
HP-UX IPv6 Porting Guide

HP-UX 11i v3
Manufacturing Part Number : B2355-91069

E0207

United States

© Copyright 2007 Hewlett-Packard Company L.P. All rights reserved.

Legal Notices
© Copyright 2004 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Warranty

A copy of the specific warranty terms applicable to your Hewlett- Packard product and
replacement parts can be obtained from your local Sales and Service Office.

U.S. Government License

Proprietary computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notice

Copyright © 2007 Hewlett-Packard Development Company L.P. All rights reserved.
Reproduction, adaptation, or translation of this document without prior written permission is
prohibited, except as allowed under the copyright laws.

Trademark Notices

UNIX® is a registered trademark of The Open Group.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft
Corporation.

Printed in the US.
ii

About This Document
This document is intended to help HP-UX BSD Sockets Application Programmers port IPv4
network applications to IPv6.

The document printing date and part number indicate the document’s current edition. The
printing date will change when a new edition is printed. Minor changes may be made at
reprint without changing the printing date. The document part number will change when
extensive changes are made.

Document updates may be issued between editions to correct errors or document product
changes. To ensure that you receive the updated or new editions, you should subscribe to the
appropriate product support service. See your HP sales representative for details.

The latest version of this document can be found on line at:
docs.hp.com/hpux/netcom/index.html#IPv6.

Intended Audience
This document is intended for HP-UX BSD Sockets Application Programmers porting IPv4
network applications to IPv6.

This document is not a tutorial.
 iii

What’s In This Docuent
The guide is organized as follows:

1 Introduction

2 IPv6 Addressing

3 Data Structure Changes

4 Migrating Applications from IPv4 to IPv6

5 Overview of IPv6 and IPv4 Call Set-up

6 Function Calls Converting Names to Addresses

7 Function Calls Converting IP addresses to Names

8 Reading Error Messages

9 Freeing Memory

10 Converting Binary and Text Addresses

11 Testing for Scope and Type of IPv6 addresses using Macros

12 Identifying Local Interface Names and Indexes

13 Configuring or Querying an Interface using IPv6 ioctl() Function Calls

14 Verifying IPv6 Installation

15 Sample Client/Server Programs

Appendix A IPv4 to IPv6 Quick-Reference Guide

HP-UX Release Names and Release Identifiers
Each HP-UX 11i release has an associated release name and release identifier. The uname (1)
command with the -r option returns the release identifier. This table shows the releases
available for HP-UX 11i.

Table 1 HP-UX 11i Releases

Release
Identifier Release Name Supported Processor

Architecture

B.11.31 HP-UX 11i v3 Intel® Itanium®

B.11.23 HP-UX 11i v2 Intel® Itanium®
iv

Related Documents

HP Documentation
Additional information about HP-UX IPv6 transport can be found within docs.hp.com in the
networking and communications collection under IPv6 at:

http://www.docs.hp.com/hpux/netcom/index.html#IPv6

Other documents in this collection (besides this guide) include:

HP-UX IPv6 Transport Administrator’s Guide (TOUR 1.0)

HP-UX IPv6 Transport Administrator’s Guide (HP-UX 11i v2)

Other Documentation
For more information, refer to RFC 2533 “Basic Socket Interface Extensions for IPv6”. The
IETF (Internet Engineering Task Force) RFCs can be located at:
http://www.ietf.org/rfc.html.

B.11.22 HP-UX 11i v1.6 Intel® Itanium®

B.11.20 HP-UX 11i v1.5 Intel® Itanium®

B.11.11 HP-UX 11i v1 PA-RISC

Table 1 HP-UX 11i Releases (Continued)

Release
Identifier Release Name Supported Processor

Architecture
 v

HP Welcomes Your Comments
HP welcomes your comments concerning this document. HP is committed to providing
documentation that meets your needs.

Please send comments to: netinfo_feedback@cup.hp.com

Please include document title, manufacturing part number, and any comment, error found, or
suggestion for improvement you have concerning this document. Also, please tell us what you
like, so we can incorporate it into other documents.
vi

1 Introduction

This chapter provides a brief introduction, including comments about existing IPv4
applications, transitioning to IPv6, and some general terminology.
Chapter 1 1

Introduction
Why IPv6 Now?
Why IPv6 Now?
In the last five years, the Internet has transformed the way people live. The Internet’s
tremendous growth rate greatly exceeded any futurist’s predictions, including the Internet
Protocol (IP) architect’s plans from twenty years ago. IP version 4 (IPv4) provided ample
addresses for network growth throughout the 1980s, but the address-supply is now low
outside the United States. If current Internet growth rates continue, the prediction is that the
supply of unassigned IPv4 addresses will be depleted within ten years. Internet Protocol
Version 6 (IPv6) overcomes many limitations of IPv4.

For additional information on using HP-UX IPv6 transport, refer to the following
documentation as needed:

HP-UX IPv6 Transport Administrator’s Guide (HP-UX 11i v3)

Who Should Read This Guide
HP-UX BSD Sockets Application Programmers porting IPv4 network applications to IPv6.

Do Existing IPv4 Applications Require Changes?
No. Current IPv4 applications can remain unchanged. Modify applications only to take
advantage of new IPv6 features.
Chapter 12

Introduction
Does implementing IPv6 require a complete transition from IPv4?
Does implementing IPv6 require a complete transition
from IPv4?
No. Networks can migrate to IPv6 gradually, using transition mechanisms defined by IPv6
Protocol Specifications. IPv4 and IPv6 will coexist for a long time. IPv6 Protocol Specifications
provide two major transition mechanisms:

Dual Stack: Dual-stack hosts have both IPv4 and IPv6 interfaces configured and can
communicate with both IPv4 and IPv6 hosts.

Tunneling: Tunneling is a mechanism that has been defined to allow IPv6 packets to be
encapsulated in IPv4 packets. A Dual-Stack host can send IPv6 packets through an IPv4
tunnel to a remote IPv6 host, without requiring an IPv6 infrastructure.
Chapter 1 3

Introduction
Terminology
Terminology
This section provides brief definitions of some common general IP and IPv6 terms.

General IP Terminology

Node: A device that implements IP (either IPv4 or IPv6 or both).

Router: A node that forwards IP packets not explicitly addressed to itself.

Host: Any node that is not a router.

Link: A logical connection between two nodes. Here, a link is the layer below IP such as
Ethernet, PPP, or ATM networks. A link also includes IPv6 traffic encapsulated within IPv4
packets, also known as tunneling.

Name Service: A database that maps host names to IP addresses. Common Name Services are
Domain Name System (DNS) or the /etc/hosts file.

Site: An organization’s Intranet, perhaps geographically disbursed.

IPv6 Terminology

IPv4 Address: A 32-bit IPv4 address

IPv6 Address: An 128-bit IPv6 address

IPv4-only node: A node that implements only IPv4. An IPv4-only node does not understand
IPv6.

IPv6-only node: A node configured for IPv6 only. An IPv6-only node does not understand IPv4.

IPv4/IPv6 node: A node that implements both IPv4 and IPv6.

IPv6 node: A node that implements IPv6. IPv4/IPv6 and IPv6-only nodes are both IPv6 nodes.

