
Software Distributor
Administration Guide

for HP-UX 11i

HP 9000 Computers
Manufacturing Part Number: B2355-90740

June 2001

© Copyright 2001 Hewlett-Packard Company.

Legal Notices
The information in this document is subject to change without notice.

Warranty. Hewlett-Packard makes no warranty of any kind with regard
to this manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in sub-paragraph (c) (1)
(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013. Rights for non-DOD U.S. Government
Departments and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Copyright Notices.

Copyright © 2001 Hewlett-Packard Company, all rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

For HP-UX software:

©Copyright 1983-2001 Hewlett-Packard Company, all rights reserved.
©Copyright 1979, 1980, 1983, 1985-93 Regents of the University of California
©Copyright 1980, 1984, 1986 Novell, Inc.
©Copyright 1986-1992 Sun Microsystems, Inc.
©Copyright 1985, 1986, 1988 Massachusetts Institute of Technology
©Copyright 1989-1993, The Open Software Foundation, Inc.
©Copyright 1986 Digital Equipment Corp.
©Copyright 1990 Motorola, Inc.
©Copyright 1990-1992 Cornell University
©Copyright 1989-1991 The University of Maryland
©Copyright 1988 Carnegie Mellon University
2

©Copyright 1991-2000 Mentat Inc.
©Copyright 1996 Morning Star Technologies, Inc.
©Copyright 1996 Progressive Systems, Inc.
©Copyright 1991-2000 Isogon Corporation, All Rights Reserved

Trademark Notices.

HP-UX is a registered trademark of the Hewlett-Packard Company.

OpenView is a registered trademark of the Hewlett-Packard Company.

Motif, OSF/1, UNIX, the “X” device and The Open Group are registered
trademarks of The Open Group in the US and other countries.

Revision History:

December 2000, Edition 1.
June 2001, Edition 2.

This edition describes Software Distributor for HP-UX 11i.

This guide’s printing date and part number indicate the current edition.
The printing date changes when a new edition is printed. Minor
corrections and updates incorporated at reprint do not cause the date to
change. The part number changes when extensive technical changes are
incorporated.

Previous versions of this book were titled, Managing HP-UX Software
with SD-UX. For HP-UX 10.20, the part number was B2355-90107. For
HP-UX 11.00, the part number was B2355-90154.

New editions of this manual will incorporate all material updated since
the previous edition. For the latest version, see the HP-UX 11i Operating
System section on the Web at:

http://docs.hp.com

See also:

http://software.hp.com/SD_AT_HP/

Please direct comments regarding this guide to:

Hewlett-Packard Company
HP-UX Learning Products
MS 11
3404 East Harmony Road
Fort Collins, Colorado 80528-9599
3

4

Contents
1. Introduction to Software Distributor
About This Guide . 20

Typographical Conventions . 21
SD-UX Overview . 22

Network Requirements. 22
SD-UX Programs and Commands . 23
SD-UX Online Documentation. 25

SD-UX Concepts. 27
Important Terminology. 27
Software Structure . 28
Installed Products Database . 30
Control Scripts . 30
Environment Variables. 31
Software Dependencies . 32

How Commands and Options Interact with Dependencies 32
How Dependencies Are Resolved . 32
Types of Dependencies . 33

Working with Protected Software . 33
Using the GUI and TUI Commands . 34

The Terminal User Interface . 34
Starting the GUI/TUI Commands . 35
Window Components . 36
Opening and closing items in the object list . 37
Marking Items in the Object List. 37
Preselecting Host Files . 38
Software Selection Window . 39
Session and File Management—The File Menu . 40

GUI Session Files . 40
Performing Text Searches. 40

Changing Software Views—The View Menu. 41
Columns… . 41
Filter… . 42
Sort… . 44
Save View as Default . 44

Changing Options and Refreshing the Object List—The Options Menu 45
Performing Actions—The Actions Menu . 46

Open Item/Close Level . 46
Add/Save Software Group. 47
5

Contents
Change Source. 48
Change Target . 49

Getting Help—The Help Menu . 50
Overview… . 50
Keyboard… . 51
Using Help… . 51
Product Information… . 51

XToolkit Options and Changing Display Fonts . 51
Working from the Command Line. 53

Software Selections. 54
Syntax . 54
Software Files . 56

Target Selections. 56
Syntax . 56
Target Files . 57

Using Command Options . 57
Examples . 58

Session Files . 59

2. Installing Software
Installation with swinstall . 62

Features and Limitations . 62
Installing with the GUI . 63
Installing from the Command Line . 71
Installation Tasks and Examples. 74

Updating to HP-UX 11i. 75
Installing Patches . 75
Recovering Updated Files . 75
Installing Software That Requires a System Reboot . 76
Using Software Codewords and Customer IDs . 76
Re-installing Software Distributor. 77
Installing Multiple Versions . 77
Installing to an Alternate Root . 78
Compatibility Filtering and Checking . 78

Configuring Your Installation (swconfig) . 80
Features and Limitations . 80
The Configuration Process . 81
Using swconfig . 84
6

Contents
Configuration Tasks and Examples . 86
Verifying Your Installation (swverify). 87

Features and Limitations . 87
The Verification Process . 88
Using swverify . 90
Verification Tasks and Examples . 92

3. Managing Installed Software
Listing Your Software (swlist) . 94

swlist Features and Limitations . 94
Using the swlist GUI . 95

Searching and Moving Through the List . 95
Changing the View . 96
Performing Actions . 96

Using the Command Line. 97
Software Listing Tasks and Examples . 101

Using Options to Change List Appearance . 103
Listing Attributes . 104
Creating Custom Lists . 104
Listing Patches . 105
Using Software Codewords and Customer IDs . 105
Listing Software by Levels . 105

Modifying the IPD (swmodify). 114
IPD Contents. 114
Using swmodify. 116
swmodify Tasks and Examples . 119

Adding Information to the IPD. 119
Changing Existing IPD Information . 119
Defining New Objects . 120

Removing Installed Software (swremove) . 121
swremove Features and Limitations . 121
Using the swremove GUI . 122
Removing with the Command Line . 127
Remove Tasks and Examples . 129

Removing Bundles. 130
Removing Patches . 130
Removing Multiple Versions . 130
Removing Software from an Alternate Root . 131
7

Contents
4. Managing Software Depots
Depot Management Commands and Concepts. 134

Depot Concepts . 135
Types of Depots . 135
Depot Registration . 136

Copying Software Depots. 137
swcopy Features and Limitations . 137
Using the swcopy GUI . 138
Using the swcopy Command Line . 147
Copy Tasks and Examples . 150

Simple swcopy Examples . 150
Using Software Codewords and Customer IDs . 150
Multiple Software Products in Depots . 150

Registering and Unregistering Depots (swreg) . 151
Register Media or Create Network Depot? . 151
Registration and Security. 152
Authorization . 152
Using swreg. 152
swreg Examples . 154

Additional Depot Management Tasks and Examples . 155
Combining Patch Depots . 155
Creating a Tape Depot for Distribution. 156
Setting Depot Attributes . 156
Creating a Network Depot . 157
Managing Multiple Versions of HP-UX . 158
Listing Registered Depots . 158
Listing the Contents of a Depot (swlist -d) . 159
Source Depot Auditing . 160
Verifying a Depot (swverify -d) . 161
Removing Software from Depots . 162
Removing a Depot . 162

5. Managing Patches
Introduction . 164

Patch Concepts . 164
Patch Installation Paradigm . 165
Patch Supersession and Dependency Resolution . 166

Patch-Related Features . 167
8

Contents
Command Options . 167
Patch Management Tasks and Examples . 171

Installing Patches . 171
Installing Patches in Same Session as Base Product . 171
Installing Patches After Base Product Installation . 172
Patch Filtering with Multiple Criteria. 173
Explicitly Specifying Patches . 173
Installing Patches to Kernel and Library Files . 174
Patch Load Order . 174
Updating Patched Software . 174
Installing Patches to Remote Systems. 174

Copying Patches . 175
Interactive Patch Management . 176

Editing the Patch Filter List. 177
Listing Patches . 178

Listing Available Patch Categories . 179
Patch Removal, Rollback, and Committal . 179
Verifying Patches . 180

Packaging Patch Software . 182
Patch Software Characteristics . 182
Patch Software Objects and Attributes . 183
Patch Fileset Attributes . 183

User-specified Attributes . 184
Patch File Attributes . 185
PSF Example. 186
Attributes Generated by SD. 187

6. Remote Operations Overview
Introduction . 190

Differences Between Remote and Local Operations . 190
Remote Targets . 190
Controller, Daemon, and Agent Programs. 190
Job Management . 191
Compatible Software. 191
Dependencies Between Software . 191
Session Files . 191
Additional GUI Components . 192
Software and Target Lists. 192
9

Contents
Remote Patch Operations . 192
Limitations . 192

Using the Remote Operations GUI . 193
Target Selection Window . 193
Performing Actions . 194
Selecting Multiple Targets . 194
Selecting Individual Targets . 196
Saving a Target Group . 197
Adding a Target Group . 197

Setting Up Remote Operations . 198
Remote Operations Tutorial . 199

Tutorial Set-Up . 199
How to Perform a Single-Target Installation . 200

Remote Interactive swlist . 209
Remote Operations from the Command Line. 210

Target Selections. 210
Syntax . 210
Target Files . 211

Examples . 211
swacl. 211
swask . 211
swconfig . 211
swcopy . 211
swinstall. 212
swjob . 212
swlist . 212
swreg . 212
swremove . 212
swverify . 212

7. Using Jobs and the Job Browser
Introduction . 214

Starting the Job Browser . 214
Using the Job Browser . 215

Job Browser Icons . 216
The File Menu . 219

Printing the Jobs List . 219
The View Menu . 219
10

Contents
Viewing By Name and Icon. 220
Viewing By Properties. 220

The Options Menu . 221
Changing the Refresh Interval . 221
Refreshing the Jobs List . 221

The Actions Menu . 222
Shortcuts . 222
Creating a Job . 222
Showing Job Results . 222
Showing Job Descriptions . 223
Showing Job Logs . 224
Copying Jobs . 225
Removing a Job . 225

Monitoring Jobs from the Command Line . 227
swjob Attributes . 229
swjob Tasks and Examples. 230

Managing and Tuning Jobs with Command Options. 231
Scheduling Jobs from the Command Line. 231
Adding Job Titles . 231
Removing Job Information . 232

8. Reliability and Performance
Overview . 234
Groups and Source Options . 236
Large Numbers of Targets . 237
Timeout Options . 238
Retry RPC and Retry Interval. 239
Retry Command . 240
Database Checkpointing . 241
Compression . 242

INDEX and INFO Compression. 242
Staging . 243
Recovery (Install Only) . 246
Installation With Separate Configuration . 248
Multiple Versions . 249

9. SD-UX Security
Overview. 252
11

Contents
Default Security . 252
Depots and Depot Registration . 253
Modifying Target Systems . 253

The swacl Command . 254
swacl Output . 256

Basic Security Tasks . 257
Listing User Access . 258
Allowing Users to Manage Products in a Depot . 261
Allowing Users to Manage Roots (Install/Remove) . 261
Restricting Access to Depots . 263
Adding Target Hosts . 265
Temporarily Restricting Access . 265
Closing the SD-UX Network . 265
Editing an ACL . 266

How ACLs are Matched to the User . 269
ACL Entries . 270

ACL Keys . 271
ACL Permissions . 272
Object Protection . 273

Host System ACLs . 275
Root ACLs . 275
Depot ACLs . 276
Product ACLs . 277

ACL Templates . 278
Default ACL Template Entries . 279

Security on SD-UX Systems . 281
SD-UX Internal Authentication . 283

SD-UX Credentials . 283
Controllers Run with the User’s Credentials and Privileges 284
Agents Run with the System’s Identity . 284

Security Between Hosts: The Shared Secrets File . 285
RPC Authorization. 287

How Agents Handle Controller Requests . 287
Local Superuser Authorization . 289

Delegation . 289
Depot Registration and Daemon/Agent Security . 289

Security Use Models . 291
Security in Remote Distributions . 291
12

Contents
Security in Local Distributions . 292
Restricting Installation to Specific Target Systems by Specific Users 292

Security for Software Developers . 293
Permission Requirements, by Command . 294

Packaging (swpackage) . 294
Listing (swlist) . 294
Job Browsing (sd, swjob) . 294
Copying (swcopy) . 294
Installing (swinstall) . 295
Removal (swremove) . 295
Configuration (swconfig) . 295
Verify (swverify) . 296
Registering Depots (swreg) . 296
Changing ACLs (swacl) . 296
Request Scripts (swask) . 296
Modify (swmodify). 296

10. Creating Software Packages
Overview of the Packaging Process . 298

Prerequisites . 298
Identifying the Products to Package . 300

Determining Product Contents . 300
Determining Product Structure . 300

Adding Control Scripts . 302
Creating a Product Specification File (PSF) . 304

Product Specification File Examples . 305
Minimal PSF . 305
Typical PSF . 306

PSF Syntax . 309
PSF Object Syntax . 309
Selecting the PSF Layout Version . 313
PSF Value Types . 315
Product Specification File Semantics. 319
Re-Specifying Files . 342

Packaging the Software (swpackage) . 344
Using swpackage. 349

Output of Logfile Messages . 352
Packaging Tasks and Examples . 354
13

Contents
Registering Depots Created by swpackage . 354
Creating and Mastering a CD-ROM Depot . 355
Compressing Files to Increase Performance . 356
Packaging Security . 356

ACL Creation . 358
Repackaging or Modifying a Software Package . 359
Packaging In Place . 360
Following Symbolic Links in the Source . 361
Generating File Revisions . 361
Depots on Remote File Systems . 362
Verifying the Software Package . 363
Packaging Patch Software . 363
Writing to Multiple Tapes . 364
Making Tapes from an Existing Depot . 365

11. Using Control Scripts
Introduction to Control Scripts . 368

Types of Control Scripts . 369
Space Files . 373
Script Interpreter . 374
Control Script Format . 375

General Script Guidelines . 376
Packaging Control Scripts . 377

Control Script Location on the File System During Execution 378
Using Environment Variables . 379

Variables That Affect All SD-UX Commands . 379
LANG . 379
LC_ALL . 379
LC_CTYPE . 380
LC_MESSAGES . 380
LC_TIME . 380
TZ . 380

Variables That Affect All SD-UX Scripts. 380
SW_CATALOG . 380
SW_CONTROL_DIRECTORY . 380
SW_CONTROL_TAG . 381
SW_LOCATION . 381
SW_PATH . 381
14

Contents
SW_ROOT_DIRECTORY . 382
SW_SESSION_OPTIONS. 382
SW_SOFTWARE_SPEC . 382

Variables That Affect swinstall and swremove . 383
SW_DEFERRED_KERNBLD . 383
SW_INITIAL_INSTALL . 383
SW_KERNEL_PATH . 383
SW_SESSION_IS_KERNEL . 383
SW_SESSION_IS_REBOOT . 383
SW_SYSTEM_FILE_PATH . 384

Variables That Affect swverify . 384
SW_IS_COMPATIBLE . 384

Execution of Control Scripts . 385
Details Common to All Control Scripts . 385
Checkinstall Scripts . 386
Preinstall Scripts . 387
Postinstall Scripts . 387
Configure Scripts . 388
Unconfigure Scripts . 389
Verify Scripts . 389
Fix Scripts . 390
Checkremove Scripts . 390
Preremove Scripts . 391
Postremove Scripts . 391
Request Scripts . 392

Execution of Other Commands by Control Scripts . 394
Control Script Input and Output . 395
File Management by Control Scripts . 399
Testing Control Scripts . 400

Testing Installation Scripts . 400
Testing Configuration Scripts . 401
Testing Removal Scripts . 403

Requesting User Responses (swask) . 405
Using swask . 405

Request Script Tasks and Examples. 408
swask Examples . 408
swinstall Examples. 408
swconfig Examples . 409
15

Contents
12. Nonprivileged SD
Overview. 412

Who Can Benefit? . 412
How Does It Work? . 412
Limitations . 413

Setting Up Nonprivileged Mode . 414
Packaging Software for Use in Nonprivileged Mode. 414
Turning On Nonprivileged Mode . 415
How Nonprivileged Mode Changes SD-UX Behavior . 415

Default Configuration . 416
Alternative Configuration . 417

Setting the Admin Directory Option . 417

A. Command Options
Changing Command Options . 420
Options Listed Alphabetically . 422

B. Troubleshooting
Error Logging . 460

Error Messages . 461
Warning Messages . 461
Notes . 462

Common Problems . 463
Cannot Contact Target Host’s Daemon or Agent . 464
GUI Won’t Start or Missing Support Files . 466
Access To An Object Is Denied . 467

The Effects of ACL Modifications . 467
Do Not Modify ACL Files Without swacl . 468
Inter-host Secrets . 468
Working With Depot Images. 468

Slow Network Performance . 470
Connection Timeouts and Other WAN Problems . 471
Disk Space Analysis Is Incorrect . 473
Packager Fails . 473
Command Logfile Grows Too Large. 474
Daemon Logfile Is Too Long . 474
Cannot Read a Tape Depot . 475
Installation Fails . 475
16

Contents
Swinstall or Swremove Fails With a Lock Error. 476

C. Replacing or Updating SD-UX
Re-installing SD-UX . 478

Prerequisites . 478
Using install-sd . 479

Replacing an Unusable Version of SD-UX . 480
Installing a Newer Version of SD-UX . 481

D. Software Distributor Files and File System Structure
Agent File System Structure . 484
Software Distributor Controller File System Structure . 487
Installed Products Database . 488
17

Contents
18

Introduction to Software Distributor
1 Introduction to Software
Distributor

This chapter contains overview information and explains important
concepts that will help you use the SD-UX commands most effectively.

Topics:

“About This Guide” on page 20

“SD-UX Overview” on page 22

“SD-UX Concepts” on page 27

“Using the GUI and TUI Commands” on page 34

“Working from the Command Line” on page 53
Chapter 1 19

Introduction to Software Distributor

About This Guide
About This Guide
This guide describes how to use Software Distributor to install,
configure, package, and manage software for HP-UX on HP 9000 systems

This guide is written for:

• Stand-alone HP-UX users, primarily concerned with quick and easy
access to the right software management tools to get their normal
work done. This may include software installation, viewing, or
removal and basic depot management.

• HP-UX system administrators, primarily concerned with keeping
other users up and running. Additional software management tasks
may include more complex depot management, security, patch
management, remote operations, and performance management.

• Software packagers, primarily concerned with packaging software
into SD-usable format and writing scripts that may accompany the
packaged software.

What’s new in this
edition

This edition offers additional depot management examples, improved
organization, error corrections, and numerous minor enhancements.

Web papers
included here

This guide also includes information from this previously published
paper:

• Understanding SD-UX ACLs

Related
Documentation
and Training

Check the SD-UX Web often for announcements, updates to the SD-UX
FAQ, and to download the latest version of SD-UX:

http://software.hp.com/SD_AT_HP

For additional information on topics covered in this guide:

• SD-UX FAQ:

http://software.hp.com/SD_AT_HP/faq.html

• For details on SD-UX training included in HP-UX system
administration classes:

http://software.hp.com/SD_AT_HP/train.html
Chapter 120

Introduction to Software Distributor

About This Guide
Typographical Conventions

This guide uses the following typographical conventions:

Boldface Words defined for the first time appear in boldface.

Computer Computer font indicates literal items displayed by the
computer. For example: file not found

User input Bold, computer text indicates literal items that you
type. For example, to change to your account’s home
directory, enter:

cd

Italics Manual titles, variable in commands and emphasized
words appear in italics. For example, you would
substitute an actual directory name for
directory_name in this command:

cd directory_name

[] and | Brackets [] enclose optional items in command syntax.
The vertical bar | separates syntax items in a list of
choices. For example, you can enter any of these three
items in this syntax:

ls [-a | -i | -x]

Enter Text in this bold, sans-serif font denotes keyboard keys
and on-screen menu items. A notation of Ctrl -Q
indicates that you should hold the Ctrl key down and
press Q.
Chapter 1 21

Introduction to Software Distributor

SD-UX Overview
SD-UX Overview
Software Distributor for HP-UX (SD-UX) provides you with a powerful
set of tools for centralized HP-UX software management. When
connected by a LAN or WAN, each computer running SD-UX can act as a
server, allowing its resources to be managed or accessed by other
machines, or as a client, managing or using the resources of other
machines.

Software Distributor commands are included with the HP-UX operating
system and, by default, manage software on a local host only. You can
also enable remote operations, which let you install and manage
software simultaneously on multiple remote hosts connected to a central
controller.

Note that SD-UX running under HP-UX 11.00 and higher versions does
not support NFS diskless clusters.

Network Requirements

• Networked systems must support TCP/IP.

• Because Software Distributor is based on distributed, client/server
technology, it requires some networking functionality on the host
system for proper execution. These networking services are only
available in UNIX Run Level 2 (Multi-User mode) and above.
Software Distributor cannot run in Single-User mode.
Chapter 122

Introduction to Software Distributor

SD-UX Overview
SD-UX Programs and Commands

The following list provides a brief description of each command and
references for more detailed information.

Table 1-1 SD Commands

Command &
Manpage Description/Features More Information

swinstall(1M) • Installs or updates
software

• Optional GUI

• “Installation with swinstall”
on page 62

swlist(1M) • Lists installed software
or software in depots or
on media

• Optional GUI

• “Listing Your Software
(swlist)” on page 94

• “Listing Registered Depots”
on page 158

swcopy(1M) • Copies software from one
depot to another

• Optional GUI

• “Copying Software Depots”
on page 137

swremove(1M) • Removes installed
software or software in a
depot

• Optional GUI

• “Removing Installed
Software (swremove)” on
page 121

• “Removing Software from
Depots” on page 162

swpackage(1M) • Creates packages of
software which can then
be used as a source for
other SD-UX commands

• Chapter 10, “Creating
Software Packages,” on
page 297

swconfig(1M) • Runs configuration
scripts on installed
software

• Configures, reconfigures,
or unconfigures

• “Configuring Your
Installation (swconfig)” on
page 80

• Chapter 11, “Using Control
Scripts,” on page 367
Chapter 1 23

Introduction to Software Distributor

SD-UX Overview
swask(1M) • Runs interactive request
scripts that gather
information for later use
by swinstall or swconfig

• Chapter 11, “Using Control
Scripts,” on page 367

• “Requesting User Responses
(swask)” on page 405

swacl(1M) • Specifies, lists, and
changes Access Control
Lists (ACLs) for SD
security.

• Chapter 9, “SD-UX
Security,” on page 251

swverify(1M) • Verifies the integrity of
installed software or
depot software by
comparing IPD
information with the files
actually installed

• Runs verify and fix
scripts

• “Verifying Your Installation
(swverify)” on page 87

• “Verifying a Depot (swverify
-d)” on page 161

swmodify(1M) • Modifies the Installed
Products Database (IPD)
and various catalog files
that contain information
about the software on the
system

• “Modifying the IPD
(swmodify)” on page 114

swreg(1M) • Registers newly created
depots to make them
visible to other systems

• “Registering and
Unregistering Depots
(swreg)” on page 151

sd(5) • Starts the Job Browser
GUI to create, monitor,
schedule, and delete jobs

• Requires that remote
operations are enabled

• Chapter 6, “Remote
Operations Overview,” on
page 189

• Chapter 7, “Using Jobs and
the Job Browser,” on
page 213

Table 1-1 SD Commands

Command &
Manpage Description/Features More Information
Chapter 124

Introduction to Software Distributor

SD-UX Overview
The sd, swinstall, swcopy, swlist, and swremove commands each have an
optional Graphical User Interface (GUI) with windows and pull-down
menus. The GUI commands also work on text-based terminals, providing
a Terminal User Interface (TUI), which uses the keyboard instead of the
mouse for screen navigation.

You can invoke all SD-UX commands and programs from the command
line. The syntax, options, defaults and operands are similar for all
commands. See “Working from the Command Line” on page 53 for more
information.

SD-UX Online Documentation

To view the a manpage for each command, type:

man command_name

swjob(1M) • Monitors jobs from the
command line

• Requires that remote
operations are enabled

• “Monitoring Jobs from the
Command Line” on page
227

• Chapter 6, “Remote
Operations Overview,” on
page 189

• Chapter 7, “Using Jobs and
the Job Browser,” on
page 213

install-sd(1M) • Re-installs SD-UX from
media

• Appendix C, “Replacing or
Updating SD-UX,” on
page 477

swagentd(1M) • Daemon for SD-UX
commands

• Must be scheduled before
a system is available as a
destination for SD-UX
commands

• See manpage

Table 1-1 SD Commands

Command &
Manpage Description/Features More Information
Chapter 1 25

Introduction to Software Distributor

SD-UX Overview
For additional technical information, type:

man 5 sd for SD-UX overview

man 4 sd for file layouts

man 4 swpackage for packaging file layouts
Chapter 126

Introduction to Software Distributor

SD-UX Concepts
SD-UX Concepts
Understanding SD-UX concepts, terms, and model of software
management will help you use the commands and programs most
effectively. For additional definitions, see the Glossary.

Important Terminology

Host refers to any system on which software is to be installed or
managed using the SD-UX commands. A local host is the system on
which you invoke SD-UX commands.

When you have enabled remote operations, you can use SD-UX to
operate on one or more remote hosts—a host other than the system on
which the SD-UX command has been invoked. (See Chapter 6, Remote
Operations Overview, for more information on remote operations.)

A controller is the SD-UX program or command (swinstall, swcopy, etc.)
that you invoke on your system. The controller may work with data or
start processes on other systems.

A depot is a repository of software products that can be managed by
SD-UX. A depot consists of either a (specially formatted) directory, or
physical media such as tapes, CD-ROMs or DVDs. (CD-ROM and DVD
depots are really just special instances of directory depots). Directory
depots are useful because you can access them via a network. They are
often used to store collections of software copied from other depots.

In general, the term target refers to either a host (specifically, the host’s
file system) or a depot that resides on a host. The term source refers to a
depot from which software is being installed or copied (sometimes
referred to as a source depot).

For example, a basic install operation with the swinstall command
involves installing software from a source depot to a target location on
the host itself. The source depot might be physical media accessible from
the target, or a directory depot on some server on the network. The
target host might be the same host on which the command was invoked
(i.e., the local host) or, if remote operation is enabled, some other host on
the network.

A basic copy operation (using the swcopy command) is very similar,
except that the target is a depot on the host, rather than the host itself.
Chapter 1 27

Introduction to Software Distributor

SD-UX Concepts
For most operations, controller programs access hosts and depots using
an agent called swagent, which performs the basic software management
tasks. The agent is accessed via a daemon called swagentd. When SD-UX
operates on the local host, both controller and agent run on the local
host. For remote operations, the agent runs on a remote host.

Figure 1-1 shows how software can be developed and then packaged into
SD-formatted media, which can either be accessed directly or copied to a
depot directory on a server and accessed via the network.

Figure 1-1 SD-UX Systems

Software Structure

SD-UX commands work on a hierarchy of software objects that make up
the applications or operating systems components you want to manage.

Software Objects

Bundles Collections of filesets, possibly from several different
products, “encapsulated” for a specific purpose.
Bundles can reside in software depots, and SD-UX
commands act on bundles as single entities. All HP-UX
OS software is packaged in bundles. Bundles can
consist of groups of filesets or of products. Customer
creation of bundles is not supported.
Chapter 128

Introduction to Software Distributor

SD-UX Concepts
Products Collections of filesets or (optionally) subproducts and
control scripts. The SD-UX commands maintain a
product focus but still allow you to specify subproducts
and filesets.

Different versions of a product can be defined for
different platforms and operating systems, as well as
different revisions (releases) of the product itself.
Several different versions could be included on one
distribution media or depot.

Subproducts If a product contains several filesets, subproducts can
be used to group logically related filesets.

Filesets Filesets include all the files and control scripts that
make up a product. Filesets can only be part of a single
product but they can be included in several different
HP-UX bundles or subproducts. Like products,
different versions of a fileset may be defined for
different platforms and OSs.

Filesets are the lowest level of object managed by
SD-UX.

Figure 1-2 Example of HP-UX Software Structure

Product A Bundle B

Product BSubproduct X

Fileset A1

Fileset A2

Fileset A3

Fileset B3

Fileset B2Fileset B1

Fileset A6

Fileset A5

Fileset A4
Chapter 1 29

Introduction to Software Distributor

SD-UX Concepts
Installed Products Database

SD-UX uses the Installed Products Database (IPD) to keeps track of
what software is installed on a system. The IPD is a series of files and
subdirectories that contain information about all the products that are
installed under the root directory (/). (For depots, this information is
maintained in catalog files beneath the depot directory.)

The swinstall, swconfig, swcopy, and swremove commands automatically
add to, change, and delete IPD and catalog file information as the
commands are executed. The swlist and swverify commands use IPD and
catalog information to affect command behavior.

The IPD keeps track of the software state, which includes conditions
such as installed or configured.

Control Scripts

Products and filesets can contain control scripts that perform checks and
other tasks not performed by SD-UX commands. SD-UX supports the
following types of scripts:

Checkinstall Analyzes each target to determine if the installation
and configuration can take place. (Executed by
swinstall.)

Checkremove Analyzes each target to determine if removal and
unconfiguration can take place. (Executed by
swremove.)

Configure Configures installed filesets or products. (Executed by
swconfig and swinstall.)

Fix Corrects and reports on problems in installed software.
(Executed by swverify.)

Postinstall Performs additional install operations immediately
after a fileset or product has been installed. (Executed
by swinstall.)

Postremove Performs additional remove operations immediately
after a fileset or product has been removed. (Executed
by swremove.)

Preinstall Performs file operations (such as removing obsolete
files) immediately before installation of software files.
(Executed by swinstall.)
Chapter 130

Introduction to Software Distributor

SD-UX Concepts
Preremove Performs additional file operations (such as removing
files created by a preinstall script) immediately before
removal of software files. (Executed by swremove.)

Request Requests an interactive response from the user as part
of the installation or configuration process. (Executed
by swask, swconfig, and swinstall.)

Unconfigure Undoes configurations performed by configure scripts.
(Executed by swconfig and swremove.)

Unpostinstall Undoes operations performed by a postinstall script in
case swinstall must initiate recovery during the
installation process. (Executed by swinstall.)

Unpreinstall Undoes operations performed by a preinstall script in
case SD must initiate recovery during the install
process. (Executed by swinstall.)

Verify Verifies the configuration of filesets or products (in
addition to the standard swverify checks.) (Executed by
swverify.)

For More
Information

See Chapter 11, “Using Control Scripts,” on page 367.

Environment Variables

SD-UX commands and programs are affected by external environment
variables (such as language and charset variables) and variables for use
by control scripts. For a description of external environment variables,
see Chapter 11, “Using Control Scripts,” on page 367.
Chapter 1 31

Introduction to Software Distributor

SD-UX Concepts
Software Dependencies

Software that depends on other software to install or run correctly is
considered to have a dependency. When you specify software for the
swconfig, swcopy, swinstall, swremove, swverify commands, these
commands may automatically select additional software to meet
dependencies.

How Commands and Options Interact with Dependencies

Command options let you control how software dependencies are
handled. For example, dependency handling in swinstall and swcopy is
affected by the enforce_dependencies command option.

Another option that regulates dependencies is the
autoselect_dependencies option. This option determines if the system
should automatically mark software for installation or copying based on
whether it meets dependencies. (See “Using Command Options” on page
57 for more information on options.)

How Dependencies Are Resolved

For a dependency to be resolved with respect to other software on the
source depot it must be:

• Complete (if the dependency is an entire product or subproduct it
must exist completely in the source depot)

• In the proper software state on the source (that is, available)

• Free of errors (for example, no incompatibility errors)

If the dependency is not available from the source during a swconfig,
swcopy, swinstall, or swverify operation, the dependency must:

• Exist on the target host

• Be complete (if the dependency is an entire product or subproduct it
must be completely installed)

• Be in the proper software state (the dependency must be configured if
the software dependent on it is to be installed and configured,
installed if software dependent on it is to be installed but not
configured, or available if the software dependent on it is to be copied)

• Be free of errors (for example, no incompatibility errors).

If you select software that has a dependency and more than one available
Chapter 132

Introduction to Software Distributor

SD-UX Concepts
object resolves that dependency, SD-UX automatically selects the latest
compatible version.

Types of Dependencies

Software packagers can define corequisites, prerequisites, and
exrequisites as dependencies. These dependencies can be specified
between filesets within a product, including expressions of which
versions of the fileset meet the dependency. Dependencies can also be
specified between a fileset and another product. Expressions for revisions
and other product attributes are supported.

Corequisites An object requires another to operate correctly, but
does not imply any load order.

Prerequisites An object requires another to be installed and/or
configured correctly before it can be installed or
configured respectively. Prerequisites do control the
order of operations.

Exrequisite An object requires the absence of another object before
it can be installed or configured.

Working with Protected Software

Some HP software products are protected software. That is, you cannot
install or copy the software unless you provide a codeword and customer
ID. The customer ID uniquely identifies the owner of the codeword and
lets you restrict installation to a specific owner. To find your codeword
and customer ID, examine the CD certificate shipped with your software.

It is your responsibility to ensure that the codeword and software are used
properly in this manner.

One codeword unlocks most or all of the products on your media. When
you purchase additional protected products, HP provides additional
codewords. SD-UX keeps tracks of codewords as you enter them. This
means you do not have to enter the codeword each time you access the
software.

The swinstall, swcopy, and swlist commands make use of codewords in
managing software.
Chapter 1 33

Introduction to Software Distributor

Using the GUI and TUI Commands
Using the GUI and TUI Commands
The swinstall, swcopy, swlist, swremove commands each provide a
Graphical User Interface and Terminal User Interface. Advantages of
the GUI/TUI include:

• You can quickly create and visually monitor software management
tasks interactively

• You can easily analyze the effects of tasks and retry tasks that fail.

• You do not have to be familiar with a broad range of defaults, options,
software selections, and other variables that are required to enter
complex commands on the command line.

(Additional GUI interfaces are available if you have enabled remote
operations. See Chapter 6, “Remote Operations Overview,” on page 189.)

The Terminal User Interface

The terminal user interface lets you use the SD-UX GUI capabilities on
systems with text-based terminals. With the TUI, you use the Arrow , Tab,
Space , and Return keys to navigate.

Figure 1-3 The Terminal User Interface (TUI)
Chapter 134

Introduction to Software Distributor

Using the GUI and TUI Commands
All examples for GUI commands in this manual also apply to the TUI.

Starting the GUI/TUI Commands

To start the GUI or TUI for swinstall, swcopy, or swremove, enter:

/usr/sbin/swinstall

—or—

/usr/sbin/swcopy

—or—

/usr/sbin/swremove

Put /usr/sbin in your PATH to avoid typing the /usr/sbin prefix.

The TUI starts by default if you have not set the DISPLAY variable.

To invoke the GUI and specify other command-line arguments at the
same time, you must include the -i option. For example:

swinstall -i -s sw_server cc pascal

To invoke the swlist GUI, you must use always use the swlist -i
option.

You can also launch the SD-UX GUIs from HP’s ServiceControl Manager
(SCM) or Systems Administration Manager (SAM) applications.
Chapter 1 35

Introduction to Software Distributor

Using the GUI and TUI Commands
Window Components

The main GUI/TUI windows (Figure 1-4) contain the following
components:

Figure 1-4 GUI Window Components

Menu bar Provides pull-down menus for File , View , Options ,
Actions , and Help . Each choice has additional submenus
for more activities. Items in the menus may or may not
appear, depending on whether selections are
highlighted or not. Some actions may also be grayed
out to show they are not available for a specific item.

Message area Provides messages and system information.

View/selections Describes the current software view and the number of
items selected in the object list.

Columns Headings for columns of information in the object list.

Object list Lists software selections, bundles, products, targets, or
other information regarding selections, analysis and
details.

Menu bar

Message area

Columns/

Object list

 View/selections

headings
Chapter 136

Introduction to Software Distributor

Using the GUI and TUI Commands
Opening and closing items in the object list

The Software Selection window object list is hierarchical: you can open
each object in the list and show its contents. Objects in the list that
contain other objects that can be opened have an arrow (→) after the
name.

• To open a subproduct, double click on it, or highlight the name and
then select Actions →Open Item .. For example, to see the subproducts
in the SD-DATABASEproduct, open SD-DATABASEby double clicking on
it. The object list then displays the subproducts for SD-DATABASE.

• To close an object and return to the previous list, double click on the
first item in the list (..(go up)) or highlight the item and select
Actions →Close Level .

When a product is opened, subproducts and filesets may appear in the
same list. Only products are listed together at the product level.

Filesets are the lowest level of hierarchical objects managed by SD-UX.
You can not view the contents of files, but you can view the list of files in
each fileset and information about each file.

Marking Items in the Object List

There are two ways to mark an object in the object list:

• Use the menu bar:

1. Click on the object to highlight it.

2. Select Actions →Mark for Install (or Mark for Copy or Mark for Remove)

• Use the pop-up menu:

1. Click on the object to highlight it.

2. Right click to display the pop-up menu.

3. Select Mark for Install (or Mark for Copy or Mark for Remove)

Flags (Yes, Partial or blank) show whether items in the list have been
marked for an activity (see the Marked? column).

(For the TUI, mark items by pressing Space when the cursor is on the
item and then press the m key. Unmark items with the u key.)
Chapter 1 37

Introduction to Software Distributor

Using the GUI and TUI Commands
Preselecting Host Files

The defaults.hosts file contains lists of hosts that are used by the
GUI/TUI programs. This lets you use preselected choices for source and
target systems. These lists are stored in the $HOME/.swdefaults.hosts
or /var/adm/defaults.hosts files.

For each interactive command, target hosts containing roots or depots
are specified in this file by separate lists (hosts , hosts_with_depots).
The list of hosts are enclosed in {} braces and separated by white space
(blank, tab and newline). For example:

swinstall.hosts={hostA hostB hostC hostD hostE hostF}
swcopy.hosts_with_depots={hostS}

When you use the program, dialog boxes that let you choose a source
system from a list will display all hosts specified in defaults.hosts or
remembered from a previous session. Once a source is successfully
accessed, that host is automatically added to the list in the
defaults.hosts file and displayed in the dialog.

If there are no hosts specified in defaults.hosts , only the local host and
default source host appear in the lists.

If a host system does not appear in the list, you can enter a new name
from the GUI/TUI program.
Chapter 138

Introduction to Software Distributor

Using the GUI and TUI Commands
Software Selection Window

The Software Selection Window (Figure 1-5) is the standard window for
all SD-UX GUI programs. It features the standard menu bar, message
area, and object list of software available for selection. Menu items are
discussed in the following sections.

Figure 1-5 Software Selection Window
Chapter 1 39

Introduction to Software Distributor

Using the GUI and TUI Commands
Session and File Management—The File Menu

The File menu is the primary tool for managing session files, searching,
and printing.

GUI Session Files

Each invocation of one of the GUI commands defines a session. All
session information—including the options used to invoke the command,
source specifications, software selections, and target hosts—are
automatically saved. This lets you re-execute the command even if the
session ends before proper completion. (See “Session Files” on page 59.)

You can save session information into a file at any time by selecting the
Save Session or Save Session As choice from the File menu. The Recall
Session choice lets you import the settings from a previously saved
session file. Clear Session resets all options and operands to their default
values.

Each session is saved to a file for that command. For example:

$HOME/.sw/sessions/swinstall.last
$HOME/.sw/sessions/swcopy.last
$HOME/.sw/sessions/swremove.last

This file is overwritten by each time you start the GUI.

When you re-execute a session file, the values in the session file take
precedence over values in the system defaults file. Likewise, any
command line options or parameters that you specify when you invoke
the GUI take precedence over the values in the session file.

Performing Text Searches

The Search... choice lets you perform a text search of the active list in a
window.
Chapter 140

Introduction to Software Distributor

Using the GUI and TUI Commands
Changing Software Views—The View Menu

The View menu manages your window view preferences.

Columns…

The View→Columns... choice brings up the Column Editor dialog (Figure
1-6), which lets you reformat the columns for the current object list. All
viewable object attributes are listed.

Figure 1-6 Column Editor

The editor displays values 1 through the total number of attributes, plus
an Ignore option, which removes that attribute from display in the object
list.

You can specify an attribute’s justification by clicking on the Left or Right
button in the Justify column.

Set the column width by placing the cursor in the appropriate text field
in the Width column, then entering the width (number of characters).
Use an asterisk (*) to size the column automatically.

• To apply the changes made to the object list, select Apply . The list is
updated to reflect any changes made, and the Column Editor dialog
remains open.

• To apply the changes and close the editor, select OK.
Chapter 1 41

Introduction to Software Distributor

Using the GUI and TUI Commands
• To return to the original default values, select System Defaults .

• To cancel any changes and return to the object list window, select
Cancel .

• To save the changes made for the next invocation of the application,
choose View→Save View as Default .

Filter…

Figure 1-7 Filter Dialog

The View→Filter... choice displays the Filter dialog (Figure 1-7), which lets
you specify the type of filtering desired for each attribute.

The Operator menu button lets you specify the operator for a given
attribute. The following table presents the operator types:
Chapter 142

Introduction to Software Distributor

Using the GUI and TUI Commands
• For Matches and Not , use an asterisk (*)as a wildcard, and a question
mark (?) to match any single character.

• Select Apply to apply the changes made to the object list and leave the
Filter dialog open.

• Select OK to apply the changes and close the Filter dialog.

• To return to the original default values, select System Defaults .

• Select Cancel to ignore any changes made and close the Filter dialog.

• To save the changes made for the next invocation of the application,
choose View→Save View as Default .

Table 1-2 Operator Types

Any Displays objects regardless of the value of the
attribute.

Matches Displays objects if their attribute value exactly
matches the value specified in the Value column.

Not Displays objects whose attribute value does not
match the value specified in the Value column.

Less Than Displays objects if their attribute value is less than
the value specified in the Value column. Less than
is defined as a lesser integer value or earlier in the
alphabet.

Greater Than Displays objects if their attribute value is greater
than the value specified in the Value column.
Greater than is defined as a higher integer value or
later in the alphabet.
Chapter 1 43

Introduction to Software Distributor

Using the GUI and TUI Commands
Sort…

The View→Sort... choice displays the Sort dialog (Figure 1-8), which lets
you specify a sort method for the object list. All viewable object attributes
are listed. For each attribute, you can specify the type of sort desired.

Figure 1-8 Sort Dialog

The Priority column displays values 1 through the total number of
attributes, plus an Ignore option, which excludes the attribute from the
sort. A sort priority of 1 sorts the list first on that attribute.

• To specify whether the sort is ascending or descending, select the
Direction menu button.

• To apply the changes to the objects list and remain in the Sort dialog,
select Apply .

• Select OK to apply the sort and close the Sort dialog.

• Select Cancel to ignore any changes made and close the Sort dialog.

• To return to the original default sort values, select System Defaults .

Save View as Default

To save any changes for future sessions, choose View→Save View as
Default . Any changes you made to your view preferences are saved in the
following file, in which username is your log-in name:
/var/adm/sw/ui/preferences/username.prefs .
Chapter 144

Introduction to Software Distributor

Using the GUI and TUI Commands
Changing Options and Refreshing the Object
List—The Options Menu

The Options menu lets you refresh the object list and change the default
values of options that control command behaviors and policies. Selecting
Options →Refresh List updates the object list to reflect any changes.

Selecting Options →Change Options opens the Options dialog (Figure 1-9),
which lets you change a limited set of options for the command. These
options are changed only for the duration of the interactive session. To
change options for subsequent sessions, you must save a session file (see
“Session and File Management—The File Menu” on page 40) or edit one
of the options files (see “Using Command Options” on page 57).

Figure 1-9 Options Editor Dialog

Use caution when changing option values. They allow useful flexibility
but can produce harmful results if changed to an inappropriate value.
Use the on-line help and consult Appendix A, “Command Options,” on
page 419 to understand fully each option before you change it.
Chapter 1 45

Introduction to Software Distributor

Using the GUI and TUI Commands
Performing Actions—The Actions Menu

Each Action menu in the GUI/TUI programs has series of actions for that
command. These actions vary according to which command you invoke.
(You may have to click on an item in the object list to enable some of the
actions that are grayed out.) The following actions are common to
swinstall, swcopy, swlist, and swremove.

Open Item/Close Level

The Open Item or Close Level menu choices let you see the contents of a
selected object or close it.

Each object list is hierarchical. Objects that have an arrow (→) after the
name can be opened to reveal other items. For example, to see the
subproducts in a particular product, you can open that product by double
clicking on the object or by selecting Actions ->Open Item . The object list
then shows a listing of the subproducts for that product. If you want to
open the subproduct, double click on it and its filesets are displayed. (In
the TUI, move the cursor to the item you want to open and click Return .)

When the product is opened, all of its subproducts (and filesets that are
not part of a subproduct) are shown in the list. At the product level, only
products are listed together. If the software view is Bundle and the
bundle is opened, all HP-UX OS products that are wholly or partially
contained in the bundle will be shown. When one of the products is
opened, only subproducts and filesets in the open product and open
bundle are shown.

To close an object and return to the previous list, double click on the first
item in the list (. .(go up)) or select Actions->Close Level . (In the TUI, you
must use Close Level in the Actions menu or press Return while
highlighting the (. .(go up)) item.)
Chapter 146

Introduction to Software Distributor

Using the GUI and TUI Commands
Add/Save Software Group

These choices let you save and re-use groups of marked software.

The Save Software Group menu choice opens the Save Software Group
dialog (Figure 1-10), which saves the current list of marked software as a
group. SD stores the group definition in $HOME/.sw/software/ or a
directory you specify.

You can recall and re-use a previously saved group of software selections
by using the Add Software Group menu choice.

Software automatically marked due to dependencies is not included in a
software group. Dependencies are recomputed each time you select Add
Software Group . See “Software Dependencies” on page 32 for more
information about dependencies

Figure 1-10 Save Software Group Dialog
Chapter 1 47

Introduction to Software Distributor

Using the GUI and TUI Commands
Change Source

The Change Source... menu choice opens the Change Source dialog
(Figure 1-11), which lets you change the source for the software to be
used. The Root Path button opens a list of target paths from which to
select (Figure 1-13).

Figure 1-11 Change Source Dialog

1. (Optional) To specify another host system, type a source host name,
or:

a. Click on the Source Host Name button. The system displays a
dialog that lists all host system names contained in the
defaults.hosts file ($HOME/.sw/defaults.hosts or
/var/adm/sw/defaults.hosts).

b. Choose a host name from the list.

c. Click OK. The host name appears in the appropriate box in the
Specify Source dialog.

2. (Optional) To specify the path to the depot, type a new path, or:

a. Click on the Source Depot Path button to display a list of registered
depots on the source host.

b. Highlight one of the depots.

c. Click OK to make it appear in the Specify Source dialog.

3. Click OK. The Specify Source dialog closes, and the Software Selection
window displays the software contained in the depot you specified.
Chapter 148

Introduction to Software Distributor

Using the GUI and TUI Commands
Change Target

The Change Target... menu choice opens the Change Target dialog (Figure
1-12), which lets you change the targets of your software operation. The
Root Path button opens a list of target paths from which to select (Figure
1-13).

For SD-UX local operations, the target is always a directory on the local
host. See Chapter 6, “Remote Operations Overview,” on page 189 for
information about specifying remote targets.

Figure 1-12 Change Target Dialog

Figure 1-13 Root Path Dialog
Chapter 1 49

Introduction to Software Distributor

Using the GUI and TUI Commands
Getting Help—The Help Menu

All the GUI and TUI programs have an on-line help system. Each screen,
dialog, or menu choice has associated help instructions that explain the
activity.

Figure 1-14 Typical On-Line Help Screen

To get “context-sensitive” help for individual menu choices, fields,
options, or buttons on the various windows and menus, place the cursor
on an item and press the F1 key on your keyboard (Ctrl-F in the TUI).
This displays specific help for that item.

To view overview information for each major screen, to get help on
keyboard usage, or to view other product information, select the Help
menu from in the menu bar.

Overview…

This menu item provides information about the currently active SD-UX
screen. This includes a list of the tasks you can do in that screen and a
short description of the different areas of the screen and links to related
topics.
Chapter 150

Introduction to Software Distributor

Using the GUI and TUI Commands
Keyboard…

This menu item brings up help on how to use the keyboard to control the
application, covering topics such as selection, menu bar activation and
traversal, dialog box traversal, etc.

Using Help…

This menu item displays information about how to use the Help system.

Product Information…

This menu item displays copyright and revision information for SD-UX.

XToolkit Options and Changing Display Fonts

The GUI commands support the following subset of the HP-UX XToolkit
command line options:

• -bg or -background

• -fg or -foreground

• -display

• -name

• -xrm

Note that the SD-UX commands do not support the XToolkit -fn or the
-font option used to change display fonts.

SD-UX commands do, however, recognize most Motif™ standard
resources when running in the X11/Motif environment, plus the
following additional resources:

*systemFont Specifies the variable-width font used in the GUI menu
bars and other areas where a variable width font is
applicable. The default size is 8x13.

*userFont Specifies the fixed-width font used in all other GUI
displays. This font should be the same basic size as the
*systemFont only in the fixed width style. The default
size is also 8x13.

Here is an example of how to change the size of your fixed width font
from 8x13 to 6x13:

swinstall -xrm ’Swinstall*userFont: user6x13’
Chapter 1 51

Introduction to Software Distributor

Using the GUI and TUI Commands
Here is how to change the variable width font style to 12 point HP
Roman 8:

swinstall -xrm ’Swinstall*systemFont: \
-adobe-courier-medium-r-normal12-120-75-75-m-70-hp-\
roman8’

You can also modify the defaults file (in /usr/lib/X11/app-defaults)
for each command with a Graphical User Interface so that a resource will
be set each time you invoke a specific command. Here is an example of an
app-defaults file for swremove:

swremove app-defaults

Swremove*foreground: red
Swremove*background: white
Swremove*userFont: hp8.8x16b
Swremove*systemFont: -adobe-courier-medium-r-normal12-120-75-
75-m-70-hp-roman8
Chapter 152

Introduction to Software Distributor

Working from the Command Line
Working from the Command Line
You can invoke all SD-UX commands non-interactively via the command
line. This section provides reference information about command-line
features available across most of the commands.

The command line is most effective for:

• Quickly executing simple commands

• Executing tasks that take a long time to accomplish

• Creating commands for later execution by scripts

A typical command line might look like this:

Figure 1-15 Sample Command

The example shows that you have several ways to specify SD-UX
behavior including command-line options (such as -f and -s), input
files (mysoft and /mnt/cd), and target selections.

A complete list of command line components includes:

• Software selections and software selection files (page 54)

• Target selections and target selection files (page 56)

• Command-line options (page 57)

• Session files (page 59)

Each item on this list is discussed in more detail in the following
sections.

swinstall -f MySoft -s /mnnt/cd @ targetB

command File of
software
selections

Location of
software
depot

Target host
Chapter 1 53

Introduction to Software Distributor

Working from the Command Line
Software Selections

Software selections let you specify software in great detail. You can also
use an input file to specify software.

Syntax

The software_selections syntax is identical for all SD-UX commands
that require it:

bundle [.product [.subproduct][.fileset]][,version]
product [.subproduct][.fileset][,version]

• The = (equals) relational operator lets you specify selections with the
following shell wildcard and pattern-matching notations:

[] Square brackets—groups an expression

* Asterisk—wildcard for multiple characters

? Question mark—wildcard for a single character

For example, the following expression installs all bundles and
products with tags that end with man:

swinstall -s sw_server *man

• Bundles and products are recursive. Bundles can contain other
bundles. For example:

swinstall bun1.bun2.prod.sub1.fset,r=1.0

or (using expressions):

swinstall bun[12].bun?.prod.sub*,a=HP-UX

• The * software specification selects all products.

CAUTION To avoid data loss, use the * specification with considerable care (such
as when removing software from the root directory, /).
Chapter 154

Introduction to Software Distributor

Working from the Command Line
The version component has the form:

[,r <op> revision][,a <op> arch][,v <op> vendor]
[,c <op> category][,q =qualifier][,l= location]
[,fr <op> revision][,fa <op> arch]

where:

• Fully qualified software specifications include the r= , a=, and v=
version components, even if they contain empty strings. For installed
software, l= is also required.

• All version components are repeatable within a single specification
(e.g. r>=A.12 , r<A.20). If multiple components are used, the selection
must match all components.

• The <op> (relational operator) component performs individual
comparisons on dot-separated fields and can be of the form:

=, ==, >=, <=, <, >, or !=

For example, r>=B.11.11 chooses all revisions greater than or equal
to B.11.11 . The system compares each dot-separated field to find
matches.

• The = (equals) relational operator lets you specify selections with the
shell wildcard and pattern-matching notations: [] , * , ?, and !

For example, the expression r=1[01].* returns any revision in
version 10 or version 11.

• No space or tab characters are allowed in a software selection.

• qualifier is a string that can be attached to any product or bundle
to help you filter a software specification.

• location applies only to installed software and refers to software
installed to a location other than the default product directory.

• fr and fa apply only to filesets.

• A software instance_id can take the place of the version component.
It has the form:

[instance_id]

within the context of an exported catalog, where instance_id is an
integer that distinguishes versions of products and bundles with the
same tag.
Chapter 1 55

Introduction to Software Distributor

Working from the Command Line
Software Files

To keep the command line shorter, software selection input files let you
specify long lists of software products. With a software selection file, you
only have to specify the single file name.

The -f command-line option lets you specify a software selection file. For
example:

swinstall -f mysoft -s /mnt/cd @ targetB

In this example, the file mysoft (which resides in the current working
directory for software files) contains a list of software selections for the
depot /mnt/cd.

In the software file, blank lines and comments (lines beginning with #)
are ignored. Each software selection must be specified on a separate line.

Target Selections

Target selections follow software and source depot selections. If no target
selection is named, the target on which the operation will be performed
is assumed to be the root (/) directory on your local host. So, you do not
have to use the @ sign and [host][:][/directory] designation (described
below) if you are operating on the local host or default depot directory.

Syntax

The target_selections syntax is identical for all SD-UX commands that
require it:

@ [host][:][/directory]

• The @ character is optional if you are using the local host and default
directory. If it is used, it acts as a separator between operands and the
destination.

• Only one @ character is needed.

• You can specify the host by its host name, domain name, or internet
address. A directory must be specified by an absolute path.

• The : (colon) is required if you specify both a host and directory.

• On some systems, the @ character is used as the kill function. Type
stty on your system to see if the @ character is mapped to any other
function on your system. If it is, remove the mapping, change the
mapping, or use \@.
Chapter 156

Introduction to Software Distributor

Working from the Command Line
Target Files

To keep the command line shorter, target selection input files let you
specify long lists of targets. With a target selection file, you only have to
specify the single file name.

The -t command-line option lets you specify a target file. For example:

swinstall -f mysoft -s /mnt/cd -t mytargs

In this example, the file mytargs (which resides in the current working
directory) contains a list of target selections for the swinstall command.

In the target file, blank lines and comments (lines beginning with #) are
ignored. Each target selection must be specified on a separate line and
must consist of a host name or network address, optionally followed by a
colon and a full path: host [:/ directory]

Using Command Options

You can control many SD-UX command policies and behaviors by setting
the appropriate command options. You can change the default values of
options using predefined files or values you specify directly on the
command-line. Altering default values with files can help when you don’t
want to specify command behavior every time you invoke the command.

These rules govern the way the defaults work:

1. Options in /var/adm/sw/defaults affect all SD-UX commands on
that system. This file can change the default behavior for all
commands to which an option applies or for specific commands only.

2. Options in your personal $HOME/.swdefaults file affect only you and
not the entire system.

3. Options read from a session file affect only that session.

4. Options changed on the command line by the -X option_file or the
-x option=value arguments override the system-wide and personal
options files but affect only that invocation of the command.

For system-wide policy setting, use the /var/adm/sw/defaults files.
Keep in mind, however, that users may override these options with their
own $HOME/.swdefaults file, session files, or command line changes.

The template file /usr/lib/sw/sys.defaults provides an easy way to
change system-wide or personal option files.
Chapter 1 57

Introduction to Software Distributor

Working from the Command Line
The template file lists (as comments):

• All command options

• The commands to which each option applies

• Possible values for each option

• The resulting system behavior for each value.

You can copy values from this file into the system defaults file
(/var/adm/sw/defaults), your personal defaults file
($HOME/.swdefaults), or an input file (with the -X input_file option)
and edit them to affect SD-UX behavior.

Option files use this syntax:

[command.]option =value

• The optional commandis the name of a SD-UX command. Specifying a
command name changes the default behavior for that command only.
A period must follow a command name.

• option is the name of the default option. An equals sign must follow
the option name.

• value is one of the allowable values for that option.

