64-bit PowerPC and Intel processors, developers can begin writing
software to take advantage of the 64-bit architecture provided by these chips. For many developers,
however, compiling their code into 64-bit programs may not offer any inherent advantages. Unless
your program needs more than 4 GB of addressable memory, supporting 64-bit pointers may only
reduce the performance of your application.

When you compile a program for a 64-bit architecture, the compiler doubles the size of all pointer
variables. This increased pointer size makes it possible to address more than 4 GB of memory, but it
also increases the memory footprint of your application. If your application does not take advantage
of the expanded memory limits, it may be better left as a 32-bit program.

Regardless of whether your program is currently 32-bit or 64-bit, there are some guidelines you should
follow to make your code more interoperable with other programs. Even if you don’t plan to implement
64-bit support soon, you may need to communicate with 64-bit applications. Unless you are explicit
about the data you exchange, you may run into problems. The following guidelines are good to
observe regardless of your 64-bit plans.

 ■ Avoid casting pointers to anything but a pointer. Casting a pointer to a scalar value has different
results for 32-bit and 64-bit programs. These differences could be enough to break your code later
or cause problems when your program exchanges data with other programs.

 ■ Be careful not to make assumptions about the size of pointers or other scalar data types. If you
want to know the size of a type, always use the sizeof (or equivalent) operator.

 ■ If you write integer values to a file, make sure your file format specifies the exact size of the value.
For example, rather than assume the generic type int is 32 bits, use the more explicit types SInt32
or int32_t, which are guaranteed to be the correct size.

64-Bit Considerations 109
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Porting Tips



 ■ If you exchange integer data with other applications across a network, make sure you specify the
exact size of the integer.

There are several documents to help you create 64-bit applications. For general information about
making the transition, see 64-Bit Transition Guide. For Cocoa-specific information, see 64-Bit Transition
Guide for Cocoa. For Carbon-specific information, see 64-Bit Guide for Carbon Developers.

.

Windows Considerations

If you are a Windows developer porting your application to Mac OS X, be prepared to make some
changes to your application as part of your port. Applications in Mac OS X have an appearance and
behavior that are different from Windows applications in many respects. Unless you keep these
differences in mind during the development cycle, your application may look out of place in Mac OS
X.

The following list provides some guidelines related to the more noticeable differences between Mac
OS X and Windows applications. This list is not exhaustive but is a good starting point for developers
new to Mac OS X. For detailed information on how your application should look and behave in Mac
OS X, see Apple Human Interface Guidelines. For general porting information, see Porting to Mac OS X
from Windows Win32 API.

 ■ Avoid custom controls. Avoid creating custom controls if Mac OS X already provides equivalent
controls for your needs. Custom controls are appropriate only in situations where the control is
unique to your needs and not provided by the system. Replacing standard controls can make
your interface look out of place and might confuse users.

 ■ Use a single menu bar. The Mac OS X menu bar is always at the top of the screen and always
contains the commands for the currently active application. You should also pay attention to the
layout and placement of menu bar commands, especially commonly used commands such as
New, Open, Quit, Copy, Minimize, and Help.

 ■ Pay attention to keyboard shortcuts. Mac OS X users are accustomed to specific keyboard shortcuts
and use them frequently. Do not simply migrate the shortcuts from your Windows application
to your Mac OS X application. Also remember that Mac OS X uses the Command key not the
Control key as the main keyboard modifier.

 ■ Do not use MDI. The Multiple Document Interface (MDI) convention used in Microsoft Windows
directly contradicts Mac OS X design guidelines. Windows in Mac OS X are document-centric
and not application-centric. Furthermore, the size of a document window is constrained only by
the user’s desktop size.

 ■ Use Aqua. Aqua gives Mac OS X applications the distinctive appearance and behavior that users
expect from the platform. Using nonstandard layouts, conventions, or user interface elements
can make your application seem unpolished and unprofessional.

 ■ Design high-quality icons and images. Mac OS X icons are often displayed in sizes varying from
16x16 to 512x512 pixels. These icons are usually created professionally, with millions of colors
and photo-realistic qualities. Your application icons should be vibrant and inviting and should
immediately convey your application’s purpose.

110 Windows Considerations
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Porting Tips



 ■ Design clear and consistent dialogs. Use the standard Open, Save, printing, Colors, and Font
dialogs in your applications. Make sure alert dialogs follow a consistent format, indicating what
happened, why it happened, and what to do about it.

 ■ Consider toolbars carefully. Having a large number of buttons, especially in an unmovable
toolbar, contributes to visual clutter and should be avoided. When designing toolbars, include
icons only for menu commands that are not easily discoverable or that may require multiple clicks
to be reached.

 ■ Use an appropriate layout for your windows. The Windows user interface relies on a left-biased,
more crowded layout, whereas Aqua relies on a center-biased, spacious layout. Follow the Aqua
guidelines to create an appealing and uncluttered interface that focuses on the task at hand.

 ■ Avoid application setup steps. Whenever possible, Mac OS X applications should be delivered
as drag-and-drop packages. If you need to install files in multiple locations, use an installation
package to provide a consistent installation experience for the user. If your application requires
complex setup procedures in order to run, use a standard Mac OS X assistant. For more
information, see “Bundles and Packages” (page 77).

 ■ Use filename extensions. Mac OS X fully supports and uses filename extensions. For more
information about filename extensions, see File System Overview.

Carbon Considerations

If you develop your software using Carbon, there are several things you can do to make your programs
work better in Mac OS X. The following sections list migration tips and recommendations for
technologies you should be using.

Migrating From Mac OS 9

If you were a Mac OS 9 developer, the Carbon interfaces should seem very familiar. However,
improvements in Carbon have rendered many older technologies obsolete. The sections that follow
list both the required and the recommended replacement technologies you should use instead.

Required Replacement Technologies

The technologies listed in Table 8-1 cannot be used in Carbon. You must use the technology in the
“Now use” column instead.

Table 8-1 Required replacements for Carbon

Now useInstead of

I/O KitAny device manager

Apple HelpApple Guide

BSD sockets or CFNetworkAppleTalk Manager

Carbon Help ManagerHelp Manager

Carbon Considerations 111
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Porting Tips



Now useInstead of

Apple eventsPPC Toolbox

Core Printing ManagerPrinting Manager

OpenGLQuickDraw 3D

Quartz and Apple Type Services for Unicode Imaging (ATSUI)QuickDraw GX

Navigation ServicesStandard File Package

Time ManagerVertical Retrace Manager

Recommended Replacement Technologies

The technologies listed in Table 8-2 can still be used in Carbon, but the indicated replacements provide
more robust support and are preferred.

Table 8-2 Recommended replacements for Carbon

Now useInstead of

Quartz ServicesDisplay Manager

Carbon Event ManagerEvent Manager

Apple Type Services for FontsFont Manager

Launch Services and System ConfigurationInternet Config

BSD sockets or CFNetworkOpen Transport

Quartz 2DQuickDraw

Core TextQuickDraw Text

Interface Builder ServicesResource Manager

Unicode UtilitiesScript Manager

Multilingual Text EngineTextEdit

CFNetworkURL Access Manager

Use the Carbon Event Manager

Use of the Carbon Event Manager is strongly recommended for new and existing Carbon applications.
The Carbon Event Manager provides a more robust way to handle events than the older Event Manager
interfaces. For example, the Carbon Event Manager uses callback routines to notify your application
when an event arrives. This mechanism improves performance and offers better mobility support by
eliminating the need to poll for events.

112 Carbon Considerations
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Porting Tips



For an overview of how to use the Carbon Event Manager, see Carbon Event Manager Programming
Guide.

Use the HIToolbox

The Human Interface Toolbox is the technology of choice for implementing user interfaces with
Carbon. The HIToolbox extends the Macintosh Toolbox and offers an object-oriented approach to
organizing the content of your application windows. This new approach to user interface programming
is the future direction for Carbon and is where new development and improvements are being made.
If you are currently using the Control Manager and Window Manager, you should consider adopting
the HIToolbox.

Note: The HIToolbox interfaces are available for creating 32-bit applications only. If you are creating
64-bit applications, you should use Cocoa for your user interface instead.

For an overview of HIView and other HIToolbox objects, see the documents in Reference Library >
Carbon > Human Interface Toolbox.

Use Nib Files

Nib files, which you create with Interface Builder, are the best way to design your application interface.
The design and layout features of Interface Builder will help you create Aqua-compliant windows
and menus. Even if you do not plan to load the nib file itself, you can still use the metrics from this
file in your application code.

For information about using Interface Builder, see Interface Builder User Guide.

Carbon Considerations 113
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Porting Tips



114 Carbon Considerations
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Porting Tips



A command-line interface is a way for you to manipulate your computer in situations where a graphical
approach is not available. The Terminal application is the Mac OS X gateway to the BSD command-line
interface. Each window in Terminal contains a complete execution context, called a shell, that is
separate from all other execution contexts. The shell itself is an interactive programming language
interpreter, with a specialized syntax for executing commands and writing structured programs,
called shell scripts. A shell remains active as long as its Terminal window remains open.

Different shells feature slightly different capabilities and programming syntax. Although you can
use any shell of your choice, the examples in this book assume that you are using the standard Mac
OS X shell. The standard shell is bash if you are running Mac OS X v10.3 or later and tcsh if you are
running an earlier version of the operating system.

The following sections provide some basic information and tips about using the command-line
interface more effectively; they are not intended as an exhaustive reference for using the shell
environments.

Basic Shell Concepts

Before you start working in any shell environment, there are some basic features of shell programming
that you should understand. Some of these features are specific to Mac OS X, but many are common
to all platforms that support shell programming.

Getting Information

At the command-line level, most documentation comes in the form of man pages. These are formatted
pages that provide reference information for many shell commands, programs, and high-level concepts.
To access one of these pages, you type the man command followed by the name of the thing you want
to look up. For example, to look up information about the bash shell, you would type man bash. The
man pages are also included in the ADC Reference Library. For more information, see Mac OS X Man
Pages.

Basic Shell Concepts 115
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Command Line Primer



Note: Not all commands and programs have man pages. For a list of available man pages, look in the
/usr/share/man directory.

Most shells have a command or man page that displays the list of built-in commands. Table A-1 lists
the available shells in Mac OS X along with the ways you can access the list of built-in commands for
the shell.

Table A-1 Getting a list of built-in commands

CommandShell

help or bashbash

help or shsh

builtins or cshcsh

builtins or tcshtcsh

zshbuiltinszsh

Specifying Files and Directories

Most commands in the shell operate on files and directories, the locations of which are identified by
paths. The directory names that comprise a path are separated by forward-slash characters. For
example, the path to the Terminal program is /Applications/Utilities/Terminal.app.

Table A-2 lists some of the standard shortcuts used to represent specific directories in the system.
Because they are based on context, these shortcuts eliminate the need to type full paths in many
situations.

Table A-2 Special path characters and their meaning

DescriptionPath
string

A single period represents the current directory. This value is often used as a shortcut
to eliminate the need to type in a full path. For example, the string “./Test.c” represents
the Test.c file in the current directory.

.

Two periods represents the parent directory of the current directory. This string is used
for navigating up one level from the current through the directory hierarchy. For example,
the string “../Test” represents a sibling directory (named Test) of the current directory.

..

The tilde character represents the home directory of the currently logged-in user. In
Mac OS X, this directory either resides in the local /Users directory or on a network
server. For example, to specify the Documents directory of the current user, you would
specify ~/Documents.

~

116 Basic Shell Concepts
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Command Line Primer



File and directory names traditionally include only letters, numbers, a period (.), or the underscore
character (_). Most other characters, including space characters, should be avoided. Although some
Mac OS X file systems permit the use of these other characters, including spaces, you may have to
add single or double quotation marks around any pathnames that contain them. For individual
characters, you can also “escape” the character, that is, put a backslash character (\) immediately
before the character in your string. For example, the path name My Disk would become either "My
Disk" or My\ Disk.

Accessing Files on Volumes

On a typical UNIX system, the storage provided by local disk drives is coalesced into a single
monolithic file system with a single root directory. This differs from the way the Finder presents local
disk drives, which is as one or more volumes, with each volume acting as the root of its own directory
hierarchy. To satisfy both worlds, Mac OS X includes a hidden directory Volumes at the root of the
local file system. This directory contains all of the volumes attached to the local computer. To access
the contents of other local volumes, you should always add the volume path at the beginning of the
remaining directory information. For example, to access the Applications directory on a volume
named MacOSX, you would use the path /Volumes/MacOSX/Applications

Note: To access files on the boot volume, you are not required to add volume information, since the
root directory of the boot volume is /. Including the information still works, though, and is consistent
with how you access other volumes. You must include the volume path information for all other
volumes.

Flow Control

Many programs are capable of receiving text input from the user and printing text out to the console.
They do so using the standard pipes (listed in Table A-3), which are created by the shell and passed
to the program automatically.

Table A-3 Input and output sources for programs

DescriptionPipe

The standard input pipe is the means through which data enters a program. By default,
this is data typed in by the user from the command-line interface. You can also redirect
the output from files or other commands to stdin.

stdin

The standard output pipe is where the program output is sent. By default, program output
is sent back to the command line. You can also redirect the output from the program to
other commands and programs.

stdout

The standard error pipe is where error messages are sent. By default, errors are displayed
on the command line like standard output.

stderr

Basic Shell Concepts 117
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Command Line Primer



Redirecting Input and Output

From the command line you may redirect input and output from a program to a file or another
program. You use the greater-than (>) character to redirect command output to a file and the less-than
(<) character to use a file as input to the program. Redirecting file output lets you capture the results
of running the command in the file system and store it for later use. Similarly, providing an input file
lets you provide a program with preset input data, instead of requiring the user to type in that data.

In addition to file redirection, you can also redirect the output of one program to the input of another
using the vertical bar (|) character. You can combine programs in this manner to implement more
sophisticated versions of the same programs. For example, the command man bash | grep "builtin
commands" redirects the formatted contents of the specified man page to the grep program, which
searches those contents for any lines containing the word “commands”. The result is a text listing of
only those lines with the specified text, instead of the entire man page.

For more information about flow control, see the man page for the shell you are using.

Terminating Programs

To terminate the current running program from the command line, type Control-C. This keyboard
shortcut sends an abort signal to the current command. In most cases this causes the command to
terminate, although commands may install signal handlers to trap this command and respond
differently.

Frequently Used Commands

Shell programming involves a mixture of built-in shell commands and standard programs that run
in all shells. While most shells offer the same basic set of commands, there are often variations in the
syntax and behavior of those commands. In addition to the shell commands, Mac OS X also provides
a set of standard programs that run in all shells.

Table A-4 lists some of the more commonly used commands and programs. Because most of the items
in this table are not built-in shell commands, you can use them from any shell. For syntax and usage
information for each command, see the corresponding man page. For a more in-depth list of commands
and their accompanying documentation, see Mac OS X Man Pages.

Table A-4 Frequently used commands and programs

DescriptionMeaningCommand

Catenates the specified list of files to stdout.Catenatecat

A common shell command used to navigate the directory
hierarchy.

Change Directorycd

Copies files and directories (using the -r option) from one location
to another.

Copycp

118 Frequently Used Commands
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Command Line Primer



DescriptionMeaningCommand

Displays the current date and time using the standard format.
You can display this information in other formats by invoking
the command with specific arguments.

Datedate

Writes its arguments to stdout. This command is most often
used in shell scripts to print status information to the user.

Echo to Outputecho

Used to scroll through the contents of a file or the results of
another shell command. This command allows forward and
backward navigation through the text.

Scroll Through Textless

Displays the contents of the current directory. Specify the -a
argument to list all directory contents (including hidden files and
directories). Use the -l argument to display detailed information
for each entry.

Listls

Creates a new directory.Make Directorymkdir

Similar to the less command but more restrictive. Allows
forward scrolling through the contents of a file or the results of
another shell command.

Scroll Through Textmore

Moves files and directories from one place to another. You also
use this command to rename files and directories.

Movemv

You can use this command to launch applications from Terminal
and optionally open files in that application.

Open an application
or file.

open

Displays the full path of the current directory.Print Working
Directory

pwd

Deletes the specified file or files. You can use pattern matching
characters (such as the asterisk) to match more than one file. You
can also remove directories with this command, although use of
rmdir is preferred.

Removerm

Deletes a directory. The directory must be empty before you
delete it.

Remove Directoryrmdir

Sends an abort signal to the current command. In most cases this
causes the command to terminate, although commands may
install signal handlers to trap this command and respond
differently.

AbortCtrl-C

Environment Variables

Some programs require the use of environment variables for their execution. Environment variables
are variables inherited by all programs executed in the shell’s context. The shell itself uses environment
variables to store information such as the name of the current user, the name of the host computer,

Environment Variables 119
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Command Line Primer



and the paths to any executable programs. You can also create environment variables and use them
to control the behavior of your program without modifying the program itself. For example, you
might use an environment variable to tell your program to print debug information to the console.

To set the value of an environment variable, you use the appropriate shell command to associate a
variable name with a value. For example, in the bash shell, to set the variable MYFUNCTION to the value
MyGetData in the global shell environment you would type the following command in a Terminal
window:

% export MYFUNCTION=MyGetData

When you launch an application from a shell, the application inherits much of its parent shell’s
environment, including any exported environment variables. This form of inheritance can be a useful
way to configure the application dynamically. For example, your application can check for the presence
(or value) of an environment variable and change its behavior accordingly. Different shells support
different semantics for exporting environment variables, so see the man page for your preferred shell
for further information.

Although child processes of a shell inherit the environment of that shell, shells are separate execution
contexts and do not share environment information with one another. Thus, variables you set in one
Terminal window are not set in other Terminal windows. Once you close a Terminal window, any
variables you set in that window are gone. If you want the value of a variable to persist between
sessions and in all Terminal windows, you must set it in a shell startup script.

Another way to set environment variables in Mac OS X is with a special property list in your home
directory. At login, the system looks for the following file:

~/.MacOSX/environment.plist

If the file is present, the system registers the environment variables in the property-list file. For more
information on configuring environment variables, see Runtime Configuration Guidelines.

Running Programs

To run a program in the shell, you must type the complete pathname of the program’s executable
file, followed by any arguments, and then press the Return key. If a program is located in one of the
shell’s known directories, you can omit any path information and just type the program name. The
list of known directories is stored in the shell’s PATH environment variable and includes the directories
containing most of the command-line tools.

