
HP-UX IPFilter Version A.03.05.14
Administrator’s Guide

HP-UX 11i v1 and
HP-UX 11i v2

December 2006

HP Networking
Manufacturing Part Number : B9901-90031

E1206

United States

© Copyright 2001-2006 Hewlett-Packard Development Company, L.P.

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

U.S. Government License

Proprietary computer software. Valid license from HP required for
possession, use, or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation,
and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Copyright Notice

© Copyright 2001–2006 Hewlett-Packard Development Company, L.P.
All rights reserved. Reproduction, adaptation, or translation of this
document without prior written permission is prohibited, except as
allowed under the copyright laws.

Trademark Notices

UNIX® is a registered trademark of The Open Group.
ii

Contents
Preface: About This Document

1. Installing and Configuring HP-UX IPFilter
Overview of HP-UX IPFilter Installation . 3

Installation and Configuration Checklist . 3
Step 1: Checking HP-UX IPFilter Installation Prerequisites . 4
Step 2: Loading HP-UX IPFilter Software . 5
Step 3: Determining the Rules for IPFilter . 7
Step 4: Adding Rules to the Rules Files . 8

Adding IPFilter Rules. 8
Adding NAT Rules . 8

Step 5: Loading IPFilter and NAT Rules . 10
Loading IPFilter Rules . 10
Removing IPFilter Rules . 11
Loading NAT Rules. 12

Step 6: Verifying the Installation and Configuration . 13
Additional Configuration Information. 14

Supported and Unsupported Interfaces . 15
Troubleshooting HP-UX IPFilter . 17

2. Rules and Keywords
IPFilter Configuration Files . 24

IPFilter Rules . 24
IPFilter Configuration File . 24

Basic Rules Processing . 25
IPFilter Keywords . 26

pass and block: Controlling IP Traffic . 26
in and out: Bidirectional Filtering . 26
quick: Optimizing IPFilter Rules Processing . 27
on: Filtering by Network Interfaces. 27
from and to: Filtering by IP Addresses and Subnets . 28
log: Tracking Packets on a System . 29
proto: Controlling Specific Protocols . 30
opt and ipopts: Filtering on IP Options . 30
icmp-type: Filtering ICMP Traffic by Type . 31
port: Filtering on TCP and UDP Ports . 33
keep state: Protecting TCP, UDP, and ICMP Sessions . 34
flags: Tight Filtering Based on TCP Header Flags. 35
iii

Contents
keep frags: Letting Fragmented Packets Pass . 36
with frags: Dropping Fragmented Packets . 36
with short: Dropping Short Fragments . 36
return-rst: Responding to Blocked TCP Packets. 37
return-icmp: Responding to Blocked ICMP Packets . 37
dup-to: Drop-Safe Logging . 38

NAT Keywords . 39
map and portmap: Basic NAT . 39
bimap: Bidirectional Mapping . 40
rdr: Redirecting Packets . 40
map-block: Mapping to a Block of Addresses . 41

3. Dynamic Connection Allocation
DCA with HP-UX IPFilter. 45

Overview: DCA Functionality . 45
Using DCA. 46

DCA Keywords . 47
keep limit: Limiting Connections. 47
log limit: Logging Exceeded Connections . 49
log limit freq: Log Frequency . 51

DCA Rule Syntax . 52
DCA Rule Conditions . 53
keep limit Rules and Rule Hits . 54
DCA Rule Modifications . 55

Updating keep limit Rules . 56
Adding New keep limit Rules. 57
Integrating keep limit Rules . 58
Extracting an Individual Rule from a Subnet Rule . 58

DCA Variables . 59
fr_statemax . 59
fr_tcpidletimeout. 60
Configuring Variables. 60

DCA Mode . 61
iv

Contents
4. Firewall Building Concepts
Blocking Services by Port Number . 65
Using Keep State . 66

Protecting SSH Server Connections Using Keep State . 66
Using Keep State with UDP . 68
Using Keep State with ICMP . 69
Logging Techniques . 70

level log-level. 70
first . 71
body . 71

Improving Performance with Rule Groups . 72
Localhost Filtering . 74
Using the to Keyword to Capture Blocked Packets . 75
Creating a Complete Filter by Interface. 76
Combining IP Address and Network Interface Filtering. 77
Using Bidirectional Filtering Capabilities . 78
Using port and proto to Create a Secure Filter . 79

5. HP-UX IPFilter Utilities
The ipf Utility. 83

Syntax . 83
Options . 83
Example. 85

The ipfstat Utility . 86
Syntax . 86
Options . 86
Examples . 87

The ipmon Utility. 93
Syntax . 93
Options . 93
Examples . 94
ipmon and DCA Logging . 95

The ipftest Utility. 97
Syntax . 97
Options . 97
Example. 97
v

Contents
The ipnat Utility . 101
Syntax . 101
Options . 101
Example. 101

Unsupported Utilities and Commands . 102

6. HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter . 105

Product Configuration . 105
Product Installation and Dependencies. 105
Rules Configuration . 105
Commands. 106
New Features for IPv6 . 108
Command and Configuration Examples . 111
Installation Details and Dependencies . 111
Features Not Supported with IPv6 . 111
Key Points to Note . 112

7. HP-UX IPFilter and FTP
FTP Basics . 115
WU-FTPD on HP-UX. 116
Running an FTP Server. 117

Active FTP. 117
Passive FTP. 117

Running an FTP Client . 119
Active FTP. 119
Passive FTP. 120

8. HP-UX IPFilter and RPC
Introduction . 123
Quick Start Information . 124
Configuration Files . 125

Rules Files . 125
RPC Rules Configuration File . 125
vi

Contents
9. HP-UX IPFilter and IPSec
IPFilter and IPSec Basics . 129
IPSec UDP Negotiation . 131
When Traffic Appears to Be Blocked . 133
Allowing Protocol 50 and Protocol 51 Traffic . 134
IPSec Gateways . 136

10. HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard . 139

Local Failover . 139
Remote Failover . 140
DCA Remote Failover . 145

A. HP-UX IPFilter Configuration Examples
BASIC_1.FW . 149
BASIC_2.FW . 152
example.1 . 154
example.2 . 155
example.3 . 156
example.4 . 157
example.5 . 158
example.6 . 159
example.7 . 160
example.8 . 161
example.9 . 162
example.10 . 163
example.11 . 164
example.12 . 165
example.13 . 166
example.sr. 167
firewall . 169
server . 170
tcpstate . 171
BASIC.NAT . 172
nat.eg . 174
nat-setup. 175
vii

Contents
B. HP-UX IPFilter Static Linking
Static Linking. 178

Static Linking of HP-UX IPFilter on HP-UX 11i v1 . 178
Static Linking of HP-UX IPFilter on HP-UX 11i v2 . 180

C. Performance Guidelines
System Configuration . 183
Rule Loading . 185
Rule Configuration. 186
Traffic . 189
Performance Monitoring . 191
viii

Preface: About This Document
This document describes how to install, configure, and troubleshoot
HP-UX IPFilter version A.03.05.14.

The document printing date and part number indicate the document’s
current edition. The printing date will change when a new edition is
printed. Minor changes might be made at reprint without changing the
printing date. The document part number will change when extensive
changes are made.

Document updates might be issued between editions to correct errors or
document product changes. To ensure that you receive the updated or
new editions, you should subscribe to the appropriate product support
service. See your HP sales representative for details.

The latest version of this document can be found online at
http://docs.hp.com.

Intended Audience
This document is intended for network managers or network security
administrators who install, configure, and troubleshoot HP-UX IPFilter
on HP 9000 systems. Administrators are expected to have knowledge of
HP-UX operating system concepts, commands, and configuration.

This document is not a tutorial.

New and Changed Documentation in This
Edition
The documentation reflects the following changes to the HP-UX IPFilter
product:

• HP-UX IPFilter support is added for IPv6.

This document has the following structural changes:

• New chapter added for IPv6 support, Chapter 6, “HP-UX and IPv6
Support,” on page 103.
 ix

Publishing History

What is in This Document
HP-UX IPFilter Version A.03.05.14 Administrator’s Guide is divided into
several chapters, and each contains information about installing,
configuring, or troubleshooting HP-UX IPFilter. The appendices contain
supplemental information.

Chapter 1 Installing and Configuring HP-UX IPFilter Use
this chapter to install and configure HP-UX IPFilter
software.

Table 1 Publishing History Details

Document
Manufacturing
Part Number

Operating
Systems

Supported

Supported
Product
Versions

Publication
Date

B9901-90031 11i v1

11i v2

A.03.05.14 December 2006

B9901-90021 11.0

11i v1

11i v2

A.03.05.09 February 2004

B9901-90018 11.0

11i v1

A.03.05.08 October 2003

B9901-90016 11.0

11i v1

A.03.05.08 September 2003

B9901-90014 11.0

11i v1

A.03.05.07 June 2003

B9901-90009 11.0

11i v1

11i v1.6

A.03.05.05 September 2002
x

Chapter 2 Rules and Keywords Use this chapter to utilize the
HP-UX IPFilter configuration files and obtain in-depth
information on IPFilter and NAT keywords.

Chapter 3 Dynamic Connection Allocation Use this chapter to
learn about DCA features, DCA keywords, DCA
variables, changing DCA rules dynamically, and setting
the DCA mode.

Chapter 4 Firewall Building Concepts Use this chapter to
learn about specific configuration procedures for
HP-UX IPFilter, as well as basic and advanced firewall
design using HP-UX IPFilter features.

Chapter 5 HP-UX IPFilter Utilities Use this chapter to learn to
use IPFilter utilities. This chapter also contains a list
of unsupported utilities and commands.

Chapter 6 HP-UX and IPv6 Support Use this chapter to learn
about using IPv6 support in HP-UX IPFilter.

Chapter 7 HP-UX IPFilter and FTP Use this chapter to learn
about running an FTP server and an FTP client with
HP-UX IPFilter.

Chapter 8 HP-UX IPFilter and RPC Use this chapter to learn
about running HP-UX IPFilter with RPC.

Chapter 9 HP-UX IPFilter and IPSec Use this chapter to learn
how IPFilter and IPSec work together.

Chapter 10 HP-UX IPFilter and Serviceguard Use this chapter
to learn about the configuration procedures for HP-UX
IPFilter in a Serviceguard environment.

Appendix A HP-UX IPFilter Configuration Examples Use this
appendix to reference configuration examples.

Appendix B HP-UX IPFilter Static Linking Use this appendix to
learn about statically linking the HP-UX IPFilter
modules to the kernel.

Appendix C Performance Guidelines Use this appendix to learn
about general performance guidelines for using HP-UX
IPFilter on a system.
 xi

Typographical Conventions
This document uses the following conventions.

audit (5) An HP-UX manpage. In this example, audit is the
name and 5 is the section in the HP-UX Reference. On
the Web and on the Instant Information CD, it might
be a hot link to the manpage itself. From the HP-UX
command line, enter man audit or man 5 audit to
view the manpage. See man (1).

Book Title The title of a book. On the Web and on the Instant
Information CD, it might be a hot link to the book
itself.

KeyCap The name of a keyboard key. Note that Return and Enter
both refer to the same key.

Emphasis Text that is emphasized.

Bold Text that is strongly emphasized.

Bold The defined use of an important word or phrase.

ComputerOut Text displayed by the computer.

UserInput Commands and other text that you enter.

Command A command name or qualified command phrase.

variable The name of a variable that you might replace in a
command or function, or information in a display that
represents several possible values.

[] The contents are optional in formats and command
descriptions. If the contents are a list separated by |,
you must select one of the items.

{ } The contents are required in formats and command
descriptions. If the contents are a list separated by |,
you must select one of the items.

... The preceding element might be repeated an arbitrary
number of times.

| Separates items in a list of choices.
xii

HP-UX Release Name and Release Identifier
Each HP-UX 11i release has an associated release name and release
identifier. The uname (1) command with the -r option returns the
release identifier. This table shows the releases available for HP-UX 11i.

Related Documents
Additional information about HP-UX IPFilter can be found on
http://docs.hp.com in the Internet and Security Solutions collection under
HP-UX IPFilter at:

http://docs.hp.com/en/internet.html#IPFilter

Other documents in this collection include:

• HP-UX IPFilter A.03.05.14 Release Notes

• IPFilter/9000 Sizing and Performance White Paper

For information about HP-UX Bastille, see the “HP-UX Bastille” section
of Managing Systems and Workgroups: A Guide for HP-UX System
Administrators. This guide is available at:

http://docs.hp.com/en/oshpux11iv2.html

Table 2 HP-UX 11i Releases

Release
Identifier Release Name Supported Processor

Architecture

B.11.11 HP-UX 11i v1 PA-RISC

B.11.22 HP-UX 11i v1.6 Intel® Itanium®

B.11.23 HP-UX 11i v2 Intel® Itanium®
 xiii

HP Encourages Your Comments
HP encourages your comments concerning this document. We are truly
committed to providing documentation that meets your needs.

Please send comments to netinfo_feedback@cup.hp.com.

Please include document title, manufacturing part number, and any
comment, error found, or suggestion for improvement you have
concerning this document. Also, please include what we did right so we
can incorporate it into other documents.
xiv

1 Installing and Configuring
HP-UX IPFilter

This chapter describes the procedures to install and configure HP-UX
IPFilter software on your system. It contains the following sections:
Chapter 1 1

Installing and Configuring HP-UX IPFilter
• Overview of HP-UX IPFilter Installation

• Step 1: Checking HP-UX IPFilter Installation Prerequisites

• Step 2: Loading HP-UX IPFilter Software

• Step 3: Determining the Rules for IPFilter

• Step 4: Adding Rules to the Rules Files

• Step 5: Loading IPFilter and NAT Rules

• Step 6: Verifying the Installation and Configuration

• Supported and Unsupported Interfaces

• Troubleshooting HP-UX IPFilter
Chapter 12

Installing and Configuring HP-UX IPFilter
Overview of HP-UX IPFilter Installation
Overview of HP-UX IPFilter Installation
The following section summarizes each step in the HP-UX IPFilter
installation process.

Installation and Configuration Checklist

The following checklist provides the sequence of steps you need to
complete installation and configuration of HP-UX IPFilter. References to
more in-depth information in this manual are also included as part of
each step.

Step 1. Check that your system meets the prerequisites. See “Step 1: Checking
HP-UX IPFilter Installation Prerequisites” on page 4 for detailed
information about this task.

Step 2. Install HP-UX IPFilter using swinstall. See “Step 2: Loading HP-UX
IPFilter Software” on page 5 for detailed information about this task.

Step 3. Decide what rules you must configure to protect your system. Chapter 2
contains the rules for basic firewalls, Chapter 4 contains the rules for
advanced firewalls and Chapter 3contains the rules for Dynamic
Connection Allocation (DCA). Appendix A contains examples of rulesets
for specific situations. You should base your rules on the services running
on your system.

Step 4. Add the filtering rules for your system to the /etc/opt/ipf/ipf.conf
file and add Network Address Translation (NAT) rules to the
/etc/opt/ipf/ipnat.conf file. See “Step 4: Adding Rules to the Rules
Files” on page 8 for details.

Step 5. Load the rules into the HP-UX IPFilter rules file. See “Step 5: Loading
IPFilter and NAT Rules” on page 10 for details.

Step 6. Run the ipf, ipfstat, and ipnat commands to verify the installation as
described in “Step 6: Verifying the Installation and Configuration” on
page 13.

See the ipf (5) and ipfstat (8) manpages for more detailed information on
these commands.
Chapter 1 3

Installing and Configuring HP-UX IPFilter
Step 1: Checking HP-UX IPFilter Installation Prerequisites
Step 1: Checking HP-UX IPFilter Installation
Prerequisites

1. Be sure your system uses one of the following operating systems:

• HP-UX 11i v1

• HP-UX 11i v2

To obtain information about the OS, execute the command:

uname -a

2. Install all required patches.

IMPORTANT Check the latest HP-UX IPFilter Release Notes for all other patch
information.

To obtain information about a patch, execute the command:

swlist -l patch <patch_id>

3. Be sure you have super user access and are designated the network
security administrator.
Chapter 14

http://docs.hp.com

Installing and Configuring HP-UX IPFilter
Step 2: Loading HP-UX IPFilter Software
Step 2: Loading HP-UX IPFilter Software
Use the following steps to load HP-UX IPFilter software using the
HP-UX swinstall program.

NOTE If the product is downloaded to the system using

swinstall -s | <path to product depot>

follow step 1, then steps 5 through 12.

1. Log in as root.

2. Insert the software media (disk) into the appropriate drive.

3. Run the swinstall program using the command:

swinstall

The Software Selection window and Specify Source window
open.

4. Change the Source Host Name, if necessary, enter the mount point
of the drive in the Source Depot Path field, and click OK to return
to the Software Selection window. Click Help for more information.

The Software Selection window now contains a list of available
software bundles to install.

5. Highlight the HP-UX IPFilter software for your system type.

6. Select Mark for Install from the Actions menu to select the
product to be installed. With an exception of the manpages and user
manual, you must install the complete IPFilter product.

7. Select Install from the Actions menu to begin the product
installation and open the Install Analysis window.

8. Click OK in the Install Analysis window when the Status field
displays a Ready message.

9. Click Yes on the Confirmation window to confirm that you want to
install the software. The Install window opens.
Chapter 1 5

Installing and Configuring HP-UX IPFilter
Step 2: Loading HP-UX IPFilter Software
View the Install window to read processing data while the software
is being installed. The Status field indicates Ready and the Note
window opens. The fileset is loaded by swinstall.

The estimated time for processing is three to five minutes.

10. Click OK on the Note window to reboot the system.

The user interface disappears and the system reboots.

11. After the system reboots, check the log files in
/var/adm/sw/swinstall.log and /var/adm/sw/swagent.log to be
sure the installation was successful.

NOTE Do not run the HP-UX IPFilter product when the system is booted in
single-user mode.

NOTE The IPFilter modules are dynamically linked into the kernel by
default. To statically link the modules, see Appendix B, “HP-UX
IPFilter Static Linking,” on page 177 for instructions and
information.

12. Go to Step 3: Determining the Rules for IPFilter.
Chapter 16

Installing and Configuring HP-UX IPFilter
Step 3: Determining the Rules for IPFilter
Step 3: Determining the Rules for IPFilter
Review the IPFilter rule descriptions and examples in Chapter 2,
Chapter 4, and Appendix A to determine the appropriate rules for your
system.

Determine the rules you will configure based on the services running on
your system. Determine DCA rules as well. For more information on
DCA, see Chapter 3.

If you are using NAT, determine the NAT rules you will configure as
well.

Go to Step 4: Adding Rules to the Rules Files.
Chapter 1 7

Installing and Configuring HP-UX IPFilter
Step 4: Adding Rules to the Rules Files
Step 4: Adding Rules to the Rules Files
To add your rules to the /etc/opt/ipf/ipf.conf file (or your chosen
rules file) and to the /etc/opt/ipf/ipnat.conf file, use a text editor
such as vi.

NOTE DCA rules are added along with IPFilter rules in the
/etc/opt/ipf/ipf.conf file or your selected rules file. DCA rules can
be used with or without IPFilter rules. If using the DCA feature, DCA
mode must be turned on. For more information, see “DCA Mode” on
page 61.

Adding IPFilter Rules

When IPFilter is installed, the default rules file, ipf.conf, is empty. You
must add rules to this file to create a firewall. Alternately, you can
change the configuration to read different rules files you specify.

Filtering rules added to /etc/opt/ipf/ipf.conf are loaded when the
system is booted. If you do not want the rules to load on bootup, place
your rules in an alternate location, such as /etc/ipf.conf. You can then
load these rules manually using the ipf command.

See the example rulesets in Appendix A, “HP-UX IPFilter Configuration
Examples,” on page 147 for assistance in putting your ruleset together.
You can find additional information on the ipf command in “The ipf
Utility” on page 83.

Adding NAT Rules

When IPFilter is installed, the default NAT rules file ipnat.conf is
empty. You must add rules to this file to enable NAT. Alternately, you can
change the configuration to read different NAT rules files you specify by
changing the default configuration file name or location in the
/etc/rc.config.d/ipfconf file.
Chapter 18

Installing and Configuring HP-UX IPFilter
Step 4: Adding Rules to the Rules Files
NOTE IPFilter NAT functionality and the associated commands and utilities
are not suppored with IPv6.

Filtering rules added to /etc/opt/ipf/ipnat.conf are loaded when the
system is booted. If you do not want the rules to load on bootup, place
your rules in an alternate location, such as /etc/ipnat.conf. You can
then load these rules manually using the ipnat command.

To enable the NAT functionality, you must configure at least one filter
rule using the ipf command. If you do not want to use the filtering
functionality, you should configure a redundant rule. For example:

pass in all

See the example NAT ruleset in Appendix A, “HP-UX IPFilter
Configuration Examples,” on page 147 for assistance in putting your
NAT rules together. You can find additional information on NAT
functionality in “map and portmap: Basic NAT” on page 39 and “The
ipnat Utility” on page 101.

Go to Step 5: Loading IPFilter and NAT Rules.
Chapter 1 9

Installing and Configuring HP-UX IPFilter
Step 5: Loading IPFilter and NAT Rules
Step 5: Loading IPFilter and NAT Rules
This section describes how to install rules in the HP-UX IPFilter and
NAT rules file to run on your system.

Loading IPFilter Rules

NOTE The following is a list of commands and file names, some of which are
very similar:

• ipfboot—The startup script for the ipf module.

• /etc/rc.config.d/ipfconf—The configuration file for the ipfboot
startup script.

• /etc/opt/ipf/ipf.conf—The default IPFilter rules file. Any rules
present in this file are automatically loaded at bootup by the
ipfboot startup script.

The configuration file, ipfconf, contains information that determines
how HP-UX IPFilter starts when the system is rebooted. When HP-UX
IPFilter is installed, the ipfconf file is put in the /etc/rc.config.d
directory. The HP-UX IPFilter ipfboot startup script reads ipfconf.

By default, HP-UX IPFilter starts on bootup and the rules from the
/etc/opt/ipf/ipf.conf file are processed. If you do not want the rules
to load on bootup, place your rules in an alternate location and then
manually load the rules using the ipf command.

• Add new rules to your rules file using the -f option of the ipf
command:

ipf -f <rules file>

NOTE When a rule has been loaded, it takes effect immediately. For
example, if you add a rule to block all traffic and load it using ipf -f
<rules file>, you will be blocked from X-Windows and networking
processes.
Chapter 110

Installing and Configuring HP-UX IPFilter
Step 5: Loading IPFilter and NAT Rules
• Flush rules from your ruleset using the -Fa option of the ipf
command:

ipf -Fa

The -Fa option flushes previously configured rules. The -A option
specifies the active rules list. For example:

ipf -Fa -A -f /etc/opt/ipf/ipf.conf

The previous command flushes the previously configured rules,
specifies /etc/opt/ipf/ipf.conf as the active rules file, and loads
the rules in /etc/opt/ipf/ipf.conf for immediate use.

Optionally, use the -I option if you do not want to save previously
configured rules. This command adds rules to the inactive rule list.
For example:

ipf -I -Fa -A -f /etc/opt/ipf/ipf.conf

This command enables the new rules. The -I option swaps the active
rules you just configured with the inactive rules. To make the old
rules effective again, use ipf -s to swap the rulesets.

The -Fi command flushes only the IN rules in the specified rules file.
For example:

ipf -Fi /etc/opt/ipf/ipf.conf

The -Fo command flushes only the IN rules in the specified rules file.
For example:

ipf -Fo /etc/opt/ipf/ipf.conf

Removing IPFilter Rules

If necessary, the following command can be used to remove different
rules files:

ipf -r -f <delete_rule_file>

This command can be executed while IPFilter is running.
Chapter 1 11

Installing and Configuring HP-UX IPFilter
Step 5: Loading IPFilter and NAT Rules
Loading NAT Rules

To load IPFilter NAT rules:

1. Add NAT rules to the ipnat.conf file, or to another NAT rules file
you select. See “map and portmap: Basic NAT” on page 39 and “The
ipnat Utility” on page 101 for information and instructions.

2. Use the following command to load the NAT rules manually:

ipnat -CF -f /etc/opt/ipf/ipnat.conf

This command flushes any current mappings and NAT rules, and
reads NAT rules from the specified rules file.

Go to Step 6: Verifying the Installation and Configuration.
Chapter 112

Installing and Configuring HP-UX IPFilter
Step 6: Verifying the Installation and Configuration
Step 6: Verifying the Installation and
Configuration
After HP-UX IPFilter is installed and you have configured and loaded
the rules file, you must verify the installation and configuration.

• Verify that HP-UX IPFilter is running using the -v option of the ipf
command:

ipf -V

ipf: HP IP Filter: v3.5alpha5 (A.03.05.07) (312)

Kernel: HP IP Filter: v3.5alpha5 (A.03.05.07)

Running: yes

Log Flags: 0 = none set

Default: pass all, Logging: available

Active list: 1

• Verify that HP-UX IPFilter has been correctly loaded using the
kmadmin -s command:

kmadmin -s

Name ID Status Type
===
pfil 1 LOADED STREAMS
ipf 2 LOADED WSIO

• Execute the following commands to verify that your rules have been
properly loaded. Run ipfstat -i to check for the inbound rules and
run ipfstat -o to check for outbound rules.

To view all rules at the same time, run:

ipfstat -io

By default, IPFilter processes the rules in the ipf.conf file.
Chapter 1 13

Installing and Configuring HP-UX IPFilter
Step 6: Verifying the Installation and Configuration
Additional Configuration Information

IPFilter provides additional configuration options, such as the following
ndd variables.

NOTE The previous ndd variables cannot be set through
/etc/rc.config.d/nddconf. So, when IPFilter starts up, these ndd
variables will have their default values.

Name Description Default
Value

ipl_buffer_sz Size of the IPFilter logging buffer for
/dev/ipl.

8K

ipl_suppress If set, does not print identical log
records separately, but counts them
as Nx, where N is the number of
times the log record occurs.

1

ipl_logall If set, the entire packet is logged.
Otherwise, only the first 128 bytes
are logged. This should be used with
the log body rules.

0

cur_iplbuf_sz Tells the size of the log buffer and the
amount of buffer space being used.

None
Chapter 114

Installing and Configuring HP-UX IPFilter
Supported and Unsupported Interfaces
Supported and Unsupported Interfaces
The following table lists the interfaces supported for each version of
HP-UX IPFilter.