IPv4 node: A host that implements IPv4. IPv4/IPv6 and IPv4-only nodes are both IPv4 nodes.
Chapter 14

2 IPv6 Addressing

This chapter describes basic IPv6 addressing information.
Chapter 2 5

IPv6 Addressing
Types of IPv6 addresses
Types of IPv6 addresses
IPv6 supports both single-destination (unicast) and multiple-destination (multicast)
addresses. Addresses comprise three different scopes.

IPv6 Address scope

Link-local: An IPv6 address used over one local link; assigned during autoconfiguration.

Global: An IPv6 address used throughout the Internet.

An IPv6 node always has a link-local address. It may have one or more global addresses.

IPv4 to IPv6 Transition Addresses

To ease the transition from IPv4 to IPv6, the IPv6 Protocol Specifications define two global
IPv6 addresses containing unique IPv4 address in the low-order 32-bits of the IPv6 address.

IPv4-Mapped Address

An IPv4-mapped IPv6 address enables an IPv6 application on an IPv4/IPv6 host to
communicate with an IPv4-only node. IPv4-mapped IPv6 addresses are created internally by
the Name Service resolver when an IPv6 application requests the host name for a node with
an IPv4 address only.

The IPv6 module encodes the IPv4 address in the low-order 32 bits of the IPv6 address.

Figure 2-1 IPv4-Mapped Address
Chapter 26

IPv6 Addressing
Comparing IPv4 and IPv6 Addresses
Comparing IPv4 and IPv6 Addresses
IPv4 addresses are 32-bit addresses represented as four dotted-decimal octets

Example: 10.1.3.7

IPv6 Addresses are 128-bit records represented as eight fields of up to four hexadecimal
digits. A colon separates each field (:).

Example: 8888:7777:6666:5555:4444:3333:2222:1111

Leading Zeros Suppressed

Example: 0008:0007:0006:0005:0004:0003:0002:0001

Is also valid in the format:

8:7:6:5:4:3:2:1

Contiguous Fields Containing only the Digits Zero can be collapsed

Example: 0008:0000:0000:0000:0000:0003:0002:0001

Is also valid in the format:

8::3:2:1

NOTE Only one set of contiguous fields of zeros per IP address can be collapsed.

IPv4-Mapped IPv6 Addresses can display IPv4 Addresses in
Dotted-Decimal Format

IPv4-mapped addresses contain the IPv4 address in the low-order 32-bits. Mixing
hexadecimal format and dotted-decimal format is valid. For example, the IPv4 mapped IPv6
address ::ffff:10.9.8.7 is valid in the following formats:

Table 2-1

0::ffff:0a09:0807 IPv4 mapped IPv6 address

::ffff:0a09:0807 First zero removed
Chapter 2 7

IPv6 Addressing
Comparing IPv4 and IPv6 Addresses
IPv6 addresses are classless, using Classless Internet Domain Registry CIDR format. The
prefix follows the IPv6 address (<IPv6 addr>”/”<prefix>) and denotes the size of a subnet.

Example: 8:7:6:5:4:3:2:1/16

::ffff:10.9.8.7 Combined hex and decimal format

Table 2-1 (Continued)
Chapter 28

IPv6 Addressing
IPv6 Address Types
IPv6 Address Types

Unicast Address

Figure 2-2 Unicast Address

Unicast addresses usually comprise a 64-bit prefix and a 64-bit interface ID.

Figure 2-3 Unicast Prefix

The 64-bit interface ID must be unique on the link. An interface ID often includes the
interface Link-Layer Address.

IPv6 Loopback Address

The loopback interface uses the IPv6 loopback address for self-testing, by sending IP
datagrams to itself. The IPv6 loopback address is: 0:0:0:0:0:0:0:1 (or more simply, ::1).
Chapter 2 9

IPv6 Addressing
IPv6 Address Types
Link-local Unicast Address

The LAN segment is the scope of a Link-local Address, and is used for address
autoconfiguration and neighbor discovery.

Figure 2-4 Link-Local Unicast Address

IPv6 Multicast Addresses

IPv6 multicast addresses resemble IPv4 multicast addresses, but have an explicit field for
address-scope.
Chapter 210

IPv6 Addressing
IPv6 Address Types
Figure 2-5 Multicast Address Format

Some Well-know Multicast Addresses

FF02::1 All nodes (link-local)

FF02::2 All routers (link-local)

FF02::9 All Routing Information Protocol next generation (RIPng) routers (link-local)

IPv6 Wildcard Addresses

In IPv4, an application can let the system choose which source IP address to bind to a socket
by specifying a wildcard address: the symbolic constant INADDR_ANY in the bind() function
call. In IPv6, because the IPv6 address type is a structure (struct in6_addr), a symbolic
constant can initialize an IPv6 address structure variable, but cannot assign an IPv6
structure variable. Therefore, an IPv6 wildcard address requires two forms:

• For initialization, use the symbolic constant IN6ADDR_ANY_INIT of the type struct
in6_addr. For example,
struct in6_addr anyaddr = IN6ADDR_ANY_INIT;
Chapter 2 11

IPv6 Addressing
IPv6 Address Types
NOTE Only use the constant during initialization.

• For assignment, use the global variable named in6addr_any, of the type in6_addr
structure. For example:

Header file

<netinet/in.h>
<netinet/in6.h>

extern const struct in6_addr in6addr_any;

struct sockaddr_in6 sin6;
…
sin6.sin6_addr = in6addr_any; /* structure assignment */
…
if (bind(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)

IPv6 Loopback Addresses

The IPv4 loopback address is an integer type INADDR_LOOPBACK. The IPv6 loopback address is
an in6_addr structure defined in <netinet/in.h>. For example:

Header file

<netinet/in.h>
<netinet/in6.h>

sin6.sin6_addr = in6addr_loopback; /* structure assignment */

The symbolic constant named IN6ADDR_LOOPBACK_INIT is defined in <netinet/in.h>. Use it
only when declaring a sockaddr_in6 struct. For example:

struct in6_addr loopbackaddr = IN6ADDR_LOOPBACK_INIT

NOTE IPv4 defines INADDR_* constants in IPv4 host byte order. However, IPv6
defines IN6ADDR_* and in6addr* constants in network byte order.
Chapter 212

3 Data Structure Changes
Chapter 3 13

Data Structure Changes
IP Address Structure
IP Address Structure

Header file

<netinet/in.h>

IPv4 Structure

struct in_addr {
 unsigned int s_addr ; /* 32-bit IPv4*/
 };

IPv6 Structure

struct in6_addr {
uint8_t s6_addr[16];
} /* array of 16 8-bit elements = one 128-bit IPv6 address */
Chapter 314

Data Structure Changes
Socket Address structure for 4.3BSD-based HP-UX
Socket Address structure for 4.3BSD-based HP-UX

Header file

<netinet/in.h>

IPv4 Structure

struct sockaddr_in {
 short sin_family; /*AF_INET */
 u_short sin_port; /* transport layer port number */
struct in_addr sin_addr; /* IPv4 */
char sin_zero[8]; /* Unused */
};

IPv6 Structure

struct sockaddr_in6 {

 sa_family_t sin6_family; /*AF_INET6 */
 in_port_t sin6_port; /* transport layer port number.* /
 uint32_t sin6_flowinfo; /* traffic class */
 struct in6_addr sin6_addr; /* IPv6*/
 uint32_t sin6_scope_id;/* Address scope */

}:
Chapter 3 15

Data Structure Changes
Generic Socket Address Structure
Generic Socket Address Structure

Header file

<netinet/in.h>

struct sockaddr_storage

The sockaddr_storage data structure simplifies writing portable code across multiple
address families and platforms. This data structure provides the following flexibility and
consistency.

