Software Distributor

Administration Guide
for HP-UX 111

HP Computers

|

invent

Manufacturing Part Number: B2355-90754
June 2002, Edition 3

© Copyright 2002 Hewlett-Packard Company.

Legal Notices

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Use of this document and any supporting software media supplied for
this pack is restricted to this product only. Additional copies of the
programs may be made for security and back-up purposes only. Resale of
the programs, in their present form or with alterations, is expressly
prohibited.

Copyright Notice

Copyright © 1997-2002 Hewlett-Packard Company. All rights reserved.
Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

This software is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of
California.

©copyright 1979, 1980, 1983, 1985-93 Regents of the University of
California

©copyright 1986-2000 Sun Microsystems, Inc.

©copyright 1985-86, 1988 Massachusetts Institute of Technology
©copyright 1989-93 The Open Software Foundation, Inc.
©copyright 1986-1997 FTP Software, Inc. All rights reserved
©copyright 1986 Digital Equipment Corporation

©copyright 1990 Motorola, Inc.

©copyright 1990, 1991, 1992 Cornell University

©copyright 1989-1991 The University of Maryland

©copyright 1988 Carnegie Mellon University

Trademark Notices

ActivePerl ® is a registered trademark of ActiveState Tool Corporation.

Apple® and Macintosh® are trademarks of Apple Computer, Inc.,
registered in the United States and other countries.

AppleShare® is a registered trademark of Apple Computer, Inc.
CHAMELEON™ is a trademark of NetManage, Inc.

DIGITAL™ and PATHWORKS™ are trademarks of Digital Equipment
Corporation.

DiskAccess® is a registered trademark of Intergraph.
EXCURSION™ is a trademark of Digital Equipment Corporation.

Exeed® is a registered trademark of Hummingbird Communications
Ltd.

eXodus™ is a trademark of White Pine Software, Inc.
HP-UX is a registered trademark of the Hewlett-Packard Company.™
Intel® and Itanium® are registered trademarks of Intel Corporation.

Java™ and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Hewlett-Packard is independent of Sun Microsystems.

Motif, OSF/1, UNIX, the “X” device and The Open Group are registered
trademarks of The Open Group in the US and other countries.™

MS-DOS® and Microsoft® are U.S. registered trademarks of Microsoft
Corporation.

NTRIGUE™ is a trademark of Insignia Solutions, Inc.
NetMeeting ® is a registered trademark of Microsoft Corporation.

Netscape ® is a registered trademark of Netscape Communications
Corporation.

OpenGL ® is a registered trademark of Silicon Graphics, Inc.

OpenView is a registered trademark of the Hewlett-Packard Company.™
Oracle ® is a registered trademark of Oracle Corporation.

Oracle8 ™ is a trademark of Oracle Corporation.

OSF/Motif™ is a trademark of the Open Software Foundation, Inc. in the
U.S. and other countries.

PC_Xware™ is a trademark, and WinCenter® is a registered trademark
of Network Computing Devices, Inc.

REFLECTION® and WRQ® are registered trademarks of WRQ, Inc.
SGImeeting™ is a trademark of Silicon Graphics, Inc.

SunForum® is a registered trademark of Sun Microsystems, Inc. in the
United States and other countries.

UNIX® is a registered trademark in the United States and other
countries, licensed exclusively through The Open Group.

VERITAS® is a registered trademark of VERITAS Software
Corporation.

VERITAS File System™ is a trademark of VERITAS Software
Corporation.

WinDD™ ig a trademark of Tektronix, Inc.

X Window System™ is a trademark of the Massachusetts Institute of
Technology.

This product includes software developed by the Apache Software
Foundation. This documentation is based on information from the
Apache Software Foundation (ht t p: // www. apache. or g).

This product includes software developed by the OpenSSL Project for use
in the OpenSSL Toolkit (ht t p: / / waw. openssl . or g).

This product includes cryptographic software written by Eric Young
(eay@ryptsoft.com.

This product includes PHP, freely available from the PHP Group
(htt p: // www. php. net).

Publication History

The manual’s publication date and part number indicate its current
edition. The publication date will change when a new edition is released.
The manual part number will change when extensive changes are made.

To ensure that you receive the new editions, you should subscribe to the
appropriate product support service. See your HP sales representative
for details.

e Software Distributer Administration Guide

For HP-UX 11i: June 2002, Edition 3, B2355-90754

For HP-UX 11i: June 2001, Edition 2, B2355-90740

For HP-UX 11i: December 2000, Edition 1, B2355-90699
e Managing HP-UX Software with SD-UX

For HP-UX 11.00: November 1997, Edition 6, B2355-90154
e Managing HP-UX Software with SD-UX

For HP-UX 10.30: April 1997, Edition 5, B2355-90127

For HP-UX 10.20: June 1996, Edition 4, B2355-90107

New editions of this manual will incorporate all material updated since
the previous edition. For the latest version, see the HP-UX 11i Operating
System documentation on the web:

http://docs. hp. com
and

http://sof tware. hp. coni SD_ AT_HP

Please direct comments regarding this guide to:

Hewlett-Packard Company
HP-UX Learning Products

3404 East Harmony Road

Fort Collins, Colorado 80528-9599

Or, use this web form to send us feedback:

htt p: // docs. hp. coni assi st ance/ f eedback. ht m

Conventions

We use the following typographical conventions.

audit (5)

Book Title

Emphasis
Emphasis
Conput er Qut
Conmand

Conput er

Fi | enamre
User | nput

Vari abl e

[]

{}

An HP-UX manpage. audit is the name and 5 is the
section in the HP-UX Reference. On the web and on the
Instant Information CD, it may be a hot link to the
manpage itself. From the HP-UX command line, enter
“man audit” or “man 5 audit” to view the manpage.
See man (1).

The title of a book. On the web and on the Instant
Information CD, it may be a hot link to the book itself.

Text that is emphasized.

Text that is strongly emphasized.

Text displayed by the computer.

A command name or qualified command phrase.

Conput er font indicates literal items displayed by the
computer. For example: fil e not found

Text that shows a filename and/or filepath.
Commands and other text that you type.

The name of a variable that you may replace in a
command or function or information in a display that
represents several possible values.

The contents are optional in formats and command
descriptions.

The contents are required in formats and command
descriptions. If the contents are a list separated by |,
you must choose one of the items

The preceding element may be repeated an arbitrary
number of times.

Separates items in a list of choices.

Contents

1. Introduction to Software Distributor

About This Guide. o 20
SD-UX OVEIVIEW & o ottt ettt et e et e et et ettt et e e 22
Network Requirements.t e e 22
SD-UX Programs and Commandsoiuttinitnnie e, 23
SD-UX Online Documentation. 26
SD-UX COomnCePtS. o o ottt e ittt e e e e e 27
Important Terminology. ot e e e 27
Software Structure e e 28
Installed Products Database 30
Control Scriptso e 31
Environment Variables. 32
Software Dependencies ittt e 33
Working with Protected Software, 34
Using the GUIl and TULI Commandsttt 35
The Terminal User Interface 35
Starting the GUI/TUI Commandsttt 36
Window Componentsttt 37
Opening and closing items in the object list 38
Marking Items in the Object List 38
Preselecting Host Files. e e 39
Software Selection Window i 40
Session and File Management—The File Menu............................. 41
Changing Software Views—The View Menu. 42
Changing Options and Refreshing the Object List—The Options Menu 46
Performing Actions—The Actions Menu................. i .. 48
Getting Help—The Help Menu e, 52
XToolkit Options and Changing Display Fonts 53
Working from the Command Line., 55
Software Selections. i e 56
Target Selections.t e e 58
Using Command Optionsttt et e e 59
Session Fileso e 61

2. Installing Software

Installation with swinstall 64
Features and Limitations. i 64
Installing withthe GUI e 65

Contents

Installing from the Command Line 73
Installation Tasks and Examples. 76
Configuring Your Installation (swconfig) 82
Features and Limitations. i i 82
The Configuration Process.ttt i 83
Using sWeonfig 86
Configuration Tasks and Examples. 88
Verifying Your Installation (swverify). i 89
Features and Limitations. i 89
The Verification Process i 90
USing SWVerify ... e 92
Verification Tasks and Examples. 94

3. Managing Installed Software

Listing Your Software (swlist). i 96
swlist Features and Limitations 96
Usingthe swlist GUI e e i 97
Using the Command Line. it 99
Software Listing Tasks and Examples 103

Modifying the IPD (swmodify). 115
IPD Contents.t 115
Using swmodify.o 117
swmodify Tasks and Examples 120

Removing Installed Software (swremove), 122
swremove Features and Limitations.............. 122
Using the swremove GUI. i 123
Removing with the Command Line itiin.... 128
Remove Tasks and Examples. i, 130

4. Managing Software Depots

Depot Management Commands and Concepts. 134
Depot Conceptso v e 135
Copying Software Depots.ot e 137
swcopy Features and Limitations e ... 137
Using the sweopy GUI e e e 138
Using the swecopy Command Line 147

10

Contents

Copy Tasks and Examples i e 150
Registering and Unregistering Depots (swreg)t .. 151
Register Media or Create Network Depot? 151
Registration and Security. 152
Authorization 152
SN g ST, . o o it ittt et ettt e e e 152
swreg Examples 154
Additional Depot Management Tasks and Examples 155
Combining Patch Depots e 155
Creating a Tape Depot for Distribution. 156
Setting Depot Attributes e 156
Creating a Network Depot i 157
Managing Multiple Versions of HP-UX. i, 158
Listing Registered Depots e 158
Listing the Contents of a Depot (swlist-d) 159
Source Depot Auditing i e 160
Verifying a Depot (swverify -d) i 161
Removing Software from Depots 162
Removing a Depot. oo e 162
5. Managing Patches
Introduction e 164
Patch Concepts e e 164
Patch Installation Paradigm 165
Patch Supersession and Dependency Resolution 166
Patch-Related Features i e 167
Command Optionsttt e ettt et e e 167
Patch Management Tasks and Examples................ 171
Installing Patches e 171
Copying Patches e 175
Interactive Patch Management it iiireennn... 176
Listing Patches 178
Patch Removal, Rollback, and Committal................... 179
Verifying Patches 181
Packaging Patch Software. 182
Patch Software Characteristics 182
Patch Software Objects and Attributes. 183
Patch Fileset Attributes 183

11

Contents

Patch File Attributes e 185
PSF Example. e 186
Attributes Generated by SD. 187

6. Remote Operations Overview

Introduction e 190
Differences Between Remote and Local Operations. 190
Using the Remote Operations GUIL. 193
Target Selection Window e, 194
Performing Actions.t e e e e 194
Selecting Multiple Targets i e 195
Selecting Individual Targets i, 197
Saving a Target Group vv ittt e e e e 198
Adding a Target Group.ottt e e e 198
Setting Up Remote Operations i, 199
Remote Operations Tutorial 200
Tutorial Set-Up. e e 200
How to Perform a Single-Target Installation 201
Remote Interactive swlist 210
Remote Operations from the Command Line. 211
Target Selections.t e e 211
Examples.o e 212

7. Using Jobs and the Job Browser

Introduction e 216
Starting the Job Browser i e 216
Using the Job Browser it 217
Job Browser Icons. 218
The File Menu e e e e e 221
The View Menu e e e e 222
The Options Menu i e e e e e 223
The Actions Menuttt et e e 225
Monitoring Jobs from the Command Line 230
swjob Attributes 232
swjob Tasks and Examples. e 233
Managing and Tuning Jobs with Command Options. 234

12

Contents

Scheduling Jobs from the Command Line. 234
Adding Job Titles oo 234
Removing Job Information. 235

8. Reliability and Performance

L3 4 1 238
Groups and Source Options.ttt e e 240
Large Numbers of Targets. i i 241
Timeout Optionsttt e e e e 242
Retry RPC and Retry Interval. 243
Retry Command. e 244
Database Checkpointing it e e 245
COMPIESSION . . vt vttt ettt e et et e e e e e e 246

INDEX and INFO Compression.ovttt ettt ee e 246
S agIN g . .ttt e e 247
Recovery (Install Only) e 250
Installation With Separate Configuration 252
Multiple Versionsitiiiit it e e e 253

9. SD-UX Security

L <Y s T2 256
Default Security e e 256
Depots and Depot Registration 257
Modifying Target Systemsttt e 257

The swacl Command ittt 258
swacl Output. e 260

Basic Security Tasks i 261
Listing User AcCess . ..o viii i e e e e 262
Allowing Users to Manage Productsina Depot 265
Allowing Users to Manage Roots (Install/Remove) 265
Restricting Access to Depots i 266
Adding Target Hosts i e e 268
Temporarily Restricting Accesst i e 268
Closing the SD-UX Network i, 268
Editing an ACL e 269

How ACLs are Matchedtothe User i, 272

ACL EnNtrieso e 273
ACL RS .« it ittt 274

13

Contents

ACL PermiSSionsvvv ittt ettt et e 275
Object Protection ittt 276
ACL Templateso e e 282
Security on SD-UX Systemsot e 285
SD-UX Internal Authentication 287
SD-UX Credentials e e 287
Security Between Hosts: The Shared Secrets File 289
RPC Authorization. e 291
How Agents Handle Controller Requests 292
Local Superuser Authorization 293
Depot Registration and Daemon/Agent Security 293
Security Use Models e e et e e e 295
Security in Remote Distributions i, 295
Security in Local Distributions i 296
Security for Software Developers 297
Permission Requirements, by Command 298
Packaging (swpackage) i e 298
Listing (swlist) i e 298
Job Browsing (sd, sWjob) e 298
COPYING (SWCOPY) -« v v e v et et et ettt e e e et e e et e e 298
Installing (swinstall) e . 299
Removal (SWremove)t 299
Configuration (sweonfig) e 299
Verify (SWverify) e 300
Registering Depots (SWIreg)ttt et e e e 300
Changing ACLs (swacl)t e e 300
Request Scripts (swask)o e 300
Modify (sSWwmodify).o e 300

10. Creating Software Packages

Overview of the Packaging Process0, 302
Prerequisites 302
Identifying the Products to Package 303
Determining Product Contents i, 303
Determining Product Structure 303
Adding Control Scriptscoiit it e e 305

14

Contents

Creating a Product Specification File (PSF) 307
Product Specification File Examples 308
PSF Syntax e e 311

Packaging the Software (swpackage) 345
USing SWpPaCKage. . . . oo ittt e e 351

Packaging Tasks and Examples i, 356
Registering Depots Created by swpackage 356
Creating and Masteringa CD-ROM Depot., 357
Compressing Files to Increase Performance 358
Packaging Security it e 358
Repackaging or Modifying a Software Package 361
PackagingIn Place i 362
Following Symbolic Links in the Source 363
Generating File Revisions it 363
Depots on Remote File Systems 364
Verifying the Software Package 365
Packaging Patch Software 365
Writing to Multiple Tapes e e e 366
Making Tapes from an Existing Depot 367

11. Using Control Scripts

Introduction to Control Scripts.c it 370
Types of Control Scripts ...t e e e 371
General Script Guidelines e 378
Packaging Control Scripts.t e 379
Control Script Location on the File System During Execution 380
Using Environment Variables i, 381
Variables That Affect All SD-UX Commands, 381
Variables That Affect All SD-UX Scripts. 382
Variables That Affect swinstall and swremove........... 385
Variables That Affect swverify. 386
Execution of Control Scripts e 387
Details Common to All Control Scriptscci .. 387
Checkinstall Scriptsottt e e 388
Preinstall Scripts e 389
Postinstall Scripts e 389
Configure Seriptsot e 390
Unconfigure Scripts 391

15

Contents

Verify Seripts . ..o e 391
Fix Seripts . . .o e e 392
Checkremove Scriptsttt e e 392
Preremove Scriptso e 393
Postremove Scripts e 393
Request Scripts. . ..ot e 394
Execution of Other Commands by Control Scripts 396
Control Script Input and Output 397
File Management by Control Scripts 401
Testing Control Scripts e e e 402
Testing Installation Scripts e e 402
Testing Configuration Scripts i 403
Testing Removal Scripts i e e 405
Requesting User Responses (swask). 407
Using swask e 407
Request Script Tasks and Examples. 410
swask Examples e 410
swinstall Examples. e 410
sweonfig Examples e 411
12. Nonprivileged SD
L0y 4 1= 414
Who Can Benefit?. 414
How Does It WorK? o e e e et 414
Limitationst e 415
Setting Up Nonprivileged Mode i, 416
Packaging Software for Use in Nonprivileged Mode. 416
Turning On Nonprivileged Mode. it i, 417
How Nonprivileged Mode Changes SD-UX Behavior........................ 417
Default Configuration it i 418
Alternative Configurationttt 419
Setting the Admin Directory Option, 419

A. Command Options
Changing Command Optionsiiittini i, 422
Options Listed Alphabetically.......... 424

16

Contents

B. Troubleshooting
Error Logging e e e 462
Error Messagesoiii e e e e 463
Warning Messagesttt e e e 463
N O S . vttt e 463
Common Problems e 464
Cannot Contact Target Host’s DaemonorAgent 465
GUI Won’t Start or Missing Support Files 467
Access To An Object Is Denied i, 468
Slow Network Performance 471
Connection Timeouts and Other WAN Problems 472
Disk Space Analysis IsIncorrect 474
Packager Fails i e 474
Command Logfile Grows Too Large. 475
Daemon Logfile IsToo Long. e 475
Cannot Read a Tape Depot i, 476
Installation Fails e 476
Swinstall or Swremove Fails With a Lock Error. 477

C. Replacing or Updating SD-UX

Re-installing SD-UX e e 480
Prerequisites 480
Usinginstall-sd. e 481

Replacing an Unusable Versionof SD-UX i, 482

Installing a Newer Version of SD-UX. i, 483

D. Software Distributor Files and File System Structure

Agent File System Structure 486
Software Distributor Controller File System Structure 489
Installed Products Database i, 490
GlOSSATY vttt eneeeessossssssesesssssssosssssasssssscssss 491
IndexX ¢ i viiiiiiiiiiiiiineeeeeeeessseseessssseessssssesssssannsas 505

17

Contents

18

Table 1-1

Introduction to Software Distributor

Introduction to Software
Distributor

This chapter contains overview information and explains important
concepts that will help you use the SD-UX commands most effectively.

Chapter Topics

Topics:

“About This Guide” on page 20

“SD-UX Overview” on page 22

“SD-UX Concepts” on page 27

“Using the GUI and TUI Commands” on page 35

“Working from the Command Line” on page 55

Chapter 1

19

Introduction to Software Distributor

About This Guide

NOTE

What's new in this
edition

Web papers
included here

About This Guide

This guide describes how to use Software Distributor to install,
configure, package, and manage software for HP-UX on HP 9000 systems

This guide is written for:

Stand-alone HP-UX users, primarily concerned with quick and easy
access to the right software management tools to get their normal
work done. This may include software installation, viewing, or
removal and basic depot management.

HP-UX system administrators, primarily concerned with keeping
other users up and running. Additional software management tasks
may include more complex depot management, security, patch
management, remote operations, and performance management.

Software packagers, primarily concerned with packaging software
into SD-usable format and writing scripts that may accompany the
packaged software.

The most current version of this document, as well as all
Hewlett-Packard documentation, is always found at:

htt p: // ww docs. hp. conl

This edition offers additional depot management examples, improved
organization, error corrections, and numerous minor enhancements.

This guide also includes information from this previously published
paper:

Understanding SD-UX ACLs

20

Chapter 1

Related
Documentation
and Training

Introduction to Software Distributor
About This Guide

Check the SD-UX web site often for announcements, updates to the
SD-UX FAQ, and to download the latest version of SD-UX:

htt p: // sof t war e. hp. coni SD_ AT _HP
For additional information on topics covered in this guide:
e SD-UX FAQ:

http://software. hp. comi SD AT _HP/faqg. ht m

e For details on SD-UX training included in HP-UX system
administration classes:

htt p: //sof t ware. hp. coni SD_AT_HP

Chapter 1

21

Introduction to Software Distributor

SD-UX Overview

SD-UX Overview

Software Distributor for HP-UX (SD-UX) provides you with a powerful
set of tools for centralized HP-UX software management. When
connected by a LAN or WAN, each computer running SD-UX can act as a
server, allowing its resources to be managed or accessed by other
machines, or as a client, managing or using the resources of other
machines.

Software Distributor commands are included with the HP-UX operating
system and, by default, manage software on a local host only. You can
also enable remote operations, which let you install and manage software
simultaneously on multiple remote hosts connected to a central
controller.

Note that SD-UX running under HP-UX 11.00 and higher versions does
not support NFS diskless clusters.

Network Requirements

e Networked systems must support TCP/IP.

¢ Because Software Distributor is based on distributed, client/server
technology, it requires some networking functionality on the host
system for proper execution. These networking services are only
available in UNIX Run Level 2 (Multi-User mode) and above.
Software Distributor cannot run in Single-User mode.

22

Chapter 1

Introduction to Software Distributor
SD-UX Overview

SD-UX Programs and Commands

The following list provides a brief description of each command and

references for more detailed information.

Table 1-2

SD Commands

Command &
Manpage

Description/Features

More Information

swinstall (1M)

Installs or updates
software

Optional GUI

“Installation with
swinstall” on page 64

swlist (1M)

Lists installed software
or software in depots or
on media

Optional GUI

“Listing Your Software
(swlist)” on page 96

“Listing Registered Depots”
on page 158

sweopy (1M)

Copies software from
one depot to another

Optional GUI

“Copying Software Depots”
on page 137

swremove (1M)

Removes installed
software or software in a
depot

Optional GUI

“Removing Installed
Software (swremove)” on
page 122

“Removing Software from
Depots” on page 162

swpackage (1M)

Creates packages of
software which can then
be used as a source for
other SD-UX commands

Chapter 10, “Creating
Software Packages,” on
page 301

swconfig (1M)

Runs configuration
scripts on installed
software

Configures,
reconfigures, or
unconfigures

“Configuring Your
Installation (swconfig)” on
page 82

Chapter 11, “Using Control
Scripts,” on page 369

Chapter 1

23

Introduction to Software Distributor

SD-UX Overview

Table 1-2

SD Commands (Continued)

Command &

Description/Features

More Information

Manpage

swask (1M) Runs interactive request Chapter 11, “Using Control
scripts that gather Scripts,” on page 369
information for later use « .
by swinstall or swconfig Requesting User

y Responses (swask)” on
page 407
swacl (1M) Specifies, lists, and Chapter 9, “SD-UX

changes Access Control
Lists (ACLs) for SD
security.

Security,” on page 255

swuerify (1M)

Verifies the integrity of
installed software or
depot software by
comparing IPD
information with the
files actually installed

Runs verify and fix
scripts

“Verifying Your Installation
(swverify)” on page 89
“Verifying a Depot
(swverify -d)” on page 161

swmodify (1M) Modifies the Installed “Modifying the IPD
Products Database (swmodify)” on page 115
(IPD) and various
catalog files that contain
information about the
software on the system

swreg (1M) Registers newly created “Registering and
depots to make them Unregistering Depots
visible to other systems (swreg)” on page 151

sd (5) Starts the Job Browser Chapter 6, “Remote

GUI to create, monitor,
schedule, and delete jobs

Requires that remote
operations are enabled

Operations Overview,” on
page 189

Chapter 7, “Using Jobs and
the Job Browser,” on
page 215

24

Chapter 1

Table 1-2

SD Commands (Continued)

Introduction to Software Distributor
SD-UX Overview

Command &
Manpage

Description/Features

More Information

swjob (1M)

Monitors jobs from the
command line

Requires that remote
operations are enabled

“Monitoring Jobs from the
Command Line” on
page 230

Chapter 6, “Remote
Operations Overview,” on
page 189

Chapter 7, “Using Jobs and
the Job Browser,” on
page 215

install-sd (1M)

Re-installs SD-UX from
media

Appendix C, “Replacing or
Updating SD-UX,” on
page 479

swagentd (1M)

Daemon for SD-UX
commands

Must be scheduled
before a system is
available as a
destination for SD-UX
commands

See manpage

The sd, swinstall, swcopy, swlist, and swremove commands each have an
optional Graphical User Interface (GUI) with windows and pull-down

menus. The GUI commands also work on text-based terminals, providing
a Terminal User Interface (TUI), which uses the keyboard instead of the
mouse for screen navigation.

You can invoke all SD-UX commands and programs from the command
line. The syntax, options, defaults and operands are similar for all

commands. See “Working from the Command Line” on page 55 for more
information.

Chapter 1

25

Introduction to Software Distributor
SD-UX Overview

SD-UX Online Documentation

To view the a manpage for each command, type:
nman command_name

For additional technical information, type:

nman 5 sd for SD-UX overview

nman 4 sd for file layouts

man 4 swpackage for packaging file layouts

26 Chapter 1

Introduction to Software Distributor
SD-UX Concepts

SD-UX Concepts

Understanding SD-UX concepts, terms, and model of software
management will help you use the commands and programs most
effectively. For additional definitions, see the Glossary.

Important Terminology

Host refers to any system on which software is to be installed or
managed using the SD-UX commands. A local host is the system on
which you invoke SD-UX commands.

When you have enabled remote operations, you can use SD-UX to
operate on one or more remote hosts—a host other than the system on
which the SD-UX command has been invoked. (See Chapter 6, “Remote
Operations Overview,” on page 189 for more information on remote
operations.)

A controller is the SD-UX program or command (swinstall, swcopy, etc.)
that you invoke on your system. The controller may work with data or
start processes on other systems.

A depot is a repository of software products that can be managed by
SD-UX. A depot consists of either a (specially formatted) directory, or
physical media such as tapes, CD-ROMs or DVDs. (CD-ROM and DVD
depots are really just special instances of directory depots). Directory
depots are useful because you can access them via a network. They are
often used to store collections of software copied from other depots.

In general, the term target refers to either a host (specifically, the host’s
file system) or a depot that resides on a host. The term source refers to a
depot from which software is being installed or copied (sometimes
referred to as a source depot).

For example, a basic install operation with the swinstall command
involves installing software from a source depot to a target location on
the host itself. The source depot might be physical media accessible from
the target, or a directory depot on some server on the network. The
target host might be the same host on which the command was invoked
(i.e., the local host) or, if remote operation is enabled, some other host on
the network.

Chapter 1

27

Introduction to Software Distributor

SD-UX Concepts

Figure 1-1

A basic copy operation (using the swcopy command) is very similar,
except that the target is a depot on the host, rather than the host itself.

For most operations, controller programs access hosts and depots using
an agent called swagent, which performs the basic software management
tasks. The agent is accessed via a daemon called swagentd. When SD-UX
operates on the local host, both controller and agent run on the local
host. For remote operations, the agent runs on a remote host.

Figure 1-1, “SD-UX Systems,” shows how software can be developed and
then packaged into SD-formatted media, which can either be accessed
directly or copied to a depot directory on a server and accessed via the
network.

SD-UX Systems

NETWORK SERVER Media DEVELOPMENT SYSTEM

o) [|

)

/’] Depot n

Software Structure

SD-UX commands work on a hierarchy of software objects that make up
the applications or operating systems components you want to manage.

Software Objects

Bundles Collections of filesets, possibly from several different
products, “encapsulated” for a specific purpose.
Bundles can reside in software depots, and SD-UX
commands act on bundles as single entities. All HP-UX

28

Chapter 1

Products

Subproducts

Filesets

Introduction to Software Distributor
SD-UX Concepts

OS software is packaged in bundles. Bundles can
consist of groups of filesets or of products. Customer
creation of bundles is not supported.

Collections of filesets or (optionally) subproducts and
control scripts. The SD-UX commands maintain a
product focus but still allow you to specify subproducts
and filesets.

Different versions of a product can be defined for
different platforms and operating systems, as well as
different revisions (releases) of the product itself.
Several different versions could be included on one
distribution media or depot.

If a product contains several filesets, subproducts can
be used to group logically related filesets.

Filesets include all the files and control scripts that
make up a product. Filesets can only be part of a single
product but they can be included in several different
HP-UX bundles or subproducts. Like products,
different versions of a fileset may be defined for
different platforms and OSs.

Filesets are the lowest level of object managed by
SD-UX.

Chapter 1

29

Introduction to Software Distributor
SD-UX Concepts

Figure 1-2

Example of HP-UX Software Structure

Product A

Subproduct X

Bundle B

Product B

Fileset A4

Fileset A1l

Fileset B1

Fileset B2

Fileset A2

Fileset A6

Fileset A3

|
|
|
|
|
| | Fileset A5
|
|
|
|

Installed Products Database

SD-UX uses the Installed Products Database (IPD) to keeps track of
what software is installed on a system. The IPD is a series of files and
subdirectories that contain information about all the products that are
installed under the root directory (/). (For depots, this information is
maintained in catalog files beneath the depot directory.)

Fileset B3

The swinstall, swconfig, swcopy, and swremove commands automatically
add to, change, and delete IPD and catalog file information as the

commands are executed. The swlist and swverify commands use IPD and
catalog information to affect command behavior.

The IPD keeps track of the software state, which includes conditions

such as installed or configured.

30

Chapter 1

Introduction to Software Distributor
SD-UX Concepts

Control Scripts

Products and filesets can contain control scripts that perform checks and
other tasks not performed by SD-UX commands. SD-UX supports the
following types of scripts:

Checkinstall

Checkremove

Configure

Fix

Postinstall

Postremove

Preinstall

Analyzes each target to determine if the installation
and configuration can take place. (Executed by
swinstall.)

Analyzes each target to determine if removal and
unconfiguration can take place. (Executed by
swremove.)

Configures installed filesets or products. (Executed by
swconfig and swinstall.)

Corrects and reports on problems in installed software.
(Executed by swverify.)

Performs additional install operations immediately
after a fileset or product has been installed. (Executed
by swinstall.)

Performs additional remove operations immediately
after a fileset or product has been removed. (Executed
by swremove.)

Performs file operations (such as removing obsolete
files) immediately before installation of software files.
(Executed by swinstall.)

Chapter 1

31

Introduction to Software Distributor
SD-UX Concepts

Preremove Performs additional file operations (such as removing
files created by a preinstall script) immediately before
removal of software files. (Executed by swremove.)

Request Requests an interactive response from the user as part
of the installation or configuration process. (Executed
by swask, swconfig, and swinstall.)

Unconfigure Undoes configurations performed by configure scripts.
(Executed by swconfig and swremove.)

Unpostinstall ~ Undoes operations performed by a postinstall script in
case swinstall must initiate recovery during the
installation process. (Executed by swinstall.)

Unpreinstall Undoes operations performed by a preinstall script in
case SD must initiate recovery during the install
process. (Executed by swinstall.)

Verify Verifies the configuration of filesets or products (in
addition to the standard swverify checks.) (Executed by
swverify.)

For More See Chapter 11, “Using Control Scripts,” on page 369.
Information

Environment Variables

SD-UX commands and programs are affected by external environment

variables (such as language and charset variables) and variables for use

by control scripts. For a description of external environment variables,

see Chapter 11, “Using Control Scripts,” on page 369.

32 Chapter 1

Introduction to Software Distributor
SD-UX Concepts

Software Dependencies

Software that depends on other software to install or run correctly is
considered to have a dependency. When you specify software for the
swconfig, swcopy, swinstall, swremove, swverify commands, these
commands may automatically select additional software to meet
dependencies.

How Commands and Options Interact with Dependencies

Command options let you control how software dependencies are
handled. For example, dependency handling in swinstall and swcopy is
affected by the enf or ce_dependenci es command option.

Another option that regulates dependencies is the

aut osel ect _dependenci es option. This option determines if the system
should automatically mark software for installation or copying based on
whether it meets dependencies. (See “Using Command Options” on
page 59 for more information on options.)

How Dependencies Are Resolved

For a dependency to be resolved with respect to other software on the
source depot it must be:

e Complete (if the dependency is an entire product or subproduct it
must exist completely in the source depot)

e In the proper software state on the source (that is, available)
¢ Free of errors (for example, no incompatibility errors)

If the dependency is not available from the source during a swconfig,
swcopy, swinstall, or swverify operation, the dependency must:

¢ Exist on the target host

¢ Be complete (if the dependency is an entire product or subproduct it
must be completely installed)

¢ Be in the proper software state (the dependency must be configured
if the software dependent on it is to be installed and configured,
installed if software dependent on it is to be installed but not
configured, or available if the software dependent on it is to be
copied)

¢ Be free of errors (for example, no incompatibility errors).

Chapter 1

33

Introduction to Software Distributor

SD-UX Concepts

If you select software that has a dependency and more than one available
object resolves that dependency, SD-UX automatically selects the latest
compatible version.

Types of Dependencies

Software packagers can define corequisites, prerequisites, and
exrequisites as dependencies. These dependencies can be specified
between filesets within a product, including expressions of which
versions of the fileset meet the dependency. Dependencies can also be
specified between a fileset and another product. Expressions for
revisions and other product attributes are supported.

Corequisites An object requires another to operate correctly, but
does not imply any load order.

Prerequisites An object requires another to be installed and/or
configured correctly before it can be installed or
configured respectively. Prerequisites do control the
order of operations.

Exrequisite An object requires the absence of another object before
it can be installed or configured.

Working with Protected Software

Some HP software products are protected software. That is, you cannot
install or copy the software unless you provide a codeword and customer
ID. The customer ID uniquely identifies the owner of the codeword and
lets you restrict installation to a specific owner. To find your codeword
and customer ID, examine the CD certificate shipped with your software.

It is your responsibility to ensure that the codeword and software are used
properly in this manner.

One codeword unlocks most or all of the products on your media. When
you purchase additional protected products, HP provides additional
codewords. SD-UX keeps tracks of codewords as you enter them. This
means you do not have to enter the codeword each time you access the
software.

The swinstall, swcopy, and swlist commands make use of codewords in
managing software.

34

Chapter 1

Figure 1-3

Introduction to Software Distributor
Using the GUI and TUI Commands

Using the GUI and TUI Commands

The swinstall, swcopy, swlist, swremove commands each provide a
Graphical User Interface and Terminal User Interface. Advantages of
the GUI/TUI include:

¢ You can quickly create and visually monitor software management
tasks interactively

¢ You can easily analyze the effects of tasks and retry tasks that fail.

¢ You do not have to be familiar with a broad range of defaults, options,
software selections, and other variables that are required to enter
complex commands on the command line.

(Additional GUI interfaces are available if you have enabled remote
operations. See Chapter 6, “Remote Operations Overview,” on page 189.)

The Terminal User Interface

The terminal user interface lets you use the SD-UX GUI capabilities on
systems with text-based terminals. With the TUI, you use the Arrow, Tab,
Space, and Return keys to navigate.

The Terminal User Interface (TUI)

hpterm
5D Install - Software Selection (swbash3) (1)
File View Options Actions
Press CTRL-K for keyboard help.
Source: swhash3:/var/spool/sw
arget: swbash3:/

nly software compatible with the target iz available for selection.

[Top (Bundles and Products) 1 of 5 selected

Marked? Name Revision Information Size(Kb)

/- AY
| BUNDLE1

| BUNDLEZ2

| INITTIALPRODUCT

| minimal_ancest1

| minimal_ancest?

|

|

|

|

Help On Alt Select/| Menubar hpterm Shell Exit
Context Deselect| on/foff

Chapter 1

35

Introduction to Software Distributor
Using the GUI and TUI Commands

NOTE

TIP

NOTE

All examples for GUI commands in this manual also apply to the TUI.

Starting the GUI/TUI Commands

To start the GUI or TUI for swinstall, swcopy, or swremove, enter:
[usr/ sbi n/ swi nst al |

—or—

/ usr/ sbi n/ swcopy

—or—

[usr/ sbi n/ sw enove

Put / usr/ sbi n in your PATH to avoid typing the / usr/ sbi n prefix.

The TUI starts by default if you have not set the DISPLAY variable.

To invoke the GUI and specify other command-line arguments at the
same time, you must include the -i option. For example:

swinstall -i -s sw server cc pascal

To invoke the swlist GUI, you must use always use the sw i st -i
option.

You can also launch the SD-UX GUIs from HP’s ServiceControl Manager
(SCM) or Systems Administration Manager (SAM) applications.

36

Chapter 1

Introduction to Software Distributor
Using the GUI and TUI Commands

Window Components

The main GUI/TUI windows (Figure 1-4, “GUI Window Components,”)
contain the following components:

Figure 1-4 GUI Window Components
Menu bar ——————} File View Options Actions Help

Source: swbash3:/var /spool/sw
Target: swbash3:/

Message area

Only software compatible with the target is available for selection.

View/selections —— Top (Bundles and Products) 1 of 5 selected
Marked? Name Revision Information Size(Kb)
Columns/——]
headings BUNDLEZ2 - 1.0 1
INITIALPRODUCT — -> 1
minimal_ancest]l -> 1.8 1
ObjeCt |ISt minimal_ancest2 -> 1.8 1
Menu bar Provides pull-down menus for File, View, Options,

Actions, and Help. Each choice has additional submenus
for more activities. Items in the menus may or may not
appear, depending on whether selections are
highlighted or not. Some actions may also be grayed
out to show they are not available for a specific item.

Message area Provides messages and system information.

View/selections Describes the current software view and the number of
items selected in the object list.

Columns Headings for columns of information in the object list.

Object list Lists software selections, bundles, products, targets, or
other information regarding selections, analysis and
details.

Chapter 1 37

Introduction to Software Distributor
Using the GUI and TUI Commands

Opening and closing items in the object list

The Software Selection window object list is hierarchical: you can open
each object in the list and show its contents. Objects in the list that
contain other objects that can be opened have an arrow (—) after the
name.

e To open a subproduct, double click on it, or highlight the name and
then select Actions—Open Item. For example, to see the subproducts
in the SD- DATABASE product, open SD- DATABASE by double clicking on
it. The object list then displays the subproducts for SD- DATABASE.

e To close an object and return to the previous list, double click on the
first item in the list (..(go up)) or highlight the item and select
Actions—Close Level.

When a product is opened, subproducts and filesets may appear in the
same list. Only products are listed together at the product level.

Filesets are the lowest level of hierarchical objects managed by SD-UX.
You can not view the contents of files, but you can view the list of files in
each fileset and information about each file.

Marking Items in the Object List
There are two ways to mark an object in the object list:
¢ Use the menu bar:

1. Click on the object to highlight it.

2. Select Actions—Mark for Install (or Mark for Copy or Mark for
Remove)

e Use the pop-up menu:
1. Click on the object to highlight it.
2. Right click to display the pop-up menu.
3. Select Mark for Install (or Mark for Copy or Mark for Remove)

Flags (Yes, Parti al or blank) show whether items in the list have been
marked for an activity (see the Mar ked? column).

(For the TUI, mark items by pressing Space when the cursor is on the
item and then press the m key. Unmark items with the u key.)

38

Chapter 1

Introduction to Software Distributor
Using the GUI and TUI Commands

Preselecting Host Files

The def aul t s. host s file contains lists of hosts that are used by the
GUI/TUI programs. This lets you use preselected choices for source and
target systems. These lists are stored in the $SHOME . swdef aul t s. host s
or / var/ adni def aul t s. host s files.

For each interactive command, target hosts containing roots or depots
are specified in this file by separate lists (host s, hosts_wi t h_depot s).
The list of hosts are enclosed in {} braces and separated by white space
(blank, tab and newline). For example:

swi nstal | . host s={ host A host B host C host D host E host F}
swcopy. host s_wi t h_depot s={ host S}

When you use the program, dialog boxes that let you choose a source
system from a list will display all hosts specified in def aul t s. host s or
remembered from a previous session. Once a source is successfully
accessed, that host is automatically added to the list in the

def aul t s. host s file and displayed in the dialog.

If there are no hosts specified in def aul t s. host s, only the local host and
default source host appear in the lists.

If a host system does not appear in the list, you can enter a new name
from the GUI/TUI program.

Chapter 1

39

Introduction to Software Distributor
Using the GUI and TUI Commands

Software Selection Window

The Software Selection Window (Figure 1-5, “Software Selection
Window,”) is the standard window for all SD-UX GUI programs. It
features the standard menu bar, message area, and object list of software
available for selection. Menu items are discussed in the following

sections.

Figure 1-5 Software Selection Window

File View Options Actions

Help

Source: swhash3:/var/spool/sw
Target: swhash3:/

Only software compatible with the target is available for selection.

Top (Bundles and Products)

Marked? Name Revision

BUNDLEZ - 1.0
INTTIALPRODUCT -

minimal_ancestl -> 1.0
minimal ancestZ -> 1.0

Information

I o Y T T

1 of 5 selected

Size(Kh)

40

Chapter 1

NOTE

Introduction to Software Distributor
Using the GUI and TUI Commands

Session and File Management—The File Menu

The File menu is the primary tool for managing session files, searching,
and printing.

GUI Session Files

Each invocation of one of the GUI commands defines a session. All
session information—including the options used to invoke the command,
source specifications, software selections, and target hosts—are
automatically saved. This lets you re-execute the command even if the
session ends before proper completion. (See “Session Files” on page 61.)

You can save session information into a file at any time by selecting the
Save Session or Save Session As choice from the File menu. The Recall
Session choice lets you import the settings from a previously saved
session file. Clear Session resets all options and operands to their default
values.

Each session is saved to a file for that command. For example:

$HOWE/ . sw sessi ons/ swi nstal | .| ast
$HOWE . sw sessi ons/ swcopy. | ast
$HOWE . sw sessi ons/ sw enove. | ast

This file is overwritten by each time you start the GUI.

When you re-execute a session file, the values in the session file take
precedence over values in the system defaults file. Likewise, any
command line options or parameters that you specify when you invoke
the GUI take precedence over the values in the session file.

Performing Text Searches

The Search... choice lets you perform a text search of the active list in a
window.

Chapter 1

41

Introduction to Software Distributor
Using the GUI and TUI Commands

Changing Software Views—The View Menu

The View menu manages your window view preferences.

Columns...

The View—Columns... choice brings up the Column Editor dialog
(Figure 1-6, “Column Editor,”), which lets you reformat the columns for
the current object list. All viewable object attributes are listed.

Figure 1-6 Column Editor
Column Editor
System Defaults
dttribute Column Justify Width
1 1 Left
State 2 Left
Progress 4 Left
Results 5 Left
Title : Left
Operation il Left
Scheduled For 7 Left
OK Apply Cancel Help

The editor displays values 1 through the total number of attributes, plus

an Ignore option, which removes that attribute from display in the object

list.

You can specify an attribute’s justification by clicking on the Left or Right

button in the Justi fy column.

Set the column width by placing the cursor in the appropriate text field

in the W dt h column, then entering the width (number of characters).

Use an asterisk (*) to size the column automatically.

e To apply the changes made to the object list, select Apply. The list is
updated to reflect any changes made, and the Column Editor dialog
remains open.

e To apply the changes and close the editor, select OK.

42 Chapter 1

Introduction to Software Distributor
Using the GUI and TUI Commands

¢ To return to the original default values, select System Defaults.

¢ To cancel any changes and return to the object list window, select
Cancel.

¢ To save the changes made for the next invocation of the application,
choose View—Save View as Default.

Filter...

Figure 1-7 Filter Dialog

Filter

Current filter: showing B0 of OB total items
System Defaults

dttribute Operator Yalue
1D Any
State Any
Progress Any
Results Any
Title Any
Operation Any
OK Apply Cancel Help

The View—sFilter... choice displays the Filter dialog (Figure 1-7, “Filter
Dialog,”), which lets you specify the type of filtering desired for each
attribute.

The Operator menu button lets you specify the operator for a given
attribute. The following table presents the operator types:

Chapter 1 43

Introduction to Software Distributor
Using the GUI and TUI Commands

Table 1-3 Operator Types
Any Displays objects regardless of the value of the
attribute.
Mat ches Displays objects if their attribute value exactly
matches the value specified in the Val ue column.
Not Displays objects whose attribute value does not
match the value specified in the Val ue column.
Less Than Displays objects if their attribute value is less than
the value specified in the Val ue column. Less than
is defined as a lesser integer value or earlier in the
alphabet.
Qeater Than Displays objects if their attribute value is greater
than the value specified in the Val ue column.
Greater than is defined as a higher integer value or
later in the alphabet.
e For Mat ches and Not, use an asterisk (*)as a wildcard, and a
question mark (?) to match any single character.
e Select Apply to apply the changes made to the object list and leave
the Filter dialog open.
¢ Select OK to apply the changes and close the Filter dialog.
e To return to the original default values, select System Defaults.
e Select Cancel to ignore any changes made and close the Filter dialog.
e To save the changes made for the next invocation of the application,
choose View—Save View as Default.
44 Chapter 1

Figure 1-8

Introduction to Software Distributor
Using the GUI and TUI Commands

Sort...

The View—Sort... choice displays the Sort dialog (Figure 1-8, “Sort
Dialog,”), which lets you specify a sort method for the object list. All
viewable object attributes are listed. For each attribute, you can specify
the type of sort desired.

Sort Dialog
Sort
System Defaults
dttribute Priority Direction
1D Ignore dscending
State Ignore dscending
Progress Ignore dscending
Results Ignore dscending
Title Ignore dscending
Operation Ignore dscending
OK Apply Cancel Help

The Pri ority column displays values 1 through the total number of
attributes, plus an | gnor e option, which excludes the attribute from the
sort. A sort priority of 1 sorts the list first on that attribute.

¢ To specify whether the sort is ascending or descending, select the
D recti on menu button.

e To apply the changes to the objects list and remain in the Sort dialog,
select Apply.

e Select OK to apply the sort and close the Sort dialog.
e Select Cancel to ignore any changes made and close the Sort dialog.

¢ To return to the original default sort values, select System Defaults.

Chapter 1

45

Introduction to Software Distributor
Using the GUI and TUI Commands

Save View as Default

To save any changes for future sessions, choose View—Save View as
Default. Any changes you made to your view preferences are saved in the
following file, in which user nane is your log-in name:

/var/ adm sw ui / pr ef er ences/ user nane. prefs.

Changing Options and Refreshing the Object
List—The Options Menu

The Options menu lets you refresh the object list and change the default
values of options that control command behaviors and policies. Selecting
Options—Refresh List updates the object list to reflect any changes.

Selecting Options—Change Options opens the Options dialog (Figure 1-9,
“Options Editor Dialog,”), which lets you change a limited set of options
for the command. These options are changed only for the duration of the
interactive session. To change options for subsequent sessions, you must
save a session file (see “Session and File Management—The File Menu”
on page 41) or edit one of the options files (see “Using Command
Options” on page 59).

Figure 1-9 Options Editor Dialog
Options (swbazh3)
+|Create target path if not there already
v Mount filesystems in fetc/fstab or /etc/checklist
Reinstall fi ven If same revision exists
Reinstall files even if same one already there
v |Use checksum when checking if file is the same
Compress files during transfer
Allow creation of multiple versions
Pefer configuration
Enable auto-recovery of product for load errors
[All targets
Allow installation of lower version than current
46 Chapter 1

NOTE

Introduction to Software Distributor
Using the GUI and TUI Commands

Use caution when changing option values. They allow useful flexibility
but can produce harmful results if changed to an inappropriate value.
Use the online help and consult Appendix A, “Command Options,” on
page 421 to understand fully each option before you change it.

Chapter 1

47

Introduction to Software Distributor
Using the GUI and TUI Commands

Performing Actions—The Actions Menu

Each Action menu in the GUI/TUI programs has series of actions for that
command. These actions vary according to which command you invoke.
(You may have to click on an item in the object list to enable some of the
actions that are grayed out.) The following actions are common to
swinstall, swcopy, swlist, and swremove.

Open Item/Close Level

The Open Item or Close Level menu choices let you see the contents of a
selected object or close it.

Each object list is hierarchical. Objects that have an arrow (—) after the
name can be opened to reveal other items. For example, to see the
subproducts in a particular product, you can open that product by double
clicking on the object or by selecting Actions ->Open Item. The object list
then shows a listing of the subproducts for that product. If you want to
open the subproduct, double click on it and its filesets are displayed. (In
the TUI, move the cursor to the item you want to open and click Return.)

When the product is opened, all of its subproducts (and filesets that are
not part of a subproduct) are shown in the list. At the product level, only
products are listed together. If the software view is Bundle and the
bundle is opened, all HP-UX OS products that are wholly or partially
contained in the bundle will be shown. When one of the products is
opened, only subproducts and filesets in the open product and open
bundle are shown.

To close an object and return to the previous list, double click on the first
item in the list (. .(go up)) or select Actions->Close Level. (In the TUI, you
must use Close Level in the Actions menu or press Return while
highlighting the (. .(go up)) item.)

48

Chapter 1

NOTE

Figure 1-10

Introduction to Software Distributor
Using the GUI and TUI Commands

Add/Save Software Group
These choices let you save and re-use groups of marked software.

The Save Software Group menu choice opens the Save Software Group
dialog (Figure 1-10, “Save Software Group Dialog,”), which saves the
current list of marked software as a group. SD stores the group definition
in $HOWE . sw sof t war e/ or a directory you specify.

You can recall and re-use a previously saved group of software selections
by using the Add Software Group menu choice.

Software automatically marked due to dependencies is not included in a
software group. Dependencies are recomputed each time you select Add
Software Group. See “Software Dependencies” on page 33 for more
information about dependencies

Save Software Group Dialog

Select File

neanddhb

ections In File:

Chapter 1

49

Introduction to Software Distributor
Using the GUI and TUI Commands

Change Source

The Change Source... menu choice opens the Change Source dialog
(Figure 1-11, “Change Source Dialog,”), which lets you change the source
for the software to be used. The Root Path button opens a list of target
paths from which to select (Figure 1-13, “Root Path Dialog,”).

Figure 1-11 Change Source Dialog

Specify the source type, then host name, then path on that host.

Source Depot Type: Network Directory/CDROM —| Find Local CD |

Source Host Name... |

Source Depot Path... |

Ok Cancel Help I

1. (Optional) To specify another host system, type a source host name,
or:

a. Click on the Source Host Name button. The system displays a
dialog that lists all host system names contained in the
def aul t s. host s file (BHOVE . sw/ def aul t s. host s or
/var/ adm sw/ def aul t s. host s).

b. Choose a host name from the list.

c. Click OK. The host name appears in the appropriate box in the
Specify Source dialog.

2. (Optional) To specify the path to the depot, type a new path, or:

a. Click on the Source Depot Path button to display a list of
registered depots on the source host.

b. Highlight one of the depots.
c. Click OK to make it appear in the Specify Source dialog.

3. Click OK. The Specify Source dialog closes, and the Software
Selection window displays the software contained in the depot you
specified.

50 Chapter 1

Figure 1-12

Figure 1-13

Introduction to Software Distributor
Using the GUI and TUI Commands

Change Target

The Change Target... menu choice opens the Change Target dialog
(Figure 1-12, “Change Target Dialog,”), which lets you change the targets
of your software operation. The Root Path button opens a list of target
paths from which to select (Figure 1-13, “Root Path Dialog,”).

For SD-UX local operations, the target is always a directory on the local
host. See Chapter 6, “Remote Operations Overview,” on page 189 for
information about specifying remote targets.

Change Target Dialog

Select Target Path (swbash3)
Target Host: swbash3

Root Path...
OK Cancel

Root Path Dialog

[~ SharedBootPaths(wbashd) | ||

Roots on swbash3:

/

/tet/tmp/agent/defer/rootl
/tet/tmp/agent/pll/rootl
/tet/tmp/bundles/swinstall_pb_ar/target.
/tet/tmp/bundles/swinstall_pb_ar/target.
/tet/tmp/bundles/swinstall_pb_ar/target.
/tet/tmp/bundles/swinstall_pb_ar/target.
/tet/tmp/bundles/swinstall_pb_ar/target.

Cancel

Chapter 1

51

Introduction to Software Distributor
Using the GUI and TUI Commands

Figure 1-14

Getting Help—The Help Menu
All the GUI and TUI programs have an on-line help system. Each screen,

dialog, or menu choice has associated help instructions that explain the
activity.

Typical On-Line Help Screen

oy ol help_dly splil & S0

Heslg

b swinstall
keny "

To get “context-sensitive” help for individual menu choices, fields,
options, or buttons on the various windows and menus, place the cursor
on an item and press the F1 key on your keyboard (Ctrl-F in the TUI).
This displays specific help for that item.

To view overview information for each major screen, to get help on
keyboard usage, or to view other product information, select the Help
menu from in the menu bar.

52

Chapter 1

Introduction to Software Distributor
Using the GUI and TUI Commands

Overview...

This menu item provides information about the currently active SD-UX
screen. This includes a list of the tasks you can do in that screen and a
short description of the different areas of the screen and links to related
topics.

Keyboard...

This menu item brings up help on how to use the keyboard to control the
application, covering topics such as selection, menu bar activation and
traversal, dialog box traversal, etc.

Using Help...

This menu item displays information about how to use the Help system.

Product Information...

This menu item displays copyright and revision information for SD-UX.

XToolkit Options and Changing Display Fonts

The GUI commands support the following subset of the HP-UX XToolkit
command line options:

e -bg or-background

e -fg or-foreground

e -display
e -nane
e -Xxrm

Note that the SD-UX commands do not support the XToolkit - f n or the
-font option used to change display fonts.

SD-UX commands do, however, recognize most Motif™ standard
resources when running in the X11/Motif environment, plus the
following additional resources:

*syst enfont Specifies the variable-width font used in the GUI menu
bars and other areas where a variable width font is
applicable. The default size is 8x13.

Chapter 1

53

Introduction to Software Distributor
Using the GUI and TUI Commands

*user Font Specifies the fixed-width font used in all other GUI
displays. This font should be the same basic size as the
*syst enfFont only in the fixed width style. The default
size is also 8x13.

Here is an example of how to change the size of your fixed width font
from 8x13 to 6x13:

swinstall -xrm’Sw nstall*userFont: user6x13’

Here is how to change the variable width font style to 12 point HP
Roman 8:

swinstall -xrm’Sw nstall*systenfont: \
- adobe- couri er - medi um r - nor mal 12- 120- 75- 75- m 70- hp-\
romang’

You can also modify the defaults file (in / usr/ 1 i b/ X11/ app- def aul t s)
for each command with a Graphical User Interface so that a resource will
be set each time you invoke a specific command. Here is an example of an
app-defaults file for swremove:

sw enove app-defaul ts

Sw enove*f oreground: red
Sw enove*background: white

Sw enove* user Font : hp8. 8x16b
Sw enove*syst enfFont: - adobe- couri er-nedi umr - nor nal 12- 120- 75- 75-m
- 70- hp-r onan8

54

Chapter 1

Figure 1-15

Introduction to Software Distributor
Working from the Command Line

Working from the Command Line

You can invoke all SD-UX commands non-interactively via the command
line. This section provides reference information about command-line
features available across most of the commands.

The command line is most effective for:

¢ Quickly executing simple commands

e Executing tasks that take a long time to accomplish
¢ Creating commands for later execution by scripts

A typical command line might look like this:

Sample Command

swinstall -f MySoft -s /mnnt/cd @ targetB
/

command File of Location of Target host
software software
selections depot

The example shows that you have several ways to specify SD-UX
behavior including command-line options (such as -f and - s), input
files (nysoft and / mt/ cd), and target selections.

A complete list of command line components includes:

e Software selections and software selection files (page 56)
e Target selections and target selection files (page 58)

¢ Command-line options (page 59)

e Session files (page 61)

Each item on this list is discussed in more detail in the following
sections.

Chapter 1

55

Introduction to Software Distributor
Working from the Command Line

Software Selections

Software selections let you specify software in great detail. You can also
use an input file to specify software.
Syntax

The sof t war e_sel ect i ons syntax is identical for all SD-UX commands
that require it:

bundl el.pr oduct [.subpr oduct][.fi | eset]ll,versi onl
product [.subproduct]l.fil eset]l,versi on]

e The = (equals) relational operator lets you specify selections with the
following shell wildcard and pattern-matching notations:

[] Square brackets—groups an expression
* Asterisk—wildcard for multiple characters
? Question mark—wildcard for a single character

For example, the following expression installs all bundles and
products with tags that end with man:

swinstall -s sw server *nan

¢ Bundles and products are recursive. Bundles can contain other
bundles. For example:

swi nstall bunl. bun2. prod. subl.fset,r=1.0
or (using expressions):
swi nstall bun[12]. bun?. prod. sub*, a=HP- UX

¢ The* software specification selects all products.

CAUTION To avoid data loss, use the \ * specification with considerable care
(such as when removing software from the root directory, /).
56 Chapter 1

Introduction to Software Distributor
Working from the Command Line

The version component has the form:

[, r <op> revisionll, a<op> ar chll, v <op> vendor]
[, c <op> cat egoryll, q=qual i fierll, | =l ocat i onl
[, fr <op> revisionll, fa<op> archl

where:

Fully qualified software specifications include the r=, a=, and v=
version components, even if they contain empty strings. For installed
software, | = is also required.

All version components are repeatable within a single specification
(e.g. r>=A. 12, r<A 20). If multiple components are used, the
selection must match all components.

The <op> (relational operator) component performs individual
comparisons on dot-separated fields and can be of the form:

=, ==, >, <5, <, >, 0r | =

For example, r >=B. 11. 11 chooses all revisions greater than or equal
to B. 11. 11. The system compares each dot-separated field to find
matches.

The = (equals) relational operator lets you specify selections with the
shell wildcard and pattern-matching notations: [], *, ?, and !

For example, the expression r =1[01] . * returns any revision in
version 10 or version 11.

No space or tab characters are allowed in a software selection.

qual i fier is a string that can be attached to any product or bundle
to help you filter a software specification.

I ocat i on applies only to installed software and refers to software
installed to a location other than the default product directory.

fr and f a apply only to filesets.

A software i nst ance_i d can take the place of the version
component. It has the form:

[i nst ance i d]

within the context of an exported catalog, where instance_id is an
integer that distinguishes versions of products and bundles with the
same tag.

Chapter 1

57

Introduction to Software Distributor
Working from the Command Line

Software Files

To keep the command line shorter, software selection input files let you
specify long lists of software products. With a software selection file, you
only have to specify the single file name.

The - f command-line option lets you specify a software selection file. For
example:

swinstall -f nysoft -s /mt/cd @targetB

In this example, the file mysof t (which resides in the current working
directory for software files) contains a list of software selections for the
depot /mnt/cd.

In the software file, blank lines and comments (lines beginning with #)
are ignored. Each software selection must be specified on a separate line.

Target Selections

Target selections follow software and source depot selections. If no target
selection is named, the target on which the operation will be performed is
assumed to be the root (/) directory on your local host. So, you do not
have to use the @ sign and [host 1[: 1/ di r ect or y] designation (described
below) if you are operating on the local host or default depot directory.

Syntax

The t ar get _sel ect i ons syntax is identical for all SD-UX commands
that require it:

@lhost1[: 1I/di rect or y]

e The @ character is optional if you are using the local host and default
directory. If it is used, it acts as a separator between operands and
the destination.

¢ Only one @ character is needed.

® You can specify the host by its host name, domain name, or internet
address. A directory must be specified by an absolute path.

e The: (colon) is required if you specify both a host and directory.

¢ On some systems, the @ character is used as the kill function. Type
stty on your system to see if the @ character is mapped to any other
function on your system. If it is, remove the mapping, change the
mapping, or use \ @

58

Chapter 1

Introduction to Software Distributor
Working from the Command Line

Target Files

To keep the command line shorter, target selection input files let you
specify long lists of targets. With a target selection file, you only have to
specify the single file name.

The -t command-line option lets you specify a target file. For example:
swinstall -f nysoft -s /mt/cd -t nytargs

In this example, the file nyt ar gs (which resides in the current working
directory) contains a list of target selections for the swinstall command.

In the target file, blank lines and comments (lines beginning with #) are
ignored. Each target selection must be specified on a separate line and
must consist of a host name or network address, optionally followed by a
colon and a full path: host[:/ di rect ory]

Using Command Options

You can control many SD-UX command policies and behaviors by setting
the appropriate command options. You can change the default values of
options using predefined files or values you specify directly on the

command-line. Altering default values with files can help when you don’t
want to specify command behavior every time you invoke the command.

These rules govern the way the defaults work:

1. Options in / var/ adm sw def aul t s affect all SD-UX commands on
that system. This file can change the default behavior for all
commands to which an option applies or for specific commands only.

2. Options in your personal $HOME . swdef aul t s file affect only you and
not the entire system.

3. Options read from a session file affect only that session.

4. Options changed on the command line by the - X opti on_fi/ e or the
-X option=val ue arguments override the system-wide and personal
options files but affect only that invocation of the command.

For system-wide policy setting, use the / var/ adni sw def aul t s files.
Keep in mind, however, that users may override these options with their
own $HOVE/ . swdef aul t s file, session files, or command line changes.

The template file / usr/ | i b/ sw sys. def aul t s provides an easy way to
change system-wide or personal option files.

Chapter 1

59

Introduction to Software Distributor
Working from the Command Line

NOTE

The template file lists (as comments):

e All command options

e The commands to which each option applies
e Possible values for each option

e The resulting system behavior for each value.

You can copy values from this file into the system defaults file

(/ var/ adm sw/ def aul t s), your personal defaults file

($HOVE/ . swdef aul t s), or an input file (with the - X i nput_fi | e option)
and edit them to affect SD-UX behavior.

Option files use this syntax:

[command. 1opt i on=val ue

¢ The optional command is the name of a SD-UX command. Specifying a
command name changes the default behavior for that command only.
A period must follow a command name.

e optionisthe name of the default option. An equals sign must follow
the option name.

e val ueis one of the allowable values for that option.

You must restart the SD-UX daemon after changing swagentd options, or
the daemon will not recognize the changes. To restart the daemon, type:

/usr/sbin/ swagentd -r

Examples

To change the default value of use_al t er nat e_sour ce to true for all
users for all future sessions for all commands to which the option applies,
place the following line in the / var/ adni sw def aul t s file:

use_al ternat e_source=true

To change the default value of use_al t er nat e_sour ce to false for your

own invocations of the command, place the following line in your
$HOWE . swdef aul t s file:

swi nstal | .use_al ternate_source=fal se

60

Chapter 1

CAUTION

Introduction to Software Distributor
Working from the Command Line

To start an interactive swinstall session using the options stored in
ny_instal |l _defaul ts tooverride any system-wide or personal defaults
file values:

swinstall -i -X ny_install _defaul ts=true

To start an interactive install session and reset the
use_al t er nat e_sour ce default for this session only:

swinstall -i -x use_alternate_source

See Appendix A, “Command Options,” on page 421 for a complete listing
of defaults and their values and descriptions.

Changing the default values for command options can cause harmful
results if you specify inappropriate values.

Session Files

Before any SD-UX task starts, the system automatically saves the
current command options, source information, software selections, target
selections, etc., into a session file. You can then re-use this session
information at a later time, even if the command fails.

Session information is saved in the $HOME/ . sw/ sessi ons/ directory as
comand. | ast in which conmand is the name of the command. Each time
you save a session file, it overwrites the previously stored one. (To save
multiple session files, you can rename each session file after you invoke
the command.)

To re-use the automatically saved session file, invoke the command with
the - S sucomand. | ast argument. For example:

swinstall -S swinstall.last

If you want to save a session file to somewhere other than the default
sessions directory, use the - Csessi on_fil e argument and supply your
own absolute path to the file you wish to save. If you do not specify a
directory, the default location for the session file is

$HOME/ . sw sessi ons/ .

To re-execute a session from a command line, specify the session file as
the argument for the - S sessi on_fi | e option.

Chapter 1

61

Introduction to Software Distributor
Working from the Command Line

Note that when you re-execute a session file, the session file values take
precedence over values in the system defaults file or personal defaults
file. Likewise, any command line options or parameters that you specify
when you invoke the command take precedence over the values in the
session file.

Here is a sample a session file. It uses the same syntax as the defaults
files:

swinstall session file

#

Fil enane

/users/fred/.sw sessions/sw nstall.last

Date saved 05/ 26/ 01 15:59: 41 MOT

SWi
SWi
SWi
SWi
SWi
SWi
SWi

nstall.
nstall.
nstall.
nstall.
nstall.
nstall.
nstall.

al | ow_ downdate = true

al l ow_i nconpatible = fal se
allow multiple versions = fal se
aut oreboot = fal se

aut or ecover _product = fal se
conpress_files = fal se
create_target_path = true

(A typical swinstall session file has approximately 70 lines.)

62

Chapter 1

Table 2-1

Installing Software
Installing Software

This chapter discusses how to use the swinstall, swconfig, and swverify
commands to install, configure, and verify software.

¢ swinstall installs software from a depot and performs automatic
configuration of software.

¢ swconfig lets you configure, unconfigure, or reconfigure previously
installed software.

¢ swrverify lets you check that software was installed correctly and run
scripts to perform additional verification tasks or fix specific
problems.

Chapter Topics

Topics:

“Installation with swinstall” on page 64

“Configuring Your Installation (swconfig)” on page 82

“Verifying Your Installation (swverify)” on page 89

Chapter 2

63

Installing Software
Installation with swinstall

Installation with swinstall

The swinstall command installs software from a software source (a depot
or physical media) to your local host.

Features and Limitations

e Optional GUI.

¢ Compatibility filtering to ensure the software will run on the
installed system.

e Ability to perform kernel rebuilding or rebooting.

¢ Automatic use of dependencies to automatically select software on
which to operate (in addition to any software you specify directly).

e Ability to run control scripts as part of the installation:

Checkinstall Analyses each target to determine if the
installation and configuration can take place.

Preinstall Performs file operations (such as removing obsolete
files) before installation of software files.

Request Requests an interactive response from the user as
part of the installation or configuration process.
(Executed by swask, swconfig, and swinstall.)

Configure Configures installed filesets or products. (See
“Configuring Your Installation (sweconfig)” on
page 82.)

Postinstall Performs additional install operations (such as

resetting default files) immediately after a fileset
or product has been installed.

Unpostinstall Undoes a postinstall script in case swinstall must
initiate recovery during the installation process.

Unpreinstall An undo preinstall script in case SD must initiate
recovery during the install process.

(See Chapter 11, “Using Control Scripts,” on page 369)

e Software can be installed to alternate root directories.

64 Chapter 2

Overview

Table 2-2

Step I: Start-Up

Installing Software
Installation with swinstall

Installing with the GUI

This section provides an overview of the swinstall GUI.

¢ In general, all information presented in “Installing from the
Command Line” on page 73 also applies to the swinstall GUL

e This section also refers to additional information about standard
GUI elements, discussed in “Using the GUI and TUI Commands” on
page 35.

e All information in this section also applies to the TUI program unless
otherwise noted. See “The Terminal User Interface” on page 35 for
more information.

There are five steps in the GUI install process:

GUI Installation Steps

I. Start-Up Start the swinstall GUI.
II. Select Provide the location of the
Source software depot from which the

software will be installed.

II1. Select Choose the software to install.
Software

IV. Analysis Analyze (preview) the
(Preview) installation to determine if the

selected software can be
installed successfully.

V. Installation Perform the actual software
installation.

To start the GUI or TUI for an install session, type:
[usr/ sbi n/ swi nstall

The GUI is automatically invoked unless you also specify software on the
command line. To invoke the GUI and specify software, include the - i
option. For example, to use the GUI for a preview (analysis only) session
with BUNDLEL, type:

swinstall -i -p /MDepot/BUNDLEL

Chapter 2

65

Installing Software
Installation with swinstall

The Software Selection window appears with the Specify Source dialog
superimposed over it.

Step II: Select In this step, you must specify the source depot that contains the software
Source you want to install. The Specify Source dialog (Figure 2-1, “Specify
Source Dialog,”) automatically lists the local host and default depot path.

(This step is skipped if you include the - s sour ce option when you
invoke the GUI.)
Figure 2-1 Specify Source Dialog

Specify Source (swbash3)

Specify the source type, then host name, then path on that host.

Source Depot Type: Network Directory/CDROM Find Local CD
Source Host Name... |swbash3:
Source Depot Path... |ftetftmpfcontro| ler/depot. 1]
OK Cancel Help

1. (Optional) To specify another host system, type a source host name,
or:

a. Click on the Source Host Name button. The system displays a
dialog that lists all host system names contained in the
def aul t s. host s file (BHOVE . sw def aul t s. host s or
/var/ adm sw def aul t s. host s).

b. Choose a host name from the list.

c. Click OK. The host name appears in the appropriate box in the
Specify Source dialog.

2. (Optional) To specify the path to the depot, type a new path, or:

a. Click on the Source Depot Path button to display a list of
registered depots on the source host.

b. Highlight one of the depots.
c. Click OK to make it appear in the Specify Source dialog.

3. Click OK. The Specify Source dialog closes, and the Software
Selection window displays the software contained in the depot you
specified.

66 Chapter 2

Step lll: Select
Software

Figure 2-2

NOTE

Installing Software
Installation with swinstall

In this step, you use the Software Selection window to select the software

you want to install.

swinstall Software Selection Window

D Insta
File View Options Actions Help

Source: swbash3:/var/spool/sw
Target: swbash3:/

Only software compatible with the target is available for selection.

Top (Bundles and Products) 1 of © selected
Marked? Name Revision Information Size(Kb)
BUNDLE1 : 1
BUNDLEZ 2 1.0 1
INITIALPRODUCT -> 1
minimal_ancestl —> 1.0 1
minimal ancestZ -> 1.0 1

ET

[« T

1. Select software from the object list:

a. Highlight an item
b. Select Actions—Mark For Install
—or —
Right-click to display the pop-up, then select Mark For Install

The Mar ked? flag in the object list changes to Yes to match your
selection. (The flag Parti al may appear if you select only a
component of a software object or if such components are
automatically selected due to dependencies.)

If multiple versions of a product exist in the same depot, SD-UX lets

you select only one version during each installation session.

Chapter 2

67

Installing Software
Installation with swinstall

2. (Optional) Use choices from the Actions menu:

Match What Target Has examines your current Installed Product
Database to match your existing filesets with new filesets (those
with the same names) that you are going to install. This feature
is most helpful when you are updating a system to newer
versions of the same software. This option can be set from the
Options Editor.

Add Software Group displays a list of previously saved software
group files or lets you specify a directory. Selecting a file adds the
software selections in the file to any selections you have already
made in the Software Selection window.

Save Software Group lets you save your current list of marked
software as a group.

Manage Patch Selections lets you select from a list of patches to
install, select filters for patches, and set other patch options. (See
“Installing Patches” on page 77 for more information.)

Change Source... cancels your software selections and returns you
to the Specify Source dialog.

Add New Codeword lets you add a new codeword to unlock
protected software. (This option is available only when SD-UX
detects that the source contains protected software.)

Change Target... displays the Select Target Path dialog. This lets
you specify an alternate root for products that are relocatable.

Show Description of Software (available only for a single item
highlighted in the object list) displays more information on the
selected software.

3. Select Actions—iInstall to start the analysis (preview) step. The
Analysis dialog appears.

68

Chapter 2

Step IV: Analysis
(Preview)

Figure 2-3

Installing Software
Installation with swinstall

In this step, SD-UX analyzes the software you have selected.

The Analysis window displays status information about the analysis
process. When the analysis is complete and the host status shows Ready,
click OK to start the actual installation (see “Step V: Installation” on
page 72). The Analysis dialog is then replaced by the Install dialog.

If you started a preview session, the install stops after the analysis.
Clicking OK returns you to the Software Selection window.
Analysis Dialog

Install Analysis (swbash3)

After Analysis has completed, press "OK’ to proceed, or "CANCEL’
to return to prier selection screen.

Target : swhash3:/
Status : Ready
Products Scheduled : 1 of 1
Froduct Summary. .. Logfile... Disk Space... Re—analyze
OK Cancel Help

The following actions are available:

e Product Summary gives additional information about the product or
bundle and provides a Product Description button that displays
information about additional information about dependencies,
copyright, vendor, etc.

e Logfile presents a scrollable view of detailed install information
written to the logfile.

¢ Disk Space displays the Disk Space Analysis window (Figure 2-4,
“Disk Space Analysis Window,”) which shows:

— The file system mount point,

— How much disk space was available before installation,
— How much will be available after installation,

— What percent of the disk’s capacity will be used.

— How much space must be freed to complete the operation.

Chapter 2

69

Installing Software
Installation with swinstall

Menu choices in this window let you:

— Search the object list.

— Open items to look at the projected size requirements for specific
filesets.

® Re-analyze repeats the analysis process.

Figure 2-4 Disk Space Analysis Window

SD Install — Disk Space Analysis (swbash3)

e B e Y I e —

70 Chapter 2

Installing Software
Installation with swinstall

When Analysis completes, the status for any host displays as either
Ready or Excl uded from task. If any of the selected software can be
installed onto the host, the status shows Ready. If none of the selected
software can be installed onto the host, the status shows Excl uded from
t ask.

The following list summarizes the status results. You can find details
about most problems by clicking the Logfile button.

Ready There were no errors or warnings during analysis. The
installation may proceed without problems.

Ready with VArni ngs
Warnings were generated during the analysis. Errors
and warnings are logged in the logfile.

Ready with Errors
At least one product selected will be installed or copied.
However, one or more products selected are excluded
from the task because of analysis errors. Errors and
warnings are logged in the logfile.

Communi cation failure

Contact or communication with the intended target or
source has been lost.

Excl uded due to errors

Some kind of global error has occurred. For example,
the system might not be able to mount the file system.

D sk Space Failure
The installation will exceed the space available on the
intended disk storage. For details, click the Disk Space
button.

The Product s Schedul ed row shows the number of products ready for
installation out of all products selected. These include:

e Products selected only because of dependencies
e Partially selected products
e Other products and bundles that were selected

Chapter 2

71

Installing Software
Installation with swinstall

Step V: Installation In this step, SD-UX proceeds with the actual installation.

After you click OK in the Analysis window, SD-UX starts installation and
displays the Install Window, which shows status information.

Figure 2-5 Install Window

Install Window {swhash3)

These action buttons are available:

Done returns you to the Software Selection Window. You can then
begin another install or exit the GUI (File—Exit).

Product Summary display installation and product information (name,
revision, installation results, installation summary).

Logfile displays the logfile.

(Appears only for kernel installations) Resume restarts a suspended
installation. This lets you fix problems before continuing.

(Appears only for kernel installations) Abort cancels a suspended
installation.

Installation may suspend if:

File loading fails

An error occurs in a script

Customization for kernel-related filesets fails
A kernel build fails

A tape change is needed (if you are installing from multi-tape media)

72

Chapter 2

Swinstall syntax

Options and
Operands

Installing Software
Installation with swinstall

Installing from the Command Line

The syntax for swinstall is:

swi nstal |l [XTool kit Qotions] [-i]l[-pl[-r][-v]I[-ccatal ogl
[-Csession filel[-f software filel[-Qdate] [-s sourcel
[-Ssession file]ll-t target _filell[-x option=val uel
[-Xoption filel[software_sel ections] [@t arget _sel ecti ons]

XToolkit Options X window options for the GUI. See “XToolkit Options
and Changing Display Fonts” on page 53.

- Run the command in interactive mode by invoking the
GUI or TUI. See “Installing with the GUI” on page 65.

-p Preview the install task (perform analysis only).

-r Operate on an alternate root directories. See
“Installing to an Alternate Root” on page 80.

-V Turn on verbose output to st dout and display all
activity to the screen.

-c catal og Store a copy of a response file or other files created by a
request script in catalog. See “Requesting User
Responses (swask)” on page 407.

-Csession file
Save the current option and operand values to
session_file for re-use in another session. See “Session
Files” on page 61.

-f software file
Read the software selections from software_file instead
of (or in addition to) software you specify on the
command line. See “Software Files” on page 58.

-Q date Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 234 and Chapter 6, “Remote
Operations Overview,” on page 189

-s source Use the software source specified by source instead of
the default, / var / spool / sw. The syntax is:

[host:]I/ di rect ory]

Chapter 2

73

Installing Software

Installation with swinstall

Changing
Command Options

host may be a host name, domain name, or internet
address (for example, 15. 1. 48. 23). directory is an
absolute path.

-Ssession file
Use option and operand values saved from a previous
installation session and stored in session file. See
“Session Files” on page 61.

-t target_file
Read target selections from a target_file instead of (or
in addition to) targets you specify on the command line.
See “Target Files” on page 59.

-Xx comand_opt i on=val ue
Sets command_opt i on to val ue, overriding default
values or values in options files. See “Changing
Command Options” on page 74.

-Xoption file
Read session options and behaviors from opt i on _file.
See “Changing Command Options” on page 74.

software_sel ections
One or more software objects to be installed. See
“Software Selections” on page 56.

target_sel ecti ons
The target on which to install the software selections.
See “Target Selections” on page 58.

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swinstall.

