
Automator AppleScript Actions Tutorial
Apple Applications > Automator

2007-07-18

Apple Inc.
© 2005, 2007 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled
computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript,
AppleScript Studio, Cocoa, iPhoto, iPod,
iTunes, Mac, Mac OS, Objective-C, and
Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR

IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to Automator AppleScript Actions Tutorial 7

Organization of This Document 7

Chapter 1 Before You Start 9

What Is an Automator Action? 9
The Action You Will Create 11

Chapter 2 Creating the Project 13

Chapter 3 Creating the User Interface 19

Opening the Action Nib File 19
Placing and Configuring User-Interface Objects 20

Chapter 4 Establishing Bindings 27

Bindings in an Action 27
Establishing the Bindings of the Action 28
Alternatives to Bindings 31

Chapter 5 Configuring the Action 33

Editing the Information Property List 33
Action Input and Output 35
Default Parameter Settings 37
The Action Description 38
Other Settings 39

Chapter 6 Writing the Action Script 41

The on run Command Handler 41
Writing the Subroutines 43

3
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

Chapter 7 Building and Testing the Action 45

Document Revision History 49

4
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures

Chapter 1 Before You Start 9

Figure 1-1 The Find Messages in Mail action 9
Figure 1-2 The Copy Unread Mail to iPod Notes workflow 10
Figure 1-3 The Pass Random Items action in a workflow 11

Chapter 2 Creating the Project 13

Figure 2-1 Selecting the AppleScript action project template 14
Figure 2-2 Specifying project name and location 15
Figure 2-3 The files of an AppleScript action project in Xcode 16

Chapter 3 Creating the User Interface 19

Figure 3-1 The nib file window, initial action view, and palette 19
Figure 3-2 Automator icon 20
Figure 3-3 Placing a text field by dragging it from the palette 21
Figure 3-4 Setting the size attribute of the text field 22
Figure 3-5 Resizing the text field 23
Figure 3-6 Changing the string in a in a non-editable text field (a label) 23
Figure 3-7 Changing the number of radio buttons in a matrix (radio buttons) 24
Figure 3-8 Changing the title of a button 24
Figure 3-9 Final user interface of Pass Random Items action 25

Chapter 4 Establishing Bindings 27

Figure 4-1 Binding between the pop-up list and a property of the parameter dictionary
28

Figure 4-2 Adding keys as attributes of the Parameters instance. 29
Figure 4-3 Binding between the controller and the parameters dictionary 30
Figure 4-4 The selectedIndex attribute in the bindings inspector 31

Chapter 5 Configuring the Action 33

Figure 5-1 The property inspector for Automator actions (general collection) 34
Figure 5-2 The completed General collection of Automator properties) 35
Figure 5-3 Automator property inspector—Input collection 36
Figure 5-4 The default parameters for the Pass Random Items action 38

5
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

Figure 5-5 The description for the Pass Random Items action 38

Chapter 6 Writing the Action Script 41

Figure 6-1 The template for the on run handler 41
Figure 6-2 Initializing local output and parameter variables 42
Figure 6-3 The final on run handler 42
Figure 6-4 Subroutines called by the main script 43

Chapter 7 Building and Testing the Action 45

Figure 7-1 Executable settings for the Pass Random Items action 45
Figure 7-2 Testing the Pass Random Items action in a workflow 46
Figure 7-3 The AppleScript debugger 47

6
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

F I G U R E S

This tutorial shows you how to create an action for the Automator application using AppleScript as
the implementation language.

Important: Some of the Xcode features mentioned in this tutorial, such as the AppleScript debugger
and the property inspector, were introduced with Xcode 2.1. If you have an earlier version of Xcode,
you do not have access to these features.

The tutorial assumes that you are familiar with AppleScript, but otherwise has no other prerequisites.
It is helpful, however, if you have some experience with AppleScript Studio.

Organization of This Document

This tutorial has the following chapters, which are meant to be read in the given order:

1. “Before You Start” (page 9) gives an overview of Automator actions and workflows. It also
describes the action that you will create in the tutorial.

2. “Creating the Project” (page 13) explains how to create an AppleScript action project and identifies
the key elements of such projects.

3. “Creating the User Interface” (page 19) shows you how to create the user interface of the action
using the Interface Builder application.

4. “Establishing Bindings” (page 27) explains what Cocoa bindings are and describes how you
establish bindings for the action.

5. “Configuring the Action” (page 33) discusses how to set the properties of the action in its
Info.plist file.

6. “Writing the Action Script” (page 41) shows the script that you write for the action and explains
the general structure and behavior of all such scripts.

7. “Building and Testing the Action” (page 45) describes techniques for testing and debugging an
action after it is built.

Organization of This Document 7
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Automator AppleScript
Actions Tutorial

8 Organization of This Document
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Automator AppleScript Actions Tutorial

In this tutorial you are going to learn the basic steps for constructing an Automator action using
AppleScript as the development language. In the process of learning, you will create a action that
you can productively use in workflows. But before you begin, let’s take a moment to review what an
action is and to look at the action you will create.