• One simple addition to the sockets API that can help application writers is the struct
sockaddr_storage structure. The structure is large enough to accommodate all
supported protocol-specific address structures.

• sockaddr_storage aligns at an appropriate boundary so that pointers to it - can be cast
as pointers to protocol specific address structures and used to access the fields of those
structures without alignment problems.
Chapter 316

4 Migrating Applications from IPv4 to
IPv6

HP-UX supports two standard IPv4/IPv6 interoperability methods:
Chapter 4 17

Migrating Applications from IPv4 to IPv6
IPv4/IPv6 Dual Stack
• IPv4/IPv6 Dual-Stack

• Tunneling: allows two IPv6 nodes to communicate by encapsulating IPv6 packets within
IPv4 packets and routing them over an IPv4 network.

IPv4/IPv6 Dual Stack
HP-UX IPv6 supports a dual IPv4/IPv6 protocol stack. The Dual-Stack does not affect existing
IPv4 source or binary files. Legacy IPv4-to-IPv4 applications follow existing code paths
through the IPv4 module.

Figure 4-1 Dual IPv4 and IPv6 Stack

TCP

IPv6 IPv4

UDP

 Ethernet FDDI

ApplicationApplication
Layer

Transport
Layer

Network
Layer

Physical
Layer
Chapter 418

5 Overview of IPv4 and IPv6 Call Set-up

This chapter provides an overview of the call set-up process for IPv4 and IPv6.
Chapter 5 19

Overview of IPv4 and IPv6 Call Set-up
Using AF_INET Socket for IPv4 UDP Communications
Using AF_INET Socket for IPv4 UDP Communications

Figure 5-1

1. Application calls gethostbyname() and passes the host name, host1.

2. The search finds host1 in the Name Service database and gethostbyname() returns the
IPv4 address 1.2.3.4.

3. The application calls the socket() function to open an IPv4 AF_INET socket.

4. The application calls the send () function to the 1.2.3.4 address.

5. The socket layer passes the send request, socket information and address to the UDP/IP
module.

6. The UDP/IP module puts the 1.2.3.4 address into the IPv4 packet header and passes the
information to the IPv4 module for transmission.
Chapter 520

Overview of IPv4 and IPv6 Call Set-up
Using AF_INET6 Socket to Send IPv4 UDP Communications
 Using AF_INET6 Socket to Send IPv4 UDP
Communications
You can use the AF_INET6 socket for both IPv6 and IPv4 communications; IPv6 uses the
POSIX function call getaddrinfo() rather than the IPv4 gethostbyname() function call. For
IPv4 communications, create an AF_INET6 socket and pass it a sockaddr_in6 structure that
contains an IPv4-mapped IPv6 address (for example, ::FFFF:1.2.3.4). The figure below
shows the sequence of events for an application that uses an AF_INET6 socket to send IPv4
packets.

Figure 5-2

1. Application calls getaddrinfo() and passes:

• the host name (host2).

• the AF_INET6 address family hint, which asks the Name Service for an IPv6 address
corresponding to the host name.

• The AI_V4MAPPED flag hint, which tells the function that if the Name Service finds
no IPv6 address but finds an IPv4 address for host2, return the IPv4 address within
an IPv4-mapped IPv6 address. See getaddrinfo(3N) later in this document for a
description of hints and flags values.
Chapter 5 21

Overview of IPv4 and IPv6 Call Set-up
Using AF_INET6 Socket to Send IPv4 UDP Communications
2. The search finds the IPv4 address 1.2.3.4 for host2 in the Name Service database.

3. Because getaddrinfo() had the AI_V4MAPPED flag set, the function returns the IPv4
–mapped address ::FFFF:1.2.3.4.

4. The application calls the socket() function to open an IPv6 AF_INET6 socket.

5. The application calls the sendto() function toward the ::FFFF:1.2.3.4 address.

6. The socket layer passes the sendto request, socket information and IPv4-mapped IPv6
address to the UDP/IP module.

7. The UDP/IP module:

a. identifies the IPv4-mapped IPv6 address.

b. puts the 1.2.3.4 address into an IPv4 packet header.

c. passes the packet to the IPv4 module for transmission.
Chapter 522

Overview of IPv4 and IPv6 Call Set-up
Using AF_INET6 Socket to Receive IPv4 Communications
Using AF_INET6 Socket to Receive IPv4 Communications
An IPv6 application using an AF_INET6 socket can accept TCP connection requests from a
remote IPv4 application. The example below is contrived to demonstrate an incoming IPv4
packet destined for an application’s IPv6 socket.

In this overview diagram, an incoming IPv4 packet requests connection to an IPv6 socket.
IPv6 internally creates an IPv4-mapped IPv6 address, accepts the connection, and looks up
the host name of the requesting node.

Figure 5-3

1. An IPv4 packet arrives at an Ethernet port.

2. The Ethernet driver examines the type field in the Ethernet packet.

86DD type is an IPv6 packet

0800 type is an IPv4 packet
Chapter 5 23

Overview of IPv4 and IPv6 Call Set-up
Using AF_INET6 Socket to Receive IPv4 Communications
Here type is 0800, so the Ethernet driver strips-off the Ethernet header and passes the
IPv4 packet to the IPv4/IP module.

The IPv4/IP protocol stack passes the information and the IPv4-mapped IPv6 address
(::FFFF:1.2.3.4) to the socket layer.

3. The application calls accept() to accept the remote connection request. The application
was already listening on an established IPv6 socket.

4. The application calls getnameinfo() to lookup the host name for IP address
::FFFF:1.2.3.4. See getnameinfo(3N) later in the guide for more information.

5. The search finds the host name for the 1.2.3.4 address in the hosts database and
getnameinfo() returns the host name.
Chapter 524

Overview of IPv4 and IPv6 Call Set-up
Using AF_INET6 Socket for IPv6 Communications
Using AF_INET6 Socket for IPv6 Communications
For IPv6 communications, create an AF_INET6 socket and pass it a sockaddr_in6 structure
that contains an IPv6 address that is not an IPv4-mapped IPv6 address (for example,
2fee:1212::200:2bff:fe2d:0c2c). The diagram below shows the sequence of events for an
application that uses an AF_INET6 socket to send IPv6 packets.

Figure 5-4

1. Application calls getaddrinfo() and passes the host name (host6), the IPv6 AF_INET6
address family hint, and the AI_DEFAULT flag hint. The flag hint tells the function to
find an IPv6 address for host6, then return it if found. See getaddrinfo(3) for a
description of hints fields and values.
Chapter 5 25

Overview of IPv4 and IPv6 Call Set-up
Using AF_INET6 Socket for IPv6 Communications
2. The search finds an IPv6 address for host6 in the hosts database, then getaddrinfo
returns the IPv6 address 2fee:1212::200:2bff:fe2d:0c2c.