74

Chapter 2

Table 2-3

Installing Software
Installation with swinstall

swinstall Command Options and Default Values

admin_directory=/var/adm/sw
agent_auto_exit=true
agent_timeout_minutes=10000
allow_downdate=false
allow_incompatible=false
allow_multiple_versions=false
allow_split_patches=false
ask=false

autoreboot=false
autorecover_product=false
autoremove_job=false
autoselect_dependencies=true
autoselect_patches=true
autoselect_reference_bundles=tr
ue

codeword=
compress_index=false
controller_source=
create_target_path=true
customer_id=
defer_configure=false
distribution_source_directory=
/var/spool/sw
enforce_dependencies=true
enforce_dsa=true
enforce_kernbld_failure=true
enforce_scripts=true
installed_software_catalog=prod
ucts

job_title=

layout_version=1.0
log_msgid=0

logdetail=false
logfile=/var/adm/sw/swinstall.log
loglevel=1

match_target=false

max_targets=25
mount_all_filesystems=true
0s_name

os_release

patch_filter=
software_specification
patch_match_target=false
patch_save_files=true
polling_interval=2
preview=false
register_new_root=true
reinstall=false
reinstall_files=false
reinstall_files_use_cksum=t
rue

retry_rpc=1
retry_rpc_interval=
reuse_short_job_numbers=tr
ue

rpc_binding_info=
ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]
rpc_timeout=5
run_as_superuser=true
select_local=true
software=
software_view=all_bundles
source=
source_cdrom=/SD_CDROM
source_tape=/dev/rmt/Om
source_type=directory
targets=
use_alternate_source=false
verbose=1
write_remote_files=true

Chapter 2

75

Installing Software

Installation with swinstall

For More
Information

NOTE

See Appendix A, “Command Options,” on page 421 for more information
about setting options and a complete listing and description of each
option.

Installation Tasks and Examples

This section provides examples of commands for installing software
products. Note that The \ * is an optional shorthand wildcard meaning
“all products and filesets or all available software.”

To start an install session via the command line, you must assemble any
options (if needed), host and source names, and software selections into a
command string. For example:

swinstall -p -s softsource -f softlist \
@nyhost : / nydi rectory

The @nyhost :/ nydi r ect ory is optional if you are installing to your local
host and default directory (root).

If you do not specify a source, swinstall uses the local host’s default depot
directory, / var / spool / sw.

¢ To install a pre-determined list of software products in the file
nysoft that are physically on a CD-ROM (mounted locally at
/ mt/ cd) to the default directory (/) on the local host:

swinstall -f nysoft -s /mt/cd

e To select all software in the default depot (/ var/ spool / sw) located
on a host named ser ver to the default directory on host nyhost and
preview the process (- p) without actually installing:

swinstall -p -s server * @nyhost

A depot location (: / depot) is not specified because it is assumed that
the software is located in the default / var/ spool / swon server and
will be installed at / on nyhost. The - p analysis option is explained
under “Changing Command Options” on page 87.

e To select all products named Cand Pascal from the default depot on
the host named sw server and start an interactive GUI session (-i):

swinstall -i -s sw server C Pascal

76

Chapter 2

Installing Software
Installation with swinstall

¢ To update HP Omniback software (already installed in the default
directory on the local host) with a newer version from a CD-ROM
mounted at / mt / cd:

swinstall -s /mt/cd Qmi back

Updating to HP-UX 11i

For complete instructions for updating from a previous HP-UX release to
HP-UX 11i, use the new update-ux command, as explained in Chapter 2
of HP-UX 11i Installation and Update Guide.

This document and complete OS documentation is available on your
HP-UX Instant Information CD-ROM and at:

htt p: // docs. hp. coml hpux/ os/ 11i /

Installing Patches

swinstall has a variety of patch management features, including a patch
management dialog in the GUIL. See Chapter 5, “Managing Patches,” on
page 163 for complete details on patches and using the swinstall GUI
patch features.

Recovering Updated Files

The aut or ecover _pr oduct option lets you automatically recover or roll
back to original product files if you start an install and the process fails.

When updating files, swinstall removes the original files as they are
updated. If an error occurs while swinstall is loading new filesets, the
product being loaded is marked as corrupt, the original files are lost, and
you must repeat the installation.

By setting the aut or ecover product option to true, all filesets that are
updated are first saved as backup copies. They are not removed until all
filesets within the product finish loading. If swinstall terminates because
of an error, you can correct the error then re-run swinstall. swinstall
automatically continues the load process where it was interrupted.

Chapter 2 77

Installing Software

Installation with swinstall

CAUTION

Most HP-UX products have preinstall and postinstall scripts without
accompanying undo scripts. This negates any advantage of using the
aut or ecover _pr oduct s option. Use aut or ecover _product s only with
software that has the associated undo scripts.)

Installing Software That Requires a System Reboot

Software packaged with the i s_r eboot attribute set to true requires the
host to be rebooted after the software is installed. However, when
installing to alternate root file systems, the host will not be rebooted.

If a local installation entails a reboot, the system reboots the target and
the controller, so there is no process left to report success or failure.
(SD-UX does not automatically reconnect to the target after a reboot.)

To find out if a software product requires the local host to be rebooted,
get a description of the software either from the Software Selection
window, using the menu item Show Description of Software, or from the
Analysis dialog using the Product Summary and Product Description
buttons.

Using Software Codewords and Customer IDs

To protect software from unauthorized installation, HP (and other
vendors) use special codewords and customer identification numbers to
“lock” the software to a particular owner. These codewords and customer
IDs are provided to you when you purchase the software (or receive it as
update). HP lists them on the Software Certificate which is packaged
with the software.

To properly store the customer_id/codeword for a CD-ROM, you can run
swinstall (or swcopy or swlist) on the host serving the CD-ROM. After
the codeword has been stored, clients installing software using that host
and CD-ROM as a source will no longer require a codeword or
customer_id.

SD searches the . codewor ds file on the server that is providing
protected software to other hosts. It looks for valid customer_id/codeword
pairs. In doing so, SD eliminates the need for you to enter codewords and
customer_ids on every host that is “pulling” the software.

This is a time saver if you are updating multiple systems.

78

Chapter 2

Installing Software
Installation with swinstall

SD-UX prompts you for these codewords or numbers prior to the
installation of protected software. You can enter or change the numbers
via the GUI using the Add New Codeword choice from the Actions menu in
the GUI, or by using the appropriate default option (- x codewor d=xxxx
and - X cust oner_i d=xxx) on the command line.

For example, if you want to store the codeword 123456789101bcdf (from
the / GO RQVimount point) and your customer_id was xyzCor p, you would
enter on the command line:

swinstall -p -x customer_id=xyzCorp \
- X codewor d=123456789101bcdf \
-s /CD_ROM

(Since the purpose of this command is only to store codewords and
customer IDs, the - p option runs the command in preview mode so that
no actual software installation takes place.)

See Appendix A, “Command Options,” on page 421 for more information
on codewor d and cust oner _i d options.

Re-installing Software Distributor

The software product called SW D ST provides all Software Distributor
functionality, commands, and tools. If the files that make up SW-DIST
are deleted or corrupted, you may need to re-install the product. This
process uses the new install-sd command, which is described in
Appendix C, “Replacing or Updating SD-UX,” on page 479.

Installing Multiple Versions

Your installation may commonly having multiple versions of a software
product installed at various hosts on the network. Multiple installed
version let you:

¢ Back out defective versions (by removing the new version and
reconfiguring the old version, if necessary)

¢ Let users migrate to newer software versions at their own pace

You can decide whether to allow multiple versions by controlling the

al l ow mul ti pl e_versi ons command option. If set to false, installed or
configured multiple versions (that is, the same product, but a different
revision, installed into a different location) are not allowed. While
multiple installed versions of software are allowed, multiple configured
versions are not recommended.

Chapter 2

79

Installing Software

Installation with swinstall

NOTE

Once multiple versions of software are installed into a location, you can
manage them by specifying the product attribute in the software
specification of SD-UX commands. (This is as opposed to specifying other
version attributes such as revision and architecture). This lets you
install old and new versions of software at the same time and configure
both versions (if the software packaging supports it).

You can avoid unauthorized, privately installed versions of software by
controlling access to the IPD and restricting the use of the swinstall tool.

Managing multiple versions of a software product on your system
requires close attention to the cross-product dependencies that may exist
for each version. When you installing multiple versions, make sure you
also install multiple versions of the cross-product dependencies. If the
dependencies are not relocatable and each version you want to install
depends on a different version of the same product, multiple versions of
the original product cannot be installed.

Installing to an Alternate Root

Software is usually installed relative to the primary root directory (/) but
you can also install to an alternate root directory.

The automatic configuration and compatibility filtering that is part of
the swinstall command is not performed when installing to an alternate
root. You can, however, perform configuration separately from
installation by using the swconfig command. See “Configuring Your
Installation (swconfig)” on page 82.

Compatibility Filtering and Checking

SD-UX normally filters out software products that are incompatible with
any selected targets. Compatible means that the architecture of the
hardware matches that required by the software (determined by the
system uname attributes). It also means that the OS version is the
proper one for the software. The actual check for incompatible software
is performed during the selection phase. Compatibility filtering and
checking are controlled by the al | ow_i nconpat i bl e option and depend
on the host’s unane attributes.

80

Chapter 2

NOTE

Table 2-4

Installing Software
Installation with swinstall

HP strongly advises that you do not install software that is incompatible
unless you are advised to do so by your HP Support representative.

Product Compatibility
Product
value

Product (Pattern to

attribute match) Target Root attribute
machi ne_type | ia64* IA uname -m
nachi ne_type | 9000/* IA or PA unane -m
0S_nane HP-UX HP-UX uname -s
0s_rel ease ?2.11.% B.11.11 unane -r
0S_versi on * C unane -v

NOTE

If al | ow_i nconpati bl e=f al se (the default), swinstall restricts the
installation of incompatible software and automatically filters the
products on the source. The Software Selection window shows only those
products compatible with the hardware and OS of all target systems.

Ifal | ow_i nconpat i bl e=t r ue, swinstall allows the installation of any
software. The GUI displays all products on the source for selection.

You can also use the -x 0s_nane and -x o0s_r el ease options to check
compatibility. During an OS update, for example, if a system has been
installed as 11.0/32 bit and you wish to update to the 64-bit version of
HP-UX, you can make the system appear as a 64-bit system for the
purpose of compatibility checking against the merged depot by specifying
the options -x os_name=HP- UX: 64 and - x os_r el ease=B. 11. 00. (You
can also specify these options at a fileset level.)

Compatibility filtering does not apply to alternate root file systems. You
must select software that you know to be compatible with the alternate
root.

Chapter 2

81

Installing Software

Configuring Your Installation (swconfig)

Configuring Your Installation (swconfig)

The swconfig command runs configuration scripts. Although swinstall
and swremove automatically run configuration or unconfiguration
scripts, sweonfig lets you work independently of these commands. This
lets you:

Execute scripts to address problems if a configuration fails, is
deferred, or must be changed.

Explicitly configure, unconfigure or reconfigure any installed
software that has associated configuration scripts.

Configure or unconfigure hosts that share software located on
another host.

Features and Limitations

sweonfig can execute these kinds of scripts:

Configure Configures installed filesets or products. (Executed
by swconfig and swinstall.)

Request Requests an interactive response from the user as
part of the configuration process.

Unconfigure Undoes configurations performed by configure
scripts. For example, removing configuration from
the host’s / et ¢/ profil e or/sbi n/ rc files. This
moves the software from the configured state back
to installed.

The swconfig command runs only from the command line interface.
swconfig configures the host on which the software will run.
Filesets or products can include configure (unconfigure) scripts.

swinstall and swremove do not automatically not run configuration
scripts when you specify an alternate root directory with these
commands. You must run swconfig to configure or unconfigure
alternate roots.

82

Chapter 2

NOTE

Phase |: Selection

Phase II: Analysis

Installing Software
Configuring Your Installation (swconfig)

e Automatic configuration can also be postponed on software installed
to the root directory, / (for example, when multiple versions are
installed), by using the def er _confi gur e command option with
swinstall or swremove.

e By default, swconfig only supports configuration of compatible
software. You can switch this feature on or off with the
al I ow_i nconpat i bl e option.

e [f a fileset relies on another software product for proper operation,
that software product must be in a configured state and is controlled
by the enf or ce_dependenci es option.

e sweconfig configures only one version of a fileset at a time,
controllable through the al | ow_mul ti pl e_ver si ons option.

e swconfig moves software between the installed and configured
states.

¢ swconfig uses dependencies to automatically select software on
which to operate (in addition to any software you specify directly).
See “Software Dependencies” on page 33 for more information.

When a swinstall session includes a reboot fileset (such as when you
update the core HP-UX operating system to a newer release), the
configure scripts are automatically run as part of the system start-up
process after the system reboots. You do not have to run swconfig to
complete the configuration.

The Configuration Process

The configure process has three phases: selection, analysis, and
configuration.

In this phase, swconfig resolves the software selections.

In this phase, swconfig determines if the software can be configured
successfully (includes checks of software existence, prerequisites). If you
execute swconfig with the -p (preview) option, the command stops after
completing analysis and does not change anything on the host.

Chapter 2

83

Installing Software

Configuring Your Installation (swconfig)

Analysis takes place on the local host. The configuration phase will not
take place if any errors occur during analysis. Errors in the analysis
phase will only exclude those products that had errors in them. If only
war ni ngs occur, the task continues.

The sequential analysis tasks on the host are:

1. Initiate analysis.
2. Process software selections:

Get information from the Installed Product Database and check for
compatibility.

The system checks that all software is compatible with the host’s
unarre attributes. This check is controlled by the

al | ow_i nconpat i bl e command option. If it is set to false, the
system produces an error; if set to true, it produces a warning.

3. Check state of versions currently installed:

e Ifthe product is non-existent or corrupt, the task issues an error
that says the product cannot be configured and to use swinstall
to install and configure this product.

e Ifthe versions currently installed are not configured and if the
- U (unconfigure) option is set, the system issues a note that the
selected file or fileset is already unconfigured.

e Ifthe state of versions currently installed is configured, the
check is affected by the r econfi gur e option. A note saying the
fileset is already configured and will (r econf i gur e is true) or
will not (r econfi gur e is false) be reconfigured is issued.

4. Check for configuring a second version:

If the al ow _nul ti pl e_ver si ons option is set to false, an error is
generated stating that another version of this product is already
configured and the fileset will not be configured. If the option is set to
true, the second version is also configured.

5. Check states of dependencies needed:

e An error or warning is issued if a dependency cannot be met.
This is controlled by the enf or ce_dependenci es option. If
enf or ce_dependenci es is set to true the fileset will not be
configured. If enf or ce_dependenci es is false, the fileset will be
configured anyway.

84

Chapter 2

Phase IlI:
Configuration

Installing Software
Configuring Your Installation (swconfig)

e Ifthe dependency is a prerequisite, the configuration fails.

¢ Ifthe dependency is a corequisite, the configuration of this fileset
will likely succeed, but the product may not be usable until its
corequisite dependency is installed and configured.

In this phase, the actual software configuration takes place. Configure or
unconfigure scripts are executed and the software state is changed from
installed to configured (or unconfigured).

The purpose of configuration is to configure the host for the software and
configure the product for host specific information. For example,
software may need to change the host’s . r ¢ setup, or the default
environment set in / et ¢/ profi | e. Or you may need to ensure that
proper codewords are in place for that host or do some compilations.
Unconfiguration reverses these steps.

The sequence of configuration tasks is shown below. Products are
ordered by prerequisite dependencies, if any. Fileset operations are also
ordered by any prerequisites.

1. (Un)configure each product.
2. Run scripts for associated filesets, checking return values.

If an error occurs, the fileset is left in the installed state. If a warning
occurs, the fileset will still be configured.

3. Update the IPD to show the proper installed or configured state.

Configure scripts must also adhere to specific guidelines. For example,
these scripts are only executed in the context of the host that the
software will be running on, so they are not as restrictive as customized
scripts. For more information on scripts, see Chapter 11, “Using Control
Scripts,” on page 369.

Chapter 2

85

Installing Software

Configuring Your Installation (swconfig)

Syntax

Options and
Operands

Using swconfig

sweconfig [-pl [-ul [-v] [-c catal og] [-Csession file€]

[-f software filel [-Qdatel [-Ssession_filell-t target_filel
[-x option=val ue] [- X option filel

[sof t ware_sel ections] [@t ar get _sel ecti ons]

-c catal og

Preview a configuration task by running it through the
Analysis Phase and then exiting.

Unconfigure the software instead of configuring it.

Turn on verbose output to st dout and display all
activity to the screen.

Store copy of a response file or files created by a
request script. See Chapter 11, “Using Control Scripts,”
on page 369.

-Csession file

Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.

-f software file

-Qadate

Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 58.

Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 234 and Chapter 6, “Remote
Operations Overview,” on page 189

-Ssession file

-t target_file

Run the command based on values saved from a
previous installation session, as defined in
session file. See “Session Files” on page 61.

Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 59.

86

Chapter 2

Changing
Command Options

Table 2-5

Installing Software
Configuring Your Installation (swconfig)

- X opti on=val ue
Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Changing
Command Options” on page 87.

-Xoption file
Read session options and behaviors from option file.
See “Changing Command Options” on page 87.

sof tware_sel ecti ons
The software objects to be configured. See “Software
Selections” on page 56.

target_sel ecti ons
The target of the command. See “Target Selections” on
page 58.

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the options and default values that apply to swconfig.

swconfig Command Options and Default Values

¢ admin_directory=/var/adm/sw ¢ logfile=/var/adm/sw/swconfig.lo

e agent_auto_exit=true g

e agent_timeout_minutes=10000 | ¢ loglevel=1

e allow_incompatible=false e mount_all_filesystems=true

e allow_multiple_versions=false e preview=false

e ask=false ¢ reconfigure=false

e autoremove_job=false ¢ reuse_short_job_numbers=true

e autoselect_dependencies=true ¢ rpc_binding info=

e autoselect_dependents=true e ncacn_ip_tcp:[2121]

e compress_index=false e ncadg_ip_udp:[2121]

e controller_source= ® rpc_timeout=5

¢ enforce_dependencies=true ¢ run_as_superuser=true

¢ enforce_scripts=true e gselect_local=true

¢ installed_software_catalog=produ | ® software=
cts ® targets=

* job_title= e verbose=1

¢ log msgid=0 e write_remote_files=false
logdetail=false

Chapter 2

87

Installing Software

Configuring Your Installation (swconfig)

For More
Information

See Appendix A, “Command Options,” on page 421 for more information
about setting options and a complete listing and description of each
option.

Configuration Tasks and Examples

To configure pr oduct A located in the root on the local host:
swconfig product A

To unconfigure the software selections in the file nysof t that are
installed in the default directory on the local host:

sweonfig -u -f nysoft

To reconfigure the Omniback product using the default option values:
sweonfig -x reconfigure=true Omi back

To configure a particular version of Omniback:

swconfi g Qmi back, r=2.0

To configure the C and Pascal products on the local host:

swconfig cc pascal

To configure Pr oduct 1, use any associated response files generated by a
request script, and save response files under / t np/ r espl:

sweonfig -x ask=true -c /tnp/respl Productl
To reconfigure the HP Omniback product:
sweonfig -x reconfigure=true Omi back

To configure the version of HP Omniback that was installed at
/ opt/ Omi back_v2. 0:

swconfi g Qmi back, | =/ opt/ Qmi back_v2.0

To unconfigure the software_selections listed in the file
/tnp/install.products on the hosts listed in the file
/trp/install.hosts:

sweonfig -u -f /tnp/install.products \
-t /tnp/install.hosts

88

Chapter 2

Installing Software
Verifying Your Installation (swverify)

Verifying Your Installation (swverify)

The swverify command verifies depot, installed, or configured software
products on the specified host.

Features and Limitations

Determines whether installed or configured software is compatible
with the host on which that software is installed.

Makes sure that all dependencies (prerequisites, corequisites) are
being met (for installed software) or can be met (for copied software).

Executes verification scripts that check the correctness of the
product’s configuration (that is, scripts verify that the installed state
of the software is configured).

Executes fix scripts to correct or report problems with installed
software:

Fix Corrects and reports on problems in installed
software. Typical uses are to create missing
directories, correct file modifications (mode, owner,
group, major, minor), and to recreate missing
symbolic links.

Verify Verifies the configuration of filesets or products, in
addition to the standard swverify checks.

(See Chapter 11, “Using Control Scripts,” on page 369 for more
information.)

Reports missing files, checks all file attributes including
permissions, file types, size, checksum, mtime, link source and
major/minor attributes.

Uses dependencies to automatically select software on which to
operate (in addition to any software you specify directly). See
“Software Dependencies” on page 33 for more information.

Chapter 2

89

Installing Software

Verifying Your Installation (swverify)

Phase I: Selection

Phase II: Analysis

The Verification Process

The software verification process has only two phases: selection and
analysis.

This phase consist of swverify resolving all information on the command
line, including all necessary host, software, dependency, and product
information.

The analysis phase for swverify takes place on the host. The host’s
environment is not modified.

The sequential analysis tasks on each host are:

1. Initiate analysis

2. Process software selections. The system accesses the Installed
Products Database (IPD) or depot catalog to get the product
information for the selected software:

For installed software, the system checks that all products are
compatible with its uname attributes. This check is controlled by the
default option al | ow_i nconpati bl e:

e Ifallow.inconpatibl eis set to false, the system produces an
error stating that the product is not compatible with the host.

e Ifallow.inconpati bl eis set totrue, a war ni ng is issued stating
that the product is not compatible.

3. Check for correct states in the filesets (installed, configured or
available). For installed software, swverify also checks for multiple
versions that are controlled by the al | ow_mul ti pl e_versi ons
option:

e Ifallow multiple_ versions is false, an error is produced that
multiple versions of the product exist and the option is disabled.

e Ifallow nultiple versionsistrue, awarning is issued saying
that multiple versions exist.

4. Check dependencies. An error or warning is issued if a dependency
cannot be met. Dependencies are controlled by the
enf or ce_dependenci es option:

e Ifenforce_dependenci es is true, an error is generated telling
you the type of dependency and what state the product is in.

90

Chapter 2

Installing Software
Verifying Your Installation (swverify)

If enf or ce_dependenci es is false, a war ni ng is issued with the
same information.

If the dependency is a corequisite, it must be present before the
software will operate.

If the dependency is a prerequisite, it must be present before the
software can be installed or configured.

5. Execute verify or fix scripts on installed software in prerequisite
order.

A verify script is used to ensure that the configuration of the
software is correct. Possible vendor-specific tasks for a verify script
include:

Determine active or inactive state of the product.
Check for corruption of product configuration files.

Check for (in)correct configuration of the product into the OS
platform, services or configuration files.

Check licensing factors.

Vendor-supplied scripts are executed and the return values generate
an error (if 1) or a war ni ng (if 2).

Scripts are executed in prerequisite order.

6. Perform file-level checks for:

Contents (mtime, size and checksum) for control files
Contents (mtime, size and checksum) for files

Missing control _fil es, files and directories
Permissions (owner, group, mode) for installed files

Proper symlink values

Chapter 2

91

Installing Software

Verifying Your Installation (swverify)

Syntax

Options &
Operands

Using swverify

swerify [-d|-r] [-FI[-v]l[-Csession filel[-f softvare_filel
[-Qdatel [-Ssession file]l[-t target filell-x option=val uel
[-Xoption file]lsoftware_sel ections][@target _sel ecti ons]

-d

Operate on a depot rather than installed software. See
“Verifying a Depot (swverify -d)” on page 161

Operate on an alternate root rather than /. Verify

scripts are not run.

Turn on verbose output to st dout and display all
activity to the screen. Lets you see the results of the
command as it executes.

-Csession file

-F

Run the command and save the current option and
operand values to sessi on_fi | e for re-use in another
session. See “Session Files” on page 61.

Run a fix script. See “Fix Scripts” on page 392.

-f software file

-Qadate

Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 58.

Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 234 and Chapter 6, “Remote
Operations Overview,” on page 189

-Ssession file

Run the command based on values saved from a
previous verify session, as defined in session _file.
See “Session Files” on page 61.

-t target_file Read a list of target selections from a separate file

instead of (or in addition to) the command line. See
“Target Files” on page 59.

- X opti on=val ue

Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Changing
Command Options” on page 93.

92

Chapter 2

Changing
Command Options

Table 2-6

For More
Information

Installing Software
Verifying Your Installation (swverify)

-Xoption file
Read session options and behaviors from option file.
See “Changing Command Options” on page 93.

software_sel ecti ons
The software objects to be verified. See “Software
Selections” on page 56.

target_sel ecti ons
The target of the command. See “Target Selections” on
page 58.

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swverify.

swverify Command Options and Default Values

¢ admin_directory=/var/spool/sw e enforce_dependencies=true

e agent_auto_exit=true ¢ installed_software_catalog=prod

e agent_timeout_minutes=10000 ucts

e allow_incompatible=false ® job_title=

e allow_multiple_versions=false e log_msgid=0

e autoremove_job=false ¢ logdetail=false

e autoselect_dependencies=true e logfile=/var/adm/sw/swverifylog

e check contents=true ¢ loglevel=1

¢ check _contents_uncompressed= ® mount_all_filesystems=true
false e reuse_short_job_numbers=true

¢ check_contents_use_cksum=tru e rpc_binding_info=
e e ncacn_ip_tcp:[2121]

¢ check_permissions=true e ncadg_ip_udp:[2121]

¢ check_requisites=true ® rpc_timeout=5

e check_scripts=true ® run_as_superuser=true

e check volatile=false e gselect_local=true

e controller_source= e gsoftware=

e distribution_target_directory~# e verbose=1

var/spool/sw

See Appendix A, “Command Options,” on page 421 for more information
about setting options and a complete listing and description of each
option.

Chapter 2

93

Installing Software

Verifying Your Installation (swverify)

Verification Tasks and Examples

To verify an installed fileset nysoft. nyfil eset located on the default
depot at nyhost s, type:

swerify -d nysoft.nyfileset @nyhosts

(The @ sign and the nyhost target designation are optional because the
software being verified located in the default depot on the local host.)

To verify the C and Pascal products that are installed on the local host:
swerify C Pascal

To verify the HP Omniback product that is installed on the local host and
display detailed messages from the process (- v) on st dout :

swerify -v Qmi back

To verify the 2.0 version of Omniback that is installed on the local host at
/ opt/ Qmi back:

swerify Qmiback,r=2.0 @/ opt/QOmi back
Verify a particular version of HP Omniback:
swerify Qmi back, 1=/ opt/ Omi back_v2.0
Verify the entire contents of a local depot:

swerify -d *@var/spool / sw

94

Chapter 2

Table 3-1

Managing Installed Software
Managing Installed Software

This chapter presents an overview of managing non-depot software after
you have installed it. The swlist, swmodify, and swremove commands
help you perform these software management tasks:

Chapter Topics

Topics:

“Listing Your Software (swlist)” on page 96

“Modifying the IPD (swmodify)” on page 115

“Removing Installed Software (swremove)” on page 122

Chapter 3

95

Managing Installed Software
Listing Your Software (swlist)

Listing Your Software (swlist)

The swlist command creates customizable listings of the software
products installed on your local host or stored in depots for later
distribution.

swlist Features and Limitations
With swlist you can:

e Use an optional GUI.

e Specify the level (bundles, products, subproducts, filesets or files) to
show in your list.

e Specify a set of software attributes to display for each level. Software
attributes are items of information about products contained in the
Installed Products Database or in catalog files. These items can
include the product’s name or tag, its size (in Kbytes), revision
number, etc.

e C(Create a list of products, subproducts or filesets to use as input to the
swinstall or swremove commands.

¢ Display a table of contents for a software source.

¢ Display selected software attributes for each level.
¢ Show the product structure of software selections.
e List software stored in an alternate root directory.
¢ Display the depots on a specified host.

e List the categories of available or applied patches.

e List the values of a fileset’s applied patches.

96 Chapter 3

Figure 3-1

Managing Installed Software
Listing Your Software (swlist)

Using the swlist GUI

The sw i st -i command starts a swlist GUI program that lets you
interactively list software and display software information. The swl i st
-i -d command lets you display information about the software
available in a depot or on a physical media.

The swlist Browser

SD List = View Software (swhash3)
File View Options Actions Help

Target: swbash3:/

Top (Bundles and Products) 1 of 9 selected

Name Revision Information

HP-UX Media Kit (Reference Only. Sed

X A L 5. 16 6} y q
B3899EA == -10.20.09 HP C/ANSI C Developer's Bundle for |

[
B
BUNDLE1 -> 1
IncompatBundle bl 1 A Bundle which is always incompatib.
IndIncompatBun bl 1.0 Bundle - incompatible because it con
SW-DIST -> B.11.11.00.02 HP-UX Software Distributor

SW-ITL bl B.10.10.DEV Install Time Licensing

WDE == B.10.20.14 HP Wildebeest (HP WDB) Debugger
WDB-GUT -> B.10.20.14 GUI for the HP WDE Debugger

¢ Bundles and products are the default top-level display.
e To open an item on the list, double-click on the item.

¢ Double-clicking on a file displays the file attributes.

Searching and Moving Through the List
The following features help you search and move through the list:
e To search the current list, select File—Search...

e To display a pop-up menu of viewing options for an item, right-click
on the item. The pop-up options are:

— Open Item to show the contents of the item.

— Close Level to close the current item and displays the next higher
level of objects.

— Show Description of Software... to display attribute information
about the current item.

Chapter 3

97

Managing Installed Software
Listing Your Software (swlist)

Changing the View

Use the View menu to change the columns displayed, select filters, and
sort information:

e Columns displays the Columns Editor. You can choose which columns
of software information to display (i.e. software name, revision
number, information, size in Kbytes, architecture, category, etc.) and
their order.

¢ Filter... displays a dialog from which you can filter the display list
with logical and relational operators for each field.

e Sort... lets you select sort fields, order, and criteria for the
information displayed.

® Change Software View lets you toggle between a top-level view and a
products view.

e Change Software Filter... lets select from a list of predefined filters.
(Only applies to top-level software objects.)
Performing Actions

Use the Actions menu to open and close items on the display, show logfile
information, and show software descriptions:

e Open Item opens an item. (Same as double-clicking on the item.)
e Close Level closes the current level. (Same as double-clicking on
-(go up).

e Change Target opens a dialog box that lets you enter a path to select
an alternate root (for swl i st -i) or alternate depot (for
swist -i -d).

e Show Logfile displays the system logfile.

e Show Audit Log displays software depot audit information stored in
the audit log (for sw i st -i -d only). See “Source Depot Auditing”
on page 160 for more information.

e Show Description of Software displays attribute information about the
currently selected item.

98 Chapter 3

Syntax

Options and
Operands

Managing Installed Software
Listing Your Software (swlist)

Using the Command Line

swist [-d|-r]]1[-i]l[-R [-v] [-aattribute] [-c cat al og]
[-Csession filel [-f software filell-1 Ievelll-s sourcel
[-Ssession file]ll-t target filell[-x option=val uel
[-Xoption filel[software_sel ections] [@t arget _sel ecti ons]

-R

-aattribute

-c catal og

List products available from a depot. See “Listing the
Contents of a Depot (swlist -d)” on page 159.

Start the GUI. (See “Using the swlist GUI” on page 97.)
List products on an alternate root (instead of /).

Shorthand for
-1 bundle -I product -1 subproduct -I fil eset

Displays a specific attribute. To display multiple
attributes, specify multiple - a options. To list the full
set of attributes for a software object, use the -v option.
Note that the tag attribute is always displayed for
products, subproducts, and filesets. The path (filename)
attribute is always displayed for file objects. This
option does not apply if you use the - ¢ option.

List all attributes for an object if no - a option is
specified. (Vendor-defined attributes are not included.)
The output lists one attribute per line in the format:

attri bute_nane attribute_val ue

Writes full catalog structure information into the
directory specified by cat al 0g. You can use this
information for distributions and to list installed
software catalog information. All attributes down to
the file level and control scripts are written. If you use
this option, the - a and - | options do not apply. See
“Requesting User Responses (swask)” on page 407.

-Csession file

Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.

Chapter 3

99

Managing Installed Software
Listing Your Software (swlist)

-f software file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 58.

-1 level

List all software objects down to the specified level:
depot , bundl e, pr oduct , subproduct, fil eset or
file. (See the section “Listing Software by Levels” on
page 107 for more information on levels.) You can use
only one level designation per command. You cannot
use software names, subproduct names, etc. to specify
levels. This option does not apply if you use the - ¢

option.
Table 3-2 The -1 Options
Option Action

swist -l root shows the root level (roots on the
specified target hosts)

swist -1 shroot Shows the shared roots

swist -1 prroot Shows the private roots

swist -1 bundle Shows only bundles

swist -1 product Shows only products

swist -1 subproduct Shows products and subproducts

swist -I fileset Shows products, subproducts and
filesets

swist -1 file Shows products, subproducts, filesets,
files and numbers (used in software
licensing).

swist -1 category Shows all categories of available
patches for patches that have included
category objects in their definition.

swist -1 patch Shows all applied patches.

100 Chapter 3

Managing Installed Software
Listing Your Software (swlist)

-s source Specify which software source is to be listed. The
default source type is a directory or depot (usually
[var/ spool / sw) on the local host. The syntax is:

[host][:]I/ di rect or y]

A host may be specified by its host name, domain
name, or internet address. A directory must be
specified by an absolute path.

-Ssession file
Run the command based on values saved from a
previous installation session, as defined in
session_file.See “Session Files” on page 61.

-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line.

- X opti on=val ue
Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Changing
Command Options” on page 102.

-Xoption file
Read session options and behaviors from opt i on_file.
See “Changing Command Options” on page 102.

software_sel ections
The software objects to be listed. See “Software
Selections” on page 56.

target_sel ecti ons
The target of the command. (For swlist,
target_selections are just another way to list software
selections.

Chapter 3 101

Managing Installed Software

Listing Your Software (swlist)

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swinstall.

Table 3-3 swlist Command Options and Default Values
¢ admin_directory=/var/adm/sw e patch_one_liner=title
e agent_timeout_minutes=10000 patch_state
e codeword= ¢ rpc_binding info=
e customer_id= ncacn_ip_tcp:[2121]
e distribution_target_directory= ncadg_ip_udp:[2121]
/var/spool/sw ® rpc_timeout=5
¢ installed_software_catalog= ®* run_as_superuser=true
products e gselect_local=true
¢ layout_version=1.0 ¢ show_superseded_patches=fals
e level= e
¢ log msgid=1 e software=
e one_liner=revision title e gsoftware_view=all _bundles
® targets=
e verbose=1
For More See Appendix A, “Command Options,” on page 421 for complete
Information descriptions of each default.
102 Chapter 3

Managing Installed Software
Listing Your Software (swlist)

Software Listing Tasks and Examples

To run the sw i st interactive interface:
swist -i @host1l

To use interactive sw i st to view a depot:
swist -i -d @/tnp/depot

To produce a list of the software (by name) installed at root (/) on your
local host, you would simply type:

sw i st
Which might produce a listing on your display like this:

Initializing...

Contacting target "xxyyzz"...
#

Target: xxyyzz:/

Bundl e(s):

B3782CA B. 11.00 HP-UX Media Kit (Reference Only. See Descr.)
B3898AA B. 11. 00 HP U ANSI C Devel oper’s Bundl e for HP-UX 11.00
HPUXENgRT B. 11.00 English HP-UX Run-time Environnent

Product (s) not contained in a Bundl e:

HVB 1.01
CBAMG_O B. 11. 00 CbAM 5. 0

Using swl i st with no options set and no software selected gives you a
listing of all software bundles plus all products that are not part of a
bundle. Adding the - d option gives you the same listing of software
residing in the default depot on your local host.

In the following examples, swl i st requests are sent to the standard
output. All examples assume the one_| i ner = default is “revision size
title” and the | evel = default is “product.”

e To list the contents of the local tape depot, /dev/rmt/Om, type:
swist -d @/dev/rnt/0m

swist -s /dev/rnt/0Om

Chapter 3

103

Managing Installed Software

Listing Your Software (swlist)

This produces the following output

AD T 3.5 9834 Trusted Systens Auditing Wils
COWANDS 1.7 4509 Core Command Set

G LANG 2.5 5678 C Progranm ng Language
NETWORKI NG 2.1 9072 Network Software

KERNEL 1.4 56908 Kernel Libraries and Headers
VUE 1.3 5489 Wue (Instant Ignition Rel ease)
WNDONS 2.06 10423 Wndow ng Products

List all the media attributes of the local tape depot, /dev/rmt/Om:

swist -v -1 depot @/dev/rnt/0Om
—or —

swist -vl depot -s dev/rm/0Om
type di stribution

tag CRE G5

description HP-UX Core (perating System Software Di sk
nurrber B2358- 13601
nod_date June 1998

List the README file for product, OS_CORE installed on the local

host:

swist -a readne G5 Core | nore

r eadne:
khkkkkhhkkkhkkrkhxrkkhhkk

* | ntroduction *
khkkkhkhhkkkhkdrhrxrkkhhkk

The Rel ease Notes for HP-UX Rel ease X 0 contain an
overvi ew of the new changed product features that
are included in the release. For detailed

i nfformati on about these features, refer to the
appropriate product manuals. This docunment does not
contain informati on about software changes nmade as a
result of a Service Request; that information nay be

found in the Software Rel ease Bulletin (SRB) for Rel ease

X 0.

104

Chapter 3

Managing Installed Software
Listing Your Software (swlist)

LR EEEEEEEEEEEEEEEEEE]

* Hardware Support *

LR EEEEEEEEEEEEEEEEE S

The HP 9000 Mbdel XXX is no | onger supported.

e List the products stored in the software depot on host1 located at
/ swnedi a. For this example assume the sw i st one_l i ner is: “title
size architecture”:

swist -d @host 1:/swredi a

FRAME Frame Doc. Pkg 2319 HP-UX 9000 Series_AorB
FRAME Frame Doc. Pkg 2458 O6F1 9000 Series_ 1.0

ME30 3-D Mech. Eng 5698 HP-UX 9000 Series300_AorB
SCFTBENCH Dev Env 4578 HP-UX 9000_Seri es300

TEAMAORK Desi gn/ Anal ysi s 3478 HP-UX 9000_Series 300/ 400
(Note that the media contains two revisions of the FRAME product.)

Using Options to Change List Appearance

You can control the appearance and content of your lists by changing list
default values in the options files. Instead of repeatedly specifying the
software levels and attributes each time you invoke swlist, you can use:

| evel This option pre-determines what level to list: product,
subproduct, fileset or file. For example, by setting this
default to | evel =fi | eset, future swlist commands
would always list everything down to and including
filesets for each host, depot or product selected.

one liner="attribute attribute attribute"
This option specifies the attributes (revision, size, title,
etc.) displayed as the default listing. These attributes
are separated by <tab> or <space> and enclosed in
quotes (" "). You can choose multiple attributes but not
all attribute may exist for all applicable software levels
(product, subproduct, or fileset). For example, the
software attribute ti t/ e is available for bundles,
products, subproducts and filesets, but the attribute
archi t ect ur e is only available for products.

In the absence of the - v or - a option in your command, swlist displays
the information as described in the one_| i ner default for each software
object level (bundle, products, subproducts and filesets), not for files.

Chapter 3 105

Managing Installed Software
Listing Your Software (swlist)

NOTE

Listing Attributes

You may specify only one attribute per - a option. However, the t ag
attribute is always included by default, so specifying - a revi si on lists
all product names and their revision numbers.

For example, to list whether software bundles on a CD-ROM (mounted to
the directory / SD_CDROM require a codeword or not, use the command:
swist -d -a is_protected @/SD _CDROM

An attribute containing a large amount of information (for example, a
README) is physically stored as a separate file and is displayed by itself
if - a READVE is requested.

Refer to the sd(4) manpage for a full list of SD-UX attributes.

Creating Custom Lists

The swlist options and defaults allow you to create lists to fit your
specific requirements. These lists can be as simple as listing the software
products installed on your local host or as complex as a multiple column
listing of files, filesets, subproducts, products and bundles installed.

For example, if you were to change the one-1i ner option on the
command line, the command:

swist -x one_liner="name revision size title"

produces this list of all the products installed on the local host:

RX 1.98 9845 RX X Terminal - all software
ALLBASE 8.00.1 6745 Dat abase Products

G LANG 2.5 5678 Pr ogr amm ng Language

D AGNCSTICS 2.00 56870 Har dwar e Di agnostic Prograns
DTP68 2.00 26775 Deskt op Publ i shi ng

LI SP- LANG 8.00.1 90786 LI SP Programm ng Language

W NDONS 2.06 10423 Wndow ng Products

This listing shows, in columns from left to right, the product’s tag, its
revision number, its size in Kbytes and its title or full name.

Whatever you specify in the command line for software level and
attributes will override the values in the default option files.

106

Chapter 3

Table 3-4

Managing Installed Software
Listing Your Software (swlist)

You can also change the one_| i ner default value to {revision size title} in
the defaults file. Then a listing of the C-LANG products on host2 would
be as follows:

swist G LANG @host 2

G LANG G- QOWI LE 8.0 1346 C Conpi | er Conponent s
G LANG G LI BS 8.0 2356 Runtime Libraries

G LANG G VAN 8.0 1976 Pr ogr amm ng Ref erence
Listing Patches

You can use swlist to list software patches and their status. See “Listing
Patches” on page 178 for more information.
Using Software Codewords and Customer IDs

The swlist command may prompt you for codewords if you try to view
codeword protected software. You can also enter new codewords from the
command line or from the GUI. This process is identical to that used by
swinstall. See “Using Software Codewords and Customer IDs” on

page 78 for more information.

Listing Software by Levels

The -1 [evel option lets you list all software objects down to the
specified level: depot , bundl e, product , subpr oduct,fil eset orfile.

Choose a level as a starting point and list items only down to that level.

The -1 Options

Option Action
swist -1 root Shows the root level (roots on the specified
target hosts)
swist -1 shroot Shows the shared roots
swist -1 prroot Shows the private roots
swist -1 bundle Shows only bundles
swist -1 product Shows only products

Chapter 3

107

Managing Installed Software
Listing Your Software (swlist)

Table 3-4

The -1 Options (Continued)

Option Action

swist -1 subproduct | Shows products and subproducts

swist -I fileset Shows products, subproducts and filesets

swist -1 file Shows products, subproducts, filesets,
files and numbers (used in software
licensing).

swist -1 category Shows all categories of available patches
for patches that have included category
objects in their definition.

NOTE

swist -1 patch Shows all applied patches.

The starting point for a software list is always taken from the operands
in the -1 and - a options (or from the | evel or one_l i ner options). You
must decide what levels you want and what software attributes to list in
addition to the product name.

Examples in the following sections do not include a value for the
one_l i ner option.

Specifying Product Level Specifying a level for a given software
selection causes swlist to list the objects at that level plus all those that
are above that level. Upper levels will be commented with a # sign.
Therefore, only the level specified (product, subproduct, fileset or file)
will be uncommented. This allows the output from swlist to be used as
input to other commands. The exceptions are:

1) a list that contains only files; file-level output is not accepted by other
commands

2) a list that contains software attributes (- a and - v).

108

Chapter 3

Managing Installed Software
Listing Your Software (swlist)

For example, if you wanted to see all the pr oduct s installed on your local
host, your command would be:

swist -1 product
and the listing would look like this:

NETWORKI NG
SAM
CPENVI EW
PRCDUCT A
SOFTWARE Z
PRCDUCT B

Note that the product names are uncommented because that was the
level you requested to display and there are no levels above.

Specifying Subproduct Level For this example, on the local host, the
NETWORKING product contains the subproducts ARPA and NFS and
you want to see how big each object is (in Kbytes).

swist -1 subproduct -a size NETWORKI NG

NETWORKI NG 9072
NETWORKI NG ARPA 4412
NETWORKI NG NFS 4660

The list does not show the files or filesets because you didn’t specify that
level on the command line.

If you wanted to see the names and revision numbers for the
NETWORKING product on the local host, the command would be:

swist -1 subproduct -a revision NETWIRKI NG

Remember, the product name is always assumed; you don’t have to
specify it in the - a option.

Chapter 3 109

Managing Installed Software
Listing Your Software (swlist)

Specifying Fileset Level An example of using the -1 option to
generate a listing that includes all filesets for the product
NETWORKING on the local host and a descriptive title for each:

swist -1 fileset -a title NETWIRKI NG

NETWORKI NG Net wor k Sof t war e
NETWCRKI NG ARPA- | NC ARPA include files
NETWORKI NG ARPA- RUN ARPA run-time commands
NETWORKI NG ARPA- MAN ARPA manual pages
NETWORKI NG LANLI NK CCORE ARPA sof twar e
NETWORKI NG NFS- | NC NFS include fil es
NETWORKI NG NFS- RUN NFS run-ti me commands
NETWORKI NG NFS- MAN NFS manual pages

Again, note the commented lines (#) representing the subproduct
(NETWORKI NG ARPA and NETWCRKI NG NFS) and product (NETWIRKI NG
levels. The other lines are filesets.

Specifying Files Level An example of the -| option to generate a
comprehensive listing that includes all files for the subproduct
NETWORKING.ARPA:

swist -1 file NETWORKI NG ARPA

NETWORKI NG ARPA

NETWORKI NG ARPA | NC
NETWORKI NG ARPA | NC. / usr/incl ude/arpa/ftp.h
NETWORKI NG ARPA | NC. / usr/incl ude/ arpa/telnet. h
NETWORKI NG ARPA I NC. /usr/include/arpa/tftp.h
NETWORKI NG ARPA | NC. / usr /i ncl ude/ pr ot ocol s/ rwhod. h

NETWORKI NG ARPA_ RUIN
NETWORKI NG ARPA RUN: / et c/ freeze
NETWORKI NG ARPA RUN: / et c/ ft pd
NETWORKI NG ARPA RUN: / et ¢/ gat ed
NETWORKI NG ARPA RUN: / et ¢/ naned

NETWORKI NG ARPA_MAN
NETWORKI NG ARPA MAN: / usr/ man/ man8/ f t pd
NETWORKI NG ARPA MAN: / usr/ man/ man8/ gat ed

110

Chapter 3

Table 3-5

Managing Installed Software
Listing Your Software (swlist)

Note that the commented lines represent the requested level

(NETWORKI NG ARPA) plus one level up (fileset) from the specified file level
(NETWORKI NG ARPA | NC, NETWCRKI NG ARPA RUN and

NETWORKI NG ARPA RUN are all filesets). The uncommented lines are files.

Depot Lists Another class of objects that swlist can display are depot
lists. This allows you to list all the registered depots residing on a host.
To do this, you can use a combination of the -| depot option:

Listing Depots
sw i st syntax result
swist -1 depot list all depots on the local host
swist -1 depot @hostA list all depots on hostA
swist -1 depot -v @hostB list, in verbose mode, all depots
on hostB

Verbose List The - v option causes a verbose listing to be generated. A
verbose listing is used to display all attributes for products, subproducts,
filesets or files.

The verbose output lists each attribute with its name (keyword). The
attributes are listed one per line. Given the length of this listing, you
could post-process (filter) the output with gr ep and/or sed to see specific
fields.

Attributes for a particular software level are displayed based on the
software product name given with the sw i st command. For example,
swist -v NETWRKI NGgives:

tag NETVWCRKI NG
instance_id 7869

control _directory

si ze 9072

revision 2.1

title Net wor k Sof t war e
nod_tine

directory

Chapter 3

111

Managing Installed Software
Listing Your Software (swlist)

vendor.infornmation Hew ett-Packard Conpany

is_locatabl e
architecture
nachi ne_t ype

0S_nane
target.os release B. 11.00*

true

HP- UX_9000
9000

HP- UX

If the - v option is used with the - | option, the cases are:

To display all attributes for a bundle, use swist -v -1 bundl e.

To display all attributes for a product, use swist -v -1 product.

To display all attributes for products and subproducts, use sw i st
-v -1 subproduct.

To display all attributes for products, subproducts and filesets, use
swist -v -1 fileset.

To display all attributes for products, subproducts, filesets and files,
useswist -v -1 file.

The table below provides a sample listing of the kinds of attributes that

swlist will display. Not all these attributes exist for each software level or
object. This list may change depending on vendor-supplied information.

Do not use this list as the official list of all attributes. To get a complete

list of the attributes for a particular level or object, use the format:

swist -v -

| evel

(see example above) or use

swist -v software_sel ections

(see example below).

Table 3-6 Sample Attributes
Attribute Description
architecture | Describes the target system(s) supported by the
product

category Type of software

copyright Copyright information about the object

mod_time Production time for a distribution media
112 Chapter 3

Managing Installed Software
Listing Your Software (swlist)

Table 3-6 Sample Attributes (Continued)

Attribute Description

description | Detailed descriptive information about the object

instance_id | Uniquely identifies this software product

title Long/official name for the object
mode Permission mode of the file
mtime Last modification time for the file
owner Owner of file (string)

path Full pathname for the file

corequisite | A fileset that the current fileset needs (confi gur ed) to
be functional

prerequisite | A fileset that the current fileset needs to install or
configure correctly

readme Traditional readme-like information, release notes,
etc.

revision Revision number for an object

size Size in bytes; reflects the size of all contained filesets

state Current state of the fileset

Here are some examples of verbose listings:
This command on the local host:

swist -v -1 file NETWIRKI NG ARPA- RIN
produces this listing:

#FNETWORKI NG ARPA

tag: ARPA- RN

instance id 1

revision 1.2

title ARPA run_tinme comrands
si ze 556

state confi gured

Chapter 3 113

Managing Installed Software
Listing Your Software (swlist)

corequisite
i s_kernel
file
pat h
type
node
owner
gr oup
uid
gd
mime
si ze
file
pat h
type
node
owner
gr oup
uid
gd
mime
si ze

This command:

NETWORKI NG LANLI NK
true
etc/freeze
letc/freeze
f

0755

bi n

bi n

2

2
721589735
24
etc/ftpd
letc/ftpd
file

0555

bi n

bi n

2

2
721589793
9

swist -v NETWIRKI NG ARPA- RUN

produces the following listing:

NETWRKI NG ARPA

fileset

tag
instance_id
revision
title

si ze

state
corequisite
i s_kernel
nmod_tine

ARPA- RIN

1

1.2

ARPA run_tine commands
556

confi gured
NETWWORKI NG LANLI NK
true

733507112

114

Chapter 3

Managing Installed Software
Modifying the IPD (swmodify)

Modifying the IPD (swmodify)

SD-UX keeps track of software installations, products, and filesets on
your system with the Installed Products Database (IPD) for installed
software and with catalog files for software in depots.

Both the IPD and catalog files are created and constantly modified by
other SD-UX operations (swinstall, swcopy, and swremove), they are not
directly accessible if you want to change the information they contain. If
you need to edit the information in either the IPD or in any depots’
catalog files, you must use the swmodify command.

The swmodify command adds, modifies, or deletes software objects or
attributes defined in a software depot, primary root or alternate root. It
is a direct interface to a depot’s catalog files or a root’s Installed Products
Database. It does not change the files that make up the object, it only
manipulates the information that describes the object.

Using swmodify, you can

¢ Add new bundle, product, subproduct, fileset, control script or file
definitions to existing objects

¢ Remove the description of software objects from a depot catalog file
or root IPD

e Change attribute values for any existing object.
¢ Define attributes for new objects that you add.

The equivalent IPD files for a depot are called catalog files. When a depot
is created or modified using swcopy, catalog files are built (by default in
/var/ spool / sw cat al og) that describe the depot and its contents.

IPD Contents

Located in the directory / var / admi sw pr oduct s, the IPD is a series of
files and subdirectories that contain information about all the products
that are installed under the root directory (/). This information includes
“tags” or product names, one-line title fields, paragraph-or-longer
description text, long README files, copyright information, vendor
information and part numbers on each product installed. In addition, the
IPD contains revision information and a user-targeted architecture field

Chapter 3

115

Managing Installed Software
Modifying the IPD (swmodify)

including the four uname attributes (operating system name, release,
version and hardware machine type). Here is what the IPD | NFOfile for a
product called “Accounting” looks like:

fil eset

tag ACCOUNTNG

data nodel revision 2.4

instance id 1

control _directory ACOOUNTNG

size 292271

revision B.11. 00

description Vendor Name: Hew ett- Packard Conpany
Product Name: Accounting

Fil eset Name: ACCOUNTI NG

Text: "HP-UX System Accounting feature set. Use these
features to

gather billing data for such itens as di sk space

usage, connect time or CPU resource usage.

timestanp 797724879

instal | _date 199504121614. 39

install_source hpfclc.fc. hp.com/rel ease/ 11. 00_gsL/ goodsyst e
m state configured

ancest or HPUX10. 20. ACCOUNTNG

corequi site G5 Core. OVDS-M N, r>=B. 11. 00, a=HP- UX B. 11. 00_32/ 6
4, f a=HP- UX_B. 11. 00_32/ 64, v=HP

Catalog files are the equivalent IPD files but they are for software stored
in a depot. When a depot is created or modified using swcopy, these files
are created and placed in the specified depot (or in the default

/var/ spool / swdepot). They describe the depot and its contents.

The swinstall, swconfig, swcopy, and swremove tasks automatically add
to, change and delete IPD and catalog file information as the commands
are executed. swlist and swverify tasks read the IPD information and
use it to affect command behavior.

The IPD also contains the swl ock file, which manages simultaneous read
and/or write access to software objects.

116

Chapter 3

Syntax

Options and
Operands

Managing Installed Software
Modifying the IPD (swmodify)

Using swmodify

swrodi fy [-d] [-p]l [-r] [-ul [-v [-V] [-a at t ri but e=[val ue]]
[-c catal ogll-Csession file] [-f software fil €]

[- P pat hnane fil el [-s product _speci fication filel
[-Ssession file€]l-x option=val uell-Xoption file]

[sof tware_sel ections] [@t ar get _sel ect i on]

-d

-V

Perform modifications on a depot (not on a primary or
alternate root). Your t arget _sel ecti on must be a
depot.

Previews a modify session without changing anything
within the t arget_sel ecti on.

Perform modifications on an alternate root instead of
the primary root. Your t arget _sel ecti on must be an
alternate root.

Ifno - a at t ri but e options are specified, then delete
the specified sof t ware_sel ecti ons from within your
target_sel ecti on. This action deletes the definitions
of the software objects from the depot catalog or
Installed Products Database.

If-a attri but e options are specified, then delete them
from within the given t arget_sel ecti on.

Turns on verbose output to st dout . (The swmodify
logfile is not affected by this option.)

Lists all the SD / ayout _ver si ons this command
supports.

-a attri but e=val ue

Add, change, or deletes the attri but e val ue.
Otherwise, it adds/changes the attribute for each
sof tware_sel ecti on by setting it to the given val ue.

Multiple - a options can be specified. Each attribute
modification will be applied to every
software_sel ecti on.

The - s and - a options are mutually exclusive: the - s
option cannot be specified when the - a option is
specified.

Chapter 3

117

Managing Installed Software
Modifying the IPD (swmodify)

-c catal og

You cannot use the - a option to change the following
attributes: t ag, revi si on, i nst ance_i d, vendor _t ag,
corequisiteorprerequisite.

Writes full catalog structure information into the
directory specified by cat al og. All attributes down to
the file level and control scripts are written. See
“Requesting User Responses (swask)” on page 407.

-Csession file

Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.

-f software file

Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 58.

- P pat hname_fi | e Specifies a file containing the pathnames of files

being added to or deleted from the IPD.

-S product_specification_file

The source Product Specification File (PSF) describes
the product, subproduct, fileset, and/or file definitions
that will be added or modified by swmodify.

If you specify a product _speci fication_file,
swmodify selects the individual sof t var e_sel ect i ons
from the full set that is defined in the PSF. If no

sof tware_sel ecti ons are specified, then swmodify
will select all of the software defined in the PSF. The
software selected from a PSF is then applied to the
target_sel ecti on, with the selected software objects
either added to, modified in, or deleted from it.

If a PSF is not specified, then sof t ware_sel ecti ons
must be specified. swmodify will select the

sof tware_sel ecti ons from the software defined in
the given (or default) t arget _sel ecti on.

The product specification file (PSF) for swmodify uses
the same swpackage PSF format as defined in
“Creating a Product Specification File (PSF)” on

page 307.

118

Chapter 3

Managing Installed Software
Modifying the IPD (swmodify)

-Ssession file
Run the command based on values saved from a
previous installation session, as defined in
session file. See “Session Files” on page 61.

-X opti on=val ue
Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Changing
Command Options” on page 120.

-Xoption file
Read session options and behaviors from opt i on_file.
See “Changing Command Options” on page 120.

sof tware_sel ections
The software objects for which information will be
modified. See “Software Selections” on page 56.

target_sel ection
A single, local t ar get _sel ect i on. (See “Target
Selections” on page 58.) If you are operating on the
primary root, you do not need to specify a
target _sel ecti onbecause the target / is assumed.

When operating on a software depot, the

t ar get _sel ecti on specifies the path to that depot. If
the - d option is specified and no t arget_sel ecti onis
specified, then the default depot_di rect ory is
assumed.

NOTE In general, use caution when using the - u option with the - a option. If - u
is used and - a is also specified, the - a option deletes the at t ri but e from
the given soft var e_sel ect i ons (or deletes the val ue from the set of
values currently defined for the at f ri but e).

Chapter 3 119

Managing Installed Software
Modifying the IPD (swmodify)

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swmodify.

Table 3-7 swmodify Command Options and Default Values
¢ admin_directory=/var/adm/sw e logfile=
e compress_index=false /var/adm/sw/swmodify.
e control_files= log
e distribution_target_directory=/var/spo e loglevel=1
ol/sw e patch_commit=false
e files= * run_as_superuser=true
¢ installed_software_catalog=products e software=
¢ layout_version=1.0 e gsource_file=
¢ log msgid=0 * targets=
¢ logdetail=false e verbose=1
For More See Appendix A, “Command Options,” on page 421 for complete
Information descriptions of each default.
swmodify Tasks and Examples
Here are some examples of how you can use swmodify to change catalog
files or IPDs:
Adding Information to the IPD
To add descriptions of files / t np/ a, / t np/ b, and / t np/ ¢ to an existing
fileset:
swrodify -x files=/tnp/a /tnp/b /tnp/c PRCDUCT. FI LESET
If a control script adds new files to the installed file system, the script
can use swmodify to make a record of the new files.
Changing Existing IPD Information
To create some new bundle definitions for products in an existing depot:
swrodi fy -d -s new bundl e _definitions \
* @/ nfg/ mast er _depot
If a product provides a more complex configuration process, a script can
set the fileset’s state to confi gur ed upon successful completion.
120 Chapter 3

Managing Installed Software
Modifying the IPD (swmodify)

To change the values of a fileset’s attributes:
swrodi fy -a state=install ed PRODUCT. FI LESET
To change the attributes of a depot:

swhodi fy -a title=Master Depot \
-a description=/tnp/nfg.description\
@/ nf g/ mast er _depot

Defining New Objects

You can import an existing application (not installed by SD-UX) by
constructing a simple Product Specification File (PSF) describing the
product and then invoke swmodify to load that definition into the IPD.

To create a new fileset definition (if the PSF contains file definitions,
then add those files to the new fileset):

swrodi fy -s new fil eset_definition

Chapter 3

121

Managing Installed Software
Removing Installed Software (swremove)

Removing Installed Software (swremove)

The swremove command removes software that has been installed on a
host. Before its removal, the software is first unconfigured. swremove
also removes software products that have been copied to a software
depot.

swremove Features and Limitations

¢ Removes files from the specified location. It removes symbolic links,
but not the targets of symbolic links. It also lists busy files that were
not removed.

¢ Automatic use of dependencies to automatically select software on
which to operate (in addition to any software you specify directly).

e Ability to run control scripts as part of the removal:

Unconfigure Undoes host configuration performed by configure
scripts.

Checkremove Analyzes each target to determine if removal and
unconfiguration can take place. If this check fails,
an object cannot be removed.

Preremove Performs additional file operations, such as
removing files created by a preinstall script.

Postremove Performs additional remove operations (such as
restoring "rollback" files) immediately after a
fileset or product has been removed.

For more information, see Chapter 11, “Using Control Scripts,” on
page 369.

e swremove does not perform automatic unconfiguration when you
remove software from alternate roots.

122 Chapter 3

Table 3-8

Step I: Start-Up

Managing Installed Software
Removing Installed Software (swremove)

Using the swremove GUI
This section provides an overview of the swremove GUI.

¢ In general, all information presented in “Removing Installed
Software (swremove)” on page 122 also applies to the swinstall GUI.

e This section refers to additional information about standard GUI
elements, discussed in “Using the GUI and TUI Commands” on
page 35.

¢ All information in this section also applies to the TUI program unless
otherwise noted. See “The Terminal User Interface” on page 35.

The swremove command behaves slightly differently when removing
from primary root file systems, alternate root file systems, and depots.
Interface changes for depot remove operations are summarized in
“Removing Software from Depots” on page 162.

There are three steps in the copy process:

GUI Removal Steps

I. Start-Up Start the swremove GUI.

II. Select Choose the software to remove.

Software

II1. Analysis Analyze (preview) the removal

(Preview) to determine if the selected
software can be successfully
removed.

IV. Removal Perform the actual removal.

To start the GUI or TUI for an install session, type:
[usr/ sbi n/ swenove

The GUI is automatically invoked unless you also specify software on the
command line. To invoke the GUI and specify software, include the - i
option. For example, to use the GUI for a preview (analysis only) session
with BUNDLEL, type:

swenmove -i -p / M/Depot / BUNDLEL

The Software Selection window appears.

Chapter 3

123

Managing Installed Software
Removing Installed Software (swremove)

Step II: Selecting In this step, you use the Software Selection window to select the software
Software you want to install.

Figure 3-2 swremove Software Selection Window

l— SD Remove — Software Sslection (swbash3)
File View Options Actions

Target: swbash3:/
Target Displaying Software: swbash3:/

Top (Bundles and Products) 0 of 15 selected

Marked? Name Revision Information

Yes DEP-MANIA 1.0 Test Product with
Hooks 10.0
PRODUCT-DEP 1.0 Test Product that i
PS4

PT

PT4

REBOOT o Test Product with Reboot
ZFIRST o A product that is a prere
fix_explicit_tes

space_P1

space_P2

space_test

1. Select software from the object list:

a. Highlight an item
b. Select Actions—>Mark For Remove
— or —
Right-click to display the pop-up, then select Mark For Remove

The Mar ked? flag in the object list changes to Yes to match your
selection. (The flag Parti al may appear if you select only some
component of a software object.)

124 Chapter 3

Managing Installed Software
Removing Installed Software (swremove)

2. (Optional) Use choices from the Actions menu to make additional
software selections:

e Change Target lets you select an alternate root from which to
remove software.

e Add Software Group lets you recall and re-use a group of
previously saved software selections.

® Save Software Group saves the current list of marked software as
a group. SD stores the group definition in $HOME . sw sof t war e/
or a directory you specify.

e Show Description of Software (available only for a single item
highlighted in the object list) displays more information on the
selected software.

3. Select Actions—iInstall to start the analysis (preview) step. The
Analysis dialog appears.

Step lll: Analysis In this step, SD-UX analyzes the software you have selected.

(Preview) The Remove Analysis dialog displays status information about the

analysis process. When the analysis is complete and the host status
shows Ready, click OK to start the actual installation (see “Step IV:

Removal” on page 127). The Analysis dialog is then replaced by the
Remove Window.

(If you started a preview session, the install stops after the analysis.
Clicking OK returns you to the Software Selection window.)

Figure 3-3 Remove Analysis dialog

Remove Analysis (swbash3)

After Analysis has completed, press 'OK’ to proceed, or *CANCEL®
to return to prior selection screen.

Target : swbash3:/
Status : Ready

Products Scheduled : 1 of 1

Product Summary. .. Logfile... Re—analyze

Chapter 3 125

Managing Installed Software
Removing Installed Software (swremove)

After analysis, if any of the selected software can be removed, the status
indicates Ready or Ready wi t h WAr ni ngs. If none of the selected
software can be removed, the status indicates Excl uded fromt ask.

The Product s Schedul ed column shows the number of products ready
for removal out of all products selected. The total products ready includes
those products that are:

e Marked because of dependencies
e Marked inside of bundles
e Partially and wholly marked

A product may be automatically excluded from the removal if an error
occurs with that product. Removal cannot proceed if the host target is
excluded from the removal. If the host fails the analysis, a warning
dialog appears.

The following actions are also available:

e Product Summary gives additional information about the product or
bundle and provides a Product Description button that displays
information about additional information about dependencies,
copyright, vendor, etc.

The Proj ect ed Acti on column describes what type of removal is
being done. The possible types are:

Remove The product exists and will be removed.

Filesets Not Found
The system did not find the filesets as specified.

Skipped The product will not be removed.

Excluded The product will not be removed because of some
analysis phase errors. See the logfile for details
about the error.

(The Product Summary List is not an object list. You cannot open the
products, perform actions, or change the column view.)

e Logfile presents a scrollable view of detailed install information
written to the logfile.

e Re-analyze repeats the analysis process.

126

Chapter 3

Managing Installed Software
Removing Installed Software (swremove)

Step IV: Removal In this step, SD-UX proceeds with the actual removal.

After you click OK in the Analysis window, SD-UX starts removal and
displays the Remove Window (Figure 3-4, “Remove Window,”), which
shows status information.

These action buttons are available:

e Done returns you to the Software Selection Window. You can then
begin another removal or exit the GUI (File—Exit).

e Product Summary display installation and product information (name,
revision, installation results, installation summary).

e Logfile displays the logfile.

Figure 3-4 Remove Window

Remove Window (swbash3)

Press ’Product Summary’ and/or ’Logfile’ for more target information.

Target : swhash3:/
Status : Completed
Percent Complete : 100%
Kbytes Removed : 9 of 9
Time Left (minutes): O
Removing Software

Product Summary... Logfile...

Done

Chapter 3 127

Managing Installed Software
Removing Installed Software (swremove)

Syntax

Options and
Operands

Removing with the Command Line

swrenove [XTool kit Qotion] [-d|-r][-i][-p] [-Vv]

[-C session filel[-f software filel[-Qdatel]l[-s source]
[-Ssession file]ll-t target _filell[-x option=val uel
[-Xoption filel[software_sel ections] [@t arget _sel ecti ons]

XToolkit Options X window options for the GUI. See “XToolkit Options
and Changing Display Fonts” on page 53.

-d Operates on a depot rather than installed software.
“Removing Software from Depots” on page 162 for more
information.

- Runs a GUI or TUI interactive session. Used to

“pre-specify” software selections for use in the
GUI/TUL

-p Preview an install task by running it through the
Analysis Phase and then exiting.

-r Operate on an alternate root directory.

-V Turn on verbose output to st dout and display all
activity to the screen.

-Csession file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.

-f software file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 58.

-Qadat e Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 234 and Chapter 6, “Remote
Operations Overview,” on page 189

-Ssession file
Run the command based on values saved from a
previous installation session, as defined in
session file. See “Session Files” on page 61.

128

Chapter 3

Managing Installed Software
Removing Installed Software (swremove)

-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 59.

-X opti on=val ue
Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Changing
Command Options” on page 130.

-Xoption file
Read session options and behaviors from opt i on_file.
See “Changing Command Options” on page 130.

sof tware_sel ections
The software objects to be removed. See “Software
Selections” on page 56.

target_sel ecti ons
The target of the command. See “Target Selections” on
page 58.

Chapter 3

129

Managing Installed Software
Removing Installed Software (swremove)

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swremove.

Table 3-9 swremove Command Options and Default Values
¢ admin_directory=/var/adm/sw ¢ logdetail=false
e agent_auto_exit=true ¢ logfile=/var/adm/sw/swremove.lo
* agent_timeout_minutes=1000 g
0 ¢ loglevel=1
e auto_kernel build=true e mount_all_filesystems=true
e autoreboot=false e polling interval=2
e autoremove_job=false e preview=false
e autoselect_dependents=false ¢ remove_empty_depot=true
e autoselect_reference_bundles ¢ reuse_short_job_numbers=true
= true ¢ rpc_binding_info=
e compress_index=false ncacn_ip_tcp:[2121]
e controller_source= ncadg_ip_udp:[2121]
e distribution_target_directory= ¢ rpc_timeout=5
/var/spool/sw ® run_as_superuser=true
¢ enforce_dependencies=true ¢ select_local=true
¢ enforce_scripts=true e software=
e force_single_target=false e software_view=products
¢ installed_software_catalog= ¢ targets=
products e verbose=1
* job_title= e write_remote_files=false
¢ log msgid=0
For More See Appendix A, “Command Options,” on page 421 for complete
Information descriptions of each default.
Remove Tasks and Examples
To remove a software product called MYSOFT from the default depot on
the local host, type:
sw enove -d MYSCFT
To preview the remove of the C and Pascal products installed at the local
host:
swenove -p cc pascal
130 Chapter 3

Managing Installed Software
Removing Installed Software (swremove)

To remove a particular version of HP Omniback:
sw enove Qmi back, | =/ opt/ Omi back_v2. 0
To remove the entire contents of a local depot:

swenove -d * @/ var/spool /sw

Removing Bundles

Removing a bundle does not always remove all filesets in that bundle.
Because of SD-UX’s dependency management features, a fileset that is
required by another bundle will not be removed. For example, if the
bundles Pascal and FCRTRAN both use the fileset Debugger . Run and you
try to remove FORTRAN the fileset Debugger . Run will not be removed
because it is also used by the bundle Pascal . This prevents the removal
of one bundle from inadvertently causing the removal of a fileset needed
by another bundle.

Removing Patches
You cannot remove patch software unless:

¢ Rollback files corresponding to the patch are available for
re-installation.

¢ The base software modified by the patch is removed at the same
time. (Removing the base software also removes the patches
associated with that software.)

For more information on removing patches, see Chapter 5, “Managing
Patches,” on page 163.

Removing Multiple Versions

The swremove GUI can help simplify removal of multiple versions of a
product.

Each separate version of a product along with its location directory is
listed in the object list. Selecting a multiple version implies a
product:/location directory pair. By default, the location is not
displayed in the Software Selection Window. It can be displayed using
the GUI Columns Editor View—Columns... menu item and enabling the
Product Directory menu item.

Chapter 3

131

Managing Installed Software
Removing Installed Software (swremove)

You can select more than one version of a product during the selection
phase. During analysis, a warning is generated if the version of the
product exists on the target but at a different location. If the product
exists on the target, it will be removed. If it does not exist on the target,
the product is simply skipped. The Product Summary... button in the
Remove Analysis Window gives a product-by-product summary of what
will be removed if the remove phase is started.

(Multiple versions of products are inherently possible in a depot. No
special handling or checks are required when removing from depots.)

Removing Software from an Alternate Root

Software can be removed relative to the primary root directory (/) or
relative to an alternate root directory. An alternate root is a non-root
location that can function as the root of a stand-alone system; that is, a
system that can be unmounted and function as a self-contained system.
Any information files used in software removal are retrieved from the
Installed Product Database (see “Installed Products Database” on

page 30) beneath this alternate root, not the IPD on the root volume.

132

Chapter 3

Managing Software Depots
4 Managing Software Depots

SD-UX uses software that is packaged and stored in a registered depot.
This chapter discusses copying, listing, registering, removing, and
verifying depot software.

Table 4-1 Chapter Topics

Topics:

“Depot Management Commands and Concepts” on page 134

“Copying Software Depots” on page 137

“Registering and Unregistering Depots (swreg)” on page 151

“Additional Depot Management Tasks and Examples” on page 155

Chapter 4 133

Managing Software Depots
Depot Management Commands and Concepts

Depot Management Commands and Concepts

The following commands will help you perform depot management tasks:

Table 4-2 Commands for Depot Management
Depot Command(s
Task) More Information/Examples

Copy SwWcopy “Copying Software Depots” on
page 137
“Combining Patch Depots” on
page 155

Create swcopy, Chapter 10, “Creating Software

swpackage Packages,” on page 301

“Creating a Tape Depot for
Distribution” on page 156

List swlist -d “Listing Registered Depots” on
page 158
“Listing the Contents of a Depot
(swlist -d)” on page 159

Register swreg “Registering and Unregistering
Depots (swreg)” on page 151

Remove swremove -d “Removing Software from Depots”
on page 162
“Removing a Depot” on page 162

Unregister | swreg -u “Registering and Unregistering
Depots (swreg)” on page 151

Verify swverify -d “Verifying a Depot (swverify -d)” on
page 161

Additional “Additional Depot Management

tasks Tasks and Examples” on page 155

134 Chapter 4

Managing Software Depots
Depot Management Commands and Concepts

Depot Concepts

A depot is a special type of directory formatted for use by SD-UX
commands, and used to contain software products. You can create a depot
by using swcopy to copy software directly from physical media or by
using swpackage to make a software package containing the depot.

When a depot resides on a networked system, that system can act as a
source for software: other systems on the network can install software
products from that server instead of installing them each time from
media.

Network depots offers these advantages over installing directly from
media:

e Several users can pull software down to their systems (over the
network) without having to transport media to each user.

¢ Installation from a network server is faster than from media.

* You can combine different software products from multiple media or
network servers into a single depot.

Types of Depots

A depot usually exists as a directory location. This software is in a
hierarchy of subdirectories and filesets organized according to a specific
media format. A host may contain several depots. For example, a
software distribution server on your network might contain a depot of
application software, a depot of patch software, and a depot of OS
software.

There are two types of depots: directory and tape.
Directory Depot

e A directory depot consists of software stored under a special
SD-UX-managed directory on your file system, usually
/var/ spool / sw.

e A directory depot can be writable or read-only.

e When you use the SD-UX commands to refer to a directory depot, you
need only to refer to the depot’s top-most directory. In a CD-ROM
depot, this directory would be the CD-ROM mount point, such as
/ cdr on nydepot .

Chapter 4

135

Managing Software Depots
Depot Management Commands and Concepts

Tape Depot

Tape (serial) depots offer advantages when you must copy or install
software over slow or unreliable network connections, including the
web. (First copy the depot to a local host, then install from the local
depot.)

Software in a tape depot is formatted as a tar archive.

Depots for actual cartridge, DAT and 9-track tape are referred to by
the path to the tape drive’s device file. For example: / dev/ rnt/ 0m

You cannot modify or verify tape depots.

You can create a tape depot only with the swpackage command. You
cannot use swcopy to copy software directly to a tape. See

Chapter 10, “Creating Software Packages,” on page 301 for more
information on swpackage.

Software in a tape depot must first be transferred to a directory
depot before it can be accessed by other hosts on the network.

A tape depot can be accessed by only one command at a time.

Depot Registration

To make the software in a depot available for use by SD-UX commands
across a network, you must register the depot. You can also unregister a
depot if you do not want it to be available. See “Registering and
Unregistering Depots (swreg)” on page 151 for more information.

136

Chapter 4

Managing Software Depots
Copying Software Depots

Copying Software Depots

The swcopy command copies software between depots. Software that is
coplied into a depot cannot be used directly; it is placed there only to act as
a source for installation and other SD-UX operations.

swcopy Features and Limitations

swcopy does not perform compatibility checking.
swcopy does not run control scripts.

swcopy does not perform kernel building or rebooting, although it
does perform other pre-install and postinstall checks, such as disk
space analysis and requisite selection.

When you create or modify a depot with swcopy, SD-UX
automatically creates catalog files that describe the depot. These are
stored in the IPD. See “Modifying the IPD (swmodify)” on page 115
for more information.

Software dependencies apply to selections made with the swcopy
GUL

Chapter 4

137

Managing Software Depots
Copying Software Depots

Overview

Table 4-3

Step I: Start-Up

Using the swcopy GUI

This section provides an overview of the swcopy GUI.

¢ Ingeneral, all information presented in “Using the swcopy Command
Line” on page 147 also applies to the swcopy GUI.

e This section also refers to information about standard GUI elements
discussed in “Using the GUI and TUI Commands” on page 35.

e All information in this section also applies to the TUI program unless
otherwise noted. See “The Terminal User Interface” on page 35.

The copy process has six steps:

Copy Process Steps

I. Start-Up Start the swcopy GUI.

II. Specify Provide the location to which you want to copy the
Target software.

II1. Specify | Provide the location of the software depot from which

Source the software will be copied.
IV. Select Select the software you want to copy.
Software

V. Analysis | swcopy determines if the copy operation can succeed.
(Preview)

VI. Copy The actual software copying process.

To start the GUI or TUI for an copy session, type:
/ usr/ sbi n/ swcopy

The GUI is automatically invoked unless you also specify software on the
command line. To invoke the GUI and specify software, include the - i
option. For example, to use the GUI for a preview (analysis only) session
with MyDepot , type:

swinstall -i -p /M/Depot

The Software Selection window appears with the Specify Source dialog
and the Select Target Depot Path dialogs superimposed over it.