For example, to run the ls command in the current user’s home directory, you could simply type it
at the command line and press the Return key.

host:~ steve$ ls

If you wanted to run a tool in the current user’s home directory, however, you would need to precede
it with the directory specifier. For example, to run the MyCommandLineProgram tool, you would use
something like the following:

host:~ steve$ ./MyCommandLineProgram

120 Running Programs
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Command Line Primer



To launch an application package, you can either use the open command (open MyApp.app) or launch
the application by typing the pathname of the executable file inside the package, usually something
like ./MyApp.app/Contents/MacOS/MyApp.

Running Programs 121
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Command Line Primer



122 Running Programs
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Command Line Primer



This appendix contains information about the frameworks of Mac OS X. These frameworks provide
the interfaces you need to write software for the platform. Some of these frameworks contain simple
sets of interfaces while others contain multiple subframeworks. Where applicable, the tables in this
appendix list any key prefixes used by the classes, methods, functions, types, or constants of the
framework. You should avoid using any of the specified prefixes in your own symbol names.

System Frameworks

Table B-1 describes the frameworks located in the /System/Library/Frameworks directory and lists
the first version of Mac OS X in which each became available.

Table B-1 System frameworks

DescriptionPrefixesFirst
available

Name

Umbrella framework for vector-optimized
operations. See “Accelerate
Framework” (page 129).

cblas,
vDSP, vv

10.3Accelerate.framework

Contains functions for creating and accessing
a systemwide database of contact
information.

AB, ABV10.2AddressBook.framework

Contains Carbon interfaces for OpenGL.AGL, GL,
glm, GLM,
glu, GLU

10.0AGL.framework

Contains classes and methods for the Cocoa
user-interface layer. In general, link to
Cocoa.framework instead of this framework.

NS10.0AppKit.framework

Deprecated. Use AppKit.framework instead.N/A10.0AppKit-
Scripting.framework

System Frameworks 123
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionPrefixesFirst
available

Name

Contains interfaces for creating AppleScript
plug-ins and provides support for
applications built with AppleScript Studio.

ASK10.0AppleScriptKit.framework

Contains interfaces for creating and parsing
AFP URLs and for working with shared
volumes.

AFP10.0AppleShare-
Client.framework

Contains utilities for handling URLs in
AppleShare clients.

AFP10.0AppleShareClient-
Core.framework

Deprecated. Do not use.N/A10.0AppleTalk.framework

Umbrella framework for several
application-level services. See “Application
Services Framework” (page 129).

AE, AX,
ATSU, CG,
CT, LS, PM,
QD, UT

10.0Application-
Services.framework

Contains interfaces for getting audio stream
data, routing audio signals through audio
units, converting between audio formats, and
playing back music.

AU, AUMIDI10.0AudioToolbox.framework

Contains interfaces for defining Core Audio
plug-ins.

AU10.0AudioUnit.framework

Umbrella framework for creating Automator
plug-ins. See “Automator Framework” (page
130).

AM10.4Automator.framework

Contains interfaces for managing iCal
calendar data.

Cal10.5CalendarStore.framework

Umbrella framework for Carbon-level
services. See “Carbon Framework” (page 130).

HI, HR, ICA,
ICD, Ink,
Nav, OSA,
PM, SFS,SR

10.0Carbon.framework

Wrapper for including the Cocoa frameworks
AppKit.framework,Foundation.framework,
and CoreData.framework.

NS10.0Cocoa.framework

Contains interfaces for managing identity
information.

CB10.5Collaboration.framework

Contains the hardware abstraction layer
interface for manipulating audio.

Audio10.0CoreAudio.framework

Contains Objective-C interfaces for audio unit
custom views.

AU10.4CoreAudioKit.framework

124 System Frameworks
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionPrefixesFirst
available

Name

Contains interfaces for managing your
application’s data model.

NS10.4CoreData.framework

Provides fundamental software services,
including abstractions for common data
types, string utilities, collection utilities,
plug-in support, resource management,
preferences, and XML parsing.

CF10.0CoreFoundation.framework

Contains utilities for implementing MIDI
client programs.

MIDI10.0CoreMIDI.framework

Contains interfaces for creating MIDI drivers
to be used by the system.

MIDI10.0CoreMIDIServer.framework

Umbrella framework for system-level
services. See “Core Services
Framework” (page 131).

CF, DCS, MD,
SK, WS

10.0CoreServices.framework

Contains interfaces for managing video-based
content.

CV10.5CoreVideo.framework

Contains interfaces for supporting
network-based lookup and directory services
in your application. You can also use this
framework to develop directory service
plug-ins.

ds10.0Directory-
Service.framework

Contains interfaces for burning data to CDs
and DVDs.

DR10.2DiscRecording.framework

Contains the user interface layer for
interacting with users during the burning of
CDs and DVDs.

DR10.2DiscRecording-
UI.framework

Contains interfaces for monitoring and
responding to hard disk events.

DA10.4Disk-
Arbitration.framework

Contains the game sprocket component for
drawing content to the screen.

DSp10.0DrawSprocket.framework

Contains interfaces for communicating with
digital video devices, such as video cameras.

IDH10.0DVComponent-
Glue.framework

Contains interfaces for embedding DVD
playback features into your application.

DVD10.3DVDPlayback.framework

Contains exception-handling classes for
Cocoa applications.

NS10.0Exception-
Handling.framework

Contains interfaces for communicating with
force feedback–enabled devices.

FF10.2ForceFeedback.framework

System Frameworks 125
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionPrefixesFirst
available

Name

Contains the classes and methods for the
Cocoa Foundation layer. If you are creating
a Cocoa application, linking to the Cocoa
framework is preferable.

NS10.0Foundation.framework

Contains interfaces for communicating with
FireWire-based audio devices.

FWA10.2FWAUserLib.framework

Contains interfaces for the OpenGL Utility
Toolkit, which provides a
platform-independent interface for managing
windows.

glut, GLUT10.0GLUT.framework

Contains low-level interfaces for
communicating with digital devices such as
scanners and cameras. See also, “Carbon
Framework” (page 130).

ICD10.3ICADevices.framework

Contains interfaces for developing new input
methods, which are modules that handle text
entry for complex languages.

IMK10.5InputMethodKit.framework

Contains interfaces for creating plug-ins that
run during software installation sessions.

IFX10.4Installer-
Plugins.framework

Contains interfaces for obtaining the online
status of an instant messaging user.

FZ, IM10.4InstantMessage.framework

Contains interfaces for communicating with
Bluetooth devices.

IO10.2IOBluetooth.framework

Contains the user interface layer for
interacting with users manipulating Bluetooth
devices.

IO10.2IOBluetoothUI.framework

Contains the main interfaces for developing
device drivers.

IO, IOBSD,
IOCF

10.0IOKit.framework

Do not use.N/A10.0JavaEmbedding.framework

Contains interfaces for embedding Java
frames in Objective-C code.

N/A10.5JavaFrame-
Embedding.framework

Contains the library and resources for
executing JavaScript code within an HTML
page. (Prior to Mac OS X v10.5, this
framework was part of WebKit.framework.

JS10.5JavaScriptCore.framework

126 System Frameworks
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionPrefixesFirst
available

Name

Contains the system’s Java Development Kit
resources.

JAWT, JDWP,
JMM, JNI,
JVMDI,
JVMPI,
JVMTI

10.0JavaVM.framework

Contains interfaces for using the Kerberos
network authentication protocol.

GSS, KL,
KRB, KRB5

10.0Kerberos.framework

Contains the BSD-level interfaces.numerous10.0Kernel.framework

Contains interfaces for classifying text based
on latent semantic information.

LSM10.5LatentSemantic-
Mapping.framework

Do not use.N/A10.0LDAP.framework

Contains Cocoa extensions for mail delivery.AS, MF, PO,
POP, RSS,
TOC, UR,
URL

10.0Message.framework

Contains the interfaces for OpenAL, a
cross-platform 3D audio delivery library.

AL10.4OpenAL.framework

Contains the interfaces for OpenGL, which
is a cross-platform 2D and 3D graphics
rendering library.

CGL, GL,
glu, GLU

10.0OpenGL.framework

Contains Objective-C interfaces for managing
and executing OSA-compliant scripts from
your Cocoa applications.

OSA10.4OSAKit.framework

Contains interfaces for interacting with smart
card devices.

MSC, Scard,
SCARD

10.0PCSC.framework

Contains interfaces for implementing custom
modules for the System Preferences
application.

NS10.0Preference-
Panes.framework

Contains interfaces for subscribing to RSS
and Atom feeds.

PS10.5PubSub.framework

Contains the open source Python scripting
language interfaces.

Py10.3Python.framework

Contains Objective-C interfaces for
manipulating QuickTime content.

QT10.4QTKit.framework

Umbrella framework for Quartz services. See
“Quartz Framework” (page 132)

GF, PDF, QC,
QCP

10.4Quartz.framework

System Frameworks 127
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionPrefixesFirst
available

Name

Contains the interfaces for Core Image, Core
Animation, and Core Video.

CA,CI, CV10.4QuartzCore.framework

Contains interfaces for generating thumbnail
previews of documents.

QL10.5QuickLook.framework

Contains interfaces for embedding QuickTime
multimedia into your application.

N/A10.0QuickTime.framework

Contains interfaces for the Ruby scripting
language.

N/A10.5Ruby.framework

Contains interfaces for running Ruby scripts
from Objective-C code.

RB10.5RubyCocoa.framework

Contains interfaces for writing screen savers.N/A10.0ScreenSaver.framework

Deprecated. Use Foundation.framework
instead.

NS10.0Scripting.framework

Contains interfaces for running scripts from
Objective-C code.

SB10.5Scripting-
Bridge.framework

Contains interfaces for system-level user
authentication and authorization.

CSSM, Sec10.0Security.framework

Contains Cocoa interfaces for authorizing
users.

Sec10.3Security-
Foundation.framework

Contains the user interface layer for
authorizing users in Cocoa applications.

PSA, SF10.3Security-
Interface.framework

Contains the interfaces for synchronizing
application data with a central database.

ISync10.4SyncServices.framework

Do not use.N/A10.0System.framework

Contains interfaces for accessing system-level
configuration information.

SC10.0System-
Configuration.framework

Contains interfaces for accessing the system’s
Tcl interpreter from an application.

Tcl10.3Tcl.framework

Contains interfaces for accessing the system’s
Tk toolbox from an application.

Tk10.4Tk.framework

Contains interfaces for accessing
TWAIN-compliant image-scanning hardware.

TW10.2TWAIN.framework

Deprecated. Use Accelerate.framework
instead. See “Accelerate Framework” (page
129).

N/A10.0vecLib.framework

128 System Frameworks
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionPrefixesFirst
available

Name

Umbrella framework for rendering HTML
content. See “Web Kit Framework” (page 132).

DOM, Web10.2WebKit.framework

Contains interfaces for connecting to and
managing computing cluster software.

XG10.4Xgrid-
Foundation.framework

Mac OS X contains several umbrella frameworks for major areas of functionality. Umbrella frameworks
group several related frameworks into a larger framework that can be included in your project. When
writing software, you must link against the umbrella framework itself; you cannot link against any
of its subframeworks. The following sections describe the contents of the umbrella frameworks in
Mac OS X.

Accelerate Framework

Table B-2 lists the subframeworks of the Accelerate framework (Accelerate.framework). This
framework was introduced in Mac OS X version 10.3. If you are developing applications for earlier
versions of Mac OS X, vecLib.framework is available as a standalone framework.

Table B-2 Subframeworks of the Accelerate framework

DescriptionSubframework

Contains vector-optimized interfaces for performing math, big-number, and
DSP calculations, among others.

vecLib.framework

Contains vector-optimized interfaces for manipulating image data.vImage.framework

Application Services Framework

Table B-3 lists the subframeworks of the Application Services framework
(ApplicationServices.framework). These frameworks provide C-based interfaces and are intended
primarily for Carbon applications, although other programs can use them. The listed frameworks are
available in all versions of Mac OS X unless otherwise noted.

Table B-3 Subframeworks of the Application Services framework

DescriptionSubframework

Contains interfaces for font layout and management using Apple
Type Services.

ATS.framework

Contains interfaces for color matching using ColorSync.ColorSync.framework

Contains the Quartz interfaces for creating graphic content and
rendering that content to the screen.

CoreGraphics.framework

System Frameworks 129
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionSubframework

Contains the interfaces for performing text layout and display.
Available in Mac OS X v10.5 and later.

CoreText.framework

Contains interfaces for accessibility, Internet Config, the pasteboard,
the Process Manager, and the Translation Manager. Available in
Mac OS X 10.2 and later.

HIServices.framework

Contains interfaces for importing and exporting image data. Prior
to Mac OS X v10.5, these interfaces were part of the CoreGraphics
subframework.

ImageIO.framework

Contains the Language Analysis Manager interfaces.LangAnalysis.framework

Contains the Core Printing Manager interfaces.PrintCore.framework

Contains the QuickDraw interfaces.QD.framework

Contains the Speech Manager interfaces.SpeechSynthesis.framework

Automator Framework

Table B-4 lists the subframeworks of the Automator framework (Automator.framework). This
framework was introduced in Mac OS X version 10.4.

Table B-4 Subframeworks of the Automator framework

DescriptionSubframework

Contains private interfaces for managing Automator plug-ins.MediaBrowser.framework

Carbon Framework

Table B-5 lists the subframeworks of the Carbon framework (Carbon.framework). The listed
frameworks are available in all versions of Mac OS X unless otherwise noted.

Table B-5 Subframeworks of the Carbon framework

DescriptionSubframework

Contains the Sound Manager interfaces. Whenever possible, use
Core Audio instead.

CarbonSound.framework

Contains interfaces for displaying the Font window, Color window,
and some network-related dialogs.

CommonPanels.framework

Contains interfaces for launching and searching Apple Help.Help.framework

130 System Frameworks
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionSubframework

Contains interfaces for the Carbon Event Manager, HIToolbox object,
and other user interface–related managers.

HIToolbox.framework

Contains interfaces for rendering HTML content. For Mac OS X
version 10.2 and later, the Web Kit framework is the preferred
framework for HTML rendering. See “Web Kit Framework” (page
132).

HTMLRendering.framework

Contains interfaces for capturing images from digital cameras. This
framework works in conjunction with the Image Capture Devices
framework (ICADevices.framework).

ImageCapture.framework

Contains interfaces for managing pen-based input. (Ink events are
defined with the Carbon Event Manager.) Available in Mac OS X
version 10.3 and later.

Ink.framework

Contains interfaces for displaying file navigation dialogs.Navigation-
Services.framework

Contains interfaces for writing scripting components and interacting
with those components to manipulate and execute scripts.

OpenScripting.framework

Contains the Carbon Printing Manager interfaces for displaying
printing dialogs and extensions.

Print.framework

Contains interfaces for displaying security-related dialogs.SecurityHI.framework

Contains the Speech Recognition Manager interfaces.Speech-
Recognition.framework

Core Services Framework

Table B-6 lists the subframeworks of the Core Services framework (CoreServices.framework). These
frameworks provide C-based interfaces and are intended primarily for Carbon applications, although
other programs can use them. The listed frameworks are available in all versions of Mac OS X unless
otherwise noted.

Table B-6 Subframeworks of the Core Services framework

DescriptionSubframework

Contains interfaces for creating and manipulating Apple events
and making applications scriptable.

AE.framework

Contains interfaces for many legacy Carbon Managers. In Mac OS
X v10.5 and later, this subframework contains the FSEvents API,
which notifies clients about file system changes.

CarbonCore.framework

Contains interfaces for network communication using HTTP,
sockets, and Bonjour.

CFNetwork.framework

System Frameworks 131
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



DescriptionSubframework

Provides dictionary lookup capabilities.Dictionary-
Services.framework

Contains interfaces for launching applications.LaunchServices.framework

Contains interfaces for managing Spotlight metadata. Available
in Mac OS X v10.4 and later.

Metadata.framework

Contains interfaces for Open Transport and many hardware-related
legacy Carbon managers.

OSServices.framework

Contains interfaces for the Search Kit. Available in Mac OS X
version 10.3 and later.

SearchKit.framework

Quartz Framework

Table B-7 lists the subframeworks of the Quartz framework (Quartz.framework). This framework
was introduced in Mac OS X version 10.4.

Table B-7 Subframeworks of the Quartz framework

DescriptionSubframework

Contains Objective-C interfaces for finding, browsing, and displaying
images. Available in Mac OS X version 10.5 and later.

ImageKit.framework

Contains Objective-C interfaces for displaying and managing PDF
content in windows.

PDFKit.framework

Contains Objective-C interfaces for playing Quartz Composer
compositions in an application.

QuartzComposer.framework

Contains Objective-C interfaces for managing and applying filter
effects to a graphics context. Available in Mac OS X version 10.5 and
later.

QuartzFilters.framework

Web Kit Framework

Table B-8 lists the subframeworks of the Web Kit framework (WebKit.framework). This framework
was introduced in Mac OS X version 10.2.

Table B-8 Subframeworks of the Web Kit framework

DescriptionSubframework

Contains the library and resources for rendering HTML content in an
HTMLView control.

WebCore.framework

132 System Frameworks
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



Xcode Frameworks

In Mac OS X v10.5 and later, Xcode and all of its supporting tools and libraries reside in a portable
directory structure. This directory structure makes it possible to have multiple versions of Xcode
installed on a single system or to have Xcode installed on a portable hard drive that you plug in to
your computer when you need to do development. This portability means that the frameworks
required by the developer tools are installed in the <Xcode>/Library/Frameworks directory, where
<Xcode> is the path to the Xcode installation directory. (The default Xcode installation directory is
/Developer.) Table B-9 lists the frameworks that are located in this directory.

Table B-9 Xcode frameworks

DescriptionPrefixesFirst
available

Framework

Unit-testing framework for C++ code. In Mac OS
X v10.4, this framework was in
/System/Library/Frameworks.

None10.4CPlusTest.framework

Contains interfaces for writing plug-ins that work
in Interface Builder v3.0 and later.

ib, IB10.5InterfaceBuilder-
Kit.framework

Contains the interfaces for implementing unit tests
in Objective-C. In Mac OS X v10.4, this framework
was in /System/Library/Frameworks.

Sen10.4SenTesting-
Kit.framework

System Libraries

Note that some specialty libraries at the BSD level are not packaged as frameworks. Instead, Mac OS
X includes many dynamic libraries in the /usr/lib directory and its subdirectories. Dynamic shared
libraries are identified by their .dylib extension. Header files for the libraries are located in
/usr/include.

Mac OS X uses symbolic links to point to the most current version of most libraries. When linking to
a dynamic shared library, use the symbolic link instead of a link to a specific version of the library.
Library versions may change in future versions of Mac OS X. If your software is linked to a specific
version, that version might not always be available on the user’s system.