What Is an Automator Action?

Most people are familiar with the notion of building blocks. By placing small but well-defined units
in certain relationships with each other, one can compose complex and even elegant structures. An
Automator action is such a building block. An action is a small, discrete functional unit; it performs
a well-defined operation usually on data of a specific type, such as copying a file or adding photos
to an iPhoto album. It often offers the user a simple user interface for setting certain parameters of
the operation. For example, the action in Figure 1-1 selects certain Mail messages based on specified
criteria.

Figure 1-1 The Find Messages in Mail action

By itself, an action cannot do much. For one thing, it requires the Automator application to provide
the context for its execution. But, more importantly, an action’s very discreteness limits its usefulness;
an action is designed to complete a small, well-defined task, and nothing more. To be effective, an
action must be placed in a meaningful sequence of other actions. This sequence of actions is called a
workflow. In a workflow the output of one action is usually (but not always) passed to the next action
in the workflow as input. Automator orchestrates this process by starting each action in turn and
passing it the output of the previous action. A workflow expresses a operation that can be arbitrarily

What Is an Automator Action? 9
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Before You Start

complex, and the final product of that operation is usually the output of the last action. For example,
the workflow in Figure 1-2 gets a user’s unread mail and downloads the messages to the Notes section
of a connected iPod.

Figure 1-2 The Copy Unread Mail to iPod Notes workflow

As an Automator workflow (such as the one above) illustrates, an action is usually designed to accept
input and produce output of specific data types (although some actions will take and provide any
type of data). Thus some actions may be incompatible with other actions; the Combine Mail Messages
action, for instance, could not accept Address Book data. But there can be what are called conversion
actions to bridge between actions with incompatible types of data.

From a development perspective, an action is a loadable bundle installed in one of four locations:

 ■ /System/Library/Automator (Apple-provided actions)

 ■ /Library/Automator (third-party actions, general access)

 ■ ~/Library/Automator (per-user access)

 ■ Inside an application bundle (access determined by access to application)

10 What Is an Automator Action?
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Before You Start

The action bundle can contain executable code, AppleScript scripts, shell scripts, and localized strings,
nib files, and other resources. When Automator is launched, the application extracts configuration
information from the action bundles and displays some of this information in its user interface. It also
loads the bundles of the actions placed in a workflow at some point before the execution of the
workflow (the exact moment differs for actions based on Objective-C and actions based on AppleScript).
For a complete description of the architecture of Automator actions and workflows, see “How
Automator Works” in the Automator Programming Guide.

The Action You Will Create

In this tutorial you will create an action named Pass Random Items. The action accepts a list of items
(of any type) from the previous action and passes a random subset of those items to the next action.
Users can specify the number or percentage of items to pass in the action’s user interface. Figure 1-3
shows the Pass Random Items action in a workflow.

Figure 1-3 The Pass Random Items action in a workflow

Note: The project for the Pass Random Items action is installed as an example (under the name
Randomizer) in /Developer/Examples/Automator.

In this workflow, the Filter Photos in iPhoto action passes all selected photos taken within the last
two months to Pass Random Items. This action, in turn, passes 20 random photos from that initial
selection to an action that plays them in a slide show.

After you complete this tutorial and before you attempt developing any action on your own, you
should take time to consider the design of the action. Read “Design Guidelines for Actions” in
Automator Programming Guide for a summary of pertinent design guidelines.

The Action You Will Create 11
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Before You Start

12 The Action You Will Create
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Before You Start

When you create an AppleScript action project, you start by selecting an Xcode template that provides
all necessary project files and initial project settings.

The steps for creating a AppleScript action project are few and simple:

1. Launch the Xcode application.

You can find Xcode in /Developer/Applications.

2. Choose New Project from the File menu.

13
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Creating the Project

Xcode displays the New Project assistant (see Figure 2-1). The Automator action project templates
are near the top of the displayed list.

Figure 2-1 Selecting the AppleScript action project template

3. Select AppleScript Automator Action and click Next.

4. In the New AppleScript Automator Action assistant, enter a project name and select a file-system
location for the project (see Figure 2-2).

14
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Creating the Project

For the tutorial project, the project name is Pass Random Items.

Figure 2-2 Specifying project name and location

After you complete this step, Xcode displays the new project in its window, shown in Figure 2-3.

15
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Creating the Project

Figure 2-3 The files of an AppleScript action project in Xcode

Almost all of the items in the project folder have special significance in the development process.

Frameworks
Any action project must import the Cocoa umbrella framework, which includes the Foundation
and Application Kit frameworks. It also imports the Automator framework, which defines the
programmatic interface for all Automator actions. See Automator Framework Reference for
documentation of this interface.

main.applescript
The main AppleScript script file whose on run handler is called by Automator when the action
runs in a workflow. You will write your AppleScript code in this file. An AppleScript action
project can also have other (“helper”) AppleScript scripts, often to manually synchronize user
settings with the action internal record of those settings.