You must restart the SD-UX daemon after changing swagentd options, or
the daemon will not recognize the changes. To restart the daemon, type:

/usr/sbin/swagentd -r

Examples

To change the default value of use_alternate_source to true for all
users for all future sessions for all commands to which the option applies,
place the following line in the /var/adm/sw/defaults file:

use_alternate_source=true

To change the default value of use_alternate_source to false for your
own invocations of the command, place the following line in your
$HOME/.swdefaults file:

swinstall.use_alternate_source=false

To start an interactive swinstall session using the options stored in
my_install_defaults to override any system-wide or personal defaults
file values:
Chapter 158

Introduction to Software Distributor

Working from the Command Line
swinstall -i -X my_install_defaults=true

To start an interactive install session and reset the
use_alternate_source default for this session only:

swinstall -i -x use_alternate_source

See Appendix A, “Command Options,” on page 419 for a complete listing
of defaults and their values and descriptions.

Changing the default values for command options can cause harmful
results if you specify inappropriate values.

Session Files

Before any SD-UX task starts, the system automatically saves the
current command options, source information, software selections, target
selections, etc., into a session file. You can then re-use this session
information at a later time, even if the command fails.

Session information is saved in the $HOME/.sw/sessions/ directory as
command.last in which commandis the name of the command. Each time
you save a session file, it overwrites the previously stored one. (To save
multiple session files, you can rename each session file after you invoke
the command.)

To re-use the automatically saved session file, invoke the command with
the -S swcommand.last argument. For example:

swinstall -S swinstall.last

If you want to save a session file to somewhere other than the default
sessions directory, use the -C session_file argument and supply your
own absolute path to the file you wish to save. If you do not specify a
directory, the default location for the session file is
$HOME/.sw/sessions/ .

To re-execute a session from a command line, specify the session file as
the argument for the -S session_file option.

Note that when you re-execute a session file, the session file values take
precedence over values in the system defaults file or personal defaults
file. Likewise, any command line options or parameters that you specify
when you invoke the command take precedence over the values in the
session file.

Here is a sample a session file. It uses the same syntax as the defaults
files:
Chapter 1 59

Introduction to Software Distributor

Working from the Command Line
swinstall session file
#
Filename /users/fred/.sw/sessions/swinstall.last
Date saved 05/26/01 15:59:41 MDT
swinstall.allow_downdate = true
swinstall.allow_incompatible = false
swinstall.allow_multiple_versions = false
swinstall.autoreboot = false
swinstall.autorecover_product = false
swinstall.compress_files = false
swinstall.create_target_path = true
...

(A typical swinstall session file has approximately 70 lines.)
Chapter 160

Installing Software
2 Installing Software

This chapter discusses how to use the swinstall, swconfig, and swverify
commands to install, configure, and verify software.

• swinstall installs software from a depot and performs automatic
configuration of software.

• swconfig lets you configure, unconfigure, or reconfigure previously
installed software.

• swverify lets you check that software was installed correctly and run
scripts to perform additional verification tasks or fix specific
problems.

Topics:

“Installation with swinstall” on page 62

“Configuring Your Installation (swconfig)” on page 80

“Verifying Your Installation (swverify)” on page 87
Chapter 2 61

Installing Software
Installation with swinstall
Installation with swinstall
The swinstall command installs software from a software source (a depot
or physical media) to your local host.

Features and Limitations

• Optional GUI.

• Compatibility filtering to ensure the software will run on the installed
system.

• Ability to perform kernel rebuilding or rebooting.

• Automatic use of dependencies to automatically select software on
which to operate (in addition to any software you specify directly).

• Ability to run control scripts as part of the installation:

Checkinstall Analyses each target to determine if the installation
and configuration can take place.

Preinstall Performs file operations (such as removing obsolete
files) before installation of software files.

Request Requests an interactive response from the user as
part of the installation or configuration process.
(Executed by swask, swconfig, and swinstall.)

Configure Configures installed filesets or products. (See
“Configuring Your Installation (swconfig)” on page
80.)

Postinstall Performs additional install operations (such as
resetting default files) immediately after a fileset or
product has been installed.

Unpostinstall Undoes a postinstall script in case swinstall must
initiate recovery during the installation process.

Unpreinstall An undo preinstall script in case SD must initiate
recovery during the install process.

(For more information, see Chapter 11 , “Using Control Scripts.”)

• Software can be installed to alternate root directories.
62 Chapter 2

Installing Software
Installation with swinstall
Installing with the GUI

Overview This section provides an overview of the swinstall GUI.

• In general, all information presented in “Installing from the
Command Line” on page 71 also applies to the swinstall GUI.

• This section also refers to additional information about standard GUI
elements, discussed in “Using the GUI and TUI Commands” on page
34.

• All information in this section also applies to the TUI program unless
otherwise noted. See “The Terminal User Interface” on page 34 for
more information.

There are five steps in the GUI install process:

Step I: Start-Up To start the GUI or TUI for an install session, type:

/usr/sbin/swinstall

The GUI is automatically invoked unless you also specify software on the
command line. To invoke the GUI and specify software, include the -i
option. For example, to use the GUI for a preview (analysis only) session
with BUNDLE1, type:

swinstall -i -p /MyDepot/BUNDLE1

The Software Selection window appears with the Specify Source dialog
superimposed over it.

Table 2-1 GUI Installation Steps

I. Start-Up Start the swinstall GUI.

II. Select Source Provide the location of the software
depot from which the software will
be installed.

III. Select Software Choose the software to install.

IV. Analysis
(Preview)

Analyze (preview) the installation
to determine if the selected software
can be installed successfully.

V. Installation Perform the actual software
installation.
Chapter 2 63

Installing Software
Installation with swinstall
Step II: Select
Source

In this step, you must specify the source depot that contains the software
you want to install. The Specify Source dialog (Figure 2-1) automatically
lists the local host and default depot path.

(This step is skipped if you include the -s source option when you
invoke the GUI.)

Figure 2-1 Specify Source Dialog

1. (Optional) To specify another host system, type a source host name,
or:

a. Click on the Source Host Name button. The system displays a
dialog that lists all host system names contained in the
defaults.hosts file ($HOME/.sw/defaults.hosts or
/var/adm/sw/defaults.hosts).

b. Choose a host name from the list.

c. Click OK. The host name appears in the appropriate box in the
Specify Source dialog.

2. (Optional) To specify the path to the depot, type a new path, or:

a. Click on the Source Depot Path button to display a list of registered
depots on the source host.

b. Highlight one of the depots.

c. Click OK to make it appear in the Specify Source dialog.

3. Click OK. The Specify Source dialog closes, and the Software Selection
window displays the software contained in the depot you specified.
64 Chapter 2

Installing Software
Installation with swinstall
Step III: Select
Software

In this step, you use the Software Selection window to select the software
you want to install.

Figure 2-2 swinstall Software Selection Window

1. Select software from the object list:

a. Highlight an item

b. Select Actions →Mark For Install

— or —

Right-click to display the pop-up, then select Mark For Install

The Marked? flag in the object list changes to Yes to match your
selection. (The flag Partial may appear if you select only a
component of a software object or if such components are
automatically selected due to dependencies.)

NOTE If multiple versions of a product exist in the same depot, SD-UX lets you
select only one version during each installation session.
Chapter 2 65

Installing Software
Installation with swinstall
2. (Optional) Use choices from the Actions menu:

• Match What Target Has examines your current Installed Product
Database to match your existing filesets with new filesets (those
with the same names) that you are going to install. This feature is
most helpful when you are updating a system to newer versions of
the same software. This option can be set from the Options Editor.

• Add Software Group displays a list of previously saved software
group files or lets you specify a directory. Selecting a file adds the
software selections in the file to any selections you have already
made in the Software Selection window.

• Save Software Group lets you save your current list of marked
software as a group.

• Manage Patch Selections lets you select from a list of patches to
install, select filters for patches, and set other patch options. (See
“Installing Patches” below for more information.)

• Change Source... cancels your software selections and returns you
to the Specify Source dialog.

• Add New Codeword lets you add a new codeword to unlock
protected software. (This option is available only when SD-UX
detects that the source contains protected software.)

• Change Target... displays the Select Target Path dialog. This lets
you specify an alternate root for products that are relocatable.

• Show Description of Software (available only for a single item
highlighted in the object list) displays more information on the
selected software.

3. Select Actions →Install to start the analysis (preview) step. The
Analysis dialog appears.
66 Chapter 2

Installing Software
Installation with swinstall
Step IV: Analysis
(Preview)

In this step, SD-UX analyzes the software you have selected.

The Analysis window displays status information about the analysis
process. When the analysis is complete and the host status shows Ready,
click OK to start the actual installation (see “Step V: Installation”). The
Analysis dialog is then replaced by the Install dialog.

If you started a preview session, the install stops after the analysis.
Clicking OK returns you to the Software Selection window.

Figure 2-3 Analysis Dialog

The following actions are available:

• Product Summary gives additional information about the product or
bundle and provides a Product Description button that displays
information about additional information about dependencies,
copyright, vendor, etc.

• Logfile presents a scrollable view of detailed install information
written to the logfile.

• Disk Space displays the Disk Space Analysis window (Figure 2-4)
which shows:

— The file system mount point,

— How much disk space was available before installation,

— How much will be available after installation,

— What percent of the disk’s capacity will be used.

— How much space must be freed to complete the operation.
Chapter 2 67

Installing Software
Installation with swinstall
Menu choices in this window let you:

— Search the object list.

— Open items to look at the projected size requirements for specific
filesets.

• Re-analyze repeats the analysis process.

Figure 2-4 Disk Space Analysis Window
68 Chapter 2

Installing Software
Installation with swinstall
When Analysis completes, the status for any host displays as either
Ready or Excluded from task . If any of the selected software can be
installed onto the host, the status shows Ready. If none of the selected
software can be installed onto the host, the status shows Excluded from
task .

The following list summarizes the status results. You can find details
about most problems by clicking the Logfile button.

Ready There were no errors or warnings during analysis. The
installation may proceed without problems.

Ready with Warnings
Warnings were generated during the analysis. Errors
and warnings are logged in the logfile.

Ready with Errors
At least one product selected will be installed or copied.
However, one or more products selected are excluded
from the task because of analysis errors. Errors and
warnings are logged in the logfile.

Communication failure

Contact or communication with the intended target or
source has been lost.

Excluded due to errors

Some kind of global error has occurred. For example,
the system might not be able to mount the file system.

Disk Space Failure
The installation will exceed the space available on the
intended disk storage. For details, click the Disk Space
button.

The Products Scheduled row shows the number of products ready for
installation out of all products selected. These include:

• Products selected only because of dependencies

• Partially selected products

• Other products and bundles that were selected
Chapter 2 69

Installing Software
Installation with swinstall
Step V: Installation In this step, SD-UX proceeds with the actual installation.

After you click OK in the Analysis window, SD-UX starts installation and
displays the Install Window, which shows status information.

Figure 2-5 Install Window

These action buttons are available:

• Done returns you to the Software Selection Window. You can then
begin another install or exit the GUI (File→Exit).

• Product Summary display installation and product information (name,
revision, installation results, installation summary).

• Logfile displays the logfile.

• (Appears only for kernel installations) Resume restarts a suspended
installation. This lets you fix problems before continuing.

• (Appears only for kernel installations) Abort cancels a suspended
installation.

Installation may suspend if:

• File loading fails

• An error occurs in a script

• Customization for kernel-related filesets fails

• A kernel build fails

• A tape change is needed (if you are installing from multi-tape media)
70 Chapter 2

Installing Software
Installation with swinstall
Installing from the Command Line

Swinstall syntax The syntax for swinstall is:

swinstall [XToolkit Options] [-i] [-p] [-r] [-v] [-c catalog]
[-C session_file] [-f software_file] [-Q date] [-s source]
[-S session_file] [-t target_file] [-x option=value]
[-X option_file] [software_selections] [@target_selections]

Options and
Operands

XToolkit Options X window options for the GUI. See “XToolkit Options
and Changing Display Fonts” on page 51.

-i Run the command in interactive mode by invoking the
GUI or TUI. See “Installing with the GUI” on page 63.

-p Preview the install task (perform analysis only).

-r Operate on an alternate root directories. See
“Installing to an Alternate Root” on page 78.

-v Turn on verbose output to stdout and display all
activity to the screen.

-c catalog Store a copy of a response file or other files created by a
request script in catalog. See “Requesting User
Responses (swask)” on page 405.

-C session_file
Save the current option and operand values to
session_file for re-use in another session. See “Session
Files” on page 59.

-f software_file
Read the software selections from software_file instead
of (or in addition to) software you specify on the
command line. See “Software Files” on page 56.

-Q date Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 231 and Chapter 6 , “Remote
Operations Overview.”

-s source Use the software source specified by source instead of
the default, /var/spool/sw . The syntax is:

[host :][/ directory]

host may be a host name, domain name, or internet
Chapter 2 71

Installing Software
Installation with swinstall
address (for example, 15.1.48.23). directory is an
absolute path.

-S session_file
Use option and operand values saved from a previous
installation session and stored in session_file . See
“Session Files” on page 59.

-t target_file
Read target selections from a target_file instead of (or
in addition to) targets you specify on the command line.
See “Target Files” on page 57.

-x command_option=value
Sets command_option to value , overriding default
values or values in options files. See “Changing
Command Options” below.

-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

software_selections
One or more software objects to be installed. See
“Software Selections” on page 54.

target_selections
The target on which to install the software selections.
See “Target Selections” on page 56.

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swinstall.
72 Chapter 2

Installing Software
Installation with swinstall
For More
Information

See Appendix A , “Command Options,” on page 419 for more information
about setting options and a complete listing and description of each
option.

Table 2-2 swinstall Command Options and Default Values

• admin_directory=/var/adm/sw
• agent_auto_exit=true
• agent_timeout_minutes=10000
• allow_downdate=false
• allow_incompatible=false
• allow_multiple_versions=false
• allow_split_patches=false
• ask=false
• autoreboot=false
• autorecover_product=false
• autoremove_job=false
• autoselect_dependencies=true
• autoselect_patches=true
• autoselect_reference_bundles=true
• codeword=
• compress_index=false
• controller_source=
• create_target_path=true
• customer_id=
• defer_configure=false
• distribution_source_directory=

/var/spool/sw
• enforce_dependencies=true
• enforce_dsa=true
• enforce_kernbld_failure=true
• enforce_scripts=true
• installed_software_catalog=products
• job_title=
• layout_version=1.0
• log_msgid=0
• logdetail=false
• logfile=/var/adm/sw/swinstall.log
• loglevel=1
• match_target=false

• max_targets=25
• mount_all_filesystems=true
• os_name
• os_release
• patch_filter=

software_specification
• patch_match_target=false
• patch_save_files=true
• polling_interval=2
• preview=false
• register_new_root=true
• reinstall=false
• reinstall_files=false
• reinstall_files_use_cksum=true
• retry_rpc=1
• retry_rpc_interval=
• reuse_short_job_numbers=true
• rpc_binding_info=

ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]

• rpc_timeout=5
• run_as_superuser=true
• select_local=true
• software=
• software_view=all_bundles
• source=
• source_cdrom=/SD_CDROM
• source_tape=/dev/rmt/0m
• source_type=directory
• targets=
• use_alternate_source=false
• verbose=1
• write_remote_files=true
Chapter 2 73

Installing Software
Installation with swinstall
Installation Tasks and Examples

This section provides examples of commands for installing software
products. Note that The * is an optional shorthand wildcard meaning
“all products and filesets or all available software.”

To start an install session via the command line, you must assemble any
options (if needed), host and source names, and software selections into a
command string. For example:

swinstall -p -s softsource -f softlist \
@ myhost:/mydirectory

The @myhost :/ mydirectory is optional if you are installing to your local
host and default directory (root).

NOTE If you do not specify a source, swinstall uses the local host’s default depot
directory, /var/spool/sw .

• To install a pre-determined list of software products in the file mysoft
that are physically on a CD-ROM (mounted locally at /mnt/cd) to the
default directory (/) on the local host:

swinstall -f mysoft -s /mnt/cd

• To select all software in the default depot (/var/spool/sw) located on
a host named server to the default directory on host myhost and
preview the process (-p) without actually installing:

swinstall -p -s server * @ myhost

A depot location (:/ depot) is not specified because it is assumed that
the software is located in the default /var/spool/sw on server and
will be installed at / on myhost . The -p analysis option is explained
below under “Command Options.”

• To select all the products named Cand Pascal from the default depot
on the host named sw_server and start an interactive GUI session
(-i):

swinstall -i -s sw_server C Pascal

• To update HP Omniback software (already installed in the default
directory on the local host) with a newer version from a CD-ROM
mounted at /mnt/cd :
74 Chapter 2

Installing Software
Installation with swinstall
swinstall -s /mnt/cd Omniback

Updating to HP-UX 11i

For complete instructions for updating from a previous HP-UX release to
HP-UX 11i, use the new update-ux command, as explained in Chapter 2
of HP-UX 11i Installation and Update Guide.

This document and complete OS documentation is available on your
HP-UX Instant Information CD-ROM and at:

http://docs.hp.com/hpux/os/11i/

Installing Patches

swinstall has a variety of patch management features, including a patch
management dialog in the GUI. See Chapter 5 , “Managing Patches,” on
page 163 for complete details on patches and using the swinstall GUI
patch features.

Recovering Updated Files

The autorecover_product option lets you automatically recover or roll
back to the original product files if you start an install and the process
fails.

When updating files, swinstall removes the original files as they are
updated. If an error occurs while swinstall is loading new filesets, the
product being loaded is marked as corrupt, the original files are lost, and
you must repeat the installation.

By setting the autorecover_product option to true, all filesets that are
updated are first saved as backup copies. They are not removed until all
filesets within the product finish loading. If swinstall terminates because
of an error, you can correct the error then re-run swinstall. swinstall
then automatically continues the load process at the place that it was
interrupted.

CAUTION Most HP-UX products have preinstall and postinstall scripts without
accompanying undo scripts. This negates any advantage of using the
autorecover_products option. Use autorecover_products only with
software that has the associated undo scripts.)
Chapter 2 75

Installing Software
Installation with swinstall
Installing Software That Requires a System Reboot

Software packaged with the is_reboot attribute set to true requires the
host to be rebooted after the software is installed. However, when
installing to alternate root file systems, the host will not be rebooted.

If a local installation entails a reboot, the system reboots the target and
the controller, so there is no process left to report success or failure.
(SD-UX does not automatically reconnect to the target after a reboot.)

To find out if a software product requires the local host to be rebooted,
get a description of the software either from the Software Selection
window, using the menu item Show Description of Software , or from the
Analysis dialog using the Product Summary and Product Description
buttons.

Using Software Codewords and Customer IDs

To protect software from unauthorized installation, HP (and other
vendors) use special codewords and customer identification numbers to
“lock” the software to a particular owner. These codewords and customer
IDs are provided to you when you purchase the software (or receive it as
update). HP lists them on the Software Certificate which is packaged
with the software.

To properly store the customer_id/codeword for a CD-ROM, you can run
swinstall (or swcopy or swlist) on the host serving the CD-ROM. After
the codeword has been stored, clients installing software using that host
and CD-ROM as a source will no longer require a codeword or
customer_id.

SD searches the .codewords file on the server that is providing
protected software to other hosts. It looks for valid customer_id/codeword
pairs. In doing so, SD eliminates the need for you to enter codewords and
customer_ids on every host that is “pulling” the software.

This is a time saver if you are updating multiple systems.

SD-UX prompts you for these codewords or numbers prior to the
installation of protected software. You can enter or change the numbers
via the GUI using the Add New Codeword choice from the Actions menu in
the GUI, or by using the appropriate default option (-x codeword =xxxx
and -x customer_id =xxx) on the command line.

For example, if you want to store the codeword 123456789101bcdf (from
the /CD-ROMmount point) and your customer_id was xyzCorp , you would
enter on the command line:
76 Chapter 2

Installing Software
Installation with swinstall
swinstall -p -x customer_id=xyzCorp \
-x codeword=123456789101bcdf \
-s /CD_ROM

(Since the purpose of this command is only to store codewords and
customer IDs, the -p option runs the command in preview mode so that
no actual software installation takes place.)

See Appendix A , “Command Options,” on page 419 for more information
on codeword and customer_id options.

Re-installing Software Distributor

The software product called SW-DIST provides all Software Distributor
functionality, commands, and tools. If the files that make up SW-DIST
are deleted or corrupted, you may need to re-install the product. This
process uses the new install-sd command, which is described in
Appendix C , “Replacing or Updating SD-UX,” on page 477.

Installing Multiple Versions

Your installation may commonly having multiple versions of a software
product installed at various hosts on the network. Multiple installed
version let you:

• Back out defective versions (by removing the new version and
reconfiguring the old version, if necessary)

• Let users migrate to newer software versions at their own pace

You can decide whether to allow multiple versions by controlling the
allow_multiple_versions command option. If set to false, installed or
configured multiple versions (that is, the same product, but a different
revision, installed into a different location) are not allowed. While
multiple installed versions of software are allowed, multiple configured
versions are not recommended.

Once multiple versions of software are installed into a location, you can
manage them by specifying the product attribute in the software
specification of SD-UX commands. (This is as opposed to specifying other
version attributes such as revision and architecture). This lets you
install old and new versions of software at the same time and configure
both versions (if the software packaging supports it).

You can avoid unauthorized, privately installed versions of software by
controlling access to the IPD and restricting the use of the swinstall tool.
Chapter 2 77

Installing Software
Installation with swinstall
NOTE Managing multiple versions of a software product on your system
requires close attention to the cross-product dependencies that may exist
for each version. When you installing multiple versions, make sure you
also install multiple versions of the cross-product dependencies. If the
dependencies are not relocatable and each version you want to install
depends on a different version of the same product, multiple versions of
the original product cannot be installed.

Installing to an Alternate Root

Software is usually installed relative to the primary root directory (/) but
you can also install to an alternate root directory.

The automatic configuration and compatibility filtering that is part of
the swinstall command is not performed when installing to an alternate
root. You can, however, perform configuration separately from
installation by using the swconfig command. See “Configuring Your
Installation (swconfig)” on page 80.

Compatibility Filtering and Checking

SD-UX normally filters out software products that are incompatible with
any of the selected targets. Compatible means that the architecture of
the hardware matches that required by the software (determined by the
system uname attributes). It also means that the OS version is the
proper one for the software. The actual check for incompatible software is
performed during the selection phase. Compatibility filtering and
checking are controlled by the allow_incompatible option and depend
on the host’s uname attributes.

NOTE HP strongly advises that you do not install software that is incompatible
unless you are advised to do so by your HP Support representative.
78 Chapter 2

Installing Software
Installation with swinstall
If allow_incompatible=false (the default), swinstall restricts the
installation of incompatible software and automatically filters the
products on the source. The Software Selection window shows only those
products compatible with the hardware and OS of all target systems.

If allow_incompatible=true , swinstall allows the installation of any
software. The GUI displays all products on the source for selection.

You can also use the -x os_name and -x os_release options to check
compatibility. During an OS update, for example, if a system has been
installed as 11.0/32 bit and you wish to update to the 64-bit version of
HP-UX, you can make the system appear as a 64-bit system for the
purpose of compatibility checking against the merged depot by specifying
the options -x os_name=HP-UX:64 and -x os_release=B.11.00 . (You
can also specify these options at a fileset level.)

NOTE Compatibility filtering does not apply to alternate root file systems. You
must select software that you know to be compatible with the alternate
root.

Table 2-3 Product Compatibility

Product
attribute

Product value
(Pattern to
match)

Target Root attribute

machine_type 9000/[78]?? 9000/730 uname -m

os_name HP-UX HP-UX uname -s

os_release ?.11.* B.11.11 uname -r

os_version * C uname -v
Chapter 2 79

Installing Software
Configuring Your Installation (swconfig)
Configuring Your Installation (swconfig)
The swconfig command runs configuration scripts. Although swinstall
and swremove automatically run configuration or unconfiguration
scripts, swconfig lets you work independently of these commands. This
lets you:

• Execute scripts to address problems if a configuration fails, is
deferred, or must be changed.

• Explicitly configure, unconfigure or reconfigure any installed software
that has associated configuration scripts.

• Configure or unconfigure hosts that share software located on
another host.

Features and Limitations

• swconfig can execute these kinds of scripts:

Configure Configures installed filesets or products. (Executed
by swconfig and swinstall.)

Request Requests an interactive response from the user as
part of the configuration process.

Unconfigure Undoes configurations performed by configure
scripts. For example, removing configuration from
the host’s /etc/profile or /sbin/rc files. This
moves the software from the configured state back
to installed.

• The swconfig command runs only from the command line interface.

• swconfig configures the host on which the software will run.

• Filesets or products can include configure (unconfigure) scripts.

• swinstall and swremove do not automatically not run configuration
scripts when you specify an alternate root directory with these
commands. You must run swconfig to configure or unconfigure
alternate roots.

• Automatic configuration can also be postponed on software installed
to the root directory, / (for example, when multiple versions are
80 Chapter 2

Installing Software
Configuring Your Installation (swconfig)
installed), by using the defer_configure command option with
swinstall or swremove.

• By default, swconfig only supports configuration of compatible
software. You can switch this feature on or off with the
allow_incompatible option.

• If a fileset relies on another software product for proper operation,
that software product must be in a configured state and is controlled
by the enforce_dependencies option.

• swconfig configures only one version of a fileset at a time, controllable
through the allow_multiple_versions option.

• swconfig moves software between the installed and configured states.

• swconfig uses dependencies to automatically select software on which
to operate (in addition to any software you specify directly). See
“Software Dependencies” on page 32 for more information.

NOTE When a swinstall session includes a reboot fileset (such as when you
update the core HP-UX operating system to a newer release), the
configure scripts are automatically run as part of the system start-up
process after the system reboots. You do not have to run swconfig to
complete the configuration.

The Configuration Process

The configure process has three phases: selection, analysis, and
configuration.

Phase I: Selection In this phase, swconfig resolves the software selections.

Phase II: Analysis In this phase, swconfig determines if the software can be configured
successfully (includes checks of software existence, prerequisites). If you
execute swconfig with the -p (preview) option, the command stops after
completing analysis and does not change anything on the host.

Analysis takes place on the local host. The configuration phase will not
take place if any errors occur during analysis. Errors in the analysis
phase will only exclude those products that had errors in them. If only
warnings occur, the task continues.
Chapter 2 81

Installing Software
Configuring Your Installation (swconfig)
The sequential analysis tasks on the host are:

1. Initiate analysis.

2. Process software selections:

Get information from the Installed Product Database and check for
compatibility.

The system checks that all software is compatible with the host’s
uname attributes. This check is controlled by the
allow_incompatible command option. If it is set to false, the system
produces an error; if set to true, it produces a warning.

3. Check state of versions currently installed:

• If the product is non-existent or corrupt, the task issues an error
that says the product cannot be configured and to use swinstall to
install and configure this product.

• If the versions currently installed are not configured and if the -u
(unconfigure) option is set, the system issues a note that the
selected file or fileset is already unconfigured.

• If the state of versions currently installed is configured, the check
is affected by the reconfigure option. A note saying the fileset is
already configured and will (reconfigure is true) or will not
(reconfigure is false) be reconfigured is issued.

4. Check for configuring a second version:

If the allow_multiple_versions option is set to false, an error is
generated stating that another version of this product is already
configured and the fileset will not be configured. If the option is set to
true, the second version is also configured.

5. Check states of dependencies needed:

• An error or warning is issued if a dependency cannot be met. This
is controlled by the enforce_dependencies option. If
enforce_dependencies is set to true the fileset will not be
configured. If enforce_dependencies is false, the fileset will be
configured anyway.

• If the dependency is a prerequisite, the configuration fails.

• If the dependency is a corequisite, the configuration of this fileset
will likely succeed, but the product may not be usable until its
corequisite dependency is installed and configured.
82 Chapter 2

Installing Software
Configuring Your Installation (swconfig)
Phase III:
Configuration

In this phase, the actual software configuration takes place. Configure or
unconfigure scripts are executed and the software state is changed from
installed to configured (or unconfigured).

The purpose of configuration is to configure the host for the software and
configure the product for host specific information. For example, software
may need to change the host’s .rc setup, or the default environment set
in /etc/profile . Or you may need to ensure that proper codewords are
in place for that host or do some compilations. Unconfiguration reverses
these steps.

The sequence of configuration tasks is shown below. Products are ordered
by prerequisite dependencies, if any. Fileset operations are also ordered
by any prerequisites.

1. (Un)configure each product.

2. Run scripts for associated filesets, checking return values.

If an error occurs, the fileset is left in the installed state. If a warning
occurs, the fileset will still be configured.

3. Update the IPD to show the proper installed or configured state.

Configure scripts must also adhere to specific guidelines. For example,
these scripts are only executed in the context of the host that the
software will be running on, so they are not as restrictive as customized
scripts. For more information on scripts, see Chapter 11 , “Using Control
Scripts,” on page 367.
Chapter 2 83

Installing Software
Configuring Your Installation (swconfig)
Using swconfig

Syntax swconfig [-p] [-u] [-v] [-c catalog] [-C session_file]
[-f software_file] [-Q date] [-S session_file]
[-t target_file] [-x option=value] [-X option_file]
[software_selections] [@target_selections]

Options and
Operands

-p Preview a configuration task by running it through the
Analysis Phase and then exiting.

-u Unconfigure the software instead of configuring it.

-v Turn on verbose output to stdout and display all
activity to the screen.

-c catalog Store copy of a response file or files created by a request
script. See Chapter 11 , “Using Control Scripts,” on
page 367.

-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 59.

-f software_file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 56.

-Q date Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 231 and Chapter 6 , “Remote
Operations Overview.”

-S session_file
Run the command based on values saved from a
previous installation session, as defined in
session_file . See “Session Files” on page 59.

-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 57.
84 Chapter 2

Installing Software
Configuring Your Installation (swconfig)
-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Changing
Command Options” below.

-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

software_selections
The software objects to be configured. See “Software
Selections” on page 54.

target_selections
The target of the command. See “Target Selections” on
page 56.

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the options and default values that apply to swconfig.

For More
Information

See Appendix A , “Command Options,” on page 419 for more information
about setting options and a complete listing and description of each

Table 2-4 swconfig Command Options and Default Values

• admin_directory=/var/adm/sw
• agent_auto_exit=true
• agent_timeout_minutes=10000
• allow_incompatible=false
• allow_multiple_versions=false
• ask=false
• autoremove_job=false
• autoselect_dependencies=true
• autoselect_dependents=true
• compress_index=false
• controller_source=
• enforce_dependencies=true
• enforce_scripts=true
• installed_software_catalog=products
• job_title=
• log_msgid=0
• logdetail=false

• logfile=/var/adm/sw/swconfig.log
• loglevel=1
• mount_all_filesystems=true
• preview=false
• reconfigure=false
• reuse_short_job_numbers=true
• rpc_binding_info=
• ncacn_ip_tcp:[2121]
• ncadg_ip_udp:[2121]
• rpc_timeout=5
• run_as_superuser=true
• select_local=true
• software=
• targets=
• verbose=1
• write_remote_files=false
Chapter 2 85

Installing Software
Configuring Your Installation (swconfig)
option.

Configuration Tasks and Examples

To configure productA, located in the root on the local host:

swconfig productA

To unconfigure the software selections in the file mysoft that are
installed in the default directory on the local host:

swconfig -u -f mysoft

To reconfigure the Omniback product using the default option values:

swconfig -x reconfigure=true Omniback

To configure a particular version of Omniback:

swconfig Omniback,r=2.0

To configure the C and Pascal products on the local host:

swconfig cc pascal

To configure Product1 , use any associated response files generated by a
request script, and save response files under /tmp/resp1 :

swconfig -x ask=true -c /tmp/resp1 Product1

To reconfigure the HP Omniback product:

swconfig -x reconfigure=true Omniback

To configure the version of HP Omniback that was installed at
/opt/Omniback_v2.0 :

swconfig Omniback,l=/opt/Omniback_v2.0

To unconfigure the software_selections listed in the file
/tmp/install.products on the hosts listed in the file
/tmp/install.hosts :

swconfig -u -f /tmp/install.products \
-t /tmp/install.hosts
86 Chapter 2

Installing Software
Verifying Your Installation (swverify)
Verifying Your Installation (swverify)
The swverify command verifies depot, installed, or configured software
products on the specified host.

Features and Limitations

• Determines whether installed or configured software is compatible
with the host on which that software is installed.

• Makes sure that all dependencies (prerequisites, corequisites) are
being met (for installed software) or can be met (for copied software).

• Executes verification scripts that check the correctness of the
product’s configuration (that is, scripts verify that the installed state
of the software is configured).

• Executes fix scripts to correct or report problems with installed
software:

Fix Corrects and reports on problems in installed
software. Typical uses are to create missing
directories, correct file modifications (mode, owner,
group, major, minor), and to recreate missing
symbolic links.

Verify Verifies the configuration of filesets or products, in
addition to the standard swverify checks.

(See Chapter 11 , “Using Control Scripts,” for more information.)

• Reports missing files, checks all file attributes including permissions,
file types, size, checksum, mtime, link source and major/minor
attributes.

• Uses dependencies to automatically select software on which to
operate (in addition to any software you specify directly). See
“Software Dependencies” on page 32 for more information.
Chapter 2 87

Installing Software
Verifying Your Installation (swverify)
The Verification Process

The software verification process has only two phases: selection and
analysis.

Phase I: Selection This phase consist of swverify resolving all information on the command
line, including all necessary host, software, dependency, and product
information.

Phase II: Analysis The analysis phase for swverify takes place on the host. The host’s
environment is not modified.

The sequential analysis tasks on each host are:

1. Initiate analysis

2. Process software selections. The system accesses the Installed
Products Database (IPD) or depot catalog to get the product
information for the selected software:

For installed software, the system checks that all products are
compatible with its uname attributes. This check is controlled by the
default option allow_incompatible :

• If allow_incompatible is set to false, the system produces an
error stating that the product is not compatible with the host.

• If allow_incompatible is set to true, a warning is issued stating
that the product is not compatible.

3. Check for correct states in the filesets (installed, configured or
available). For installed software, swverify also checks for multiple
versions that are controlled by the allow_multiple_versions
option:

• If allow_multiple_versions is false, an error is produced that
multiple versions of the product exist and the option is disabled.

• If allow_multiple_versions is true, a warning is issued saying
that multiple versions exist.

4. Check dependencies. An error or warning is issued if a dependency
cannot be met. Dependencies are controlled by the
enforce_dependencies option:

• If enforce_dependencies is true, an error is generated telling
you the type of dependency and what state the product is in.
88 Chapter 2

Installing Software
Verifying Your Installation (swverify)
• If enforce_dependencies is false, a warning is issued with the
same information.

• If the dependency is a corequisite, it must be present before the
software will operate.

• If the dependency is a prerequisite, it must be present before the
software can be installed or configured.

5. Execute verify or fix scripts on installed software in prerequisite
order.

A verify script is used to ensure that the configuration of the software
is correct. Possible vendor-specific tasks for a verify script include:

• Determine active or inactive state of the product.

• Check for corruption of product configuration files.

• Check for (in)correct configuration of the product into the OS
platform, services or configuration files.

• Check licensing factors.

Vendor-supplied scripts are executed and the return values generate
an error (if 1) or a warning (if 2).

Scripts are executed in prerequisite order.

6. Perform file-level checks for:

• Contents (mtime, size and checksum) for control_files

• Contents (mtime, size and checksum) for files

• Missing control_files , files and directories

• Permissions (owner, group, mode) for installed files

• Proper symlink values
Chapter 2 89

Installing Software
Verifying Your Installation (swverify)
Using swverify

Syntax swverify [-d |-r] [-F][-v] [-C session_file] [-f software_file]
[-Q date] [-S session_file] [-t target_file] [-x option=value]

[-X option_file] [software_selections][@target_selections]

Options &
Operands

-d Operate on a depot rather than installed software. See
“Verifying a Depot (swverify -d)” on page 161

-r Operate on an alternate root rather than / . Verify
scripts are not run.

-v Turn on verbose output to stdout and display all
activity to the screen. Lets you see the results of the
command as it executes.

-C session_file
Run the command and save the current option and
operand values to session_file for re-use in another
session. See “Session Files” on page 59.

-F Run a fix script. See “Fix Scripts” on page 390.

-f software_file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 56.

-Q date Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 231 and Chapter 6 , “Remote
Operations Overview.”

-S session_file
Run the command based on values saved from a
previous verify session, as defined in session_file .
See “Session Files” on page 59.

-t target_file Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 57.

-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Changing
Command Options” below.
90 Chapter 2

Installing Software
Verifying Your Installation (swverify)
-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

software_selections
The software objects to be verified. See “Software
Selections” on page 54.

target_selections
The target of the command. See “Target Selections” on
page 56.

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swverify.

For More
Information

See Appendix A , “Command Options,” on page 419 for more information
about setting options and a complete listing and description of each
option.

Table 2-5 swverify Command Options and Default Values

• admin_directory=/var/spool/sw
• agent_auto_exit=true
• agent_timeout_minutes=10000
• allow_incompatible=false
• allow_multiple_versions=false
• autoremove_job=false
• autoselect_dependencies=true
• check_contents=true
• check_contents_uncompressed=

false
• check_contents_use_cksum=true
• check_permissions=true
• check_requisites=true
• check_scripts=true
• check_volatile=false
• controller_source=
• distribution_target_directory=

/var/spool/sw

• enforce_dependencies=true
• installed_software_catalog=products
• job_title=
• log_msgid=0
• logdetail=false
• logfile=/var/adm/sw/swverify.log
• loglevel=1
• mount_all_filesystems=true
• reuse_short_job_numbers=true
• rpc_binding_info=
• ncacn_ip_tcp:[2121]
• ncadg_ip_udp:[2121]
• rpc_timeout=5
• run_as_superuser=true
• select_local=true
• software=
• verbose=1
Chapter 2 91

Installing Software
Verifying Your Installation (swverify)
Verification Tasks and Examples

To verify an installed fileset mysoft.myfileset located on the default
depot at myhosts , type:

swverify -d mysoft.myfileset @ myhosts

(The @ sign and the myhost target designation are optional because the
software being verified located in the default depot on the local host.)

To verify the C and Pascal products that are installed on the local host:

swverify C Pascal

To verify the HP Omniback product that is installed on the local host and
display detailed messages from the process (-v) on stdout :

swverify -v Omniback

To verify the 2.0 version of Omniback that is installed on the local host at
/opt/Omniback :

swverify Omniback,r=2.0 @ /opt/Omniback

Verify a particular version of HP Omniback:

swverify Omniback,1=/opt/Omniback_v2.0

Verify the entire contents of a local depot:

swverify -d *@/var/spool/sw
92 Chapter 2

Managing Installed Software
3 Managing Installed Software

This chapter presents an overview of managing non-depot software after
you have installed it. The swlist, swmodify, and swremove commands
help you perform these software management tasks:

Topics:

“Listing Your Software (swlist)” on page 94

“Modifying the IPD (swmodify)” on page 114

“Removing Installed Software (swremove)” on page 121
Chapter 3 93

Managing Installed Software
Listing Your Software (swlist)
Listing Your Software (swlist)
The swlist command creates customizable listings of the software
products installed on your local host or stored in depots for later
distribution.

swlist Features and Limitations

With swlist you can:

• Use an optional GUI.

• Specify the level (bundles, products, subproducts, filesets or files) to
show in your list.

• Specify a set of software attributes to display for each level. Software
attributes are items of information about products contained in the
Installed Products Database or in catalog files. These items can
include the product’s name or tag, its size (in Kbytes), revision
number, etc.

• Create a list of products, subproducts or filesets to use as input to the
swinstall or swremove commands.

• Display a table of contents for a software source.

• Display selected software attributes for each level.

• Show the product structure of software selections.

• List software stored in an alternate root directory.

• Display the depots on a specified host.

• List the categories of available or applied patches.

• List the values of a fileset’s applied patches.
94 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
Using the swlist GUI
The swlist -i command starts a swlist GUI program that lets you
interactively list software and display software information. The swlist
-i -d command lets you display information about the software
available in a depot or on a physical media.

Figure 3-1 The swlist Browser

• Bundles and products are the default top-level display.

• To open an item on the list, double-click on the item.

• Double-clicking on a file displays the file attributes.

Searching and Moving Through the List

The following features help you search and move through the list:

• To search the current list, select File→Search...

• To display a pop-up menu of viewing options for an item, right-click
on the item. The pop-up options are:

— Open Item to show the contents of the item.

— Close Level to close the current item and displays the next higher
level of objects.
Chapter 3 95

Managing Installed Software
Listing Your Software (swlist)
— Show Description of Software... to display attribute information
about the current item.

Changing the View

Use the View menu to change the columns displayed, select filters, and
sort information:

• Columns displays the Columns Editor. You can choose which columns
of software information to display (i.e. software name, revision
number, information, size in Kbytes, architecture, category, etc.) and
their order.

• Filter... displays a dialog from which you can filter the display list with
logical and relational operators for each field.

• Sort... lets you select sort fields, order, and criteria for the information
displayed.

• Change Software View lets you toggle between a top-level view and a
products view.

• Change Software Filter... lets select from a list of predefined filters.
(Only applies to top-level software objects.)

Performing Actions

Use the Actions menu to open and close items on the display, show logfile
information, and show software descriptions:

• Open Item opens an item. (Same as double-clicking on the item.)

• Close Level closes the current level. (Same as double-clicking on
..(go up) .

• Change Target opens a dialog box that lets you enter a path to select
an alternate root (for swlist -i) or alternate depot (for
swlist -i -d).

• Show Logfile displays the system logfile.

• Show Audit Log displays software depot audit information stored in
the audit log (for swlist -i -d only). See “Source Depot Auditing” on
page 160 for more information.

• Show Description of Software displays attribute information about the
currently selected item.
96 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
Using the Command Line

Syntax swlist [-d|-r]] [-i] [-R] [-v] [-a attribute] [-c catalog]
[-C session_file] [-f software_file] [-l level] [-s source]
[-S session_file] [-t target_file] [-x option=value]
[-X option_file] [software_selections] [@target_selections]

Options and
Operands

-d List products available from a depot. See “Listing the
Contents of a Depot (swlist -d)” on page 159.

-i Start the GUI. (See “Using the swlist GUI” on page
95.)

-r List products on an alternate root (instead of /).

-R Shorthand for
-l bundle -l product -l subproduct -l fileset

-a attribute Displays a specific attribute. To display multiple
attributes, specify multiple -a options. To list the full
set of attributes for a software object, use the -v option.
Note that the tag attribute is always displayed for
products, subproducts, and filesets. The path (filename)
attribute is always displayed for file objects. This
option does not apply if you use the -c option.

-v List all attributes for an object if no -a option is
specified. (Vendor-defined attributes are not included.)
The output lists one attribute per line in the format:

attribute_name attribute_value

-c catalog Writes full catalog structure information into the
directory specified by catalog . You can use this
information for distributions and to list installed
software catalog information. All attributes down to
the file level and control scripts are written. If you use
this option, the -a and -l options do not apply. See
“Requesting User Responses (swask)” on page 405.

-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 59.

-f software_file
Chapter 3 97

Managing Installed Software
Listing Your Software (swlist)
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 56.

-l level List all software objects down to the specified level:
depot , bundle , product , subproduct , fileset or
file . (See the section “Listing Software by Levels” on
page 105 for more information on levels.) You can use
only one level designation per command. You cannot
use software names, subproduct names, etc. to specify
levels. This option does not apply if you use the -c
option.

Table 3-1 The -l Options

Option Action

swlist -l root shows the root level (roots on the specified
target hosts)

swlist -l shroot Shows the shared roots

swlist -l prroot Shows the private roots

swlist -l bundle Shows only bundles

swlist -l product Shows only products

swlist -l subproduct Shows products and subproducts

swlist -l fileset Shows products, subproducts and filesets

swlist -l file Shows products, subproducts, filesets, files
and numbers (used in software licensing).

swlist -l category Shows all categories of available patches for
patches that have included category objects in
their definition.

swlist -l patch Shows all applied patches.
98 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
-s source Specify which software source is to be listed. The
default source type is a directory or depot (usually
/var/spool/sw) on the local host. The syntax is:

[host][:][/ directory]

A host may be specified by its host name, domain name,
or internet address. A directory must be specified by an
absolute path.

-S session_file
Run the command based on values saved from a
previous installation session, as defined in
session_file . See “Session Files” on page 59.

-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line.

-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Changing
Command Options” below.

-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

software_selections
The software objects to be listed. See “Software
Selections” on page 54.

target_selections
The target of the command. (For swlist,
target_selections are just another way to list software
selections.
Chapter 3 99

Managing Installed Software
Listing Your Software (swlist)
Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swinstall.

For More
Information

See Appendix A , “Command Options,” on page 419 for complete
descriptions of each default.

Table 3-2 swlist Command Options and Default Values

• admin_directory=/var/adm/sw
• agent_timeout_minutes=10000
• codeword=
• customer_id=
• distribution_target_directory=

/var/spool/sw
• installed_software_catalog=

products
• layout_version=1.0
• level=
• log_msgid=1
• one_liner=revision title

• patch_one_liner=title patch_state
• rpc_binding_info=

ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]

• rpc_timeout=5
• run_as_superuser=true
• select_local=true
• show_superseded_patches=false
• software=
• software_view=all_bundles
• targets=
• verbose=1
100 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
Software Listing Tasks and Examples

To run the swlist interactive interface:

swlist -i @ host1

To use interactive swlist to view a depot:

swlist -i -d @ /tmp/depot

To produce a list of the software (by name) installed at root (/) on your
local host, you would simply type:

swlist

Which might produce a listing on your display like this:

Initializing...
Contacting target "xxyyzz"...
#
Target: xxyyzz:/

Bundle(s):

B3782CA B.11.00 HP-UX Media Kit (Reference Only. See Descr.)
B3898AA B.11.00 HP C/ANSI C Developer’s Bundle for HP-UX 11.00
HPUXEngRT B.11.00 English HP-UX Run-time Environment

Product(s) not contained in a Bundle:

HMS 1.01
OBAM5_0 B.11.00 ObAM 5.0

Using swlist with no options set and no software selected gives you a
listing of all software bundles plus all products that are not part of a
bundle. Adding the -d option gives you the same listing of software
residing in the default depot on your local host.

In the following examples, swlist requests are sent to the standard
output. All examples assume the one_liner= default is “revision size
title” and the level= default is “product.”

• To list the contents of the local tape depot, /dev/rmt/0m, type:

swlist -d @ /dev/rmt/0m

— or —

swlist -s /dev/rmt/0m
Chapter 3 101

Managing Installed Software
Listing Your Software (swlist)
This produces the following output

AUDIT 3.5 9834 Trusted Systems Auditing Utils
COMMANDS 1.7 4509 Core Command Set
C-LANG 2.5 5678 C Programming Language
NETWORKING 2.1 9072 Network Software
KERNEL 1.4 56908 Kernel Libraries and Headers
VUE 1.3 5489 Vue (Instant Ignition Release)
WINDOWS 2.06 10423 Windowing Products

• List all the media attributes of the local tape depot, /dev/rmt/0m:

swlist -v -l depot @ /dev/rmt/0m

— or —

swlist -vl depot -s dev/rmt/0m

type distribution
tag CORE OS
description HP-UX Core Operating System Software Disk
number B2358-13601
mod_date June 1998

• List the README file for product, OS_CORE installed on the local
host:

swlist -a readme OS-Core | more

readme:

* Introduction *

The Release Notes for HP-UX Release X.0 contain an
overview of the new/changed product features that
are included in the release. For detailed
information about these features, refer to the
appropriate product manuals. This document does not
contain information about software changes made as a
result of a Service Request; that information may be
found in the Software Release Bulletin (SRB) for Rele
ase X.0.
102 Chapter 3

Managing Installed Software
Listing Your Software (swlist)

* Hardware Support *

The HP 9000 Model XXX is no longer supported.

...

• List the products stored in the software depot on host1 located at
/swmedia . For this example assume the swlist one_liner is: “title
size architecture”:

swlist -d @ host1:/swmedia

FRAME Frame Doc. Pkg 2319 HP-UX_9000_Series_AorB
FRAME Frame Doc. Pkg 2458 OSF1_9000_Series_1.0
ME30 3-D Mech. Eng 5698 HP-UX_9000_Series300_AorB
SOFTBENCH Dev Env 4578 HP-UX_9000_Series300
TEAMWORK Design/Analysis 3478 HP-UX_9000_Series 300/400

(Note that the media contains two revisions of the FRAME product.)

Using Options to Change List Appearance

You can control the appearance and content of your lists by changing list
default values in the options files. Instead of repeatedly specifying the
software levels and attributes each time you invoke swlist, you can use:

level This option pre-determines what level to list: product,
subproduct, fileset or file. For example, by setting this
default to level=fileset , future swlist commands
would always list everything down to and including
filesets for each host, depot or product selected.

one_liner="attribute attribute attribute"
This option specifies the attributes (revision, size, title,
etc.) displayed as the default listing. These attributes
are separated by <tab> or <space> and enclosed in
quotes (" "). You can choose multiple attributes but not
all attribute may exist for all applicable software levels
(product, subproduct, or fileset). For example, the
software attribute title is available for bundles,
products, subproducts and filesets, but the attribute
architecture is only available for products.

In the absence of the -v or -a option in your command, swlist displays
the information as described in the one_liner default for each software
object level (bundle, products, subproducts and filesets), not for files.
Chapter 3 103

Managing Installed Software
Listing Your Software (swlist)
Listing Attributes

You may specify only one attribute per -a option. However, the tag
attribute is always included by default, so specifying -a revision lists
all product names and their revision numbers.

For example, to list whether software bundles on a CD-ROM (mounted to
the directory /SD_CDROM) require a codeword or not, use the command:
swlist -d -a is_protected @ /SD_CDROM

An attribute containing a large amount of information (for example, a
README) is physically stored as a separate file and is displayed by itself
if -a README is requested.

Refer to the sd(4) manpage for a full list of SD-UX attributes.

Creating Custom Lists

The swlist options and defaults allow you to create lists to fit your
specific requirements. These lists can be as simple as listing the software
products installed on your local host or as complex as a multiple column
listing of files, filesets, subproducts, products and bundles installed.

For example, if you were to change the one-liner option on the
command line, the command:

swlist -x one_liner="name revision size title"

produces this list of all the products installed on the local host:

RX 1.98 9845 RX X Terminal - all software
ALLBASE 8.00.1 6745 Database Products
C-LANG 2.5 5678 Programming Language
DIAGNOSTICS 2.00 56870 Hardware Diagnostic Prog
rams
DTP68 2.00 26775 Desktop Publishing
LISP-LANG 8.00.1 90786 LISP Programming Language
WINDOWS 2.06 10423 Windowing Products

This listing shows, in columns from left to right, the product’s tag, its
revision number, its size in Kbytes and its title or full name.

NOTE Whatever you specify in the command line for software level and
attributes will override the values in the default option files.
104 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
You can also change the one_liner default value to {revision size title} in
the defaults file. Then a listing of the C-LANG products on host2 would
be as follows:

swlist C-LANG @ host2

C-LANG.C-COMPILE 8.0 1346 C Compiler Components
C-LANG.C-LIBS 8.0 2356 Runtime Libraries
C-LANG.C-MAN 8.0 1976 Programming Reference

Listing Patches

You can use swlist to list software patches and their status. See “Listing
Patches” on page 178 for more information.

Using Software Codewords and Customer IDs

The swlist command may prompt you for codewords if you try to view
codeword protected software. You can also enter new codewords from the
command line or from the GUI. This process is identical to that used by
swinstall. See “Using Software Codewords and Customer IDs” on page
76 for more information.

Listing Software by Levels

The -l level option lets you list all software objects down to the
specified level: depot , bundle , product , subproduct , fileset or file .

Choose a level as a starting point and list items only down to that level.

Table 3-3 The -l Options

Option Action

swlist -l root Shows the root level (roots on the specified
target hosts)

swlist -l shroot Shows the shared roots

swlist -l prroot Shows the private roots

swlist -l bundle Shows only bundles

swlist -l product Shows only products
Chapter 3 105

Managing Installed Software
Listing Your Software (swlist)
The starting point for a software list is always taken from the operands
in the -l and -a options (or from the level or one_liner options). You
must decide what levels you want and what software attributes to list in
addition to the product name.

NOTE Examples in the following sections do not include a value for the
one_liner option.

Specifying Product Level Specifying a level for a given software
selection causes swlist to list the objects at that level plus all those that
are above that level. Upper levels will be commented with a # sign.
Therefore, only the level specified (product, subproduct, fileset or file)
will be uncommented. This allows the output from swlist to be used as
input to other commands. The exceptions are:

1) a list that contains only files; file-level output is not accepted by other
commands

2) a list that contains software attributes (-a and -v).

For example, if you wanted to see all the products installed on your local
host, your command would be:

swlist -l product

and the listing would look like this:

swlist -l subproduct Shows products and subproducts

swlist -l fileset Shows products, subproducts and filesets

swlist -l file Shows products, subproducts, filesets, files and
numbers (used in software licensing).

swlist -l category Shows all categories of available patches for
patches that have included category objects in
their definition.

swlist -l patch Shows all applied patches.

Table 3-3 The -l Options

Option Action
106 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
NETWORKING
SAM
OPENVIEW
PRODUCT A
SOFTWARE Z
PRODUCT B
.
.
.

Note that the product names are uncommented because that was the
level you requested to display and there are no levels above.

Specifying Subproduct Level For this example, on the local host, the
NETWORKING product contains the subproducts ARPA and NFS and
you want to see how big each object is (in Kbytes).

swlist -l subproduct -a size NETWORKING

NETWORKING 9072
NETWORKING.ARPA 4412
NETWORKING.NFS 4660

The list does not show the files or filesets because you didn’t specify that
level on the command line.

If you wanted to see the names and revision numbers for the
NETWORKING product on the local host, the command would be:

swlist -l subproduct -a revision NETWORKING

Remember, the product name is always assumed; you don’t have to
specify it in the -a option.
Chapter 3 107

Managing Installed Software
Listing Your Software (swlist)
Specifying Fileset Level An example of using the -l option to
generate a listing that includes all filesets for the product
NETWORKING on the local host and a descriptive title for each:

swlist -l fileset -a title NETWORKING

NETWORKING Network Software
NETWORKING.ARPA-INC ARPA include files
NETWORKING.ARPA-RUN ARPA run-time commands
NETWORKING.ARPA-MAN ARPA manual pages
NETWORKING.LANLINK CORE ARPA software
NETWORKING.NFS-INC NFS include files
NETWORKING.NFS-RUN NFS run-time commands
NETWORKING.NFS-MAN NFS manual pages

Again, note the commented lines (#) representing the subproduct
(NETWORKING.ARPA and NETWORKING.NFS) and product (NETWORKING)
levels. The other lines are filesets.

Specifying Files Level An example of the -l option to generate a
comprehensive listing that includes all files for the subproduct
NETWORKING.ARPA:

swlist -l file NETWORKING.ARPA

NETWORKING.ARPA
NETWORKING.ARPA_INC

NETWORKING.ARPA_INC:/usr/include/arpa/ftp.h
NETWORKING.ARPA_INC:/usr/include/arpa/telnet.h
NETWORKING.ARPA_INC:/usr/include/arpa/tftp.h
NETWORKING.ARPA_INC:/usr/include/protocols/rwhod.h

.

.

.
NETWORKING.ARPA_RUN

NETWORKING.ARPA_RUN:/etc/freeze
NETWORKING.ARPA_RUN:/etc/ftpd
NETWORKING.ARPA_RUN:/etc/gated
NETWORKING.ARPA_RUN:/etc/named

.

.

.
NETWORKING.ARPA_MAN

NETWORKING.ARPA_MAN:/usr/man/man8/ftpd
NETWORKING.ARPA_MAN:/usr/man/man8/gated
108 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
Note that the commented lines represent the requested level
(NETWORKING.ARPA) plus one level up (fileset) from the specified file level
(NETWORKING.ARPA_INC, NETWORKING.ARPA_RUN and
NETWORKING.ARPA_RUN are all filesets). The uncommented lines are files.

Depot Lists Another class of objects that swlist can display are depot
lists. This allows you to list all the registered depots residing on a host.
To do this, you can use a combination of the -l depot option:

Table 3-4 Listing Depots

swlist syntax result

swlist -l depot list all depots on the local host

swlist -l depot @ hostA list all depots on hostA

swlist -l depot -v @ hostB list, in verbose mode, all depots on
hostB
Chapter 3 109

Managing Installed Software
Listing Your Software (swlist)
Verbose List The -v option causes a verbose listing to be generated. A
verbose listing is used to display all attributes for products, subproducts,
filesets or files.

The verbose output lists each attribute with its name (keyword). The
attributes are listed one per line. Given the length of this listing, you
could post-process (filter) the output with grep and/or sed to see specific
fields.