Xcode Frameworks 133
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



134 System Libraries
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Mac OS X Frameworks



Apple provides a number of applications and command-line tools to help you develop your software.
These tools include compilers, debuggers, performance analysis tools, visual design tools, scripting
tools, version control tools, and many others. Many of these tools are installed with Mac OS X by
default but the rest require you to install Xcode first. Xcode is available for free from the Apple
Developer Connection website. For more information on how to get these tools, see “Getting the
Xcode Tools” (page 14).

Note: Documentation for most of the command-line tools is available in the form of man pages. You
can access these pages from the command line or from Mac OS X Man Pages. For more information
about using the command-line tools, see “Command Line Primer” (page 115).

Applications

Xcode includes numerous applications for writing code, creating resources, tuning your application,
and delivering it to customers. At the heart of this group is the Xcode application, which most
developers use on a daily basis. It provides the basic project and code management facilities used to
create most types of software on Mac OS X. All of the tools are free and can be downloaded from the
Apple developer website (see “Getting the Xcode Tools” (page 14)).

In Mac OS X v10.5 and later, it is possible to install multiple versions of Xcode on a single computer
and run the applications and tools from different versions side-by-side. The applications listed in the
following sections are installed in <Xcode>/Applications, where <Xcode> is the root directory of
your Xcode installation. The default installation directory for Xcode is the /Developer directory.

In addition to the applications listed here, Xcode also comes with numerous command-line tools.
These tools include the GCC compiler GDB debugger, tuning tools, code management tools,
performance tools, and so on. For more information about the available command-line tools, see
“Command-Line Tools” (page 151).

Xcode

The centerpiece of the Xcode Tools is the Xcode application, which is an integrated developer
environment (IDE) with the following features:

 ■ A project management system for defining software products

Applications 135
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



 ■ A code editing environment that includes features such as syntax coloring, code completion, and
symbol indexing; see“Xcode Editor” (page 137)

 ■ Visual design tools for creating your application’s data model (see “Core Data Framework” (page
65))

 ■ An advanced documentation viewer for viewing and searching Apple documentation; see
“Documentation Window” (page 138)

 ■ A context-sensitive inspector for viewing information about selected code symbols; see “Research
Assistant” (page 138)

 ■ An advanced build system with dependency checking and build rule evaluation.

 ■ GCC compilers supporting C, C++, Objective-C, Objective-C++, Objective-C 2.0, and other
compilers supporting Java and other languages

 ■ Integrated source-level debugging using GDB; see “Debugging Environment” (page 138)

 ■ Distributed computing, enabling you to distribute large projects over several networked machines

 ■ Predictive compilation that speeds single-file compile turnaround times

 ■ Advanced debugging features such as fix and continue and custom data formatters

 ■ Advanced refactoring tools that let you make global modifications to your code without changing
its overall behavior; see “Refactoring Tools” (page 140)

 ■ Support for project snapshots, which provide a lightweight form of local source code management;
see “Project Snapshots” (page 140)

 ■ Support for launching performance tools to analyze your software

 ■ Support for integrated source-code management; see “SCM Repository Management” (page 139)

 ■ AppleScript support for automating the build process

 ■ Support for the ANT build system, which can be used to build Java and WebObjects projects.

 ■ Support for DWARF and Stabs debugging information (DWARF debugging information is
generated by default for all new projects)

Figure C-1 shows the Xcode project workspace and some key inspector windows. In the Xcode
preferences, you can configure numerous aspects of the workspace to suit your preferred work style.

136 Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Figure C-1 Xcode application

For information on how to use Xcode, see Xcode User Guide.

Xcode Editor

The Xcode editing environment is a high-performance code editor that includes many features that
go beyond basic text editing. These features aim to help developers create better code faster and
include the following:

 ■ High-performance for typing, scrolling, and opening files. The Xcode editor now opens and scrolls
large source documents up to 10 times faster than before.

 ■ Code annotations display notes, errors, and warnings inline with the code itself, and not just as
icons in the gutter. This provides a much more direct conveyance of where the problems in your
code lie. You can control the visibility of annotations using the segmented control in the navigation
bar.

 ■ Code folding helps you organize your source files by letting you temporarily hide the content of
a method or function in the editor window. You can initiate code folding by holding down the
Command and Option keys and pressing either the left or right arrow key. A ribbon to the left
of the text shows the current nesting depth and contains widgets to fold and unfold code blocks.

 ■ Syntax coloring lets you assign colors to various code elements, including keywords, comments,
variables, strings, class names, and more.

 ■ Code Sense code completion, a feature that shows you type a few characters and retrieve a list
of valid symbol names that match those characters. Code Sense is fast and intuitive and is tuned
to provide accurate completions, along with a “most likely” inline completion as you type. This
feature is similar to the auto-completion features found in Mail, Terminal, and other applications.

Applications 137
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Debugging Environment

In Xcode 3.0, there is no distinction between “Running” your executable and “Debugging” it. Instead,
you simply build your executable and run it. Hitting a breakpoint interrupts the program and displays
the breakpoint either in the current editor window or in the debugger window. Other features of the
debugging environment include the following:

 ■ Debugging controls in editor windows.

 ■ A debugger HUD (heads-up-display), which is a floating window with debugger controls that
simplifies the debugging of full-screen applications.

 ■ Variable tooltips. (Moving your mouse over any variable displays that variable’s value.)

 ■ Reorganization (and in some cases consolidation) of toolbar and menu items to improve space
usage, while still keeping all the needed tools available.

 ■ Consolidation of the Standard I/O Log, Run Log, and Console log into the Console log window.

 ■ Support for a separate debugging window if you prefer to debug your code that way.

Research Assistant

The Research Assistant is an inspector that displays documentation for the currently selected text
(see Figure C-1 (page 137)). As the selection changes, the Research Assistant updates the information
in its floating window to reflect the classes, methods, and functions you are currently using. This
window shows the declaration, abstract, and availability information for the selection along with the
framework containing the selected identifier, relevant documentation resources, and related methods
and functions you might be interested in using.

Documentation Window

The documentation window (Figure C-2) in Xcode provides an environment for searching and
browsing the documentation. This window provides you with fast access to Apple’s developer
documentation and gives you tools for searching its content. You can search by title, by language,
and by content and can focus your search on the documents in a particular documentation set.

138 Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Figure C-2 Xcode documentation window

Documentation sets are collections of documents that can be installed, browsed, and searched
independently. Documentation sets make it easier to install only the documentation you need for
your development, reducing the amount of disk space needed for your developer tools installation.
In addition to the Apple-provided documentation sets, third parties can implement their own
documentation sets and have them appear in the Xcode documentation window. For information on
how to create custom documentation sets, see Documentation Set Guide.

SCM Repository Management

Xcode supports the management of multiple SCM repositories to allow you to perform tasks such as
the following:

 ■ Initial checkout of projects

 ■ Tagging source files

 ■ Branching

 ■ Importing and exporting files

Applications 139
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Xcode supports CVS, Subversion, and Perforce repositories.

Project Snapshots

Project snapshots provide a lightweight form of local source control for Xcode projects. Using this
feature, you can take a “snapshot” of your project’s state at any point during development, such as
after a successful build or immediately prior to refactoring your code. If after making subsequent
changes you decide those changes were not useful, you can revert your project files back to the
previous snapshot state. Because snapshots are local, your intermediate changes need never be
committed to source control.

Refactoring Tools

Xcode’s refactoring tools let you make large-scale changes to your Objective-C source code quickly
and easily. Xcode propagates your change requests throughout your code base, making sure that the
changes do not break your builds. You can make the following types of changes using the refactoring
tools:

 ■ Rename instance methods

 ■ Create new superclasses

 ■ Move methods into a superclass

 ■ Convert accessor methods to support Objective-C 2.0 properties

 ■ Modernize appropriate for loops to use the new fast enumeration syntax introduced in Objective-C
2.0

Before making any changes to your code, Xcode’s refactoring tools automatically take a local snapshot
of your project. This automatic snapshot means you can experiment with refactoring changes without
worrying about irrevocably changing your project files. For more information on snapshots, see
“Project Snapshots” (page 140).

Build Settings

The Build pane in the inspector organizes the build settings for the selected target, providing search
tools to help you find particular settings. In Mac OS X v10.5, some particularly noteworthy additions
to this pane include the following:

 ■ Per-architecture build settings. You can now set different build settings for each architecture
(Intel, PowerPC) your product supports.

 ■ 32-bit and 64-bit architecture checkboxes.

Project Versioning

Xcode projects include a Compatibility pane in the project inspector that lets you determine whether
you want an Xcode 3.0–only project or one that can be used by previous versions of Xcode. Marking
a project as Xcode 3.0–only generates an alert whenever you try to use an Xcode feature that is not
present in previous versions of the application.

140 Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Interface Builder

The Interface Builder application provides a graphical environment for building the user interface of
your Carbon and Cocoa applications. Using Interface Builder, you assemble the windows and menus
of your application, along with the any other supporting objects, and save them in one or more
resource files, called nib files. When you want to load a user interface element at runtime, you load
the nib file. The Cocoa and Carbon infrastructure uses the data in the nib file to recreate the objects
exactly as they were in Interface Builder, with all their attributes and inter-object relationships restored.

Although present in all versions of Mac OS X, the Interface Builder application received a significant
overhaul in Mac OS X v10.5. Beyond the numerous cosmetic changes, the current version of Interface
Builder includes numerous workflow and infrastructure changes too. The connections panel replaces
the old technique for connecting objects in Cocoa nib files, making it possible to create multiple
connections quickly without going back and forth between the inspector and the objects in your nib
file. An improved library window helps you organize and find the components you use most
frequently. Interface Builder includes a new plug-in model that makes it possible to create fully
functional plug-ins in a matter of minutes. And most importantly, Interface Builder is more tightly
integrated with Xcode, providing automatic synchronization of project’s class information with the
corresponding source files.

Figure C-3 shows the Interface Builder environment in Mac OS X v10.5, including a nib document,
connections panel, inspector window, and library window. The library window contains the standard
components you use to build your user interfaces and includes all of the standard controls found in
Carbon and Cocoa applications by default. Using plug-ins, you can expand the library to include
your own custom objects or to include custom configurations of standard controls.

Figure C-3 Interface Builder 3.0

Applications 141
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



For information about Interface Builder features and how to use them, see Interface Builder User Guide.
For information about how to integrate your own custom controls into Interface Builder, see Interface
Builder Plug-In Programming Guide and Interface Builder Kit Framework Reference.

Dashcode

Introduced in Mac OS X v10.5, Dashcode is an integrated environment for laying out, coding, and
testing Dashboard widgets. Although users see and use widgets as applications, they’re actually
packaged webpages powered by standard technologies such as HTML, CSS, and JavaScript. Although
it is easy for anyone with web design experience to build a widget using existing webpage editors,
as a widget’s code and layout get more complex, managing and testing of that widget becomes
increasingly difficult. Dashcode provides the following features to help simplify the widget design
process:

 ■ A project manager to marshall your widget’s resources

 ■ Visual tools to design your widget interface

 ■ Tools to set metadata values, specify required images, and package your widget

 ■ A source code editor to implement your widget’s behavior

 ■ A debugger to help you resolve issues in your widget’s implementation

Figure C-4 shows the Dashcode canvas, inspector, and library windows. The canvas is a drag-and-drop
layout environment where you lay out widgets visually. Using the inspector window, you can apply
style information to the controls, text, and shape elements that you drag in from the library.

Figure C-4 Dashcode canvas

142 Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



For more information about Dashcode, see Dashcode User Guide.

Instruments

Introduced in Mac OS X v10.5, Instruments is an advanced debugging and performance analysis
application. Instruments provides unprecedented information about the runtime behavior of your
application and complements existing tools such as Shark. Rather than show one aspect of your
program at a time, you configure each analysis session with one or more “instruments”, each of which
gathers information about things such as object allocation patterns, memory usage, disk I/O, CPU
usage, and many more. The data from all instruments is shown side-by-side, making it easier to see
patterns between different types of information.

An important aspect of Instruments is the repeatability of data gathering operations. Instruments lets
you record a sequence of events in your application and store them in the master track. You can then
replay that sequence to reproduce the exact same conditions in your application. This repeatability
means that each new set of data you gather can be compared directly to any old sets, resulting in a
more meaningful comparison of performance data. It also means that you can automate much of the
data gathering operation. Because events are shown alongside data results, it is easier to correlate
performance problems with the events that caused them.

Figure C-5 shows the Instruments user interface for an existing session. Data for each instrument is
displayed along the horizontal axis. Clicking in those data sets shows you information about the state
of the application at that point in time.

Figure C-5 The Instruments application interface

Extended Detail PaneTrack PaneInstruments Pane

Detail Pane

For information about how to use Instruments, see Instruments User Guide.

Applications 143
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Quartz Composer

Introduced in Mac OS X version 10.4, Quartz Composer is a development tool for processing and
rendering graphical data. Quartz Composer provides a visual development environment (Figure C-6)
built on technologies such as Quartz 2D, Core Image, OpenGL, and QuickTime. You can use Quartz
Composer as an exploratory tool to learn the tasks common to each visual technology without having
to learn its application programming interface (API). You can also save your compositions as resource
files that can be loaded into a Cocoa window at runtime. In addition to supporting visual technologies,
Quartz Composer also supports nongraphical technologies such as MIDI System Services and Rich
Site Summary (RSS) file content.

Figure C-6 Quartz Composer editor window

For information on how to use Quartz composer, see Quartz Composer User Guide.

AppleScript Studio

You can use AppleScript Studio to create AppleScript applications with complex user interfaces that
support the Aqua human interface guidelines. AppleScript Studio is a combination of technologies,
including AppleScript, Cocoa, the Xcode application, and Interface Builder.

For more information about AppleScript Studio, see AppleScript Studio Programming Guide or AppleScript
Studio Terminology Reference.

144 Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Audio Applications

The <Xcode>/Applications/Audio directory contains applications for Core Audio developers.

AU Lab

Introduced in Mac OS X version 10.4, AU Lab (Audio Unit Lab) lets you graphically host audio units
and examine the results. You can use AU Lab to test the audio units you develop, do live mixing, and
playback audio content. Parameters for the audio units are controlled graphically using the audio
unit’s custom interface or using a generic interface derived from the audio unit definition. Figure C-7
shows the AU Lab interface and some of the palettes for adjusting the audio parameters.

Figure C-7 AU Lab mixer and palettes

HALLab

Introduced in Mac OS X version 10.5, the HALLab (Hardware Abstraction Layer Lab) application
helps developers test and debug audio hardware and drivers. You can use this application to
understand what the audio hardware is doing and to correlate the behavior of your application with
the behavior of the underlying audio driver. The application provides information about the properties
of objects in the HAL and provides an I/O cycle telemetry viewer for diagnosing and debugging
glitches your application’s audio content.

Graphics Applications

Table C-1 lists the applications found in the <Xcode>/Applications/Graphics Tools directory.

Applications 145
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Table C-1 Graphics applications

DescriptionApplication

Introduced in Mac OS X v10.5, this application provides an environment for
testing the effects of Core Image filters. Using this application, you can build
up a set of filters and apply them to an image or set of images. You can apply
both static and time-based effects and change the parameters of each filter
dynamically to see the results.

Core Image Fun
House

An application that displays extensive information about the OpenGL
environment.

OpenGL Driver
Monitor

An application that creates a runtime profile of an OpenGL-based application.
The profile contains OpenGL function-call timing information, a listing of
all the OpenGL function calls your application made, and all the
OpenGL-related data needed to replay your profiling session.

OpenGL Profiler

An application that provides real-time entry, syntax checking, debugging,
and analysis of vertex/fragment programs. It allows you to export your
creation to a sample GLUT application, which performs all the necessary
OpenGL setup, giving you a foundation to continue your application
development. OpenGL is an open, cross-platform, three-dimensional (3D)
graphics standard that supports the abstraction of current and future
hardware accelerators. For more information about OpenGL, see OpenGL
Programming Guide for Mac OS X in the Reference Library > Graphics &
Imaging area.

OpenGL Shader
Builder

A magnifying glass utility for Mac OS X. Pixie is useful for doing pixel-perfect
layout, checking the correctness of graphics and user interface elements, and
getting magnified screen shots.

Pixie

A utility for previewing Quartz Composer compositions.Quartz Composer
Visualizer

This is an alias to the Quartz Debug application in the
<Xcode>/Applications/Performance Tools directory. For more
information, see the entry for Quartz Debug in “Performance
Applications” (page 147).

Quartz Debug

Java

Table C-2 lists the applications found in the <Xcode>/Applications/Java Tools directory.

Table C-2 Java applications

DescriptionApplication

An application that acts as a wrapper for running Java applets.Applet Launcher

146 Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



DescriptionApplication

An application that allows you to package your Java program’s files and resources
into a single double-clickable application bundle. Jar Bundler lets you modify
certain properties so your Java application behaves as a better Mac OS X citizen
and lets you specify arguments sent to the Java virtual machine (VM) when the
application starts up.

Jar Bundler

Performance Applications

Table C-3 lists the applications found in the <Xcode>/Applications/Performance Tools directory.

Table C-3 Performance applications

DescriptionApplication

An application that presents statistics about the current system activity and lets
you track those statistics over time. This application is a more visually oriented
version of the top command-line tool. It provides information about CPU usage,
disk and network throughput, memory usage, and others. For information on how
to use this program, see the application help.

BigTop

An application for measuring the dynamic memory usage of applications and for
finding memory leaks. For information on how to use this program, see the
application help or Memory Usage Performance Guidelines.

MallocDebug

A debugging utility for the Quartz graphics system. For information on how to
use this program, see the application help or Drawing Performance Guidelines.

Quartz Debug

An application that profiles the system to see how time is being spent. It can work
at the system, task, or thread level and can correlate performance counter events
with source code. Shark’s histogram view can be used to observe scheduling and
other time-dependent behavior. It can produce profiles of hardware and software
performance events such as cache misses, virtual memory activity, instruction
dependency stalls, and so forth. For information on how to use this program, see
the application help.

Shark

An application that samples applications automatically whenever they become
unresponsive and display the spinning cursor. To use this application, you launch
it and leave it running. Spin Control provides basic backtrace information while
an application is unresponsive, showing you what the application was doing at
the time.

Spin Control

An application for graphically displaying activity across a range of threads. It
provides timeline color-coded views of activity on each thread. By clicking a point
on a timeline, you can see a sample backtrace of activity at that time.

Thread Viewer

An application for analyzing memory usage.ZoneMonitor

Table C-4 lists the applications in the <Xcode>/Applications/Performance Tools/CHUD directory
and its subdirectories.

Applications 147
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Table C-4 CHUD applications

DescriptionApplication

An application that examines and modifies CPU and PCI configuration registers in
PowerPC processors.