Info.plist and InfoPlist.strings (English)
The Info.plist file is the information property list for the action bundle. It contains
configuration information that is generally related to the bundle and more specifically related
to the action. The InfoPlist.strings file contains English translations of items in Info.plist
that might be displayed to the user. If your action is to be localized for languages or locales
besides English, you will have to add an InfoPlist.strings file to the project for each
additional translation.

main.nib (English)
The nib file for the English version of the action. A nib file is an archive containing the view,
controls, and other user-interface objects used by an executable, as well as the connections
between those objects. You use the Interface Builder to create and maintain nib files. If your
action is to be localized for languages or locales besides English, you will have to add a main.nib
file for each additional localization.

16
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Creating the Project

The Pass Random Items.action item shown in the project window is the action bundle. When the
action project is built, the text color of the item will change from red to black to indicate that the
bundle now exists in the build directory. All Automator action bundles must have an extension of
action.

17
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Creating the Project

18
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Creating the Project

In this part of the tutorial, you will create the user interface of the Pass Random Items action. This
phase of development includes not only placing, resizing, and configuring the objects of the user
interface, but establishing the bindings between those objects and the parameters property of the
action.

Opening the Action Nib File

The nib file is an Interface Builder archive holding the objects of a user interface and any connections
between those objects. (A nib file can also contain custom class definitions and resources such as
images and sounds, but the Pass Random Items action doesn’t use these things, so we’ll leave it at
that.) The nib file for an action has the default name main.nib.

To open main.nib, double-click the icon next to the file in the project window for Pass Random
Items (see Figure 2-3 (page 16). The Interface Builder launches (if it isn’t running already) and displays
the windows related to the nib file (see. Figure 3-1).

Figure 3-1 The nib file window, initial action view, and palette

Opening the Action Nib File 19
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Creating the User Interface

The nib file window in this illustration is the one containing the File’s Owner, First Responder, View,
and Parameters icons in the Instance pane. (There are other panes for classes, images, and sounds,
but you can ignore those for now.) The window with the grey rectangular area is the view of the
action; here is where you will place the fields, controls, and other objects of the action view. The third
window is the palette window containing palettes with various kinds of objects.

Before you start adding objects to the action view, however, make sure that the Cocoa-Automator
palette is loaded. This palette contains several kinds of user-interface objects that are special to
Automator. You won’t need these objects for this tutorial, but you might need them for other actions.
At the top of the palette window is a row of icon buttons. See if the Automator icon is one of them.

Figure 3-2 Automator icon

If the Automator icon isn’t there, load the Cocoa-Automator palette:

1. Choose Preferences from the Interface Builder menu.

2. Click the Palettes button to display the list of currently loaded palettes.

3. Click the Add button.

4. In the file browser, navigate to /Developer/Extras/Palettes and select the AMPalette.palette
item.

Placing and Configuring User-Interface Objects

The user interface of the Pass Random Items action is simple, consisting of only a few text fields and
one matrix object holding two radio buttons. Simplicity is one of the design principles for all actions.
“Design Guidelines for Actions in the Automator Programming Guide discusses guidelines for action
views.

Let’s begin. Select the text palette by clicking the text button icon at the top of the palette window:

The text palette contains various types of objects related to text: editable text fields, labels, token fields,
search fields, forms, and so on. First place a text field on the action view; users will enter a number
or a percentage in this field, depending on the radio button selected.

1. Drag the text field from the palette to the upper-left corner of the action view.

20 Placing and Configuring User-Interface Objects
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Creating the User Interface

Interface Builder uses blue lines to show you the proper location for object placement according
to Apple Human Interface Guidelines. Make sure the top and left side of the text field are adjacent
to the blue lines that appear (see Figure 3-3 (page 21)).

2. Release the mouse button to “drop” the object.

Figure 3-3 Placing a text field by dragging it from the palette

Note that after you drop an object in a view, you can still select it and move it within the view.

Many of the objects in a user interface—for example, text fields, buttons, and table columns—have
three predefined sizes: mini, small, and regular (or system). Objects in an action view should always
be small. The text field that you just placed is not. To change the text field to a small size, do the
following;

1. Select the text field.

2. Choose Show Inspector from the Tools menu.

3. Select the Attributes pane from the pop-up list of the inspector.

The Attributes pane shows all of the configurable options for whatever object is selected. For text
fields, these options include color, alignment, and the fields enabled and editable states.

4. Choose Small from the Size pop-up list (see Figure 3-4).

Placing and Configuring User-Interface Objects 21
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Creating the User Interface

Figure 3-4 Setting the size attribute of the text field

A couple of other things are not quite right with the text field. It is wider than we need for a simple
number or percentage. And the field should have the label “Pass:” just to its left. We can solve these
problems by resizing the text field to the right.

1. Select the text field.

When it’s selected, you see tiny round handles on each side and on each corner. You can use these
handles to make an object larger or smaller in the given horizontal, vertical, or diagonal direction.