Attributes for a particular software level are displayed based on the
software product name given with the swlist command. For example,
swlist -v NETWORKING gives:

tag NETWORKING
instance_id 7869
control_directory
size 9072
revision 2.1
title Network Software
mod_time
directory
vendor.information Hewlett-Packard Company
is_locatable true
architecture HP-UX_9000
machine_type 9000
os_name HP-UX
target.os_release B.11.00*

If the -v option is used with the -l option, the cases are:

• To display all attributes for a bundle, use swlist -v -l bundle .

• To display all attributes for a product, use swlist -v -l product .

• To display all attributes for products and subproducts, use swlist
-v -l subproduct .

• To display all attributes for products, subproducts and filesets, use
swlist -v -l fileset .

• To display all attributes for products, subproducts, filesets and files,
use swlist -v -l file .

The table below provides a sample listing of the kinds of attributes that
swlist will display. Not all these attributes exist for each software level or
object. This list may change depending on vendor-supplied information.
Do not use this list as the official list of all attributes. To get a complete
110 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
list of the attributes for a particular level or object, use the format:

swlist -v -l level

(see example above) or use

swlist -v software_selections

(see example below).

Table 3-5 Sample Attributes

Attribute Description

architecture Describes the target system(s) supported by the product

category Type of software

copyright Copyright information about the object

mod_time Production time for a distribution media

description Detailed descriptive information about the object

instance_id Uniquely identifies this software product

title Long/official name for the object

mode Permission mode of the file

mtime Last modification time for the file

owner Owner of file (string)

path Full pathname for the file

corequisite A fileset that the current fileset needs (configured) to be
functional

prerequisite A fileset that the current fileset needs to install or configure
correctly

readme Traditional readme-like information, release notes, etc.

revision Revision number for an object

size Size in bytes; reflects the size of all contained filesets

state Current state of the fileset
Chapter 3 111

Managing Installed Software
Listing Your Software (swlist)
Here are some examples of verbose listings:

This command on the local host:

swlist -v -l file NETWORKING.ARPA-RUN

produces this listing:

#NETWORKING.ARPA
tag: ARPA-RUN
instance_id 1
revision 1.2
title ARPA run_time commands
size 556
state configured
corequisite NETWORKING.LANLINK
is_kernel true
file etc/freeze
path /etc/freeze
type f
mode 0755
owner bin
group bin
uid 2
gid 2
mtime 721589735
size 24
file etc/ftpd
path /etc/ftpd
type file
mode 0555
owner bin
group bin
uid 2
gid 2
mtime 721589793
size 9
...
112 Chapter 3

Managing Installed Software
Listing Your Software (swlist)
This command:

swlist -v NETWORKING.ARPA-RUN

produces the following listing:

NETWORKING.ARPA
fileset
tag ARPA-RUN
instance_id 1
revision 1.2
title ARPA run_time commands
size 556
state configured
corequisite NETWORKING.LANLINK
is_kernel true
mod_time 733507112
Chapter 3 113

Managing Installed Software
Modifying the IPD (swmodify)
Modifying the IPD (swmodify)
SD-UX keeps track of software installations, products, and filesets on
your system with the Installed Products Database (IPD) for installed
software and with catalog files for software in depots.

Both the IPD and catalog files are created and constantly modified by
other SD-UX operations (swinstall, swcopy, and swremove), they are not
directly accessible if you want to change the information they contain. If
you need to edit the information in either the IPD or in any depots’
catalog files, you must use the swmodify command.

The swmodify command adds, modifies, or deletes software objects or
attributes defined in a software depot, primary root or alternate root. It
is a direct interface to a depot’s catalog files or a root’s Installed Products
Database. It does not change the files that make up the object, it only
manipulates the information that describes the object.

Using swmodify, you can

• Add new bundle, product, subproduct, fileset, control script or file
definitions to existing objects

• Remove the description of software objects from a depot catalog file or
root IPD

• Change attribute values for any existing object.

• Define attributes for new objects that you add.

The equivalent IPD files for a depot are called catalog files. When a depot
is created or modified using swcopy, catalog files are built (by default in
/var/spool/sw/catalog) that describe the depot and its contents.

IPD Contents

Located in the directory /var/adm/sw/products , the IPD is a series of
files and subdirectories that contain information about all the products
that are installed under the root directory (/). This information includes
“tags” or product names, one-line title fields, paragraph-or-longer
description text, long README files, copyright information, vendor
information and part numbers on each product installed. In addition, the
IPD contains revision information and a user-targeted architecture field
including the four uname attributes (operating system name, release,
114 Chapter 3

Managing Installed Software
Modifying the IPD (swmodify)
version and hardware machine type). Here is what the IPD INFO file for a
product called “Accounting” looks like:

fileset
tag ACCOUNTNG
data_model_revision 2.4
instance_id 1
control_directory ACCOUNTNG
size 292271
revision B.11.00
description Vendor Name: Hewlett-Packard Company
Product Name: Accounting
Fileset Name: ACCOUNTING

Text: "HP-UX System Accounting feature set. Use these
features to
gather billing data for such items as disk space
usage, connect time or CPU resource usage.
"
timestamp 797724879
install_date 199504121614.39
install_source hpfclc.fc.hp.com:/release/11.00_gsL/good
system state configured
ancestor HPUX10.20.ACCOUNTNG
corequisite OS-Core.CMDS-MIN,r>=B.11.00,a=HP-UX_B.11.00
_32/64,fa=HP-UX_B.11.00_32/64,v=HP

Catalog files are the equivalent IPD files but they are for software stored
in a depot. When a depot is created or modified using swcopy, these files
are created and placed in the specified depot (or in the default
/var/spool/sw depot). They describe the depot and its contents.

The swinstall, swconfig, swcopy, and swremove tasks automatically add
to, change and delete IPD and catalog file information as the commands
are executed. swlist and swverify tasks read the IPD information and
use it to affect command behavior.

The IPD also contains the swlock file, which manages simultaneous read
and/or write access to software objects.
Chapter 3 115

Managing Installed Software
Modifying the IPD (swmodify)
Using swmodify

Syntax swmodify [-d] [-p] [-r] [-u] [-v [-V] [-a attribute=[value]]
[-c catalog][-C session file] [-f software_file]
[-P pathname_file] [-s product_specification_file]
[-S session_file] [-x option=value][-X option_file]
[software_selections] [@target_selection]

Options and
Operands

-d Perform modifications on a depot (not on a primary or
alternate root). Your target_selection must be a
depot.

-p Previews a modify session without changing anything
within the target_selection .

-r Perform modifications on an alternate root instead of
the primary root. Your target_selection must be an
alternate root.

-u If no -a attribute options are specified, then delete
the specified software_selections from within your
target_selection . This action deletes the definitions
of the software objects from the depot catalog or
Installed Products Database.

If -a attribute options are specified, then delete them
from within the given target_selection .

-v Turns on verbose output to stdout . (The swmodify
logfile is not affected by this option.)

-V Lists all the SD layout_versions this command
supports.

-a attribute=value
Add, change, or deletes the attribute value .
Otherwise, it adds/changes the attribute for each
software_selection by setting it to the given value .

Multiple -a options can be specified. Each attribute
modification will be applied to every
software_selection .

The -s and -a options are mutually exclusive: the -s
option cannot be specified when the -a option is
specified.
116 Chapter 3

Managing Installed Software
Modifying the IPD (swmodify)
You cannot use the -a option to change the following
attributes: tag , revision , instance_id , vendor_tag ,
corequisite or prerequisite .

-c catalog Writes full catalog structure information into the
directory specified by catalog . All attributes down to
the file level and control scripts are written. See
“Requesting User Responses (swask)” on page 405.

-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 59.

-f software_file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 56.

-P pathname_file Specifies a file containing the pathnames of files
being added to or deleted from the IPD.

-s product_specification_file

The source Product Specification File (PSF) describes
the product, subproduct, fileset, and/or file definitions
that will be added or modified by swmodify.

If you specify a product_specification_file ,
swmodify selects the individual software_selections
from the full set that is defined in the PSF. If no
software_selections are specified, then swmodify
will select all of the software defined in the PSF. The
software selected from a PSF is then applied to the
target_selection , with the selected software objects
either added to, modified in, or deleted from it.

If a PSF is not specified, then software_selections
must be specified. swmodify will select the
software_selections from the software defined in
the given (or default) target_selection .

The product specification file (PSF) for swmodify uses
the same swpackage PSF format as defined in
“Creating a Product Specification File (PSF)” on page
304.
Chapter 3 117

Managing Installed Software
Modifying the IPD (swmodify)
-S session_file
Run the command based on values saved from a
previous installation session, as defined in
session_file . See “Session Files” on page 59.

-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Changing
Command Options” below.

-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

software_selections
The software objects for which information will be
modified. See “Software Selections” on page 54.

target_selection
A single, local target_selection . (See “Target
Selections” on page 56.) If you are operating on the
primary root, you do not need to specify a
target_selection because the target / is assumed.

When operating on a software depot, the
target_selection specifies the path to that depot. If
the -d option is specified and no target_selection is
specified, then the default depot_directory is
assumed.

NOTE In general, use caution when using the -u option with the -a option. If -u
is used and -a is also specified, the -a option deletes the attribute from
the given software_selections (or deletes the value from the set of
values currently defined for the attribute).
118 Chapter 3

Managing Installed Software
Modifying the IPD (swmodify)
Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swmodify.

For More
Information

See Appendix A , “Command Options,” on page 419 for complete
descriptions of each default.

swmodify Tasks and Examples

Here are some examples of how you can use swmodify to change catalog
files or IPDs:

Adding Information to the IPD

To add descriptions of files /tmp/a , /tmp/b , and /tmp/c to an existing
fileset:

swmodify -x files=/tmp/a /tmp/b /tmp/c PRODUCT.FILESET

If a control script adds new files to the installed file system, the script
can use swmodify to make a record of the new files.

Changing Existing IPD Information

To create some new bundle definitions for products in an existing depot:

swmodify -d -s new_bundle_definitions \
* @ /mfg/master_depot

If a product provides a more complex configuration process, a script can
set the fileset’s state to configured upon successful completion.

Table 3-6 swmodify Command Options and Default Values

• admin_directory=/var/adm/sw
• compress_index=false
• control_files=
• distribution_target_directory=/var/spool/sw
• files=
• installed_software_catalog=products
• layout_version=1.0
• log_msgid=0
• logdetail=false

• logfile=
/var/adm/sw/swmodify.log

• loglevel=1
• patch_commit=false
• run_as_superuser=true
• software=
• source_file=
• targets=
• verbose=1
Chapter 3 119

Managing Installed Software
Modifying the IPD (swmodify)
To change the values of a fileset’s attributes:

swmodify -a state=installed PRODUCT.FILESET

To change the attributes of a depot:

swmodify -a title=Master Depot \
-a description=/tmp/mfg.description \
@ /mfg/master_depot

Defining New Objects

You can import an existing application (not installed by SD-UX) by
constructing a simple Product Specification File (PSF) describing the
product and then invoke swmodify to load that definition into the IPD.

To create a new fileset definition (if the PSF contains file definitions,
then add those files to the new fileset):

swmodify -s new_fileset_definition
120 Chapter 3

Managing Installed Software
Removing Installed Software (swremove)
Removing Installed Software (swremove)
The swremove command removes software that has been installed on a
host. Before its removal, the software is first unconfigured. swremove
also removes software products that have been copied to a software
depot.

swremove Features and Limitations

• Removes files from the specified location. It removes symbolic links,
but not the targets of symbolic links. It also lists busy files that were
not removed.

• Automatic use of dependencies to automatically select software on
which to operate (in addition to any software you specify directly).

• Ability to run control scripts as part of the removal:

Unconfigure Undoes host configuration performed by configure
scripts.

Checkremove Analyzes each target to determine if removal and
unconfiguration can take place. If this check fails,
an object cannot be removed.

Preremove Performs additional file operations, such as
removing files created by a preinstall script.

Postremove Performs additional remove operations (such as
restoring "rollback" files) immediately after a fileset
or product has been removed.

For more information, see Chapter 11 , “Using Control Scripts,” on
page 367.

• swremove does not perform automatic unconfiguration when you
remove software from alternate roots.
Chapter 3 121

Managing Installed Software
Removing Installed Software (swremove)
Using the swremove GUI

This section provides an overview of the swremove GUI.

• In general, all information presented in “Removing Installed
Software (swremove)” on page 121 also applies to the swinstall GUI.

• This section refers to additional information about standard GUI
elements, discussed in “Using the GUI and TUI Commands” on page
34.

• All information in this section also applies to the TUI program unless
otherwise noted. See “The Terminal User Interface” on page 34.

The swremove command behaves slightly differently when removing
from primary root file systems, alternate root file systems, and depots.
Interface changes for depot remove operations are summarized in
“Removing Software from Depots” on page 162.

There are three steps in the copy process:

Step I: Start-Up To start the GUI or TUI for an install session, type:

/usr/sbin/swremove

The GUI is automatically invoked unless you also specify software on the
command line. To invoke the GUI and specify software, include the -i
option. For example, to use the GUI for a preview (analysis only) session
with BUNDLE1, type:

swremove -i -p /MyDepot/BUNDLE1

The Software Selection window appears.

Table 3-7 GUI Removal Steps

I. Start-Up Start the swremove GUI.

II. Select Software Choose the software to remove.

III. Analysis
(Preview)

Analyze (preview) the removal to
determine if the selected software
can be successfully removed.

IV. Removal Perform the actual removal.
122 Chapter 3

Managing Installed Software
Removing Installed Software (swremove)
Step II: Selecting
Software

In this step, you use the Software Selection window to select the software
you want to install.

Figure 3-2 swremove Software Selection Window

1. Select software from the object list:

a. Highlight an item

b. Select Actions →Mark For Remove

— or —

Right-click to display the pop-up, then select Mark For Remove

The Marked? flag in the object list changes to Yes to match your
selection. (The flag Partial may appear if you select only some
component of a software object.)
Chapter 3 123

Managing Installed Software
Removing Installed Software (swremove)
2. (Optional) Use choices from the Actions menu to make additional
software selections:

• Change Target lets you select an alternate root from which to
remove software.

• Add Software Group lets you recall and re-use a group of previously
saved software selections.

• Save Software Group saves the current list of marked software as a
group. SD stores the group definition in $HOME/.sw/software/ or
a directory you specify.

• Show Description of Software (available only for a single item
highlighted in the object list) displays more information on the
selected software.

3. Select Actions →Install to start the analysis (preview) step. The
Analysis dialog appears.

Step III: Analysis
(Preview)

In this step, SD-UX analyzes the software you have selected.

The Remove Analysis dialog displays status information about the
analysis process. When the analysis is complete and the host status
shows Ready, click OK to start the actual installation (see “Step III:
Removal”). The Analysis dialog is then replaced by the Remove Window.

(If you started a preview session, the install stops after the analysis.
Clicking OK returns you to the Software Selection window.)

Figure 3-3 Remove Analysis dialog

After analysis, if any of the selected software can be removed, the status
indicates Ready or Ready with Warnings . If none of the selected
124 Chapter 3

Managing Installed Software
Removing Installed Software (swremove)
software can be removed, the status indicates Excluded from task .

The Products Scheduled column shows the number of products ready
for removal out of all products selected. The total products ready
includes those products that are:

• Marked because of dependencies

• Marked inside of bundles

• Partially and wholly marked

A product may be automatically excluded from the removal if an error
occurs with that product. Removal cannot proceed if the host target is
excluded from the removal. If the host fails the analysis, a warning
dialog appears.

The following actions are also available:

• Product Summary gives additional information about the product or
bundle and provides a Product Description button that displays
information about additional information about dependencies,
copyright, vendor, etc.

The Projected Action column describes what type of removal is
being done. The possible types are:

Remove The product exists and will be removed.

Filesets Not Found
The system did not find the filesets as specified.

Skipped The product will not be removed.

Excluded The product will not be removed because of some
analysis phase errors. See the logfile for details
about the error.

(The Product Summary List is not an object list. You cannot open the
products, perform actions, or change the column view.)

• Logfile presents a scrollable view of detailed install information
written to the logfile.

• Re-analyze repeats the analysis process.
Chapter 3 125

Managing Installed Software
Removing Installed Software (swremove)
Step III: Removal In this step, SD-UX proceeds with the actual removal.

After you click OK in the Analysis window, SD-UX starts removal and
displays the Remove Window (Figure 3-4), which shows status
information.

These action buttons are available:

• Done returns you to the Software Selection Window. You can then
begin another removal or exit the GUI (File→Exit).

• Product Summary display installation and product information (name,
revision, installation results, installation summary).

• Logfile displays the logfile.

Figure 3-4 Remove Window
126 Chapter 3

Managing Installed Software
Removing Installed Software (swremove)
Removing with the Command Line

Syntax swremove [XToolkit Option] [-d |-r] [-i] [-p] [-v]
[-C session_file] [-f software_file] [-Q date] [-s source]
[-S session_file] [-t target_file] [-x option=value]
[-X option_file] [software_selections] [@target_selections]

Options and
Operands

XToolkit Options X window options for the GUI. See “XToolkit Options
and Changing Display Fonts” on page 51.

-d Operates on a depot rather than installed software.
“Removing Software from Depots” on page 162 for
more information.

-i Runs a GUI or TUI interactive session. Used to
“pre-specify” software selections for use in the
GUI/TUI.

-p Preview an install task by running it through the
Analysis Phase and then exiting.

-r Operate on an alternate root directory.

-v Turn on verbose output to stdout and display all
activity to the screen.

-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 59.

-f software_file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 56.

-Q date Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 231 and Chapter 6 , “Remote
Operations Overview.”

-S session_file
Run the command based on values saved from a
previous installation session, as defined in
session_file . See “Session Files” on page 59.
Chapter 3 127

Managing Installed Software
Removing Installed Software (swremove)
-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 57.

-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Changing
Command Options” below.

-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

software_selections
The software objects to be removed. See “Software
Selections” on page 54.

target_selections
The target of the command. See “Target Selections” on
page 56.
128 Chapter 3

Managing Installed Software
Removing Installed Software (swremove)
Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swremove.

For More
Information

See Appendix A , “Command Options,” on page 419 for complete
descriptions of each default.

Remove Tasks and Examples

To remove a software product called MYSOFT from the default depot on
the local host, type:

swremove -d MYSOFT

To preview the remove of the C and Pascal products installed at the local
host:

swremove -p cc pascal

To remove a particular version of HP Omniback:

Table 3-8 swremove Command Options and Default Values

• admin_directory=/var/adm/sw
• agent_auto_exit=true
• agent_timeout_minutes=10000
• auto_kernel_build=true
• autoreboot=false
• autoremove_job=false
• autoselect_dependents=false
• autoselect_reference_bundles=

true
• compress_index=false
• controller_source=
• distribution_target_directory=

/var/spool/sw
• enforce_dependencies=true
• enforce_scripts=true
• force_single_target=false
• installed_software_catalog=

products
• job_title=
• log_msgid=0

• logdetail=false
• logfile=/var/adm/sw/swremove.log
• loglevel=1
• mount_all_filesystems=true
• polling_interval=2
• preview=false
• remove_empty_depot=true
• reuse_short_job_numbers=true
• rpc_binding_info=

ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]

• rpc_timeout=5
• run_as_superuser=true
• select_local=true
• software=
• software_view=products
• targets=
• verbose=1
• write_remote_files=false
Chapter 3 129

Managing Installed Software
Removing Installed Software (swremove)
swremove Omniback,l=/opt/Omniback_v2.0

To remove the entire contents of a local depot:

swremove -d * @ /var/spool/sw

Removing Bundles

Removing a bundle does not always remove all filesets in that bundle.
Because of SD-UX’s dependency management features, a fileset that is
required by another bundle will not be removed. For example, if the
bundles Pascal and FORTRANboth use the fileset Debugger.Run and you
try to remove FORTRAN, the fileset Debugger.Run will not be removed
because it is also used by the bundle Pascal . This prevents the removal
of one bundle from inadvertently causing the removal of a fileset needed
by another bundle.

Removing Patches

You cannot remove patch software unless:

• Rollback files corresponding to the patch are available for
re-installation.

— or —

• The base software modified by the patch is removed at the same time.
(Removing the base software also removes the patches associated
with that software.)

For more information on removing patches, see Chapter 5 , “Managing
Patches,” on page 163.

Removing Multiple Versions

The swremove GUI can help simplify removal of multiple versions of a
product.

Each separate version of a product along with its location directory is
listed in the object list. Selecting a multiple version implies a
product:/location directory pair. By default, the location is not
displayed in the Software Selection Window. It can be displayed using
the GUI Columns Editor View →Columns... menu item and enabling the
Product Directory menu item.

You can select more than one version of a product during the selection
phase. During analysis, a warning is generated if the version of the
130 Chapter 3

Managing Installed Software
Removing Installed Software (swremove)
product exists on the target but at a different location. If the product
exists on the target, it will be removed. If it does not exist on the target,
the product is simply skipped. The Product Summary... button in the
Remove Analysis Window gives a product-by-product summary of what
will be removed if the remove phase is started.

(Multiple versions of products are inherently possible in a depot. No
special handling or checks are required when removing from depots.)

Removing Software from an Alternate Root

Software can be removed relative to the primary root directory (/) or
relative to an alternate root directory. An alternate root is a non-root
location that can function as the root of a stand-alone system; that is, a
system that can be unmounted and function as a self-contained system.
Any information files used in software removal are retrieved from the
Installed Product Database (see “Installed Products Database” on page
30) beneath this alternate root, not the IPD on the root volume.
Chapter 3 131

Managing Installed Software
Removing Installed Software (swremove)
132 Chapter 3

Managing Software Depots
4 Managing Software Depots

SD-UX uses software that is packaged and stored in a registered depot.
This chapter discusses copying, listing, registering, removing, and
verifying depot software.

Topics:

“Depot Management Commands and Concepts” on page 134

“Copying Software Depots” on page 137

“Registering and Unregistering Depots (swreg)” on page 151

“Additional Depot Management Tasks and Examples” on page 155
Chapter 4 133

Managing Software Depots
Depot Management Commands and Concepts
Depot Management Commands and Concepts
The following commands will help you perform depot management tasks:

Table 4-1 Commands for Depot Management

Depot Task Command(s) More Information/Examples

Copy swcopy • “Copying Software Depots” on page 137

• “Combining Patch Depots” on page 155

Create swcopy,
swpackage

• Chapter 10 , “Creating Software
Packages”

• “Creating a Tape Depot for Distribution”
on page 156

List swlist -d • “Listing Registered Depots” on page 158

• “Listing the Contents of a Depot (swlist
-d)” on page 159

Register swreg • “Registering and Unregistering Depots
(swreg)” on page 151

Remove swremove -d • “Removing Software from Depots” on
page 162

• “Removing a Depot” on page 162

Unregister swreg -u • “Registering and Unregistering Depots
(swreg)” on page 151

Verify swverify -d • “Verifying a Depot (swverify -d)” on page
161

Additional
tasks

• “Additional Depot Management Tasks and
Examples” on page 155
134 Chapter 4

Managing Software Depots
Depot Management Commands and Concepts
Depot Concepts

A depot is a special type of directory formatted for use by SD-UX
commands, and used to contain software products. You can create a depot
by using swcopy to copy software directly from physical media or by
using swpackage to make a software package containing the depot.

When a depot resides on a networked system, that system can act as a
source for software: other systems on the network can install software
products from that server instead of installing them each time from
media.

Network depots offers these advantages over installing directly from
media:

• Several users can pull software down to their systems (over the
network) without having to transport media to each user.

• Installation from a network server is faster than from media.

• You can combine different software products from multiple media or
network servers into a single depot.

Types of Depots

A depot usually exists as a directory location. This software is in a
hierarchy of subdirectories and filesets organized according to a specific
media format. A host may contain several depots. For example, a
software distribution server on your network might contain a depot of
application software, a depot of patch software, and a depot of OS
software.

There are two types of depots: directory and tape.

Directory Depot

• A directory depot consists of software stored under a special
SD-UX-managed directory on your file system, usually
/var/spool/sw .

• A directory depot can be writable or read-only.

• When you use the SD-UX commands to refer to a directory depot, you
need only to refer to the depot’s top-most directory. In a CD-ROM
depot, this directory would be the CD-ROM mount point, such as
/cdrom/mydepot .
Chapter 4 135

Managing Software Depots
Depot Management Commands and Concepts
Tape Depot

• Tape (serial) depots offer advantages when you must copy or install
software over slow or unreliable network connections, including the
web. (First copy the depot to a local host, then install from the local
depot.)

• Software in a tape depot is formatted as a tar archive.

• Depots for actual cartridge, DAT and 9-track tape are referred to by
the path to the tape drive’s device file. For example: /dev/rmt/0m .

• You cannot modify or verify tape depots.

• You can create a tape depot only with the swpackage command. You
cannot use swcopy to copy software directly to a tape. See Chapter
10 , “Creating Software Packages,” on page 297 for more information
on swpackage.

• Software in a tape depot must first be transferred to a directory depot
before it can be accessed by other hosts on the network.

• A tape depot can be accessed by only one command at a time.

Depot Registration

To make the software in a depot available for use by SD-UX commands
across a network, you must register the depot. You can also unregister a
depot if you do not want it to be available. See “Registering and
Unregistering Depots (swreg)” on page 151 for more information.
136 Chapter 4

Managing Software Depots
Copying Software Depots
Copying Software Depots
The swcopy command copies software between depots. Software that is
copied into a depot cannot be used directly; it is placed there only to act as
a source for installation and other SD-UX operations.

swcopy Features and Limitations

• swcopy does not perform compatibility checking.

• swcopy does not run control scripts.

• swcopy does not perform kernel building or rebooting, although it
does perform other pre-install and postinstall checks, such as disk
space analysis and requisite selection.

• When you create or modify a depot with swcopy, SD-UX automatically
creates catalog files that describe the depot. These are stored in the
IPD. See “Modifying the IPD (swmodify)” on page 114 for more
information.

• Software dependencies apply to selections made with the swcopy
GUI.
Chapter 4 137

Managing Software Depots
Copying Software Depots
Using the swcopy GUI

Overview This section provides an overview of the swcopy GUI.

• In general, all information presented in “Using the swcopy Command
Line” on page 147 also applies to the swcopy GUI.

• This section also refers to information about standard GUI elements
discussed in “Using the GUI and TUI Commands” on page 34.

• All information in this section also applies to the TUI program unless
otherwise noted. See “The Terminal User Interface” on page 34.

The copy process has six steps:

Step I: Start-Up To start the GUI or TUI for an copy session, type:

/usr/sbin/swcopy

The GUI is automatically invoked unless you also specify software on the
command line. To invoke the GUI and specify software, include the -i
option. For example, to use the GUI for a preview (analysis only) session
with MyDepot , type:

swinstall -i -p /MyDepot

The Software Selection window appears with the Specify Source dialog
and the Select Target Depot Path dialogs superimposed over it.

I. Start-Up Start the swcopy GUI.

II. Specify
Target

Provide the location to which you want to copy the software.

III. Specify
Source

Provide the location of the software depot from which the
software will be copied.

IV. Select
Software

Select the software you want to copy.

V. Analysis
(Preview)

swcopy determines if the copy operation can succeed.

VI. Copy The actual software copying process.
138 Chapter 4

Managing Software Depots
Copying Software Depots
Step II: Specify
Target

In this step, you specify the target to which SD-UX will copy the
software.

(This step is skipped if you include the -t target option when you
invoke the GUI. See “Using the swcopy Command Line” on page 147.)

The Select Target Depot Path dialog displays the default target depot.
Since this matches the default source depot path, you must select a new
target:

Figure 4-1 Select Target Depot Path Dialog

1. Enter a target path:

• Type a new target path in the text box.

— or —

• Click the Target Depot Path... button. The Depot Paths dialog
appears, listing registered depots on the host.

a. Click on a depot in the list.

b. Click OK. The Target Depot Path dialog disappears. The depot
you selected is now displayed in the Select Target Depot Path
dialog.

2. Click OK.

The Select Target Depot Path dialog disappears, and the Specify Source
dialog is highlighted.
Chapter 4 139

Managing Software Depots
Copying Software Depots
Step III: Specify
Source

In this step, you must specify the source depot that contains the software
you want to copy. The Specify Source dialog (Figure 4-2) automatically
lists the local host and default depot path.

(This step is skipped if you include the -s source option when you
invoke the GUI. See “Using the swcopy Command Line” on page 147.)

Figure 4-2 Specify Source Dialog

1. (Optional) To specify another host system, type a source host name,
or:

a. Click on the Source Host Name button. The system displays a
dialog that lists all host system names contained in the
defaults.hosts file ($HOME/.sw/defaults.hosts or
/var/adm/sw/defaults.hosts).

b. Choose a host name from the list.

c. Click OK. The host name appears in the appropriate box in the
Specify Source dialog.

2. (Optional) To specify the path to the depot, type a new path, or:

a. Click on the Source Depot Path button to display a list of registered
depots on the source host.

b. Highlight one of the depots.

c. Click OK to make it appear in the Specify Source dialog.

3. Click OK. The Specify Source dialog closes, and the Software Selection
window displays the software contained in the depot you specified.
140 Chapter 4

Managing Software Depots
Copying Software Depots
Step IV: Select
Software

In this step, you use the Software Selection window (Figure 4-3) to select
the software you want to copy.

Figure 4-3 Software Selection Window

1. Select software from the object list:

a. Highlight an item

b. Select Actions →Mark For Copy

— or —

Right-click to display the pop-up, then select Mark For Copy

The Marked? flag in the object list changes to Yes to match your
selection. (The flag Partial may appear if you select only some
component of a software object.)
Chapter 4 141

Managing Software Depots
Copying Software Depots
2. (Optional) Use additional choices from the Actions menu:

• Add Software Group displays a list of previously saved software
group files or lets you specify a directory. Selecting a file adds the
software selections in the file to any selections you have already
made in the Software Selection window.

• Save Software Group lets you save your current list of marked
software as a group.

• Manage Patch Selections lets you select from a list of patches to
copy, select filters for patches, and set other patch options. (See
“Interactive Patch Management” on page 176 for more
information.)

• Change Source... cancels your software selections and returns you
to the Specify Source dialog.

• Add New Codeword lets you add a new codeword to unlock
protected software. (This option is available only when SD-UX
detects that the source contains protected software.)

• Show Description of Software (available only for a single item
highlighted in the object list) displays more information on the
selected software.

• Change Target... returns you to the Select Target Depot Path dialog
(“Step II: Specify Target”).

3. Select Actions →Copy to start the analysis (preview) step. The
Analysis dialog appears.
142 Chapter 4

Managing Software Depots
Copying Software Depots
Step V: Analysis
(Preview)

In this step, SD-UX analyzes the software you have selected.

The Analysis window displays status information about the analysis
process. When the analysis is complete and the host status shows Ready,
click OK to start the actual copy (see “Step VI: Copying”). The Analysis
dialog is then replaced by the Copy dialog.

If you started a preview session, the copy stops after the analysis.
Clicking OK returns you to the Software Selection window.

Figure 4-4 Copy Analysis Dialog

The following actions are available:

• Product Summary gives additional information about the product or
bundle and provides a Product Description button that displays
information about additional information about dependencies,
copyright, vendor, etc.

• Logfile presents a scrollable view of detailed copy information written
to the logfile.

• Disk Space displays the Disk Space Analysis window (Figure 4-5)
which shows:

— The file system mount point,

— How much disk space was available before the copy,

— How much will be available after the copy,

— What percent of the disk’s capacity will be used.

— How much space must be freed to complete the operation.
Chapter 4 143

Managing Software Depots
Copying Software Depots
Menu choices in this window let you:

— Search the object list.

— Open items to look at the projected size requirements for specific
filesets.

• Re-analyze repeats the analysis process.

Figure 4-5 Disk Space Analysis Window
144 Chapter 4

Managing Software Depots
Copying Software Depots
When Analysis completes, the status for any host displays as either
Ready or Excluded from task . If any of the selected software can be
copied onto the host, the status shows Ready. If none of the selected
software can be copied onto the host, the status shows Excluded from
task .

The following list summarizes the status results. You can find details
about most problems by clicking the Logfile button.

Ready There were no errors or warnings during analysis. The
copy may proceed without problems.

Ready with Warnings
Warnings were generated during the analysis. Errors
and warnings are logged in the logfile.

Ready with Errors
At least one product selected will be copied. However,
one or more products selected are excluded from the
task because of analysis errors. Errors and warnings
are logged in the logfile.

Communication failure

Contact or communication with the intended target or
source has been lost.

Excluded due to errors

Some kind of global error has occurred. For example,
the system might not be able to mount the file system.

Disk Space Failure
The copy will exceed the space available on the
intended disk storage. For details, click the Disk Space
button.

The Products Scheduled column shows the number of products ready
for copying out of all products selected. These include:

• Products selected only because of dependencies

• Partially selected products

• Other products and bundles that were selected
Chapter 4 145

Managing Software Depots
Copying Software Depots
Step VI: Copying In this step, SD-UX proceeds with the actual copy.

After you click OK in the Analysis window, SD-UX starts copying and
displays the Copy Window (Figure 4-6), which shows status information.

Figure 4-6 Copy Window

These action buttons are available:

• Done returns you to the Software Selection Window. You can then
begin another copy or exit the GUI (File→Exit).

• Product Summary display copy and product information (name,
revision, copy results, copy summary, product description).

• Logfile displays the logfile.
146 Chapter 4

Managing Software Depots
Copying Software Depots
Using the swcopy Command Line

swcopy Syntax swcopy [XToolkit Options] [-i] [-p] [-v] [-C session_file]
[-f software_file] [-Q date] [-s source] [-S session_file]
[-x option=value] [-X option_file] [software_selections]
[@target_selections]

Options and
Operands

XToolkit Options X window options for the GUI. See “XToolkit Options
and Changing Display Fonts” on page 51.

-i Run the GUI program. See “Using the swcopy GUI” on
page 138.

-p Preview a copy task from the command line by running
it through the Analysis Phase and then exiting.

-v Turn on verbose output to stdout and display all
activity to the screen.

-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 59.

-f software_file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 56.

-Q date Schedules a job for the given date when remote
operations are enabled. See “Scheduling Jobs from the
Command Line” on page 231 and Chapter 6 , “Remote
Operations Overview.”

-s source Use the software source specified by source instead of
the default, /var/spool/sw . The syntax is:

[host :][/ directory]

host may be a host name, domain name, or internet
address (for example, 15.1.48.23). directory is an
absolute path.

-S session_file
Run the command based on values saved from a
previous session, as defined in session_file . See
“Session Files” on page 59.
Chapter 4 147

Managing Software Depots
Copying Software Depots
-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 57.

-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Changing
Command Options” below.

-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

software_selections
The software objects to be copied. See “Software
Selections” on page 54.

target_selections
The target of the command. See “Target Selections” on
page 56.

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swcopy.
148 Chapter 4

Managing Software Depots
Copying Software Depots
For More
Information

See Appendix A , “Command Options,” on page 419 for complete
descriptions of each default.

Table 4-2 swcopy Command Options and Default Values

• admin_directory=/var/adm/sw
• agent_auto_exit=true
• agent_timeout_minutes=10000
• allow_split_patches=false
• autoremove_job=false
• autoselect_dependencies=true
• autoselect_patches=true
• autoselect_reference_bundles=true
• codeword=
• compress_files=false
• compress_index=false
• controller_source=
• create_target_path=true
• customer_id=
• distribution_source_directory=

/var/spool/sw
• distribution_target_directory=

/var/spool/sw
• enforce_dependencies=true
• enforce_dsa=true
• job_title=
• layout_version=1.0
• log_msgid=0
• logdetail=false
• logfile=/var/adm/sw/swcopy.log
• loglevel=1
• max_targets=
• mount_all_filesystems=true

• patch_filter=software_specification
• patch_match_target=false
• polling_interval=2
• preview=false
• register_new_depot=true
• reinstall=false
• reinstall_files=true
• reinstall_files_use_cksum=true
• remove_obsolete_filesets=false
• retry_rpc=1
• retry_rpc_interval={0}
• reuse_short_job_numbers=true
• rpc_binding_info=

ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]

• rpc_timeout=5
• run_as_superuser=false
• select_local=true
• software=
• software_view=all_bundles
• source=
• source_cdrom=/SD_CDROM
• source_tape=/dev/rmt/0m
• source_type=directory
• targets=
• uncompress_files=false
• use_alternate_source=false
• verbose=1
• write_remote_files=true
Chapter 4 149

Managing Software Depots
Copying Software Depots
Copy Tasks and Examples

This section provides examples of commands for copying software
products. (See also “Additional Depot Management Tasks and Examples”
on page 155.)

Simple swcopy Examples

To copy all products from the DAT tape at /dev/rmt/0m to the default
depot (/var/spool/sw) on the local host:

swcopy -s /dev/rmt/0m *

To copy a list of software selections (on a local CD-ROM) named in the
file mysoft to a depot at the path /depots/mydep/ on the host named
hostA and preview the process before actually copying the software:

swcopy -p -f mysoft -s /mnt/cd @ hostA:/depots/mydep /

Using Software Codewords and Customer IDs

The swcopy command may prompt you for codewords if you try to access
codeword protected software. You can also enter new codewords from the
command line or from the GUI. This process is identical to that used by
swinstall. See “Using Software Codewords and Customer IDs” on page
76 for more information.

Multiple Software Products in Depots

Software is packaged into products. Depots can store multiple versions of
a product.

If a product version already exists in the depot, swcopy will not replace it
unless the reinstall option is set to true. If this option is true, then the
product is recopied.

If other versions of the product already exist in the depot, swcopy copies
in the new version and the others are not changed.

swcopy does not automatically notify you when multiple versions of a
product exist. swcopy notifies you only when an exact version exists.
exists and will be skipped (or recopied)
150 Chapter 4

Managing Software Depots
Registering and Unregistering Depots (swreg)
Registering and Unregistering Depots (swreg)
 To make the software in a depot available for use across a network by
other SD-UX commands, you must register the depot. You can also
unregister a depot if you do not want it to be available.

Depots are registered or unregistered in these ways:

• The swcopy command automatically registers newly created depots.
(You can turn this function on or off with the register_new_depot
option.)

• The swremove command automatically unregisters a depot after
removing all the software the depot contains.

• The swreg command explicitly registers or unregisters depots.

The swreg command lets you explicitly register or unregister depots
when the automatic registration features of swcopy or swremove are not
enough. For example, you can use swreg to:

• Make a CD-ROM or other media available as a registered depot.

• Register a depot that was created with swpackage.

• Unregister a depot to restrict network access without physically
removing the depot from a host.

Register Media or Create Network Depot?

When does it make sense to use your software media as a registered
depot versus using the media to create a network depot? In general,
using media as a depot makes sense for small-scale use, such as when
only one or two other systems need to access the media. If more systems
will need to access the media, performance will be better if you create a
network depot from the individual media. See “Additional Depot
Management Tasks and Examples” on page 155 for an example.
Chapter 4 151

Managing Software Depots
Registering and Unregistering Depots (swreg)
Registration and Security

Because SD-UX stores its objects in the file system, someone could build
a “Trojan Horse” file system image of a software depot. This could breech
the security of any system that installed products from the false depot.
To protect systems from such a situation, SD-UX requires that depots be
registered before software may be installed or copied from it. This check
is always performed before granting access, except when swinstall is run
by the local superuser.

NOTE Registration of a depot does not enforce any access restrictions. Access
enforcement is left to SD security (see Chapter 9 , “SD-UX Security,” on
page 251). Registration with swreg requires insert permission in the
host’s ACL.

Authorization

To register a new depot or to unregister an existing depot, swreg requires
read permission on the depot in question and insert permission on the
host. To unregister a registered depot, the swreg command requires
write permission on the host. See Chapter 9 , “SD-UX Security,” on page
251 for more information on permissions.

Using swreg

swreg Syntax swreg -l level [-u] [-v] [-C session_file] [-f object_file]
[-S session_file] [-t target_file] [-x option=value]
[-X option_file] [objects_to_register] [@target_selections]

Options and
Operands

-l level Specifies the level of the object to register or unregister,
where level can be depot or root .

-u Causes swreg to unregister the specified objects
instead of registering them.

-v Turns on verbose output to stdout and displays all
activity to the screen.

-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
152 Chapter 4

Managing Software Depots
Registering and Unregistering Depots (swreg)
session. See “Session Files” on page 59.

-f object_file
Reads a list of depots or root objects to register or
unregister from a object_file instead of (or in
addition to) the command line.

-S session_file
Run the command based on values saved from a
previous session, as defined in session_file . See
“Session Files” on page 59.

-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) the command line. See
“Target Files” on page 57.

-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Using
Command Options” on page 57.

-X option_file
Read session options and behaviors from option_file .
See “Using Command Options” on page 57.

objects_to_register
The software objects to be registered or unregistered.

@target_selections
The target on which the objects will be registered or
unregistered. See “Target Selections” on page 56.
Chapter 4 153

Managing Software Depots
Registering and Unregistering Depots (swreg)
Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swreg:

For More
Information

See Appendix A , “Command Options,” for complete descriptions of each
default.

swreg Examples

To unregister a CD-ROM depot mounted at /mnt/cd , you would type:

swreg -l depot -u /mnt/cd

To register the same depot (mounted at /mnt/cd on the local host) as a
depot to be available on the network, type:

swreg -l depot /mnt/cd

The following example enables direct access from one or two other
systems to the HWEnable11i depot on the Support Plus CD, assuming
the Support Plus CD is mounted at /cdrom:

swreg -l depot /cdrom/HWEnable11i

Table 4-3 swreg Command Options and Default Values

• admin_directory=/var/adm/sw
• distribution_target_directory=

/var/spool/sw
• level=
• log_msgid=0
• logfile=/var/adm/sw/swreg.log
• logdetail=false
• loglevel=1
• objects_to_register=

• rcp_binding_info=
ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]

• rpc_timeout=5
• run_as_superuser=true
• select_local=true
• select_local=true
• targets=
• verbose=1
154 Chapter 4

Managing Software Depots
Additional Depot Management Tasks and Examples
Additional Depot Management Tasks and
Examples
This section illustrates some typical depot management tasks and
provides extended examples of how you can use SD-UX to manage your
environment.

Combining Patch Depots

This example shows how to combine into a single depot five downloaded
patches (which are tape depots) from HP. The example also shows how to
register the depot, list the depot contents, and install the patches from
the new depot using the patch_match_target option. The example
assumes that you have already downloaded patches PHKL_20349,
PHKL_22161, PHSS_21906, PHSS_21950, and PHCO_22923 from the
HP ITRC (http://itrc.hp.com/):

swcopy -s /tmp/PHKL_20349.depot * @ /depots/mypatches

swcopy -s /tmp/PHKL_22161.depot * @ /depots/mypatches

swcopy -s /tmp/PHSS_21906.depot * @ /depots/mypatches

swcopy -s /tmp/PHSS_21950.depot * @ /depots/mypatches

swcopy -s /tmp/PHCO_22923.depot * @ /depots/mypatches

swreg -l depot @ /depots/mypatches

swlist -d -s /depots/mypatches

swinstall -x patch_match_target=true -s /depots/mypatches
Chapter 4 155

Managing Software Depots
Additional Depot Management Tasks and Examples
Creating a Tape Depot for Distribution

This example shows you how to create a tape depot as a single file that
can be distributed via ftp or the web. This example uses the five patches
from the previous example (which are formatted as tape depots) and uses
an existing depot at /depots/mypatches . The swlist command shows
the depot contents (see “Listing the Contents of a Depot (swlist -d)” on
page 159).

swpackage -x media_type=tape -s /depots/mypatches \
@ /tmp/mypatches.depot

swlist -d -s /tmp/mypatches.depot

To create a tape depot from myproduct.psf , a valid product specification
file:

swpackage -x media_type=tape -s myproduct.psf \
@ /tmp/myproduct.depot

swlist -d -s /tmp/myproduct.depot

See Chapter 10 , “Creating Software Packages,” for more information
about swpackage.

Setting Depot Attributes

When you create a depot, you may want to set the title and description
attributes to help identify the depot and what it contains.

At the top of the product specification file (psf) for the depot, place the
lines similar to the following:

distribution
title Optional Development Tools
description "Text processing and programming tools

\generally useful for source code development"

Then package and register the depot:

swpackage -s mydepot.psf @ /depots/mydepot

swreg -l depot @ /depots/mydepot

To see the title and description of all depots on a system:

swlist -v -a title -a description -l depot
156 Chapter 4

Managing Software Depots
Additional Depot Management Tasks and Examples
Creating a Network Depot

Creating a network depot from which to install software can improve
performance and ease of use when you have to install software to large
numbers of systems. For example, HP-UX 11i is delivered on two CDs,
requiring you to swap CDs during the update process. To perform an
update without having to swap CDs, you can create a remote depot on an
existing 11i system that contains all the necessary software, then update
from that single source. (For more information on the update process, see
the HP-UX 11i Installation and Update Guide.)

As root, follow this procedure to create a network depot from the HP-UX
11i CDs onto a depot server or other system running HP-UX 11i in your
network:

1. Verify that you have at least 1,230 MB of free space to create the
network depot on another system in your network. If this space is not
available, use SAM to either create a new volume group or extend an
existing volume group. For help, see either SAM help or the
Managing Systems and Workgroups manual.

2. Login as root and mount the logical volume on a new directory named
/update. This directory will hold your network depot.

3. Insert the HP-UX 11i CD1 and wait for the CD drive’s busy light to
stop blinking.

4. Find the CD-ROM device file name:

ioscan -fn | more

A typical CD-ROM device name is: /dev/dsk/c1t2d0

5. Create the directory /cdrom under root(/) :

mkdir /cdrom

6. Mount the CD onto the /cdrom directory as a file system. For
example:

mount /dev/dsk/c1t2d0 /cdrom

7. Merge all products on the mounted CD to the target depot, for
example /update/update-depot:

swcopy -s /cdrom * @ /update/update-depot

8. Unmount the CD from directory /cdrom:

umount /cdrom
Chapter 4 157

Managing Software Depots
Additional Depot Management Tasks and Examples
9. Insert the HP-UX 11i CD2. Wait for the drive’s busy light to stop
blinking.

10.Repeat Steps 6 through 8 using CD2 and the Support Plus CD.

The network depot is now ready for you to use to update your HP-UX
10.20 or 11.0 system to HP-UX 11i.

Managing Multiple Versions of HP-UX

You can use your HP-UX 11i system to manage depots for HP-UX 11.00
and 10.20, with the following guidelines:

• HP recommends that you do not mix OS versions within the same
depot. That is, locate 10.20 software in 10.20 depots, 11.00 software in
11.00 depots, and 11i software in 11i depots.

• You can manage 11.00 depots from 11i without any special
considerations—although you should maintain the segregation of
11.00 and 11i software in separate depots. Although the formats are
similar, 11i software may contain vendor-defined attributes not
recognized by 11.00 systems. This results in warnings when 11.00
systems access 11i software.

• For 10.20 depots:

— To create 10.20 depots from an 11i system, you must use the
correct layout_version. For example:

swcopy -x layout_version=0.8 ...

swpackage -x layout_version=0.8 ...

From then on, your 11i system can maintain the 10.20 depot.

— SD-UX will generate warnings if you attempt to put
layout_version=1.0 software (11.00 or 11i format) into a
layout_version=0.8 (10.20) depot.

Listing Registered Depots

swlist can display lists of registered depots residing on a host. To do this,
use combinations of the -l depot option.

To list all depots on the local host, type:

swlist -l depot
158 Chapter 4

Managing Software Depots
Additional Depot Management Tasks and Examples
To list all depots on a remote machine (hostA), type:

swlist -l depot @ hostA

To list all the depots on a system from newest to oldest (by time last
modified):

swlist -l depot -a mod_date -a mod_time | sort -rn -k 7,7

TIP Use the mod_time as a convenient sort field (a single integer), and use
mod_date to include human-readable output. (Place mod_time at the end
of the display where it’s less visible.)

Listing the Contents of a Depot (swlist -d)

With swlist you can list all software that is packaged, stored, and ready
to be installed.

The swlist -d option lets you list software residing on the default depot
on your local host. For browsing any depot in the GUI, you can use
swlist -i -d . You can also view the associated session and audit log
files.

NOTE By default the output of swlist will reflect the POSIX format for
attributes. This may affect users who parse this output.

In the following examples, swlist output requests are sent to standard
output. All examples assume the one_liner option is revision size
title and the level option is product or undefined.

List the contents of the local tape depot, /dev/rmt/0 :

swlist -d @ /dev/rmt/0

AUDIT 3.5 9834 Trusted Systems Auditing Utils
COMMAND 1.7 4509 Core Command Set
C-LANG 2.5 5678 C Programming Language
DISKLES 1.8 6745 HP Cluster Commands
KERNEL 1.4 56908 Kernel Libraries and Headers
VUE 1.3 5489 Vue (Instant Ignition Release)
WINDOWS 2.06 10423 Windowing Products
Chapter 4 159

Managing Software Depots
Additional Depot Management Tasks and Examples
List the media attributes of the local tape depot, /dev/rmt/0 :

swlist -d -v -l depot @ /dev/rmt/0

type distribution
tag CORE OS
description HP-UX Core Operating System Software Disc
number B2358-13601
date June 1991

List the products stored in the software depot on host1 located at
/swmedia . For this example assume one_liner is title size
architecture :

swlist -d @ host1:/swmedia

FRAME Frame Document Pkg 2319 HP-UX_9000_Series700/800_AorB
FRAME Frame Document Pkg 2458 OSF1_9000_Series700_1.0
ME30 3-D Mechanical Eng 5698 HP-UX_9000_Series300/800_AorB
SOFTBENCH Softbench Development Env 4578 HP-UX_9000_Series300
TEAMWORK Tmwk. Design/Analysis 3478 HP-UX_9000_Series300/400

Note that the media contains two versions of the FRAME product.

Source Depot Auditing

If both the source and target systems are 10.30 or later versions of
HP-UX, you can use swlist to audit the depot. The system
administrator at the source depot machine can turn the audit
functionality on or off. This feature tracks users and their software
selections. In addition, you can determine when depots are being used.

As the administrator, you must set to true the value of
swagent.source_depot_audit in the /var/adm/sw/defaults file for
swagent. This creates a swaudit.log file on the source depot (for
writable directory depots) or in /var/tmp (for tar image, CD-ROM, or
other non-writable depots). This works like swagent.log for source
depot.

You can view the audit files by typing swlist -i -d . As long as the
system has the corresponding SD message catalog files on it, you can
view the audit information on a remote/local depot (with your language
preference set).
160 Chapter 4

Managing Software Depots
Additional Depot Management Tasks and Examples
Verifying a Depot (swverify -d)

To can use the swverify command to verify the software within a depot.
swverify performs these tasks:

• Verifies that all dependencies (prerequisites or corequisites) can be
met.

• Reports missing files.

• Checks file attributes, including permissions, file types, size,
checksum, mtime, and major/minor attributes.

For example, to verify the entire contents of a local depot:

swverify -d * @ /var/spool/sw

NOTE The swverify command does not execute vendor-supplied verification
scripts within a depot.
Chapter 4 161

Managing Software Depots
Additional Depot Management Tasks and Examples
Removing Software from Depots

Invoking swremove with the -d option removes software from depots
instead of root file systems. This also means that you must specify a path
to identify the depot from which you want to remove the software. For
example:

swremove -d Old-Software @ /var/spool/sw

For the swremove -d GUI, you are prompted to specify the depot by a
dialog that appears after you invoke the GUI. This is the same dialog
used to specify a depot target for swcopy operations. See “Step II: Specify
Target” on page 139 for information about how to use this dialog.

Removing a Depot

To remove and automatically unregister a depot:

swremove -d * @ /tmp/MyDepot
162 Chapter 4

Managing Patches
5 Managing Patches

This chapter discusses Software Distributor features that help you
develop, install, and manage software patches.

Topics:

“Introduction” on page 164

“Patch-Related Features” on page 167

“Installing Patches” on page 171

“Copying Patches” on page 175

“Interactive Patch Management” on page 176

“Listing Patches” on page 178

“Patch Removal, Rollback, and Committal” on page 179

“Verifying Patches” on page 180

“Packaging Patch Software” on page 182
Chapter 5 163

Managing Patches
Introduction
Introduction
SD-UX gives you the ability to perform patch management operations
including installation, copying, listing, removing, rollback, and
committal. Patch-related features of SD-UX include:

• Command options for patch management functions.

• Software objects and attributes for identifying and managing patches.

• An interactive patch management tool.

NOTE You can use the SD-UX remote operations features for patch
management. See Chapter 6 , “Remote Operations Overview,” on page
189 and “Installing Patches to Remote Systems” on page 174.

For More
Information

For more information on patching HP-UX products, see HP-UX Patch
Management: A Guide to Patching HP-UX 11.X Systems. This document
is available under the Patch Management section of:

http://docs.fc.hp.com/hpux/os/11i/oe/

Patch Concepts

A patch is defined as software packaged with the is_patch attribute set
to true.

As with non-patch software, patches are structured into products and
filesets. By convention on HP-UX, patch products are given unique
names, but their fileset names match the corresponding base filesets that
they patch. In general, patches are intended to be managed (that is,
installed, copied, or removed) at the product level.

Each patch fileset has associated with it an ancestor fileset, which is the
base software that it patches. A patch fileset may not be installed on a
target system unless its ancestor fileset is also being installed or is
already present on the system. Similarly, an ancestor fileset cannot be
removed without also removing all of its patches. A patch fileset’s
ancestor is identified by its ancestor attribute.

Patches that have been applied to an ancestor fileset are listed in the
164 Chapter 5

Managing Patches
Introduction
ancestor’s applied_patches attribute.

HP patches are required to completely replace earlier patches. A newer
version of a patch is said to supersede an earlier version. A patch
fileset’s supersedes attribute lists all previous patch filesets that it
supersedes.

Patch filesets can have dependencies on other patches as well as
non-patch software. When a patch supersedes another patch, it is also
assumed to be able to satisfy any dependencies on that earlier patch.
(See “Patch Supersession and Dependency Resolution” on page 166.)

By default, patches installed on a target system can be rolled back, that
is, the files that the patch replaced are stored in a special save area so
they can be restored if you remove the patch later on.

A patch that has been installed on a target system is assigned a
patch_state attribute value that indicates whether it can be rolled back
and whether it has been superseded.

Patches can be selected and managed explicitly, or automatically as part
of the selection of non-patch software.

You can manage patches separately from regular software items.
Selection for installation and listing is supported by the category_tag
attribute and special patch management options to SD commands.

See “Packaging Patch Software” on page 182 in this chapter for complete
information on patch-related attributes and objects.

Patch Installation Paradigm

On HP-UX 10.x, SD-UX did not distinguish patch software from
non-patch software. The match_target command option was used to
select the appropriate patches for software present on the target.

This paradigm has changed for HP-UX 11.x with the addition of new
functionality:

• SD now distinguishes patches from non-patch software based on new,
patch-specific software attributes.

• The match_target option is still supported, but is now used only for
the selection of non-patch software. A new option,
patch_match_target , is used to select patches that correspond to the
software already present on a target depot or root.
Chapter 5 165

Managing Patches
Introduction
• Another new option, autoselect_patches , causes SD to
automatically select patches that are appropriate for any non-patch
software that has been selected.

• Patch dependencies are now enforced. See “Patch Supersession and
Dependency Resolution” on page 166 and “Using swlist to Resolve
Manual Dependencies” on page 179.

Patch management command options are discussed in the following
sections.

Patch Supersession and Dependency Resolution

Because patches can be superseded, special considerations are made
when resolving dependencies on patches. By definition, a patch that
supersedes another patch is assumed to be able to satisfy any
dependencies that exist on the superseded patch. The converse is not
true, however. A superseded patch will not satisfy a dependency on a
superseding patch.

SD-UX uses the information in each patch fileset’s supersedes attribute
to build a supersession chain, which represents the superseding
relationships among patches for a given base fileset.

When resolving a dependency on a patch, SD-UX attempts to find the
latest patch in the corresponding supersession chain. It starts with the
patch specified by the dependency, and traverses the chain until it finds a
non-superseded patch. Thus, a dependency that specifies a given patch
may actually cause a different, superseding patch to be automatically
selected.

You can override this auto-selection behavior by explicitly selecting
patches. If SD-UX encounters an explicitly-selected patch fileset during
the traversal of the supersession chain, that patch is used to resolve the
dependency—even if it is superseded by other patch filesets in the chain.

Note, however, that if the chain has an explicitly-selected patch fileset
that cannot satisfy the dependency (that is, it is superseded by the patch
fileset specified in the dependency), swinstall will treat this as an error
(an attempt to install multiple patch filesets in the same supersession
chain).
166 Chapter 5

Managing Patches
Patch-Related Features
Patch-Related Features
SD’s patch-related features include command options and software
attributes. Patch attributes are discussed in “Packaging Patch Software”
on page 182 in this chapter.