3. The application opens an AF_INET6 socket.

4. The application sends information to the 2fee:1212::200:2bff:fe2d:0c2c address.

5. The socket layer passes the information and address to the UDP module.

6. The UDP module identifies the IPv6 address and puts the
2fee:1212::200:2bff:fe2d:0c2c address into the packet header and passes the
information to the IPv6 module for transmission.
Chapter 526

6 Function Calls Converting Names to
Addresses

The existing gethostbyname() function still looks up IPv4 addresses for particular host
names. However, this library call function cannot specify address types such as IPv6 or
Chapter 6 27

Function Calls Converting Names to Addresses
IPv4-mapped. Two new IPv6 function calls for IP address lookup are:

• getaddrinfo() and

• getipnodebyname()
Chapter 628

Function Calls Converting Names to Addresses
getaddrinfo(3N)
getaddrinfo(3N)
getaddrinfo() is a nodename-to-address and servicename-to-port-number function call. The
protocol-independent function call complies with POSIX 1003.1g Draft 6.6 (1997). For more
information refer to the getaddrinfo(3N) man page.

Syntax

getaddrinfo(const char *nodename, const char *servname, const struct
addrinfo *hints, struct addrinfo **res);

Parameters

*nodename: A pointer to a node name or numeric string, such as an IPv4 dotted-decimal
address or an IPv6 hexadecimal address. nodename can also point to a NULL string.

servname: A pointer to a service name (such as ftp) or port number (such as 21). *servname
can also point to a NULL string. Either *nodename or *servname must point to a name or
numeric string.

*hints: A pointer to an addrinfo structure containing filters for socket-type, address family,
or protocol-type. hints can also point to a NULL string. addrinfo and hints are described
below.

**res: A pointer to a linked list of addrinfo structures each containing a socket address and
information regarding the socket.

addrinfo Data Structure pointed-to by hints

struct addrinfo {

 int ai_flags; /* AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST,
 * See RFC 2533 for more details*/
 int ai_family; /* PF_xxx */
 int ai_socktype; /* SOCK_xxx */
 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */

 size_t ai_addrlen; /* length of ai_addr */
 char *ai_canonname; /* canonical name for nodename */
 struct sockaddr *ai_addr; /* binary address */
 struct addrinfo *ai_next; /* next structure in linked list */
 };
Chapter 6 29

Function Calls Converting Names to Addresses
getaddrinfo(3N)
NOTE Initialize the entire addrinfo data structure to zero before assigning hint values
to ai_flags, ai_family, ai_socktype, or ai_protocol.
Chapter 630

Function Calls Converting Names to Addresses
getipnodebyname(3N)
getipnodebyname(3N)
An application program calls the getipnodebyname() function to performs lookups for
IPv4/IPv6 hosts.

NOTE Starting with HP-UX 11i v2, the getipnodebyname() function is entering
OBSOLESCENCE, and will be OBSOLETED in a future HP-UX release.
Therefore, it is recommended the getnameinfo() function be used instead.

Syntax

Host_ptr=getipnodebyname(const char *name, int addr_family, int flags, int *error_num);

Parameters

*name: A pointer to a node name or numeric string, such as an IPv4 dotted-decimal address or
an IPv6 hexadecimal address.

Addr_family: An integer that sets the address-type searched-for and returned-by the
function. Addr_family is either AF_INET (IPv4) or AF_INET6 (IPv6).

flags: An integer that specifies the conditions for returning an address, such as IPv6-only,
IPv4-mapped if no IPv6 address found, or return an address only if the remote node name has
at least one IP address configured.

*error_num: A pointer to the error code returned by the getipnodebyname() function.

Host_ptr: The struct hostent returned by the getipnodebyname() function, containing one
or more IP address for name.

The hostent structure comprises the following fields:

char *h_name: A pointer to the canonical name (Fully Qualified Name) of host name.

char **h_alias: A pointer to an array of pointers-to-aliases for the host name.

int h_addrtype: The type of address returned within the hostent structure: either AF_INET
for IPv4 addresses or AF_INET6 for IPv6 addresses.

int h_length: The length of the IP address pointed-to by name, either 4 octets (IPv4) or 16
octets (IPv6)*.

char **h_addr_list[0]: Pointer to an array of pointers-to-IPv4-or-IPv6-addresses for the
host name.
Chapter 6 31

Function Calls Converting Names to Addresses
getipnodebyname(3N)
Chapter 632

7 Function Calls Converting IP
addresses to Names

The existing gethostbyaddr() function still looks up IPv4 host names for particular
addresses. However, this library call function cannot specify address types such as IPv6 or
Chapter 7 33

Function Calls Converting IP addresses to Names
IPv4-mapped. Two new name lookup functions are:

• getnameinfo(3N) and

• getipnodebyaddr(3N)
Chapter 734

Function Calls Converting IP addresses to Names
getnameinfo(3N)
getnameinfo(3N)
The getnameinfo() function takes a socket-address structure and returns a node name or
service name.

Header Files

#include <sys/socket.h>

#include <netdb.h>

Syntax

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
 char *host, size_t hostlen, char *serv, size_t servlen, int flags);

The getnameinfo() function translates a socket address to a node name and service location.
The definitions for getaddrinfo() apply to getnameinfo().

Parameters

*sa: A pointer to a socket-address structure awaiting translation.

sockelen_t: The integer size of the socket address structure pointed to by sa.

*host: A pointer to the host name returned by getnameinfo().If the function finds no host
name, it returns the host’s IP address If host points to NULL or hostlen equals zero, then
host does not return a host name or IP address. Both host and serv cannot point to NULL.

hostlen: The length of the character string host.

*serv: A pointer to the service name returned by getnameinfo(). If it finds no service name,
it returns the service’s port number. If serv points to NULL or servlen equals zero, then serv
does not return a service name or port number.

servlen: The length of the character string serv.

flags: flags change the default actions of the function.

• NI_NOFQDN: If set, getnameinfo() returns only the host name of Fully Qualified Domain
Name (FQDN).

• NI_NUMERICHOST: If set, getnameinfo() returns only the numeric form of host’s address.

• NI_NAMEREQD: If set, getnameinfo() returns an error if it finds no host name.
Chapter 7 35

Function Calls Converting IP addresses to Names
getnameinfo(3N)
• NI_NUMERICSERV: If set, getnameinfo() returns only service’s port number.

• NI_NUMERICSCOPE: If set, getnameinfo() returns the numeric form of the scope-ID. It is
ignored if the sa parameter is not an IPv6 address.

• NI_DGRAM: If set, service is a datagram service (SOCK_DGRAM). Default: service is a stream
service (SOCK_STREAM). This distinguishes between services for TCP and UDP that share
port numbers (for example, 512 to 514).
Chapter 736

Function Calls Converting IP addresses to Names
getipnodebyaddr(3N)
getipnodebyaddr(3N)
The IPv6 getipnodebyaddr() function call improves upon the IPv4 gethostbyaddr() by
adding an error number parameter.

NOTE Starting with the HP-UX 11i v2 release, the getipnodebyaddr() function is
entering OBSOLESCENCE, and will be OBSOLETED in a future HP-UX
release. Therefore, it is recommended the getaddrinfo() function be used
instead.

Header Files

#include <sys/socket.h>

#include <netdb.h>

Syntax

name_ptr =getipnodebyaddr(const void *src, size_t len,int af, int *error_num);

Parameters

*src: A pointer to the structure containing the IP address searched.

len: The length of the IP address: four octets for AF_INET or sixteen octets for AF_INET6.

af: Address family AF_INET or AF_INET6.

*error_num: *error_num is a pointer to the integer containing an error code, if any.

name_ptr: A pointer to the struct hostent returned by the function, containing the host
name.