CAUTION For all versions of HP-UX IPFilter, the unsupported interfaces do not
interact with IPFilter. IPFilter does not block or protect the system from
traffic on unsupported interfaces.

HP-UX IPFilter is not tested with any third party products.

Table 1-1 HP-UX IPFilter Supported Interfaces

HP-UX IPFilter Version Supported Interfaces

A.03.05.14

A.03.05.12

A.03.05.11.01

A.03.05.10

A.03.05.10.02

A.03.05.06.v2

• Ethernet (10Base-T)

• Fast Ethernet (100Base-T)

• Gigabit Ethernet (1000Base-T)

• APA

• VLAN

• FDDI

• Token Ring

• InfiniBand (supported on
HP-UX 11i v2 only)

A.03.05.10.04 • Ethernet (10Base-T)

• Fast Ethernet (100Base-T)

• Gigabit Ethernet (1000Base-T)

• APA

• VLAN

• FDDI

• Token Ring
Chapter 1 15

Installing and Configuring HP-UX IPFilter
Supported and Unsupported Interfaces
The following interfaces are unsupported (not protected by HP-UX
IPFilter) on any HP-UX IPFilter releases:

• ATM

• Hyperfabric

• X.25

• Frame Relay

• PPP

A.03.05.09

A.03.05.08

A.03.05.07

A.03.05.06

• Ethernet (10Base-T)

• Fast Ethernet (100Base-T)

• Gigabit Ethernet (1000Base-T)

• APA

• VLAN

• FDDI

• Token Ring

Table 1-1 HP-UX IPFilter Supported Interfaces (Continued)

HP-UX IPFilter Version Supported Interfaces
Chapter 116

Installing and Configuring HP-UX IPFilter
Troubleshooting HP-UX IPFilter
Troubleshooting HP-UX IPFilter
This section describes how to troubleshoot an HP-UX IPFilter
configuration. It provides information about possible problems that
might occur along with the steps needed to resolve them.

• HP-UX IPFilter is not filtering (it passes/allows all network
traffic).

Verify whether HP-UX IPFilter is running using ipf -V. The
running field should say yes. If it says no, then the HP-UX IPFilter
module has not been loaded. It might have been explicitly unloaded.

To load IPFilter again, use:

/sbin/init.d/ipfboot start

To determine if the HP-UX IPFilter DLKM modules are loaded,
execute either the kmadmin (1M) command on HP-UX 11i v1 or the
kcmodule (1M) command on HP-UX 11i v2. See the respective
manpages for more information.

Load the rules and check again that IPFilter works. If it still does not
work, reboot the system and check /etc/rc.log and
/var/adm/syslog/syslog.log for errors.

• The host does not seem to be on the network and pings do not
go through.

Check the rules you have configured using ipfstat -io. This
command will show the in and the out rules.
Chapter 1 17

Installing and Configuring HP-UX IPFilter
Troubleshooting HP-UX IPFilter
NOTE If you are using /etc/opt/ipf/ipf.conf as your rules file, then it
will be loaded at boot time. The IPFilter startup script
/sbin/init.d/ipfboot will:

— Load the IPFilter module.

— Start the logging daemon, ipmon.

— Load any uncommented rules present in
/etc/opt/ipf/ipf.conf.

If the last effective rule amounts to “block in all,” the boot sequence
might not complete, for example, when sendmail, SNMP, and NIS
are configured on the system.

• Nothing is logged.

Verify the following:

ipf -V should show the logging file as available.

ps -ef|grep ipmon to verify if ipmon is running. During bootup,
ipmon is started. If it is not running, start it by using:

ipmon -sD

The -s option specifies that the log records go to
/var/adm/syslog/syslog.log and the -D option directs ipmon to
run as a daemon in the background.

• Errors occur when loading rules.

ipf -f <rulefile>
ioctl (add/insert rule); File Exists

This occurs when you try to add a rule that is already loaded. Use the
following command to load rules:

ipf -Fa -f <rulefile>

The -Fa option will flush any previous rules present and all rules
will be reloaded.

In addition, you can use ipftest to test a set of filter rules without
having to put them in place. See the ipftest (1) manpage for more
information on this tool.
Chapter 118

Installing and Configuring HP-UX IPFilter
Troubleshooting HP-UX IPFilter
• IPFilter rules changed after using Bastille/
Install-Time-Security level.

If you configure an IPFilter ruleset-using Install-Time-Security level,
or use HP-UX Bastille interactively to reconfigure IPFilter rules,
existing rules will be overwritten. This will change IPFilter behavior.

To reinsert your rules into the Bastille-setup firewall rules, edit
/etc/opt/sec_mgmt/bastille/ipf.customrules, and run
bastille -b -f <config file>. Alternatively, to remove all of the
security hardening performed by Bastille, including the firewall
configuration, run bastille -r. For more information, see the
Bastille documentation.
Chapter 1 19

Installing and Configuring HP-UX IPFilter
Troubleshooting HP-UX IPFilter
Chapter 120

2 Rules and Keywords

This chapter describes the basic procedures and building blocks used to
create filtering rules for HP-UX IPFilter.
Chapter 2 21

Rules and Keywords
 It contains the following sections:

• IPFilter Configuration Files

• Basic Rules Processing

• IPFilter Keywords

— pass and block: Controlling IP Traffic

— in and out: Bidirectional Filtering

— quick: Optimizing IPFilter Rules Processing

— on: Filtering by Network Interfaces

— from and to: Filtering by IP Addresses and Subnets

— log: Tracking Packets on a System

— proto: Controlling Specific Protocols

— opt and ipopts: Filtering on IP Options

— icmp-type: Filtering ICMP Traffic by Type

— port: Filtering on TCP and UDP Ports

— keep state: Protecting TCP, UDP, and ICMP Sessions

— flags: Tight Filtering Based on TCP Header Flags

— keep frags: Letting Fragmented Packets Pass

— with frags: Dropping Fragmented Packets

— with short: Dropping Short Fragments

— return-rst: Responding to Blocked TCP Packets

— return-icmp: Responding to Blocked ICMP Packets

— dup-to: Drop-Safe Logging

• NAT Keywords

— map and portmap: Basic NAT

— bimap: Bidirectional Mapping

— rdr: Redirecting Packets

— map-block: Mapping to a Block of Addresses
Chapter 222

Rules and Keywords
NOTE Most of the information in this chapter has been derived from the
IPFilter-based Firewalls HOWTO document written by Brendan Conoby
and Erik Fichtner. You can find this document at
http://www.obfuscation.org/ipf/.
Chapter 2 23

Rules and Keywords
IPFilter Configuration Files
IPFilter Configuration Files
HP-UX IPFilter has two files it uses for configuration.

IPFilter Rules

The HP-UX IPFilter rules file is named /etc/opt/ipf/ipf.conf.

The UNIX configuration file conventions allow one rule per line. The
number symbol (#) denotes a comment at the beginning of a line as well
as a rule and a comment on the same line. Extra white space is allowed
and encouraged to keep the rules readable.

By default, HP-UX IPFilter starts on bootup and the rules from the
/etc/opt/ipf/ipf.conf file are processed.

When HP-UX IPFilter is first installed, the rules file is empty. You must
put rules into this file or change the configuration to read another file
that holds IPFilter rules. You can change the file information by editing
the rules file using vi or another text editor.

IPFilter Configuration File

When HP-UX IPFilter is installed, the ipfconf file is put in the
/etc/rc.config.d directory. The information in this file determines
how HP-UX IPFilter starts when the system is booted and also gives the
location of the rules file.

See Appendix A, “HP-UX IPFilter Configuration Examples,” on page 147
for example rules files to help you create your ruleset.
Chapter 224

Rules and Keywords
Basic Rules Processing
Basic Rules Processing
Rules are processed in order from top to bottom of the rules file. If the
contents of your rules file are as follows, IPFilter processes the rules in
the order they appear from top to bottom:

block in all
pass in all

IPFilter does not stop processing rules after a match is made. Instead, it
acts on the last rule that matches a packet being checked. In the
previous ruleset, all incoming packets match both rules, but all packets
are passed according to the last rule matched, pass in all.

Unlike other packet filters, IPFilter keeps a flag on whether it passes a
packet. Unless the flow is interrupted, IPFilter goes through the entire
ruleset and passes or drops each packet based on the last matching rule.

Given the following ruleset:

block in all
block in all
block in all
block in all
pass in all

All packets pass through. There is no cumulative effect during
processing. The last matching rule always takes precedence.
Chapter 2 25

Rules and Keywords
IPFilter Keywords
IPFilter Keywords
IPFilter rules are built using keywords and parameters that combine to
filter packets coming in and out of a system. The following sections
describe the keywords that form the basic building blocks of IPFilter
rules. These sections include the purpose of the keywords and examples
of how to use them in rules.

NOTE For more information about IPFilter rule syntax, see the ipf (5) manpage.

pass and block: Controlling IP Traffic

The first keyword in any IPFilter rule is usually either pass or block. To
allow packets into the IPFilter system, use pass. For example, to allow
all incoming packets, use:

pass in all

To deny all incoming packets, use:

block in all

in and out: Bidirectional Filtering

You can explicitly pass and block both inbound and outbound traffic.
Inbound traffic is all traffic that enters the firewall on any interface.
Outbound traffic is all traffic that leaves on any interface, whether
locally generated or passing through. Packets coming in are not only
filtered as they enter the firewall, they are also filtered as they exit.

To block all incoming packets, use the following rule:

block in all

To pass all outgoing packets, use the following rule:

pass out all

You can use in and out with all other keywords. IPFilter filtering
techniques are applicable to both inbound and outbound traffic.
Chapter 226

Rules and Keywords
IPFilter Keywords
NOTE If you do not specify any out rules, the implied default is pass out all.
If you do not specify any in rules, the implied default is pass in all.

quick: Optimizing IPFilter Rules Processing

HP-UX IPFilter behaves differently from other packet filters. Because it
processes the whole ruleset for each packet, there might be a
performance impact if your rules file is configured so that the most
applicable rules are in the first 10 of 100 rules.

You can use the quick keyword to control rule processing and reduce
performance impact on your IPFilter system. If IPFilter matches a
packet to a rule that contains quick, IPFilter immediately acts on that
rule without continuing to check the packet against the other rules in the
ruleset. For example, if you configure the following ruleset:

block in quick all
pass in all

IPFilter matches all packets to the first rule, block in quick all and
blocks the packet. Because quick is used, IPFilter does not consider the
other rule in the ruleset.

on: Filtering by Network Interfaces

You can use the on keyword to control traffic to and from your system
based on network interfaces.

Your system can have interfaces to more than one network. Every packet
the system receives comes in on a network interface; every packet the
system transmits goes out on a network interface.

For example, your machine has two interfaces, lan0 and lan1, and you
do not want packets coming in on the lan0 interface. You add the
following rules:

block in quick on lan0 all
pass in all

The on keyword means that network traffic is coming in on the named
interface, lan0. If a packet comes in on lan0, the first rule blocks it. If a
packet comes in on lan1, the first rule does not match. The second rule
matches and the packet is passed.
Chapter 2 27

Rules and Keywords
IPFilter Keywords
from and to: Filtering by IP Addresses and Subnets

IPFilter can pass or block packets based on both source and destination
IP addresses. It can also filter on subnets.

To configure IPFilter to pass or block packets based on their source IP
address, use the from ip_address keyword. For example:

block in quick from 192.168.0.0 to any

For traffic coming from any address within a subnet, you can use from
with the following subnet address syntax:

block in quick from 192.168.0.0/16 to any

For traffic coming from any address within a range of addresses, you can
use from with the following address range syntax:

block in quick from 192.168.32.2-192.168.32.100 to any

To configure IPFilter to pass or block packets based on their destination
IP address, use the to ip_address keyword. For example:

block in quick from any to 192.168.0.0

For packets originating in or destined for a subnet, you can use either to
or from with any of the following subnet address syntaxes:

• A standard dot-notation address mask, for example:

pass in from 192.168.1.1 to any

• A single hexadecimal number with a leading 0x, for example:

pass in proto tcp from 0xc0a80101 to any

or use the integer format, for example:

pass in from 3232235777 to any

NOTE 0xc0a80101 and 3233325777 are the hexadecimal and integer
representations of 192.168.1.1, respectively.

• A Classless Inter-Domain Routing (CIDR) notation, such as:

pass in from 192.168.1.1/24 to any
Chapter 228

Rules and Keywords
IPFilter Keywords
You can combine specific from ip_address and to ip_address
keywords to restrict traffic based on both source and destination IP
addresses.

You can also filter traffic using both IP addresses and network interface
names. For example, you want data from lan0, but not from
192.168.0.0/16. Configure the following rules:

block in quick on lan0 from 192.168.0.0/16 to any
pass in all

With this ruleset, the on lan0 keyword means that a packet is blocked
only if it comes in on the lan0 interface. If a packet comes in on the lan0
interface from 192.168.0.0/16, it passes.

log: Tracking Packets on a System

You can use the logging capability of IPFilter to track incoming and
outgoing packets. Logging lets you determine if your IPFilter system is
being attacked, and gives you some information about attacks.

While it is unnecessary to log every passed packet and, in some cases,
every blocked packet, you can select to log specific blocked or passed
packets. For example, if you want to log blocked packets from a specific
address, such as 20.20.20.0/24, use the following rule:

block in log quick on lan0 from 20.20.20.0/24 to any

You can use the log keyword with any IPFilter rule. HP recommends
deciding which rules are the most important or the most likely to block
attacks on your system and logging only those rules.

NOTE The log keyword can be used with several advanced options to control
and enhance logging functionality and performance. See “Logging
Techniques” on page 70 for more information.
Chapter 2 29

Rules and Keywords
IPFilter Keywords
proto: Controlling Specific Protocols

IPFilter can filter traffic based on protocol, such as TCP or ICMP, using
the proto keyword.

For example, many Denial of Service (DoS) attacks rely on glitches in the
TCP/IP stack of the OS, in the form of ICMP packets. To block ICMP
packets, add the proto command to your ruleset as follows:

block in log quick on lan0 proto icmp from any to any

In this example, any ICMP traffic coming in from lan0 will be logged and
discarded.

IPFilter also has a shorthand for rules that apply to proto tcp and
proto udp at the same time, such as portmap or NFS. The rule for
portmap would be:

block in log quick on lan0 proto tcp/udp from any to
20.20.20.0/24 port = 111

opt and ipopts: Filtering on IP Options

IPFilter can filter packets based on IP options using the opt and ipopts
keywords. You can configure IPFilter rules to pass or block packets that
have a specific option set. For example:

block in quick all with opt lsrr, ssrr

NOTE If you configure IPFilter to filter on more than one option with the opt
keyword, use a comma and a space to delimit each option. See the
previous example for correct syntax.

You can also configure rules to pass or block packets that do not have a
specific option set. For example:

pass in from any to any with opt ssrr not opt lsrr

If you want to block or pass a packet that has any IP option set or no IP
options set, use the ipopts keyword. For example:

block in all with ipopts

For a complete list of IP options, see the IETF RFC at
http://www.faqs.org/rfcs/std/std2.html.
Chapter 230

Rules and Keywords
IPFilter Keywords
icmp-type: Filtering ICMP Traffic by Type

You can filter specific types of ICMP traffic using the icmp-type keyword.
This is a useful keyword if you want to block most ICMP traffic to
prevent DoS attacks, but must allow certain types of ICMP messages to
pass to your system.

For example if you want to specifically allow ping messages to pass on
your system, configure the following rule:

pass in quick on lan0 proto icmp from any to 20.20.20.0/24
icmp-type 0

You must know the type number for any ICMP message you want to
explicitly pass or block using the icmp-type keyword. The following is a
list of ICMP message type numbers used by HP-UX IPFilter.

TYPE CODE icmp-type
icmp-code MEANING

0 0 echorep ECHO REPLY (ping reply)
[RFC792]

3 unreach DESTINATION UNREACHABLE

0 net-unr network unreachable

1 host-unr host unreachable

2 proto-unr protocol unreachable

3 port-unr port unreachable [RFC792]

4 needfrag need fragmentation [RFC792]

5 srcfail source route failed [RFC792]

6 net-unk destination network unknown

7 host-unk destination host unknown

8 isolate source host isolated [RFC792]
(ping)

9 net-prohib destination network
administratively prohibited
[RFC1256]
Chapter 2 31

Rules and Keywords
IPFilter Keywords
10 host-prohib destination host administratively
prohibited [RFC1256]

11 net-tos network unreachable for TOS
[RFC792]

12 host-tos host unreachable for TOS
[RFC792]

13 filter-prohib prohibited by filtering [RFC1812]

14 host-preced host precedence violation
[RFC1812]

15 cutoff-preced precendence cutoff in effect
[RFC1812]

4 0 squench SOURCE QUENCH

5 redir REDIRECT

network

host

network &
TOS

host & TOS

8 0 echo ECHO REQUEST (ping request)

0 routerad ROUTER ADVERTISEMENT

0 routesol ROUTER SOLICITATION

11 timex TIME EXCEEDED

TTL=0 during transmit

TTL=0 during reassembly

12 paramprob PARAMETER PROBLEM

13 0 timest TIMESTAMP REQUEST

TYPE CODE icmp-type
icmp-code MEANING
Chapter 232

Rules and Keywords
IPFilter Keywords
Rule order is important if you are using the icmp-type keyword with the
quick keyword. Place pass rules before block rules in the ruleset to be
sure the correct packets are passed.

port: Filtering on TCP and UDP Ports

In addition to filtering network traffic by protocol, you can use IPFilter to
block traffic on specific ports used by a protocol. You can pass or block
traffic on a specific port, such as a well-known port used by a service like
telnet or rlogin.

For example, you can block incoming telnet traffic with the following
rule:

block in log quick on lan0 proto tcp from any to 20.20.20.0/24
port = 23

You can also pass or block traffic on a range of ports, such as the high
port numbers used for client telnet connections. The following is a list of
operands you can use with port numbers:

14 0 timestrep TIMESTAMP REPLY

15 0 inforeq INFO REQUEST (obsolete)

16 0 inforep INFO REPLY (obsolete)

17 0 maskreq ADDRESS MASK REQUEST

18 0 maskrep ADDRESS MASK REPLY

TYPE CODE icmp-type
icmp-code MEANING

Operand Alias Result

< lt true if port is less than configured value

> gt true if port is greater than configured value

= eq true if port is equal to configured value

!= ne true if port is not equal to configured value
Chapter 2 33

Rules and Keywords
IPFilter Keywords
keep state: Protecting TCP, UDP, and ICMP Sessions

Use keep state to identify and authorize individual TCP, UDP, and
ICMP sessions that pass multiple packets back and forth. keep state
enables IPFilter to distinguish legitimate traffic from port scanners and
DoS attacks.

IPFilter maintains a state table. The state table is a list of open TCP,
UDP, and ICMP sessions. If a packet matches an entry in the state table,
it passes through the firewall without being checked against the ruleset.
This enhances the performance of the IPFilter system.

IPFilter checks both inbound and outbound packets against the state
table. If either an inbound or an outbound packet matches a session in
the state table, it is not checked against the ruleset.

You can use keep state to limit the number of rules you must configure.
Use keep state to pass or block the first packet in a TCP, UDP, or ICMP
session. When a packet matches a keep state rule, and entry is added
to the state table. You do not need to configure rules for all the other
types of traffic that might pass within a specific session.

For example, you can use the keep state keyword with IPFilter rules to
protect an SSH server.

block out quick on lan0 all
pass in quick on lan0 proto tcp from any to 20.20.20.1/32 port
= 22 keep state

Using the keep state keyword, after the first SYN packet is received by
the SSH server, an entry is made in the IPFilter state table. The
remainder of the SSH session continues without any further packets
within the session being checked against the IPFilter ruleset. Therefore,
the outbound traffic can flow freely within the session, despite the
block-out rule specified.

<= le true if port is less than or equal to configured
value

>= ge true if port is greater than or equal to
configured value

Operand Alias Result
Chapter 234

Rules and Keywords
IPFilter Keywords
The following rules also work for UDP and ICMP:

block in quick on lan0 all
pass out quick on lan0 proto tcp from 20.20.20.1/32 to any keep
state
pass out quick on lan0 proto udp from 20.20.20.1/32 to any keep
state
pass out quick on lan0 proto icmp from 20.20.20.1/32 to any
keep state

flags: Tight Filtering Based on TCP Header Flags

You can use IPFilter to filter traffic by port number; you can additionally
filter traffic to or from a specific port based on the flags set in the TCP
header of the IP packet. Use the flags <option> keyword to filter
traffic by flags.

For example, to allow only packets with the SYN flag set through on
port 23, configure the following rules:

pass in quick on lan0 proto tcp from any to 20.20.20.1/32 port
= 23 flags S keep state
pass out quick on lan0 proto tcp from any to any flags S keep
state
block in quick all
block out quick all

Now only TCP packets destined for 20.20.20.1 at port 23 with a SYN flag
pass in and are entered into the state table. A lone SYN flag is only
present as the very first packet in a TCP session (called the TCP
handshake). These rules have at least two advantages:

• No arbitrary packets can come in and negatively impact the state
table.

• FIN and XMAS scans will fail; they set flags other than the SYN flag.

Flags S equates to flags S/AUPRFS and matches against only the SYN
packet, out of all six possible flags.

Flags S/SA allows packets that might or might not have the URG, PSH,
FIN, or RST flags set. Some protocols demand the URG or PSH flags.
S/SAFR would be a better choice for these protocols.

It is more secure to use flags S when flags S/SA is not required.
Chapter 2 35

Rules and Keywords
IPFilter Keywords
NOTE To use the flags <option> keyword, you must know the correct
designations for the flags you want to use in your rules. See RFC793,
Transmission Control Protocol Specifications for a list of TCP flags.

keep frags: Letting Fragmented Packets Pass

You can configure IPFilter to track fragmented packets and to pass
expected packet fragments. The keep frags keyword lets you configure
IPFilter to pass fragmented packets while blocking packets that might
be forgeries or port scans trying to attack the system.

In the following example, four rules are configured to log forgeries and
allow fragments:

pass in quick on lan0 proto tcp from any to 20.20.20.1/32
port = 23 flags S keep state keep frags

pass out quick on lan0 proto tcp from any to any keep state
flags S keep frags
block in log quick all
block out log quick all

In this example, every valid packet is entered into the state table before
the blocking rules are processed. To further protect the system, log initial
SYN packets to detect SYN scans.

with frags: Dropping Fragmented Packets

If you do not want packet fragments to pass through the firewall, use the
with frags keyword. The with frags keyword drops all packet
fragments. For example:

block in all with frags

with short: Dropping Short Fragments

You can configure IPFilter to drop packet fragments that are too short for
comparison using the with short keyword. This is useful for security
purposes, as an attacker can use fragments to attempt to access the
system. For example:

block in proto tcp all with short
Chapter 236

Rules and Keywords
IPFilter Keywords
return-rst: Responding to Blocked TCP Packets

When you use the block keyword as described in “pass and block:
Controlling IP Traffic” on page 26, the blocked packet is dropped and no
response is sent to the remote system the packet. This can be a security
risk, because it might alert an attacker that a packet filter is running on
the system.

When a service is not running on a UNIX system, it normally notifies the
remote host with a return packet. In TCP, this is done with a Reset (RST)
packet. To configure IPFilter to return an RST packet to the origin, use
the return-rst keyword. For example:

block return-rst in quick on lan0 proto tcp from HostA to any
port = 23
pass out quick on lan0 proto tcp from any port = 23 to any
flags R/RSFUP

The first rule blocks the telnet connection from HostA and generates a
TCP RST packet. The second rule is necessary to let out the packet.

This example has two block statements since return-rst only works
with TCP; it still blocks UDP and ICMP protocols. When this is done, the
remote side receives a Connection Refused message instead of a
Connection Timed Out message.

return-icmp: Responding to Blocked ICMP Packets

You can configure IPFilter to send an error message when a packet is
sent to a UDP port on your system. For example:

block return-icmp(port-unr) in log quick on lan0 proto udp from
any to 20.20.20.0/24 port

The port-unreachable (port-unr) message is the default for a
return-icmp message. HP recommends that you use this message when
configuring most return-icmp rules.

When rules with return-icmp are configured, IPFilter returns the ICMP
packet with the IP address of the firewall, not the original destination of
the packet. Use the return-icmp-as-dest keyword to return the
original destination of the ICMP packet. The format is:

block return-icmp-as-dest(port-unr) in log on lan0 proto udp
from any to 20.20.20.0/24 port = 111
Chapter 2 37

Rules and Keywords
IPFilter Keywords
dup-to: Drop-Safe Logging

IPFilter can pass packets on to another system for additional logging,
examination, and processing.

Instead of configuring IPFilter rules to drop packets, you can configure
rules to pass them to another system that can perform more extensive
logging and analysis than ipmon does. A firewall system can have
multiple interfaces. You can create a “drop-safe” for packets using the
dup-to keyword.

For example, to configure IPFilter to send a copy of every packet going
out the lan0 interface to your drop-safe network on ed0, include this rule
in your filter list:

pass out on lan0 dup-to ed0 from any to any

You can also send a packet directly to a specific IP address on your
drop-safe network. For example:

pass out on lan0 dup-to ed0:192.168.254.2 from any to any

This method alters the destination address of the copied packet, which
can negatively impact the usefulness of the IPFilter log. For this reason,
HP recommends only using the known address method of logging to be
certain that the logged address corresponds in some way to the system
for which IPFilter is logging.

In general, dup-to ed0 is all that is required to get a new copy of the
packet over to the drop-safe network for logging and examination.

You could also use this feature to implement an intrusion detection
network by hiding the presence of the intrusion detection system from
the real network so that it cannot be detected from the outside.

In addition, there are some operational characteristics that should be
noted. If you are only dealing with blocked packets, you can use the to
keyword as described in “Using the to Keyword to Capture Blocked
Packets” on page 75. If the system is configured to pass packets, you
should configure rules to make a copy of the packet for the drop-safe log
using the dup-to keyword.
Chapter 238

Rules and Keywords
NAT Keywords
NAT Keywords
The following section describes keywords specific to NAT functionality.

NOTE The maximum number of concurrent connections NAT can support is
16,383.

map and portmap: Basic NAT

Use the map keyword to create basic IPFilter NAT rules.

If you do not know the IP address of the target systems, configure the
following rule:

map lan0 192.168.1.0/24 -> 0/32

IPFilter NAT automatically detects the IP address of the outgoing
interface and translates 0/32 to the IP address of that interface.
Outgoing traffic addresses are translated to the outgoing interface IP
address.