Command Options

Patch default options are available at the command line. You can change
their default values by:

• Specifying values with the -x command-line option

• Changing the default options files

• Using the swinstall or swcopy GUI via the Actions →Manage Patch
Selection... choice.

For complete information on default options, see “Using Command
Options” on page 57 and Appendix A , “Command Options,” on page
419.

The following table summarizes by command the SD-UX default options
for managing patches:

Table 5-1 Patch Options Listed by Corresponding Command

Command Patch Option

swask autoselect_patches=true
patch_filter=*.*

swcopy allow_split_patches=false
autoselect_patches=true
patch_filter=*.*
patch_match_target=false

swinstall allow_split_patches=false
autoselect_patches=true
patch_filter=*.*
patch_match_target=false
patch_save_files=true
Chapter 5 167

Managing Patches
Patch-Related Features
• allow_split_patches=false

Permits the independent management of individual patch filesets
within a patch product. This option should be used only to resolve
critical problems when directed by your HP support representative.

Applies to swinstall, swcopy, and swremove.

• autoselect_patches=true

Automatically selects the latest patches (if any) for a software object
that you have selected for a swinstall or swcopy operation. (Selection
is based on the patch object’s supersedes and ancestor attributes.)
The default value is true. The patches must reside in the same depot
as the selected software.

This option is useful for installing patches at the same time that you
install the base software to which the patches apply.

You can use this option with the patch_filter option to limit your
automatic patch selection.

Applies to swask, swinstall, and swcopy.

• level=

Controls the depth of swlist output. When set to the value patch ,
swlist lists patches and their patch_state (applied , committed ,
superseded , or committed/superseded) for each ancestor fileset.
This option is equivalent to the -l patch command-line option.

Applies to swlist only.

swlist level=patch (equivalent to-l patch)
patch_one_liner=title patch state
show_superseded_patches=false

swmodify patch_commit=false

swremove allow_split_patches=false

Table 5-1 Patch Options Listed by Corresponding Command

Command Patch Option
168 Chapter 5

Managing Patches
Patch-Related Features
• patch_commit=false

Commits a patch by removing files saved for patch rollback. The
default value is false. When set to true, this option removes the saved
files for the patches specified in the software selections for the
command and changes the associated patch_state attribute from
applied to committed or from superseded to
committed/superseded . (See also patch_save_files .)

Note that when a patch is committed, all patches that it has
superseded are also committed.

Applies only to swmodify only.

• patch_filter=*.*

Specifies a filter used during the automatic patch selection process.

This option is used in conjunction with the autoselect_patches and
patch_match_target options to filter out patches that do not meet
the specified criteria (tag, version, etc.).

Applies to swask, swcopy and swinstall.

• patch_match_target=false

Automatically selects the latest patches that correspond to software
on the target root or depot. The default value is false.

This option is useful when you are installing patches on previously
installed software.

This option can be used with the patch_filter option to filter out
patches that do not meet the specified criteria.

Applies to swcopy and swinstall.

NOTE When you use the SD-UX remote operations features to push patches to
remote systems, you can use patch_match_target with only one remote
system at a time.
Chapter 5 169

Managing Patches
Patch-Related Features
• patch_one_liner=title patch_state

Specifies the attributes shown on the one-line display for each object
listed by swlist. Applies when the -l patch option is invoked and
when no -a or -v option is specified. The default display attributes
are title and patch_state .

Applies to swlist only.

• patch_save_files=true

Saves files to be patched before they are overwritten during an
installation. This permits future rollback of patches. When set to
false, patches cannot are automatically committed and can not be
rolled back (removed) unless the base (non-patch) software modified
by the patch is removed at the same time. The default value is true.

Applies to swinstall only.

• show_superseded_patches=false

Controls the swlist display of superseded patches. By default, swlist
will not display superseded patches, even if you explicitly list the
superseded patch. To view superseded patches, set this option to true.

Applies to swlist.
170 Chapter 5

Managing Patches
Patch Management Tasks and Examples
Patch Management Tasks and Examples
installing copying, interactive patch management, removal, rollback,
committing patches, verifying patches

Installing Patches

Installation of patch products follows the same rules as any other SD
installation. The key difference is that patch selection and mechanisms
let you select only the patches that meet specified criteria. Selection
mechanisms for patches are:

• The category_tag attribute and corresponding category objects.

• The patch_filter , patch_match_target , and autoselect_patches
options.

When you install a patch, SD updates the applied_patches attribute of
the fileset that has been patched and updates the INFO file information to
include the patched file’s attributes. Also (if the patch_save_files
option is set to true), files that would be overwritten are stored in a
special save area in the IPD.

When a patch is installed, by default it has the patch_state of applied.
When the patch is committed (rollback files are removed) or it has been
installed without saving rollback files, it has the state of committed.
When the patch is superseded, the patch_state is set to superseded,
and the superseded_by attribute is set to the software_specification
of the superseding patch fileset.

If a patch is both committed and superseded, its patch_state is set to
committed/superseded.

Installing Patches in Same Session as Base Product

If you select a non-patch fileset for installation and patch filesets for that
base fileset exist in the same source depot, all applicable patches are
selected by default as long as the autoselect_patches option is set to
its default value of true. The following rules also apply:

• Automatic patch software selections are filtered as defined by the
patch_filter option.
Chapter 5 171

Managing Patches
Patch Management Tasks and Examples
• If more than one patch for a base fileset exists, only the latest patches
(i.e., those that are not superseded) will be automatically selected for
installation, unless overridden by an explicit patch selection.

• You can also explicitly specify patches on the command line. See
“Explicitly Specifying Patches” on page 173 for more information.

The following examples demonstrate the use of patch options on the
command line. (Note that the autoselect_patches option is true by
default.)

The example below shows the default behavior for patch installation. All
patches in the depot that apply to the software being installed (in this
case, X11) are selected by default:

swinstall -s sw_server X11

To select all applicable patches that include the category_tag of
critical_patch and install them along with the selected software:

swinstall -s sw_server \
-x patch_filter=”*.*,c=critical_patch” X11

The following example installs a product and an explicitly specified
patch.

swinstall -s sw_server \
-x autoselect_patches=false X11 PHSS_12345

Installing Patches After Base Product Installation

When you want to install patches after installation of the base product,
you can select the patches explicitly or by matching the installed
software using the patch_match_target option, which automatically
selects the latest patches for the software found on the target.

To select all patches in the depot that correspond to currently installed
software:

swinstall -s sw_server -x patch_match_target=true

To select all patches in the depot that correspond to currently installed
software and that contain the category_tag critical_patch:

swinstall -s sw_server -x patch_match_target=true \
-x patch_filter=” *.*,c=critical_patch”
172 Chapter 5

Managing Patches
Patch Management Tasks and Examples
Patch Filtering with Multiple Criteria

You can repeat a version qualifier (for AND criteria) and use the pipe
symbol (|) within qualifiers (for OR criteria). This is consistent with the
current level of expression support in POSIX standard software
specifications.

To install any patches that have the category tag of critical AND the
category tag of either special_release OR hardware_enablement .

swinstall -s sw_server -x patch_match_target=true \
-x patch_filter=”*.*,c=critical,\

c=special_release|hardware_enablement”

NOTE Selecting software with the * wildcard overrides patch filtering.

Explicitly Specifying Patches

You can explicitly specify and install a patch (without autoselection or
matching the target) by specifying one or more operands for the
software_specification within a command.

Explicit patch selections override any automatic patch selections. When
SD automatically selects a patch (for example, with a value of true for
the auto_select_patches option), it attempts to select the latest patch
in the supersession chain unless some other patch in the chain is
explicitly selected.

To explicitly install a patch:

swinstall PHCO_1234

NOTE Patch filtering does not apply to explicitly selected patches.
Chapter 5 173

Managing Patches
Patch Management Tasks and Examples
Installing Patches to Kernel and Library Files

To permit patching of kernel files or libraries (e.g. libc.a), SD uses an
archive file type of a. When loading a file of type a, swinstall
temporarily installs the .o file to the target path specified, integrates it
into the archive specified by the archive_path attribute of the file, and
then removes the .o file.

If patch rollback is enabled (see “Patch Removal, Rollback, and
Committal” on page 179), the original .o file is automatically extracted
first and saved so that it can be replaced. Disk Space Analysis is
performed as needed to account for these operations.

Patch Load Order

If you install patch filesets and normal filesets in the same session, then
each patch fileset is considered to have an implied prerequisite on the
fileset that it is patching. For example, a product containing the patch
fileset is installed (or copied into serial distributions) after installation of
the one or more products that contain the patch’s ancestors.

If a base fileset has the is_kernel attribute set to true, then the fileset
patching it must also have the is_kernel attribute set to true to be
installed in the kernel phase of the execution. Otherwise, the patch is
installed along with other non-kernel filesets.

If a bundle contains both normal and patch filesets, the filesets are
installed in their normal order except that any ancestor fileset must be
installed before its patch or patches.

Updating Patched Software

Installation of a new version of a base fileset results in removal of all
filesets that patch the base fileset that you are replacing, along with any
files saved for potential rollback.

Installing Patches to Remote Systems

You can use the SD-UX remote operations features to install patches on
multiple remote systems. (See Chapter 6 , “Remote Operations
Overview,” on page 189.) You can explicitly select patches for multiple
remote systems. Note, however, that the patch_match_target option
works with only one remote system at a time.
174 Chapter 5

Managing Patches
Patch Management Tasks and Examples
Copying Patches

The swcopy command uses the autoselect_patches , patch_filter ,
and patch_match_target options in the same way that swinstall does,
except that there is no filtering based on architecture (either 32-bit or
64-bit).

The following example copies X11 software from the default depot and
copies all patches for this software at the same time. (Note that
autoselect_patches is true by default.)

swcopy X11 @ hostA:/tmp/sw

The following example copies patches that match the base filesets that
are already present in the target depot, and copies (at the same time and
from the same depot) a filtered set of patches (which have a category_tag
value of hardware_enablement) for the base software being copied.
(Note that autoselect_patches is true by default.)

swcopy -x patch_filter=”*.*,c=hardware_enablement” \
 -x patch_match_target @ hostB:/tmp/newdepot

To copy all patches for the base filesets that are already present in the
target depot, starting from a depot that contains patch and non-patch
software:

swcopy -x patch_match_target=true \
@ hostC:/var/spool/sw

To copy a filtered set of patches for the base filesets that are already
present in the target depot, starting from a depot that contains patches
and that may contain non-patch software:

swcopy -x patch_match_target=true \
-x patch_filter=”*.*,c=special_release” \
 @ hostD:/var/spool/sw/sample.depot
Chapter 5 175

Managing Patches
Patch Management Tasks and Examples
Interactive Patch Management

The swinstall or swcopy GUI lets you perform interactive patch
installation and copying. (See “Installing with the GUI” on page 63 and
“Using the swcopy GUI” on page 138.)

The Manage Patch Selection... option in the Actions menu opens the
Manage Patch Selection dialog. This dialog lets you:

• Select from a list of patches available to install or copy.

• Select filters for patches.

• Set other patch options.

Figure 5-1 Manage Patch Selection Dialog

The main object list contains a read-only list of available patch
categories. The list contains the name of the category and a short
description. You can use the list as an aid to selecting and filtering
patches. The following options are also available:

• Include patches with selected (marked) software from the source

Sets the autoselect_patches option. (Default is true.)

• Automatically select patches for existing software on the target

Sets the patch_match_target option. (Default is false.)
176 Chapter 5

Managing Patches
Patch Management Tasks and Examples
• Filter (button and specification field)

Click on the Filter button to display a list of example filters that you
can select from. (To change the filters in the list, see “Editing the
Patch Filter List” on page 177.)

This field sets the patch_filter option, which lets you specify a filter
for automatic patch selection. Patches for software to be installed or
copied are automatically marked as you enter the analysis phase.
Only patches that match the filter criteria are marked.

You can also set Save files replaced by patch for later rollback in the Options
menu. This sets the patch_save_files option. (The default is true.)

See “Command Options” on page 167 in this chapter for more
information on patch options.

NOTE As with all system options, the patch management options revert to their
default values at the next session unless you save and re-use the session
information. See “Session Files” on page 59 for more information.

Editing the Patch Filter List

You can change the default list of patch filters displayed by the swinstall
and swcopy GUI. The list is stored in:

• /var/adm/sw/defaults.patchfilters

The system-wide default list of patch filters.

• $HOME/.swdefaults.patchfilters

The user-specific default list of patch filters.

The list of patch filters is enclosed in braces {} and separated by white
space (blank, tab, or newline). For example:

swinstall.patch_filter_choices={
.,c=enhancement
.,c=critical
}
swcopy.patch_filter_choices={
.,c=halts_system
}

Chapter 5 177

Managing Patches
Patch Management Tasks and Examples
Listing Patches

Software objects with the is_patch attribute set to true have the
built-in, reserved category of patch . This lets you list available patches
and patches with a certain name.

You can also list patches with the swlist GUI (invoked by swlist -i).

For example, to list all products and bundles in a depot that have the
is_patch attribute set to true:

swlist -d -l product -l bundle *,c=patch

...
PHSS_15851 1.0 Xserver cumulative patch
PHSS_16482 1.0 CDE Localization for UTF8 locales
PHSS_16587 1.0 HP aC++ runtime libraries
...

You can list the patches that have been installed for a given base
software product or fileset using the -l patch option.

For example, to list the patches applied to the X11.X11R6-SHLIBS fileset:

swlist -l patch X11.X11R6-SHLIBS

X11.X11R6-SHLIBS B.11.00 X11R6 shared libraries
PHSS_15840.X11R6-SHLIBS 1.0 X11.X11R6-SHLIBS applied
PHSS_17422.X11R6-SHLIBS 1.0 X11R6 shared libraries
applied

You can list the products and filesets to which a patch applies by listing
the ancestor attribute. Also, you can generate a list of patches that a
given patch superseded by listing the supersedes attribute of the patch
fileset.

By default, swlist will only show the latest patches installed on a system
(i.e., those patches that have not been superseded). To list superseded
patches, set the show_superseded_patches option to true:

swlist -x show_superseded_patches=true
178 Chapter 5

Managing Patches
Patch Management Tasks and Examples
Listing Available Patch Categories

You can use the -l category specification to list the categories of
available patches for patches that are defined with category objects.

To list the categories defined for patches in the depot mounted at /CD:

swlist -d -l category @ /CD

critical_patch Patches that fix system
hangsdefect_repair Provide defect repair
hardware_enablement Patches enabling new hardware

To list a particular attribute of a category object identified by the tag
critical_patch :

swlist -a description -l category critical_patch

Using swlist to Resolve Manual Dependencies Some patches
cannot automatically resolve their own dependencies. HP-UX patch
creation tools mark such patches with a generated tag called
manual_dependencies . This tag can help you find patches with
unresolved dependencies, for example:

swlist -l product *,c=manual_dependencies

This command lists all patches on your system that need manual
resolution of dependencies. To identify the dependencies, list the readme
attribute for each patch. For example, you could redirect the output of
the above command to a file, then use the file to list the readme
information for each patch:

swlist -l product -a readme *,c=manual_dependencies

Patch Removal, Rollback, and Committal

To permit future rollback of a patch, use the patch_save_files option.
This option (set to true by default) automatically saves any files replaced
by a patch. You can then restore the original files if you later decide to
remove the patch.

For example,

swinstall -s sw_server -x patch_save_files=true

Rollback files are saved to the directory:

/var/adm/sw/save/ new_patch_name/ fileset_name
Chapter 5 179

Managing Patches
Patch Management Tasks and Examples
These rules govern patch removal and rollback:

• Using swremove to remove the base fileset of a patch fileset also
removes all patches to that fileset.

• Files saved for rollback are also removed when the base fileset to
which they apply is updated or removed from the system.

• Removal of a patch automatically rolls back the saved files, unless:

— You set the patch_save_files option to false at the time you
installed the patches.

— You also remove or update the base fileset.

— You performed a swmodify operation on the patch with the
patch_commit option set to true.

• You cannot roll back an installed patch that has been superseded
unless you first roll back the superseding patch.

• SD performs disk space analysis (DSA) on the save area in the same
way it performs DSA on regular file locations.

To save disk space when you are certain a patch operates correctly, you
may wish to commit the patch by removing the rollback files saved by the
patch_save_files option.

To commit a patch, invoke swmodify on the patch with the
-x patch_commit=true option. (The default value is false.)

For example, to commit the patch PHKL_1234 and remove its
corresponding rollback files:

swmodify -x patch_commit=true PHLK_1234

NOTE NOTE: When you commit a patch and remove its rollback files, all
patches that are superseded by this patch are also committed.

Verifying Patches

The swverify operation on a normal fileset checks that the latest files are
properly installed. When installing a patch, the ancestor fileset is
updated to have the correct attributes of the patched files.

SD verifies patch filesets by checking that files in a patch are still
180 Chapter 5

Managing Patches
Patch Management Tasks and Examples
properly installed (or in the depot correctly).

swverify PHCO_1234

swverify *,c=patch
Chapter 5 181

Managing Patches
Packaging Patch Software
Packaging Patch Software
This section contains information about packaging patch software.
Packaging involves the unique patch attributes and behaviors described
below.

For complete information on packaging, objects, and attributes, see
Chapter 10 , “Creating Software Packages,” on page 297.

Patch Software Characteristics

• Each patch fileset only patches files in one base fileset. If a patch
needs to modify multiple filesets, the patch product contains a fileset
for each base fileset to be modified.

• A patch fileset defines the files to be patched, and the fileset attribute
is_patch must be set to true.

• The ancestor attribute identifies the product or fileset being
patched.

• The first patch of any particular patch supersession chain does not
have a supersedes attribute. A patch that replaces one or more
patches has the appropriate supersedes attribute.

• All patch software objects with the is_patch attribute are
automatically assigned the built-in category of patch , which is then
automatically included in the list of category_tag attributes.

• The category_tag and is_patch attributes at all other levels of
software objects besides fileset are for display and selection purposes
only. (They are not version-distinguishing attributes.)
182 Chapter 5

Managing Patches
Packaging Patch Software
Patch Software Objects and Attributes

SD contains attributes specifically for handling patch software. The
following attributes are available to all software levels (bundles,
products, subproducts, and filesets).

category objects
A software collection can contain a list of category
objects, which are used as a selection mechanism.
Category objects are identified by the keyword category
and contain additional information about this category
(a title, tag, and a description of the category). The
category_tag attribute points to a particular category
object and can appear within a product, bundle,
subproduct, or fileset.

All software objects with the attribute of is_patch set
to true are automatically assigned the category of
patch . (Note that category objects and the
category_tag attribute can be used independently of
patches.)

See “Category Specification” on page 322 for a
complete description of category objects.

is_patch Indicates that a software object is identified as a patch.
The default is false. Only filesets with the is_patch
attribute have patched files. Other levels can be
identified as patches for the listing utilities to facilitate
identification of patch software at any level.

All software objects with the attribute of is_patch set
to true are automatically assigned a category of patch .

Patch Fileset Attributes

Patch filesets generally operate like normal filesets. Differences are:

• Patch filesets have an explicit ancestor.

• Patch filesets can be installed in the same session as their base, or
ancestor, fileset. (The base fileset is always installed first.)

• Patch filesets can be rolled back.

• Patch filesets maintain catalog information to support these features.
Chapter 5 183

Managing Patches
Packaging Patch Software
• Control scripts delivered with the patch fileset run only when that
patch fileset is installed. They do not replace the control scripts for
the base fileset.

See “Fileset Specification” on page 329 for a complete description of all
patch and non-patch fileset attributes.

Patch fileset attributes include attributes that you can specify in a
product specification file (PSF) and attributes generated by SD.

User-specified Attributes

You can specify the following patch fileset attributes in a PSF:

• ancestor software_specification

Designates the base fileset to be patched.

• supersedes software_specification

Used when a patch replaces an earlier patch. The attribute indicates
which previous patches are replaced by the patch being defined. This
attribute is repeatable.

This attribute consists of a list of software specifications of other
patch filesets that the patch supersedes:

supersedes product . fileset ,fr= revision

When a patch supersedes another patch, the superseding patch is
automatically selected by default. A superseding patch replaces the
files of the patch it supersedes when installed after that patch.

Patches may supersede other patches to the same base (non-patch)
fileset, or they may be applied to the same base fileset in parallel with
other patches.
184 Chapter 5

Managing Patches
Packaging Patch Software
Patch File Attributes

Patches to the kernel or other libraries can be implemented and removed
with the following file level attributes:

type If set to a, designates an archive file and marks it for
an archive action during an install or update. An
archive file is a .o file that needs to be replaced in an
existing archive using the ar command.

archive_path Designates the path to the archive to which the file
should be added (instead of installing it to the path
location).

When used with the patch_save_files option, the .o
file that previously existed in the archive is saved, and
can be restored.

Sample PSF usage:

file -t a newfile.o /usr/lib/foolib.a

file
type a
archive_path /usr/lib/foolib.a
source_path /usr/lib/newfile.o
Chapter 5 185

Managing Patches
Packaging Patch Software
PSF Example

This sample PSF shows a patch for the file /build/sbin/who in the
fileset:

OS-Core.CMDS-MIN,l=/,r=B.11.00,\
a=HP-UX_B.11.00_32/64,v=HP

Note that the HP-UX convention is for patches to use unique product
tags but that the fileset tags match those of the ancestor filesets.

category

tag normal_patch
revision 0.0
title Patches for normal use
description Normal patches for typical problems....

end

product
tag PHCO_12345
revision B.11.00
architecture r=B.11.00,a=HP-UX_B.11.00_32/64

vendor_tag HP
title Core Operating System (patch)
machine_type *
os_name HP-UX
os_release ?.11.*
os_version *
is_patch true
category_tag normal_patch

fileset
tag CMDS-MIN
revision B.10.01.001
title “Patch of /sbin/who for ... “
description “Patch of /sbin/who ... ”
ancestor OS-Core.CMDS-MIN,\

r=B.10.01_700,a=HP-UX_B.10.01_700,v=HP
is_patch true
file /build/sbin/who /sbin/who
end

end
186 Chapter 5

Managing Patches
Packaging Patch Software
Notes:

• The ancestor attribute identifies the fileset to be patched.

• The true value of the is_patch attribute at the fileset level flags this
fileset as a patch and permits rollback if you use the
patch_save_files option when you install the patch.

Attributes Generated by SD

SD-UX generates the following patch fileset attributes and stores them
in the IPD:

• applied_patches

Set for base (non-patch) software only. Indicates patches that have
been applied to a base fileset. An empty list for this attribute
indicates the fileset has had no patches applied.

• applied_to

Set for patch filesets only. Indicates the base fileset that the patch
was applied to.

• patch_state

Applies to installed patches only. Indicates the current state of the
patch:

applied Patch can be rolled back and has not been
superseded.

committed Rollback files have been deleted.

superseded Patch has been superseded by another patch.

committed/superseded
Patch has been both committed and superseded.

• superseded_by

Applies to installed patches only. Lists the fileset that caused the
current fileset to become superseded.
Chapter 5 187

Managing Patches
Packaging Patch Software
188 Chapter 5

Remote Operations Overview
6 Remote Operations Overview

This chapter presents an overview of remote operations, describing
set-up, features, and important concepts to help you effectively manage
software across multiple systems. More information about remote
operations is also presented in Chapter 7 , “Using Jobs and the Job
Browser,” on page 213

Topics:

“Introduction” on page 190

“Setting Up Remote Operations” on page 198

“Remote Operations from the Command Line” on page 210

“Using the Remote Operations GUI” on page 193

“Remote Operations Tutorial” on page 199

“Remote Interactive swlist” on page 209
Chapter 6 189

Remote Operations Overview
Introduction
Introduction
In addition to its ability to “pull” software from a central depot, Software
Distributor also provides powerful features for remote operations that let
you “push” software to remote systems (targets) from the local host. You
can use these features interactively and monitor results of all SD-UX
commands with the Job Browser or from the command line with the
swjob command.

NOTE The Terminal User Interface (TUI) is not available for remote operations.

Differences Between Remote and Local Operations

In general, all Software Distributor features that apply to local operation
also apply to remote operations. Additional features of remote operations
are summarized in this section.

Remote Targets

For local operations, the target consists of the local host or depots on the
local host. For remote operations, the target can be one or more remote
systems. A target can also contain depots and act as a source to serve
other targets.

Controller, Daemon, and Agent Programs

The controller programs provide the user interface for SD-UX tasks and
programs. The controller’s role collects and validates data it needs to
start a task and to display information on the task’s status. The
controller also distributes software to remote target machines.

On each target, the SD-UX daemon runs in the background, listening for
requests coming from the controller. When a request is received, the
daemon schedules the SD-UX agent to perform the task. The daemon
also schedules the agent to answer requests from other agent programs
that want to use one of the host’s depots as a source.
190 Chapter 6

Remote Operations Overview
Introduction
NOTE You must restart the SD-UX daemon if you change daemon options, or
the system will not recognize the changes. See “Using Command
Options” on page 57 for more information.

Job Management

With SD-UX remote operations, you can create jobs for immediately
execution or schedule them for later execution. In addition, you can
browse the scheduled, active, and completed jobs using either the
command line interface (with the swjob command) or the interactive
interface (with the sd command).

Compatible Software

The swconfig, swinstall, and swverify commands let you detect and
enforce the use of compatible software (i.e., ensure software products are
compatible with system types and operating systems). When you select
multiple targets for a remote operation, SD-UX lets you select only the
software compatible with all targets.

Dependencies Between Software

As with local operations, the swask, swconfig, swcopy, swinstall,
swremove, and swverify commands support dependencies between
filesets and products. If you have a software selection that specifies a
dependency on other filesets or products, the command automatically
selects that software. (This step is executed on the local host. You can
override this policy with the autoselect_dependencies default option.)

With remote operations, dependencies are analyzed on each target and a
fileset will not install if dependencies are not met on that target. (You
can override this policy using the enforce_dependencies default
option.)

Session Files

You can use the session file command options to build, save, and reuse
sessions with most commands. With remote operations, target selections
are saved along with options, source information, and software
selections.
Chapter 6 191

Remote Operations Overview
Introduction
Additional GUI Components

SD-UX adds extra components to the GUI programs when remote
operations are enabled. Otherwise, the programs are almost identical to
those used for local operations. (See “Using the Remote Operations GUI”
on page 193.)

Software and Target Lists

Most SD-UX commands let you read lists of software selections from
separate input files. With remote operations, you can also read target
lists from separate files. The local controller GUI also lets you use
software and target lists.

Remote Patch Operations

You can use the SD-UX remote operations features for patch
management. You can explicitly select patches for multiple remote
systems at one time. Note, however, that the patch_match_target
option works with only one remote system at a time. See “Installing
Patches to Remote Systems” on page 174 for more information.

Limitations

• You cannot use remote operations to directly “push” an HP-UX OS
update to remote systems.

• Remote operations do not apply to the following SD-UX commands:

— install-sd

— swpackage

— swmodify
192 Chapter 6

Remote Operations Overview
Using the Remote Operations GUI
Using the Remote Operations GUI
SD-UX adds extra components to the GUI programs when remote
operations are enabled. The extra components for remote operations
include a target selection window and features for managing target lists,
job preferences, and job monitoring windows. Otherwise, the GUI
programs are identical to those used for local operations.

After you set up remote operations and enable the remote operations
GUI on the central controller, you can start the swinstall, swcopy, or
swremove GUI as you normally would. For example:

/usr/sbin/swinstall

or

/usr/sbin/swinstall -i

NOTE The Terminal User Interface (TUI) is not available with remote
operations.

Target Selection Window

The Target Selection Window always appears first with the remote GUI
programs. Like the Software Selection Window, it features the standard
menu bar, message area, and object list of targets available for selection.
Instead of selecting software, you select the remote targets on which the
remote operation will take place. Menu items and target selection are
discussed in the following sections.
Chapter 6 193

Remote Operations Overview
Using the Remote Operations GUI
Figure 6-1 Target Selection Window

Performing Actions

The general procedure for using the remote operations GUI is to:

1. Select one target at a time by highlighting a target in the object list of
the Target Selection Window.

2. Select Actions →Mark for Install.... (or Actions →Mark for Copy.... or
Actions →Mark for Remove....).

3. Repeat 1 and 2 for any additional targets.

4. When you have selected all targets for your operation, select
Actions →Show Software for Selection.... to display the Software
Selection Window.

Selecting Multiple Targets

This section discusses how to install to multiple targets, create target
groups, and how to save these groups for future software installations.
(For single-target installations to your local (default) target, see the
procedures in “Remote Operations Tutorial” on page 199).
194 Chapter 6

Remote Operations Overview
Using the Remote Operations GUI
The Target Selection Window displays a list of targets may be displayed:

• If you have recalled a session file (File→Recall Session), any hosts
defined in that session are displayed.

• Otherwise, any hosts specified in the default hosts file
(/var/adm/sw/defaults.hosts or $HOME/.sw/defaults.hosts) are
displayed. (See “Preselecting Host Files” on page 38.)

• If you started SD-UX from ServiceControl Manager, targets are
pre-selected and cannot be changed.

If the desired target for the installation is not in the list:

1. Choose Actions →Add Targets.... The Add Targets dialog (Figure 6-2) is
displayed.

Figure 6-2 Add Targets Dialog

2. Enter the primary root name in the Hostname: area and select Add.

3. The Select Target Path dialog appears. The default path is root (/). To
accept the default root (/), click OK.

4. After selecting the root path, the Hostname and Root Path are
automatically updated in the Add Target dialog (Figure 6-2). To add
additional targets, repeat 2.

5. Select OK in the Add Targets dialog. This adds your selections to the
Target Selection Window. Each target is contacted as it is added to
Chapter 6 195

Remote Operations Overview
Using the Remote Operations GUI
the Target Selection Window. Networking may cause delays; if the
SD-UX daemon is not running on the target, the delay lasts until the
daemon times out.

From the Target Selection Window, any targets added using Add
Targets... are automatically marked Yes.

6. If there are any other desired targets in the Target Selection List that
are not marked and you want to install to them, highlight the target
by clicking on it.

Choose Actions →Mark for Install . The Marked? column is set to Yes for
that target.

— or —

Hold down the right mouse button and choose Mark for Install from the
resulting menu.

7. To unmark a target in the Target Selection Window (i.e., object list):

a. Highlight the target

b. Choose Actions →Unmark for Install . The Marked? column is cleared
for that target.

— or —

Hold down the right mouse button and choose Unmark for install .

At this point, all desired targets should be listed and have Yes in the
Marked? column. If you have not marked any targets, you cannot proceed
to the Selecting Software phase.

Selecting Individual Targets

You can add or delete individual targets.

To add a new target:

1. Select Actions →Add Targets... .The Add Targets dialog appears.

2. Type in the name of the desired target and click on Add . The Select
Target Path dialog appears.

3. Click OK to accept the default (/) or click on the Root Path... button to
display the Shared Root Paths dialog, which contains more selection
options.

4. Select the desired root and click OK to return to the Select Target
196 Chapter 6

Remote Operations Overview
Using the Remote Operations GUI
Path dialog.

5. Click OK to return to the Add Targets dialog

6. Click OK. You have now marked an additional target.

To delete targets, select one or more targets from the Target Selection
Window, then select Actions →Unmark for Install .

Saving a Target Group

You may want to re-use your list of targets for a later session. To do so,

1. Select Actions →Save Target Group...

The Select File dialog appears. If target groups already exist, the first
file path appears in the text box in the bottom of the dialog. Type a
name for a new group or re-use an existing group (saving your
current list to existing target group overwrites that group). Groups
are saved in the directory:

$HOME/.sw/targets

2. To save the group, click OK.

This saves all the target selections you have just marked (all targets
listed with Yes in the Marked? Column). This group will
automatically appear in the Select File dialog for all subsequent
target group selections.

Adding a Target Group

To re-use a target group that you previously saved:

1. Select Actions →Add Target Group... . The Select File dialog appears. All
existing target groups appear in the list.

2. Select the target group you want and click OK.

The targets from that group are now marked, along with any other
targets you had already marked.
Chapter 6 197

Remote Operations Overview
Setting Up Remote Operations
Setting Up Remote Operations
SD-UX uses Access Control Lists to authorize anyone who is attempting
to create, modify, or read software products in a depot or to install
software to a root file system. (ACLs are discussed in detail in Chapter
9 , “SD-UX Security,” on page 251.) To enable the remote operations, you
must install a special HP ServiceControl Manager fileset on each remote
system to be managed. You can then enable the remote operations GUI.

1. As root, enter the following command on the controller system:

swreg -l depot /var/opt/mx/depot11

• If the remote host is running HP-UX 10.20, use the same
command but substitute depot10 for depot11 .

• This sets up sharing of the depot used to enable the remote
systems.

2. As root, enter the following command on each remote system to be
managed. This sets up the root, host and template ACLs in a way that
permits root access from the controller system:

swinstall -s central_node:/var/opt/mx/depot11 \
AgentConfig.SD-CONFIG

• In this example, central_node is the name of the controller.

• If the remote host is running HP-UX 10.20, use the same
command but substitute depot10 for depot11 .

• Remote systems previously set up with OpenView Software
Distributor do not require this step.

• Software Distributor does not require any other ServiceControl
Manager filesets.

3. (Optional) On the central controller system only, enter the following
command to enable the remote operations GUI interface:

touch /var/adm/sw/.sdkey

(This step is not required when you use SD-UX from within the HP
ServiceControl Manager.)
198 Chapter 6

Remote Operations Overview
Remote Operations Tutorial
Remote Operations Tutorial
This tutorial introduces you to the remote operations user interface and
to the general flow for distributing software to other systems. Also, you
will learn how to preview, schedule, and monitor your distribution jobs.
Although this tutorial uses swinstall for the example GUI, the swcopy
and swremove GUI programs are almost identical. You can apply the
knowledge you gain from this tutorial to those tasks.

You may wish to go through this tutorial more than once to experiment
with variations in the basic operations.

Tutorial Set-Up

1. Set up remote operations on your controller system and a remote test
system. (See “Setting Up Remote Operations” on page 198.)

2. As root on the controller system, enable the remote operations GUI:

touch /var/adm/sw/.sdkey

3. Make sure your PATH variable contains /usr/sbin . To check, enter:

echo $PATH

4. Make sure your DISPLAY variable is properly set by typing:

echo $DISPLAY

5. Ensure that the examples are installed. Enter:

swlist SW-DIST.SD-EXAMPLES

6. Create the depot containing example package (i.e., SD-DATABASE):

cd /usr/lib/sw/examples/swpackage/depot_src

swpackage -s psf @ /var/adm/sw/examples/depot

swreg -l depot @ /var/adm/sw/examples/depot

7. To verify that the software is in the depot and is available for
distribution to targets, enter:

swlist -s /var/adm/sw/examples/depot

You should see SD-DATABASE in the resulting list.
Chapter 6 199

Remote Operations Overview
Remote Operations Tutorial
How to Perform a Single-Target Installation

Overview The tutorial consists of these steps:

Step I: Start-up To initiate an install session:

1. Start the Job Browser by typing:

sd

2. From the Job Browser window, choose

Actions →Create Job →Install Software...

The message Invoking a swinstall process displays at the
bottom of the window, then the Target Selection Window appears.

Overview of Installation Steps

I. Start-up Start the Job Browser.

II. Select Targets Specify the targets where you want the software installed.
You can use the default local target or specify another
target.

III. Select Source Provide the location of the software depot from which the
software will be installed with the Specify Source dialog.

IV. Select
Software

Use the Software Selection Window to select the software
to install.

V. Specify Install
Preferences

Use the Install Preferences dialog box to set preview or
scheduling options.

VI. Analysis and
Installation

Perform the actual software installation or preview.

VII. Monitor
Results

Monitor job progress and results using the Job Browser
GUI.

VIII. Remove
Jobs

Delete the completed jobs using the Job Browser.
200 Chapter 6

Remote Operations Overview
Remote Operations Tutorial
Step II:
Select Targets

The Target Selection Window displays the local, default target. A target
is where you want the installation to go (in the example below, the target
is the system swbash3). By default, the current system is listed (Figure
6-3).

Figure 6-3 Target Selection Window

Specify the desired target for the installation:

1. For local default:

a. Highlight the local target system with a left mouse click. Then
select Actions →Mark for Install (or right-click to display the pop-up
menu and select Mark for Install).

b. Select Actions →Show Software for Selection...

This displays the Specify Source dialog. If this is your first time
through this tutorial, skip directly to “Step III: Select Source” on
page 203. After you have gone through this tutorial once, retry Step I
using remote targets.
Chapter 6 201

Remote Operations Overview
Remote Operations Tutorial
— or —

For remote targets: choose Actions →Add Targets to install to a
different target. This takes you to the Add Targets dialog (Figure 6-4).

2. Enter the target name in the Hostname: area (e.g., system_two) and
select Add . This takes you to the Select Target Path dialog.

Figure 6-4 Add Target Dialog (for multiple or non default targets)

3. Use the current root path (/) by selecting OK. This returns you to the
Add Targets dialog.

4. Select OK in the Add Targets dialog. This updates the Target
Selection Window with your target selection. Yes appears in the
Marked column, indicating that the target is marked for installation.

5. Choose Actions →Show Software for Selection . The Specify Source
dialog appears.
202 Chapter 6

Remote Operations Overview
Remote Operations Tutorial
Step III: Select
Source

In this step, the Specify Source dialog lets you select the Source Host
Name (the source system where the depot resides) and Source Depot
Path (path of the depot containing the software).

Figure 6-5 Specify Source Dialog

1. The Specify Source dialog should list your controller name or your
remote test system name in the Source Host Name... field and the
example depot that you created (/var/adm/sw/examples/depot) in
the Source Depot Path... field.

From this dialog, you can also:

• Click on the Source Host Name... button to display a list of hosts
that you can select from.

• Click on the Source Depot Path... to display a list of registered
depots that you can select from.

Click OK. The Software Selection Window appears (Figure 6-6). This
window displays all available software in the depot that you selected.
Chapter 6 203

Remote Operations Overview
Remote Operations Tutorial
Step IV: Select
Software

Use the Software Selection Window to select the software you want to
install.

Figure 6-6 Software Selection Window

1. Highlight SD-DATABASE (i.e., the example software) by clicking on it
with the left mouse button.

2. Choose Actions →Mark for Install (or right-click to display the pop-up
menu and select Mark for Install).

The Marked? column is set to Yes for SD-DATABASE.

Software Selection Window Object List

The Software Selection Window object list is hierarchical: you can open each
object in the list and show objects contained inside. Objects in the list that
contain other objects that can be opened, have an arrow (→) after the name.
204 Chapter 6

Remote Operations Overview
Remote Operations Tutorial
3. Choose Actions →Install . This displays the Install Preferences dialog
(Figure 6-7).

Step V: Specify
Install Preferences

The Install Preferences dialog box gives you the following optional
selections: Preview , Schedule , and OK. You can also enter a Job Title.

Figure 6-7 Install Preferences Dialog

1. Select the text area after Job Title and type:

SDTESTJOB

This is the name of your install job.

For example:

• To see the subproducts in the productSD-DATABASE, double click on it. The
object list displays the subproducts. To open a subproduct, double click on
the name. (Or highlight the name and then selectActions →Open Item ..)

• To close an object and return to the previous list, double click on the first
item in the list (..(go up)) or highlight the item and selecting
Actions →Close Level .

Note that products are listed together, but subproducts and filesets may
appear in the same list when you open a product.

Software Selection Window Object List
Chapter 6 205

Remote Operations Overview
Remote Operations Tutorial
2. Select OK to install the software now.

For single-target installations such as this tutorial, the Install
Analysis dialog appears (Figure 6-8 on page 207).

3. If this is your first pass through the tutorial, proceed to Step V.

4. (Optional) Previewing a Job

a. Select the Preview button. This tells SD to analyze the software
without installing it.

b. Click OK. The Install Analysis dialog appears. This dialog lets you
monitor the analysis of a single-target job. You can also browse log
files and product summary information.

c. When the target Status indicates Ready (analysis is successful),
select OK. This returns you to the Software Selection Window.

d. Select Actions →Install . The Install Preferences dialog appears.

e. Proceed with the installation by selecting OK in the Install
Preferences dialog.

(If you repeat this tutorial and choose to preview a job that uses
multiple targets, you will find that the Install Analysis dialog does
not appear. You can only monitor the preview job progress from
the Job Browser. See “Step VII: Monitor Results” on page 208 for
more information.)

5. (Optional) Scheduling a Job

a. Select the Schedule button. This activates the fields that let you
specify the time and date you at which you want your job to run.
(For example, you may want to schedule a job at midnight when
few users are logged in.)

b. After you specify the schedule information, click OK. The system
displays a note indicating that the job has been scheduled.

c. Click OK in the dialog. The Target Selection Window reappears.
Select File→Exit to return to the Job Browser, from which you can
monitor your scheduled job.
206 Chapter 6

Remote Operations Overview
Remote Operations Tutorial
Step VI: Analysis
and Installation

SD-UX analyzes the target before performing the actual install, copy, or
remove operation. (If you set up a preview job in Step IV, the install stops
after the analysis.)

Figure 6-8 Install Analysis Dialog

1. When the Analysis is complete, the status for the target you selected
should show Ready, indicating no errors or warnings occurred during
analysis. Select OK to proceed with the installation.

The Install Window dialog (Figure 6-9) appears, and the installation
starts automatically. When the status in the dialog changes to
Completed , the installation has successfully completed.

Figure 6-9 Install Window dialog

2. Select Done to exit the Install Window dialog. This returns you to the
Target Selection Window.

3. Select File→ Exit to return to the Job Browser.

4. (Optional) Select another target for installation (i.e., Actions →Mark for
Install).
Chapter 6 207

Remote Operations Overview
Remote Operations Tutorial
Step VII: Monitor
Results

When you exit the Target Selection Window, you return to the Job
Browser. The icons in the job list change to show the status of jobs.
Different icons indicate different job status. (See “Job Browser Icons” on
page 216 for sample icons.)

Your job, labeled SDTESTJOB, should show with either a check mark or a
ruler icon. To verify status information for SDTESTJOB from the job list:

• Double click SDTESTJOB to invoke the Job Results dialog.

• Double click the target to show the detailed target log.

• Click OK to close each dialog after you have viewed it.

— or —

1. Select the SDTESTJOB icon.

2. Choose Actions →Show Job Description The Job Description dialog
appears. This displays all of the job attributes, the software and the
target(s) involved.

3. (Optional) Select Show Options... to see what the job option settings.

4. (Optional) Select Show Results... to see the latest job status.

Step VIII: Remove
Jobs

After you have run the tutorial, use the Job Browser to remove the
example jobs:

1. Click on the SDTESTJOB icon.

2. Select Actions →Remove Job... . The Remove a Job dialog box appears.

3. Select OK.

— or —

1. Select the job icon and right click.

2. Select Actions →Remove Job... from the pop-up menu. The Remove a
Job dialog appears, displaying SDTESTJOB.

3. Select OK. The SDTESTJOB icon disappears from the Job Browser and
the job is removed from the SD-UX database.
208 Chapter 6

Remote Operations Overview
Remote Interactive swlist
Remote Interactive swlist
For remote operations, the swlist -i command starts a list browser that
lets you interactively list installed software on remote hosts. The only
difference between remote and local operations is the name of the target
displayed in the message area of the Software Browsing window.

Figure 6-10 The swlist Browser

For more information about swlist, see “Listing Your Software (swlist)”
on page 94.
Chapter 6 209

Remote Operations Overview
Remote Operations from the Command Line
Remote Operations from the Command Line
Running remote operations from the command line is almost identical to
those for local operations. Key differences are:

• You must specify target selections.

• You can monitor jobs using the swjob command, as discussed in
“Monitoring Jobs from the Command Line” on page 227.

• You can use additional command options to schedule and manage
jobs. See “Managing and Tuning Jobs with Command Options” on
page 231.

Target Selections

By definition, you must specify a remote target for a remote operation.
Unlike local operations, in which a target could be a directory on the
local host system, you must specify remote systems as targets for remote
operations.

swinstall -s sw_server cc pascal @ hostA hostB hostC

(This installs the C and Pascal products onto three remote hosts.)

Syntax

Software and source depot selections are followed by target selections.
These operands are separated by the “@” (at) character. This syntax
implies that the command operates on selections at targets.

The target_selections syntax is identical for all Software Distributor
commands that require it:

@ [host][:][/directory]

• Only one @ character is needed.

• You can specify the host by its host name, domain name, or internet
address. A directory must be specified by an absolute path.

• The : (colon) is required if you specify both a host and directory.

• On some systems, the @ character is used as the kill function. Type
stty on your system to see if the @ character is mapped to any other
function on your system. If it is, remove the mapping, change the
210 Chapter 6

Remote Operations Overview
Remote Operations from the Command Line
mapping, or use \@.

Target Files

You can also use an input file to specify targets. To keep the command
line shorter, target selection input files let you specify long lists of
targets. With a target selection file, you only have to specify the single
file name.

The -t command-line option lets you specify a target file. For example:

swinstall -f mysoft -s /mnt/cd -t mytargs

In this example, the file mytargs (which resides in the default directory)
contains a list of target selections for the depot /mnt/cd.

In the target file, blank lines and comments (lines beginning with #) are
ignored. Each target selection must be specified on a separate line and
must consist of a host name or network address, optionally followed by a
colon and a full path:

host [:/ directory]

Examples

swacl

To list the global product template ACL on remote host gemini :

swacl -l global_product_template @ gemini

swask

To run all request scripts from depot /var/spool/sw on the remote
system swposix and write a response file back to the same depot:

swask -s swposix:/var/spool/sw *

swconfig

To configure the C and Pascal products on three remote hosts:

swconfig cc pascal @ hostA hostB hostC

swcopy

To copy the C and Pascal products to one local and two remote depots:
Chapter 6 211

Remote Operations Overview
Remote Operations from the Command Line
swcopy -s sw_server cc pascal @ /var/spool/sw \
hostA:/tmp/sw hostB

swinstall

To install the C and Pascal products to three remote hosts:

swinstall -s sw_server cc pascal @ hostA hostB hostC

swjob

The swjob command lets you monitors jobs from the command line. For
more information about jobs, see Chapter 7 , “Using Jobs and the Job
Browser,” and “Monitoring Jobs from the Command Line” on page 227.

To list the agent log of remote system TargetA for job hostA-0001 :

swjob -a log hostA-0001 @ targetA :/

swlist

To list the C product on three remote hosts:

swlist cc @ hostA hostB hostC

swreg

To unregister the default depots on three remote hosts:

swreg -u -l depot /var/spool/sw @ hostA hostB hostC

swremove

To remove the C and Pascal products from three remote hosts:

swremove cc pascal @ hostA hostB hostC

swverify

To verify the C and Pascal products on three remote hosts:

swverify cc pascal @ hostA hostB hostC
212 Chapter 6

Using Jobs and the Job Browser
7 Using Jobs and the Job Browser

This chapter describes SD-UX jobs the Job Browser interface for remote
operations. For additional information on remote operations, see Chapter
6 , “Remote Operations Overview,” on page 189.

Topics:

“Introduction” on page 214

“Using the Job Browser” on page 215

“Monitoring Jobs from the Command Line” on page 227

“Managing and Tuning Jobs with Command Options” on page 231
Chapter 7 213

Using Jobs and the Job Browser
Introduction
Introduction
The Job Browser GUI, an interactive interface for managing remote
operations. The Job Browser lets you:

• Create copy, install, or remove jobs

• Monitor job status and logfiles

• List job information

• Schedule jobs

The swjob command lets you monitors jobs from the command line.
Various command options help you manage and tune performance of jobs
and remote operations.

NOTE The Terminal User Interface (TUI) has some limitations when used with
the Job Browser:

• Error-handling messages may garble the screen. Type Ctrl-L to refresh
the screen if this happens.

• If you display Actions →Job Description →Show Options , some scrolling
is required to view the entire screen.

Starting the Job Browser

To start the Job Browser, type:

sd

The Job Browser window displays on your screen.
214 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser
Using the Job Browser

Figure 7-1 The SD Job Browser Window

The window is divided into three parts:

• Menu bar, which contains most of the standard SD-UX menus
discussed in “Using the GUI and TUI Commands” on page 34. Menu
items specific to the Job Browser are discussed later in this chapter.

• Message area, which displays the current time.

• Jobs List, which displays job icons (the default) representing each job.
Under the icon is the job title. To select a job, click on the icon. See
“Job Browser Icons” on page 216.

NOTE Until a job is created, the Jobs List is empty.
Chapter 7 215

Using Jobs and the Job Browser
Using the Job Browser
Job Browser Icons

• A clock indicates that the job is scheduled but hasn’t run yet.

• A check mark indicates that a job has completed.

• A ruler indicates that the job is active.

• A red background indicates that the job contained errors.

• A yellow background indicates that the job contained warnings.

Figure 7-2 Copy Icon

This icon represents a copy job (depot to depot). A check mark indicates
that the job has completed.

Figure 7-3 Active Install Job Icon

This icon represents an install job. The ruler on the side indicates that
the job is active.
216 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser
Figure 7-4 Scheduled Install Job Icon

This icon represents an install job that is scheduled for a later time. The
clock face indicates that it is a scheduled job.

Figure 7-5 Install Job with Warnings Icon

This icon represents an install job that completed, but contained
warnings. The background around the icon is yellow.

Figure 7-6 Install Job with Errors Icon

This icon represents an install job that completed, but contained errors.
The background around the icon is red.
Chapter 7 217

Using Jobs and the Job Browser
Using the Job Browser
Figure 7-7 Scheduled Remove Installed Software Job Icon

This icon represents a scheduled remove job on installed software.

Figure 7-8 Scheduled Remove Depot Software Job Icon

This icon represents a scheduled remove job on software contained in a
depot.

Figure 7-9 Verify Job Icon

This icon represents a verify job (represented by a magnifying glass) that
completed, but contained errors. The background around the icon is red.
218 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser
The File Menu

The File menu has the following options:

Search Performs text searches for job IDs or titles.

Print Lets you print the jobs list.

Exit Exits the Job Browser

Printing the Jobs List

This option prints the Jobs List to a specified printer or saves it to a file.
(The Jobs List can only be printed if it is listed by properties—see “The
View Menu”.) If the Jobs List is displayed by name and icon (the default),
this menu item is greyed-out and cannot be chosen. To print the Jobs
List:

1. Select View→By Properties .

2. Choose File→Print The Print Objects dialog is displayed.

3. Supply any necessary information in the Print Objects dialog and
select OK.

The View Menu

The View menu lets you change the way information is presented in the
Job Browser. The standard choices on this menu (Columns... , Filter... ,
Sort... and Save View as Default) match those described in “Changing
Software Views—The View Menu” on page 41. Note, however, that the
Columns... choice is only valid for View→By Properties (discussed below).
Chapter 7 219

Using Jobs and the Job Browser
Using the Job Browser
Figure 7-10 Jobs Displayed by Properties

Viewing By Name and Icon

• Choosing View→By Name and Icon displays the jobs list in name and
icon format.

• This menu item and the View→By Properties menu choice operate as
radio buttons. When one is chosen, the other is un-chosen.

Viewing By Properties

• Choosing View→By Properties displays the jobs list by properties (job
title, ID, type of operation, scheduled date, status, progress, results,
and date of last update).

• Any modifications made in the View→Columns... , View→Filter ..., or
View→Sort ... menu selections affect how the property list is displayed.

• This menu item and the By Name and Icon menu choice operate as
radio buttons. When one is chosen, the other is un-chosen.

• You can print the job list from this view by choosing File→Print
220 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser
The Options Menu

The Options menu optional behavior of the Job Browser.

Changing the Refresh Interval

By default, the Jobs List is refreshed every minute. You may want the
list updated more frequently if you are monitoring a lot of jobs. Or, you
can turn off the automatic refresh feature to improve performance.

To change how often the list is updated:

1. Choose Options →Change Refresh Interval The Refresh Interval
dialog is displayed.

2. Select a new refresh interval from the list.

Figure 7-11 Refresh Interval Dialog

• Apply immediately applies the interval you have selected.

• Save Interval as Default sets the selected refresh interval as the default
for future sessions.

To change the refresh interval for the SD-UX daemon, see “Managing
and Tuning Jobs with Command Options” on page 231.

Refreshing the Jobs List

To immediately update the Jobs List, choose Options →Refresh List .
Chapter 7 221

Using Jobs and the Job Browser
Using the Job Browser
The Actions Menu

Items in the Actions menu let you perform job creation and management
tasks. If you have selected a job selected, the actions available apply
specifically to that job. If you do not have a job selected, the only action
available is job creation.

Shortcuts

To display a pop-up menu of job-specific actions, right-click on a job icon,
then left-click. This displays a pop-up Actions menu items. Choose an
action by clicking with either mouse button.

Double clicking on a job displays the Job Results dialog (same as
Actions →Show Job Results)

Creating a Job

To create a job, choose Actions →Create Job . This brings up a submenu
with the following choices that start different sessions:

Showing Job Results

Selecting Actions →Show Job Results... displays the Job Results dialog,
which lists results for the job selected. (You can also reach this dialog by
double-clicking a Job Browser icon.)

• The object list shows the list of targets for the job, their type, and job
status.

• The Show only warnings or errors toggle button changes the
information displayed to show all targets or to show only the list of
targets with warnings or errors in the job.

• Select the Show Log button or double-click on a target in the object
list opens the log for that target.

Job Actions & Selections

Install Software... swinstall session.

Remove Installed Software... swremove session.

Copy Software to a Depot... swcopy session.

Remove Software from a Depot... swremove -d session.
222 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser
• Select OK to return to the Job Browser. (Closing the dialog does not
stop the jobs displayed if they are active.)

Figure 7-12 Job Results Dialog

NOTE For performance reasons, a maximum of 250 targets are listed at once. If
there are more then 250 targets for the job, Next and Previous buttons
appear to let you view groups of 250 targets. Showing only warnings or
errors can reduce the number of targets displayed.

Showing Job Descriptions

Selecting Actions →Show Job Description... opens the Job Description
dialog, which contains all the information specified when the job was
created, including:

• All job attributes (ID, type of operation, scheduling, current state,
results, when last updated, source)
Chapter 7 223

Using Jobs and the Job Browser
Using the Job Browser
• Name and revision of the software

• Targets involved and target type:

— primary root

— alternate root

— depot

Figure 7-13 Show Job Description

• Selecting Show Options... displays the Job Options dialog. This lets
you see the options used to create this job.

• Selecting Show Results... displays the Job Results dialog, which shows
the latest status information on the job.

• Select OK in the Job Description dialog to return to the Job Browser.
You can display the same information by double clicking on a job.

Showing Job Logs

Selecting Actions →Show Job Log... displays the Job Log dialog, which
224 Chapter 7

Using Jobs and the Job Browser
Using the Job Browser
displays the controller (summary) log of a selected job. Buttons let you
refresh or print the log file. Select OK to return to the Job Browser. (This
menu item is greyed-out if the selected job is not active or completed.)

Copying Jobs

Copying a job consists of making the target and software selections
available to a new session of swinstall, swcopy, or swremove. The new
session is invoked automatically, using the same hosts, sources, software
and target selections from the selected job. You can then re-use the same
settings or make changes as needed.

This feature gives you the same advantages as using a session file in
swinstall, swremove, or swcopy session. This can help you:

• Distribute the same software to a new set of targets

• Distribute new software to a previously defined set of targets

• Change a job from preview to full execution

To copy a job:

1. Select the desired job icon or listing in the job list.

2. Choose Actions →Create Job from Selected Job

The SD-UX program that matches the original job is automatically
invoked. (For example, an installation job invokes swinstall.)

• The Target Selection window displays the previously specified
targets.

• The Software Selection window displays the list of previously
specified software.

3. Execute the program with the copied settings, or change the settings
before execution.

Removing a Job

The Actions → Remove a Job.. . menu choice lets you remove the currently
selected jobs from the Jobs List. (To select more than one job, hold down
the CTRL key while selecting jobs in the Job Browser window.) The
Remove a Job dialog displays, listing information about the selected jobs.
Chapter 7 225

Using Jobs and the Job Browser
Using the Job Browser
Figure 7-14 Remove a Job dialog

• If you remove a scheduled job that has not yet run, the job is never
run.

• You cannot remove a job that is in progress.
226 Chapter 7

Using Jobs and the Job Browser
Monitoring Jobs from the Command Line
Monitoring Jobs from the Command Line
The swjob command lets you display and monitor jobs information using
the command line. This command provides a quick, low-bandwidth
alternative to the Job Browser when you want to check on specific jobs.