Reggie SE

An application for finding performance counter events and their configuration.PMC Index

An application that is an exact, function-level profiler for your application. Unlike
sampling programs, which gather call stacks at periodic intervals, you can use this
application to generate and view a complete function call trace of your application
code.

Saturn

An application that monitors the power state of hard drives connected to the
computer.

SpindownHD

Utility Applications

Table C-5 lists the applications found in the <Xcode>/Applications/Graphics Tools directory and
its subdirectories.

Table C-5 Utility applications

DescriptionApplication

An agent application that lets you roll the mouse cursor over items in your
application’s user interface and view their associated accessibility attributes
and actions.

Accessibility Inspector

An application that looks for mistakes in the accessibility information
provided by your application.

Accessibility Verifier

An application for discovering and getting information about Bluetooth
devices.

Bluetooth Explorer

An application for creating applets from Python scripts.Build Applet

An application that displays the contents of the various system pasteboards.Clipboard Viewer

An application for configuring the user notifications generated when an
application crashes.

CrashReporterPrefs

An application that compares two ASCII files or two directories. For a more
accurate comparison, you can compare two files or directories to a common
ancestor. After comparing, you can merge the files or directories.

FileMerge

An application to create a search index for a help file. Instructions for
creating Apple Help and for using the indexing tool are in Apple Help
Programming Guide.

Help Indexer

An application for creating and examining icon resource files.Icon Composer

148 Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



DescriptionApplication

An application that you can use to examine the configuration of devices
on your computer. IORegistryExplorer provides a graphical representation
of the I/O Registry tree. For information on how to use this application,
see I/O Kit Fundamentals.

IORegistryExplorer

This application creates device drivers that allow the synchronization of
custom hardware devices. For more information, see “iSync Plug-in
Maker” (page 149).

iSync Plug-in Maker

An application for creating installable application packages from the set
of files you provide.

PackageMaker

An application for logging Bluetooth packets.PacketLogger

An application that lets you read and edit the contents of a property list.
A property list, or plist, is a data representation used by Cocoa and Core
Foundation as a convenient way to store, organize, and access standard
object types. Property lists are useful when you need to store small amounts
of persistent data. If you do use property lists, the .plist files must be
bundled with other application files when you create your installation
package.

Property List Editor

An application designed to improve the pronunciation of text generated
by the Text-To-Speech system.

Repeat After Me

An application for building language models for use with the Speech
Recognition manager.

SRLanguageModeler

A debugging application you use to inspect the truth database, the call
history of sync sessions, and clients of the synchronization engine. For
information on how to use this application, see Sync Services Tutorial.

Syncrospector

An application that displays detailed information about all the USB ports
and devices on the system.

USB Prober

iSync Plug-in Maker

The iSync Plug-in Maker application is a tool that allows you to build, test, and release plug-ins that
handle the specific features supported by your hardware device. You use this application to configure
your device settings and write scripts for connecting it to the Internet. The application also provides
a suite of standard automated tests that you can use to detect and fix problems in your plug-in before
you ship it.

Figure C-8 shows the iSync Plug-in Maker edit window.

Applications 149
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Figure C-8 iSync Plug-in Maker application

For information about using iSync Plug-in Maker, see iSync Plug-in Maker User Guide.

PackageMaker

You use PackageMaker to create installation packages for your software. An installation package is
a convenient way to deliver software in all but the simplest cases. An installation package contains
the files to install, their locations, and any licensing information or supporting materials that go with
your software. When the user double-clicks an installation package, Mac OS X automatically launches
the Installer application, which proceeds to install the files contained in the package.

You can use PackageMaker to package files or to assemble individual packages into a single package.
Figure C-9 shows the PackageMaker user interface, which provides a graphical environment for
building your packages.

150 Applications
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Figure C-9 PackageMaker application

For information on how to use PackageMaker, see PackageMaker User Guide.

Command-Line Tools

Xcode includes numerous command-line tools, including the GCC compiler, GDB debugger,
performance tools, version control system tools, localization tools, scripting tools, and so on. Some
of these tools are found on most other BSD-based installations while others were created specifically
for Mac OS X. They come free with the rest of Xcode, which you can download from the Apple
developer website (see “Getting the Xcode Tools” (page 14)).

In Mac OS X v10.5 and later, it is possible to install multiple versions of Xcode on a single computer
and run the applications and tools from different versions side-by-side. Most of the tools listed in the
following sections are installed in either in the system’s /usr/bin directory or in <Xcode>/usr/bin
or <Xcode>/usr/sbin, where <Xcode> is the root directory of your Xcode installation, although tools
installed elsewhere are called out as such. The default installation directory for Xcode is the /Developer
directory.

In addition to the command-line tools listed here, Xcode also comes with many higher-level
applications. These tools include the Xcode integrated development environment, Interface Builder,
Instruments, and many others. For more information about the available applications, see
“Applications” (page 135).

Command-Line Tools 151
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Note: The following sections describe some of the more important tools provided with Xcode but
should by no means be considered a complete list. If the tool you are looking for is not described here,
check the system and Xcode tools directories or see Mac OS X Man Pages.

Compiler, Linker, and Source Code Tools

Apple provides several applications and command-line tools for creating source code files.

Compilers, Linkers, Build Tools

Table C-6 lists the command-line compilers, linkers, and build tools. These tools are located in
<Xcode>/usr/bin and <Xcode>/Private.

Table C-6 Compilers, linkers, and build tools

DescriptionTool

The Mac OS X Mach-O assembler. See as man page.as

The BSD make program. See bsdmake man page.bsdmake

The command-line interface to the GNU C compiler (GCC). Normally you invoke
GCC through the Xcode application; however, you can execute it from a command
line if you prefer. See gcc man page.

gcc

The GNU make program. See gnumake man page.gnumake

An open-source build system initially released by Perforce, which provides the
back-end for the Xcode application’s build system. It is rarely used directly from
the command line. Documented on the Perforce website at http://www.per-
force.com/jam/jam.html.

jam

Combines several Mach-O (Mach object) files into one by combining like sections
in like segments from all the object files, resolving external references, and
searching libraries. Mach-O is the native executable format in Mac OS X. See ld
man page.

ld

A symbolic link to gnumake, the GNU make program. Note that the Xcode
application automatically creates and executes make files for you; however the
command-line make tools are available if you wish to use them. See make man
page.

make

Constructs a set of include file dependencies. You can use this command in a
make file if you are constructing make files instead of using Xcode to build and
compile your program. See mkdep man page.

mkdep

Takes an Xcode project (.pbproj) file and outputs a more nested version of the
project structure. Note that, due to how conflicts are reflected in the project file,
pbprojectdump cannot work with project files that have CVS conflicts.

pbprojectdump

152 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools

http://www.perforce.com/jam/jam.html
http://www.perforce.com/jam/jam.html


DescriptionTool

Builds a target contained in an Xcode project. This command is useful if you need
to build a project on another computer that you can connect to with Telnet. The
xcodebuild tool reads your project file and builds it just as if you had used the
Build command from within the Xcode application. See xcodebuild man page.

xcodebuild

Library Utilities

Table C-7 lists the command-line tools available for creating libraries. These tools are located in
<Xcode>/usr/bin.

Table C-7 Tools for creating and updating libraries

DescriptionTool

Takes object files and creates dynamically linked libraries or archive (statically
linked) libraries, according to the options selected. The libtool command
calls the ld command. See libtool man page.

libtool

Determines interdependencies in a list of object files. The output is normally
used to determine the optimum ordering of the object modules when a library
is created so that all references can be resolved in a single pass of the loader.
See lorder man page.

lorder

Adds to or updates the table of contents of an archive library. See ranlib
man page.

ranlib

Updates the prebinding of an executable or dynamic library when one of the
dependent dynamic libraries changes. (Prebinding for user applications is
unnecessary in Mac OS X v10.3.4 and later.) See redo_prebindingman page.

redo_prebinding

Updates prebinding information for libraries and executables when new files
are added to the system. (Prebinding for user applications is unnecessary in
Mac OS X v10.3.4 and later.) See update_prebinding man page.

update_prebinding

Code Utilities

Table C-8 lists applications and command-line tools for manipulating source code and application
resources. These tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-8 Code utilities

DescriptionTool

Reformats a Fortran file for printing by the UNIX line printer. See fpr man page.fpr

Takes a Fortran multiple-routine source-code file and splits it into multiple files, one
for each routine. See fsplit man page.

fsplit

Scans C source files and writes out a sorted list of all the identifiers that appear in #if,
#elif, #ifdef, and #ifndef directives. See ifnames man page.

ifnames

Command-Line Tools 153
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



DescriptionTool

Formats C source code. See indent man page.indent

Changes global symbols in object code to static symbols. You can provide an input file
that specifies which global symbols should remain global. The resulting object can still
be used with the debugger. See nmedit man page.

nmedit

Can check the syntax of a property list or convert it from one format to another (XML
or binary). See plutil man page.

plutil

Formats and prints character strings and C constants. See printf man page.printf

Merges resources into resource files. When the Xcode application compiles Resource
Manager resources, it sends them to a collector. After all Resource Manager resources
have been compiled, the Xcode application calls ResMerger to put the resources in
their final location. See ResMerger man page.

ResMerger

Takes a compiled resource (.qtr) file and inserts it together with the data fork (.qtx
or .exe file) into a Windows application (.exe) file. The resulting file is a Windows
application that has the sort of resource fork that QuickTime understands. You can
use the Rez tool to compile a resource source (.r) file. The RezWack tool is part of the
QuickTime 3 Software Development Kit for Windows. See RezWack man page.

RezWack

Performs universal search and replace operations on text strings in source files. See
tops man page.

tops

Removes #ifdef, #ifndef, #else, and #endif lines from code as specified in the input
options. See unifdef man page.

unifdef

Reverses the effects of RezWack; that is, converts a single Windows executable file into
separate data and resource files. See UnRezWack man page.

UnRezWack

Debugging and Tuning Tools

Apple provides several tools for analyzing and monitoring the performance of your software.
Performance should always be a key design goal of your programs. Using the provided tools, you
can gather performance metrics and identify actual performance problems. You can then use this
information to fix the problems and keep your software running efficiently.

General Tools

Table C-9 lists the command-line tools available for debugging. These tools are located in
<Xcode>/usr/bin and /usr/bin.

154 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Table C-9 General debugging tools

DescriptionTool

Lets you read, write, and delete Mac OS X user defaults. A Mac OS X application uses
the defaults system to record user preferences and other information that must be
maintained when the application is not running. Not all these defaults are necessarily
accessible through the application’s preferences. See defaults man page.

defaults

The GNU debugger. You can use it through the Xcode application or can invoke it
directly from the command line. See gdb man page.

gdb

Memory Analysis Tools

Table C-10 lists the applications and command-line tools for debugging and tuning memory problems.
These tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-10 Memory debugging and tuning tools

DescriptionTool

Lists all the objects currently allocated on the heap of the current process. It also
describes any Objective-C objects, listed by class. See heap man page.

heap

Examines a specified process for malloc-allocated buffers that are not referenced
by the program. See leaks man page.

leaks

Inspects a given process and lists the malloc allocations performed by it. This
tool relies on information provided by the standard malloc library when
debugging options have been turned on. If you specify an address,
malloc_history lists the allocations and deallocations that have manipulated
a buffer at that address. For each allocation, a stack trace describing who called
malloc or free is listed. See malloc_history man page.

malloc_history

Displays the virtual memory regions allocated in a specified process, helping
you understand how memory is being used and the purpose of memory (text
segment, data segment, and so on) at a given address. See vmmap man page.

vmmap

Displays Mach virtual memory statistics. See vm_stat man page.vm_stat

Examining Code

Table C-11 lists the applications and command-line tools for examining generated code files. These
tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-11 Tools for examining code

DescriptionTool

Parses C code and outputs debugger information in the Stabs format, showing offsets
of all the members of structures. For information on Stabs, see STABS Debug Format.
See c2ph man page.

c2ph

Command-Line Tools 155
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



DescriptionTool

An interactive command-line tool that allows the user to browse through C source
files for specified elements of code, such as functions, function calls, macros, variables,
and preprocessor symbols. See cscope man page.

cscope

Makes a tags file for the ex line editor from specified C, Pascal, Fortran, YACC, Lex,
or Lisp source files. A tags file lists the locations of symbols such as subroutines,
typedefs, structs, enums, unions, and #defines. See ctags man page.

ctags

Analyzes error messages and can open a text editor to display the source of the error.
The error tool is run with its input connected via a pipe to the output of the compiler
or language processor generating the error messages. Note that the service provided
by the error command is built into the Xcode application. See error man page.

error

Lets you print, update, and verify the contents of a nib file. You can use this tool to
inject localized strings into a nib file or scan the contents of a nibfile using a script.
(This tool replaces the nibtool program.) See ibtool man page.

ibtool

Displays the symbol tables of one or more object files, including the symbol type and
value for each symbol. See nm man page.

nm

Displays specified parts of object files or libraries. See otool or otool64 man page.otool

Displays information about the specified logical pages of a file conforming to the
Mach-O executable format. For each specified page of code, pagestuffdisplays symbols
(function and static data structure names). See pagestuff man page.

pagestuff

An alias to c2ph. See pstruct man page.pstruct

Looks for ASCII strings in an object file or other binary file. See strings man page.strings

Performance Tools

Table C-12 lists the applications and command-line tools for analyzing and monitoring performance.
For information about performance and the available performance tools, see Performance Overview.
These tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-12 Performance tools

DescriptionTool

Produces an execution profile of a C, Pascal, or Fortran77 program. The tool lists the total
execution times and call counts for each of the functions in the application, and sorts the
functions according to the time they represent including the time of their call graph
descendants. See gprof man page.

gprof

Gathers data about the running behavior of a process. The sample tool stops the process
at user-defined intervals, records the current function being executed by the process, and
checks the stack to find how the current function was called. It then lets the application
continue. At the end of a sampling session, sample produces a report showing which
functions were executing during the session. See sample man page.

sample

156 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



DescriptionTool

Displays an ongoing sample of system-use statistics. It can operate in various modes, but
by default shows CPU and memory use for each process in the system. See top man page.

top

Instruction Trace Tools

Table C-13 lists the applications and command-line tools for working with hardware-level programs.
These tools are located in /usr/bin.

Table C-13 Instruction trace tools

DescriptionTool

Analyzes TT6E (but not TT6) instruction traces and presents detailed analyses and histogram
reports. See acid man page.

acid

Captures the instruction and data address stream generated by a process running in Mac
OS X and saves it to disk in TT6, TT6E, or FULL format. Custom trace filters can be built
using the amber_extfilt.a module in <Xcode>/Examples/CHUD/Amber/External-
TraceFilter/. Differences between TT6 and TT6E format as well as the specifics of the
FULL trace format are detailed in Amber Trace Format Specification v1.1 (<Xcode>/ADC
Reference Library/CHUD/AmberTraceFormats.pdf). See amber man page.

amber

A cycle-accurate simulator of the Motorola 7400 processor that takes TT6 (not TT6E) traces
as input. See simg4 man page.

simg4

A cycle-accurate simulator of the IBM 970 processor that takes TT6 (not TT6E) traces as
input. See simg5 man page.

simg5

Documentation and Help Tools

Table C-14 lists applications and command-line tools for creating or working with documentation
and online help. These tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-14 Documentation and help tools

DescriptionTool

Merges contextual help RTF snippets into one file. This tool is included to
support legacy applications. New contextual help projects do not use this tool.
See compileHelp man page.

compileHelp

Gathers HeaderDoc output, creating a single index page and cross-links between
documents. See gatherheaderdoc man page.

gatherheaderdoc

Generates HTML documentation from structured commentary in C, C++, and
Objective-C header files. The HeaderDoc tags and scripts are described at
http://developer.apple.com/darwin/projects/headerdoc/. See
headerdoc2html man page.

headerdoc2HTML

Command-Line Tools 157
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools

http://developer.apple.com/darwin/projects/headerdoc/


DescriptionTool

Inserts menu entries from an Info file into the top-level dir file in the GNU
Texinfo documentation system. It’s most often run as part of software
installation or when constructing a dir file for all manuals on a system. See
http://www.gnu.org/software/texinfo/manual/texinfo/ for more information
on the GNU Texinfo system. See install-info man page.

install-info

Localization Tools

Table C-15 lists the applications and command-line tools for localizing your own applications. These
tools are located in <Xcode>/usr/bin and /usr/bin.

Table C-15 Localization tools

DescriptionTool

Decompiles the resource fork of a resource file according to the type declarations in
the type declaration files you specify. You can use this utility to find strings for
localization purposes, for example. DeRez works with Resource Manager resource
files, not with nib files.

DeRez

Takes the strings from C source code (NSLocalizedString..., CFCopyLocalized-
String... functions) and generates string table files (.strings files). This tool can
also work with Bundle.localizedString...methods in Java. See genstringsman
page.

genstrings

Compiles the resource fork of a file according to the textual description contained in
the resource description files. You can use Rez to recompile the resource files you
decompiled with DeRez after you have localized the strings.

Rez

Version Control Tools

Apple provides command-line tools to support several version-control systems. Unless otherwise
noted, these tools are located in <Xcode>/usr/bin or /usr/bin.

Subversion

Table C-16 lists the command-line tools to use with the Subversion system.

Table C-16 Subversion tools

DescriptionTool

The Subversion command-line client tool. You use this tool for manipulating files
in a Subversion archive. See svn man page.

svn

Creates and manages Subversion repositories. See svnadmin man page.svnadmin

158 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools

http://www.gnu.org/software/texinfo/manual/texinfo/


DescriptionTool

Filters data dumped from the repository by a svnadmin dump command. See
svndumpfilter man page.

svndumpfilter

Examines repository revisions and transactions. See svnlook man page.svnlook

Accesses a repository using the svn network protocol. See svnserve man page.svnserve

Summarizes the revision mixture of a working copy. See svnversion man page.svnversion

RCS

Table C-17 lists the command-line tools to use with the RCS system.

Table C-17 RCS tools

DescriptionTool

Stores revisions in RCS files. If the RCS file doesn’t exist, ci creates one. See ci man
page.

ci

Retrieves a revision from an RCS file and stores it in the corresponding working
file. See co man page.

co

Creates new RCS files or changes attributes of existing ones. See rcs man page.rcs

Checks a file into a new RCS file and uses the file’s first line for the description.rcs-checkin

Generates a change log from RCS files—which can possibly be located in a CVS
repository—and sends the change log to standard output. See rcs2log man page.

rcs2log

Compares the working file to the latest revision (or a specified revision) in the
corresponding RCS file and removes the working file if there is no difference. See
rcsclean man page.

rcsclean

Compares two revisions of an RCS file or the working file and one revision. See
rcsdiff man page.

rcsdiff

Merges the changes in two revisions of an RCS file into the corresponding working
file. See rcsmerge man page.

rcsmerge

CVS

Table C-18 lists the command-line tools to use with the Concurrent Versions System (CVS) source
control system.