138

Chapter 4

Managing Software Depots
Copying Software Depots

Step Il: Specify In this step, you specify the target to which SD-UX will copy the
Target software.

(This step is skipped if you include the -t t ar get option when you
invoke the GUI. See “Using the swcopy Command Line” on page 147.)

The Select Target Depot Path dialog displays the default target depot.
Since this matches the default source depot path, you must select a new
target:

Figure 4-1 Select Target Depot Path Dialog

Select Target Depot Path {(swhash3)

Target Host: swhash3

Target Depot Path... /var/spool /sw

OK Cancel Help

1. Enter a target path:
e Type a new target path in the text box.

e Click the Target Depot Path... button. The Depot Paths dialog
appears, listing registered depots on the host.

Click on a depot in the list.

Click OK. The Target Depot Path dialog disappears. The
depot you selected is now displayed in the Select Target
Depot Path dialog.

2. Click OK.

The Select Target Depot Path dialog disappears, and the Specify Source
dialog is highlighted.

Chapter 4 139

Managing Software Depots
Copying Software Depots

Step lll: Specify In this step, you must specify the source depot that contains the software
Source you want to copy. The Specify Source dialog (Figure 4-2, “Specify Source
Dialog,”) automatically lists the local host and default depot path.

(This step is skipped if you include the - s sour ce option when you
invoke the GUI. See “Using the swcopy Command Line” on page 147.)
Figure 4-2 Specify Source Dialog

Specify Source (swbash3)

Specify the source type, then host name, then path on that host.

Source Depot Type: Network Directory/CDROM Find Local CD
Source Host Name... |swbash3:
Source Depot Path... |ftetftmpfcontro| ler/depot. 1]
OK Cancel Help

1. (Optional) To specify another host system, type a source host name,
or:

a. Click on the Source Host Name button. The system displays a
dialog that lists all host system names contained in the
def aul t s. host s file (BHOVE . sw def aul t s. host s or
/var/ adm sw def aul t s. host s).

b. Choose a host name from the list.

c. Click OK. The host name appears in the appropriate box in the
Specify Source dialog.

2. (Optional) To specify the path to the depot, type a new path, or:

a. Click on the Source Depot Path button to display a list of
registered depots on the source host.

b. Highlight one of the depots.
c. Click OK to make it appear in the Specify Source dialog.

3. Click OK. The Specify Source dialog closes, and the Software
Selection window displays the software contained in the depot you
specified.

140 Chapter 4

Managing Software Depots
Copying Software Depots

Step IV: Select In this step, you use the Software Selection window (Figure 4-3,
Software “Software Selection Window,”) to select the software you want to copy.
Figure 4-3 Software Selection Window

SD Copy — Software Selection (swbash3)

_'.' View Options Actions

Source: swbash3:/tet/tmp/mwth/match.revision/depot
Targe bash3:/var/spool/sw

All software on the source is available for selection.
Top (Bundles and Products)

Marked? Na svisio Information

1. Select software from the object list:

a. Highlight an item
b. Select Actions—Mark For Copy

0 of 2 selected

Size(Kb)

5]
5]

Right-click to display the pop-up, then select Mark For Copy

The Mar ked? flag in the object list changes to Yes to match your
selection. (The flag Parti al may appear if you select only some

component of a software object.)

Chapter 4

141

Managing Software Depots
Copying Software Depots

2. (Optional) Use additional choices from the Actions menu:

Add Software Group displays a list of previously saved software
group files or lets you specify a directory. Selecting a file adds the
software selections in the file to any selections you have already
made in the Software Selection window.

Save Software Group lets you save your current list of marked
software as a group.

Manage Patch Selections lets you select from a list of patches to
copy, select filters for patches, and set other patch options. (See
“Interactive Patch Management” on page 176 for more
information.)

Change Source... cancels your software selections and returns you
to the Specify Source dialog.

Add New Codeword lets you add a new codeword to unlock
protected software. (This option is available only when SD-UX
detects that the source contains protected software.)

Show Description of Software (available only for a single item
highlighted in the object list) displays more information on the
selected software.

Change Target... returns you to the Select Target Depot Path
dialog (“Step II: Specify Target” on page 139).

3. Select Actions—Copy to start the analysis (preview) step. The
Analysis dialog appears.

142

Chapter 4

Step V: Analysis
(Preview)

Figure 4-4

Managing Software Depots
Copying Software Depots

In this step, SD-UX analyzes the software you have selected.

The Analysis window displays status information about the analysis
process. When the analysis is complete and the host status shows Ready,
click OK to start the actual copy (see “Step VI: Copying” on page 146).
The Analysis dialog is then replaced by the Copy dialog.

If you started a preview session, the copy stops after the analysis.
Clicking Cancel returns you to the Software Selection window.

. .
Copy Analysis Dialog
Copy Analysis (swbash3)
After Analysis has completed, press "0K’ to proceed, or "CANCEL’
to return to prier selection screen.
Target : swhash3:/var/spool/sw
Status : Ready
Products Scheduled : 1 of 1
Froduct Summary. .. Logfile... Disk Space... Re—analyze
OK Cancel Help

The following actions are available:

e Product Summary gives additional information about the product or
bundle and provides a Product Description button that displays
information about additional information about dependencies,
copyright, vendor, etc.

e Logfile presents a scrollable view of detailed copy information written
to the logfile.

® Disk Space displays the Disk Space Analysis window (Figure 4-5,
“Disk Space Analysis Window,”) which shows:

— The file system mount point,

— How much disk space was available before the copy,
— How much will be available after the copy,

— What percent of the disk’s capacity will be used.

— How much space must be freed to complete the operation.

Chapter 4

143

Managing Software Depots
Copying Software Depots

Menu choices in this window let you:

— Search the object list.

— Open items to look at the projected size requirements for specific
filesets.

® Re-analyze repeats the analysis process.

Figure 4-5 Disk Space Analysis Window
 SDCopy -DiskSpacoAnabysis(ewash® | |

File View Options Actions

Target: swbash3:/tet/tmp/mwth/match.revision/depot

All affected file systems on swbash3:/tet/tmp/mwth/match.revision/depot are list
To view software affecting a filesystem, open the filesystem.

Sizes shown in Kbytes.

File Systems 0 of 1 selected

File System Available Available Capacity Must
Mount Point Before After After Free

/tet == 160082 160072 47% (0]

144 Chapter 4

Managing Software Depots
Copying Software Depots

When Analysis completes, the status for any host displays as either
Ready or Excl uded from task. If any of the selected software can be
copied onto the host, the status shows Ready. If none of the selected
software can be copied onto the host, the status shows Excl uded from
t ask.

The following list summarizes the status results. You can find details
about most problems by clicking the Logfile button.

Ready There were no errors or warnings during analysis. The
copy may proceed without problems.

Ready with VArni ngs
Warnings were generated during the analysis. Errors
and warnings are logged in the logfile.

Ready with Errors
At least one product selected will be copied. However,
one or more products selected are excluded from the
task because of analysis errors. Errors and warnings
are logged in the logfile.

Communi cation failure

Contact or communication with the intended target or
source has been lost.

Excl uded due to errors

Some kind of global error has occurred. For example,
the system might not be able to mount the file system.

D sk Space Failure
The copy will exceed the space available on the
intended disk storage. For details, click the Disk Space
button.

The Product s Schedul ed column shows the number of products ready
for copying out of all products selected. These include:

e Products selected only because of dependencies
e Partially selected products

e Other products and bundles that were selected

Chapter 4

145

Managing Software Depots
Copying Software Depots

Step VI: Copying In this step, SD-UX proceeds with the actual copy.

After you click OK in the Analysis window, SD-UX starts copying and
displays the Copy Window (Figure 4-6, “Copy Window,”), which shows
status information.

Figure 4-6 Copy Window

Copy Window (swhash3)

Press ’Product Summary’ and/or ’Logfile’ for more target information.

Target : swbash3:/tet/tmp/mwth/match.revision/depot
Status : Completed

Percent Complete : 100%

Kbytes Copied : 2 of 2

Time Left (minutes): 0O

Copying Software

Product Summary... Logfile...

Done

These action buttons are available:

¢ Done returns you to the Software Selection Window. You can then
begin another copy or exit the GUI (File—Exit).

e Product Summary display copy and product information (name,
revision, copy results, copy summary, product description).

e Logfile displays the logfile.

146 Chapter 4

swcopy Syntax

Options and
Operands

Managing Software Depots
Copying Software Depots

Using the swcopy Command Line

sweopy [XTool kit Qotionsl[-il[-pl [-v]l[-Csession filel
[-f software filel [-Qdatel [-s source] [-Ssession filel
[-x option=val ue] [-Xoption filel[software_sel ections]
[@t ar get _sel ections]

XToolkit Options X window options for the GUI. See “XToolkit Options
and Changing Display Fonts” on page 53.

- Run the GUI program. See “Using the sweopy GUI” on
page 138.

-p Preview a copy task from the command line by running
it through the Analysis Phase and then exiting.

-V Turn on verbose output to st dout and display all
activity to the screen.

-Csession file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.

-f software file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 58.

-Qadat e Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 234 and Chapter 6, “Remote
Operations Overview,” on page 189

-s source Use the software source specified by source instead of
the default, / var/ spool / sw. The syntax is:

[host:]I/ di rect ory]

host may be a host name, domain name, or internet
address (for example, 15. 1. 48. 23). directory is an
absolute path.

-Ssession file
Run the command based on values saved from a
previous session, as defined in session file. See
“Session Files” on page 61.

Chapter 4

147

Managing Software Depots
Copying Software Depots

Changing
Command Options

-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 59.

-X opti on=val ue
Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Changing
Command Options” on page 148.

-Xoption file
Read session options and behaviors from opt i on_file.
See “Changing Command Options” on page 148.

sof tware_sel ections
The software objects to be copied. See “Software
Selections” on page 56.

target_sel ecti ons
The target of the command. See “Target Selections” on
page 58.

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swcopy.

148

Chapter 4

Managing Software Depots
Copying Software Depots

swcopy Command Options and Default Values

admin_directory=/var/adm/sw
agent_auto_exit=true
agent_timeout_minutes=1000
0

allow_split_patches=false
autoremove_job=false
autoselect_dependencies=true
autoselect_patches=true
autoselect_reference bundles
=true

codeword=
compress_files=false
compress_index=false
controller_source=
create_target_path=true
customer_id=
distribution_source_directory
=/var/spool/sw
distribution_target_directory=
/var/spool/sw
enforce_dependencies=true
enforce_dsa=true

job_title=
layout_version=1.0
log_msgid=0
logdetail=false

logfile=
/var/adm/sw/swcopy.log
loglevel=1

® max_targets=

e mount_all_filesystems=true

patch_filter=software_specificati
on

patch_match_target=false
polling_interval=2
preview=false
register_new_depot=true
reinstall=false
reinstall_files=true

reinstall files_use_cksum=true
remove_obsolete_filesets=false
retry_rpc=1
retry_rpc_interval={0}
reuse_short_job_numbers=true
rpc_binding_info=
ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]
rpc_timeout=>5
run_as_superuser=false
select_local=true

software=
software_view=all_bundles
source=
source_cdrom=/SD_CDROM
source_tape=/dev/rmt/Om
source_type=directory
targets=
uncompress_files=false
use_alternate_source=false
verbose=1
write_remote_files=true

For More
Information

See Appendix A, “Command Options,” on page 421 for complete
descriptions of each default.

Chapter 4 149

Managing Software Depots
Copying Software Depots

Copy Tasks and Examples

This section provides examples of commands for copying software
products. (See also “Additional Depot Management Tasks and Examples”
on page 155.)

Simple swcopy Examples

To copy all products from the DAT tape at / dev/ r nmt/ Omto the default
depot (/ var/ spool / sw) on the local host:

swcopy -s /dev/rmt/Om*

To copy a list of software selections (on a local CD-ROM) named in the
file nysof t to a depot at the path / depot s/ nydep/ on the host named
host Aand preview the process before actually copying the software:

swecopy -p -f nysoft -s /mmt/cd @host A / depot s/ nydep/

Using Software Codewords and Customer IDs

The swcopy command may prompt you for codewords if you try to access
codeword protected software. You can also enter new codewords from the
command line or from the GUI. This process is identical to that used by
swinstall. See “Using Software Codewords and Customer IDs” on

page 78 for more information.

Multiple Software Products in Depots

Software is packaged into products. Depots can store multiple versions of
a product.

If a product version already exists in the depot, swcopy will not replace it
unless the rei nst al | option is set to true. If this option is true, then the
product is recopied.

If other versions of the product already exist in the depot, swcopy copies
in the new version and the others are not changed.

swcopy does not automatically notify you when multiple versions of a
product exist. swcopy notifies you only when an exact version exists.
exists and will be skipped (or recopied)

150

Chapter 4

Managing Software Depots
Registering and Unregistering Depots (swreg)

Registering and Unregistering Depots (swreg)

To make the software in a depot available for use across a network by
other SD-UX commands, you must register the depot. You can also
unregister a depot if you do not want it to be available.

Depots are registered or unregistered in these ways:

¢ The swcopy command automatically registers newly created depots.
(You can turn this function on or off with the regi st er _new_depot
option.)

e The swremove command automatically unregisters a depot after
removing all the software the depot contains.

e The swreg command explicitly registers or unregisters depots.

The swreg command lets you explicitly register or unregister depots
when the automatic registration features of swcopy or swremove are not
enough. For example, you can use swreg to:

e Make a CD-ROM or other media available as a registered depot.
¢ Register a depot that was created with swpackage.

¢ Unregister a depot to restrict network access without physically
removing the depot from a host.

Register Media or Create Network Depot?

When does it make sense to use your software media as a registered
depot versus using the media to create a network depot? In general,
using media as a depot makes sense for small-scale use, such as when
only one or two other systems need to access the media. If more systems
will need to access the media, performance will be better if you create a
network depot from the individual media. See “Additional Depot
Management Tasks and Examples” on page 155 for an example.

Chapter 4 151

Managing Software Depots
Registering and Unregistering Depots (swreg)

NOTE

swreg Syntax

Registration and Security

Because SD-UX stores its objects in the file system, someone could build
a “Trojan Horse” file system image of a software depot. This could breech
the security of any system that installed products from the false depot.
To protect systems from such a situation, SD-UX requires that depots be
registered before software may be installed or copied from it. This check
is always performed before granting access, except when swinstall is run
by the local superuser.

Registration of a depot does not enforce any access restrictions. Access
enforcement is left to SD security (see Chapter 9, “SD-UX Security,” on
page 255). Registration with swreg requires insert permission in the
host’s ACL.

Authorization

To register a new depot or to unregister an existing depot, swreg requires
read permission on the depot in question and insert permission on the
host. To unregister a registered depot, the swreg command requires
write permission on the host. See Chapter 9, “SD-UX Security,” on

page 255 for more information on permissions.

Using swreg

sweg-l level [-u] [-v] [-Csession filel [-f object_filel
[-Ssession filel[-t target _filel[-x option=val uel
[-Xoption file]lobjects to register] [@target_sel ections]

Options and -1 level Specifies the level of the object to register or unregister,
Operands where level can be depot or r oot .
-u Causes swreg to unregister the specified objects
instead of registering them.
Y Turns on verbose output to st dout and displays all
activity to the screen.
152 Chapter 4

Managing Software Depots
Registering and Unregistering Depots (swreg)

-Csession file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.

-f object _file
Reads a list of depots or root objects to register or
unregister from a obj ect_fi [e instead of (or in
addition to) the command line.

-Ssession file
Run the command based on values saved from a
previous session, as defined in session_fil e. See
“Session Files” on page 61.

-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 59.

- X opti on=val ue
Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Using
Command Options” on page 59.

-Xoption file
Read session options and behaviors from opt i on_file.
See “Using Command Options” on page 59.

obj ects to register
The software objects to be registered or unregistered.

@ ar get_sel ections
The target on which the objects will be registered or
unregistered. See “Target Selections” on page 58.

Chapter 4 153

Managing Software Depots
Registering and Unregistering Depots (swreg)

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swreg:

Table 4-5 swreg Command Options and Default Values
¢ admin_directory=/var/adm/sw ® rcp_binding info=
e distribution_target_directory= ncacn_ip_tcp:[2121]
/var/spool/sw ncadg_ip_udp:[2121]
e Jevel= * rpc_timeout=5
¢ log msgid=0 * run_as_superuser=true
e logfile=/var/adm/sw/swreg.log ® select_local=true
¢ logdetail=false e gselect_local=true
¢ loglevel=1 * targets=
¢ objects_to_register= e verbose=1
For More See Appendix A, “Command Options,” on page 421 for complete
Information descriptions of each default.
swreg Examples
To unregister a CD-ROM depot mounted at / mt / cd, you would type:
sweg -1 depot -u /mt/cd
To register the same depot (mounted at / mt/ cd on the local host) as a
depot to be available on the network, type:
sweg -1 depot /mt/cd
The following example enables direct access from one or two other
systems to the HVEEnabl e1li depot on the Support Plus CD, assuming the
Support Plus CD is mounted at / cdrom
sweg -1 depot /cdrom HVEnabl elli
154 Chapter 4

Managing Software Depots
Additional Depot Management Tasks and Examples

Additional Depot Management Tasks and
Examples

This section illustrates some typical depot management tasks and
provides extended examples of how you can use SD-UX to manage your
environment.

Combining Patch Depots

This example shows how to combine into a single depot five downloaded
patches (which are tape depots) from HP. The example also shows how to
register the depot, list the depot contents, and install the patches from
the new depot using the pat ch_mat ch_t ar get option. The example
assumes that you have already downloaded patches PHKL_20349,
PHKIL_22161, PHSS_21906, PHSS_21950, and PHCO_22923 from the
HP ITRC (http://itrc. hp. com):

swcopy -s /tnp/ PHKL_20349. depot * @/ depot s/ nypat ches
swcopy -s /tnp/ PHKL_22161. depot * @/ depot s/ nypat ches
swcopy -s /tnp/ PHSS 21906. depot * @/ depot s/ nypat ches
swcopy -s /tnp/ PHSS 21950. depot * @/ depot s/ nypat ches
swcopy -s /tnp/ PHOO 22923. depot * @/ depot s/ nypat ches
sweg -1 depot @/ depots/nypatches

swist -d -s /depots/nypatches

swinstall -x patch _match_target=true -s /depots/nypatches

Chapter 4 155

Managing Software Depots
Additional Depot Management Tasks and Examples

Creating a Tape Depot for Distribution

This example shows you how to create a tape depot as a single file that
can be distributed via ftp or the web. This example uses the five patches
from the previous example (which are formatted as tape depots) and uses
an existing depot at / depot s/ nypat ches. The swlist command shows
the depot contents (see “Listing the Contents of a Depot (swlist -d)” on
page 159).

swpackage -x nedi a_type=tape -s /depots/nypatches \
@/ t np/ nypat ches. depot

swist -d -s /tnp/ nypatches. depot

To create a tape depot from nypr oduct . psf, a valid product specification
file:

swpackage -x nedi a_type=tape -s nyproduct. psf \
@/ t np/ nypr oduct . depot

swist -d -s /tnp/ nyproduct. depot

See Chapter 10, “Creating Software Packages,” on page 301 for more
information about swpackage.

Setting Depot Attributes

When you create a depot, you may want to set the title and description
attributes to help identify the depot and what it contains.

At the top of the product specification file (psf) for the depot, place the
lines similar to the following:

di stribution

title Qptional Devel opment Tool s

description "Text processing and progranmng tools
\general |y useful for source code devel opnent™

Then package and register the depot:

swpackage -s nydepot. psf @/ depot s/ nydepot
sweg -1 depot @/ depots/nydepot

To see the title and description of all depots on a system:

swist -v -atitle -a description -1 depot

156

Chapter 4

Managing Software Depots
Additional Depot Management Tasks and Examples

Creating a Network Depot

Creating a network depot from which to install software can improve
performance and ease of use when you have to install software to large
numbers of systems. For example, HP-UX 11i is delivered on two CDs,
requiring you to swap CDs during the update process. To perform an
update without having to swap CDs, you can create a remote depot on an
existing 11i system that contains all the necessary software, then update
from that single source. (For more information on the update process, see
the HP-UX 11i Installation and Update Guide.)

As root, follow this procedure to create a network depot from the HP-UX
11i CDs onto a depot server or other system running HP-UX 11i in your
network:

1. Verify that you have at least 1,230 MB of free space to create the
network depot on another system in your network. If this space is not
available, use SAM to either create a new volume group or extend an
existing volume group. For help, see either SAM help or the
Managing Systems and Workgroups manual.

2. Login as root and mount the logical volume on a new directory
named /update. This directory will hold your network depot.

3. Insert the HP-UX 11i CD1 and wait for the CD drive’s busy light to
stop blinking.

4. Find the CD-ROM device file name:

ioscan -fn | nore

A typical CD-ROM device name is: / dev/ dsk/ c1t 2d0
5. Create the directory /cdrom under root(/):

nkdir /cdrom

6. Mount the CD onto the /cdrom directory as a file system. For
example:

nmount /dev/ dsk/clt2d0 /cdrom

7. Merge all products on the mounted CD to the target depot, for
example /update/update-depot:

swcopy -s /cdrom* @/ updat e/ updat e- depot
8. Unmount the CD from directory /cdrom:

umount /cdrom

Chapter 4

157

Managing Software Depots
Additional Depot Management Tasks and Examples

9. Insert the HP-UX 11i CD2. Wait for the drive’s busy light to stop
blinking.

10. Repeat Steps 6 through 8 using CD2 and the Support Plus CD.

The network depot is now ready for you to use to update your HP-UX
10.20 or 11.0 system to HP-UX 11i.

Managing Multiple Versions of HP-UX

You can use your HP-UX 11i system to manage depots for HP-UX 11.00
and 10.20, with the following guidelines:

¢ HP recommends that you do not mix OS versions within the same
depot. That is, locate 10.20 software in 10.20 depots, 11.00 software
in 11.00 depots, and 11i software in 11i depots.

¢ You can manage 11.00 depots from 11i without any special
considerations—although you should maintain the segregation of
11.00 and 11i software in separate depots. Although the formats are
similar, 11i software may contain vendor-defined attributes not
recognized by 11.00 systems. This results in warnings when 11.00
systems access 11i software.

e For 10.20 depots:

— To create 10.20 depots from an 11i system, you must use the
correct layout_version. For example:

swcopy -x layout _version=0.8 ...
swpackage -x layout_version=0.8 ...
From then on, your 11i system can maintain the 10.20 depot.

— SD-UX will generate warnings if you attempt to put
[ayout _ver si on=1. 0 software (11.00 or 11i format) into a
| ayout _versi on=0. 8 (10.20) depot.

Listing Registered Depots

swlist can display lists of registered depots residing on a host. To do this,
use combinations of the -1 depot option.

To list all depots on the local host, type:
swist -1 depot

158

Chapter 4

TIP

NOTE

Managing Software Depots
Additional Depot Management Tasks and Examples

To list all depots on a remote machine (host A), type:
swist -1 depot @hostA

To list all the depots on a system from newest to oldest (by time last
modified):

swist -1 depot -a nod _date -a nod tine | sort -rn -k 7,7

Use the nod_t i me as a convenient sort field (a single integer), and use
nod_dat e to include human-readable output. (Place nod_t i ne at the end
of the display where it’s less visible.)

Listing the Contents of a Depot (swlist -d)

With swlist you can list all software that is packaged, stored, and ready
to be installed.

The sw i st -d option lets you list software residing on the default depot
on your local host. For browsing any depot in the GUI, you can use
swist -i -d.Youcan also view the associated session and audit log
files.

By default the output of swlist will reflect the POSIX format for
attributes. This may affect users who parse this output.

In the following examples, swlist output requests are sent to standard
output. All examples assume the one_| i ner option is revi si on si ze
titl e and thel evel option is product or undefined.

List the contents of the local tape depot, / dev/ rnt/ 0:
swist -d @/dev/rnt/0

AUD T 3.5 9834 Trusted Systens Auditing Wils
COWAND 1.7 4509 Core Command Set

G LANG 2.5 5678 C Programmi ng Language

DSKLES 1.8 6745 HP d uster Conmands

KERNEL 1.4 56908 Kernel Libraries and Headers
VUE 1.3 5489 Vue (Instant Ignition Rel ease)
WNDONS 2.06 10423 Wndow ng Products

Chapter 4

159

Managing Software Depots
Additional Depot Management Tasks and Examples

List the media attributes of the local tape depot, / dev/rnt/0:
swist -d -v -1 depot @/dev/rnt/0

type di stribution

tag CRE G5

description HP-UX Core (perating System Software D sc
nurber B2358- 13601

date June 1991

List the products stored in the software depot on host 1 located at
/ swnedi a. For this example assume one_liner istitle size
archi tecture:

swist -d @host 1:/swredi a

FRAME Frame Docunent Pkg 2319 HP- UX 9000 Seri es700/ 800_Aor B
FRAME Frame Docunent Pkg 2458 OSF1_9000_Seri es700_1.0

ME30 3-D Mechani cal Eng 5698 HP- UX 9000 Seri es300/ 800_Aor B
SOFTBENCH Sof t bench Devel opnent Env 4578 HP- UX 9000_Seri es30
0

TEAMAORK Tnwk. Desi gn/ Anal ysi s 3478 HP- UX_9000_Seri es300/ 400

Note that the media contains two versions of the FRAME product.

Source Depot Auditing

If both the source and target systems are 10.30 or later versions of
HP-UX, you can use sw i st to audit the depot. The system
administrator at the source depot machine can turn the audit
functionality on or off. This feature tracks users and their software
selections. In addition, you can determine when depots are being used.

As the administrator, you must set to true the value of

swagent . sour ce_depot _audi t in the / var/ adni sw def aul t s file for
swagent. This creates a swaudi t . | og file on the source depot (for
writable directory depots) or in / var/t np (for tar image, CD-ROM, or
other non-writable depots). This works like swagent . | og for source
depot.

You can view the audit files by typing swli st -i -d. Aslong as the
system has the corresponding SD message catalog files on it, you can
view the audit information on a remote/local depot (with your language
preference set).

160

Chapter 4

NOTE

Managing Software Depots
Additional Depot Management Tasks and Examples

Verifying a Depot (swverify -d)

To can use the swverify command to verify the software within a depot.
swverify performs these tasks:

e Verifies that all dependencies (prerequisites or corequisites) can be
met.

¢ Reports missing files.

¢ Checks file attributes, including permissions, file types, size,
checksum, mtime, and major/minor attributes.

For example, to verify the entire contents of a local depot:

swerify -d * @/var/spool /sw

The swverify command does not execute vendor-supplied verification
scripts within a depot.

Chapter 4

161

Managing Software Depots
Additional Depot Management Tasks and Examples

Removing Software from Depots

Invoking swremove with the -d option removes software from depots
instead of root file systems. This also means that you must specify a path
to identify the depot from which you want to remove the software. For
example:

swenove -d A d-Software @/ var/ spool / sw

For the sw enove - d GUI, you are prompted to specify the depot by a
dialog that appears after you invoke the GUI. This is the same dialog
used to specify a depot target for swcopy operations. See “Step II: Specify
Target” on page 139 for information about how to use this dialog.

Removing a Depot

To remove and automatically unregister a depot:

swenmove -d * @/t np/ MyDepot

162

Chapter 4

Managing Patches

5 Managing Patches

This chapter discusses Software Distributor features that help you
develop, install, and manage software patches.

Table 5-1 Chapter Topics

Topics:

“Introduction” on page 164

“Patch-Related Features” on page 167

“Installing Patches” on page 171

“Copying Patches” on page 175

“Interactive Patch Management” on page 176

“Listing Patches” on page 178

“Patch Removal, Rollback, and Committal” on page 179

“Verifying Patches” on page 181

“Packaging Patch Software” on page 182

Chapter 5 163

Managing Patches
Introduction

NOTE

For More
Information

Introduction

SD-UX gives you the ability to perform patch management operations
including installation, copying, listing, removing, rollback, and
committal. Patch-related features of SD-UX include:

e Command options for patch management functions.

e Software objects and attributes for identifying and managing
patches.

¢ An interactive patch management tool.

You can use the SD-UX remote operations features for patch
management. See Chapter 6, “Remote Operations Overview,” on
page 189 and “Installing Patches to Remote Systems” on page 174.

For more information on patching HP-UX products, see HP-UX Patch
Management: A Guide to Patching HP-UX 11.X Systems. This document
is available under the Patch Management section of:

http://docs. fc. hp. coml hpux/ os/ 11i / oe/

Patch Concepts

A patch is defined as software packaged with the i s_pat ch attribute set
to true.

As with non-patch software, patches are structured into products and
filesets. By convention on HP-UX, patch products are given unique
names, but their fileset names match the corresponding base filesets
that they patch. In general, patches are intended to be managed (that is,
installed, copied, or removed) at the product level.

Each patch fileset has associated with it an ancestor fileset, which is
the base software that it patches. A patch fileset may not be installed on
a target system unless its ancestor fileset is also being installed or is
already present on the system. Similarly, an ancestor fileset cannot be
removed without also removing all of its patches. A patch fileset’s
ancestor is identified by its ancest or attribute.

164

Chapter 5

Managing Patches
Introduction

Patches that have been applied to an ancestor fileset are listed in the
ancestor’s appl i ed_pat ches attribute.

HP patches are required to completely replace earlier patches. A newer
version of a patch is said to supersede an earlier version. A patch
fileset’s super sedes attribute lists all previous patch filesets that it
supersedes.

Patch filesets can have dependencies on other patches as well as
non-patch software. When a patch supersedes another patch, it is also
assumed to be able to satisfy any dependencies on that earlier patch.
(See “Patch Supersession and Dependency Resolution” on page 166.)

By default, patches installed on a target system can be rolled back, that
is, the files that the patch replaced are stored in a special save area so
they can be restored if you remove the patch later on.

A patch that has been installed on a target system is assigned a
pat ch_st at e attribute value that indicates whether it can be rolled back
and whether it has been superseded.

Patches can be selected and managed explicitly, or automatically as part
of the selection of non-patch software.

You can manage patches separately from regular software items.
Selection for installation and listing is supported by the cat egory_t ag
attribute and special patch management options to SD commands.

See “Packaging Patch Software” on page 182 in this chapter for complete
information on patch-related attributes and objects.

Patch Installation Paradigm

On HP-UX 10.x, SD-UX did not distinguish patch software from
non-patch software. The mat ch_t ar get command option was used to
select the appropriate patches for software present on the target.

This paradigm has changed for HP-UX 11.x with the addition of new
functionality:

¢ SD now distinguishes patches from non-patch software based on new,
patch-specific software attributes.

e The mat ch_t ar get option is still supported, but is now used only for
the selection of non-patch software. A new option,
pat ch_nat ch_t arget, is used to select patches that correspond to
the software already present on a target depot or root.

Chapter 5

165

Managing Patches
Introduction

¢ Another new option, aut osel ect _pat ches, causes SD to
automatically select patches that are appropriate for any non-patch
software that has been selected.

¢ Patch dependencies are now enforced. See “Patch Supersession and
Dependency Resolution” on page 166 and “Using swlist to Resolve
Manual Dependencies” on page 179.

Patch management command options are discussed in the following
sections.

Patch Supersession and Dependency Resolution

Because patches can be superseded, special considerations are made
when resolving dependencies on patches. By definition, a patch that
supersedes another patch is assumed to be able to satisfy any
dependencies that exist on the superseded patch. The converse is not
true, however. A superseded patch will not satisfy a dependency on a
superseding patch.

SD-UX uses the information in each patch fileset’s super sedes attribute
to build a supersession chain, which represents the superseding
relationships among patches for a given base fileset.

When resolving a dependency on a patch, SD-UX attempts to find the
latest patch in the corresponding supersession chain. It starts with the
patch specified by the dependency, and traverses the chain until it finds a
non-superseded patch. Thus, a dependency that specifies a given patch
may actually cause a different, superseding patch to be automatically
selected.

You can override this auto-selection behavior by explicitly selecting
patches. If SD-UX encounters an explicitly-selected patch fileset during
the traversal of the supersession chain, that patch is used to resolve the
dependency—even if it is superseded by other patch filesets in the chain.

Note, however, that if the chain has an explicitly-selected patch fileset
that cannot satisfy the dependency (that is, it is superseded by the patch
fileset specified in the dependency), swinstall will treat this as an error
(an attempt to install multiple patch filesets in the same supersession
chain).

166

Chapter 5

Table 5-2

Managing Patches
Patch-Related Features

Patch-Related Features

SD’s patch-related features include command options and software
attributes. Patch attributes are discussed in “Packaging Patch Software”
on page 182 in this chapter.

Command Options

Patch default options are available at the command line. You can change
their default values by:

e Specifying values with the - X command-line option
¢ Changing the default options files

¢ Using the swinstall or swcopy GUI via the Actions—>Manage Patch
Selection... choice.

For complete information on default options, see “Using Command
Options” on page 59 and Appendix A, “Command Options,” on page 421.

The following table summarizes by command the SD-UX default options
for managing patches:

Patch Options Listed by Corresponding Command

Command Patch Option

swask aut osel ect _pat ches=t rue
patch_filter=*.*

swcopy all ow split_patches=fal se
aut osel ect _pat ches=true
patch filter=*.*

pat ch_nat ch_t arget =f al se

swi nst al | al l ow split_patches=fal se
aut osel ect _pat ches=t rue
patch_filter=*.*

pat ch_nat ch_t ar get =f al se
pat ch_save fil es=true

Chapter 5

167

Managing Patches
Patch-Related Features

Table 5-2

Patch Options Listed by Corresponding Command (Continued)

Command Patch Option

sw i st | evel =pat ch (equivalent to -1 pat ch)

patch one liner=title patch state
show super seded_pat ches=f al se

swrodi fy pat ch_commi t =f al se

SWr enove al l ow split_patches=fal se

allow_split_patches=false

Permits the independent management of individual patch filesets
within a patch product. This option should be used only to resolve
critical problems when directed by your HP support representative.

Applies to swinstall, swcopy, and swremove.
autoselect_patches=true

Automatically selects the latest patches (if any) for a software object
that you have selected for a swinstall or swcopy operation. (Selection
is based on the patch object’s super sedes and ancest or attributes.)
The default value is true. The patches must reside in the same depot
as the selected software.

This option is useful for installing patches at the same time that you
install the base software to which the patches apply.

You can use this option with the pat ch_filter option to limit your
automatic patch selection.

Applies to swask, swinstall, and swcopy.
level=

Controls the depth of swlist output. When set to the value pat ch,
swlist lists patches and their pat ch_stat e (appl i ed, comm tt ed,
super seded, or conmi t t ed/ super seded) for each ancestor fileset.
This option is equivalent to the -1 pat ch command-line option.

Applies to swlist only.

168

Chapter 5

Managing Patches
Patch-Related Features

e patch_commit=false

Commits a patch by removing files saved for patch rollback. The
default value is false. When set to true, this option removes the saved
files for the patches specified in the software selections for the
command and changes the associated pat ch_st at e attribute from
appl i ed to comm t t ed or from super seded to

comm t t ed/ super seded. (See also pat ch_save_fil es.)

Note that when a patch is committed, all patches that it has
superseded are also committed.

Applies only to swmodify only.
e patch_filter=*.*
Specifies a filter used during the automatic patch selection process.

This option is used in conjunction with the aut osel ect _pat ches and
pat ch_mat ch_t ar get options to filter out patches that do not meet
the specified criteria (tag, version, etc.).

Applies to swask, swcopy and swinstall.
e patch_match_target=false

Automatically selects the latest patches that correspond to software
on the target root or depot. The default value is false.

This option is useful when you are installing patches on previously
installed software.

This option can be used with the pat ch_filter option to filter out
patches that do not meet the specified criteria.

Applies to swcopy and swinstall.

NOTE When you use the SD-UX remote operations features to push patches
to remote systems, you can use pat ch_mat ch_t ar get with only one
remote system at a time.

Chapter 5 169

Managing Patches
Patch-Related Features

patch_one_liner=title patch_state

Specifies the attributes shown on the one-line display for each object
listed by swlist. Applies when the -1 pat ch option is invoked and
when no - a or - v option is specified. The default display attributes
aretitleand patch_state.

Applies to swlist only.
patch_save_files=true

Saves files to be patched before they are overwritten during an
installation. This permits future rollback of patches. When set to
false, patches cannot are automatically committed and can not be
rolled back (removed) unless the base (non-patch) software modified
by the patch is removed at the same time. The default value is true.

Applies to swinstall only.
show_superseded_patches=false

Controls the swlist display of superseded patches. By default, swlist
will not display superseded patches, even if you explicitly list the
superseded patch. To view superseded patches, set this option to
true.

Applies to swlist.

170

Chapter 5

Managing Patches
Patch Management Tasks and Examples

Patch Management Tasks and Examples

installing copying, interactive patch management, removal, rollback,
committing patches, verifying patches

Installing Patches

Installation of patch products follows the same rules as any other SD
installation. The key difference is that patch selection and mechanisms
let you select only the patches that meet specified criteria. Selection
mechanisms for patches are:

e The cat egory_t ag attribute and corresponding cat egory objects.

e Thepatch filter,patch match target, and
aut osel ect _pat ches options.

When you install a patch, SD updates the appl i ed_pat ches attribute of
the fileset that has been patched and updates the | NFOfile information
to include the patched file’s attributes. Also (if the pat ch_save files
option is set to true), files that would be overwritten are stored in a
special save area in the IPD.

When a patch is installed, by default it has the pat ch_st at e of applied.
When the patch is committed (rollback files are removed) or it has been
installed without saving rollback files, it has the state of committed.
When the patch is superseded, the pat ch_st at e is set to superseded,
and the super seded_by attribute is set to the sof t ware_speci fi cati on
of the superseding patch fileset.

If a patch is both committed and superseded, its pat ch_st at e is set to
committed/superseded.

Installing Patches in Same Session as Base Product

If you select a non-patch fileset for installation and patch filesets for that
base fileset exist in the same source depot, all applicable patches are
selected by default as long as the aut osel ect _pat ches option is set to
its default value of true. The following rules also apply:

e Automatic patch software selections are filtered as defined by the
pat ch_fil ter option.

Chapter 5

171

Managing Patches

Patch Management Tasks and Examples

¢ Ifmore than one patch for a base fileset exists, only the latest
patches (i.e., those that are not superseded) will be automatically
selected for installation, unless overridden by an explicit patch
selection.

¢ You can also explicitly specify patches on the command line. See
“Explicitly Specifying Patches” on page 173 for more information.

The following examples demonstrate the use of patch options on the
command line. (Note that the aut osel ect _pat ches option is true by
default.)

The example below shows the default behavior for patch installation. All
patches in the depot that apply to the software being installed (in this
case, X11) are selected by default:

swinstall -s sw server Xl1

To select all applicable patches that include the cat egory_t ag of
critical _pat ch and install them along with the selected software:

swinstall -s sw server \
-x patch_filter="*.* c=critical patch” Xl11

The following example installs a product and an explicitly specified
patch.

swinstall -s sw server \
-X aut osel ect _pat ches=fal se X11 PHSS 12345
Installing Patches After Base Product Installation

When you want to install patches after installation of the base product,
you can select the patches explicitly or by matching the installed
software using the pat ch_nat ch_t ar get option, which automatically
selects the latest patches for the software found on the target.

To select all patches in the depot that correspond to currently installed
software:

swinstall -s sw server -x patch_nmatch_target=true

To select all patches in the depot that correspond to currently installed
software and that contain the cat egory_t ag critical_patch:

swinstall -s sw server -x patch_match_target=true \
-x patch_filter=" *.* c=critical patch”

172

Chapter 5

Managing Patches
Patch Management Tasks and Examples

Patch Filtering with Multiple Criteria

You can repeat a version qualifier (for AND criteria) and use the pipe
symbol (|) within qualifiers (for OR criteria). This is consistent with the
current level of expression support in POSIX standard software
specifications.

To install any patches that have the category tag of cri ti cal AND the
category tag of either speci al _r el ease OR har dwar e_enabl enent .

swinstall -s sw server -x patch_match_target=true \
-x patch_filter="*.* c=critical,\
c=speci al _rel ease| har dwar e_enabl enent ”

NOTE Selecting software with the \ * wildcard overrides patch filtering.

Explicitly Specifying Patches

You can explicitly specify and install a patch (without autoselection or
matching the target) by specifying one or more operands for the
sof tware_speci fi cat i on within a command.

Explicit patch selections override any automatic patch selections. When
SD automatically selects a patch (for example, with a value of true for
the aut o_sel ect _pat ches option), it attempts to select the latest patch
in the supersession chain unless some other patch in the chain is
explicitly selected.

To explicitly install a patch:
swinstall PHCO 1234

NOTE Patch filtering does not apply to explicitly selected patches.

Chapter 5 173

Managing Patches

Patch Management Tasks and Examples

Installing Patches to Kernel and Library Files

To permit patching of kernel files or libraries (e.g. | i bc. @), SD uses an
ar chi ve file type of a. When loading a file of type a, swinstall
temporarily installs the . o file to the target path specified, integrates it
into the archive specified by the ar chi ve_pat h attribute of the file, and
then removes the . o file.

If patch rollback is enabled (see “Patch Removal, Rollback, and
Committal” on page 179), the original . o file is automatically extracted
first and saved so that it can be replaced. Disk Space Analysis is
performed as needed to account for these operations.

Patch Load Order

If you install patch filesets and normal filesets in the same session, then
each patch fileset is considered to have an implied prerequisite on the
fileset that it is patching. For example, a product containing the patch
fileset is installed (or copied into serial distributions) after installation of
the one or more products that contain the patch’s ancestors.

If a base fileset has the i s_ker nel attribute set to true, then the fileset
patching it must also have the i s_ker nel attribute set to true to be
installed in the kernel phase of the execution. Otherwise, the patch is
installed along with other non-kernel filesets.

If a bundle contains both normal and patch filesets, the filesets are
installed in their normal order except that any ancestor fileset must be
installed before its patch or patches.

Updating Patched Software

Installation of a new version of a base fileset results in removal of all
filesets that patch the base fileset that you are replacing, along with any
files saved for potential rollback.

Installing Patches to Remote Systems

You can use the SD-UX remote operations features to install patches on
multiple remote systems. (See Chapter 6, “Remote Operations
Overview,” on page 189.) You can explicitly select patches for multiple
remote systems. Note, however, that the pat ch_mat ch_t ar get option
works with only one remote system at a time.

174

Chapter 5

Managing Patches
Patch Management Tasks and Examples

Copying Patches

The swcopy command uses the aut osel ect _pat ches, patch _filter,
and pat ch_mat ch_t ar get options in the same way that swinstall does,
except that there is no filtering based on architecture (either 32-bit or
64-Dbit).

The following example copies X11 software from the default depot and
copies all patches for this software at the same time. (Note that
aut osel ect _pat ches is true by default.)

swcopy X11 @host A /tnp/ sw

The following example copies patches that match the base filesets that
are already present in the target depot, and copies (at the same time and
from the same depot) a filtered set of patches (which have a category_tag
value of har dwar e_enabl errent) for the base software being copied. (Note
that aut osel ect _pat ches is true by default.)

swecopy -Xx patch filter="*.* c=hardware_enabl ement” \
-X patch_natch _target @ hostB:/tnp/ newdepot

To copy all patches for the base filesets that are already present in the
target depot, starting from a depot that contains patch and non-patch
software:

swcopy -X patch_match_target=true \
@host C / var/ spool / sw

To copy a filtered set of patches for the base filesets that are already
present in the target depot, starting from a depot that contains patches
and that may contain non-patch software:

swcopy -X patch_match_target=true \

-x patch filter="*.* c=special rel ease” \
@host D / var / spool / sw sanpl e. depot

Chapter 5 175

Managing Patches

Patch Management Tasks and Examples

Figure 5-1

Interactive Patch Management

The swinstall or swcopy GUI lets you perform interactive patch
installation and copying. (See “Installing with the GUI” on page 65 and
“Using the swcopy GUI” on page 138.)

The Manage Patch Selection... option in the Actions menu opens the
Manage Patch Selection dialog. This dialog lets you:
e Select from a list of patches available to install or copy.

e Select filters for patches.
e Set other patch options.

Manage Patch Selection Dialog

Manage Patch Selection (swoon)

o Include patches with selected (marked) software from the source.
Automatically select patches for existing software on the target.
Enter the filter (if any) to be applied to automatic patch selection.
Press Help for more information on composing a filter.

Filter... *.%,c=patch_serious|

Patch categories on hpfclel:/release/990P/LR/LR _and_PB:

defect_repair Provide defect repair

general_release General Release patch

enhancement Provide enhancement

hp_admin_tool Hewlett—Packard Administration Tools patch
critical Fix a critical defect

halts_system Fix a hang or abort

corruption Fix corruption

Ok Cancel Help

The main object list contains a read-only list of available patch
categories. The list contains the name of the category and a short
description. You can use the list as an aid to selecting and filtering
patches. The following options are also available:

® Include patches with selected (marked) software from the source
Sets the aut osel ect _pat ches option. (Default is true.)
* Automatically select patches for existing software on the target

Sets the pat ch_mat ch_t ar get option. (Default is false.)

176

Chapter 5

Managing Patches
Patch Management Tasks and Examples

¢ Filter (button and specification field)

Click on the Filter button to display a list of example filters that you
can select from. (To change the filters in the list, see “Editing the
Patch Filter List” on page 177.)

This field sets the patch_fi | t er option, which lets you specify a
filter for automatic patch selection. Patches for software to be
installed or copied are automatically marked as you enter the
analysis phase. Only patches that match the filter criteria are
marked.

You can also set Save files replaced by patch for later rollback in the Options
menu. This sets the pat ch_save_fi | es option. (The default is true.)

See “Command Options” on page 167 in this chapter for more
information on patch options.

NOTE As with all system options, the patch management options revert to their
default values at the next session unless you save and re-use the session
information. See “Session Files” on page 61 for more information.

Editing the Patch Filter List

You can change the default list of patch filters displayed by the swinstall
and swcopy GUI. The list is stored in:

e /var/adnsw defaults.patchfilters
The system-wide default list of patch filters.
e S$HOWE .swdefaul ts.patchfilters
The user-specific default list of patch filters.

The list of patch filters is enclosed in braces {} and separated by white
space (blank, tab, or newline). For example:

Chapter 5 177

Managing Patches

Patch Management Tasks and Examples

swinstall.patch filter choi ces={
, c=enhancenent

* * c=critical

}

swcopy. patch_filter_choi ces={

* * c=halts_system

}

Listing Patches

Software objects with the i s_pat ch attribute set to true have the
built-in, reserved category of pat ch. This lets you list available patches
and patches with a certain name.

You can also list patches with the swlist GUI (invoked by sw i st -i).

For example, to list all products and bundles in a depot that have the
i s_pat ch attribute set to true:

swist -d -1 product -1 bundle *, c=patch

PHSS 15851 1.0 Xserver cumul ative patch
PHSS 16482 1.0 CDE Localization for UTF8 | ocal es
PHSS 16587 1.0 HP aC++ runtime libraries

You can list the patches that have been installed for a given base
software product or fileset using the -1 pat ch option.

For example, to list the patches applied to the X11. X11R6- SH.I BSfileset:
swist -1 patch X11.X11R6- SH.I BS

X11. X11R6- SHLI BS B. 11. 00 X11R6 shared libraries
PHSS 15840. X11R6-SHLIBS 1.0 X11. X11R6-SH.I BS appl i ed
PHSS 17422. X11R6-SHLIBS 1.0 X11R6 shared libraries
appl i ed

You can list the products and filesets to which a patch applies by listing
the ancest or attribute. You can generate a list of patches that a given
patch superseded by listing the super sedes attribute of the patch fileset.

By default, swlist will only show the latest patches installed on a system
(i.e., those patches that have not been superseded). To list superseded
patches, set the show super seded_pat ches option to true:

swist -x show superseded_pat ches=true

178

Chapter 5

Managing Patches
Patch Management Tasks and Examples

Listing Available Patch Categories

You can use the -1 cat egory specification to list the categories of
available patches for patches that are defined with cat egory objects.

To list the categories defined for patches in the depot mounted at / CD.
swist -d -1 category @/ CD

critical _patch Pat ches that fix system
hangsdef ect _repair Provi de defect repair
har dwar e_enabl ement Pat ches enabl i ng new har dwar e

To list a particular attribute of a category object identified by the tag
critical _patch:

swist -a description -1 category critical_patch

Using swlist to Resolve Manual Dependencies Some patches
cannot automatically resolve their own dependencies. HP-UX patch
creation tools mark such patches with a generated tag called

nmanual _dependenci es. This tag can help you find patches with
unresolved dependencies, for example:

swist -1 product *,c=nmanual dependenci es

This command lists all patches on your system that need manual
resolution of dependencies. To identify the dependencies, list the r eadne
attribute for each patch. For example, you could redirect the output of
the above command to a file, then use the file to list the readme
information for each patch:

swist -1 product -a readme *, c=manual _dependenci es

Patch Removal, Rollback, and Committal

To permit future rollback of a patch, use the pat ch_save fi | es option.
This option (set to true by default) automatically saves any files replaced
by a patch. You can then restore the original files if you later decide to
remove the patch.

For example,
swinstall -s sw server -x patch _save files=true
Rollback files are saved to the directory:

/var/ admi sw save/ new_patch_namel fileset_name

Chapter 5

179

Managing Patches
Patch Management Tasks and Examples

These rules govern patch removal and rollback:

e Using swremove to remove the base fileset of a patch fileset also
removes all patches to that fileset.

¢ Files saved for rollback are also removed when the base fileset to
which they apply is updated or removed from the system.

e Removal of a patch automatically rolls back the saved files, unless:

— You set the pat ch_save_fi | es option to false at the time you
installed the patches.

— You also remove or update the base fileset.

— You performed a swmodify operation on the patch with the
pat ch_commit option set to true.

¢ You cannot roll back an installed patch that has been superseded
unless you first roll back the superseding patch.

e SD performs disk space analysis (DSA) on the save area in the same
way it performs DSA on regular file locations.

To save disk space when you are certain a patch operates correctly, you
may wish to commit the patch by removing the rollback files saved by the
pat ch_save fil es option.

To commit a patch, invoke swmodify on the patch with the
-X pat ch_comi t =t r ue option. (The default value is false.)

For example, to commit the patch PHKL 1234 and remove its
corresponding rollback files:

swhodi fy -x patch_comm t=true PHLK 1234

NOTE NOTE: When you commit a patch and remove its rollback files, all
patches that are superseded by this patch are also committed.

180 Chapter 5

Managing Patches
Patch Management Tasks and Examples

Verifying Patches

The swverify operation on a normal fileset checks that the latest files are
properly installed. When installing a patch, the ancestor fileset is
updated to have the correct attributes of the patched files.

SD verifies patch filesets by checking that files in a patch are still
properly installed (or in the depot correctly).

swerify PHOO 1234

swerify *, c=patch

Chapter 5

181

Managing Patches
Packaging Patch Software

Packaging Patch Software

This section contains information about packaging patch software.
Packaging involves the unique patch attributes and behaviors described
below.

For complete information on packaging, objects, and attributes, see
Chapter 10, “Creating Software Packages,” on page 301.

Patch Software Characteristics

Each patch fileset only patches files in one base fileset. If a patch
needs to modify multiple filesets, the patch product contains a fileset
for each base fileset to be modified.

A patch fileset defines the files to be patched, and the fileset
attribute i s_pat ch must be set to true.

The ancest or attribute identifies the product or fileset being
patched.

The first patch of any particular patch supersession chain does not
have a super sedes attribute. A patch that replaces one or more
patches has the appropriate super sedes attribute.

All patch software objects with the i s_pat ch attribute are
automatically assigned the built-in category of pat ch, which is then
automatically included in the list of cat egory_t ag attributes.

The category_tag and i s_pat ch attributes at all other levels of
software objects besides fileset are for display and selection purposes
only. (They are not version-distinguishing attributes.)

182

Chapter 5

Managing Patches
Packaging Patch Software

Patch Software Objects and Attributes

SD contains attributes specifically for handling patch software. The
following attributes are available to all software levels (bundles,
products, subproducts, and filesets).

category objects

is_patch

A software collection can contain a list of category
objects, which are used as a selection mechanism.
Category objects are identified by the keyword category
and contain additional information about this category
(a title, tag, and a description of the category). The

cat egory_t ag attribute points to a particular category
object and can appear within a product, bundle,
subproduct, or fileset.

All software objects with the attribute of i s_pat ch set
to true are automatically assigned the category of

pat ch. (Note that category objects and the

cat egory_t ag attribute can be used independently of
patches.)

See “Category Specification” on page 324 for a complete
description of category objects.

Indicates that a software object is identified as a patch.
The default is false. Only filesets with the i s_pat ch
attribute have patched files. Other levels can be
identified as patches for the listing utilities to facilitate
identification of patch software at any level.

All software objects with the attribute of i s_pat ch set
to true are automatically assigned a category of pat ch.

Patch Fileset Attributes

Patch filesets generally operate like normal filesets. Differences are:

e Patch filesets have an explicit ancestor.

e Patch filesets can be installed in the same session as their base, or
ancestor, fileset. (The base fileset is always installed first.)

e Patch filesets can be rolled back.

e Patch filesets maintain catalog information to support these

features.

Chapter 5

183

Managing Patches
Packaging Patch Software

¢ Control scripts delivered with the patch fileset run only when that
patch fileset is installed. They do not replace the control scripts for
the base fileset.

See “Fileset Specification” on page 331 for a complete description of all
patch and non-patch fileset attributes.

Patch fileset attributes include attributes that you can specify in a
product specification file (PSF) and attributes generated by SD.
User-specified Attributes

You can specify the following patch fileset attributes in a PSF:

e ancestor software _specification
Designates the base fileset to be patched.
e supersedes software _specification

Used when a patch replaces an earlier patch. The attribute indicates
which previous patches are replaced by the patch being defined. This
attribute is repeatable.

This attribute consists of a list of software specifications of other
patch filesets that the patch supersedes:

super sedes product. fil eset,fr=revision

When a patch supersedes another patch, the superseding patch is
automatically selected by default. A superseding patch replaces the
files of the patch it supersedes when installed after that patch.

Patches may supersede other patches to the same base (non-patch)
fileset, or they may be applied to the same base fileset in parallel
with other patches.

184 Chapter 5

Managing Patches
Packaging Patch Software

Patch File Attributes

Patches to the kernel or other libraries can be implemented and removed
with the following file level attributes:

type

archive_path

If set to a, designates an archive file and marks it for
an archive action during an install or update. An
archive file is a . o file that needs to be replaced in an
existing archive using the ar command.

Designates the path to the archive to which the file
should be added (instead of installing it to the path
location).

When used with the pat ch_save_fil es option, the . 0
file that previously existed in the archive is saved, and
can be restored.

Sample PSF usage:
file -t anewile.o /usr/lib/foolib.a
file

type a

archive _path fusr/lib/foolib.a
source_path /fusr/lib/newfile.o

Chapter 5

185

Managing Patches
Packaging Patch Software

PSF Example

This sample PSF shows a patch for the file / bui | d/ sbi n/ who in the

fileset:

5-Core.OMDS-M N, | =/, r=B. 11. 00, \
a=HP- UX B. 11. 00_32/ 64, v=HP

Note that the HP-UX convention is for patches to use unique product
tags but that the fileset tags match those of the ancestor filesets.

cat egory

tag

revision

title

descri ption
end

pr oduct
tag
revision
architecture

vendor _tag
title

nachi ne_t ype
0S_nane
os_rel ease
0S_versi on
is_patch
category_tag

fileset

tag
revision
title
description
ancest or

is_patch
file
end

end

nor mal _pat ch

0.0

Pat ches for normal use

Nor mal patches for typical problens....

PHCO 12345
B. 11. 00
r=B. 11. 00, a=HP- UX_B. 11. 00_32/ 64

|_P
Core Q(perating System (patch)

HP- UX

?.11. %

*

true

nor mal _pat ch

OVMDS-M N

B. 10. 01. 001

“Patch of /shin/who for ..

“Patch of /shin/who ..

Cs Core. OMDS-M N, \

r=B.10. 01 700, a=HP- UX B. 10. 01_700, v=HP
true

/ bui | d/ shi n/who /sbin/who

186

Chapter 5

Managing Patches
Packaging Patch Software

Notes:

The ancest or attribute identifies the fileset to be patched.

The true value of the i s_pat ch attribute at the fileset level flags this
fileset as a patch and permits rollback if you use the
pat ch_save fil es option when you install the patch.

Attributes Generated by SD

SD-UX generates the following patch fileset attributes and stores them
in the IPD:

applied_patches

Set for base (non-patch) software only. Indicates patches that have
been applied to a base fileset. An empty list for this attribute
indicates the fileset has had no patches applied.

applied_to

Set for patch filesets only. Indicates the base fileset that the patch
was applied to.

patch_state

Applies to installed patches only. Indicates the current state of the
patch:

applied Patch can be rolled back and has not been
superseded.

committed Rollback files have been deleted.

superseded Patch has been superseded by another patch.

committed/superseded

Patch has been both committed and superseded.
superseded_by

Applies to installed patches only. Lists the fileset that caused the
current fileset to become superseded.

Chapter 5

187

Managing Patches
Packaging Patch Software

188 Chapter 5

Table 6-1

Remote Operations Overview

Remote Operations Overview

This chapter presents an overview of remote operations, describing
set-up, features, and important concepts to help you effectively manage
software across multiple systems. More information about remote
operations is also presented in Chapter 7, “Using Jobs and the Job
Browser,” on page 215

Chapter Topics

Topics:

“Introduction” on page 190

“Setting Up Remote Operations” on page 199

“Remote Operations from the Command Line” on page 211

“Using the Remote Operations GUI” on page 193

“Remote Operations Tutorial” on page 200

“Remote Interactive swlist” on page 210

Chapter 6

189

Remote Operations Overview

Introduction

NOTE

Introduction

In addition to its ability to “pull” software from a central depot, Software
Distributor also provides powerful features for remote operations that let
you “push” software to remote systems (targets) from the local host. You
can use these features interactively and monitor results of all SD-UX
commands with the Job Browser or from the command line with the
swjob command.

The Terminal User Interface (TUI) is not available for remote operations.

Differences Between Remote and Local Operations

In general, all Software Distributor features that apply to local operation
also apply to remote operations. Additional features of remote operations
are summarized in this section.

Remote Targets

For local operations, the target consists of the local host or depots on the
local host. For remote operations, the target can be one or more remote
systems. A target can also contain depots and act as a source to serve
other targets.

Controller, Daemon, and Agent Programs

The controller programs provide the user interface for SD-UX tasks and
programs. The controller’s role collects and validates data it needs to
start a task and to display information on the task’s status. The
controller also distributes software to remote target machines.

On each target, the SD-UX daemon runs in the background, listening for
requests coming from the controller. When a request is received, the
daemon schedules the SD-UX agent to perform the task. The daemon
also schedules the agent to answer requests from other agent programs
that want to use one of the host’s depots as a source.

190

Chapter 6

NOTE

Remote Operations Overview
Introduction

You must restart the SD-UX daemon if you change daemon options, or
the system will not recognize the changes. See “Using Command
Options” on page 59 for more information.

Job Management

With SD-UX remote operations, you can create jobs for immediately
execution or schedule them for later execution. In addition, you can
browse the scheduled, active, and completed jobs using either the
command line interface (with the swjob command) or the interactive
interface (with the sd command).

Compatible Software

The swconfig, swinstall, and swverify commands let you detect and
enforce the use of compatible software (i.e., ensure software products are
compatible with system types and operating systems). When you select
multiple targets for a remote operation, SD-UX lets you select only the
software compatible with all targets.

Dependencies Between Software

As with local operations, the swask, swconfig, swcopy, swinstall,
swremove, and swverify commands support dependencies between
filesets and products. If you have a software selection that specifies a
dependency on other filesets or products, the command automatically
selects that software. (This step is executed on the local host. You can
override this policy with the aut osel ect _dependenci es default option.)

With remote operations, dependencies are analyzed on each target and a
fileset will not install if dependencies are not met on that target. (You
can override this policy using the enf or ce_dependenci es default
option.)

Session Files

You can use the session file command options to build, save, and reuse
sessions with most commands. With remote operations, target selections
are saved along with options, source information, and software
selections.

Chapter 6

191

Remote Operations Overview
Introduction

Additional GUI Components

SD-UX adds extra components to the GUI programs when remote
operations are enabled. Otherwise, the programs are almost identical to
those used for local operations. (See “Using the Remote Operations GUI”
on page 193.)

Software and Target Lists

Most SD-UX commands let you read lists of software selections from
separate input files. With remote operations, you can also read target
lists from separate files. The local controller GUI also lets you use
software and target lists.

Remote Patch Operations

You can use the SD-UX remote operations features for patch
management. You can explicitly select patches for multiple remote
systems at one time. Note, however, that the pat ch_nat ch_t ar get
option works with only one remote system at a time. See “Installing
Patches to Remote Systems” on page 174 for more information.

Limitations

¢ You cannot use remote operations to directly “push” an HP-UX OS
update to remote systems.

¢ Remote operations do not apply to the following SD-UX commands:
— install-sd
— swpackage

— swmodify

192 Chapter 6

NOTE

Remote Operations Overview
Using the Remote Operations GUI

Using the Remote Operations GUI

SD-UX adds extra components to the GUI programs when remote
operations are enabled. The extra components for remote operations
include a target selection window and features for managing target lists,
job preferences, and job monitoring windows. Otherwise, the GUI
programs are identical to those used for local operations.

After you set up remote operations and enable the remote operations
GUI on the central controller, you can start the swinstall, swcopy, or
swremove GUI as you normally would. For example:

/usr/ sbin/sw nstall
or

fusr/sbin/swinstall -i

The Terminal User Interface (TUI) is not available with remote
operations.

Chapter 6

193

Remote Operations Overview
Using the Remote Operations GUI

Figure 6-1

Target Selection Window

The Target Selection Window always appears first with the remote GUI
programs. Like the Software Selection Window, it features the standard
menu bar, message area, and object list of targets available for selection.
Instead of selecting software, you select the remote targets on which the
remote operation will take place. Menu items and target selection are
discussed in the following sections.

Target Selection Window

SD Install — Target Selection (swbash3)
File View Options Actions Help

Highlight targets on which to install software.
Then choose the ‘Mark For Install® item in the Actions menu.

Targets 0 of 1 selected

Marked? Hos tname Type Path Hardware Operating System
. swhash3 Root

Performing Actions
The general procedure for using the remote operations GUI is to:

1. Select one target at a time by highlighting a target in the object list
of the Target Selection Window.

2. Select Actions—Mark for Install.... (or Actions—Mark for Copy.... or
Actions—Mark for Remove....).

3. Repeat 1 and 2 for any additional targets.

194

Chapter 6

Remote Operations Overview
Using the Remote Operations GUI

4. When you have selected all targets for your operation, select
Actions—>Show Software for Selection.... to display the Software
Selection Window.

Selecting Multiple Targets

This section discusses how to install to multiple targets, create target
groups, and how to save these groups for future software installations.
(For single-target installations to your local (default) target, see the
procedures in “Remote Operations Tutorial” on page 200).

The Target Selection Window displays a list of targets may be displayed:

¢ Ifyou have recalled a session file (File—Recall Session), any hosts
defined in that session are displayed.

e Otherwise, any hosts specified in the default hosts file
(/var/ adm sw/ def aul t s. host s or $HOVE . sw def aul t s. host s)
are displayed. (See “Preselecting Host Files” on page 39.)

e Ifyou started SD-UX from ServiceControl Manager, targets are
pre-selected and cannot be changed.

If the desired target for the installation is not in the list:

1. Choose Actions—Add Targets.... The Add Targets dialog (Figure 6-2,
“Add Targets Dialog,”) is displayed.

Figure 6-2 Add Targets Dialog

Add Targets (swhash3)

New Targets:

Hos tname Root Path
Hos tname : _[
Add
OK Cancel Help

Chapter 6 195

Remote Operations Overview

Using the Remote Operations GUI

. Enter the primary root name in the Host nane: area and select Add.

. The Select Target Path dialog appears. The default path is root (/).

To accept the default root (/), click OK.

. After selecting the root path, the Hostname and Root Path are

automatically updated in the Add Target dialog (Figure 6-2, “Add
Targets Dialog,”). To add additional targets, repeat 2.

. Select OK in the Add Targets dialog. This adds your selections to the

Target Selection Window. Each target is contacted as it is added to
the Target Selection Window. Networking may cause delays; if the
SD-UX daemon is not running on the target, the delay lasts until the
daemon times out.

From the Target Selection Window, any targets added using Add
Targets... are automatically marked Yes.

. If there are any other desired targets in the Target Selection List

that are not marked and you want to install to them, highlight the
target by clicking on it.

Choose Actions—Mark for Install. The Mar ked? column is set to Yes for
that target.

— Oor —

Hold down the right mouse button and choose Mark for Install from the
resulting menu.

. To unmark a target in the Target Selection Window (i.e., object list):

Highlight the target

Choose Actions—Unmark for Install. The Mar ked? column is
cleared for that target.

— Oor —

Hold down the right mouse button and choose Unmark for install.

At this point, all desired targets should be listed and have Yes in the
Mar ked? column. If you have not marked any targets, you cannot proceed
to the Selecting Software phase.

196

Chapter 6

Remote Operations Overview
Using the Remote Operations GUI

Selecting Individual Targets

You can add or delete individual targets.

To add a new target:

1. Select Actions—Add Targets....The Add Targets dialog appears.

2. Type in the name of the desired target and click on Add. The Select
Target Path dialog appears.

3. Click OK to accept the default (/) or click on the Root Path...button to
display the Shared Root Paths dialog, which contains more selection
options.

4. Select the desired root and click OK to return to the Select Target
Path dialog.

5. Click OK to return to the Add Targets dialog
6. Click OK. You have now marked an additional target.

To delete targets, select one or more targets from the Target Selection
Window, then select Actions—Unmark for Install.

Chapter 6 197

Remote Operations Overview

Using the Remote Operations GUI

Saving a Target Group
You may want to re-use your list of targets for a later session. To do so,

1. Select Actions—Save Target Group...

The Select File dialog appears. If target groups already exist, the
first file path appears in the text box in the bottom of the dialog.
Type a name for a new group or re-use an existing group (saving your
current list to existing target group overwrites that group). Groups
are saved in the directory:

$HOME/ . sw' t arget s

. To save the group, click OK.

This saves all the target selections you have just marked (all targets
listed with Yes in the Mar ked? Column). This group will
automatically appear in the Select File dialog for all subsequent
target group selections.

Adding a Target Group
To re-use a target group that you previously saved:

1. Select Actions—Add Target Group.... The Select File dialog appears. All

existing target groups appear in the list.

2. Select the target group you want and click OK.

The targets from that group are now marked, along with any other
targets you had already marked.

198

Chapter 6

Remote Operations Overview
Setting Up Remote Operations

Setting Up Remote Operations

SD-UX uses Access Control Lists to authorize anyone who is attempting
to create, modify, or read software products in a depot or to install
software to a root file system. (ACLs are discussed in detail in Chapter 9,
“SD-UX Security,” on page 255.) To enable the remote operations, you
must install a special HP ServiceControl Manager fileset on each remote
system to be managed. You can then enable the remote operations GUI.

1. As root, enter the following command on the controller system:

sweg -1 depot /var/opt/nx/depotll

e Ifthe remote host is running HP-UX 10.20, use the same
command but substitute depot 10 for depot 11.

e This sets up sharing of the depot used to enable the remote
systems.

2. As root, enter the following command on each remote system to be
managed. This sets up the root, host and template ACLs in a way
that permits root access from the controller system:

swinstall -s central _node:/var/opt/nx/depot1l \
Agent Confi g. SD- CONFI G

e In this example, cent ral _node is the name of the controller.

e If the remote host is running HP-UX 10.20, use the same
command but substitute depot 10 for depot 11.

¢ Remote systems previously set up with OpenView Software
Distributor do not require this step.

e Software Distributor does not require any other ServiceControl
Manager filesets.

3. (Optional) On the central controller system only, enter the following
command to enable the remote operations GUI interface:

touch /var/adnl sw . sdkey

(This step is not required when you use SD-UX from within the HP
ServiceControl Manager.)

Chapter 6 199

Remote Operations Overview
Remote Operations Tutorial

Remote Operations Tutorial

This tutorial introduces you to the remote operations user interface and
to the general flow for distributing software to other systems. Also, you
will learn how to preview, schedule, and monitor your distribution jobs.
Although this tutorial uses swinstall for the example GUI, the swcopy
and swremove GUI programs are almost identical. You can apply the
knowledge you gain from this tutorial to those tasks.

You may wish to go through this tutorial more than once to experiment
with variations in the basic operations.

Tutorial Set-Up

1.

Set up remote operations on your controller system and a remote test
system. (See “Setting Up Remote Operations” on page 199.)

. As root on the controller system, enable the remote operations GUI:

touch /var/adnl sw . sdkey

. Make sure your PATH variable contains / usr/ shi n. To check, enter:

echo $PATH

. Make sure your DISPLAY variable is properly set by typing:

echo $D SPLAY

. Ensure that the examples are installed. Enter:

swist SWD ST. SD- EXAMPLES

. Create the depot containing example package (i.e., SD-DATABASE):

cd /usr/lib/sw exanpl es/ swpackage/ depot _src
swpackage -s psf @/ var/adn sw exanpl es/ depot
sweg -1 depot @/var/adni sw exanpl es/ depot

. To verify that the software is in the depot and is available for

distribution to targets, enter:
swist -s /var/adm sw exanpl es/ depot
You should see SD- DATABASE in the resulting list.

200

Chapter 6

Remote Operations Overview
Remote Operations Tutorial

How to Perform a Single-Target Installation

Overview
Table 6-2

The tutorial consists of these steps:

Installation Steps

Step |: Start-up

Overview of Installation Steps

I. Start-up Start the Job Browser.
II1. Select Specify the targets where you want the software
Targets installed. You can use the default local target or

III. Select

specify another target.

Provide the location of the software depot from

Source which the software will be installed with the
Specify Source dialog.

IV. Select Use the Software Selection Window to select the

Software software to install.

V. Specify Use the Install Preferences dialog box to set

Install preview or scheduling options.

Preferences

VI. Analysis Perform the actual software installation or

and preview.

Installation

VII. Monitor

Monitor job progress and results using the Job

Results Browser GUL
VIII. Remove Delete the completed jobs using the Job Browser.
Jobs

To initiate an install session:

1. Start the Job Browser by typing:

sd

2. From the Job Browser window, choose

Actions—Create Job—Install Software...

The message | nvoki ng a swi nstal |

pr ocess displays at the

bottom of the window, then the Target Selection Window appears.

201

Remote Operations Overview
Remote Operations Tutorial

Step Il The Target Selection Window displays the local, default target. A target
Select Targets is where you want the installation to go (in the example below, the target
is the system swbash3). By default, the current system is listed
(Figure 6-3, “Target Selection Window,”).
Figure 6-3 Target Selection Window

SD Install — Target Selection {swbhash3)
File View Options Actions Help

Highlight targets on which to install software.
Then choose the "Mark For Install” item in the Actions menu.

Targets 0 of 1 selected

Marked? Hos tname Type Path Hardware Operating System

swhash3 Root

Specify the desired target for the installation:
1. For local default:

a. Highlight the local target system with a left mouse click. Then
select Actions—Mark for Install (or right-click to display the pop-up
menu and select Mark for Install).

b. Select Actions—>Show Software for Selection...

This displays the Specify Source dialog. If this is your first time
through this tutorial, skip directly to “Step III: Select Source” on
page 204. After you have gone through this tutorial once, retry Step I
using remote targets.

202

Chapter 6

Remote Operations Overview
Remote Operations Tutorial

— Oor —

For remote targets: choose Actions—Add Targets to install to a
different target. This takes you to the Add Targets dialog (Figure 6-4,
“Add Target Dialog (for multiple or non default targets),”).

2. Enter the target name in the Host nane: area (e.g., syst em t wo) and
select Add. This takes you to the Select Target Path dialog.
Figure 6-4 Add Target Dialog (for multiple or non default targets)

Add Targets (swhash3)

New Targets:

Hos tname Root Path
Hos tname : _[
Add
OK Cancel Help

3. Use the current root path (/) by selecting OK. This returns you to the
Add Targets dialog.

4. Select OK in the Add Targets dialog. This updates the Target
Selection Window with your target selection. Yes appears in the
Marked column, indicating that the target is marked for installation.

5. Choose Actions—>Show Software for Selection. The Specify Source
dialog appears.

Chapter 6 203

Remote Operations Overview
Remote Operations Tutorial

Step lll: Select In this step, the Specify Source dialog lets you select the Source Host
Source Name (the source system where the depot resides) and Source Depot
Path (path of the depot containing the software).

Figure 6-5 Specify Source Dialog

Specify Source (swbash3)

Specify the source type, then host name, then path on that host.

Source Depot Type: Network Directory/CDROM Find Local CD
Source Host Name... |swbash3:
Source Depot Path... |ftetftmpfcontro| ler/depot. 1]
OK Cancel Help

1. The Specify Source dialog should list your controller name or your
remote test system name in the Source Host Name... field and the
example depot that you created (/ var/ adni sw exanpl es/ depot) in
the Source Depot Path... field.

From this dialog, you can also:

e (Click on the Source Host Name... button to display a list of hosts
that you can select from.

¢ (Click on the Source Depot Path... to display a list of registered
depots that you can select from.

Click OK. The Software Selection Window appears (Figure 6-6,
“Software Selection Window,”). This window displays all available
software in the depot that you selected.

204 Chapter 6

Remote Operations Overview
Remote Operations Tutorial

Step IV: Select Use the Software Selection Window to select the software you want to
Software install.
Figure 6-6 Software Selection Window

File View Options Actions — Help

Source: swbash3:/var/spool/sw
Target: swbash3:/

Only software compatible with the target is available for selection.

Top (Bundles and Products) 1 of 5 selected
Marked? Name Revision Information Size(Kb)
E 1 2 .0 1|
BUNDLEZ -> 1.0 1
INITIALPRODUCT — -> 1
minimal_ancestl -> 1.0 1
minimal_ancest? -> 1.0 1

1. Highlight SD- DATABASE (i.e., the example software) by clicking on it
with the left mouse button.

2. Choose Actions—Mark for Install (or right-click to display the pop-up
menu and select Mark for Install).

The Mar ked? column is set to Yes for SD- DATABASE.
Table 6-3 Software Selection List

Software Selection Window Object List

The Software Selection Window object list is hierarchical: you can
open each object in the list and show objects contained inside. Objects
in the list that contain other objects that can be opened, have an
arrow (—) after the name.

Chapter 6 205

Remote Operations Overview
Remote Operations Tutorial

Table 6-3 Software Selection List (Continued)

Software Selection Window Object List

For example:

¢ To see the subproducts in the product SD- DATABASE, double click
on it. The object list displays the subproducts. To open a
subproduct, double click on the name. (Or highlight the name and
then select Actions—Open Item...)

e To close an object and return to the previous list, double click on
the first item in the list (. . (go up)) or highlight the item and
selecting Actions—Close Level.

Note that products are listed together, but subproducts and
filesets may appear in the same list when you open a product.

3. Choose Actions—Install. This displays the Install Preferences dialog
(Figure 6-7, “Install Preferences Dialog,”).

Step V: Specify The Install Preferences dialog box gives you the following optional
Install Preferences selections: Preview, Schedule, and OK. You can also enter a Job Title.

. .
Figure 6-7 Install Preferences Dialog
Install Preferences (swbash3)
Default preferences to control how the software is installed have
been set. Press OK to continue, or modify preferences first.

Preview (analyze only)

Schedule (for later)

Date: Jecember 14 2000

Time (hh:mm): 3:08

Job ID: swhash3-0121

Job Title: .My_Sample_JoI{ [(optional)

OK Cancel Help

1. Select the text area after Job Title and type:
SDTESTJOB

206 Chapter 6

Remote Operations Overview
Remote Operations Tutorial

This is the name of your install job.

2. Select OK to install the software now.

For single-target installations such as this tutorial, the Install
Analysis dialog appears (Figure 6-8 on page 208).

3. If this is your first pass through the tutorial, proceed to Step V.

4. (Optional) Previewing a Job

a.

Select the Preview button. This tells SD to analyze the software
without installing it.

Click OK. The Install Analysis dialog appears. This dialog lets
you monitor the analysis of a single-target job. You can also
browse log files and product summary information.

When the target Status indicates Ready (analysis is successful),
select OK. This returns you to the Software Selection Window.

Select Actions—Install. The Install Preferences dialog appears.

Proceed with the installation by selecting OK in the Install
Preferences dialog.