Syntax swjob [XToolkit Options][-i][-R][-u][-v][-a attribute]
[-C session_file][-f software_file][-s source]
[-S session_file][-t target_file][-x option=value]
[-X option_file][software_selections][@target_selections]

Options and
Operands

XToolkit Options X window options for use with swjob -i . See “XToolkit
Options and Changing Display Fonts” on page 51.

-i Starts the sd interactive job browser. See “Using the
Job Browser” on page 215.

-u Causes swjob to remove the specified jobs.

-v List all available job attributes, one per line.

-a attribute Display a specific attribute for the job. See “swjob
Tasks and Examples” on page 230 for more
information.

-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 59.

-f jobid_file
Read a list of job IDs from a separate file instead of (or
in addition to) jobs you specify on the command line.
(Use these files just like software files. See “Software
Files” on page 56.)

-S session_file
Run the command based on values saved from a
previous installation session, as defined in
session_file . See “Session Files” on page 59.
Chapter 7 227

Using Jobs and the Job Browser
Monitoring Jobs from the Command Line
-t target_file
Read a list of target selections from a separate file
instead of (or in addition to) those you specify on the
command line. See “Target Files” on page 57.

-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Using
Command Options” on page 57.

-X option_file
Read session options and behaviors from option_file .
See “Using Command Options” on page 57.

jobid One or more identification numbers for an SD-UX
operation. You can read job ID numbers from the Job
Browser when you set up or monitor your jobs
interactively.

target_selections
The target of the command. See “Target Selections” on
page 56.

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swjob.

For More
Information

See Appendix A , “Command Options,” on page 419 for more information
about setting options and a complete listing and description of each
option.

Table 7-1 swjob Command Options and Default Values

• admin_directory=/var/adm/sw
• agent_timeout_minutes=10000
• log_msgid=0
• one_liner={jobid operation state

progress results title}
• rpc_binding_info=

ncacn_ip_tcp:[2121]
ncadg_ip_udp:[2121]

• loglevel=1
• match_target=false
• rpc_timeout=5
• run_as_superuser=true
• targets=
• verbose=1
228 Chapter 7

Using Jobs and the Job Browser
Monitoring Jobs from the Command Line
swjob Attributes

Each job has its own set of attributes. These attributes include job title,
date of scheduled execution, and results. The -a option selects a specific
attribute to display. You can specify multiple -a options to display
multiple attributes.

Table 7-2 Typical job attributes

jobid The job identification number assigned by
SD-UX

operation The type of operation (install, copy, remove,
verify, etc.)

state Current job status (completed, scheduled, or
active)

progress Number of targets completed

results Completion status, indicating success, warnings,
or errors

title A title specified for the job by using the
job_title option in swconfig, swcopy,
swinstall, swremove, or swverify (see
“Managing and Tuning Jobs with Command
Options” on page 231)

schedule Date at which the job was scheduled to run

lastupdate Date at which information for this job was last
updated
Chapter 7 229

Using Jobs and the Job Browser
Monitoring Jobs from the Command Line
swjob Tasks and Examples

To simply list the jobs available, type:

swjob

To display attributes of jobs on the local system, type:

swjob -v

To display attributes of jobs on remote system swbash3 , type:

swjob -v @ swbash3:/var/spool/sw

Using the -a log option lets you display log files for jobs. A job log file
summarizes job details and target actions. For example, to display the
depot log file for the job swbash3-0008 on remote system swbash3 :

swjob -a log swbash3-0008 @ swbash3:/var/spool/sw

NOTE You cannot specify any other -a options in the same command if you use
-a log .

To remove job information for all previous jobs:

swjob -u *
230 Chapter 7

Using Jobs and the Job Browser
Managing and Tuning Jobs with Command Options
Managing and Tuning Jobs with Command
Options
SD-UX command options let you manage and tune job behavior to best fit
your environment, particularly when you run large numbers of jobs.

See “Using Command Options” on page 57 for additional information on
setting command options.

Scheduling Jobs from the Command Line

The -Q date option lets you schedule jobs without starting the Job
Browser. This option is available for swinstall, swcopy, swconfig,
swremove, and swverify.

The format for date is:

MM/DD[/YYYY][,HH:MM][AM|PM]

For example, to install the C and Pascal products at 3 p.m. on June 23,
2001, at 10:14 a.m.:

swinstall -Q 06/23/2001,10:15AM -s sw_server cc pascal

Adding Job Titles

Purpose: to help you identify jobs.

When running large numbers of jobs, you may want to add more
information to help you identify a specific job. You can do this from the
Job Browser or by invoking swconfig, swcopy, swinstall, swremove, and
swverify with the job_title command option. This lets you add an
ASCII string that will be displayed along with the ID and other job
attributes when you invoke swjob or the job browser.

For example, to install the C and Pascal products from depot sw_server
to three remote hosts with a job title of 02-HLLs :

swinstall -s sw_server -x job_title=02-HLLs cc pascal \
@ hostA hostB hostC
Chapter 7 231

Using Jobs and the Job Browser
Managing and Tuning Jobs with Command Options
Removing Job Information

Purpose: to increase performance and free up disk space when you run
very large numbers of jobs.

SD-UX stores small amounts of information (such as job status or
controller or agent logfiles) about each job. You can display this
information from the Job Browser or with swjob. Keeping very large
numbers of job information files may affect performance and reduce the
usability of the Job Browser.

Running swconfig, swcopy, swinstall, swremove, or swverify with the
autoremove_job command option set to true prevents SD-UX from
storing the job information. (The trade-off is that you can not view the
job information except by viewing log files.)

swinstall -s sw_server -x autoremove_job=true \
MySoftware @ hostA hostB hostC

You can also use the -u option to remove all old job information:

swjob -u *

You can also remove individual jobs from the Job Browser (see
“Removing a Job” on page 225.)
232 Chapter 7

Reliability and Performance
8 Reliability and Performance

This chapter describes the interrelationship of Software Distributor
reliability features and performance. Understanding how these features
work together will help you improve the overall reliability of your
software distribution system.

Topics:

“Overview” on page 234

“Groups and Source Options” on page 236

“Large Numbers of Targets” on page 237

“Timeout Options” on page 238

“Retry RPC and Retry Interval” on page 239

“Retry Command” on page 240

“Database Checkpointing” on page 241

“Compression” on page 242

“Staging” on page 243

“Recovery (Install Only)” on page 246

“Installation With Separate Configuration” on page 248

“Multiple Versions” on page 249
Chapter 8 233

Reliability and Performance
Overview
Overview

SD-UX install and copy throughput are dependent on the following
factors:

• Speed of the network

• Size (i.e., number of bytes) of the product being transferred

• Number of files being transferred

• Number of targets any one source is serving simultaneously

SD-UX provides many features that can be used together to increase the
speed and success rates of distributed installations and copies. Many
features are controlled by options set in the system defaults file, separate
options file, command line, or GUI. This lets you set these features and
options to best suit your own particular network and software needs.

These options and features can be categorized as follows:

• Group and source options: SD-UX eliminates the need to
duplicate specification of commonly used groups of targets and
software. Also, using the source option to specify a main depot
reduces the number of dialog boxes.

• Large numbers of targets: Options that limit the number of
simultaneous targets.

• Timeout options: Options that control how long the task attempts
to retry low-level communications for file transfers before giving up.

• Retry RPC and retry intervals: Options that control the intervals
between retries when the controller or targets attempt to re-establish
lost connections.

• Retry command: Options that facilitate retrying operations that
have failed. These can be used in conjunction with the checkpointing
features or can start the task from the beginning.

• Database checkpointing: SD-UX commands perform automatic
checkpointing at the fileset level and recording database transactions
in the SD-UX depot catalog IPD. In addition, checkpointing at the file
level is supported through attributes stored with the file.

• Compression: SD-UX supports compression functionality to reduce
234 Chapter 8

Reliability and Performance
Overview
the amount of data being transferred.

• Staging: SD-UX supports staging software to intermediate depots
either on the installation target or onto a source more accessible to
the target, which has been preconfigured to use the alternate source.

• Recovery: SD-UX supports automatic procedures to recover from
failed installations, leaving the system in the same state as previous.
There are also manual means through use of multiple versions.

• Multiple Versions: SD-UX supports installing multiple revisions of
the same software on a system at the same time, if the software
supports it. Then, the old version can be unconfigured, and the new
version configured as the active version. In case of any problems, the
old version can be restored as the active version by unconfiguring the
new version and reconfiguring the old.

Each of these topics is discussed in the following sections.
Chapter 8 235

Reliability and Performance
Groups and Source Options
Groups and Source Options
Group and source options can help increase performance of some
commands.

Target and software selections can be saved as group files and re-used.
This reduces the need to re-specify commonly used selections, which
reduces the time required to perform swinstall, swcopy, or swremove
commands. See “Add/Save Software Group” on page 47, and “Software
and Target Lists” on page 192 for more information.

Specifying source depots in advance can reduce the number of screens
needed to run or schedule a swcopy or swinstall command. If you set the
source= default option to your main source depot, SD-UX can
immediately list the products available. This eliminates the Source
Selection dialog, except when changing the default.
236 Chapter 8

Reliability and Performance
Large Numbers of Targets
Large Numbers of Targets
The max_targets option applies to swinstall and swcopy operations.
This option lets you manage hundreds of targets with a single job by
limiting the number of simultaneous targets to a defined value. As each
target completes the install or copy, another target is selected and
started until all targets have been completed. This keeps the number of
active operations at or below the user-defined limit.

The result of this option is that you can potentially manage hundreds of
targets reliably in a single task. This can also create a significant
reduction in the time it takes to schedule a task.

Your server and network performance will determine the optimal setting
for this option. The default setting is 25.
Chapter 8 237

Reliability and Performance
Timeout Options
Timeout Options
Timeout options control how long a task continues to retry low-level
communications for file transfers before giving up.

One control is the amount of time each single RPC call waits before
giving up. This timeout is set by the rpc_timeout option. Legal values
are 0 through 9. The default value is 5, which corresponds to about 30
seconds for the UDP protocol. Each value doubles the time of the
preceding value (i.e., a value of 4 is about 15 seconds).

Another control is the number of times a target agent attempts to
reconnect to the source agent after an rpc_timeout has detected a lost
connection source during an installation of a fileset. The number of retry
attempts is controlled by the retry_rpc option. The range of values is 0
through 9. A 0 value means no retry is attempted; if the connection is
lost, the command will fail. The default value is 1. For less stable
networks, a value of 5 is recommended.

NOTE When setting retry_rpc to a value greater than 0, the
reinstall_files option should also be set to false (the default value),
so the same files are not recopied when a fileset is retried.

The maximum possible amount of time spent waiting for the timeout is
affected by a combination of rpc_timeout , retry_rpc , and
retry_rpc_interval .

For troubleshooting information on Timeout options, refer to “Connection
Timeouts and Other WAN Problems” on page 471.
238 Chapter 8

Reliability and Performance
Retry RPC and Retry Interval
Retry RPC and Retry Interval
During a swinstall or swcopy operation, retry_rpc_interval controls
the interval schedule for repeated attempts to make a connection to a
target or the source agent after an initial failure. This option works in
conjunction with retry_rpc , which controls the number of times the
target or source is re-contacted.

The default value for retry_rpc is 1 and retry_rpc_interval is {0}.

The recommended values for the retry_rpc_interval algorithm are {1
2 4 8 15} with retry_rpc set at 5. If the agent session fails to start for
any reason, the controller and/or target will attempt to re-connect in the
following way (i.e., both options set as above):

• after 1 minute for the first try

• then 2 minutes for the second try

• then 4 minutes

• then 8 minutes

• finally 15 minutes for the last try

If the number of values for retry_rpc_interval is less than
retry_rpc , the last value given is repeated until the number of actual
retries is equal to retry_rpc .

NOTE If retry_rpc has a value of zero, no retry is attempted. An initial value
of 5 is recommended for WAN environments.
Chapter 8 239

Reliability and Performance
Retry Command
Retry Command
SD-UX supports options that facilitate retrying operations that have
failed. These can be used in conjunction with the checkpointing features
or can start the task from the beginning.

Each execution of a command records all of the target, software, and
option selections automatically in a session file, command.last. You can
also save the session information to a different file using the GUI. The
session files are stored in the directory $HOME/.sw/sessions . The entire
command can be retried by recalling the session in the GUI or by
re-executing the task:

command-S command.last

When a task is retried, any fileset that is up to date (has the same
product and filesets revisions as available or installed and is not in the
transient or corrupt state) will not attempt to be reinstalled (the default
behavior), and all other filesets will be retried. This behavior can be
overridden, forcing the retry to start at the beginning of all files, by
setting reinstall=true from either your option setting or the CLI.

If the reinstall_files option is set to true, all files in that fileset are
retransferred. However, although preinstall and postinstall scripts for
filesets that are being installed are executed normally, the file transfer
for up to date files can be avoided by leaving the reinstall_files
option equal to false (the default).

When the reinstall_files option is false, the user can also control
which attributes are checked in order to determine if the fileset is
already installed or available. If the reinstall_files_use_cksum
option is set to true, the size, mtime, and cksum attributes are checked.

If the reinstall_files_use_cksum option is false, then only the size
and mtime are checked. Checking the cksum attribute is more time
consuming but more reliable. The size and mtime checks are very fast.

The user can see which files were actually installed or copied and which
were skipped due to being already up to date by setting the loglevel
option to 2.
240 Chapter 8

Reliability and Performance
Database Checkpointing
Database Checkpointing
The tools perform automatic checkpointing, recording transactions in the
SD-UX depot catalog, or Installed Products Database (IPD) at the fileset
level. Additionally, checkpointing at the file level is supported through
attributes stored with the file.

During a swinstall or swcopy operation, all filesets in the current product
being loaded are recorded in the depot catalog or IPD as having a state of
transient. After all filesets in a product complete the copy or install, the
state is changed to available or installed, and the next product is started.
At this point, retrying an operation will not attempt to recopy or reinstall
the filesets that are already installed (see “Retry Command” on page
240).

NOTE This behavior requires that either the product or fileset have a revision
defined.

The current state and revisions of filesets can be displayed with the
command:

swlist [-d] -l fileset -a revision -a state

If there is an error installing a fileset in the product that causes the
install to fail (e.g., lost connection to the source), all filesets in the
product are changed from transient to corrupt. (All filesets are assumed
corrupt since the product level postinstall script has not been run yet. In
actuality, the filesets may be properly installed.)

Independent of a fileset being installed (either properly or in a corrupt
state) you can determine whether any particular file is installed properly
with a high degree of certainty through the file’s size, mtime, and cksum
attributes. Through these file attributes, checkpointing at the file level is
approximated (this is described in the previous section).
Chapter 8 241

Reliability and Performance
Compression
Compression
The swinstall and swcopy commands can transfer large amounts of data
over the network from depots to targets. The SD-UX compress_files
option can improve performance by first compressing files that are to be
transferred. This can reduce network usage by approximately 50%; the
exact amount of compression depends on the type of files. Binary files
compress less than 50%; text files generally compress more.

Set this option to true only when network bandwidth is clearly
restricting total throughput. If it is not clear that this option will help,
compare the throughput of a few swinstall or swcopy tasks (i.e., with and
without compression) before changing this option value.

You can use swcopy to compress files and leave them compressed in a
target depot or compress before network transfer and uncompress
afterward.

Precompressing a depot is advantageous when installing or copying to
multiple targets. If the source depot is not already compressed, then each
file is recompressed for each target.

You can set uncompress_files to true to leave a depot uncompressed
after copying with swcopy. For swinstall, the compress_files option will
compress all uncompressed files before network transfer. Files are
always uncompressed before installing them to the target file system.

INDEX and INFO Compression

Another way to reduce your network traffic is by compressing INDEX
and INFO files from the source depot to the target. You can turn on
INDEX or INFO compression by setting the compress_index option to
true in the defaults file (/var/adm/sw/defaults).

The SD-UX controller and target agents will request compressed INDEX
files from the source agent. If the source agent is read only or an older
version of SD-UX, the agent cannot comply; consequently, the client will
request a normal INDEX. Otherwise, the source agent will send a
precompressed INDEX and INFO or compress it on the fly.

The target agent will then create a permanent compressed INDEX in the
target, depot, or root. This saves the next request for a compressed
INDEX or INFO from having to compress on the fly.
242 Chapter 8

Reliability and Performance
Staging
Staging
The standard way to install software onto multiple targets is to specify a
single source depot and each target that is to receive the software.
However, some software distribution environments require that you
manage software on large numbers of geographically dispersed target
systems. This may require the use of one or more intermediate source
depots or staging areas. This variant on the standard model is referred to
as a staged installation.

There are two reasons for using a staged installation:

1. Minimize the amount of data transferred across a slow and expensive
segment of your network.

2. More easily ensure a successful installation on all targets by reducing
the risk of an unreliable segment in your network.

If your environment has targets organized in separate, local area
networks (LAN) and connected via a low-throughput, less-reliable wide
area network (WAN), staging software to intermediate depots that are
local to each grouping of targets and then doing the installation using
these intermediate depots reduces the amount of data that travels over
the WAN segment.

By doing so, you also decrease the likelihood that a problem with the
WAN will interrupt the installation step.

Before you do a staged installation, you must first decide where the
intermediate depots should reside. Here are two possible approaches:

1. If the targets are grouped, you can put an intermediate depot on one
system in each group and configure the other targets to use it as their
alternate source. This approach requires that each target in the group
be configured to use the designated intermediate depot.

2. If making sure that installations succeed is of highest importance,
you can locate the intermediate depots on the targets themselves,
one-per-target. An advantage to this approach is that it doesn’t
necessarily require that you configure an alternate source on each
target. However, this approach requires that each target system have
enough disk space to accommodate the intermediate depot.

To do a staged installation:
Chapter 8 243

Reliability and Performance
Staging
1. First, decide on the location of the intermediate depots and use the
swcopy command to copy the software from your master depot to
them. This step is no different from a normal multi-target copy
operation.

swcopy -s master -t depot_list NewApp

In this example, the master source depot containing the product
NewApp is in the default /var/spool/sw depot location and a file
named depot_list contains the list of intermediate depots.

The depot_list could identify the designated intermediate depots
that have been configured for each group of targets, or it could
identify an intermediate depot located on each target.

2. Next, use the swinstall command combined with the option
use_alternate_source=true to do the actual installation. The
use_alternate_source option is specified from either the CLI (i.e.,
-x use_alternate_source=true) or via the Options Editor window
in the GUI. The default value is false.

swinstall -s master -x use_alternate_source=true \
-t targ_list NewApp

The use_alternate_source=true option instructs each target to use
its own configured source for the installation. The source that is
specified on the swinstall CLI is used only by the controller for the
validation of your software selections. The file targ_list contains
the list of targets.

When use_alternate_source is true, each target agent looks for the
corresponding swagent.alternate_source option in its own defaults
file. The protocol sequence and endpoint given by the option,
swagent.rpc_binding_info , are used when the agent attempts to
contact the depot specified by swagent.alternate_source . An
alternate source is specified using the host:/path, /path, or host
syntax.

• If there is a host:/depot_path specified in the target’s
swagent.alternate_source option, the agent gets the software
from this source. If only a host is specified, the target agent uses
the same depot path used by the controller.

• If the target doesn’t have an alternate source, the agent uses the
same depot path used by the controller, but it will apply this path
to its own file system. This lets you do staged installations without
any target configuration at all, by locating the intermediate depot
244 Chapter 8

Reliability and Performance
Staging
on each target system at the same file system location as the
master depot (approach 2 above).

Because the swcopy and swinstall steps in a staged installation are
separate, SD-UX cannot enforce consistency between master and
intermediate depots. You must ensure that the software available from
the intermediate depots is consistent with that on the master depot.

If master and intermediate depots are out-of-synch when you perform
the swinstall step, you may encounter errors if software that is on the
master depot is not available from one or more intermediate depots.
Chapter 8 245

Reliability and Performance
Recovery (Install Only)
Recovery (Install Only)

NOTE This section applies only to customer-created software with unpreinstall
and unpostinall scripts. HP-supplied software does not include these
scripts.

SD-UX supports automatic procedures to recover from failed installation
if the autorecover_product option is set to true, attempting to leave the
system in the same state as it was previously. Also, manual means are
available (refer to “Multiple Versions” on page 249).

Rollback is limited to the system where the installation of the product
failed, not all target systems specified in an installation job.

Because autorecovery removes any files that were installed up to this
point, it is antithetic with the checkpointing and retry features
previously described. Recovery saves copies of each file that it is
replacing, then removes those files at the successful completion of the
product installation. If the install fails, then the saved files are restored.

Once a product is successfully updated, it cannot be restored except by
reinstalling it. Additionally, if a later product fails, the earlier product
cannot be recovered. In order to meet the requirement that multiple
products be recoverable, multiple versions must be installed.

The unpreinstall and unpostinstall scripts are needed to undo the steps
that the preinstall and postinstall scripts executed. The normal sequence
of operations for each product is:

1. Execute the product preinstall script

2. For each fileset

a. execute the preinstall script

b. install the files

c. execute the postinstall script

3. Execute the product postinstall script

If any of these steps fails (e.g., a lost source or a script error) then the
undo scripts are run, and the files restored from the point of failure in
246 Chapter 8

Reliability and Performance
Recovery (Install Only)
reverse order.

NOTE Patches created using the features capabilities described may maintain
saved files. In this case, patches can be removed (rolled back) or
committed (by removing saved files). See Chapter 5 , “Managing
Patches,” on page 163 for more information on patches.

NOTE The use of autorecover_product=true during an update of the HP-UX
OS is not supported.
Chapter 8 247

Reliability and Performance
Installation With Separate Configuration
Installation With Separate Configuration

NOTE Because deferring configuration of OS software and patches can leave
the system in an unusable state, do not use this technique with
HP-supplied software.

If you create your own software that includes configuration scripts to be
performed automatically after installation, performing the configuration
separately can increase the reliability of the overall installation process.

To install without configuring, set the defer_configure option to true
for swinstall. Then, after all the installs have completed successfully, you
can run the configure scripts for all targets at once by using the swconfig
command.
248 Chapter 8

Reliability and Performance
Multiple Versions
Multiple Versions
SD-UX supports installing multiple revisions of the same software on a
system at the same time, if the software supports it. By using multiple
installed versions, recovery can be supported at the system or task (all
systems) level.

Installing a second version requires some careful planning, as well as
understanding how to identify multiple versions on the system.

Each product has a product directory attribute. The installed location on
the target is by default the same as the product directory. For example, a
product Foo might have a product directory of /opt/foo . You can list the
locations of installed software with:

swlist -l product -a location

or

swlist -l product -a software_spec

A common practice is to install a second version of the product. When
installing this software, a new location must be selected. In the case of
the product Foo, the new location might be /opt/foo.v2 . After
specifying the new location (i.e., by adding l=/opt/foo.v2 after the
product tag in the GUI or CLI), swinstall will replace the product
directory portion of all files with the new product location.

NOTE The allow_multiple_versions option must be set to true for swinstall
to install multiple versions of the software. The new version will not be
configured by swinstall if there is another version configured.

After a second version has been installed, each version can be identified
either by the location (Foo,l=/opt/foo and Foo,l=/opt/foo.v2), by
the revision (Foo,r=1.0 and Foo,r=2.0), or both. You can list the
locations and revisions of all versions with:

swlist -l fileset -a location -a revision

Additionally, you can list a fully qualified software spec containing both
the location and revision as well as the other version distinguishing
attributes (vendor and architecture) with:
Chapter 8 249

Reliability and Performance
Multiple Versions
swlist -l fileset -a software_spec

After the new version is installed successfully for all products or on all
hosts, the old version can be unconfigured, and the new version
configured as the active version by using swconfig -u with the old
version and swconfig with the new version.

NOTE By default, only one version of the software is allowed to be configured at
a time.

The second version can not be configured until the first one is
unconfigured. As was discussed in “Installation With Separate
Configuration” on page 248, installing a second version automatically
excludes configuring the new version.

You must manually unconfigure the old version, then configure the new
version. If the software supports multiple configured versions (in
addition to multiple installed versions) the
swconfig.allow_multiple_versions option can be set to true .

In case of any problems, the old version can be restored as the active
version by unconfiguring the new version and reconfiguring the old (i.e.,
by swconfig -u with the new version and swconfig with the old version).

In order to support multiple versions, the software must be structured so
that all files are below the product directory, and the configure scripts
need to be written with multiple version support in mind. In a simple
example, the configure script could add a symbolic link from
/usr/bin/foo to $SW_LOCATION/bin/foo , and the unconfigure script
could remove that link. In this example, configuring and unconfiguring
each version of this software is easily done.

NOTE The use of allow_multiple_versions=true command option and the
l=<alternate location> software specification is not supported when
updating HP-UX to a new version.
250 Chapter 8

SD-UX Security
9 SD-UX Security

During the SD-UX installation, a default security setup is created. This
chapter explains basic SD-UX security, introduces the swacl command,
presents examples of common tasks, and provides in-depth discussion of
how SD-UX manages security.

Topic and Page

“Overview” on page 252

“The swacl Command” on page 254

“Basic Security Tasks” on page 257

“How ACLs are Matched to the User” on page 269

“ACL Entries” on page 270

“Security on SD-UX Systems” on page 281

“SD-UX Internal Authentication” on page 283

“RPC Authorization” on page 287

“Security Use Models” on page 291

“Permission Requirements, by Command” on page 294
Chapter 9 251

SD-UX Security
Overview
Overview
Along with the traditional HP-UX file access protection, SD-UX uses
Access Control Lists (ACLs) to protect the primary objects on which it
manages software:

• Hosts

• Roots (software installed on a host)

• Depots

• Products within depots

An ACL consists of a set of entries associated with an object when it is
created.

Default Security

The following security scheme exists by default:

• The local superuser always has access to all local objects.

• Read access is provided to all users on the network who use the same
SD-UX shared secret via the any_other ACL.

• Whoever creates a root, depot, or product object has full access to it as
the object_owner .

• If you set up systems for remote operations (using the procedure
discussed in “Setting Up Remote Operations” on page 198),
root@central_controller has full access to all target objects via
the user:root@central_controller ACL.

If you are running as root@central_controller , the suggested security
setup should be adequate to perform all tasks.

Two templates are used to create default ACLs:

• global_soc_template (applies to all new depots and roots added to
the host)

• global_product_template (applies for new products in depots)
252 Chapter 9

SD-UX Security
Overview
Depots and Depot Registration

Software Distributor typically uses central depots to distribute software.
You can control access to these depots by users who will install software.

An important security consideration is that depots must be registered for
nonlocal users to have access. Only a local superuser or a user with
insert permission on the host can install from unregistered depots.

For more information, see “Registering and Unregistering Depots
(swreg)” on page 151 and “Depot Management Commands and
Concepts” on page 134.

Modifying Target Systems

You may want to set up each system to grant administrative access to the
SD-UX controller while restricting access to other systems and users.

You will need to modify ACLs on your target systems in the following
cases:

• To change the login name of the SD-UX administrator (the default is
root).

• To modify permissions for the SD-UX administrator or group of
administrators.
Chapter 9 253

SD-UX Security
The swacl Command
The swacl Command
The swacl command lets you view or change ACL entries and
permissions.

swacl Syntax swacl] -l level [-D acl_entry |-F acl_file |-M acl_entry]
[-f software_ file][-t target_ file]
[-x option=value] [-X option_file]
[software_selections] [@ target_selection]

Options and
Operands

-l level Level to edit. Level designations are the literals: host,
depot, root, product, product_template,
global_soc_template or global_product_template .
(See “ACL Templates” on page 278 for a complete
discussion.)

NOTE You can change an ACL with -D , -F , or -M command options. You can
only specify one of these options per command because they are mutually
exclusive. If you don’t specify a -D , -F , or -M option, swacl prints the
specified ACLs.

-D acl_entry Deletes an existing entry from the ACL associated with
the specified object. You can enter multiple -D options.

-F acl_file Assigns the ACL information contained in acl_file to
the object. All existing entries are removed and
replaced by the entries in the file. You can enter only
one -F option.

-M acl_entry Adds a new ACL entry or changes the permissions of
an existing entry. You can enter multiple -M options.

-f software file
Reads a list of software selections from a separate file
instead of from the CLI. (See “Software Files” on page
56.)
254 Chapter 9

SD-UX Security
The swacl Command
-t target file
Reads a list of target host selections from a separate
file instead of from the CLI. (See “Target Files” on page
57.)

-x option=value Lets you change an option on the command line
interface (CLI) that overrides the default value or a
value in an alternate options file (-X option file). See
“Changing Command Options” below.

-X option file Uses the option values in a specified option file .
See “Using Command Options” on page 57.

software_selections
The software objects for the swacl operation. See
“Software Selections” on page 54.

target_selections
The target of the command. See “Target Selections” on
page 56.

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the defaults and options that apply to swacl.

For More
Information

See Appendix A , “Command Options,” on page 419 for complete
descriptions of each default.

Table 9-1 swacl Command Options and Default Values

• admin_directory=/var/adm/sw
• distribution_target_directory=

/var/spool/sw
• installed_software_catalog=products
• level=
• log_msgid=0
• rpc_binding_info=ncacn_ip_tcp:[2121]

ncadg_ip_udp:[2121]

• rpc_timeout=5
• run_as_superuser=true
• select_local=true
• targets=
• verbose=1
Chapter 9 255

SD-UX Security
The swacl Command
swacl Output

A typical list output from the swacl command looks like the following:

swacl Installed Software Access Control List
#
For host: prewd:/
#
Date: Mon Nov 06 16:39:58 2001
#
Object Ownership: User=root
Group=sys
Realm=prewd.fc.hp.com
default_realm=prewd.fc.hp.com
object_owner:crwit
user:rml:crwit
user:root@newdist.fc.hp.com:crwit
group:swadm:crwit
any_other:-r--t

The header information (lines marked with #) gives the object’s name
and owner and the name of the user’s realm or host name of the user’s
system. In this case:

• The object is a root (installed software).

• The creator of the object (object_owner) is root@prewd.

• The object_owner has all permissions.

• Local user rml and remote user root@newdist.fc.hp.com have all
permissions.

• Members of local group swadm have all permissions.

• Anyone not matching one of the previous entries (any_other) has
read and test permissions.

For more information on the format of the ACL file, see “ACL Entries” on
page 270.
256 Chapter 9

SD-UX Security
Basic Security Tasks
Basic Security Tasks
Along with the traditional HP-UX file access protection, all SD-UX
objects (hosts, depots, roots and products) are also protected by ACLs.

Figure 9-1 Access Control Lists

ACLs offer a greater degree of selectivity than do permission bits. An
ACL extends the concept of the HP-UX file system’s permission bits by
letting you specify different access rights to several individuals and
groups instead of just one of each.

For example, if you set up remote operations, you must install an HP
ServiceControl Manager fileset that makes some elementary changes to
the security ACLs on the remote systems. One of these changes is to copy
three ACLs from the source system to the destination systems. (See
“Setting Up Remote Operations” on page 198.)

The ACLs copied are those protecting the source host (the host ACL), the
host’s template ACLs used in subsequent operations to produce ACLs for
products (the global_product_template), and depot/root containers
(the global_soc_template). When copied, these ACLs grant users on
the source host the same permissions on the destination host as they
have locally on the source host. In addition, an entry for the superuser at
Chapter 9 257

SD-UX Security
Basic Security Tasks
the source host was added. This lets the controller system’s superuser
perform software distribution tasks on the remote system without
having to reconfigure ACLs.

If you need to change security, the following tasks can be performed (i.e.,
to understand and modify the default setup):

• Listing user access

• Allow user to manage products in a depot

• Allowing users to manage roots

• Restricting read access to a depot

• Adding target hosts

• Temporarily restricting access to a depot

• Closing the SD-UX network

• Editing an ACL

Listing User Access

The following examples show how to list users with access to depots,
targets host, target root, and all products.

• Display the default root ACLs on a newly installed HP-UX 11i
system:

swacl -l root

#
swacl Installed Software Access Control List
#
For host: swelter:/
#
Date: Wed Feb 28 14:58:02 2001
#
Object Ownership: User= root
Group=sys
Realm=swelter.fc.hp.com
#
default_realm=swelter.fc.hp.com
object_owner:crwit
any_other:-r---
258 Chapter 9

SD-UX Security
Basic Security Tasks
This ACL indicates that the file system is owned by the root user, and
that as such, the owner has full ACL permissions (crwit).
Additionally, all other users may read SD information about this root
file system using the swlist command.

• To list the users with access to the default depot (optionally on a
remote host):

swacl -l depot @ newdist

#
swacl Depot Access Control List
#
For depot: newdist:/var/spool/sw
#
Date: Fri Nov 03 11:23:51 2001
#

Object Ownership: User= root
Group=other
Realm=newdist.fc.hp.com
#
default_realm=newdist.fc.hp.com
object_owner:crwit
user:rmr:crwit
user:root:crwit
user:fred@hpfred.fc.hp.com:crwit
user:root@hpfcpsm.fc.hp.com:crwit
user:root@wookie.fc.hp.com:crwit
any_other:-r---

• To show access to installed software:

swacl -l root @ newdist

swacl Installed Software Access Control List
#
For host: newdist:
#
Date: Fri Nov 03 10:33:04 2001
#
Object Ownership: User= root
Group=other
Realm=newdist.fc.hp.com
Chapter 9 259

SD-UX Security
Basic Security Tasks
#
default_realm=newdist.fc.hp.com
object_owner:crwit
user:root:crwit
user:root:crwit
any_other:-r---

• To show permission to create depots and roots on the target host:

swacl -l host @ newdist

#
swacl Host Access Control List
#
For host: newdist
#
Date: Fri Nov 03 10:34:06 2001
#

Object Ownership: User= root
Group=sys
Realm=newdist.fc.hp.com
#
default_realm=newdist.fc.hp.com
user:fred:crwit
user:root:crwit
user:smp:crwit
user:root@udltools.fc.hp.com:crwit
user:fred@hpfred.fc.hp.com:crwit
user:chrisr@prewd.fc.hp.com:crwit
any_other:-r---

• To list the users with access to all products (“* ”) in a depot:

swacl -l product * @ newdist:/var/spool/sw

#
swacl Product Access Control Lists
#
For depot: newdist:/var/spool/sw
#
Date: Fri Nov 03 10:34:06 2001
#

For product: product1,r=1.0
260 Chapter 9

SD-UX Security
Basic Security Tasks
#
Object Ownership: User= root
Group=other
Realm=newdist.fc.hp.com
#
default_realm=newdist.fc.hp.com
object_owner:crwit
user:root:crwit
user:root@prewd.fc.hp.com:crwit
any_other:-r---

Allowing Users to Manage Products in a Depot

Users that are packaging products may need access to the SD-UX depots
to store their products.

In ACLs, a is a shorthand notation for all permissions (crwit).

To allow user mary to add new products to the depot:

swacl -l depot -M user:mary:a [@ host:depot]

To allow access for user mary to modify all existing products in a depot:

swacl -l product -M user:mary:a * [@ host]

To modify the template so that user mary can modify new products
created by others in the depot:

swacl -l global_product_template -M user:mary:a [@ host]

(In the above examples, change user to group and use a group name to
add group access to the depot structures.)

Allowing Users to Manage Roots (Install/Remove)

To give a user (mary) the necessary permissions to be able to install or
remove software on host mysys :

swacl -l root -M user:mary:a @ mysys

To allow user mary to install software into the default root:

swacl -l root -M user:mary:ri

To give user mary the permission to open the root for reading:

swacl -l root -M user:mary:r
Chapter 9 261

SD-UX Security
Basic Security Tasks
To give user mary the permission to install new software into the root
object:

swacl -l root -M user:mary:i
262 Chapter 9

SD-UX Security
Basic Security Tasks
To let remote user allen@swelter fully manage the root file system on
swcrunch :

swacl -l root -M user:allen@swelter:a

(In the above examples, change user to group and use a group name to
add group access to the depot structures.)

NOTE Because software installation usually involves modification of system
files during configurations, software install and configure scripts are run
as the superuser. Therefore, granting a user write permission on a root is
essentially giving them superuser access for managing software.

Restricting Access to Depots

To restrict read access to a depot you must first remove any_other
access from the depot and from the products contained in the depot and
the template controlling the products in the depot.

You can restrict access to depot alpine on host drgw :

swacl -l depot -D any_other @ drgw:/alpine
swacl -l product -D any_other * @ drgw:/alpine
swacl -l global_product_template -D any_other * \

@ drgw:/alpine

You will then need to add specific users (and then hosts) with read access
after removing any_other from the depot security. The following
commands add read access for any user on hostA to the depot, the
products contained in the depot, and future products, respectively.

swacl -l depot -M other:@hostA:r @ drgw:/alpine
swacl -l product -M other:@hostA:r * @ drgw:/alpine
swacl -l global_product_template -M other:@hostA:r \

@ drgw:/alpine

In the following example, the local superuser disallows all remote users
from accessing /simple_1.depot on swelter , but allow local users to
access the depot:

swacl -l depot -D any_other @ /simple_1.depot
swacl -l depot -M other:r @ /simple_1.depot
swacl -l depot @ /simple_1.depot
Chapter 9 263

SD-UX Security
Basic Security Tasks
#
swacl Depot Access Control List
#
For depot: swelter:/simple_1.depot
#
Date: Thu Mar 1 16:19:57 2001
#
Object Ownership: User= allen
Group=users
Realm=swelter.fc.hp.com
#
default_realm=swelter.fc.hp.com
object_owner:crwit
other:-r---

Local users can now access this depot as a result of the other ACL, but
remote users are refused.

To allow only user shelly on host swcrunch to access software in a depot
located on swelter , it may appear that adding a user ACL for shelly
would be sufficient:

swacl -l depot -M user:shelly@swcrunch:r @ /simple_1.depot

However, this is not enough. An attempt by shelly to access this depot
would fail with a security violation. This is because SD-UX also requires
that SD agents (the swagent process) that contacts the depot server to be
authorized via a host ACL entry_type :

swacl -l depot -M host:swcrunch:r @ /simple_1.depot

(Note that user shelly also requires appropriate ACL permission to
install software on swcrunch .)

NOTE The r (read) permission allows the user to access the depot and products,
and the t (test) permission allows the user to list the ACLs.
264 Chapter 9

SD-UX Security
Basic Security Tasks
Adding Target Hosts

For swinstall and swcopy, both the user and target host are validated
(i.e., to protect from unauthorized users at remote hosts switching to an
authorized user). The following adds read permission for the host named
target to the default depot on the local host, the products currently in
the depot, and any future products added to the depot (using
global_product_template).

swacl -l depot -M host:target:r
swacl -l product -M host:target:r *
swacl -l global_product_template -M host:target:r

Since the user is always validated, another alternative that makes it
easier to manage large numbers of hosts is to allow all hosts read
permission:

swacl -l depot -M host:*:r
swacl -l product -M host:*:r *
swacl -l global_product_template -M host:*:r

NOTE “*” is only a supported value for the host ACL type.

Temporarily Restricting Access

A simple method of restricting access to anyone other than the local
superuser without modifying ACLs is to unregister the depot.

swreg -u -l depot [@ depot]

It can then be reregistered later:

swreg -l depot [@ depot]

Closing the SD-UX Network

The SD-UX secret is used a a proof of trustworthiness for the caller’s
credentials. It is a password that SD-UX uses to verify the authenticity
of the caller’s host. The default secret field is set by manufacturing to
match the default setting on the HP-UX controller. All secrets (i.e.,
controller, targets, and depots) must be identical.
Chapter 9 265

SD-UX Security
Basic Security Tasks
NOTE Do not change the default secret field unless you have also changed the
default secret on the HP-UX SD-UX controller. These two secrets must
match.

The set of hosts that can be managed by SD-UX can be restricted by
changing the default secret on all SD-UX controller and target hosts in
the network. The default secret is found in
/var/adm/sw/security/secrets .

You may change the default secret found in this file:

default new secret

For additional information, see “Security Between Hosts: The Shared
Secrets File” on page 285.

Editing an ACL

The swacl command, when invoked without the -M, -D, or -F options,
reads the specified ACL, converts it into plain text and prints it to
stdout . The output of the command can also be redirected to a file,
which can then be printed or edited. After editing, you can use the -F
file option described above to replace the entire old ACL. This
procedure gives you full ACL editing capabilities.

You must have test permission within the ACL to produce the edit file
(list the ACL) and control permission to modify it with -F , -D , or -M
options. All ACL entries must contain test permission.

If the replacement ACL contains no detectable errors and you have the
proper permission on the ACL, the replacement will succeed. If the
replacement fails because you lack permission to make the change, an
error is generated, and the object is skipped.

You may change or delete existing entries, or you may add additional
entries to the ACL.
266 Chapter 9

SD-UX Security
Basic Security Tasks
NOTE It is possible to edit an ACL so that you cannot access it! Caution should
be used to avoid accidentally removing your own control (c) permissions
on an ACL. As a safeguard, the local superuser may always use swacl to
edit SD-UX ACLs.

Here are some examples based on the following ACL that is protecting a
product (FORTRAN) created by user rob whose local host is
lehi.fc.hp.com :

swacl Product Access Control Lists
#
For host: lehi:/
#
Date: Mon Nov 06 16:39:58 2001
#
For product: FORTRAN,r=9.0,v=HP
Object Ownership: User=root
Group=sys
Realm=lehi.fc.hp.com
default_realm=lehi.fc.hp.com
object_owner:crwit
user:barb:-rt
user:ramon:-rt
group:swadm:crwit
host:alma.fc.hp.com:-rt
any_other:-rt

You can list the ACLs for the product is FORTRAN in depot
/var/spool/sw (the default depot) and prepare it for editing:

swacl -l product FORTRAN >acl_tmp

This will bring the above ACL into the file acl_tmp , and it is ready for
editing. Edit the acl_tmp file with any suitable text editor.

To replace all entries in the ACL for FORTRAN, type:

swacl -l product -F acl_tmp FORTRAN

To edit the default product template on a depot /var/spool/sw_dev ,
use:

swacl -l product_template @ /var/spool/sw_dev >tmp_file
Chapter 9 267

SD-UX Security
Basic Security Tasks
Then edit the tmp_file and replace the ACL:

swacl -l product_template -F tmp_file \
@ /var/spool/sw_dev

To delete entries for user barb and group swadm, use:

swacl -D user:barb -D group:swadm -l product FORTRAN

To give user ramon permission to modify the product FORTRAN, type:

swacl -M user:ramon:trw -l product FORTRAN

To add an entry for user pam with complete management permission
(“a” is shorthand for crwit), use:

swacl -M user:pam:a

To add an entry to grant every user in group swadmat remote hosts dewd
and stewd full management control of the product FORTRAN on the
default local depot, use the following:

swacl -M group:swadm@dewd:a -M group:swadm@stewd:a \
-l product FORTRAN

To list the ACL protecting the default depot at host dewd, type:

swacl -l depot @ dewd
268 Chapter 9

SD-UX Security
How ACLs are Matched to the User
How ACLs are Matched to the User
ACL permissions are determined by a match to a single ACL entry, not to
an accumulation of matching entries. Checking is done from the most
restrictive entry types to the broadest.

If a match is found in a user entry type, no further checking is done, and
the permissions for that user are fully defined by the permissions field of
the matched entry. A matched user may be a member of a group with
broader permissions; this has no consequence.

NOTE The local superuser has access to all local SD-UX objects irrespective of
ACLs.

The ACL matching algorithm is:

1. If user is local superuser, then grant all permissions.

2. If user is owner of the object, then grant object_owner permissions.

3. If user matches a user entry, then grant user permissions.

4. If any group entries match, then accumulate the permissions granted
by all group entries that match the user’s primary and
supplementary groups.

5. If an appropriate other entry matches, then grant other permissions.

6. If an any_other entry, then grant any_other permissions.

7. Grant no permissions.
Chapter 9 269

SD-UX Security
ACL Entries
ACL Entries
An ACL consists of a set of entries attached to an object when it is
created. These entries define which users, groups, and/or hosts have
permission to access the objects. ACL entries include the concept of a
principal, which is the user, group or host system (for agents making
RPCs) that originates a call to another system.

An ACL entry consists of three fields:

entry_type [: key]: permissions

For example, an ACL entry for an SD-UX object might be:

user:fred:r-ctw

This means that a user named fred can control (c) , read (r) , write
(w) , and test (t) the object, but the dash signifies that he cannot i
(insert/create) new objects.

NOTE You can specify crwit permissions in any order.

The ACL entry_type must be one of these values:

Table 9-2 SD-UX ACL Entry Types

Type Permissions Apply To

user User principal, whose name is to be
specified in thekey field

group Group principal, whose name is to be
specified in thekey field

host Host systems (target agents acting on
behalf of users for install or copy)

other Principals with no matching user and
group entries

any_other Principals not matching any other
entry
270 Chapter 9

SD-UX Security
ACL Entries
TIP Do not confuse the host object (which is a computer system that contains
depots, roots, and software) with the host entry type (which defines
permissions for access to target systems).

The user and group of the object’s owner are determined and
automatically recorded at the time the object is created (based on the
identity of the person who creates it). This information is recorded as
user , group , and realm . An object_owner or object_group entry type
in an ACL causes the SD-UX ACL manager to look up the owner and
group information on the object; and if a match to the requester is found,
grant permissions as specified.

There may be many user , group , and host type entries per ACL, while
there may be only one of each of object_owner , object_group and
any_other . There may be at most one local (i.e., no key) other entry and
an unlimited number of remote (i.e., keyed) other entries.

ACL Keys

The second part of the ACL entry is the key. The table below lists the
possible key values for specific entry types.

object_owner Owner of the object

object_group Members of the group to which an
object belongs

Table 9-2 SD-UX ACL Entry Types

Type Permissions Apply To

Table 9-3 SD-UX ACL Entry Key Values

Entry Type Key Content

user a user name [optionally, @
remote-host]

group a group name [optionally, @
remote-host]
Chapter 9 271

SD-UX Security
ACL Entries
When listing the ACL, the remote-host is printed in its Internet address
form (e.g., 15.12.89.10) if the local system cannot resolve the address
from its host lookup mechanism (DNS, NIS, or /etc/hosts). The
remote-host must be recognized (resolvable) when used in the -M and -D
options. Unrecognized remote-host values are accepted in files provided
with the -F option.

ACL Permissions

There are five different permissions grantable by the ACL: crwit .

In the ACL entry, these permissions are abbreviated c, t , i , w, and r . To
grant all permissions, you may use the shorthand letter a instead of the
crwit to denote all permissions.

The meaning of permissions is different for different types of objects, and
the permissions do not have to appear in any specific order. Roots do not
provide product level protection, so all permissions on products installed
on roots are controlled by the ACL protecting the root itself.

Product level protection is provided on depots in this way: the depot’s
ACL protects the depot itself while product ACLs protect the products
within the depot.

host a host name

other [optionally, @remote-host]

any_other no key allowed

Table 9-3 SD-UX ACL Entry Key Values

Entry Type Key Content

Table 9-4 ACL Permissions

control (c) Permission to edit or change the ACL.

test (t) Permission to test access to an object (i.e., read the ACL).

insert (i) Permission to install a new product, depot or root.

write (w) Permission to change a host, depot, root or product.

read (r) Permission to list depot, roots and products and attributes.
272 Chapter 9

SD-UX Security
ACL Entries
The table below summarizes SD-UX object permissions and ACLs to
which they may be applied.

Object Protection

The control of product insert and delete permissions differs between
roots and depots.

The permission for anyone to insert or delete a product on a root is
contained within the root’s ACL. If you have write permission on a root,
you can change or delete any product on that root; there is NO product
level control on roots.

The depot ACL controls insertion (creation) of new products, while the
inserted object has its own ACL that controls modification and deletion.
This lets the creator (owner) of a product on a depot change or delete the
product without requiring the broader write permission that could affect
other users’ products on the same depot.

Table 9-5 SD-UX ACL Permission Definitions

Permission Allows You To:

Host System Root Depot Product on
Depot

c (control) Edit all ACLs

t (test) Test access to an object, read (list) the ACL itself

i (insert) Insert a new
depot or root

Insert a new
product

Insert a new
product

N/A

w (write) a Change host Change root
or products

Change depot Change
product

r (read)b List depots
and roots

List root and
product
attributes

List depot
and product
attributes

Read product
files

a. Write permission means permission to change or delete the object,
except the host source object may not be deleted.

b. Read permission on containers (i.e., hosts, roots, and depots) lets a user
list the container contents; on products within depots, read permission
lets a user copy or install the product.
Chapter 9 273

SD-UX Security
ACL Entries
This is useful for product control, because it lets you assign management
control for a specific product to a delegated administrator. Also, when a
product is created on a depot, the user and group identity of the creator
is recorded in the product information.

If the product ACL contains an object_owner entry granting write
permissions to the owner, then the product creator will automatically
have rights to change or delete the product. Therefore, the depot can be
more widely opened to insertion because users with insert permission
can only copy in new products or delete their own products: you don’t
have to worry about a user erroneously deleting some critical product
that they shouldn’t control.

The rationale for this protection scheme is borrowed from a mechanism
introduced in the BSD file system. With write permissions on a BSD
directory, you may create a file in the directory. If the sticky mode bit is
set on the directory, only the file owner, the directory owner, or superuser
may remove or rename the file.

For example: In /tmp , owned by root, with “wide-open” write permission
and the sticky bit set manually (i.e., mode 1777), anyone can create files
that nobody else (except themselves and superuser) can remove. This
makes /tmp a more secure place to store temporary work because
someone else can’t delete your files there.

Installing or copying from an unregistered depot requires the user and
the target agent’s host to have insert permission on the depot’s host. If
this permission is denied to the target’s host, the depot’s daemon log will
contain the message:

ERROR: Access denied to SD agent at host lucille on
behalf of rob@lucille to start agent on unregistered
depot "/users/rob/depot." No (i)nsert permission on
host.

07/23/01 15:51:06 MDT

This message indicates it is the agent at lucille that did not have
insert permission on the depot’s host, not the user rob@lucille .

The remote host ACL must have two entries granting insert permission:
one for the user, and one for the target host.

For example, for user rob to be allowed to install a product on target host
lucille from an unregistered depot on source host desi , the command

swacl -l host @ desi
274 Chapter 9

SD-UX Security
ACL Entries
must show the minimum ACL entries

user:rob@lucille:-i-
host:lucille:-i-

Rob could alternatively register the depot with the swreg command with
only the first entry above before running swinstall or swcopy.

Host System ACLs

The host system is the highest level of protected object in SD-UX. A host
ACL protects each host system, controlling permission to create depots
and roots. The host ACL may grant the following permissions:

A sample host-system ACL grants depot and root source creation, source
listing, and ACL administration to a user named rob and give open
permission to list the depots and roots on the host, would be:

user:rob:r-ic-
any_other:r

Since any_other does not have t (test) permission, only rob can list this
ACL, because he has c (control permission).

Root ACLs

Principals (users) identified in ACLs that are protecting roots are
granted permission to manage installed products. The permissions
associated with a root are:

r (read) Permission to obtain host attributes, including a list of depots
and roots on the host.

w (write) Permission to change the host object.

i (insert) Permission to create and register a new depot or root on the
host.

c (control) Permission to edit or change the ACL.

t (test) Permission to test access to an object and list the ACL.

i (insert) Permission to install a new product.

r (read) Permission to list the contents of the root.

w (write) Permission to delete the root itself or the products in the root.
Chapter 9 275

SD-UX Security
ACL Entries
A sample root ACL that grants a user named lois permission to read,
write, and insert software and members of the group named swadm all
possible permissions is:

user:lois:rwi-
group:swadm:crwit

When a root is created, it is automatically protected by a default ACL
derived from its host. Use swacl to change the initial values of this ACL.
For additional information, see “ACL Templates” on page 278.

Depot ACLs

Principals identified in ACLs that are protecting depots are users who
have been granted permission to manage the depot and to create new
products. The permissions associated with a depot are:

A sample depot ACL that grants its creator all permissions; user george
permission to list and insert software products; members of group swadm
permission to list and insert products, change the ACL and delete the
depot itself; and everyone else permission to list the contents of the
depot, would be:

object_owner:crwit
user:george:-r-i-
group:swadm:crwi-
any_other:-r-

When a depot source object is created, it is automatically protected by a

c (control) Permission to edit or change the ACL.

t (test) Permission to test access to an object and list the ACL.

i (insert) Permission to copy a new product into the depot.

r (read) Permission to list the contents (products) of the depot
source.

w (write) Permission to delete the depot (if it is empty), and
unregister itself (not the products in the depot).

c (control) Permission to edit or change the ACL.

t (test) Permission to test access to an object and list the ACL.
276 Chapter 9

SD-UX Security
ACL Entries

 to

t
ll
default ACL derived from its host. Products inserted in that depot will
automatically be protected by an ACL derived from the depot. This
concept is discussed in the “ACL Templates” on page 278.

Product ACLs

Product ACLs only apply to products on depots. Products on roots are
protected by the root’s ACL. There are two classes of principals that are
granted access rights to products:

Permissions on products are:

A sample product ACL that grants user swadm and the creator of the
product all permissions and allows open read permission (allowing free
distribution to all systems) would be:

user:swadm:crw
object_owner:crw
any_other:-r-

NOTE When a product object is created, it is automatically protected by a
default ACL from the depot/root source or, absent that, one from the
host.

users Granted various administrative permissions. This class
includes groups and others, both local and remote.

hosts Target systems (agent/daemons) granted read permissions
allow product installation.

w (write) Permission to users to change and delete the product and/or
product information.

r (read) Permission granted to target_hosts to read the source-depo
product. (that is, grant permission to a remote system to insta
the protected product).

c (control) Permission to edit or change the ACL.

t (test) Permission to test access to an object.
Chapter 9 277

SD-UX Security
ACL Entries
ACL Templates

There are two ACLs that are used to create the initial ACLs that protect
newly created objects: product ACL templates
(global_product_template or product_template) and container
ACL templates (global_soc_template).

Figure 9-2 ACL Templates

When a product is put into a depot with swcopy or swpackage, SD-UX
uses a product ACL template (provided by the depot that contains that
product) to define the initial permissions of the new product’s ACL.

SD-UX uses the product ACL template of the host system
(global_product_template) to initialize the product ACL template of
the new depot and uses the container ACL template of the host system
(global_soc_template) to initialize depot and root ACLs.

Thus, there are three ACLs on the host:

• Host ACL

Attached to and controlling access to the host object itself.

• Container ACL Template (global_soc_template)

Used to initialize the ACL protecting new depots and roots created on
the host.
278 Chapter 9

SD-UX Security
ACL Entries
• Product ACL Template (global_product_template)

The ACL that is used to initialize the product ACL template on
depots that are created on the host.

There are also two ACLs on product depots:

• The depot’s ACL that is used to determine permissions on the depot.

• The depot’s product ACL template (product_template) that is used
to initialize the ACLs protecting new products on the depot.

There is one ACL on the installation (root):

• The root ACL that protects the root and products installed on it.

And finally, there is one ACL on the product:

• The product’s ACL that is used to determine permissions on the
product.

Every host must have an ACL protecting it and a pair of template ACLs
(product and container) to provide initialization data for implicit depot
and product ACLs. All three are created when SD-UX is installed on the
host.

Default ACL Template Entries

The host system’s container ACL template dictates initial permissions on
all depots and roots that are introduced on that host. The host also
contains a master copy of a product ACL template, which is copied to
each new depot.

A default set of host ACLs is provided at the time SD-UX is installed that
can be altered by the SD-UX administrator. The contents of these
host-system ACLs immediately after SD-UX installation are:

Host ACL

• The host ACL below allows global (any_other) permission to list the
depots and roots on the host:

object_owner:swadm:crwit
any_other:-r---
Chapter 9 279

SD-UX Security
ACL Entries
NOTE Remember, the local superuser always has all permissions, even without
an ACL entry.

Container ACL Template

• The container ACL template below grants the owner or creator
(object_owner) of a new depot or root permission to manage that
new depot or root and to change its ACL. It also grants global
permission (any_other) to list products in the new depot or root.

object_owner:crwit
any_other:-r---

Product ACL Template •The product ACL template below grants
permission to perform all operations on products installed on Depots
on this host to the respective creator (i.e., owner), via the
object_owner entry, of each product. It also grants permission to
read (i.e., install) and test the product to any host (the any_other
entry).

object_owner:crwit
any_other:-r---

• In addition to encompassing all hosts, the any_other entry also
applies to all other users except, in this case, the product’s owner. In
SD-UX however, product read permission has meaning only to host
principals, and other possible product permissions never apply to
hosts; therefore, the any_other entry may be overloaded with user
and host permissions, if desired, without any danger of ambiguity.
This overloading should be kept in mind when using the SD-UX to
execute solutions.