If you do know the IP address of the outgoing interface, configure the
following rule:

map lan0 192.168.1.0/24 -> 20.20.20.1/32

IPFilter NAT translates the source IP addresses of the outgoing packets
to 20.20.20.1.

You can use the portmap keyword to force a translated IP packet onto a
specific port on the target system. This is useful if there is another
firewall the packet must pass through or if many systems are trying to
use the same source port.

To force TCP and UDP packets onto a specific port range, configure the
following rule:

map lan0 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:30000

All translated TCP and UDP packets are forced through ports 20000
through 30000.
Chapter 2 39

Rules and Keywords
NAT Keywords
bimap: Bidirectional Mapping

The bimap keyword allows IPFilter to map IP addresses bidirectionally.
This can be used when you want the IP address of a particular device on
the NAT-supported system to display as having a different IP address
outside the system. The following rule demonstrates the bimap property:

bimap lan0 192.168.1.1/32 -> 20.20.20.1/32

In the previous example, devices with IP address 192.168.1.1 on the
NAT-supported system display as having an IP address of 20.20.20.1
outside the system.

rdr: Redirecting Packets

The rdr keyword redirects packets coming into an IPFilter NAT system.
The default protocol the rdr keyword uses is TCP.

You can use the rdr keyword to redirect packets from one port to
another. For example, you can redirect traffic destined for the
well-known port 80 to port 8000 to enhance security on your system.
Configure the following rule:

rdr lan0 20.20.20.5/32 port 80 -> 192.168.0.5 port 8000

You can redirect UDP and ICMP packets as well as TCP packets. To
redirect UDP packets, add udp to the rule you configure. For example:

rdr lan0 20.20.20.0/24 port 31337 -> 127.0.0.1 port 31337 udp

You can use NAT redirection and IPFilter filtering together to provide
secure, redirected connections. For example, configure the following NAT
rule:

rdr lan0 20.20.20.5/32 port 80 -> 192.168.0.5 port 8000

Then configure the following IPFilter rule:

pass in on lan0 proto tcp from 172.16.8.2 to 192.168.0.5/32
port = 8000 flags S keep state

When a packet comes in, the NAT rule is processed first. The destination
address and port number are rewritten. Then the packet is passed to the
IPFilter rules for processing and the packet is matched to the pass in
rule.
Chapter 240

Rules and Keywords
NAT Keywords
You can use the rdr keyword to implement load-balancing systems and
redirect traffic to multiple destination addresses. For example:

rdr lan0 20.20.20.5/32 port 80 -> 192.168.0.5,192.168.0.6 port
8000

map-block: Mapping to a Block of Addresses

IPFilter NAT can map an IP address to a specific block of IP addresses in
two ways.

You can use the map-block keyword to statically map sessions from a
host to a selected block of IP addresses. Configure the following rule:

map-block lan0 192.168.1.0/24 -> 20.20.20.0/24

Any outgoing packet with an IP address beginning with 192.168.1 is
mapped to an IP address beginning with 20.20.20.

Alternately, you can configure IPFilter NAT to translate to a block of IP
addresses using only the map and portmap keywords. Configure the
following rule:

map lan0 192.168.0.0/16 -> 20.20.20.0/24 portmap tcp/udp
20000:60000
Chapter 2 41

Rules and Keywords
NAT Keywords
Chapter 242

3 Dynamic Connection Allocation

This chapter describes Dynamic Connection Allocation (DCA). It includes
DCA keywords, rule syntax and conditions, and variables. It also
contains procedures for changing DCA rules dynamically and setting
DCA mode at startup.
Chapter 3 43

Dynamic Connection Allocation
 This chapter contains the following sections:

• DCA with HP-UX IPFilter

— Overview: DCA Functionality

— Using DCA

• DCA Keywords

— keep limit: Limiting Connections

— log limit: Logging Exceeded Connections

— log limit freq: Log Frequency

• DCA Rule Syntax

• DCA Rule Conditions

• keep limit Rules and Rule Hits

• DCA Rule Modifications

— Updating keep limit Rules

— Adding New keep limit Rules

— Integrating keep limit Rules

— Extracting an Individual Rule from a Subnet Rule

• DCA Variables

— fr_statemax

— fr_tcpidletimeout

— Configuring Variables

• DCA Mode
Chapter 344

Dynamic Connection Allocation
DCA with HP-UX IPFilter
DCA with HP-UX IPFilter
An HP-UX IPFilter system can act as a secure intermediary, tracking all
incoming TCP connections to a system or network. DCA lets you limit
incoming TCP connections passing through an IPFilter system. DCA
uses stateful packet inspection to limit the number of incoming TCP
connections to a system.

To use DCA functionality, be sure DCA mode is enabled. For more
information, see “DCA Mode” on page 61. DCA functionality does not
work if DCA mode is not enabled.

Overview: DCA Functionality

DCA provides a set of flexible rules for controlling incoming TCP
connections. You allocate a number of TCP connections to a system using
a limit value. The limit value is the number of concurrent TCP
connections that can be established by any given source.

You can configure DCA rules to limit the number of connections from:

• A specific IP address.

• Each IP address in an IP subnet or IP address range.

• An IP subnet or IP address range where all the IP addresses in the
subnet share the cumulative limit.

• Unknown IP addresses, where each unknown IP address has a
connection limit.

When the configured limit is reached, any additional connections to the
HP-UX IPFilter system are dropped. You can configure HP-UX IPFilter
to send a TCP reset when it drops these connection. See “return-rst:
Responding to Blocked TCP Packets” on page 37 for more information.

A set of commands helps collect data about the connections that are
being controlled. This data includes the source and destination IP
address, allocated number of connections, number of active connections,
and number of times the allocated quota of connections was exceeded.
These new commands can be found in:

• “The ipf Utility” on page 83.

— ipf -Q <interface name>
Chapter 3 45

Dynamic Connection Allocation
DCA with HP-UX IPFilter
— ipf -E <interface name>

— ipf -D <interface name>

— ipf -m <option>

• “The ipfstat Utility” on page 86.

— ipfstat -L

— ipfstat -vL

— ipfstat -r <group:rule>

• “The ipmon Utility” on page 93.

— ipmon -r

DCA also provides logging records that can serve as alert messages or as
a summary of the connections made from a specific IP address. You can
fine-tune the rules configured by identifying IP addresses or subnets
that could be subjected to more conservative connection allocation or
blocked altogether.

Using DCA

DCA helps protect systems from floods of TCP connections created by
DoS attacks. You can use DCA to:

• Protect a mail server from a flood of SMTP connections. IP addresses
or subnets that are trying to flood the SMTP server can be slowed
down. At the same time, known users can be given unlimited
connection limits. This ensures that customers and partners can still
access the mail server while attackers are prevented from tying up
resources.

• Protect an LDAP server from a flood of bogus SSL connections or any
other types of connections trying to tie up the LDAP server.
Chapter 346

Dynamic Connection Allocation
DCA Keywords
DCA Keywords
The following section describes keywords specific to DCA. For additional
information about DCA rule syntax and rule conditions, see “DCA Rule
Syntax” on page 52 and “DCA Rule Conditions” on page 53.

keep limit: Limiting Connections

Use the keep limit keyword to limit the number of connections made to
an IPFilter system at a given time. Connections can be limited by IP
address, subnet, cumulative limit of connections, and a default
individual limit.

When setting the limit of connections, be aware that the number of
connections stated is for each service on the destination IP address. For
example, if the keep limit is set to 5, then five connections are allowed
for telnet, five for http, and so on.

Limiting Connections by IP Address

Use the following rule to limit connections by IP address:

pass [return-rst] in quick proto tcp from <ip addr> to any port
= <port_num> keep limit <limit_num>

For example:

pass return-rst in quick proto tcp from 192.34.23.1 to any port
= 25 keep limit 5

The example rule limits the maximum concurrent connections to 5 from
host 192.34.23.1 to SMTP port 25 of any host. Because the [return-rst]
option is specified, a TCP reset will be sent to the initiating TCP
connection at IP address 192.34.23.1 when the connection request is
blocked.

Limiting Connections by Subnet

Use the following rule to limit connections by subnet:

pass [return_rst] in quick proto tcp from <ip_subnet> to any
port = <port_num> keep limit <limit_num>
Chapter 3 47

Dynamic Connection Allocation
DCA Keywords
For example:

pass in quick proto tcp from 192.168.5.0/24 to any port = 25
keep limit 4

The example rule limits the maximum concurrent connections to 4 from
any individual host in subnet 192.168.5.0/24 to port 25 of any host.

Limiting Connections by IP Address Range

Use the following rule to limit connections for each IP address within an
IP address range:

pass [return_rst] in quick proto tcp from <ip_address_range> to
<ip | ip_address_range | ip_subnet | any> [port = <port_num>]
keep limit <limit_num>

For example:

pass in quick proto tcp from 10.10.10.1-10.10.20.1 to any port
= 25 keep limit 15

The example rule allows 15 connections from each IP address within the
IP address range of 10.10.10.1-10.10.20.1.

Use the following rule to limit connections for all IP addresses within an
IP address range:

pass [return_rst] in quick proto tcp from <ip_address_range> to
<ip | ip_address_range | ip_subnet | any> [port = <port_num>]
keep limit <limit_num> cumulative

For example:

pass in quick proto tcp from 10.10.10.1-10.10.20.1 to any port
= 25 keep limit 15 cumulative

The example rule allows 15 connections to all IP addresses within the IP
address range of 10.10.10.1-10.10.20.1. The IP addresses in the stated
range share the connection limit of 15. So, if there are five connections
from 10.10.10.1 and ten from 10.10.20.1, then no more connections are
allowed from any IP address within the stated range.

Limiting Cumulative Connections

Use the following rule to limit connections to a subnet range using a
shared cumulative limit for all addresses:

pass [return-rst] in quick proto tcp from <ip_subnet> to any
port = <port_num> keep limit <limit_num> cumulative
Chapter 348

Dynamic Connection Allocation
DCA Keywords
For example:

pass in quick proto tcp from 192.168.7.0/24 to any port = 25
keep limit 15 cumulative

The example rule limits the cumulative concurrent connections to 15
from all hosts in subnet 192.168.7.0/24 to port 25 of any host.

Default Individual Connection Limits

Use the following rule to create default individual connection limits:

pass [return-rst] in proto tcp from any to any port =
<port_num> keep limit <limit_num>

For example:

pass in proto tcp from any to any port = 25 keep limit 5

This rule specifies a connection limit of 5 for all hosts when trying to
connect to port 25.

IMPORTANT The default individual connection limit must be the last rule in the
configuration file.

log limit: Logging Exceeded Connections

Use the log limit rule to log each connection that exceeds a configured
limit in a keep limit rule. For example:

pass in log limit quick proto tcp from IP1 to Server keep limit
10

IP1 is allowed to open only 10 connections at a time. Any subsequent
connection will be blocked. Since log limit is set, each additional
connection attempt is logged.

log limit generates two types of log records:

• Alert Log records—created when a source IP address is trying to
exceed its configured connection limit. Every time the connection
limit is exceeded, an alert log record is created.
Chapter 3 49

Dynamic Connection Allocation
DCA Keywords
• Summary Log records—created when a limit entry ceases to exist
after all the connections for that limit entry have been closed. This
log record summarizes the connection activity of a particular IP
address.

The format of an alert log record is:

Date and time stamp, Interface packet is on, Source IP, Source
port, Destination IP, Destination Port, protocol, TCP flags
keep limit, Limit type, Configured Limit, Current # of
connections, # times limit exceeded, Log freq, Packet Direction

The format of a summary log record is:

Date and time stamp, Source IP, Source port, Destination IP,
Destination Port, protocol, TCP flags keep limit, Limit type,
Configured Limit, Current # of connections, # times limit
exceeded, Rule #, Time limit the entry was created

Summary Logs and Cumulative Limits

The summary logs for cumulative limits can be printed using the ipmon
-r option. When ipmon -r is invoked, the summary log record is written
and the connection exceeded counter for each cumulative limit is set to
zero.

NOTE Unlike non-cumulative limits, cumulative summary logs are not printed
when all the connections under a cumulative limit are closed.

The following is an example cumulative summary log:

06/02/2004 19:32:39.370000 LIMIT LOG 19.13.15.65-19.13.15.85,*
-> 0.0.0.0,23 PR ip Type 4 Cur Lim 1 Exceeded 1 @0:1 First Time
19:32:35.800000

The example log record was written for the following IP address range
cumulative rule:

pass in log limit freq 1 quick proto tcp from
19.13.15.65-19.13.15.85 to any port = 23 keep limit 1
cumulative
Chapter 350

Dynamic Connection Allocation
DCA Keywords
In the example summary log, the source IP address displayed is actually
the IP address range specified in the rule. Wildcard IP addresses are
shown as 0.0.0.0. The destination port information is also printed from
the rule. The other fields are similar to a non-cumulative summary
record.

For further information, see “ipmon and DCA Logging” on page 95.

log limit freq: Log Frequency

Use the log limit freq <num> keyword to control the frequency at
which alert log records are logged.

For example, log limit is set to 10 and log limit freq is set to 3. The
system begins tracking exceeded connections at the eleventh connection.
It logs every third exceeded connection, that is the fourteenth,
seventeenth, twentieth, and so on.

The log limit freq keyword can also be used with keep limit
cumulative rules. For example:

pass in log limit freq 5 quick proto tcp from 18.9.90.0/24 to
any keep limit 10 cumulative

In the previous rule, log limit freq 5 specifies that the log records
should be printed for every five connections that exceeds the connection
limit of 10. If 100 connections came in, it logs the eleventh, sixteenth,
twenty-first, and so on.

Cumulative limits are shared by different IP addresses and it is possible
that connections from some source IPs will not display. For example, the
initial connections might come from IP1 and the next 10 from IP2. IP1
will not be logged, but IP2 will be logged, as one of its connections will be
the eleventh connection.
Chapter 3 51

Dynamic Connection Allocation
DCA Rule Syntax
DCA Rule Syntax
The following is the complete syntax for creating a DCA rule:

pass [return-rst] in [log limit [freq <num>]] quick proto tcp
from <ip | ip_subnet | ip_address_range | any > to
<ip | ip_subnet | any> [port = port_num] keep limit <num>
[cumulative]

NOTE Be sure to use the quick keyword in all DCA rules.
Chapter 352

Dynamic Connection Allocation
DCA Rule Conditions
DCA Rule Conditions
DCA rules must conform to the following conditions:

• The rule must be a quick rule.

• The rule must be an in rule.

• The rule can be used only with proto tcp.

• The log limit and log limit freq # rules can only be used with
the keep limit rule.

• The source port must be a wildcard (*).

• Port ranges are not allowed for source ports.

• The connection limit specified in a keep limit rule must be a
non-zero, positive number. keep limit 0 rules are not allowed.

• You cannot use the keep state keyword with the keep limit
keyword in the same rule.

• If keep limit is used, TCP state is kept on all connections that are
within the limit and are allowed through.
Chapter 3 53

Dynamic Connection Allocation
keep limit Rules and Rule Hits
keep limit Rules and Rule Hits
For each new packet, every time there is a rule match, the hit count for
that rule is incremented. The rule does not have to be the final matching
rule. Some examples are:

• A rule is a matching, non-quick rule. If another rule match is later
found on the list, both hit counts are incremented.

• A rule is a matching group head. If a matching rule is found within
the group, both hit counts are incremented.

Rule hit count can be displayed using ipfstat -ioh. This command is
useful as a troubleshooting mechanism, along with ipfstat -sl and
ipfstat-vL, which allow connections to be examined in realtime. And
lastly, logging can be used to analyze history for past connections.

The rule hits are registered differently for cumulative and
non-cumulative limits. A rule hit is usually registered only once for
non-cumulative limits because, when the connection matches a
non-cumulative keep limit rule, a limit entry is created and subsequent
connections are controlled by that limit entry.

For cumulative limits, each new connection registers a rule hit and
displays in the rule hit count because cumulative limit connections
require a rule walk for each new connection.
Chapter 354

Dynamic Connection Allocation
DCA Rule Modifications
DCA Rule Modifications
The following sections describe how to modify DCA rules when HP-UX
IPFilter is running.

NOTE HP recommends configuring a redundant rule, such as pass in all, in
all DCA rules files. IPFilter does not process packets without a rule.

To modify an active rules file:

1. Run the following command:

ipf -f <rules file>

2. Add new rules to the rules file.

DCA begins processing incoming packets with the new rules as you
add them.

CAUTION If a non-cumulative rule already has a connection limit entry in the
limit table, DCA matches incoming packets with the same source IP
address, destination IP address, and destination port to the old rule.
This occurs even if you enter a new rule higher up the list in the
active rules file. The new rule does not take effect until the current
connection limit entry expires.

To force a new rule to take effect immediately, follow the procedures
described in “Updating keep limit Rules” on page 56. Alternately, use
the following procedure to modify an inactive rules file and switch it
with the active rules file.

To modify an inactive rules file, then switch it with the active rules file:

1. Run the following command to add or modify rules in an inactive
rules file:

ipf -If <rules file>
Chapter 3 55

Dynamic Connection Allocation
DCA Rule Modifications
2. Run the following command to switch the active rules file with the
inactive rules file you modified:

ipf -s

When you modify an inactive rules file, then switch it with an active
rules file, DCA processes new connections according to the new rules file
whether or not there are existing connection limit entries in the limit
table.

TIP For performance-critical applications, HP recommends that you load
rules into the inactive list, then switch the inactive rules file with the
active rules file.

Updating keep limit Rules

The following sections describe procedures for updating keep limit
rules.

Changing the Current Individual, Subnet, or IP Address Range
Rule

You can dynamically lower the number of connections a keep limit rule
allows without letting DCA pass unwanted packets while it activates the
updated rules. You can also increase the connection limit for an IP
address, subnet, or IP address range.

For example, your IPFilter system has many connections coming from a
specific IP address range. You have a keep limit rule configured for
that IP address range. You want to lower the connection limit in the rule
so that DCA starts using the new limit immediately, before more packets
from the suspect IP address range can pass through.

To change the number of connections allowed by a keep limit rule:

1. Create a new rule identical to the current rule except for a different
keep limit count.

When adding a new rule, IPFilter recognizes it as the update of an
existing rule. Current limit entries made by the old rule are updated
with the new connection limit when a new connection is processed.
New connections are processed with the new rule.
Chapter 356

Dynamic Connection Allocation
DCA Rule Modifications
For example, the original rule is:

pass in quick proto tcp from 14.13.45.0-14.13.45.255 to any
keep limit 10 cumulative

To decrease the limit to 5, add the following new rule:

pass in quick proto tcp from 14.13.45.0-14.13.45.255 to any
keep limit 5 cumulative

DCA detects a similar rule in the ruleset, but the limit count has
changed. DCA updates the limit count in the original rule and waits until
the current number of connections drops to 5. During this period, DCA
does not allow any new connections, but it does not terminate any
existing connections. When the number of active connections drops to 5,
DCA allows 5 or fewer connections from the specified IP address range. If
you increase a connection limit from a specified IP address from 15 to 20,
DCA detects the change and allows up to 20 connections from the
specified IP address.

If you increase the connection limit in a keep limit rule, DCA
immediately updates the limit count and controls connections based on
the new higher connection limit.

Updating a Subnet or IP Address Range Rule

To update a subnet or IP address range keep limit rule:

1. Add the same rule, changing only the keep limit value. Be sure the
subnet or IP address range is identical to the old rule.

IPFilter recognizes the new rule as an update to an existing rule.
IPFilter uses the new connection limit instead of the old connection
limit. Limit entries made by the old rule are updated when a new
connection is processed. New connections are processed with the new
rule.

Adding New keep limit Rules

The following procedures describe how to dynamically add new rules to
active rules files.

To Add a New Individual keep limit Rule:

1. Add the new rule on the line before the old rule which the new rule is
to replace.
Chapter 3 57

Dynamic Connection Allocation
DCA Rule Modifications
2. Delete the old rule.

To Add a New Subnet or IP Address Range Rule:

1. Add the new rule on the line before the old rule which the new rule is
to replace.

2. Delete the old rule.

Limit entries made by the old rule are updated when a new
connection is processed. New connections are processed with the new
rule.

To add a more specific subnet or IP address range rule, see the
following section, Integrating keep limit Rules.

Integrating keep limit Rules

The following procedure describes how to add a specific subnet or IP
address range rule before an existing general subnet or IP address range
rule.

1. Add the new subnet or IP address range rule. Be sure to re-enter the
old subnet or IP address range rule exactly as it was entered before.

When a new connection matches an existing limit entry, the new
connection will be processed by the new subnet or IP address range
rule. The subnet or IP address range can be cumulative or
non-cumulative.

Extracting an Individual Rule from a Subnet Rule

To extract an individual rule from a subnet rule:

1. Add the new rule on the line before the subnet rule. Be sure the
subnet or IP address range rule is identical to the old rule.

When a new connection matches an existing limit entry, the new
connection will be processed by the new individual rule. The subnet
or IP address range can be cumulative or non-cumulative.
Chapter 358

Dynamic Connection Allocation
DCA Variables
DCA Variables
The following sections provide information on the fr_statemax,
fr_limitmax, and fr_tcpidletimeout variables, and how to use the
kmtune command to configure each of these variables.

fr_statemax

The purpose of the fr_statemax variable is to restrict how many state
entries can be created. Configure the values of this variable
appropriately for your environment.

The following table displays the default and minimum values for
fr_statemax. HP recommends not setting the value below the stated
minimum value. For information on changing fr_statemax and other
variables using kmtune, see “Configuring Variables” on page 60.

Memory is allocated for state and limit entries in chunks. For state
entries, memory is allocated by increments of 1,300 entries. For limit
entries, memory is allocated by increments of 500 entries. The
approximate size of the state and limit entry is 384 and 96 bytes
respectively. HP-UX IPFilter keeps the allocated memory for state and
limit entries in its private free pool.

IMPORTANT The state and limit values should not be set too high because the memory
allocations are not released back to the kernel memory pool for general
use.

Limits of fr_statemax

The fr_statemax variable indicates the number of state entries that can
be created and exist at the same time. The number of state entries, as
well as other statistics, can be viewed in the general state table. The
ipfstat -s command gives general state table statistics.

Variable Name Default Value Minimum

fr_statemax 200,000 entries 4,000 entries
Chapter 3 59

Dynamic Connection Allocation
DCA Variables
When the number of states created reaches the fr_statemax limit,
HP-UX IPFilter will try to free up state entries and increments the
maximum counter. If HP-UX IPFilter fails to free up state entries, then no
more state entries are created. The maximum counter is incremented each
time a state entry is to be created but the state table is full. If the state
table is full, the connection is let through but no state entry is created.
This is true even if DCA mode is enabled.

The counter No Memory indicates that the system is out of memory and
no state entry can be created.

Limits of fr_limitmax

The fr_limitmax tunable has been deprecated and no longer used to
control the number of limit entries that can be created on the system.

fr_tcpidletimeout

The purpose of fr_tcpidletimeout is to determine the timeout period of
states kept on TCP connections that are idle.

The default timeout value is 86,400 seconds. The minimum value that
can be set for fr_tcpidletimeout is 300 seconds. For information on
changing the fr_tcpidletimeout variable, see the following section,
“Configuring Variables”.

Configuring Variables

Use the kmtune command to query and configure DCA variables. For new
values to take effect, you must unload, reconfigure, and reload the ipf
module. For example, to set fr_statemax to 6,000:

1. Unload the ipf module.
/sbin/init.d/ipfboot stop

2. Set the new value for fr_statemax.
kmtune -s fr_statemax=6000

3. Configure the module for the new value using the following
commands:
cd /stand/ipf
config -M ipf -u

4. Reload the ipf module.
/sbin/init.d/ipfboot start
Chapter 360

Dynamic Connection Allocation
DCA Mode
DCA Mode
The DCA mode can be disabled, enabled, queried, or toggled between
disabled and enabled by using the ipf -m <option>.

DCA mode is disabled by default. To enable DCA, run the following
command:

ipf -m e

To disable DCA, run the following command:

ipf -m d

To query the current DCA setting, use the following command:

ipf -m q

You can toggle between being enabled or disabled by using the following
command:

ipf -m t

To automatically enable DCA:

1. Open /etc/rc.config.d/ipfconf, the IPFilter startup
configuration file.

2. Set the DCA_START flag to 1 to enable DCA.

or

Set the DCA_START flag to 0 to disable DCA.

NOTE When there are no keep limit rules and no connection allocation
configured, HP recommends that you disable DCA.
Chapter 3 61

Dynamic Connection Allocation
DCA Mode
Chapter 362

4 Firewall Building Concepts

This chapter describes specific configuration procedures for HP-UX
IPFilter. It contains concepts for basic and advanced firewall design
using HP-UX IPFilter features.
Chapter 4 63

Firewall Building Concepts
 It contains the following sections:

• Blocking Services by Port Number

• Using Keep State

• Using Keep State with UDP

• Using Keep State with ICMP

• Logging Techniques

• Improving Performance with Rule Groups

• Localhost Filtering

• Using the to Keyword to Capture Blocked Packets

• Creating a Complete Filter by Interface

• Combining IP Address and Network Interface Filtering

• Using Bidirectional Filtering Capabilities

• Using port and proto to Create a Secure Filter

NOTE Most of the information in this chapter has been derived from the IP
Filter-based Firewalls HOWTO document written by Brendan Conoby
and Erik Fichtner. You can find this document at
http://www.obfuscation.org/ipf/.
Chapter 464

Firewall Building Concepts
Blocking Services by Port Number
Blocking Services by Port Number
To create a ruleset that explicitly passes packets for a specific service or
services, but blocks all other traffic:

1. Configure the first rule to block all traffic.

2. Configure subsequent rules pass packets to specific services by port
number.

For example, to create a firewall on a Web server that will accept
connections on TCP port 80 only, configure the following ruleset:

block in on lan0 all
pass in quick on lan0 proto tcp from any to 20.20.20.1/32 port
= 80

This machine will pass in port 80 traffic for 20.20.20.1 and deny all other
traffic. This ruleset provides a basic firewall.
Chapter 4 65

Firewall Building Concepts
Using Keep State
Using Keep State
The keep state keyword must be used with other IPFilter keywords
and filtering techniques so that IPFilter completely and correctly makes
an entry in the state table.

If you configure rules to both filter on TCP flags and keep state, you must
be sure you configure the rules correctly. In most cases, you should use
the keep state keyword on the first rule that interacts with a packet for
a connection. You might also need to add the keep state keyword to
subsequent rules in the ruleset.