(If you repeat this tutorial and choose to preview a job that uses
multiple targets, you will find that the Install Analysis dialog
does not appear. You can only monitor the preview job progress
from the Job Browser. See “Step VII: Monitor Results” on

page 209 for more information.)

5. (Optional) Scheduling a Job

a.

b.

Select the Schedule button. This activates the fields that let you
specify the time and date you at which you want your job to run.
(For example, you may want to schedule a job at midnight when
few users are logged in.)

After you specify the schedule information, click OK. The system
displays a note indicating that the job has been scheduled.

Click OK in the dialog. The Target Selection Window reappears.
Select File—Exit to return to the Job Browser, from which you can
monitor your scheduled job.

Chapter 6

207

Remote Operations Overview
Remote Operations Tutorial

Step VI: Analysis SD-UX analyzes the target before performing the actual install, copy, or
and Installation remove operation. (If you set up a preview job in Step IV, the install stops
after the analysis.)

Figure 6-8 Install Analysis Dialog

= Install Analysis (swbash3) B

After Analysis has completed, press 0K’ to proceed, or "CANCEL®
to return to prior selection screen.

Target : swhash3:/
Status : Ready
Products Scheduled : 1 of 1

Product Summary... Logfile... Disk Space... Re—analyze

OK | Cancel Help

1. When the Analysis is complete, the status for the target you selected
should show Ready, indicating no errors or warnings occurred during
analysis. Select OK to proceed with the installation.

The Install Window dialog (Figure 6-9, “Install Window dialog,”)
appears, and the installation starts automatically. When the status
in the dialog changes to Conpl et ed, the installation has successfully
completed.

Figure 6-9 Install Window dialog

Install Window (swhash3)

2. Select Done to exit the Install Window dialog. This returns you to the
Target Selection Window.

3. Select File— Exit to return to the Job Browser.

4. (Optional) Select another target for installation (i.e., Actions—Mark
for Install).

208 Chapter 6

Remote Operations Overview
Remote Operations Tutorial

Step VII: Monitor When you exit the Target Selection Window, you return to the Job

Results Browser. The icons in the job list change to show the status of jobs.
Different icons indicate different job status. (See “Job Browser Icons” on
page 218 for sample icons.)

Your job, labeled SDTESTJOB, should show with either a check mark or a
ruler icon. To verify status information for SDTESTJOB from the job list:

e Double click SDTESTJOB to invoke the Job Results dialog.
¢ Double click the target to show the detailed target log.
e Click OK to close each dialog after you have viewed it.
—or —

1. Select the SDTESTIBicon.

2. Choose Actions—>Show Job Description.... The Job Description dialog
appears. This displays all of the job attributes, the software and the
target(s) involved.

3. (Optional) Select Show Options... to see what the job option settings.
4. (Optional) Select Show Results... to see the latest job status.

Step VIII: Remove After you have run the tutorial, use the Job Browser to remove the
Jobs example jobs:

1. Click on the SDTESTIB icon.
2. Select Actions—>Remove Job.... The Remove a Job dialog box appears.
3. Select OK.
—or —
1. Select the job icon and right click.

2. Select Actions—>Remove Job... from the pop-up menu. The Remove a
Job dialog appears, displaying SDTESTJCB.

3. Select OK. The SDTESTIMBicon disappears from the Job Browser and
the job is removed from the SD-UX database.

Chapter 6 209

Remote Operations Overview
Remote Interactive swlist

Remote Interactive swlist

For remote operations, the sw i st -i command starts a list browser
that lets you interactively list installed software on remote hosts. The
only difference between remote and local operations is the name of the
target displayed in the message area of the Software Browsing window.

. .
Figure 6-10 The swlist Browser
SD List = View Software (swhash3)
File View Options Actions Help
Target: sweater:/
Top (Bundles and Products) 0 of 19 selected
Name Revision Information
AFewFilesets == 160 A Bundle that contains a few filese
CDE-English bl B.11.11.%26A English CDE Environment
DIAGNOSTICS -> 2.00.00 Hardware Diagnostic Programs
EmptyBundle 100 A Bundle that is empty here
FDDI-00 => B.11.11.00 PCI FDDI;Supptd HW=A3739A/A3739B;SK:
FibrChanl-00 e B.11.11.00 PCI FibreChannel ;Supptd HW=A5158A
GigEther-00 -=> B.11.11.13.01 PCI/HSC GigEther;Supptd HW=A4926A/A
HPUX11i-0E bl B.11.11.%26A HP-UX Internet Operating Environmen
HPUXBasefs => B.11.11.%26A HP-UX 64-bit Base OS
HPUXBaseAux => B.11.11.%26A HP-UX Base 0S Auxilary
NOREVISION e A product that has ne revision
OnlineDiag bl B.11.11.00.01 HPUX 11.11 Support Tools Bundle
PH_MATCH1 bl 1.0 This matches the matchdeme product
RAID-00 => B.11.11.00 PCI RAID; Supptd HW=AS5856A
. . . WT + ae . 2
For more information about swlist, see “Listing Your Software (swlist)
on page 96.
210 Chapter 6

Remote Operations Overview
Remote Operations from the Command Line

Remote Operations from the Command Line

Running remote operations from the command line is almost identical to
those for local operations. Key differences are:

¢ You must specify target selections.

¢ You can monitor jobs using the swjob command, as discussed in
“Monitoring Jobs from the Command Line” on page 230.

* You can use additional command options to schedule and manage
jobs. See “Managing and Tuning Jobs with Command Options” on
page 234.

Target Selections

By definition, you must specify a remote target for a remote operation.
Unlike local operations, in which a target could be a directory on the
local host system, you must specify remote systems as targets for remote
operations.

swinstall -s sw server cc pascal @host A hostB hostC

(This installs the C and Pascal products onto three remote hosts.)

Syntax

Software and source depot selections are followed by target selections.
These operands are separated by the “@” (at) character. This syntax
implies that the command operates on selections at targets.

The t arget _sel ect i ons syntax is identical for all Software Distributor
commands that require it:

@lhost1[: 1I/di rect or y]

¢ Only one @ character is needed.

® You can specify the host by its host name, domain name, or internet
address. A directory must be specified by an absolute path.

e The: (colon) is required if you specify both a host and directory.

Chapter 6

211

Remote Operations Overview
Remote Operations from the Command Line

¢ On some systems, the @ character is used as the kill function. Type
stty on your system to see if the @ character is mapped to any other
function on your system. If it is, remove the mapping, change the
mapping, or use \ @

Target Files

You can also use an input file to specify targets. To keep the command
line shorter, target selection input files let you specify long lists of
targets. With a target selection file, you only have to specify the single
file name.

The -t command-line option lets you specify a target file. For example:
swinstall -f nysoft -s /mt/cd -t nytargs

In this example, the file nmyt ar gs (which resides in the default directory)
contains a list of target selections for the depot /mnt/cd.

In the target file, blank lines and comments (lines beginning with #) are
ignored. Each target selection must be specified on a separate line and
must consist of a host name or network address, optionally followed by a
colon and a full path:

host[: / di rectory]

Examples

swacl
To list the global product template ACL on remote host geni ni :

swacl -1 gl obal product tenplate @genini

swask

To run all request scripts from depot / var/ spool / swon the remote
system swposi x and write a response file back to the same depot:

swask -s swposi x:/var/ spool / sw *

swconfig
To configure the C and Pascal products on three remote hosts:

swconfig cc pascal @host A hostB host C

212

Chapter 6

Remote Operations Overview
Remote Operations from the Command Line

swcopy
To copy the C and Pascal products to one local and two remote depots:

swcopy -S sw server cc pascal @/ var/spool /sw\
host A: / t np/ sw host B

swinstall
To install the C and Pascal products to three remote hosts:

swinstall -s sw server cc pascal @host A hostB hostC

swjob

The swjob command lets you monitors jobs from the command line. For
more information about jobs, see Chapter 7, “Using Jobs and the Job
Browser,” on page 215 and “Monitoring Jobs from the Command Line” on
page 230.

To list the agent log of remote system Tar get A for job host A- 0001:
swjob -a | og host A-0001 @t arget A/

swlist
To list the C product on three remote hosts:
swist cc @hostA hostB hostC

swreg
To unregister the default depots on three remote hosts:

sweg -u -l depot /var/spool/sw @host A hostB host C

swremove
To remove the C and Pascal products from three remote hosts:

sw enove cc pascal @host A hostB host C

swverify
To verify the C and Pascal products on three remote hosts:

swerify cc pascal @host A hostB hostC

Chapter 6

213

Remote Operations Overview
Remote Operations from the Command Line

214 Chapter 6

Table 7-1

Using Jobs and the Job Browser

Using Jobs and the Job Browser

This chapter describes SD-UX jobs the Job Browser interface for remote
operations. For additional information on remote operations, see
Chapter 6, “Remote Operations Overview,” on page 189.

Chapter Topics

Topics:

“Introduction” on page 216

“Using the Job Browser” on page 217

“Monitoring Jobs from the Command Line” on page 230

“Managing and Tuning Jobs with Command Options” on page 234

Chapter 7

215

Using Jobs and the Job Browser

Introduction

NOTE

Introduction

The Job Browser GUI, an interactive interface for managing remote
operations. The Job Browser lets you:

¢ (Create copy, install, or remove jobs
e Monitor job status and logfiles

e List job information

e Schedule jobs

The swjob command lets you monitors jobs from the command line.
Various command options help you manage and tune performance of jobs
and remote operations.

The Terminal User Interface (TUI) has some limitations when used with
the Job Browser:

¢ Error-handling messages may garble the screen. Type Ctrl-L to
refresh the screen if this happens.

e Ifyou display Actions—Job Description—Show Options, some scrolling
is required to view the entire screen.

Starting the Job Browser

To start the Job Browser, type:
sd

The Job Browser window displays on your screen.

216

Chapter 7

Using Jobs and the Job Browser
Using the Job Browser

Using the Job Browser
Figure 7-1 The SD Job Browser Window
Software Distributor — Job Browser
File View Options Actions Help
Current time: Mon Dec 11 17:28:06 2000
Jobs 1 of 88 selected
4 - s £ 4
o8 iy yoi-! gy L8
(swbash3-0068) (swbash3—0069) (swbash3-0070) (swhash3-0071) (swbash3-0073)
gy e &y e
(swbash3-0074) (swbash3-0078) (swbash3-0079) (swhash3-0080)
ﬁ'uz o2 gy 12l
(swbash3-0081) (swbash3—-0083) (swbash3—-0085) (swbash3-0086)
iy 43 Ca LE] £
(swbash3-0088) (swbash3—0089) (swbash3-0090) (swbash3-0091) (swbash3-0092)

The window is divided into three parts:

¢ Menu bar, which contains most of the standard SD-UX menus
discussed in “Using the GUI and TUI Commands” on page 35. Menu
items specific to the Job Browser are discussed later in this chapter.

e Message area, which displays the current time.

e Jobs List, which displays job icons (the default) representing each
job. Under the icon is the job title. To select a job, click on the icon.
See “Job Browser Icons” on page 218.

NOTE Until a job is created, the Jobs List is empty.

Chapter 7 217

Using Jobs and the Job Browser
Using the Job Browser

Job Browser Icons

¢ A clock indicates that the job is scheduled but hasn’t run yet.
¢ A check mark indicates that a job has completed.

¢ A ruler indicates that the job is active.

¢ A red background indicates that the job contained errors.

e A yellow background indicates that the job contained warnings.

Figure 7-2 Copy Icon

This icon represents a copy job (depot to depot). A check mark indicates
that the job has completed.

Figure 7-3 Active Install Job Icon

This icon represents an install job. The ruler on the side indicates that
the job is active.

218 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser

Figure 7-4 Scheduled Install Job Icon

This icon represents an install job that is scheduled for a later time. The
clock face indicates that it is a scheduled job.

Figure 7-5 Install Job with Warnings Icon

This icon represents an install job that completed, but contained
warnings. The background around the icon is yellow.

Figure 7-6 Install Job with Errors Icon

This icon represents an install job that completed, but contained errors.
The background around the icon is red.

Chapter 7 219

Using Jobs and the Job Browser
Using the Job Browser

Figure 7-7 Scheduled Remove Installed Software Job Icon

This icon represents a scheduled remove job on installed software.

Figure 7-8 Scheduled Remove Depot Software Job Icon

This icon represents a scheduled remove job on software contained in a
depot.

Figure 7-9 Verify Job Icon

This icon represents a verify job (represented by a magnifying glass) that
completed, but contained errors. The background around the icon is red.

220 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser

The File Menu

The File menu has the following options:

Search Performs text searches for job IDs or titles.
Print Lets you print the jobs list.

Exit Exits the Job Browser

Printing the Jobs List

This option prints the Jobs List to a specified printer or saves it to a file.
(The Jobs List can only be printed if it is listed by properties—see “The
View Menu” on page 222.) If the Jobs List is displayed by name and icon
(the default), this menu item is greyed-out and cannot be chosen. To
print the Jobs List:

1. Select View—By Properties.
2. Choose File—Print.... The Print Objects dialog is displayed.

3. Supply any necessary information in the Print Objects dialog and
select OK.

Chapter 7

221

Using Jobs and the Job Browser

Using the Job Browser

Figure 7-10

The View Menu

The View menu lets you change the way information is presented in the
Job Browser. The standard choices on this menu (Columns..., Filter... ,
Sort... and Save View as Default) match those described in “Changing
Software Views—The View Menu” on page 42. Note, however, that the
Columns... choice is only valid for View—By Properties (discussed below).

Jobs Displayed by Properties

Current time:

File View Options Actions

Mon Dec 11 15:24:39 2000

Software Distributor — Job Browser

Viewing By Name and Icon

Viewing By Properties

Jobs 0 of 88 selected
1D State Progress Results Title
swbash3-0080 Complete (swbash3-0080)
swhash3-0081 Complete (swhash3-0081)
swbash3-0082 Complete 1 With Warnings (swbash3-0082)
swhash3-0083 Complete 1 With Warnings (swbash3-0083)
swbash3-0085 Complete (swbash3-0085)
swhash3-0086 Complete 1 With Errors (swhash3-0086)
swbash3-0088 Complete (swbash3-0088)
swhash3-0089 Complete (swbash3-0089)
swbash3-0090 Complete (swbash3-0090)
swhash3-0091 Complete 1 With Warnings (swbash3-0091)
swbash3-0092 Complete (swbash3-0092)
swhash3-0093 Complete 1 With Warnings (swbhash3-0093)
swbash3-0094 Complete (swbash3-0094)
swhash3-0096 Complete (swbhash3-0096)
swbash3-0097 Complete 1 With Warnings (swbash3-0097)

Choosing View—By Name and Icon displays the jobs list in name and
icon format.

This menu item and the View—By Properties menu choice operate as

radio buttons. When one is chosen, the other is un-chosen.

Choosing View—By Properties displays the jobs list by properties (job
title, ID, type of operation, scheduled date, status, progress, results,
and date of last update).

222

Chapter 7

Using Jobs and the Job Browser
Using the Job Browser

¢ Any modifications made in the View—Columns..., View—Filter..., or
View—Sort... menu selections affect how the property list is
displayed.

¢ This menu item and the By Name and Icon menu choice operate as
radio buttons. When one is chosen, the other is un-chosen.

¢ You can print the job list from this view by choosing File—Print....

The Options Menu

The Options menu optional behavior of the Job Browser.

Changing the Refresh Interval

By default, the Jobs List is refreshed every minute. You may want the
list updated more frequently if you are monitoring a lot of jobs. Or, you
can turn off the automatic refresh feature to improve performance.

To change how often the list is updated:

1. Choose Options—Change Refresh Interval.... The Refresh Interval
dialog is displayed.

2. Select a new refresh interval from the list.

Figure 7-11 Refresh Interval Dialog
Refresh Interval

.Clmngc Refresh Interval:
1 second
5 seconds
10 seconds
30 seconds
@1 minute

Never (periodic refresh off)

Save Interval As Default

OK Apply Cancel Help

e Apply immediately applies the interval you have selected.

e Save Interval as Default sets the selected refresh interval as the default
for future sessions.

Chapter 7 223

Using Jobs and the Job Browser
Using the Job Browser

To change the refresh interval for the SD-UX daemon, see “Managing

and Tuning Jobs with Command Options” on page 234.

Refreshing the Jobs List

To immediately update the Jobs List, choose Options—Refresh List.

224 Chapter 7

Table 7-2

Using Jobs and the Job Browser
Using the Job Browser

The Actions Menu

Items in the Actions menu let you perform job creation and management
tasks. If you have selected a job selected, the actions available apply
specifically to that job. If you do not have a job selected, the only action
available is job creation.

Shortcuts

To display a pop-up menu of job-specific actions, right-click on a job icon,
then left-click. This displays a pop-up Actions menu items. Choose an
action by clicking with either mouse button.

Double clicking on a job displays the Job Results dialog (same as
Actions—Show Job Results....)
Creating a Job

To create a job, choose Actions—Create Job. This brings up a submenu
with the following choices that start different sessions:

Job Actions Options

Job Actions & Selections
Install Software... swinstall session.
Remove Installed Software... swremove session.
Copy Software to a Depot... SWcopy session.
Remove Software from a Depot... swremove -d session.
Showing Job Results

Selecting Actions—Show Job Results... displays the Job Results dialog,
which lists results for the job selected. (You can also reach this dialog by
double-clicking a Job Browser icon.)

¢ The object list shows the list of targets for the job, their type, and job
status.

e The Show only warnings or errors toggle button changes the
information displayed to show all targets or to show only the list of
targets with warnings or errors in the job.

Chapter 7

225

Using Jobs and the Job Browser
Using the Job Browser

e Select the Show Log button or double-click on a target in the object
list opens the log for that target.

e Select OK to return to the Job Browser. (Closing the dialog does not
stop the jobs displayed if they are active.)

Figure 7-12 Job Results Dialog

Job Results
Title: (swbash3-0082)

10 swhash3-0082
Last updated: Mon Nov 20 09:09:37 2000

Only list targets with errors or warnings
Target Type State Results

Show Log
OK Help
NOTE For performance reasons, a maximum of 250 targets are listed at once. If

there are more then 250 targets for the job, Next and Previous buttons
appear to let you view groups of 250 targets. Showing only warnings or
errors can reduce the number of targets displayed.

Showing Job Descriptions

Selecting Actions—Show Job Description... opens the Job Description
dialog, which contains all the information specified when the job was
created, including:

226 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser

e All job attributes (ID, type of operation, scheduling, current state,
results, when last updated, source)

¢ Name and revision of the software
e Targets involved and target type:
— primary root
— alternate root

— depot

Figure 7-13 Show Job Description

Job Description
Title: (swbash3-0082)

1D swhash3-0082 Show Options...
Operation: Install
Schedule: Mon Nov 20 09:09:18 2000

Show Results...
State: Complete
Progress:
Results: 1 With Warnings

Last Updated: Mon Nov 20 09:09:37 2000

Source: /tet/tmp/econtroller/location/compatibility/target.1/1100/depot

Software Revision Target Type
B1. swbash3 _Root |
P11.F111 =1.8
P11.F112 =1.0
P11.F113 =1.0
P12.F121 =1.0
P12.F122 =1.0
P12.F123 =1.0
P13.F131 =1.0
P13.F132 =1.0
P13.F133 =1.0
OK Help

e Selecting Show Options... displays the Job Options dialog. This lets
you see the options used to create this job.

e Selecting Show Results... displays the Job Results dialog, which shows
the latest status information on the job.

¢ Select OK in the Job Description dialog to return to the Job Browser.
You can display the same information by double clicking on a job.

Chapter 7 227

Using Jobs and the Job Browser

Using the Job Browser

Showing Job Logs

Selecting Actions—Show Job Log... displays the Job Log dialog, which
displays the controller (summary) log of a selected job. Buttons let you
refresh or print the log file. Select OK to return to the Job Browser. (This
menu item is greyed-out if the selected job is not active or completed.)
Copying Jobs

Copying a job consists of making the target and software selections
available to a new session of swinstall, swcopy, or swremove. The new
session is invoked automatically, using the same hosts, sources, software
and target selections from the selected job. You can then re-use the same
settings or make changes as needed.

This feature gives you the same advantages as using a session file in
swinstall, swremove, or swcopy session. This can help you:

¢ Distribute the same software to a new set of targets
e Distribute new software to a previously defined set of targets
¢ Change a job from preview to full execution
To copy a job:
1. Select the desired job icon or listing in the job list.
2. Choose Actions—Create Job from Selected Job....

The SD-UX program that matches the original job is automatically
invoked. (For example, an installation job invokes swinstall.)

e The Target Selection window displays the previously specified
targets.

e The Software Selection window displays the list of previously
specified software.

3. Execute the program with the copied settings, or change the settings
before execution.

228

Chapter 7

Using Jobs and the Job Browser
Using the Job Browser

Removing a Job

The Actions— Remove a Job... menu choice lets you remove the currently
selected jobs from the Jobs List. (To select more than one job, hold down
the CTRL key while selecting jobs in the Job Browser window.) The

Remove a Job dialog displays, listing information about the selected jobs.

Figure 7-14 Remove a Job dialog
Remove a Job
The following jobs will be removed:
1D State Title

swbash3-0082 Complete (swbash3-0082)

OK Cancel Help

¢ Ifyou remove a scheduled job that has not yet run, the job is never
run.

¢ You cannot remove a job that is in progress.

Chapter 7 229

Using Jobs and the Job Browser
Monitoring Jobs from the Command Line

Monitoring Jobs from the Command Line

The swjob command lets you display and monitor jobs information using
the command line. This command provides a quick, low-bandwidth
alternative to the Job Browser when you want to check on specific jobs.

Syntax swj ob [XTool kit Qotions]l-ill-RI[-ull-vl[-a attribute]
[-Csession fil€]l-f software filell-s source]
[-Ssession filell-t target_filell-x opti on=val ue]
[-Xoption filellsoftware_sel ections](@t arget_sel ecti ons]
Options and XToolkit Options X window options for use with swj ob -i . See “XToolkit
Operands Options and Changing Display Fonts” on page 53.
-i Starts the sd interactive job browser. See “Using the
Job Browser” on page 217.
-u Causes swjob to remove the specified jobs.
Y List all available job attributes, one per line.
-aattribute Display a specific attribute for the job. See “swjob
Tasks and Examples” on page 233 for more
information.
-Csession file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.
-f jobid file
Read a list of job IDs from a separate file instead of (or
in addition to) jobs you specify on the command line.
(Use these files just like software files. See “Software
Files” on page 58.)
-Ssession file
Run the command based on values saved from a
previous installation session, as defined in
session_file.See “Session Files” on page 61.
230 Chapter 7

Changing
Command Options

Table 7-3

For More
Information

Using Jobs and the Job Browser
Monitoring Jobs from the Command Line

-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) those you specify on the
command line. See “Target Files” on page 59.

-X opti on=val ue
Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Using
Command Options” on page 59.

-Xoption file
Read session options and behaviors from opt i on_file.
See “Using Command Options” on page 59.

jobid One or more identification numbers for an SD-UX
operation. You can read job ID numbers from the Job
Browser when you set up or monitor your jobs
interactively.

target_sel ecti ons
The target of the command. See “Target Selections” on
page 58.

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swjob.

swjob Command Options and Default Values

¢ admin_directory=/var/adm/sw ¢ loglevel=1

e agent_timeout_minutes=10000 e match_target=false

¢ log msgid=0 ® rpc_timeout=5

¢ one_liner={jobid operation state | ® run_as_superuser=true
progress results title} * targets=

¢ rpc_binding_info= e verbose=1

ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]

See Appendix A, “Command Options,” on page 421 for more information
about setting options and a complete listing and description of each
option.

Chapter 7

231

Using Jobs and the Job Browser
Monitoring Jobs from the Command Line

swjob Attributes

Each job has its own set of attributes. These attributes include job title,
date of scheduled execution, and results. The - a option selects a specific
attribute to display. You can specify multiple - a options to display

multiple attributes.

Table 7-4 Typical job attributes
 obi d The job identification number
J assigned by SD-UX
operation The type of operation (install, copy,
remove, verify, etc.)
state Current job status (completed, scheduled,
or active)
pr ogr ess Number of targets completed
results Completion status, indicating success,
warnings, or errors
title A title specified for the job by using the
job_titl e option in swconfig, swcopy,
swinstall, swremove, or swverify (see
“Managing and Tuning Jobs with
Command Options” on page 234)
schedul e Date at which the job was scheduled to
run
| astupdat e | Date at which information for this job was
last updated

232

Chapter 7

NOTE

Using Jobs and the Job Browser
Monitoring Jobs from the Command Line

swjob Tasks and Examples

To simply list the jobs available, type:

swj ob

To display attributes of jobs on the local system, type:

swj ob -v

To display attributes of jobs on remote system swbash3, type:
swj ob -v @swbash3:/var/spool / sw

Using the - a | og option lets you display log files for jobs. A job log file
summarizes job details and target actions. For example, to display the
depot log file for the job swbash3- 0008 on remote system swbash3:

swj ob -a | og swbhash3-0008 @ swbash3:/var/spool/sw

You cannot specify any other - a options in the same command if you use
-a | og.

To remove job information for all previous jobs:

swjob -u *

Chapter 7

233

Using Jobs and the Job Browser
Managing and Tuning Jobs with Command Options

Managing and Tuning Jobs with Command
Options

SD-UX command options let you manage and tune job behavior to best
fit your environment, particularly when you run large numbers of jobs.

See “Using Command Options” on page 59 for additional information on
setting command options.

Scheduling Jobs from the Command Line

The - Qdate option lets you schedule jobs without starting the Job
Browser. This option is available for swinstall, swcopy, swconfig,
swremove, and swverify.

The format for date is:
M DO/ YYYY] [, HH: M [AM PM

For example, to install the C and Pascal products at 3 p.m. on June 23,
2001, at 10:14 a.m.:

swinstall -Q 06/23/2001, 10: 15AM -s sw _server cc pascal

Adding Job Titles

Purpose: to help you identify jobs.

When running large numbers of jobs, you may want to add more
information to help you identify a specific job. You can do this from the
Job Browser or by invoking swconfig, swcopy, swinstall, swremove, and
swverify with the j ob_titl e command option. This lets you add an
ASCII string that will be displayed along with the ID and other job
attributes when you invoke swjob or the job browser.

For example, to install the C and Pascal products from depot sw_ser ver
to three remote hosts with a job title of 02- H.Ls:

swinstall -s swserver -x job title=02-H.Ls cc pascal \
@host A hostB hostC

234

Chapter 7

Using Jobs and the Job Browser
Managing and Tuning Jobs with Command Options

Removing Job Information

Purpose: to increase performance and free up disk space when you run
very large numbers of jobs.

SD-UX stores small amounts of information (such as job status or
controller or agent logfiles) about each job. You can display this
information from the Job Browser or with swjob. Keeping very large
numbers of job information files may affect performance and reduce the
usability of the Job Browser.

Running swconfig, swcopy, swinstall, swremove, or swverify with the
aut or enove_j ob command option set to true prevents SD-UX from
storing the job information. (The trade-off is that you can not view the
job information except by viewing log files.)

swinstall -s sw server -x autorenove job=true \
M/Sof t ware @ host A host B host C

You can also use the -u option to remove all old job information:
swjob -u *

You can also remove individual jobs from the Job Browser (see
“Removing a Job” on page 229.)

Chapter 7

235

Using Jobs and the Job Browser
Managing and Tuning Jobs with Command Options

236 Chapter 7

Table 8-1

Reliability and Performance

Reliability and Performance

This chapter describes the interrelationship of Software Distributor
reliability features and performance. Understanding how these features
work together will help you improve the overall reliability of your
software distribution system.

Chapter Topics

Topics:

“Overview” on page 238

“Groups and Source Options” on page 240

“Large Numbers of Targets” on page 241

“Timeout Options” on page 242

“Retry RPC and Retry Interval” on page 243

“Retry Command” on page 244

“Database Checkpointing” on page 245

“Compression” on page 246

“Staging” on page 247

“Recovery (Install Only)” on page 250

“Installation With Separate Configuration” on page 252

“Multiple Versions” on page 253

Chapter 8

237

Reliability and Performance

Overview

Overview

SD-UX install and copy throughput are dependent on the following
factors:

Speed of the network
Size (i.e., number of bytes) of the product being transferred
Number of files being transferred

Number of targets any one source is serving simultaneously

SD-UX provides many features that can be used together to increase the
speed and success rates of distributed installations and copies. Many
features are controlled by options set in the system defaults file, separate
options file, command line, or GUI. This lets you set these features and
options to best suit your own particular network and software needs.

These options and features can be categorized as follows:

Group and source options: SD-UX eliminates the need to
duplicate specification of commonly used groups of targets and
software. Also, using the source option to specify a main depot
reduces the number of dialog boxes.

Large numbers of targets: Options that limit the number of
simultaneous targets.

Timeout options: Options that control how long the task attempts
to retry low-level communications for file transfers before giving up.

Retry RPC and retry intervals: Options that control the intervals
between retries when the controller or targets attempt to
re-establish lost connections.

Retry command: Options that facilitate retrying operations that
have failed. These can be used in conjunction with the checkpointing
features or can start the task from the beginning.

Database checkpointing: SD-UX commands perform automatic
checkpointing at the fileset level and recording database
transactions in the SD-UX depot catalog IPD. In addition,
checkpointing at the file level is supported through attributes stored
with the file.

238

Chapter 8

Reliability and Performance
Overview

¢ Compression: SD-UX supports compression functionality to reduce
the amount of data being transferred.

e Staging: SD-UX supports staging software to intermediate depots
either on the installation target or onto a source more accessible to
the target, which has been preconfigured to use the alternate source.

¢ Recovery: SD-UX supports automatic procedures to recover from
failed installations, leaving the system in the same state as previous.
There are also manual means through use of multiple versions.

¢ Multiple Versions: SD-UX supports installing multiple revisions of
the same software on a system at the same time, if the software
supports it. Then, the old version can be unconfigured, and the new
version configured as the active version. In case of any problems, the
old version can be restored as the active version by unconfiguring the
new version and reconfiguring the old.

Each of these topics is discussed in the following sections.

Chapter 8

239

Reliability and Performance
Groups and Source Options

Groups and Source Options

Group and source options can help increase performance of some
commands.

Target and software selections can be saved as group files and re-used.
This reduces the need to re-specify commonly used selections, which
reduces the time required to perform swinstall, swcopy, or swremove
commands. See “Add/Save Software Group” on page 49, and “Software
and Target Lists” on page 192 for more information.

Specifying source depots in advance can reduce the number of screens
needed to run or schedule a swcopy or swinstall command. If you set the
sour ce= default option to your main source depot, SD-UX can
immediately list the products available. This eliminates the Source
Selection dialog, except when changing the default.

240

Chapter 8

Reliability and Performance
Large Numbers of Targets

Large Numbers of Targets

The max_t ar get s option applies to swinstall and swcopy operations.
This option lets you manage hundreds of targets with a single job by
limiting the number of simultaneous targets to a defined value. As each
target completes the install or copy, another target is selected and
started until all targets have been completed. This keeps the number of
active operations at or below the user-defined limit.

The result of this option is that you can potentially manage hundreds of
targets reliably in a single task. This can also create a significant
reduction in the time it takes to schedule a task.

Your server and network performance will determine the optimal setting
for this option. The default setting is 25.

Chapter 8

241

Reliability and Performance

Timeout Options

Timeout Options

Timeout options control how long a task continues to retry low-level
communications for file transfers before giving up.

One control is the amount of time each single RPC call waits before
giving up. This timeout is set by the r pc_t i neout option. Legal values
are 0 through 9. The default value is 5, which corresponds to about 30
seconds for the UDP protocol. Each value doubles the time of the
preceding value (i.e., a value of 4 is about 15 seconds).

Another control is the number of times a target agent attempts to
reconnect to the source agent after an r pc_t i neout has detected a lost
connection source during an installation of a fileset. The number of retry
attempts is controlled by the ret ry_r pc option. The range of values is 0
through 9. A 0 value means no retry is attempted; if the connection is
lost, the command will fail. The default value is 1. For less stable
networks, a value of 5 is recommended.

NOTE When setting retry_rpc to a value greater than 0, the
reinstall_files option should also be set to f al se (the default value),
so the same files are not recopied when a fileset is retried.
The maximum possible amount of time spent waiting for the timeout is
affected by a combination of r pc_ti meout, retry_rpc, and
retry_rpc_interval.
For troubleshooting information on Timeout options, refer to “Connection
Timeouts and Other WAN Problems” on page 472.

242 Chapter 8

Reliability and Performance
Retry RPC and Retry Interval

Retry RPC and Retry Interval

During a swinstall or swcopy operation, retry_rpc_i nt erval controls
the interval schedule for repeated attempts to make a connection to a
target or the source agent after an initial failure. This option works in
conjunction with retry_r pc, which controls the number of times the
target or source is re-contacted.

The default value forretry_rpcis landretry_rpc_interval is {0}.

The recommended values for the retry_rpc_i nt erval algorithm are {1
24 8 15} withretry_rpc set at 5. If the agent session fails to start for
any reason, the controller and/or target will attempt to re-connect in the
following way (i.e., both options set as above):

e after 1 minute for the first try

¢ then 2 minutes for the second try
e then 4 minutes

e then 8 minutes

e finally 15 minutes for the last try

If the number of values forretry_rpc_i nterval islessthan
retry_rpc, the last value given is repeated until the number of actual
retries is equal toretry_rpc.

NOTE Ifretry_rpc has a value of zero, no retry is attempted. An initial value
of 5 is recommended for WAN environments.

Chapter 8 243

Reliability and Performance

Retry Command

Retry Command

SD-UX supports options that facilitate retrying operations that have
failed. These can be used in conjunction with the checkpointing features
or can start the task from the beginning.

Each execution of a command records all of the target, software, and
option selections automatically in a session file, conmand.last. You can
also save the session information to a different file using the GUI. The
session files are stored in the directory $HOVE/ . sw sessi ons. The entire
command can be retried by recalling the session in the GUI or by
re-executing the task:

conmand - S command.| ast

When a task is retried, any fileset that is up to date (has the same
product and filesets revisions as available or installed and is not in the
transient or corrupt state) will not attempt to be reinstalled (the default
behavior), and all other filesets will be retried. This behavior can be
overridden, forcing the retry to start at the beginning of all files, by
setting r ei nst al | =t r ue from either your option setting or the CLIL.

Ifthereinstal | _fil es option is set to true, all files in that fileset are
retransferred. However, although preinstall and postinstall scripts for
filesets that are being installed are executed normally, the file transfer
for up to date files can be avoided by leaving the rei nstal | _fil es
option equal to false (the default).

When the rei nstal | _fil es option is false, the user can also control
which attributes are checked in order to determine if the fileset is
already installed or available. If therei nstal | _fil es_use_cksum
option is set to true, the size, mtime, and cksum attributes are checked.

Ifthereinstal |l _files_use_cksumoption is false, then only the size
and mtime are checked. Checking the cksum attribute is more time
consuming but more reliable. The size and mtime checks are very fast.

The user can see which files were actually installed or copied and which
were skipped due to being already up to date by setting the | ogl evel
option to 2.

244

Chapter 8

NOTE

Reliability and Performance
Database Checkpointing

Database Checkpointing

The tools perform automatic checkpointing, recording transactions in the
SD-UX depot catalog, or Installed Products Database (IPD) at the fileset
level. Additionally, checkpointing at the file level is supported through
attributes stored with the file.

During a swinstall or swcopy operation, all filesets in the current product
being loaded are recorded in the depot catalog or IPD as having a state of
transient. After all filesets in a product complete the copy or install, the

state is changed to available or installed, and the next product is started.
At this point, retrying an operation will not attempt to recopy or reinstall
the filesets that are already installed (see “Retry Command” on

page 244).

This behavior requires that either the product or fileset have a revision
defined.

The current state and revisions of filesets can be displayed with the
command:

swist [-d] -I fileset -a revision -a state

If there is an error installing a fileset in the product that causes the
install to fail (e.g., lost connection to the source), all filesets in the
product are changed from transient to corrupt. (All filesets are assumed
corrupt since the product level postinstall script has not been run yet. In
actuality, the filesets may be properly installed.)

Independent of a fileset being installed (either properly or in a corrupt
state) you can determine whether any particular file is installed properly
with a high degree of certainty through the file’s size, mtime, and cksum
attributes. Through these file attributes, checkpointing at the file level is
approximated (this is described in the previous section).

Chapter 8

245

Reliability and Performance

Compression

Compression

The swinstall and swcopy commands can transfer large amounts of data
over the network from depots to targets. The SD-UX conpress_fil es
option can improve performance by first compressing files that are to be
transferred. This can reduce network usage by approximately 50%; the
exact amount of compression depends on the type of files. Binary files
compress less than 50%; text files generally compress more.

Set this option to true only when network bandwidth is clearly
restricting total throughput. If it is not clear that this option will help,
compare the throughput of a few swinstall or swcopy tasks (i.e., with and
without compression) before changing this option value.

You can use swcopy to compress files and leave them compressed in a
target depot or compress before network transfer and uncompress
afterward.

Precompressing a depot is advantageous when installing or copying to
multiple targets. If the source depot is not already compressed, then each
file is recompressed for each target.

You can set unconpress_fil es to true to leave a depot uncompressed
after copying with swcopy. For swinstall, the conpress_fi | es option will
compress all uncompressed files before network transfer. Files are
always uncompressed before installing them to the target file system.

INDEX and INFO Compression

Another way to reduce your network traffic is by compressing INDEX
and INFO files from the source depot to the target. You can turn on
INDEX or INFO compression by setting the conpr ess_i ndex option to
true in the defaults file (/ var / adm sw/ def aul t s).

The SD-UX controller and target agents will request compressed INDEX
files from the source agent. If the source agent is read only or an older
version of SD-UX, the agent cannot comply; consequently, the client will
request a normal INDEX. Otherwise, the source agent will send a
precompressed INDEX and INFO or compress it on the fly.

The target agent will then create a permanent compressed INDEX in the
target, depot, or root. This saves the next request for a compressed
INDEX or INFO from having to compress on the fly.

246

Chapter 8

Reliability and Performance
Staging

Staging

The standard way to install software onto multiple targets is to specify a
single source depot and each target that is to receive the software.
However, some software distribution environments require that you
manage software on large numbers of geographically dispersed target
systems. This may require the use of one or more intermediate source
depots or staging areas. This variant on the standard model is referred to
as a staged installation.

There are two reasons for using a staged installation:

1. Minimize the amount of data transferred across a slow and
expensive segment of your network.

2. More easily ensure a successful installation on all targets by
reducing the risk of an unreliable segment in your network.

If your environment has targets organized in separate, local area
networks (LAN) and connected via a low-throughput, less-reliable wide
area network (WAN), staging software to intermediate depots that are
local to each grouping of targets and then doing the installation using
these intermediate depots reduces the amount of data that travels over
the WAN segment.

By doing so, you also decrease the likelihood that a problem with the
WAN will interrupt the installation step.

Before you do a staged installation, you must first decide where the
intermediate depots should reside. Here are two possible approaches:

1. If the targets are grouped, you can put an intermediate depot on one
system in each group and configure the other targets to use it as
their alternate source. This approach requires that each target in the
group be configured to use the designated intermediate depot.

2. If making sure that installations succeed is of highest importance,
you can locate the intermediate depots on the targets themselves,
one-per-target. An advantage to this approach is that it doesn’t
necessarily require that you configure an alternate source on each
target. However, this approach requires that each target system have
enough disk space to accommodate the intermediate depot.

Chapter 8

247

Reliability and Performance
Staging

To do a staged installation:

1. First, decide on the location of the intermediate depots and use the
swcopy command to copy the software from your master depot to
them. This step is no different from a normal multi-target copy
operation.

swcopy -s master -t depot_[ist NewApp

In this example, the master source depot containing the product
NewApp is in the default / var/ spool / swdepot location and a file
named depot _| i st contains the list of intermediate depots.

The depot _| i st could identify the designated intermediate depots
that have been configured for each group of targets, or it could
identify an intermediate depot located on each target.

2. Next, use the swinstall command combined with the option
use_al t ernat e_sour ce=t r ue to do the actual installation. The
use_al t er nat e_sour ce option is specified from either the CLI (i.e.,
-x use_al ternat e_sour ce=tr ue) or via the Options Editor window
in the GUI. The default value is false.

swinstall -s naster -x use_ alternate source=true \
-t targ_list NewApp

The use_al t er nat e_sour ce=t r ue option instructs each target to
use its own configured source for the installation. The source that is
specified on the swinstall CLI is used only by the controller for the
validation of your software selections. The filetarg_| i st contains
the list of targets.

When use_al t er nat e_sour ce is true, each target agent looks for the
corresponding swagent . al t er nat e_sour ce option in its own
defaults file. The protocol sequence and endpoint given by the option,
swagent . r pc_bi ndi ng_i nf o, are used when the agent attempts to
contact the depot specified by swagent . al t er nat e_source. An
alternate source is specified using the host:/path, /path, or host
syntax.

e Ifthereis a host:/depot pat h specified in the target’s
swagent . al t er nat e_sour ce option, the agent gets the software
from this source. If only a host is specified, the target agent uses
the same depot path used by the controller.

248 Chapter 8

Reliability and Performance
Staging

e Ifthe target doesn’t have an alternate source, the agent uses the
same depot path used by the controller, but it will apply this path
to its own file system. This lets you do staged installations
without any target configuration at all, by locating the
intermediate depot on each target system at the same file system
location as the master depot (approach 2 above).

Because the swcopy and swinstall steps in a staged installation are
separate, SD-UX cannot enforce consistency between master and
intermediate depots. You must ensure that the software available from
the intermediate depots is consistent with that on the master depot.

If master and intermediate depots are out-of-synch when you perform
the swinstall step, you may encounter errors if software that is on the
master depot is not available from one or more intermediate depots.

Chapter 8 249

Reliability and Performance

Recovery (Install Only)

NOTE

Recovery (Install Only)

This section applies only to customer-created software with unpreinstall
and unpostinall scripts. HP-supplied software does not include these
scripts.

SD-UX supports automatic procedures to recover from failed installation
if the aut or ecover _product option is set to true, attempting to leave the
system in the same state as it was previously. Also, manual means are
available (refer to “Multiple Versions” on page 253).

Rollback is limited to the system where the installation of the product
failed, not all target systems specified in an installation job.

Because autorecovery removes any files that were installed up to this
point, it is antithetic with the checkpointing and retry features
previously described. Recovery saves copies of each file that it is
replacing, then removes those files at the successful completion of the
product installation. If the install fails, then the saved files are restored.

Once a product is successfully updated, it cannot be restored except by
reinstalling it. Additionally, if a later product fails, the earlier product
cannot be recovered. In order to meet the requirement that multiple
products be recoverable, multiple versions must be installed.

The unpreinstall and unpostinstall scripts are needed to undo the steps
that the preinstall and postinstall scripts executed. The normal sequence
of operations for each product is:

1. Execute the product preinstall script
2. For each fileset

a. execute the preinstall script

b. install the files

c. execute the postinstall script

3. Execute the product postinstall script

250

Chapter 8

Reliability and Performance
Recovery (Install Only)

If any of these steps fails (e.g., a lost source or a script error) then the
undo scripts are run, and the files restored from the point of failure in
reverse order.

NOTE Patches created using the features capabilities described may maintain
saved files. In this case, patches can be removed (rolled back) or
committed (by removing saved files). See Chapter 5, “Managing Patches,”
on page 163 for more information on patches.

NOTE The use of aut or ecover _pr oduct =t r ue during an update of the HP-UX
OS is not supported.

Chapter 8 251

Reliability and Performance
Installation With Separate Configuration

Installation With Separate Configuration

NOTE Because deferring configuration of OS software and patches can leave
the system in an unusable state, do not use this technique with
HP-supplied software.

If you create your own software that includes configuration scripts to be
performed automatically after installation, performing the configuration
separately can increase the reliability of the overall installation process.

To install without configuring, set the def er _confi gur e option to true
for swinstall. Then, after all the installs have completed successfully, you
can run the configure scripts for all targets at once by using the swconfig
command.

252 Chapter 8

NOTE

Reliability and Performance
Multiple Versions

Multiple Versions

SD-UX supports installing multiple revisions of the same software on a
system at the same time, if the software supports it. By using multiple

installed versions, recovery can be supported at the system or task (all

systems) level.

Installing a second version requires some careful planning, as well as
understanding how to identify multiple versions on the system.

Each product has a product directory attribute. The installed location on
the target is by default the same as the product directory. For example, a
product Foo might have a product directory of / opt / f 00. You can list the
locations of installed software with:

swist -1 product -a | ocation
or
swist -1 product -a software_spec

A common practice is to install a second version of the product. When
installing this software, a new location must be selected. In the case of
the product Foo, the new location might be / opt / f 00. v2. After
specifying the new location (i.e., by adding | =/ opt / f 00. v2 after the
product tag in the GUI or CLI), swinstall will replace the product
directory portion of all files with the new product location.

The al | ow_mul ti pl e_ver si ons option must be set to true for swinstall
to install multiple versions of the software. The new version will not be
configured by swinstall if there is another version configured.

After a second version has been installed, each version can be identified
either by the location (Foo, | =/ opt / f oo and Foo, | =/ opt / f 00. v2), by
the revision (Foo, r =1. 0 and Foo, r =2. 0), or both. You can list the
locations and revisions of all versions with:

swist -1 fileset -a location -a revision

Chapter 8

253

Reliability and Performance

Multiple Versions

NOTE

NOTE

Additionally, you can list a fully qualified software spec containing both
the location and revision as well as the other version distinguishing
attributes (vendor and architecture) with:

swist -1 fileset -a software_spec

After the new version is installed successfully for all products or on all
hosts, the old version can be unconfigured, and the new version
configured as the active version by using swconfi g - u with the old
version and swconfig with the new version.

By default, only one version of the software is allowed to be configured at
a time.

The second version can not be configured until the first one is
unconfigured. As was discussed in “Installation With Separate
Configuration” on page 252, installing a second version automatically
excludes configuring the new version.

You must manually unconfigure the old version, then configure the new
version. If the software supports multiple configured versions (in
addition to multiple installed versions) the

sweonfig. al l ow nmul tipl e_versi ons option can be set to t r ue.

In case of any problems, the old version can be restored as the active
version by unconfiguring the new version and reconfiguring the old Gi.e.,
by swconfi g - uwith the new version and swconfig with the old version).

In order to support multiple versions, the software must be structured so
that all files are below the product directory, and the configure scripts
need to be written with multiple version support in mind. In a simple
example, the configure script could add a symbolic link from

/ usr/ bi n/ f oo to $SW LOCATI ON bi n/ f 00, and the unconfigure script
could remove that link. In this example, configuring and unconfiguring
each version of this software is easily done.

The use of al | ow_nul ti pl e_ver si ons=t r ue command option and the
| =<al ternat e | ocati on> software specification is not supported when
updating HP-UX to a new version.

254

Chapter 8

Table 9-1

SD-UX Security

SD-UX Security

During the SD-UX installation, a default security setup is created. This
chapter explains basic SD-UX security, introduces the swacl command,
presents examples of common tasks, and provides in-depth discussion of

how SD-UX manages security.
Chapter Topics

Topic and Page

“Overview” on page 256

“The swacl Command” on page 258

“Basic Security Tasks” on page 261

“How ACLs are Matched to the User” on page 272

“ACL Entries” on page 273

“Security on SD-UX Systems” on page 285

“SD-UX Internal Authentication” on page 287

“RPC Authorization” on page 291

“Security Use Models” on page 295

“Permission Requirements, by Command” on page 298

Chapter 9

255

SD-UX Security
Overview

Overview

Along with the traditional HP-UX file access protection, SD-UX uses
Access Control Lists (ACLs) to protect the primary objects on which it
manages software:

Hosts

Roots (software installed on a host)
Depots

Products within depots

An ACL consists of a set of entries associated with an object when it is
created.

Default Security

The following security scheme exists by default:

The local superuser always has access to all local objects.

Read access is provided to all users on the network who use the same
SD-UX shared secret via the any_ot her ACL.

Whoever creates a root, depot, or product object has full access to it
as the obj ect _owner.

If you set up systems for remote operations (using the procedure
discussed in “Setting Up Remote Operations” on page 199),

root @entral _control | er has full access to all target objects via
the user:root @entral _controller ACL.

If you are running as r oot @entral _control | er, the suggested security
setup should be adequate to perform all tasks.

Two templates are used to create default ACLs:

gl obal _soc_t enpl at e (applies to all new depots and roots added to
the host)

gl obal _product _t enpl at e (applies for new products in depots)

256

Chapter 9

SD-UX Security
Overview

Depots and Depot Registration

Software Distributor typically uses central depots to distribute software.
You can control access to these depots by users who will install software.

An important security consideration is that depots must be registered for
nonlocal users to have access. Only a local superuser or a user with
insert permission on the host can install from unregistered depots.

For more information, see “Registering and Unregistering Depots
(swreg)” on page 151 and “Depot Management Commands and Concepts”
on page 134.

Modifying Target Systems

You may want to set up each system to grant administrative access to the
SD-UX controller while restricting access to other systems and users.

You will need to modify ACLs on your target systems in the following
cases:

e To change the login name of the SD-UX administrator (the default is
root).

¢ To modify permissions for the SD-UX administrator or group of
administrators.

Chapter 9

257

SD-UX Security
The swacl Command

swacl Syntax

The swacl Command

The swacl command lets you view or change ACL entries and
permissions.

swacl 1-1 level [-Dacl_entry|-F acl_file|-Macl_entry]
[-f software_ filell-t target_ fileél
[-x opti on=val ue] [-Xoption file]
[software_sel ections] [@target_sel ecti on]

Options and -1 level Level to edit. Level designations are the literals: host ,
Operands depot, root, product, product_tenplate,
gl obal _soc_t enpl at e or gl obal _pr oduct _t enpl at e.
(See “ACL Templates” on page 282 for a complete
discussion.)

NOTE You can change an ACL with - D, - F, or - Mcommand options. You can
only specify one of these options per command because they are mutually
exclusive. If you don’t specify a - D, - F, or - Moption, swacl prints the
specified ACLs.

-Dacl_entry Deletes an existing entry from the ACL associated with
the specified object. You can enter multiple - Doptions.

-Facl_file Assigns the ACL information contained in ac/ _fi/l eto
the object. All existing entries are removed and
replaced by the entries in the file. You can enter only
one - F option.

-Macl _entry Adds a new ACL entry or changes the permissions of
an existing entry. You can enter multiple - Moptions.

-f softvare file
Reads a list of software selections from a separate file
instead of from the CLI. (See “Software Files” on
page 58.)

258 Chapter 9

Changing
Command Options

Table 9-2

For More
Information

SD-UX Security
The swacl Command

-t target file
Reads a list of target host selections from a separate
file instead of from the CLI. (See “Target Files” on
page 59.)

- X opt i on=val ue Lets you change an option on the command line
interface (CLI) that overrides the default value or a
value in an alternate options file (- Xopt i on fil e). See
“Changing Command Options” on page 259.

-Xoption file Uses the option values in a specified option fil e. See
“Using Command Options” on page 59.

sof tware_sel ections
The software objects for the swacl operation. See
“Software Selections” on page 56.

target_sel ecti ons
The target of the command. See “Target Selections” on
page 58.

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swacl.

swacl Command Options and Default Values

¢ admin_directory=/var/adm/sw * rpc_timeout=5
e distribution_target_directory= * run_as_superuser=true
/var/spool/sw e gselect_local=true
¢ installed_software_catalog=produc e targets=
ts e verbose=1
level=
log_msgid=0

¢ rpc_binding info=ncacn_ip_tcp:[21
21] ncadg_ip_udp:[2121]

See Appendix A, “Command Options,” on page 421 for complete
descriptions of each default.

Chapter 9

259

SD-UX Security
The swacl Command

swacl Output

A typical list output from the swacl command looks like the following:

swacl Instal |l ed Software Access Control List
#

For host: prewd:/

#

Date: Mn Nov 06 16:39:58 2001

#

Cbj ect Onnershi p: User=root

QG oup=sys

Real n¥pr ewd. f c. hp. com

defaul t_real meprewd. f c. hp. com
obj ect _owner:crwt

user:rn:crwit

user: root @ewdi st.fc. hp.comcrwit
gr oup: swadm crwi t

any other:-r--t

The header information (lines marked with #) gives the object’s name
and owner and the name of the user’s realm or host name of the user’s
system. In this case:

¢ The object is a root (installed software).
e The creator of the object (obj ect _owner) is r oot @r ewd.
e The obj ect _owner has all permissions.

e Local user rmi and remote user r oot @ewdi st. f c. hp. comhave all
permissions.

e Members of local group swadmhave all permissions.

¢ Anyone not matching one of the previous entries (any_ot her) has
read and test permissions.

For more information on the format of the ACL file, see “ACL Entries” on
page 273.

260

Chapter 9

Figure 9-1

SD-UX Security
Basic Security Tasks

Basic Security Tasks

Along with the traditional HP-UX file access protection, all SD-UX
objects (hosts, depots, roots and products) are also protected by ACLs.

Access Control Lists

Host Object ACL

Host Object

Depot Object ACL | | Depot Object ACL | [Root Object ACL || Root Object ACL

Depot A Depot B Root A Root B

Prod. ACL

Prod. ACL | | Prod. ACL | | Prod. ACL

Product
M

M[|lPp Q N||lMm

Product Product Product
N P Q (Installed Products protected
by Root ACLs.)

ACLs offer a greater degree of selectivity than do permission bits. An
ACL extends the concept of the HP-UX file system’s permission bits by
letting you specify different access rights to several individuals and
groups instead of just one of each.

For example, if you set up remote operations, you must install an HP
ServiceControl Manager fileset that makes some elementary changes to
the security ACLs on the remote systems. One of these changes is to copy
three ACLs from the source system to the destination systems. (See
“Setting Up Remote Operations” on page 199.)

The ACLs copied are those protecting the source host (the host ACL), the
host’s template ACLs used in subsequent operations to produce ACLs for
products (the gl obal _pr oduct _t enpl at e), and depot/root containers
(the gl obal _soc_t enpl at). When copied, these ACLs grant users on
the source host the same permissions on the destination host as they
have locally on the source host. In addition, an entry for the superuser at

Chapter 9

261

SD-UX Security
Basic Security Tasks

the source host was added. This lets the controller system’s superuser
perform software distribution tasks on the remote system without
having to reconfigure ACLs.

If you need to change security, the following tasks can be performed (i.e.,
to understand and modify the default setup):

e Listing user access

e Allow user to manage products in a depot
e Allowing users to manage roots

¢ Restricting read access to a depot

¢ Adding target hosts

e Temporarily restricting access to a depot
¢ (Closing the SD-UX network

e Editing an ACL

Listing User Access

The following examples show how to list users with access to depots,
targets host, target root, and all products.

e Display the default root ACLs on a newly installed HP-UX 11i

system:

swacl -1 root

#

swacl Installed Software Access Control List
#

For host: swelter:/

#

Date: \Ved Feb 28 14:58:02 2001

#

(bj ect Omnership: User= root

Q oup=sys

Real nrswel ter. fc. hp. com
#

default_real meswel ter.fc. hp. com

obj ect _owner:crwit
any _other:-r---

262

Chapter 9

SD-UX Security
Basic Security Tasks

This ACL indicates that the file system is owned by the root user,
and that as such, the owner has full ACL permissions (Crwit).
Additionally, all other users may read SD information about this root
file system using the swlist command.

To list the users with access to the default depot (optionally on a
remote host):

swacl -1 depot @ newdi st

#

swacl Depot Access Control List
#

For depot: newdist:/var/spool/sw
#

Date: Fri Nov 03 11:23:51 2001

#

(bj ect Omnership: User= root

QG oup=ot her

Real nrnewdi st . f c. hp. com
#

defaul t _real menewdi st . fc. hp. com

obj ect _owner:crwit

user:rnr:crwt

user:root:crwt

user: fred@pfred. fc. hp.comcrwt
user: root @pfcpsm fc. hp. comcrw t
user: r oot @woki e. fc. hp. comcrwi t
any _other:-r---

To show access to installed software:

swacl -1 root @newdi st

swacl Installed Software Access Control List
#

For host: newdist:

#

Date: Fri Nov 03 10: 33: 04 2001

#

(bj ect Omnership: User= root

@ oup=ot her

Real nrnewdi st . f c. hp. com

Chapter 9

263

SD-UX Security
Basic Security Tasks

#

defaul t_real menewdi st . fc. hp. com
obj ect _owner:crwit

user:
user:

root:crwit
root:crwit

any other:-r---

To show permission to create depots and roots on the target host:

swacl

H o H O HHH

#
#
#
#
#

user:
user:
user:

user

-1 host @newdi st

swacl Host Access Control List
For host: newdi st

Date: Fri Nov 03 10: 34: 06 2001

(bj ect Oanership: User= root

Q oup=sys
Real nrnewdi st . f c. hp. com

def aul t _real nenewdi st. fc. hp. com

fred:crwt
root:crwt
snp: crwit

:root @dltools.fc. hp.comcrwt
user:
user:

fred@pfred. fc. hp.comcrwt
chrisr@rewd. fc. hp.comcrwt

any _other:-r---

To list the users with access to all products (“\ *”) in a depot:

swacl -1 product * @newdi st:/var/spool /sw
#

swacl Product Access Control Lists

#

For depot: newdist:/var/spool/sw

#

Date: Fri Nov 03 10:34:06 2001

#

F*

For product: productl,r=1.0

264

Chapter 9

SD-UX Security
Basic Security Tasks

(hj ect Oanership: User= root
G oup=ot her
Real nFnewdi st . f c. hp. com

HH R

defaul t_real mrnewdi st . fc. hp. com
obj ect _owner:crwit

user:root:crwt

user: root @rewd. fc. hp.comcrwi t
any _other:-r---

Allowing Users to Manage Products in a Depot

Users that are packaging products may need access to the SD-UX depots
to store their products.

In ACLs, a is a shorthand notation for all permissions (crwi t).

To allow user mar y to add new products to the depot:

swacl -1 depot -Muser:mary:a [@ host: depot]

To allow access for user nar y to modify all existing products in a depot:
swacl -1 product -Muser:mary:a * [@ host]

To modify the template so that user mary can modify new products
created by others in the depot:

swacl -1 global product_tenplate -Muser: mary:a [@ host]

(In the above examples, change user to gr oup and use a group name to
add group access to the depot structures.)

Allowing Users to Manage Roots (Install/Remove)

To give a user (mar y) the necessary permissions to be able to install or
remove software on host nysys:

swacl -1 root -Muser:mary:a @nysys

To allow user mary to install software into the default root:
swacl -1 root -Muser:nmary:ri

To give user mary the permission to open the root for reading:

swacl -I root -Muser:nary:r

Chapter 9

265

SD-UX Security
Basic Security Tasks

NOTE

To give user mary the permission to install new software into the root
object:

swacl -l root -Muser:nmary:i

To let remote user al | en@wel t er fully manage the root file system on
swer unch:

swacl -1 root -Muser:allen@welter: a

(In the above examples, change user to gr oup and use a group name to
add group access to the depot structures.)

Because software installation usually involves modification of system
files during configurations, software install and configure scripts are run
as the superuser. Therefore, granting a user write permission on a root is
essentially giving them superuser access for managing software.

Restricting Access to Depots

To restrict read access to a depot you must first remove any_ot her
access from the depot and from the products contained in the depot and
the template controlling the products in the depot.

You can restrict access to depot al pi ne on host dr gw

swacl -1 depot -D any_other @drgw /al pine

swacl -1 product -D any other * @drgw/al pi ne

swacl -1 global _product_tenplate -D any_other * \
@drgw / al pi ne

You will then need to add specific users (and then hosts) with read access
after removing any_ot her from the depot security. The following
commands add r ead access for any user on host Ato the depot, the
products contained in the depot, and future products, respectively.

swacl -1 depot -Mother: @ostAr @drgw/al pine

swacl -1 product -Mother: @ostAr * @drgw/al pi ne

swacl -1 global product_tenplate -Mother: @ostAr \
@drgw / al pi ne

In the following example, the local superuser disallows all remote users
from accessing / si npl e_1. depot on swel t er, but allow local users to
access the depot:

266

Chapter 9

NOTE

SD-UX Security
Basic Security Tasks

swacl -I depot -D any other @/ sinple_1.depot
swacl -I depot -Mother:r @/sinple_1.depot
swacl -I depot @/ sinple_ 1.depot

#

swacl Depot Access Control List

#

For depot: swelter:/sinple_ 1.depot

#

Date: Thu Mar 1 16:19:57 2001

#

(bj ect Omnership: User= allen

Q oup=users

Real nrswel ter. fc. hp. com
#

default_real meswel ter.fc. hp. com
obj ect _owner:crwit
other:-r---

Local users can now access this depot as a result of the ot her ACL, but
remote users are refused.

To allow only user shel | y on host swcr unch to access software in a depot
located on swel t er, it may appear that adding a user ACL for shelly
would be sufficient:

swacl -1 depot -Muser:shelly@wcrunch:r @/ sinple_1. depot

However, this is not enough. An attempt by shel | y to access this depot
would fail with a security violation. This is because SD-UX also requires
that SD agents (the swagent process) that contacts the depot server to be
authorized via a host ACL entry_type:

swacl -1 depot -M host:swerunch:r @/ sinpl e_ 1. depot

(Note that user shel | y also requires appropriate ACL permission to
install software on swcr unch.)

The r (read) permission allows the user to access the depot and products,
and the t (test) permission allows the user to list the ACLs.

Chapter 9

267

SD-UX Security
Basic Security Tasks

NOTE

Adding Target Hosts

For swinstall and swcopy, both the user and target host are validated
(i.e., to protect from unauthorized users at remote hosts switching to an
authorized user). The following adds read permission for the host named
t ar get to the default depot on the local host, the products currently in
the depot, and any future products added to the depot (using

gl obal _product tenpl ate).

swacl -I depot -Mhost:target:r
swacl -I product -Mhost:target:r *
swacl -I global product tenplate -Mhost:target:r

Since the user is always validated, another alternative that makes it
easier to manage large numbers of hosts is to allow all hosts read
permission:

swacl -I depot -Mhost:*:r
swacl -I product -Mhost:*:r *
swacl -1 global product tenplate -Mhost: *:r

s

is only a supported value for the host ACL type.

Temporarily Restricting Access

A simple method of restricting access to anyone other than the local
superuser without modifying ACLs is to unregister the depot.

sweg -u -1 depot [@depot]
It can then be reregistered later:

sweg -1 depot [@ depot]

Closing the SD-UX Network

The SD-UX secret is used a a proof of trustworthiness for the caller’s
credentials. It is a password that SD-UX uses to verify the authenticity
of the caller’s host. The default secret field is set by manufacturing to
match the default setting on the HP-UX controller. All secrets Gi.e.,
controller, targets, and depots) must be identical.

268

Chapter 9

SD-UX Security
Basic Security Tasks

NOTE Do not change the default secret field unless you have also changed the
default secret on the HP-UX SD-UX controller. These two secrets must
match.

The set of hosts that can be managed by SD-UX can be restricted by
changing the default secret on all SD-UX controller and target hosts in
the network. The default secret is found in

/var/ adm sw security/secrets.

You may change the default secret found in this file:
default new secret

For additional information, see “Security Between Hosts: The Shared
Secrets File” on page 289.

Editing an ACL

The swacl command, when invoked without the - M - D, or - F options,
reads the specified ACL, converts it into plain text and prints it to

st dout . The output of the command can also be redirected to a file,
which can then be printed or edited. After editing, you can use the - F
fil e option described above to replace the entire old ACL. This
procedure gives you full ACL editing capabilities.

You must have test permission within the ACL to produce the edit file
(list the ACL) and control permission to modify it with - F, - D, or - M
options. All ACL entries must contain test permission.

If the replacement ACL contains no detectable errors and you have the
proper permission on the ACL, the replacement will succeed. If the
replacement fails because you lack permission to make the change, an
error is generated, and the object is skipped.

You may change or delete existing entries, or you may add additional
entries to the ACL.

Chapter 9 269

SD-UX Security
Basic Security Tasks

NOTE It is possible to edit an ACL so that you cannot access it! Caution should
be used to avoid accidentally removing your own control (c) permissions
on an ACL. As a safeguard, the local superuser may always use swacl to
edit SD-UX ACLs.

Here are some examples based on the following ACL that is protecting a

product (FCRTRAN) created by user r ob whose local host is

[ehi.fc.hp.com

swacl Product Access Control Lists

#

For host: lehi:/

#

Date: Mn Nov 06 16: 39:58 2001

#

For product: FORTRAN, r=9.0, v=HP

(pj ect Omner shi p: User =r oot

G oup=sys

Real el ehi . fc. hp. com

default_real m=l ehi.fc.hp.com

obj ect _owner:crwit

user: barb: -rt

user:ramon: -rt

group: swadm crwi t

host: al ma. fc. hp.com-rt

any_other:-rt

You can list the ACLs for the product is FORTRANin depot

/var/ spool / sw(the default depot) and prepare it for editing:

swacl -1 product FORTRAN >acl _tnp

This will bring the above ACL into the file acl _t np, and it is ready for

editing. Edit the acl _t np file with any suitable text editor.

To replace all entries in the ACL for FORTRAN type:

swacl -1 product -F acl_tnp FORTRAN

To edit the default product template on a depot / var/ spool / sw_dev,

use:

swacl -1 product _tenplate @/var/spool/sw dev >tnp file
270 Chapter 9

SD-UX Security
Basic Security Tasks

Then edit the t np_fi | e and replace the ACL:

swacl -I product tenplate -F tnp file \
@/ var/ spool / sw_dev

To delete entries for user bar b and group swadm use:

swacl -D user:barb -D group:swadm-| product FORTRAN
To give user r anon permission to modify the product FORTRAN, type:
swacl -Muser:ranon:trw -1 product FORTRAN

To add an entry for user pamwith complete management permission
(“a” is shorthand for crwi t), use:

swacl -M user: pama

To add an entry to grant every user in group swadmat remote hosts dewd
and st ewd full management control of the product FORTRAN on the
default local depot, use the following:

swacl -M group: swadm@ewd: a - M gr oup: swadm@t ewd: a \
-1 product FORTRAN

To list the ACL protecting the default depot at host dewd, type:
swacl -1 depot @ dewd

Chapter 9

271

SD-UX Security

How ACLs are Matched to the User

NOTE

How ACLs are Matched to the User

ACL permissions are determined by a match to a single ACL entry, not to
an accumulation of matching entries. Checking is done from the most
restrictive entry types to the broadest.

If a match is found in a user entry type, no further checking is done, and
the permissions for that user are fully defined by the permissions field of
the matched entry. A matched user may be a member of a group with
broader permissions; this has no consequence.

The local superuser has access to all local SD-UX objects irrespective of
ACLs.

The ACL matching algorithm is:

1. If user is local superuser, then grant all permissions.

2. If user is owner of the object, then grant obj ect _owner permissions.
3. If user matches a user entry, then grant user permissions.
4

. If any gr oup entries match, then accumulate the permissions
granted by all group entries that match the user’s primary and
supplementary groups.

5. If an appropriate other entry matches, then grant other permissions.
6. If an any_ot her entry, then grant any_ot her permissions.

7. Grant no permissions.

272

Chapter 9

NOTE

Table 9-3

SD-UX Security
ACL Entries

ACL Entries

An ACL consists of a set of entries attached to an object when it is
created. These entries define which users, groups, and/or hosts have
permission to access the objects. ACL entries include the concept of a
principal, which is the user, group or host system (for agents making
RPCs) that originates a call to another system.

An ACL entry consists of three fields:

entry type[: key] : perni ssi ons

For example, an ACL entry for an SD-UX object might be:
user:fred:r-ctw

This means that a user named fred can control (c),read (r), write
(W), and test (t) the object, but the dash signifies that he cannot i
(insert/create) new objects.

You can specify crwi t permissions in any order.

The ACL ent ry_t ype must be one of these values:
SD-UX ACL Entry Types

Type Permissions Apply To

user User principal, whose name is to
be specified in the key field

gr oup Group principal, whose name is
to be specified in the key field

host Host systems (target agents
acting on behalf of users for
install or copy)

ot her Principals with no matching user
and group entries

Chapter 9

273

SD-UX Security
ACL Entries

Table 9-3 SD-UX ACL Entry Types (Continued)

Type Permissions Apply To

any_ot her Principals not matching any
other entry

obj ect _owner Owner of the object

obj ect _group Members of the group to which an
object belongs

Do not confuse the host object (which is a computer system that contains
depots, roots, and software) with the host entry type (which defines
permissions for access to target systems).

The user and group of the object’s owner are determined and
automatically recorded at the time the object is created (based on the
identity of the person who creates it). This information is recorded as
user, group, and r eal m An obj ect _owner or obj ect _gr oup entry type
in an ACL causes the SD-UX ACL manager to look up the owner and
group information on the object; and if a match to the requester is found,
grant permissions as specified.

There may be many user, gr oup, and host type entries per ACL, while
there may be only one of each of obj ect _owner, obj ect _group and
any_ot her. There may be at most one local (i.e., no key) other entry and
an unlimited number of remote (i.e., keyed) other entries.

ACL Keys

The second part of the ACL entry is the key. The table below lists the
possible key values for specific entry types.

Table 9-4 SD-UX ACL Entry Key Values

Entry Type Key Content

user a user name [optionally, @
renot e- host |

gr oup a group name [optionally, @
r enot e- host |

host a host name

274 Chapter 9

Table 9-4

Table 9-5

SD-UX Security

ACL Entries
SD-UX ACL Entry Key Values (Continued)
Entry Type Key Content
ot her [optionally, @ r enot e- host]
any_ot her no key allowed

When listing the ACL, the remote-host is printed in its Internet address
form (e.g., 15.12.89.10) if the local system cannot resolve the address
from its host lookup mechanism (DNS, NIS, or / et ¢/ host s). The
remote-host must be recognized (resolvable) when used in the - Mand - D
options. Unrecognized remote-host values are accepted in files provided
with the - F option.

ACL Permissions

There are five different permissions grantable by the ACL: crwit.

ACL Permissions

control (c) Permission to edit or change the ACL.

test (t) Permission to test access to an object (i.e., read the
ACL).

insert (i) Permission to install a new product, depot or root.

write (W) Permission to change a host, depot, root or product.

read (r) Permission to list depot, roots and products and
attributes.

In the ACL entry, these permissions are abbreviated c,t,i,w andr. To
grant all permissions, you may use the shorthand letter a instead of the
crw t to denote all permissions.

The meaning of permissions is different for different types of objects, and
the permissions do not have to appear in any specific order. Roots do not
provide product level protection, so all permissions on products installed
on roots are controlled by the ACL protecting the root itself.

Product level protection is provided on depots in this way: the depot’s
ACL protects the depot itself while product ACLs protect the products
within the depot.

Chapter 9

275

SD-UX Security

ACL Entries
The table below summarizes SD-UX object permissions and ACLs to
which they may be applied.
Table 9-6 SD-UX ACL Permission Definitions
Permissi
on Allows You To:
Host Root Depot Product on
System Depot
¢ (control) Edit all ACLs
t (test) Test access to an object, read (list) the ACL itself
i (insert) | Inserta Insert a Insert a N/A
new depot new new
or root product product
w(write) @ | Change Change Change Change
host root or depot product
products
r (read)? | List depots | List root List depot Read
and roots and product | and product | product
attributes attributes files

a. Write permission means permission to change or delete the
object, except the host source object may not be deleted.

b. Read permission on containers (i.e., hosts, roots, and depots)
lets a user list the container contents; on products within
depots, read permission lets a user copy or install the product.

Object Protection
The control of product insert and delete permissions differs between
roots and depots.
The permission for anyone to insert or delete a product on a root is
contained within the root’s ACL. If you have write permission on a root,
you can change or delete any product on that root; there is NO product
level control on roots.

276 Chapter 9

SD-UX Security
ACL Entries

The depot ACL controls insertion (creation) of new products, while the
inserted object has its own ACL that controls modification and deletion.
This lets the creator (owner) of a product on a depot change or delete the
product without requiring the broader write permission that could affect
other users’ products on the same depot.

This is useful for product control, because it lets you assign management
control for a specific product to a delegated administrator. Also, when a
product is created on a depot, the user and group identity of the creator
is recorded in the product information.

If the product ACL contains an obj ect _owner entry granting write
permissions to the owner, then the product creator will automatically
have rights to change or delete the product. Therefore, the depot can be
more widely opened to insertion because users with insert permission
can only copy in new products or delete their own products: you don’t
have to worry about a user erroneously deleting some critical product
that they shouldn’t control.

The rationale for this protection scheme is borrowed from a mechanism
introduced in the BSD file system. With wr i t e permissions on a BSD
directory, you may create a file in the directory. If the sticky mode bit is
set on the directory, only the file owner, the directory owner, or superuser
may remove or rename the file.

For example: In / t np, owned by root, with “wide-open” write permission
and the sticky bit set manually (i.e., mode 1777), anyone can create files
that nobody else (except themselves and superuser) can remove. This
makes / t np a more secure place to store temporary work because
someone else can’t delete your files there.

Installing or copying from an unregistered depot requires the user and
the target agent’s host to have insert permission on the depot’s host. If
this permission is denied to the target’s host, the depot’s daemon log will
contain the message:

ERRCR Access denied to SD agent at host lucille on
behal f of rob@ucille to start agent on unregistered
depot "/users/rob/depot."” No (i)nsert perm ssion on
host .

07/23/01 15:51:06 MOT

This message indicates it is the agent at | uci | | e that did not have
insert permission on the depot’s host, not the user rob@uci | | e.

Chapter 9

277

SD-UX Security

ACL Entries
The remote host ACL must have two entries granting insert permission:
one for the user, and one for the target host.
For example, for user r ob to be allowed to install a product on target host
[uci | | e from an unregistered depot on source host desi , the command
swacl -1 host @desi
must show the minimum ACL entries
user:rob@ucille:-i-
host:lucille:-i-
Rob could alternatively register the depot with the swreg command with
only the first entry above before running swinstall or swcopy.
Host System ACLs
The host system is the highest level of protected object in SD-UX. A host
ACL protects each host system, controlling permission to create depots
and roots. The host ACL may grant the following permissions:
Table 9-7 Host ACL Permissions

r (read) Permission to obtain host attributes, including a list of

depots and roots on the host.

w (write) Permission to change the host object.

i (insert) Permission to create and register a new depot or root

on the host.

c (control) Permission to edit or change the ACL.

t (test) Permission to test access to an object and list the ACL.
A sample host-system ACL grants depot and root source creation, source
listing, and ACL administration to a user named r ob and give open
permission to list the depots and roots on the host, would be:
user:rob:r-ic-
any other:r
Since any_ot her does not have t (test) permission, only r ob can list this
ACL, because he has ¢ (control permission).

278 Chapter 9

Table 9-8

Table 9-9

SD-UX Security
ACL Entries

Root ACLs

Principals (users) identified in ACLs that are protecting roots are
granted permission to manage installed products. The permissions
associated with a root are:

Root Permissions

i (insert) Permission to install a new product.

r (read) Permission to list the contents of the root.

w (write) Permission to delete the root itself or the products in
the root.

¢ (control) Permission to edit or change the ACL.

t (test) Permission to test access to an object and list the ACL.

A sample root ACL that grants a user named | 0i S permission to read,
write, and insert software and members of the group named swadmall
possible permissions is:

user:lois:rw-
group: swadm crwi t

When a root is created, it is automatically protected by a default ACL
derived from its host. Use swacl to change the initial values of this ACL.
For additional information, see “ACL Templates” on page 282.

Depot ACLs

Principals identified in ACLs that are protecting depots are users who
have been granted permission to manage the depot and to create new
products. The permissions associated with a depot are:

Depot Permissions
i (insert) Permission to copy a new product into the depot.

r (read) Permission to list the contents (products) of the
depot source.

w(wite) Permission to delete the depot (if it is empty), and
unregister itself (not the products in the depot).

c (control) Permission to edit or change the ACL.

Chapter 9

279

SD-UX Security
ACL Entries

Table 9-9

Table 9-10

Table 9-11

Depot Permissions (Continued)

t (test) Permission to test access to an object and list the
ACL.

A sample depot ACL that grants its creator all permissions; user geor ge
permission to list and insert software products; members of group swadm
permission to list and insert products, change the ACL and delete the
depot itself; and everyone else permission to list the contents of the
depot, would be:

obj ect _owner:crwit
user:george:-r-i-
group: swadm crwi -
any_other:-r-

When a depot source object is created, it is automatically protected by a
default ACL derived from its host. Products inserted in that depot will
automatically be protected by an ACL derived from the depot. This
concept is discussed in the “ACL Templates” on page 282.