These host ACL defaults provide a good starting point for control over
the management functions of SD-UX while providing open access to read
the software for installation on root targets.
280 Chapter 9

SD-UX Security
Security on SD-UX Systems
Security on SD-UX Systems
Controlling access to data is a key concern of computer security. In
SD-UX, file owners and superusers allow or deny access to files on a
need-to-know basis by setting or manipulating the file’s permission bits
to grant or restrict access by owner, group and others. For example, the
following file listing:

-rwxr-xr 1 doug admin 738 Mar 26 12:25 datafile

shows that:

• File owner is user doug.

• File’s group is admin.

• Name of the file is datafile .

• Owner permissions are read , write and execute (rwx).

• Group permissions are read and execute (r-x).

• Other permissions are read only (r-).

SD-UX commands are essentially object managers that use the SD-UX
file system in which to store their objects. There is no need to obtain
access to any objects via the file system, so the file system protection
scheme is based on blocking access to the file system directories that
store these objects.

In addition to SD-UX objects, there are several administrative files (log,
configuration, and session files) that are used or managed by SD-UX.
These files are not actually SD-UX objects and are accessible via
conventional commands such as editors and printing utilities. These files
are protected by conventional file system protection modes.

Many of the functions that the SD-UX agents do are privileged. Some
operations, such as installing files in system directories (e.g., in the /etc
and /dev directories) and customization of system files via control
scripts, require superuser privileges. For this reason, SD-UX agents
must always run as the superuser.

Any system user may run the SD-UX controller; it is not restricted to use
only by superuser. In general, the controller does its work by making
Remote Procedure Calls (RPC) to target hosts, but it also requires special
privileges occasionally to access critical log, configuration, and session
Chapter 9 281

SD-UX Security
Security on SD-UX Systems
security files. Controllers are set-uid root programs that run with the
superuser privilege in effect only briefly to do critical privileged
operations, then they switch to the real uid of the user.

Here is a summary of the SD-UX file system protection scheme:

• SD-UX files are protected from access by anyone other than the
superuser by having the group and other permissions of crucial
directory modes set to 0.

• Only agents and daemons running on the local host access SD-UX
files directly. All other facilities (controllers, utilities, etc.) go through
the agents using RPC to indirectly access files. The agent or daemons
perform authentication and authorization checks on all such
operations.

• No hard links may exist that circumvent the directory protection
hierarchy of the SD-UX directories nor may symlinks exist that
compromise the secrecy of the contents of those directories containing
objects that might have list restrictions in effect. Use of only a single
(canonical) path to SD-UX objects avoids any such aliasing problems.

Thus, the SD-UX files are totally protected and hidden from
non-superuser access.
282 Chapter 9

SD-UX Security
SD-UX Internal Authentication
SD-UX Internal Authentication
This section discusses the following topics:

• SD-UX Credentials

— Controllers Run with the User’s Credentials and Privileges

— Agents Run with the System’s Identity

• Security Between Hosts: The Shared Secrets File

SD-UX security does not replace DCE Security. It seeks to provide a
usable protection scheme based on the assumption that there is no
hostile, concerted effort by users to do damage.

Much of the DCE security functionality used by SD-UX comes from the
DCE Runtime Library that is included in SD-UX. This library provides
DCE RPC capability and some of the DCE Security Services required to
support ACLs.

Without full DCE Security Services, it is impossible to reliably prove the
identity of a user making an SD-UX RPC call; even if the source and
destination of the RPC call is local. The RPC identifies only the network
address of the calling client.

This means that a person who has access to a legitimate SD-UX host
system and knows the SD-UX call interface and protocol could
impersonate an SD-UX controller. This would create a significant
security risk in a hostile environment.

However, SD-UX makes it possible to run securely without these DCE
Security Services by providing its own internal method of performing
user, group, and host authentication.

SD-UX Credentials

A key to SD-UX security is determining which users are allowed to be
involved in particular operations. In SD-UX internal authentication,
your HP-UX uid , gid , and host name are used to establish your identity.
The fact that the SD-UX controller runs with an effective uid of root
(because the controller is a setuid-root program) does not affect your
identity, which is obtained from your real uid.

When you start an RPC (as an SD-UX controller), a structure describing
Chapter 9 283

SD-UX Security
SD-UX Internal Authentication
your identity accompanies each call to an agent; the controller sends the
user and group name of the person invoking the RPC, as well as the host
name of the system on which it is running (in DCE, called the realm).

This structure is called your credentials. Credentials consist of:

• user (principal) name

The user (or host system, for agents making RPCs to other agents)
who is originating the RPC call.

• Group name

The user’s primary group.

• Realm or local Host

The user’s host name.

The user’s credentials are passed in the RPC parameters, The agent
receiving the RPC uses this information to compare authentication
credentials.

Controllers Run with the User’s Credentials and Privileges

SD-UX controller programs such as swinstall or swremove operate with
the privileges of the user who invokes them. The agent ensures that the
user has the required permissions on the object by looking at the object’s
ACL. If permissions are not granted, the operation fails.

A controller may be run by anyone on the system, but its actions are
restricted (based on permissions granted in various object ACLs). SD-UX
agents always verify that user-requested operations are authorized
before performing them.

Agents Run with the System’s Identity

The SD-UX agents and daemons run with the privileges of a superuser;
but they also have the special identity of the host system on which they
are executing. When a target agent makes an RPC call to a source agent,
two sets of credentials are passed with the call:

• those of the agent’s system

• those of the user running the controller on whose behalf the target
agent runs

While local superuser privilege is necessary for the agent to do required
local file system operations such as file creation and deletion, ACL
284 Chapter 9

SD-UX Security
SD-UX Internal Authentication
management, etc., this level of permission is neither required nor desired
for DCE RPC operations with other SD-UX processes.

When SD-UX agents perform RPCs, they assume the identity of the
system on which they run, rather than that of a particular user.

Security Between Hosts: The Shared Secrets File

In addition to the caller’s credentials, another proof of trustworthiness is
also sent in the RPC. The SD-UX agent checks this proof before accepting
the caller credentials. This proof consists of passing the encryption of a
secret password. The password is read from the shared secrets file. This
file is located on systems in /var/adm/sw/security/secrets .

NOTE The SD-UX Secret must be the same on both the target system and the
controller.

The agent compares this encrypted secret to the encryption of a local
secret it shares with the controller’s host. If the secrets do not match, the
call is not authenticated and it fails.

Secrets are stored by host name in the secrets file and are used to
establish trust between two systems. The controller selects a secret in
the file that corresponds with the host name of the system on which it is
running. The agent, upon receipt of an RPC from the controller, looks up
a secret associated with the controller’s host.

For example, if the controller is running on alma.fc.hp.com and makes
a request of an agent running on lehi.fc.hp.com, each of the two
processes will look up the secret associated with alma.fc.hp.com (the
controller’s host) from their respective secrets file.

Here is an example of the format of the shared secrets file:

default quicksilver
lehi.fc.hp.com s28ckjd9
alma.fc.hp.com 32hwt
newdist.fc.hp.com zztop
noway.fc.hp.com daisey

The first column represents the controller’s host name and the second
column represents the controller’s secret.

There is also a provision for a default secret (quicksilver in the
Chapter 9 285

SD-UX Security
SD-UX Internal Authentication
example above), to be used when no system name match is found in the
secrets file. The entry is identified with the default pseudo-host name.
This entry allows open SD-UX interconnect between hosts sharing the
same default entry. SD-UX is shipped with the secret -sdu- that should
be changed for your site.

When you change a host’s secret, make sure you change it in the secrets
files of all hosts with which you work. The secrets file may be produced in
a single site, then copies distributed to all participating hosts.

NOTE The secrets discussed here does not grant any access to SD-UX objects,
but do allow a host to participate in SD-UX operations.
286 Chapter 9

SD-UX Security
RPC Authorization
RPC Authorization
This section discusses how agents handle controller requests, local
superuser authorization, depot registration, and daemon/agent security

In SD-UX, objects are protected by ACLs. An ACL is a structure,
attached to an object, that defines access permissions for multiple users
and groups. It extends the concepts defined by the HP-UX file system
mode bits in two ways: by allowing specification of the access rights of
many individuals and groups instead of just one of each; and by
protecting entire SD-UX objects, rather than individual files.

Generally, a controller requests an agent to perform some operation on a
object. SD-UX protects each host, depot, depot-product, and installation
object (root) with an ACL. After a call is authenticated, the ACL
manager is consulted for a caller’s access permissions to a protected
object before allowing the action.

SD-UX authorization uses ACLs to determine the RPC caller’s rights to
access a particular SD-UX object in a particular way (i.e., read, write).
An object’s ACL is searched for an entry that matches the caller. Once a
matching entry is found, the permissions granted in that entry are
compared to those required for the operation. If permissions required for
the operation are all granted by the entry, access is authorized, and
SD-UX proceeds with the requested operation.

How Agents Handle Controller Requests

When a controller requests an agent to do an operation requiring the
participation of another agent, the two agents must each grant access to
the objects under their control before the operation can complete.
Chapter 9 287

SD-UX Security
RPC Authorization
Figure 9-3 SD-UX Security Process

For example, to install a product P from depot D to root R:

1. User U sends an RPC request to swagentA on the target host H. User
U wants to install the product in root R (on the target host).

2. SwagentA checks the ACL protecting root R to confirm that user U is
authorized to insert products.

3. SwagentA (running as principal H) forms a request to swagentB
(running where depot D resides) to read the product.

4. SwagentB checks the ACL protecting the product to make sure that
both the destination system (principal H) and the user U have read
permission before honoring the request, and the installation
proceeds.

The ACL on swagentB neither knows of nor depends on user U. The ACL
on root R acts to screen U; then (and only then) the product’s ACL acts to
screen H.
288 Chapter 9

SD-UX Security
RPC Authorization
As a special case, the superuser always has full permissions on a local
system.

Local Superuser Authorization

As a special case, SD-UX always allows the local superuser full access to
all local objects regardless of ACL protections. This allows the local
superuser to repair corrupted ACLs or to perform any other operations.

Delegation

SD-UX provides a form of delegation to control access to depot-resident
products: both the host where the target agent is running and the user
initiating the call must have read access.

This form of delegation passes the caller credential information to the
depot agent in the RPC options. This form of delegation works the same
whether the agents are configured to use DCE or SD-UX Internal
authentication.

It is important to note that this delegation technique is provided to allow
user-level access to depot-resident products.

Depot Registration and Daemon/Agent Security

Because SD-UX stores its objects in the file system, someone could build
a “Trojan Horse” file system image of a software depot. This could breech
the security of any system that installed products from the false depot.
To protect systems from such a situation, SD-UX requires that a depot be
registered with SD-UX (either through swcopy or by using swreg) before
software may be installed or copied from it. This check is always
performed before granting access. Registration with swreg requires
insert permission in the host’s ACL.

As a special case, an unregistered depot may be used for local
installation (i.e., the depot and destination root exist on the same
system) if the initiator is the local superuser or has permission to
register the depot (insert permission on the host).

The administrator of a host system must ensure the integrity of new
depots before registering them and ensure that only trustworthy users
are granted permission to insert on the host.
Chapter 9 289

SD-UX Security
RPC Authorization
NOTE In addition to registering users, caution should be exercised when
installing or copying from unregistered depots.
290 Chapter 9

SD-UX Security
Security Use Models
Security Use Models
The use models below use the swadmgroup that is provided in the default
host ACLs, which are installed at SD-UX install-time. This group is not a
part of the default HP-UX configuration, but can be easily added. First,
add the swadm group and the appropriate group members by using the
HP-UX System Administration Manager product. Next, provide the
/etc/logingroup link to /etc/group to activate HP-UX supplementary
groups.

NOTE /etc/logingroup is an HP-UX utility to support both SVR2/3 and BSD
group semantics selectively. When /etc/logingroup is linked to
/etc/group, HP-UX gives BSD (and SVR4) semantics.

If the file /etc/logingroup does not exist on systems targeted as SD-UX
Controllers, execute the following command (as superuser) on each
appropriate system:

ln -s /etc/group /etc/logingroup

Security in Remote Distributions

A common use of SD-UX remote operations capabilities is for a software
administrator to push software from a local depot out to numerous
remote targets.

You can set up of this kind of configuration:

1. Establish the group swadm on the controller host as described above.

2. Edit the three host ACLs on each target system. If you used the
suggested setup discussed in “Setting Up Remote Operations” on
page 198 to install the agents on the target systems, you may edit the
three host ACLs on the Targets as superuser on the system from
which you performed setup:
Chapter 9 291

SD-UX Security
Security Use Models
swacl -l host \
-M group:swadm@`hostname`:a @ remsys1. . .remsysN

swacl -l global_soc_template
-M group:swadm@`hostname`:a \@ remsys1. . .remsysN

swacl -l global_product_template \
-M group:swadm@`hostname`:a \@ remsys1. . .remsysN

You may want to grant permissions to specific users to manage
particular products on the primary depot. For example, user ramon may
be assigned responsibility to manage the ALLBASE product on your
depot, installing new versions and patches when they become available.
To add ramon to the ACL for ALLBASE on the local depot and grant him
all permissions on that one product, run the command:

swacl -l product -M user:ramon:a ALLBASE

At the same time, you may want to eliminate the ACL entry for group
swadm for the same product:

swacl -l product -D group:swadm ALLBASE

Security in Local Distributions

Host administrators may grant permission to individual users or groups,
trusted at the local host, to administer software locally. Trusted local
users have root ACL entries granting insert and write permissions. At
the source depot, access to all software products is allowed by
unrestricted read access to hosts, depots, and products. This is the basis
of a pull model of software distribution.

Restricting Installation to Specific Target Systems by Specific
Users

Managers of software source depots may leave software openly
installable, as described above, or may choose to limit distribution to
specific systems. ACLs protecting source depot products may contain
entries that restrict product read access to only specified systems,
allowing installation only to those systems. This restriction applies to
both the push and pull models.

Below is a sample product ACL that restricts read permission to
systemA and systemB and grants all permissions to user swadm:

user:swadm:rwict
host:systemA.loc.company.com:r
292 Chapter 9

SD-UX Security
Security Use Models
host:systemB.fc.hp.com:r

Security for Software Developers

Software developers iteratively package their products and test them
before distribution. This involves packaging products into depots and
installing them to Roots for testing. Since it may require several
iterations to get all the customization right, it is not helpful to prevent
software developers from having free access to depots and Roots for this
testing.

You should also not have products that are being tested, coming and
going on wide-use depots and roots. They might accidentally be installed
or used before they are ready.

The recommended method of development is to provide one or more
development depots and roots for testing purposes, each with protections
customized to meet the needs of the development group using them. To
this end, the default ACL template mechanism described previously is
handy, since products come and go quickly.

A host administrator (someone with insert permission on the host)
should create the test depot for developers, then assign a depot
administrator and edit the depot ACL to grant that person control (ACL
edit) permission on the depot. The depot’s product ACL template should
then be set up so that users inserting a product may also write (modify
and delete) it, and so that it may be read only by the known test systems.

Similarly, test roots may be created, perhaps on other test hosts, to which
developers may install test products. Access to install to the test root
should be restricted to the development group.

When testing is complete and a product is ready for release, the product
may then be copied to a general distribution depot to make it more
widely readable without exposing all the untested products on the test
depot.

There are many additional ways in which these basic concepts may be
used to implement a desired security policy for product development.
Chapter 9 293

SD-UX Security
Permission Requirements, by Command
Permission Requirements, by Command

Packaging (swpackage)

• If the depot does not exist, swpackage verifies that the user has insert
permission on the target host.

• swpackage verifies that the user has insert permission on a target
depot.

• swpackage verifies that the user has write permission on target
product, if it already exists.

Listing (swlist)

• To list potential depots, the source agent verifies that the controller
user has read permission on host.

• To list potential products, the source agent verifies that the controller
user has read permission on depot or root.

Job Browsing (sd, swjob)

• To use the CLI (swjob) or GUI (sd) to view information about jobs
initiated from a local host, the controller verifies that the user has
read permission on the host.

• To use the command line or GUI to retrieve a target log file, the target
agent verifies that the controller user has read access on the root or
depot target.

Copying (swcopy)

• Any list operations required to facilitate this function must be
checked as described in the swlist section above.

• If the depot does not exist, swcopy verifies that the user has insert
permission on the target host.

• The target agent verifies that the controller user has insert
permission on the target depot.
294 Chapter 9

SD-UX Security
Permission Requirements, by Command
• The target agent verifies that the controller user has write
permission on the target product, if it already exists.

• The source agent verifies that the target agent system has read
permission on the source product.

• The source (depot) agent verifies that the depot is registered. If not,
the agent verifies that the controller user and the target agent system
each has insert permission on the source’s host.

Installing (swinstall)

• Any list operations required to facilitate this function must be
checked as described in the swlist section above.

• The target agent verifies that the controller user has insert
permission on the target root.

• The target agent verifies that the controller user has write
permission on the target root, if the product already exists.

• The source (depot) agent verifies that the target agent system has
read permission on the source product.

Removal (swremove)

• If the object is a product on a depot, the target agent verifies that the
controller user has write permission on the target product.

• If the object is a product on a root, the target agent verifies that the
controller user has write permission on the target root.

• If the object is a depot or root, or the last product contained in one of
these, before removing the container the target agent must verify
that the controller user has delete permission on the target root or
depot.

Configuration (swconfig)

• The same permission checks are made as for the swremove operation
above, except that this command does not apply to depots.
Chapter 9 295

SD-UX Security
Permission Requirements, by Command
Verify (swverify)

• If the object is a product on a depot, the target agent verifies that the
controller user has read permission on the target product.

• If the object is a product on a root, the target agent verifies that the
controller user has write permission on the target root (since scripts
are executed).

Registering Depots (swreg)

• To register a new depot, the target daemon verifies read permission
on the depot to be registered and insert permission on the host.

Changing ACLs (swacl)

• To change an ACL, write permission is required.

• To list an ACL, list permission is required.

Request Scripts (swask)

• To query a user and obtain installation information, interactive
control scripts are used.

Modify (swmodify)

• To change or add information to the Installed Products Database
(IPD) or depot catalog files, write permission is required.
296 Chapter 9

Creating Software Packages
10 Creating Software Packages

This chapter describes the tasks associated with packaging software for
distribution.

Topics:

“Overview of the Packaging Process” on page 298

“Identifying the Products to Package” on page 300

“Adding Control Scripts” on page 302

“Creating a Product Specification File (PSF)” on page 304

“Packaging the Software (swpackage)” on page 344

“Packaging Tasks and Examples” on page 354
Chapter 10 297

Creating Software Packages
Overview of the Packaging Process
Overview of the Packaging Process
To help you distribute software from depots, Software Distributor lets
you package software into SD-UX format. The packaging process lets you
create depots directly or create packages that you can add to depots later.
The packaging specification is flexible enough to fit many software build
and manufacturing process needs.

The packaging process consists of the following tasks:

1. Identifying the package.

Determine what files and directories you want to include in your
software package, and determine product structure. Your software
package can consist of files, filesets, subproducts, products, and
bundles.

2. Write control scripts (optional).

You can write control scripts and include them in your package. These
scripts let you perform additional checks and operations beyond those
supported by SD-UX.

3. Create a Product Specification File (PSF) to define the product
package.

4. Create the software package by running the swpackage command.

The swpackage command reads the PSF file, analyzes the product
definitions, and packages the source files and information into
product objects. It then creates and inserts the product into the
distribution depot.

Prerequisites

Before you begin packaging software, ensure the following:

• SD-UX is installed and configured on the system where you intend to
create your software package.

• The software to package is installed on the packaging system, or that
the necessary files are available remotely.
298 Chapter 10

Creating Software Packages
Overview of the Packaging Process
For More
Information

You can find more information on SD-UX packaging refer to the SD
Packaging Policies document available on HP’s Software Distributor web
site:

http://software.hp.com/products/SD_AT_HP/info.html
Chapter 10 299

Creating Software Packages
Identifying the Products to Package
Identifying the Products to Package

Determining Product Contents

The first step in packaging software is to determine what files and
directories you want included in the software product. These files and
directories must follow certain guidelines to support the configuration
you want.

Key points in this structure are:

• Where are shareable (for example, executables) and non-shareable
(for example, configuration) files installed?

• How is configuration used to put non-shareable files in place?

Determining Product Structure

Determine the product structure that your software should follow.
SD-UX provides four levels of software objects:

Level Objects

Filesets (Required) Filesets include the actual product files,
information that describes those files (attributes) and
separate control scripts that are run before, during or
after the fileset is installed, copied or removed. Filesets
are the smallest manageable (selectable) software
object. Files must be grouped into one or more filesets.
Filesets must be grouped into one or more products.
(Filesets can be members of only a single product.)

Subproducts (Optional) Subproducts are used to group related
filesets within a product if the product contains several
filesets. Subproduct definitions are optional.

Products (Required) Filesets (and/or subproducts) must be
grouped into one or more products. They are usually
grouped into collections that form a set of related
software, or match the products that a customer
purchases. The SD-UX commands maintain a product
focus, while still allowing the flexibility to manage
300 Chapter 10

Creating Software Packages
Identifying the Products to Package
subsets of the products via subproducts and filesets.

Bundles (Optional) Bundles are provided only by the HP factory.
Customer packaging of bundles is not supported.

NOTE You can define different versions of products for different platforms and
operating systems, as well as different revisions (releases) of the product
itself. You can include different product versions on the same
distribution media.
Chapter 10 301

Creating Software Packages
Adding Control Scripts
Adding Control Scripts
SD-UX supports execution of product and fileset control scripts that
allow you to perform additional checks and operations with other HP-UX
commands and functions. The swask, swinstall, swconfig, swverify, and
swremove commands each can execute one or more control scripts on the
primary roots. You can write the scripts and include them in your
software package. All scripts are optional but many times are needed
correctly complete the task that you want your software package to
perform. See Chapter 11 , “Using Control Scripts,” on page 367 for a
complete discussion of control scripts.

SD-UX supports the following types of scripts, which can be defined for
products and fileset:

Checkinstall Analyses each target to determine if the installation
and configuration can take place. (Executed by
swinstall.)

Checkremove Analyses each target to determine if removal and
unconfiguration can take place. (Executed by
swremove.)

Configure Configures installed filesets or products. (Executed by
swconfig and swinstall.)

Fix Corrects and reports on problems in installed software.
(Executed by swverify.)

Postinstall Performs additional install operations (such as
resetting default files) immediately after a fileset or
product has been installed. (Executed by swinstall.)

Postremove Performs additional remove operations (such as
restoring “rollback” files) immediately after a fileset or
product has been removed. (Executed by swremove.)

Preinstall Performs file operations (such as removing obsolete
files) immediately before installation of software files.
(Executed by swinstall.)

Preremove Performs additional file operations (such as removing
files created by a preinstall script) immediately before
removal of software files. (Executed by swremove.)
302 Chapter 10

Creating Software Packages
Adding Control Scripts
Request Requests an interactive response from the user as part
of the installation or configuration process. (Executed
by swask, swconfig, and swinstall.)

Unconfigure Undoes configurations performed by configure scripts.
(Executed by swconfig and swremove.)

Unpostinstall Undoes a postinstall script in case swinstall must
initiate recovery during the installation process.
(Executed by swinstall.)

Unpreinstall An undo preinstall script in case SD must initiate
recovery during the install process. (Executed by
swinstall.)

Verify Verifies the configuration of filesets or products in
addition to the standard swverify checks. (Executed by
swverify.)
Chapter 10 303

Creating Software Packages
Creating a Product Specification File (PSF)
Creating a Product Specification File (PSF)
SD-UX uses a Product Specification File (PSF) to define the physical
product package. The PSF provides a “road map” that identifies the
product according to its attributes, contents, compatibilities,
dependencies and descriptions. The PSF drives the swpackage session. It
describes how the product is structured and defines the attributes that
apply to it.

SD-UX packages, distributes, installs files. The SD-UX packager uses
these files after they have been built and installed into specific directory
locations. These directory locations my reside in separate, unconnected
directory trees or in the specific file locations needed to make the
software run on your system. You can specify files by a root directory
(gathering all files below it) or by explicit individual file paths. The file
attributes can be taken from the files themselves, specified separately for
each file, or specified for a set of files.

The PSF can:

• Define vendor information (optional) for groups of products (including
all products), or for individual products.

• Specify one or more products (required).

• For each product, define attributes for one or more subproducts
(optional), filesets (required), and files (required).

• Define attributes for the distribution depot/media (optional).

• Specify what computer(s) and operating system(s) the product
supports.

• Define attributes that describe the software objects.
304 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
Product Specification File Examples

Minimal PSF

Here is an example of the minimum PSF, which includes only the
required keywords. This PSF creates a product SD with fileset commands
and contains one file, /usr/sbin/swcopy :

product
tag SD

fileset
tag commands

file swcopy /usr/sbin/swcopy

NOTE You must use an absolute path for the second file term in this minimum
format.
Chapter 10 305

Creating Software Packages
Creating a Product Specification File (PSF)
Typical PSF

Here is a sample PSF that describes the SD-UX product:

PSF defining SD as a sample product.
depot

layout_version 1.0
Vendor definition:
vendor

tag HP
title Hewlett-Packard Company
description < data/description.hp

category
tag system_mgt
title Systems Management Applications
description These are the system management

applications
revision 1.0

end
Product definition:
product

tag SD
revision A.01.00
architecture HP-UX_B.11_32/64
vendor_tag HP
is_patch false
title HP-UX Distributor
number B2000A
category_tag system_mgt
description < data/descr.sd
copyright < data/copyr.sd
readme < data/README.sd
machine_type *
os_name HP-UX
os_release ?.11.*
os_version ?
directory /
is_locatable false

Specify a checkremove script that executes during the
swremove analysis phase. (This script prevents the
removal of the SD product and returns an ERROR.

checkremove scripts/checkremove.sd
306 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
Subproduct definitions:
subproduct

tag Manager
title Management Utilities
contents commands agent data man

end
subproduct

tag Agent
title Agent component
contents agent data man

end
Fileset definitions:

fileset
tag commands
title Commands (management utilities)
revision 2.42
description < data/descr.commands

Dependencies
corequisites SD.data
corequisites SD.agent

Control files:
configure scripts/configure.commands

Files:
directory ./commands=/usr/sbin
file swinstall
file swcopy

(...Other file definitions can go here...)
directory ./nls=/usr/lib/nls/C
file swinstall.cat
file swpackage.cat

directory ./ui=/var/adm/sw/ui
file *

(...Other file definitions can go here...)
end
Commands
(...Other fileset definitions can go here...)
Manpage fileset definitions:
fileset

tag man
title Manual pages for the SD-UX
revision 2.05
Chapter 10 307

Creating Software Packages
Creating a Product Specification File (PSF)
directory ./man/man1m=/usr/man/man1m.Z
file *
directory ./man/man4=/usr/man/man4.Z
file *
directory ./man/man5=/usr/man/man5.Z
file *

end
#man

end
#SD
308 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
PSF Syntax

Each SD-UX object (product, subproduct, filesets, and file) has its own
set of attributes and each attribute has a keyword that defines it. Most
attributes are optional; they do not all need to be specified in the PSF.
Each attribute has its own specific requirements, but the following rules
apply:

• Keyword syntax is:

keyword value

• All keywords require one or more values, except as noted. If the
keyword is there but the value is missing, a warning message is
generated and the keyword is ignored.

• Place comments on a line by themselves or after the keyword-value
syntax. Comment lines are designated by preceding them with #.

• Use quotes when defining a value (for example, description) that can
span multiple lines. Quotes are not required when defining a
single-line value that contains embedded whitespace.

• Any errors encountered while reading the PSF cause swpackage to
terminate. Errors are also logged to both stderr and the logfile.

PSF Object Syntax

The following tables and sections describe the PSF keywords, the
allowable values for each keyword, and the syntax for the objects you can
define in a PSF.

• Keywords marked with a + apply to products only.

• Keywords marked with a - apply to bundles only.

• Keywords marked with a * are of the version_component type, as
well as the type indicated in the table.
Chapter 10 309

Creating Software Packages
Creating a Product Specification File (PSF)
Table 10-1 Keywords Used in the Product Specification File

Keyword Value Max.
Size in
bytes

Example

Distribution Class

distribution
layout_version
tag
copyright
description
number
title

end

revision_string
tag_string
multi_line_string
multi_line_string
one_line_string
one_line_string

64
64
8K
8K
256
256

1.0
EXAMPLE_DEPOT <
data/copyr.depot
data/descr.depot
B2358-13601
Example packages

Vendor Class

vendor
tag
description
title

end

tag_string
multi_line_string
one_line_string

64
8K
256

HP
<data/desc.hp
HP Company

Category Class

category
tag
description
revision
title

 end

tag_string
multi_line_string
revision_string
one_line_string

64
8K
64
256

patch_normal
Normal problems
0.0
Category of Patches
310 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
Product Class

product or bundle
* tag
* architecture

category_tag
- contents

copyright
description
directory
is_locatable
is_patch
machine_type
number
os_name
os_release
os_version

+ postkernel
+ readme
+ revision
+ share_link

title
* vendor_tag
end

tag_string
one_line_string
one_line_string
repeatable list of
software specs
multi_line_string
multi_line_string
path_string
boolean
boolean
uname_string
one_line_string
uname_string
uname_string
uname_string
path_string
multi_line_string
revision_string
one_line_string
one_line_string
tag_string

64
256
256
none

8K
8K
255/102
4
9
9
64
256
64
64
64
255/102
4
8K
64
256
256
64

SD-UX
HP-UX_B.11.11_32/64
Systems Management
pr.fs,r=1.0,a=,v=

<data/copyr.sd
<data/descr.sd
/
false
false
9000/800
B2000A
HP-UX
?.11.*
A
/usr/bin/kern_bld
<data/README.sd
A.01.00

Software Distributor
HP

Subproduct Class

subproduct
tag
contents

description
title

end

tag_string
one-line list of
tag string values
multi_line_string
one_line_string

64
none

8K
256

Manager
commands agent data man

<data/desc.mgr
Management Utilities

Table 10-1 Keywords Used in the Product Specification File

Keyword Value Max.
Size in
bytes

Example
Chapter 10 311

Creating Software Packages
Creating a Product Specification File (PSF)
Fileset Class

fileset
* tag

ancestor

architecture

category_tag
 corequisite
 description

exrequisite
is_kernel
is_patch
is_reboot
is_sparse
machine_type
os_name

 os_release
 os_version
 prerequisite

* revision
supersedes
title

end

tag_string
repeatable list of
product. fileset
revision_string

tag_string
software_spec
multi_line_string
software_spec
boolean
boolean
boolean
boolean
uname_string
uname_string
uname_string
uname_string
software_spec
revision_string
software_spec
one_line_string

64
none

64

64
none
8K
none
9
9
9
9
64
64
64
64
none
64
none
256

commands
prod.oldfileset
oldprod.fileset
HP-UX_B.11.11_32/64

patch_normal
SD-UX.man.r>=2.0
<data/descr.cmd
SD-UX.data,R>=2.1
false
false
false
false-
9000/8*
HP-UX
?.11.*
A
SD-UX.agent,r>=2.0
2.42
product.fileset,
fr=revision
SD-UX Commands

control_files
Class

control_files
directory
file_permissions
file

end

path_mapping_string
permission_string
file_specification

none
none
none

./commands=/usr/sbin
-u 0222 -o root -g sys
-m 04555 bin/swinstall
(or) *

Table 10-1 Keywords Used in the Product Specification File

Keyword Value Max.
Size in
bytes

Example
312 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
Control Files SD-UX supports execution of control files (also known
as control scripts) at the product and fileset level. Control scripts let you
perform additional checks and operations. The swinstall, swconfig,
swverify, and swremove commands each execute one or more vendor
supplied scripts. All scripts are optional but many times are needed
correctly complete the task that you want your software package to
perform. See Chapter 11 , “Using Control Scripts,” on page 367 for a
complete discussion of control scripts.

Selecting the PSF Layout Version

You can select the layout version in the depot definition in the PSF (see
“Product Specification File Semantics” below) or with the
layout_version option for swpackage, swmodify, swcopy, or swlist.

PSF syntax conforms to the layout_version=1.0 of the IEEE Standard
1387.2: Software Administration(POSIX). Previous versions of SD
supported the POSIX layout_version=0.8 syntax, which continues to
be supported.

Software depots cannot mix layout versions; they must be one or the
other.

Table 10-2 Control File Attributes

Keyword Type Size in
Bytes

Example

checkinstall
checkremove
configure
control_file
fix
postinstall
postremove
preinstall
preremove
request
unconfigure
unpreinstall
unpostinstall
verify

path_string
path_string
path_string
path_string
path_string
path_string
path_string
path_string
path_string
path_string
path_string
path_string
path_string
path_string

1K
1K
1K
1K
1K
1K
1K
1K
1K
1K
1K
1K
1K
1K

./scripts/checkinstall

./scripts/checkremove

./scripts/configure

./scripts/subscripts

./scripts/fix

./scripts/postinstall

./scripts/postremove

./scripts/preinstall

./scripts/preremove

./scripts/request

./scripts/unconfigure

./scripts/unpreinstall

./scripts/unpostinstall

./scripts/verify
Chapter 10 313

Creating Software Packages
Creating a Product Specification File (PSF)
Differences between the two layout versions include the following:

• The vendor specification is handled differently.

For the current standard (layout_version=1.0), each vendor
 class definition is associated only with subsequent products or
bundles that contain a vendor_tag attribute that matches the tag
attribute within the vendor class definition.

For the previous standard (layout_version=0.8) or if you do not
specify a layout_version , products or bundles are automatically
associated with the last vendor class you defined at the distribution
level, or from a vendor that you define within the product or bundle.
Explicitly defined vendor_tag attributes (with or without a value)
take precedence.

• The corequisites and prerequisites have singular titles for
layout_version=0.8 (that is, corequisite and prerequisite). See
“Dependency Specification” below for more information.

• Category objects and keywords are handled differently.

For layout_version=1.0 (current standard):

— category_tag is a valid product attribute that replaces the
category and category_title attributes.

— You can define category class objects.

For layout_version=0.8 (previous standard:

— category and category_title are valid product attributes that
replace the category_tag attribute.

— category class objects are not recognized.

For a more complete description of PSF requirements for
layout_version=0.8 , refer to the swpackage.4 manual page in a
previous version of HP-UX.
314 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
PSF Value Types

With the exception of vendor-defined attributes (see “Vendor-Defined
Attributes” on page 319), the values for each attribute keyword in your
PSF must match one of the specific types discussed below.

NOTE PSF syntax conforms to the layout_version=1.0 of the POSIX 1387.2
Software Administration standard. Previous versions of SD-UX
supported the POSIX layout_version=0.8 syntax, which continues to
be supported. See “Selecting the PSF Layout Version” above for more
information.

boolean • Maximum length: 9 bytes

• One of the values true or false.

• Examples: true, false

file_specification

• Maximum length: none

• Explicitly specifies a file or directory to be packaged,
using the format:

[-m mode] [-o [owner [,]] [uid]] [-g [group [,]][gid]]
[-v][source] [destination]

• The source and destination can be paths relative to
source and destination directories specified in the
path_mapping_string .

• You can also use * to include all files below the
source directory specified by a directory keyword.

• Examples: -m 04555 sbin/swinstall or * (to
denote all files and directories)

multi_line_string

• Maximum length: 8 kbyte (1Mbyte for a readme file)

• Each multi-line strings support all isascii
characters. (Refer to the ctype(3) manpage.) It
represent one or more paragraphs of text. It can be
specified in-line, surrounded by double-quotes or
Chapter 10 315

Creating Software Packages
Creating a Product Specification File (PSF)
read from a files.

File entries must use this syntax:

< filename

• Example: </mfg/sd/description

one_line_string •Maximum length: 256 bytes

• One-line strings support a subset of isascii
characters only. (Refer to the ctype(3) manpage.)

• No isspace characters, except for space and tab,
are allowed.

• Examples: Hewlett-Packard Company

path_mapping_
string

• Maximum length: none

• A value of the form: source [=destination] where
the source defines the directory in which
subsequently defined files are located. The optional
destination maps the source to a destination
directory in which the files will actually be
installed.

• Examples: /mfg/sd/files/usr = /usr

path_string • Maximum length: 255 bytes for tapes, 1024 bytes
for depots

• An absolute or relative path to a file. Many
attributes of this type are restricted to 255 bytes in
length. This restriction is due to the tar(1)
command, which requires a file’s basename(1) be <=
100 bytes, and a file’s dirname(1) to be <= 155 bytes.
(Some implementations of tar enforce < and not <=.)

• Examples: /usr /mfg/sd/scripts/configure

permission_
string • Maximum length: none

• A value of the form:

[-m mode|-u umask] [-o [owner [,]][uid]]
[-g [group [,]][gid]]
316 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
where each component defines a default
permissions value for each file and directory defined
in a fileset. The default values can be overridden in
each file’s specific definition. The owner and group
fields are of type tag_string . The uid and gid fields
are of type unsigned integer. The mode and umask
are unsigned integers, but only supports the octal
character set, 0-7.

• SD-UX will not override existing permissions based
on this attribute if a file already exists on a target.

• Examples: -u 0222 -o root -g sys

revision_string •Maximum length: 64 bytes

• Revision strings contain zero or more dot-separated
one_line_string (above).

• Examples: 2.0, B.11.00

software_specification

• Maximum length: none

• Software specifications are used to specify software
in dependencies, ancestors and other attributes, as
well as command line selections. This attribute uses
the standard syntax for SD-UX
software_selections . See “Software Selections”
on page 54 for complete information.

• Examples: SD.agent or
SD,r=2.0,a=HP-UX_B.11.00_32

tag_string • Maximum length: 64 bytes

• Tag strings support a subset of isascii()
characters only:

— Requires one or more characters from: “A-Z”,
“a-z”, “0-9”, including the first character.

— The isspace() characters are not allowed.
Chapter 10 317

Creating Software Packages
Creating a Product Specification File (PSF)
— SDU metacharacters not allowed:
. , : =

— Shell metacharacters not allowed:
; & () {} | < >

— Shell quoting characters not allowed:
“ ‘ ’ \

— Directory path character (/) not allowed.

• Examples: HP, SD-UX

uname_string

• Maximum length: 64 bytes

• Uname strings containing a subset of isascii()
characters only.

• No isspace() characters are allowed.

• Shell pattern matching notation allowed: [] * ? !

• Patterns can be “ORed” together using the
separator: |

• Examples: 9000/7*:*|9000/8*:* , HP-UX, ?.11.*
318 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
Product Specification File Semantics

The following sections describe how to specify a PSF and defines
keywords.

Vendor-Defined Attributes You can create your own software
attributes when packaging software.

Vendor-defined attributes are noted during packaging or when modified
with swmodify. You can list these attributes with swlist.

When SD-UX encounters a keywords in a PSF that is not one of the
standard keywords, the keyword and its associated values are preserved
by being transferred to the INDEX or INFO files created by swpackage.

Nonstandard keywords are defined as a filename character string. The
value associated with a keyword is processed as an attribute_value . It
can be continued across multiple input lines or can reference a file
containing the value for the keyword.

CAUTION If you misspell a standard keyword, SD-UX may mistake the keyword
for a vendor-defined attribute, which may lead to packaging errors.

Distribution (Depot) Specification Distribution attributes let you
list information about the media that will hold the depot (either tapes or
CD/directory. (See “Depot Management Commands and Concepts” on
page 134 for more information about depots.) Here is a PSF for a
distribution:

distribution
layout_version 1.0
tag APPLICATIONS_CD
copyright < data/copyright.cd
description <data/description.cd
number B1234-56789
title HP-UX Applications Software Disk

Optional vendor specification can be included.
AT LEAST ONE PRODUCT SPECIFICATION MUST BE INCLUDED.
Other product specifications are optional.
end

The distribution keyword is always required. All other attributes are
optional.
Chapter 10 319

Creating Software Packages
Creating a Product Specification File (PSF)
distribution or depot

Keyword that begins the distribution specification.
Each keyword defines an attribute of the distribution
depot or tape itself. All keywords are optional, even if a
distribution specification is included in a PSF.

layout_version PSF syntax conforms to the layout_version=1.0 of
the POSIX 1387.2 Software Administration standard.
Previous versions of SD-UX supported the POSIX
layout_version=0.8 syntax, which continues to be
supported. (You can also select the layout version with
the layout_version option for swpackage, swmodify,
swcopy, or swlist.) See “Selecting the PSF Layout
Version” on page 313 for more information.

tag The short name of the target depot (tape) being
created/modified by swpackage.

copyright The text (or a pointer to a filename) for the copyright
information for the depot’s contents.

description The description of the target depot; either the text
itself or a pointer to a filename that contains the text.

number The part or manufacturing number of the distribution
media (CD or tape depot).

title The full name of the target depot (tape) being
created/modified by swpackage.

end Ends the distribution specification, no value is
required. This keyword is optional. If you use it and it
is incorrectly placed, the specification will fail.
320 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
Vendor Specification The vendor attributes let you add a description
to the PSF.

The layout_version defined for the PSF file determines how vendor
specifications are associated with products and bundles. If a
layout_version is not defined or is defined as 1.0, vendor specifications
will be associated with all subsequent products and bundles that define a
matching vendor_tag attribute.

If a layout_version of 0.8 is specified, all subsequent products and
bundles will automatically be assigned to a vendor_tag from the last
vendor object defined at the distribution level, if any, or from a vendor
object defined within a product or bundle, unless a vendor_tag is
explicitly defined.

The following is an example of a vendor specification:

vendor
tag HP
description < data/description.hp
title Hewlett-Packard Company

end

Each keyword defines an attribute of a vendor object. If a vendor
specification is included in the PSF, swpackage requires the vendor and
tag keywords.

NOTE The vendor specification is not the same as vendor-defined attributes.
See “Vendor-Defined Attributes” on page 319 for more information.

vendor Keyword that begins the vendor specification.

tag Defines the identifier (short name) for the vendor.

title Defines the full name (one line description) for the
vendor.

description Defines the multi-paragraph description of the vendor;
the value is either the text itself (within double-quotes)
or a pointer to the filename containing the text.

end Ends the vendor specification. This keyword is
optional.
Chapter 10 321

Creating Software Packages
Creating a Product Specification File (PSF)
Category Specification (Does not apply to layout version 0.8.) A
software collection can contain a list of category objects that are used as
a selection mechanism. Category objects are identified by the keyword
“category” and contain additional information about the category. The
category_tag attribute points to a particular category object and can
appear anywhere within a product, bundle, subproduct, or fileset.

All software objects with the attribute of is_patch set to true are
automatically assigned a category of “patch.”

NOTE The layout_version keyword in the distribution class affects how
categories are associated with products and bundles. See “Selecting the
PSF Layout Version” and “Product Specification File Semantics” above
for more information.

The category specification looks like this:

category
tag patch_normal
title Category of patches
description For normal problems
revision 0.0

end

Each keyword defines an attribute of the category object. If a category
specification is included in the PSF, swpackage requires only the
category and tag keywords.

category Keyword that begins the category specification.

tag The category short name identifier. Associates this
object with a product or bundle. This tag attribute
must match the category_tag attribute in the product
or bundle.

title A one-line string that defines the full name for the
category.

description A multi-line description of the category. The description
value can consist of text or a filename for a text file.
322 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
revision The revision information (release number, version).
Determines which category object definition to
maintain in a depot when a definition being installed or
copied does not match a definition already in the depot
with the same category tag.

end An optional keyword that ends the specification. No
value is required. If you place this keyword incorrectly
in the PSF, the specification will fail.
Chapter 10 323

Creating Software Packages
Creating a Product Specification File (PSF)
Product or Bundle Specification The product specification is a
required class in the PSF. It lets you identify the product you are
packaging.

NOTE The layout_version keyword in the distribution class affects how
category and vendor objects are associated with products and bundles.
See “Selecting the PSF Layout Version” and “Product Specification File
Semantics” above for more information.

The product specification looks like this:

product
tag SD
architecture HP-UX_B.11.00_32/64
category_tag systems_management
contents prod.fsl,r=1.0,a=,v=
copyright </mfg/sd/data/copyright
description </mfg/sd/data/description
directory /usr
is_locatable false
is_patch false
machine_type *
number J2326AA
os_name HP-UX
os_release ?.11.00.*
os_version B.11.**
postkernel /usr/lbin/kernel_build
+ readme </mfg/sd/data/README
revision 2.0
title Software Distributor
vendor_tag HP

Optional vendor specification
Optional subproduct specification
REQUIRED FILESET SPECIFICATION

end

For each product object specified, swpackage requires only the product
and tag keywords, plus one or more fileset definitions. For each bundle
specified, swpackage requires the bundle, tag and contents keywords.
324 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
product Required keyword that begins the product
specification.

tag The product’s identifier (short name).

architecture The target system on which the product or bundle will
run. Provides a human-readable summary of the four
uname attributes (machine_type , os_name,
os_release and os_version), which define the exact
target system(s) the product supports.

bundle Required keyword that begins the bundle specification.

category_tag A repeatable tag-based attribute identifying a set of
categories of which the software object is a member.
This is used as a selection mechanism and can be used
independent of patches. The default value is an empty
list or patch if the is_patch attribute is set to true .
Like vendor_tag , this attribute can be used as a
pointer to a category object that contains additional
information about the category (for example, a one-line
title definition and a description of the category).

NOTE The category tag patch is reserved. When the is_patch product
attribute is set to true, a built-in category_tag attribute of value patch
is automatically included with the product definition.

contents The list of fully qualified (all version distinguishing
attributes included) software specs for the bundle.

copyright A multi-line description of the product’s copyright;
either the text itself (in double quotes) or a pointer to
the filename that contains the text.

description A multi-paragraph description of the product; either
the text itself (within double-quotes) or a pointer to the
filename that contains the text.

directory The default, absolute pathname to the directory in
which the product’s files will be installed (the root
directory of the product). If not specified, swpackage
assigns a value of /.
Chapter 10 325

Creating Software Packages
Creating a Product Specification File (PSF)
is_locatable Defines whether a product or bundle can be installed to
any product directory, or whether it must be installed
into a specific directory. The attribute can be set to true
or false. If not defined, swpackage sets the default
attribute to “false.”

is_patch A boolean flag that identifies a software object as a
patch. The default value is false. When set to true, a
built-in category_tag attribute of value patch is
automatically included with the product definition.

machine_type The system type on which the product will run. If not
specified, the keyword is assigned a wildcard value of * ,
meaning it will run on all machines. If there are
multiple platforms, you must separate each machine
designation with a | (vertical bar). For example, a
keyword value of 9000/7*|9000/8* means the product
will run on all HP Series 9000 Model 7XX or all HP
9000 Series 8XX machines. Alternatively, the value
9000/[78]* would also work.

Other examples:

* (If not concerned with the machine type.)

9000/7??:32*
(Series 700, 32-bit capable hardware required)

*:*64 (64-bit capable hardware required_

*:32: (32-bit capable hardware required)

9000/7??:*64 (Series 700, 64-bit capable hardware
required)

9000/[78]??:32* (Series 800, 32-bit capable
hardware required)

9000/[78]??:*64 (Series 800, 64-bit capable
hardware required)

The value is matched against a target’s
uname -m or getconf _CS_HW_CPU_SUPP_BITS result.

number The part or order number of the product.

os_name The operating system name on which the product will
run. If not specified, the attribute is assigned a value of
* , meaning it will run on all operating systems. If there
326 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
are multiple operating systems, use wildcards or the |
symbol to separate them. The value is matched against
a target’s
uname -s or getconf _CS_KERNEL_BITS result.

os_release The release number of the product’s operating system.
If not specified, the attribute is assigned a value of * ,
meaning it will run on all operating systems. If there
are multiple operating systems, use wildcards or the |
symbol to separate them. The value is matched against
a target’s uname -r result.

os_version The version number of the operating system(s) on
which the product will run. If not specified, the
attribute is assigned a value of * , meaning it runs on
any version. If there are multiple operating systems,
use wildcards or the | symbol to separate them. The
value is matched against a target’s uname -v result.

postkernel Defines a kernel build script to be executed when
kernel filesets are loaded. Kernel filesets have the
is_kernel attribute set to true . The default kernel
script is /usr/sbin/mk_kernel . (See the manual
reference page for mk_kernel(1m) for more
information.) The default script executes when the
postkernel attribute is not specified. Only one kernel
build script is allowed per product, and the script
executes only once, even if defined for multiple filesets.

readme A text file of the README information for the product.
The value must be a pointer to the filename containing
the text

revision The revision information (release number, version) for
the product or bundle.

title A one-line string that further identifies the product or
bundle.

vendor_tag Associates this product or bundle with a vendor object
defined separately in the PSF, if that object has a
matching tag attribute.

end Ends the product or bundle specification. No value is
required. This keyword is optional. If you use it and it
is incorrectly placed, the specification will fail.
Chapter 10 327

Creating Software Packages
Creating a Product Specification File (PSF)
Control Script Specification SD-UX supports execution of product
and fileset control scripts that allow you to perform additional checks
and operations with other HP-UX commands and functions. The swask,
swinstall, swconfig, swverify, and swremove commands each can execute
one or more control scripts on the primary roots. All scripts are optional
but many times are needed correctly complete the task that you want
your software package to perform. See Chapter 11 , “Using Control
Scripts,” on page 367 for a complete discussion of control scripts.

Subproduct Specification The subproduct specification lets you
group filesets within a larger product specification. Subproducts are
optional. A subproduct specification looks like this:

subproduct
tag Manager
contents manager agent packager man doc
description </mfg/sd/data/manager/description
title SD Management Interfaces Subset

end

Each keyword defines an attribute of a subproduct object. If a subproduct
object is specified, swpackage requires the subproduct , tag , and
contents keywords.

subproduct Keyword that begins a subproduct specification.

tag The subproduct’s identifier (short name).

contents A whitespace-separated list of the subproduct’s fileset
tag values (that is, contents fileset1 fileset2
fileset3 ...filesetN).

In the PSF, fileset definitions are not contained within
subproduct definitions. The contents keyword is used
to assign filesets to subproducts. This linkage allows a
fileset to be contained in multiple subproducts.

description A multi-line description of the subproduct; either the
text itself (within double-quotes), or a pointer to the
filename that contains the text.

title A one-line string that further identifies the subproduct.

end Ends the subproduct specification. No value is
required. This keyword is optional. If you use it and it
is incorrectly placed, the specification will fail.
328 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
Fileset Specification The fileset specification is required in the PSF.
Use filesets to group files together.

A fileset specification looks like this:

fileset
tag manB
ancestor OLDSD.MAN
architecture HP-UX_B.11.00_32/64
category_tag manpg
description </mfg/sd/data/man/description
is_kernel false
is_locatable false
is_patch false
is_reboot false
is_sparse false
machine_type *
os_name HP-UX
os_release ?.11.00.*
os_version ?
revision 2.40
supersedes product.fileset,fr=revision
title Commands (management utilities)

Optional control script specification
Optional dependency specification
REQUIRED FILE SPECIFICATION
Additional file specifications optional.
end

Each keyword defines an attribute as a fileset object. For each fileset
object specified, swpackage requires the fileset and tag keywords, plus
zero or more file specifications.

tag The fileset identifier (short name).

architecture Describes the target system(s) on which the fileset will
run if filesets for multiple architecture are included in
a single product. Provides a human-readable summary
of the four uname(1) attributes which define the exact
target system(s) the product supports. Many filesets do
not include an architecture; only a product architecture
need be defined.

ancestor A list of filesets that will match the current fileset
when installed on a target system, if the match_target
Chapter 10 329

Creating Software Packages
Creating a Product Specification File (PSF)
installation option is specified. Also designates an
ancestor fileset to check for when
patch_match_target is defined.

category_tag A repeatable tag-based attribute identifying a set of
categories of which the software object is a member.
This is used as a selection mechanism and can be used
independent of patches. The default value is an empty
list or patch if the is_patch attribute is set to true.

Like vendor_tag , this attribute can be used as a
pointer to a category object that contains additional
information about the category (for example, a one-line
title definition and a description of the category).

NOTE The category tag patch is reserved. When the is_patch file attribute is
set to true, a built-in category_tag attribute of value patch is
automatically included with the file definition.

description Defines the multi-paragraph description of the fileset;
the value is either the text itself (within double-quotes)
or a pointer to the filename containing the text.

is_kernel A value of true defines the fileset as being a contributor
to the operating system kernel; the target system(s)
kernel build process will be invoked after the fileset is
installed. If this attribute is not specified, swpackage
assumes a default value of false.

is_locatable Defines whether a fileset can be installed to any
product directory, or whether it must be installed into a
specific directory. The attribute can be set to true or
false. If not defined, swpackage sets the default
attribute to false.

is_patch Identifies a software object as a patch. The default
value is false. When set to true, a built-in
category_tag attribute of value patch is automatically
included.

is_reboot A value of true declares that the fileset requires a
system reboot after installation. If this attribute is not
specified, swpackage assumes a default value of false.
330 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
is_sparse Indicates that a fileset contains only a subset of files in
the base (ancestor) fileset and that the contents are to
be merged with the base fileset. The default value is
false. If the is_patch attribute is true, is_sparse is
also set to true for the fileset, although it can be forced
to false.

machine_type The machine type on which the product will run. If not
specified, the keyword is assigned a wildcard value of * ,
meaning it will run on all machines. If there are
multiple machine platforms, you must separate each
machine designation with a | (vertical bar). For
example, a keyword value of 9000/7*|9000/8* means
the product will run on all HP Series 9000 Model 7XX
or all HP 9000 Series 8XX machines. Alternatively, the
value 9000/[78]* would also work.

Other examples:

* If not concerned with the machine
type.

9000/7??:32* Series 700, 32-bit capable hardware
required.

*:*64 64-bit capable hardware required.

*:32: 32-bit capable hardware required.

9000/7??:*64 Series 700, 64-bit capable hardware
required.

9000/[78]??:32* Series 800, 32-bit capable
hardware required.

9000/[78]??:*64 Series 800, 64-bit capable
hardware required.

The value is matched against a target’s
uname -m or getconf _CS_HW_CPU_SUPP_BITS result.
Chapter 10 331

Creating Software Packages
Creating a Product Specification File (PSF)
os_name Defines the operating system(s) on which the files will
run if a fileset architecture has been defined. (If not
specified, swpackage assigns a value of *, meaning the
files run on all operating systems.) If there are multiple
operating systems, use wildcards or use the ’|’
character to separate them. This attribute should
pattern match to the value of
uname -s or getconf KERNEL_BITS on the supported
target systems.

os_release Defines the operating system release(s) on which the
files will run. (If not specified, swpackage assigns a
value of *, meaning the files run on all releases.) If
there are multiple operating system releases, use
wildcards or use the ’|’ character to separate them.
This attribute should pattern match to the value of
uname -r on the supported target system(s).

os_version The version number of the operating system(s) on
which the product will run. If not specified, the
attribute is assigned a value of * , meaning it runs on
any version. If there are multiple operating systems,
use wildcards or the | symbol to separate them. The
value is matched against a target’s uname -v result.

revision Defines the revision (release number, version number)
of the fileset.

supersedes Used when a patch is replaced by (or merged into) a
later patch. The attribute indicates which previous
patches are replaced by the patch being installed or
copied. This attribute value is a list of software
specifications of other patches that this patch
supersedes.

title Defines the full name (one-line description)
of the fileset.

end Optional keyword to end the fileset specification. No
value is required. If you place this keyword incorrectly,
the file specification will fail.
332 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
Dependency Specification The swinstall, swcopy, swverify, and
swremove commands recognize software dependencies. The default
behavior for swinstall, for example, prevents an install unless all
dependencies are met.

The PSF specifies dependencies between filesets. Dependencies are
defined within the fileset class definition. (See “Fileset Specification”
above.)

You can also define dependencies between:

• A fileset and another product (namely, a subset of that product).

• A particular fileset within that product.

• The entire product.

SD-UX supports these types of dependencies:

Corequisite Software that must be present for a fileset to operate
correctly. For example, specifying a corequisite for an
install fileset means that the corequisite must be
installed or being installed when the fileset itself is
installed.

(Note that a corequisite dependency does not imply any
“run-time dependency” (load order).)

Exrerequisite Software that may not be present when the fileset is
operated on by SD-UX. For example, specifying an
exrequisite for a fileset prevents the fileset from being
installed if any of the specified exrequisite software
objects are installed or are being installed.

Prerequisite Software that must be installed and/or configured
correctly before a fileset can be operated on by SD-UX.
Prerequisites control the order of an installation with
swinstall (install-time dependency).

Dependencies are specified as a software_specification value type within
the PSF. (See “PSF Value Types” on page 315 for more information.) For
example:

corequisites SD.data
prerequisites productA,r>=2.1
exrequisites productB,r>=2.1
Chapter 10 333

Creating Software Packages
Creating a Product Specification File (PSF)
NOTE A dependency must always be specified using a software specification
that starts with the product tag for the requisite software.

You can specify multiple dependencies to define AND relationships
between the dependencies (AND meaning that all dependencies must be
satisfied).