Data Structures

struct hostent {
char *h_name; /* Canonical name of host name such as grace.hp.com*/
char **h_alias; /* Pointer to an array of pointers to alias names */
int h_addrtype; /* AF_INET (for IPv4 addresses)AF_INET6 (for IPv6)*/
int h_length; /* 4 octets (IPv6) or 16 octets (IPv6) */
char **h_addr_list[0]; /* Pointer to an array of pointers to IPv4 */
} /* addresses or IPv6 addresses */
Chapter 7 37

Function Calls Converting IP addresses to Names
getipnodebyaddr(3N)
How getipnodebyaddr() processes IPv4-compatible IPv6 addresses

If af is AF_INET6, len equals 16, and the IPv6 address is an IPv4-mapped or an
IPv4-compatible IPv6 address, then:

1. skip the first 12 bytes of the IPv6 address.

2. set af to AF_INET.

3. set len to 4.

If af is AF_INET, lookup the name for the given IPv4 address; that is, query for a PTR record
in the in-addr.arpa domain.

If af is AF_INET6, lookup the name for the given IPv6 address; that is, query for a PTR
record in the ip6.int domain.

A successful function call copies *src and af into the returned hostent name_ptr structure.
An unsuccessful function returns a nonzero error_num.
Chapter 738

8 Reading Error Messages

The IPv6 functions getipnodebyaddr(), getipnodebyname(), getaddrinfo(), and
getnameinfo() return errors in a thread-safe structure. The gai_strerror() function call
returns a character string describing the error code passed into it.
Chapter 8 39

Reading Error Messages
Header Files
Header Files
#include <netdb.h>

Syntax

char *gai_strerror(int ecode);

Parameters

ecode: One of the EAI_xxx values defined in RFC 25333, “Basic Socket Extensions for IPv6”.
The return value points to a string describing the error. If ecode is not one of the EAI_xxx
values, the function returns a pointer to a string indicating an unknown error.
Chapter 840

9 Freeing Memory

The four IPv6 name and address conversion function calls all dynamically allocate memory.
IPv6 provides two function calls to free memory.
Chapter 9 41

Freeing Memory
Freeing Memory from getaddrinfo() and getnameinfo() Function Calls
Freeing Memory from getaddrinfo() and getnameinfo()
Function Calls
The function call freeaddrinfo() frees the memory of one or more addrinfo() structures
returned by the getaddrinfo() or getnameinfo() functions.

Header Files

#include <netdb.h>

Syntax

void freeaddrinfo(struct addrinfo *ai);

Parameters

*ai: pointer to the structure addrinfo.

Freeing Memory from getipnodebyaddr() and
getipnodebyname() Function Calls
The function call freehostent() frees the memory of one or more hostent() structures
returned by the getipnodebyaddr() or getipnodebynameinfo() functions.

Syntax

void freehostent(struct hostent *ptr);

Parameters

*ptr: A pointer to the structure hostent.
Chapter 942

10 Converting Binary and Text
Addresses

The IPv4 function calls convert IPv4 addresses as follows:
Chapter 10 43

Converting Binary and Text Addresses
Converting a Text Address to Binary
The inet_aton() or inet_addr() functions convert dotted-decimal string (such as 10.9.8.7)
to 32-bit binary in network byte order.

inet_ntoa() converts 32-bit network byte order binary into dotted-decimal string (such as
10.9.8.7).

Two new IPv6 functions convert both IPv4 and IPv6 addresses.

Converting a Text Address to Binary

Syntax

void inet_pton(int addr_family, const char *strptr, void *addrptr)

The inet_pton() function call converts the IP address pointed to by strptr, from
presentation (string) format to numeric (binary) format, in the buffer pointed to by addrptr.

Converting a Binary Address to Text

Syntax

inet_ntop(int family, const void *addrptr, char *strptr, site_t len)

The inet_ntop() function call converts an IP address from numeric format to string format.
The len parameter specifies the calling function’s buffer size to prevent overflow. Two
definitions specify this buffer size for either IPv4 or IPv6 addresses in the <netinet/in.h>
header file.

#defineINET_ADDRSTRLEN16 /* for IPv4 dotted-decimal */

#defineINET6_ADDRSTRLEN46 /* for IPv6 hex string */
Chapter 1044

11 Testing for Scope and Type of IPv6
addresses using Macros

Use the following macros to verify IPv6 address types. The first seven macros return true if
the address is of the specified type, or false otherwise. The last five macros return true if the
Chapter 11 45

Testing for Scope and Type of IPv6 addresses using Macros
address is a multicast address of the specified scope, or return false if the address is either not
a multicast address or not of the specified scope.

NOTE IN6_IS_ADDR_LINKLOCAL and IN6_IS_ADDR_SITELOCAL return true only for
the link-local scope or site-local scope IPv6 unicast addresses. These two
macros do not return true for IPv6 multicast addresses of either link-local scope
or site-local scope.

int IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *);
int IN6_IS_ADDR_LOOPBACK (const struct in6_addr *);
int IN6_IS_ADDR_MULTICAST (const struct in6_addr *);
int IN6_IS_ADDR_LINKLOCAL (const struct in6_addr *);
int IN6_IS_ADDR_SITELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_V4MAPPED (const struct in6_addr *);
int IN6_IS_ADDR_V4COMPAT (const struct in6_addr *);

These macros test the scope of IPv6multicast addresses:

int IN6_IS_ADDR_MC_NODELOCAL(const struct in6_addr *);
int IN6_IS_ADDR_MC_LINKLOCAL(const struct in6_addr *);
int IN6_IS_ADDR_MC_SITELOCAL(const struct in6_addr *);
int IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr *);

int IN6_IS_ADDR_MC_GLOBAL (const struct in6_addr *);
Chapter 1146

12 Identifying Local Interface Names
and Indexes

The IPv6 sockets API uses an interface index (a small positive integer) to identify the local
interface joined to a multicast group. Interfaces are normally known by names such as "lan0”.
Chapter 12 47

Identifying Local Interface Names and Indexes
Name-to-Index
On HP-UX implementations, when the system configures an interface, the kernel assigns a
unique positive integer value (called the interface index) to that interface. These small
positive integers start at one. Interface numbering is not necessarily contiguous.

This API defines:

• two functions that map between an interface name and index:

• if_nametoindex()

• if_indextoname()

• a function that returns all interface names and indexes:

• if_nameindex()

• a function to return the dynamic memory allocated by the previous function:

• if_freenameindex()

Name-to-Index
The first function maps an interface name into its corresponding index.

Header Files

#include <net/if.h>

Syntax

unsigned int if_nametoindex(const char *ifname);

If the specified interface name does not exist, the function returns a value of zero, and sets
errno to ENXIO. If a system error occurred (such as running out of memory), the function
returns a value of zero and sets errno to the proper value (such as ENOMEM).
Chapter 1248

Identifying Local Interface Names and Indexes
Index-to-Name
Index-to-Name
The second function maps an interface index into its corresponding name.

Header Files

#include <net/if.h>

Syntax

char *if_indextoname(unsigned int ifindex, char *ifname);

The ifname parameter must point to a buffer at least IF_NAMESIZE bytes large. The function
returns to ifname the interface name of the specified index. (IF_NAMESIZE is also defined in
<net/if.h> and its value includes a terminating NULL byte at the end of the interface
name.) The pointer to if_indextoname also returns the value of the function. If no interface
corresponds to the specified index, the function returns NULL, and sets errno to ENXIO. If a
system error occurred (such as running out of memory), if_indextoname() returns NULL
and sets errno to the proper value (that is, ENOMEM).