Product ACLs

Product ACLs only apply to products on depots. Products on roots are
protected by the root’s ACL. There are two classes of principals that are
granted access rights to products:

Product Principals

users Granted various administrative permissions. This
class includes groups and others, both local and
remote.

hosts Target systems (agent/daemons) granted read
permissions to allow product installation.

Permissions on products are:
Product Permissions

w (write) Permission to users to change and delete the product
and/or product information.

280

Chapter 9

Table 9-11

NOTE

SD-UX Security
ACL Entries

Product Permissions (Continued)

r (read) Permission granted to target_hosts to read the
source-depot product. (that is, grant permission to a
remote system to install the protected product).

¢ (control) Permission to edit or change the ACL.

t (test) Permission to test access to an object.

A sample product ACL that grants user suadmand the creator of the
product all permissions and allows open read permission (allowing free
distribution to all systems) would be:

user: swadm crw
obj ect _owner:crw
any other:-r-

When a product object is created, it is automatically protected by a
default ACL from the depot/root source or, absent that, one from the host.

Chapter 9

281

SD-UX Security

ACL Entries
ACL Templates
There are two ACLs that are used to create the initial ACLs that protect
newly created objects: product ACL templates
(gl obal _product tenpl at e or product _t enpl at e) and container
ACL templates (gl obal _soc_t enpl ate).
Figure 9-2 ACL Templates
Host Object ACL
Master Product ACL Template Host Ob'] ect Container ACL Template
L—(global_product_template) (global__soc_template)
Depot Object ACL Depot Object ACL Root Object ACL Root Object ACL
Depot A Depot B Root A Root B
Product ACL Template Product ACL Template
<» {product_acl) (product_acl)
"Prod. ACLEProd. ACL ?rod. ACI?-'Prod. ACL
MiiPp Q N M
Product Product Product Product
M N P Q (Installed Products protected
by Root ACLs.)

When a product is put into a depot with swcopy or swpackage, SD-UX
uses a product ACL template (provided by the depot that contains that
product) to define the initial permissions of the new product’s ACL.

SD-UX uses the product ACL template of the host system
(gl obal _product tenpl at e) to initialize the product ACL template of
the new depot and uses the container ACL template of the host system
(gl obal _soc_t enpl at e) to initialize depot and root ACLs.

Thus, there are three ACLs on the host:
e Host ACL

Attached to and controlling access to the host object itself.
¢ Container ACL Template (gl obal _soc_t enpl at e)

Used to initialize the ACL protecting new depots and roots created
on the host.

282

Chapter 9

SD-UX Security
ACL Entries

¢ Product ACL Template (gl obal _product tenpl ate)

The ACL that is used to initialize the product ACL template on
depots that are created on the host.

There are also two ACLs on product depots:

¢ The depot’s ACL that is used to determine permissions on the depot.

e The depot’s product ACL template (product _t enpl at e) that is used
to initialize the ACLs protecting new products on the depot.

There is one ACL on the installation (root):

¢ The root ACL that protects the root and products installed on it.
And finally, there is one ACL on the product:

e The product’s ACL that is used to determine permissions on the
product.

Every host must have an ACL protecting it and a pair of template ACLs
(product and container) to provide initialization data for implicit depot
and product ACLs. All three are created when SD-UX is installed on the
host.

Default ACL Template Entries

The host system’s container ACL template dictates initial permissions on
all depots and roots that are introduced on that host. The host also
contains a master copy of a product ACL template, which is copied to
each new depot.

A default set of host ACLs is provided at the time SD-UX is installed that
can be altered by the SD-UX administrator. The contents of these
host-system ACLs immediately after SD-UX installation are:

Host ACL

¢ The host ACL below allows global (any_ot her) permission to list the
depots and roots on the host:

obj ect _owner: swadmcrwit
any other:-r---

Chapter 9

283

SD-UX Security
ACL Entries

NOTE

Remember, the local superuser always has all permissions, even without
an ACL entry.

Container ACL Template

The container ACL template below grants the owner or creator
(obj ect _owner) of a new depot or root permission to manage that
new depot or root and to change its ACL. It also grants global
permission (any_ot her) to list products in the new depot or root.

obj ect _owner:crwit
any _other:-r---

Product ACL Template

The product ACL template below grants permission to perform all
operations on products installed on Depots on this host to the
respective creator (i.e., owner), via the obj ect _owner entry, of each
product. It also grants permission to read (i.e., install) and test the
product to any host (the any_ot her entry).

object_owner:crwit
any_other:-r---

In addition to encompassing all hosts, the any_ot her entry also
applies to all other users except, in this case, the product’s owner. In
SD-UX however, product read permission has meaning only to host
principals, and other possible product permissions never apply to
hosts; therefore, the any_ot her entry may be overloaded with user
and host permissions, if desired, without any danger of ambiguity.
This overloading should be kept in mind when using the SD-UX to
execute solutions.

These host ACL defaults provide a good starting point for control over
the management functions of SD-UX while providing open access to read
the software for installation on root targets.

284

Chapter 9

SD-UX Security
Security on SD-UX Systems

Security on SD-UX Systems

Controlling access to data is a key concern of computer security. In
SD-UX, file owners and superusers allow or deny access to files on a
need-to-know basis by setting or manipulating the file’s permission bits
to grant or restrict access by owner, group and others. For example, the
following file listing:

-rwxr-xr 1 doug admin 738 Mar 26 12:25 datafile
shows that:

¢ File owner is user doug.

e File’s group is adm n.

e Name of the file is dat af i | e.

e Owner permissions are read, wit e and execut e (rwx).
e Group permissions are r ead and execut e (r-x).

e Other permissions are read only (r-).

SD-UX commands are essentially object managers that use the SD-UX
file system in which to store their objects. There is no need to obtain
access to any objects via the file system, so the file system protection
scheme is based on blocking access to the file system directories that
store these objects.

In addition to SD-UX objects, there are several administrative files (log,
configuration, and session files) that are used or managed by SD-UX.
These files are not actually SD-UX objects and are accessible via
conventional commands such as editors and printing utilities. These files
are protected by conventional file system protection modes.

Many of the functions that the SD-UX agents do are privileged. Some
operations, such as installing files in system directories (e.g., in the / et ¢
and / dev directories) and customization of system files via control
scripts, require superuser privileges. For this reason, SD-UX agents
must always run as the superuser.

Any system user may run the SD-UX controller; it is not restricted to use
only by superuser. In general, the controller does its work by making
Remote Procedure Calls (RPC) to target hosts, but it also requires special
privileges occasionally to access critical log, configuration, and session

Chapter 9

285

SD-UX Security

Security on SD-UX Systems

security files. Controllers are set - ui d root programs that run with the
superuser privilege in effect only briefly to do critical privileged
operations, then they switch to the real ui d of the user.

Here is a summary of the SD-UX file system protection scheme:

SD-UX files are protected from access by anyone other than the
superuser by having the group and other permissions of crucial
directory modes set to 0.

Only agents and daemons running on the local host access SD-UX
files directly. All other facilities (controllers, utilities, etc.) go through
the agents using RPC to indirectly access files. The agent or daemons
perform authentication and authorization checks on all such
operations.

No hard links may exist that circumvent the directory protection
hierarchy of the SD-UX directories nor may symlinks exist that
compromise the secrecy of the contents of those directories
containing objects that might have list restrictions in effect. Use of
only a single (canonical) path to SD-UX objects avoids any such
aliasing problems.

Thus, the SD-UX files are totally protected and hidden from
non-superuser access.

286

Chapter 9

SD-UX Security
SD-UX Internal Authentication

SD-UX Internal Authentication

This section discusses the following topics:
e SD-UX Credentials

— Controllers Run with the User’s Credentials and Privileges
— Agents Run with the System’s Identity
e Security Between Hosts: The Shared Secrets File

SD-UX security does not replace DCE Security. It seeks to provide a
usable protection scheme based on the assumption that there is no
hostile, concerted effort by users to do damage.

Much of the DCE security functionality used by SD-UX comes from the
DCE Runtime Library that is included in SD-UX. This library provides
DCE RPC capability and some of the DCE Security Services required to
support ACLs.

Without full DCE Security Services, it is impossible to reliably prove the
identity of a user making an SD-UX RPC call; even if the source and
destination of the RPC call is local. The RPC identifies only the network
address of the calling client.

This means that a person who has access to a legitimate SD-UX host
system and knows the SD-UX call interface and protocol could
impersonate an SD-UX controller. This would create a significant
security risk in a hostile environment.

However, SD-UX makes it possible to run securely without these DCE
Security Services by providing its own internal method of performing
user, group, and host authentication.

SD-UX Credentials

A key to SD-UX security is determining which users are allowed to be
involved in particular operations. In SD-UX internal authentication,
your HP-UX ui d, gi d, and host name are used to establish your identity.
The fact that the SD-UX controller runs with an effective ui d of root
(because the controller is a set ui d- r oot program) does not affect your
identity, which is obtained from your real ui d.

Chapter 9

287

SD-UX Security

SD-UX Internal Authentication

When you start an RPC (as an SD-UX controller), a structure describing
your identity accompanies each call to an agent; the controller sends the
user and group name of the person invoking the RPC, as well as the host
name of the system on which it is running (in DCE, called the realm).

This structure is called your credentials. Credentials consist of:
e user (principal) name

The user (or host system, for agents making RPCs to other agents)
who is originating the RPC call.

e Group name
The user’s primary group.
¢ Realm or local Host
The user’s host name.

The user’s credentials are passed in the RPC parameters, The agent
receiving the RPC uses this information to compare authentication
credentials.

Controllers Run with the User’s Credentials and Privileges

SD-UX controller programs such as swinstall or swremove operate with
the privileges of the user who invokes them. The agent ensures that the
user has the required permissions on the object by looking at the object’s
ACL. If permissions are not granted, the operation fails.

A controller may be run by anyone on the system, but its actions are
restricted (based on permissions granted in various object ACLs). SD-UX
agents always verify that user-requested operations are authorized
before performing them.

Agents Run with the System’s Identity

The SD-UX agents and daemons run with the privileges of a superuser;
but they also have the special identity of the host system on which they
are executing. When a target agent makes an RPC call to a source agent,
two sets of credentials are passed with the call:

e those of the agent’s system

¢ those of the user running the controller on whose behalf the target
agent runs

288

Chapter 9

NOTE

SD-UX Security
SD-UX Internal Authentication

While local superuser privilege is necessary for the agent to do required
local file system operations such as file creation and deletion, ACL
management, etc., this level of permission is neither required nor desired
for DCE RPC operations with other SD-UX processes.

When SD-UX agents perform RPCs, they assume the identity of the
system on which they run, rather than that of a particular user.

Security Between Hosts: The Shared Secrets File

In addition to the caller’s credentials, another proof of trustworthiness is
also sent in the RPC. The SD-UX agent checks this proof before accepting
the caller credentials. This proof consists of passing the encryption of a
secret password. The password is read from the shared secrets file. This
file is located on systems in / var/ adm sw security/ secrets.

The SD-UX Secret must be the same on both the target system and the
controller.

The agent compares this encrypted secret to the encryption of a local
secret it shares with the controller’s host. If the secrets do not match, the
call is not authenticated and it fails.

Secrets are stored by host name in the secrets file and are used to
establish trust between two systems. The controller selects a secret in
the file that corresponds with the host name of the system on which it is
running. The agent, upon receipt of an RPC from the controller, looks up
a secret associated with the controller’s host.

For example, if the controller is running on al na. f c. hp. comand makes
a request of an agent running on | ehi . f c. hp. com each of the two
processes will look up the secret associated with al ma. f c. hp. com(the
controller’s host) from their respective secrets file.

Here is an example of the format of the shared secrets file:

def aul t qui cksi | ver
[ehi.fc.hp.com s28ckj d9

al ma. f c. hp. com 32hwt

newdi st.fc. hp.com zztop
noway. f c. hp. com dai sey

Chapter 9

289

SD-UX Security

SD-UX Internal Authentication

NOTE

The first column represents the controller’s host name and the second
column represents the controller’s secret.

There is also a provision for a default secret (qui cksi | ver in the
example above), to be used when no system name match is found in the
secrets file. The entry is identified with the default pseudo-host name.
This entry allows open SD-UX interconnect between hosts sharing the
same default entry. SD-UX is shipped with the secret - sdu- that should
be changed for your site.

When you change a host’s secret, make sure you change it in the secrets
files of all hosts with which you work. The secrets file may be produced in
a single site, then copies distributed to all participating hosts.

The secrets discussed here does not grant any access to SD-UX objects,
but do allow a host to participate in SD-UX operations.

290

Chapter 9

SD-UX Security
RPC Authorization

RPC Authorization

This section discusses how agents handle controller requests, local
superuser authorization, depot registration, and daemon/agent security

In SD-UX, objects are protected by ACLs. An ACL is a structure,
attached to an object, that defines access permissions for multiple users
and groups. It extends the concepts defined by the HP-UX file system
mode bits in two ways: by allowing specification of the access rights of
many individuals and groups instead of just one of each; and by
protecting entire SD-UX objects, rather than individual files.

Generally, a controller requests an agent to perform some operation on a
object. SD-UX protects each host, depot, depot-product, and installation

object (root) with an ACL. After a call is authenticated, the ACL manager
is consulted for a caller’s access permissions to a protected object before

allowing the action.

SD-UX authorization uses ACLs to determine the RPC caller’s rights to
access a particular SD-UX object in a particular way (i.e., read, write).
An object’s ACL is searched for an entry that matches the caller. Once a
matching entry is found, the permissions granted in that entry are
compared to those required for the operation. If permissions required for
the operation are all granted by the entry, access is authorized, and
SD-UX proceeds with the requested operation.

Chapter 9

291

SD-UX Security
RPC Authorization

Figure 9-3

How Agents Handle Controller Requests

When a controller requests an agent to do an operation requiring the
participation of another agent, the two agents must each grant access to
the objects under their control before the operation can complete.

SD-UX Security Process

USER U
Controller HOST H 2

‘ swinstall

N

Authorized to
insert?

Root R ACL

1 1ssue RPC

swagentAl

Root R

7 Proceed
=N with Install

8 Read the
product

6 Proceed
with Install

DEPOT D

4 Hand U, “read’
permission?

Product P ACL

Product P

with Install

For example, to install a product P from depot D to root R:

1. User U sends an RPC request to swagentA on the target host H. User
U wants to install the product in root R (on the target host).

2. SwagentA checks the ACL protecting root R to confirm that user U is
authorized to insert products.

3. SwagentA (running as principal H) forms a request to swagentB
(running where depot D resides) to read the product.

292

Chapter 9

SD-UX Security
RPC Authorization

4. SwagentB checks the ACL protecting the product to make sure that
both the destination system (principal H) and the user U have read
permission before honoring the request, and the installation
proceeds.

The ACL on swagentB neither knows of nor depends on user U. The ACL
on root R acts to screen U; then (and only then) the product’s ACL acts to
screen H.

As a special case, the superuser always has full permissions on a local
system.

Local Superuser Authorization

As a special case, SD-UX always allows the local superuser full access to
all local objects regardless of ACL protections. This allows the local
superuser to repair corrupted ACLs or to perform any other operations.

Delegation

SD-UX provides a form of delegation to control access to depot-resident
products: both the host where the target agent is running and the user
initiating the call must have read access.

This form of delegation passes the caller credential information to the
depot agent in the RPC options. This form of delegation works the same
whether the agents are configured to use DCE or SD-UX Internal
authentication.

It is important to note that this delegation technique is provided to allow
user-level access to depot-resident products.

Depot Registration and Daemon/Agent Security

Because SD-UX stores its objects in the file system, someone could build
a “Trojan Horse” file system image of a software depot. This could breech
the security of any system that installed products from the false depot.
To protect systems from such a situation, SD-UX requires that a depot be
registered with SD-UX (either through swcopy or by using swreg) before
software may be installed or copied from it. This check is always
performed before granting access. Registration with swreg requires
insert permission in the host’s ACL.

Chapter 9

293

SD-UX Security
RPC Authorization

As a special case, an unregistered depot may be used for local
installation (i.e., the depot and destination root exist on the same
system) if the initiator is the local superuser or has permission to
register the depot (insert permission on the host).

The administrator of a host system must ensure the integrity of new
depots before registering them and ensure that only trustworthy users
are granted permission to insert on the host.

NOTE In addition to registering users, caution should be exercised when
installing or copying from unregistered depots.

294 Chapter 9

NOTE

SD-UX Security
Security Use Models

Security Use Models

The use models below use the swadmgroup that is provided in the default
host ACLs, which are installed at SD-UX install-time. This group is not a
part of the default HP-UX configuration, but can be easily added. First,
add the swadmgroup and the appropriate group members by using the
HP-UX System Administration Manager product. Next, provide the

/et c/ 1 ogi ngroup link to/ et c/ gr oup to activate HP-UX supplementary

groups.

/et c/ 1 ogi ngroup is an HP-UX utility to support both SVR2/3 and BSD
group semantics selectively. When / et ¢/ | ogi ngr oup is linked to
/et c/ group, HP-UX gives BSD (and SVR4) semantics.

If the file / et ¢/ | ogi ngr oup does not exist on systems targeted as SD-UX
Controllers, execute the following command (as superuser) on each
appropriate system:

In -s /etc/group /etc/logingroup

Security in Remote Distributions

A common use of SD-UX remote operations capabilities is for a software
administrator to push software from a local depot out to numerous
remote targets.

You can set up of this kind of configuration:
1. Establish the group swadmon the controller host as described above.

2. Edit the three host ACLs on each target system. If you used the
suggested setup discussed in “Setting Up Remote Operations” on
page 199 to install the agents on the target systems, you may edit the
three host ACLs on the Targets as superuser on the system from
which you performed setup:

Chapter 9

295

SD-UX Security
Security Use Models

swacl -1 host \

-M group: swadnm@ host nane™ :a @rensysl. . .rensysN
swacl -1 gl obal soc_tenpl at e\

-M group: swadnm@ host nane™ :a @rensysl. . .rensysN
swacl -1 global product tenplate \

-M group: swadm@ host nane™ :a @rensysl. . .rensysN

You may want to grant permissions to specific users to manage
particular products on the primary depot. For example, user r anon may
be assigned responsibility to manage the ALLBASE product on your
depot, installing new versions and patches when they become available.
To add r anon to the ACL for ALLBASE on the local depot and grant him
all permissions on that one product, run the command:

swacl -1 product -Muser:ramon:a ALLBASE

At the same time, you may want to eliminate the ACL entry for group
swadmfor the same product:

swacl -1 product -D group: swadm ALLBASE

Security in Local Distributions

Host administrators may grant permission to individual users or groups,
trusted at the local host, to administer software locally. Trusted local
users have root ACL entries granting insert and write permissions. At
the source depot, access to all software products is allowed by
unrestricted read access to hosts, depots, and products. This is the basis
of a pull model of software distribution.

Restricting Installation to Specific Target Systems by Specific
Users

Managers of software source depots may leave software openly
installable, as described above, or may choose to limit distribution to
specific systems. ACLs protecting source depot products may contain
entries that restrict product read access to only specified systems,
allowing installation only to those systems. This restriction applies to
both the push and pull models.

Below is a sample product ACL that restricts read permission to
systemA and systemB and grants all permissions to user swadm

296

Chapter 9

SD-UX Security
Security Use Models

user: swadm rwi ct
host : syst emA. | oc. conpany. comr
host : systenB. fc. hp.comr

Security for Software Developers

Software developers iteratively package their products and test them
before distribution. This involves packaging products into depots and
installing them to Roots for testing. Since it may require several
iterations to get all the customization right, it is not helpful to prevent
software developers from having free access to depots and Roots for this
testing.

You should also not have products that are being tested, coming and
going on wide-use depots and roots. They might accidentally be installed
or used before they are ready.

The recommended method of development is to provide one or more
development depots and roots for testing purposes, each with protections
customized to meet the needs of the development group using them. To
this end, the default ACL template mechanism described previously is
handy, since products come and go quickly.

A host administrator (someone with insert permission on the host)
should create the test depot for developers, then assign a depot
administrator and edit the depot ACL to grant that person control (ACL
edit) permission on the depot. The depot’s product ACL template should
then be set up so that users inserting a product may also write (modify
and delete) it, and so that it may be read only by the known test systems.

Similarly, test roots may be created, perhaps on other test hosts, to which
developers may install test products. Access to install to the test root
should be restricted to the development group.

When testing is complete and a product is ready for release, the product
may then be copied to a general distribution depot to make it more
widely readable without exposing all the untested products on the test
depot.

There are many additional ways in which these basic concepts may be
used to implement a desired security policy for product development.

Chapter 9

297

SD-UX Security

Permission Requirements, by Command

Permission Requirements, by Command

Packaging (swpackage)
e Ifthe depot does not exist, swpackage verifies that the user has
insert permission on the target host.

¢ swpackage verifies that the user has insert permission on a target
depot.

¢ swpackage verifies that the user has write permission on target
product, if it already exists.

Listing (swlist)
e To list potential depots, the source agent verifies that the controller
user has read permission on host.

e To list potential products, the source agent verifies that the
controller user has read permission on depot or root.

Job Browsing (sd, swjob)

e To use the CLI (swjob) or GUI (sd) to view information about jobs
initiated from a local host, the controller verifies that the user has
read permission on the host.

e To use the command line or GUI to retrieve a target log file, the
target agent verifies that the controller user has read access on the
root or depot target.

Copying (swcopy)
e Any list operations required to facilitate this function must be
checked as described in the swlist section above.

e Ifthe depot does not exist, swcopy verifies that the user has insert
permission on the target host.

e The target agent verifies that the controller user has insert
permission on the target depot.

298

Chapter 9

SD-UX Security
Permission Requirements, by Command

The target agent verifies that the controller user has write
permission on the target product, if it already exists.

The source agent verifies that the target agent system has read
permission on the source product.

The source (depot) agent verifies that the depot is registered. If not,
the agent verifies that the controller user and the target agent
system each has insert permission on the source’s host.

Installing (swinstall)

Any list operations required to facilitate this function must be
checked as described in the swlist section above.

The target agent verifies that the controller user has insert
permission on the target root.

The target agent verifies that the controller user has write
permission on the target root, if the product already exists.

The source (depot) agent verifies that the target agent system has
read permission on the source product.

Removal (swremove)

If the object is a product on a depot, the target agent verifies that the
controller user has write permission on the target product.

If the object is a product on a root, the target agent verifies that the
controller user has write permission on the target root.

If the object is a depot or root, or the last product contained in one of
these, before removing the container the target agent must verify
that the controller user has delete permission on the target root or
depot.

Configuration (swconfig)

The same permission checks are made as for the swremove operation
above, except that this command does not apply to depots.

Chapter 9

299

SD-UX Security

Permission Requirements, by Command

Verify (swverify)

e Ifthe object is a product on a depot, the target agent verifies that the
controller user has read permission on the target product.

e Ifthe object is a product on a root, the target agent verifies that the
controller user has write permission on the target root (since scripts
are executed).

Registering Depots (swreg)

¢ To register a new depot, the target daemon verifies read permission
on the depot to be registered and insert permission on the host.

Changing ACLs (swacl)

e To change an ACL, write permission is required.
e To list an ACL, list permission is required.
Request Scripts (swask)

e To query a user and obtain installation information, interactive
control scripts are used.

Modify (swmodify)

¢ To change or add information to the Installed Products Database
(IPD) or depot catalog files, write permission is required.

300

Chapter 9

Creating Software Packages
10 Creating Software Packages

This chapter describes the tasks associated with packaging software for
distribution.

Table 10-1 Chapter Topics

Topics:

“Overview of the Packaging Process” on page 302

“Identifying the Products to Package” on page 303

“Adding Control Scripts” on page 305

“Creating a Product Specification File (PSF)” on page 307

“Packaging the Software (swpackage)” on page 345

“Packaging Tasks and Examples” on page 356

Chapter 10 301

Creating Software Packages

Overview of the Packaging Process

Overview of the Packaging Process

To help you distribute software from depots, Software Distributor lets
you package software into SD-UX format. The packaging process lets you
create depots directly or create packages that you can add to depots later.
The packaging specification is flexible enough to fit many software build
and manufacturing process needs.

The packaging process consists of the following tasks:

1. Identifying the package.

Determine what files and directories you want to include in your
software package, and determine product structure. Your software
package can consist of files, filesets, subproducts, products, and
bundles.

. Write control scripts (optional).

You can write control scripts and include them in your package.
These scripts let you perform additional checks and operations
beyond those supported by SD-UX.

. Create a Product Specification File (PSF) to define the product

package.

. Create the software package by running the swpackage command.

The swpackage command reads the PSF file, analyzes the product
definitions, and packages the source files and information into
product objects. It then creates and inserts the product into the
distribution depot.

Prerequisites

Before you begin packaging software, ensure the following:

SD-UX is installed and configured on the system where you intend to
create your software package.

The software to package is installed on the packaging system, or that
the necessary files are available remotely.

302

Chapter 10

Creating Software Packages
Identifying the Products to Package

Identifying the Products to Package

Determining Product Contents

The first step in packaging software is to determine what files and
directories you want included in the software product. These files and
directories must follow certain guidelines to support the configuration
you want.

Key points in this structure are:

¢ Where are shareable (for example, executables) and non-shareable
(for example, configuration) files installed?

e How is configuration used to put non-shareable files in place?

Determining Product Structure

Determine the product structure that your software should follow.
SD-UX provides four levels of software objects:

Level Objects

Filesets (Required) Filesets include the actual product files,
information that describes those files (attributes) and
separate control scripts that are run before, during or
after the fileset is installed, copied or removed. Filesets
are the smallest manageable (selectable) software
object. Files must be grouped into one or more filesets.
Filesets must be grouped into one or more products.
(Filesets can be members of only a single product.)

Subproducts (Optional) Subproducts are used to group related
filesets within a product if the product contains several
filesets. Subproduct definitions are optional.

Products (Required) Filesets (and/or subproducts) must be
grouped into one or more products. They are usually
grouped into collections that form a set of related
software, or match the products that a customer

Chapter 10

303

Creating Software Packages
Identifying the Products to Package

purchases. The SD-UX commands maintain a product
focus, while still allowing the flexibility to manage
subsets of the products via subproducts and filesets.

Bundles (Optional) Bundles are provided only by the HP factory.
Customer packaging of bundles is not supported.

NOTE You can define different versions of products for different platforms and
operating systems, as well as different revisions (releases) of the product
itself. You can include different product versions on the same distribution
media.

304 Chapter 10

Creating Software Packages
Adding Control Scripts

Adding Control Scripts

SD-UX supports execution of product and fileset control scripts that
allow you to perform additional checks and operations with other HP-UX
commands and functions. The swask, swinstall, swconfig, swverify, and
swremove commands each can execute one or more control scripts on the
primary roots. You can write the scripts and include them in your
software package. All scripts are optional but many times are needed
correctly complete the task that you want your software package to
perform. See Chapter 11, “Using Control Scripts,” on page 369 for a
complete discussion of control scripts.

SD-UX supports the following types of scripts, which can be defined for
products and fileset:

Checkinstall Analyses each target to determine if the installation
and configuration can take place. (Executed by
swinstall.)

Checkr enove Analyses each target to determine if removal and
unconfiguration can take place. (Executed by
swremove.)

Configure Configures installed filesets or products. (Executed by
swconfig and swinstall.)

Fi x Corrects and reports on problems in installed software.
(Executed by swverify.)

Postinstal | Performs additional install operations (such as
resetting default files) immediately after a fileset or
product has been installed. (Executed by swinstall.)

Postr enove Performs additional remove operations (such as
restoring “rollback” files) immediately after a fileset or
product has been removed. (Executed by swremove.)

Preinstall Performs file operations (such as removing obsolete
files) immediately before installation of software files.
(Executed by swinstall.)

Pr er enove Performs additional file operations (such as removing
files created by a preinstall script) immediately before
removal of software files. (Executed by swremove.)

Chapter 10 305

Creating Software Packages

Adding Control Scripts

Request

Unconfi gure

Unpost i nstal |

Unpr ei nst al |

Verify

Requests an interactive response from the user as part
of the installation or configuration process. (Executed
by swask, swconfig, and swinstall.)

Undoes configurations performed by configure scripts.
(Executed by swconfig and swremove.)

Undoes a postinstall script in case swinstall must
initiate recovery during the installation process.
(Executed by swinstall.)

An undo preinstall script in case SD must initiate
recovery during the install process. (Executed by
swinstall.)

Verifies the configuration of filesets or products in
addition to the standard swverify checks. (Executed by
swverify.)

306

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

Creating a Product Specification File (PSF)

SD-UX uses a Product Specification File (PSF) to define the physical
product package. The PSF provides a “road map” that identifies the
product according to its attributes, contents, compatibilities,
dependencies and descriptions. The PSF drives the swpackage session. It
describes how the product is structured and defines the attributes that
apply to it.

SD-UX packages, distributes, installs files. The SD-UX packager uses
these files after they have been built and installed into specific directory
locations. These directory locations my reside in separate, unconnected
directory trees or in the specific file locations needed to make the
software run on your system. You can specify files by a root directory
(gathering all files below it) or by explicit individual file paths. The file
attributes can be taken from the files themselves, specified separately for
each file, or specified for a set of files.

The PSF can:

¢ Define vendor information (optional) for groups of products
(including all products), or for individual products.

e Specify one or more products (required).

¢ For each product, define attributes for one or more subproducts
(optional), filesets (required), and files (required).

¢ Define attributes for the distribution depot/media (optional).

e Specify what computer(s) and operating system(s) the product
supports.

¢ Define attributes that describe the software objects.

Chapter 10 307

Creating Software Packages
Creating a Product Specification File (PSF)

Product Specification File Examples

Minimal PSF

Here is an example of the minimum PSF, which includes only the
required keywords. This PSF creates a product SDwith fileset conmands
and contains one file, / usr/ shi n/ swcopy:

pr oduct
tag SD
fileset
tag commands
file swcopy /usr/ sbi n/ swcopy

NOTE You must use an absolute path for the second file term in this minimum
format.
Typical PSF
Here is a sample PSF that describes the SD-UX product:
PSF defining SD as a sanpl e product.
depot
| ayout _version 1.0
Vendor definition:
vendor
tag HP
title Hewl et t - Packard Conpany
description < data/description.hp
cat egory
tag syst em nyt
title Systens Managenent Applications
description These are the system managenent
appl i cati ons
revision 1.0
end
Product definition:
pr oduct
tag SD
revision A 01. 00
architecture HP-UX B. 11 32/64
308 Chapter 10

vendor _tag
is_patch
title

nunber
category_tag
description
copyri ght

r eadme

machi ne_t ype
0s_nare
os_rel ease
0S_version
directory
is_|ocatable

Creating Software Packages
Creating a Product Specification File (PSF)

|_P

fal se

HP- UX D stri butor
B2000A
syst em nyt

< dat a/ descr. sd
< dat a/ copyr. sd
< dat a/ README. sd
*

HP- UX

?.11.*

?

/

fal se

Speci fy a checkrenove script that executes during the
sw enove anal ysis phase. (This script prevents the
renoval of the SD product and returns an ERRCR

checkr enove

scri pt s/ checkr enove. sd

Subpr oduct definitions:

subpr oduct
tag
title
contents

end

subpr oduct
tag
title
contents

end

Manager
Managerment Wilities
commands agent data man

Agent
Agent conponent

agent data nan

Fileset definitions:

fil eset
tag
title
revision

description
Dependenci es
corequi sites

commands

Commands (nanagerent utilities)
2.42

< dat a/ descr. commands

SD. dat a

corequi sites SD. agent

Control files:

configure
Files:

scri pt s/ confi gur e. comrands

Chapter 10

309

Creating Software Packages
Creating a Product Specification File (PSF)

directory ./ comrands=/ usr/ shi n
file swi nst al |
file swcopy
(...CQher file definitions can go here...
directory .Inls=/usr/lib/nls/C
file swinstall. cat
file swpackage. cat
directory .l ui =/ var/ adnl sw ui
file *
(...CQher file definitions can go here...
end
Commrands

(...CQher fileset definitions can go here...)

Manpage fil eset definitions:

fileset
tag nan
title Manual pages for the SD UX
revision 2.05
directory ./ man/ manlm=/ usr/ man/ manlm Z
file *
directory ./ man/ man4=/ usr/ man/ nan4. Z
file *
directory ./ man/ man5=/ usr/ man/ nan5. Z
file *
end
#man
end
#SD

310

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

PSF Syntax

Each SD-UX object (product, subproduct, filesets, and file) has its own
set of attributes and each attribute has a keyword that defines it. Most
attributes are optional; they do not all need to be specified in the PSF.
Each attribute has its own specific requirements, but the following rules

apply:
e Keyword syntax is:
keyword val ue

e All keywords require one or more values, except as noted. If the
keyword is there but the value is missing, a warning message is
generated and the keyword is ignored.

¢ Place comments on a line by themselves or after the keyword-val ue
syntax. Comment lines are designated by preceding them with #.

¢ Use quotes when defining a value (for example, description) that can
span multiple lines. Quotes are not required when defining a
single-line value that contains embedded whitespace.

¢ Any errors encountered while reading the PSF cause swpackage to
terminate. Errors are also logged to both st derr and the logfile.

PSF Object Syntax

The following tables and sections describe the PSF keywords, the
allowable values for each keyword, and the syntax for the objects you can
define in a PSF.

e Keywords marked with a + apply to products only.
e Keywords marked with a - apply to bundles only.

¢ Keywords marked with a * are of the ver si on_conponent type, as
well as the type indicated in the table.

Chapter 10 311

Creating Software Packages
Creating a Product Specification File (PSF)

Table 10-2 Keywords Used in the Product Specification File
Max.
Size in
Keyword Value bytes Example
Distribution Class
distribution
| ayout _versi on revision_string 64 1.0
tag tag_string 64 EXAMPLE _DEPOT <
copyri ght multi _line_string 8K dat a/ copyr . depot
description multi _line_string 8K dat a/ descr . depot
nunber one_line_string 256 B2358- 13601
title one_line_string 256 Exanpl e packages
end
Vendor Class
vendor
tag tag_string 64 HP
description multi _line_string 8K <dat a/ desc. hp
title one_line_string 256 HP Conpany
end
Category Class
cat egory
tag tag_string 64 pat ch_nor mal
description multi _line_string 8K Nor mal probl ens
revision revision_string 64 0.0
title one_line_string 256 Cat egory of Patches
end

312 Chapter 10

Creating Software Packages

Creating a Product Specification File (PSF)

Table 10-2 Keywords Used in the Product Specification File (Continued)
Max.
Size in
Keyword Value bytes Example
Product Class
product or bundl e
* tag tag_string 64 SD- UX
* architecture one_line_string 256 HP-UX B. 11.11 32/64
category_tag one_line_string 256 Syst ens Managenent
- contents repeatabl e |ist of none pr.fs,r=1.0, a=, v=
software specs
copyri ght multi _line_string 8K <dat a/ copyr . sd
descri ption multi _line_string 8K <dat a/ descr . sd
directory path_string 255/102 |/
is_|locatable bool ean 4 fal se
i s_patch bool ean 9 fal se
machi ne_t ype uname_string 9 9000/ 800
nunber one_line_string 64 B2000A
0s_nane unane_string 256 HP- UX
os_rel ease unane_string 64 ?.11.*
0s_version uname_string 64 A
+ post ker nel path_string 64 /usr/bin/kern_bld
+ readne multi _line_string 255/ 102 <dat a/ READMVE. sd
+ revision revision_string 4 A 01. 00
+ share_|ink one_line_string 8K
title one_line_string 64 Software Distributor
* vendor _t ag tag_string 256 HP
end 256
64
Subproduct Class
subpr oduct
t ag tag_string 64 Manager
contents one-line list of none commands agent data nan
tag string val ues
descri ption multi _line_string 8K <dat a/ desc. ngr
title one_line_string 256 Managenent Wilities
end

Chapter 10

313

Creating Software Packages

Creating a Product Specification File (PSF)

Table 10-2 Keywords Used in the Product Specification File (Continued)
Max.
Size in
Keyword Value bytes Example
Fileset Class
fil eset
* tag tag_string 64 comrands
ancest or repeatabl e |ist of none prod. ol df i | eset
product. fil eset ol dprod. fil eset
architecture revision_string 64 HP-UX B. 11.11 32/64
category_tag tag_string 64 pat ch_nor mal
corequisite sof t war e_spec none SD- UX. man. r>=2.0
descri ption multi _line_string 8K <dat a/ descr. cmd
exrequisite sof t war e_spec none SD- UX dat a, R>=2. 1
i s_kernel bool ean 9 fal se
i s_patch bool ean 9 fal se
i s_reboot bool ean 9 fal se
i s_sparse bool ean 9 fal se-
machi ne_t ype unane_string 64 9000/ 8*
0s_nane uname_string 64 HP- UX
os_rel ease uname_string 64 ?.11.*
0s_version uname_string 64 A
prerequisite sof t war e_spec none SD- UX. agent , r>=2.0
* revision revision_string 64 2.42
super sedes sof t war e_spec none product.fil eset,
title one_line_string 256 fr=revision
end SD- UX Conmands
control _files
Class
control files
directory pat h_nappi ng_string | none ./ commands=/ usr/ shi n
file_perm ssions | perm ssion_string none -u 0222 -0 root -g sys
file file specification none -m 04555 bi n/swi nstal |
end (or) *
314 Chapter 10

Creating Software Packages

Creating a Product Specification File (PSF)

Table 10-3 Control File Attributes
Keyword Type Sizein Example
Bytes

checki nst al | pat h_string 1K ./'scripts/checkinstall
checkr enove pat h_string 1K ./'script s/ checkrenove
configure pat h_string 1K .Iscripts/configure
control _file pat h_string 1K ./scripts/subscripts
fix pat h_string 1K .Iscripts/fix
postinstall pat h_string 1K ./scripts/postinstall
post r enove pat h_string 1K ./'scripts/postrenove
preinstall pat h_string 1K .Iscripts/preinstall
pr er enove pat h_string 1K ./scripts/ prerenove
request pat h_string 1K ./scripts/request
unconfi gure pat h_string 1K ./scripts/unconfigure
unprei nst al | pat h_string 1K ./scripts/unpreinstall
unposti nstal | pat h_string 1K ./'scripts/unpostinstall
verify pat h_string 1K .Iscripts/verify

Control Files SD-UX supports execution of control files (also known
as control scripts) at the product and fileset level. Control scripts let you
perform additional checks and operations. The swinstall, swconfig,
swverify, and swremove commands each execute one or more vendor
supplied scripts. All scripts are optional but many times are needed
correctly complete the task that you want your software package to
perform. See Chapter 11, “Using Control Scripts,” on page 369 for a
complete discussion of control scripts.

Selecting the PSF Layout Version

You can select the layout version in the depot definition in the PSF (see
“Product Specification File Semantics” on page 321) or with the
| ayout _ver si on option for swpackage, swmodify, swcopy, or swlist.

PSF syntax conforms to the | ayout ver si on=1. 0 of the IEEE Standard
1387.2: Software Administration(POSIX). Previous versions of SD
supported the POSIX | ayout _ver si on=0. 8 syntax, which continues to
be supported.

Software depots cannot mix layout versions; they must be one or the
other.

Chapter 10

315

Creating Software Packages
Creating a Product Specification File (PSF)

Differences between the two layout versions include the following:

e The vendor specification is handled differently.

For the current standard (I ayout _ver si on=1. 0), each vendor
class definition is associated only with subsequent products or
bundles that contain a vendor _t ag attribute that matches the t ag
attribute within the vendor class definition.

For the previous standard (I ayout _ver si on=0. 8) or if you do not
specify a | ayout _ver si on, products or bundles are automatically
associated with the last vendor class you defined at the distribution
level, or from a vendor that you define within the product or bundle.
Explicitly defined vendor _t ag attributes (with or without a value)
take precedence.

¢ The corequisites and prerequisites have singular titles for
| ayout _versi on=0. 8 (that is, corequisite and prerequisite). See
“Dependency Specification” on page 335 for more information.

e Category objects and keywords are handled differently.

For | ayout _ver si on=1. 0 (current standard):

— category_tagis avalid product attribute that replaces the
category and category_titl e attributes.

— You can define cat egor y class objects.

For | ayout _ver si on=0. 8 (previous standard:

— category and category_titl e are valid product attributes that
replace the cat egory_t ag attribute.

— cat egory class objects are not recognized.

For a more complete description of PSF requirements for
| ayout _versi on=0. 8, refer to the swpackage.4 manual page in a
previous version of HP-UX.

316 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

PSF Value Types

With the exception of vendor-defined attributes (see “Vendor-Defined
Attributes” on page 321), the values for each attribute keyword in your
PSF must match one of the specific types discussed below.

NOTE PSF syntax conforms to the | ayout _ver si on=1. 0 of the POSIX 1387.2
Software Administration standard. Previous versions of SD-UX
supported the POSIX | ayout _ver si on=0. 8 syntax, which continues to
be supported. See “Selecting the PSF Layout Version” on page 315 for
more information.

bool ean e Maximum length: 9 bytes
® One of the values true or false.
e Examples: true, false

file specification
e Maximum length: none

e Explicitly specifies a file or directory to be
packaged, using the format:

[- mnodel] [- o [owner [,]] [ui dl] [- g [groupl,]1(gi dl]
[-v][sour cel [desti nat i on]

¢ The source and destination can be paths relative to
source and destination directories specified in the
pat h_nappi ng_stri ng.

¢ You can also use * to include all files below the
source directory specified by a directory keyword.

e Examples: - m 04555 shin/swi nstall or* (to
denote all files and directories)

multi _line_string

e Maximum length: 8 kbyte (1Mbyte for a readme
file)

Chapter 10 317

Creating Software Packages
Creating a Product Specification File (PSF)

one line_stringe

pat h_nmappi ng_
string
pat h_string

Each multi-line strings support all i sasci i
characters. (Refer to the ctype(3) manpage.) It
represent one or more paragraphs of text. It can be
specified in-line, surrounded by double-quotes or
read from a files.

File entries must use this syntax:
<fil enane

Example: </ nf g/ sd/ descri pti on
Maximum length: 256 bytes

One-line strings support a subset of i sasci i
characters only. (Refer to the ctype(3) manpage.)

No i sspace characters, except for space and tab,
are allowed.

Examples: Hewl et t - Packar d Conpany

Maximum length: none

A value of the form: sour ce[=dest i nat i on] where
the sour ce defines the directory in which
subsequently defined files are located. The optional
dest i nat i on maps the source to a destination
directory in which the files will actually be
installed.

Examples: /nfg/sd/files/usr = /usr

Maximum length: 255 bytes for tapes, 1024 bytes
for depots

An absolute or relative path to a file. Many
attributes of this type are restricted to 255 bytes in
length. This restriction is due to the tar(1)
command, which requires a file’s basename(1) be
<= 100 bytes, and a file’s dirname(1) to be <= 155
bytes. (Some implementations of tar enforce < and
not <=.)

Examples: / usr / nf g/ sd/ scri pts/configure

318

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

per m ssi on_
string ¢ Maximum length: none

e A value of the form:

[- mnode| - u unask] [- o [owner [1][ui d]]
[- g [groupl,lllgi dl]

where each component defines a default
permissions value for each file and directory
defined in a fileset. The default values can be
overridden in each file’s specific definition. The
owner and group fields are of type t ag_stri ng.
The uid and gid fields are of type unsigned integer.
The mode and umask are unsigned integers, but
only supports the octal character set, 0-7.

e SD-UX will not override existing permissions based
on this attribute if a file already exists on a target.

e Examples: -u 0222 -0 root -g sys
revision_string eMaximum length: 64 bytes

e Revision strings contain zero or more dot-separated
one_l i ne_string (above).

e Examples: 2.0, B. 11.00

sof tware_speci fi cati on

e Maximum length: none

e Software specifications are used to specify software
in dependencies, ancestors and other attributes, as
well as command line selections. This attribute
uses the standard syntax for SD-UX
sof t war e_sel ecti ons. See “Software Selections”
on page 56 for complete information.

e Examples: SD. agent or
SD, r=2. 0, a=HP- UX_B. 11. 00_32

tag_string e Maximum length: 64 bytes

e Tag strings support a subset of i sascii ()
characters only:

Chapter 10 319

Creating Software Packages
Creating a Product Specification File (PSF)

— Requires one or more characters from: “A-Z”,
“a-z”, “0-9”, including the first character.

— The i sspace() characters are not allowed.

— SDU metacharacters not allowed:

— Shell metacharacters not allowed:
#.&0) {H | <>

— Shell quoting characters not allowed:
13 13 1 \

— Directory path character (/) not allowed.
e Examples: HP, SD- UX

unane_string

e Maximum length: 64 bytes

¢ Uname strings containing a subset of isascii()
characters only.

e Noisspace() characters are allowed.
e Shell pattern matching notation allowed: [] * ? !

e Patterns can be “ORed” together using the
separator: |

e Examples: 9000/ 7*: *| 9000/ 8*: * , HP- UX, 2. 11.*

320 Chapter 10

CAUTION

Creating Software Packages
Creating a Product Specification File (PSF)

Product Specification File Semantics

The following sections describe how to specify a PSF and defines
keywords.

Vendor-Defined Attributes You can create your own software
attributes when packaging software.

Vendor-defined attributes are noted during packaging or when modified
with swmodify. You can list these attributes with swlist.

When SD-UX encounters a keywords in a PSF that is not one of the
standard keywords, the keyword and its associated values are preserved
by being transferred to the INDEX or INFO files created by swpackage.

Nonstandard keywords are defined as a filename character string. The
value associated with a keyword is processed as an attri but e_val ue. It
can be continued across multiple input lines or can reference a file
containing the value for the keyword.

If you misspell a standard keyword, SD-UX may mistake the keyword
for a vendor-defined attribute, which may lead to packaging errors.

Distribution (Depot) Specification Distribution attributes let you
list information about the media that will hold the depot (either tapes or
CD/directory. (See “Depot Management Commands and Concepts” on
page 134 for more information about depots.) Here is a PSF for a
distribution:

distribution

| ayout _versi on 1.0

tag APPL| CATI ONS_CD

copyri ght < dat a/ copyri ght. cd

description <dat a/ descri ption. cd

nunber B1234-56789

title HP- UX Applications Software D sk

Qptional vendor specification can be included.

AT LEAST ONE PRCDUCT SPEC FI CATI ON MUST BE | NCLUDED.
Qther product specifications are optional.

end

The di st ri but i on keyword is always required. All other attributes are
optional.

Chapter 10

321

Creating Software Packages
Creating a Product Specification File (PSF)

di stri butionor depot

Keyword that begins the distribution specification.
Each keyword defines an attribute of the distribution
depot or tape itself. All keywords are optional, even if a
distribution specification is included in a PSF.

| ayout _ver si on PSF syntax conforms to the | ayout _ver si on=1. 0 of

tag

copyri ght

descri ption

nunber

title

end

the POSIX 1387.2 Software Administration standard.
Previous versions of SD-UX supported the POSIX

| ayout _ver si on=0. 8 syntax, which continues to be
supported. (You can also select the layout version with
the layout_version option for swpackage, swmodify,
swcopy, or swlist.) See “Selecting the PSF Layout
Version” on page 315 for more information.

The short name of the target depot (tape) being
created/modified by swpackage.

The text (or a pointer to a filename) for the copyright
information for the depot’s contents.

The description of the target depot; either the text itself
or a pointer to a filename that contains the text.

The part or manufacturing number of the distribution
media (CD or tape depot).

The full name of the target depot (tape) being
created/modified by swpackage.

Ends the distribution specification, no value is
required. This keyword is optional. If you use it and it
is incorrectly placed, the specification will fail.

322

Chapter 10

NOTE

Creating Software Packages
Creating a Product Specification File (PSF)

Vendor Specification The vendor attributes let you add a description
to the PSF.

The | ayout _ver si on defined for the PSF file determines how vendor
specifications are associated with products and bundles. If a

| ayout _versi on is not defined or is defined as 1.0, vendor specifications
will be associated with all subsequent products and bundles that define a
matching vendor _t ag attribute.

If al ayout _versi on of 0.8 is specified, all subsequent products and
bundles will automatically be assigned to a vendor _t ag from the last
vendor object defined at the distribution level, if any, or from a vendor
object defined within a product or bundle, unless a vendor _t ag is
explicitly defined.

The following is an example of a vendor specification:

vendor
tag HP
description < data/description.hp
title Hewl et t - Packard Conpany
end

Each keyword defines an attribute of a vendor object. If a vendor
specification is included in the PSF, swpackage requires the vendor and
tag keywords.

The vendor specification is not the same as vendor-defined attributes.
See “Vendor-Defined Attributes” on page 321 for more information.

vendor Keyword that begins the vendor specification.

tag Defines the identifier (short name) for the vendor.

title Defines the full name (one line description) for the
vendor.

description Defines the multi-paragraph description of the vendor;
the value is either the text itself (within double-quotes)
or a pointer to the filename containing the text.

end Ends the vendor specification. This keyword is
optional.

Chapter 10

323

Creating Software Packages
Creating a Product Specification File (PSF)

Category Specification (Does not apply to layout version 0.8.) A
software collection can contain a list of category objects that are used as
a selection mechanism. Category objects are identified by the keyword
“category” and contain additional information about the category. The
cat egory_t ag attribute points to a particular category object and can
appear anywhere within a product, bundle, subproduct, or fileset.

All software objects with the attribute of i s_pat ch set to true are
automatically assigned a category of “patch.”

NOTE The | ayout _ver si on keyword in the di stri bution cl ass affects how
categories are associated with products and bundles. See “Selecting the
PSF Layout Version” on page 315 and “Product Specification File
Semantics” on page 321 for more information.

The category specification looks like this:
cat egory
tag pat ch_nor mal
title Cat egory of patches
description For normal problens
revision 0.0
end
Each keyword defines an attribute of the category object. If a category
specification is included in the PSF, swpackage requires only the
cat egory and t ag keywords.
cat egory Keyword that begins the category specification.
tag The category short name identifier. Associates this
object with a product or bundle. This t ag attribute
must match the cat egor y_t ag attribute in the product
or bundle.
title A one-line string that defines the full name for the
category.
description A multi-line description of the category. The description
value can consist of text or a filename for a text file.
324 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

revision The revision information (release number, version).
Determines which category object definition to
maintain in a depot when a definition being installed
or copied does not match a definition already in the
depot with the same category tag.

end An optional keyword that ends the specification. No
value is required. If you place this keyword incorrectly
in the PSF, the specification will fail.

Chapter 10 325

Creating Software Packages
Creating a Product Specification File (PSF)

Product or Bundle Specification The product specification is a
required class in the PSF. It lets you identify the product you are
packaging.

NOTE The | ayout _ver si on keyword in the di stri buti on cl ass affects how
category and vendor objects are associated with products and bundles.
See “Selecting the PSF Layout Version” on page 315 and “Product
Specification File Semantics” on page 321 for more information.

The product specification looks like this:

pr oduct

tag SD

architecture HP-UX B.11.00 32/ 64

category_tag systens_nmanagenent

contents prod. fsl,r=1.0, a=, v=

copyri ght </ nf g/ sd/ dat a/ copyri ght

descri ption </ nf g/ sd/ dat a/ descri ption

directory [usr

is locatable false

i s_patch fal se

machi ne_type *

nunber J2326AA

0S_nane HP- UX

os_rel ease ?.11.00.*

0s_version B. 11. **

post ker nel [usr/1bin/kernel build

+ readne </ nf g/ sd/ dat a/ READVE

revision 2.0

title Software D stributor

vendor _t ag HP

ptional vendor specification

ptional subproduct specification

REQU RED FI LESET SPEC FI CATI ON

end

For each product object specified, swpackage requires only the product
and tag keywords, plus one or more fileset definitions. For each bundle
specified, swpackage requires the bundl e, t ag and cont ent s keywords.

326 Chapter 10

NOTE

pr oduct

tag

architecture

bund! e

cat egory_tag

contents

copyri ght

descri ption

directory

Creating Software Packages
Creating a Product Specification File (PSF)

Required keyword that begins the product
specification.

The product’s identifier (short name).

The target system on which the product or bundle will
run. Provides a human-readable summary of the four

unane attributes (machi ne_t ype, os_narre,

0s_rel ease and os_ver si on), which define the exact

target system(s) the product supports.

Required keyword that begins the bundle specification.

A repeatable tag-based attribute identifying a set of
categories of which the software object is a member.
This is used as a selection mechanism and can be used
independent of patches. The default value is an empty
list or pat ch if the i s_pat ch attribute is set to t r ue.
Like vendor _t ag, this attribute can be used as a
pointer to a category object that contains additional
information about the category (for example, a one-line
title definition and a description of the category).

The category tag pat ch is reserved. When the

i s_pat ch product attribute is set to true, a built-in
cat egory_t ag attribute of value pat ch is
automatically included with the product definition.

The list of ful | y qual i fi ed (all version distinguishing
attributes included) software specs for the bundle.

A multi-line description of the product’s copyright;
either the text itself (in double quotes) or a pointer to
the filename that contains the text.

A multi-paragraph description of the product; either
the text itself (within double-quotes) or a pointer to the
filename that contains the text.

The default, absolute pathname to the directory in
which the product’s files will be installed (the root
directory of the product). If not specified, swpackage
assigns a value of /.

Chapter 10

327

Creating Software Packages

Creating a Product Specification File (PSF)

is_|ocatabl e

is_patch

machi ne_t ype

nunber

0s_nane

Defines whether a product or bundle can be installed to
any product directory, or whether it must be installed
into a specific directory. The attribute can be set to true
or false. If not defined, swpackage sets the default
attribute to “false.”

A boolean flag that identifies a software object as a
patch. The default value is false. When set to true, a
built-in cat egor y_t ag attribute of value pat ch is
automatically included with the product definition.

The system type on which the product will run. If not
specified, the keyword is assigned a wildcard value of
* meaning it will run on all machines. If there are
multiple platforms, you must separate each machine
designation with a | (vertical bar). For example, a
keyword value of 9000/ 7*| 9000/ 8* means the product
will run on all HP Series 9000 Model 7XX or all HP
9000 Series 8XX machines. Alternatively, the value
9000/ [78] * would also work.

Other examples:
* (If not concerned with the machine type.)

9000/ 7?7?: 32*
(Series 700, 32-bit capable hardware required)

*:*64 (64-bit capable hardware required_
*:32: (32-bit capable hardware required)

9000/ 7??: *64 (Series 700, 64-bit capable hardware
required)

9000/ [78] ??: 32* (Series 800, 32-bit capable
hardware required)

9000/ [78] ??: *64 (Series 800, 64-bit capable
hardware required)

The value is matched against a target’s
uname - mor get conf _CS HW CPU SUPP_BI TS result.

The part or order number of the product.

The operating system name on which the product will
run. If not specified, the attribute is assigned a value of
* meaning it will run on all operating systems. If there

328

Chapter 10

os_rel ease

0s_version

post ker nel

r eadne

revision

title

vendor _t ag

end

Creating Software Packages
Creating a Product Specification File (PSF)

are multiple operating systems, use wildcards or the |
symbol to separate them. The value is matched against
a target’s

unane -s or getconf _CS KERNEL_BI TS result.

The release number of the product’s operating system.
If not specified, the attribute is assigned a value of *,
meaning it will run on all operating systems. If there
are multiple operating systems, use wildcards or the |
symbol to separate them. The value is matched against
a target’s uname -r result.

The version number of the operating system(s) on
which the product will run. If not specified, the
attribute is assigned a value of *, meaning it runs on
any version. If there are multiple operating systems,
use wildcards or the | symbol to separate them. The
value is matched against a target’s unane -v result.

Defines a kernel build script to be executed when
kernel filesets are loaded. Kernel filesets have the

i s_kernel attribute set to t r ue. The default kernel
script is / usr/ sbi n/ nk_ker nel . (See the manual
reference page for mk_kernel (1M) for more
information.) The default script executes when the
post ker nel attribute is not specified. Only one kernel
build script is allowed per product, and the script
executes only once, even if defined for multiple filesets.

A text file of the README information for the product.
The value must be a pointer to the filename containing
the text

The revision information (release number, version) for
the product or bundle.

A one-line string that further identifies the product or
bundle.

Associates this product or bundle with a vendor object
defined separately in the PSF, if that object has a
matching t ag attribute.

Ends the product or bundle specification. No value is
required. This keyword is optional. If you use it and it
is incorrectly placed, the specification will fail.

Chapter 10

329

Creating Software Packages
Creating a Product Specification File (PSF)

Control Script Specification SD-UX supports execution of product
and fileset control scripts that allow you to perform additional checks
and operations with other HP-UX commands and functions. The swask,
swinstall, swconfig, swverify, and swremove commands each can execute
one or more control scripts on the primary roots. All scripts are optional
but many times are needed correctly complete the task that you want
your software package to perform. See Chapter 11, “Using Control
Scripts,” on page 369 for a complete discussion of control scripts.

Subproduct Specification The subproduct specification lets you
group filesets within a larger product specification. Subproducts are
optional. A subproduct specification looks like this:

subpr oduct

tag Manager

contents manager agent packager man doc

description </nfg/sd/data/ manager/description

title SD Managenent | nterfaces Subset
end

Each keyword defines an attribute of a subproduct object. If a subproduct
object is specified, swpackage requires the subpr oduct, t ag, and
cont ent s keywords.

subpr oduct Keyword that begins a subproduct specification.
tag The subproduct’s identifier (short name).
contents A whitespace-separated list of the subproduct’s fileset

t ag values (that is, contents fileset1 fil eset?2
fileset3 ...filesetN.

In the PSF, fileset definitions are not contained within
subproduct definitions. The cont ent s keyword is used
to assign filesets to subproducts. This linkage allows a
fileset to be contained in multiple subproducts.

description A multi-line description of the subproduct; either the
text itself (within double-quotes), or a pointer to the
filename that contains the text.

title A one-line string that further identifies the subproduct.

end Ends the subproduct specification. No value is
required. This keyword is optional. If you use it and it
is incorrectly placed, the specification will fail.

330

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

Fileset Specification The fileset specification is required in the PSF.
Use filesets to group files together.

A fileset specification looks like this:

fil eset
tag manB
ancest or QOLDSD. VAN

architecture HP-UX B.11.00 32/ 64
category_tag manpg
descri ption </ nf g/ sd/ dat a/ man/ descri pti on

i s_kernel fal se

is locatable false

i s_patch fal se

i s_reboot fal se

i s_sparse fal se

machi ne_type *

0S_nane HP- UX

os_rel ease ?.11.00.*

0s_version ?

revision 2.40

super sedes product . fil eset, fr=revision
title Commands (nanagerent utilities)

ptional control script specification

ptional dependency specification

REQUI RED FI LE SPEC FI CATI ON

Additional file specifications optional.
end

Each keyword defines an attribute as a fileset object. For each fileset
object specified, swpackage requires the fi | eset and t ag keywords, plus
zero or more file specifications.

tag The fileset identifier (short name).

architecture Describes the target system(s) on which the fileset will
run if filesets for multiple architecture are included in
a single product. Provides a human-readable summary
of the four unane(1) attributes which define the exact
target system(s) the product supports. Many filesets do
not include an architecture; only a product architecture
need be defined.

Chapter 10 331

Creating Software Packages
Creating a Product Specification File (PSF)

ancest or A list of filesets that will match the current fileset
when installed on a target system, if the mat ch_t ar get
installation option is specified. Also designates an
ancestor fileset to check for when
patch_match_target is defined.

category tag A repeatable tag-based attribute identifying a set of
categories of which the software object is a member.
This is used as a selection mechanism and can be used
independent of patches. The default value is an empty
list or patch if the i s_pat ch attribute is set to true.

Like vendor _t ag, this attribute can be used as a
pointer to a category object that contains additional
information about the category (for example, a one-line
title definition and a description of the category).

NOTE The category tag pat ch is reserved. When the
i s_pat ch file attribute is set to true, a built-in
cat egory_t ag attribute of value pat ch is
automatically included with the file definition.

description Defines the multi-paragraph description of the fileset;
the value is either the text itself (within double-quotes)
or a pointer to the filename containing the text.

i s_kernel A value of true defines the fileset as being a contributor
to the operating system kernel; the target system(s)
kernel build process will be invoked after the fileset is
installed. If this attribute is not specified, swpackage
assumes a default value of false.

is_locatable Defines whether a fileset can be installed to any
product directory, or whether it must be installed into a
specific directory. The attribute can be set to true or
false. If not defined, swpackage sets the default
attribute to false.

is_patch Identifies a software object as a patch. The default
value is false. When set to true, a built-in
cat egory_t ag attribute of value patch is automatically
included.

332 Chapter 10

i s_reboot

i s_sparse

machi ne_t ype

Creating Software Packages
Creating a Product Specification File (PSF)

A value of true declares that the fileset requires a
system reboot after installation. If this attribute is not
specified, swpackage assumes a default value of false.

Indicates that a fileset contains only a subset of files in
the base (ancestor) fileset and that the contents are to
be merged with the base fileset. The default value is
false. If the i s_pat ch attribute is true, i s_spar se is
also set to true for the fileset, although it can be forced
to false.

The machine type on which the product will run. If not
specified, the keyword is assigned a wildcard value of
* meaning it will run on all machines. If there are
multiple machine platforms, you must separate each
machine designation with a | (vertical bar). For
example, a keyword value of 9000/ 7*| 9000/ 8* means
the product will run on all HP Series 9000 Model 7XX
or all HP 9000 Series 8XX machines. Alternatively, the
value 9000/ [78] * would also work.

Other examples:

* If not concerned with the machine
type.

9000/ 7??: 32* Series 700, 32-bit capable hardware
required.

*: %64 64-bit capable hardware required.

*: 32: 32-bit capable hardware required.

9000/ 7??: *64 Series 700, 64-bit capable hardware
required.

9000/ [78] ??: 32* Series 800, 32-bit capable hardware
required.

9000/ [78] ??: *64 Series 800, 64-bit capable hardware
required.

The value is matched against a target’s
uname - mor get conf _CS HW CPU SUPP_BI TS result.

Chapter 10

333

Creating Software Packages
Creating a Product Specification File (PSF)

0S_nane

os_rel ease

0s_version

revision

super sedes

title

end

Defines the operating system(s) on which the files will
run if a fileset architecture has been defined. (If not
specified, swpackage assigns a value of *, meaning the
files run on all operating systems.) If there are multiple
operating systems, use wildcards or use the ’|’
character to separate them. This attribute should
pattern match to the value of

uname -s or get conf KERNEL_BI TS on the supported
target systems.

Defines the operating system release(s) on which the
files will run. (If not specified, swpackage assigns a
value of *, meaning the files run on all releases.) If
there are multiple operating system releases, use
wildcards or use the ’|’ character to separate them.
This attribute should pattern match to the value of
uname -r on the supported target system(s).

The version number of the operating system(s) on
which the product will run. If not specified, the
attribute is assigned a value of *, meaning it runs on
any version. If there are multiple operating systems,
use wildcards or the | symbol to separate them. The
value is matched against a target’s unane -v result.

Defines the revision (release number, version number)
of the fileset.

Used when a patch is replaced by (or merged into) a
later patch. The attribute indicates which previous
patches are replaced by the patch being installed or
copied. This attribute value is a list of software
specifications of other patches that this patch
supersedes.

Defines the full name (one-line description)
of the fileset.

Optional keyword to end the fileset specification. No
value is required. If you place this keyword incorrectly,
the file specification will fail.

334

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

Dependency Specification The swinstall, swcopy, swverify, and
swremove commands recognize software dependencies. The default
behavior for swinstall, for example, prevents an install unless all
dependencies are met.

The PSF specifies dependencies between filesets. Dependencies are
defined within the fileset class definition. (See “Fileset Specification” on
page 331.)

You can also define dependencies between:

e A fileset and another product (namely, a subset of that product).
e A particular fileset within that product.

¢ The entire product.

SD-UX supports these types of dependencies:

Corequisite Software that must be present for a fileset to operate
correctly. For example, specifying a corequisite for an
install fileset means that the corequisite must be
installed or being installed when the fileset itself is
installed.

(Note that a corequisite dependency does not imply any
“run-time dependency” (load order).)

Exrerequi site Software that may not be present when the fileset is
operated on by SD-UX. For example, specifying an
exrequisite for a fileset prevents the fileset from being
installed if any of the specified exrequisite software
objects are installed or are being installed.

Prerequi site Software that must be installed and/or configured
correctly before a fileset can be operated on by SD-UX.
Prerequisites control the order of an installation with
swinstall (install-time dependency).

Dependencies are specified as a software_specification value type within
the PSF. (See “PSF Value Types” on page 317 for more information.) For
example:

corequisites SD.data
prerequisites productA r>=2.1
exrequisites productB r>=2.1

Chapter 10

335

Creating Software Packages
Creating a Product Specification File (PSF)

NOTE

A dependency must always be specified using a software specification
that starts with the product tag for the requisite software.

You can specify multiple dependencies to define AND relationships
between the dependencies (AND meaning that all dependencies must be
satisfied).

You can also define OR relationships using the or (]) character. The
following rules apply:

e White spaces are allowed around the OR character.
® OR dependencies are resolved from left to right.
Here is an example:

corequisite P.F
prerequisite ProdA | ProdB | ProdC. F | ProdC FS
corequisite ProdX | ProdY | ProdZ | ProdWFS

Control Script Specification SD-UX supports execution of product
and fileset control scripts that allow you to perform additional checks
and operations with other HP-UX commands and functions. The swask,
swinstall, sweonfig, swverify, and swremove commands each can execute
one or more control scripts on the primary roots. You can write the
scripts and include them in your software package. All scripts are
optional but often are needed correctly complete the task that you want
your software package to perform. See Chapter 11, “Using Control
Scripts,” on page 369 for a complete discussion of control scripts.

336

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

File Specification Within a fileset specification, you can specify the
following file types to be packaged into the fileset by swpackage:

e control script
e directory

¢ hard link

e regular file

e gsymbolic link
e archive

swpackage generates an error if the PSF contains an unrecognized or
unpackageable file type.

The swpackage command supports specific mechanisms for specifying
the files contained in a fileset:

default permission specification For all or some of the files in the
fileset, you can define a default set of permissions.

directory mapping You can point swpackage at a source directory in
which the fileset’s files are located. In addition, you can
map this source directory to the appropriate
(destination) directory in which this subset of the
product’s files will be located.

explicit file specification For all or some of the files in the fileset, you
can name each source file and destination location.

recursive (implicit) file specification If directory mapping is active,
you can simply tell swpackage to recursively include all
files in the directory into the fileset.

PSF extensions You can use include and exclude files to extend file
definitions.

These mechanisms can all be used in combination with the others.

Chapter 10 337

Creating Software Packages
Creating a Product Specification File (PSF)

Default Permission Specifications By default, a destination file will inherit
the mode, owner, and group of the source file. You can use the fi | e_per m ssi ons
keyword to set a default permission mask, owner, and group for all the files being
packaged into the fileset:

file_pernissions [-mnode| -u unask] [-o [owner[]] [ui d]]\
[- g [groupl, Nllgi d][-t typel

file_perm ssions

- mnode

- u unask

-0 [ownerl, 11[ui d

-9 [groupl, 1llgi dl

-t type

This keyword applies only to the fileset in which it is defined.
You can specify multiple fi | e_per m ssi ons; later definitions
replace previous definitions.

This option defines a default (octal) mode for all files.

Instead of specifying an octal mode as the default, you can
specify an octal umask (1) value that gets “subtracted” from
an existing source file’s mode to generate the mode of the
destination file.

By specifying a umask, you can set a default mode for
executable files, non-executable files, and directories. (A
specific mode can be set for any file using - m)

This option defines the destination file’s owner name and/or
or uid. See the discussion of the - 0 option in “Explicit File
Specification” on page 340 for more information.

This option defines the destination file’s group name and/or
or gid. See the discussion of the - g option in “Explicit File
Specification” on page 340 for more information.

Defines files that need not exist before packaging.

The following examples illustrate the use of the fi | e_per m ssi on keyword.

® Set a read only 444 mode for all file objects (requires override for every
executable file and directory):

file_perm ssions -m444

® Set a read mode for non-executable files, and a read/execute mode for
executable files and directories:

file permssions -u 222

® Set the same mode defaults, plus an owner and group:

file_permssions -u 222 -0 bin -g bin

338

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

® Set the same mode defaults, plus a uid and gid:
file_permssions -u 222 -02 -g2

® Set the owner write permission in addition to the above:
file_permssions -u 022 -02 -g2

® Ifyou do not define fi | e_per m ssi ons, swpackage uses the default value
file_perm ssions -u 000 for destination file objects based on existing
source files. (Meaning the node, owner/ ui d, gr oup/ gi d are set based on the
source file, unless specific overrides are specified for a destination file.)

Directory Mapping (Optional) The di rectory source[= desti nati on]
specification defines the source directory under which subsequently listed files
are located. In addition, you can map the sour ce directory to a desti nati on
directory under which the packaged files will be installed.

For example, the definition:
directory /buil d/ hpux/nfg/usr = /usr

causes files from the / bui | d/ hpux/ nf g/ directory to have the prefix / usr/ shi n
when installed. The destination directory must be a superset of the product’s

di r ect ory attribute, if defined in the product specification. If the product’s

di rect ory is defined, and the destination is not a superset, swpackage generates
an error.

The destination directory must be an absolute pathname. If not, then swpackage
generates an error.

The source directory can be either an absolute pathname, or a relative pathname.
If relative, swpackage interprets it relative to the current working directory in
which the command was invoked.

If the sour ce directory does not exist, swpackage generates an error.

Chapter 10 339

Creating Software Packages
Creating a Product Specification File (PSF)

Explicit File Specification You can explicitly specify the files to be packaged
into a fileset. If you want to recursively include all files and directories, use the
recursive file specification (fil e *).

You can use the di r ect ory keyword to define a source (and destination) for
explicitly specified files. If no di r ect or y keyword is active, then the full source
path and the absolute destination path must be specified for each file. An explicit
file specification overrides or adds to, on a file-by-file basis, the specifications set
by the di rect ory and/or fi | e_per m ssi ons keywords.

An explicit file specification uses this form:

file[-v] [-mnodel [- o [owner []][ui dl] [- g [groupl,]1lgi dl]
[-t typel [sourcel [desti nati on]

file This keyword specifies an existing file (usually within the
currently active source directory) to include in the fileset.

sour ce This value defines the path to a file you want to include in the
package.

If this is a relative path, swpackage will search for it relative
to the source directory set by the di r ect ory keyword. If no
source directory is active, swpackage will search for it
relative to the current working directory in which the
command was invoked.

All attributes for the destination file object are taken from
the source file, unless a fi | e_per m ssi on keyword is active,
or the - m - 0, or - g options are also included in the file
specification.

destination This value defines the destination path at which the file will
be installed. If dest i nat i on is a relative path, the active
destination directory set by the directory keyword will be
prefixed to it. If it is a relative path, and no destination
directory is active, swpackage generates an error. If the
destination is not specified, then the source path is used as
the destination, with the appropriate mapping done with the
active destination directory (if any).

- mnode This option defines the (octal) mode for a file or directory at
its destination.

-o [owner[,]][uid] This option defines the file’s owner name and/or uid at its
destination. If only the owner is specified, then the owner and
uid attributes are set for the destination file based on the
packaging host’s. If only the ui dis specified, it is set as the
destination’s uid and no owner name is assigned. If both are
specified, each sets the corresponding attribute for the file
object.

340

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

During an installation, the owner attribute is used to set the
owner name and uid, unless the owner name is not specified
or is not defined in the target system’s / et ¢/ passwd file. In
this case, the uid attribute is used to set the uid.

-g[group[,]][gid] This option defines the file’s group name and/or gid at its

-t type

Error Messages

destination. If only the gr oup is specified, then the group and
gid attributes are set for the destination file based on the
packaging host’s / et ¢/ gr oup. If only the gid specified, it is
set as the destination’s gid attribute and no group name is
assigned. If both are specified, each sets the corresponding
attribute for the file object.

During an installation, the group attribute is used to set the
group name and gid, unless the group name is not specified or
is not defined in the Target system’s / et ¢/ gr oup. In this
case, the gid attribute is used to set the gid.

Defines a file of type d (directory), s (symbolic), h (hard link),
or a (archive) for files that need not exist before packaging.

This option marks the file as volatile, meaning it can be
modified (that is, deleted) after it is installed without
impacting the fileset.

Files that may have their attributes (size, last modified time,
etc.) changed through normal use after they are installed
should be specified in the PSF file as volatile (by specifying

- v on the line defining the file). swverify will not, by default,
check file attributes for files that have the i s_vol atil e
attribute set to true (see the check_vol ati | e option for
swverify).

When processing existing files in a source directory, swpackage identifies the
following four kinds of errors:

® (Cannot search directory (permission denied)

® (Cannot read the file (permission denied)

® Unsupported file type encountered (source file must be a control script,
regular file, directory, hard link or symbolic link)

e Tile does not exist

Chapter 10

341

Creating Software Packages

Creating a Product Specification File (PSF)

Using Directory and File Keywords

The following examples illustrate the use of the di rectory and fi | e keywords.

Include all files under / bui | d/ hpux/ nf g to be rooted under / usr :

directory /buil d/ hpux/ nfg=/usr

file *

Include only certain files under / bui | d/ hpux/ nf g/, to be rooted under / usr
and / var/ adm sw:

di rectory /buil d/ hpux/ nf g=/ usr
file sbi n/ swinst al |
file shi n/ swcopy

directory /buil d/ hpux/ nf g=/var/adm sw

file nls/swinstall.cat nls/en_US 88591/swi nstall.cat
file defaul ts newconfig/defaults
file defaults defaults

Explicitly list files, no directory mapping specified:

file /build hpux/nfg/usr/bin/swnstall /usr/sbin/swinstall
file /build/ hpux/ nfg/usr/bin/swcopy /usr/sbin/swopy
file /build/ hpux/nfg/data/nls/swnstall.cat
/var/adm sw nl s/ en_US. 88591/ swi nstal | . cat
file /build/ hpux/nfg/data/defaults
[var/ adml sw newconfi g/ defaul ts
file /build/ hpux/nfg/data/defaults /var/adm sw defaul ts

Use all specification types to include files:

directory /buil d/ hpux/ nf g/ usr=/usr

file *
di rectory /buil d/ hpux/ nf g/ dat a=/ var/ adni sw
file defaults newconfig/defaults

file / bui | d/ hpux/ nf g/ dat a/ def aul t s=/ var/ adni sw def aul t s

Recursive File Specification Thefil e * keyword directs swpackage to
include every file (and directory) within the current source directory in the
fileset. swpackage attempts to include the entire, recursive contents of the source
directory in the fileset. (Partial wildcarding is not supported, e.g. fi | e dnt to
indicate all files starting with “dm”.)

All attributes for the destination file object are taken from the source file, unless
afile_perm ssion keyword is active (this keyword is described below).

342

Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)

The user can specify multiple

directory sour ce[=dest i nat i on]
file *

pairs to gather all files from different source directories into a single fileset.

If you do not want to recursively include all files and directories, use the explicit
file specification.

The di r ect ory keyword must have been previously specified before the fil e *
specification can be used. If not, swpackage generates an error.

Error Messages

When processing the directory recursively, swpackage encounters the following
errors:

® (Cannot search directory (permission denied)
® (Cannot read the file (permission denied)

® Unsupported file type encountered

PSF Extensions A PSF can contain extended file definitions. SD currently
supports exclude and include files.

Exclude files let you explicitly exclude files that would otherwise be included in
the PSF. The syntax is:

exclude filename

An exclude file can only be specified after a file definition. The file listed after the
exclude keyword is excluded from the current context (for example, from a
recursive file definition or wildcard).

If the filename specifies a directory, then all files below that directory are
excluded.

Include files let you include file definitions from a separate file. The syntax is:
file < filename

The include file must be separated from the file keyword by a less than sign (<).

Re-Specifying Files

In addition to being able to specify files as a group (with fil e *) for
general attributes, the PSF also allows you to “re-specify” files within
that definition to modify individual attributes.

Chapter 10

343

Creating Software Packages
Creating a Product Specification File (PSF)

For example, suppose you wanted to specify all the files in a fileset which
contained 100 files. All these files were to be recursively “discovered” and
packaged into the fileset. Most of them would have the same owner,
group, and mode (and other file attributes).

Out of those 100 files, there might be five that are volatile (that is, you
don’t care if they get modified or deleted). So, instead of listing all 100
files individually, and using the - v option for the five, you could specify
all 100 with fil e * and then modify the five individually in their own
way. For example, with files 1, 2, 3, 4, and 5:

directory source = /product file *

file -v 1
file -v 2
file -v 3
file -v 4
file -v 5

This also works well for permissions. For example, assume that nearly
all the 100 files in the preceding example had the same permission
attributes, but files 1, 2, and 3 required a different owner and mode:

directory source = /product

file permssions -0 bin -g bin -m 555
file *

file permssions -0 root -g other -m-04555
file 1l
file 2
file 3

This capability combines the recursive file specifications function with
explicit file specification. (See “Explicit File Specification” on page 340).