You can also define OR relationships using the or (|) character. The
following rules apply:

• White spaces are allowed around the OR character.

• OR dependencies are resolved from left to right.

Here is an example:

corequisite P.F
prerequisite ProdA | ProdB | ProdC.F | ProdC.FS
corequisite ProdX | ProdY | ProdZ | ProdW.FS

Control Script Specification SD-UX supports execution of product
and fileset control scripts that allow you to perform additional checks
and operations with other HP-UX commands and functions. The swask,
swinstall, swconfig, swverify, and swremove commands each can execute
one or more control scripts on the primary roots. You can write the
scripts and include them in your software package. All scripts are
optional but often are needed correctly complete the task that you want
your software package to perform. See Chapter 11 , “Using Control
Scripts,” on page 367 for a complete discussion of control scripts.
334 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
File Specification Within a fileset specification, you can specify the
following file types to be packaged into the fileset by swpackage:

• control script

• directory

• hard link

• regular file

• symbolic link

• archive

swpackage generates an error if the PSF contains an unrecognized or
unpackageable file type.

The swpackage command supports specific mechanisms for specifying
the files contained in a fileset:

default permission specification For all or some of the files in the
fileset, you can define a default set of permissions.

directory mapping You can point swpackage at a source directory in
which the fileset’s files are located. In addition, you can
map this source directory to the appropriate
(destination) directory in which this subset of the
product’s files will be located.

explicit file specification For all or some of the files in the fileset, you
can name each source file and destination location.

recursive (implicit) file specification If directory mapping is active,
you can simply tell swpackage to recursively include all
files in the directory into the fileset.

PSF extensions You can use include and exclude files to extend file
definitions.

These mechanisms can all be used in combination with the others.
Chapter 10 335

Creating Software Packages
Creating a Product Specification File (PSF)
Default Permission Specifications By default, a destination file will inherit
the mode, owner, and group of the source file. You can use the file_permissions
keyword to set a default permission mask, owner, and group for all the files being
packaged into the fileset:

file_permissions [-m mode| -u umask] [-o [owner [,]] [uid]]\
[-g [group [,]][gid]][-t type]

file_permissions

This keyword applies only to the fileset in which it is defined.
You can specify multiple file_permissions ; later definitions
replace previous definitions.

-m mode This option defines a default (octal) mode for all files.

-u umask Instead of specifying an octal mode as the default, you can
specify an octal umask (1) value that gets “subtracted” from
an existing source file’s mode to generate the mode of the
destination file.

By specifying a umask, you can set a default mode for
executable files, non-executable files, and directories. (A
specific mode can be set for any file using -m.)

-o [owner [,]][uid]

This option defines the destination file’s owner name and/or
or uid. See the discussion of the -o option in “Explicit File
Specification” on page 338 for more information.

-g [group [,]][gid]

This option defines the destination file’s group name and/or
or gid. See the discussion of the -g option in “Explicit File
Specification” on page 338 for more information.

-t type Defines files that need not exist before packaging.

The following examples illustrate the use of the file_permission keyword.

• Set a read only 444 mode for all file objects (requires override for every
executable file and directory):

file_permissions -m 444

• Set a read mode for non-executable files, and a read/execute mode for
executable files and directories:

file_permissions -u 222

• Set the same mode defaults, plus an owner and group:

file_permissions -u 222 -o bin -g bin
336 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
• Set the same mode defaults, plus a uid and gid:

file_permissions -u 222 -o 2 -g 2

• Set the owner write permission in addition to the above:

file_permissions -u 022 -o 2 -g 2

• If you do not define file_permissions , swpackage uses the default value
file_permissions -u 000 for destination file objects based on existing
source files. (Meaning the mode, owner/uid , group/gid are set based on the
source file, unless specific overrides are specified for a destination file.)

Directory Mapping (Optional) The directory source [= destination]
specification defines the source directory under which subsequently listed files
are located. In addition, you can map the source directory to a destination
directory under which the packaged files will be installed.

For example, the definition:

directory /build/hpux/mfg/usr = /usr

causes files from the /build/hpux/mfg/ directory to have the prefix /usr/sbin
when installed. The destination directory must be a superset of the product’s
directory attribute, if defined in the product specification. If the product’s
directory is defined, and the destination is not a superset, swpackage generates
an error.

The destination directory must be an absolute pathname. If not, then swpackage
generates an error.

The source directory can be either an absolute pathname, or a relative pathname.
If relative, swpackage interprets it relative to the current working directory in
which the command was invoked.

If the source directory does not exist, swpackage generates an error.
Chapter 10 337

Creating Software Packages
Creating a Product Specification File (PSF)
Explicit File Specification You can explicitly specify the files to be packaged
into a fileset. If you want to recursively include all files and directories, use the
recursive file specification (file *).

You can use the directory keyword to define a source (and destination) for
explicitly specified files. If no directory keyword is active, then the full source
path and the absolute destination path must be specified for each file. An explicit
file specification overrides or adds to, on a file-by-file basis, the specifications set
by the directory and/or file_permissions keywords.

An explicit file specification uses this form:

file [-v] [-m mode] [-o [owner [,]][uid]] [-g [group [,]][gid]]
[-t type] [source] [destination]

file This keyword specifies an existing file (usually within the
currently active source directory) to include in the fileset.

source This value defines the path to a file you want to include in the
package.

If this is a relative path, swpackage will search for it relative
to the source directory set by the directory keyword. If no
source directory is active, swpackage will search for it
relative to the current working directory in which the
command was invoked.

All attributes for the destination file object are taken from
the source file, unless a file_permission keyword is active,
or the -m, -o , or -g options are also included in the file
specification.

destination This value defines the destination path at which the file will
be installed. If destination is a relative path, the active
destination directory set by the directory keyword will be
prefixed to it. If it is a relative path, and no destination
directory is active, swpackage generates an error. If the
destination is not specified, then the source path is used as
the destination, with the appropriate mapping done with the
active destination directory (if any).

-m mode This option defines the (octal) mode for a file or directory at
its destination.

-o [owner[,]][uid] This option defines the file’s owner name and/or uid at its
destination. If only the owner is specified, then the owner and
uid attributes are set for the destination file based on the
packaging host’s. If only the uid is specified, it is set as the
destination’s uid and no owner name is assigned. If both are
specified, each sets the corresponding attribute for the file
object.
338 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
During an installation, the owner attribute is used to set the
owner name and uid, unless the owner name is not specified
or is not defined in the target system’s /etc/passwd file. In
this case, the uid attribute is used to set the uid.

-g [group[,]][gid] This option defines the file’s group name and/or gid at its
destination. If only the group is specified, then the group and
gid attributes are set for the destination file based on the
packaging host’s /etc/group . If only the gid specified, it is
set as the destination’s gid attribute and no group name is
assigned. If both are specified, each sets the corresponding
attribute for the file object.

During an installation, the group attribute is used to set the
group name and gid, unless the group name is not specified or
is not defined in the Target system’s /etc/group . In this
case, the gid attribute is used to set the gid.

-t type Defines a file of type d (directory), s (symbolic), h (hard link),
or a (archive) for files that need not exist before packaging.

-v This option marks the file as volatile, meaning it can be
modified (that is, deleted) after it is installed without
impacting the fileset.

Files that may have their attributes (size, last modified time,
etc.) changed through normal use after they are installed
should be specified in the PSF file as volatile (by specifying -v
on the line defining the file). swverify will not, by default,
check file attributes for files that have the is_volatile
attribute set to true (see the check_volatile option for
swverify).

Error Messages

When processing existing files in a source directory, swpackage identifies the
following four kinds of errors:

• Cannot search directory (permission denied)

• Cannot read the file (permission denied)

• Unsupported file type encountered (source file must be a control script,
regular file, directory, hard link or symbolic link)

• File does not exist
Chapter 10 339

Creating Software Packages
Creating a Product Specification File (PSF)
Using Directory and File Keywords

The following examples illustrate the use of the directory and file keywords.

• Include all files under /build/hpux/mfg to be rooted under /usr :

directory /build/hpux/mfg=/usr
file *

• Include only certain files under /build/hpux/mfg/ , to be rooted under /usr
and /var/adm/sw :

directory /build/hpux/mfg=/usr
file sbin/swinstall
file sbin/swcopy
. . .
directory /build/hpux/mfg=/var/adm/sw
file nls/swinstall.cat nls/en_US.88591/swinstall.cat
file defaults newconfig/defaults
file defaults defaults

• Explicitly list files, no directory mapping specified:

file /build/hpux/mfg/usr/bin/swinstall /usr/sbin/swinstall
file /build/hpux/mfg/usr/bin/swcopy /usr/sbin/swcopy
file /build/hpux/mfg/data/nls/swinstall.cat

/var/adm/sw/nls/en_US.88591/swinstall.cat
file /build/hpux/mfg/data/defaults

/var/adm/sw/newconfig/defaults
file /build/hpux/mfg/data/defaults /var/adm/sw/defaults

• Use all specification types to include files:

directory /build/hpux/mfg/usr=/usr
file *
directory /build/hpux/mfg/data=/var/adm/sw
file defaults newconfig/defaults
file /build/hpux/mfg/data/defaults=/var/adm/sw/defaults

Recursive File Specification The file * keyword directs swpackage to
include every file (and directory) within the current source directory in the
fileset. swpackage attempts to include the entire, recursive contents of the source
directory in the fileset. (Partial wildcarding is not supported, e.g. file dm* to
indicate all files starting with “dm”.)

All attributes for the destination file object are taken from the source file, unless
a file_permission keyword is active (this keyword is described below).

The user can specify multiple
340 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
directory source [= destination]
file *

pairs to gather all files from different source directories into a single fileset.

If you do not want to recursively include all files and directories, use the explicit
file specification.

The directory keyword must have been previously specified before the file *
specification can be used. If not, swpackage generates an error.

Error Messages

When processing the directory recursively, swpackage encounters the following
errors:

• Cannot search directory (permission denied)

• Cannot read the file (permission denied)

• Unsupported file type encountered
Chapter 10 341

Creating Software Packages
Creating a Product Specification File (PSF)
PSF Extensions A PSF can contain extended file definitions. SD currently
supports exclude and include files.

Exclude files let you explicitly exclude files that would otherwise be included in
the PSF. The syntax is:

exclude filename

An exclude file can only be specified after a file definition. The file listed after the
exclude keyword is excluded from the current context (for example, from a
recursive file definition or wildcard).

If the filename specifies a directory, then all files below that directory are
excluded.

Include files let you include file definitions from a separate file. The syntax is:

file < filename

The include file must be separated from the file keyword by a less than sign (<).

Re-Specifying Files

In addition to being able to specify files as a group (with file *) for
general attributes, the PSF also allows you to “re-specify” files within
that definition to modify individual attributes.

For example, suppose you wanted to specify all the files in a fileset which
contained 100 files. All these files were to be recursively “discovered” and
packaged into the fileset. Most of them would have the same owner,
group, and mode (and other file attributes).

Out of those 100 files, there might be five that are volatile (that is, you
don’t care if they get modified or deleted). So, instead of listing all 100
files individually, and using the -v option for the five, you could specify
all 100 with file * and then modify the five individually in their own
way. For example, with files 1, 2, 3, 4, and 5:

directory source = /product file *

file -v 1
file -v 2
file -v 3
file -v 4
file -v 5

This also works well for permissions. For example, assume that nearly
all the 100 files in the preceding example had the same permission
attributes, but files 1, 2, and 3 required a different owner and mode:
342 Chapter 10

Creating Software Packages
Creating a Product Specification File (PSF)
directory source = /product

file_permissions -o bin -g bin -m 555
file *

file_permissions -o root -g other -m -04555
file 1
file 2
file 3

This capability combines the recursive file specifications function with
explicit file specification. (See “Explicit File Specification” on page 338).
Chapter 10 343

Creating Software Packages
Packaging the Software (swpackage)
Packaging the Software (swpackage)
The swpackage command packages software products defined in a PSF
into a depot. You can then use the software in the depot with other
SD-UX commands.

Overview Features and limitations include:

• Uses the PSF to organize files into products, subproducts, and
filesets.

• Can include control scripts and PSFs to further specify how to handle
the software when installing it onto the target system.

• Sets permissions of the files being packaged.

• Can package either simple, one-fileset products or complex products
with many filesets and subproducts.

• Provides a way to repackage (change) existing products.

• The swpackage command provides only a command line user
interface. There is no Graphical User Interface for the packaging
tasks.

• Can create directory depots (including CDs) or tape depots (useful for
distributing software via the internet).

• Does not automatically register newly created depots. You must use
the swreg command (see “Registering and Unregistering Depots
(swreg)” on page 151).
344 Chapter 10

Creating Software Packages
Packaging the Software (swpackage)

nst

s

The swpackage
Process

The swpackage process includes up to four phases:

Figure 10-1 shows an overview of the swpackage session.

I. Selection swpackage reads the PSF

II. Analysis swpackage analyzes the packaging tasks and requirements
before actually packaging the software to the target depot or
tape. swpackage compares the software to be packaged agai
the target depot to make sure the packaging operation will be
successful.

III. Build swpackage packages the source files and information into a
product object, and inserts the product into the distribution
depot. swpackage creates the depot but does not register it.
You must have appropriate SD-UX permission to create this
new depot on the local host.

If the target (destination) is a tape media, a temporary depot i
created.

IV. Make Tape (Optional) This phase occurs only if you are packaging to a
distribution tape. swpackage copies the source files and a
temporary depot catalog to the tape. (Note that swpackage
cannot compress files when writing to a tape.)
Chapter 10 345

Creating Software Packages
Packaging the Software (swpackage)
Figure 10-1 An Overview of the Packaging Process

Phase I: Selection When you run swpackage, you must specify a PSF and any other options
you wish to include. The swpackage command begins the session by
telling you the source, target, software selections, and options used,

• Determine the product, subproduct, and fileset required for the
structure

• Determine which files are contained in each fileset
• Determine the attributes associated with each objects
• Check PSF syntax and terminates the session if any are encountered

Phase II: Analysis swpackage performs four checks during this phase:

1. Check for unresolved dependencies.

For every fileset in each selected product, swpackage checks to see if a
requisite of the fileset is not also selected or not already present in the
target depot. Unresolved dependencies within the product generate
errors. Unresolved dependencies across products produce notes.
346 Chapter 10

Creating Software Packages
Packaging the Software (swpackage)
2. Check your authorization to package (or re-package)
products.

For each new product (a product that does not exist on the target
depot) swpackage checks the target depot to see if you have
permission to create a new product on it (insert permission). If you do
not, the product is not selected.

For each existing product (one you are re-packaging) swpackage
checks to see if you have permission to change it (write permission). If
you do not, the product is unselected.

If all products are not selected because permission is denied, the
session terminates with an error.

If the depot is a new depot or if you are packaging to a tape, this
authorization check is skipped. If you have permission to create a new
depot, then you have permission to create products within it. Since a
tape session first writes to a temporary depot then copies it to tape, if
you have permission to create a new (temporary) depot, you can
package to tape.

3. Check for software being repackaged.

For each selected product, swpackage checks to see if the product
already exists in the target depot.

• If it does exist, swpackage checks to see which filesets are being
added (new filesets) or modified.

• If it exists and all filesets are selected, swpackage checks to see if
any existing filesets have been obsoleted by the new product.

4. Performing Disk Space Analysis (DSA)

swpackage verifies that the target depot has enough free disk space to
package the selected products.

• If adequate disk space is available for the packaging operation to
proceed, swpackage writes a note to the log file to note the impact
on disk space.

• An error results if the package will encroach into the disk’s
minfree space.

• An error results if the package phase requires more disk space
than is available.
Chapter 10 347

Creating Software Packages
Packaging the Software (swpackage)
• If you set the enforce_dsa command option to false, swpackage
changes disk space errors to warnings and continues. This lets you
cross into the minfree space to complete a packaging operation.

Phase III: Build When packaging a product, if the target depot does not exist, swpackage
creates it. If it does exist, swpackage will merge new product(s) into it.
For each different version of the product, a directory is created using the
defined product tag attribute and a unique instance number (instance
ID) for all the product versions that have the same tag.

Before a new storage directory is created, swpackage checks to see if this
product version has the same identifying attributes as an existing
product version.

If all the identifying attributes match, you are re-packaging (modifying)
an existing version. Otherwise, swpackage creates a new version in the
target distribution.

The packaging process uses an explicit ordering to avoid corrupting the
target distribution if a fatal error occurs. Each product is packaged in its
entirety and when all specified products have been packaged
successfully, the distribution’s global INDEX file is built/rebuilt. Within
each product construction, the following order is adhered to:

1. Check if the product is new or already exists. If it is new, create the
product’s storage directory.

2. For each fileset in the product, copy the fileset’s files into their storage
location (within the product’s storage directory), and create the
fileset’s catalog (database information) files.

3. After the individual filesets, create the product’s informational files
(meta-files).

A target depot is only the first step in creating a CD-ROM. If the ISO
9660 standard format is desired, a utility to perform this conversion
would be necessary. This conversion is not supported by swpackage.

Distribution tapes are created in tar format (although SD-UX commands
can also read depots from cpio format tapes). To create the tape,
swpackage first builds the products into a temporary distribution depot.
(The depot is removed when swpackage completes.) To conserve space,
all files exist as references to the real source files. After the distribution
depot is constructed, swpackage then archives it, along with the real
files, onto the tape device.
348 Chapter 10

Creating Software Packages
Packaging the Software (swpackage)
When archiving a product that contains kernel filesets onto a tape
media, swpackage puts these filesets first within the archive to provide
efficient access by swinstall. swpackage also orders filesets based on
prerequisite dependency relationships.

Phase IV: Make
Tape

This optional phase occurs only when you package to a distribution tape.

• In this phase, swpackage copies the source files and a temporary
depot catalog to the tape.

• swpackage does a tape space calculation to ensure that the tape can
hold the software package. If one tape cannot hold it all, then
swpackage will partition the software across multiple tapes.

• swpackage cannot compress files when writing to a tape.

Using swpackage

swpackage Syntax swpackage [-p] [-v] [-V] [-C session_file]
[-d directory |device] [-f software_file]
[-s product_specification_file |directory]
[-S session_file] [-x option =value] [-X option_file]
[software_selections] [@target_selection]

Options and
Operands

-p Previews the specified package session without
actually creating or modifying the depot or tape.

-v Turns on verbose output to stdout and lists messages
for each product, subproduct and fileset being
packaged. (The swpackage logfile in
/var/adm/sw/swpackage.log is not affected by this
option.)

-V List the data model revisions which swpackage can
read. swpackage always packages using the latest data
model revision.

-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 59.

-d directory |device
If creating a distribution directory, this option defines
the pathname of the directory .
Chapter 10 349

Creating Software Packages
Packaging the Software (swpackage)
If creating a distribution tape, this option defines the
device file on which to write the distribution. When
creating a distribution tape, the tape device (file) must
exist, and the target_type=tape option must be
specified.

-f software_file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 56.

-s product_specification_file | directory
Specifies the PSF to use or the existing directory to use
as the source for the packaging session.

-S session_file
Run the command based on values saved from a
previous installation session, as defined in
session_file . See “Session Files” on page 59.

-x option=value
Sets a command option to value and overrides default
values or a values in options files. See “Changing
Command Options” below.

-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

software_selections
The software objects to be installed. See “Software
Selections” on page 54.

If you do not include this specification, swpackage
packages all the products listed in the PSF.

@target_ selections
The target of the command. See “Target Selections” on
page 56.

If you are creating a distribution depot (directory), this
operand defines the location of the directory . Without
this operand, /var/spool/sw is used as the default
depot directory.

If you are creating a distribution tape, this operand
names the device file on which to write the tar
350 Chapter 10

Creating Software Packages
Packaging the Software (swpackage)
archive. swpackage must be able to determine if the
media is a DDS tape or a disk file. Without this
operand, swpackage uses the device file, /dev/swtape .

Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the options and default values that apply to swconfig.

For More
Information

See Appendix A , “Command Options,” on page 419 for complete
descriptions of each default.

Table 10-3 swpackage Command Options and Default Values

• admin_directory=/var/spool/sw
• allow_partial_bundles=true
• compress_command=

/usr/contrib/bin/gzip
• compress_files=false
• compress_index=false
• compression_type=gzip
• create_target_acls=true
• distribution_source_directory=

/var/spool/sw
• distribution_target_directory=

/var/spool/sw
• distribution_target_serial=

/dev/rmt/0m
• enforce_dsa=true
• follow_symlinks=false
• include_file_revisions=false
• layout_version=1.0

• log_msgid=0
• logdetail=false
• logfile=/var/adm/sw/swpackage.log
• loglevel=1
• media_capacity=1330
• media_type=directory
• package_in_place=false
• reinstall_files=true
• reinstall_files_use_cksum=true
• run_as_superuser=true
• software=
• source_files=psf
• source_type=directory
• targets=
• uncompress_cmd=
• verbose=
• write_remote_files=false
Chapter 10 351

Creating Software Packages
Packaging the Software (swpackage)
Output of Logfile Messages

The log file /var/adm/sw/swpackage.log captures output from the
swpackage session.

• Message logging by default sends verbose messages to stdout .

(Setting the verbose option to 0 reduces the amount of information in
stdout .)

• Message logging also sends errors and warnings to stderr .

• No logfile messages are written in preview (-p) mode.

• The logfile is equal to stdout plus stderr .

Here is a sample log:

======= 01/27/01 18:58:45 MST BEGIN swpackage SESSION
* Session started for user "root@sdtest.myco.com".

* Source: vewd:test.psf
* Target: vewd:/var/spool/sw
* Software selections:

*
* Options:

preview true
verbose 1
loglevel 1
logfile /var/adm/sw/swpackage.log

source_type file
target_type directory

package_in_place false
follow_symlinks false
include_file_revisions false
enforce_dsa true
reinstall_files true
reinstall_files_use_cksum false
write_remote_files false
create_target_acls true
352 Chapter 10

Creating Software Packages
Packaging the Software (swpackage)
* Beginning Selection Phase.
* Reading the Product Specification File (PSF) "test.ps

f".
* Reading the product "SD" at line 1.
* Reading the fileset "commands" at line 4.

======= 01/27/01 18:58:45 MST END swpackage SESSION
Chapter 10 353

Creating Software Packages
Packaging Tasks and Examples
Packaging Tasks and Examples
To package the software products defined in the PSF product.psf into
the distribution depot /var/spool/sw and preview the task at the
verbose level before actually performing it, type:

swpackage -p -v -s product.psf @ /var/spool/sw

Registering Depots Created by swpackage

When a new depot is created by swpackage, it is not automatically
registered with the local host’s swagentd daemon.

To verify that the depot is registered, type:

swlist -l depot @ MyDepot

To register the depot, you must execute the swreg command:

swreg -l depot depot_to_register

Registering a depot makes it generally available as a source for swinstall
and swcopy tasks.

Registration provides a type of public recognition for the packaged depot:

• You can see the depot in the swinstall/swcopy GUI and see it in swlist
depot-level listings.

• You can read products from the depot (for example, to install).

For more information about registering depots, see “Registering and
Unregistering Depots (swreg)” on page 151.

NOTE If the only use of a depot created with swpackage is local access by the
packaging user, depot registration is not required.
354 Chapter 10

Creating Software Packages
Packaging Tasks and Examples
Creating and Mastering a CD-ROM Depot

When swpackage creates a new depot or packages a new product, it
always creates an ACL for the depot/product. If you were to create a
depot and then master it onto a CD-ROM, the CD-ROM would contain
all those ACLs, which could cause the following problems:

• it may result in too-restrictive permissions on the CD-ROM depot.

• you could have too many user-specific ACLs on the CD-ROM.

To solve these problems, you can tell swpackage to not create ACLs in the
depot by setting the create_target_acls option to false.

This feature is provided only for the superuser because only the local
superuser can change, delete, or add ACLs to a depot that has no ACLs.
The local superuser always has all permissions.

Setting the create_target_acls to false causes swpackage to skip the
creation of ACLs for each new product being packaged (and for the depot,
if it is new). This option has no impact on the ACLs that already exist in
the depot.

When a depot is used as a source for other SD-UX operations, its ACLs
(or lack of ACLs) have no bearing on the ACLs created for the targets of
the operation. Source ACLs are not related to target ACLs.

The swpackage command never creates ACLs when software is packaged
onto a tape.
Chapter 10 355

Creating Software Packages
Packaging Tasks and Examples
Compressing Files to Increase Performance

The packaging process may pass large amounts of data back and forth
over the network and might slow down network performance. The
compress_files option can improve performance by first compressing
files that are to be transferred. This performance gained depends on the
type of files transferred. Binary files compress less than 50%, text files
generally compress more. Improvements are best when transfers are
across a slow network (approximately 50Kbytes/second or less).

If set to true, compress_files compresses files (if they have not been
compressed previously by SD-UX) before transfer from a source. You may
also specify a compression type with the compression_type option or
specify a compression command with the compression_command option.

This option should be set to true only when network bandwidth is clearly
restricting total throughput. If it is not clear that this option will help,
compare packaging operations both with and without compression before
consistently using this option. See Appendix A , “Command Options,” on
page 419 for more information on using command options.

NOTE swpackage cannot compress files when writing to a tape.

Packaging Security

SD-UX provides Access Control Lists (ACLs) to authorize who has
permission to perform specific operations on depots. Because the
swpackage command creates and modifies local depots only, the SD-UX
security provisions for remote operations do not apply to swpackage. See
Chapter 9 , “SD-UX Security,” on page 251 for more information on
ACLs.

The swpackage command operates as setuid root , that is, the Package
Selection phase operates as the invoking user, the Analysis and
Packaging phases operate as the superuser. The superuser owns and
manages all depots and therefore has all permissions for all operations
on a depot. If the depot happens to be on an NFS volume, access
problems will not arise from ACLs, but will arise if the local superuser
does not have NFS root access on the NFS mounted file system.

If you are not the local superuser, you will not have permission to create
or modify a depot unless the local superuser grants you permission.
356 Chapter 10

Creating Software Packages
Packaging Tasks and Examples
swpackage checks and enforces the following permissions:

1. Can you create a new depot?

Superuser Yes

Other Yes, if the ACL for the local host grants the user
“insert” permission, i.e. permission to insert a new
depot into the host.

If the proper permissions are not in place and the
depot is a new one, swpackage terminates with an
error.

2. Can you create a new product?

Superuser Yes

Other Yes, if the depot is new and you passed check #1
above or if the ACL for an existing depot grants you
insert permission, i.e. permission to change the
contents of the depot (by adding a new product).

If you are denied authorization to create a new
product, swpackage generates an error message and
excludes the product from the session.

3. Can you modify an existing product?

Superuser Yes

Other Yes, if the ACL for the existing product grants you
write permission, i.e. permission to
overwrite/change the contents of the product. If you
are denied authorization to change an existing
product, swpackage generates an error message and
excludes the product from the session.

If you are denied insert and write permission for all
selected products, swpackage terminates with an
error.

4. Can you change the depot-level attributes?

Superuser Yes

Other Yes, if the depot is a new one and you passed check
#1 above or if the ACL for an existing depot grants
you write permission, i.e. permission to
Chapter 10 357

Creating Software Packages
Packaging Tasks and Examples
write/change the contents of the depot (same as #2
above).

If you are denied authorization to change an
existing depot, and if the PSF specifies some
depot-level attributes, then swpackage produces a
warning message and does not change the depot
attributes.

ACL Creation

When swpackage creates a new depot or a new product, it also creates an
ACL for it:

New depot swpackage creates an ACL for the depot and a
template ACL for all the products that will be packaged
into it.

The depot ACL is generated from the host’s
global_soc_template ACL (that is, the template ACL
established for new depots and new root file systems).

The depot’s product_template ACL is generated from
the host’s global_product_template ACL (that is, the
host’s template ACL for new products).

The user running swpackage is established as the
owner of the new depot and is granted permissions as
defined in the depot ACL (which come from the
global_soc_template).

New product swpackage creates an ACL for the product; the ACL is
generated from the depot’s product_template ACL.

ACL creation can be disabled by setting the
create_target_acls command to false.

When no ACL exists for a depot, only the superuser can
create new products or add/modify depot attributes.
When no ACL exists for a product, only the superuser
can modify it.
358 Chapter 10

Creating Software Packages
Packaging Tasks and Examples
Repackaging or Modifying a Software Package

There are two types of repackaging:

1. Adding to or modifying a fileset in an existing product.

• Editing the PSF by adding a new fileset definition or changing an
existing fileset’s definition.

• Running swpackage on the edited PSF, specifying the
new/changed fileset on the command line:

swpackage -s psf <other options> \
product.fileset @ depot

This invocation works regardless of whether subproducts are
defined in the product.

• If you change a fileset by changing its tag attribute, swpackage
cannot correlate the existing, obsolete fileset with the new fileset.
Both become part of the changed product. To get rid of the obsolete
(renamed) fileset, use swremove:

swremove -d product.old_fileset @depot

2. Modifying an entire existing product.

• Editing the PSF by adding new fileset definitions, changing
existing fileset definitions, deleting existing fileset definitions or
changing the product’s definition (product-level attributes).

• Running swpackage on the PSF, specifying the product on the
command line:

swpackage -s psf <other options> product @depot

• If you have deleted some fileset definitions in the PSF or modified
a fileset by changing it’s tag attribute, swpackage will produce
warning messages about the existing filesets that are not part of
the modified product’s definition (in the PSF). The existing filesets
plus the new filesets in the product’s definition (in the PSF) will all
be contained in the modified product.

The warnings are produced during analysis phase, and are only
produced when the whole product is being repackaged (as opposed
to subsets of the product).
Chapter 10 359

Creating Software Packages
Packaging Tasks and Examples
• To get rid of the obsolete (renamed) filesets, use swremove:

swremove -d product.old_fileset @depot

• You may want to swremove the product entirely before
repackaging the changes:

swremove -d product @depot
swpackage -s psf <other options> product @depot

Packaging In Place

If you set the package_in_place option to true, swpackage packages
each of the specified products such that the source files are not copied
into the target depot. Instead, swpackage inserts references to the source
files that make up the contents of each fileset. Control scripts are always
copied.

This feature lets you package products in a development or test
environment without consuming the full disk space of copying all the
source files into the target depot. Disk space analysis is skipped when
the package_in_place option is true.

The source files must remain in existence. If some are deleted, any
operations that use the depot as a source (for example, installing the
product with swinstall) will fail when they try to access the missing
source files.

If a source file changes and the product is not repackaged, the
information that describes the source file will be incorrect (for example,
the file checksum). This incorrect information will not prevent the use of
that target depot as a source (for example, installing with swinstall).
However, the incorrect information will be propagated along each time
the product is copied or installed from the depot. The result is that a
swverify operation on the installed product always flags the
inconsistencies with an error unless you disable the check of file
contents.
360 Chapter 10

Creating Software Packages
Packaging Tasks and Examples
Following Symbolic Links in the Source

If you set the follow_symlinks option to true, swpackage follows every
source file that is a symbolic link and include the file it points to in the
packaged fileset.

swpackage also follows each source directory that is a symbolic link,
which affects the behavior of the file * keyword (recursive file
specification). Instead of including just the symbolic link in the packaged
fileset, the directory it points to and all files contained below it will be
included in the packaged fileset.

The default value for this option is false, which causes symbolic links
that are encountered in the source to be packaged as symbolic links. The
symbolic link can point to a file that is also part of the fileset, or to a file
that is not.

Generating File Revisions

If you set the include_file_revisions option to true, swpackage
examines each source file using the what and ident commands to extract
an SCCS or RCS revision value and assign it as the file’s revision
attribute.

Because a file can have multiple revision strings embedded within it,
swpackage uses the first one returned. It extracts the revision value from
the full revision string and stores it.

This option is time consuming, especially when a what search fails and
the ident command is then executed.

The default value for this option is false, which causes swpackage to skip
the examination. No value for the revision attribute is assigned to the
files being packaged.
Chapter 10 361

Creating Software Packages
Packaging Tasks and Examples
Depots on Remote File Systems

Because the swpackage analysis and build phases operate as the
superuser, there are constraints on how swpackage creates, adds to, or
modifies products on a depot that exists in an NFS-mounted file system.

If the superuser does not have write permission on the remote file
system, swpackage will be unable to create a new depot-it will terminate
before the analysis phase begins.

If the superuser does have write permission on the remote file system
but the option write_remote_files is false, swpackage will be unable to
create a new depot - it will terminate before the analysis phase begins.

If the superuser does have write permission on the remote file system
and you set the write_remote_files to true, swpackage creates the new
depot and package products into it.

The constraints for an existing NFS mounted depot are the same as
when creating a new depot.

So, you must:

1. Set the write_remote_files option to true and

2. Make sure the superuser can write to the NFS file system to package
a depot on an NFS-mounted file system.

When these constraints are satisfied, the ACL protection mechanism
controls operations on NFS mounted depots the same way it controls
operations on local depots.
362 Chapter 10

Creating Software Packages
Packaging Tasks and Examples
Verifying the Software Package

If swpackage created a depot rather than storing the package in an
existing registered depot, you must register the depot with the swreg
command. (See “Registering Depots Created by swpackage”.)

After the depot is registered, you can verify it with the swverify
command. For example, to verify the integrity of the product Pascal in
the local default depot:

swverify -d Pascal

For more information about verifying depots, see “Verifying a Depot
(swverify -d)” on page 161.

You can also test the package by installing it on a system. For example,
to install the package named Pascal , located on the default depot
/var/spool/sw in the host svrhost , onto the primary root of a host
named myhost :

swinstall -s svrhost Pascal @ myhost

(This example does not specify the depot location because it is assumed
that the software is located in the default /var/spool/sw on svrhost .)

For more information about verifying installed software, see “Verifying
Your Installation (swverify)” on page 87

Packaging Patch Software

A number of software attributes are available to all software levels
(bundles, products, subproducts, and filesets) that permit packaging of
patch software. For complete information on patch attributes and a
sample PSF, see Chapter 5 , “Managing Patches,” on page 163.
Chapter 10 363

Creating Software Packages
Packaging Tasks and Examples
Writing to Multiple Tapes

When you package products to a distribution tape, the media_capacity
option defines the size of the tape media (in one million byte units). The
default value for this option is media_capacity=1330 , which is the size
of an HP DDS tape. If the target tape is not a DDS tape, you must specify
the media_capacity value.

NOTE The capacity of the DDS tape is in one million byte units (1,000,000
bytes), not Mbyte units (1,048,576 bytes). Most tape drive manufacturers
specify capacity in one-million byte units.

If the products being packaged require more space than the specified
media capacity, swpackage will partition the products across multiple
tapes.

To find out if multiple tapes will be required, swpackage will calculate
the tape blocks required to store the depot catalog and each product’s
contents.

When multiple tapes are necessary, swpackage writes the entire catalog
onto the first tape plus any product contents that also fit. For each
subsequent tape, swpackage prompts you for a “tape is ready” response
before continuing.

To continue with the next tape, enter one of the following responses:

Return Use the same device.

pathname Use the new device/file pathname .

quit Terminate the write-to-tape operation.

Partitioning is done at the fileset level, so a product can span multiple
tapes. A single fileset’s contents cannot span multiple tapes. If any single
fileset has a size that exceeds the media capacity, swpackage generates
an error and terminates. It also generates an error if the catalog will not
fit on the first tape.
364 Chapter 10

Creating Software Packages
Packaging Tasks and Examples
Making Tapes from an Existing Depot

You can copy one or more products from an existing depot to a tape using
swpackage. Instead of specifying a PSF as the source for a packaging
session, just specify an existing depot. For example:

swpackage -s /var/spool/sw ...

To copy all of the products in a depot to a tape:

swpackage -s depot -d tape -x target_type=tape

To copy only some of the products in a depot to a tape, specify the
products as software selections:

swpackage -s depot -d tape -x target_type=tape \
product1 product2 ...

You can also use the -f file option can be used to specify several
software selections instead of listing them on the command line.

When products are copied from a depot to a tape, the ACLs within the
depot are not copied. (The swpackage command never creates ACLs
when software is packaged onto a tape.)

swpackage cannot compress files when writing to a tape.
Chapter 10 365

Creating Software Packages
Packaging Tasks and Examples
366 Chapter 10

Using Control Scripts
11 Using Control Scripts

This chapter discusses how to use control scripts.

Topics:

“Types of Control Scripts” on page 369

“Using Environment Variables” on page 379

“Execution of Control Scripts”

“Execution of Other Commands by Control Scripts” on page 394

“Control Script Input and Output” on page 395

“File Management by Control Scripts” on page 399

“Testing Control Scripts” on page 400

“Requesting User Responses (swask)” on page 405
Chapter 11 367

Using Control Scripts
Introduction to Control Scripts
Introduction to Control Scripts
SD-UX supports execution of both product and fileset control scripts.
These shell scripts allow you to perform additional, customized checks
and operations as part your regular software management tasks. The
swinstall, swconfig, swverify, swask, and swremove commands can
execute one or more of these scripts. Control scripts are usually supplied
by software vendors, but you can write your own. All control scripts are
optional.

Product level control scripts are run when any fileset within that product
is selected for installation, configuration, verification, or removal so the
activities in product control scripts must pertain to all filesets in that
product, but not to any fileset in particular. Actions you want to apply to
every fileset in a product should be in the appropriate product level
control script.

Fileset scripts must pertain only to the installation, configuration, or
removal of that fileset, and not to any other fileset or to the parent
product.

Control scripts can perform a wide variety of customization and
configuration tasks, such as (but not limited to):

• Verifying if someone is actively using the product and, if so,
preventing reinstallation, update or removal.

• Ensuring the local host system is compatible with the software
(scripts can check beyond the compatibility enforced by the product’s
uname attributes).

• Removing obsolete files or previously installed versions of the
product.

• Creating links to, or additional copies of, files after they have been
installed.

• Copying configurable files into place on first-time installation.

• Conditionally copying configurable files into place on later updates.

• Modifying existing configuration files for new features.

• Rebuilding custom versions of configuration files.

• Creating device files or custom programs.
368 Chapter 11

Using Control Scripts
Introduction to Control Scripts
• Killing and/or starting daemons.

For More
Information

For additional information on scripts, refer to the Control Script
Guidelines document available on HP’s Software Distributor web site:

http://software.hp.com/products/SD_AT_HP/info.html

Types of Control Scripts

Here are the control scripts that SD-UX supports:

• Checkinstall Script

This script is run by swinstall during its Analysis phase to insure
that the installation (and configuration) can be attempted. For
example, the OS run state, running processes, or other prerequisite
conditions beyond dependencies could be checked. It should not
change the state of the system.

A checkinstall script’s chief merit is its ability to detect if the system
contains a hardware configuration that might lead to catastrophe - an
unbootable system or file system corruption - if the installation of the
selected software was allowed to proceed. It also acts as the test for
conflicts with other software selections or with software already
installed.

• Preinstall Script

This script is run by swinstall before loading the software files. For
example, this script could remove obsolete files, or move an existing
file aside during an update.

A preinstall script is called during swinstall’s Execution Phase. The
preinstall script for each file is executed just before that fileset’s files
are installed onto the target system. A product level preinstall script
is called before a product’s filesets.

Preinstall scripts for all kernel filesets and their prerequisites are all
run before the kernel build takes place. If the kernel build fails and
swinstall exits, the preinstall scripts are removed from the system.
Product level preinstall scripts are invoked twice for all products that
contain kernel filesets: once when the kernel filesets are their
prerequisites are installed; a second time when the remaining filesets
are installed.
Chapter 11 369

Using Control Scripts
Introduction to Control Scripts
• Postinstall Script

This script is run by swinstall after loading the software files. For
example, this script could move a default file into place.

The postinstall script is part of swinstall’s Load phase. After the files
are loaded, the fileset’s postinstall script is run. Then, the products’s
postinstall script (if any) is run.

• Unpreinstall Script

Unpreinstall scripts are executed during the load phase of swinstall if
recovery is initiated.

All undo scripts are executed in the reverse order of the normal
scripts. For each fileset being recovered, the unpostinstall script is
run, the fileset files are restored, and the unpreinstall script is run.
An undo script is executed if its corresponding script was executed.

An unpreinstall script should undo any operation that the preinstall
script did. For example, if the preinstall script moved a file, the
unpreinstall script should move it back. If the preinstall script copied
a file, the unpreinstall script should remove it.

For a product to be recoverable, no files should be removed by
preinstall or postinstall scripts. Configure scripts are a good place to
remove obsolete files.

A product unpreinstall script is run after the fileset unpreinstall
scripts.

• Unpostinstall Script

Unpostinstall scripts are executed during the load phase of swinstall
if recovery is initiated.

All undo scripts are executed in the reverse order of the normal
scripts. An undo script is executed if its corresponding script was
executed.

An unpostinstall script should undo any operation that the
postinstall script did. For example, if the postinstall script moved a
file, the unpostinstall script should move it back. If the postinstall
script copied a file, the unpostinstall script should remove it.

For a product to be recoverable, no files should be removed by
preinstall or postinstall scripts. Configure scripts are a good place to
remove obsolete files.
370 Chapter 11

Using Control Scripts
Introduction to Control Scripts
NOTE Product level unpostinstall scripts are not supported.

• Configure Script

This script is run by swinstall or by swconfig to configure the host for
the software, or configure the software for host-specific information.
For example, this script could change a host’s specific configuration
file such as /etc/services , add the host name or other host
resources such as available printers to its own configuration file, or
perform compilations.

Configure scripts are run by swinstall for all products (in prerequisite
order) after the products have completed the Load phase. However,
they are only run when installing to a system that will actually be
using the software. They are deferred when installing to an alternate
root (for example, for diskless or building test file systems) and run
instead by the swconfig command when the alternate root is now the
root of the system using the software.

The swconfig command can also be used to rerun configure scripts
that failed during a normal install. A successful execution of the
configure step (whether there is a script or not) moves the software
from the installed state to the configured or ready-to-use state.
Configure scripts (and all others) must be able to be run many times
(that is, they must be re-executable).

Configure scripts are a good place to remove obsolete files.

Configure scripts are not run for installations to alternate roots.

• Verify Script

Verify scripts are run by the swverify command any time after the
software has been installed and configured. Like other scripts, they
are intended to verify anything that the SD-UX software
management tools do not verify by default. For example, this script
could check to see that the software is configured properly and that
you have a proper license to use it.
Chapter 11 371

Using Control Scripts
Introduction to Control Scripts
• Fix Script

Defines the fix script run by swverify to correct and report problems
on installed software. The fix script can create missing directories,
correct file modifications (mode, owner, group, major, and
minor), and recreate symbolic links.

• Unconfigure Script

A script run by swconfig or swremove to undo a host or software
configuration originally performed by a configure script. For example,
an unconfigure script could remove the configuration from the
/etc/services file. (The unconfigure task moves the software from
the configured state back to the installed state.)

Only the swremove command actually removes software. although
you can run unconfigure scripts using swconfig. Unconfigure scripts
are not run for removals from alternate roots.

• Checkremove Scripts

The checkremove script is run by swremove during the remove
analysis phase to allow any checks before the software is
permanently removed. For example, the script could check whether
anyone was currently using the software before removing it.

• Preremove Scripts

This script is executed just before removing files. It can be destructive
to the application because files will be removed next. It could remove
files that the postinstall script created. For example, a preremove
script could save a specific fileset to another location before removing
the rest of the filesets in the product.

This script and the postremove script are part of the Remove phase of
swremove. Within each product, preremove scripts are run (in the
reverse order dictated by any prerequisites), files are removed, then
all postremove scripts are run.

• Postremove Scripts

This script is executed just after removing files. It is the companion
script to the postinstall script. For example, if this was a patch fileset,
then the preinstall script could move the original file aside, and this
postremove script could move the original file back if the patch was
removed.

• Request Scripts
372 Chapter 11

Using Control Scripts
Introduction to Control Scripts
This interactive script requests a response from the user as part of
software installation or configuration. Request scripts write
information into a response file for later use by the configure script or
other scripts. You can run requests scripts by executing the swask
command or using the ask option with swinstall or swconfig after
selection and before the analysis phase.

• Other Scripts

You can include other control scripts, such as a subscript that is
sourced by the above scripts. The location of the control scripts is
passed to all scripts via the SW_CONTROL_DIRECTORY environment
variable, and are denoted by the keyword control_file within the
PSF.

Space Files

The space control file is not a script. It lets you define additional disk
space requirements for the filesets and notes positive disk space impact
on any directory or file that results from the actions of control scripts.

Each fileset or product may contain a space file. The space file lists a
path and a byte size for each path. For example:

/tmp/space_dummy1 2000
/opt/space_dummy2 2000
/tmp/space_dummy3 3000
/mydir/ 4000

For each directory or file path listed in the space file, swinstall adds the
size in bytes to the disk space requirements. The size reflects the
maximum transient or permanent disk space required for the install.
Chapter 11 373

Using Control Scripts
Introduction to Control Scripts
Script Interpreter

By default, SD interprets scripts with a POSIX shell (sh). You can specify
other script interpreters in two ways.

First, any control script can define an interpreter in the first line of the
script.

Second, you can use the interpreter keyword to define a different
interpreter for specific scripts. The syntax is:

interpreter interpreter_name

For example:

control_file
 source scripts

 tag checkinstall
 interpreter ksh

SD checks that the interpreter is available. If the interpreter is not
available, the script fails. (To avoid this problem, you can use a
checkinstall script to verify the existence of any script interpreters that
you specify.) If SD finds the interpreter, it processes the script normally
using the interpreter that you specified.
374 Chapter 11

Using Control Scripts
Introduction to Control Scripts
Control Script Format

A control script should be a shell script (as opposed to a binary) and
written to be interpreted by the Posix.2 shell /sbin/sh . Korn shell
(formerly /bin/ksh) syntax is acceptable to the Posix.2 shell. A script
written for csh is not supported.

The script should have a simple header similar to the example below.
Included in the header should also be comment lines which state the
product and fileset to which the script belongs, the name of the script,
the revision string as required by the what(1) command, and a simple
copyright statement.

#! /sbin/sh
########
Product: <PRODUCT>
Fileset: <FILESET>
configure
@(#) $Revision: 10.30 $
########
#
(c) Copyright MyCompany, 2001
#
########
Chapter 11 375

Using Control Scripts
General Script Guidelines
General Script Guidelines
Here are some guidelines for writing control scripts:

• Consider doing most control script work within the configure script.

• All scripts are executed serially and directly impact the total time
required to complete an installation, configuration, or removal task.
Consider the impact control scripts will have on performance.

• The current working directory in which the agent executes a control
script is not defined. Use the environment variables provided by the
agent for all pathname references.

• Disk space analysis does not account for files created, copied or
removed by control scripts.

• The control scripts you write may be executed several times (for
example, configure, then unconfigure, then configure…) so they must
be able to support multiple executions.

• You may have to re-execute or debug control scripts, especially when
they generate error or warning conditions, so your scripts should be
well-written and commented.

• Control script stdout and stderr are both logged, so you should
restrict output to only the information the user requires.

• Make sure you specify the path to a shell that is proper for your
system. If you get the following message when you execute a script:

Cannot execute /var/adm/sw/products/PRODUCT/FILESET/
configure. Bad file number (9).

it means the shell in your script has a path that is not correct for your
system. (HP-UX 9.X scripts = #!/bin/sh and HP-UX 10.X and 11.X
scripts = #!/sbin/sh .)
376 Chapter 11

Using Control Scripts
Packaging Control Scripts
Packaging Control Scripts
The following table describes the control script keywords for use in a
PSF.

The value of each keyword is the source filename for the specific control
script. swpackage will copy the specified control script’s filename into the
depot’s storage directory for the associated product or fileset, using the
keyword as the tag of the stored script (for example, “configure”).

Table 11-1 Control Script Keywords

Keyword Type Size in
Bytes

Example

checkinstall path_string 1024 /mfg/sd/scripts/checkinstall

preinstall path_string 1024 /mfg/sd/scripts/preinstall

postinstall path_string 1024 /mfg/sd/scripts/postinstall

unpreinstall path_string 1024 /mfg/sd/scripts/unpreinstall

unpostinstall path_string 1024 /mfg/sd/scripts/unpostinstall

configure path_string 1024 /mfg/sd/scripts/configure

unconfigure path_string 1024 /mfg/sd/scripts/unconfigure

verify path_string 1024 /mfg/sd/scripts/verify

checkremove path_string 1024 /mfg/sd/scripts/checkremove

preremove path_string 1024 /mfg/sd/scripts/preremove

postremove path_string 1024 /mfg/sd/scripts/postremove

request path_string 1024 /mfg/sd/scripts/request

control_file path_string 1024 /mfg/sd/scripts/subscripts

fix path_string 1024 /mfg/sd/scripts/fix

space path_string 1024 /mfg/sd/scripts/space
Chapter 11 377

Using Control Scripts
Packaging Control Scripts
You can include control script specifications or data files with the product
or fileset. These are stored alongside the standard SD-UX control scripts.
For example, you could specify a subscript called by the supported
control scripts, or a data file read by these scripts. These additional
scripts are specified using the syntax:

PATH[=tag]

If you do not specify the tag component, swpackage uses the
basename(1) value of the source pathname as the tag.

Control Script Location on the File System During
Execution

The checkinstall, preinstall, postinstall, and auxiliary scripts for a fileset
are downloaded to a temporary directory from which they are invoked:

<FILESET >/control_script/var/tmp/< CATALOG_DIR>/ \
catalog/< PRODUCT>/

The form of the <CATALOG_DIR> is: aaaa<pid >, where <pid > is the
swinstall process ID number.

The scripts are delivered to that location from the depot immediately
after Product Selection has completed, at the beginning of the Analysis
phase and before any system checks have begun. The temporary
directory is removed automatically upon exiting swinstall.

After successful fileset installation, all other control scripts will be
located in the IPD. They will be delivered to that location from the depot
as part of the installation of the fileset’s other files:

/var/adm/sw/products/<PRODUCT>/<FILESET>/control_script

The location of the IPD is relative to the root directory under which the
software installation is done. If the installation is to an alternate root,
/mnt/disk2 for example, then the IPD for that software will be under:

/mnt/disk2/var/adm/sw/products/<PRODUCT>/<FILESET>

NOTE All necessary directories under /var/adm/sw will be created by the
SD-UX process. All files under those directories will be filled by SD-UX
initiated processes. Files must never be delivered directly under /var ; it
is a private directory.
378 Chapter 11

Using Control Scripts
Using Environment Variables
Using Environment Variables
All control scripts are invoked as the superuser and executed by the
agent process. HP-UX provides environment variables that affect SD-UX
commands and scripts. These variables fall are catgorized as follows:

• Variables that affect all SD-UX commands.

• Variables that affect all SD-UX scripts.

• Variables that affect swinstall and swremove.

For More
Information

For additional information on environment variables, refer to the Control
Script Guidelines document available on HP’s Software Distributor web
site:

http://software.hp.com/products/SD_AT_HP/info.html

Variables That Affect All SD-UX Commands

LANG

• This external variable applies to all SD commands except
install-sd .

• Determines the language in which messages are displayed. If LANGis
not specified or is set to the empty string, a default value of “C” is
used.

• The language in which the SD agent and daemon log messages are
displayed is set by the system configuration variable script,
/etc/rc.config.d/LANG . For example, /etc/rc.config.d/LANG
must be set to “LANG=ja_JP.SJIS ” or “LANG=ja_JP.eucJP ” to make
the agent and daemon log messages display in Japanese.

You may also use the export LANG= command.

• See the lang(5) man page for more information.

LC_ALL

• Determines the locale used to override any values for locale
categories specified by the settings of LANG or any environment
variables beginning with LC_.
Chapter 11 379

Using Control Scripts
Using Environment Variables
LC_CTYPE

• Determines the interpretation of sequences of bytes of text data as
characters (e.g., single-versus multibyte characters in values for
vendor-defined attributes).

LC_MESSAGES

• Determines the language in which messages should be written.

LC_TIME

• Determines the format of dates (create_date and mod_date) when
displayed by swlist. Used by all utilities when displaying dates and
times in stdout , stderr , and logging.

TZ

• Determines the time zone for use when displaying dates and times.

Variables That Affect All SD-UX Scripts

SW_CATALOG

• Holds the path to the Installed Products Database (IPD), relative
to the path in the SW_ROOT_DIRECTORY environment variable.
(You can specify a path for the IPD using the
installed_software_catalog default option.)

SW_CONTROL_DIRECTORY

• Defines the full pathname to the directory containing the script. This
tells other scripts where other control scripts for the software are
located (subscripts, for example).

Also contains the response file generated by a request script. Other
scripts that reference the response file access the file by referencing
this variable.

The directory is either a temporary catalog directory, or a directory
within in the Installed Products Database (IPD).

Here is an example of sourcing:
380 Chapter 11

Using Control Scripts
Using Environment Variables
. ${SW_CONTROL_DIRECTORY}subscript
grep something ${SW_CONTROL_DIRECTORY}datafile

SW_CONTROL_TAG

• Holds the tag name of the control_file being executed. When
packaging software, you can define a physical name and path for a
control file in a depot. This lets you define the control_file with a
name other than its tag and lets you use multiple control_file
definitions to point to the same file. A control_file can query the
SW_CONTROL_TAG variable to determine which tag is being executed.

SW_LOCATION

• Defines the location of the product, which may have been changed
from the default product directory (if the product is locatable).

When installing to (or removing from) the primary root directory (“/”),
this variable is the absolute path to the product directory. For
operations on an alternate root directory, the variable must be
prefixed by SW_ROOT_DIRECTORY to correctly reference product
files.

If a product is not locatable, then the value of SW_LOCATION will
always be the default product directory defined when the product is
packaged.

SW_PATH

• The search path for commands. A PATH variable defines the
minimum set of commands available for use in a control script (for
example, /sbin:/usr/bin:/usr/ccs/sbin).

A control script should always set its own PATH variable, and the
PATH variable must begin with $SW.PATH. The PATH should be set
as follows:

PATH=$SW_PATH

export PATH

Additional directories, like /usr/local/bin , can be appended to
PATH, but you must make sure that the commands in those
directories exist.
Chapter 11 381

Using Control Scripts
Using Environment Variables
SW_ROOT_DIRECTORY

• Defines the root directory in which the session is operating, either “/”
or an alternate root directory. This variable tells control scripts the
root directory in which the products are installed. A script must use
this directory as a prefix to SW_LOCATION to locate the product’s
installed files.

All control scripts (except for the configure and unconfigure scripts)
can be executed during an install or remove task on an alternate root.
If the scripts reference any product files, each reference must include
the {SW_ROOT_DIRECTORY} in the file pathname.

The scripts may only need to perform actions when installing to
(removing from) the primary root directory (“/”). If so, then the
SW_ROOT_DIRECTORY can be used to cause a simple exit 0 when
the task is operating in an alternate root directory:

if test "${SW_ROOT_DIRECTORY}" != "/"
then

exit 0
fi

SW_SESSION_OPTIONS

• Contains the pathname of a file containing the value of every option
for a particular command, including software and target selections.
This lets scripts retrieve any command options and values other than
the ones provided explicitly by other environment variables.

SW_SOFTWARE_SPEC

• Contains the fully qualified software specification of the current
product or fileset. The software specification allows the product or
fileset to be uniquely identified. (Fully qualified software specs
include the r= , a=, and v= version components even if they contain
empty strings. For installed software, l= must also be included.)
382 Chapter 11

Using Control Scripts
Using Environment Variables
Variables That Affect swinstall and swremove

SW_DEFERRED_KERNBLD

• This variable is normally unset. If it is set, the actions necessary for
preparing the system file /stand/system cannot be accomplished
from within the postinstall scripts, but instead must be accomplished
by the configure scripts. This occurs whenever software is installed to
a directory other than /.

• This variable should be read only by the configure and postinstall
scripts of a kernel fileset.

SW_INITIAL_INSTALL

• This variable is normally unset. If it is set, the swinstall session is
being run as the back end of an initial system software installation
(that is, a “cold” install).

SW_KERNEL_PATH

• The path to the kernel. The default value is /stand/vmunix .

SW_SESSION_IS_KERNEL

• Indicates whether a kernel build is scheduled for the current
install/remove session.

• A “true” value indicates that the selected kernel fileset is scheduled
for a kernel build and that changes to /stand/system are required.

• A null value indicates that a kernel build is not scheduled and that
changes to /stand/system are not required.

• The value of this variable is always equal to the value of
SW_SESSION_IS_REBOOT.

SW_SESSION_IS_REBOOT

• Indicates whether a reboot is scheduled for a fileset selected for
removal. Because all HP-UX kernel filesets are also reboot filesets,
the values of this variables is always equal to the value of
SW_SESSION_IS_KERNEL.
Chapter 11 383

Using Control Scripts
Using Environment Variables
SW_SYSTEM_FILE_PATH

• The path to the kernel’s system file. The default value is
/stand/system .