The following rules do not filter on TCP flags, but use the keep state
keyword correctly:

block in all
pass in quick proto tcp from any to 20.20.20.20/32 port = 23
keep state
block out all

The following rules both filter on TCP flags and use the keep state
keyword:

block in all
pass in quick proto tcp from any to 20.20.20.20/32 port = 23
flags S keep state
pass out all keep state

Either of these sets of rules will result in a fully established state entry
for a connection to your server.

For more examples of correct uses of the keep state keyword, see
Appendix A, “HP-UX IPFilter Configuration Examples,” on page 147.

Protecting SSH Server Connections Using Keep State

The previous examples demonstrate keeping state on TCP, UDP, and
ICMP. The IPFilter system can make outgoing connections seamlessly,
and attackers cannot get back into the system. The ruleset specifies the
ports systems can access, and adds entries to the state table to monitor
each connection.
Chapter 466

Firewall Building Concepts
Using Keep State
To protect an SSH server using the keep state keyword, use the
following ruleset:

pass in quick on lan0 proto tcp from any to 20.20.20.1/32 port
= 22 keep state
pass out quick on lan0 proto tcp from any to any keep state
block in quick all
block out quick all

With this ruleset, IPFilter enters the first packet of a connection in the
state table. Other processing works as expected. When the three-way
handshake has been witnessed by the state engine, it is marked in 4/4
mode (the connection is marked as fully established). It is set up for
long-term data exchange until the connection is torn down; at that time
the mode will change again. You can see the current modes of your state
table using ipfstat. See “The ipfstat Utility” on page 86 for more
information.

NOTE The keep state keyword can create states even if it detects packets for a
connection that are part of the middle of a connection. The only exception
to this is when the flags S rule is also specified. In such a case, a state
would only be created when the SYN packet is detected.
Chapter 4 67

Firewall Building Concepts
Using Keep State with UDP
Using Keep State with UDP
You can configure IPFilter rules for UDP connections using the keep
state keyword. An entry is added to the state table for UDP connections,
the same as with a TCP connection acted on by a rule with the keep
state keyword. For example:

pass out on lan0 proto udp from any to any port 33434><33690
keep state

For more information on using the keep state keyword, see “keep state:
Protecting TCP, UDP, and ICMP Sessions” on page 34 and “Using Keep
State” on page 66.
Chapter 468

Firewall Building Concepts
Using Keep State with ICMP
Using Keep State with ICMP
The majority of ICMP messages are status messages generated by a
failure in UDP or TCP. For any ICMP error status message that matches
an active state table entry that might have generated that message,
IPFilter passes the ICMP packet. For example:

pass out on lan0 proto udp from any to any port 33434><33690
keep state

Even though an error status message (such as icmp-type 3 code 3
port unreachable or icmp- type 11 time exceeded) for the UDP
session is an ICMP packet, the keep state rule passes the error
message.

The two types of ICMP messages are requests and replies. You can
configure a rule to pass outbound echo requests such as ping. IPFilter
passes in the subsequent icmp-type 0 packet that returns. For example:

pass out on lan0 proto icmp from any to any icmp-type 8 keep
state

This state entry has a default timeout of an incomplete 0/0 state of 60
seconds.

NOTE If you configure rules to keep state on any outbound ICMP messages that
might receive a reply ICMP message, you must use both the proto icmp
and the keep state keywords.

To provide protection against a third party sneaking ICMP messages
through your firewall when an active connection is known to be in your
state table, check the incoming ICMP packet not only for matching
source and destination addresses (and ports, when applicable), but a tiny
part of the payload of the packet that the ICMP message is claiming it
was generated by.
Chapter 4 69

Firewall Building Concepts
Logging Techniques
Logging Techniques
The log keyword tells IPFilter to log packets matching the rule to the
IPFilter logging device, /dev/ipl. To read the log, run the ipmon utility.
See “The ipmon Utility” on page 93 for more information. You can use the
ipmon -s command to log the information in /dev/ipl to syslog.

You can use the following advanced options with the log keyword to
refine the log IPFilter creates.

level log-level

You can control the level of logging IPFilter does by using the level
log-level option with the log keyword.

The syntax for level is:

log level facility.priority|priority

The options available for facility are:

The options available for priority are:

kern user mail

daemon auth syslog

lpr news uucp

cron ftp authpriv

audit logalert local0

local1 local2 local3

local4 local5 local6

local7

emerg alert crit

err warn notice

info debug
Chapter 470

Firewall Building Concepts
Logging Techniques
Example:

block in log level auth.info quick on lan0 from 20.20.20.0/24
to any
block in log level auth.alert quick on lan0 proto tcp from any

to 20.20.20.0/24 port = 21

first

You can use the first option with the log keyword to log only the first
instance of a certain type of packet. For example, it might not be
important to log 500 attempts to probe your telnet port from one source.
It is a good idea to log the first attempt, however.

The first option only applies to packets in a specific session. You can
use the first option to monitor traffic on your system. For best results,
use the first option in conjunction with rules that use pass and keep
state.

Example:

pass in log first proto tcp from amy to any flags S keep state

body

You can use the body option with the log keyword to track parts of an IP
packet in addition to the packet header information. IPFilter logs the
first 128 bytes of a packet if the body option is specified. For example:

block in log body proto tcp from 192.168.1.1 to any flags S

keep state

NOTE Using the body option with the log keyword can make your log files very
long. Limit the use of the body option to necessary instances.
Chapter 4 71

Firewall Building Concepts
Improving Performance with Rule Groups
Improving Performance with Rule Groups
Rule groups allow you to write your ruleset in a tree structure, instead of
as a linear list, so that if an incoming packet is unrelated to a set of rules,
those rules will never be processed. This reduces IPFilter processing
time on each packet and improves IPFilter system performance.

The following is a simple rule group example:

block out quick on lan1 all head 10
pass out quick proto tcp from any to 20.20.20.64/26 port = 80
flags S keep state group 10
block out on lan2 all

In this example, if the packet is not destined for lan1, the head of rule
group 10 does not match; IPFilter does not process any of the rules in
group 10. Rules processing continues at the root level (group 0). If the
packet does match lan1, the quick keyword stops further processing at
the group 0 level. IPFilter then processes all rules in group 10 against
the packet.

Rule groups can be used to break up a complex firewall ruleset. For
example, there are three interfaces in the firewall with interfaces lan0,
lan1, and lan2.

• lan0 is connected to external network 20.20.20.0/26.

• lan1 is connected to DMZ network 20.20.20.64/26.

• lan2 is connected to protected network 20.20.20.128/25.

A complete ruleset for this situation would be complex and significantly
slow user connections to the network. To prevent this, a ruleset is created
with rule groups:

block in quick on lan0 all head 1
block in quick on lan0 from 192.168.0.0/16 to any group 1
block in quick on lan0 from 172.16.0.0/12 to any group 1
block in quick on lan0 from 10.0.0.0/8 to any group 1
block in quick on lan0 from 127.0.0.0/8 to any group 1
block in log quick on lan0 from 20.20.20.0/24 to any group 1
block in log quick on lan0 from any to 20.20.20.0/32 group 1
block in log quick on lan0 from any to 20.20.20.63/32 group 1
block in log quick on lan0 from any to 20.20.20.64/32 group 1
block in log quick on lan0 from any to 20.20.20.127/32 group 1
block in log quick on lan0 from any to 20.20.20.128/32 group 1
Chapter 472

Firewall Building Concepts
Improving Performance with Rule Groups
block in log quick on lan0 from any to 20.20.20.255/32 group 1
pass in on lan0 all group 1
pass out on lan0 all
block out quick on lan1 all head 10
pass out quick on lan1 proto tcp from any to 20.20.20.64/26
port = 80 flags S keep state group 10
pass out quick on lan1 proto tcp from any to 20.20.20.64/26
port = 21 flags S keep state group 10
pass out quick on lan1 proto tcp from any to 20.20.20.64/26
port = 20 flags S keep state group 10
pass out quick on lan1 proto tcp from any to 20.20.20.65/32
port = 53 flags S keep state group 10
pass out quick on lan1 proto udp from any to 20.20.20.65/32
port = 53 keep state group 10
pass out quick on lan1 proto tcp from any to 20.20.20.66/32
port = 53 flags S keep state group 10
pass out quick on lan1 proto udp from any to 20.20.20.66/32
port = 53 keep state group 10

For a host on the lan2 network, IPFilter bypasses all the rules in group
10 when a packet is not destined for hosts on that network.

Multi-level grouping is also supported, allowing IPFilter rules to be
arranged in hierarchical, nested groups. By using the head and group
keywords in a rule, multi-level grouping allows the user to fine tune a
range to improve performance. The following is an example of a
multi-level rule grouping:

pass in proto tcp from 1.0.0.0-9.0.0.0 to any port = 23 keep
state head 1
pass in proto tcp from 2.0.0.0-8.0.0.0 to any port = 23 keep
state head 2 group 1
pass in proto tcp from 3.0.0.0-7.0.0.0 to any port = 23 keep
state head 3 group 2
pass in proto tcp from 4.0.0.0-6.0.0.0 to any port = 23 keep
state head 4 group 3
pass in proto tcp from 5.0.0.0-5.5.0.0 to any port = 23 keep
state group 4

You can group your rules by protocol, machine, netblock, or other logical
criteria that help system performance. There is not a hard limit to the
number of group levels you can maintain. For more information, see
Appendix C, “Performance Guidelines,” on page 181.
Chapter 4 73

Firewall Building Concepts
Localhost Filtering
Localhost Filtering
Use localhost filtering with IPFilter to provide both security and
convenience for your users.

Localhost filtering with IPFilter can be used effectively in conjunction
with other security products, such as external firewalls and internal
software products.

The following example is a ruleset configured to run on a machine that
also uses TCP Wrapper to protect its network services.

pass in quick on lan0 all
pass out quick on lan0 all
block in log all
block out all
pass in quick proto tcp from any to any port = 113 flags S keep
state
pass in quick proto tcp from any to any port = 22 flags S keep
state
pass in quick proto tcp from any port = 20 to any port 39999 >
< 45000 flags S keep state
pass out quick proto icmp from any to any keep state
pass out quick proto tcp/udp from any to any keep state keep
frags

This IPFilter ruleset provides enhanced protection for the system and
services using TCP Wrapper. Any security holes left by TCP Wrapper are
plugged.

No negative impact results from running IPFilter all the time.
Chapter 474

Firewall Building Concepts
Using the to Keyword to Capture Blocked Packets
Using the to Keyword to Capture Blocked
Packets
You can use the to keyword apart from the from keyword. If you want to
block a packet, you can use the to keyword to push the packet past the
normal routing table and force it to go out on a different interface. For
example:

block in quick on lan0 to lan1 proto tcp from any to any port <
1024

This rule blocks incoming packets, but also forces them over to the lan1
interface, where they can be logged. If you log blocked packets this way,
you can then analyze blocked traffic for possible attacks on the system.

Use block quick for to interface routing because the to interface code
will generate two packet paths through IPFilter when used with pass.

NOTE If you are configuring rules to pass packets, but also want the packets to
go to another interface, use the dup-to keyword. See “dup-to: Drop-Safe
Logging” on page 38.
Chapter 4 75

Firewall Building Concepts
Creating a Complete Filter by Interface
Creating a Complete Filter by Interface
When you create a ruleset, you should set up rules for all directions and
all interfaces. The default state of IPFilter is to pass packets both in and
out. Instead of relying on the IPFilter default behavior, make every
ruleset as specific as possible, interface by interface, until all possibilities
are explicitly covered.

For example, if you have an IPFilter system with a lan1 interface, and a
lan0 interface, configure the following rules:

pass out quick on lan1
pass in quick on lan1

block out quick on lan0 from any to 192.168.0.0/16
block out quick on lan0 from any to 172.16.0.0/12
block out quick on lan0 from any to 10.0.0.0/8
pass out quick on lan0 from 20.20.20.0/24 to any
block out quick on lan0 from any to any
block in quick on lan0 from 192.168.0.0/16 to any
block in quick on lan0 from 172.16.0.0/12 to any
block in quick on lan0 from 10.0.0.0/8 to any
block in quick on lan0 from 127.0.0.0/8 to any
block in log quick on lan0 from 20.20.20.0/24 to any
pass in all

In this example, no restrictions are on traffic in and out on lan1. Traffic
has significant restrictions both in and out of lan0.

NOTE When setting up your ruleset, be sure that you add rules for all
appropriate directions and interfaces.
Chapter 476

Firewall Building Concepts
Combining IP Address and Network Interface Filtering
Combining IP Address and Network Interface
Filtering
If you know that your system will send and receive packets only from
specific IP addresses and interfaces, configure your IPFilter rules to only
allow traffic from those addresses and interfaces.

Also, there are addresses and subnets used for specific purposes on
specific interfaces. The following examples show rulesets that block
packets coming to or from places that should not have traffic.

For example, to block private address space to keep it from entering
lan0:

block in quick on lan0 from 192.168.0.0/16 to any
block in quick on lan0 from 172.16.0.0/12 to any
block in quick on lan0 from 10.0.0.0/8 to any
block in quick on lan0 from 127.0.0.0/8 to any
pass in all

It is common for software to communicate with itself on 127.0.0.1.
Therefore, it is good practice to block any packets coming from this
address from outside. Also, no packets from 10.0.0.0/8 should come in on
lan0 because such packets cannot have a reply.

If you have an internal network, you can be sure that traffic destined for
the network should only be coming from addresses within that network.
If a packet that comes from an address on the internal network arrives
on a dialup interface, it should be blocked by IPFilter.

For example, if your internal network subnet is 20.20.20.0/24, use the
following rules to keep traffic from this subnet from passing through on
the external lan0 interface:

block in quick on lan0 from 192.168.0.0/16 to any
block in quick on lan0 from 172.16.0.0/12 to any
block in quick on lan0 from 10.0.0.0/8 to any
block in quick on lan0 from 127.0.0.0/8 to an
block in quick on lan0 from 20.20.20.0/24 to any
pass in all
Chapter 4 77

Firewall Building Concepts
Using Bidirectional Filtering Capabilities
Using Bidirectional Filtering Capabilities
You can use bidirectional filtering to limit packets leaving a system to
those that come from a specific subnet. For example, to limit traffic
passing out of the IPFilter system to packets coming from the
20.20.20.0/24 subnet, configure the following rules:

pass out quick on lan0 from 20.20.20.0/24 to any
block out quick on lan0 from any to any

If a packet originates from IP address 20.20.20.1/32, it is sent out by the
first rule. If a packet originates from IP address 1.2.3.4/32, it is blocked
by the second rule.

You can also configure similar rules for unroutable addresses. If a
machine routes a packet through IPFilter with a destination of
192.168.0.0/16, you can drop it to save bandwidth. Use the following
ruleset:

block out quick on lan0 from any to 192.168.0.0/16
block out quick on lan0 from any to 172.16.0.0/12
block out quick on lan0 from any to 10.0.0.0/8

This enhances the security of other systems. Spoofed packets cannot be
sent from your site.

NOTE The in and out directions refer to the IPFilter system only.
Chapter 478

Firewall Building Concepts
Using port and proto to Create a Secure Filter
Using port and proto to Create a Secure Filter
To configure IPFilter for effective security, use several techniques and
building blocks together.

For example, you can configure rules to allow rsh, rlogin, and telnet to
run only on your internal network. Your internal network subnet is
20.20.20.0/24. All three services use specific TCP ports (513, 514, and
23). Configure the following rules in the following order:

pass in quick on lan0 proto icmp from any to 20.20.20.0/24
icmp-type 0
pass in quick on lan0 proto icmp from any to 20.20.20.0/24
icmp-type 11
block in log quick on lan0 proto icmp from any to any
block in log quick on lan0 proto tcp from any to 20.20.20.0/24
port = 513
block in log quick on lan0 proto tcp from any to 20.20.20.0/24
port = 514
block in log quick on lan0 proto tcp from any to 20.20.20.0/24
port = 23
pass in all

Be sure the rules for the services are placed before the pass in all rule
to close them off to systems outside your network.

To block UDP instead of TCP, replace proto tcp with proto udp. The
rule for syslog would then be:

block in log quick on lan0 proto udp from any to 20.20.20.0/24
port = 514

Several services allow you to block by port number for security:

• syslog on UDP port 514

• portmap on TCP port 111 and UDP port 111

• lpd on TCP port 515

• NFS on TCP port 2049 and UDP port 2049

• X11 on TCP port 6000

To get a complete listing of ports being listed on, use netstat -a, or
check /etc/services.
Chapter 4 79

Firewall Building Concepts
Using port and proto to Create a Secure Filter
Chapter 480

5 HP-UX IPFilter Utilities

This chapter describes IPFilter utilities. It contains the following
sections:

• The ipf Utility
Chapter 5 81

HP-UX IPFilter Utilities
• The ipfstat Utility

• The ipmon Utility

• The ipftest Utility

• The ipnat Utility

• Unsupported Utilities and Commands

NOTE Most of the information in this chapter has been derived from the
IP Filter-based Firewalls HOWTO document written by Brendan Conoby
and Erik Fichtner. You can find this document at
http://www.obfuscation.org/ipf/.
Chapter 582

HP-UX IPFilter Utilities
The ipf Utility
The ipf Utility
The ipf utility performs a broad range of actions on the active and
inactive IPFilter rulesets. You can use ipf to add rules, delete rules,
switch active and inactive rulesets, and flush the existing ruleset from
the system. You can perform other actions with ipf. See the ipf
manpages for more information.

Syntax

ipf <-options> <rules file name>

Options

The following are a few of the common options used with the ipf utility:

-s

Switches the active rules file with the inactive rules file.

-Fa

Flushes all rules in the specified rules file.

-Fi

Flushes only the IN rules in the specified rules file.

-Fo

Flushes only the OUT rules in the specified rules file.

-I

Specifies that the inactive rules file is to be manipulated.

-Z

Zeroes out the TCP Connections counters displayed in the ipfstat
output.
Chapter 5 83

HP-UX IPFilter Utilities
The ipf Utility
-m <d|e|q|t>

Disables or enables DCA mode, queries the DCA mode, or toggles DCA
between being enabled or disabled by using the following options:

• d

Disables DCA.

• e

Enables DCA.

• q

Queries whether DCA is disabled or enabled.

• t

Toggles DCA between disabled or enabled.

When there are no keep limit rules and there is no connection
allocation, disable DCA. See “DCA Mode” on page 61 for more
information about how to disable, enable, query, or toggle DCA.

-E <interface name>

Enables IPFilter processing for traffic on a given interface.

-D <interface name>

Disables IPFilter processing for traffic on a given interface.

-Q <interface name>

Verifies that IPFilter processing is enabled or disabled for a given
interface.

The -E, -D, and -Q commands let you control IPFilter processing on a
given interface. For example, ipf -D lan0 disables IPFilter processing
for traffic on lan0 and ipf -E lan0 enables IPFilter processing on lan0.
ipf -Q lan0 is used to verify if IPFilter processing is enabled or
disabled for lan0.

NOTE All ipf actions are performed on the active rules file by default. To
perform actions on the inactive rules file, you must specify the -I option.
Chapter 584

HP-UX IPFilter Utilities
The ipf Utility
For a complete list of ipf options and their uses, see the ipf (5) and ipf (8)
manpages.

Example

Enter the following command to load a ruleset:

ipf -Fa -f <rules file>
Chapter 5 85

HP-UX IPFilter Utilities
The ipfstat Utility
The ipfstat Utility
The ipfstat utility displays a table of data detailing firewall
performance, including how many packets have been passed or blocked,
whether the packets were logged or not, how many state entries have
been made, and DCA statistics. You can also use options with ipfstat to
display active rules.

Syntax

ipfstat <-options>

Options

-i

Displays currently loaded rules for inbound packets.

-o

Displays currently loaded rules for outbound packets.

-h

Displays the hit count for each rule as well as the rules themselves. Use
with -i or -o options.

-s

Displays state table statistics.

-sl

Displays detailed state table statistics.

-n

Displays the number of each rule next to the rule itself.

-L

Displays global limit statistics.

-v-L
Chapter 586

HP-UX IPFilter Utilities
The ipfstat Utility
Displays detailed global limit statistics.

-r <group:rule>

Displays the limit statistic by rule number.

-v

Sets verbose mode. Use for debugging.

NOTE Statistics counters cannot increment when both active in and out rule
sets are empty. This is due to a performance optimization that bypasses
IPFilter when there are no active rule sets present.

For a complete list of options used with ipfstat, see the ipfstat
manpage.

Examples

ipfstat
dropped packets: in 0 out 0
non-data packets: in 0 out 0
no-data packets: in 0 out 0
non-ip packets: in 0 out 0

bad packets: in 0 out 0
copied messages: in 0 out 0

input packets: blocked 15 passed 2647 nomatch 2537 counted 0
short 0

output packets: blocked 0 passed 245 nomatch 141 counted 0
short 0
input packets logged: blocked 0 passed 0
output packets logged: blocked 0 passed 0
packets logged: input 0 output 0
TCP connections: in 5 out 50
log failures: input 0 output 0
fragment state(in): kept 0 lost 0
fragment state(out): kept 0 lost 0
packet state(in): kept 5 lost 0
packet state(out): kept 0 lost 0
ICMP replies: 0 TCP RSTs sent: 0
Invalid source(in): 0
Result cache hits(in): 14 (out): 0
IN Pullups succeeded: 0 failed: 0
OUT Pullups succeeded: 0 failed: 0
Chapter 5 87

HP-UX IPFilter Utilities
The ipfstat Utility
Fastroute successes: 0 failures: 0
TCP cksum fails(in): 0 (out): 0
Packet log flags set: (0)

none

The TCP Connections statistics are derived from the number of states
added and is valid only in the context of stateful filtering. These
statistics will be accurate only when keep limit or keep state rules
are used for all TCP connections.

For example, you have the following ruleset:

pass in log limit freq 500 quick proto tcp from any to any port
= 80 keep limit 100

pass in log quick proto tcp from any to any port = 25 flags S
keep state

pass in log quick proto tcp from any to any port = 23

pass out log quick proto tcp from any port = 23 to any

These rules only count connections that match the first two rules. Both
the third and fourth rule allow telnet connections but telnet connections
are not counted, since the system is not keeping state on these
connections.

Example:

ipfstat -ho

2451423 pass out on lan0 from any to any
354727 block out on ppp0 from any to any
430918 pass out quick on ppp0 proto tcp/udp from
20.20.20.0/24 From to any keep state keep frags

This status report shows that the ruleset may not be working as
intended. Many outbound packets are being blocked despite a pass out
rule configured to pass most outbound packets.

ipfstat cannot indicate whether a ruleset is configured correctly. It can
only display what is happening at the present time with a given ruleset.

Set the -n option to display the rule number next to each rule. The rule
number is displayed as @group:rule. This can help you determine which
rules are incorrectly configured. For example:
Chapter 588

HP-UX IPFilter Utilities
The ipfstat Utility
ipfstat -on

@0:1 pass out on lan0 from any to any
@0:2 block out on ppp0 from any to any
@0:3 pass out quick on ppp0 proto tcp/udp from 20.20.20.0/24 to
any keep state keep frags

The following example uses the -s option to display the state table.

ipfstat -s

281458 TCP
319349 UDP
0 ICMP
19780145 hits
5723648 misses
0 maximum
0 no memory
0 bkts in use
1 active
319349 expired
281419 closed

A TCP connection has one state entry. One fully established connection is
represented by the 4/4 state. Other states are incomplete and will be
documented later. The state entry has a time life of 24 hours, which is
the default for an established TCP connection. The TTL counter is
decremented every second that the state entry is not used and will result
in the connection being purged if it is left idle.

The TTL counter is reset to 86400 whenever the state is used, ensuring
the entry will not time out while it is being actively used. 196 packets
consisting of about 17KB worth of data have been passed over this
connection. The ports for the endpoints are 987 and 22; this state entry
represents a connection from 100.100.100.1 port 987 to 20.20.20.1 port
22. The numbers in the second line are the TCP sequence numbers for
this connection. These numbers help ensure that an attacker cannot
insert a forged packet into your session. The TCP window is also shown.
The third line is a synopsis of the implicit rule generated by the keep
state code showing that this is an inbound connection.

The ipfstat -sl option is often used in place of ipfstat -s to show
held state information in the kernel, if present. The ipfstat -sl gives
detailed information for each state entry that is active.
Chapter 5 89

HP-UX IPFilter Utilities
The ipfstat Utility
The following is an example of the output information of the ipfstat
-sl option:

#ipfstat -sl
 empty list for ipfilter(out)
1 pass in quick proto tcp from 15.13.106.175/32 to any keep
state
ipfstat -sl
15.13.106.175 -> 15.13.137.135 ttl 872678 pass 0x500a pr 6
state 4/4
 pkts 31 bytes 1564 57906 -> 23 22c0861c:712c2bd9
32768:32768
 cmsk 0000 smsk 0000 isc 0000000000000000 s0 22c085e0/712c2b7f
 sbuf[0] [\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0] sbuf[1]
[\0\0\0\0\0\0\0\0\0\0
\0\0\0\0\0\0]
 pass in quick keep state IPv4
 pkt_flags & 2(b2) = b, pkt_options & ffffffff = 0
 pkt_security & ffff = 0, pkt_auth & ffff = 0
interfaces: in lan0[00000000480baf00] out -[0000000000000000]

The following is an example of the output information of the ipfstat -L
option.

Current connections to limited IP addresses
Connection Type Active Limits
Individual 2
Subnet 3
Cumulative 5
Unknown IP 9
Total 19

No Memory 0
Logged Records 13
Log Failures 0
Limits Added 13
Add Failures 0

• The first six lines display the number of current active connections of
each described type.

• No Memory is the number of times a limit entry could not be created
because no memory was available. If this is a non-zero, positive
value, then the system memory should be checked and, if necessary,
increased.

• Logged Records is the number of limit entries logged, both
summary and alert log records.
Chapter 590

HP-UX IPFilter Utilities
The ipfstat Utility
• Log Failures is the number of times log entries have not been
logged. A non-zero, positive value for Log Failures indicates that
the size of the kernel log buffer is small. The kernel log buffer
ipl_buff_sz should be set to an appropriate value.

• Limits Added is the number of limit entries that have been added.

• Add Failures is the number of times a limit entry could not be
created. This happens when a state entry is not added. The output of
ipfstat -s should be used to further diagnose the problem.

These statistics are cumulative. They are automatically reset to zero
when the ipf module is unloaded and loaded again.