344

Chapter 10

Creating Software Packages
Packaging the Software (swpackage)

Packaging the Software (swpackage)

The swpackage command packages software products defined in a PSF
into a depot. You can then use the software in the depot with other
SD-UX commands.

Overview Features and limitations include:

Uses the PSF to organize files into products, subproducts, and
filesets.

Can include control scripts and PSFs to further specify how to handle
the software when installing it onto the target system.

Sets permissions of the files being packaged.

Can package either simple, one-fileset products or complex products
with many filesets and subproducts.

Provides a way to repackage (change) existing products.

The swpackage command provides only a command line user
interface. There is no Graphical User Interface for the packaging
tasks.

Can create directory depots (including CDs) or tape depots (useful for
distributing software via the internet).

Does not automatically register newly created depots. You must use
the swreg command (see “Registering and Unregistering Depots
(swreg)” on page 151).

Chapter 10

345

Creating Software Packages
Packaging the Software (swpackage)

The swpackage The swpackage process includes up to four phases:
Process
Table 10-4 swpackage Process Phases

I. Selection | swpackage reads the PSF

II. Analysis | swpackage analyzes the packaging tasks and
requirements before actually packaging the software
to the target depot or tape. swpackage compares the
software to be packaged against the target depot to
make sure the packaging operation will be successful.

II1. Build swpackage packages the source files and information
into a product object, and inserts the product into the
distribution depot. swpackage creates the depot but
does not register it. You must have appropriate
SD-UX permission to create this new depot on the
local host.

If the target (destination) is a tape media, a
temporary depot is created.

IV. Make (Optional) This phase occurs only if you are packaging
Tape to a distribution tape. swpackage copies the source
files and a temporary depot catalog to the tape. (Note
that swpackage cannot compress files when writing to
a tape.)

346 Chapter 10

Creating Software Packages
Packaging the Software (swpackage)

Figure 10-1, “An Overview of the Packaging Process,” shows an overview
of the swpackage session.

Figure 10-1 An Overview of the Packaging Process
Control Target
Scripts
Source Files N
N\,

Selection Analysis Package
Check syntax Check dependencies Copy source files
Construct PSF objects Check security Write catalog
Make selections Check disk space

Make Tape

Check tape size
Copy catalog
Copy contents (files)

Phase I: Selection When you run swpackage, you must specify a PSF and any other options
you wish to include. The swpackage command begins the session by
telling you the source, target, software selections, and options used,

¢ Determine the product, subproduct, and fileset required for the
structure

¢ Determine which files are contained in each fileset
Determine the attributes associated with each objects
Check PSF syntax and terminates the session if any are encountered

Chapter 10 347

Creating Software Packages

Packaging the Software (swpackage)

Phase II: Analysis

swpackage performs four checks during this phase:

1. Check for unresolved dependencies.

For every fileset in each selected product, swpackage checks to see if
a requisite of the fileset is not also selected or not already present in
the target depot. Unresolved dependencies within the product
generate errors. Unresolved dependencies across products produce
notes.

. Check your authorization to package (or re-package)

products.

For each new product (a product that does not exist on the target
depot) swpackage checks the target depot to see if you have
permission to create a new product on it (insert permission). If you do
not, the product is not selected.

For each existing product (one you are re-packaging) swpackage
checks to see if you have permission to change it (write permission).
If you do not, the product is unselected.

If all products are not selected because permission is denied, the
session terminates with an error.

If the depot is a new depot or if you are packaging to a tape, this
authorization check is skipped. If you have permission to create a
new depot, then you have permission to create products within it.
Since a tape session first writes to a temporary depot then copies it to
tape, if you have permission to create a new (temporary) depot, you
can package to tape.

. Check for software being repackaged.

For each selected product, swpackage checks to see if the product
already exists in the target depot.

e Ifit does exist, swpackage checks to see which filesets are being
added (new filesets) or modified.

e Ifit exists and all filesets are selected, swpackage checks to see if
any existing filesets have been obsoleted by the new product.

348

Chapter 10

Creating Software Packages
Packaging the Software (swpackage)

4. Performing Disk Space Analysis (DSA)

swpackage verifies that the target depot has enough free disk space
to package the selected products.

e Ifadequate disk space is available for the packaging operation to
proceed, swpackage writes a note to the log file to note the impact
on disk space.

e An error results if the package will encroach into the disk’s
minfree space.

e An error results if the package phase requires more disk space
than is available.

e Ifyou set the enf or ce_dsa command option to false, swpackage
changes disk space errors to warnings and continues. This lets
you cross into the minfree space to complete a packaging
operation.

Phase lll: Build When packaging a product, if the target depot does not exist, swpackage
creates it. If it does exist, swpackage will merge new product(s) into it.
For each different version of the product, a directory is created using the
defined product tag attribute and a unique instance number (instance
ID) for all the product versions that have the same tag.

Before a new storage directory is created, swpackage checks to see if this
product version has the same identifying attributes as an existing
product version.

If all the identifying attributes match, you are re-packaging (modifying)
an existing version. Otherwise, swpackage creates a new version in the
target distribution.

The packaging process uses an explicit ordering to avoid corrupting the
target distribution if a fatal error occurs. Each product is packaged in its
entirety and when all specified products have been packaged
successfully, the distribution’s global INDEX file is built/rebuilt. Within
each product construction, the following order is adhered to:

1. Check if the product is new or already exists. If it is new, create the
product’s storage directory.

2. For each fileset in the product, copy the fileset’s files into their
storage location (within the product’s storage directory), and create
the fileset’s catalog (database information) files.

Chapter 10 349

Creating Software Packages
Packaging the Software (swpackage)

Phase IV: Make
Tape

3. After the individual filesets, create the product’s informational files
(meta-files).

A target depot is only the first step in creating a CD-ROM. If the ISO
9660 standard format is desired, a utility to perform this conversion
would be necessary. This conversion is not supported by swpackage.

Distribution tapes are created in tar format (although SD-UX commands
can also read depots from cpio format tapes). To create the tape,
swpackage first builds the products into a temporary distribution depot.
(The depot is removed when swpackage completes.) To conserve space,
all files exist as references to the real source files. After the distribution
depot is constructed, swpackage then archives it, along with the real
files, onto the tape device.

When archiving a product that contains kernel filesets onto a tape
media, swpackage puts these filesets first within the archive to provide
efficient access by swinstall. swpackage also orders filesets based on
prerequisite dependency relationships.

This optional phase occurs only when you package to a distribution tape.

¢ In this phase, swpackage copies the source files and a temporary
depot catalog to the tape.

e swpackage does a tape space calculation to ensure that the tape can
hold the software package. If one tape cannot hold it all, then
swpackage will partition the software across multiple tapes.

¢ swpackage cannot compress files when writing to a tape.

350

Chapter 10

swpackage Syntax

Options and
Operands

Creating Software Packages
Packaging the Software (swpackage)

Using swpackage

swpackage [-p] [-v] [-V] [-Csession fil €]

[-d directory|devicel [-f software filel

[-s product_specification_file|directory]
[-Ssession file€]l-x option=val uel [-Xoption file]
[software _sel ections] [@target_sel ection]

-p

Previews the specified package session without
actually creating or modifying the depot or tape.

Turns on verbose output to st dout and lists messages
for each product, subproduct and fileset being
packaged. (The swpackage logfile in

[var/ adni sw swpackage. | og is not affected by this
option.)

List the data model revisions which swpackage can
read. swpackage always packages using the latest data
model revision.

-Csession file

Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.

-ddirectory|device

If creating a distribution directory, this option defines
the pathname of the di rect ory.

If creating a distribution tape, this option defines the
devi ce file on which to write the distribution. When
creating a distribution tape, the tape device (file) must
exist, and the t ar get _t ype=t ape option must be
specified.

-f software file

Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 58.

-s product_specification_file|directory

Specifies the PSF to use or the existing directory to use
as the source for the packaging session.

Chapter 10

351

Creating Software Packages
Packaging the Software (swpackage)

-Ssession file
Run the command based on values saved from a
previous installation session, as defined in
session file. See “Session Files” on page 61.

-X opti on=val ue
Sets a command opt i on to val ue and overrides default
values or a values in options files. See “Changing
Command Options” on page 353.

-Xoption file
Read session options and behaviors from opt i on_file.
See “Changing Command Options” on page 353.

sof tware_sel ections
The software objects to be installed. See “Software
Selections” on page 56.

If you do not include this specification, swpackage
packages all the products listed in the PSF.

@t arget _ sel ections
The target of the command. See “Target Selections” on
page 58.

If you are creating a distribution depot (directory), this
operand defines the location of the di r ect or y. Without
this operand, / var / spool / swis used as the default
depot directory.

If you are creating a distribution tape, this operand
names the devi ce file on which to write the t ar
archive. swpackage must be able to determine if the
media is a DDS tape or a disk file. Without this
operand, swpackage uses the device file, / dev/ swt ape.

352 Chapter 10

Changing
Command Options

Table 10-5

For More
Information

Creating Software Packages
Packaging the Software (swpackage)

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the options and default values that apply to swconfig.

swpackage Command Options and Default Values

admin_directory=/var/spool/sw
allow_partial_bundles=true
compress_command=
/usr/contrib/bin/gzip
compress_files=false
compress_index=false
compression_type=gzip
create_target_acls=true
distribution_source_directory=
/var/spool/sw
distribution_target_directory=
/var/spool/sw
distribution_target_serial=
/dev/rmt/Om
enforce_dsa=true
follow_symlinks=false
include_file_revisions=false
layout_version=1.0

log_msgid=0

logdetail=false
logfile=/var/adm/sw/swpackage.l
og

loglevel=1
media_capacity=1330
media_type=directory
package_in_place=false
reinstall_files=true

reinstall files_use_cksum=true
run_as_superuser=true
software=

source_files=psf
source_type=directory
targets=

uncompress_cmd=

verbose=
write_remote_files=false

See Appendix A, “Command Options,” on page 421 for complete
descriptions of each default.

Chapter 10

353

Creating Software Packages
Packaging the Software (swpackage)

Output of Logfile Messages

The log file / var / adm sw' swpackage. | og captures output from the
swpackage session.

e Message logging by default sends verbose messages to st dout .

(Setting the ver bose option to 0 reduces the amount of information
in st dout .)

e Message logging also sends errors and warnings to st derr.

¢ No logfile messages are written in preview (- p) mode.

¢ The logfile is equal to st dout plus stderr.

Here is a sample log:

======= (01/27/01 18:58:45 MST BEQ N swpackage SESSI ON
* Session started for user "root @dtest. nyco.coni.

* Source: vewd: t est . psf
* Target: vewd: / var/ spool / sw
* Sof tware sel ections:

*

* ptions:
previ ew true
ver bose 1
| ogl evel 1
logfile /var / adni sw swpackage. | og
sour ce_t ype file
target type directory
package i n_pl ace fal se
fol l ow sym i nks fal se
include file revisions fal se
enforce_dsa true
reinstall files true
reinstall files use cksum false
wite renote files fal se
create_target_acls true

354

Chapter 10

Creating Software Packages
Packaging the Software (swpackage)

* Begi nni ng Sel ecti on Phase.
* Readi ng the Product Specification File (PSF) "test. psf

* Reading the product "SD' at line 1.
* Reading the fileset "commands" at |ine 4.
======= (01/27/01 18:58:45 MST END swpackage SESSI ON

Chapter 10 355

Creating Software Packages
Packaging Tasks and Examples

NOTE

Packaging Tasks and Examples

To package the software products defined in the PSF pr oduct . psf into
the distribution depot / var/ spool / swand preview the task at the
verbose level before actually performing it, type:

swpackage -p -v -s product. psf @/ var/spool / sw

Registering Depots Created by swpackage

When a new depot is created by swpackage, it is not automatically
registered with the local host’s swagentd daemon.

To verify that the depot is registered, type:

swist -1 depot @ M/Depot

To register the depot, you must execute the swreg command:
sweg -1 depot depot_to register

Registering a depot makes it generally available as a source for swinstall
and swcopy tasks.

Registration provides a type of public recognition for the packaged depot:

¢ You can see the depot in the swinstall/swecopy GUI and see it in
swlist depot-level listings.

¢ You can read products from the depot (for example, to install).

For more information about registering depots, see “Registering and
Unregistering Depots (swreg)” on page 151.

If the only use of a depot created with swpackage is local access by the
packaging user, depot registration is not required.

356

Chapter 10

Creating Software Packages
Packaging Tasks and Examples

Creating and Mastering a CD-ROM Depot

When swpackage creates a new depot or packages a new product, it
always creates an ACL for the depot/product. If you were to create a
depot and then master it onto a CD-ROM, the CD-ROM would contain all
those ACLs, which could cause the following problems:

¢ it may result in too-restrictive permissions on the CD-ROM depot.
e you could have too many user-specific ACLs on the CD-ROM.

To solve these problems, you can tell swpackage to not create ACLs in the
depot by setting the creat e_t ar get _acl s option to false.

This feature is provided only for the superuser because only the local
superuser can change, delete, or add ACLs to a depot that has no ACLs.
The local superuser always has all permissions.

Setting the creat e_t ar get _acl s to false causes swpackage to skip the
creation of ACLs for each new product being packaged (and for the depot,
if it is new). This option has no impact on the ACLs that already exist in
the depot.

When a depot is used as a source for other SD-UX operations, its ACLs
(or lack of ACLs) have no bearing on the ACLs created for the targets of
the operation. Source ACLs are not related to target ACLs.

The swpackage command never creates ACLs when software is packaged
onto a tape.

Chapter 10

357

Creating Software Packages
Packaging Tasks and Examples

NOTE

Compressing Files to Increase Performance

The packaging process may pass large amounts of data back and forth
over the network and might slow down network performance. The
conpress_fil es option can improve performance by first compressing
files that are to be transferred. This performance gained depends on the
type of files transferred. Binary files compress less than 50%, text files
generally compress more. Improvements are best when transfers are
across a slow network (approximately 50Kbytes/second or less).

If set to true, conpress_fil es compresses files (if they have not been
compressed previously by SD-UX) before transfer from a source. You may
also specify a compression type with the conpr essi on_t ype option or
specify a compression command with the conpr essi on_comrand option.

This option should be set to true only when network bandwidth is clearly
restricting total throughput. If it is not clear that this option will help,
compare packaging operations both with and without compression before
consistently using this option. See Appendix A, “Command Options,” on
page 421 for more information on using command options.

swpackage cannot compress files when writing to a tape.

Packaging Security

SD-UX provides Access Control Lists (ACLs) to authorize who has
permission to perform specific operations on depots. Because the
swpackage command creates and modifies local depots only, the SD-UX
security provisions for remote operations do not apply to swpackage. See
Chapter 9, “SD-UX Security,” on page 255 for more information on ACLs.

The swpackage command operates as set ui d root, that is, the Package
Selection phase operates as the invoking user, the Analysis and
Packaging phases operate as the superuser. The superuser owns and
manages all depots and therefore has all permissions for all operations
on a depot. If the depot happens to be on an NFS volume, access
problems will not arise from ACLs, but will arise if the local superuser
does not have NF'S root access on the NFS mounted file system.

If you are not the local superuser, you will not have permission to create
or modify a depot unless the local superuser grants you permission.

358

Chapter 10

Creating Software Packages
Packaging Tasks and Examples

swpackage checks and enforces the following permissions:

1. Can you create a new depot?

Superuser Yes

Other Yes, if the ACL for the local host grants the user
“insert” permission, i.e. permission to insert a new
depot into the host.

If the proper permissions are not in place and the
depot is a new one, swpackage terminates with an
error.

2. Can you create a new product?
Superuser Yes

Other Yes, if the depot is new and you passed check #1
above or if the ACL for an existing depot grants you
insert permission, i.e. permission to change the
contents of the depot (by adding a new product).

If you are denied authorization to create a new
product, swpackage generates an error message
and excludes the product from the session.

3. Can you modify an existing product?
Superuser Yes

Other Yes, if the ACL for the existing product grants you
write permission, i.e. permission to
overwrite/change the contents of the product. If you
are denied authorization to change an existing
product, swpackage generates an error message
and excludes the product from the session.

If you are denied insert and write permission for all
selected products, swpackage terminates with an
error.

4. Can you change the depot-level attributes?

Superuser Yes

Chapter 10 359

Creating Software Packages
Packaging Tasks and Examples

Other

ACL Creation

Yes, if the depot is a new one and you passed check
#1 above or if the ACL for an existing depot grants
you write permission, i.e. permission to
write/change the contents of the depot (same as #2
above).

If you are denied authorization to change an
existing depot, and if the PSF specifies some
depot-level attributes, then swpackage produces a
warning message and does not change the depot
attributes.

When swpackage creates a new depot or a new product, it also creates an

ACL for it:
New depot

New product

swpackage creates an ACL for the depot and a
template ACL for all the products that will be packaged
into it.

The depot ACL is generated from the host’s
gl obal _soc_t enpl at e ACL (that is, the template ACL
established for new depots and new root file systems).

The depot’s pr oduct _t enpl at e ACL is generated from
the host’s gl obal _pr oduct _t enpl at e ACL (that is, the
host’s template ACL for new products).

The user running swpackage is established as the
owner of the new depot and is granted permissions as
defined in the depot ACL (which come from the

gl obal _soc_t enpl at e).

swpackage creates an ACL for the product; the ACL is
generated from the depot’s product _t enpl at e ACL.

ACL creation can be disabled by setting the
create_target_acls command to false.

When no ACL exists for a depot, only the superuser can
create new products or add/modify depot attributes.
When no ACL exists for a product, only the superuser
can modify it.

360

Chapter 10

Creating Software Packages
Packaging Tasks and Examples

Repackaging or Modifying a Software Package

There are two types of repackaging:

1. Adding to or modifying a fileset in an existing product.

Editing the PSF by adding a new fileset definition or changing an
existing fileset’s definition.

Running swpackage on the edited PSF, specifying the
new/changed fileset on the command line:

swpackage -s psf <other options> \

product. fileset @ depot

This invocation works regardless of whether subproducts are
defined in the product.

If you change a fileset by changing its tag attribute, swpackage
cannot correlate the existing, obsolete fileset with the new fileset.
Both become part of the changed product. To get rid of the
obsolete (renamed) fileset, use swremove:

swenmove -d product.old fileset @ depot

2. Modifying an entire existing product.

Editing the PSF by adding new fileset definitions, changing
existing fileset definitions, deleting existing fileset definitions or
changing the product’s definition (product-level attributes).

Running swpackage on the PSF, specifying the product on the
command line:

swpackage -s psf <other options> product @ depot

If you have deleted some fileset definitions in the PSF or
modified a fileset by changing it’s tag attribute, swpackage will
produce warning messages about the existing filesets that are
not part of the modified product’s definition (in the PSF). The
existing filesets plus the new filesets in the product’s definition
(in the PSF) will all be contained in the modified product.

The warnings are produced during analysis phase, and are only
produced when the whole product is being repackaged (as
opposed to subsets of the product).

Chapter 10

361

Creating Software Packages
Packaging Tasks and Examples

e To get rid of the obsolete (renamed) filesets, use swremove:
swenmove -d product.old fil eset @ depot

¢ You may want to swremove the product entirely before
repackaging the changes:

sw enmove -d product @ depot
swpackage -s psf <other options> product @ depot

Packaging In Place

If you set the package_i n_pl ace option to true, swpackage packages
each of the specified products such that the source files are not copied
into the target depot. Instead, swpackage inserts references to the source
files that make up the contents of each fileset. Control scripts are always
copied.

This feature lets you package products in a development or test
environment without consuming the full disk space of copying all the
source files into the target depot. Disk space analysis is skipped when
the package_i n_pl ace option is true.

The source files must remain in existence. If some are deleted, any
operations that use the depot as a source (for example, installing the
product with swinstall) will fail when they try to access the missing
source files.

If a source file changes and the product is not repackaged, the
information that describes the source file will be incorrect (for example,
the file checksum. This incorrect information will not prevent the use of
that target depot as a source (for example, installing with swinstall).
However, the incorrect information will be propagated along each time
the product is copied or installed from the depot. The result is that a
swverify operation on the installed product always flags the
inconsistencies with an error unless you disable the check of file
contents.

362

Chapter 10

Creating Software Packages
Packaging Tasks and Examples

Following Symbolic Links in the Source

If you set the f ol | ow _syml i nks option to true, swpackage follows every
source file that is a symbolic link and include the file it points to in the
packaged fileset.

swpackage also follows each source directory that is a symbolic link,
which affects the behavior of the fi |l e * keyword (recursive file
specification). Instead of including just the symbolic link in the packaged
fileset, the directory it points to and all files contained below it will be
included in the packaged fileset.

The default value for this option is false, which causes symbolic links
that are encountered in the source to be packaged as symbolic links. The
symbolic link can point to a file that is also part of the fileset, or to a file
that is not.

Generating File Revisions

If you set the i ncl ude_fil e_revi si ons option to true, swpackage
examines each source file using the what and ident commands to extract
an SCCS or RCS revision value and assign it as the file’s revision
attribute.

Because a file can have multiple revision strings embedded within it,
swpackage uses the first one returned. It extracts the revision value from
the full revision string and stores it.

This option is time consuming, especially when a what search fails and
the ident command is then executed.

The default value for this option is false, which causes swpackage to skip
the examination. No value for the revision attribute is assigned to the
files being packaged.

Chapter 10 363

Creating Software Packages
Packaging Tasks and Examples

Depots on Remote File Systems

Because the swpackage analysis and build phases operate as the
superuser, there are constraints on how swpackage creates, adds to, or
modifies products on a depot that exists in an NFS-mounted file system.

If the superuser does not have write permission on the remote file
system, swpackage will be unable to create a new depot-it will terminate
before the analysis phase begins.

If the superuser does have write permission on the remote file system
but the optionwite _renote fil es isfalse, swpackage will be unable to
create a new depot - it will terminate before the analysis phase begins.

If the superuser does have write permission on the remote file system
and you set thewrite renote fil es totrue, swpackage creates the new
depot and package products into it.

The constraints for an existing NF'S mounted depot are the same as
when creating a new depot.

So, you must:

1. Set the write_renote_fil es option to true and

2. Make sure the superuser can write to the NF'S file system to package
a depot on an NFS-mounted file system.

When these constraints are satisfied, the ACL protection mechanism
controls operations on NFS mounted depots the same way it controls
operations on local depots.

364

Chapter 10

Creating Software Packages
Packaging Tasks and Examples

Verifying the Software Package

If swpackage created a depot rather than storing the package in an
existing registered depot, you must register the depot with the swreg
command. (See “Registering Depots Created by swpackage” on

page 356.)

After the depot is registered, you can verify it with the swverify
command. For example, to verify the integrity of the product Pascal in
the local default depot:

swerify -d Pascal

For more information about verifying depots, see “Verifying a Depot
(swverify -d)” on page 161.

You can also test the package by installing it on a system. For example,
to install the package named Pascal , located on the default depot
/var/ spool / swin the host svrhost, onto the primary root of a host
named nyhost :

swinstall -s svrhost Pascal @ nyhost

(This example does not specify the depot location because it is assumed
that the software is located in the default / var/ spool / swon svr host .)

For more information about verifying installed software, see “Verifying
Your Installation (swverify)” on page 89

Packaging Patch Software

A number of software attributes are available to all software levels
(bundles, products, subproducts, and filesets) that permit packaging of
patch software. For complete information on patch attributes and a
sample PSF, see Chapter 5, “Managing Patches,” on page 163.

Chapter 10 365

Creating Software Packages
Packaging Tasks and Examples

NOTE

Writing to Multiple Tapes

When you package products to a distribution tape, the nedi a_capacity

option defines the size of the tape media (in one million byte units). The
default value for this option is medi a_capaci t y=1330, which is the size

of an HP DDS tape. If the target tape is not a DDS tape, you must specify
the medi a_capaci ty value.

The capacity of the DDS tape is in one million byte units (1,000,000
bytes), not Mbyte units (1,048,576 bytes). Most tape drive manufacturers
specify capacity in one-million byte units.

If the products being packaged require more space than the specified
media capacity, swpackage will partition the products across multiple
tapes.

To find out if multiple tapes will be required, swpackage will calculate
the tape blocks required to store the depot catalog and each product’s
contents.

When multiple tapes are necessary, swpackage writes the entire catalog
onto the first tape plus any product contents that also fit. For each
subsequent tape, swpackage prompts you for a “tape is ready” response
before continuing.

To continue with the next tape, enter one of the following responses:
Return Use the same device.

pathname Use the new device/file pat hnane.

quit Terminate the write-to-tape operation.

Partitioning is done at the fileset level, so a product can span multiple
tapes. A single fileset’s contents cannot span multiple tapes. If any single
fileset has a size that exceeds the media capacity, swpackage generates
an error and terminates. It also generates an error if the catalog will not
fit on the first tape.

366

Chapter 10

Creating Software Packages
Packaging Tasks and Examples

Making Tapes from an Existing Depot

You can copy one or more products from an existing depot to a tape using
swpackage. Instead of specifying a PSF as the source for a packaging
session, just specify an existing depot. For example:

swpackage -s /var/spool / sw
To copy all of the products in a depot to a tape:
swpackage -s depot -d tape -x target type=tape

To copy only some of the products in a depot to a tape, specify the
products as software selections:

swpackage -s depot -d tape -x target type=tape \
product1 product?2 ...

You can also use the -f i/ e option can be used to specify several
software selections instead of listing them on the command line.

When products are copied from a depot to a tape, the ACLs within the
depot are not copied. (The swpackage command never creates ACLs
when software is packaged onto a tape.)

swpackage cannot compress files when writing to a tape.

Chapter 10

367

Creating Software Packages
Packaging Tasks and Examples

368 Chapter 10

Using Control Scripts

11 Using Control Scripts

This chapter discusses how to use control scripts.

Table 11-1 Chapter Topics

Topics:

“Types of Control Scripts” on page 371

“Using Environment Variables” on page 381

“Execution of Control Scripts” on page 387

“Execution of Other Commands by Control Scripts” on page 396

“Control Script Input and Output” on page 397

“File Management by Control Scripts” on page 401

“Testing Control Scripts” on page 402

“Requesting User Responses (swask)” on page 407

Chapter 11 369

Using Control Scripts
Introduction to Control Scripts

Introduction to Control Scripts

SD-UX supports execution of both product and fileset control scripts.
These shell scripts allow you to perform additional, customized checks
and operations as part your regular software management tasks. The
swinstall, sweonfig, swverify, swask, and swremove commands can
execute one or more of these scripts. Control scripts are usually supplied
by software vendors, but you can write your own. All control scripts are
optional.

Product level control scripts are run when any fileset within that product
is selected for installation, configuration, verification, or removal so the
activities in product control scripts must pertain to all filesets in that
product, but not to any fileset in particular. Actions you want to apply to
every fileset in a product should be in the appropriate product level
control script.

Fileset scripts must pertain only to the installation, configuration, or
removal of that fileset, and not to any other fileset or to a parent product.

Control scripts can perform a wide variety of customization and
configuration tasks, such as (but not limited to):

e Verifying if someone is actively using the product and, if so,
preventing reinstallation, update or removal.

¢ Ensuring the local host system is compatible with the software
(scripts can check beyond the compatibility enforced by the product’s
unare attributes).

¢ Removing obsolete files or previously installed versions of the
product.

e Creating links to, or additional copies of, files after they have been
installed.

e Copying configurable files into place on first-time installation.

¢ Conditionally copying configurable files into place on later updates.
¢ Modifying existing configuration files for new features.

¢ Rebuilding custom versions of configuration files.

¢ Creating device files or custom programs.

¢ Killing and/or starting daemons.

370 Chapter 11

Using Control Scripts
Introduction to Control Scripts

Types of Control Scripts

Here are the control scripts that SD-UX supports:
¢ Checkinstall Script

This script is run by swinstall during its Analysis phase to insure
that the installation (and configuration) can be attempted. For
example, the OS run state, running processes, or other prerequisite
conditions beyond dependencies could be checked. It should not
change the state of the system.

A checkinstall script’s chief merit is its ability to detect if the system
contains a hardware configuration that might lead to catastrophe -
an unbootable system or file system corruption - if the installation of
the selected software was allowed to proceed. It also acts as the test
for conflicts with other software selections or with software already
installed.

e Preinstall Script

This script is run by swinstall before loading the software files. For
example, this script could remove obsolete files, or move an existing
file aside during an update.

A preinstall script is called during swinstall’s Execution Phase. The

preinstall script for each file is executed just before that fileset’s files
are installed onto the target system. A product level preinstall script
is called before a product’s filesets.

Preinstall scripts for all kernel filesets and their prerequisites are all
run before the kernel build takes place. If the kernel build fails and
swinstall exits, the preinstall scripts are removed from the system.
Product level preinstall scripts are invoked twice for all products
that contain kernel filesets: once when the kernel filesets are their
prerequisites are installed; a second time when the remaining
filesets are installed.

Chapter 11 371

Using Control Scripts

Introduction to Control Scripts

Postinstall Script

This script is run by swinstall after loading the software files. For
example, this script could move a default file into place.

The postinstall script is part of swinstall’s Load phase. After the files
are loaded, the fileset’s postinstall script is run. Then, the products’s
postinstall script (if any) is run.

Unpreinstall Script

Unpreinstall scripts are executed during the load phase of swinstall
if recovery is initiated.

All undo scripts are executed in the reverse order of the normal
scripts. For each fileset being recovered, the unpostinstall script is
run, the fileset files are restored, and the unpreinstall script is run.
An undo script is executed if its corresponding script was executed.

An unpreinstall script should undo any operation that the preinstall
script did. For example, if the preinstall script moved a file, the
unpreinstall script should move it back. If the preinstall script copied
a file, the unpreinstall script should remove it.

For a product to be recoverable, no files should be removed by
preinstall or postinstall scripts. Configure scripts are a good place to
remove obsolete files.

A product unpreinstall script is run after the fileset unpreinstall
scripts.

Unpostinstall Script

Unpostinstall scripts are executed during the load phase of swinstall
if recovery is initiated.

All undo scripts are executed in the reverse order of the normal
scripts. An undo script is executed if its corresponding script was
executed.

An unpostinstall script should undo any operation that the
postinstall script did. For example, if the postinstall script moved a
file, the unpostinstall script should move it back. If the postinstall
script copied a file, the unpostinstall script should remove it.

For a product to be recoverable, no files should be removed by
preinstall or postinstall scripts. Configure scripts are a good place to
remove obsolete files.

372

Chapter 11

NOTE

Using Control Scripts
Introduction to Control Scripts

Product level unpostinstall scripts are not supported.

Configure Script

This script is run by swinstall or by swconfig to configure the host for
the software, or configure the software for host-specific information.
For example, this script could change a host’s specific configuration
file such as / et c/ ser vi ces, add the host name or other host
resources such as available printers to its own configuration file, or
perform compilations.

Configure scripts are run by swinstall for all products (in
prerequisite order) after the products have completed the Load
phase. However, they are only run when installing to a system that
will actually be using the software. They are deferred when
installing to an alternate root (for example, for diskless or building
test file systems) and run instead by the swconfig command when
the alternate root is now the root of the system using the software.

The swconfig command can also be used to rerun configure scripts
that failed during a normal install. A successful execution of the
configure step (whether there is a script or not) moves the software
from the installed state to the configured or ready-to-use state.
Configure scripts (and all others) must be able to be run many times
(that is, they must be re-executable).

Configure scripts are a good place to remove obsolete files.
Configure scripts are not run for installations to alternate roots.
Verify Script

Verify scripts are run by the swverify command any time after the
software has been installed and configured. Like other scripts, they
are intended to verify anything that the SD-UX software
management tools do not verify by default. For example, this script
could check to see that the software is configured properly and that
you have a proper license to use it.

Chapter 11

373

Using Control Scripts

Introduction to Control Scripts

Fix Script

Defines the fix script run by swverify to correct and report problems
on installed software. The fix script can create missing directories,
correct file modifications (mode, owner, group, major, and

minor), and recreate symbolic links.

Unconfigure Script

A script run by swconfig or swremove to undo a host or software
configuration originally performed by a configure script. For
example, an unconfigure script could remove the configuration from
the / et c/ servi ces file. (The unconfigure task moves the software
from the configured state back to the installed state.)

Only the swremove command actually removes software. although
you can run unconfigure scripts using swconfig. Unconfigure scripts
are not run for removals from alternate roots.

Checkremove Scripts

The checkremove script is run by swremove during the remove
analysis phase to allow any checks before the software is
permanently removed. For example, the script could check whether
anyone was currently using the software before removing it.

Preremove Scripts

This script is executed just before removing files. It can be
destructive to the application because files will be removed next. It
could remove files that the postinstall script created. For example, a
preremove script could save a specific fileset to another location
before removing the rest of the filesets in the product.

This script and the postremove script are part of the Remove phase
of swremove. Within each product, preremove scripts are run (in the
reverse order dictated by any prerequisites), files are removed, then
all postremove scripts are run.

Postremove Scripts

This script is executed just after removing files. It is the companion
script to the postinstall script. For example, if this was a patch
fileset, then the preinstall script could move the original file aside,
and this postremove script could move the original file back if the
patch was removed.

374

Chapter 11

Using Control Scripts
Introduction to Control Scripts

¢ Request Scripts

This interactive script requests a response from the user as part of
software installation or configuration. Request scripts write
information into a response file for later use by the configure script
or other scripts. You can run requests scripts by executing the swask
command or using the ask option with swinstall or swconfig after
selection and before the analysis phase.

e Other Scripts

You can include other control scripts, such as a subscript that is
sourced by the above scripts. The location of the control scripts is
passed to all scripts via the SW OCONTROL_DI RECTCRY environment
variable, and are denoted by the keyword control _fil e within the
PSF.

Space Files

The space control file is not a script. It lets you define additional disk
space requirements for the filesets and notes positive disk space impact
on any directory or file that results from the actions of control scripts.

Each fileset or product may contain a space file. The space file lists a
path and a byte size for each path. For example:

/t np/ space_dumyl 2000
/ opt/ space_dumny?2 2000
/t np/ space_dumy3 3000
/nydir/ 4000

For each directory or file path listed in the space file, swinstall adds the
size in bytes to the disk space requirements. The size reflects the
maximum transient or permanent disk space required for the install.

Chapter 11 375

Using Control Scripts
Introduction to Control Scripts

Script Interpreter

By default, SD interprets scripts with a POSIX shell (sh). You can specify
other script interpreters in two ways.

First, any control script can define an interpreter in the first line of the
script.

Second, you can use the i nt er pret er keyword to define a different
interpreter for specific scripts. The syntax is:

interpreter interpreter_name
For example:

control file
source scripts
tag checki nst al |
interpreter ksh

SD checks that the interpreter is available. If the interpreter is not
available, the script fails. (To avoid this problem, you can use a
checkinstall script to verify the existence of any script interpreters that
you specify.) If SD finds the interpreter, it processes the script normally
using the interpreter that you specified.

376 Chapter 11

Using Control Scripts
Introduction to Control Scripts

Control Script Format

A control script should be a shell script (as opposed to a binary) and
written to be interpreted by the Posix.2 shell / sbi n/ sh. Korn shell
(formerly / bi n/ ksh) syntax is acceptable to the Posix.2 shell. A script
written for csh is not supported.

The script should have a simple header similar to the example below.
Included in the header should also be comment lines which state the
product and fileset to which the script belongs, the name of the script,
the revision string as required by the what(1) command, and a simple
copyright statement.

#! /sbin/sh

BT

Product: <PRCDUCT>

Fileset: <FlLESET>

configure

@Q#) $Revision: 10.30 $
BT

#

(c) Copyright M/Conpany, 2001
#

BT

Chapter 11

377

Using Control Scripts

General Script Guidelines

General Script Guidelines

Here are some guidelines for writing control scripts:

Consider doing most control script work within the configure script.

All scripts are executed serially and directly impact the total time
required to complete an installation, configuration, or removal task.
Consider the impact control scripts will have on performance.

The current working directory in which the agent executes a control
script is not defined. Use the environment variables provided by the
agent for all pathname references.

Disk space analysis does not account for files created, copied or
removed by control scripts.

The control scripts you write may be executed several times (for
example, configure, then unconfigure, then configure...) so they must
be able to support multiple executions.

You may have to re-execute or debug control scripts, especially when
they generate error or warning conditions, so your scripts should be
well-written and commented.

Control script st dout and st derr are both logged, so you should
restrict output to only the information the user requires.

Make sure you specify the path to a shell that is proper for your
system. If you get the following message when you execute a script:

Cannot execut e /var/adm sw product s/ PRODUCT/ FI LESET/
configure. Bad file nunber (9).

it means the shell in your script has a path that is not correct for
your system. (HP-UX 9.X scripts = #! / bi n/ sh and HP-UX 10.X and
11.X scripts = #! / shi n/ sh.)

378

Chapter 11

Using Control Scripts
Packaging Control Scripts

Packaging Control Scripts

The following table describes the control script keywords for use in a
PSF.

Table 11-2 Control Script Keywords
Size
in
Keyword Type Bytes Example
checki nstal | path_string 1024 / nf g/ sd/ scripts/checkinstall
preinstall pat h_string 1024 /nfgl/sd/scripts/preinstall
postinstal | pat h_string 1024 / nfgl/sd/scripts/postinstall
unprei nstal | pat h_string 1024 / nfg/ sd/ scripts/unpreinstall

unposti nst al |

pat h_string 1024 / nf g/ sd/ scripts/unpostinstall

configure

pat h_string 1024 / nf gl sd/ scripts/configure

unconf i gure

path_string 1024 / nf g/ sd/ scripts/unconfigure

verify

pat h_string 1024 /nfgl/sdl/scripts/verify

checkr enove

pat h_string 1024 / nf g/ sd/ scri pt s/ checkr enove

pr er enove path_string 1024 / nf g/ sd/ scripts/prerenove
post renove pat h_string 1024 / nf g/ sd/ scri pt s/ postrenove
request pat h_string 1024 / nf gl sd/ scri pts/request

control file

path_string 1024 / nfg/sd/scripts/subscripts

fix

pat h_string 1024 /nfglsd/scripts/fix

space

pat h_string 1024 / nf g/ sd/ scri pt s/ space

The value of each keyword is the source filename for the specific control
script. swpackage will copy the specified control script’s filename into the
depot’s storage directory for the associated product or fileset, using the
keyword as the tag of the stored script (for example, “configure”).

Chapter 11

379

Using Control Scripts

Packaging Control Scripts

NOTE

You can include control script specifications or data files with the product
or fileset. These are stored alongside the standard SD-UX control scripts.
For example, you could specify a subscript called by the supported
control scripts, or a data file read by these scripts. These additional
scripts are specified using the syntax:

PATH =t ag]

If you do not specify the t ag component, swpackage uses the
basename(1) value of the source pathname as the tag.

Control Script Location on the File System During
Execution

The checkinstall, preinstall, postinstall, and auxiliary scripts for a fileset
are downloaded to a temporary directory from which they are invoked:

<FI LESET>/ control script/var/tnp/ <CATALCG D R>/ \
cat al og/ <PRQDUCT>/

The form of the <CATALOG DI R>is: aaaa<pi d>, where <pi d> is the
swinstall process ID number.

The scripts are delivered to that location from the depot immediately
after Product Selection has completed, at the beginning of the Analysis
phase and before any system checks have begun. The temporary
directory is removed automatically upon exiting swinstall.

After successful fileset installation, all other control scripts will be
located in the IPD. They will be delivered to that location from the depot
as part of the installation of the fileset’s other files:

/var/ adm sw pr oduct s/ <PRODUCT>/ <FI LESET>/ control _scri pt

The location of the IPD is relative to the root directory under which the
software installation is done. If the installation is to an alternate root,
/ mt/ di sk2 for example, then the IPD for that software will be under:

/ mt / di sk2/ var/ adni sw pr oduct s/ <PRCDUCT>/ <FI LESET>

All necessary directories under / var / adml swwill be created by the
SD-UX process. All files under those directories will be filled by SD-UX
initiated processes. Files must never be delivered directly under / var ; it
is a private directory.

380

Chapter 11

Using Control Scripts
Using Environment Variables

Using Environment Variables

All control scripts are invoked as the superuser and executed by the
agent process. HP-UX provides environment variables that affect SD-UX
commands and scripts. These variables fall are catgorized as follows:

e Variables that affect all SD-UX commands.
e Variables that affect all SD-UX scripts.

e Variables that affect swinstall and swremove.

Variables That Affect All SD-UX Commands

LANG

e This external variable applies to all SD commands except
install -sd.

¢ Determines the language in which messages are displayed. If LANGis
not specified or is set to the empty string, a default value of “C” is
used.

¢ The language in which the SD agent and daemon log messages are
displayed is set by the system configuration variable script,
/etcl/rc.config.d/ LANG For example, / et c/ rc. confi g. d/ LANG
must be set to “LANG=j a_JP. SJI S’ or “LANG=j a_JP. eucJP” to make
the agent and daemon log messages display in Japanese.

You may also use the export LANG=command.

e See the lang(5) man page for more information.

LC_ALL

¢ Determines the locale used to override any values for locale
categories specified by the settings of LANGor any environment
variables beginning with LC .

LC_CTYPE

¢ Determines the interpretation of sequences of bytes of text data as
characters (e.g., single-versus multibyte characters in values for
vendor-defined attributes).

Chapter 11

381

Using Control Scripts
Using Environment Variables

LC_MESSAGES

¢ Determines the language in which messages should be written.

LC_TIME

¢ Determines the format of dates (cr eat e_dat e and nod_dat e) when
displayed by swlist. Used by all utilities when displaying dates and
times in st dout , st derr, and logging.

TZ

¢ Determines the time zone for use when displaying dates and times.

Variables That Affect All SD-UX Scripts

SW_CATALOG

e Holds the path to the Installed Products Database (IPD), relative
to the path in the SW ROOT_DI RECTCRY environment variable.
(You can specify a path for the IPD using the
i nstal | ed_sof t war e_cat al og default option.)

SW_CONTROL_DIRECTORY

¢ Defines the full pathname to the directory containing the script. This
tells other scripts where other control scripts for the software are
located (subscripts, for example).

Also contains the response file generated by a request script. Other
scripts that reference the response file access the file by referencing
this variable.

The directory is either a temporary catalog directory, or a directory
within in the Installed Products Database (IPD).

382 Chapter 11

Using Control Scripts
Using Environment Variables

Here is an example of sourcing:

${ SW CONTRCL_DI RECTCRY} subscr i pt
grep sonething ${ SW OONTRCL_DI RECTCRY} dat afi | e

SW_CONTROL_TAG

Holds the tag name of the control _fil e being executed. When
packaging software, you can define a physical name and path for a
control file in a depot. This lets you define the control fil e with a
name other than its tag and lets you use multiple control file
definitions to point to the same file. A control fil e can query the
SW CONTRCOL_TAGvariable to determine which tag is being executed.

SW_LOCATION

Defines the location of the product, which may have been changed
from the default product directory (if the product is locatable).

When installing to (or removing from) the primary root directory
(“/"), this variable is the absolute path to the product directory. For
operations on an alternate root directory, the variable must be
prefixed by SW_ROOT_DIRECTORY to correctly reference product
files.

If a product is not locatable, then the value of SW_LOCATION will
always be the default product directory defined when the product is
packaged.

SW_PATH

The search path for commands. A PATH variable defines the
minimum set of commands available for use in a control script (for
example, / shi n: / usr/ bi n:/usr/ccs/ shin).

A control script should always set its own PATH variable, and the
PATH variable must begin with $SW.PATH. The PATH should be set
as follows:

PATH=$SW PATH
export PATH

Additional directories, like / usr/ | ocal / bi n, can be appended to
PATH, but you must make sure that the commands in those
directories exist.

Chapter 11

383

Using Control Scripts

Using Environment Variables

SW_ROOT_DIRECTORY

Defines the root directory in which the session is operating, either “/”
or an alternate root directory. This variable tells control scripts the
root directory in which the products are installed. A script must use
this directory as a prefix to SW_LOCATION to locate the product’s
installed files.

All control scripts (except for the configure and unconfigure scripts)
can be executed during an install or remove task on an alternate
root. If the scripts reference any product files, each reference must
include the {(SW_ROOT_DIRECTORY} in the file pathname.

The scripts may only need to perform actions when installing to
(removing from) the primary root directory (“/”). If so, then the
SW_ROOT_DIRECTORY can be used to cause a simple exit 0 when
the task is operating in an alternate root directory:

if test "${SWROOI D RECTCRY}" = "/"
t hen

exit O
fi

SW_SESSION_OPTIONS

Contains the pathname of a file containing the value of every option
for a particular command, including software and target selections.
This lets scripts retrieve any command options and values other than
the ones provided explicitly by other environment variables.

SW_SOFTWARE_SPEC

Contains the fully qualified software specification of the current
product or fileset. The software specification allows the product or
fileset to be uniquely identified. (Fully qualified software specs
include the r =, a=, and v= version components even if they contain
empty strings. For installed software, | = must also be included.)

384

Chapter 11

Using Control Scripts
Using Environment Variables

Variables That Affect swinstall and swremove

SW_DEFERRED_KERNBLD

e This variable is normally unset. If it is set, the actions necessary for
preparing the system file / st and/ syst emcannot be accomplished
from within the postinstall scripts, but instead must be accomplished
by the configure scripts. This occurs whenever software is installed
to a directory other than /.

e This variable should be read only by the configure and postinstall
scripts of a kernel fileset.

SW_INITIAL_INSTALL

¢ This variable is normally unset. If it is set, the swinstall session is
being run as the back end of an initial system software installation
(that is, a “cold” install).

SW_KERNEL_PATH

e The path to the kernel. The default value is / st and/ viruni x.

SW_SESSION_IS_KERNEL

¢ Indicates whether a kernel build is scheduled for the current
install/remove session.

e A “true” value indicates that the selected kernel fileset is scheduled
for a kernel build and that changes to /stand/system are required.

e A null value indicates that a kernel build is not scheduled and that
changes to /stand/system are not required.

¢ The value of this variable is always equal to the value of
SW_SESSION_IS_REBOOT.

SW_SESSION_IS_REBOOT

¢ Indicates whether a reboot is scheduled for a fileset selected for
removal. Because all HP-UX kernel filesets are also reboot filesets,
the values of this variables is always equal to the value of
SW_SESSION_IS_KERNEL.

Chapter 11

385

Using Control Scripts
Using Environment Variables

SW_SYSTEM_FILE_PATH

e The path to the kernel’s system file. The default value is
/ st and/ syst em

Variables That Affect swverify

SW_IS_COMPATIBLE

¢ Designed to help you determine if installed software is incompatible
and should be removed from a system.

¢ For use during the execution of a verify script, which is called by the
swverify command.

e The variable will be set to true if the software being considered is
compatible with the system on which it is installed.

e Set to false if the software being considered incompatible with the
system on which it is installed.

386 Chapter 11

Using Control Scripts
Execution of Control Scripts

Execution of Control Scripts

This section details how each control script is executed.

Details Common to All Control Scripts

The agent runs as the superuser, therefore control scripts are always
executed as the superuser. Use appropriate caution.

Control scripts are only executed for software being installed,
removed or verified in the primary root (“/”) or an alternate root
directory. Scripts are never executed for software in a depot.

Each script must set its own PATHvariable, using SW PATH

Neither swinstall nor swremove require that the system be shut
down. Control scripts must work correctly on both quiet single-user
systems and active multi-user systems. They must deal properly
with unremovable running programs. They might have to shut down
or start up processes that they own themselves to succeed.

Control scripts can be re-executed. If a script is run more than once,
it should produce the same results each time. The second execution
should not produce any error messages or leave the system in a state
different than before it was run.

A script should be executable after its fileset was loaded without
damaging the new fileset with which it is associated.

For example, if you must copy a file from under / usr/ newconfi g to
another location, use the cpi 0 - p command to copy it rather than
the cp command to move it, or check for the absence of the

[usr/ newconfi g version before attempting the move. (The cpio(1)
command may be preferred over c¢p(1) because cpio copies the mode,
owner, and group permissions.)

Control scripts must exit with a return value of zero (exit 0)if no
serious errors occur (no error or warning messages printed, as
described in the “Control Script Input and Output” on page 397.)
They must return 1 (exit 1) in case of any serious errors, and 2
(exit 2)for warnings.

All messages produced by control scripts are redirected to the agent

logfile.

Chapter 11

387

Using Control Scripts
Execution of Control Scripts

The set of control scripts executed during a particular phase of a task
are always executed in prerequisite order the scripts of each
prerequisite product/fileset are executed before the script of the
dependent fileset.

All control scripts are readable by any other control script.

Checkinstall Scripts

Checkinstall scripts are executed during the Analysis phase of a
swinstall session. The pathname of the script being executed is:

$ {SW CONTROL_DI RECTCRY}checki nst al |
A checkinstall script must not modify the system.

A checkinstall script determines whether the product/fileset can be
installed by performing checks beyond those performed by swinstall.
Example checks include checking to see if the product/fileset is
actively in use, or checking that the system run-level is appropriate.

If you are using a request script as part of the install, the
checkinstall script should:

— Verify that the response file exists.

— Prevent swinstall from “hanging” if:

— A script tries to read a response file that does not exist, or

— The install or configuration relies on information in the
missing response file.

If the checkinstall script fails, the fileset will not be installed. The
interactive interface of swinstall will notify you that the checkinstall
script has failed. Then you can: diagnose the problem, fix it and
re-execute the analysis phase; or unselect the product/fileset. The
non-interactive interface tells you about each individual checkinstall
failure and the filesets are not installed.

A checkinstall script is executed for installations into the primary
root (“/”) or an alternate root. Since most of the actions of this script
will involve checking the current conditions of a running system
(that is, the primary root), it may not need to perform any actions
when the product/fileset is being installed into an alternate root.

388

Chapter 11

Using Control Scripts
Execution of Control Scripts

Preinstall Scripts

Preinstall scripts are executed during the Load phase of a swinstall
session. The pathname of the script being executed is:

$ {SW OONTROL_DI RECTCRY}pr ei nst al |

The preinstall script for a product is executed immediately before the
fileset’s files are installed.

A preinstall script should perform specific tasks preparatory to the
files being installed. The swinstall session will proceed with
installing the files regardless of the return value from a preinstall
script. Example actions include removing obsolete files (in an update
scenario).

A preinstall script is executed for installations into the primary root
(“/”) or an alternate root. The scope of actions of a preinstall script
should be within the product itself (that is, the files within the
product’s directory).

Postinstall Scripts

Postinstall scripts are executed during the Load phase of a swinstall
session. The pathname of the script being executed is:

$ {SW OONTROL_DI RECTCRY}posti nst al |

The postinstall script for a product is executed immediately after the
fileset’s files are installed.

A postinstall script should perform specific tasks related to the files
just installed. The swinstall session will proceed with the remainder
of the session (for example, configuration) regardless of the return
value from a postinstall script. Example actions include adding a
kernel driver to the system file or moving a file from under

[usr/ newconfi g to its correct place in the file system.

A postinstall script is executed for installations into the primary root
(“/”) or an alternate root. The scope of actions of a postinstall script
should be within the product itself (that is, the files within the
product’s directory).

The customization or configuration tasks that must be performed to
enable the product/fileset for general use should not be done in the
postinstall script, but the configure script (described below).

Chapter 11

389

Using Control Scripts

Execution of Control Scripts

Configure Scripts

Configure scripts are executed during the Configuration phase of a
swinstall session. SD expects configure scripts at system start-up if
the swinstall session triggers a system reboot. The swconfig
command can also execute configure scripts. The pathname of the
script being executed is:

$ {SW CONTROL_DI RECTCRY}confi gure

A configure script is only executed for installations into the primary
root (“/”). If you choose to defer configuration in the swinstall session,
then the configure script will be executed by a swconfig session at
some time after the installation completes.

A configure script is usually executed only when the product/fileset is
in the installed state.

A configure script is the primary way to move a product/fileset from
the installed state to the configured state. The script should perform
all (or most of) the activities needed to enable the product/fileset for
use.

A configure script can use configuration information provided by the
user and collected by a request script.

When an existing version of a product is updated to a new version,
the configure script(s) for the new version must perform any
unconfigurations-configurations of the old version that are necessary
to properly configure the new version. The unconfigure script(s) for
the old version are not executed.

Configure scripts are for architecture-dependent actions because
they will always be run on the architecture of the install target.

Configure scripts are the best place for removing files and updating
the IPD, since the system is not in transition (i.e. as in an update).

A configure script can help with software updates as well as new
installs. The script must also be able to handle reinstallation and
should include appropriate error control if data destruction is
possible.

390

Chapter 11

Using Control Scripts
Execution of Control Scripts

Unconfigure Scripts

Unconfigure scripts are executed during the
Unconfiguration-Configuration phase of a sw enove session. They
can also be executed by the swconfig command. The pathname of the
script being executed is:

$ {SW CONTROL_DI RECTCRY}unconfi gure

An unconfigure script is executed only for software installed into the
primary root (/).

An unconfigure script is re-executed even when the product/fileset is
in the configured state.

An unconfigure script is the primary way to move a product/fileset
from the configured state back to the installed state. The script
should perform all (or most of) the activities needed to disable the
product/fileset for use.

An unconfigure script must undo all configuration tasks performed
by its companion configure script. The user should be able to
configure, unconfigure, configure, etc. an installed product/fileset and
always end up with the same configured result.

Verify Scripts

Verify scripts are executed by the swverify command. The pathname
of the script being executed is:

$ {SW CONTROL_DI RECTCRY}verify
A verify script must not modify the system.

A verify script is the primary way to check the configuration tasks
performed by a configure script for correctness and completeness.

A verify script is executed for installations into the primary root (“/”)
or an alternate root. Since most of the actions of this script will
involve checking the current conditions of a configured
product/fileset (in the primary root), it may not need to perform any
actions for a product/fileset installed into an alternate root directory.

An environment variable, SW_IS_COMPATIBLE, can help a verify
script determine if installed software is compatible with the system
on which it is installed. See “SW_IS_COMPATIBLE” on page 386.

Chapter 11

391

Using Control Scripts
Execution of Control Scripts

Fix Scripts

Fix scripts are executed by the swverify command. The pathname of
the script being executed is:

$ {SW CONTRCOL_DI RECTCRY}f i x

A fix script can be used to correct attribute problems detected by a
verify script.

A fix script can create missing directories, correct file modifications
(mode, owner, group, major, and minor), and recreate symbolic links.

Checkremove Scripts

Checkremove scripts are executed during the Analysis phase of a
swremove session. The pathname of the script being executed is:

$ {SW CONTROL_DI RECTCRY}checkr enove
A checkremove script must not modify the system.

A checkremove script determines whether the product/fileset can be
removed by performing checks beyond those performed by swremove.
Example checks include checking to see if the product/fileset is
actively in use.

If the checkremove script fails, no filesets in the product will be
removed. The GUI/TUI interface of swremove notifies you that the
checkremove script has failed. You can then: diagnose the problem,
fix it, and re-execute the analysis phase; unselect the target
system(s) in question; or unselect the product/fileset. The command
line interface notifies you for each individual checkremove failure,
and no filesets in that product are removed.

A checkremove script is executed for installations into the primary
root (“/”) or an alternate root. Since most of the actions of this script
will involve checking the current conditions of a running system
(that is, the primary root), it may not need to perform any actions
when the product/fileset is being removed from an alternate root.

392

Chapter 11

Using Control Scripts
Execution of Control Scripts

Preremove Scripts

Preremove scripts are executed during the Remove phase of a
swremove session. The pathname of the script being executed is:

$ {SW CONTROL_DI RECTCRY}pr er enove

All preremove scripts for a product are executed immediately before
the product’s files are removed.

A preremove script should perform specific tasks preparatory to the
files being removed. The swremove session will proceed with
removing the files regardless of the return value from a preremove
script. Example actions include removing files created in the
postinstall script.

A preremove script is executed for installations into the primary root
(“/”) or an alternate root. The scope of actions of a preremove script
should be within the product itself (that is, the files within the
product’s directory).

The de-customization or unconfiguration-configuration tasks which
must be performed to disable the product/fileset for general use must
not be done in a preremove script, instead they should be done in an
unconfigure script (described above).

Postremove Scripts

Postremove scripts are executed during the remove phase of a
swremove session. The pathname of the script being executed is:

$ {SW CONTRCOL_DI RECTCRY}post r enmove

All postremove scripts for a product are executed immediately after
the product’s fileset files are removed.

A postremove script should perform specific tasks related to the files
just removed. The swremove session will proceed with the remainder
of the session regardless of the return value from a postremove
script. Example actions include:

— Removing any files still remaining after preremove and the
swremove file removal have completed.

— Removal of directories wholly owned by the fileset and which
have been emptied by the file removal.

Chapter 11

393

Using Control Scripts
Execution of Control Scripts

e A postremove script is executed for installations into the primary
root (“/”) and an alternate root. The scope of actions of a postremove
script should be within the product itself (that is, the files within the
product’s directory).

¢ The de-customization or unconfiguration-configuration tasks which
must be performed to disable the product/fileset for general use
should not be done in the postremove script, instead they should be
done in the unconfigure script (described above).

Request Scripts

¢ Request scripts are interactive scripts that request a response from
the user as part of software installation or configuration. The
pathname of the script being executed is:

$ {SW CONTROL_DI RECTCRY}r equest

¢ Request scripts write information into a response file for later use by
the configure script or other scripts. You can run requests scripts by
executing the swask command or using the ask option with swinstall
or swconfig after selection and before the analysis phase.

¢ The POSIX default for request scripts is a shell script. The shell
script must be able to:

— Ask questions of the user.

— Read the user’s answer.

— List all current user responses in a redrawn screen.

— Ask the user to confirm an answer and continue or to go back.

e The request script stores the user response in a response file. The
path of the response file is accessible by the
SW_CONTROL_DIRECTORY environment variable.

e The POSIX recommendation for response file format is the SVR4
model of attribute/value pairs. Answers should be written to the
response file in env_var =val ue format so that the response files can
be easily used by other control scripts.

e When you use a request script to get install information, HP
recommends that you use a checkinstall script to check for proper
execution of the request script. The checkinstall script should:

394 Chapter 11

Using Control Scripts
Execution of Control Scripts

— Verify that the response file exists.

— Prevent swinstall from “hanging” if:

— A script tries to read a response file that does not exist.

— The install or configuration relies on information in the
missing response file.

Chapter 11 395

Using Control Scripts
Execution of Other Commands by Control Scripts

Execution of Other Commands by Control
Scripts

Every command executed by a control script is a potential source of
failure because the command may not exist on the target system. Your
script can use any command conditionally, if it checks first for its
existence and executability, and if it does not fail when the command is
unavailable.

e Ifthe target system(s) conform with the POSIX 1003.2 Shells and
Utilities standard, then the Execution Environment Utilities of this
standard will also be available.

e [Ifa fileset has a prerequisite dependency on another product/fileset,
then most of the control scripts for the dependent fileset can use the
commands of the required product/fileset, if the
$ROOT_DIRECTORY is /. (All commands perform their tasks in
prerequisite order).

¢ Commands should be referenced relative to the path components
specified in the PATHvariable. (See the discussion of PATHand the
SW PATHenvironment variable above.)

396 Chapter 11

Using Control Scripts
Control Script Input and Output

Control Script Input and Output

Except for request scripts, control scripts must not be interactive.
This includes messages such as, Press return to conti nue.

Except for request scripts, all control scripts are executed by the
agent on the target systems. Request scripts are executed by the
controller (swinstall, swconfig, or swask).

Except for request scripts, no method of input to control scripts is
supported. Request script data is input by the user through the
swask command or the ask option for swinstall or swconfig.

Control scripts must write messages for error and warning
conditions to st derr (echo &>2), and write all other messages to
stdout. Control scripts must not write directly to / dev/ consol e or
attempt any other method of writing directly to the display.

The st dout and st derr from a control script is redirected by the
agent to the log file (var / adm sw swagent . | og) within the primary
or alternate root directory in which the task is being performed.

For interactive swinstall and swremove sessions, you can display and
browse this logfile.

Only minimal, essential information should be emitted by control
scripts. Ideally, no output is emitted if the script successfully
performs all of its actions.

In the agent logfile, the execution of each control script is prefaced by
a “begin execution” message:

* Running "checkinstall" script for product "PRCDUCT"
* Running "checkinstall" script for fil eset
" PRCDUCT. FI LESET".

Any messages generated by the script will follow. If the script returns
a value other than 0 (SUCCESS), then a concluding message such as
the following, is written:

Chapter 11

397

Using Control Scripts

Control Script Input and Output

ERRCR The "unconfigure" script for "PRCDUCT. FI LESET"
failed (exit code "1"). The script |ocation was

"/ var/ adni sw pr oduct s/ PRODUCT/ FI LESET/ unconfi gure".

* This script had errors but the execution of this
product will still proceed. Check the above out put
fromthe script for further details.

WARNI NG The "unconfigure" script for

"PRODUCT. FI LESET" failed (exit code "2"). The script Ioc
ation was

"/ var/ adm sw pr oduct s/ PRODUCT/ FI LESET/ unconf i gur e"

* This script had warnings but the execution of this
product will still proceed. Check t he above out put
fromthe script for further details.

The messages written by a control script must conform to the
following format conventions whenever possible.

1. Never emit blank lines.

2. All output lines must have one of these forms:

ERRCR t ext

WARN NG t ext

NOTE: t ext
bl ank t ext

In each case, the keyword must begin in column 1, and the t ext
must begin in column 10 (indented nine blanks).

3. Choose the keyword (ERRCR, WARNI NG NOTE, or blank) as follows:
ERRCR Cannot proceed, may need corrective action.

WARN NG Can proceed, but something went wrong and
may need action.

NOTE: Can proceed, but something happened that is
out of the ordinary or worth special attention.
(Not just a status message.)

blank Generic progress and status messages (keep
them to a necessary minimum).

Do not start a line with an asterisk (*) character. This is reserved
for operational messages printed by the agent so you can easily
distinguish them from other messages.

398

Chapter 11

Using Control Scripts
Control Script Input and Output

4. If the message text requires more than a single 72-character line,
break it into several 72-character lines. Indent all lines after the
first. For example:

NOTE: To install your new graphi cs package, you
must turn on the lights in the next room
Pl ease turn themof f when you | eave.

5. Do not use tab characters in any messages.

Scripts execute other commands which may unexpectedly fail and
emit output not in the above format. Wherever you suspect a failure
is possible or likely (and it is reasonable to do so) redirect the
standard output or error of the executed command to / dev/ nul | or
to a temporary file. Then emit a proper-format message based on the
return code or on output from the command. For example:

/bin/grep bletch /etc/bagel 2c&>/dev/null
i f[$?7=1]
t hen
echo “ERRCR Cannot find bletch in /etc/bagel.” | &2
fi

Follow these conventions to ensure a control script’s messages have a
similar look and feel to the messages generated by the agent (and the
commands themselves).

— Use full sentences wherever possible. Avoid terseness.

— Start sentences and phrases with capital letter and end with
period.

— Put two blanks after period; one after colons, semicolons, and
commas.

— Use uppercase first letters of phrases after colons. (This helps
break up the message into digestible “bites” of information.)

— Surround product, fileset, directory, and file names, and other
variable-valued strings with quotes. For example:

echo "ERROR Cannot open file \"$file\"." &2

— Write in the present tense. Avoid “would”, “will”, and similar
verb tenses. Also avoid past tense except where necessary.

— Use “cannot” rather than “can’t”, “could not”, “couldn’t”, “unable
to”, “failed to”, and similar phrases.

Chapter 11

399

Using Control Scripts
Control Script Input and Output

— Write messages that make sense to system administrators and
users. Consider your audience.

400 Chapter 11

NOTE

Using Control Scripts
File Management by Control Scripts

File Management by Control Scripts

All files created by a preinstall, postinstall, or configure script must
be removed by a companion postremove, preremove or unconfigure
script.

Files created by scripts are not known by the swremove command,
and will not get removed when it removes those files installed by
swinstall. If you want script-created files removed by SD, you will
have to add them to the IPD by either the swmodify command or the
control _utils function | PD_addfil e.

If any files in the previous revision of a product have changed names
or became obsolete, a product/fileset preinstall or postinstall script in
the new revision of the product must remove the old files. The agent
does not remove the files in an existing product/fileset before
updating it to a newer revision.

It is necessary to perform the cleanup task of any previous revision
that can be updated to the new revision. Sometimes this is more than
just the previous revision.

Chapter 11

401

Using Control Scripts
Testing Control Scripts

Testing Control Scripts

The following testing suggestions do not cover all test scenarios. There
may still be problems with a control script even after doing this testing.
For example, you may test installing/removing individual filesets. But
there might be some interactions that are discovered only after all the
filesets are installed on or removed from the system.

Similarly, you may test the control scripts on a fully loaded system and
miss a problem when you execute a command in your script that is not
part of the base (or core) system. If your target system does not contain
the particular command, your script may fail.

Testing Installation Scripts

For checkinstall, preinstall, and postinstall scripts you should perform at
least these tests. All tests can be performed on the local system (that is,
by doing local installs).

1. The basic test:

¢ Run swinstall to install the full product (that is, all the filesets).
To avoid testing the configure script(s), either do not include any
in the product, or set the def er _confi gur e option to “true.”

e After the installation completes, check the
<${ SW ROOT_DI RECTCRY} var / adnmi sw swagent . | og file for any
problems, either in the scripts or the format/contents of the
messages generated by the scripts.

e Study the resulting file system to see if the scripts performed the
expected actions.

¢ Re-run the test by re-installing the same product.

2. If you want to avoid the time spent loading files, then set the
reinstall_files option to “false” and the
reinstall_files_use_cksumoption to “false.”

3. If a previous version of the product can be updated to this version,
then re-run the test by updating this product where the previous
version has been installed.

402

Chapter 11

Using Control Scripts
Testing Control Scripts

. If your checkinstall script can generate error or warning conditions

based on the current activity or configuration of the target system,
then enable those conditions to ensure that the checkinstall script
correctly detects them.

. Re-run the test by installing into an alternate root directory

(swi nstal |l -r)instead of the primary root directory (“/”). Make sure
that the scripts perform all of their operations (if any) within the
alternate root directory. (This verifies the correct use of
${SW_ROOT_DIRECTORY} by your scripts.)

. If your product is locatable (that is, it can be installed into a different

location), then re-run the tests by installing the product into a
different location (swinstall product: new | ocat i on). Make sure
that the scripts perform all of their operations in the new location,
and not the default location. (This verifies the correct use of
$SW_LOCATION by your scripts.)

. If you have a complex script, run additional tests for your product

that you feel will give you confidence your product has been installed
correctly on the system. For example, only install certain subsets of
your product instead of the full product.

Testing Configuration Scripts

For configure, verify, and unconfigure scripts you should perform at least
these tests. All tests can be performed on the local system (that is, by
doing local installs).

1. Run swinstall to install the full product (that is, all the filesets). Let

the installation process perform the configuration task (and run your
configure script(s)).

e After the installation and configuration completes, check the
${ SW ROOT_DI RECTCRY} var / adni sw swagent . | og file for any
problems, either in the configure script or the format/contents of
the messages generated by it.

e Study the resulting file system to see if the configure script
performed the expected actions.

e Test the product itself to see if the necessary configuration tasks
were performed such that the product is ready to use.

Chapter 11

403

Using Control Scripts
Testing Control Scripts

2. Run swremove to remove the configured product.

e After the unconfiguration and removal completes, check the
${ SW ROOT_DI RECTCRY} var / adni sw swagent . | og file for any
problems, either in the unconfigure script or the format/contents
of the messages generated by it.

e Study the resulting file system to see if the unconfigure script
performed the expected “undo” actions.

3. Run swinstall to install the full product again. Set the

def er _confi gur e option to “false” to avoid executing the configure
scripts.

e After the installation completes, run swconfig to configure your
product.

e Study the resulting file system to see if the configure script
performed the expected actions.

e Test the product itself to see if the necessary configuration tasks
were performed such that the product is ready to use.

e Now run swconfi g -u to unconfigure your product.

e Study the resulting file system to see if the unconfigure script
performed the expected “undo” actions.

¢ Run swconfig again to re-configure your product.

e Study the resulting file system to see if the configure script
performed the expected actions.

. Run swverify to execute the verify script(s).

e After the verification completes, check the
${ SW ROOT_DI RECTCRY} var / adni sw swagent . | og file for any
problems, either in the verify script or the format/contents of the
messages generated by it.

. If a previous version of the product can be updated to this version,

then re-run the first test by updating this product to a system where
the previous version has been installed and configured.

. Note that configure and unconfigure scripts are never run unless the

${ SW RQOT_DI RECTQORY} is / . However, verify scripts are run in both
cases.

404

Chapter 11

Using Control Scripts
Testing Control Scripts

7. If your product is locatable (that is, it can be installed into a different
location), then re-run the tests by installing and configuring the
product in a different location. Make sure that the scripts perform all
their operations in the new location, and not the default location.
(This verifies the correct use of $SW LOCATI ONby your scripts.)

8. If you have a complex script, run additional tests for your product
that you feel will give you confidence your product has been installed
correctly on the system. For example, only install certain subsets of
your product instead of the full product.

Testing Removal Scripts

For checkremove, preremove, and postremove scripts you should perform
at least these tests. All tests can be performed on the local system (that
is, by doing local installs). There is no value gained by testing your
scripts by installing to remote target systems.

1. Run swinstall to install the full product (that is, all the filesets).
Avoid configuration by setting the def er _confi gur e option to false.

¢ Run swremove to removed the unconfigured product.

e After the removal completes, check the
${ SW ROOT_DI RECTCRY} var / adni sw swagent . | og file for any
problems, either in the removal scripts or the format/contents of
the messages generated by the scripts.

e Study the resulting file system to see if the removal scripts
performed the expected actions.

2. Run swinstall to install the full product (that is, all of the filesets).
Let the installation process perform the configuration task (and run
your configure script(s)).

¢ Run swremove to removed the configured product.

e After the unconfiguration and removal completes, check the
${ SW ROOT_DI RECTCRY} var / adni sw swagent . | og file for any
problems, either in the removal scripts or the format/contents of
the messages generated by the scripts.

e Study the resulting file system to see if the removal scripts
performed the expected actions.

Chapter 11 405

Using Control Scripts
Testing Control Scripts

. If your checkremove script can generate error or warning conditions

based on the current activity or configuration of the target system,
then enable those conditions to ensure that the checkremove script
correctly detects them.

. Re-run the first test by installing into an alternate root directory

(swi nstal |l -r)instead of the primary root directory (“/”). Make sure
that the scripts perform all of their operations (if any) within the
alternate root directory. (This verifies the correct use of

${ SW ROOT_DI RECTCRY} by your scripts.)

. If your product is locatable (that is, it can be installed into a different

location), then re-run the tests by installing the product into a
different location. When removing the product, make sure that the
removal scripts perform all of their operations in the new location,
and not the default location. (This verifies the correct use of

$SW LOCATI ON by your scripts.)

. If you have a complex script, run additional tests for your product

that you feel will give you confidence your product has been installed
correctly on the system. For example, only install certain subsets of
your product instead of the full product, then perform the remove
operations. (Or only remove subsets of the fully installed product.)

406

Chapter 11

Syntax

Options and
Operands

Using Control Scripts
Requesting User Responses (swask)

Requesting User Responses (swask)

SD-UX packaged applications can use interactive control scripts to query
a user and obtain installation or configuration information that cannot
be known at package time. For example, different hardware or OS
versions may require different configuration, or some software may need
a specific IP address or hostname for configuration.

SD-UX runs the interactive control scripts by the swask command or by
the ask default option for the swinstall and swconfig commands. (SD-UX
does not query the user but the control script does.)

Using swask

¢ The swask command runs interactive software request scripts for the
software objects selected.

¢ These scripts store the responses in a response file (named
r esponse) for later use by the swinstall or swconfig commands.
(swinstall and swconfig can also run the interactive request scripts
directly, using the ask option.)

¢ A response file is generated for each piece of selected software that
has a corresponding request script.

¢ swask uses the command-line only; there is no Graphical User
Interface.

swask [-Vv] [-c catal og] [-Csession file]l-f software filel
[-s sourcell- Ssession fil e]l-x option=value] [- X options_fil el
[sof tware_sel ections](@ ar get _sel ect i ons]

-v Turns on verbose output to st dout and displays all
activity to the screen.

-c cat al og Specifies the pathname of an exported catalog which
stores the response files created by the request script.
swask creates the catalog if it does not already exist.

If the - ¢ cat al og option is omitted and the source is
local, swask copies the response files into the source
depot: di st ri buti on. pat h/ cat al og.

Chapter 11

407

Using Control Scripts
Requesting User Responses (swask)

-Csession file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 61.

-f software file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 58.

-Ssession file
Run the command based on values saved from a
previous installation session, as defined in
session_file.See “Session Files” on page 61.

-s source Use the software source specified by source instead of
the default, / var/ spool / sw. The syntax is:

[host] [: 1I/ di rect ory]

host may be a host name, domain name, or internet
address (for example, 15. 1. 48. 23). directory is an
absolute path.

-Xoption file
Read session options and behaviors from opt i on_file.
See “Changing Command Options” on page 409.

-Xoption file
Read a list of options and behaviors from option_file.

software_sel ections
The software objects for which the request script will
be executed. See “Software Selections” on page 56.

target_sel ecti ons
The target of the command. See “Target Selections” on
page 58.

408 Chapter 11

Using Control Scripts
Requesting User Responses (swask)

Changing You can change the behavior of this command by specifying additional

Command Options command-line options when you invoke the command (using the - x
option) or by reading predefined values from a file. The following table
shows the options and default values that apply to swconfig.

Table 11-3 swask Command Options and Default Values
¢ admin_directory=/var/adm/sw ¢ logdetail=false
¢ ask=true ¢ logfile=/var/adm/sw/swask.l
e autoselect_dependencies=true og
e autoselect_patches=true ¢ loglevel=1
¢ enforce_scripts=true e patch_filter=*.*
¢ installed_software_catalog=product | ® run_as_superuser=true
S e verbose=1
¢ log msgid=0
For More See Appendix A, “Command Options,” on page 421 for complete

Information descriptions of each default.

Chapter 11 409

Using Control Scripts

Request Script Tasks and Examples

Request Script Tasks and Examples

You can run request scripts from the swinstall or swconfig commands by
setting the ask option to true. This tells the commands to run request
scripts (if any exist) in addition to performing install or configuration
tasks. (Note that the value of the ask option if false for both swinstall
and sweconfig but is true for swask.)

swask Examples

Run all request scripts from the default depot (/ var/ spool / sw) and
write the response file (r esponse) back to the same depot:

swask -s /var/spool /sw *

Run the request script for Product 1 from depot / t mp/ sanpl e. depot . 1
on remote host swposi x, create the catalog

/tnp/ t est 1. depot on the local controller machine, and place the
response file (r esponse) in the catalog:

swask -s swposi x:/tnp/ sanpl e. depot . 1 \
-c /tnp/testl. depot Productl

Run request scripts from remote depot / t np/ sanpl e. depot . 1

on host swposi x only when a response file is absent, create the catalog
/tnp/ t est 1. depot on the local controller machine, and place the
response file (r esponse) in the catalog:

swask -s swposi x:/tnp/ sanpl e. depot . 1 \
-c /tnp/testl. depot -x ask=as_nheeded *

swinstall Examples

To install all the software from local depot t np/ sanpl e. depot . 1 using
any response files generated by request scripts:

swinstall -s /tnp/sanple.depot.l -x ask=true *

To install Pr oduct 1 from remote depot / t np/ sanpl e. depot . 1 on host
swposi X and use an existing response file (previously generated by the
swask command) located in / t np/ bar . depot :

swinstall -s swposix:/tnp/sanple.depot.1 \
-c /tnp/ bar. depot Productl

410

Chapter 11

Using Control Scripts
Request Script Tasks and Examples

To install all products in remote depot / t np/ sanpl e. depot . 1 on host
SWposi X, use any response files generated by request scripts, create
catalog / t np/ bar . depot and copy all response files to the new catalog:

swinstall -s swposix:/tnp/sanple.depot.1 \
-c /tnp/bar.depot -x ask=true *

To install all products in remote depot / t np/ sanpl e. depot . 1 on host
SWPOsi X, use response files, run request scripts only when a response file
is absent, create catalog / t mp/ bar . depot and copy all response files to
the new catalog:

swinstall -s swposix:/tnp/sanple.depot.1 \
-C swposi x: /tnp/ bar. depot -x ask=as_needed *

swconfig Examples

To configure Pr oduct 1, use any associated response files generated by a
request script, and save response files under / t np/ r espl:

sweonfig -x ask=true -c /tnp/respl Productl

Chapter 11

411

Using Control Scripts
Request Script Tasks and Examples

412 Chapter 11

Nonprivileged SD
12 Nonprivileged SD

This chapter provides general guidelines on how to set up Software
Distributor to run in nonprivileged mode.