2. Press the mouse pointer down on the handle on the left side of the text field (not the corner
handles).

3. Drag the handle toward the right until the text field is about half the original size (see Figure 3-5).

22 Placing and Configuring User-Interface Objects
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Creating the User Interface

Figure 3-5 Resizing the text field

A label is a text field that has a neutral background and that is non-editable. To create the label for
the text field:

1. Drag the object on the text palette that reads “Small System Font Text” and drop it in the upper-left
corner of the action view.

2. Double click this generic label to select the text (see Figure 3-6).

3. Edit the text to say “Pass:”.

Figure 3-6 Changing the string in a in a non-editable text field (a label)

The next step is adding the radio buttons labeled “Number” and “Percentage”. Radio buttons are on
the Cocoa Controls and Indicators palette. You can access this palette by clicking the following icon
button at the top of the palette window:

Radio buttons are preconfigured compound objects. They are designed to work with a group of
identical buttons in a way that ensures only one of them is enabled at any time. The object that holds
these multiple objects together is a matrix.

1. Drag the palette object with two “Radio” buttons onto the action view just to the right of the text
field.

Even though the objects are labeled “Radio”, this is a matrix object.

Placing and Configuring User-Interface Objects 23
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Creating the User Interface

2. With the radio-button matrix selected, press the middle handle on the right side of the matrix.

3. Option-drag the matrix to the right until two more “Radio” buttons appear (see Figure 3-7).

“Option-drag” means to press the option key while dragging the object handle.

4. Select the lower-middle handle of the matrix.

5. Option-drag the matrix upward until the two bottom “Radio” buttons disappear.

Now there are two buttons on the same row.

Figure 3-7 Changing the number of radio buttons in a matrix (radio buttons)

The user interface is looking much better, but you still have some work to do. The buttons are too
large, and they need the correct titles. Fortunately, you can solve both of these problems at the same
time for each button:

1. Double-click a radio button (a cell) to select its text.

2. Change the text to “Number” or “Percentage” (see Figure 3-8).

3. In the Attributes pane of the inspector for the button cell, change the size to Small.

Figure 3-8 Changing the title of a button

The user interface of the Pass Random Items action needs one final object. Add a small label after the
“Percentage” radio button that reads “items”.

But you’re not finished yet. The action view is too big for the objects it contains. To resize the view,
click and press the lower-right corner of the view window, then move the window in toward the
upper left corner of the view until all objects are just contained. Make sure that the objects on the view

24 Placing and Configuring User-Interface Objects
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Creating the User Interface

conform to the blue guidance lines. Then add back a 10-pixel border around the user-interface objects
on all sides; this border is required by the user-interface guidelines for actions. The final action view
should look like the example in Figure 3-9.

Figure 3-9 Final user interface of Pass Random Items action

Placing and Configuring User-Interface Objects 25
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Creating the User Interface

26 Placing and Configuring User-Interface Objects
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Creating the User Interface

The objects on an action view are only part of what’s involved in creating the user interface of an
action. If users click a button or enter something into a text field, nothing much happens until you
communicate those events to other objects in the action that know how to deal with the events. Even
though you are creating an AppleScript action, the underlying framework of Automator is Cocoa-based.
Cocoa gives you two general mechanisms for enabling communication between view objects and
other objects in a action:

 ■ Outlets and target-action (“action” here does not denote an Automator action)

 ■ Bindings

The preferred approach for managing an action’s user interface is to use the Cocoa bindings technology;
that is how actions projects are initially configured in the project templates and that is the procedure
this tutorial shows. But you can manage the user interface using an alternate approach that makes
use of outlets and possibly target-action. “Alternatives to Bindings” (page 31) summarizes this
approach.

Note: The technology of Cocoa bindings relies on a number of APIs and mechanisms that this tutorial
won’t go into. If you are interested in learning about them, read Cocoa Bindings Programming Topics.

Bindings in an Action

A binding in Cocoa automatically synchronizes the value between an attribute of a user-interface
object (say, the displayed value of a text field) and a property of a data-bearing object (usually termed
a model object). This means that whenever a user edits a control or clicks a button, that change is
automatically communicated to the bound property of the object maintaining that value internally.
And whenever that internal value changes, the change is automatically communicated to the bound
attribute of a user-interface object that then displays it.

Bindings in an Action 27
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Establishing Bindings

Note: This part of the tutorial frequently talks about the properties of objects. “Property” in this sense
means an essential characteristic of the object that it encapsulates. A property can either be an attribute,
such as a color or a person’s name, or a relationship—that is, a reference to one or more other objects.
In Cocoa bindings, the values of properties are accessed using their names as keys.

For actions the data-bearing object is a dictionary owned by the action object itself. For AppleScript
actions, the action object is almost always an instance of AMAppleScriptAction. Every action, regardless
of the programming or scripting language it uses, maintains an internal dictionary that captures the
choices users have made in the user interface. (The AppleScript equivalent for a dictionary is a record.)
This dictionary is called the parameters dictionary. It stores values users make in the user interface
along with an arbitrary key for each value. When Automator runs an AppleScript action in a workflow,
it passes it a parameters record in the on run handler in main.applescript (See “Writing the Action
Script” (page 41) for more about the on run handler.)