Returning All Interface Names and Indexes
The if_nameindex structure holds the information about a single interface. The definition of
the structure is in the <net/if.h> header file.

struct if_nameindex {
 unsigned int if_index; /* 1, 2, ... */
 char *if_name; /* null terminated name: "le0", .. */
 };

The final function returns an array of if_nameindex structures, returning one structure per
interface.

struct if_nameindex *if_nameindex(void);

The if_nameindex function signals the end of the array of structures by returning a structure
with a zero if_index value and a NULL if_name value. If an error occurred, the function
returns a NULL pointer, and sets errno to the appropriate value.
Chapter 12 49

Identifying Local Interface Names and Indexes
Freeing Memory
The if_nameindex() function acquires memory dynamically for the array of if_nameindex
structures and for if_name’s interface names. The if_freenameindex() function frees that
memory.

Freeing Memory
The if_freenameindex() function frees the dynamic-memory allocated by if_nameindex().

Header Files

#include <net/if.h>

Syntax

void if_freenameindex(struct if_nameindex *ptr);

The ptr parameter is the pointer returned by a previous if_nameindex() call.
Chapter 1250

13 Configuring or Querying an Interface
using IPv6 ioctl() Function Calls

Certain IPv4 applications need detailed configuration information for a network interface of a
node. They use the SIOCGIFCONF, SIOCGIFADDR, SIOCGIFFLAGS, and other ioctl() function
Chapter 13 51

Configuring or Querying an Interface using IPv6 ioctl() Function Calls
calls, as defined in /usr/include/sys/ioctl.h, to determine the characteristics of the
network interfaces and their attributes.

All of the IPv4 SIOC* ioctl() function calls use the struct ifreq data structure (defined in
/usr/include/net/if.h) as one of the arguments for the SIOC* ioctl() function calls.
However, the ifreq data structure defined for IPv4 is not large enough to hold an IPv6 address.
Therefore, the existing IPv4 SIOC* and their associated data structures are not applicable for
IPv6 applications.

New ioctl() function calls for IPv6-applications-follow the SIOCSL* and SIOCGL* ioctl()
name format. IPv6 ioctl() function calls also use a larger data structure described below.
They are otherwise identical to the IPv4 ioctl() function calls.

NOTE The IPv6 SIOCSL* and SIOCGL* ioctl() function calls are not supported for
IPv4 applications.

Definitions for both IPv6 and IPv4 ioctl() function calls are in
/usr/include/sys/ioctl.h.

NOTE Use a larger data structure for IPv6 addresses. IPv6 addresses cannot fit into
the IPv4 struct ifreq data structure used by IPv4 SIOC* ioctl() function
calls. IPv6 applications pass, as a parameter to IPv6 ioctl()function calls, the
data structures struct if_laddrreq and struct if_laddrconf.

The IPv4 ioctl() data structures are in /usr/include/net/if.h. The IPv6
ioctl() data structures are in /usr/include/net/if6.h.
Chapter 1352

14 Verifying IPv6 Installation

The following code fragment shows how an application can determine programmatically
whether IPv6 is implemented on HP-UX. An application can check the existence of the
/dev/ip6 device file at compile-time and/or run-time to determine whether IPv6 APIs and the
IPv6 stack are on the system. If /dev/ip6 does not exist, an application continues to use IPv4
Chapter 14 53

Verifying IPv6 Installation
APIs.

if ((fd = open("dev/ip6", O_RDWR)) == -1)
 /*
 * /dev/ip6 failed to open., Therefore the IPv6 product
 *is not installed on the system. An application should use the
 * existing IPv4 code.
 */

 ...

else
 /*
 * dev/ip6 exists, so the IPv6 product is probably installed.
 * IPv6 APIs can handle both IPv4 and IPv6 traffic */

NOTE Starting with HP-UX 11i v2, IPv6 is automatically included in HP-UX.
Chapter 1454

15 Sample Client/Server Programs

The following code fragments are based on the same IPv4 client/server sample programs
shipped in the HP-UX 11i v2 /usr/lib/demos/networking/socket directory.
Chapter 15 55

Sample Client/Server Programs
The client requests a service called example. Add an entry to the client’s /etc/services file
for example. Assign any unused port number, such as 22375, to the service example for a port
address. The host running the server must also have the same port number assigned to
example in the server’s /etc/services file.
Chapter 1556

Sample Client/Server Programs
IPv4 TCP Client Code Fragment
IPv4 TCP Client Code Fragment
This code fragment is part of the same IPv4 client program that ships in the HP-UX 11i IPv6
/usr/lib/demos/networking/socket directory.

The client requests a service called “example.” Add an entry to the /etc/services for
“example”. Assign any unused port number, such as 22375, to the service “example” for a port
address. The host running the server must also have the same port number assigned to
“example” in the /etc/services file.

struct sockaddr_in peeraddr_in; /* for peer socket address */

memset ((char *)&peeraddr_in, 0, sizeof(struct sockaddr_in));

hp = gethostbyname (argv[1]);

 if (hp == NULL) {
 fprintf(stderr, "%s: %s not found in /etc/hosts\n",
 argv[0], argv[1]);
 exit(1);
 }

peeraddr_in.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;

 /* Find the information for the "example" server
 * in order to get the needed port number.
 */

sp = getservbyname ("example", "tcp");

if (sp == NULL) {
 fprintf(stderr, "%s: example not found in /etc/services\n argv[0]);
 exit(1);
}
peeraddr_in.sin_port = sp->s_port;

 /* Create the socket. */
s = socket (AF_INET, SOCK_STREAM, 0);
if (s == -1) {
 perror(argv[0]);
 fprintf(stderr, "%s: unable to create socket\n", argv[0]);
 exit(1);
}
/* Try to connect to the remote server at the address put in peeraddr.
 */
if (connect(s, &peeraddr_in, sizeof(struct sockaddr_in)) == -1{
Chapter 15 57

Sample Client/Server Programs
IPv4 TCP Client Code Fragment
 perror(argv[0]);
 fprintf(stderr, "%s: unable to connect to remote\n", argv[0]);
 exit(1);

 }
Chapter 1558

Sample Client/Server Programs
IPv6 TCP Client using getipnodebyname()
 IPv6 TCP Client using getipnodebyname()
This code fragment is part of an example IPv6 client program that ships in the HP-UX 11i v2
/usr/lib/demos/networking/socket/af_inet6 directory, rewritten using the
getipnodebyname() function call.

struct sockaddr_in6 peeraddr_in6; /* for peer socket address */

memset ((char *)&peeraddr_in6, 0, sizeof(struct sockaddr_in6));

hp = getipnodebyname (argv[1], AF_INET6, AI_DEFAULT, &error);

 if (hp == NULL) {
 fprintf(stderr, "%s: %s not found in /etc/hosts\n",
 argv[0], argv[1]);
 exit(1);
 }
 peeraddr_in6.sin6_family = hp->h_addrtype;
 memcpy(&peeraddr_in6.sin6_addr, hp->h_addr, hp->h_length);
 /* Find the information for the "example" server
 * in order to get the needed port number.
 */

 sp = getservbyname ("example", "tcp");

 if (sp == NULL) {

 fprintf(stderr, "%s: example not found in /etc/services\n",
 argv[0]);
 exit(1);
 }
 peeraddr_in6.sin6_port = sp->s_port;