Table 12-1 Chapter Topics

Topics:

“Overview” on page 414

“Setting Up Nonprivileged Mode” on page 416

“Default Configuration” on page 418

“Alternative Configuration” on page 419

Chapter 12 413

Nonprivileged SD
Overview

Overview

The nonprivileged mode of SD-UX lets users access application software
based on their file system permissions rather than super-user privilege
implemented by SD-UX ACLs. Nonprivileged mode is honored by almost
all SD commands. You can use nonprivileged mode for all aspects of
developing, distributing, and managing applications.

Who Can Benefit?

Nonprivileged SD-UX is primarily intended for administrators of large
data centers who must manage in-house applications without using
super-user privilege. You might not benefit from this feature if you are a
casual user wanting to manage your own applications—unless you are
experienced enough at packaging software to take advantage of
nonprivileged mode.

How Does It Work?

In nonprivileged mode, most SD-UX operations are done according to the
invoking user’s uid, gid, and umask. In this mode, logfiles and the
installed software catalog usually found in / var / adni sware stored by
default in user-specific admin directories at / var/ home/ USER_NAME/ sw
(in which USER NAME is the user’s log-in name). Location of the user’s
admin directory and installed software catalog can be customized using
default options.

While you are using nonprivileged mode, you can also package and copy
applications that won’t be used for nonprivileged mode. However, you
must use the normal mode of SD-UX (that is with r un_as_super user set
to true and permissions granted by ACLs) to install such applications.

When packaging, file system access on the install target must be
considered. See “Packaging Software for Use in Nonprivileged Mode” on
page 416.

414

Chapter 12

Nonprivileged SD
Overview

Limitations

Remote targets are not allowed with SD-UX remote operations,
except for swlist access to remote systems and commands that can
normally access remote depots. Access to such remote systems is
determined by the SD ACLs on the remote system.

Nonprivileged mode cannot be used to manage HP-UX operating
system software or patches to it.

A swinstall or swcopy in nonprivileged mode cannot read a source
depot on a local writable file system that was created with super-user
privileges (that is, created by a super-user, or created by a non
super-user when the run_as_super user option is set to true and
using ACL permissions). This limitation does not apply to tape or
CD-ROM source depots.

Swinstall and swcopy in nonprivileged mode can read any remote
source depot as allowed by ACLs, can read local source depots
created by the invoking user in nonprivileged mode, and (depending
on the umask of other users) can read local source depots created by
other users in nonprivileged mode.

Chapter 12

415

Nonprivileged SD

Setting Up Nonprivileged Mode

Setting Up Nonprivileged Mode
Nonprivileged SD is controlled by two options:

e admin_directory

® run_as_superuser

The run_as_super user option turns nonprivileged mode on or off and is
all that is necessary to run the default configuration. (See “Turning On
Nonprivileged Mode” on page 417 and “Default Configuration” on

page 418.)

The adm n_di r ect ory option lets you set up an alternative
configuration. (See “Alternative Configuration” on page 419.)

Packaging Software for Use in Nonprivileged Mode

In addition to these options, software applications to be used under
nonprivileged mode have special packaging requirements.

For nonprivileged mode to function:

¢ You must package applications and install them so that the files are
installed in locations writable by the user who will install the
applications. This can be done by:

— Using the directory keyword in the PSF during packaging

— By appending a | ocat i on to the software specifications when
you invoke a command from the command line. (See “Software
Selections” on page 56.)

e Scripts packaged into the application must be designed not to require
super-user privilege.

416

Chapter 12

NOTE

Nonprivileged SD
Setting Up Nonprivileged Mode

Turning On Nonprivileged Mode

SD functions in nonprivileged mode only when the r un_as_super user
option is set to false and the invoking user is not super-user.

This option applies to all SD-UX commands except swagent, swagentd,
swjob, and install-sd. When you set this option to false, any command to
which it applies will run in nonprivileged mode. For example:

¢ Including - x run_as_super user =f al se on the command line
invokes nonprivileged mode for that command only.

e Including - x run_as_super user =f al se in your
$HOVE/ . swdef aul t s directory invokes nonprivileged mode for any or
all SD-UX commands that you run.

e Including - x run_as_superuser=fal sein/var/adni sw def aul t s
invokes nonprivileged mode for all SD-UX commands on the system.

See Appendix A, “Command Options,” on page 421 for complete
information on using these options.

This option is ignored (treated as true) when the invoking user is
super-user.

How Nonprivileged Mode Changes SD-UX Behavior

When the run_as_super user option is set to the default value of true,
SD-UX operations are performed normally, with permissions for
operations either granted to a local super-user or set by SD ACLs. (See
Chapter 9, “SD-UX Security,” on page 255 for details on ACLs.)

When run_as_super user is set to false and the invoking user is local
and is not super-user, nonprivileged mode is invoked:

¢ Permissions for operations are based on the user’s file system
permissions.

e SD ACLs are ignored.

¢ Files created by SD have the uid and gid of the invoking user, and the
mode of created files is set according to the invoking user’s umask.

Chapter 12

417

Nonprivileged SD
Default Configuration

Default Configuration

The default configuration of nonprivileged mode is to have a central
location for user-installed software catalogs.

When the run_as_super user option is false and the adm n_di rect ory
option is not set, SD-UX logfiles and installed software catalogs are
stored in user-specific directories at / var / home/ USER_NAME/ sw(where
USER _NAME is replaced by the invoking user name).

Putting logfiles and installed software catalog in a central location
avoids problems when users install software on the system outside of
their home directories and user home directories are NF'S mounted
across many systems.

You can enable nonprivileged mode for all users by setting the
run_as_super user option to false in / var/ adni sw def aul t s.

Individual users can override the default chosen by the system
administrator, by setting the r un_as_super user option to true or false
in their $HOVE . swdef aul t s file or on the command line.

418

Chapter 12

Nonprivileged SD
Alternative Configuration

Alternative Configuration

An alternative configuration of nonprivileged mode sets up user-installed
software catalogs in each user’s home directory. You can use the

adm n_di r ect ory option in / var/ adn sw def aul t s to indicate a path
beginning with HOVE or / HOVE, so that the default administration
directory used by SD-UX during nonprivileged mode is in each user’s
home directory. (A value of HOVE/ . swworks well for this purpose.)

Individual users can override this in their $HOVE/ . swdef aul t s file or on
the command line.

Setting the Admin Directory Option

This option lets you specify the location for logfiles and the default
parent directory for the installed software catalog. Values are as follows:
adm n_di r ect or y=/ var / adrm sw(for normal mode)

adm n_di r ect or y=/ var / hormme/ LOGNAME/ sw (for nonprivileged mode)

The default value is / var / adni swfor normal operations. For
nonprivileged mode (that is, when the run_as_super user option is set to
true):

e The default value is forced to / var / horme/ LOGNAME sw.

¢ The path element LOGNAME is replaced with the name of the invoking
user, which SD-UX reads from the system password file.

¢ Ifyou set the value of this option to HOME/ pat h, SD-UX replaces HOVE
with the invoking user’s home directory (from the system password
file) and resolves path relative to that directory.

For example, if you specified HOME/ ny_adm n for this options, the
location would resolve to the ny_adm n directory in your home
directory.

This option applies to swinstall, swcopy, swremove, swconfig, swverify,
swlist, swreg, swacl, swpackage, swmodify.

Chapter 12

419

Nonprivileged SD
Alternative Configuration

420 Chapter 12

Command Options
A Command Options

This appendix reviews the basics of altering SD-UX command options
and provides an alphabetic list of all options and their default values.

Table A-1 Chapter Topics

Topics:

“Changing Command Options” on page 422

“Options Listed Alphabetically” on page 424

Appendix A 421

Command Options

Changing Command Options

Changing Command Options

Changing the option values lets you change command behavior and
tailor SD-UX policies to your needs. You can change options using
predefined files, values you specify directly on the command-line, or the
GUI Options Editor from the Options menu. Altering option values using
files can help when you don’t want to specify command behavior every
time you invoke the command.

These rules govern the way the options work:

e Option values specified in / var / adni sw/ def aul t s affect all SD-UX
commands on that system. This file can change options for all
commands to which an option applies or for specific commands only.

¢ Option values in your personal $HOME . swdef aul t s file affect only
you and not the entire system.

¢ Option values read from a session file affect only that session.

e Options changed on the command line by the - X opt i on_fi |l e or the
-X option=val ue arguments override the system-wide and personal
defaults files but affect only that invocation of the command.

For system-wide policy setting, use the / var/ adni sw' def aul t s files.
Keep in mind, however, that users may override these values with their
own $HQVE/ . swdef aul t s file, session files, or command line changes.

The template file / usr/1i b/ sw sys. def aul t s provides documentation
for all options, and contains instructions for an easy way to change
system-wide or personal default files.

The template file documents as comments all SD-UX command options,
the commands to which they apply, their possible values, and the
resulting system behavior. You can copy values from this file into the
system defaults file (/ var / adnmi sw def aul t s), your personal defaults file
($HOWE . swdef aul t s), or an input file and uncomment them to affect
your system behavior.

422

Appendix A

Command Options
Changing Command Options

Option files use the syntax:

[cormand. 1opt i on=val ue

e The optional cormmandis the name of a SD-UX command. Specifying a
command name changes the default behavior for that command only.
A period must follow a command name.

e optionisthe name of the default option. An equals sign must follow
the option name.

e val ueis one of the allowable values for that option.

NOTE Use caution when changing default option values. They allow useful
flexibility but can produce harmful results if changed to a value that is
inappropriate for your needs.

NOTE Options in the defaults file are read as part of command initialization.
Because the daemon is already running, you must restart the daemon
after changing daemon options for the system to recognize those options.
To restart the daemon, type:

/usr/sbin/swagentd -r

See Also “Using Command Options” on page 59 for examples.

Appendix A 423

Command Options
Options Listed Alphabetically

Options Listed Alphabetically

e adm n_di rect or y=/ var/ adni sw(for normal mode)
adm n_di r ect or y=/ var / horme/ LOGNAME/ sw
(for nonprivileged mode)

The location for logfiles and the default parent directory for the
installed software catalog. The default value is / var/ adni swfor
normal operations.

For nonprivileged mode (that is, when the r un_as_super user
default option is set to true):

— The default value is / var / hone/ LOGNAME/ sw

— The path element LOGNAME is replaced with the name of the
invoking user, which SD-UX reads from the system password file.

— If you set the value of this option to HOVE pat h, SD-UX replaces
HOME with the invoking user’s home directory (from the system
password file) and resolves path relative to that directory. For
example, HOVE/ ny_adni n resolves to the ny_adm n directory in
your home directory.

— If you set the value of the i nst al | ed_sof t war e_cat al og option
to a relative path, that path is resolved relative to the value of
this option.

Nonprivileged mode is intended only for managing applications that
are specially designed and packaged. This mode cannot be used to
manage the HP-UX operating system or patches to it. For a full
explanation of nonprivileged SD-UX, see Chapter 12, “Nonprivileged
SD,” on page 413.

See also the i nstal | ed_sof t ware_cat al og and run_as_super user
options.

Applies to all commands except swagent, swagentd, and install-sd.
e agent =/ usr/| bi n/ swagent

This is the default location of the executable invoked to perform
agent tasks.

Applies to swagentd.

424 Appendix A

Command Options
Options Listed Alphabetically

agent _auto_exit=true

Causes the target agent to automatically exit after execute phase, or
after a failed analysis phase. This is forced to false when the
controller is using an interactive Ul, or when - p (preview) is used.

Enhances network reliability and performance.

The default is true. The target agent automatically exits when
appropriate.

If set to false, the target agent does not exit until the controller
explicitly ends the session.

Applies to swconfig, swcopy, swinstall, swremove, and swverify.

agent _ti neout _m nut es=10000

Causes a target agent to exit if it has been inactive for the specified
time.

You can use this default value to make target agents more quickly
detect lost network connections. RPC typically detects lost
connections very quickly, but it can take as long 130 minutes to
detect a lost connection. The recommended value is the longest
period of inactivity expected in your environment.

For command line invocation, a value between 10 and 60 minutes is
suitable. More than 60 minutes is recommended when you use the
GUIL.

The default is 10,000 minutes, slightly less than seven days.

Applies to swcopy, swinstall, swlist, swremove, and swverify.
al | ow_downdat e=f al se

Normally set to false, so installing an older version of software than
already exists is disallowed. This keeps you from installing older
versions by mistake. Additionally, many software products do not
support this “downdating.”

If set to true, a previous version can be installed but SD-UX issues a
warning message.

Applies to swinstall.

Appendix A

425

Command Options

Options Listed Alphabetically

al | ow_i nconpat i bl e=f al se

Normally set to false, only software compatible with the local host is
allowed to be installed or configured.

If set to true, no compatibility checks are made.

Applies to swconfig, swinstall, and swverify.
all ow mul tipl e _versions=fal se

Normally set to false, so installed or configured multiple versions (for
example, the same product, but a different revision, installed into a
different location) are disallowed. Even though multiple installed
versions of software are supported if the software is locatable,
multiple configured versions do not work unless the product supports
it.

If set to true, you can install and manage multiple versions of the
same software.

Applies to swconfig, swinstall, and swverify.
al l ow partial _bundl es=true

Determines whether to process partial bundles without issuing
warnings or notes to log files.

If true (default), swpackage packages what is available in the source
PSF, ignoring missing or ambiguous bundle contents. Bundles are
wrappers around products, so you must make sure the bundle
contents are placed in the resulting depot, if they are not in the PSF.
Otherwise, the missing/ambiguous contents will not affect the
system after installation.

If false, swpackage expects all the bundle contents to be present in
the source PSF and to be unique. Every content that is ambiguous or
missing gets a NOTE and every bundle that has a missing or
ambiguous content gets a WARNING.

Applies only to swpackage.
al l ow split_patches=fal se

Controls the ability to install or copy part of a patch. Use this option
only to resolve critical problems with the assistance of your HP
support representative.

426

Appendix A

Command Options
Options Listed Alphabetically

When set to the default value of false, installation or copy of a single
fileset from a multi-fileset patch automatically includes other,
“sibling” filesets that are appropriate, based on the target’s ancest or
attributes. This behavior applies to any filesets you select directly
and to filesets automatically selected to meet dependencies for a
patch filesets. Likewise, removing a fileset when this option is false
causes sibling filesets to be removed at the same time.

When set to true, this option allows a single patch fileset to be
installed, copied, or removed to or from a target without dragging
along sibling filesets (that is, filesets that have an ancestor on the
target that would usually be loaded if this option was set to false).
This allows a target to contain a patch that has been “split” into
component filesets. This can create harmful results if one fileset in a
sibling group is updated while others remain at an earlier release.
Running a swlist on the target after using this option may show more
than one active patch active at one time. This makes your system
more difficult to maintain and troubleshoot.

Applies to swcopy, swinstall, and swremove.
al ternat e_sour ce=

Syntax is host : pat h, used when use_al t er nat e_sour ce default is
set to true.

By default, this option is not defined. If the host portion is not
specified, the local host is used. If the path is not specified, the path
sent by the command is used. See the use_al t er nat e_sour ce
option.

The protocol sequence and endpoint given by the option
rpc_bi ndi ng_info_alt_source are used when the agent attempts
to contact an alternate source depot.

Applies only to swagent.

ask=true

Executes a request script, which asks for a user response.
The ask option has three possible values;

true (Default for swask) Executes the request script (if
one exists for the selected software) and stores the
user response in a file named r esponse.

Appendix A

427

Command Options

Options Listed Alphabetically

fal se (Default for swinstall and swconfig.) Does not
execute request scripts.

as_needed Before executing a request script, swask first
determines if a response file already exists and
executes the request script only if the response file
is absent from the control directory.

See “Requesting User Responses (swask)” on page 407 for more
information on the swask command and writing request scripts.

Applies to swask, swconfig, and swinstall.
aut o_kernel buil d=true

Normally set to true. Specifies whether the removal of a kernel
fileset should rebuild the kernel or not. If the kernel rebuild
succeeds, the system automatically reboots. If set to false, the system
continues to run the current kernel.

If the aut o_ker nel _bui | d option is set to true, the aut or eboot
option must also be set to true. If the aut o_ker nel _bui | d option is
set to false the value of the aut or eboot option does not matter.

Applies only to swremove.
aut or eboot =f al se

Normally set to false, indicating that installation of software
requiring a reboot is not allowed from the command line.

If set to true, this option allows installation or removal of the
software and automatically reboots the local host.

If the aut o_ker nel _bui | d option is set to true, this option must also
be set to true.

Applies to swinstall and swremove.
aut or ecover =f al se

This option permits automatic recovery of original filesets if an
installation error occurs. The cost is a temporary increase in disk
space and slower performance. The default value of false causes
swinstall to overwrite original files as a fileset is updated. If an error
occurs during the installation (e.g. network failure), then the original
files are lost, and you must reinstall the fileset.

428

Appendix A

Command Options
Options Listed Alphabetically

If set to true, all files are saved as backup copies until the current
fileset finishes loading. If an error occurs during installation, the
fileset’s original files are restored, and swinstall continues to the
next fileset in the product or the product postinstall script.

When set to true, this option also affects scripts. For example, if a
preinstall script fails, this option causes the corresponding
unpreinstall script to execute.

Applies only to swinstall.
aut or ecover _pr oduct =f al se

By default, swinstall overwrites old files. If a load error occurs, the
product is marked “corrupt” and you must retry the install.

When this option is true, swinstall saves all product files as backups
until the product finishes loading successfully, then removes the
backups. This lets swinstall automatically recover files if the load
fails. The trade-off is a temporary increase in disk space use and
slower performance

Note: The autorecover operation does not work properly if any
software has pre-install scripts that move or remove files. This
includes HP-UX operating system files.

Applies only to swinstall.

aut or enove_j ob=f al se

SD-UX stores small amounts of information (such as job status or
controller or agent logfiles) about each job. You can display this
information from the Job Browser or with swjob. Running very large
numbers of jobs may take up significant disk space.

Setting this option to true prevents SD-UX from storing the job
information. The trade-off is that you can no longer display the job
information.

This option is automatically set to true when r un_as_super user is
set to true.

Applies to swconfig, swcopy, swinstall, swremove and swverify.

Appendix A

429

Command Options

Options Listed Alphabetically

aut osel ect _dependenci es=t rue

Causes SD-UX to automatically select requisites when software is
being selected. At the default value of true, dependent software is
automatically selected when you select software with requisites. If
set to false, automatic selections are not made to resolve requisites.

Applies to swconfig, swcopy, swinstall and swverify.

aut osel ect _dependent s=f al se

Causes swconfig and swremove to automatically select dependents
when software is being selected. When set to true, and any software
on which other software depends is selected, SD-UX makes sure that
the dependents are also selected. If they are not already selected,
they are automatically selected for you. If set to false, dependents are
not automatically selected.

A dependent fileset has established either a prerequisite, corequisite,
or exrequisite on the selected fileset. The default value of false
prevents automatic selection of dependent software. Specifying true
causes SD-UX to automatically select dependent software.

Applies to swconfig and swremove.
aut osel ect _pat ches=true

Automatically selects the latest patches (based on superseding and
ancestor attributes) for a software object that a user selects for a
swinstall or swcopy operation. When set to false, the patches
corresponding to the selected object are not automatically selected.

You can use the pat ch_f il t er = option in conjunction with
aut osel ect _pat ches.

Applies to swask, swinstall and swcopy.
aut osel ect _reference_bundl es=true

If true, a bundle that is referenced is installed, copied, or removed
along with the software from which the reference is made.

Applies to swcopy, swinstall and swremove.

430

Appendix A

Command Options
Options Listed Alphabetically

check _contents=true
Normally set to true, verify nti ne, si ze and cksumof files.

If false, the software can be installed without the bundle that
contains it.

Applies only to swverify.
check_cont ent s_unconpr essed=f al se

When a file is compressed, SD-UX uses it with check_cont ent s and
check_cont ents_use_cksumto determine whether or not to
compute and verify the uncompressed checksum and size of a
compressed file. (This option is ignored if the file is not compressed.)

Since the timestamp of uncompressed contents is meaningless, this
option verifies only the timestamp of the file, whether it is
compressed or not.

If set to true and the file is compressed, SD-UX uncompresses the file
into memory and computes the checksum and size of the
uncompressed contents. Then, the checksum and size of the
compressed file and the checksum and size of the uncompressed
contents are verified.

If check_cont ent s_use_cksun¥f al se, only the compressed and
uncompressed sizes are verified, not the checksums.

Applies only to swverify.
check_contents_use_cksun¥true

Normally true, calculates the checksum of the file being verified,
checking the timestamp, size, and checksum.

If false, turns off the checksum calculation. If check_cont ent s is set
to true, timestamp and size checking is still performed.

Applies only to swverify.
check_per ni ssi ons=t rue

Normally set to true, verify owner, uid, group, gid and mode
attributes of files.

Applies only to swverify.

Appendix A

431

Command Options

Options Listed Alphabetically

check_requi sites=true

Normally set to true, verify that the prerequisites and corequisites of
filesets are being met.

Applies only to swverify.
check_scripts=true

Normally set to true, run the vendor-supplied verify scripts when
verifying software.

Applies only to swverify.
check_vol ati | e=fal se

When set to true, swverify verifies installed files that have the

i s_vol ati | e attribute set. By default, installed volatile files do not
have their attributes verified because they are intended to be
modified by the customer.

Applies only to swverify.
codeword=

Lets you to enter a codeword for the HP-UX licensing procedure.
Once entered you need not re-enter the codeword. See “Working with
Protected Software” on page 34 for more information.

Applies to swcopy, swinstall and swlist.
conpr ess_cnd=/usr/contri b/ bi n/ gzi p

Specifies the command called by the source agent to compress files
before installing, copying, or packaging.

If you set the conpr essi on_t ype option to a value other than gzi p
or conpr ess, you must change this path.

Applies to swagent and swpackage.
conpress_fil es=fal se

Controls file compression during transfer. When set to false, files are
not compressed before transfer from a remote source.

If set to true, SD-UX compresses files before network transfer if
they’re not already compressed. For swinstall, the files are
uncompressed after network transfer.

432

Appendix A

Command Options
Options Listed Alphabetically

If set to true during swcopy or swpackage, the resulting depots are
smaller, unless you also set unconpress_fil es to true.

Applies to swcopy, swinstall and swpackage.
conpr ess_i ndex=f al se

Enhances performance on slower networks, although it may increase
disk space usage due to a larger Installed Products Database and
depot catalog. The default of false does not compress INDEX and
INFO files. When set to true, INDEX and INFO files are compressed.

Applies to swinstall, swcopy, swpackage, swmodify, swconfig, and
swremove.

conpr essi on_type=gzi p

Defines the default compression type used by the agent (or set by
swpackage) when it compresses files during or after transmission.

Ifunconpress_fil es is set to false, the compression type is recorded
for each file compressed so that the correct uncompression can later
be applied during a swinstall, or a swcopy with unconpress_fil es
set to true.

The conpr ess_cmd specified must produce files with the
conpr essi on_t ype specified.

The unconpr ess_cnd must be able to process files of the

conpr essi on_t ype specified unless the format is gzip which is
uncompressed by the internal uncompressor (funzip). To use gzip you
must load the SW DI ST. &ZI P fileset (which is optional freeware). If
the SW D ST. &ZI P fileset is loaded, then you may set the
compression options as follows:

conpr ess_cnd=/usr/contri b/ bi n/ gzi p

unconpr ess_cmd=/ usr/ contri b/ bi n/ gunzi p

conpr essi on_type=gzi p

Applies to swpackage and swagent.

confi g_cl eanup_crd=/ usr/| bi n/ sw confi g_cl ean

Defines the script called by the agent to perform release-specific
configure cleanup steps.

Applies only to swagent.

Appendix A

433

Command Options

Options Listed Alphabetically

control files=

When adding or deleting control file objects, this option lists the tags
of those control files. There is no supplied default. (Control file
objects being added can also be specified in the given product
specification file.)

If there is more than one tag, they must be separated by white space
and surrounded by quotes.

Applies only to swmodify.
control | er_source=

Specifies the location of a depot for the controller to access to resolve
selections. Setting this option can reduce network traffic between the
controller and the target. Use the target selection syntax to specify
the location:

[host][:][path]

This option has no effect on which sources the target uses and is
ignored when used with an Interactive User Interface.

Applies to swconfig, swcopy, swinstall, swremove and swverify.
create_target_acl s=true

Normally set to true, this default determines whether swpackage
creates Access Control Lists (ACLs) in the depot.

If you set this option to false as superuser, ACLs for each new
product being packaged (and for the depot, if it is new) are not
created.

When another user invokes swpackage, it always creates ACLs in the
distribution depot. This default has no impact on the ACLs that
already exist in the depot. The swpackage command never creates
ACLs when software is packaged onto a distribution tape.

Applies only to swpackage.

434

Appendix A

Command Options
Options Listed Alphabetically

create_target_path=true

Normally set to true, creates the target directory if it does not
already exist.

If false, target directory is not created. This option can be used to
avoid creating new depots by mistake.

Applies to swcopy and swinstall.
create time filter=0

Controls time settings for cumulative source depots. The default of
zero includes all bundles, products, subproducts, and filesets in the
source depot as candidates for selection (and autoselection of
dependencies and patches), based on the software selections and
other options. When set to a time (specified as seconds from epoch),
only bundles, products, and filesets (and the subproducts in the
product) with a create_time less than or equal to the specified value
are available for selection (or autoselection).

To list the create_time of bundles, products and filesets, use:
swist -a create_time -a create date

Applies to swlist, swcopy, and swinstall.

custoner _id=

This number, printed on the Software Certificate, “unlocks” protected
software and restricts installation to a specific site or owner. You can
enter the number with the - x cust orer _i d=option or by using the
Interactive User Interface. See the codewor d option for more
information.

Applies to swinstall, swcopy, swlist.
def er _confi gure=f al se

Controls the automatic running of configure scripts after swinstall
software selections are installed. The default value of false allows

swinstall to automatically run configure scripts. When set to true,

swinstall does not run configure scripts. To configure the software

later, you must run the swconfig command.

— Multiple versions of a product will not be automatically
configured if another version is already configured. Use the
swconfig command to configure multiple versions separately.

Appendix A

435

Command Options

Options Listed Alphabetically

— SD-UX ignores this option (treats it as true) when it installs
software that causes a system reboot.

— Alternate root directories are not configured.
Applies only to swinstall
di stribution_source _directory=/var/spool / sw

Defines the default source depot when the value for the sour ce_t ype
option is di rect ory. You can also use the host:path syntax. The - s
option overrides this default.

Applies to swcopy, swinstall, and swpackage.
distribution_target _directory=/var/spool/sw

Defines the default distribution directory of the target depot. The
target_sel ecti on operand overrides this default.

Applies to swacl, swcopy, swlist, swmodify, swpackage, swreg,
swremove and swverify.

distribution_target_serial =/dev/rnt/0m

Defines the default location of the target tape device file. The
tar get _sel ecti on operand overrides this default.

Applies only to swpackage.
enf or ce_dependenci es=t r ue

When set to true, SD-UX enforces dependencies. swinstall, swcopy,
and swconfig do not proceed unless necessary dependencies can be
selected, or already exist in the proper state (installed, configured, or
available). This prevents SD-UX from installing or copying unusable
software. This option also prevents swremove from removing
dependent software.

When set to false, SD-UX checks dependencies but does not enforce
them. Corequisite dependencies, if not enforced, may keep the
software from working properly. Prerequisite dependencies, if not
enforced, may cause the installation or configuration to fail.

Applies to swconfig, swcopy, swinstall, swremove and swverify.

436

Appendix A

Command Options
Options Listed Alphabetically

enf orce_dsa=true

When set to the default value of true, SD-UX does not proceed if the
disk space required for a software operation is more than the
available free space. You can use this option to allow installation into
minfree space, or to attempt an install, copy, or package operation
even though it may fail because the disk reaches its absolute limit.

If set to false, space checks are still performed but a warning is
issued that the system may not be usable if the disk fills past the
minfree threshold. An installation will fail if you run out of disk
space.

Applies to swcopy, swinstall and swpackage.
enforce_kernbld failure = true

Controls whether or not a failure in either of the kernel build steps
(syst em prep and nk_ker nel) is fatal to the install session. A failure
to build a kernel causes the install process to exit if in
non-interactive mode, or to suspend if in an interactive mode.

If set to false, a failure return from a kernel build process is ignored,
and the install session proceeds. The currently running kernel
remains in place.

Applies only to swinstall.
enforce_| ocat abl e=true

When set to the default value of true, this option generates an error
if a command tries to relocate a non-relocatable fileset. (Relocatable
filesets are packaged with the i s_r el ocat abl e attribute set to true.)
When set to false, the usual error handling process is overridden,
and SD-UX permits the command to relocate the fileset.

Note that although this option is defined for swverify, there is no
swverify behavior associated with the option.

Applies to swinstall and swverify.
enforce_scripts=true

Controls the handling of errors generated by scripts. If true, and a
script returns an error, the command halts, and an error message
appears reporting that the execution failed. If false, script-generated
errors are treated as warnings, and the command attempts to
continue. A warning message appears and reports that the command

Appendix A

437

Command Options

Options Listed Alphabetically

was successful. Where appropriate, the message identifies the phase
in which the error occurred (configure/unconfigure,
preinstall/postinstall, preremove/postremove, etc.).

Applies to swask, swconfig, swinstall and swremove.
files=

When adding or deleting file objects, this option can list the path
names of those files. There is no supplied default. File objects being
added can also be specified in the given product specification file.

If there is more than one path name, they must be separated by
white space and surrounded by double-quotes.

Applies only to swmodify.
foll ow sym i nks=f al se

Do not follow symbolic links that exist in the packaging source;
instead, package them as symlinks.

Applies only to swpackage.
i nclude file_revisions=fal se

Normally set to false, controls whether swpackage includes each
source file’s revision attribute in the product(s) being packaged.
Because this operation is very time consuming, the revision
attributes are not included by default.

A value of true for this keyword causes swpackage to execute the
what and possibly the ident commands (in that order) to try to
determine a file’s revision.

Applies only to swpackage.
install _cl eanup_cmd= /usr/l bin/swinstall _clean

The script called by the agent to perform release-specific install
cleanup steps immediately after the last postinstall script has been
run. For an OS update, this script should at least remove commands
that were saved by the i nstal | _set up script.

Applies only to swagent.
i nstal | ed_software_cat al og=pr oduct s

Defines the directory path where the Installed Products Database
(IPD, information describing the installed software) is stored. When
set to an absolute path, this option defines the location of the IPD.

438

Appendix A

Command Options
Options Listed Alphabetically

When this option contains a relative path, the controller appends the
path to the path specified by the adm n_di r ect ory option to
determine the path to the IPD. For alternate roots, this path is
resolved relative to the location of the alternate root. (This option
does not affect where software is installed, only the IPD location.)

This option permits the simultaneous installation and removal of
multiple software applications by multiple users or multiple
processes, with each application or group of applications using a
different IPD.

Caution: use a specific i nst al | ed_sof t war e_cat al og to manage a
specific application. SD-UX does not support multiple descriptions of
the same application in multiple IPDs.

See also the adm n_di r ect ory option.

Applies to swacl, swask, swconfig, swinstall, swlist, swmodify,
swremove, and swverify.

install_setup_cmd=/usr/Ibin/swinstall_setup

Defines a script called by the agent to perform release-specific install
preparation. For an OS update, this script should copy commands
needed for the checkinstall, preinstall, and postinstall scripts to an
accessible location while the OS updates the system commands.

This script is executed before any kernel filesets are loaded.
Applies only to swagent.
job_title=

When running large numbers of jobs, you may want to add more
information to help you identify a specific job. Providing a value for
this lets you add an ASCII string that will be displayed along with
the ID and other job attributes when you invoke swjob or the job
browser.

Applies to swconfig, swcopy, swinstall, swremove, and swverify.
kernel _bui |l d_cmd=/ usr/ sbi n/ nk_ker nel

This is the script called by the agent for kernel building.
Applies only to swagent.

Appendix A

439

Command Options

Options Listed Alphabetically

ker nel _pat h=/ st and/ viuni x

The path to the system’s bootable kernel. It is passed to the
kernel _buil d_cnd via the SW KERNEL _PATH environment variable.

Applies only to swagent.
| ayout version=1.0

Specifies the POSIX layout version to which the SD-UX commands
conform when writing distributions and swlist output. Supported
values are 1.0 (default) and 0.8. SD-UX for HP-UX version 11.10 and
later can read or write either version.

SD-UX object and attribute syntax conforms to layout version 1.0 of
the IEEE Standard 1387.2, Software Administration (POSIX).
SD-UX still accepts the keyword names associated with the older
layout version, but you should only use layout version 0.8 to create
distributions readable by older versions of SD-UX.

Layout version 1.0 adds significant functionality not recognized by
systems supporting only version 0.8, including:

— Category class objects (formerly the cat egory and
category_titl e attributes within the bundle or product class).

— Patch-handling attributes, including appl i ed_pat ches,
i s_pat ch, and patch_state.

— The fileset ar chi t ect ur e attribute at the fileset level, which
permits you to specify the architecture of the target system on
which the software will run.

In addition to adding new attributes and objects, layout version 1.0
changes the following preexisting 0.8 objects and attributes:

— Replaces the depot nedi a_sequence_nunber attribute for the
media object with a sequence number attribute.

— Replaces the vendor definition within products and bundles with
a vendor _t ag attribute and a corresponding vendor object
defined outside the product or bundle.

— Pluralizes the cor equi si t e and pr er equi si t e fileset attributes.
— Changes the ti mest anp attribute to nod_ti ne.

Applies to swcopy, swlist, swmodify and swpackage.

440

Appendix A

Command Options
Options Listed Alphabetically

| evel =
Specifies a software level for swacl, swlist and swreg.

For swlist, this option lists all objects down to the specified level.
Both the specified levels and the depth of the specified
software_sel ecti ons control the depth of the swlist output. The
supported software levels are:

— bundl e -- show all objects down to the bundle level.

— product -- show all objects down to the product level. Also use
-1 bundl e -1 product toshow bundles.

— subpr oduct -- show all objects down to the subproduct level.

— fileset -- show all objects down to the fileset level. Also use
-1 fileset -1 subproduct to show subproducts.

— fil e --show all objects down to the file level (depots, products,
filesets, and files).

— control _fil e -- show all objects down to the control_file level.
— cat egory -- show all categories of available software objects.

— pat ch -- show all applied patches. (See also the
show _super seded_pat ches option.)

The supported depot and root levels are:

— depot -- show only the depot level (depots that exist at the
specified target hosts.

— root --list all alternate roots.
— shroot --list all registered shared roots (HP-UX 10.X only).
— prroot --list all private roots (HP-UX 10.X only).

For swacl, this option specifies the level of ACLs to view or modify:

— host -- view or modify the ACL protecting the host systems
identified by the t arget_sel ect i ons.

— depot -- view or modify the ACL protecting the software depots
identified by the t arget _sel ect i ons.

— root -- view or modify the ACL protecting the root file systems
identified by the t arget _sel ect i ons.

Appendix A

441

Command Options

Options Listed Alphabetically

product -- view or modify the ACL protecting the software
product identified by the sof t nar e_sel ect i on. Applies only to
products in depots, not installed products in roots

product _t enpl at e -- view or modify the template ACL used to
initialize the ACLs of future products added to the software
depots identified by the t arget _sel ecti ons.

gl obal _soc_t enpl at e -- view or modify the template ACL used
to initialize the ACLs of future software depots or root file
systems added to the hosts identified by the

target_sel ections.

gl obal _product _t enpl at e -- view or modify the template ACL
used to initialize the product _t enpl at e ACLs of future software
depots added to the hosts identified by the t arget_sel ect i ons.

For swreg, this option defines the level of object to register or
unregister.

depot -- depots that exist at the specified target hosts.
root -- all alternate roots.

shroot -- all registered shared roots (HP-UX 10.X only).
prroot -- all registered private roots (HP-UX 10.X only).

Applies to swacl, swlist, and swreg.

| og_nsgi d=0

Adds numeric identification numbers to the beginning of SD-UX log
file messages:

0 (default) adds no identifiers to messages.

1 adds identifiers to ERROR messages only.

2 adds identifiers to ERROR and WARNING messages.

3 adds identifiers to ERROR, WARNING, and NOTE messages.

4 adds identifiers to ERROR, WARNING, NOTE, and certain
other informational messages.

Applies to swconfig, swcopy, swinstall, swmodify, swpackage, swreg,
swremove, and swverify.

442

Appendix A

e |ogdetail =fal se

Command Options
Options Listed Alphabetically

Controls the amount of detail written to the log file. When set to true,
this option adds detailed task information, such as options specified,
progress statements, and additional summary information, to the log

file.

Table A-1 shows the possible combinations of | ogl evel and
| ogdet ai | options.

Table A-2

| ogl evel and | ogdet ai | Combinations

Log Level

Log Detail

Information Included

loglevel=0

(not applicable)

No information is written to the
log file

loglevel=1

logdetail=false

Only key events are logged. This is
the default setting for both options.

loglevel=1

logdetail=true

Event detail as above plus task
progress messages. (Setting

I ogl evel =1 is optional because 1
is the default value.)

loglevel=2

logdetail=false

Event and file level messages only.
(Setting / ogdet ai | =f al se is
optional because false is the
default value.)

loglevel=2 2

logdetail=true

All information is logged.

a. This combination duplicates the logfile behavior as HP-UX
10.x releases. Setting both the / ogl evel =2 and
| ogdet ai | =t r ue options is required.

Applies to swconfig, swcopy, swinstall, swreg, swremove and

swverify.

Appendix A

443

Command Options

Options Listed Alphabetically

| ogfi | e=/ var/adni sw <conmand>. | og

This is the default controller log file for each command. The agent log
files are always located relative to the target depot or target root:
/var/ spool / sw swagent . | og and / var / adni sw swagent . | og,
respectively.

Applies to all commands except swacl, swlist and swjob.
[ogl evel =1

This option controls the log level for events logged to the command
log file, the target agent log file and the source agent log file by
prepending identification numbers to SD-UX log file messages. This
information is in addition to the detail controlled by the | ogdet ai |
option. A value of:

— 0 -- provides no information to the log files
— 1 -- enables verbose logging to the log files
— 2 -- enables very verbose logging to the log files.

Applies to swconfig, sweopy, swinstall, swmodify, swpackage,
swremove and swverify.

mat ch_t ar get =f al se

If set to true, forces selection of filesets from the source that match
filesets already installed on the target system.

Filesets on the source which specify an installed fileset as an
“ancestor” will be selected.

This option overrides any other software selections.
Selections cannot be ambiguous.

Applies only to swinstall.

max_agents=-1

The maximum number of agents that are permitted to run
simultaneously. The value of -1 means there is no limit.

Applies only to swagentd.

444

Appendix A

Command Options
Options Listed Alphabetically

max_t ar get s=25

When set to a positive integer, this option limits the number of
concurrent install or copy operations to the number specified. As
each copy or install operation completes, another target is selected
and started until all targets are completed.

Server and network performance determines the optimal setting; a
recommended starting point is 25 (the default value). If you set this
option to a value of less than one, SD-UX attempts to install or copy
to all targets at once.

Applies to swcopy and swinstall.
medi a_capaci t y=1330

If creating a distribution tape or multiple-directory media such as a
CD-ROM, this keyword specifies the capacity of the tape in one
million byte units (not Mbytes). This option is required if the media
is not a DDS tape or a disk file. Without this option, swpackage sets
the size to the default of 1,330 million bytes for tape or to the amount
of free space on the disk up to minfree for a disk file.

SD-UX uses the same format across multiple directory media as it
does for multiple serial media, including calculations of the correct
size based partitioning of filesets and setting of the

nedi a_sequence_nunber attributes.

Applies only to swpackage.
medi a_t ype=di rectory

Defines the type of distribution to create. The recognized types are
di rectory and t ape. Without this option, swpackage creates a
distribution directory (depot) by default.

Applies only to swpackage.
m ni numj ob_pol ling_interval =1

Defines how often, in minutes, the daemon will “wake up” and scan
the job queue to determine if any scheduled jobs need to be initiated
or if any active jobs need their remote target status cached locally.

If set to 0, no scheduled jobs will be initiated, and no caching of active
jobs will occur.

Applies only to swagentd.

Appendix A

445

Command Options

Options Listed Alphabetically

nount _all _filesystens=true

Normally set to true, the commands automatically try to mount all
file systems in the file system table (/ et ¢/ f st ab) at the beginning of
the analysis phase and make sure that all those file systems are
mounted before proceeding.

When set to false, no additional file systems are mounted.

Applies to swconfig, swcopy, swinstall, swremove, swverify.

nmount _cnd=/ shi n/ mount

Specifies the command called by the agent to mount all file systems.
Applies only to swagent.

objects to register=

Defines the default objects to register or unregister. If there is more
than one object, they must be separated by spaces.

There is no supplied default. See also sel ect _| ocal .
Applies only to swreg.

one_liner=<attributes>

Defines the attributes listed in the non-verbose listing.

If there is more than one attribute, they must be separated by a
space and surrounded by quotes.

one liner="revision size title"

You must choose which attributes (that is, revision, size, title, etc.) a
default listing of software should use. Note: the t ag attribute is
always displayed for bundles, products, subproducts and filesets; the
pat h is always displayed for files.

Any attributes may be chosen but a particular attribute may not
exist for all applicable software classes (bundle, product, subproduct,
fileset). For example, the software attribute, ti t| e is available for
bundles, products, subproducts and filesets, but the attribute

ar chi t ect ur e is only available for products and filesets.

In the absence of the - v or - a option, swlist displays one_I i ner
information for each software object (bundles, products, subproducts
and filesets).

Applies only to swlist.

446

Appendix A

Command Options
Options Listed Alphabetically

0S_nane

Specifies fileset selection for an HP-UX update. (This option should
always be used with the os_r el ease option.) You must specify this
option from the command line or when invoking the swinstall GUI.

This options has the following syntax:
0s_hame=oper ati ng_syst emwi dt h
— operating_syst emspecifies the name of the operating system,

such as HP- UX. See the unane(1) manual page for complete
information.

— i dt h specifies the word width in bits (either 32 or 64) of the OS
to be installed.

— operating_syst emand wi dt h must be separated by a colon (:).
Applies only to swinstall.

os_rel ease

Specifies fileset selection for an HP-UX update. (This option should
always be used with the os_nane option.) You must specify this
option from the command line or when invoking the swi nstal | GUI.

This options has the following syntax:
os_rel ease=rel ease

rel ease specifies the HP-UX release. Values include:

B. 10. 01
B. 10. 10
B. 10. 20
B. 10. 30
B. 11. 00

Applies only to swinstall.
package_i n_pl ace=no

Setting this option to yes causes swpackage to build the products
such that the depot does not actually contain the files that make up a
product. Instead, the depot references the original source files used
to build a product. This lets you package products in a development
or test environment without consuming the extra disk space required
to create a distribution depot.

Applies only to swpackage.

Appendix A

447

Command Options

Options Listed Alphabetically

pat ch_commi t =f al se

Commits a patch by removing files saved for patch rollback. The
default value is false. When set to true, this option removes the saved
files for the patches specified in the software selections for the
command. Once you have run this option on a patch, you cannot
remove the patch unless you remove the associated base software
that the patch modified.

Applies only to swmodify.
patch_filter=*.*
Specifies a sof t vare_speci fi cat i on for a patch filter.

This option can be is used in conjunction with the

aut osel ect _pat ches and pat ch_mat ch_t ar get options to filter the
selected patches to meet the criteria specified by

software_speci fication. The default sof t vare_speci fi cati on
valueis *. *.

Note that patch filtering is overridden if you specify software with a
command or if you use the \ * wildcard to select software

Applies to swask, swcopy and swinstall.
pat ch_nat ch_t ar get =f al se

If set to true, this option selects the latest patches (software
packaged with the i s_pat ch attribute set to true) that correspond to
software on the target root or depot.

The pat ch_f il t er = option can be used with the
pat ch_nat ch_t ar get option.

Applies to swcopy and swinstall.
patch_one_liner=title patch_state

Use this command to specify the attributes displayed for each object
listed when the -1 patch option is invoked and when no -a or -v
option is specified. The default display attributes aretitl e and

pat ch_st at e.

Applies to swlist and swjob.

448

Appendix A

Command Options
Options Listed Alphabetically

pat ch_save fil es=true

Saves patched files, which permits future rollback of patches. When
set to false, patches cannot be rolled back (removed) unless the base
software modified by the patch is removed at the same time.

Applies to swinstall.
pol I'i ng_i nt erval =2

Applies only to interactive sessions. Specifies how often, in seconds,
SD-UX polls each target for status information during the analysis
and execution phases. When you must operate across wide-area
networks, you can increase the polling interval to reduce network
overhead. Specifying a high numbers for this option creates longer
intervals between polls.

Applies to swcopy, swinstall and swremove.
preserve create time=fal se

Preserves the original create time when you copy depots, which
produces consistent results when you use the copies. The default of
false sets the create_time of software bundles, products, and filesets
equal to the time swcopy created the new depot. When set to true,
the create_time is set to that specified in the source depot from which
the current selections were copied. Note that using this option when
copying to a master depot can change the objects that are visible
when you use the create_tine_filter option.

Applies to swcopy.
previ ew=f al se

If true, run this command in preview mode only (complete the
analysis phase and exit). This option has the same effect as
specifying -p on the command line.

Applies to swcopy, swinstall, swremove, and swconfig.

reboot _cnd=/ shi n/ r eboot

This is the command called by the agent to reboot the system.
Applies to swagent.

Appendix A

449

Command Options

Options Listed Alphabetically

reconf i gure=fal se

This option prevents software that is already in the configured state
from being reconfigured. If set to true, configured software can be
reconfigured.

Applies to swconfig.
regi st er _new depot =t r ue

Normally set to true, a newly created depot is registered on its host.
This allows other commands to automatically see this depot.

If set to false, new depots are not registered. This could allow you to
create a private depot on which to test, then later register it with
swreg.

Applies only to swcopy.
regi ster_new root =true

Causes swinstall to register a newly-created alternate root with the
local swagentd, which lets other SD-UX commands see this root.

If set to false, a new root is not automatically registered. (You can use
the swreg command to register the depot later.)

Applies only to swinstall.
reinstal | =fal se

Prevents SD-UX from re-installing (overwriting) an existing revision
of a fileset. If set to true, the fileset are re-installed.

Applies to swcopy and swinstall.
reinstall files=fal se

Controls the overwriting of files, which may enhance performance on
slow networks or disks. At the default value of false, SD-UX
compares each file in a source fileset to corresponding files on the
target system. SD-UX compares the files based on size, timestamp,
and (optionally) the checksum. If the files are identical the files on
the target system are not overwritten.

When set to true, SD-UX does not compare files and overwrites any
identical files on the target.

See also thereinstall andreinstall_files_use_cksumoptions.

Applies to swcopy, swinstall and swpackage.

450

Appendix A

Command Options
Options Listed Alphabetically

reinstall _files use cksun¥true
reinstall _files use cksun¥fal se (swpackage only)

Controls the use of checksum comparisons when the

reinstall _files option is set to false. The default value of true
causes SD-UX to compute and compare checksums to determine if a
new file should overwrite an old file. Use of checksums slows the
comparison but is a more robust check for equivalency than size and
time stamp.

If set to false, SD-UX does not compute checksums and compares
files only by size and timestamp.

Applies to swcopy, swinstall and swpackage.
remove_enpty_depot =t r ue

When the last product or bundle in a depot is removed, the depot
itself is removed.

If set to false, the depot is not removed when the last product (or
bundle) in it is removed. This preserves that depot’s ACL.

Applies only to swremove.
renmove_obsol ete fil esets=fal se

This command controls whether swcopy automatically removes
obsolete filesets from target products in the target depot. If set to
true, swcopy removes obsolete filesets from the target products that
were written during the copy process. Removal occurs after the copy
is complete. Filesets are defined as obsolete if they were not part of
the most recent packaging of the product residing on the source
depot.

Applies only to swcopy.
renove_set up_cmd=/usr/ | bi n/ sw r emove_set up

Defines the script called by the agent to perform release-specific
removal preparation. For an OS update, this script invokes the tlink
command when a fileset is removed.

Applies only to swagentd.

Appendix A

451

Command Options

Options Listed Alphabetically

retry_rpc=1

This command defines the number of times a lost source connection
is retried during file transfers. If set from 1 to 9, the install of each
fileset is attempted that number of times. Therei nstal | _files
option should also be set to false to avoid installing files that were
successfully installed within the fileset.

This option also applies to the controller contacting the agent. If the
agent session fails to start for any reason, the controller tries to
recontact that agent for the number of times specifiedinretry_r pc,
using the values from theretry_rpc_i nterval option to determine
how long to wait between each attempt to recontact the agent.

Applies to swcopy and swinstall.
retry_rpc_interval ={0}

Specifies in minutes the length of the interval for repeated attempts
to make a connection to a target after an initial failure. Used in
conjunction with the retry_r pc option.

If the number of values in this option equals the value of retry_rpc,
SD-UX tries to reestablish a source connection for the number of
times specified in ret ry_r pc. If the number of values in
retry_rpc_interval isless than the valueinretry_rpc, SD-UX
repeats the final interval value until the number of retries matches
retry_rpc.

For example, if an agent session failed to start and retry_r pc was
setto9andretry rpc_interval was setto {124 815} to allow long
waits to handle transient network failures, the controller would
attempt to recontact the agent after 1 minute for the first retry, then
2 minutes for the second retry, 4 for the third retry, then 8, then 15
for all additional retries until nine retries were attempted. With
these values, a file load failure could cause the operation to pause for
90 minutes (1+2+4+8+15+15+15+15+15). If both options were set to
5, the controller would try to contact the target five times over a
30-minute period.

Applies to swcopy and swinstall.

452

Appendix A

Command Options
Options Listed Alphabetically

reuse_short _job_nunbers=true

When assigning job ID numbers, SD-UX uses numbers less than
10,000. Typically, old jobs are removed long before job number 9,999
is reached, so the job number quickly rolls over from 9999 back to 1.
When you execute a large numbers of jobs that are not removed
before the ID numbers reach 9,999, SD-UX may have performance
delays while it searches for unused job numbers.

Setting reuse_short _j ob_nunber s to false causes SD-UX to begin
using numbers above 10,000. This avoids possible searching delays
and lets the job ID numbers increase to 8 digits (99,999,999) if
necessary. (This prevents roll-over from 9999 back to 1, so is usually
not desirable.)

See also the aut or enove_j ob option.
Applies to swconfig, swcopy, swinstall, swremove, and swverify.
r pc_bi ndi ng_i nfo=ncacn_i p_tcp: [2121] ncadg_i p_udp: [2121]

Determines on what protocol sequence(s) and endpoint(s) the
swagentd daemon listens. If the connection fails for one protocol
sequence, the next is attempted. SD-UX supports both the tcp and
udp protocols on most platforms.

The value can have the following form:

— A DCE string binding containing a protocol sequence and an
endpoint (a port number). The syntax is:

protocol _sequence: [endpoint]

— The name of a DCE protocol sequence with no endpoint specified.
This syntax is:

ncadg_i p_udp or ncacn_i p_tcp

Since no endpoint is specified, the DCE endpoint mapper r pcd
must be running and is used to find the endpoint registered by
swagentd

— The literal string al | . This entry means to use all protocol
sequences supported by the DCE Remote Procedure Call (RPC)
runtime. It should be the only entry in the list. The r pcd must be
running.

Applies to all commands except swask, swmodify, and swpackage.

Appendix A

453

Command Options

Options Listed Alphabetically

rpc_bi nding_info_alt source=ncadg_i p_udp:[2121]

Defines the protocol sequence(s) and endpoint(s) used when the
agent attempts to contact an alternate source depot specified by the
al t er nat e_sour ce option. SD-UX supports both the

udp(ncadg_i p_udp: [2121]) and

tcp(ncacn_i p_tcp: [2121]) protocol sequence/endpoint.

Applies to swagent.
rpc_ti nmeout =5

Relative length of the communications timeout. This is a value in the
range from 0 to 9 and is interpreted by the DCE RPC. Higher values
mean longer times; you may need a higher value for a slow or busy
network. Lower values give faster recognition of attempts to contact
hosts that are not up or are not running swagentd.

Each value is approximately twice as long as the lower one. A value
of 5 is about 30 seconds for the ncadg_i p_udp protocol sequence.
This option may be ignored when using the ncacn_i p_t cp protocol
sequence.

Applies to all commands except swmodify and swpackage.
run_as_super user =true

This option controls SD-UX’s nonprivileged mode. This option is
ignored (treated as true) when the invoking user is super-user.

At the default value of true, SD-UX operations are performed
normally, with permissions for operations either granted to a local
super-user or set by ACLs. (See Chapter 9, “SD-UX Security,” on
page 255 for details on ACLs.)

When set to false and the invoking user is local and is not super-user,
nonprivileged mode is invoked:

— Permissions for operations are based on the user’s file system
permissions.

— ACLs are ignored.

— Files created by SD-UX have the uid and gid of the invoking user,
and the mode of created files is set according to the invoking
user’s umask.

454

Appendix A

Command Options
Options Listed Alphabetically

Nonprivileged mode is intended only for managing applications that
are specially designed and packaged. This mode cannot be used to
manage the HP-UX operating system or patches to it. This option is
not compatible with remote operations. Setting this option to true
forces the aut or enmove_j ob option to true. For a full explanation of
nonprivileged SD-UX, see Chapter 12, “Nonprivileged SD,” on

page 413.

See also the adm n_di r ect ory option.
Applies to all commands except swagent, swagentd, and install-sd.
sel ect | ocal =true

Normally set to true, selects the default depot or installation
directory of the local host as the target of the command.

Applies to swacl, swconfig, swcopy, swinstall, swlist, swreg,
swremove, swverify.

show _super seded_pat ches=f al se

If false, swlist will not display superseded patches. To see them, you
must set this option to true. Even if you explicitly swlist the
superseded patch, it will not display unless this option is true.

Applies only to swlist.
sof t war e=
Defines the default sof t vare_sel ect i ons.

There is no supplied default. If there is more than one

sof t vare_sel ect i on, they must be surrounded by brackets { } or
quotes. Software is usually specified in a software_selections input
file, as options on the command line or in the GUI or TUL

Applies to all commands except swreg.
sof t war e_vi ew=pr oduct s

Indicates which software view is to be used in the GUI. It can be set
to product s, al | _bundl es, or a bundl e cat egory tag (shows only
bundles of that category). The default view is all_bundles plus
products that are not part of a bundle.

Applies to swcopy, swinstall, swlist and swremove.

Appendix A

455

Command Options

Options Listed Alphabetically

sour ce=

Specify a source to automatically bypass the GUI and CLI source
selection dialog box. This has the same effect as the - s source
command line option. Specify the source using the following syntax:

[pat h]

Applies to swcopy and swinstall.
sour ce_cdrome/ SD_CDRCM
Defines the default location of the source CD-ROM. The syntax is:

[host][:]] pat h]

Applies only to swinstall.
sour ce_depot _audi t=true

If both source and target machine are updated to SD-UX revision
B.11.00 or later, the system administrator at the source depot
machine can set this option to track whi ch user pulls whi ch software
from a depot on the source machine and when the software is pulled.

A user running swinstall or swcopy from a target machine cannot set
this option; only the administrator of the source depot machine can
set it.

When sour ce_depot _audi t is set to its default value of true, a
swaudi t . | og file is created on the source depot (for writable
directory depots) or in / var / t np (for tar images, CD-ROMs, or other
nonwritable depots).

To view, print, or save the audit information, invoke the sw i st
interactive user interface by typing:

swist -i -d

You can view audit information based on language preference, as
long as the system has the corresponding SD-UX message catalog
files on it. For example, you can view the source audit information in
Japanese during one invocation of swlist, then view the same
information in English at the next invocation.

Applies to swagent.

456

Appendix A

Command Options
Options Listed Alphabetically

source_fi |l e=psf

This keyword defines the default product speci fication fileto
read as input to the packaging or swmodify session. It may be a
relative or absolute path.

Applies to swpackage and swmodify.
sour ce_t ape=/dev/rnt/0m

Defines the default tape location, usually the character-special file of
a local tape device. You can also use the host : pat h syntax, but the
host must match the local host. The - s option overrides this value.

Applies to swcopy and swinstall.
source_type=directory

The default source type (choices are cdromfil e, directory, or
t ape) that points to one of the next three options. The source type
derived from the - s source fil e option overrides this default.

The cdr omand t ape values apply to swcopy and swinstall. The fil e
value applies only to swpackage.

system fil e_pat h=/ st and/ syst em

The path to the kernel’s template file. The path is passed to the
syst em pr ep_command via the SW SYSTEM FI LE_PATHenvironment
variable.

Applies only to swagent.
system prep_cnd=/ usr/| bi n/ sysadni syst em prep

The kernel build preparation script called by the agent. This script
must do any necessary preparation so that control scripts can
correctly configure the kernel that is about to be built.

Applies only to swagent.
target s=

There is no supplied default (see also sel ect _| ocal). If there is
more than one target, they must be separated by spaces. Targets are
usually specified in a target input file, as options on the command
line or in the GUL

Applies to all commands.

Appendix A

457

Command Options

Options Listed Alphabetically

target _type
See medi a_t ype.
unconpr ess_cmi=

This is the command called by the source agent to uncompress files
when installing, copying or packaging.

This command processes files that were stored on the media in
compressed format. If the conpr essi on_t ype of the file is gzi p, the
internal compression (f unzi p) is used instead of the external
uncompress command.

Applies to swagent and swpackage.
unconpress_fil es=fal se

When set to true, files are uncompressed using the current
unconpr ess_cnd before storing them on the target depot.

Only one of the unconpress_fi | es and conpress_fi | es options
may be set to true during a swpackage session.

The unconpr ess_fi |l es option may not be set to true if
package_i n_pl ace is set to true or if the medi a_t ype is set to t ape.

Applies to swcopy and swpackage.
use_al ternat e _source=fal se

At the default value of false, swinstall or swcopy begins an analysis
or task with a request that includes information describing the
source binding and depot path for the local host to use as the
software source.

If true, the local host uses its own configured value. On the local host,
the agent’s configured value for al t er nat e_sour ce is specified in
host : / pat h format. If this value contains only a path component (for
example, al t er nat e_sour ce=: / pat h), the agent applies this path to
the file system of its own local host.

If only the host component exists (for example,

al t er nat e_sour ce=host), the agent applies the controller-supplied
path to this host. If there is no configured value at all for the

al t er nat e_sour ce, the agent applies the controller-supplied path to
its own local host.

Applies to swcopy and swinstall.

458

Appendix A

Command Options
Options Listed Alphabetically

ver bose=

By default, the command sends output to st dout for task summary
messages. Alternatively, the verbose option can be set to 0 for session
level messages (no output to st dout) or (for swpackage and
swmodify) to 2 for file level messages.

Error and warning messages are always written to st derr.

For the swlist command, a verbose listing includes all attributes that
have been defined for the appropriate level of each

sof t var e_sel ect i onoperand. The attributes are listed one per line,
prefaced by the attribute keyword.

The - v option overrides this default, if it is set to 0.
Applies to all commands.
wite renote files=fal se

Prevents file operations on remote (NFS) file systems. All files
destined for installation, copy, removal, or packaging on targets on a
remote (NFS) file systems are skipped.

If set to true and if the superuser has write permission on the remote
file system, the remote files are not skipped.

Applies to swconfig, swcopy, swinstall, swpackage, and swremove.

Appendix A

459

Command Options
Options Listed Alphabetically

460 Appendix A

Table B-1

Troubleshooting

Troubleshooting

This appendix explains how SD-UX error messages are used, reviews the
SD-UX error logging process. lists common problems you might
encounter, and suggests how to resolve them.

Chapter Topics

Topics:

“Error Logging” on page 462

“Common Problems” on page 464

Appendix B

461

Troubleshooting
Error Logging

NOTE

Error Logging

All SD-UX commands (except swlist and swacl) log error messages,
summary information about the session, and operation details to a
command-specific logfile located (by default) in

/var/ adm sw <command>. | og. For example, if you wanted to examine
the logfile for swinstall, you would look in the file

/var/ adm sw swi nstal | .| og. You can also examine target agent
logfiles for a current session from the swinstall, swcopy, or swremove

GUIs.

If you have log-in access to a target host, you can see its agent logfile(s)
directly. The location of the agent logfile varies, depending on the type of
target:

e /var/adni sw swagent . | og when operating on a host’s primary root.
e /<root_path>/var/adni sw swagent . | og for an alternate root.
e /<depot _pat h>/ swagent . | og for a target or source depot.

The default location of a host’s daemon logfile is

/var/ adm sw swagent d. | og. This logfile contains information for
problems starting agents, particularly for problems where you have
access denied to a depot or root.

When both the source and target machine are updated to HP-UX 10.30
or later, the system administrator at the source depot machine can track
which user pulls which software from a depot and when the software is
pulled. Refer to the sour ce_depot _audi t option in Appendix A,
“Command Options,” on page 421 or “Source Depot Auditing” on

page 160.

462

Appendix B

Troubleshooting
Error Logging

Error Messages

SD-UX error messages indicate that a problem occurred that will
influence the overall outcome of an operation.

For example, if a target in an install session fails the analysis phase due
to insufficient disk space, you would find the following error message in
the agent log file:

ERRCR The esti mated di sk space used on filesystem"/" is
14104 Kbyte bl ocks. This operation will exceed the

m ninum free space for this disk. You should free up at
| east 2280 Kbyte bl ocks to avoid installing beyond this
threshol d of avail abl e user disk space. If you are
running interactive "swinstall", you nust return to the
Sel ecti on Wndow and Unmark this target before using
"swrenove" to free di sk space.

Warning Messages

Warning messages let you know that something unexpected and
potentially undesirable occurred. A warning does not prevent the SD
session from continuing. Warning messages during analysis of an
interactive session give you the chance to continue or stop.

For example, if the fileset SD-DATABASE.SD-DATABASE2 is being
installed in multiple locations on a target system, you would find the
following warning message in the agent log file:

WARN NG A version of fileset

" SD- DATABASE. SD- DATABASE2, r =9. 00. 1C'

is already installed in another |ocation (see previous
lines). Installing this version will create miltiple
installed versions. This new nultiple version will be
install ed because the "allow nultiple versions" option is
set to "true".

Notes

Notes are used to notify you of an event that is not erroneous, unexpected
or undesirable, but that you should be aware of:

NOTE: The fil eset "SD DATABASE. SD- DATABASEL, r=9. 00. 1C' i s
already installed. If you wish to reinstall this
fileset, change the "reinstall" option to "true".

Appendix B

463

Troubleshooting
Common Problems

Table B-2

Common Problems

This section presents a selection of problems you might encounter and

how to resolve them:

Common Problems

Problem

Cannot contact target host’s daemon or agent

GUI won’t start or missing support files

Access to an object is denied

Slow network performance

Connection timeouts and other WAN problems

Disk space analysis is incorrect

The packager fails

Daemon logfile is too long

Cannot read a tape depot

Installation fails

swinstall or swremove fails with a lock error

464

Appendix B

Troubleshooting
Common Problems

Cannot Contact Target Host’s Daemon or Agent

If you see the following error message:

ERROR Coul d not contact host <hostnane> Make sure the
hostnane is correct.

it means that the hostname you specified could not be found in the hosts
database. Make sure you have typed the hostname correctly (you can use
the nslookup command to verify hostnames). If the target hostname is
not in the hosts database, but you know its network address, you can use
it (in standard “dot” notation) in place of the hostname.

If you see this error message:

ERROR Renot e Procedure Call to a daenon has fail ed.
Coul d not start a nanagenent session for <target>.

Make sure the host is accessible fromthe network,

and that its daenmon, swagentd, is running. If the

daenon is running see the daenon | ogfile

on this target for nore infornation.

it means SD-UX could not contact the daemon program on a specific
target system. Note that this may occur even if you haven’t specified any
targets, for example, if the daemon on your local host is not running.

Resolution If the SD-UX daemon/agent is not installed on a given target system, you
must install it before you can use SD-UX.

If you've verified that the daemon/agent component has been installed on
a target system and you still have trouble contacting it, check to see that
the daemon is running:

1. On the target system, type:
ps -e | grep swagentd

2. If the daemon does not appear to be running, you can start it by
typing (as root on the target system):

/ usr/ sbi n/ swagent d

3. If you attempt to start a daemon when one is already running, you
will see a message about the other daemon; this is harmless.

You can also kill and restart a currently running daemon by typing:

/usr/sbin/swagentd -r

Appendix B 465

Troubleshooting
Common Problems

Other possible causes for this problem are listed in the section
“Connection Timeouts and Other WAN Problems” on page 472.

TIP An easy way to determine if a target system has the SD-UX daemon
installed and running is to type:

fusr/sbin/swist -1 depot @<one or nore target hostnanes>

which will attempt to contact each target to get a list of registered
depots. Those targets which have the SD-UX daemon installed will
report either:

Initializing...

Target <hostnane> has the follow ng depot(s):
<...insert list of depots...>

or

Initializing...
WARNI NG No depot was found for <hostnane>.

For more information on daemon activity, see the daemon logfile in
[var/ adm sw swagent d. | og.

466 Appendix B

Resolution

Troubleshooting
Common Problems

GUI Won’t Start or Missing Support Files
You can start the GUI in these ways:

¢ For swinstall, swcopy, or swremove, type the command with no
additional options or arguments.

¢ Include the -i option with any other options and arguments when
you type the command on the command line. (Required for swlist.)

¢ For the Job Browser, type sd on the command line.

When using the GUI, you might encounter these problems:

e Can’t open the display or display is set incorrectly

e Missing GUI support files

If you have invoked the GUI on a remote system, you may see the
following error messages:

X ib: connection to <display> refused by server
Xib: dient is not authorized to connect to Server
Error: Can't (pen displ ay.

Check that you have set the $Dl SPLAY environment variable correctly on
the remote system to identify your display. If it is correct, you may have
to enable the remote host to make connections to your X server via the
xhost (1) command or by modifying your / et c/ X*. host s file.

If you see the error message:

swinstall: Error: cannot read fil e:
fusr/lib/swui/snmt_install_copy. ui

— Oor —

swenove: Error: cannot read file:
fusr/1ib/sw ui/snt_renove. ui

the system is telling you that the file
fusr/1ib/swui/snt_install_copy.ui mustbe installed on the
system to run either swinstall or swcopy interactively or that the
[usr/lib/swui/snt_renove. ui file must be installed to run
swremove. Make sure that the directory / usr/ i b/ sw ui exists and
includes the requested file. If the file does not exist, you must reinstall
the SD- OMDS fileset from your OS media.

Appendix B

467

Troubleshooting
Common Problems

Resolution

Access To An Object Is Denied

Denial of access to SD-UX objects may have a number of causes,
including:

e ACL permissions
e Inter-host secrets

e Working with image copies of depots

Generally, when SD-UX denies access to an object, a message tells you
that you do not have the required access permission. Yet, it may be
unclear which object is not accessible. For example, when you use swcopy
to copy a product from system A to a depot, SD-UX checks these ACLs:

1. If the destination depot does NOT exist, the host ACL is checked to
verify that the user has “insert” permission.

2. If the destination depot does exist, the depot ACL is checked to verify
that the user has write permission.

3. The source depot’s ACL is checked to make sure the user has read
permission on the source depot.

4. The source product’s ACL is also checked to make sure that the user
and the destination system both have read access to the product.

If any of these access permissions is absent, the whole operation is
disallowed, and you must read the error message carefully to
understanding the exact cause. To see more about what type of security
or access problems exist, see the daemon log file on the target system:
/var/ adm sw swagent d. | og

The Effects of ACL Modifications

The default ACLs make it fairly easy to administer ACLs, but do not
always give the desired level of access control. When you change an ACL
to restrict access, especially by removing the any ot her read permission,
you may restrict access in unexpected ways. Host entries are required for
any destination systems for swcopy and swinstall operations.

See Chapter 9, “SD-UX Security,” on page 255 for a full discussion of the
access tests performed or each operation.

468

Appendix B

Troubleshooting
Common Problems

Do Not Modify ACL Files Without swacl

Since SD-UX stores ACLs in the file system as plain text files, you may
try to edit them with a conventional editor. This can lead to unexpected
corruption of the ACL. Most cases of this corruption simply result in a
message indicating the corruption, but inserting additions to the ACL
file without updating the num ent ri es value can result in unreported
problems and cause SD-UX to deny access. A common failure could occur,
for instance, if a you inserted user entry in the ACL file. This could push
the any_ot her entry down beyond the num ent ri es limit. The ACL
manager would never read the any_ot her entry, and you would have
access problems. The best guard against this situation is to always use
the swacl command to manipulate ACLs.

Inter-host Secrets

The default / var / adm sw securi ty/ secr et s file contains a single
entry:

def aul t - sdu-

If you wish to explicitly name all hosts from which controllers can be run,
you must replace the - sdu- with a different default secret, or eliminate
the entire entry. See Chapter 9, “SD-UX Security,” on page 255 for a
thorough discussion of the secrets file.

The controller (for swinstall, swcopy, etc.) looks up the secret for the
system on which it runs and passes it in an encrypted form to its agent.
The agent receiving a request from the controller looks up the secret for
the host from which the call comes, encrypts it, and compares the
encryption to that provided by the controller. If the two secrets do not
match, access is denied. If you have problems with this mechanism,
make sure that all systems have matching entries. You can also revert to
the old secrets file (/ et ¢/ newconfi g/ sd/ secr et s on 9.x and

[usr/ newconfi g/ var/ adm sw security/secrets on 10.x) on all hosts,
or simply copy a single secrets file to all hosts.

Working With Depot Images

You may encounter a problem in using cp, tar, cpio, dd, and other
commands to copy images of depots for use on other systems. Depot and
product ACLs in the image have built-in knowledge of the host on which
the depot originated. In particular, an ACL default r eal mwill be wrong
and local users will be confused with users on the originating host. For

Appendix B

469

Troubleshooting
Common Problems

example, attempts to add local users to the access list will, in fact, grant
access to remote users. There is no way to alter the default realm of an
ACL from that set when it is created.

Another common problem with such images occurs if you import them to
systems that cannot resolve all the hostnames (see resolver(4) and
nslookup(1)) that exist in the ACLs.

If your purpose is to create a “staged” installation, use swcopy to
propagate the depot. This creates new ACLs, based on local templates,
for each instance of the depot.

If the sole intent of a depot is for such image distribution, you may wish
to set the swpackage creat e_t arget _acl s option to false to prevent
ACL creation on the depot and products during the swpackage operation.
This option creates tape and CD-ROM images. Depots and products
without ACLs grant the local superuser all privileges, while all other
users and systems have read access. Note that when you copy or install
this ACL-less depot with swcopy or swinstall, the copies (installations)
are automatically protected by ACLs based on templates on the
destination host.

470

Appendix B

Troubleshooting
Common Problems

Slow Network Performance

When using swinstall or swcopy in an environment where network
bandwidth is the “bottleneck,” the file transfer rate between source and
target can become very slow.

Resolution The conpress_fil es=true option compresses files transferred from a
source depot to a target. This can reduce network usage by
approximately 50%; the exact amount of compression depends on the
type of files. Binary files compress less than 50%, text files more.

The greatest throughput improvements are seen when transfers are
across a slow network (approximately 50kbyte/sec or less), and the
source depot server is serving a few target hosts at a time.

NOTE This option should be set to true only when network bandwidth is clearly
restricting total throughput. If this option is used with a fast network or
with a depot server simultaneously connected to many target hosts, this
option can actually reduce overall throughput or performance, unless the
source depot is already compressed.

If it is not clear that this option will help in your situation, compare the
throughput of a few install or copy tasks (both with and without
compression) before changing this option value.

See Chapter 8, “Reliability and Performance,” on page 237 for more
information about performance options.

Appendix B 471

Troubleshooting
Common Problems

Resolution

Connection Timeouts and Other WAN Problems

Low-throughput, wide-area networks can cause SD-UX to encounter
time-out problems when establishing and maintaining network
connections with remote agents on other systems.

If you see the following messages:

ERROR A Renote Procedure Call to a daenon has fail ed.

Coul d not start a nmanagenent session for <target>.

Make sure the host is accessible fromthe network, and

that its daenon, swagentd, is running. |If the daenon is
runni ng see the daenon logfile on this target for nore infor
nmation.

or

ERROR Coul d not performthe requested operation for
<target>, possibly due to a network comunications
failure. Check that the host is still accessible from
t he networKk.

and you have verified that the system is up and the daemon program
(swagentd) is running on it, it may be that network delays are causing
the connection to time-out.

Increase the time-out value used by SD-UX when performing Remote
Procedure Calls (RPCs) by specifying a higher value for the r pc_t i neout
option, either via the command line or in the defaults file. RPC time-out
values range from 0 to 9, with 9 being the longest time-out. The default
RPC time-out value is 5. Note that these values do not represent any
specific time units. See Appendix A, “Command Options,” on page 421 for
more information on the r pc_ti neout option.

Increasing the r pc_ti neout can also help in situations where the target
agents in an install or copy session are timing out when trying to contact
the source agent. This problem is indicated by the following error
messages in the agent log file:

ERRCR Coul d not open renote depot/root <path> due to
an RPC or network I/O error.

ERRCR Cannot open source. Check above for errors, as
wel | as the daenon logfile on the source host (default
| ocati on: /var/adni sw swagent d. | og) .

ERRCR Cannot continue the Anal ysis Phase until the
previous errors are corrected.

472

Appendix B

Troubleshooting
Common Problems

Another factor that can affect RPC timeouts on a slow network is the
choice of network protocol. SD-UX supports both UDP- and TCP-based
communication (the default is TCP). TCP communication is more
reliable on a WAN because it is connection-based. SD will fall back to a
UDP connection if the TCP connection fails for some reason. The default
binding can be set with the - x rpc_bi ndi ng_i nf o option.

Note that the daemon program (swagentd) listens for both UDP- and
TCP-based RPCs by default. See Appendix A, “Command Options,” on
page 421 for more information on the r pc_bi ndi ng_i nf o option.

A final WAN-related issue may arise when using the interactive GUI.
During the analysis and execution phases of an interactive session, each
target agent is periodically polled for up-to-date status information. The
pol I'i ng_i nt erval option can be used to control the number of seconds
that elapse between successive status polls of a given target system. On
networks where even this minor data transfer is a problem, you can
increase this polling interval, thus decreasing the frequency of polling,
and reducing an interactive session’s overall demands on the network.
See Appendix A, “Command Options,” on page 421 for more information
on the pol | i ng_i nt erval option.

Appendix B

473

Troubleshooting
Common Problems

Resolution

Resolution

Disk Space Analysis Is Incorrect

Your installation or copy operation runs out of space even though the
disk space analysis succeeded. Upon further checking, you find that the
results of the disk space analysis differ from the actual space available.

Possible causes of this problem:

e A control script associated with the installation has consumed disk
space by creating or copying additional files that aren’t accounted for
during analysis.

* Your target systems were not idle when the analysis was done and
some other activity (unrelated to SD-UX) was consuming disk space.

e The depot from which the product was installed or copied was
created by swpackage with the package_i n_pl ace option set to true,
and source files have been modified since the product was packaged.
The swverify command can be used to diagnose this problem.

Packager Fails

A swpackage operation may fail because of the incorrect use of the end
keyword in the Product Specification File (PSF).

The end keyword marks the end of a depot, vendor, product, subproduct
or fileset specification in a PSF. It requires no value and is optional.
However, if you use it and it is incorrectly placed, the specification will
fail. Check to make sure, if you use it, there is an end keyword for every
object specification (especially the last one).

474

Appendix B

Troubleshooting
Common Problems

Command Logfile Grows Too Large

If you want to reduce the contents of a SD-UX command logfile, follow
this procedure:

Resolution To reduce messages to a minimum, set the ver bose command option to 0
in one of the option files or by using the - x option on the command line.
For example, entering - x spackage. ver bose=0 on the command line
when you run swpackage would reduce the number of entries to the
swpackage log to a minimum. See Appendix A, “Command Options,” on
page 421 for details about setting options.