See “Additional Configuration Information” on page 14 for more
information on setting the size of the state table, limit table, and log
buffer.

The following is an example of the output information of the ipfstat
-v-L option:

Type Rule Src IP Src Port Dest IP Dest Port Limit Current
S @0:3 10.39.1.2 * 10.133.1.5 80 50000 951 (0)
S @0:1 10.2.1.2 * 10.129.1.5 80 50000 942 (0)
U @0:1000 10.30.1.2 * 10.130.1.5 80 10 10(102)
U @0:1000 10.30.1.3 * 10.130.1.5 80 10 9 (501)
U @0:1000 10.30.1.4 * 10.130.1.5 80 10 10(100)
U @0:1000 10.30.1.5 * 10.130.1.5 80 10 10(118)
U @0:1000 10.30.1.6 * 10.130.1.5 80 10 10(196)
U @0:1000 10.30.1.7 * 10.130.1.5 80 10 10(198)
U @0:1000 10.30.1.8 * 10.130.1.5 80 10 10(104)
U @0:1000 10.30.1.0 * 10.130.1.5 80 10 10(111)
U @0:1000 10.49.1.2 * 10.131.1.5 80 10 10 (55)
U @0:1000 10.49.1.3 * 10.131.1.5 80 10 10 (53)
U @0:1000 10.49.1.4 * 10.131.1.5 80 10 10(102)
U @0:1000 10.49.1.5 * 10.131.1.5 80 10 9 (52)
U @0:1000 10.49.1.6 * 10.131.1.5 80 10 9 (52)
U @0:1000 10.49.1.7 * 10.131.1.5 80 10 10(103)
U @0:1000 10.49.1.8 * 10.131.1.5 80 10 10(120)
U @0:1000 10.49.1.9 * 10.131.1.5 80 10 10(50)
S @0:1000 10.40.1.2 * 10.134.1.5 80 50000 943(0)
U @0:1000 10.46.1.2 * 10.128.1.5 80 10 10 (49)
U @0:1000 10.46.1.3 * 10.128.1.5 80 10 10 (41)

• The Type column displays the type of limit being kept:

I—Fully resolved individual IP
Chapter 5 91

HP-UX IPFilter Utilities
The ipfstat Utility
S—IP subnet

C—Cumulative

U—Unknown IP

These limit entries are created through the default rule. See “DCA
Keywords” on page 47 for detailed information on the different types
of limit entries.

• The Rule column displays the rule number that caused the creation
of this limit entry. This information can in turn be used to get
per-rule statistics using the ipfstat -r command.

• The third through sixth columns display IP-port pairs of the TCP
connection.

• The Limit column displays the configured limit specified in the keep
limit rule.

• The Current column displays the number of fully established
connections under that limit entry. The figure in the parenthesis
indicates the number of times the configured limit was exceeded. For
example, the first entry shows that, even though the IP address
15.10.40.10 currently has two active connections, it had exceeded the
configured limit of 10 connections twice. These numbers can serve as
guide for adjusting and tuning the limit value for an IP address or IP
subnet.

The following is an example of the output information of the ipfstat
-r <group:rule> option.

Limit Type Individual
Group:Rule Number @0:6
Configured Limit 7
Current connections 3
Limit Exceeded (#times) 33
TCP RSTs sent (#times) 33

In this example, rule number 6 created a limit entry of type Individual.
The rule specifies a connection limit of 7. There are three current
connections using this rule. The limit has been exceeded 33 times.
return-rst was set, so a TCP reset was sent each time an attempt was
made to exceed the configured limit.

If the rule is deleted or switched to the inactive set, @(del) is displayed
in the Group:Rule Number field.
Chapter 592

HP-UX IPFilter Utilities
The ipmon Utility
The ipmon Utility
Use the ipmon utility to monitor IPFilter while it is in use.

You can use ipmon to watch the packet log, as created with the log
keyword in the IPFilter rules. ipmon can also monitor the state log, the
NAT log, or any combination of these three. You can run ipmon in the
foreground or as a daemon that logs to syslog or a file.

Syntax

ipmon <-options>

Options

-a

Opens and reads data from all available log files. Equivalent to -o NSI.

-o [NSI]

Specifies which log file to read data from.

• N—NAT log file

• S—State log file

• I—IPFilter log file

-A

Logs the summary records created for DCA logging.

-r

Prints the summary records to the summary log file and clears the block
count for each limit entry.

-F

Flushes the packet log buffer. Output displays the number of bytes
flushed.

-n

Maps IP addresses and port numbers to host names and services
wherever possible.
Chapter 5 93

HP-UX IPFilter Utilities
The ipmon Utility
For a complete list of ipmon options and their uses, see the ipmon
manpage.

Examples

To view the state table as it updates, use the ipmon -o S command.

Example:

ipmon -o S

01/08/1999 15:58:57.836053 STATE:NEW 100.100.100.1,53
->20.20.20.15,53 PR udp

01/08/1999 15:58:58.030815 STATE:NEW 20.20.20.15,123
->128.167.1.69,123 PR udp

01/08/1999 15:59:18.032174 STATE:NEW 20.20.20.15,123
->128.173.14.71,123 PR udp

01/08/1999 15:59:24.570107 STATE:EXPIRE 100.100.100.1,53
->20.20.20.15,53 PR udp Pkts 4 Bytes 356

01/08/1999 16:03:51.754867 STATE:NEW 20.20.20.13,1019
->100.100.100.10,22 PR tcp

01/08/1999 16:04:03.070127 STATE:EXPIRE 20.20.20.13,1019
->100.100.100.10,22 PR tcp Pkts 63 Bytes 4604

A state entry for an external DNS request to the nameserver is displayed
by ipmon. Two xntp pings to well-known time servers and a short
outbound SSH connection are also displayed.

You can also use ipmon to display packets that have been logged.

To view the IPFilter packet log, use the ipmon -o I command.

Example:

ipmon -o I

15:57:33.803147 ppp0 @0:2 b 100.100.100.103,443 ->
20.20.20.10,4923 PR tcp len 20 1488 -A:

The fields in this output are as follows:

• Field 1—Time stamp

• Field 2—The interface on which the event occurred
Chapter 594

HP-UX IPFilter Utilities
The ipmon Utility
• Field 3—Rule group number: rule number of the rule that acted on
the packet

• Field 4—Blocked (b) or Passed (p) packet

• Field 5—Packet origin

• Field 6—Packet destination

• Field 7 and 8—Protocol used

• Field 9—Packet size

• Field 10—Flags set on packet

Run the ipfstat -in command to determine which rule caused the
problem. In this example, you would use this command to look at rule 2
in rule group 0.

Occasionally, a packet that was part of a state connection might appear
in the ipmon -o I log. This can happen if a packet with the same
sequence number as another packet is processed by IPFilter. A state
packet might also be logged by the regular IPFilter log if it is the last
packet in a stateful connection, and arrives after the state has been torn
down by IPFilter.

Example:

#ipfstat -n

12:46:12.470951 lan0 @0:1 S 20.20.20.254 -> 255.255.255.255 PR
icmp len 20 9216 icmp 9/0

This is a ICMP router discovery broadcast. It is indicated by the ICMP
type 9/0.

ipmon and DCA Logging

DCA logging creates a new device file. The log alerts records go to
/dev/ipl and the summary records are logged to /dev/iplimit. To log
the summary records, use ipmon with the -A option. Using ipmon -A
prints a summary log for a limit entry before the entry being removed
from the limit table.

Example:

ipmon -A /dev/iplimit > $LOGDIR/limit_summary.log &
Chapter 5 95

HP-UX IPFilter Utilities
The ipmon Utility
You can use ipmon -r to print the summary records to the log file for all
existing limit entries that are active. For example, you have the following
rule configured:

pass in log limit quick proto tcp from IP1 to Server keep
limit 10

If IP1 creates 70 connections, then 10 connections are let through and
remaining 60 are blocked, which is the block count. When ipmon -r is
called, a summary record is logged to the summary log records and the
block count is set to 0. This is useful in a case where IP1 created many
connections and has a large block count, but subsequently has
connections that are within the connection limit.

ipmon -r works only on active limit entries. If there are no limit entries,
ipmon -r does not log any Summary Log records. Summary logs are
printed only for those limit entries which have a non-zero connection
exceeded counter. For cumulative limits, this option is the only way to
obtain summary logs.
Chapter 596

HP-UX IPFilter Utilities
The ipftest Utility
The ipftest Utility
Use the ipftest utility to test your ruleset in user space without
compromising the security of your IPFilter system. The ipftest utility
can be run by a non-root user.

The ipftest utility tests a ruleset using a set of packet descriptions that
simulate real network traffic. Actions taken by IPFilter on each
simulated packet are written to stdout.

When you generate simulated traffic, you can use example data obtained
from a packet probe or similar monitor. These packets can show the
specifics of the traffic the subject machine will encounter in a production
environment. Be sure to include the various flags in TCP packets, as they
are used in the various keep state rules.

Syntax

ipftest <options><filename>

Options

-i <filename>

Specifies the file from which to take input. The default is stdin.

-r <filename>

Specifies the rules file from which to read rules.

Many other options are available to refine testing with ipftest. For a
complete list of options and their functions, see the ipftest manpage.

Example

The following ruleset is used for this example:

block in all
pass in from 10.1.84.195 to any
Chapter 5 97

HP-UX IPFilter Utilities
The ipftest Utility
The following packets will be used to test this rule set:

in on lan0 udp 10.1.84.195,16000 10.1.84.196,16000
in on lan1 udp 10.1.84.195,16000 10.1.85.196,16000
in on lan0 udp 10.1.84.195,16000 10.1.80.196,16000

in on lan0 udp 10.1.85.195,16000 10.1.84.196,16000
in on lan1 udp 10.1.85.195,16000 10.1.85.196,16000
in on lan0 udp 10.1.85.195,16000 10.1.80.196,16000

out on lan0 udp 10.1.84.196,16000 10.1.84.195,16000
out on lan1 udp 10.1.85.196,16000 10.1.84.195,16000
out on lan0 udp 10.1.80.196,16000 10.1.84.195,16000

out on lan0 udp 10.1.84.196,16000 10.1.85.195,16000
out on lan1 udp 10.1.85.196,16000 10.1.85.195,16000
out on lan0 udp 10.1.80.196,16000 10.1.85.195,16000

in on lan0 udp 10.1.81.195,16000 10.1.84.196,16000
in on lan1 udp 10.1.81.195,16000 10.1.85.196,16000

out on lan0 udp 10.1.84.196,16000 10.1.81.195,16000
out on lan1 udp 10.1.85.196,16000 10.1.81.195,16000

out on lan0 icmp 10.1.84.196 10.1.84.195
in on lan0 icmp 10.1.84.195 10.1.84.196

out on lan0 udp 10.1.80.196,16001 10.1.84.195,16000
out on lan0 udp 10.1.80.196,16001 10.1.85.195,16000

in on lan0 udp 10.1.84.195,16000 10.1.80.196,16001
in on lan0 udp 10.1.85.195,16000 10.1.80.196,16001

These packets are similar to a test machine setup that is used in the
actual testing of IPFilter. The name of the rules file is test01 and the
name of the packet file is packets01. The packets are processed with
ipftest using the following command:

ipftest -r test01 -i packets01

The following is the output of ipftest:

opening rule file "test01"
input: in on lan0 udp 10.1.84.195,16000 10.1.84.196,16000
pass ip 28(20) 17 10.1.84.195,16000 > 10.1.84.196,16000

input: in on lan1 udp 10.1.84.195,16000 10.1.85.196,16000
pass ip 28(20) 17 10.1.84.195,16000 > 10.1.85.196,16000
Chapter 598

HP-UX IPFilter Utilities
The ipftest Utility

input: in on lan0 udp 10.1.84.195,16000 10.1.80.196,16000
pass ip 28(20) 17 10.1.84.195,16000 > 10.1.80.196,16000

input: in on lan0 udp 10.1.85.195,16000 10.1.84.196,16000
block ip 28(20) 17 10.1.85.195,16000 > 10.1.84.196,16000

input: in on lan1 udp 10.1.85.195,16000 10.1.85.196,16000
block ip 28(20) 17 10.1.85.195,16000 > 10.1.85.196,16000

input: in on lan0 udp 10.1.85.195,16000 10.1.80.196,16000
block ip 28(20) 17 10.1.85.195,16000 > 10.1.80.196,16000

input: out on lan0 udp 10.1.84.196,16000 10.1.84.195,16000
nomatch ip 28(20) 17 10.1.84.196,16000 > 10.1.84.195,16000

input: out on lan1 udp 10.1.85.196,16000 10.1.84.195,16000
nomatch ip 28(20) 17 10.1.85.196,16000 > 10.1.84.195,16000

input: out on lan0 udp 10.1.80.196,16000 10.1.84.195,16000
nomatch ip 28(20) 17 10.1.80.196,16000 > 10.1.84.195,16000

input: out on lan0 udp 10.1.84.196,16000 10.1.85.195,16000
nomatch ip 28(20) 17 10.1.84.196,16000 > 10.1.85.195,16000

input: out on lan1 udp 10.1.85.196,16000 10.1.85.195,16000
nomatch ip 28(20) 17 10.1.85.196,16000 > 10.1.85.195,16000

input: out on lan0 udp 10.1.80.196,16000 10.1.85.195,16000
nomatch ip 28(20) 17 10.1.80.196,16000 > 10.1.85.195,16000

input: in on lan0 udp 10.1.81.195,16000 10.1.84.196,16000
block ip 28(20) 17 10.1.81.195,16000 > 10.1.84.196,16000

input: in on lan1 udp 10.1.81.195,16000 10.1.85.196,16000
block ip 28(20) 17 10.1.81.195,16000 > 10.1.85.196,16000

input: out on lan0 udp 10.1.84.196,16000 10.1.81.195,16000
nomatch ip 28(20) 17 10.1.84.196,16000 > 10.1.81.195,16000

input: out on lan1 udp 10.1.85.196,16000 10.1.81.195,16000
nomatch ip 28(20) 17 10.1.85.196,16000 > 10.1.81.195,16000

input: out on lan0 icmp 10.1.84.196 10.1.84.195
nomatch ip 48(20) 1 10.1.84.196 > 10.1.84.195

Chapter 5 99

HP-UX IPFilter Utilities
The ipftest Utility
input: in on lan0 icmp 10.1.84.195 10.1.84.196
pass ip 48(20) 1 10.1.84.195 > 10.1.84.196

input: out on lan0 udp 10.1.80.196,16001 10.1.84.195,16000
nomatch ip 28(20) 17 10.1.80.196,16001 > 10.1.84.195,16000

input: out on lan0 udp 10.1.80.196,16001 10.1.85.195,16000
nomatch ip 28(20) 17 10.1.80.196,16001 > 10.1.85.195,16000

input: in on lan0 udp 10.1.84.195,16000 10.1.80.196,16001
pass ip 28(20) 17 10.1.84.195,16000 > 10.1.80.196,16001

input: in on lan0 udp 10.1.85.195,16000 10.1.80.196,16001
block ip 28(20) 17 10.1.85.195,16000 > 10.1.80.196,16001

Each result is one of the following: pass, block, or nomatch. For HP-UX
IPFilter, the default is pass. From the results you can verify that the
filter should operate as expected.

More complex rulesets and sample traffic can be tested to reflect a
production environment.
Chapter 5100

HP-UX IPFilter Utilities
The ipnat Utility
The ipnat Utility
Use the ipnat utility to view and load NAT rules. The default NAT rules
file is /etc/opt/ipf/ipnat.conf.

Syntax

ipnat <options> <full path name>

Options

-f

Reads rules from a specified rules file.

-l

Views NAT rules and active mappings.

-C

Flushes the current ruleset.

-F

Removes active mappings.

-r

Removes rules from the NAT rules file.

Example

Enter the following command:

ipnat -CF -f /etc/opt/ipf/ipnat.conf

This command flushes any existing NAT rules and removes any active
mappings, then loads the NAT rules in the ipnat.conf file.
Chapter 5 101

HP-UX IPFilter Utilities
Unsupported Utilities and Commands
Unsupported Utilities and Commands
HP does not support the following public domain IPFilter utilities and
commands:

• Rule keywords

— fastroute

• Commands

— ipscan

— ipsyncs

— ipsyncm

— ipfs

— ipsend

— ipresend

• Application proxy
Chapter 5102

6 HP-UX and IPv6 Support

This chapter describes IPv6 support in HP-UX IPFilter.

It contains the following sections:

• Product Configuration
Chapter 6 103

HP-UX and IPv6 Support
• Product Installation and Dependencies

• Rules Configuration

• Commands

• New Features for IPv6

• Command and Configuration Examples

• Installation Details and Dependencies

• Features Not Supported with IPv6

• Key Points to Note
Chapter 6104

HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter
Using IPv6 Support in HP-UX IPFilter
IPv6 support has been added to HP-UX IPFilter. The functionality is
mostly equivalent to IPv4 functionality in HP-UX IPFilter. There are
some differences, which are described in this chapter.

Product Configuration

No new software modules or filesets have been introduced in the IPv6
version. The current version of HP-UX IPFilter has been enhanced to
include IPv6 functionality. Filter rules configuration in IPv6 support is
identical to IPv4 support rules configuration. A new file
(/etc/opt/ipf/ipf6.conf) is provided which is read during IPFilter
startup. This file is just like the one provided for IPv4
(etc/opt/ipf/ipf.conf).

Both of these files can be changed, if necessary, by modifying the
IPF_CONF and IPF6_CONF variables in /etc/rc.confif.d/ipfconf.

Product Installation and Dependencies

HP-UX IPFilter IPv6 filtering functionality is dependent on the
Transport patch TOUR 3.1 or later. If this dependency is not met,
IPFilter will be capable of filtering only IPv4 traffic. Therefore, IPv6
traffic will not be secured.

Rules Configuration

Internally, HP-UX IPFilter maintains IPv4 and IPv6 filter rules as
separate rule sets. Each requires separate configuration and
administration. Any given rule will apply to either IPv4 or IPv6, but not
both. These include rules which have addresses and ports specified as
wildcards.

The rule block in from any to any will match to IPv4 traffic or IPv6
traffic. A traffic match will depend upon the command options used while
configuring the rules. New command line options have been introduced
which can be used to apply and operate the IPv6 rules. These options are
further explained in “Commands” on page 106.
Chapter 6 105

HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter
Similarly, rules cannot mix IPv4 and IPv6 addresses. For example, the
following rule is not valid:

pass in proto tcp from 101.11.23.1 to 3ffe::2

Filter Rules

The syntax of basic filter rules is not changed for IPv6. The same set of
keywords applies and has the same effect. For example, use the following
rule to block an inbound telnet connection:

block in proto tcp from 3ffe::2 to 3ffe::9 port = 23

Protocol-Based Filtering

There are no major changes for IPv6 protocol-based filtering. Upper layer
protocols can be used in the same method and TCP or UDP can be
specified as for IPv4 rules. The only exception is ICMPv6, which is new
protocol with IPv6.

The keyword to filter ICMPv6 is “icmpv6” or “ipv6-icmp,” which is the
standard keyword specified in /etc/protocols. Also HP-UX IPFilter
can filter any ICMPv6 message type-code pair.

IPv6 extension headers can also be filtered. This is described in “IPv6
Extension Headers” on page 109.

Stateful Filtering

TCP and UDP stateful filtering has not changed for IPv6, because these
protocols have not changed. However, ICMPv6 changes are described in
“Stateful ICMPv6” on page 108.

Commands

The commands used for IPv6 are similar to those used for IPv4, but new
command line options have been introduced.
Chapter 6106

HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter
ipf

The ipf command is used to manipulate IPFilter rules. The ipf
command with options has the capability of reading, deleting, or
swapping rules.

The following command reads the rules in the <rulefile>, where
<rulefile> is a file containing a list of rules, and adds them to the IPv4
ruleset:

ipf -f <rulefile>

The new -6 option must be added if the <rulefile> contains IPv6 rules
that must be configured:

ipf -6 -f <rulefile>

To delete all active IPv6 rules, use the following command:

ipf -6 -Fa

To selectively remove IPv6 rules, use the following command:

ipf -6 -r -f <rules to be deleted>

Most options to the ipf command, when prepended with the -6 option,
will affect the IPv6 rule set. The one exception is the -s option. The -s
option is used to swap active and inactive rules, but does not require a -6
option. The ipf -s command swaps an active ruleset with an inactive
ruleset for both IPv4 and IPv6.

The following options enable you to control IPFilter processing on a given
IPv6 interface.

-E -6 <interface name>

Enables IPFilter processing for traffic on a given interface.

-D -6 <interface name>

Disables IPFilter processing for traffic on a given interface.

-Q -6 <interface name>

Verifies that IPFilter processing is enabled or disabled for a given
interface.

For example, ipf -D -6 lan0 disables IPFilter processing for traffic on
lan0 and ipf -E -6 lan0 enables IPFilter processing on lan0. ipf -Q
-6 lan0 is used to verify if IPFilter processing is enabled or disabled for
lan0.
Chapter 6 107

HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter
ipfstat

The ipfstat command generates packet filter statistics and filter lists.
It also uses the -6 option for IPv6, but only for the following operations:

• -i—Lists IN rules

• -o—Lists OUT rules

• -h—Lists rule hits

For example, to list the IN rule hits for IPv6, use the following command:

ipfstat -6 -ih

ipmon

There are no major changes to logging for IPv6. The ipmon command
takes the same options as before and no new options are needed to log
IPv6 traffic. Log files include both IPv4 and IPv6 log records, ordered
according to how IPFilter receives the traffic. The log records indicate
IPv6 equivalents such as IPv6 addresses and protocol ICMPv6.

NOTE IPv4 and IPv6 log records cannot be sent to different log files.

New Features for IPv6

The following new features are supported by HP-UX IPFilter for IPv6:

• Stateful ICMP

• IPv6 extension headers

• Tunneled packets

• Fragmentation

Stateful ICMPv6

The following feature is not new, but has been enabled on IPv6. State can
be retained on ICMPv6 using Request-Response ICMPv6 messages. The
only message types are the echo request and echo reply.
Chapter 6108

HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter
ICMPv6 filtering

ICMPv6 filtering must be carefully configured to ensure that an IPv6
network functions properly. For example, do not block Neighbor
Discovery messages (type 135 and 136). Other examples of critical
ICMPv6 messages are Destination Unreachable (type 1) and Packet Too
Big (type 2).

HP-UX IPFilter enables you to uniquely identify an ICMPv6 message
using its type and code. A new keyword, icmpv6-type, is introduced. Use
the following rule to pass ICMPv6 type 135 code 0 packets:

pass in quick proto icmpv6 from any to any icmpv6-type 135 code
0

NOTE The type and code can only be specified as a decimal number.

At minimum, the following rules must be configured:

pass in quick proto icmpv6 from any to any icmpv6-type 133
pass in quick proto icmpv6 from any to any icmpv6-type 134
pass in quick proto icmpv6 from any to any icmpv6-type 135
pass in quick proto icmpv6 from any to any icmpv6-type 136
pass out quick proto icmpv6 from any to any icmpv6-type 133
pass out quick proto icmpv6 from any to any icmpv6-type 134
pass out quick proto icmpv6 from any to any icmpv6-type 135
pass out quick proto icmpv6 from any to any icmpv6-type 136

The following is additional information about message types 133-136:

• 133—Router solicitation

• 134—Router advertisement

• 135—Neighbor solicitation

• 136—Neighbor advertisement

IPv6 Extension Headers

The following extension headers are supported with IPv6:

• Destination options header (dstopts)

• Hop-by-hop options header(hopopts)

• Mobility header (mobility)
Chapter 6 109

HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter
• Routing options header (routing)

• Authentication header (ah)

• IPSec header (esp)

• IPv6 header for tunneled packets(IPv6) (ipv6)

• IPv6 fragment (frags)

Currently, filtering is available to either block or pass packets with
designated extension headers. For example, to block all TCP packets
with a Routing options header, use the following rule:

block in proto tcp from any to any with v6hdrs routing

To block all UDP packets with destination option and mobility headers,
use the following rule:

block in proto udp from any to any with v6hdrs
dstopts,mobility

NOTE Extension headers are matched explicitly. A packet with only a routing
header will not match the previous rule. Only packets with both mobility
and destination option headers will match the rule.

Tunneled Packets

HP-UX IPFilter can filter the following types of tunnel packets:

• 6-in-4—Use the following rule to filter this type of tunnel packet:

ipf -f

block in proto 41 from any to any

• 6-in-6—Use the following rule to filter this type of tunnel packet:

ipf -6 -f

block in proto 41 from any to any
Chapter 6110

HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter
Fragmentation

Unlike IPv4, a fragment cache is not maintained for IPv6 fragments. It is
possible to filter IPv6 fragments using the “with v6hdrs frags” keywords.
Use the following rule to filter IPv6 fragmented traffic:

block in proto udp from any to any with v6hdrs frags

Command and Configuration Examples

• To configure IPv6 rules from files containing IPv6 rules:

ipf -6 -f <ipv6 rule file>

• To flush IPv6 IN rules:

ipf -6 -Fi

• To see rule hits on OUT rules:

ipfstat -6 -oh

• To disable IPv6 filtering on LAN0 inet6:

ipf -6 -D lan0

Installation Details and Dependencies

HP-UX IPFilter depends on TOUR 3.1 to provide IPv6 functionality.
IPFilter installs successfully without TOUR 3.1, but IPv6 network
interfaces are not detected.

Features Not Supported with IPv6

The following features are not supported with IPv6:

• Dynamic Connection Allocation (DCA) (the configuration of the IPv6
keep limit rules is not allowed.)

• IPFilter NAT functionality and the associated commands and
utilities

• The ipftest utility

• RPC scripts

• IPFilter group rules
Chapter 6 111

HP-UX and IPv6 Support
Using IPv6 Support in HP-UX IPFilter
Key Points to Note

• If the -6 option is not specified in the ipf and ipfstat commands,
the operation is applied to IPv4 rules.

• IPv6 filtering is enabled only if IPv6 interfaces are configured.