Command-Line Tools 159
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Table C-18 CVS tools

DescriptionTool

Speeds up common versioning operations for Xcode projects that use the Apple-generic
versioning system. It automatically embeds version information in the products
produced by the Xcode application and performs certain CVS operations such as
submitting the project with a new version number. For more information see the
agvtool man page.

agvtool

The latest tool for managing information in the CVS repository. (Note, this tool does
not support CVS wrappers.) See the cvs man page for details. See also, ocvs below.

cvs

Wraps a directory into a GZIP format tar file. This single file can be handled more
easily by CVS than the original directory.

cvs-wrap

Extracts directories from a GZIP format tar file created by cvs-wrap.cvs-unwrap

An older version of the cvs tool that still supports CVS wrappers. See the ocvs man
page for details.

ocvs

Comparing Files

Table C-19 lists the command-line tools for comparing files.

Table C-19 Comparison tools

DescriptionTool

Compares two files or the files in two directories. See diff man page.diff

Compares three files. See diff3 man page.diff3

Annotates the output of diff so that it can be printed with GNU enscript. This enables
enscript to highlight the modified portions of the file. See diffpp man page.

diffpp

Reads one or more files output by diff and displays a histogram of the insertions,
deletions, and modifications per file. See diffstat man page.

diffstat

Compares two files modified from the same original file and then combines all the
changes into a single file. The merge tool warns you if both modified files have changes
in the same lines. See merge man page.

merge

Opens FileMerge from the command line and begins comparing the specified files. See
opendiff man page.

opendiff

Takes the output of diff and applies it to one or more copies of the original, unchanged
file to create patched versions of the file. See patch man page.

patch

Compares two files and displays the differences so you can decide how to resolve them
interactively. It then writes the results out to a file. A command-line version of FileMerge.
See sdiff man page.

sdiff

160 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Packaging Tools

Table C-20 lists the applications and command-line tools used for packaging applications. These tools
are located in <Xcode>/usr/bin and /usr/bin.

Table C-20 Packaging tools

DescriptionTool

Creates a digital code signature for an application or software package. See
codesign man page.

codesign

Copies a file or a directory, including subdirectories, preserving metadata
and forks. See CpMac man page.

CpMac

Gets the file attributes of files in an HFS+ directory. See GetFileInfo man
page.

GetFileInfo

Copies files to a target file or directory. Unlike the cp or mv commands, the
install command lets you specify the new copy’s owner, group ID, file
flags, and mode. See install man page.

install

Changes the dynamic shared library install names recorded in a Mach-O
binary. See install_name_tool man page.

install_name_tool

Can create a multiple-architecture (“fat”) executable file from one or more
input files, list the architectures in a fat file, create a single-architecture file
from a fat file, or make a new fat file with a subset of the architectures in the
original fat file. See lipo man page.

lipo

Merges two or more PEF files into a single file. PEF format is used for Mac
OS 9 code. See MergePef man page.

MergePef

Creates a bill of materials for a directory.mkbom

Moves files, preserving metadata and forks.MvMac

Sets the attributes of files in an HFS+ directory. See SetFile man page.SetFile

Removes the resource fork in a file or all the resource forks in the files in a
specified directory and saves them alongside the original files as hidden files
(a hidden file has the same name as the original file, except that it has a
“dot-underscore” prefix; for example ._MyPhoto.jpg.). See SplitForksman
page.

SplitForks

Scripting Tools

The tools listed in the following sections are located in <Xcode>/usr/bin and /usr/bin.

Command-Line Tools 161
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Interpreters and Compilers

Table C-21 lists the command-line script interpreters and compilers.

Table C-21 Script interpreters and compilers

DescriptionTool

A pattern-directed scripting language for scanning and processing files. The scripting
language is described on the awk man page.

awk

Compiles the specified files, or standard input, into a single script. Input files may
be plain text or other compiled scripts. The osacompile command works with
AppleScript and with any other OSA scripting language. See osacompile man page.

osacompile

Executes a script file, which may be plain text or a compiled script. The osascript
command works with AppleScript and with any other scripting language that
conforms to the Open Scripting Architecture (OSA). See osascript man page.

osascript

Executes scripts written in the Practical Extraction and Report Language (Perl). The
man page for this command introduces the language and gives a list of other man
pages that fully document it. See perl man page.

perl

Compiles Perl scripts. See perlcc man page.perlcc

The interpreter for the Python language, an interactive, object-oriented language. Use
the pydoc command to read documentation on Python modules. See python man
page.

python

The interpreter for the Ruby language, an interpreted object-oriented scripting
language. See ruby man page.

ruby

Reads a set of files and processes them according to a list of commands. See sed man
page.

sed

A shell-like application that interprets Tcl commands. It runs interactively if called
without arguments. Tcl is a scripting language, like Perl, Python, or Ruby. However,
Tcl is usually embedded and thus called from the Tcl library rather than by an
interpreter such as tclsh. See tclsh man page.

tclsh

Script Language Converters

Table C-22 lists the available command-line script language converters.

Table C-22 Script language converters

DescriptionTool

Converts an awk script to a Perl script. See a2p man page.a2p

Converts a sed script to a Perl script. See s2p man page.s2p

162 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Perl Tools

Table C-23 lists the available command-line Perl tools.

Table C-23 Perl tools

DescriptionTool

Displays profile data generated for a Perl script by a Perl profiler. See dprofpp man
page.

dprofpp

Converts find command lines to equivalent Perl code. See find2perl man page.find2perl

Converts C header files to Perl header file format. See h2ph man page.h2ph

Builds a Perl extension from C header files. The extension includes functions that can
be used to retrieve the value of any #define statement that was in the C header files.
See h2xs man page.

h2xs

An interactive tool that helps you report bugs for the Perl language. See perlbug man
page.

perlbug

Looks up and displays documentation for Perl library modules and other Perl scripts
that include internal documentation. If a man page exists for the module, you can use
man instead. See perldoc man page.

perldoc

Aids in the conversion of Perl 4 .pl library files to Perl 5 library modules. This tool is
useful if you plan to update your library to use some of the features new in Perl 5. See
pl2pm man page.

pl2pm

Forces verbose warning diagnostics by the Perl compiler and interpreter. See splain
man page.

splain

Parsers and Lexical Analyzers

Table C-24 lists the available command-line parsers and lexical analyzers.

Table C-24 Parsers and lexical analyzers

DescriptionTool

Generates parsers from grammar specification files. A somewhat more flexible replacement
for yacc. See bison man page.

bison

Generates programs that scan text files and perform pattern matching. When one of these
programs matches the pattern, it executes the C routine you provide for that pattern. See
flex man page.

flex

An alias for flex. See lex man page.lex

Generates parsers from grammar specification files. Used in conjunction with flex to created
lexical analyzer programs. See yacc man page.

yacc

Command-Line Tools 163
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Documentation Tools

Table C-25 lists the available command-line scripting documentation tools.

Table C-25 Scripting documentation tools

DescriptionTool

Converts files from pod format to HTML format. The pod (Plain Old Documentation)
format is defined in the perlpod man page. See pod2html man page.

pod2html

Converts files from pod format to LaTeX format. LaTeX is a document preparation
system built on the TeX text formatter. See pod2latex man page.

pod2latex

Converts files from pod format to *roff code, which can be displayed using nroff
via man, or printed using troff. See pod2man man page.

pod2man

Converts pod data to formatted ASCII text. See pod2text man page.pod2text

Similar to pod2text, but can output just the synopsis information or the synopsis
plus any options/arguments sections instead of the entire man page. See pod2usage
man page.

pod2usage

Checks the syntax of documentation files that are in pod format and outputs errors
to standard error. See podchecker man page.

podchecker

Prints selected sections of pod documentation to standard output. See podselect
man page.

podselect

Java Tools

The tools listed in the following sections are located in /usr/bin.

General

Table C-26 lists the command-line tools used for building, debugging, and running Java programs.

Table C-26 Java tools

DescriptionTool

Starts the Java runtime environment and launches a Java application. See java man page.java

The standard Java compiler from Sun Microsystems. See javac man page.javac

The Java debugger. It provides inspection and debugging of a local or remote Java virtual
machine. See jdb man page.

jdb

A Java compiler from IBM, which is faster than javac for many applications. See jikes
man page.

jikes

164 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



Java Utilities

Table C-27 lists some of the applications and command-line tools for working with Java.

Table C-27 Java utilities

DescriptionTool

Reads an Object Management Group (OMG) Interface Definition Language (IDL)
file and translates it, or maps it, to a Java interface. The idlj compiler also creates
stub, skeleton, helper, holder, and other files as necessary. These Java files are
generated from the IDL file according to the mapping specified in the OMG
document OMG IDL to Java Language Mapping Specification, formal, 99-07-53. The
idlj compiler is documented at http://java.sun.com/j2se/1.3/docs/guide/rmi-
iiop/toJavaPortableUG.html. IDL files are used to allow objects from different
languages to interact with a common Object Request Broker (ORB), allowing remote
invocation between languages. See idlj man page.

idlj

Parses the declarations and documentation comments in a set of Java source files
and produces HTML pages describing the public and protected classes, inner
classes, interfaces, constructors, methods, and fields. See javadoc man page.

javadoc

Generates C header and source files from Java classes. The generated header and
source files are used by C programs to reference instance variables of a Java object
so that you can call Java code from inside your Mac OS X native application. See
javah man page.

javah

Converts characters that are not in Latin-1 or Unicode encoding to ASCII for use
with javac and other Java tools. It also can do the reverse conversion of Latin-1 or
Unicode to native-encoded characters. See native2ascii man page.

native2ascii

A compiler that generates stub and skeleton class files for remote objects from the
names of compiled Java classes that contain remote object implementations. A
remote object is one that implements the interface java.rmi.Remote. See rmic
man page.

rmic

Creates and starts a remote object registry. A remote object registry is a naming
service that makes it possible for clients on the host to look up remote objects and
invoke remote methods. See rmiregistry man page.

rmiregistry

Java Archive (JAR) Files

Table C-28 lists the available JAR file applications and command-line tools.

Table C-28 JAR file tools

DescriptionTool

Checks a specified JAR file for title and version conflicts with any extensions installed
in the Java Developer Kit software. See extcheck man page.

extcheck

Command-Line Tools 165
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools

http://java.sun.com/j2se/1.3/docs/guide/rmi-iiop/toJavaPortableUG.html
http://java.sun.com/j2se/1.3/docs/guide/rmi-iiop/toJavaPortableUG.html


DescriptionTool

Combines and compresses multiple files into a single Java archive (JAR) file so they
can be downloaded by a Java agent (such as a browser) in a single HTTP transaction.
See jar man page.

jar

Lets you sign JAR files and verify the signatures and integrity of signed JAR files. See
jarsigner man page.

jarsigner

Kernel Extension Tools

Table C-29 lists the command-line tools that are useful for kernel extension development. These tools
are located in /usr/sbin and /sbin.

Table C-29 Kernel extension tools

DescriptionTool

Loads kernel extensions, validates them to make sure they can be loaded by other
mechanisms, and generates symbol files for debugging them.

kextload

Displays the status of any kernel extensions currently loaded in the kernel.kextstat

Terminates and unregisters I/O Kit objects associated with a KEXT and unloads the
code for the KEXT.

kextunload

I/O Kit Driver Tools

Table C-30 lists the applications and command-line tools for developing device drivers. These tools
are located in <Xcode>/usr/sbin.

Table C-30 Driver tools

DescriptionTool

A command-line version of I/O Registry Explorer. The ioreg tool displays the
tree in a Terminal window, allowing you to cut and paste sections of the tree.

ioreg

Displays a summary of memory allocated by I/O Kit allocators listed by type
(instance, container, and IOMalloc). This tool is useful for tracking memory leaks.

ioalloccount

Shows the number of instances allocated for each specified class. This tool is also
useful for tracking memory leaks.

ioclasscount

166 Command-Line Tools
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Mac OS X Developer Tools



abstract type Defines, in information property
lists, general characteristics of a family of
documents. Each abstract type has corresponding
concrete types. See also concrete type.

Accessibility The technology for ensuring that
disabled users can use Mac OS X. Accessibility
provides support for disabled users in the form
of screen readers, speech recognition,
text-to-speech converters, and mouse and
keyboard alternatives.

ACLs Access Control Lists. A technology used
to give more fine-grained access to file-system
objects. Compare with permissions.

actions Building blocks used to build workflows
in Automator.

active window The frontmost modal or document
window. Only the contents of the active window
are affected by user actions. The active window
has distinctive details that aren’t visible for
inactive windows.

Address Book A technology for managing names,
addresses, phone numbers, and other
contact-related information. Mac OS X provides
the Address Book application for managing
contact data. It also provides the Address Book
framework so that applications can
programmatically manage the data.

address space Describes the range of memory
(both physical and virtual) that a process uses
while running. In Mac OS X, processes do not
share address space.

alias A lightweight reference to files and folders
in Mac OS Standard (HFS) and Mac OS Extended
(HFS+) file systems. An alias allows multiple
references to files and folders without requiring

multiple copies of these items. Aliases are not as
fragile as symbolic links because they identify the
volume and location on disk of a referenced file
or folder; the file or folder can be moved around
without breaking the alias. See also symbolic link.

anti-aliasing A technique that smoothes the
roughness in images or sound caused by aliasing.
During frequency sampling, aliasing generates a
false (alias) frequency along with the correct one.
With images this produces a stair-step effect.
Anti-aliasing corrects this by adjusting pixel
positions or setting pixel intensities so that there
is a more gradual transition between pixels.

Apple event A high-level operating-system event
that conforms to the Apple Event Interprocess
Messaging Protocol (AEIMP). An Apple event
typically consists of a message from an application
to itself or to another application.

AppleScript An Apple-defined scripting
language. AppleScript uses a natural language
syntax to send Apple events to applications,
commanding them to perform specific actions.

AppleTalk A suite of network protocols that is
standard on Macintosh computers and can be
integrated with other network systems, such as
the Internet.

Application Kit A Cocoa framework that
implements an application’s user interface. The
Application Kit provides a basic program
structure for applications that draw on the screen
and respond to events.

application packaging Putting code and
resources in the prescribed directory locations
inside application bundles. “Application package”
is sometimes used synonymously with
“application bundle.”

167
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

Glossary



Aqua A set of guidelines that define the
appearance and behavior of Mac OS X
applications. The Aqua guidelines bring a unique
look to applications, integrating color, depth,
clarity, translucence, and motion to present a
vibrant appearance. If you use Carbon, Cocoa, or
X11 to create your application’s interface, you get
the Aqua appearance automatically

ASCII American Standard Code for Information
Interchange. A 7-bit character set (commonly
represented using 8 bits) that defines 128 unique
character codes. See also Unicode.

bit depth The number of bits used to describe
something, such as the color of a pixel. Each
additional bit in a binary number doubles the
number of possibilities.

bitmap A data structure that represents the
positions and states of a corresponding set of
pixels.

Bonjour Apple’s technology for
zero-configuration networking. Bonjour enables
dynamic discovery of services over a network.

BSD Berkeley Software Distribution. Formerly
known as the Berkeley version of UNIX, BSD is
now simply called the BSD operating system. BSD
provides low-level features such as networking,
thread management, and process communication.
It also includes a command-shell environment for
managing system resources. The BSD portion of
Mac OS X is based on version 5 of the FreeBSD
distribution.

buffered window A window with a memory
buffer into which all drawing is rendered. All
graphics are first drawn in the buffer, and then
the buffer is flushed to the screen.

bundle A directory in the file system that stores
executable code and the software resources related
to that code. Applications, plug-ins, and
frameworks are types of bundles. Except for
frameworks, bundles are file packages, presented
by the Finder as a single file.

bytecode Computer object code that is processed
by a virtual machine. The virtual machine converts
generalized machine instructions into specific
machine instructions (instructions that a

computer’s processor can understand). Bytecode
is the result of compiling source language
statements written in any language that supports
this approach. The best-known language today
that uses the bytecode and virtual machine
approach is Java. In Java, bytecode is contained
in a binary file with a .class suffix. (Strictly
speaking, “bytecode” means that the individual
instructions are one byte long, as opposed to
PowerPC code, for example, which is four bytes
long.) See also virtual machine (VM).

Carbon An application environment in Mac OS
X that features a set of procedural programming
interfaces derived from earlier versions of the Mac
OS. The Carbon API has been modified to work
properly with Mac OS X, especially with the
foundation of the operating system, the kernel
environment. Carbon applications can run in Mac
OS X and Mac OS 9.

CFM Code Fragment Manager, the library
manager and code loader for processes based on
PEF (Preferred Executable Format) object files (in
Carbon).

class In object-oriented languages such as Java
and Objective-C, a prototype for a particular kind
of object. A class definition declares instance
variables and defines methods for all members of
the class. Objects that belong to the same class
have the same types of instance variables and have
access to the same methods (included the instance
variables and methods inherited from
superclasses).

Classic An application environment in Mac OS
X that lets you run non-Carbon legacy Mac OS
software. It supports programs built for both
PowerPC and 68000-family chip architectures and
is fully integrated with the Finder and the other
application environments.

Clipboard A per-user server (also known as the
pasteboard) that enables the transfer of data
between applications, including the Finder. This
server is shared by all running applications and
contains data that the user has cut or copied, as
well as other data that one application wants to
transfer to another, such as in dragging operations.
Data in the Clipboard is associated with a name
that indicates how it is to be used. You implement

168
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



data-transfer operations with the Clipboard using
Core Foundation Pasteboard Services or the Cocoa
NSPasteboard class. See also pasteboard.

Cocoa An advanced object-oriented development
platform in Mac OS X. Cocoa is a set of
frameworks used for the rapid development of
full-featured applications in the Objective-C
language. It is based on the integration of
OpenStep, Apple technologies, and Java.

code fragment In the CFM-based architecture, a
code fragment is the basic unit for executable code
and its static data. All fragments share
fundamental properties such as the basic structure
and the method of addressing code and data. A
fragment can easily access code or data contained
in another fragment. In addition, fragments that
export items can be shared among multiple clients.
A code fragment is structured according to the
Preferred Executable Format (PEF).