Daemon Logfile Is Too Long

If you want to shorten (truncate) the SD-UX daemon logfile because it is
getting too long, follow this procedure:

Resolution If the daemon is currently running, DO NOT remove its logfile. The
running daemon continues to log messages to its logfile even after you've
removed it, causing any subsequent information to be lost. Also, the disk
space used by the logfile will not be freed as long as the daemon is
running.

Instead, truncate the logfile by typing (as root):
echo > /var/adnm sw swagent d. | og
This replaces the previous data in the log with an empty string.

If you inadvertently remove the daemon logfile while it is running, you
must kill and restart the daemon if you want to see subsequent daemon
log messages and free up the disk space used by the logfile. You can stop
(kill) a daemon by typing:

usr/ sbi n/ swagentd -k
You can also kill and restart a currently running daemon by typing:

usr/ sbi n/ swagentd -r

Appendix B 475

Troubleshooting
Common Problems

Cannot Read a Tape Depot

If you are trying to access a tape depot and see the following error
message in the daemon logfile, it means that the tape is either corrupt or
is not in SD-UX format.

ERROR The INDEX file on the source did not exist or could
not be read.
ERRCR The target <depot path> coul d not be opened.

Resolution Make sure that you have correctly specified the tape device and that the
correct tape is in the drive. SD-UX only reads tapes that are in SD-UX
format. For example, SD-UX does not read update format tapes.

Installation Fails

An installation may fail while only part way through the process.

Resolution SD-UX gives you several restart options:

¢ Re-execute the same command from the command line.

e Recall the session file swi nstal | . | ast that was automatically
saved for you. (See “Session Files” on page 61.)

¢ Reset the checkpointing options.

By default, SD-UX checkpoints to the fileset level, meaning that the
operation will start transferring files with the last fileset to be
attempted. By setting the rei nstal | _fil es option to false, SD-UX
restarts distribution and installation with the file that was last
attempted. (SD-UX does not support checkpointing below the file
level.)

You can override all checkpointing by setting both the r ei nst al |
and reinstal | _fil es options to true. See Appendix A, “Command
Options,” on page 421 for more information.

476 Appendix B

Troubleshooting
Common Problems

Swinstall or Swremove Fails With a Lock Error

Swinstall or swremove fails with the following message:

Cannot | ock “/” because anot her comrand holds a conflicting
| ock. The process id of that command is ####.

Resolution Another SD command is running that prevents the swinstall or
swremove command from running. Wait for that command to finish and
try again.

Appendix B 477

Troubleshooting
Common Problems

478 Appendix B

Replacing or Updating SD-UX
C Replacing or Updating SD-UX

This appendix describes how to replace or update SD-UX using the
install-sd command.

Table C-1 Chapter Topics

Topics:

“Re-installing SD-UX” on page 480

“Replacing an Unusable Version of SD-UX” on page 482

“Installing a Newer Version of SD-UX” on page 483

Appendix C 479

Replacing or Updating SD-UX

Re-installing SD-UX

For More
Information

Re-installing SD-UX
The software product called SW D ST provides all SD-UX functionality,
commands, and tools. This product is included on your HP-UX 11i media.

If the files that make up SW DI ST are deleted or corrupted, you may need
to re-install the product. The install-sd command lets you install the
SD-UX product from HP-UX 11i media or a depot. This command also
installs any SD-UX patches that exist in the source depot.

e The install-sd command is not supported on HP-UX versions
10.20 or 11.00.

¢ You need the 11i version of SW Dl ST to install or copy any HP-UX
software that has been packaged in the 11i SD-UX format.

¢ The update-ux command replaces the swgettools script used by

previous versions of SD-UX for OS updates.

For complete instructions for updating HP-UX, see:

e HP-UX 11i Installation and Update Guide
* update-ux (1M) manpage

These documents are available on your HP-UX Instant Information
CD-ROM and in the HP-UX 11i section of:

http://docs. hp. com

Prerequisites

The install-sd command and an accompanying swagent . Z file require at
least 2 MB of free space in the / var/ t np directory. If there is not enough
space in this directory, install-sd will fail. To determine if / var/ t np has
adequate space, enter:

bdf /var/tnp

480

Appendix C

Replacing or Updating SD-UX
Re-installing SD-UX

Using install-sd
Syntax install-sd -s source _depot | ocation
Options and The sour ce_depot | ocat i on option specifies an absolute path to the
Operands source media location. Possible media locations are:

Command Notes .

A local directory
A CD-ROM mount point that has an SD-UX media CD-ROM loaded

A remote system (or host) and depot combination, which you must
specify with this syntax:

syst em nane: | depot _pat h

For example:

swt est : / var/ spool / sw

The command returns a value of 0 to indicate successful completion
and a value of 1 to indicate an error.

An install-sd session writes messages for major tasks and the begin
and end of each session. All WARNING and ERROR conditions are
written to stderr.

Detailed events are logged to / var/ admi swinstall -sd. | og

Example install-sd -s swtest:/var/spool /sw

Appendix C

481

Replacing or Updating SD-UX
Replacing an Unusable Version of SD-UX

Replacing an Unusable Version of SD-UX

If the version of SD-UX on the target system is unusable, you must first
load install-sd and the swagent . Z file onto your system into / var/ t np,
then use install-sd to re-install SW DI ST. The install-sd utility ships in
the cat al og/ SW DI ST/ pfi | es directory.

Use cp (if you are copying from a local CD-ROM) or r cp (if you are
copying from a software depot on a remote system) to load install-sd onto
your system.

For example, to load install-sd from a local CD-ROM mounted at
/ SD_CDRCMinto / var/ t np:

Step 1. Copy install-sd onto your system from the CD-ROM:

cp /SD CDROM cat al og/ SWDI ST/ pfiles/ \
install-sd /var/tnp

Step 2. Copy the swagent . Z file from the CD-ROM:

cp /SD_CDROM cat al og/ SWD ST/ pfiles/ \
swagent.Z /var/tnp

Step 3. Make install-sd executable:
chmod +x /var/tnp/install-sd
Step 4. Execute install-sd:
/var/tnp/install-sd -s /SD COROM
The SW-DIST product then installs itself onto your system from the
CD-ROM.

482 Appendix C

Step 1.

Step 2.

NOTE

Replacing or Updating SD-UX
Installing a Newer Version of SD-UX

Installing a Newer Version of SD-UX

If you want to install a newer version of SD-UX on your system
and/ usr/ shi n/install -sd is not yet on your system, use this
procedure.

(In both steps, sour ce_depot I ocat i onis the absolute path to the depot
or media that contains the newer version of SD-UX.)

As root, enter:

fusr/sbin/swinstall -r -s \
sour ce_depot | ocati on\ SW D ST. SD- UPDATE \
@/ var/adni swinstall-sd. root 2>/ dev/null

Install the newer version:

fusr/sbin/install-sd -s source_depot |ocation

This i nst al | - sd command will not be available in future releases.

Appendix C

483

Replacing or Updating SD-UX
Installing a Newer Version of SD-UX

484 Appendix C

Software Distributor Files and File System Structure

D Software Distributor Files and
File System Structure

This chapter contains information on key Software Distributor files.

For additional information, refer to the following manual reference

pages:
sd(5) For most current information on Software Distributor
files
sd(4) For file layouts of all Software Distributor files.
swpackage(4) For file layouts of Software Distributor files created
during packaging.
Table D-1 Chapter Topics
Topics:

“Agent File System Structure” on page 486

“Software Distributor Controller File System Structure” on page 489

“Installed Products Database” on page 490

Appendix D 485

Software Distributor Files and File System Structure
Agent File System Structure

Agent File System Structure

The agent component is organized as follows:

Table D-2 Agent Component

/dev/rm/Qm Default location of the target
tape device file

/usr/contrib/bin Location of the gzip executables
used in file compression

[usr/ | bi n/ swagent The SD-UX agent

/usr/1bin/sw Directory containing utilities
used by swinstall and swremove

fusr/1bin/swcontrol _utils File containing common utilities
used by SD control scripts.

/usr/shbin Directory that contains the
Software Distributor daemon
(and all other executables)

lusr/1ib/sw exanpl es Directory that contains various
example packages and PSF files

fusr/lib/swsys.defaults File that lists all options and
their default values

/var/ adm sw Directory that contains all the
data for the Software
Distributor product and the
default location of logfiles

/var/ spool / sw Default directory of the local
Software Distributor depot

/var/ adm sw def aul ts Software Distributor
system-wide defaults file

/var/ adm sw host _obj ect List of depots registered at the
local host

486 Appendix D

Table D-2

Software Distributor Files and File System Structure
Agent File System Structure

Agent Component (Continued)

/var/ adm sw host _obj ect _np

/var/ adm sw product s

/var/ adm sw queue

[var/ adm sw save

/var/ adm sw save_cust om

/var/adm sw security

/var/adm/sw/swagent.log

/var/ adm sw swagent d. | og

/var/ adm sw sw<t ask>. | og

List of depots registered at the
local host during nonprivileged
mode

The Installed Products
Database (IPD), a series of files
and subdirectories that contain
information about all products
installed under the root (/)
directory

Directory that contains the Jobs
database.

Directory that is SD’s save area
for patches

Directory that is a custom save
area for patches

Directory that contains the host
Access Control List (ACL), all
default ACLs, and the secrets
file

Agent logfile containing details
on installed software operations

Daemon log file containing
details on host and security
operations

Controller logfile containing a
summary of each job, where
<t ask> is one of these values:

i nstall
renove
config
nodi fy
package
reg
verify

Appendix D

487

Software Distributor Files and File System Structure
Agent File System Structure

Table D-2 Agent Component (Continued)
/var/adm sw t np Directory for temporary files
/var / horre/ USER_NAME Default location for
admin_directory during
nonprivileged mode
$HOWE . swdef aul t's File containing user-specified

default values. If this file does
not exist, Software Distributor
looks for user-specific defaults in
$HOVE/ . sw defaul ts

488 Appendix D

Table D-3

Software Distributor Files and File System Structure
Software Distributor Controller File System Structure

Software Distributor Controller File System

Structure

The controller file system structure is comprised of all files in agent (see
“Agent File System Structure” on page 486) plus the following files:

Controller File System Structure

lusr/lib/swhelp

fusr/lib/swui

fusr/1ib/X11/ app-defaul ts

[usr/lib/nls/msg/ $LANG sw. cat

[usr/ newconfi g/ var/ adm sw

/var/ adm sw queue

/var/ adm sw sw<t ask>. | og

/var/ adm sw def aul t s. host s

/var/adm sw . sdkey

/var/admi sw target hosts

/var/ admi sw ui / pr ef er ences

Directory that contains the
help files for on-line help

Directory that contains the
description files used by the
GUIs

X11 resource definitions for
the GUIs

Message catalogs for the
daemon, agent, and shared
messages

Data files that are
conditionally copied into
/var/ adm sw.

Directory that contains all
the data for jobs

Controller logfile

System-level defaults. hosts
file for the GUIs

Key file that enables the
remote operations GUI

Location of the cache file for
each target host

Directory that stores the
GUI user view preferences

Appendix D

489

Software Distributor Files and File System Structure
Installed Products Database

For More
Information

Installed Products Database

Software Distributor commands keep track of installations, products,
and filesets on the system with the Installed Product Database (IPD).
Located in the directory / var / adni sw' pr oduct s, the IPD is a series of
files and subdirectories that contain information about all the products
that are installed under the root directory (/). This information includes
all the attributes describing the products, filesets, and files. The
swinstall, sweonfig, and swremove tasks automatically add to, change,
and delete this IPD information as the commands are executed.

You cannot manually edit the IPD files, but swmodify lets you change
local IPD and local depot catalog information.

The equivalent IPD files for a depot are called catalog files. When a depot
is created or modified using swcopy, catalog files are built (by default in
/var/ spool / sw cat al og) that describe the depot and its contents.

The IPD also contains a sw ock file that manages simultaneous read
and/or write access to software objects, and ACLs.

e “Modifying the IPD (swmodify)” on page 115

490

Appendix D

Glossary

NOTE: A glossary term appears in boldface

when defined for the first time in the text of
this manual. Italicized terms in the following
glossary refer to other terms in the glossary.

A

Access Control Lists (ACL) A structure
attached to a software object that defines
access permissions for multiple users and
groups. It extends the permissions defined
by the HP-UX file system’s mode bits by
letting you specify the access rights of many
individuals and groups instead of just one of
each.

Administrative Host See local host.

Agent The agent (swagent) runs on the local
host. It services all selection, analysis,
execution and status requests. It is
scheduled by the daemon and guided by the
SD-UX controller.

Alternate Depot Directory A depot
directory located someplace other than the
default location.

Alternate Root/Alternate Root
Directory A Target for software
installation, where the Target is not the
primary Root (/) and where the software can
be stored or referenced, but not configured or
used.

Analysis/Analysis Phase The second
phase of a software installation, copy, or
remove operation, during which the host
executes a series of checks to determine if
the selected products can be installed,
copied, removed, or verified on the host. The
checks include the execution of check scripts
and disk space analysis (DSA).

Ancestor An attribute that names a
previous version of a fileset. This is used to
match filesets on a target system. If the

nat ch_t ar get option is set to true, SD-UX
matches the ancestor fileset name to the new
fileset name.

Applied The state in which a patch is
installed. When a patch is installed, by
default it has the pat ch_st at e of applied.
Other patch states include committed and
superseded and committed / superseded.

Architecture A keyword that represents
the operating system platform on which the
product runs.

Archive file A . o file that needs to be
replaced in an existing archive using the ar
command. Used for patch files.

Ask An operation in which SD-UX runs an
interactive request script to get a response
from the user. Request scripts can be run by
the swask, swconfig, and swinstall
commands.

Attributes Information describing a
software object’s characteristics. For
example, product attributes include revision
number, tag (name), and contents (list of
filesets). Fileset attributes include tag,
revision, kernel, and reboot. File attributes
include mode, owner, and group. An essential
part of the Product Specification File,
attributes include such information as the
product’s short name or tag, a one-line full
name title or a one paragraph description of
the object. Other attributes include a
multi-paragraph README file, a copyright
information statement and others.

Glossary

491

Glossary
Authorization

Authorization In SD-UX security, checking
that a user has the necessary permissions to
perform a specific action, as defined by an
Access Control List.

B

Base software Software that will be
modified by a patch.

Building phase Packaging the source files
and information into a product, and
creating/merging the product into the
destination depot/media.

Bundles A collection of filesets that are
encapsulated for a specific purpose. By
specifying a bundle, all products or filesets
under that bundle are automatically
included in the operation.

C

Cache File A file that contains the name
and attributes of targets selected by
swinstall or swcopy.

Catalog/Catalog directory An area
within a depot that contains all the
information needed by SD-UX to define the
organization and contents of the products
stored in the depot. It includes a global
INDEX file and a directory of information for
each product version in the depot. It is
sometimes referred to as the catalog
directory.

Category This keyword defines the
“category” attribute for the product object. It
refers to the type of software being
packaged.

CD-ROM Compact Disc-Read Only Memory
or a SD-UX depot that resides on a
CD-ROM.

Centralized management See remote
operations.

Checkinstall script An optional, script
associated with a product or fileset, executed
by swinstall during the analysis phase. The
result returned by the script determines if
the fileset can be installed or updated.

Checkremove script An optional script
associated with a fileset that is executed
during the swremove analysis phase. The
result returned by the script determines if
the fileset can be removed.

checksum Cyclic Redundancy Check (CRC),
a computed value that is compared with
stored data to tell if a file has been corrupted
during transfer.

CLI Command Line Interface. See
Command Line User Interface.

Client Usually refers to diskless server
computer. Previous versions of SD-UX
supported diskless clients.

CLUI See Command Line User Interface. All
SD-UX commands can be run from the
command line. See also GUI, TUI, and IUI.

Codeword See To protect software from
unauthorized installation, HP (and other
vendors) use special codewords and customer
identification numbers to lock the software to
a particular owner. These codewords and
customer IDs are provided to you when you
purchase the software or receive it as update.

492

Glossary

Command line options Optional
parameters for a command entered with the
command itself at the HP-UX command line
prompt. See also default options.

Command Line User Interface
(CLI/CLUI) Text-formatted commands and
options entered at an HP-UX command line
prompt or executed by a script. SD-UX also
has a Graphical User Interface (GUI) and a
Terminal User Interface (TUI) for the sd,
swinstall, swcopy, swlist, and swremove
commands.

Committed The state in which a patch is
applied and rollback files have been deleted.
Other patch states include applied and
superseded and committed / superseded.

Committed/superseded A patch state in
which the patch is both committed and
superseded.

Compatibility Filtering The ability of
swinstall to filter the software available from
a source according to the host’s uname
attributes. Software products are created to
run on specific computer hardware and
operating systems. Many versions of the
same products may exist, each of which runs
on a different combination of computer
hardware and operating system. By default,
swinstall does not allow selection and
installation of incompatible software.

Compatible Software A software product
that will operate on a given hardware
system. Software that passes compatibility
filtering for a local host. Also see
Incompatible Software.

Glossary
Corequisite

Configure Script An optional script
associated with a fileset and automatically
executed by swinstall (or manually executed
by swconfig) after the installation of filesets
is complete.

Container ACL Template A special ACL
(gl obal _soc_tenpl at e) that is used to
create initial ACLs for depot and roots. See
also product ACL template.

Contents A keyword used to assign filesets
to subproducts. This allows a fileset to be
contained in multiple subproducts.

Controller The SD-UX programs or
commands (swinstall, swcopy, etc.) that are
invoked by the user on the local host and
that direct the actions of an SD-UX agent.

Control Script Optional scripts packaged
with software or added to software by
modifying the IPD. Control scripts are run
during swconfig, swinstall, swremove, or
swverify operations. Control scripts may
include: configure or unconfigure for
swconfig; checkinstall, preinstall, postinstall
and configure scripts for swinstall; the
checkremove, unconfigure, preremove, and
postremove scripts for swremove; and the fix
or verify script for swverify.

Copyright A keyword that defines the
copyright attribute for the destination depot
(media) being created/modified by
swpackage. It refers to the copyright
information for the software product.

Corequisite A dependency in which a fileset
requires that another fileset be installed or
configured at the same time. For example, if
fileset A requires that fileset B is installed at
the same time, fileset B is a corequisite.

Glossary

493

Glossary
Critical Fileset

Critical Fileset A fileset containing
software critical to the correct operation of
the host. Critical filesets are those with the
reboot and/or kernel fileset flags. During
swinstall’s load phase, critical filesets are
loaded and customized before other filesets.

Cumulative patch See superseding patch.

D

Daemon The SD-UX program that
schedules the agent to perform software
management tasks. On a SD-UX controller,
the daemon polls the job queue for scheduled
jobs.

data_model_revision The internal
attribute for SD-UX INDEX file syntax.
Layout_version 1.0 uses
data_model_revision 2.40; whereas,
layout_version 0.8 uses data_model_revision
2.10.

DCE Distributed Computing Environment.
Technology used by SD-UX for distributed
communications. Controllers, daemons, and
agents communicate using the DCE Remote
Procedure Call (RPC).

Default Hosts File The file (either

/var/ adm sw/ def aul t s. host s for system
level defaults) or

[/ $HOVE/ . sw def aul t s. host s for user level
defaults) that contains the default list of
hosts for SD-UX commands.

Defaults File The file (either

/var/ adm sw/ def aul t s for system-wide
defaults or

$HOVE/ . sw def aul t s for user- level
defaults), which contains the default options
and operands for each SD-UX command.

Default Options Changeable values that
affect SD-UX command behaviors and
policies. Default options are contained in the
defaults file. See Appendix A, “Command
Options,” on page 421 for more information.

Delegation SD-UX provides a controlled
access to depot-resident products: both the
host where the agent is running and the user
initiating the call (delegation) must have
read access.

Dependency A relationship between fileset
in which one requires another in a specific
manner. For example, before fileset A can be
installed, it may require fileset B to be
installed. SD-UX supports corequisite,
exrequisite, and prerequisite dependencies.
See Dependent.

Dependent A fileset that has a dependency
on another fileset. For example, if fileset A
depends on fileset B, then B is a dependent
or has a dependency on A.

Depot A repository of software products and
a catalog, organized so SD-UX commands
can use it as a software source. The contents
of a depot reside in a directory structure
with a single, common root. A depot can exist
as a directory tree on a SD-UX file system or
on CD-ROM media, and it can exist as a tar
archive on a serial media (tape). All depots
share a single logical format, independent of
the type of media on which the depot resides.
Depots can reside on a local or remote
system. You can package software directly
into a depot or copy packaged software into
the depot from elsewhere.

Depot Source See depot.

Destination The path at which a file will
be installed.

494

Glossary

Developer Host A system where software
application files are placed for further
integration and preparation for distribution.
You may use a developer host to assemble,

organize, and create product tapes or depots.

Description An attribute for products and
filesets, usually a paragraph description of
that product or fileset.

Details Dialog In the GUI or TUI, a dialog
box that lets you get more information about
a specific process to monitor its progress.

Directory In packaging, a keyword that
defines the a directory for a product object.
The directory specified is a default, absolute
pathname to the directory in which the
product will be installed.

Directory Depot The directory on a target
host where a depot is located. The default is
/var/ spool / sw.

Disk Space Analysis (DSA) A process that
determines if a host’s available disk space is
sufficient for the selected products to be
installed.

Downdating Overwriting an installed
version of software with an older version.

DSA See Disk Space Analysis
E

End An optional keyword that ends the
software object specification in a PSF. No
value is required.

Exrequisite A dependency in which a fileset
requires the absence of another fileset before
it can be installed or configured. For

Glossary
Incompatible Software
example, if fileset A cannot be installed or

configured if fileset B is already installed,
fileset B is an exrequisite for fileset A.

F

Fileset A collection of files. Most SD-UX
operations are performed on filesets.

G

Group In SD-UX security, a set of users.

Group Name In SD-UX security, the user’s
primary group.

Graphical User Interface (GUI) An
OSF/Motif ™ user interface, with windows
and pull-down menus, provided with the sd,
swinstall, swcopy, swlist, and swremove
commands. See also the Command Line User
Interface (CLUI) and Terminal User
Interface (TUI).

GUI See Graphical User Interface.
H

HOME A variable that contains the path of
the current user’s local log-in directory.

Host A computer system upon which SD-UX
operations are performed. See local host and
controller.

Host ACL The ACL that is attached to and
controls access to the host object.

I

Incompatible Software Software products
are created to run on specific computer
hardware and operating systems. Many
versions of the same products may exist,

Glossary

495

Glossary
INDEX/INDEX file

each of which runs on a different
combination of hardware and operating
system. Incompatible software does not
operate on the host(s) because of the host’s
computer hardware or operating system.
The default condition in swinstall is to
disallow selection and installation of
incompatible software.

INDEX/INDEX file In packaging, an
INDEX file defines attribute and
organizational information about an object
(for example, depot, product, or fileset).
INDEX files exist in the depot catalog and
the Installed Products Database to describe
their contents.

INFO An INFO file provides information
about the files contained within a fileset.
This information includes type, mode,
ownership, checksum, size, and pathname
attributes. INFO files exist in the depot
catalog and the Installed Products Database
to describe the files contained in each
existing fileset.

Input Files Defaults files, option files,
software selection files, target host files, and
session files that modify and control the
behavior of the SD-UX commands.

install-sd A command that lets you install
the SD-UX product from media or a depot
onto a workstation or server. You may need
to install SD-UX if the version on your
system is corrupted or deleted. This
command, along with update-ux, replaces
the older swgettools command.

Installed Product A product that has been
installed on a host so that its files can be
used by end-users, as opposed to a product
residing in a depot on a host’s file system.
Sometimes referred to as an available
product.

Installed Products Database (IPD)

Describes the products that are installed on
any given host (or within an alternate root).
Installed product information is created by
swinstall, and managed by swmodify. The
contents of an IPD reside in a directory
structure with a single common root.

Instance_ID A product attribute in the
Installed Products Database (IPD) that lets
you uniquely identify products with the
same tag (name) or revision.

IPD See See Installed Products Database.

Is_Locatable In packaging, a keyword that
defines whether a product can be installed to
an alternate product directory or not. If
specified, the attribute is set to a value of
true. If not specified, the attribute is
assigned a value of false.

IUI Interactive User Interface, a generic
term that can mean either the Graphical
User Interface (GUI) or the Terminal User
Interface (TUI).

J

Job A SD-UX task created by the swinstall,
swcopy, swremove, swverify, or swconfig
commands. You create, monitor, schedule,
and delete jobs using the Job Browser. You
can also monitor jobs using the swjob
command.

Job Browser A GUI program that lets you
create, monitor, schedule, and delete jobs.
The GUI is activated by the sd command.
You can also monitor jobs using the swjob
command.

Job ID Unique numbers generated by
SD-UX to identify jobs.

496

Glossary

K

Kernel Fileset A fileset that contains files
used to generate the operating system
kernel. During the swinstall load phase,
kernel filesets are loaded and customized
before other filesets.

Keyword In packaging, a word (or
statement) that tells swpackage about the
structure or content of the software objects
being packaged by the user. Packaging
information is input to swpackage using a
Product Specification File.

L

Load/Load Phase The third phase of a
software installation or copy operation; when
swinstall and swcopy load product files on to
the host; and when swinstall performs
product-specific customization.

Local Host The host on which SD-UX
commands are being executed. Sometimes
called the administrative host. The local host
executes the controller, which may direct
operations on multiple remote systems when
remote operations are enabled.

Locatable Product A product that can be
relocated to an alternate product directory
when it is installed. If a product is not
locatable, then it must always be installed
within the defined product directory.

Logging Each SD-UX command records its
actions in log files (the swlist command is an
exception). The default location for the
various log files is

/var/ adni sw <conmand>. | og

Glossary
Nodes

M

Machine_Type In packaging, a keyword
that type of systems on which the product
will run. (If not specified, the keyword is
assigned a wildcard value of * (meaning it
will run on all machines.) If there are
multiple machine platforms, you must
separate each machine designation with a |
(vertical bar).

Make Tape Phase In packaging software to
a distribution tape, this phase actually
copies the contents of the temporary depot to
the tape.

Media Physical data storage media on
which software is stored, such as tape,
CD-ROM, or DVD.

Minfree Minimum Free Threshold, the
minimum amount of free disk space required
to store products being packaged.

multi_stream See See multiple architecture.

Multiple Architecture A single product
that contains different versions of the same
fileset.

N

Network Source There can be multiple
network sources from a single host, each one
a different depot served by that host’s single
swagentd daemon. A network source is
identified by the host name and depot
directory.

Nodes Another name for client host. See
Client.

Glossary

497

Glossary
Number

Number In packaging, a keyword that
defines the part or manufacturing number of
the distribution media (CD or tape depot).

0]

Object The pieces of software that SD-UX
packages, distributes, installs, and manages.
There are three classes of objects: software
(installed on target roots or available in
depots), containers (depot, roots, alternate
roots), and jobs.

OS Operating System.

owner An attribute indicating the owner of
the file (string).

P

Package Installable SD-UX format software
created with swpackage. Packaged software
can be placed in a depot for distribution.

Packager The swpackage program, which
packages software for later distribution to
Target systems.

Packaging The task of creating a package.

Package Building Phase A phase where
swpackage builds source files and
information into a product object, and
inserts the product into an existing depot. If
the depot does not exist, swpackage creates a
new depot but does not register it.

Package Selection Phase In packaging,
reading the product specification file
to determine the product, subproduct and
fileset structure; the files contained in each
fileset; and the attributes associated with
these objects.

Patch Software designed to update specific
bundles, products, subproducts, filesets, or
files on your system. There are poi nt
patches and super sedi ng (cumulative)
patches. By definition, patch software is
packaged with the i s_pat ch attribute set to
true.

Path An attribute that specifies the full
pathname for a file.

Point patches Patches that patch separate
parts of the same base fileset.

POSIX POSIX 1387.2-1995 IEEE standard,
on which SD-UX is based.

Postinstall Script An optional, script
associated with a fileset that is executed by
swinstall after the corresponding fileset has
been installed or updated.

Postremove Script An optional, script
associated with a fileset that is executed by
swremove after the corresponding fileset has
been removed.

Prerequisite A dependency in which one
fileset requires another fileset to be installed
or configured before the first fileset can be
installed or configured. For example, fileset
A may require that fileset B is installed
before fileset A can be installed. Therefore,
fileset B is a prerequisite for fileset A. See
dependency, corequisite, and exrequisite.

Preinstall Script An optional, script
associated with a fileset that is executed by
swinstall before installing or updating the
fileset.

Preremove Script An optional, script
associated with a fileset that is executed by
swremove before removing the fileset.

498

Glossary

Primary Root A system on which software
is installed and configured.

Principal In SD-UX security, the user (or
host system, for agents making RPCs) that
originates a call to another system.

Product A collection of subproducts and/or
filesets.

Product ACL Template In SD-UX
security, the ACL used to initialize the ACLs
that protect new products on depots that are
created by the host.

Product Directory The root directory of a
product object, in which most of its files are
contained. You can change (relocate) the
default product directory when you
installing a locatable product.

Product Specification File (PSF) An
input file that defines the structure and
attributes of the files to be packaged by
swpackage.

Product Version A depot can contain
multiple versions of a product. Product
versions have the same tag attribute, but
different version attributes. See Multiple
Version. The installed products database
supports multiple installed versions of a
product. Installed versions have the same
tag attribute, but different version attributes
or a different product directory.

Protected software Software that you
cannot install or copy unless you provide a
codeword and customer ID. (These are found
on your software certificate in your media
kit.) You can use codeword-protected
software only on systems that for which you
have a valid license to use that software.

PSF See See Product Specification File.

Glossary
Remote Procedure Call (RPC)

Pull Getting software products from a depot
to be installed or copied onto the local
system. See also push.

Push Performing software management
(usually installing or copying) on multiple
remote target systems from a central
controller. See remote operations.

R

Readme This keyword defines the “readme”
attribute for the product object. A text file of
the README information for the product;
either the text value itself or a file name that
contains the text.

Realm In SD-UX security, the scope of the
authority by which the principal is
authenticated.

Register/Registration A process that
determines what depots are available on a
given host and makes them available for use.
Registration information consists of the
depot or root’s identifier (its path in the host
file system). This information is maintained
by the daemon which reads its own file at
start-up.

Remote Host A Host other than the one on
which the SD-UX commands are being
executed.

Remote Operations Performing operations
on remote systems from a single controller
system. Remote operations must be enabled.
(Also called centralized management or
single point administration.) See Chapter 6,
“Remote Operations Overview,” on page 189
for more information.

Remote Procedure Call (RPC) Refers to
the operations with Agents on a remote
computer.

Glossary

499

Glossary
Request script

Request script An interactive control
script that gets a response from the user. A
request script prompts the user for a
response, reads the user’s answer, and stores
the results in a response file. Request scripts
can be run by the swask, swconfig, and
swinstall commands.

Response file A file that is generated by an
interactive request script and contains the
user’s response.

Revision This keyword defines the
“revision” attribute for the product object.
The revision information (release number,
version) for the product.

Root The root directory of a system (/). See
Root Directory.

Root Directory The directory on a target
host in which all the files of the selected
products will be installed. The default (/),
can be changed to install into a directory
that will eventually act as the root to
another system. See Alternate Root
Directory.

RPC Remote Procedure Call. DCE
technology for distributed communications
and data transfer.

S

sd The command that invokes the Job
Browser, a GUI program that lets you create,
monitor, schedule, and delete jobs. The swjob
command lets you monitor jobs from the
command line. You can also activate the Job
Browser with the swjob -i command.

SD format See SD-UX format.

SD-UX format The format and syntax of
SD-UX software in depots. See
Layout_version.

Secret In SD-UX security, a password used
to verify the authenticity of the caller’s host.
SD-UX manages sets of hosts by restricting
and changing the default secret on all
controller and target hosts in the network.
See shared secrets file.

Security Controlling access to software
objects. In SD-UX, security is achieved by a
combination of Access Control Lists (ACLs)
associated with objects and commands, and
the security inherent in the file system
permissions on which the software is stored.
See Access Control List.

Selection, Selection Phase The first
phase of a software installation, copy,
remove, or verify operation, during which
the user selects the software products to be
installed, copied, or removed from the host.

Server A system on the network that acts as
a software source for other systems on the
network.

ServiceControl Manager (SCM) An HP
program that permits central management
of many system administration functions.
You can run SD-UX from SCM.

Session/Session File Each invocation of a
SD-UX command defines a session. Most SD
commands let you use the

-C session_fil e option to save command
options, source information, software
selections, and host selections and re-use
this information with the

-S session_fil e option. You can also save
and re-use session information from the GUI
programs.

500

Glossary

Shared Secrets File In SD-UX security, a
file containing the passwords used to encrypt
and decrypt distributed communications for
added security.

Single Point Administration (SPA) The
ability to simultaneously distribute to,
manage, or monitor multiple remote targets
from a single controller system. See remote
management.

Software depot An SD-UX format
structure that contains one or more software
products that can be installed on other
systems or copied to other depots.

Software file An input file of previously
defined software selections to be used as
operands for a command. You specify a
software file with the

-f software filecommand line option.

Software group A group of software
selections read or saved from the GUI
programs.

Software object The objects packaged,
distributed, installed, or managed by
SD-UX. A software object may be a file,
fileset, bundle, or product. Most operations
are performed on fi/ eset s.

Software selection A group of

software objects that you have selected for
an operation. You can save these software
selections for later re-use. See software

group.

Software Selection Window A GUI
window that lets you select the software files
you want to install, copy, or remove.

Software source A depot used as the
source of a swinstall or swcopy operation.

Glossary
SW-DIST

Source See software source.
SPA See Single Point Administration.

Staging A way of setting up intermediate
depots that are local to each group of targets
on local area networks. This can reduce the
amount of network traffic.

Staged installation See staging.

State An attribute that indicates the
current state of the fileset. During
installation, software is transitioned through
the following states: non-existent, transient,
installed, and configured. During removal,
software is transitioned through these
states: configured, installed, transient, and
non-existent. If a task fails during a
transient state, the state is set to corrupt.

Subproducts An optional grouping of
filesets, used to partition a product that
contains many filesets or to offer the user
different views of the filesets.

Superseded The state in which a patch was
applied but was then replaced by a
superseding patch. Other patch states
include applied and commiited.

Superseding patch A patch that
supersedes all previous patches to a given
fileset.

SW-DIST A software product that provides
all of the SD-UX functionality. SW-DIST is
included on your HP-UX 11i media. If
SW-DIST is damaged, missing, or corrupted
on your system, you cannot install or copy
any HP-UX software that is packaged in the
SD-UX format, including a newer SW-DIST
product. You can re-install SD-UX with the
install-sd command.

Glossary

501

Glossary
swacl

swacl A SD-UX command that allows you to
modify Access Control List permissions that
provide software security.

swadm In SD-UX security, the default user
identification group.

swagent The SD-UX agent program that
makes changes to depots and roots. It is
directed by the controller and scheduled by
the daemon

swagentd The SD-UX daemon that
provides various services, including:
initiation of communication between the
controller and agent; serving one or more
depots to multiple requesting agents on
remote hosts.

swask A SD-UX command that lets you run
an interactive request script to get a
response from the user. Request scripts can
also be run by the swconfig and swinstall
commands.

sweonfig A SD-UX command that
configures previously installed software and
make the software ready for use.

swecopy A SD-UX command that copies
software from a software source to a depot or
from one depot to another. The swcopy
command can add products to an existing
depot, replace products already on a depot,
or create a new depot.

swgettools A SD-UX command used in
previous HP-UX releases to install the new
SW-DIST product from media. This
command has been replaced by install-sd
and update-ux.

swinstall A SD-UX command that installs
software. swinstall may also perform
software configuration.

swlist A SD-UX command that lists
software objects, their attributes, and their
organization. It lists both installed software
and software contained within a depot.

swlock A file that contains the read or write
access to software objects and ACLs.

swmodify A SD-UX command that lets you
change information in the installed products
database or depot catalog files.

swpackage A SD-UX command that uses a
product specification file (PSF) to organize
software products and package them into a
depot. The depot can be accessed directly by
SD-UX commands or mastered onto
CD-ROM or tape.

swreg A SD-UX command used to register
or unregister depots.

swremove A SD-UX command that
removes previously installed software or
removes packaged software from a depot.

swverify A SD-UX command that verifies
installed software or depot software for
correctness and completeness.

Systems Computers, either stand-alone or
networked to other computers. See local
host.

T

Tag In packaging, a keyword that defines
the distribution tag or software object’s
name attribute for the destination depot
(media).

Tape Depot A software depot stored in a tar
(tape archive) format. Within the archive,
directory and file entries are organized using
the same structure as any other SD-UX

502

Glossary

format depot.) Tape depots such as cartridge
tapes, DAT and 9-track tape are referred to
by the file system path to the tape drive’s
device file.

Tape Media Software media that uses tar
to store SD-UX software products and
control files. It usually resides on a serial
media such as a DDS, cartridge, nine-track,
or other tape, though it can also be a regular
file that contains the tar archive. Within the
tar archive, directory and file entries are
organized using the same structure as any
other depot.

Tape Source See tape depot.

Target Any system on which software is to
be installed or managed with SD-UX. There
are typically multiple targets on a network,
identified by system name, network address,
user name, or by a user group. Targets can
contain a primary root, an alternate root, or
depots. A target may also be the object of
remote operations.

Target Group Most SD-UX commands let
you use the

-t target_fil eoption to read a list of
previously defined target selections as
operands for the command. You can also
read or save target group files from the GUI
programs when remote operations are
enabled.

Target Selection A group of systems or
software objects that you have selected as
targets for an operation. You can save these
selections for later re-use. See target group.

TUI Terminal user interface. A
character-based display with windows and
pull-down menus that works on ASCII
terminals. The TUI uses the keyboard to

Glossary
Update

navigate (no mouse). See also Command
Line User Interface and Graphical User
Interface.

TUI See Terminal User Interface.

Title A one-line, full name attribute that
identifies the product with a title.

U

UDP/IP User Datagram Protocol.
Comparable with TCP/IP, but runs
connections less and is intended to be used
in more reliable network environments

(LAN).

Uname Attribute When a target is
contacted for a software management
operation, the system’s four uname
attributes (operating system name, release,
version and hardware machine type) are
obtained. Used to determine software
compatibility with the proposed host.

Unconfigure Script An optional script
that undoes the configuration done by the
configure script. Unconfigure scripts are
associated with filesets and are
automatically executed by swremove before
the removal of filesets begins. You can also
run unconfigure scripts with swconfig.

Unregister Using the swreg command to
remove the registration of a depot. This
makes the depot unavailable to network
access.

Update Overwriting software objects
already installed on the system and
replacing them with new objects.

Glossary

503

Glossary
update-ux

update-ux A command that automates part
of the HP-UX update process. It replaces the
swgettools script used in previous versions of
SD-UX. The install-sd updates the SD-UX
product without performing an OS update.

User name The user (or host system for
agents making remote procedure calls
(RPCs) to other agents) that is originating
the RPC call.

UUID In packaging, a keyword that for the
vendor object. Useful for NetLS vendors and
for those who want to select products from
two vendors who have chosen the same
vendor_t ag.

V-Z

Vendor If a vendor specification is included
in the PSF, swpackage requires the vendor
and tag keywords.

Vendor_tag Associates the product or
bundle with the last-defined vendor object, if
that object has a matching tag attribute.

Verbose Listing A listing that is used to
display all attributes for products,
subproducts, filesets, or files.

504

Glossary

Symbols

$HOME/.sw/sessions/ directory, 61

*systemFont, 53

*userFont, 53

/ (root directory), 64

/var/adm/sw/defaultsor SHOME/.sw/defaults
file, 59, 422

/var/adm/sw/products file, 115

/var/adm/sw/software/ directory, 58, 59

/var/spool/sw/catalog file, 115, 116

/var/tmp directory, 480

@ ("at") sign, 58

A

abort copy/install, 72
access enforcement, 152
access to files, 285
access, granting, 265
ACL
any_other, 273
command options, 258
creation, swpackage, 360
default template entries, 283
definition, 273
denied access, 468
depot, 276, 279, 470
editing, 269
effects of modification, 468
entry fields, 273
errors, 269
group, 273
header, 260
host, 278
key values, 274
manager, 291
matching, 272
modifying ACL files without using swacl,
469
object_group, 273
object_owner, 273
packaging, 358
permissions, 275
product, 277, 280
root, 276, 279
samples, 270
superuser access, 272
swacl command, 258
templates, 282
user, 273
warning, 269

Index

ACLs, 256
actions menu, 67, 124
add software group, 124
adding

disk space requirements, 375
adding sources, 50, 66, 140
adding target groups, 198
adding target host, 268
advertising depots, 151
agent, 28
agent polling, 473
agent=, 424
agent_auto_exit=, 425
agent_timeout_minutes=1000, 425
agents

handling controller requests, 292

privileges, 288

security, 286

UNIX, using alternate sources, 248
allow_downdate=, 425
allow_incompatible default

for sweonfig, 82
allow_incompatible option, 80
allow_incompatible=, 426
allow_multiple_versions default, 79
allow_multiple_versions option, 150, 254
allow_multiple_versions=, 426
allow_partial_bundles, 426
allow_split_patches, 426
alternate root

directory, 64

installing to, 80

option -r, 73

removing software from, 132
alternate sources, using, 247
alternate_source=, 427
analysis

progress and results, swremove, 126
Analysis Dialog, 69, 125, 143
analyzing

removal, 125
app-defaults file, 54
architecture field, 115
ask option, 427
ask=, 427
assigning management responsibility, 296
attribute listing, 446
attributes

definition, 96

patch software, 183

patch, file, 185

sample, 112

505

Index

audience, 20

authorization, depot, 152
authorization, RPC, 291
auto_kernel_build=, 428

automatic recovery, 428

automatic scrolling, 69, 126, 143
autoreboot=, 428

autorecover, 78, 428
autorecover_product=, 429
autorecover_product= default, 77
autoremove_job, 235, 429
autoselect_dependencies=, 430
autoselect_dependencies=true option, 33
autoselect_dependents=, 430
autoselect_patches=, 430
autoselect_reference_bundles=, 430

B

bundles, 28, 303
busy files, swremove, 122

C

-C option, 73, 86, 92, 99, 117, 128, 147, 152,
230, 351, 407

catalog files, 30, 115, 116

editing, 30, 116
CD-ROM

depot, 357
CD-ROM, mastering to, 357
change

default option, -x, 73, 86, 92, 101, 117, 128,

147, 152, 230, 351

source, 67

source dialog box, 67
change target, 124
changing

command options, 59, 422

IPD or catalog files, 115
check volatile=, 432
check_contents_uncompressed, 431
check_contents_use_chksum, 431
check_permissions=, 431
check_requisites=, 432
check_scripts=, 432
check_volatile option, 340
checking

dependencies, 90

states of versions, 90
checkinstall script, 371

details, 388
checkpointing, 245

checkremove script, 371
details, 392
client, definition, 27
client/server, 22
codeword=, 432
codewords, 34
codewords, using, 67, 78, 107, 141, 150
column editor in Job Browser, 42
command
description, 25
overview, 25
command lines, executing, 55
command option
editor, 46
command options
alphabetic list of, 424
changing, 59, 422
job-related, 234
precedence, 422
commands
SD-UX, 26
committing patches, 179
communication failure, 71, 145
compatibility filtering, 80
compress_cmd=, 432
compress_{files option, 246, 471
compress_{files=, 432
compress_index option, 433
compression, 246
compress_index option, 433
performance, 471
compression_type=, 433
config_cleanup_cmd=, 433
configuration
phases, 83
samples, 88
configure cleanup, 433
Configure Phase, 85
configure script, 371
details, 390
executing, 85
CONFIGURED state, 82
configuring after installing, 252
container ACL templates, 282, 284
control script
details, 387
environment variables, 381
execution of other commands, 396
file management, 401
format, 377
guidelines, 378

506

input and output, 397
location and execution of, 387
request, 371, 379, 394
shells, 378
swask command, 407
testing, 402
types, 371
writing, 370
control script location, 380
control scripts, 305
must run as superuser, 285
unpostinstall, 250
unpreinstall, 250
control_files=, 434
controller, 190
controller log file, 444
controller privileges, 288
controller_source=, 434
controlling access, 285
copy
dialog, 146
copying
patches, 175
copying software
depots, 138
icon in Job Browser, 218
Job Browser, 228
corequisite, 34, 335
definition, 34
CORRUPT state, 84
cpio tape format, 350
create_target_acls option, 357, 470
create_target_acls=, 434
create_target_path=, 435
create_time_filter option, 435
creating a job, 225
creating jobs, 228
creation time, 449
credentials, 287
crwit, 275
cumulative patches, 164
custom lists, 106

customer identification number, 435

customer IDs, using, 78, 107, 150
customer_id, using, 78, 107, 150
customer_id=, 435

customer_ids, 34

D

daemon, 28
restarting, 60, 423

Index

daemon logfile, 475
daemon/agent, 190
privileges, 288
DCE runtime library, 287
DCE-less operation, 287
default
option values, 59, 422
values, changing (swask), 409
values, changing (swconfig), 87, 353
values, changing (swcopy), 148
values, changing (swinstall), 74, 231
values, changing (swlist), 102
values, changing (swmodify), 120
values, changing (swreg), 154
values, changing (swremove), 130, 259
values, changing (swverify), 93
default options, listing of, 93, 102, 120, 130,
149, 154, 259, 353, 409
default secret, replacing, 469
default template ACL entries, 283
default values, changing, 59, 422
defaults
for patch management, 167
policy setting, 59, 422
precedence, 59, 422
swlist, 105
defaults.hosts file, 195
defer_configuration=, 435
defer_configure default, 82
defer_configure option, 252
definition
architecture field, 115
attributes, 96
bundles, 28
catalog files, 30, 115
client, 27
corequisite, 34
depot, 27, 135
fileset, 28
host, 27
Installed Products Database, 30, 115
local host, 27
locatable products, 79
nodes, 27
of terms, 491
prerequisite, 34
product, 28
server, 27
session files, 61
software objects, 28

507

Index

software selection files, 58, 59

subproduct, 28

system, 27

tags, 115

target, 27

terminology, 491

uname attributes, 115
delegation, 293
denied access, troubleshooting, 468
dependencies, 33, 82, 89, 436

swconfig, 84

swcopy, 137
dependents, 430
depot

ACL control, 276

ACL permissions, 279

advertising, 151

authorization, 152

cannot read, 476

CD-ROM, 357

copying, 138

definition, 27, 135

directory, 135

distribution, 27, 135

images, 470

listing, 158

listing contents, 159

lists, 111

management, 135

multiple, 135

on remote file systems, 364

registering, 151

registration, 151

removing software from, 123, 162

swreg command, 152, 154

tape, 136

unregistered, 152, 293

unregistering, 151
depot registration, secure, 293
description file, 67, 124, 141
developers, security for, 297
development depots for testing purposes, 297
direct access to Support Plus, 151, 154
directory

/var/tmp, 480
directory depot, 135
directory mapping, 339
directory structures, 303
disk space

analysis by swpackage, 348

analysis dialog, 70

button, 69, 71, 143, 145

failure, 71, 145

removing rollback files, 180

space files, 375

specifying requirements, 375
disk space analysis, 474
diskless clusters, 22
distribution depot specification, 321
distribution directory, 436
distribution tape, 445
distribution tape format, 350
distribution tape, creating a, 351
distribution_source_directory=, 436
distribution_target_directory=, 436
distribution_target_serial=, 436
documentation

manpages, 26
double click, 48

E

enablement

direct access, 151, 154
enforce_dependencies default, 33

swconfig, 82
enforce_dependencies=, 436
enforce_dsa=, 437
enforce_kernbld_failure=, 437
enforce_locatable, 437
enforce_scripts=, 437
environment variables

LANG, 381

LC_ALL, 381
environment variables, control scripts, 381
error message, control scripts, 378
errors

ACL, 269

cannot read tape depot, 476

daemon logfile, 475

denied access, 468

disk space analysis is incorrect, 474

GUI will not start, 467

installation fails, 476

installing a fileset, 245

messages, 461

network, 472

PSF syntax, 347

reading the PSF, 311

represented in Job Browser, 219, 225

resolving, 461

508

RPC timeouts, 472
swpackage, 341, 343
troubleshooting, 461
UNIX packaging, 474
WAN connection timeouts, 472
examples
command options, 60
request scripts, 410
session file, 62
swask, 410
swconfig, 88
swmodify, 120
swremove, 130
swverify, 94
exclude file, 343
excluded
due to errors, 71, 145
from task, 71, 145
exrequisite, 335

F

-foption, 58, 73, 86, 92, 99, 101, 117, 128, 147,

152, 230, 351, 407
f1 key, Help, 52
failed operations, 463
FAQ, SD-UX, 21
features, swpackage, 351
file
catalog, 30, 115
exclude, 343
include, 343
level checks, swverify, 90
level specifying (swlist), 110
response, 394, 407
session, 61
software, 58
target, 59
file menu, 221
file specification, 337
explicit, 340
recursive (implicit), 342
file structures, 303
file system mounting, 446
file system protection, 285
files
compression, 246
defaults.hosts, 195
secrets, 289
shareable, 303
space, 375

files=, 438
fileset, 28
level, specifying (swlist, 110
patch, attributes, 183
fileset specification, 331
filesets, 303
filesystem structure
SD-UX agent, 486
SD-UX controller, 489
filter, 43
fix script, 371
flag
llyesll, 37
Marked?, 67, 124, 141
follow_symlinks=, 438
fonts
fixed width, 54
variable width, 54

G

Index

global_product_template, 261, 268, 282

global_soc_template, 261, 282
glossary, 491
go up, 48

Graphical User Interface (GUI), 25, 35, 65,

123, 138
swlist, 97, 210
group
access, 287
ACL, 273
GUI
will not start, 467
GUI and TUI
swlist, 97

H

help
fl key, 52
menu, 52
on-line, 52
host
definition, 27
re-using in Job Browser, 228
host ACL, 283
permissions, 278
hosts keyword, 195
HP-UX SD Controller
definition, 190

509

Index

I

-i option, 73, 147, 230
images, depot, 470
important terms, 491
include file, 343
include_file_revisions=, 438
input files, 76
insert permission, 152
install

analysis, 67, 124, 141

dialog, 72, 127
install preferences, 206
install_cleanup_cmd=, 438
install_setup_cmd=, 439
installation

staged, 247
installed products database, 490

Installed Products Database (IPD), 30, 115

INSTALLED state, 82
installed_software_catalog, 438
installing

compatibility filtering, 80

failure, 476

icon in Job Browser, 218

patches, 171

PC, staging, 247

recovery, 250

retries, 242

retrying, 244

UNIX, staging, 247

UNIX, using alternate sources, 247

UNIX, with separate configure, 252
install-sd

options, 481

supporting files, 480

syntax, 481

updating SD with, 479
interactive option, -i, 73, 97, 147, 210, 230
inter-host secrets, 469
intermediate depots, 247
internal authentication, SD, 287
interpreter, script, 376
IPD, 30, 115, 490

editing, 30, 116
is_kernel attribute, 331
is_locatable attribute, 327, 331
is_reboot attribute, 78, 331

J

Job Browser
actions you can perform, 225

copy icon, 218
copying jobs, 228
description, 217
description of icons, 217
install icon, 218
invoking, 216
job with warnings icon, 219
remove job, 229
remove job icon, 220
re-using a source or target, 228
scheduled job icon, 219
security checks, 298
showing errors, 220, 225

Job Browser properties, 222

job description, 226

job log, 228

job results, 225

job_title, 234, 439

jobs
monitoring from command line, 230
options, 234
removing with swjob, 230
re-using job information, 228

K

kernel
rebuilding, 64
rebuilding for swcopy, 137
kernel build, 437
kernel fileset, 424
kernel_build_cmd=, 439
kernel_path=, 440
keyword syntax, PSF, 311
keywords
checkinstall script, details, 388
checkremove script, details, 392
configure script, details, 390
postinstall script, details, 389
postremove script, details, 393
preinstall script, details, 389
preremove script, details, 393
unconfigure script, details, 391
values, control scripts, 379
verify script, details, 391, 392

L

LANG environment variable, 381
language environment variables, 381
layout_version=, 440

510

LC_ALL environment variable, 381
level
designation, swlist, 99, 107
of detail, swlist, 96
level=, 441
level= default, 105, 108
list
as input to other commands, 96
depot, 111
simple, 103
verbose, 111
listing
interactive swlist, 97, 210
patches, 178
software, 96
listing software
registered depots, 158
UNIX depot contents, 159
local host
definition, 27
local superuser, 293
locatable products, 79
locked software, 78, 107, 150
log file messages, 442
log_msgid=, 442
logdetail=, 443
logfile, 69, 126, 143
button, 71, 145
swremove, 126
too long, 475
logfile, swpackage, 354
logfile=, 444
loglevel option, 244
loglevel=, 444

M

making tapes (existing depot), 367
management responsibility, assigning, 296
managing

multiple versions, 80
managing patches, 163

committal, 179

copying, 175

default options, 167

features, 167

introduction, 164

listing, 178

packaging, 182

paradigm, 165

removal, 179

Index

rollback, 179

verifying, 181
manpages, 26
mark

for copy, 124

for install, 67, 124

for remove, 124
marked, 37
Marked? flag, 67, 124, 141
master and intermediate depots, consistency

between, 249

master depot, 247
mastering a depot to a CD-ROM, 357
match_target option, 331
match_target=, 444
match_target= option, 67
matching ACLs to user, 272
Match-What-Target-Has, 67
max_agents=, 444
max_target option, 241
max_targets, 445
media_capacity option, 366
media_capacity=, 445
media_type=, 445
menubar, 37
menus, pull-down, 37
minimum_job_polling_interval, 445
mode bits, 291
modifying default values, 59, 422
modifying target groups, 197, 198
monitoring job results, 209
mount_all_filesystems=, 446
mount_cmd=, 446
mouse, clicking, 37
multiple depots, 135
multiple tapes, writing to, 366
multiple versions, 253

in depots, 150

installing, 79

removing, 131

swconfig, 84
Multi-User mode, 22

N

network

errors, 472

problems, 471

protocols, 473
network depot, creating, 157
network requirements, 22
network servers, 135
network source, 135

511

Index

networking requirements, 22 remote file systems, 364
nodes, definition, 27 repackaging, 361
nonprivileged SD, 413 security, 358
limitations, 415 writing to tapes, 366
overview, 414 packaging command, 345
packaging requirements, 416 Packaging Specification File (PSF)
set up, 416 and swmodify, 117
num_entries value, 469 partitioning filesets on multiple tapes, 366
patch
(0] default options, 167

patch filter, 167
patch match target, 167
patch one liner, 167

object list, 37
object permissions, 276

objects
gatch software, 183 Patcﬁ save files, 167
objects, software, 28 patc _comn11t=, 448
patch_filter=, 448

objects_to_register=, 446
one_liner=, 446

one_liner= default, 105, 108
on-line Help, 52

open item, 48

option menu, 223

patch_match_target=, 448
patch_one_liner=, 448
patch_save_files=, 449
patches, 430, 448
commit, 179
committing, 179

options 1
alphabetic list of, 424 copying, 175
and defaults, sweonfig, 120 cumulative, 164
and defaults, swremove, 130 default options, 167
changing, 59, 422 explicit specification, 173
compress_index, 433 featurgs for managing, 167
create_time_filter, 435 installing, 171 ‘
editor, 46 interactive installation, 176
job-related, 234 introduction, 164
menu, 46 kernel and library files, 174
precedence, 422 listing, 178
preserve_create_time, 449 load order, 174

OS update, 439, 451 managing, 163

os_name=, 447 packaging, 182

os_release=, 447 paradigm, 165

overview, commands, 25 removal, 179

rollback, 179

P superseding, 164

-p option, 73, 86, 128, 147 updating, 174

package_in_place=, 447 verifying, 181

packaging performance, 238
ACLs, 358 permission bits, 285
CD-ROM, 357 permission specification, default, 338
failures, 474 policy-setting, 59, 422

‘o polling interval, increasing, 473
frgglr(lionngp{;;gggg%f])’ 416 polljng_@nterval option, 47?;
overview 3027 346 polling_interval=, 449

)) postinstall script, 371
patch software, 182 details, 389

registering depots, 356 postremove script, 371

512

details, 393
preinstall script, 371

details, 389
preremove script, 371

details, 393
prerequisite, 34, 335

definition, 34
preserve_create_time option, 449
pre-specified selections, 73, 147, 230
preview, 449
preview option, -p, 73, 86, 128, 147
privileged functions, 285
problem solving, 461
product, 28

description button, 69, 126, 143

description, swremove, 126

level, specifying (swlist), 108

summary button, 69, 126, 143
product ACL

control, 277

permissions, 280

templates, 282, 284
product specification, 326
Product Specification File (PSF), 457
product specification file, PSF, 307
Product Summary, swremove, 126
product_specification_file (PSF) for

swmodify, 117

product_template, 282
product-location directory pair, 131
products, 303
Products Ready column, 71, 145
Projected Actions

swremove, 126
proof of trustworthiness, 289
protected software, 34
protected software, installing example, 79
protecting SD objects, 276
protocol sequence, 424, 453
PSF, 307

and swmodify, 117

comment lines, 311

creating, 307

dependency class, 335

depot class, 321

directory mapping, 339

example, 308

example file specifications, 342

example permission specifications, 338

exclude files, 343

explicit file specification, 340

Index

extensions, 343

file class, 337

fileset class, 331

include files, 343

keyword value, 311

keywords, 311

patch example, 186

product class, 326

quotes, 311

recursive file specification, 342

subproduct class, 330

syntax, 311

vendor class, 323
pull distribution, security in, 296
pull-down menus, 37
pushAgent, modifies ACLs at install time,

262

R

-r option, 73
read permission, 152
README, 106
ready, 71, 145
with errors, 71, 145
with warnings, 71, 145
realm, 287
reboot, system, 78
reboot_cmd=, 449
reconfigure=, 450
reconfigure=true/false option, 84
recovering updated files, 77
recovery, 250
referenced bundle, 430
refresh interval, Job Browser, 223
register_new_depot=, 450
register_new_root=, 450
registering a depot, 151
registering depots, 151
reinstall option, 150, 244
reinstall=, 450
reinstall_files option, 244
reinstall_files=, 450
reinstall_files_use_cksum option, 244
reinstall_files_use_cksum=, 451
reinstalling SD, 479
reliability, 238
remote access to Support Plus, 151, 154
remote operations, 189
installing software, 208
monitoring job results, 209
overview, 190

513

Index

preferences, 206 RPC authorization, 291
software selection, 204 RPC timeouts, 472
swlist, 210 rpc_binding_info option, 473
target selection, 202 rpc_binding_info=, 453

Remote Procedure Call (RPC), 285 rpe_binding_info_alt_source, 454

rpc_timeout option, 242, 472
rpc_timeout=, 454

run level, 22

Run Level requirements, 22

remove
simple, 130
window, 127
remove_empty_depot=, 451
remove_obsolete_filesets=, 451

remove_setup_cmd=, 451 S
removing -S option, 73, 86, 92, 101, 117, 128, 147, 152,
jobs, 230 230, 351, 407
patches, 179 -s option, 73, 101, 147, 407
software, 122 samples
software from an alternate root, 132 copying, 150
software from depots, 162 installation, 76
removing software save session file option, -C, 73, 86, 92, 99, 117,
icon in Job Browser, 220 128, 147, 152, 230, 351, 407
Job Browser, 229 save software group, 124

saving view information, 46

repackaging software, 361 Scalability, 241

request script, 371, 394

scheduling
keyword, 379 icon in Job Browser, 219
request scripts script
examples, 410 ﬁxp 371
>

response file, 394
running from swinstall or swconfig, 410
swask command, 407
required permissions. troubleshooting, 468
resolver command, 470
response file, 394, 407
restarting the daemon, 60, 423
restricting access to depots, 266
restricting installation, 296

interpreter, 376
request, 379, 394
scripts
request, 371
scripts, other, 371
sd
invoking, 216
security checks, 298

Resume button, 72 SD internal authentication, 287
resume copy/install, 72 SD-UX
retry_interval, 243 commands, 26
retry_rpc, 242, 243 FAQ, 21
retry_rpc option, 242 manpages, 26
retry_rpc=, 452 training, 21
retry_rpc_interval, 452 web site, 21
reuse_short_job_numbers, 453 SD-UX controller, 190
re-using packages, 361 secrets
revision attributes, 438 default, 290
rollbaﬁk, 7 inter-host, 469

pfilctc es, 179 matching, 469
T00 :

directory, 64 S es celfrl,li?ty’ 289
root ACL Y

default, 256
denied access, 468
depots, 152

control, 276
permissions, 279

514

for developers, 297
in "push" installations, 295
packaging, 358
pull distribution, 296
UNIX, 285
security checks
configuration, 299
copying, 298
installing, 299
Job Browser, 298
listing, 298
packaging, 298
registering depots, 300
removal, 299
verifying, 300
security tasks, 261
select_local=, 455
selecting software to copy, 141
selecting software to remove, 124
server, definition, 27
session
file, example, 62
files, 61
session file option, -S, 73, 86, 92, 101, 117,
128, 147, 152, 230, 351, 407
setuid root, 358
shareable files, 303
shared secrets file, 289
shells, control script, 378
show description of software, 67, 124, 141
show software for selection, 67, 141
show_superseded_patches, 455
single target installation, 201
Single-User mode, 22
software
dependencies, 33, 82, 89
objects, 28
selection file option, -f, 73, 86, 92, 99, 101,
117, 128, 147, 152, 230, 351, 407
selection files, 58, 59
source option, -s, 73, 101, 147, 407
Software Certificate, 34
software compatibility, 424
Software Distributor
introduction, 22
software group
adding, 124
saving, 124
Software Groups, 240
software installation, 424
software level, 441

Index

software selection

remote operations, 204
Software Selection Window, 67, 141
software view, 455
software view default, 455
software=, 455
software_view=, 455
sorting, 45
source, 456

adding, 140

adding a, 50, 66

depot path, 50, 66, 140

host name, 50, 66, 140

network, 135

re-using in Job Browser, 228
Source Option, 240
source_cdrom=, 456
source_depot_audit=, 456
source_file=, 457
source_tape=, 457
source_type=, 457
space files, 375
Specify Source Dialog, 66, 140
staged installation, 247
staging, 247
states of versions, 90
structure

determining product, 303

software, 303
structure, software product, 28
stty, using to determine character mapping,

58, 211

subproduct, 28

level, specifying (swlist, 109
subproduct specification, 330
subproducts, 303
superseding patches, 164
superuser

ACL access, 272

authorization, 293

privileges, 285

swpackage, 358
supporting files

install-sd, 480
SW_CONTROL_DIRECTORY, 382
SW_DEFERRED_KERNBLD, 385
SW_INITIAL _INSTALL, 385
SW_KERNEL_PATH, 385
SW_LOCATION, 383
SW_PATH, 383
SW_ROOT_DIRECTORY, 384
SW_SYSTEM_FILE_PATH, 386

515

Index

swacl, 300

-D option, 269

-F option, 269

-1 depot option, 262

-1 host option, 262

-1 product option, 262

-R (shorthand) option, 99

security checks, 298

syntax, 99

-v (verbose) option, 99
swlock file, 116, 490
swmodify, 300

-1 root option, 262 -a option, 117
listing user access, 262 -d option, 117
-M option, 269 overview, 23
overview, 23 -P option, 117
swacl command, 258 -p option, 117
options, 258 -r option, 117
swadm group, 260 -s option, 117
swagent, 28, 190 syntax, 117
swagentd, 28, 190 -u option, 117
overview, 23 -V option, 117
swask, 300, 407 -v option, 117
examples, 410 swpackage
syntax, 407 logfile, 354
sweonfig options, 351

command, 82
security checks, 299
swcopy
dependencies, 137
GUI overview, 138

overview, 23 security checks, 300
security checks, 298 swremove

SW-DIST . -d option, 128, 162
loading new version, 479 P .
° = ’ 1 option, 128
reloading if corrupt, 479 -r option, 128
M

swgettools, 480 security checks, 299
swinstall syntax, 128
disk space analysis, 375 yntax,
swverify

overview, 23 command, 89
security checks, 299 -d option 161
b

swjob, 213 . .
command information, 230 S\?g I('J‘Eizsvrlf;gatlon, 161
1 ’
security checks, 298 security checks, 300

swlist R
-a (attribute) option, 99 symbolic links, 438
symlinks

cgmnggnd,ggﬁ swremove, 122

-d option, values, swverify, 90
examples, 103

:] syntax

-i option, 97, 99 _ install-sd, 481

-1 option for remote operations, 210 swask. 407

-1 depot option, 158 ;

overview, 23, 346
security checks, 298
syntax, 351

swreg
overview, 23, 151

! swcopy, 147
-1 option, 99, 107 swinsteill, 73
listing depot contents, 159 swjob, 230

M

listing registered depots, 158 swlist. 99
b

overview, 23 swmodify, 117

516

swremove, 128
system

definition, 27
system_file_path=, 457
system_prep_cmd=, 457

T

-t option, 59
table of contents, 96
tag attribute, always listed, 106
tags, 115
tape
changing, 72
depot, 136
tape device, 436
tape formats
cpio, 350
tar, 350
tape is ready response, 366
tape, partitioning filesets on multiple, 366
tar archive, 136
tar tape format, 350
target
changing, 124
definition, 27
definition for remote operations, 190
files, 59
remote, 190
re-using in Job Browser, 228
selection, 58
selection, swmodify, 117
syntax, 58
target directory, 435
Target Groups, 240
target groups, 198
target selection
remote operations, 195, 202
target_type, 458
target_type option, 351
targets=, 457
task specific permissions, 298
TCP/IP
protocol, 473
template ACL, 282
default entries, 283
Terminal User Interface (TUI), 25, 35, 65,
123, 138
terminate write-to-tape command, 366
terminology, 491
testing
configuration scripts, 403

Index

installation scripts, 402

removal scripts, 405
timeout, 454

connection, 472

options, 242

resolving problems, 472
too-restrictive permissions, 357
training, available, 21
Trojan Horse, 293
troubleshooting SD, 461
tutorial prerequisites, 200

U

-u option

swconfig, 86
UDP communications, 473
umask value, 338
uname attributes, 80, 115
uncompress_cmd=, 458
uncompress_files option, 246
uncompress_{files=, 458
unconfigure script, 371

details, 391
UNCONFIGURED state, 85
unconfiguring

removed software, 122
UNIX

Run Level, 22

user mode, 22
UNIX run level, 22
unpostinstall script, 371

for autorecovery, 250
unpreinstall script, 371

for autorecovery, 250
unregistered depot, 152, 293
unregistering a depot, 151
updating

creating a network depot, 157

patches, 174

SD-UX, 479
updating HP-UX, 480
use_alternate_source option, 247, 248
use_alternate_source=, 458
user

access, 287

ACL, 273

ACL matching, 272
user managing products in depots, 265
using depots, 133

517

Index

A4 -x option, 73, 86, 92, 101, 117, 128, 147, 152,
var/spool/sw, 135 XTO%?I% t351
vendor .

defined attributes, 321 —gn option, 53

keyword, 323 -font option, 53

specification, 323
vendor specification, 323
verbose

listings, samples, 114

lists, 111

option, -v, 73, 81, 92, 128, 147, 152, 230
verbose option, 351
verbose=, 459
verify

analysis phase, 90

installations, 89

operations, samples, 94

patches, 181

script, 371

script, details, 391, 392

scripts, executing, 90
verify script, 432
versions, 253
view menu, 222
view preferences, changing, 42
volatile, 432

w

WAN, 242, 247
WAN connection timeouts, 472
Web sites
FAQ for SD-UX, 21
HP education, 21
wide area network, 247
wildcard, 365
wildcarding, partial, 342
window
GUI components, 37
Software Selection, 67, 141
swremove, 127
writable depot, 135
write permission, 152
write_remote_files option, 364
write_remote_files=, 459
write-to-tape, terminate, 366

X

-x codeword=, 79
-x customer_id=, 79

518

	1 Introduction to Software Distributor
	About This Guide
	SD-UX Overview
	Network Requirements
	SD-UX Programs and Commands
	SD-UX Online Documentation

	SD-UX Concepts
	Important Terminology
	Software Structure
	Installed Products Database
	Control Scripts
	Environment Variables
	Software Dependencies
	Working with Protected Software

	Using the GUI and TUI Commands
	The Terminal User Interface
	Starting the GUI/TUI Commands
	Window Components
	Opening and closing items in the object list
	Marking Items in the Object List
	Preselecting Host Files
	Software Selection Window
	Session and File Management—The File Menu
	Changing Software Views—The View Menu
	Changing Options and Refreshing the Object List—The Options Menu
	Performing Actions—The Actions Menu
	Getting Help—The Help Menu
	XToolkit Options and Changing Display Fonts

	Working from the Command Line
	Software Selections
	Target Selections
	Using Command Options
	Session Files

	2 Installing Software
	Installation with swinstall
	Features and Limitations
	Installing with the GUI
	Installing from the Command Line
	Installation Tasks and Examples

	Configuring Your Installation (swconfig)
	Features and Limitations
	The Configuration Process
	Using swconfig
	Configuration Tasks and Examples

	Verifying Your Installation (swverify)
	Features and Limitations
	The Verification Process
	Using swverify
	Verification Tasks and Examples

	3 Managing Installed Software
	Listing Your Software (swlist)
	swlist Features and Limitations
	Using the swlist GUI
	Using the Command Line
	Software Listing Tasks and Examples

	Modifying the IPD (swmodify)
	IPD Contents
	Using swmodify
	swmodify Tasks and Examples

	Removing Installed Software (swremove)
	swremove Features and Limitations
	Using the swremove GUI
	Removing with the Command Line
	Remove Tasks and Examples

	4 Managing Software Depots
	Depot Management Commands and Concepts
	Depot Concepts

	Copying Software Depots
	swcopy Features and Limitations
	Using the swcopy GUI
	Using the swcopy Command Line
	Copy Tasks and Examples

	Registering and Unregistering Depots (swreg)
	Register Media or Create Network Depot?
	Registration and Security
	Authorization
	Using swreg
	swreg Examples

	Additional Depot Management Tasks and Examples
	Combining Patch Depots
	Creating a Tape Depot for Distribution
	Setting Depot Attributes
	Creating a Network Depot
	Managing Multiple Versions of HP-UX
	Listing Registered Depots
	Listing the Contents of a Depot (swlist -d)
	Source Depot Auditing
	Verifying a Depot (swverify -d)
	Removing Software from Depots
	Removing a Depot

	5 Managing Patches
	Introduction
	Patch Concepts
	Patch Installation Paradigm
	Patch Supersession and Dependency Resolution

	Patch-Related Features
	Command Options

	Patch Management Tasks and Examples
	Installing Patches
	Copying Patches
	Interactive Patch Management
	Listing Patches
	Patch Removal, Rollback, and Committal
	Verifying Patches

	Packaging Patch Software
	Patch Software Characteristics
	Patch Software Objects and Attributes
	Patch Fileset Attributes
	Patch File Attributes
	PSF Example
	Attributes Generated by SD

	6 Remote Operations Overview
	Introduction
	Differences Between Remote and Local Operations

	Using the Remote Operations GUI
	Target Selection Window
	Performing Actions
	Selecting Multiple Targets
	Selecting Individual Targets
	Saving a Target Group
	Adding a Target Group

	Setting Up Remote Operations
	Remote Operations Tutorial
	tutorial prerequisites
	How to Perform a Single-Target Installation

	Remote Interactive swlist
	Remote Operations from the Command Line
	Target Selections
	Examples

	7 Using Jobs and the Job Browser
	Introduction
	Starting the Job Browser

	Using the Job Browser
	Job Browser Icons
	file menu
	The View Menu
	The Options Menu
	The Actions Menu

	Monitoring Jobs from the Command Line
	swjob Attributes
	swjob Tasks and Examples

	Managing and Tuning Jobs with Command Options
	Scheduling Jobs from the Command Line
	Adding Job Titles
	Removing Job Information

	8 Reliability and Performance
	Overview
	Groups and Source Options
	Large Numbers of Targets
	Timeout Options
	Retry RPC and Retry Interval
	Retry Command
	Database Checkpointing
	Compression
	INDEX and INFO Compression

	Staging
	Recovery (Install Only)
	Installation With Separate Configuration
	Multiple Versions

	9 SD-UX Security
	Overview
	Default Security
	Depots and Depot Registration
	Modifying Target Systems

	The swacl Command
	swacl Output

	Basic Security Tasks
	Listing User Access
	Allowing Users to Manage Products in a Depot
	Allowing Users to Manage Roots (Install/Remove)
	Restricting Access to Depots
	Adding Target Hosts
	Temporarily Restricting Access
	Closing the SD-UX Network
	Editing an ACL

	How ACLs are Matched to the User
	ACL Entries
	ACL Keys
	ACL Permissions
	Object Protection
	ACL Templates

	Security on SD-UX Systems
	SD-UX Internal Authentication
	SD-UX Credentials
	Security Between Hosts: The Shared Secrets File

	RPC Authorization
	How Agents Handle Controller Requests
	Local Superuser Authorization
	Depot Registration and Daemon/Agent Security

	Security Use Models
	Security in Remote Distributions
	Security in Local Distributions
	Security for Software Developers

	Permission Requirements, by Command
	Packaging (swpackage)
	Listing (swlist)
	Job Browsing (sd, swjob)
	Copying (swcopy)
	Installing (swinstall)
	Removal (swremove)
	Configuration (swconfig)
	Verify (swverify)
	Registering Depots (swreg)
	Changing ACLs (swacl)
	swask
	Modify (swmodify)

	10 Creating Software Packages
	Overview of the Packaging Process
	Prerequisites

	Identifying the Products to Package
	Determining Product Contents
	Determining Product Structure

	Adding Control Scripts
	Creating a Product Specification File (PSF)
	Product Specification File Examples
	PSF Syntax

	Packaging the Software (swpackage)
	Using swpackage

	Packaging Tasks and Examples
	Registering Depots Created by swpackage
	Creating and Mastering a CD-ROM Depot
	Compressing Files to Increase Performance
	Packaging Security
	Repackaging or Modifying a Software Package
	Packaging In Place
	Following Symbolic Links in the Source
	Generating File Revisions
	Depots on Remote File Systems
	Verifying the Software Package
	Packaging Patch Software
	Writing to Multiple Tapes
	Making Tapes from an Existing Depot

	11 Using Control Scripts
	Introduction to Control Scripts
	Types of Control Scripts

	General Script Guidelines
	Packaging Control Scripts
	Control Script Location on the File System During Execution

	Using Environment Variables
	Variables That Affect All SD-UX Commands
	Variables That Affect All SD-UX Scripts
	Variables That Affect swinstall and swremove
	Variables That Affect swverify

	Execution of Control Scripts
	Details Common to All Control Scripts
	Checkinstall Scripts
	Preinstall Scripts
	Postinstall Scripts
	Configure Scripts
	Unconfigure Scripts
	Verify Scripts
	Fix Scripts
	Checkremove Scripts
	Preremove Scripts
	Postremove Scripts
	Request Scripts

	Execution of Other Commands by Control Scripts
	Control Script Input and Output
	File Management by Control Scripts
	Testing Control Scripts
	Testing Installation Scripts
	Testing Configuration Scripts
	Testing Removal Scripts

	Requesting User Responses (swask)
	Using swask

	Request Script Tasks and Examples
	swask Examples
	swinstall Examples
	swconfig Examples

	12 Nonprivileged SD
	Overview
	Who Can Benefit?
	How Does It Work?
	Limitations

	Setting Up Nonprivileged Mode
	Packaging Software for Use in Nonprivileged Mode
	Turning On Nonprivileged Mode
	How Nonprivileged Mode Changes SD-UX Behavior

	Default Configuration
	Alternative Configuration
	Setting the Admin Directory Option

	A Command Options
	Changing Command Options
	Options Listed Alphabetically

	B Troubleshooting
	Error Logging
	Error Messages
	Warning Messages
	Notes

	Common Problems
	Cannot Contact Target Host’s Daemon or Agent
	GUI Won’t Start or Missing Support Files
	Access To An Object Is Denied
	Slow Network Performance
	Connection Timeouts and Other WAN Problems
	Disk Space Analysis Is Incorrect
	Packager Fails
	Command Logfile Grows Too Large
	Daemon Logfile Is Too Long
	Cannot Read a Tape Depot
	Installation Fails
	Swinstall or Swremove Fails With a Lock Error

	C Replacing or Updating SD-UX
	Re-installing SD-UX
	Prerequisites
	Using install-sd

	Replacing an Unusable Version of SD-UX
	Installing a Newer Version of SD-UX

	D Software Distributor Files and File System Structure
	Agent File System Structure
	Software Distributor Controller File System Structure
	Installed Products Database

	Glossary