• The following separate files for IPv4 and IPv6 are loaded during
boot:

— IPv4: opt/ipf/ipf.conf

— IPv6: opt/ipf/ipf6.conf

Rules can be loaded from any other file, but IPv4 and IPv6 rules
should not be loaded from the same file.
Chapter 6112

7 HP-UX IPFilter and FTP

This chapter describes how to filter FTP services. It contains the
following sections:
Chapter 7 113

HP-UX IPFilter and FTP
• FTP Basics

• WU-FTPD on HP-UX

• Running an FTP Server

• Running an FTP Client

CAUTION NAT and FTP are incompatible. If you are using FTP on your
IPFilter system, do not use NAT rules.
Chapter 7114

HP-UX IPFilter and FTP
FTP Basics
FTP Basics
The File Transfer Protocol (FTP) is a user-level protocol for transferring
files between host computers.

An FTP session involves two separate connections:

• Control connection

1. The server listens for client connections on port 21.

2. The client opens a connection to the server port 21 on a client
port above 1023.

3. The client uses this connection to send commands to, and receive
replies from, the server.

This connection lasts through the FTP session.

• Data connection

The data connection is used for transferring data between the client
and server. A new data connection is opened for each FTP command.
The way the data connection is created depends on the type of FTP
session—active or passive.

In active FTP, the client actively opens a connection to the FTP server at
port 21. It uses a port number > 1023 as its port for the control
connection. The client then opens a new port (passive open) as its data
port and sends this port number across to the server using the PORT
command. The server then opens a data connection (active open) to the
data port specified in the PORT command of the client. The server uses
port 20 as its data connection port.

In passive FTP, the control connection is established the same as it is in
active FTP. In passive FTP, to establish a data connection the server
opens an arbitrary data port >1023. It uses the PASV command to send
the data port number to the client. The client connects to the port
specified by the PASV command and uses a different port >1023 as its
data port.
Chapter 7 115

HP-UX IPFilter and FTP
WU-FTPD on HP-UX
WU-FTPD on HP-UX
The HP implementation of the FTP daemon for HP-UX 11i core
networking is based on the WU-FTPD daemon, version 2.4. Additional
security correction has been added to WU-FTPD 2.6.1. HP recommends
upgrading to WU-FTPD 2.6.1 for enhanced security.

For systems on HP-UX 11.0, you can upgrade to WU-FTPD 2.6.1 from
either the legacy FTP version that is delivered with the core networking
products on 11.0, or from WU-FTPD 2.4, which has been made available
as the patch PHNE_21936.

WU-FTPD 2.6.1 is downloadable from the HP Software Depot for
systems running HP-UX 11.0 or HP-UX 11i v1. The URL is
http://www.software.hp.com/cgi-bin/swdepot_parser.cgi/cgi/
displayProductInfo.pl?productNumber=3DWUFTPD26.

WU-FTPD 2.6.1 is a core product on HP-UX 11i v2.
Chapter 7116

HP-UX IPFilter and FTP
Running an FTP Server
Running an FTP Server
This section describes active FTP and passive FTP server setup.

Active FTP

On an FTP server using active FTP, configure IPFilter rules to allow
control connections in and data connections out.

For example:

pass in quick proto tcp from any port > 1023 to <server-ip>
port = 21 flags S keep state
pass out quick proto tcp from any port = 20 to any port > 1023
flags S keep state
block in from any to any
block out from any to any

Passive FTP

FTP Server
Direction of
Connection

Initiated
FTP Client

port 21
control port

<---------------- any port 1024 or higher

port 20
data port

----------------> any port 1024 or higher

FTP Server
Direction of
Connection

Initiated
FTP Client

port 21
control port

<---------------- any port 1024 or higher

any port 1024 or higher
data port

<---------------- any port 1024 or higher
Chapter 7 117

HP-UX IPFilter and FTP
Running an FTP Server
To use IPFilter to protect passive FTP sessions, you must limit the port
range your system can use for FTP access. For example, you can allocate
ports 15001-15500 as FTP ports and only open up that range of your
firewall. In WU-FTPD, you use the passive ports directive in the
/etc/ftpaccess configuration file to designate the ports, as follows:

passive ports <server-ip> 15001 15500

See the ftpaccess (4) manpage for details on WU-FTPD configuration.

Configure the following IPFilter rules to let the passive FTP traffic pass:

pass in quick proto tcp from any port > 1023 to <server-ip>
port = 21 flags S keep state
pass in quick proto tcp from any port > 1023 to <server-ip>
port 15000 ><15501 flags S keep state
block in from any to any
block out from any to any
Chapter 7118

HP-UX IPFilter and FTP
Running an FTP Client
Running an FTP Client
As with FTP servers, there are two types of FTP client transfers, active
and passive.

Active FTP

To let an FTP client open an active FTP session, configure IPFilter rules
to allow control connections out and data connections in.

pass out quick proto tcp from <client-ip> port > 1023 to any
port = 21 flags S keep state
pass in quick proto tcp from any port 20 to <client-ip> port >
1023 flags S keep state
block in from any to any
block out from any to any

NOTE FTP Proxy is not supported by HP. For a complete list of unsupported
utilities and commands, see “Unsupported Utilities and Commands” on
page 102.

FTP Server
Direction of
Connection

Initiated
FTP Client

port 21
control port

<---------------- any port 1024 or higher

port 20
data port

----------------> any port 1024 or higher
Chapter 7 119

HP-UX IPFilter and FTP
Running an FTP Client
Passive FTP

To let an FTP client open a passive FTP session, configure IPFilter to
allow both the control and data connections out.

Use the following ruleset for client-side, passive FTP:

pass out quick proto tcp from <client-ip> port > 1023 to any
port = 21 flags S keep state
pass out quick proto tcp from <client-ip> port> 1023 to any
port > 1023 flags S keep state
block in from any to any
block out from any to any

TIP For stronger security, configure IPFilter to allow only active FTP
connections from FTP servers.

FTP Server
Direction of
Connection

Initiated
FTP Client

port 21
control port

<---------------- any port 1024 or higher

any port 1024 or higher
data port

<---------------- any port 1024 or higher
Chapter 7120

8 HP-UX IPFilter and RPC

This chapter describes the use of RPC with IPFilter. It contains the
following sections:
Chapter 8 121

HP-UX IPFilter and RPC
• Introduction

• Quick Start Information

• Configuration Files
Chapter 8122

HP-UX IPFilter and RPC
Introduction
Introduction
The script information and configuration files in this chapter are
designed to allow a system running IPFilter/9000 to run server processes
that use the Remote Procedure Call (RPC) mechanism.

The purpose is to automate the construction of appropriate IPFilter rules
for RPC server processes that do not use a fixed port number, but
register their port numbers with rpcbind instead. The services in this
example are for an NFS server, but the concept should work for any RPC
server application.

NOTE These set of files and scripts serve as basic building blocks for use at
startup time. All files are installed in /etc/opt/ipf/rpc.ipf. The
configuration files must be present in the appropriate directories for the
scripts to work correctly.
Chapter 8 123

HP-UX IPFilter and RPC
Quick Start Information
Quick Start Information
To use RPC with IPFilter:

1. Copy the sample file to /etc/rc.config.d/rpc_ipfconf

cp rpc_ipfconf.sample /etc/rc.config.d/rpc_ipfconf

Edit the file as needed.

2. Create the rpc.ipf directory and change to that directory.

mkdir /etc/opt/ipf/rpc.ipf

cd /etc/opt/ipf/rpc.ipf

3. Create an empty RPC rules file.

touch /etc/opt/ipf/rpc.ipf/rpc.rules

4. Start the script configuration.

./rpc.ipfboot start
Chapter 8124

HP-UX IPFilter and RPC
Configuration Files
Configuration Files

Rules Files

This section gives details on the two rules files that contain the IPFilter
rules. The two rules files are:

• The IPFilter rules file specified in $IPF_CONF in
/etc/rc.config.d/ipfconf

• The IPFilter RPC rules file specified in $RPC_RULES_FILE specified
in /etc/rc.config.d/rpc_ipfconf

NOTE See the following section for a description of
/etc/rc.config.d/rpc_ipfconf. A sample file is also provided.

To incorporate the dynamic ports used by the NFS processes, the
administrator should decide the position from which RPC rule should be
configured by setting RPC_RULE_POSITION to the desired value. For
example:

RPC_RULE_POSITION=5

The RPC rules will then be added from the 5th position onwards. If there
are 10 RPC rules, they will be inserted at positions 5 to 14. The position
must be chosen carefully. If there are only two rules present, then
RPC_RULE_POSITION must be 1,2 or 3 [RPC_RULE_POSITION = <current
of rules>]. The Original rules file specified in
/etc/rc.config.d/ipfconf containing other rules is not modified.

By default, all RPC rules are configured as the first rules, for example,
RPC_RULE_POSITION=1. The RPC rules are well defined in terms of IP
addresses and ports and will have unique matches and, since they are
quick rules, they should be at top.

RPC Rules Configuration File

This file specifies details based on which IPFilter RPC rules will be
generated. /etc/opt/ipf/rpc.ipf/rpc_ipfconf.sample is provided as
an example.
Chapter 8 125

HP-UX IPFilter and RPC
Configuration Files
The /etc/opt/ipf/rpc.ipf/rpc_ipfconf file contains the client list
and program list. The sample file grants access to the program numbers
listed from the IP addresses and IP subnets listed in the client list.

The example shown in the sample file lists the program numbers used by
an NFS server, rpc.mountd, rpc.statd, rpc.lockd, and nfsd. This file
also has the following declared:

• ADD_RPC_IPFILTER_RULES=1

Set this to 1 to configure RPC IPFilter rules.

• RPC_RULE_POSITION=1

Must be 1 or greater, as noted in the previous section.

• RPC_RULES_FILE=./rpc.rules

This is the path to the RPC rule file. Rules to be added or deleted.
Chapter 8126

9 HP-UX IPFilter and IPSec

This chapter describes how HP-UX IPFilter and HP-UX IPSec work
together. It contains the following sections:
Chapter 9 127

HP-UX IPFilter and IPSec
• IPFilter and IPSec Basics

• IPSec UDP Negotiation

• When Traffic Appears to Be Blocked

• Allowing Protocol 50 and Protocol 51 Traffic

• IPSec Gateways
Chapter 9128

HP-UX IPFilter and IPSec
IPFilter and IPSec Basics
IPFilter and IPSec Basics
IPSec and IPFilter will not panic or corrupt each other. However, there
are situations in which one product might block traffic for the other. The
following figure shows the positions of IPFilter and IPSec in the network
stack:

Figure 9-1 IPFilter and IPSec

IPFilter, which is below IPSec in the networking stack, filters network
packets before they reach IPSec. You can have both IPFilter and IPSec
configured and running on a machine without them negatively affecting
each other.

Figure 9-2 Scenario One

In Scenario One, you have IPFilter and IPSec on machine A with
IPFilter blocking packets from machine B and IPSec encrypting packets
from machine C. When a packet arrives at machine A, IPFilter checks to
see if it is from machine B, and, if so, blocks the packet. If not, the packet
continues up the stack to IPSec. IPSec checks to see if it is from machine
C. If so, the packet arrives encrypted.

 IPSec

IPFilter

B <---------------> A <-----------------> C

(IPSec)
(IPFilter) (IPSec)
Chapter 9 129

HP-UX IPFilter and IPSec
IPFilter and IPSec Basics
No overlap is in the configurations of IPFilter and IPSec in this network
topology, so there are no conflicts in Scenario One.

CAUTION HP-UX IPSec does not support NAT traversal. If you are using HP-UX
IPFilter with HP-UX IPSec, do not use NAT functionality. However, it is
possible that IPFilter and NAT can be used in network configurations
containing other vendors’ IPSec products that do support NAT traversal.
Chapter 9130

HP-UX IPFilter and IPSec
IPSec UDP Negotiation
IPSec UDP Negotiation
You can configure IPSec and IPFilter so that there is some overlap in the
configurations. However, you must be sure the overlapping
configurations do not block each other.

IPSec negotiates between two machines on a connection using the UDP
protocol from port 500 and port 4500 if IPSec NAT traversal is used.

If the IPFilter configuration is so broad that it is blocking all UDP traffic,
then IPSec cannot complete negotiations. When an IPSec negotiation is
not completed, the encrypted packets are not received. If this happens,
you will see an IPSec error on the initiating side of “MM negotiation
timeout.”

To let IPSec complete negotiations, configure IPFilter to let the IPSec
negotiation packets through.

Figure 9-3 Scenario Two

In Scenario Two, IPFilter is configured to block UDP traffic on
machine A, you want all TCP traffic to pass through, and, from
machine B on the network, you want all TCP traffic encrypted.
Machine A has IP address 10.10.10.10 and machine B has IP address
15.15.15.15.

As the TCP traffic with machine B must be encrypted, you configure
IPSec on both machines using IPSec Manager. To do so, use the IP
addresses to specify that the TCP traffic is to be encrypted.

IPSec <---------------> TCP <-----------------> IPSec

A B
10.10.10.10 15.15.15.15

IPFilter

-----UDP-----
Chapter 9 131

HP-UX IPFilter and IPSec
IPSec UDP Negotiation
When TCP traffic is initiated from A to B or from B to A, IPSec on both
machines communicates through a UDP/500 connection. You must
configure IPFilter on machine A to let this traffic through. To do so, add
the following rules to your configuration:

pass in quick proto UDP from 15.15.15.15 port = 500 to
10.10.10.10 port = 500
pass out quick proto UDP from 10.10.10.10 port = 500 to
15.15.15.15 port = 500
block in proto UDP
block out proto UDP

These rules let IPSec traffic pass correctly.

NOTE You must configure IPFilter to pass traffic both in and out on UDP port
500 for IPSec to work properly. If IPFilter is used with IPSec requiring
the NAT traversal function, UDP port 4500 must be set to pass for in
and out traffic.
Chapter 9132

HP-UX IPFilter and IPSec
When Traffic Appears to Be Blocked
When Traffic Appears to Be Blocked
In the following scenario there is overlap in the configurations of IPFilter
and IPSec. To get this negotiation through, you must configure IPFilter
rules to let TCP traffic through.

Figure 9-4 Scenario Three

In Scenario Three, IPSec is configured to encrypt TCP traffic between
machine A and machine B and IPFilter is configured to block all TCP
traffic with the following rules:

block in proto TCP
block out proto TCP

IPSec <---------------> TCP <-----------------> IPSec

A B
10.10.10.10 15.15.15.15

IPFilter

---TCP-----
Chapter 9 133

HP-UX IPFilter and IPSec
Allowing Protocol 50 and Protocol 51 Traffic
Allowing Protocol 50 and Protocol 51 Traffic
IPSec uses Encapsulating Security Payload (ESP) to provide data
confidentiality and Authentication Header (AH) to provide data integrity
at the IP layer. Depending on a user’s IPSec traffic policy configuration,
IPSec inserts ESP, AH, or both as protocol headers into an IP datagram
that immediately follows an IP header. The protocol field of that IP
header will be 50 (esp) or 51 (ah) to indicate the next protocol.

Figure 9-5 Packet with Unencrypted TCP Data

Figure 9-6 Packet with IPSec-Encrypted TCP Data

IPFilter never sees the TCP packets between machine A and machine B
with a protocol number of 6. These packets are encrypted (or wrapped) in
a packet that has a protocol number of 50. If you configure IPFilter to
block packets with protocol number 6, it lets protocol number 50 pass
through. IPSec takes apart the packet and unencrypt the TCP data.

TCP header DataIP header protocol # = 6

ESP header EncryptedIP header protocol # = 50
Chapter 9134

HP-UX IPFilter and IPSec
Allowing Protocol 50 and Protocol 51 Traffic
If the IPFilter configuration is so broad that it blocks protocol 50 or
protocol 51 traffic, then IPSec traffic will not get through.

Figure 9-7 Scenario Four

In Scenario Four, IPSec is configured to encrypt TCP traffic between the
two machines and IPFilter is configured to block non-TCP traffic.
IPFilter rules are also configured to let UDP/500 traffic pass on
machine B.

IPSec hole with machine B
pass in quick proto UDP from 15.15.15.15 port 500 to
10.10.10.10 port = 500
pass out quick proto UDP from 10.10.10.10 port 500 to
15.15.15.15 port = 500
Let in encrypted IPSec traffic
pass in quick proto 50 from 15.15.15.15 to 10.10.10.10
pass out quick proto 50 from 10.10.10.10 to 15.15.15.15
Allow TCP traffic to/from anywhere
pass in quick proto TCP
pass out quick proto TCP
Block all other traffic to/from anywhere
block in from any to any
block out from any to any

NOTE If IPSec is configured to use AH rather than ESP, you must configure
IPFilter to let protocol 51 traffic pass. If IPSec uses nested AH and ESP,
IPFilter can be configured to let only protocol 51 (ah) traffic pass.

IPSec <---------------> TCP <-----------------> IPSec

A B
10.10.10.10 15.15.15.15

IPFilter

-----block !TCP-----
Chapter 9 135

HP-UX IPFilter and IPSec
IPSec Gateways
IPSec Gateways
You can configure IPSec to encrypt and authenticate traffic to a gateway
between two end hosts. A configuration that encrypts IPSec packets to a
gateway is called an IPSec tunnel.

IPFilter can coexist with IPSec tunnels without conflict. However, you
must configure IPFilter to allow IPSec traffic with the gateway instead of
the end node. The IPFilter rules for the UDP/500 and protocol 50/51
traffic must be passed to and from the gateway IP address rather than
the end node IP address.
Chapter 9136

10 HP-UX IPFilter and
Serviceguard

This chapter describes configuration procedures for HP-UX IPFilter used
in a Serviceguard environment.
Chapter 10 137

HP-UX IPFilter and Serviceguard
It contains the following sections for using HP-UX IPFilter with
Serviceguard:

• Local Failover

• Remote Failover

— Filtering on a Package IP Address

— Mandatory Rules

• DCA Remote Failover
Chapter 10138

HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard
Using HP-UX IPFilter with Serviceguard
HP-UX IPFilter supports local failover in a Serviceguard environment.

CAUTION NAT functionality is not supported with Serviceguard.

Local Failover

NOTE See the Serviceguard documentation for information on configuring a
local failover system in Serviceguard.

IPFilter local failover is transparent to users. Network sessions are not
disrupted during failover or failback.

You do not need to configure any additional rules in IPFilter. When an
interface fails over, the HP-UX IPFilter rules that specify interface
names are automatically changed.

For example, a node in a Serviceguard cluster has a primary interface
named lan0 and a standby interface named lan1. The following rule is
configured for lan0:

pass in on lan0 proto tcp from any to any port = telnet

Upon failover, the rule is automatically modified to:

pass in on lan1 proto tcp from any to any port = telnet

The rule will be changed back automatically on failback.

All rules that filter on interface names are changed at failover and
failback in both the active ruleset and the inactive ruleset. In addition,
logging reflects the changes; the standby interface name will appear in
logs and reports when it is in use.
Chapter 10 139

HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard
Remote Failover

HP-UX IPFilter is a system firewall and as such should be installed on
end systems. Connections to an IPFilter system that are lost during a
remote failover must be reinitiated.

Install and configure HP-UX IPFilter on each node of a Serviceguard
cluster that must be protected. The IPFilter configuration for the
primary node might be different from the configuration for the backup
nodes.

For example, the backup node might be multi-homed and require a
different rule set. Also, rules could be configured to filter on the static IP
address of the receiving node that would be different for each node in the
cluster. Rules that filter on interface names will also be different on
different nodes in a cluster.

Filtering on a Package IP Address

HP-UX IPFilter can filter on a package IP address. The package IP
address is an IP address that corresponds to a logical network interface.

For example, a telnet connection is made to the primary cluster node
with a package IP address of 17.13.24.105. You want to configure
IPFilter to let telnet traffic through. Configure the following rule for
incoming telnet connections made to the telnet package:

pass in proto tcp from any to 17.13.24.105 flags S keep state

You can replace 17.13.24.105 with the package name in this rule if the
package has been configured properly and has a DNS entry.

Configure this rule on the backup nodes as well. This ensures that when
the telnet package fails to a backup, there is a rule on the backup that
lets telnet connections pass through as required.

This type of configuration can be used with any package.

Mandatory Rules

Each node in a Serviceguard cluster has specific rules that must be
configured. These rules ensure that:

• Normal remote failovers are not disrupted.

• No false remote failovers occur because traffic is blocked by IPFilter
that should not be blocked.
Chapter 10140

HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard
The classes of mandatory rules cover:

• Intra-Cluster Communication

• Quorum Server

• Remote Command Execution

• Cluster Object Manager

• Serviceguard Manager

The following services should not be blocked:

hacl-qs 1238/tcp # High Availability (HA) Quorum Server
clvm-cfg 1476/tcp # HA LVM configuration
hacl-hb 5300/tcp # High Availability (HA) Cluster heartbeat
hacl-hb 5300/udp # High Availability (HA) Cluster heartbeat
hacl-gs 5301/tcp # HA Cluster General Services
hacl-cfg 5302/tcp # HA Cluster TCP configuration
hacl-cfg 5302/udp # HA Cluster UDP configuration
hacl-probe 5303/tcp # HA Cluster TCP probe
hacl-probe 5303/udp # HA Cluster UDP probe
hacl-local 5304/tcp # HA Cluster commands
hacl-test 5305/tcp # HA Cluster test
hacl-dlm 5408/tcp # HA Cluster distributed lock manager

NOTE This list of HA services is not exhaustive. In addition, Serviceguard also
uses dynamic ports (typically in the 49152–65535 range) for some cluster
services. If you have adjusted the dynamic port range using kernel
tunable parameters, alter your rules accordingly.

This list does not include all HA applications (such as Continental
Cluster). New HA applications might be developed that use port
numbers different from those previously listed. You must add new rules
as appropriate to ensure that all HA applications run properly. The
current list of ports used by Serviceguard are documented in the
Serviceguard Release Notes.

Intra-Cluster Communication To ensure proper operation of your
Serviceguard cluster, each of the configured Serviceguard heartbeat
subnets must allow intra-cluster communication. The following rules
must be applied to each subnet.
Chapter 10 141

HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard
For a simplified HP-UX IPFilter configuration, use the following rules:

pass in quick from <clusternodes> to any

pass out quick from any to <clusternodes>

For more restrictive HP-UX IPFilter configurations, use the following
rules to allow only the required cluster services to pass through:

pass in quick proto tcp from <clusternodes> to <clusternodes>
port 5299 >< 5305 flags S keep state

pass in quick proto udp from <clusternodes> to <clusternodes>
port = 5300 keep state

pass in quick proto udp from <clusternodes> to <clusternodes>
port = 5302 keep state

pass in quick proto tcp from <clusternodes> to <clusternodes>
port = 5408 flags S keep state

pass in quick proto tcp from <clusternodes> to <clusternodes>
port 49151><65536 keep state

pass in quick proto udp from <clusternodes> to <clusternodes>
port 49151><65536 keep state

pass out quick proto tcp from <clusternodes> to <clusternodes>
port 5299 >< 5305 flags S keep state

pass out quick proto udp from <clusternodes> to <clusternodes>
port = 5300 keep state

pass out quick proto udp from <clusternodes> to <clusternodes>
port = 5302 keep state

pass out quick proto tcp from <clusternodes> to <clusternodes>
port = 5408 flags S keep state

pass out quick proto tcp from <clusternodes> to <clusternodes>
port 49151><65536 keep state

pass out quick proto udp from <clusternodes> to <clusternodes>
port 49151><65536 keep state

pass in quick proto udp from <clusternodes> to <clusternodes>
port = 9 keep state

pass out quick proto udp from <clusternodes> to <clusternodes>
port = 9 keep state

In the previous set of rules, <clusternodes> are all nodes in the cluster,
including the local node.
Chapter 10142

HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard
Running the cmscancl command requires the “shell” port be open.

Quorum Server If your Serviceguard configuration uses a Quorum
Server, each node in the cluster must have the following rule configured:

pass out quick proto tcp from <clusternodes> to <quorumserver>
port = 1238 flags S keep state

Any node providing Quorum Service for another cluster must have the
following rule configured:

pass in quick proto tcp from <clusternodes> to <quorumserver>
port = 1238 flags S keep state

In the previous set of rules, <clusternodes> are all nodes in the cluster
utilizing the Quorum Service and <quorumserver> is the IP address
used to access the Serviceguard Quorum Service software.

Remote Command Execution If you want nodes outside the cluster
to execute Serviceguard commands, as specified in the
etc/cmcluster/cmclnodelist file, additional rules are required.

Each node in the cluster must have the following rules configured:

pass in quick proto tcp from <remotenodes> to <clusternodes>
port = 5302 flags S keep state

pass in quick proto udp from <remotenodes> to <clusternodes>
port = 5302 keep state

pass out quick proto tcp from <clusternodes> to <remote node
name> port 49151><65536 keep state

pass out quick proto udp from <clusternodes> to <remote node
name> port 49151><65536 keep state

Each remote node must have the following rules configured:

pass in quick proto tcp from <clusternodes> to <remote node
name> port 49151 >< 65536 keep state

pass in quick proto udp from <clusternodes> to <remote node
name> port 49151 >< 65536 keep state

pass out quick proto tcp from <remotenodes> to <clusternodes>
port = 5302 flags S keep state

pass out quick proto udp from <remotenodes> to <clusternodes>
port = 5302 keep state
Chapter 10 143

HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard
In the previous set of rules, <clusternodes> are all nodes in the cluster,
<remote node name> is the specific remote node, and <remotenodes>
are all other nodes outside the cluster that are designated in the
cmclnodelist file for remote command access.

Running the cmscancl command requires the “shell” port be open.

Cluster Object Manager If you are using a Cluster Object Manager
(COM) on a node outside of the cluster to provide connections to
Serviceguard Manager clients, each node in the cluster must have the
following rules configured:

pass in quick proto tcp from <comnode> to <clusternodes> port =
5302 flags S keep state

pass in quick proto udp from <comnode> to <clusternodes> port =
5302 keep state

pass out quick proto tcp from <clusternodes> to <comnode> port
49151 >< 65536 keep state

pass out quick proto udp from <clusternodes> to <comnode> port
49151 >< 65536 keep state

The node running COM must have the following rules configured:

pass in quick proto tcp from <comclient> to <comnode> port =
5303 flags S keep state

pass in quick proto tcp from <clusternodes> to <comnode> port
49151 >< 65536 keep state

pass in quick proto udp from <clusternodes> to <comnode> port
49151 >< 65536 keep state

pass out quick proto tcp from <comnode> to <clusternodes> port
= 5302 flags S keep state

pass out quick proto udp from <comnode> to <clusternodes> port
= 5302 keep state

Each COM client must have the following rules configured:

pass out quick proto tcp from <comclient> to <comnode> port =
5303 flags S keep state

In the previous set of rules, <clusternodes> are all nodes in the cluster,
<comclient> are nodes that are clients of COM for Serviceguard
Manager or Continental Clusters products, and <comnode> is the node
running the COM.
Chapter 10144

HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard
Serviceguard Manager If you are using the station-management
version of Serviceguard Manager, you must configure rules to let SNMP
traffic pass between all nodes in the cluster and the Serviceguard
Manager node.