 /* Create the socket. */
 s = socket (AF_INET6, SOCK_STREAM, 0);
 if (s == -1) {
 perror(argv[0]);
 fprintf(stderr, "%s: unable to create socket\n", argv[0]);
 exit(1);
 }
 /* Try to connect to the remote server at the address
 * which was just built into peeraddr.
 */

 if (connect(s, &peeraddr_in6, sizeof(peeraddr_in6)) == -1) {

 perror(argv[0]);
 fprintf(stderr, "%s: unable to connect to remote\n", argv[0]);
 exit(1);

 }
Chapter 15 59

Sample Client/Server Programs
IPv6 TCP Client Using getaddrinfo() for Name/Service Lookup
IPv6 TCP Client Using getaddrinfo() for Name/Service
Lookup
This fragment of an IPv6 TCP Client is a port of the preceding IPv6 client, using
getaddrinfo() rather than gethostbyname().

struct addrinfo *res, *ainfo;

struct addrinfo hints;

/* clear out hints */

memset ((char *)&hints, 0, sizeof(hints));

hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(argv[1], "example", &hints, &res);

if (error != 0) {
fprintf(stderr, "%s: %s not found in name service database\n",
argv[0], argv[1]);
exit(1);
}
for (ainfo = res; ainfo != NULL; ainfo = ainfo->ai_next) {
/* Create the socket. */
s = socket (ainfo->ai_family,ainfo->ai_socktype,
ainfo->ai_protocol);
if (s == -1) {
perror(argv[0]);
fprintf(stderr, "%s: unable to create socket\n", argv[0]);
freeaddrinfo(res);
exit(1);
}
if (connect(s, ainfo->ai_addr, ainfo->ai_addrlen) == -1) {
 perror(argv[0]);
 fprintf(stderr, "%s: unable to connect to remote\n", argv[0]);
close(s);
continue;
}
else
break;

}

Chapter 1560

Sample Client/Server Programs
IPv4 TCP Server Code Fragment
 IPv4 TCP Server Code Fragment
This code fragment is part of the same example IPv4 server program that ships in the HP-UX
11i v2 /usr/lib/demos/networking/socket directory.

struct sockaddr_in6 peeraddr_in6; /* for peer socket address */

sp = getservbyname ("example", "tcp");

 if (sp == NULL) {
 fprintf(stderr, "%s: example not found in /etc/services\n",argv[0]);
 exit(1);
 }
 myaddr_in.sin_port = sp->s_port;

 /* Create the listen socket. */
 ls = socket (AF_INET, SOCK_STREAM, 0);
 if (ls == -1) {
 perror(argv[0]);
 fprintf(stderr, "%s: unable to create socket\n", argv[0]);
 exit(1);
 }
 /* Bind the listen address to the socket. */
 if (bind(ls, &myaddr_in, sizeof(struct sockaddr_in)) == -1) {
 perror(argv[0]);
 fprintf(stderr, "%s: unable to bind address\n", argv[0]);
 exit(1);
 }
 /* Initiate the listen on the socket so remote users
 * can connect. The listen backlog is set to 5, which
 * is within the supported range of 1 to 20.
 */
 if (listen(ls, 5) == -1) {
 perror(argv[0]);
 fprintf(stderr, "%s: unable to listen on socket\n", argv[0]);
 exit(1);

 }
Chapter 15 61

Sample Client/Server Programs
IPv6 TCP Server using getaddrinfo() for Service Address Lookup
IPv6 TCP Server using getaddrinfo() for Service Address
Lookup
This code fragment is part of the example IPv6 server program that ships in the HP-UX 11i v2
/usr/lib/demos/networking/socket/af_inet6 directory, rewritten using the
getaddrinfo() function call.

struct addrinfo *ainfo, *res;

struct addrinfo hints;

/* zero-out the hints before assignment */

memset (&hints, 0, sizeof(hints));
.

hints.ai_family = AF_INET6;
 hints.ai_flags = AI_PASSIVE;
hints.ai_socktype = SOCK_STREAM;

 error = getaddrinfo(NULL, "example", &hints, &res);

 if (error != 0) {
 fprintf(stderr, "%s: %s for service 'example'\n",
 argv[0], gai_strerror(error));
 exit(1);
 }
 /* Create the listen socket. */
 ls = socket (res->ai_family, res->ai_socktype, res->ai_protocol);
 if (ls == -1) {
 perror(argv[0]);
 fprintf(stderr, "%s: unable to create socket\n", argv[0]);
 exit(1);
 }
 /* Bind the listen address to the socket. */
 if (bind(ls, res->ai_addr, res->ai_addrlen) == -1) {
 perror(argv[0]);
 fprintf(stderr, "%s: unable to bind address\n", argv[0]);
 close(ls);
 exit(1);
 }
 /* Initiate the listen on the socket so remote users
 * can connect. The listen backlog is set to 5, which
 * is within the supported range of 1 to 20.
 */
 if (listen(ls, 5) == -1) {
 perror(argv[0]);
Chapter 1562

Sample Client/Server Programs
IPv6 TCP Server using getaddrinfo() for Service Address Lookup
 fprintf(stderr, "%s: unable to listen on socket\n", argv[0]);
 close(ls);
 exit(1);

 }
Chapter 15 63

Sample Client/Server Programs
IPv6 TCP Server using getaddrinfo() for Service Address Lookup
Chapter 1564

A IPv4 to IPv6 Quick Reference Guide

This guide is for Socket Application programmers who primarily want to know which source
code symbols and functions require alteration to support IPv6.
Appendix A 65

IPv4 to IPv6 Quick Reference Guide
Do Existing IPv4-to-IPv4 Applications Require Changes?
Do Existing IPv4-to-IPv4 Applications Require Changes?
No. Current IPv4 applications remain unchanged. Modify applications only to take advantage
of new IPv6 features.
Appendix A66

IPv4 to IPv6 Quick Reference Guide
Summary: Source Code Symbols and Function Changes
Summary: Source Code Symbols and Function Changes
The following tables cover changes in the source code symbols and functions that Socket
Application programmers need to be aware of when porting code to support IPv6.

Changes to Symbols, Data Structures, and Function Calls

Table A-1 Changes to Symbols, Data Structures, and Function Calls

Search source code for: Replace with:

Symbols

AF_INET
PF_INET

AF_INET6
PF_INET6

Data Structures

sockaddr_in
u_short sin_family
in_port_t sin_port
sin_addr struct in_addr

sockaddr_in6
shortsin6_family;
u_shortsin6_port;
uint32_tsin6_flowinfo;
struct in6_addrsin6_addr;
uint32_tsin6_scope_id

ifreq
ifconf

struct if_laddrreq
struct if_laddrconf

Function Calls

gethostbyname() getaddrinfo() or getipnodebyname(),
freeaddrinfo()

gethostbyaddr() getipnodebyaddr(),getnameinfo(),
freeaddrinfo()

inet_ntoa()
inet_addr() or inet_aton()

inet_ntop()
inet_pton()
Appendix A 67

IPv4 to IPv6 Quick Reference Guide
Summary: Source Code Symbols and Function Changes
Watch for hard-coded data structure sizes

Watch for sizeof(struct sockaddr_in) = sizeof(struct sockaddr) = 16 in pre-ported
applications. The IPv6 address data structure sockaddr_in6 is larger than the traditional
sockaddr_in data structure.