When you establish a binding between a user-interface control and a property of the action’s parameters
dictionary, the binding is made through a property of an intermediary object called a controller. In
the main.nib file for an action, this intermediary object appears in the Instance view of the nib file
window as the Parameters instance. When you look at a binding in Interface Builder in the Bindings
pane of the inspector (see Figure 4-4 (page 31) for an example), you can see it as a combination of
user-interface attribute, controller property, and parameters property.

Figure 4-1 illustrates the case of the radio-button matrix of the Pass Random Items action; here the
matrix attribute selectionIndex is connected to the controller’s selection property, which is
connected to the numberMethod property of the parameters dictionary. The value of numberMethod
reflects the zero-based index of the selected radio button in the matrix (1 indicates the “Percentage”
button in the example).

Figure 4-1 Binding between the pop-up list and a property of the parameter dictionary

Key Value
parameters Dictionary

numberToChoose 20
numberMethod 1

selectionIndex selection

Parameters

Establishing the Bindings of the Action

To establish bindings for the Pass Random Items action, complete the following steps with the action’s
main.nib file open in Interface Builder:

1. Select the Parameters instance in the nib file window.

Parameters is an instance of NSObjectController, which implements controller behavior.

28 Establishing the Bindings of the Action
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Establishing Bindings

2. Open the inspector window (Tools > Show Inspector) and choose Attributes from the pop-up
list.

3. In the Attributes pane for the Parameters instance, click Add.

A newKey placeholder appears in the Keys table.

4. Double-click newKey to select the word and make it editable.

5. Type numberMethod, replacing newKey.

6. Click Add again, and add another key named numberToChoose.

See Figure 4-2 for an example.

Figure 4-2 Adding keys as attributes of the Parameters instance.

The Parameters controller instance is now initialized with the keys that will be used in the bindings
between attributes of two of the user-interface objects and properties of the parameters dictionary.
Note that the project template for all types of actions is preconfigured to make a binding between the
Parameters instance and the action’s parameters dictionary. To see this binding:

1. Select the Parameters instance in the nib file window.

2. Choose Bindings from the inspector’s pop-up list.

Establishing the Bindings of the Action 29
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Establishing Bindings

3. Click the disclosure triangle next to contentObject to expand the view.

Figure 4-3 shows the binding between the controller object and the parameters property of the
action object (File’s Owner).

Figure 4-3 Binding between the controller and the parameters dictionary

The final stage of establishing bindings requires you to bind the attributes of two of the user-interface
objects to the corresponding properties of the parameters dictionary via the selection property of
the Parameters controller.

1. Select the radio-button matrix in the action view.

2. Choose Bindings from the inspector’s pop-up list.

3. Click the disclosure triangle next to the selectedIndex attribute of the matrix.

4. Make sure the Bind to pop-up list is set to Parameters.

5. Make sure the Controller Key combo box is set to selection.

6. Set the value of the Model Key Path combo box to numberMethod.

7. Make sure the Bind check box in the upper-right corner of the selectedIndex view is checked.

The Bindings inspector pane should look like the example in Figure 4-4 (page 31) at this point.

30 Establishing the Bindings of the Action
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Establishing Bindings

8. Select the text field to the left of the matrix.

9. In the Bindings pane of the inspector, click the disclosure triangle next to the value attribute.

10. Make sure the Bind to combo box contains Parameters and the Controller Key combo box contains
selection.

11. Set the Model Key Path combo box to numberToChoose.

12. Make sure the Continuously Updates Value check box is checked.

Checking this control tells the bindings mechanism to synchronize the value in the text field
without waiting for the user to press the Return or Tab keys.

13. Make sure the Bind check box is checked.

Figure 4-4 The selectedIndex attribute in the bindings inspector

Alternatives to Bindings

Although bindings are the preferred technique for enabling communication the objects of an action,
there are alternatives to bindings. For example, you can use outlets and target-action to facilitate the
communication of data between objects in the action view and the parameters dictionary owned by
the action object. In this case you also use a controller object, but instead of bindings it maintains

Alternatives to Bindings 31
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Establishing Bindings

persistent references to other objects known as outlets. Thus it can always send a message to, say, a
text field to obtain its value. User-interface objects and controllers can also be set up to use target-action.
In this mechanism a control object (such as a button) is configured with a target of a message—usually
the controller—and a selector that designates the message to send. When users activate the control
object, a message is automatically sent to the controller. You can establish outlet and target-action
connections in Interface Builder, which archives these connections in the nib file.

Note: To learn more about outlets and target-action, see Cocoa Fundamentals Guide.

Automator provides a third alternative for synchronizing the values in the parameters and the settings
users make in the action’s user interface. It defines the update parameters and parameters updated
commands, which you can attach to an action’s view using AppleScript Studio. Automator sends the
update parameters command when an action’s parameters need to be refreshed from the values
on the user interface. It sends parameters updated when there are any changes to the action’s
parameters dictionary. “Implementing an AppleScript Action” in Automator Programming Guide
describes this procedure in detail.