Each cluster node must have the following rules configured:

pass in quick proto udp from <SGMgr node> to <clusternodes>
port = 161 keep state

pass out quick proto udp from <clusternodes> to <SGMgr node>
port = 162 keep state

Each Serviceguard Manager node must have the following rules
configured:

pass out quick proto udp from <SGMgr node> to <clusternodes>
port = 161 keep state

pass in quick proto udp from <clusternodes> to <SGMgr node>
port = 162 keep state

In the previous set of rules, <clusternodes> are all nodes in the cluster,
including the local node, and <SGMgr node> is the node or nodes running
Serviceguard Manager.

NOTE The previous sections are examples and meant to serve as guidelines.
You might need to modify them to work with your network configuration
and the applications you use. Specific applications used within the
Serviceguard cluster might require additional ports to be opened.

DCA Remote Failover

Normally, IPFilter keep state rules are configured with the flags S
parameter. This parameter instructs IPFilter to create a TCP state entry
only when a SYN packet is parsed.

To enable transparent failover between IPFilter DCA nodes, do not use
flags S with keep limit rules. If incoming TCP/IP traffic is switched
from the active to the standby node, DCA can rebuild the previous
IPFilter state table and IPFilter DCA limit tables from the data stream.
Without flags S in the keep limit rule, IPFilter creates a new state
Chapter 10 145

HP-UX IPFilter and Serviceguard
Using HP-UX IPFilter with Serviceguard
entry from any TCP/IP packet, not just a SYN packet. A limit table entry
is created. Any new connections that exceed the connection limit are
rejected.

After the state table entry is created for a particular IP address
source/destination and TCP port source/destination 4-tuple, further
packets of this connection are processed in the state table entry. These
packets are not processed by the rules’ table.

For example, when Serviceguard detects that the primary IPFilter DCA
gateway has failed, the IP addresses of the primary systems are switched
to the standby DCA system. The standby system contains the same set of
configured rules as the primary system. Therefore, the standby system
can completely rebuild the TCP state tables and limit entries that were
previously on the primary system.

If a client has active connection to an IPFilter system and is attempting
to make new connections when Serviceguard fails over, the new
connections replace the existing connections in the limit table entry for
the client only if the established connections are not generating traffic.
Chapter 10146

A HP-UX IPFilter Configuration
Examples

This appendix provides IPFilter configuration examples. These examples
are also included in the /opt/ipf/examples directory with HP-UX
Appendix A 147

HP-UX IPFilter Configuration Examples
IPFilter. You can take useful rules that you find in these examples and
copy them into /etc/opt/ipf/ipf.conf, which is your HP-UX IPFilter
configuration file.

These files are taken from the files provided with the open source
IPFilter product.
Appendix A148

HP-UX IPFilter Configuration Examples
BASIC_1.FW
BASIC_1.FW
#!/sbin/ipf -f -
#

SAMPLE: RESTRICTIVE FILTER RULES

ppp0 - (external) PPP connection to ISP, address a.b.c.d/32

lan0 - (internal) network interface, address w.x.y.z/32

This file contains the basic rules needed to construct a
firewall for the above connections.

#---
Block short packets which are packets fragmented too short to
be real packets.
block in log quick all with short
#---
Group setup.
============
By default, block and log all packets. This may result in
too much information to be logged (especially for lan0)
and needs to be further refined.

block in log on ppp0 all head 100
block in log proto tcp all flags S/SA head 101 group 100
block out log on ppp0 all head 150
block in log on lan0 from w.x.y.z/24 to any head 200
block in log proto tcp all flags S/SA head 201 group 200
block in log proto udp all head 202 group 200
block out log on lan0 all head 250
#---
Localhost packets.
==================
Packets going in/out of network interfaces that aren’t on the
loopback interface should *NOT* exist.
block in log quick from 127.0.0.0/8 to any group 100
block in log quick from any to 127.0.0.0/8 group 100
block in log quick from 127.0.0.0/8 to any group 200
block in log quick from any to 127.0.0.0/8 group 200
#---
Invalid Internet packets.
=========================
Appendix A 149

HP-UX IPFilter Configuration Examples
BASIC_1.FW

Deny reserved addresses.

block in log quick from 10.0.0.0/8 to any group 100
block in log quick from 192.168.0.0/16 to any group 100
block in log quick from 172.16.0.0/12 to any group 100

Prevent IP spoofing.

block in log quick from a.b.c.d/24 to any group 100

#---
Allow outgoing DNS requests (no named on firewall)

pass in quick proto udp from any to any port = 53 keep state
group 202

If you are running named on the firewall and all internal
hosts talk to it,use the following:

pass in quick proto udp from any to w.x.y.z/32 port = 53 keep
state group 202
pass out quick on ppp0 proto udp from a.b.c.d/32 to any port =
53 keep state

Allow outgoing FTP from any internal host to any external FTP
server.

pass in quick proto tcp from any to any port = ftp keep state
group 201
pass in quick proto tcp from any to any port = ftp-data keep
state group 201
pass in quick proto tcp from any port = ftp-data to any port >
1023 keep state group 101

Allow NTP from any internal host to any external NTP server.

pass in quick proto udp from any to any port = ntp keep state
group 202

Allow outgoing connections: SSH, TELNET, WWW

pass in quick proto tcp from any to any port = 22 keep state
group 201
pass in quick proto tcp from any to any port = telnet keep
state group 201
Appendix A150

HP-UX IPFilter Configuration Examples
BASIC_1.FW
pass in quick proto tcp from any to any port = www keep state
group 201

#---
block in log proto tcp from any to a.b.c.d/32 flags S/SA head
110 group 100

Allow the following incoming packets types to the external
firewall interface: mail, WWW, DNS
pass in log quick proto tcp from any to any port = smtp keep
state group 110
pass in log quick proto tcp from any to any port = www keep
state group 110
pass in log quick proto tcp from any to any port = 53 keep
state group 110
pass in log quick proto udp from any to any port = 53 keep
state group 100
#---
Log these:
==========
* Return RST packets for invalid SYN packets to help the
#other end close
block return-rst in log proto tcp from any to any flags S/SA
group 100
* Return ICMP error packets for invalid UDP packets
block return-icmp(net-unr) in proto udp all group 100
Appendix A 151

HP-UX IPFilter Configuration Examples
BASIC_2.FW
BASIC_2.FW
SAMPLE: PERMISSIVE FILTER RULES

ppp0 - (external) PPP connection to ISP, address a.b.c.d/32

lan0 - (internal) network interface, address w.x.y.z/32

This file contains the basic rules needed to construct a
firewall for the above situation.

#---
Short packets which are packets fragmented too short to be
real packets.
block in log quick all with short
#---
Group setup.
============
By default, block and log all packets. This may result in
too much information to be logged (especially for lan0) and
the rules needs to be further refined.

block in log on ppp0 all head 100
block out log on ppp0 all head 150
block in log on lan0 from w.x.y.z/24 to any head 200
block out log on lan0 all head 250
#---
Invalid Internet packets.
=========================

Deny reserved addresses.

block in log quick from 10.0.0.0/8 to any group 100
block in log quick from 192.168.0.0/16 to any group 100
block in log quick from 172.16.0.0/12 to any group 100

Prevent IP spoofing.

block in log quick from a.b.c.d/24 to any group 100

#---
Localhost packets.
==================
packets going in/out of network interfaces that aren’t on the
Appendix A152

HP-UX IPFilter Configuration Examples
BASIC_2.FW
loopbackinterface should *NOT* exist
block in log quick from 127.0.0.0/8 to any group 100
block in log quick from any to 127.0.0.0/8 group 100
block in log quick from 127.0.0.0/8 to any group 200
block in log quick from any to 127.0.0.0/8 group 200
#---
Allow any communication between the inside network and the
outside only.

Allow all outgoing connections (SSH, TELNET, FTP, WWW,
gopher, etc)

pass in log quick proto tcp all flags S/SA keep state group 200

Support all UDP ‘connections’ initiated from inside.

Allow ping out

pass in log quick proto icmp all keep state group 200
#---
Log these:
==========
* return RST packets for invalid SYN packets to help the
other end close
block return-rst in log proto tcp from any to any flags S/SA
group 100
* return ICMP error packets for invalid UDP packets
block -icmp(net-unr) in proto udp all group 100
Appendix A 153

HP-UX IPFilter Configuration Examples
example.1
example.1
#
block all incoming TCP packets on lan0 from host 10.1.1.1 to
any destination.

block in on lan0 proto tcp from 10.1.1.1/32 to any
Appendix A154

HP-UX IPFilter Configuration Examples
example.2
example.2
#

block all outgoing TCP packets on lan0 from any host to port
23 of host 10.1.1.2

block out on lan0 proto tcp from any to 10.1.1.3/32 port = 23
Appendix A 155

HP-UX IPFilter Configuration Examples
example.3
example.3
block all inbound packets.

block in from any to any

pass through packets to and from localhost.

pass in from 127.0.0.1/32 to 127.0.0.1/32

allow a variety of individual hosts to send any type of IP
packet to any other host.

pass in from 10.1.3.1/32 to any
pass in from 10.1.3.2/32 to any
pass in from 10.1.3.3/32 to any
pass in from 10.1.3.4/32 to any
pass in from 10.1.3.5/32 to any
pass in from 10.1.0.13/32 to any
pass in from 10.1.1.1/32 to any
pass in from 10.1.2.1/32 to any

block all outbound packets.

block out from any to any

allow any packets destined for localhost out.

pass out from any to 127.0.0.1/32

allow any host to send any IP packet out to a limited number
of hosts.

pass out from any to 10.1.3.1/32
pass out from any to 10.1.3.2/32
pass out from any to 10.1.3.3/32
pass out from any to 10.1.3.4/32
pass out from any to 10.1.3.5/32
pass out from any to 10.1.0.13/32
pass out from any to 10.1.1.1/32
pass out from any to 10.1.2.1/32
Appendix A156

HP-UX IPFilter Configuration Examples
example.4
example.4

block all ICMP packets.

block in proto icmp from any to any

Appendix A 157

HP-UX IPFilter Configuration Examples
example.5
example.5

test ruleset

allow packets coming from foo to bar through.

pass in from 10.1.1.2 to 10.2.1.1

allow any TCP packets from the same subnet as foo is on
through to host 10.1.1.2 if they are destined for port 6667.

pass in proto tcp from 10.2.2.2/24 to 10.1.1.2/32 port = 6667

allow in UDP packets that are NOT from port 53 and are
destined for localhost

pass in proto udp from 10.2.2.2 port != 53 to localhost

block all ICMP unreachables.

block in proto icmp from any to any icmp-type unreach

allow packets through that have a non-standard IP header
length (ie there are IP options such as source-routing
present).

pass in from any to any with ipopts

Appendix A158

HP-UX IPFilter Configuration Examples
example.6
example.6

block all TCP packets with only the SYN flag set (this is the
first packet sent to establish a connection) out of the
SYN-ACK pair.

block in proto tcp from any to any flags S/SA
Appendix A 159

HP-UX IPFilter Configuration Examples
example.7
example.7
block all ICMP packets.

block in proto icmp all

allow in ICMP echos and echo-replies.

pass in on lan1 proto icmp from any to any icmp-type echo
pass in on lan1 proto icmp from any to any icmp-type echorep

block all ICMP destination unreachable packets which are
port-unreachables

block in on lan1 proto icmp from any to any icmp-type unreach
code 3
Appendix A160

HP-UX IPFilter Configuration Examples
example.8
example.8

block all incoming TCP connections but send back a TCP-RST
for ones to the ident port

block in proto tcp from any to any flags S/SA
block return-rst in quick proto tcp from any to any port = 113
flags S/SA

block all inbound UDP packets and send back an ICMP error.

block return-icmp in proto udp from any to any
Appendix A 161

HP-UX IPFilter Configuration Examples
example.9
example.9
drop all packets without IP security options

block in all
pass in all with opt sec

only allow packets in and out on lan0 which are top secret

block out on lan0 all
pass out on lan0 all with opt sec-class topsecret
block in on lan0 all
pass in on lan0 all with opt sec-class topsecret
Appendix A162

HP-UX IPFilter Configuration Examples
example.10
example.10

pass ack packets (ie established connection)

pass in proto tcp from 10.1.0.0/16 port = 23 to 10.2.0.0/16 ...
 flags A/A
pass out proto tcp from 10.1.0.0/16 port = 23 to 10.2.0.0/16...
 flags A/A

block incoming connection requests to my internal network
from the internet.

block in on lan0 proto tcp from any to 10.1.0.0/16 flags S/SA
block the replies:
block out on lan0 proto tcp from 10.1.0.0 to any flags SA/SA
Appendix A 163

HP-UX IPFilter Configuration Examples
example.11
example.11

allow any TCP packets from the same subnet as foo is on
through to host 10.1.1.2 if they are destined for port 6667.

pass in proto tcp from 10.2.2.2/24 to 10.1.1.2/32 port = 6667

allow in UDP packets which are NOT from port 53 and are
destined for localhost

pass in proto udp from 10.2.2.2 port != 53 to localhost

block any packet trying to get to X terminal ports, X:0 to
X:9

block in proto tcp from any to any port 5999 >< 6010

allow any connections to be made,except to BSD
print/r-services this will also protect syslog.

block in proto tcp/udp all
pass in proto tcp/udp from any to any port 512 <> 515

allow any connections to be made, except to BSD
print/r-services
this will also protect syslog.

pass in proto tcp/udp all
block in proto tcp/udp from any to any port 511 >< 516
Appendix A164

HP-UX IPFilter Configuration Examples
example.12
example.12

get rid of all short IP fragments (too small for valid
comparison)

block in proto tcp all with short

drop and log any IP packets with options set in them.

block in log all with ipopts

log packets with BOTH ssrr and lsrr set

log in all with opt lsrr,ssrr

drop any source routing options

block in quick all with opt lsrr
block in quick all with opt ssrr
Appendix A 165

HP-UX IPFilter Configuration Examples
example.13
example.13

log all short TCP packets to lan3, with 10.3.3.3 as the
intended destination for the packet.

block in on lan0 to lan3:10.3.3.3 proto tcp all with short

log all connection attempts for TCP

pass in on lan0 dup-to lan1:10.3.3.3 proto tcp all flags S/SA

route all UDP packets through transparently.

pass in on ppp0 fastroute proto udp all

route all ICMP packets to network 10 out through lan1, to
10.3.3.1

pass in on lan0 to lan1:10.3.3.1 proto icmp all
Appendix A166

HP-UX IPFilter Configuration Examples
example.sr
example.sr
log all inbound packets on lan0 which has IP options present
log in on lan0 from any to any with ipopts

block any inbound packets on lan0 which are fragmented and
"too short" to do any meaningful comparison on. This actually
only applies to TCP packets which can be missing the
flags/ports (depending on which part of the fragment you
see).

 block in log quick on lan0 from any to any with short frag

log all inbound TCP packets with the SYN flag (only) set
(NOTE: if it were an inbound TCP packet with the SYN flag
#set and it had IP options present, this rule and the above
#would cause it to be logged twice).

log in on lan0 proto tcp from any to any flags S/SA

block and log any inbound ICMP unreachables

block in log on lan0 proto icmp from any to any icmp-type
unreach

block and log any inbound UDP packets on lan0 which are going
to port 2049 (the NFS port).

block in log on lan0 proto udp from any to any port = 2049

quickly allow any packets to/from a particular pair of hosts

pass in quick from any to 10.1.3.2/32
pass in quick from any to 10.1.0.13/32
pass in quick from 10.1.3.2/32 to any
pass in quick from 10.1.0.13/32 to any

block (and stop matching) any packet with IP options present.

block in quick on lan0 from any to any with ipopts

allow any packet through

pass in from any to any
Appendix A 167

HP-UX IPFilter Configuration Examples
example.sr

block any inbound UDP packets destined for these subnets.

block in on lan0 proto udp from any to 10.1.3.0/24
block in on lan0 proto udp from any to 10.1.1.0/24
block in on lan0 proto udp from any to 10.1.2.0/24

block any inbound TCP packets with only the SYN flag set that
are destined for these subnets.

block in on lan0 proto tcp from any to 10.1.3.0/24 flags S/SA
block in on lan0 proto tcp from any to 10.1.2.0/24 flags S/SA
block in on lan0 proto tcp from any to 10.1.1.0/24 flags S/SA

block any inbound ICMP packets destined for these subnets.

block in on lan0 proto icmp from any to 10.1.3.0/24
block in on lan0 proto icmp from any to 10.1.1.0/24
block in on lan0 proto icmp from any to 10.1.2.0/24
Appendix A168

HP-UX IPFilter Configuration Examples
firewall
firewall
#Configuring IP Filter for firewall usage.
===

Step 1 - Block out "bad" IP packets.

Run the perl script "mkfilters". This will generate a list of
blocking rules which:
a) blocks all packets which might belong to an IP Spoofing
attack;
b) blocks all packets with IP options;
c) blocks all packets which have a length which is too short
for any legal packet;

Step 2 - Convert Network Security Policy to filter rules.

Draw up a list of which services you want to allow users to use
on the Internet (e.g. WWW, ftp, etc). Draw up a separate list
for what you want each host that is part of your firewall to be
allowed to do, including communication with internal hosts.

Step 3 - Create TCP "keep state" rules.

For each service that uses TCP, create a rule as follows:

pass in on <int-a> proto tcp from <int-net> to any port
<ext-service> flags S/SA keep state

where
* "int-a" is the internal interface of the firewall. That is,
it is the closest to your internal network in terms of network
hops.

* "int-net" is the internal network IP# subnet address range.
This might be something like 10.1.0.0/16, or 128.33.1.0/24

* "ext-service" is the service to which you wish to connect or
if it doesn’t have a proper name, a number can be used. The
translation of "ext-service" as a name to a number is
controlled with the /etc/services file.
Appendix A 169

HP-UX IPFilter Configuration Examples
server
server

For a network server, which has two interfaces, 128.1.40.1
#(lan0) and 128.1.2.1 (lan1), we want to block all IP spoofing
attacks. lan1 is connected to the majority of the network,
while lan0 is connected to a leaf subnet.
We’re not concerned about filtering individual services

pass in quick on lan0 from 128.1.40.0/24 to any
block in log quick on lan0 from any to any
block in log quick on lan1 from 128.1.1.0/24 to any
pass in quick on lan1 from any to any
Appendix A170

HP-UX IPFilter Configuration Examples
tcpstate
tcpstate

Only allow TCP packets in/out of lan0 if there is an outgoing
connection setup somewhere, waiting for it.

pass out quick on lan0 proto tcp from any to any flags S/SAFR
keep state
block out on lan0 proto tcp all
block in on lan0 proto tcp all

allow nameserver queries and replies to pass through, but no
other UDP

pass out quick on lan0 proto udp from any to any port = 53
keep state
block out on lan0 proto udp all
block in on lan0 proto udp all
Appendix A 171

HP-UX IPFilter Configuration Examples
BASIC.NAT
BASIC.NAT
#!/sbin/ipnat -f -
#
THIS EXAMPLE IS WRITTEN FOR IP FILTER 3.3
#
ppp0 - (external) PPP connection to ISP, address a.b.c.d/32
#
lan0 - (internal) network interface, address w.x.y.z/32
#
If only one valid IP address from the ISP, then use this
rule:
#
map ppp0 w.x.y.z/24 -> a.b.c.d/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.z/24 -> a.b.c.d/32
#
If a different dialup IP address is assigned each time, then
use this rule:
map ppp0 w.x.y.z/24 -> 0/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.z/24 -> 0/32
#
If using a class C address space of valid IP addresses from
an ISP, then use this rule:
#
map ppp0 w.x.y.z/24 -> a.b.c.d/24 portmap tcp/udp 40000:60000
map ppp0 w.x.y.z/24 -> a.b.c.d/24
#
If using a small number of PCs, use this rule:
#
map ppp0 w.x.y.v/32 -> a.b.c.E/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.v/32 -> a.b.c.E/32
map ppp0 w.x.y.u/32 -> a.b.c.F/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.u/32 -> a.b.c.F/32
map ppp0 w.x.y.t/32 -> a.b.c.G/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.t/32 -> a.b.c.G/32
map ppp0 w.x.y.s/32 -> a.b.c.H/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.s/32 -> a.b.c.H/32
map ppp0 w.x.y.r/32 -> a.b.c.I/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.r/32 -> a.b.c.I/32
map ppp0 w.x.y.q/32 -> a.b.c.J/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.q/32 -> a.b.c.J/32
map ppp0 w.x.y.p/32 -> a.b.c.K/32 portmap tcp/udp 40000:60000
map ppp0 w.x.y.p/32 -> a.b.c.K/32
#

Appendix A172

HP-UX IPFilter Configuration Examples
BASIC.NAT
For ftp to work using the internal ftp proxy, use the
following rule:
#
map ppp0 w.x.y.z/24 -> a.b.c.d/32 proxy port ftp ftp/tcp
Appendix A 173

HP-UX IPFilter Configuration Examples
nat.eg
nat.eg
map all tcp connections from 10.1.0.0/16 to 240.1.0.1,
changing the source
port number to something between 10,000 and 20,000 inclusive.
For all other
IP packets, allocate an IP # between 240.1.0.0 and
240.1.0.255, temporarily
for each new user.
#
map lan1 10.1.0.0/16 -> 240.1.0.1/32 portmap tcp 10000:20000
map lan1 10.1.0.0/16 -> 240.1.0.0/24
#
Redirection is triggered for input packets.
For example, to redirect FTP connections through this box, to
the local ftp
port, forcing them to connect through a proxy, you would use:
#
rdr lan0 0.0.0.0/0 port ftp -> 127.0.0.1 port ftp
Appendix A174

HP-UX IPFilter Configuration Examples
nat-setup
nat-setup
Configuring NAT on your network.
================================
To start setting up NAT, we need to define which is your
"internal" interface and which is your "external" interface.
The "internal" interface is the network adapter connected to
the network with private IP addresses which you need to change
for communicating on the Internet. The "external" interface is
configured with a valid internet address.
For example, your internal interface might have an IP address
of 10.1.1.1 and be connected to your ethernet, whilst your
external interface might be a PPP connection with an IP number
of 204.51.62.176.
Thus your network might look like this:
<Internal Network>
[pc] [pc]
| |
+-+---------+------+
 |
 [firewall]
 |
 |
 Internet
<External Network>
Writing the map-rule.

When you're connected to the Internet, you will either have a
block of IP addresses assigned to you, maybe several different
blocks, or you use a single IP address, i.e. with dialup PPP.
If you have a block of addresses assigned, these can be used to
create either a 1:1 mapping (if you have only a few internal IP
addresses) or N:1 mappings, where groups of internal addresses
map to a single IP address and unless you have enough Internet
addresses for a 1:1 mapping, you will want to do "portmapping"
for TCP and UDP port numbers.
For an N:1 situation, you might have:
map ppp0 10.1.0.0/16 -> 209.23.1.5/32 portmap tcp/udp
10000:40000
map ppp0 10.1.0.0/16 -> 209.23.1.5/32 portmap
where if you had 16 addresses available, you could do:
map ppp0 10.1.0.0/16 -> 209.23.1.0/28 portmap tcp/udp
10000:40000
map ppp0 10.1.0.0/16 -> 209.23.1.0/28 portmap
Appendix A 175

HP-UX IPFilter Configuration Examples
nat-setup
Or if you wanted to allocate subnets to each IP#, you might do:
map ppp0 10.1.1.0/24 -> 209.23.1.2/32 portmap tcp/udp
10000:40000
map ppp0 10.1.2.0/24 -> 209.23.1.3/32 portmap tcp/udp
10000:40000
map ppp0 10.1.3.0/24 -> 209.23.1.4/32 portmap tcp/udp
10000:40000
map ppp0 10.1.1.0/24 -> 209.23.1.2/32 portmap
map ppp0 10.1.2.0/24 -> 209.23.1.3/32 portmap
map ppp0 10.1.3.0/24 -> 209.23.1.4/32 portmap
*** NOTE: NAT rules are used on a first-match basis only!
Filtering with NAT.

IP Filter will always translate addresses in a packet _BEFORE_
it checks its access list for inbound packets and translates
addresses _AFTER_ it has checked the access control lists for
outbound packets.
For example (using the above NAT rules), if you wanted to
prevent all hosts in the 10.1.2.0/24 subnet from using NAT, you
might use the following rule with ipf:
block out on ppp0 from 10.1.2.0/24 to any
block in on ppp0 from any to 10.1.2.0/24
and use these with ipnat:
map ppp0 10.1.0.0/16 -> 209.23.1.0/28 portmap tcp/udp
10000:40000
map ppp0 10.1.0.0/16 -> 209.23.1.0/28 portmap
Appendix A176

B HP-UX IPFilter Static Linking

This appendix provides instructions for statically linking the HP-UX
IPFilter kernel modules to the kernel for HP-UX 11i v1 and HP-UX 11i
v2.
Appendix B 177

HP-UX IPFilter Static Linking
Static Linking
Static Linking
IPFilter has two kernel modules, pfil, a streams module and ipf, a
WSIO pseudo driver. These are dynamically loadable kernel modules.
When IPFilter is installed on an HP-UX system using swinstall, these
two modules are loaded and configured as dynamically linked modules.
They can be loaded and unloaded when required without shutting down
the system as long as the modules are not currently in use.

Static Linking of HP-UX IPFilter on HP-UX 11i v1

As with any other DLKM modules for HP-UX 11i v1, these modules can
be statically linked to the kernel. Follow these steps to statically link the
IPFilter modules to the kernel:

1. Use the kmadmin command to find out if the modules have been
loaded dynamically. See the kmadmin (1M) manpage for usage
information. For example:

$ kmadmin -s

2. Use the kmsystem command to find the status of each module. See
the kmsystem (1M) manpage for more detail. For example:

$ kmsystem -q pfil

The output is similar for the ipf module. This output shows that the
pfil module is loadable.

Table B-1

Name ID Status Type

pfil 1 LOADED STREAMS

ipf 2 LOADED WSIO

Table B-2

Module Configured Loadable

pfil Y Y
Appendix B178

HP-UX IPFilter Static Linking
Static Linking
3. Use the kmsystem command to set the loadable parameter to N.