ColorSync An industry-standard architecture for
reliably reproducing color images on various
devices (such as scanners, video displays, and
printers) and operating systems.

compositing A method of overlaying separately
rendered images into a final image. It encompasses
simple copying as well as more sophisticated
operations that take advantage of transparency.

concrete type Defines, in information property
lists, specific characteristics of a type of document,
such as extensions and HFS+ type and creator
codes. Each concrete type has corresponding
abstract types. See also abstract type.

cooperative multitasking A multitasking
environment in which a running program can
receive processing time only if other programs
allow it; each application must give up control of
the processor “cooperatively” in order to allow
others to run. Mac OS 9 is a cooperative
multitasking environment. See also preemptive
multitasking.

CUPS The Common UNIX Printing System; an
open source architecture commonly used by the
UNIX community to implement printing.

daemon A process that handles periodic service
requests or forwards a request to another process
for handling. Daemons run continuously, usually
in the background, waking only to handle their
designated requests. For example, the httpd
daemon responds to HTTP requests for web
information.

Darwin Another name for the Mac OS X core
operating system. The Darwin kernel is equivalent
to the Mac OS X kernel plus the BSD libraries and
commands essential to the BSD Commands
environment. Darwin is an open source
technology.

Dashboard A user technology for managing
HTML-based programs called widgets (see
permissions). Activating the Dashboard via the
F12 key displays a layer above the Mac OS X
desktop that contains the user’s current set of
widgets.

Dashcode A graphical application used to build
and debug Dashboard widgets.

demand paging An operating system facility that
causes pages of data to be read from disk into
physical memory only as they are needed.

device driver A component of an operating
system that deals with getting data to and from a
device, as well as the control of that device.

domain An area of the file system reserved for
software, documents, and resources and limiting
the accessibility of those items. A domain is
segregated from other domains. There are four
domains: user, local, network, and system.

DVD An optical storage medium that provides
greater capacity and bandwidth than CD-ROM;
DVDs are frequently used for multimedia as well
as data storage.

dyld See dynamic link editor.

dynamic link editor The library manager for code
in the Mach-O executable format. The dynamic
link editor is a dynamic library that “lives” in all
Mach-O programs on the system. See also CFM;
Mach-O.

169
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



dynamic linking The binding of modules, as a
program executes, by the dynamic link editor.
Usually the dynamic link editor binds modules
into a program lazily (that is, as they are used).
Thus modules not actually used during execution
are never bound into the program.

dynamic shared library A library whose code
can be shared by multiple, concurrently running
programs. Programs share exactly one physical
copy of the library code and do not require their
own copies of that code. With dynamic shared
libraries, a program not only attempts to resolve
all undefined symbols at runtime, but attempts to
do so only when those symbols are referenced
during program execution.

encryption The conversion of data into a form,
called ciphertext, that cannot be easily understood
by unauthorized people. The complementary
process, decryption, converts encrypted data back
into its original form.

Ethernet A high-speed local area network
technology.

exception An interruption to the normal flow of
program control that occurs when an error or
other special condition is detected during
execution. An exception transfers control from the
code generating the exception to another piece of
code, generally a routine called an exception
handler.

fault In the virtual-memory system, faults are the
mechanism for initiating page-in activity. They
are interrupts that occur when code tries to access
data at a virtual address that is not mapped to
physical memory. Soft faults happen when the
referenced page is resident in physical memory
but is unmapped. Hard (or page) faults occur
when the page has been swapped out to backing
store. See also page; virtual memory.

file package A directory that the Finder presents
to users as if it were a file. In other words, the
Finder hides the contents of the directory from
users. This opacity discourages users from
inadvertently (or intentionally) altering the
contents of the directory.

file system A part of the kernel environment that
manages the reading and writing of data on
mounted storage devices of a certain volume
format. A file system can also refer to the logical
organization of files used for storing and
retrieving them. File systems specify conventions
for naming files, storing data in files, and
specifying locations of files. See also volume
format.

filters The simplest unit used to modify image
data from Core Image. One or more filters may
be packaged into an image units and loaded into
a program using the Core image framework.
Filters can contain executable or nonexecutable
code.

firewall Software (or a computer running such
software) that prevents unauthorized access to a
network by users outside the network. (A physical
firewall prevents the spread of fire between two
physical locations; the software analog prevents
the unauthorized spread of data.)

fork (1) A stream of data that can be opened and
accessed individually under a common filename.
The Mac OS Standard and Extended file systems
store a separate data fork and resource fork as
part of every file; data in each fork can be accessed
and manipulated independently of the other. (2)
In BSD, fork is a system call that creates a new
process.

framebuffer A highly accessible part of video
RAM (random-access memory) that continuously
updates and refreshes the data sent to the devices
that display images onscreen.

framework A type of bundle that packages a
dynamic shared library with the resources that
the library requires, including header files and
reference documentation.

HFS Hierarchical File System. The Mac OS
Standard file-system format, used to represent a
collection of files as a hierarchy of directories
(folders), each of which may contain either files
or other folders. HFS is a two-fork volume format.

HFS+ Hierarchical File System Plus. The Mac
OS Extended file-system format. This format was
introduced as part of Mac OS 8.1, adding support
for filenames longer than 31 characters, Unicode

170
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



representation of file and directory names, and
efficient operation on very large disks. HFS+ is a
multiple-fork volume format.

HIToolbox Human Interface Toolbox. A
collection of procedural APIs that apply an
object-oriented model to windows, controls, and
menus for Carbon applications. The HI Toolbox
supplements older Macintosh Toolbox managers
such as the Control Manager, Dialog Manager,
Menu Manager, and Window Manager from Mac
OS 9.

host The computer that is running (is host to) a
particular program; used to refer to a computer
on a network.

IDE An acronym meaning “integrated
development environment”. An IDE is a program
that typically combines text editing, compiling,
and debugging features in one package in order
to assist developers with the creation of software.

image units A plug-in bundle for use with the
Core Image framework. Image units contain one
or more filters for manipulating image data.

information property list A property list that
contains essential configuration information for
bundles. A file named Info.plist (or a
platform-specific variant of that filename) contains
the information property list and is packaged
inside the bundle.

inheritance In object-oriented programming, the
ability of a superclass to pass its characteristics
(methods and instance variables) on to its
subclasses.

instance In object-oriented languages such as Java
and Objective-C, an object that belongs to (is a
member of) a particular class. Instances are created
at runtime according to the specification in the
class definition.

Interface Builder A tool for creating user
interfaces. You use this tool to build and configure
your user interface using a set of standard
components and save that data to a resource file
that can be loaded into your program at runtime.
For more information, see “Interface
Builder” (page 141).

internationalization The design or modification
of a software product, including its online help
and documentation, to facilitate localization.
Internationalization of software typically involves
writing or modifying code to make use of
locale-aware operating-system services for
appropriate localized text input, display,
formatting, and manipulation. See also
localization.

interprocess communication (IPC) A set of
programming interfaces that enables a process to
communicate data or information to another
process. Mechanisms for IPC exist in the different
layers of the system, from Mach messaging in the
kernel to distributed notifications and Apple
events in the application environments. Each IPC
mechanism has its own advantages and
limitations, so it is not unusual for a program to
use multiple IPC mechanisms. Other IPC
mechanisms include pipes, named pipes, signals,
message queueing, semaphores, shared memory,
sockets, the Clipboard, and application services.

I/O Kit A collection of frameworks, libraries,
tools, and other resources for creating device
drivers in Mac OS X. The I/O Kit framework uses
a restricted form of C++ to provide default
behavior and an object-oriented programming
model for creating custom drivers.

iSync A tool for synchronizing address book
information.

Java A development environment for creating
applications. Java was created by Sun
Microsystems.

Java Native Interface (JNI) A technology for
bridging C-based code with Java.

Java Virtual Machine (JVM) The runtime
environment for executing Java code. This
environment includes a just-in-time bytecode
compiler and utility code.

kernel The complete Mac OS X core
operating-system environment, which includes
Mach, BSD, the I/O Kit, file systems, and
networking components. Also called the kernel
environment.

171
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



key An arbitrary value (usually a string) used to
locate a piece of data in a data structure such as a
dictionary.

localization The adaptation of a software product,
including its online help and documentation, for
use in one or more regions of the world, in
addition to the region for which the original
product was created. Localization of software can
include translation of user interface text, resizing
of text-related graphical elements, and
replacement or modification of user interface
images and sound. See also internationalization.

lock A data structure used to synchronize access
to a shared resource. The most common use for a
lock is in multithreaded programs where multiple
threads need access to global data. Only one
thread can hold the lock at a time; this thread is
the only one that can modify the data during this
period.

manager In Carbon, a library or set of related
libraries that define a programming interface.

Mach The lowest level of the Mac OS X kernel
environment. Mach provides such basic services
and abstractions as threads, tasks, ports,
interprocess communication (IPC), scheduling,
physical and virtual address space management,
virtual memory, and timers.

Mach-O Executable format of Mach object files.
See also PEF.

main thread By default, a process has one thread,
the main thread. If a process has multiple threads,
the main thread is the first thread in the process.
A user process can use the POSIX threading API
(pthread) to create other user threads.

major version A framework version specifier
designating a framework that is incompatible with
programs linked with a previous version of the
framework’s dynamic shared library.

makefile A specification file used by a build tool
to create an executable version of an application.
A makefile details the files, dependencies, and
rules by which the application is built.

memory-mapped file A file whose contents are
mapped into memory. The virtual-memory system
transfers portions of these contents from the file
to physical memory in response to page faults.
Thus, the disk file serves as backing store for the
code or data not immediately needed in physical
memory.

memory protection A system of memory
management in which programs are prevented
from being able to modify or corrupt the memory
partition of another program. Mac OS 9 does not
have memory protection; Mac OS X does.

method In object-oriented programming, a
procedure that can be executed by an object.

minor version A framework version specifier
designating a framework that is compatible with
programs linked with later builds of the
framework within the same major version.

multicast A process in which a single network
packet may be addressed to multiple recipients.
Multicast is used, for example, in streaming video,
in which many megabytes of data are sent over
the network.

multihoming The ability to have multiple
network addresses in one computer. For example,
multihoming might be used to create a system in
which one address is used to talk to hosts outside
a firewall and the other to talk to hosts inside; the
operating system provides facilities for passing
information between the two.

multitasking The concurrent execution of
multiple programs. Mac OS X uses preemptive
multitasking, whereas Mac OS 9 uses cooperative
multitasking.

network A group of hosts that can directly
communicate with each other.

nib file A file containing resource data generated
by the Interface Builder application.

nonretained window A window without an
offscreen buffer for screen pixel values.

notification Generally, a programmatic
mechanism for alerting interested recipients (or
“observers”) that some event has occurred during

172
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



program execution. The observers can be users,
other processes, or even the same process that
originates the notification. In Mac OS X, the term
“notification” is used to identify specific
mechanisms that are variations of the basic
meaning. In the kernel environment, “notification”
is sometimes used to identify a message sent via
IPC from kernel space to user space; an example
of this is an IPC notification sent from a device
driver to the window server’s event queue.
Distributed notifications provide a way for a
process to broadcast an alert (along with
additional data) to any other process that makes
itself an observer of that notification. Finally, the
Notification Manager (a Carbon manager) lets
background programs notify users—through
blinking icons in the menu bar, by sounds, or by
dialogs—that their intercession is required.

NFS Network File System. An NFS file server
allows users on the network to share files on other
hosts as if they were on their own local disks.

object A programming unit that groups together
a data structure (instance variables) and the
operations (methods) that can use or affect that
data. Objects are the principal building blocks of
object-oriented programs.

object file A file containing executable code and
data. Object files in the Mach-O executable format
take the suffix .o and are the product of
compilation using the GNU compiler (gcc).
Multiple object files are typically linked together
along with required frameworks to create a
program. See also code fragment; dynamic linking.

object wrapper Code that defines an object-based
interface for a set of procedural interfaces. Some
Cocoa objects wrap Carbon interfaces to provide
parallel functionality between Cocoa and Carbon
applications.

Objective-C An object-oriented programming
language based on standard C and a runtime
system that implements the dynamic functions of
the language. Objective-C’s few extensions to the
C language are mostly based on Smalltalk, one of
the first object-oriented programming languages.
Objective-C is available in the Cocoa application
environment.

opaque type In Core Foundation and Carbon, an
aggregate data type plus a suite of functions that
operate on instances of that type. The individual
fields of an initialized opaque type are hidden
from clients, but the type’s functions offer access
to most values of these fields. An opaque type is
roughly equivalent to a class in object-oriented
programming.

OpenGL The Open Graphics Language; an
industry-wide standard for developing portable
2D and 3D graphics applications. OpenGL consists
of an API and libraries that developers use to
render content in their applications.

open source A definition of software that includes
freely available access to source code,
redistribution, modification, and derived works.
The full definition is available at
www.opensource.org.

Open Transport Open Transport is a legacy
communications architecture for implementing
network protocols and other communication
features on computers running the Mac OS. Open
Transport provides a set of programming
interfaces that supports, among other things, both
the AppleTalk and TCP/IP protocols.

package In Java, a way of storing, organizing,
and categorizing related Java class files; typical
package names are java.util and
com.apple.cocoa.foundation. See also
application packaging.

PackageMaker A tool that builds an installable
software package from the files you provide. For
more information, see “PackageMaker” (page 150).

page The smallest unit, measured in bytes, of
information that the virtual memory system can
transfer between physical memory and backing
store. As a verb, page refers to transferring pages
between physical memory and backing store.

pasteboard Another name for the Clipboard.

PEF Preferred Executable Format. An executable
format understood by the Code Fragment
Manager. See also Mach-O.

173
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



permissions In BSD, a set of attributes governing
who can read, write, and execute resources in the
file system. The output of the ls -l command
represents permissions as a nine-position code
segmented into three binary three-character
subcodes; the first subcode gives the permissions
for the owner of the file, the second for the group
that the file belongs to, and the last for everyone
else. For example, -rwxr-xr-- means that the
owner of the file has read, write, execute
permissions (rwx); the group has read and execute
permissions (r-x); everyone else has only read
permissions. (The leftmost position indicates
whether this is a regular file (-), a directory (d), a
symbolic link (l), or a special pseudo-file device.)
The execute bit has a different semantic for
directories, meaning they can be searched.

physical address An address to which a hardware
device, such as a memory chip, can directly
respond. Programs, including the Mach kernel,
use virtual addresses that are translated to
physical addresses by mapping hardware
controlled by the Mach kernel.

physical memory Electronic circuitry contained
in random-access memory (RAM) chips, used to
temporarily hold information at execution time.
Addresses in a process’s virtual memory are
mapped to addresses in physical memory. See
also virtual memory.

pixel The basic logical unit of programmable color
on a computer display or in a computer image.
The physical size of a pixel depends on the
resolution of the display screen.

plug-in An external module of code and data
separate from a host (such as an application,
operating system, or other plug-in) that, by
conforming to an interface defined by the host,
can add features to the host without needing
access to the source code of the host. Plug-ins are
types of loadable bundles. They are implemented
with Core Foundation Plug-in Services.

port (1) In Mach, a secure unidirectional channel
for communication between tasks running on a
single system. (2) In IP transport protocols, an
integer identifier used to select a receiver for an
incoming packet or to specify the sender of an
outgoing packet.

POSIX The Portable Operating System Interface.
An operating-system interface standardization
effort supported by ISO/IEC, IEEE, and The Open
Group.

PostScript A language that describes the
appearance (text and graphics) of a printed page.
PostScript is an industry standard for printing
and imaging. Many printers contain or can be
loaded with PostScript software. PostScript
handles industry-standard, scalable typefaces in
the Type 1 and TrueType formats. PostScript is
an output format of Quartz.

preemption The act of interrupting a currently
running task in order to give time to another task.

preemptive multitasking A type of multitasking
in which the operating system can interrupt a
currently running task in order to run another
task, as needed. See also cooperative multitasking.

process A BSD abstraction for a running program.
A process’s resources include a virtual address
space, threads, and file descriptors. In Mac OS X,
a process is based on one Mach task and one or
more Mach threads.

property list A structured, textual representation
of data that uses the Extensible Markup Language
(XML) as the structuring medium. Elements of a
property list represent data of certain types, such
as arrays, dictionaries, and strings.

pthreads The POSIX Threads package (BSD).

Quartz The native 2D rendering API for Mac OS
X. Quartz contains programmatic interfaces that
provide high-quality graphics, compositing,
translucency, and other effects for rendered
content. Quartz is included as part of the
Application Services umbrella framework.

Quartz Extreme A technology integrated into the
lower layers of Quartz that enables many graphics
operations to be offloaded to hardware. This
offloading of work to the graphics processor unit
(GPU) provides tremendous acceleration for
graphics-intensive applications. This technology
is enabled automatically by Quartz and OpenGL
on supported hardware.

174
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



QuickTime Apple’s multimedia authoring and
rendering technology. QuickTime lets you import
and export media files, create new audio and
video content, modify existing content, and play
back content.

RAM Random-access memory. Memory that a
microprocessor can either read or write to.

raster graphics Digital images created or captured
(for example, by scanning in a photo) as a set of
samples of a given space. A raster is a grid of
x-axis (horizontal) and y-axis (vertical) coordinates
on a display space. (Three-dimensional images
also have a z coordinate.) A raster image identifies
the monochrome or color value with which to
illuminate each of these coordinates. The raster
image is sometimes referred to as a bitmap
because it contains information that is directly
mapped to the display grid. A raster image is
usually difficult to modify without loss of
information. Examples of raster-image file types
are BMP, TIFF, GIF, and JPEG files. See also vector
graphics.

real time In reference to operating systems, a
guarantee of a certain capability within a specified
time constraint, thus permitting predictable,
time-critical behavior. If the user defines or
initiates an event and the event occurs
instantaneously, the computer is said to be
operating in real time. Real-time support is
especially important for multimedia applications.

reentrant The ability of code to process multiple
interleaved requests for service nearly
simultaneously. For example, a reentrant function
can begin responding to one call, be interrupted
by other calls, and complete them all with the
same results as if the function had received and
executed each call serially.

resolution The number of pixels (individual
points of color) contained on a display monitor,
expressed in terms of the number of pixels on the
horizontal axis and the number on the vertical
axis. The sharpness of the image on a display
depends on the resolution and the size of the
monitor. The same resolution will be sharper on
a smaller monitor and gradually lose sharpness
on larger monitors because the same number of
pixels are being spread out over a larger area.

resource Anything used by executable code,
especially by applications. Resources include
images, sounds, icons, localized strings, archived
user interface objects, and various other things.
Mac OS X supports both Resource Manager–style
resources and “per-file” resources. Localized and
nonlocalized resources are put in specific places
within bundles.

retained window A window with an offscreen
buffer for screen pixel values. Images are rendered
into the buffer for any portions of the window
that aren’t visible onscreen.

role An identifier of an application’s relation to
a document type. There are five roles: Editor
(reads and modifies), Viewer (can only read), Print
(can only print), Shell (provides runtime services),
and None (declares information about type). You
specify document roles in an application’s
information property list.