32 Alternatives to Bindings
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Establishing Bindings

Every bundle in Mac OS X—and that includes applications, frameworks, and loadable bundles such
as actions—has an information property list. This property list, which is contained in a file named
Info.plist, is a series of key-value pairs in XML format. The standard information property list
defines such properties of the bundle as its identifier, its type code, and its main class.

Information property lists can contain properties other than the standard ones. Such is the case with
Automator. In the Info.plist file of an action project you can (and in some cases must) specify
properties that characterize the action, enabling Automator to display information about the action
and handle it properly. For example, some Automator properties provide the name and description
of an action and others indicate what types of data the action operates on (or produces). The following
sections describe the basic approach to completing the action-specific properties and steps you through
the properties that you must specify for Pass Random Items.

For complete descriptions of the Automator properties, see “Automator Action Property Reference”
in Automator Programming Guide.

Note: The inspector for Automator properties was first introduced in Xcode 2.1. If you have an earlier
version of Xcode, you have to edit the properties in the Info.plist file manually.

Editing the Information Property List

Automator action projects take advantage of a special inspector built into Xcode for viewing and
editing the action’s information property list. To access this editor, choose Edit Active Target ‘Pass
Random Items’ from the Project menu. Then, click the Properties tab in the Target Info window to
display the property inspector, which is shown in Figure 5-1.

Editing the Information Property List 33
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Configuring the Action

Figure 5-1 The property inspector for Automator actions (general collection)

The first thing to note about the property inspector for actions is that it is divided into two parts. The
upper half of the window contains general bundle properties, such as the name of the executable, the
bundle identifier, and the principal class. You shouldn’t have to change any of these values.

The lower half of the window is the area for viewing and editing Automator-specific properties. The
Collection pop-up list displays various groupings of properties. The first displayed is the General
group. Note that the action name (and the last part of the bundle identifier) are automatically assigned
the name of the Xcode project. (This automatic name assignment was introduced in Xcode 2.1.) You
are going to keep the name for the action, but assign values to the Application, Category, and Icon
name properties.

Note: In the Info.plist file the property keys are different from the strings displayed in the inspector.
The keys have “AM” prefixes and no spaces between words, for example, AMActionName,
AMApplication, AMCategory, and AMIconName.

1. Double-click the cell under Value containing the comment for the Application property. This
selects the cell and makes it editable.

2. Replace the comment with “Automator”.

The application named here is either the one that the action primarily sends scripting commands
to or the application that the action is most closely associated with.

3. Replace the comment for Category with “Utility”.

34 Editing the Information Property List
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Configuring the Action

Automator uses an action’s category in searches, along with keywords.

4. Replace the comment for Icon name with “Action”.

This value requests a generic icon for actions to be displayed next to the action name in Automator.

5. Uncheck the check box labeled “Can show selected items when run.” Leave the check box “Can
show when run” checked.

This pair of settings allows you to specify values in the action’s user interface when the workflow
containing it is executed; the entire user interface is displayed, not a subset of it. For more on the
show-when-run feature, see “Show When Run” in Automator Programming Guide.

When you have finished these steps, the General collection of properties should look like the example
in Figure 5-2.

Figure 5-2 The completed General collection of Automator properties)

Action Input and Output

Every action must specify what types of data it accepts from the action before it in the workflow and
what types of data it provides to the next action in the workflow. The AMAccepts and AMProvides
properties of the information property list allow you to do this. The Automator property inspector
of Xcode shows these properties as the Input and Output collections.

Action Input and Output 35
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Configuring the Action

Choose the Input collection from the pop-up list to display the view of the inspector shown in Figure
5-3.

Figure 5-3 Automator property inspector—Input collection

The main view for the Input collection is a single-column, headingless table. You click the plus (+)
button to add a cell for a new entry and click the minus button (-) to delete the selected entry. The
entries in this table are UTI-style type identifiers specifying the types of data the action can accept.
The Types subproperty of the AMAccepts property for AppleScript action projects is initialized to
com.apple.applescript.object, which means that the action can accept any type of AppleScript
object as input. Since this fits the type of data that the Pass Random Items action can process—it
merely passes on a random subset of the items passed it—you do not need to modify contents of the
table.

When you are developing your own actions, you will probably want to specify different types of
identifiers. For example, if your action handles iTunes songs, you would specify
com.apple.itunes.track-object. If your action can handle URLs, you would enter public.url
in the Input table. It’s best to be as specific as possible about the types of data that your action can
accept and provide. For a listing of supported type identifiers for actions, see “Automator Action
Property Reference” in Automator Programming Guide.

The Input collection part of the inspector has two additional controls: a Container pop-up list and an
Optional check box. These controls correspond to two subproperties of AMAccepts: Container and
Optional. The former indicates whether the input data is a single item or a list of items; this control
is almost always left as List. The latter control indicates whether input is optional for the action. Leave
both controls unchanged.