$ kmsystem -l N -c Y ipf

$ kmsystem -q ipf

$ kmsystem -l N -c Y pfil

4. Use the following command to build the new kernel with the
modified configuration:

$config /stand/system

5. Use the kmupdate command to prepare the system to boot from the
new kernel during the next system shutdown.

$ kmupdate /stand/build/vmunix_test

$ shutdown -r 0 # Shutdown the system now

This boots the system using the new kernel that has both IPFilter
modules statically linked.

CAUTION If you need to remove or update IPFilter software, you must reconfigure
the ipf and pfil modules to link dynamically into the kernel. The
install and remove scripts for IPFilter assume the IPFilter modules to be
dynamically linked. Do not try installing a newer version or removing
the existing IPFilter product if it is statically linked to the kernel.

Table B-3

Module Configured Loadable

ipf Y N
Appendix B 179

HP-UX IPFilter Static Linking
Static Linking
Static Linking of HP-UX IPFilter on HP-UX 11i v2

Use the following steps to statically link the IPFilter modules to the
kernel with HP-UX 11i v2:

1. Set up the IPFilter modules to be statically linked to the kernel using
the kcmodule command. The modules will be statically linked at the
next system boot. See the kcmodule (1M) manpage for further
details. For example:

$ kcmodule -K -h -s pfil=static
$ kcmodule -K -h -s ipf=static

2. Reboot the system.

Use the following steps to return the system back to dynamic linking.

1. Set up the IPFilter modules to be dynamically linked to the kernel
using the following commands:

$ kcmodule -K -h -s pfil=auto
$ kcmodule -K -h -s ipf=auto

2. Reboot the system.

CAUTION If you need to remove or update IPFilter software, you must reconfigure
the ipf and pfil modules to link dynamically into the kernel. The
install and remove scripts for IPFilter assume the IPFilter modules to be
dynamically linked. Do not try installing a newer version or removing
the existing IPFilter product if it is statically linked to the kernel.
Appendix B180

C Performance Guidelines

This appendix provides performance guidelines for the use of HP-UX
IPFilter.
Appendix C 181

Performance Guidelines
You must take operating environment limits in to account when you
configure HP-UX IPFilter. HP-UX does not enforce maximum
configuration limits to provide flexibility. However, you must take care
not to overburden HP-UX IPFilter systems or unpredictable
consequences may result.

This appendix contains the following sections:

• System Configuration

• Rule Loading

• Rule Configuration

• Traffic

• Performance Monitoring
Appendix C182

Performance Guidelines
System Configuration
System Configuration
The following are four suggestions for HP-UX system configuration for
optimal performance:

Figure C-1 Processing packets through a system

1. On an intermediate system, disable the interface on the intranet
side. By default, there is redundant processing for each packet
through an intermediate system, as shown in Figure C-1. By

Table C-1 Processing Packets through a System

Packets from the Internet Packets to the Internet

1 Packets enter the system 5 Packets enter the system

2 Processed by inbound
IPFilter processing

6 Processed by inbound IPFilter
processing

3 Processed by outbound
IPFilter processing

7 Processed by outbound
IPFilter processing

4 Packets leave the system 8 Packets leave the system

Packets are processed twice
(2 and 3)

Packets are processed twice
(6 and 7)
Appendix C 183

Performance Guidelines
System Configuration
disabling the intranet interface, using ipf -D lan2 in this example,
each packet is processed only once in each direction (2 and 7). Do not
disable any interface on an end system.

2. If your system has multiple CPUs and LAN cards, be sure traffic is
divided evenly between the CPUs. Interrupt migration and PerfView
utilities can be used to determine that traffic is spread evenly
between CPUs.

3. Dedicate a CPU to each LAN card, if possible. Avoid configuring one
CPU to share an application and a LAN, especially if the application
is data or computationally intensive. Use the HP-UX Processor Set
(PSET) utility to separate applications and LAN processing.

4. If you are configuring an intermediate system, dedicate that system
to HP-UX IPFilter. Do not share the system with other standalone
applications.
Appendix C184

Performance Guidelines
Rule Loading
Rule Loading
When you load a large number of new rules to a ruleset, the system must
search existing rulesets for duplicate rules. This slows down the loading
process.

For example, if there is no group rule and there are 5000 rules on the
system, the system searches through all 5000 rules to be sure there is no
duplication before adding each new rule.

HP-UX IPFilter searches for duplicate rules by group. To speed the
search process when loading rules, divide the rules into groups. See
“Improving Performance with Rule Groups” on page 72 for information
on rule groups. HP recommends configuring a maximum of 5000 rules
per group and 5000 groups per system.

You do not need to flush and reload an entire ruleset to modify some
rules within the ruleset. Adding rules that already exist slows
processing. If you are modifying a large ruleset, follow these steps:

1. Find the difference between the new rule set and the current rule set
using the diff command.

2. Delete the old rules using the ipf -rf command.

3. If your ruleset contains keep limit rules, modify the rules with the
ipf -f command.

4. Add the new rules using the ipf -f command. If a rule must be in a
specific place in the ruleset, specify the rule number using
@<rule_number> before the rule.

You can also modify an inactive ruleset and then switch the inactive
ruleset for the active ruleset with the ipf -s command.
Appendix C 185

Performance Guidelines
Rule Configuration
Rule Configuration
To configure IPFilter rules for optimal system performance:

• Avoid using return-rst whenever possible.

From both security and performance perspectives, it is better for
IPFilter to block packets anonymous rather than returning a reset
packet with a known address.

• Avoid logging whenever possible.

Excessive logging can impact both storage and CPU performance on
the system. Determine the appropriate logging level for your
environment.

• Use the quick keyword whenever possible.

The quick keyword stops the rule search for a packet a rule matches.
Otherwise, IPFilter searches the entire ruleset, which can impact
performance if there are a large number of rules.

• Use keep state or keep limit rules whenever possible.

Each connection that matches the keep state or keep limit rule
searches through the rule set only once. The following packets for
that connection will match the existing state entry and not search
the rest of the ruleset.

• Use group rules whenever possible.

For more information, see “Improving Performance with Rule
Groups” on page 72.

In the following example, a connection from 15.13.104.72 must
search 102 rules before finding a match.

pass in quick proto tcp from 15.13.2.1 to any port = 23 keep
limit 1
pass in quick proto tcp from 15.13.2.2 to any port = 23 keep
limit 2
.
(15.13.2.3 to 15.13.2.99)
.
pass in quick proto tcp from 15.13.2.100 to any port = 23
keep limit 100
pass in quick proto tcp from 15.13.103.0/24 to any port = 23
Appendix C186

Performance Guidelines
Rule Configuration
keep limit 500
pass in quick proto tcp from 15.13.104.0/24 to any port = 23
keep limit 500
pass in quick proto tcp from 15.13.105.0/24 to any port = 23
keep limit 500
pass in quick proto tcp from 15.13.106.0/24 to any port = 23
keep limit 500
pass in log limit freq 20 quick proto tcp from any to any
port = 23 keep limit 4

If the ruleset in the previous example is modified to use the group
keyword, it is only necessary for the packet to search four rules
before finding a match. For example:

pass in quick proto tcp from 15.13.2.1-15.13.2.100 to any
port = 23 head 1
pass in quick proto tcp from 15.13.2.1 to any port = 23 keep
limit 1 group 1
pass in quick proto tcp from 15.13.2.2 to any port = 23 keep
limit 2 group 1
.
(15.13.2.3 to 15.13.2.99)
.
pass in quick proto tcp from 15.13.2.100 to any port = 23
keep limit 100 group 1
pass in quick proto tcp from 15.13.103.0/24 to any port = 23
keep limit 500
pass in quick proto tcp from 15.13.104.0/24 to any port = 23
keep limit 500
pass in quick proto tcp from 15.13.105.0/24 to any port = 23
keep limit 500
pass in quick proto tcp from 15.13.106.0/24 to any port = 23
keep limit 500
pass in log limit freq 20 quick proto tcp from any to any
port = 23 keep limit 4
Appendix C 187

Performance Guidelines
Rule Configuration
• Consolidate rules whenever possible, to minimize searching. For
example:

pass in quick proto tcp from 15.13.103.72 to any keep limit
80
pass in quick proto tcp from 15.13.103.0-15.13.103.6 to any
keep limit 44
pass in quick proto tcp from 15.13.103.7 to any keep limit
33
pass in quick proto tcp from 15.13.103.8 to any keep limit
33
pass in quick proto tcp from 15.13.103.9 to any keep limit
33
pass in quick proto tcp from 15.13.103.10-15.13.103.255 to
any keep limit 44
pass in quick proto tcp from 15.13.104.0/24 to any keep
limit 44
pass in quick proto tcp from 15.13.105.0/24 to any keep
limit 44
pass in quick proto tcp from 15.13.106.0/24 to any keep
limit 44
pass in quick proto tcp from 15.13.107.0-15.13.107.78 to
any keep limit 44

The previous ruleset can be condensed to the following:

pass in quick proto tcp from 15.13.103.0-15.13.107.78 to
any keep limit 33 head 1
pass in quick proto tcp from 15.13.103.72 to any keep limit
80 group 1
pass in quick proto tcp from !15.13.103.7-15.13.103.9 to
any keep limit 44 group 1

• For keep limit rules, avoid the cumulative rule whenever possible.

If a large number of connections have the same source IP, destination
IP, and destination port, system performance is impacted by
cumulative rules. Non-cumulative keep limit rules keep a cache
based on the source IP, destination IP, and destination port.
Cumulative rules do not keep a cache based on these parameters.
Appendix C188

Performance Guidelines
Traffic
Traffic
To manage IPFilter for optimal system performance:

• Keep the state entries at a manageable level. Many state entries
require many CPU cycles to process them. Too many state entries
can cause noticeable degradation on a system.

• Keep packet searches on rulesets as short as possible. On a 750-MHz
PA-RISC system, a 1000 to 2000 rule search is acceptable. If IPFilter
traffic is light, a 5000 rule search is the recommended maximum.
The optimal number of rules is dependent on your specific operating
environment, including factors such as type of rules and amount of
traffic.

• Keep IPFilter traffic at a manageable level. Do not run at peak load
all the time. Keep the average CPU usage rate at around 60% to
accommodate unexpected peak loads. At peak load times the system
compensates with schemes such as dropping packets. However, it is
never a good idea to push a system beyond its intended capacity.
Appendix C 189

Performance Guidelines
Traffic
For example, the normal region in Figure C-2 shows normal system
operation. The system should not operate in the marginal region for a
long period of time. Configure your system to raise an alarm if the
system reaches the critical level. Define these criteria based your
operating environments.

Figure C-2 System Operation
Appendix C190

Performance Guidelines
Performance Monitoring
Performance Monitoring
The performance of an IPFilter system depends primarily on four major
factors:

• Number and length of rule searches (rule organization)

• Types of rules

• Network traffic

• System configuration

Monitor your system performance to ensure proper operation. HP
recommends they following:

• Use ipfstat -ioh to monitor the rule searches. If a rule has a high
hit count, this indicates that the rule can be optimized.

• Use other ipfstat options to monitor IPFilter activities. If you know
the normal operating behavior statistics, you can diagnose problems
during peak hours more easily.

• Use a performance tool, such as PerfView, to monitor system usage.

Most performance problems can be resolved by changing the system
configuration and the IPFilter rule configuration. In some instances,
systems may be overwhelmed by network traffic. In these cases, you can
implement other traffic-sharing alternatives, such as APA, cluster, and
load balancer.
Appendix C 191

Performance Guidelines
Performance Monitoring
Appendix C192

A
active rules list, 11
adding keep limit rules, 57

B
bidirectional filtering

in keyword, 26
out keyword, 26

bidirectional filtering with IPSec, 132
bimap keyword, 40
block keyword, 26
blocked traffic

IPSec
correcting, 133

C
checklist

installation and configuration, 3
commands

unsupported, 102
configuration

checklist, 3
IPv6, 105
rules file, 24
rules processing, 25
verifying, 13

configuration examples, 149
configuring

file conventions, 10, 24
configuring variables, 60

D
DCA

keywords, 47
logging command, 95
overview, 45
processing commands, 84
remote failover, 145
rule modifications, 55
setting mode, 61, 84
syntax, 52
variables, 59

DCA keywords
keep limit, 47
log limit, 49
log limit freq, 51

DCA_START configuration option, 61
debugging

ipfstat utility, 88

Denial of Service attack defense, 30
drop-safe logging

to keyword, 75
dup-to keyword, 38
Dynamic Connection Allocation

See DCA
dynamic linking, 180

E
examples

configuration
basic, 149, 152
TCP, 171

extension headers
IPv6, 109

extracting keep limit rules, 58

F
filtering

bidirectional, 26
by interface, 27
by IP address, 28
by subnet, 28
by TCP header flags, 35
ICMP packets, 31
IP address and interface, 28
IPv6, 106
localhost, 74
on IP options, 30
package IP address, 140
port number, 33

filtering on flags
confusing with keeping state, 66

firewall
basic configuration, 23

flags keyword, 35
fr_limitmax limits, 60
fr_statemax, 59
fr_statemax limits, 59
fr_tcpidletimeout, 60
fragmentation

IPv6, 111
from keyword, 28
FTP

active FTP
client, 119
server, 117

how it works, 115
passive FTP

client, 120
193

server, 117
WU-FTPD, 116

H
high availability, 139

I
ICMP

error status messages, 69
filtering on, 31
keeping state with, 69

icmp-type keyword, 31
ICMPv6

IPv6, 108
in keyword, 26
inactive rules list, 11
installation

checklist, 3
IPv6, 105
loading software, 5
prerequisites, 4
verifying, 13

integrating keep limit rules, 58
interfaces

supported, 15
unsupported, 15

interface-specific filtering, 27
interoperability

IPSec, 129
IP address

filtering by, 28
limiting connections by, 47

ipf, 83
-A option, 11
adding rules, 10
-D option, 84
-E option, 84
-f option, 10
-Fa option, 11, 83
-Fi option, 83
-Fo option, 83
-I option, 11, 83
IPv6, 107
loading rules with, 8
-m d option, 61, 84
-m e option, 61, 84
-m option, 84
-m q option, 61, 84
-m t option, 61, 84

-Q option, 84
-s option, 11, 83
-V option, 13
-Z option, 83

ipf module, 178
ipf.conf, 10

adding rules, 8
bootup start, 10
syntax in, 24

ipfboot, 10, 17
IPFilter modules

ipf, 178
pfil, 178

ipfstat, 86
-h option, 86
-i option, 13, 86
IPv6, 108
-L option, 86, 90
-n option, 88
-o option, 13, 86
-r option, 87, 92
-s option, 89
-sl option, 89
-v option, 87
-v-L option, 86, 91

ipftest, 97
-i option, 97
-r option, 97

ipmon, 17, 18, 70, 93
-A option, 93
-a option, 93
-F option, 93
IPv6, 108
-n option, 93
-o option, 93
-r option, 50, 93

ipnat, 101
-C option, 101
-F option, 101
-f option, 101
-l option, 101
-r option, 101

ipnat.conf
adding rules, 8

ipopts keyword, 30
IPSec

allowing protocol 50 and 51 traffic through,
134

allowing traffic through the firewall, 133
bidirectional with IPFilter, 132
194

debugging blocked traffic with, 133
gateway, 136
UDP negotiation, 131

IPSec and IPFilter, 129
IPv6

command and configuration examples, 111
configuration, 105
extension headers, 109
features, 108
filter rules, 106
fragmentation, 111
ICMPv6 filtering, 109
installation, 105
installation dependencies, 111
ipf, 107
ipfstat, 108
logging, 108
protocol-based filtering, 106
rules configuration, 105
stateful filtering, 106
stateful ICMPv6, 108
tunneled packets, 110
unsupported features, 111

K
kadmin

static linking, 178
kadmin -s, 13
kcmodule

static linking, 180
keep frags keyword, 36
keep limit

keyword, 47
keep limit rules

adding, 57
adding a subnet or IP address range rule, 58
adding individual rule, 57
changing current rule, 56
extracting, 58
integrating, 58
rule hits, 54
updating, 56
updating a subnet or IP address range, 57

keep state
ICMP, 69
keyword, 34, 66
state table dump, 88
when to use, 66

keeping state

UDP, 68
with servers and flags, 66

keywords
bimap, 40
block, 26
dup-to, 38
flags, 35
from, 28
icmp-type, 31
in, 26
ipopts, 30
keep frags, 36
keep limit, 47
keep state, 34
log, 29, 70
log limit, 49
log limit freq, 51
map, 39
map-block, 41
on, 27
opt, 30
out, 26
pass, 26
port, 33
portmap, 39
proto, 30
quick, 27
rdr, 40
return-icmp, 37
return-rst, 37
to, 28, 75
with frags, 36
with short, 36

kmsystem
static linking, 178

kmtune, 60
kmupdate

static linking, 179

L
limiting connections

by IP address, 47
by subnet, 47, 48
cumulative, 48
default individual limit, 49

loading software, 5
localhost filtering, 74
log keyword, 29, 70

body option, 71
195

first option, 71
log limit freq keyword, 51
log limit keyword, 49
logging, 17

drop-safe, 75
IPv6, 108
packets, 29
problems, 18

logging exceeded connections, 49
logging techniques, 70

M
map keyword, 39
map-block keyword, 41
memory allocation, 59
modifying DCA rules, 55
monitoring IPFilter, 93
multi-level grouping, 73

N
NAT

adding rules, 8
viewing and loading rules, 101

NAT keywords
bimap, 40
map, 39
map-block, 41
portmap, 39
rdr, 40

Network Address Translation
 See NAT

nslookup, 68

O
on keyword, 27
opt keyword, 30
out keyword, 26

P
package IP address, 140
pass keyword, 26
patch dependencies, 4
performance guidelines, 181

performance monitoring, 191
rule configuration, 186
rule loading, 185
system configuration, 183
traffic, 189

performance improvement, 72

performance information, 86
performance monitoring guidelines, 191
pfil module, 178
ping, 69
port keyword, 33
port number filtering, 33
portmap keyword, 39
prerequisites

installation, 4
patch dependencies, 4

proto keyword, 30
protocol 50 and 51 traffic, 134
protocol-based filtering

IPv6, 106

Q
quick keyword, 27

R
rdr keyword, 40
reloading IPFilter, 17
removing IPFilter software

static linking, 179, 180
reporting problems, 68
return-icmp keyword, 37
return-rst keyword, 37
rule configuration guidelines, 186
rule groups, 72
rule loading guidelines, 185
rules

active list, 11
adding NAT rules to a rule file, 8
adding rules to a rules file, 10
bimap keyword, 40
block keyword, 26
checking inbound and outbound, 13
dup-to keyword, 38
errors occur when loading, 18
file configuration, 24
flags keyword, 35
flushing, 11
from keyword, 28
grouping, 72
icmp-type keyword, 31
in keyword, 26, 27
inactive list, 11
interface-specific, 27
IP address-specific, 28
ipf.conf file, 8
ipnat.conf file, 8
196

ipopts keyword, 30
IPv6, 105
keep frags keyword, 36
keep limit keyword, 47
keep state keyword, 34, 66
loading with ipf, 8
log keyword, 29, 70
log limit freq keyword, 51
log limit keyword, 49
map keyword, 39
map-block keyword, 41
on keyword, 27
opt keyword, 30
out keyword, 26
outbound traffic, 26
pass keyword, 26
performance improvement with, 72
port keyword, 33
portmap keyword, 39
processing order, 25
proto icmp keep state, 69
proto keyword, 30
quick keyword, 27
rdr keyword, 40
removing, 11
return-icmp keyword, 37
return-rst keyword, 37
Serviceguard, 140
swapping active and inactive rules lists, 11
taking effect, 10
to keyword, 28, 75
with frags keyword, 36
with short keyword, 36

S
Serviceguard, 139

Cluster Object Manager, 144
filtering on a package IP address, 140
intra-cluster communication, 141
mandatory rules, 140
Quorum Server, 143
remote command execution, 143
Serviceguard Manager, 145
services, 140

single-user mode, 6
software, loading, 5
state table

dump, 88
stateful filtering

IPv6, 106
static linking, 178

HP-UX 11i v1, 178
HP-UX 11i v2, 180
removing IPFilter software, 179, 180

summary logs for cumulative limits, 50
supported interfaces, 15
swinstall, 5
swlist, 4
system configuration guidelines, 183
system traffic guidelines, 189

T
TCP

configuration example, 171
TCP filtering, 33
TCP Wrapper, 74
testing IPFilter, 97
to keyword, 28, 75
tree structure, 72
troubleshooting, 17

rule change after using Bastille, 19
TTL counter, 89
tunneled packets

IPv6, 110

U
UDP

keeping state with, 68
negotiation with IPSec, 131

UDP filtering, 33
uname, 4
uninstalling IPFilter software

static linking, 179, 180
unsupported interfaces, 15
unsupported utilities and commands, 102
updating keep limit rules, 56
utilities

ipf, 83
ipfstat, 86
ipftest, 97
ipmon, 93
ipnat, 101
unsupported, 102

W
with frags keyword, 36
with short keyword, 36
WU-FTPD, 116
197

198

	HP-UX IPFilter Version A.03.05.14 Administrator’s Guide
	Legal Notices
	Table of Contents
	Preface: About This Document
	1 Installing and Configuring HP-UX IPFilter
	Overview of HP-UX IPFilter Installation
	Installation and Configuration Checklist

	Step 1: Checking HP-UX IPFilter Installation Prerequisites
	Step 2: Loading HP-UX IPFilter Software
	Step 3: Determining the Rules for IPFilter
	Step 4: Adding Rules to the Rules Files
	Adding IPFilter Rules
	Adding NAT Rules

	Step 5: Loading IPFilter and NAT Rules
	Loading IPFilter Rules
	Removing IPFilter Rules
	Loading NAT Rules

	Step 6: Verifying the Installation and Configuration
	Additional Configuration Information

	Supported and Unsupported Interfaces
	Troubleshooting HP-UX IPFilter

	2 Rules and Keywords
	IPFilter Configuration Files
	IPFilter Rules
	IPFilter Configuration File

	Basic Rules Processing
	IPFilter Keywords
	pass and block: Controlling IP Traffic
	in and out: Bidirectional Filtering
	quick: Optimizing IPFilter Rules Processing
	on: Filtering by Network Interfaces
	from and to: Filtering by IP Addresses and Subnets
	log: Tracking Packets on a System
	proto: Controlling Specific Protocols
	opt and ipopts: Filtering on IP Options
	icmp-type: Filtering ICMP Traffic by Type
	port: Filtering on TCP and UDP Ports
	keep state: Protecting TCP, UDP, and ICMP Sessions
	flags: Tight Filtering Based on TCP Header Flags
	keep frags: Letting Fragmented Packets Pass
	with frags: Dropping Fragmented Packets
	with short: Dropping Short Fragments
	return-rst: Responding to Blocked TCP Packets
	return-icmp: Responding to Blocked ICMP Packets
	dup-to: Drop-Safe Logging

	NAT Keywords
	map and portmap: Basic NAT
	bimap: Bidirectional Mapping
	rdr: Redirecting Packets
	map-block: Mapping to a Block of Addresses

	3 Dynamic Connection Allocation
	DCA with HP-UX IPFilter
	Overview: DCA Functionality
	Using DCA

	DCA Keywords
	keep limit: Limiting Connections
	log limit: Logging Exceeded Connections
	log limit freq: Log Frequency

	DCA Rule Syntax
	DCA Rule Conditions
	keep limit Rules and Rule Hits
	DCA Rule Modifications
	Updating keep limit Rules
	Adding New keep limit Rules
	Integrating keep limit Rules
	Extracting an Individual Rule from a Subnet Rule

	DCA Variables
	fr_statemax
	fr_tcpidletimeout
	Configuring Variables

	DCA Mode

	4 Firewall Building Concepts
	Blocking Services by Port Number
	Using Keep State
	Protecting SSH Server Connections Using Keep State

	Using Keep State with UDP
	Using Keep State with ICMP
	Logging Techniques
	level
	first
	body

	Improving Performance with Rule Groups
	Localhost Filtering
	Using the to
	Creating a Complete Filter by Interface
	Combining IP Address and Network Interface Filtering
	Using Bidirectional Filtering Capabilities
	Using port and proto to Create a Secure Filter

	5 HP-UX IPFilter Utilities
	The ipf Utility
	Syntax
	Options
	Example

	The ipfstat Utility
	Syntax
	Options
	Examples

	The ipmon Utility
	Syntax
	Options
	Examples
	ipmon and DCA Logging

	The ipftest Utility
	Syntax
	Options
	Example

	The ipnat Utility
	Syntax
	Options
	Example

	Unsupported Utilities and Commands

	6 HP-UX and IPv6 Support
	Using IPv6 Support in HP-UX IPFilter
	Product Configuration
	Product Installation and Dependencies
	Rules Configuration
	Commands
	New Features for IPv6
	Command and Configuration Examples
	Installation Details and Dependencies
	Features Not Supported with IPv6
	Key Points to Note

	7 HP-UX IPFilter and FTP
	FTP Basics
	WU-FTPD on HP-UX
	Running an FTP Server
	Active FTP
	Passive FTP

	Running an FTP Client
	Active FTP
	Passive FTP

	8 HP-UX IPFilter and RPC
	Introduction
	Quick Start Information
	Configuration Files
	Rules Files
	RPC Rules Configuration File

	9 HP-UX IPFilter and IPSec
	IPFilter and IPSec Basics
	IPSec UDP Negotiation
	When Traffic Appears to Be Blocked
	Allowing Protocol 50 and Protocol 51 Traffic
	IPSec Gateways

	10 HP-UX IPFilter and Serviceguard
	Using HP-UX IPFilter with Serviceguard
	Local Failover
	Remote Failover
	DCA Remote Failover

	A HP-UX IPFilter Configuration Examples
	BASIC_1.FW
	BASIC_2.FW
	example.1
	example.2
	example.3
	example.4
	example.5
	example.6
	example.7
	example.8
	example.9
	example.10
	example.11
	example.12
	example.13
	example.sr
	firewall
	server
	tcpstate
	BASIC.NAT
	nat.eg
	nat-setup

	B HP-UX IPFilter Static Linking
	Static Linking
	Static Linking of HP-UX IPFilter on HP-UX 11i v1
	Static Linking of HP-UX IPFilter on HP-UX 11i v2

	C Performance Guidelines
	System Configuration
	Rule Loading
	Rule Configuration
	Traffic
	Performance Monitoring

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