ROM Read-only memory, that is, memory that
cannot be written to.

run loop The fundamental mechanism for event
monitoring in Mac OS X. A run loop registers
input sources such as sockets, Mach ports, and
pipes for a thread; it also enables the delivery of
events through these sources. In addition to
sources, run loops can also register timers and
observers. There is exactly one run loop per
thread.

runtime The period of time during which a
program is being executed, as opposed to compile
time or load time. Can also refer to the runtime
environment, which designates the set of
conventions that arbitrate how software is
generated into executable code, how code is
mapped into memory, and how functions call one
another.

Safari Apple’s web browser. Safari is the default
web browser that ships with Mac OS X.

scheduling The determination of when each
process or task runs, including assignment of start
times.

SCM Repository Source Code Management
Repositories. A code database used to enable the
collaborative development of large projects by

175
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



multiple engineers. SCM repositories are managed
by specific tools (such as CVS and Subversion),
which manage the repository and handle check-ins
and check-outs of code resources by engineers.

SCSI Small Computer Systems Interface. A
standard connector and communications protocol
used for connecting devices such as disk drives
to computers.

script A series of statements, written in a scripting
language such as AppleScript or Perl, that instruct
an application or the operating system to perform
various operations. Interpreter programs translate
scripts.

semaphore A programming technique for
coordinating activities in which multiple processes
compete for the same kernel resources.
Semaphores are commonly used to share a
common memory space and to share access to
files. Semaphores are one of the techniques for
interprocess communication in BSD.

server A process that provides services to other
processes (clients) in the same or other computers.

Shark A tool for analyzing a running (or static)
application that returns metrics to help you
identify potential performance bottlenecks. For
more information, see “Performance Tools” (page
156).

sheet A dialog associated with a specific window.
Sheets appear to slide out from underneath the
window title and float above the window.

shell An interactive programming language
interpreter that runs in a Terminal window. Mac
OS X includes several different shells, each with
a specialized syntax for executing commands and
writing structured programs, called shell scripts.

SMP Symmetric multiprocessing. A feature of an
operating system in which two or more processors
are managed by one kernel, sharing the same
memory and having equal access to I/O devices,
and in which any task, including kernel tasks, can
run on any processor.

socket (1) In BSD-derived systems, a socket refers
to different entities in user and kernel operations.
For a user process, a socket is a file descriptor that

has been allocated using socket(2). For the
kernel, a socket is the data structure that is
allocated when the kernel’s implementation of the
socket(2) call is made. (2) In AppleTalk
protocols, a socket serves the same purpose as a
“port” in IP transport protocols.

spool To send files to a device or program (called
a spooler or daemon) that puts them in a queue
for later processing. The print spooler controls
output of jobs to a printer. Other devices, such as
plotters and input devices, can also have spoolers.

subframework A public framework that packages
a specific Apple technology and is part of an
umbrella framework. Through various
mechanisms, Apple prevents or discourages
developers from including or directly linking with
subframeworks. See also umbrella framework.

symbolic link A lightweight reference to files
and folders in UFS file systems. A symbolic link
allows multiple references to files and folders
without requiring multiple copies of these items.
Symbolic links are fragile because if what they
refer to moves somewhere else in the file system,
the link breaks. However, they are useful in cases
where the location of the referenced file or folder
will not change. See also alias.

system framework A framework developed by
Apple and installed in the file-system location for
system software.

task A Mach abstraction, consisting of a virtual
address space and a port name space. A task itself
performs no computation; rather, it is the context
in which threads run. See also thread.

TCP/IP Transmission Control Protocol/Internet
Protocol. An industry-standard protocol used to
deliver messages between computers over the
network. TCP/IP support is included in Mac OS
X.

thread In Mach, the unit of CPU utilization. A
thread consists of a program counter, a set of
registers, and a stack pointer. See also task.

thread-safe code Code that can be used safely by
several threads simultaneously.

176
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



timer A kernel resource that triggers an event at
a specified interval. The event can occur only once
or can be recurring. Timers are one of the input
sources for run loops. Timers are also
implemented at higher levels of the system, such
as CFTimer in Core Foundation and NSTimer in
Cocoa.

transformation An alteration to a coordinate
system that defines a new coordinate system.
Standard transformations include rotation, scaling,
and translation. A transformation is represented
by a matrix.

UDF Universal Disk Format. The file-system
format used in DVD disks.

UFS UNIX file system. An industry-standard
file-system format used in UNIX-like operating
systems such as BSD. UFS in Mac OS X is a
derivative of 4.4BSD UFS. Its disk layout is not
compatible with other BSD UFS implementations.

umbrella framework A system framework that
includes and links with constituent
subframeworks and other public frameworks. An
umbrella framework “contains” the system
software defining an application environment or
a layer of system software. See also subframework.

Unicode A 16-bit character set that assigns
unique character codes to characters in a wide
range of languages. In contrast to ASCII, which
defines 128 distinct characters typically
represented in 8 bits, Unicode comprises 65536
distinct characters that represent the unique
characters used in many languages.

vector graphics The creation of digital images
through a sequence of commands or mathematical
statements that place lines and shapes in a
two-dimensional or three-dimensional space. One
advantage of vector graphics over bitmap graphics
(or raster graphics) is that any element of the
picture can be changed at any time because each
element is stored as an independent object.
Another advantage of vector graphics is that the
resulting image file is typically smaller than a
bitmap file containing the same image. Examples
of vector-image file types are PDF, encapsulated
PostScript (EPS), and SVG. See also raster
graphics.

versioning With frameworks, schemes to
implement backward and forward compatibility
of frameworks. Versioning information is written
into a framework’s dynamic shared library and
is also reflected in the internal structure of a
framework. See also major version; minor version.

VFS Virtual File System. A set of standard
internal file-system interfaces and utilities that
facilitate support for additional file systems. VFS
provides an infrastructure for file systems built
into the kernel.

virtual address A memory address that is usable
by software. Each task has its own range of virtual
addresses, which begins at address zero. The Mach
operating system makes the CPU hardware map
these addresses onto physical memory only when
necessary, using disk memory at other times. See
also physical address.

virtual machine (VM) A simulated computer in
that it runs on a host computer but behaves as if
it were a separate computer. The Java virtual
machine works as a self-contained operating
environment to run Java applications and applets.

virtual memory The use of a disk partition or a
file on disk to provide the facilities usually
provided by RAM. The virtual-memory manager
in Mac OS X provides either a 32-bit or 64-bit
protected address space for each task (depending
on the options used to build the task) and
facilitates efficient sharing of that address space.

VoiceOver A spoken user interface technology
for visually impaired users.

volume A storage device or a portion of a storage
device that is formatted to contain folders and
files of a particular file system. A hard disk, for
example, may be divided into several volumes
(also known as partitions).

volume format The structure of file and folder
(directory) information on a hard disk, a partition
of a hard disk, a CD-ROM, or some other volume
mounted on a computer system. Volume formats
can specify such things as multiple forks (HFS
and HFS+), symbolic and hard links (UFS), case
sensitivity of filenames, and maximum length of
filenames. See also file system.

177
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



widget An HTML-based program that runs in
the Dashboard layer of the system.

window server A systemwide process that is
responsible for rudimentary screen displays,
window compositing and management, event
routing, and cursor management. It coordinates
low-level windowing behavior and enforces a
fundamental uniformity in what appears on the
screen.

Xcode An integrated development environment
(IDE) for creating Mac OS X software. Xcode
incorporates compiler, debugger, linker, and text
editing tools into a single package to streamline
the development process. For more information,
see “Xcode” (page 135).

Instruments An integrated performance analysis
and debugging tool. Instruments lets you gather
a configurable set of metrics while your
application is running, providing you with
visualization tools to analyze the data and see
performance problems and potential coding errors
within your software. For more information, see
“Instruments” (page 143).

178
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y



This table describes the changes to Mac OS X Technology Overview.

NotesDate

Updated for Mac OS X v10.5. The document was also reorganized.2007-10-31

Associated in-use prefix information with the system frameworks. Clarified
directories containing developer tools.

2006-06-28

Added references to "Universal Binary Programming Guidelines."2005-10-04

Fixed minor typos. Updated environment variable inheritance information.2005-08-11

Incorporated developer feedback.2005-07-07

Added AppleScript to the list of application environments.

Corrected the man page name for SQLite.2005-06-04

Fixed broken links and incorporated user feedback.2005-04-29

Incorporated porting and technology guidelines from "Apple Software
Design Guidelines." Added information about new system technologies.
Changed "Rendezvous" to "Bonjour."

Added new software types to list of development opportunities.

Added a command-line primer.

Added a summary of the available development tools.

Updated the list of system frameworks.

First version of Mac OS X Technology Overview. Some of the information
in this document previously appeared in System Overview.

2004-05-27

179
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History



180
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History



Symbols

> operator 118
| operator 118

Numerals

3D graphics 127
64-bit support 32
802.1x protocol 27

A

a2p tool 162
Abstract Windowing Toolkit package 42
Accelerate framework 100
Accelerate.framework 56, 129
access control lists 25
Accessibility Inspector 148
Accessibility Verifier 148
accessibility

support for 79–80
technologies 101

acid tool 157
ACLs. See access control lists
adaptability

explained 104
technologies for implementing 104

ADC. See Apple Developer Connection
Address Book 63–64
Address Book action plug-ins 86
AddressBook.framework 123
AE.framework 131
agent applications 90
AGL.framework 123
AGP 24, 97
agvtool tool 160
AirPort 29

AirPort Extreme 29
amber tool 157
anti-aliasing 44
Apache HTTP server 30, 92
AppKit.framework 123
AppKitScripting.framework 123
Apple Developer Connection (ADC) 14
Apple events 39, 131
Apple Guide 111
Apple Information Access Toolkit 70
Apple Type Services 50, 129
Apple Type Services for Unicode Imaging. See ATSUI
AppleScript application environment 62
AppleScript Studio 62, 144
AppleScript

overview 80
script language 95
scripting additions 96
web services 93
when to use 102, 105

AppleScriptKit.framework 124
AppleShareClient.framework 124
AppleShareClientCore.framework 124
Applet Launcher 146
AppleTalk 28
AppleTalk Filing Protocol (AFP) 26
AppleTalk Manager 111
AppleTalk.framework 124
Application Kit 60
application plug-ins 87
application services 91
applications

and interapplication communication 39
bundling 77
opening 69

ApplicationServices.framework 61, 129
Aqua 75, 101, 102
architecture

hardware 32
as tool 152
assistive devices 80
ATS. See Apple Type Services

181
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

Index



ATS.framework 129
ATSUI 50
attractive appearance

explained 102
technologies for implementing 102

AU Lab 145
audio units 145
audio

delivery 52
file formats 53

AudioToolbox.framework 124
AudioUnit.framework 124
authentication 71, 127
Authorization Services 71, 104
Automator 64, 82, 87, 124
Automator.framework 130
availability of APIs 101
awk tool 162

B

bash shell 95
Berkeley Software Distribution. See BSD
BigTop 147
bison tool 163
Bluetooth 126
Bluetooth Explorer 148
Bonjour 29, 64, 101
Bootstrap Protocol (BOOTP) 27
BSD

application environment 62–63
command line interface 115
information about 16
notifications 37
operating system 24
pipes 38
ports 37, 40
sockets 37, 40

bsdmake tool 152
bugs, reporting 15
Build Applet 148
built-in commands 116
bundles 40, 77

C

C development 60
C++ development 60
c2ph tool 155
CalendarStore.framework 64, 124

Carbon application environment 60–61
Carbon Event Manager 112
Carbon.framework 61, 130
CarbonCore.framework 131
CarbonSound.framework 130
cascading style sheets 72, 92
cat command 118
cd command 118
CD recording 65
CDSA 70
certificates

and security 71
storing in keychains 102

CFNetwork 107
CFNetwork.framework 131
CFRunLoop 37
CFSocket 37
CGI 92
ci tool 159
Classic environment

overview 35
Clipboard Viewer 148
co tool 159
Cocoa.framework 60, 124
Cocoa

and web services 93
application environment 59–60
Application Kit framework 123
bindings 60
Exception Handling framework 125
Foundation framework 126
text 49

code completion 136
Code Fragment Manager 35
code signing 36, 77, 104
Collaboration.framework 67, 124
collection objects 40
color management module 55
Color Picker 130
ColorSync 55
ColorSync.framework 129
command-line tools 94
Common Unix Printing System (CUPS) 55
CommonPanels.framework 130
compileHelp tool 157
contextual menu plug-ins 87
Core Animation 103
Core Audio 51–52, 87
Core Data 65
Core Foundation

date support 40
features 40
networking interfaces 131

182
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



when to use 104, 105
Core Graphics 43
Core Image 48, 103
Core Image Fun House 146
Core Text 78, 103
Core Video 54
CoreAudio.framework 124
CoreAudioKit.framework 124
CoreData.framework 65, 125
CoreFoundation.framework 61, 125
CoreGraphics.framework 129
CoreMIDI.framework 125
CoreMIDIServer.framework 125
CoreServices.framework 61, 131
CoreText.framework 130
CoreVideo.framework 125
cp command 118
CPlusTest.framework 133
CpMac tool 161
CrashReporterPrefs 148
cscope tool 156
csh shell 95
CSS. See cascading style sheets
ctags tool 156
CUPS 55
current directory 116
cvs tool 160
cvs-unwrap tool 160
cvs-wrap tool 160

D

daemons 94
Darwin 20, 23–26
Dashboard 81
Dashboard widgets 90
Dashcode 142
data corruption, and shared memory 39
data formatters 136
data model management 65
data synchronization 72
databases 71, 72
date command 119
debug file formats 34
debugging 138
defaults tool 155
deprecated APIs, finding 101
DeRez tool 158
design principles

adaptability 104
attractive appearance 102
ease of use 101

interoperability 105
mobility 106
performance 99
reliability 103
technologies 103
use of modern APIs 101

developer tools, downloading 14
developer tools, overview 21
device drivers 24, 97
DHCP. See Dynamic Host Configuration Protocol
DictionaryServices.framework 132
diff tool 160
diff3 tool 160
diffpp tool 160
diffstat tool 160
digital paper 44
directory services 69
DirectoryService.framework 125
disc recording 65
DiscRecording.framework 125
DiscRecordingUI.framework 125
DiskArbitration.framework 125
Display Manager 112
distributed notifications 39
distributed objects 40
DNS daemon 94
DNS protocol 27, 69
Dock 81
Document Object Model (DOM) 73, 92
documentation

installed location 15
viewing 136

documents, opening 69
DOM. See Document Object Model
Domain Name Services. See DNS protocol
dprofpp tool 163
drag and drop 106
DrawSprocket.framework 125
DVComponentGlue.framework 125
DVDPlayback.framework 125
DVDs

playing 54
recording 65

DWARF debugging symbols 34
dyld 34
Dynamic Host Configuration Protocol (DHCP) 27

E

ease of use
and internationalization 102
explained 101

183
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



technologies for implementing 101
echo command 119
elegance, designing for 101–102
endian issues 32
enhancements, requesting 15
environment variables 119
environment.plist file 120
error tool 156
Ethernet 29
Event Manager 112
ExceptionHandling.framework 125
extcheck tool 165
Extensible Markup Language. See XML

F

fast user switching 79
FAT file system 26
Fax support 55
FIFO (first-in, first-out) special file 38
file system events 36, 105
file system journaling 25
file systems

support 25–26
File Transfer Protocol (FTP) 27
FileMerge 148
filename extensions 25, 111
files

browsing 80
long filenames 25
nib 113
opening 69
property list 78
quarantining 36

filters 88
find2perl tool 163
Finder application 80–81
FireWire

audio interfaces 126
device drivers 97

fix and continue 136
flex tool 163
flow control 117
Font Manager 112
Font window 130
ForceFeedback.framework 125
formatter objects 78
Foundation.framework 60, 126
fpr tool 153
frameworks 85–86, 123–132
FreeBSD 16, 20, 62
FSEvents API 36, 105

fsplit tool 153
FTP. See File Transfer Protocol
FWAUserLib.framework 126

G

gatherheaderdoc tool 157
gcc tool 152
gdb tool 155
genstrings tool 158
gestures 68
GetFileInfo tool 161
GIMP. See GNU Image Manipulation Program
GLUT.framework 126
GNU Image Manipulation Program (GIMP) 55
gnumake tool 152
gprof tool 156
graphics, overview 20

H

h2ph tool 163
h2xs tool 163
HALLab 145
handwriting recognition 68, 131
hardware architectures 32
headerdoc2HTML tool 157
heap tool 155
Help documentation 66
Help Indexer 148
Help Manager 111
Help.framework 130
HFS (Mac OS Standard format) 25
HFS+ (Mac OS Extended format) 25
HI Toolbox 66, 113, 131
HI Toolbox. See Human Interface Toolbox
HIObject 66
HIServices.framework 130
HIToolbox.framework 131
home directory 116
HotSpot Java virtual machine 42
HTML, editing 72
HTML

development 92
display 72

HTMLRendering.framework 131
HTMLView control 132
HTTP 27
HTTPS 27
Human Interface Toolbox. See HI Toolbox

184
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



Hypertext Transport Protocol (HTTP) 27

I

I/O Kit 24
I/O Registry Explorer 149
ibtool tool 156
ICADevices.framework 126
ICC profiles 55
iChat presence 67
Icon Composer 148
icons 78
IDE. See integrated development environment
Identity Services 67
iDisk 80
idlj tool 165
ifnames tool 153
image effects 48
image units 88
ImageCapture.framework 131
ImageIO.framework 130
ImageKit.framework 132
images

capturing 67
supported formats 53

indent tool 154
Info.plist file 78
information property list files 78, 81
Ink services 68
Ink.framework 131
input method components 88
InputMethodKit.framework 68, 126
install tool 161
install-info tool 158
installation packages 77
InstallerPlugins.framework 126
install_name_tool tool 161
InstantMessage.framework 67, 126
Instruments 143
Instruments application 100
integrated development environment (IDE) 135
Interface Builder 113, 141
Interface Builder plug-ins 88
InterfaceBuilderKit.framework 133
internationalization 78
Internet Config 112
Internet support 27
interoperability

explained 105
technologies for implementing 105

interprocess communication (IPC) 36–40
ioalloccount tool 166

IOBluetooth.framework 126
IOBluetoothUI.framework 126
ioclasscount tool 166
IOKit.framework 126
ioreg tool 166
IP aliasing 29
IPSec protocol 28
IPv6 protocol 28
ISO 9660 format 26
iSync Plug-in Maker 149