Multicast and IPv4 Options

Loopback Address

Wildcard Address

Multicast Defaults

Table A-2 Multicast and IPv4 Options

IPv4 IPv6 Comments

IN_CLASSA
IN_CLASSB
IN_CLASSC
IN_CLASSD

None. IPv6 addressing is
classless.

Table A-3 Loopback Address

IPv4 IPv6 Comments

INADDR_LOOPBACK in6addr_loopback in6adr_loopback is an
in6_addr structure

Table A-4 Wildcard Address

IPv4 IPv6 Comments

INADDR_ANY in6addr_any in6addr_any is an
in6_addr structure

Table A-5 Multicast Defaults

IPv4 IPv6 Comments

IP_DEFAULT_MULTICAST_LOOP
IP_DEFAULT_MULTICAST_TTL

IPV6_DEFAULT_MULTICAST_LOOP
IPV6_DEFAULT_MULTICAST_HOPS
Appendix A68

IPv4 to IPv6 Quick Reference Guide
Summary: Source Code Symbols and Function Changes
IPv6 Multicast Options

NOTE When setting the getsockopt() and setsockopt() level parameter, use
IPPROTO_IPV6 level for all IPV6_* options listed here.

IP Packet Options

NOTE Bundle the seven options above into a single setsockopt() call using
IPV6_PKTOPTIONS.

Table A-6 IPv6 Multicast Options

IPv4 IPv6 Comments

IP_MULTICAST_IF
IP_MULTICAST_TTL
IP_MULTICAST_LOOP
IP_ADD_MEMBERSHIP
IP_DROP_MEMBERSHIP

IPV6_MULTICAST_IF
IPV6_MULTICAST_HOPS
IPV6_MULTICAST_LOOP
IPV6_JOIN_GROUP
IPV6_LEAVE_GROUP

Table A-7 IP Packet Options

IP_OPTIONS IPV6_PKTOPTIONS Comments

IP_RECVDSTADDR
IP_RECVIF

IPV6_DESTOPTS
IPV6_HOPLIMIT
IPV6_HOPOPTS
IPV6_NEXTHOP
IPV6_PKTINFO
IPV6_PKTINFO
IPV6_PKTINFO

Receive Destination options
Unicast hop limit for receiving packets
Receive hop-by-hop options
Set next-hop address
Get and set packet information
Return and set destination IP address
Return and set received interface index

IPV6_RTHDR Send or receive routing header

IP_TTL
ip_mreq

IPv6_UNICAST_HOPS
ipv6_IP_OPTIONSmreq

Default unicast hop limit
Appendix A 69

IPv4 to IPv6 Quick Reference Guide
Summary: Source Code Symbols and Function Changes
Types of Service Options

Multicast Group, IP Address, and IPv6 Interface Index

Table A-8 Types of Service Options

IP_TOS Still under discussion by IETF IPng working group.

Table A-9 Multicast Group, IP Address, and IPv6 Interface Index

IPv4 IPv6 Comments

struct in_addr imr_multicast struct in6_addr
ipv6mr_multiaddr

Multicast address of group

struct in_addrimr_interface uint32
ipv6mr_interface

IPv4: local IP address of
interface
IPv6: interface index
Appendix A70

	About This Document
	1 Introduction
	Why IPv6 Now?
	Who Should Read This Guide
	Do Existing IPv4 Applications Require Changes?
	Does implementing IPv6 require a complete transition from IPv4?
	Terminology
	General IP Terminology
	IPv6 Terminology

	2 IPv6 Addressing
	Types of IPv6 addresses
	IPv6 Address scope
	IPv4 to IPv6 Transition Addresses
	IPv4-Mapped Address

	Comparing IPv4 and IPv6 Addresses
	Leading Zeros Suppressed
	Contiguous Fields Containing only the Digits Zero can be collapsed
	IPv4-Mapped IPv6 Addresses can display IPv4 Addresses in Dotted-Decimal Format

	IPv6 Address Types
	Unicast Address
	IPv6 Loopback Address
	Link-local Unicast Address
	IPv6 Multicast Addresses
	Some Well-know Multicast Addresses
	IPv6 Wildcard Addresses
	IPv6 Loopback Addresses

	3 Data Structure Changes
	IP Address Structure
	Header file
	IPv4 Structure
	IPv6 Structure

	Socket Address structure for 4.3BSD-based HP-UX
	Header file
	IPv4 Structure
	IPv6 Structure

	Generic Socket Address Structure
	Header file

	4 Migrating Applications from IPv4 to IPv6
	IPv4/IPv6 Dual Stack

	5 Overview of IPv4 and IPv6 Call Set-up
	Using AF_INET Socket for IPv4 UDP Communications
	Using AF_INET6 Socket to Send IPv4 UDP Communications
	Using AF_INET6 Socket to Receive IPv4 Communications
	Using AF_INET6 Socket for IPv6 Communications

	6 Function Calls Converting Names to Addresses
	getaddrinfo(3N)
	Syntax
	Parameters
	addrinfo Data Structure pointed-to by hints

	getipnodebyname(3N)
	Syntax
	Parameters

	7 Function Calls Converting IP addresses to Names
	getnameinfo(3N)
	Header Files
	Syntax
	Parameters

	getipnodebyaddr(3N)
	Header Files
	Syntax
	Parameters
	Data Structures
	How getipnodebyaddr() processes IPv4-compatible IPv6 addresses

	8 Reading Error Messages
	Header Files
	Syntax
	Parameters

	9 Freeing Memory
	Freeing Memory from getaddrinfo() and getnameinfo() Function Calls
	Header Files
	Syntax
	Parameters

	Freeing Memory from getipnodebyaddr() and getipnodebyname() Function Calls
	Syntax
	Parameters

	10 Converting Binary and Text Addresses
	Converting a Text Address to Binary
	Syntax

	Converting a Binary Address to Text
	Syntax

	11 Testing for Scope and Type of IPv6 addresses using Macros
	12 Identifying Local Interface Names and Indexes
	Name-to-Index
	Header Files
	Syntax

	Index-to-Name
	Header Files
	Syntax

	Returning All Interface Names and Indexes
	Freeing Memory
	Header Files
	Syntax

	13 Configuring or Querying an Interface using IPv6 ioctl() Function Calls
	14 Verifying IPv6 Installation
	15 Sample Client/Server Programs
	IPv4 TCP Client Code Fragment
	IPv6 TCP Client using getipnodebyname()
	IPv6 TCP Client Using getaddrinfo() for Name/Service Lookup
	IPv4 TCP Server Code Fragment
	IPv6 TCP Server using getaddrinfo() for Service Address Lookup

	A IPv4 to IPv6 Quick Reference Guide
	Do Existing IPv4-to-IPv4 Applications Require Changes?
	Summary: Source Code Symbols and Function Changes
	Changes to Symbols, Data Structures, and Function Calls
	Watch for hard-coded data structure sizes
	Multicast and IPv4 Options
	Loopback Address
	Wildcard Address
	Multicast Defaults
	IPv6 Multicast Options
	IP Packet Options
	Types of Service Options
	Multicast Group, IP Address, and IPv6 Interface Index