36 Action Input and Output
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Configuring the Action

The settings of the Output collection for Pass Random Items are identical to those for the Input
collection. The type identifier is com.apple.applescript.object and Container is set to List.

Default Parameter Settings

The AMDefaultParameters property allows you to specify initial values for action controls when the
action first appears in a workflow. In the Automator property inspector, you edit this property through
the Parameters collection. The table for this property has three columns:

 ■ Name — the key identifying the control and its associated property in the parameters dictionary

 ■ Type — the type of data represented by the control

 ■ Value — the initial value for the control

To set the initial value for the text field containing the number or percentage, do the following:

1. Click the plus button (+) below the table to insert a new row into the table.

2. Double-click the cell under the Name column to open it for editing.

3. Type “numberToChoose” in the cell; this is the same name that you gave the binding key in
Interface Builder.

4. In the Type column of the same row, select “integer” from the pop-up list attached to the cell.

5. Double-click the cell under Value in the same row and type “1”.

Repeat the same procedure for the radio-button matrix, entering “numberMethod” for the name,
“integer” for the type, and “0” for the value. When you are finished, the inspector window should
look like the example in Figure 5-4.

Default Parameter Settings 37
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Configuring the Action

Figure 5-4 The default parameters for the Pass Random Items action

The Action Description

When users browse through the actions available for Automator, they can see a brief description for
each selected action in a small view in the lower-left corner of the application. When users select the
Pass Random Items action, you want them to see the description shown in Figure 5-5.

Figure 5-5 The description for the Pass Random Items action

Descriptions can be simple like this one, or they can include things like requirements and warnings.
The Automator property for descriptions is AMDescription; it has several subproperties for the
various components of description: AMDAlert, AMDInput, AMDNote, AMDOptions, AMDRelatedActions,
AMDResult, and AMDSummary.

38 The Action Description
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Configuring the Action

For the Pass Random Items action you need only set one of these subproperties, AMDSummary, which
is the short description of what the action does. The icon, title, Input, and Result parts of the description
are automatically supplied by, respectively, the AMIconName, AMActionName, AMAccepts, and
AMProvides properties. (You can provide your own description for the latter two properties in addition
to the defaults, if you want.)

To set the AMDSummary property, do the following:

1. Choose the Description collection in the property inspector.

2. Double-click the cell under the Value column for the Summary row.

3. Replace the comment with the sentence shown in Figure 5-5 (page 38).

Other Settings

There are several other Automator properties which you can access through the Collection pop-up
list. One very useful property to supply values for is the Keywords property (AMKeywords). The
Keywords collection part of the inspector provides a simple table to which you can add a list of words
that identify the action in Automator searches for actions. Other collections are Required Resources
(AMRequiredResources), Warning (AMWarning), and Related Actions (AMRelatedActions). Read
“Automator Action Property Reference” in Automator Programming Guide to learn more about these
properties.

Other Settings 39
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Configuring the Action

40 Other Settings
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Configuring the Action

The next stage of developing the Pass Random Items action is writing the script itself. This chapter
describes how to write the command handler that all AppleScript actions must implement and
discusses subroutines and other aspects of scripting for actions.

For more information on this subject, see “Implementing an AppleScript Action” in Automator
Programming Guide.

The on run Command Handler

In the Xcode project window for the Pass Random Items action project, locate the main.applescript
file and double-click it. The file opens in an editor much like Script Editor. It contains a “skeleton”
on run command handler, as shown in Figure 6-1.

Figure 6-1 The template for the on run handler

Let’s briefly look at this command handler before writing anything. Automator invokes the handler
when it is an action’s turn in a workflow to run. The handler has two parameters: input and
parameters. The input parameter is the data provided by the previous action in the workflow. The
template on run handler simply returns the input as its output. The parametersparameter is a record
that contains the settings users have made in the action’s view.

Start by initializing a list of items to return as output and extracting the settings users have made
from the parameters record. Figure 6-2 shows you the scripting code to write.

The on run Command Handler 41
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Writing the Action Script

Figure 6-2 Initializing local output and parameter variables

The first line initializes a list named output_items and the last line returns this list. In between, the
script tests whether the input object is an empty list or is a single item instead of list and returns that
as output (if a single item, it adds it to the output_items list first).

The other lines of the script in Figure 6-2 assign to local variables the values in the parameters record
that are bound to the action’s user-interface controls. Note that in the expression

(|numberToChoose| of parameters)

that numberToChoose is one of the keys you added to the attributes of the Parameters instance in
Interface Builder when you established the bindings of the action. In the script you are using this key
to access the value corresponding to the choice the user made in the user interface.

Finally, add the remaining lines shown in Figure 6-3 to complete the on run command handler.

Figure 6-3 The final on run handler

42 The on run Command Handler
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Writing the Action Script

These lines of the script test whether the user selected the Number or Percentage radio button in the
user interface; if it is Percentage, the script calls a subroutine to get the specified percentage of the
input items as a number. Then in a loop it adds a random selection of input items—limited by the
specified or computed number—to the output items.