J

jam tool 152
Jar Bundler 42, 147
jar tool 166
jarsigner tool 166
Java Native Interface (JNI) 42
Java Platform, Standard Edition/Java SE 61
java tool 164
Java Virtual Machine (JVM) 61
java.awt package 42
Java

and web sites 92
application environment 42, 61

javac tool 164
javadoc tool 165
JavaEmbedding.framework 126
JavaFrameEmbedding.framework 126
javah tool 165
JavaScript 92, 93
JavaVM.framework 127
javax.swing package 42
JBoss 92
jdb tool 164
jikes tool 164
JIT (just-in-time) bytecode compiler 42
jumbo frame support 29

K

Kerberos 70
Kerberos.framework 127
kernel events 37
kernel extensions 96–97
kernel queues 37
Kernel.framework 127
kevents 37
kextload tool 166
kextstat tool 166

185
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



kextunload tool 166
Keychain Services 68–69, 71, 102
kHTML rendering engine 72
KJS library 72
kqueues 37

L

LangAnalysis.framework 130
language analysis 130
LatentSemanticMapping.framework 69, 127
launch items 94
Launch Services 69
LaunchServices.framework 132
ld tool 152
LDAP. See Lightweight Directory Access Protocol
LDAP.framework 127
leaks tool 155
LEAP authentication protocol 27
less command 119
lex tool 163
libtool tool 153
Lightweight Directory Access Protocol (LDAP) 27, 69
lipo tool 161
locale support 40
localization 78
lorder tool 153
ls command 119
< operator 118

M

Mac OS 9 migration 111–112
Mac OS Extended format (HFS+) 25
Mac OS Standard format (HFS) 25
Mach 23–24
Mach messages 40
Mach-O file format 33
Macromedia Flash 92
make tool 152
MallocDebug 147
malloc_history tool 155
man pages 115
Mandatory Access Control (MAC) 36
MDS authentication protocol 27
MediaBrowser.framework 130
memory

protected 23
shared 38
virtual 24

merge tool 160
MergePef tool 161
Message.framework 127
metadata importers 89
metadata technology 77
Microsoft Active Directory 69
MIDI

frameworks 125
mkbom tool 161
mkdep tool 152
mkdir command 119
MLTE. See Multilingual Text Engine (MLTE)
mobility

explained 106
technologies for implementing 106

modern APIs, finding 101
more command 119
Mouse keys. See accessibility
MS-DOS 26
multihoming 29
Multilingual Text Engine (MLTE)

overview 51
Multiple Document Interface 110
multitasking 24
mv command 119
MvMac tool 161

N

Name Binding Protocol (NBP) 27
named pipes 38
native2ascii tool 165
NavigationServices.framework 131
NBP. See Name Binding Protocol
NetBoot 29
NetBSD project 16
NetInfo 69
network diagnostics 30
network file protocols 26
Network File System (NFS) 26
Network Kernel Extensions (NKEs) 30
Network Lookup Panel 130
Network Time Protocol (NTP) 27
networking

features 27–30
file protocols 26
routing 29
supported protocols 27

NFS. See Network File System
nib files 113
nm tool 156
nmedit tool 154

186
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



notifications 39
NSOperation object 100
NSOperationQueue object 100
NT File System (NTFS) 26
NTFS 26
NTP. See Network Time Protocol

O

Objective-C 41, 59
Objective-C 2.0 41
Objective-C++ 59
open command 119
Open Directory 69
Open Panel 131
open tool 121
Open Transport 28, 112, 132
open-source development 16
OpenAL 52
OpenAL.framework 52, 127
OpenBSD project 16
OpenDarwin project 16
opendiff tool 160
OpenGL 46, 103, 123
OpenGL Driver Monitor 146
OpenGL Profiler 146
OpenGL Shader Builder 146
OpenGL Utility Toolkit 126
OpenGL.framework 127
OpenScripting.framework 131
osacompile tool 162
OSAKit.framework 127
osascript tool 162
OSServices.framework 132
otool tool 156

P

PackageMaker 150
packages 77
PacketLogger 149
pagestuff tool 156
PAP. See Printer Access Protocol
parent directory 116
password management 68
passwords, protecting 102
Pasteboard 106
patch tool 160
path characters 117
PATH environment variable 120

pathnames 116
pbprojectdump tool 152
PCI 24, 97
PCIe 24
PCSC.framework 127
PDF (Portable Document Format) 44, 55
PDF Kit 69
PDFKit.framework 132
PDFView 69
PEAP authentication protocol 27
pen-based input 88, 131
performance

benefits of modern APIs 101
choosing efficient technologies 99
explained 99
influencing factors 99
technologies for implementing 99
tools for measuring 154

Perl 92, 95
perl tool 162
perlbug tool 163
perlcc tool 162
perldoc tool 163
Personal Web Sharing 30
PHP 92, 93, 95
pipes, BSD 38
Pixie 146
pl2pm tool 163
plug-ins 40, 86–89
plutil tool 154
PMC Index 148
pod2html tool 164
pod2latex tool 164
pod2man tool 164
pod2text tool 164
pod2usage tool 164
podchecker tool 164
podselect tool 164
Point-to-Point Protocol (PPP) 27
Point-to-Point Protocol over Ethernet (PPPoE) 28
pointers 109
porting

from 32-bit architectures 109
from Mac OS 9 111
from Windows 110–111

ports, BSD 37, 40
POSIX 24, 31, 62
PostScript OpenType fonts 50
PostScript printing 56
PostScript Type 1 fonts 50
PowerPC G5 109
PPC Toolbox 112
PPP. See Point-to-Point Protocol

187
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



PPPoE. See Point-to-Point Protocol over Ethernet
predictive compilation 136
preemptive multitasking 24
preference panes 92
PreferencePanes.framework 127
preferences 40
Preferred Executable Format (PEF) 33, 35
print preview 56
Print.framework 131
PrintCore.framework 130
Printer Access Protocol (PAP) 27
printf tool 154
Printing Manager 112
printing

dialogs 131
overview 55
spooling 55

project management 135
Property List Editor 78, 149
property list files 78
protected memory 23
pstruct tool 156
PubSub.framework 70, 127
pwd command 119
Python 95
python tool 162
Python.framework 127

Q

QD.framework 130
QTKit.framework 54, 127
Quartz 43–45, 103
Quartz Composer 144
Quartz Composer Visualizer 146
Quartz Compositor 45
Quartz Debug 146, 147
Quartz Extreme 45
Quartz Services 44, 105, 107
Quartz.framework 132
QuartzComposer.framework 132
QuartzCore.framework 48, 54, 128
Quick Look 76, 101
QuickDraw 49, 112, 130
QuickDraw 3D 112
QuickDraw GX 112
QuickDraw Text 112
QuickLook.framework 128
QuickTime 52–53
QuickTime Components 53, 89
QuickTime formats 53
QuickTime Kit 53, 54

QuickTime.framework 128

R

ranlib tool 153
raster printers 56
rcs tool 159
rcs-checkin tool 159
rcs2log tool 159
rcsclean tool 159
rcsdiff tool 159
rcsmerge tool 159
redo_prebinding tool 153
refactoring 140
reference library 15
Reggie SE 148
reliability

explained 103
technologies for implementing 104
using existing technologies 103

Repeat After Me 149
Research Assistant 138
ResMerger tool 154
resolution independence 76
resolution independent UI 44
Resource Manager 112
Rez tool 158
RezWack tool 154
rm command 119
rmdir command 119
rmic tool 165
rmiregistry tool 165
Routing Information Protocol 29
RTP (Real-Time Transport Protocol) 53
RTSP (Real-Time Streaming Protocol) 53
Ruby 96
ruby tool 162
Ruby.framework 128
RubyCocoa.framework 128
run loop support 40
runtime environments 34

S

S/MIME. See Secure MIME
s2p tool 162
Safari plug-ins 89
sample code 15
sample tool 156
Saturn 148

188
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



Save Panel 131
scalar values, and 64-bit systems 109
schema 65
screen readers 80
screen savers 90–91
ScreenSaver.framework 128
script languages 95–96
Script Manager 112
scripting additions 96
scripting support 30
Scripting.framework 128
ScriptingBridge.framework 128
sdiff tool 160
Search Kit 70
SearchKit.framework 132
Secure MIME (S/MIME) 28, 71
secure shell (SSH) protocol 28
secure transport 71
security 36

dialogs 131
Kerberos 127
Keychain Services 102
overview 70–71

Security.framework 128
SecurityFoundation.framework 128
SecurityHI.framework 131
SecurityInterface.framework 128
sed tool 162
semaphores 38
Service Location Protocol 28
services 91, 106
SetFile tool 161
SFTP protocol 27, 71
sh shell 96
shared memory 38–39
sharing accounts 67
Shark 147
Shark application 100
shells

aborting programs 119
and environment variables 119
built-in commands 116
commands 118
current directory 116
default 115
defined 115
frequently used commands 118
home directory 116
parent directory 116
redirecting I/O 118
running programs 120
specifying paths 116
startup scripts 120

terminating programs 118
valid path characters 117

Sherlock channels 93
Shockwave 92
simg4 tool 157
simg5 tool 157
Simple Object Access Protocol (SOAP) 28, 62, 93
SLP. See Service Location Protocol
smart cards 127
SMB/CIFS 26
snapshots 140
SOAP. See Simple Object Access Protocol
sockets 37, 40
Sound Manager interfaces 130
source code management 139
source-code management 136
Spaces 79
speech recognition 71, 80
speech synthesis 71
SpeechRecognition.framework 131
SpeechSynthesis.framework 130
spelling checkers 88
Spin Control 147
SpindownHD 148
splain tool 163
SplitForks tool 161
spoken user interface 80
Spotlight importers 77, 89
Spotlight technology 77
SQLite 71
SRLanguageModeler 149
SSH protocol 28, 71
stabs debugging symbols 34
Standard File Package 112
startup items 94
stderr pipe 117
stdin pipe 117
stdout pipe 117
Sticky keys. See accessibility
streams 38, 40
strings 40
strings tool 156
svn tool 158
svnadmin tool 158
svndumpfilter tool 159
svnlook tool 159
svnserve tool 159
svnversion tool 159
Swing package 42
Sync Services 72
Syncrospector 149
SyncServices.framework 72, 128, 133
syntax coloring 136

189
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



System Configuration framework 105, 107
System.framework 128
SystemConfiguration.framework 128

T

Tcl 96
Tcl.framework 128
tclsh tool 162
TCP. See Transmission Control Protocol
tcsh shell 96
technologies, choosing 99
Terminal application 115
TextEdit 112
Thread Viewer 147
threads 31, 100
Time Machine 73, 83
time support 40
Tk.framework 128
TLS authentication protocol 27
Tomcat 92
tools, downloading 14
top tool 157
tops tool 154
Transmission Control Protocol (TCP) 28
transparency 44
Trash icon 81
TrueType fonts 50
trust services 71
TTLS authentication protocol 27
TWAIN.framework 128

U

UDF (Universal Disk Format) 26
UDP. See User Datagram Protocol
UFS (UNIX File System) 26
Unicode 78
unifdef tool 154
UnRezWack tool 154
update_prebinding tool 153
URL Access Manager 112
URLs

opening 69
support for 40

USB Prober 149
User Datagram Protocol (UDP) 28
user experience 75–78
user experience, overview 20

V

V-Twin engine 70
vecLib.framework 128, 129
Velocity Engine 45
Vertical Retrace Manager 112
video effects 54
video formats 53
vImage.framework 129
Virtual File System (VFS) 25
virtual memory 24
visual development environments 144
visual effects 48
vmmap tool 155
vm_stat tool 155
VoiceOver 80
volumes 117

W

weak linking 34, 35
Web Kit 72–73, 104
web services 73, 93
web streaming formats 53
WebCore.framework 132
WebDAV 26
WebKit.framework 132
WebObjects 62, 92
websites 92
window layouts 78
window management 45
workflow, managing 87
WSDL 62

X

X11 environment 31, 62–63
Xcode 135
Xcode Tools, downloading 14
xcodebuild tool 153
XgridFoundation.framework 129
XHTML 92
XML-RPC 28, 93
XML

and websites 92
parsing 40, 73
when to use 106

Xserve 94

190
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X



Y

yacc tool 163

Z

zero-configuration networking 29, 64
ZoneMonitor 147
zooming. See accessibility
zsh shell 96

191
2007-10-31 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N D E X


	Mac OS X Technology Overview
	Contents
	Figures and Tables
	Introduction
	Mac OS X System Overview
	A Layered Approach
	The Advantage of Layers
	Developer Tools

	Darwin and Core Technologies
	Darwin
	Mach
	Device-Driver Support
	BSD
	File-System Support
	Network Support
	Standard Network Protocols
	Legacy Network Services and Protocols
	Network Technologies
	Routing and Multihoming
	Zero-Configuration Networking
	NetBoot
	Personal Web Sharing
	Networking Extensions
	Network Diagnostics

	Scripting Support
	Threading Support
	X11

	Binary File Architecture
	Hardware Architectures
	64-Bit Support
	Object File Formats
	Debug File Formats
	Runtime Environments
	Dyld Runtime Environment
	Java Runtime Environment
	CFM Runtime Environment
	The Classic Environment


	Security
	IPC and Notification Mechanisms
	FSEvents API
	Kernel Queues and Kernel Events
	BSD Notifications
	Sockets, Ports, and Streams
	BSD Pipes
	Shared Memory
	Apple Events
	Distributed Notifications
	Distributed Objects for Cocoa
	Mach Messaging

	Core Foundation
	Objective-C
	Java Support
	The Java Environment
	Java and Other Application Environments


	Graphics and Multimedia Technologies
	Drawing Technologies
	Quartz
	Digital Paper Metaphor
	Quartz 2D Features
	Quartz Compositor

	Cocoa Drawing
	OpenGL
	Core Animation
	Core Image
	Image Kit
	QuickDraw

	Text and Fonts
	Cocoa Text
	Core Text
	Apple Type Services
	Apple Type Services for Unicode Imaging
	Multilingual Text Engine

	Audio Technologies
	Core Audio
	OpenAL

	Video Technologies
	QuickTime
	Supported Media Formats
	Extending QuickTime

	QuickTime Kit
	Core Video
	DVD Playback

	Color Management
	Printing
	Accelerating Your Multimedia Operations

	Application Technologies
	Application Environments
	Cocoa
	Carbon
	Java
	AppleScript
	WebObjects
	BSD and X11

	Application Technologies
	Address Book Framework
	Automator Framework
	Bonjour
	Calendar Store Framework
	Core Data Framework
	Disc Recording Framework
	Help Support
	Human Interface Toolbox
	Identity Services
	Instant Message Framework
	Image Capture Services
	Ink Services
	Input Method Kit Framework
	Keychain Services
	Latent Semantic Mapping Services
	Launch Services
	Open Directory
	PDF Kit Framework
	Publication Subscription Framework
	Search Kit Framework
	Security Services
	Speech Technologies
	SQLite Library
	Sync Services Framework
	Web Kit Framework
	Time Machine Support
	Web Service Access
	XML Parsing Libraries


	User Experience
	Technologies
	Aqua
	Quick Look
	Resolution-Independent User Interface
	Spotlight
	Bundles and Packages
	Code Signing
	Internationalization and Localization
	Software Configuration
	Fast User Switching
	Spaces
	Accessibility
	AppleScript

	System Applications
	The Finder
	The Dock
	Dashboard
	Automator
	Time Machine


	Software Development Overview
	Applications
	Frameworks
	Plug-ins
	Address Book Action Plug-Ins
	Application Plug-Ins
	Automator Plug-Ins
	Contextual Menu Plug-Ins
	Core Audio Plug-Ins
	Image Units
	Input Method Components
	Interface Builder Plug-Ins
	Metadata Importers
	QuickTime Components
	Safari Plug-ins

	Dashboard Widgets
	Agent Applications
	Screen Savers
	Slideshows
	Programmatic Screen Savers

	Services
	Preference Panes
	Web Content
	Dynamic Websites
	SOAP and XML-RPC
	Sherlock Channels

	Mail Stationery
	Command-Line Tools
	Launch Items, Startup Items, and Daemons
	Scripts
	Scripting Additions for AppleScript
	Kernel Extensions
	Device Drivers

	Choosing Technologies to Match Your Design Goals
	High Performance
	Easy to Use
	Attractive Appearance
	Reliability
	Adaptability
	Interoperability
	Mobility

	Porting Tips
	64-Bit Considerations
	Windows Considerations
	Carbon Considerations
	Migrating From Mac OS 9
	Required Replacement Technologies
	Recommended Replacement Technologies

	Use the Carbon Event Manager
	Use the HIToolbox
	Use Nib Files


	Appendix A: Command Line Primer
	Basic Shell Concepts
	Getting Information
	Specifying Files and Directories
	Accessing Files on Volumes
	Flow Control
	Redirecting Input and Output
	Terminating Programs


	Frequently Used Commands
	Environment Variables
	Running Programs

	Appendix B: Mac OS X Frameworks
	System Frameworks
	Accelerate Framework
	Application Services Framework
	Automator Framework
	Carbon Framework
	Core Services Framework
	Quartz Framework
	Web Kit Framework

	Xcode Frameworks
	System Libraries

	Appendix C: Mac OS X Developer Tools
	Applications
	Xcode
	Xcode Editor
	Debugging Environment
	Research Assistant
	Documentation Window
	SCM Repository Management
	Project Snapshots
	Refactoring Tools
	Build Settings
	Project Versioning

	Interface Builder
	Dashcode
	Instruments
	Quartz Composer
	AppleScript Studio
	Audio Applications
	AU Lab
	HALLab

	Graphics Applications
	Java
	Performance Applications
	Utility Applications
	iSync Plug-in Maker
	PackageMaker


	Command-Line Tools
	Compiler, Linker, and Source Code Tools
	Compilers, Linkers, Build Tools
	Library Utilities
	Code Utilities

	Debugging and Tuning Tools
	General Tools
	Memory Analysis Tools
	Examining Code
	Performance Tools
	Instruction Trace Tools

	Documentation and Help Tools
	Localization Tools
	Version Control Tools
	Subversion
	RCS
	CVS
	Comparing Files

	Packaging Tools
	Scripting Tools
	Interpreters and Compilers
	Script Language Converters
	Perl Tools
	Parsers and Lexical Analyzers
	Documentation Tools

	Java Tools
	General
	Java Utilities
	Java Archive (JAR) Files

	Kernel Extension Tools
	I/O Kit Driver Tools


	Glossary
	Revision History
	Index
	Symbols
	Numerals
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z