Writing the Subroutines

The main.applescript file for the Pass Random Items action includes two subroutines. The first,
convert_percentage_to_number, you have already encountered when writing the on run handler
script. This subroutine performs the simple calculation shown in Figure 6-4.

Figure 6-4 Subroutines called by the main script

The second subroutine, localized_string, does something very important despite the fact that it’s
not called by the on run command handler you have written. Through the localized string
command, the subroutine returns a string (identified by key_string) for a preferred localization
specified by the current user in System Preferences. You can use this string in dialogs and error
messages. To use this subroutine effectively you must first internationalize your action for all supported
localizations. To find out how to do this, see the relevant section in Developing Actions of the Automator
Programming Guide.

Writing the Subroutines 43
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Writing the Action Script

44 Writing the Subroutines
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Writing the Action Script

You have completed the steps required to develop the Pass Random Items action. You’ve created the
user interface, established bindings, specified the Info.plist properties, and written the script. It’s
time to build and test the action.

But before you begin, look at how an action project sets up its executable for testing. Choose Edit
Active Executable ‘Automator’ from the Project menu to display the Executable Info window. In the
General pane of this window, you can see that the executable path is initialized to
/Applications/Automator.app. Then click the tab for the Arguments pane; as Figure 7-1 shows, the
-action argument passed to Automator tells it to load the Pass Random Items action.

Figure 7-1 Executable settings for the Pass Random Items action

45
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Building and Testing the Action

To build and test the action in Xcode, choose Build and Run from the Build menu. Xcode builds the
action and then launches Automator. As part of the build process, Xcode runs the amlint utility to
perform a number of action-specific tests. The results of these tests appear along with all other build
results.

Assuming the action builds without error or warning and Automator launches, the next thing you
should do is compose a workflow in which users would likely include the Pass Random Items action.
Figure 7-2 shows a possible workflow. The Get Specified Finder Items actions allows you to select a
collection of Finder items and then passes it to the Pass Random Items action. You can view the output
of your action using the View Results action. Check to see if the correct number or percentage was
passed and if the selection is truly random.

Figure 7-2 Testing the Pass Random Items action in a workflow

Automator has its own set of actions that are useful in testing. To see them, disclose the Applications
folder under the Library column of the application and select Automator. View Results is one of these
actions. Others that you might find useful in action development and testing are the following:

 ■ Run AppleScript — Enables you to prototype a script before using it in an action.

 ■ Wait For User Action — Displays a message informing users what must be done at this point for
the workflow; if the action isn’t completed by a specified period, it stops the workflow.

 ■ Confirmation Dialog — Allows you to pause or cancel execution of the workflow.

46
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Building and Testing the Action

If Xcode displays errors and warnings when you attempt to build the action, or if the action doesn’t
behave as expected, and you cannot readily pinpoint the cause of the problem, you can either debug
the action (using a special AppleScript debugger) or add log statements. To debug an AppleScript
action:

1. In the Xcode script editor, set a breakpoint in the script.

Click in the gray strip next to the line you want the debugger to break on. A black breakpoint
indicator appears in the gray strip.

2. Choose Build and Debug from the Build menu.

3. When Automator launches, construct a workflow with your action in it and execute it.

When your action runs, the Xcode AppleScript debugger shows a debugging window similar to
the one in Figure 7-3.

Figure 7-3 The AppleScript debugger

The debugger lets you step through the script and shows the values of globals, locals, and properties.

47
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Building and Testing the Action

You can also insert log or display dialog statements in the script at points where you want to
display current values. If the log statement is inside an application tell block, use the tell me to
log expression instead of the simple log. The output of these statements appears in the Console log
(not in the Automator log).

For additional debugging information, see the section “Frequently Asked Questions About Debugging
Automator Actions” in “Developing an Action” in Automator Programming Guide.

48
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Building and Testing the Action

This table describes the changes to Automator AppleScript Actions Tutorial.

NotesDate

Added debugging information and corrected minor grammatical error.2007-07-18

In “Building and Testing the Action” (page 45), added information about
logging, as well as a link to the section “Frequently Asked Questions About
Debugging Automator Actions” in “Developing an Action” in Automator
Programming Guide.

New tutorial showing how to create an Automator action using
AppleScript.

2005-06-06

49
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

50
2007-07-18 | © 2005, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

	Automator AppleScript Actions Tutorial
	Contents
	Figures
	Introduction
	Before You Start
	What Is an Automator Action?
	The Action You Will Create

	Creating the Project
	Creating the User Interface
	Opening the Action Nib File
	Placing and Configuring User-Interface Objects

	Establishing Bindings
	Bindings in an Action
	Establishing the Bindings of the Action
	Alternatives to Bindings

	Configuring the Action
	Editing the Information Property List
	Action Input and Output
	Default Parameter Settings
	The Action Description
	Other Settings

	Writing the Action Script
	The on run Command Handler
	Writing the Subroutines

	Building and Testing the Action
	Revision History