Variables That Affect swverify

SW_IS_COMPATIBLE

• Designed to help you determine if installed software is incompatible
and should be removed from a system.

• For use during the execution of a verify script, which is called by the
swverify command.

• The variable will be set to true if the software being considered is
compatible with the system on which it is installed.

• Set to false if the software being considered incompatible with the
system on which it is installed.
384 Chapter 11

Using Control Scripts
Execution of Control Scripts
Execution of Control Scripts
This section details how each control script is executed.

Details Common to All Control Scripts

• The agent runs as the superuser, therefore control scripts are always
executed as the superuser. Use appropriate caution.

• Control scripts are only executed for software being installed,
removed or verified in the primary root (“/”) or an alternate root
directory. Scripts are never executed for software in a depot.

• Each script must set its own PATH variable, using SW_PATH.

• Neither swinstall nor swremove require that the system be shut
down. Control scripts must work correctly on both quiet single-user
systems and active multi-user systems. They must deal properly with
unremovable running programs. They might have to shut down or
start up processes that they own themselves to succeed.

• Control scripts can be re-executed. If a script is run more than once, it
should produce the same results each time. The second execution
should not produce any error messages or leave the system in a state
different than before it was run.

A script should be executable after its fileset was loaded without
damaging the new fileset with which it is associated.

For example, if you must copy a file from under /usr/newconfig to
another location, use the cpio -p command to copy it rather than the
cp command to move it, or check for the absence of the
/usr/newconfig version before attempting the move. (The cpio(1)
command may be preferred over cp(1) because cpio copies the mode,
owner, and group permissions.)

• Control scripts must exit with a return value of zero (exit 0) if no
serious errors occur (no error or warning messages printed, as
described in the “Control Script Input and Output” on page 395.)
They must return 1 (exit 1) in case of any serious errors, and 2 (exit
2) for warnings.

All messages produced by control scripts are redirected to the agent
logfile.
Chapter 11 385

Using Control Scripts
Execution of Control Scripts
• The set of control scripts executed during a particular phase of a task
are always executed in prerequisite order the scripts of each
prerequisite product/fileset are executed before the script of the
dependent fileset.

• All control scripts are readable by any other control script.

Checkinstall Scripts

• Checkinstall scripts are executed during the Analysis phase of a
swinstall session. The pathname of the script being executed is:

$ {SW_CONTROL_DIRECTORY}checkinstall

• A checkinstall script must not modify the system.

• A checkinstall script determines whether the product/fileset can be
installed by performing checks beyond those performed by swinstall.
Example checks include checking to see if the product/fileset is
actively in use, or checking that the system run-level is appropriate.

• If you are using a request script as part of the install, the checkinstall
script should:

— Verify that the response file exists.

— Prevent swinstall from “hanging” if:

— A script tries to read a response file that does not exist, or

— The install or configuration relies on information in the
missing response file.

• If the checkinstall script fails, the fileset will not be installed. The
interactive interface of swinstall will notify you that the checkinstall
script has failed. Then you can: diagnose the problem, fix it and
re-execute the analysis phase; or unselect the product/fileset. The
non-interactive interface tells you about each individual checkinstall
failure and the filesets are not installed.

• A checkinstall script is executed for installations into the primary
root (“/”) or an alternate root. Since most of the actions of this script
will involve checking the current conditions of a running system (that
is, the primary root), it may not need to perform any actions when the
product/fileset is being installed into an alternate root.
386 Chapter 11

Using Control Scripts
Execution of Control Scripts
Preinstall Scripts

• Preinstall scripts are executed during the Load phase of a swinstall
session. The pathname of the script being executed is:

$ {SW_CONTROL_DIRECTORY}preinstall

• The preinstall script for a product is executed immediately before the
fileset’s files are installed.

• A preinstall script should perform specific tasks preparatory to the
files being installed. The swinstall session will proceed with installing
the files regardless of the return value from a preinstall script.
Example actions include removing obsolete files (in an update
scenario).

• A preinstall script is executed for installations into the primary root
(“/”) or an alternate root. The scope of actions of a preinstall script
should be within the product itself (that is, the files within the
product’s directory).

Postinstall Scripts

• Postinstall scripts are executed during the Load phase of a swinstall
session. The pathname of the script being executed is:

$ {SW_CONTROL_DIRECTORY}postinstall

• The postinstall script for a product is executed immediately after the
fileset’s files are installed.

• A postinstall script should perform specific tasks related to the files
just installed. The swinstall session will proceed with the remainder
of the session (for example, configuration) regardless of the return
value from a postinstall script. Example actions include adding a
kernel driver to the system file or moving a file from under
/usr/newconfig to its correct place in the file system.

• A postinstall script is executed for installations into the primary root
(“/”) or an alternate root. The scope of actions of a postinstall script
should be within the product itself (that is, the files within the
product’s directory).

• The customization or configuration tasks that must be performed to
enable the product/fileset for general use should not be done in the
postinstall script, but the configure script (described below).
Chapter 11 387

Using Control Scripts
Execution of Control Scripts
Configure Scripts

• Configure scripts are executed during the Configuration phase of a
swinstall session. SD expects configure scripts at system start-up if
the swinstall session triggers a system reboot. The swconfig command
can also execute configure scripts. The pathname of the script being
executed is:

$ {SW_CONTROL_DIRECTORY}configure

• A configure script is only executed for installations into the primary
root (“/”). If you choose to defer configuration in the swinstall session,
then the configure script will be executed by a swconfig session at
some time after the installation completes.

• A configure script is usually executed only when the product/fileset is
in the installed state.

• A configure script is the primary way to move a product/fileset from
the installed state to the configured state. The script should perform
all (or most of) the activities needed to enable the product/fileset for
use.

• A configure script can use configuration information provided by the
user and collected by a request script.

• When an existing version of a product is updated to a new version,
the configure script(s) for the new version must perform any
unconfigurations-configurations of the old version that are necessary
to properly configure the new version. The unconfigure script(s) for
the old version are not executed.

• Configure scripts are for architecture-dependent actions because they
will always be run on the architecture of the install target.

• Configure scripts are the best place for removing files and updating
the IPD, since the system is not in transition (i.e. as in an update).

• A configure script can help with software updates as well as new
installs. The script must also be able to handle reinstallation and
should include appropriate error control if data destruction is
possible.
388 Chapter 11

Using Control Scripts
Execution of Control Scripts
Unconfigure Scripts

• Unconfigure scripts are executed during the
Unconfiguration-Configuration phase of a swremove session. They
can also be executed by the swconfig command. The pathname of the
script being executed is:

$ {SW_CONTROL_DIRECTORY}unconfigure

• An unconfigure script is executed only for software installed into the
primary root (“/”).

• An unconfigure script is re-executed even when the product/fileset is
in the configured state.

• An unconfigure script is the primary way to move a product/fileset
from the configured state back to the installed state. The script
should perform all (or most of) the activities needed to disable the
product/fileset for use.

• An unconfigure script must undo all configuration tasks performed by
its companion configure script. The user should be able to configure,
unconfigure, configure, etc. an installed product/fileset and always
end up with the same configured result.

Verify Scripts

• Verify scripts are executed by the swverify command. The pathname
of the script being executed is:

$ {SW_CONTROL_DIRECTORY}verify

• A verify script must not modify the system.

• A verify script is the primary way to check the configuration tasks
performed by a configure script for correctness and completeness.

• A verify script is executed for installations into the primary root (“/”)
or an alternate root. Since most of the actions of this script will
involve checking the current conditions of a configured product/fileset
(in the primary root), it may not need to perform any actions for a
product/fileset installed into an alternate root directory.

• An environment variable, SW_IS_COMPATIBLE, can help a verify
script determine if installed software is compatible with the system
on which it is installed. See “SW_IS_COMPATIBLE” on page 384.
Chapter 11 389

Using Control Scripts
Execution of Control Scripts
Fix Scripts

• Fix scripts are executed by the swverify command. The pathname of
the script being executed is:

$ {SW_CONTROL_DIRECTORY}fix

• A fix script can be used to correct attribute problems detected by a
verify script.

• A fix script can create missing directories, correct file modifications
(mode, owner, group, major, and minor), and recreate symbolic links.

Checkremove Scripts

• Checkremove scripts are executed during the Analysis phase of a
swremove session. The pathname of the script being executed is:

$ {SW_CONTROL_DIRECTORY}checkremove

• A checkremove script must not modify the system.

• A checkremove script determines whether the product/fileset can be
removed by performing checks beyond those performed by swremove.
Example checks include checking to see if the product/fileset is
actively in use.

• If the checkremove script fails, no filesets in the product will be
removed. The GUI/TUI interface of swremove notifies you that the
checkremove script has failed. You can then: diagnose the problem, fix
it, and re-execute the analysis phase; unselect the target system(s) in
question; or unselect the product/fileset. The command line interface
notifies you for each individual checkremove failure, and no filesets in
that product are removed.

• A checkremove script is executed for installations into the primary
root (“/”) or an alternate root. Since most of the actions of this script
will involve checking the current conditions of a running system (that
is, the primary root), it may not need to perform any actions when the
product/fileset is being removed from an alternate root.
390 Chapter 11

Using Control Scripts
Execution of Control Scripts
Preremove Scripts

• Preremove scripts are executed during the Remove phase of a
swremove session. The pathname of the script being executed is:

$ {SW_CONTROL_DIRECTORY}preremove

• All preremove scripts for a product are executed immediately before
the product’s files are removed.

• A preremove script should perform specific tasks preparatory to the
files being removed. The swremove session will proceed with
removing the files regardless of the return value from a preremove
script. Example actions include removing files created in the
postinstall script.

• A preremove script is executed for installations into the primary root
(“/”) or an alternate root. The scope of actions of a preremove script
should be within the product itself (that is, the files within the
product’s directory).

• The de-customization or unconfiguration-configuration tasks which
must be performed to disable the product/fileset for general use must
not be done in a preremove script, instead they should be done in an
unconfigure script (described above).

Postremove Scripts

• Postremove scripts are executed during the remove phase of a
swremove session. The pathname of the script being executed is:

$ {SW_CONTROL_DIRECTORY}postremove

• All postremove scripts for a product are executed immediately after
the product’s fileset files are removed.

• A postremove script should perform specific tasks related to the files
just removed. The swremove session will proceed with the remainder
of the session regardless of the return value from a postremove script.
Example actions include:

— Removing any files still remaining after preremove and the
swremove file removal have completed.

— Removal of directories wholly owned by the fileset and which have
been emptied by the file removal.
Chapter 11 391

Using Control Scripts
Execution of Control Scripts
• A postremove script is executed for installations into the primary root
(“/”) and an alternate root. The scope of actions of a postremove script
should be within the product itself (that is, the files within the
product’s directory).

• The de-customization or unconfiguration-configuration tasks which
must be performed to disable the product/fileset for general use
should not be done in the postremove script, instead they should be
done in the unconfigure script (described above).

Request Scripts

• Request scripts are interactive scripts that request a response from
the user as part of software installation or configuration. The
pathname of the script being executed is:

$ {SW_CONTROL_DIRECTORY}request

• Request scripts write information into a response file for later use by
the configure script or other scripts. You can run requests scripts by
executing the swask command or using the ask option with swinstall
or swconfig after selection and before the analysis phase.

• The POSIX default for request scripts is a shell script. The shell
script must be able to:

— Ask questions of the user.

— Read the user’s answer.

— List all current user responses in a redrawn screen.

— Ask the user to confirm an answer and continue or to go back.

• The request script stores the user response in a response file. The
path of the response file is accessible by the
SW_CONTROL_DIRECTORY environment variable.

• The POSIX recommendation for response file format is the SVR4
model of attribute/value pairs. Answers should be written to the
response file in env_var= value format so that the response files can
be easily used by other control scripts.

• When you use a request script to get install information, HP
recommends that you use a checkinstall script to check for proper
execution of the request script. The checkinstall script should:
392 Chapter 11

Using Control Scripts
Execution of Control Scripts
— Verify that the response file exists.

— Prevent swinstall from “hanging” if:

— A script tries to read a response file that does not exist.

— The install or configuration relies on information in the
missing response file.
Chapter 11 393

Using Control Scripts
Execution of Other Commands by Control Scripts
Execution of Other Commands by Control
Scripts
Every command executed by a control script is a potential source of
failure because the command may not exist on the target system. Your
script can use any command conditionally, if it checks first for its
existence and executability, and if it does not fail when the command is
unavailable.

• If the target system(s) conform with the POSIX 1003.2 Shells and
Utilities standard, then the Execution Environment Utilities of this
standard will also be available.

• If a fileset has a prerequisite dependency on another product/fileset,
then most of the control scripts for the dependent fileset can use the
commands of the required product/fileset, if the
$ROOT_DIRECTORY is / . (All commands perform their tasks in
prerequisite order).

• Commands should be referenced relative to the path components
specified in the PATH variable. (See the discussion of PATH and the
SW_PATH environment variable above.)

For More
Information

For additional information on the available list of commands to execute
from control scripts, refer to the Control Script Guidelines document
available on HP’s Software Distributor web site:

http://software.hp.com/products/SD_AT_HP/info.html
394 Chapter 11

Using Control Scripts
Control Script Input and Output
Control Script Input and Output

• Except for request scripts, control scripts must not be interactive.
This includes messages such as, Press return to continue .

• Except for request scripts, all control scripts are executed by the
agent on the target systems. Request scripts are executed by the
controller (swinstall, swconfig, or swask).

• Except for request scripts, no method of input to control scripts is
supported. Request script data is input by the user through the swask
command or the ask option for swinstall or swconfig.

• Control scripts must write messages for error and warning conditions
to stderr (echo &>2), and write all other messages to stdout. Control
scripts must not write directly to /dev/console or attempt any other
method of writing directly to the display.

The stdout and stderr from a control script is redirected by the
agent to the log file (var/adm/sw/swagent.log) within the primary
or alternate root directory in which the task is being performed.

For interactive swinstall and swremove sessions, you can display and
browse this logfile.

• Only minimal, essential information should be emitted by control
scripts. Ideally, no output is emitted if the script successfully
performs all of its actions.

• In the agent logfile, the execution of each control script is prefaced by
a “begin execution” message:

* Running "checkinstall" script for product "PRODUCT"
* Running "checkinstall" script for fileset

"PRODUCT.FILESET".

Any messages generated by the script will follow. If the script returns
a value other than 0 (SUCCESS), then a concluding message such as
the following, is written:
Chapter 11 395

Using Control Scripts
Control Script Input and Output
ERROR: The "unconfigure" script for "PRODUCT.FILESET"
failed (exit code "1"). The script location was
"/var/adm/sw/products/PRODUCT/FILESET/unconfigure".
* This script had errors but the execution of this
product will still proceed. Check the above output
from the script for further details.

WARNING: The "unconfigure" script for
"PRODUCT.FILESET" failed (exit code "2"). The script
location was
"/var/adm/sw/products/PRODUCT/FILESET/unconfigure"
* This script had warnings but the execution of this
product will still proceed. Check the above output
from thescript for further details.

• The messages written by a control script must conform to the
following format conventions whenever possible.

1. Never emit blank lines.

2. All output lines must have one of these forms:

ERROR: text
WARNING: text
NOTE: text

blank text

In each case, the keyword must begin in column 1, and the text
must begin in column 10 (indented nine blanks).

3. Choose the keyword (ERROR, WARNING, NOTE, or blank) as follows:

ERROR: Cannot proceed, may need corrective action.

WARNING: Can proceed, but something went wrong and
may need action.

NOTE: Can proceed, but something happened that is
out of the ordinary or worth special attention.
(Not just a status message.)

blank Generic progress and status messages (keep
them to a necessary minimum).

Do not start a line with an asterisk (*) character. This is reserved
for operational messages printed by the agent so you can easily
distinguish them from other messages.
396 Chapter 11

Using Control Scripts
Control Script Input and Output
4. If the message text requires more than a single 72-character line,
break it into several 72-character lines. Indent all lines after the
first. For example:

NOTE: To install your new graphics package, you
must turn on the lights in the next room.
Please turn them off when you leave.

5. Do not use tab characters in any messages.

• Scripts execute other commands which may unexpectedly fail and
emit output not in the above format. Wherever you suspect a failure
is possible or likely (and it is reasonable to do so) redirect the
standard output or error of the executed command to /dev/null or to
a temporary file. Then emit a proper-format message based on the
return code or on output from the command. For example:

/bin/grep bletch /etc/bagel 2c&>/dev/null
if[$?=1]
then
 echo “ERROR: Cannot find bletch in /etc/bagel.”
|&>2
fi

• Follow these conventions to ensure a control script’s messages have a
similar look and feel to the messages generated by the agent (and the
commands themselves).

— Use full sentences wherever possible. Avoid terseness.

— Start sentences and phrases with a capital letter and end with a
period.

— Put two blanks after a period; one after colons, semicolons, and
commas.

— Use uppercase first letters of phrases after colons. (This helps
break up the message into digestible “bites” of information.)

— Surround product, fileset, directory, and file names, and other
variable-valued strings with quotes. For example:

echo "ERROR: Cannot open file \"$file\"." &>2

— Write in the present tense. Avoid “would”, “will”, and similar verb
tenses. Also avoid past tense except where necessary.

— Use “cannot” rather than “can’t”, “could not”, “couldn’t”, “unable
to”, “failed to”, and similar phrases.
Chapter 11 397

Using Control Scripts
Control Script Input and Output
— Write messages that make sense to system administrators and
users. Consider your audience.
398 Chapter 11

Using Control Scripts
File Management by Control Scripts
File Management by Control Scripts

• All files created by a preinstall, postinstall, or configure script must
be removed by a companion postremove, preremove or unconfigure
script.

Files created by scripts are not known by the swremove command,
and will not get removed when it removes those files installed by
swinstall. If you want script-created files removed by SD, you will
have to add them to the IPD by either the swmodify command or the
control_utils function IPD_addfile .

• If any files in the previous revision of a product have changed names
or became obsolete, a product/fileset preinstall or postinstall script in
the new revision of the product must remove the old files. The agent
does not remove the files in an existing product/fileset before
updating it to a newer revision.

NOTE It is necessary to perform the cleanup task of any previous revision that
can be updated to the new revision. Sometimes this is more than just the
previous revision.
Chapter 11 399

Using Control Scripts
Testing Control Scripts
Testing Control Scripts
The following testing suggestions do not cover all test scenarios. There
may still be problems with a control script even after doing this testing.
For example, you may test installing/removing individual filesets. But
there might be some interactions that are discovered only after all the
filesets are installed on or removed from the system.

Similarly, you may test the control scripts on a fully loaded system and
miss a problem when you execute a command in your script that is not
part of the base (or core) system. If your target system does not contain
the particular command, your script may fail.

Testing Installation Scripts

For checkinstall, preinstall, and postinstall scripts you should perform at
least these tests. All tests can be performed on the local system (that is,
by doing local installs).

1. The basic test:

• Run swinstall to install the full product (that is, all the filesets). To
avoid testing the configure script(s), either do not include any in
the product, or set the defer_configure option to “true.”

• After the installation completes, check the
<${SW_ROOT_DIRECTORY}var/adm/sw/swagent.log file for any
problems, either in the scripts or the format/contents of the
messages generated by the scripts.

• Study the resulting file system to see if the scripts performed the
expected actions.

• Re-run the test by re-installing the same product.

2. If you want to avoid the time spent loading files, then set the
reinstall_files option to “false” and the
reinstall_files_use_cksum option to “false.”

3. If a previous version of the product can be updated to this version,
then re-run the test by updating this product where the previous
version has been installed.

4. If your checkinstall script can generate error or warning conditions
400 Chapter 11

Using Control Scripts
Testing Control Scripts
based on the current activity or configuration of the target system,
then enable those conditions to ensure that the checkinstall script
correctly detects them.

5. Re-run the test by installing into an alternate root directory
(swinstall -r) instead of the primary root directory (“/”). Make sure
that the scripts perform all of their operations (if any) within the
alternate root directory. (This verifies the correct use of
${SW_ROOT_DIRECTORY} by your scripts.)

6. If your product is locatable (that is, it can be installed into a different
location), then re-run the tests by installing the product into a
different location (swinstall product :new_location). Make sure that
the scripts perform all of their operations in the new location, and not
the default location. (This verifies the correct use of $SW_LOCATION
by your scripts.)

7. If you have a complex script, run additional tests for your product
that you feel will give you confidence your product has been installed
correctly on the system. For example, only install certain subsets of
your product instead of the full product.

Testing Configuration Scripts

For configure, verify, and unconfigure scripts you should perform at least
these tests. All tests can be performed on the local system (that is, by
doing local installs).

1. Run swinstall to install the full product (that is, all the filesets). Let
the installation process perform the configuration task (and run your
configure script(s)).

• After the installation and configuration completes, check the
${SW_ROOT_DIRECTORY}var/adm/sw/swagent.log file for any
problems, either in the configure script or the format/contents of
the messages generated by it.

• Study the resulting file system to see if the configure script
performed the expected actions.

• Test the product itself to see if the necessary configuration tasks
were performed such that the product is ready to use.
Chapter 11 401

Using Control Scripts
Testing Control Scripts
2. Run swremove to remove the configured product.

• After the unconfiguration and removal completes, check the
${SW_ROOT_DIRECTORY}var/adm/sw/swagent.log file for any
problems, either in the unconfigure script or the format/contents
of the messages generated by it.

• Study the resulting file system to see if the unconfigure script
performed the expected “undo” actions.

3. Run swinstall to install the full product again. Set the
defer_configure option to “false” to avoid executing the configure
scripts.

• After the installation completes, run swconfig to configure your
product.

• Study the resulting file system to see if the configure script
performed the expected actions.

• Test the product itself to see if the necessary configuration tasks
were performed such that the product is ready to use.

• Now run swconfig -u to unconfigure your product.

• Study the resulting file system to see if the unconfigure script
performed the expected “undo” actions.

• Run swconfig again to re-configure your product.

• Study the resulting file system to see if the configure script
performed the expected actions.

4. Run swverify to execute the verify script(s).

• After the verification completes, check the
${SW_ROOT_DIRECTORY}var/adm/sw/swagent.log file for any
problems, either in the verify script or the format/contents of the
messages generated by it.

5. If a previous version of the product can be updated to this version,
then re-run the first test by updating this product to a system where
the previous version has been installed and configured.

6. Note that configure and unconfigure scripts are never run unless the
${SW_ROOT_DIRECTORY} is / . However, verify scripts are run in both
cases.
402 Chapter 11

Using Control Scripts
Testing Control Scripts
7. If your product is locatable (that is, it can be installed into a different
location), then re-run the tests by installing and configuring the
product in a different location. Make sure that the scripts perform all
their operations in the new location, and not the default location.
(This verifies the correct use of $SW_LOCATION by your scripts.)

8. If you have a complex script, run additional tests for your product
that you feel will give you confidence your product has been installed
correctly on the system. For example, only install certain subsets of
your product instead of the full product.

Testing Removal Scripts

For checkremove, preremove, and postremove scripts you should perform
at least these tests. All tests can be performed on the local system (that
is, by doing local installs). There is no value gained by testing your
scripts by installing to remote target systems.

1. Run swinstall to install the full product (that is, all the filesets). Avoid
configuration by setting the defer_configure option to false.

• Run swremove to removed the unconfigured product.

• After the removal completes, check the
${SW_ROOT_DIRECTORY}var/adm/sw/swagent.log file for any
problems, either in the removal scripts or the format/contents of
the messages generated by the scripts.

• Study the resulting file system to see if the removal scripts
performed the expected actions.

2. Run swinstall to install the full product (that is, all of the filesets).
Let the installation process perform the configuration task (and run
your configure script(s)).

• Run swremove to removed the configured product.

• After the unconfiguration and removal completes, check the
${SW_ROOT_DIRECTORY}var/adm/sw/swagent.log file for any
problems, either in the removal scripts or the format/contents of
the messages generated by the scripts.

• Study the resulting file system to see if the removal scripts
performed the expected actions.
Chapter 11 403

Using Control Scripts
Testing Control Scripts
3. If your checkremove script can generate error or warning conditions
based on the current activity or configuration of the target system,
then enable those conditions to ensure that the checkremove script
correctly detects them.

4. Re-run the first test by installing into an alternate root directory
(swinstall -r) instead of the primary root directory (“/”). Make sure
that the scripts perform all of their operations (if any) within the
alternate root directory. (This verifies the correct use of
${SW_ROOT_DIRECTORY} by your scripts.)

5. If your product is locatable (that is, it can be installed into a different
location), then re-run the tests by installing the product into a
different location. When removing the product, make sure that the
removal scripts perform all of their operations in the new location,
and not the default location. (This verifies the correct use of
$SW_LOCATION by your scripts.)

6. If you have a complex script, run additional tests for your product
that you feel will give you confidence your product has been installed
correctly on the system. For example, only install certain subsets of
your product instead of the full product, then perform the remove
operations. (Or only remove subsets of the fully installed product.)
404 Chapter 11

Using Control Scripts
Requesting User Responses (swask)
Requesting User Responses (swask)
SD-UX packaged applications can use interactive control scripts to query
a user and obtain installation or configuration information that cannot
be known at package time. For example, different hardware or OS
versions may require different configuration, or some software may need
a specific IP address or hostname for configuration.

SD-UX runs the interactive control scripts by the swask command or by
the ask default option for the swinstall and swconfig commands. (SD-UX
does not query the user but the control script does.)

Using swask

• The swask command runs interactive software request scripts for the
software objects selected.

• These scripts store the responses in a response file (named response)
for later use by the swinstall or swconfig commands. (swinstall and
swconfig can also run the interactive request scripts directly, using
the ask option.)

• A response file is generated for each piece of selected software that
has a corresponding request script.

• swask uses the command-line only; there is no Graphical User
Interface.

Syntax swask [-v] [-c catalog] [-C session_file] [-f software_file]
[-s source][-S session_file][-x option=value] [-X options_file]
[software_selections][@target_selections]

Options and
Operands

-v Turns on verbose output to stdout and displays all
activity to the screen.

-c catalog Specifies the pathname of an exported catalog which
stores the response files created by the request script.
swask creates the catalog if it does not already exist.

If the -c catalog option is omitted and the source is
local, swask copies the response files into the source
depot: distribution .path/ catalog .
Chapter 11 405

Using Control Scripts
Requesting User Responses (swask)
-C session_file
Run the command and save the current option and
operand values to a session_file for re-use in another
session. See “Session Files” on page 59.

-f software_file
Read a list of software selections from a separate file
instead of (or in addition to) the command line. See
“Software Files” on page 56.

-s source Use the software source specified by source instead of
the default, /var/spool/sw . The syntax is:

[host :][/ directory]

host may be a host name, domain name, or internet
address (for example, 15.1.48.23). directory is an
absolute path.

-S session_file
Run the command based on values saved from a
previous installation session, as defined in
session_file . See “Session Files” on page 59.

-X option_file
Read session options and behaviors from option_file .
See “Changing Command Options” below.

-X option_file
Read a list of options and behaviors from option_file .

software_selections
The software objects for which the request script will
be executed. See “Software Selections” on page 54.

target_selections
The target of the command. See “Target Selections” on
page 56.
406 Chapter 11

Using Control Scripts
Requesting User Responses (swask)
Changing
Command Options

You can change the behavior of this command by specifying additional
command-line options when you invoke the command (using the -x
option) or by reading predefined values from a file. The following table
shows the options and default values that apply to swconfig.

For More
Information

See Appendix A , “Command Options,” on page 419 for complete
descriptions of each default.

Table 11-2 swask Command Options and Default Values

• admin_directory=/var/adm/sw
• ask=true
• autoselect_dependencies=true
• autoselect_patches=true
• enforce_scripts=true
• installed_software_catalog=products
• log_msgid=0

• logdetail=false
• logfile=/var/adm/sw/swask.log
• loglevel=1
• patch_filter=*.*
• run_as_superuser=true
• verbose=1
Chapter 11 407

Using Control Scripts
Request Script Tasks and Examples
Request Script Tasks and Examples
You can run request scripts from the swinstall or swconfig commands by
setting the ask option to true. This tells the commands to run request
scripts (if any exist) in addition to performing install or configuration
tasks. (Note that the value of the ask option if false for both swinstall
and swconfig but is true for swask.)

swask Examples

Run all request scripts from the default depot (/var/spool/sw) and
write the response file (response) back to the same depot:

swask -s /var/spool/sw *

Run the request script for Product1 from depot /tmp/sample.depot.1
on remote host swposix , create the catalog
/tmp/test1.depot on the local controller machine, and place the
response file (response) in the catalog:

swask -s swposix:/tmp/sample.depot.1 \
-c /tmp/test1.depot Product1

Run request scripts from remote depot /tmp/sample.depot.1
on host swposix only when a response file is absent, create the catalog
/tmp/test1.depot on the local controller machine, and place the
response file (response) in the catalog:

swask -s swposix:/tmp/sample.depot.1 \
-c /tmp/test1.depot -x ask=as_needed *

swinstall Examples

To install all the software from local depot tmp/sample.depot.1 using
any response files generated by request scripts:

swinstall -s /tmp/sample.depot.1 -x ask=true *

To install Product1 from remote depot /tmp/sample.depot.1 on host
swposix and use an existing response file (previously generated by the
swask command) located in /tmp/bar.depot :

swinstall -s swposix:/tmp/sample.depot.1 \
-c /tmp/bar.depot Product1
408 Chapter 11

Using Control Scripts
Request Script Tasks and Examples
To install all products in remote depot /tmp/sample.depot.1 on host
swposix , use any response files generated by request scripts, create
catalog /tmp/bar.depot and copy all response files to the new catalog:

swinstall -s swposix:/tmp/sample.depot.1 \
-c /tmp/bar.depot -x ask=true *

To install all products in remote depot /tmp/sample.depot.1 on host
swposix , use response files, run request scripts only when a response file
is absent, create catalog /tmp/bar.depot and copy all response files to
the new catalog:

swinstall -s swposix:/tmp/sample.depot.1 \
-c swposix:/tmp/bar.depot -x ask=as_needed *

swconfig Examples

To configure Product1 , use any associated response files generated by a
request script, and save response files under /tmp/resp1 :

swconfig -x ask=true -c /tmp/resp1 Product1
Chapter 11 409

Using Control Scripts
Request Script Tasks and Examples
410 Chapter 11

Nonprivileged SD
12 Nonprivileged SD

This chapter provides general guidelines on how to set up Software
Distributor to run in nonprivileged mode.

Topics:

“Overview” on page 412

“Setting Up Nonprivileged Mode” on page 414

“Default Configuration” on page 416

“Alternative Configuration” on page 417
Chapter 12 411

Nonprivileged SD
Overview
Overview
The nonprivileged mode of SD-UX lets users access application software
based on their file system permissions rather than super-user privilege
implemented by SD-UX ACLs. Nonprivileged mode is honored by almost
all SD commands. You can use nonprivileged mode for all aspects of
developing, distributing, and managing applications.

Who Can Benefit?

Nonprivileged SD-UX is primarily intended for administrators of large
data centers who must manage in-house applications without using
super-user privilege. You might not benefit from this feature if you are a
casual user wanting to manage your own applications—unless you are
experienced enough at packaging software to take advantage of
nonprivileged mode.

How Does It Work?

In nonprivileged mode, most SD-UX operations are done according to the
invoking user’s uid, gid, and umask. In this mode, logfiles and the
installed software catalog usually found in /var/adm/sw are stored by
default in user-specific admin directories at /var/home/USER_NAME/sw
(in which USER_NAME is the user’s log-in name). Location of the user’s
admin directory and installed software catalog can be customized using
default options.

While you are using nonprivileged mode, you can also package and copy
applications that won’t be used for nonprivileged mode. However, you
must use the normal mode of SD-UX (that is with run_as_superuser set
to true and permissions granted by ACLs) to install such applications.

When packaging, file system access on the install target must be
considered. See “Packaging Software for Use in Nonprivileged Mode” on
page 414.
412 Chapter 12

Nonprivileged SD
Overview
Limitations

• Remote targets are not allowed with SD-UX remote operations,
except for swlist access to remote systems and commands that can
normally access remote depots. Access to such remote systems is
determined by the SD ACLs on the remote system.

• Nonprivileged mode cannot be used to manage HP-UX operating
system software or patches to it.

• A swinstall or swcopy in nonprivileged mode cannot read a source
depot on a local writable file system that was created with super-user
privileges (that is, created by a super-user, or created by a non
super-user when the run_as_superuser option is set to true and
using ACL permissions). This limitation does not apply to tape or
CD-ROM source depots.

• Swinstall and swcopy in nonprivileged mode can read any remote
source depot as allowed by ACLs, can read local source depots created
by the invoking user in nonprivileged mode, and (depending on the
umask of other users) can read local source depots created by other
users in nonprivileged mode.
Chapter 12 413

Nonprivileged SD
Setting Up Nonprivileged Mode
Setting Up Nonprivileged Mode
Nonprivileged SD is controlled by two options:

• admin_directory

• run_as_superuser

The run_as_superuser option turns nonprivileged mode on or off and is
all that is necessary to run the default configuration. (See “Turning On
Nonprivileged Mode” below and “Default Configuration” on page 416.)

The admin_directory option lets you set up an alternative
configuration. (See “Alternative Configuration” on page 417.)

Packaging Software for Use in Nonprivileged Mode

In addition to these options, software applications to be used under
nonprivileged mode have special packaging requirements.

For nonprivileged mode to function:

• You must package applications and install them so that the files are
installed in locations writable by the user who will install the
applications. This can be done by:

— Using the directory keyword in the PSF during packaging

— By appending a location to the software specifications when you
invoke a command from the command line. (See “Software
Selections” on page 54.)

• Scripts packaged into the application must be designed not to require
super-user privilege.
414 Chapter 12

Nonprivileged SD
Setting Up Nonprivileged Mode
Turning On Nonprivileged Mode

SD functions in nonprivileged mode only when the run_as_superuser
option is set to false and the invoking user is not super-user.

This option applies to all SD-UX commands except swagent, swagentd,
swjob, and install-sd. When you set this option to false, any command to
which it applies will run in nonprivileged mode. For example:

• Including -x run_as_superuser=false on the command line
invokes nonprivileged mode for that command only.

• Including -x run_as_superuser=false in your $HOME/.swdefaults
directory invokes nonprivileged mode for any or all SD-UX commands
that you run.

• Including -x run_as_superuser=false in /var/adm/sw/defaults
invokes nonprivileged mode for all SD-UX commands on the system.

See Appendix A , “Command Options,” on page 419 for complete
information on using these options.

NOTE This option is ignored (treated as true) when the invoking user is
super-user.

How Nonprivileged Mode Changes SD-UX Behavior

When the run_as_superuser option is set to the default value of true,
SD-UX operations are performed normally, with permissions for
operations either granted to a local super-user or set by SD ACLs. (See
Chapter 9 , “SD-UX Security,” on page 251 for details on ACLs.)

When run_as_superuser is set to false and the invoking user is local
and is not super-user, nonprivileged mode is invoked:

• Permissions for operations are based on the user’s file system
permissions.

• SD ACLs are ignored.

• Files created by SD have the uid and gid of the invoking user, and the
mode of created files is set according to the invoking user’s umask.
Chapter 12 415

Nonprivileged SD
Default Configuration
Default Configuration
The default configuration of nonprivileged mode is to have a central
location for user-installed software catalogs.

When the run_as_superuser option is false and the admin_directory
option is not set, SD-UX logfiles and installed software catalogs are
stored in user-specific directories at /var/home/USER_NAME/sw (where
USER_NAME is replaced by the invoking user name).

Putting logfiles and installed software catalog in a central location avoids
problems when users install software on the system outside of their
home directories and user home directories are NFS mounted across
many systems.

You can enable nonprivileged mode for all users by setting the
run_as_superuser option to false in /var/adm/sw/defaults .

Individual users can override the default chosen by the system
administrator, by setting the run_as_superuser option to true or false
in their $HOME/.swdefaults file or on the command line.
416 Chapter 12

Nonprivileged SD
Alternative Configuration
Alternative Configuration
An alternative configuration of nonprivileged mode sets up user-installed
software catalogs in each user’s home directory. You can use the
admin_directory option in /var/adm/sw/defaults to indicate a path
beginning with HOME or /HOME, so that the default administration
directory used by SD-UX during nonprivileged mode is in each user’s
home directory. (A value of HOME/.sw works well for this purpose.)

Individual users can override this in their $HOME/.swdefaults file or on
the command line.

Setting the Admin Directory Option

This option lets you specify the location for logfiles and the default
parent directory for the installed software catalog. Values are as follows:

admin_directory=/var/adm/sw (for normal mode)

admin_directory=/var/home/LOGNAME/sw (for nonprivileged mode)

The default value is /var/adm/sw for normal operations. For
nonprivileged mode (that is, when the run_as_superuser option is set to
true):

• The default value is forced to /var/home/LOGNAME/sw .

• The path element LOGNAME is replaced with the name of the invoking
user, which SD-UX reads from the system password file.

• If you set the value of this option to HOME/path , SD-UX replaces HOME
with the invoking user’s home directory (from the system password
file) and resolves path relative to that directory.

For example, if you specified HOME/my_admin for this options, the
location would resolve to the my_admin directory in your home
directory.

This option applies to swinstall, swcopy, swremove, swconfig, swverify,
swlist, swreg, swacl, swpackage, swmodify.
Chapter 12 417

Nonprivileged SD
Alternative Configuration
418 Chapter 12

Command Options
A Command Options

This appendix reviews the basics of altering SD-UX command options
and provides an alphabetic list of all options and their default values.

Topics:

“Changing Command Options” on page 420

“Options Listed Alphabetically” on page 422
Appendix A 419

Command Options
Changing Command Options
Changing Command Options
Changing the option values lets you change command behavior and
tailor SD-UX policies to your needs. You can change options using
predefined files, values you specify directly on the command-line, or the
GUI Options Editor from the Options menu. Altering option values using
files can help when you don’t want to specify command behavior every
time you invoke the command.

These rules govern the way the options work:

• Option values specified in /var/adm/sw/defaults affect all SD-UX
commands on that system. This file can change options for all
commands to which an option applies or for specific commands only.

• Option values in your personal $HOME/.swdefaults file affect only
you and not the entire system.

• Option values read from a session file affect only that session.

• Options changed on the command line by the -X option_file or the
-x option=value arguments override the system-wide and personal
defaults files but affect only that invocation of the command.

For system-wide policy setting, use the /var/adm/sw/defaults files.
Keep in mind, however, that users may override these values with their
own $HOME/.swdefaults file, session files, or command line changes.

The template file /usr/lib/sw/sys.defaults provides documentation
for all options, and contains instructions for an easy way to change
system-wide or personal default files.

The template file documents as comments all SD-UX command options,
the commands to which they apply, their possible values, and the
resulting system behavior. You can copy values from this file into the
system defaults file (/var/adm/sw/defaults), your personal defaults file
($HOME/.swdefaults), or an input file and uncomment them to affect
your system behavior.

Option files use the syntax:

[command.]option =value
420 Appendix A

Command Options
Changing Command Options
• The optional commandis the name of a SD-UX command. Specifying a
command name changes the default behavior for that command only.
A period must follow a command name.

• option is the name of the default option. An equals sign must follow
the option name.

• value is one of the allowable values for that option.

NOTE Use caution when changing default option values. They allow useful
flexibility but can produce harmful results if changed to a value that is
inappropriate for your needs.

NOTE Options in the defaults file are read as part of command initialization.
Because the daemon is already running, you must restart the daemon
after changing daemon options for the system to recognize those options.
To restart the daemon, type:

/usr/sbin/swagentd -r

See Also “Using Command Options” on page 57 for examples.
Appendix A 421

Command Options
Options Listed Alphabetically
Options Listed Alphabetically

• admin_directory=/var/adm/sw (for normal mode)
admin_directory=/var/home/LOGNAME/sw

(for nonprivileged mode)

The location for logfiles and the default parent directory for the
installed software catalog. The default value is /var/adm/sw for
normal operations.

For nonprivileged mode (that is, when the run_as_superuser default
option is set to true):

— The default value is /var/home/LOGNAME/sw

— The path element LOGNAME is replaced with the name of the
invoking user, which SD-UX reads from the system password file.

— If you set the value of this option to HOME/path , SD-UX replaces
HOME with the invoking user’s home directory (from the system
password file) and resolves path relative to that directory. For
example, HOME/my_admin resolves to the my_admin directory in
your home directory.

— If you set the value of the installed_software_catalog option
to a relative path, that path is resolved relative to the value of this
option.

Nonprivileged mode is intended only for managing applications that
are specially designed and packaged. This mode cannot be used to
manage the HP-UX operating system or patches to it. For a full
explanation of nonprivileged SD-UX, see Chapter 12 , “Nonprivileged
SD,” on page 411.

See also the installed_software_catalog and run_as_superuser
options.

Applies to all commands except swagent, swagentd, and install-sd.

• agent=/usr/lbin/swagent

This is the default location of the executable invoked to perform agent
tasks.

Applies to swagentd.
422 Appendix A

Command Options
Options Listed Alphabetically
• agent_auto_exit=true

Causes the target agent to automatically exit after execute phase, or
after a failed analysis phase. This is forced to false when the
controller is using an interactive UI, or when -p (preview) is used.

Enhances network reliability and performance.

The default is true. The target agent automatically exits when
appropriate.

If set to false, the target agent does not exit until the controller
explicitly ends the session.

Applies to swconfig, swcopy, swinstall, swremove, and swverify.

• agent_timeout_minutes=10000

Causes a target agent to exit if it has been inactive for the specified
time.

You can use this default value to make target agents more quickly
detect lost network connections. RPC typically detects lost
connections very quickly, but it can take as long 130 minutes to detect
a lost connection. The recommended value is the longest period of
inactivity expected in your environment.

For command line invocation, a value between 10 and 60 minutes is
suitable. More than 60 minutes is recommended when you use the
GUI.

The default is 10,000 minutes, slightly less than seven days.

Applies to swcopy, swinstall, swlist, swremove, and swverify.

• allow_downdate=false

Normally set to false, so installing an older version of software than
already exists is disallowed. This keeps you from installing older
versions by mistake. Additionally, many software products do not
support this “downdating.”

If set to true, a previous version can be installed but SD-UX issues a
warning message.

Applies to swinstall.
Appendix A 423

Command Options
Options Listed Alphabetically
• allow_incompatible=false

Normally set to false, only software compatible with the local host is
allowed to be installed or configured.

If set to true, no compatibility checks are made.

Applies to swconfig, swinstall, and swverify.

• allow_multiple_versions=false

Normally set to false, so installed or configured multiple versions (for
example, the same product, but a different revision, installed into a
different location) are disallowed. Even though multiple installed
versions of software are supported if the software is locatable,
multiple configured versions do not work unless the product supports
it.

If set to true, you can install and manage multiple versions of the
same software.

Applies to swconfig, swinstall, and swverify.

• allow_partial_bundles=true

Determines whether to process partial bundles without issuing
warnings or notes to log files.

If true (default), swpackage packages what is available in the source
PSF, ignoring missing or ambiguous bundle contents. Bundles are
wrappers around products, so you must make sure the bundle
contents are placed in the resulting depot, if they are not in the PSF.
Otherwise, the missing/ambiguous contents will not affect the system
after installation.

If false, swpackage expects all the bundle contents to be present in
the source PSF and to be unique. Every content that is ambiguous or
missing gets a NOTE and every bundle that has a missing or
ambiguous content gets a WARNING.

Applies only to swpackage.

• allow_split_patches=false

Controls the ability to install or copy part of a patch. Use this option
only to resolve critical problems with the assistance of your HP
support representative.
424 Appendix A

Command Options
Options Listed Alphabetically
When set to the default value of false, installation or copy of a single
fileset from a multi-fileset patch automatically includes other,
“sibling” filesets that are appropriate, based on the target’s ancestor
attributes. This behavior applies to any filesets you select directly and
to filesets automatically selected to meet dependencies for a patch
filesets. Likewise, removing a fileset when this option is false causes
sibling filesets to be removed at the same time.

When set to true, this option allows a single patch fileset to be
installed, copied, or removed to or from a target without dragging
along sibling filesets (that is, filesets that have an ancestor on the
target that would usually be loaded if this option was set to false).
This allows a target to contain a patch that has been “split” into
component filesets. This can create harmful results if one fileset in a
sibling group is updated while others remain at an earlier release.
Running a swlist on the target after using this option may show more
than one active patch active at one time. This makes your system
more difficult to maintain and troubleshoot.

Applies to swcopy, swinstall, and swremove.

• alternate_source=

Syntax is host:path , used when use_alternate_source default is
set to true.

By default, this option is not defined. If the host portion is not
specified, the local host is used. If the path is not specified, the path
sent by the command is used. See the use_alternate_source option.

The protocol sequence and endpoint given by the option
rpc_binding_info_alt_source are used when the agent attempts
to contact an alternate source depot.

Applies only to swagent.

• ask=true

Executes a request script, which asks for a user response.

The ask option has three possible values;

true (Default for swask) Executes the request script (if
one exists for the selected software) and stores the
user response in a file named response .

false (Default for swinstall and swconfig.) Does not
execute request scripts.
Appendix A 425

Command Options
Options Listed Alphabetically
as_needed Before executing a request script, swask first
determines if a response file already exists and
executes the request script only if the response file
is absent from the control directory.

See “Requesting User Responses (swask)” on page 405 for more
information on the swask command and writing request scripts.

Applies to swask, swconfig, and swinstall.

• auto_kernel_build=true

Normally set to true. Specifies whether the removal of a kernel fileset
should rebuild the kernel or not. If the kernel rebuild succeeds, the
system automatically reboots. If set to false, the system continues to
run the current kernel.

If the auto_kernel_build option is set to true, the autoreboot
option must also be set to true. If the auto_kernel_build option is
set to false the value of the autoreboot option does not matter.

Applies only to swremove.

• autoreboot=false

Normally set to false, indicating that installation of software
requiring a reboot is not allowed from the command line.

If set to true, this option allows installation or removal of the software
and automatically reboots the local host.

If the auto_kernel_build option is set to true, this option must also
be set to true.

Applies to swinstall and swremove.

• autorecover=false

This option permits automatic recovery of original filesets if an
installation error occurs. The cost is a temporary increase in disk
space and slower performance. The default value of false causes
swinstall to overwrite original files as a fileset is updated. If an error
occurs during the installation (e.g. network failure), then the original
files are lost, and you must reinstall the fileset.

If set to true, all files are saved as backup copies until the current
fileset finishes loading. If an error occurs during installation, the
fileset’s original files are restored, and swinstall continues to the next
fileset in the product or the product postinstall script.
426 Appendix A

Command Options
Options Listed Alphabetically
When set to true, this option also affects scripts. For example, if a
preinstall script fails, this option causes the corresponding
unpreinstall script to execute.

Applies only to swinstall.

• autorecover_product=false

By default, swinstall overwrites old files. If a load error occurs, the
product is marked “corrupt” and you must retry the install.

When this option is true, swinstall saves all product files as backups
until the product finishes loading successfully, then removes the
backups. This lets swinstall automatically recover files if the load
fails. The trade-off is a temporary increase in disk space use and
slower performance

Note: The autorecover operation does not work properly if any
software has pre-install scripts that move or remove files. This
includes HP-UX operating system files.

Applies only to swinstall.

• autoremove_job=false

SD-UX stores small amounts of information (such as job status or
controller or agent logfiles) about each job. You can display this
information from the Job Browser or with swjob. Running very large
numbers of jobs may take up significant disk space.

Setting this option to true prevents SD-UX from storing the job
information. The trade-off is that you can no longer display the job
information.

This option is automatically set to true when run_as_superuser is
set to true.

Applies to swconfig, swcopy, swinstall, swremove and swverify.

• autoselect_dependencies=true

Causes SD-UX to automatically select requisites when software is
being selected. At the default value of true, dependent software is
automatically selected when you select software with requisites. If set
to false, automatic selections are not made to resolve requisites.

Applies to swconfig, swcopy, swinstall and swverify.
Appendix A 427

Command Options
Options Listed Alphabetically
• autoselect_dependents=false

Causes swconfig and swremove to automatically select dependents
when software is being selected. When set to true, and any software
on which other software depends is selected, SD-UX makes sure that
the dependents are also selected. If they are not already selected,
they are automatically selected for you. If set to false, dependents are
not automatically selected.

A dependent fileset has established either a prerequisite, corequisite,
or exrequisite on the selected fileset. The default value of false
prevents automatic selection of dependent software. Specifying true
causes SD-UX to automatically select dependent software.

Applies to swconfig and swremove.

• autoselect_patches=true

Automatically selects the latest patches (based on superseding and
ancestor attributes) for a software object that a user selects for a
swinstall or swcopy operation. When set to false, the patches
corresponding to the selected object are not automatically selected.

You can use the patch_filter= option in conjunction with
autoselect_patches .

Applies to swask, swinstall and swcopy.

• autoselect_reference_bundles=true

If true, a bundle that is referenced is installed, copied, or removed
along with the software from which the reference is made.

Applies to swcopy, swinstall and swremove.

• check_contents=true

Normally set to true, verify mtime , size and cksum of files.

If false, the software can be installed without the bundle that
contains it.

Applies only to swverify.

• check_contents_uncompressed=false

When a file is compressed, SD-UX uses it with check_contents and
check_contents_use_cksum to determine whether or not to compute
and verify the uncompressed checksum and size of a compressed file.
(This option is ignored if the file is not compressed.)
428 Appendix A

Command Options
Options Listed Alphabetically
Since the timestamp of uncompressed contents is meaningless, this
option verifies only the timestamp of the file, whether it is
compressed or not.

If set to true and the file is compressed, SD-UX uncompresses the file
into memory and computes the checksum and size of the
uncompressed contents. Then, the checksum and size of the
compressed file and the checksum and size of the uncompressed
contents are verified.

If check_contents_use_cksum=false , only the compressed and
uncompressed sizes are verified, not the checksums.

Applies only to swverify.

• check_contents_use_cksum=true

Normally true, calculates the checksum of the file being verified,
checking the timestamp, size, and checksum.

If false, turns off the checksum calculation. If check_contents is set
to true, timestamp and size checking is still performed.

Applies only to swverify.

• check_permissions=true

Normally set to true, verify owner, uid, group, gid and mode
attributes of files.

Applies only to swverify.

• check_requisites=true

Normally set to true, verify that the prerequisites and corequisites of
filesets are being met.

Applies only to swverify.

• check_scripts=true

Normally set to true, run the vendor-supplied verify scripts when
verifying software.

Applies only to swverify.
Appendix A 429

Command Options
Options Listed Alphabetically
• check_volatile=false

When set to true, swverify verifies installed files that have the
is_volatile attribute set. By default, installed volatile files do not
have their attributes verified because they are intended to be
modified by the customer.

Applies only to swverify.

• codeword=

Lets you to enter a codeword for the HP-UX licensing procedure. Once
entered you need not re-enter the codeword. See “Working with
Protected Software” on page 33 for more information.

Applies to swcopy, swinstall and swlist.

• compress_cmd=/usr/contrib/bin/gzip

Specifies the command called by the source agent to compress files
before installing, copying, or packaging.

If you set the compression_type option to a value other than gzip or
compress , you must change this path.

Applies to swagent and swpackage.

• compress_files=false

Controls file compression during transfer. When set to false, files are
not compressed before transfer from a remote source.

If set to true, SD-UX compresses files before network transfer if
they’re not already compressed. For swinstall, the files are
uncompressed after network transfer.

If set to true during swcopy or swpackage, the resulting depots are
smaller, unless you also set uncompress_files to true.

Applies to swcopy, swinstall and swpackage.

• compress_index=false

Enhances performance on slower networks, although it may increase
disk space usage due to a larger Installed Products Database and
depot catalog. The default of false does not compress INDEX and
INFO files. When set to true, INDEX and INFO files are compressed.

Applies to swinstall, swcopy, swpackage, swmodify, swconfig, and
swremove.
430 Appendix A

Command Options
Options Listed Alphabetically
• compression_type=gzip

Defines the default compression type used by the agent (or set by
swpackage) when it compresses files during or after transmission.

If uncompress_files is set to false, the compression type is recorded
for each file compressed so that the correct uncompression can later
be applied during a swinstall, or a swcopy with uncompress_files
set to true.

The compress_cmd specified must produce files with the
compression_type specified.

The uncompress_cmd must be able to process files of the
compression_type specified unless the format is gzip which is
uncompressed by the internal uncompressor (funzip). To use gzip you
must load the SW-DIST.GZIP fileset (which is optional freeware). If
the SW-DIST.GZIP fileset is loaded, then you may set the compression
options as follows:

compress_cmd=/usr/contrib/bin/gzip

uncompress_cmd=/usr/contrib/bin/gunzip

compression_type=gzip

Applies to swpackage and swagent.

• config_cleanup_cmd=/usr/lbin/sw/config_clean

Defines the script called by the agent to perform release-specific
configure cleanup steps.

Applies only to swagent.

• control_files=

When adding or deleting control file objects, this option lists the tags
of those control files. There is no supplied default. (Control file objects
being added can also be specified in the given product specification
file.)

If there is more than one tag, they must be separated by white space
and surrounded by quotes.

Applies only to swmodify.
Appendix A 431

Command Options
Options Listed Alphabetically
• controller_source=

Specifies the location of a depot for the controller to access to resolve
selections. Setting this option can reduce network traffic between the
controller and the target. Use the target selection syntax to specify
the location:

[host][:][path]

This option has no effect on which sources the target uses and is
ignored when used with an Interactive User Interface.

Applies to swconfig, swcopy, swinstall, swremove and swverify.

• create_target_acls=true

Normally set to true, this default determines whether swpackage
creates Access Control Lists (ACLs) in the depot.

If you set this option to false as superuser, ACLs for each new product
being packaged (and for the depot, if it is new) are not created.

When another user invokes swpackage, it always creates ACLs in the
distribution depot. This default has no impact on the ACLs that
already exist in the depot. The swpackage command never creates
ACLs when software is packaged onto a distribution tape.

Applies only to swpackage.

• create_target_path=true

Normally set to true, creates the target directory if it does not already
exist.

If false, target directory is not created. This option can be used to
avoid creating new depots by mistake.

Applies to swcopy and swinstall.

• create_time_filter=0

Controls time settings for cumulative source depots. The default of
zero includes all bundles, products, subproducts, and filesets in the
source depot as candidates for selection (and autoselection of
dependencies and patches), based on the software selections and
other options. When set to a time (specified as seconds from epoch),
only bundles, products, and filesets (and the subproducts in the
product) with a create_time less than or equal to the specified value
are available for selection (or autoselection).
432 Appendix A

Command Options
Options Listed Alphabetically
To list the create_time of bundles, products and filesets, use:

swlist -a create_time -a create_date

Applies to swlist, swcopy, and swinstall.

• customer_id=

This number, printed on the Software Certificate, “unlocks” protected
software and restricts installation to a specific site or owner. You can
enter the number with the -x customer_id= option or by using the
Interactive User Interface. See the codeword option for more
information.

Applies to swinstall, swcopy, swlist.

• defer_configure=false

Controls the automatic running of configure scripts after swinstall
software selections are installed. The default value of false allows
swinstall to automatically run configure scripts. When set to true,
swinstall does not run configure scripts. To configure the software
later, you must run the swconfig command.

— Multiple versions of a product will not be automatically configured
if another version is already configured. Use the swconfig
command to configure multiple versions separately.

— SD-UX ignores this option (treats it as true) when it installs
software that causes a system reboot.

— Alternate root directories are not configured.

Applies only to swinstall

• distribution_source_directory=/var/spool/sw

Defines the default source depot when the value for the source_type
option is directory . You can also use the host:path syntax. The -s
option overrides this default.

Applies to swcopy, swinstall, and swpackage.

• distribution_target_directory=/var/spool/sw

Defines the default distribution directory of the target depot. The
target_selection operand overrides this default.

Applies to swacl, swcopy, swlist, swmodify, swpackage, swreg,
swremove and swverify.
Appendix A 433

Command Options
Options Listed Alphabetically
• distribution_target_serial=/dev/rmt/0m

Defines the default location of the target tape device file. The
target_selection operand overrides this default.

Applies only to swpackage.

• enforce_dependencies=true

When set to true, SD-UX enforces dependencies. swinstall, swcopy,
and swconfig do not proceed unless necessary dependencies can be
selected, or already exist in the proper state (installed, configured, or
available). This prevents SD-UX from installing or copying unusable
software. This option also prevents swremove from removing
dependent software.

When set to false, SD-UX checks dependencies but does not enforce
them. Corequisite dependencies, if not enforced, may keep the
software from working properly. Prerequisite dependencies, if not
enforced, may cause the installation or configuration to fail.

Applies to swconfig, swcopy, swinstall, swremove and swverify.

• enforce_dsa=true

When set to the default value of true, SD-UX does not proceed if the
disk space required for a software operation is more than the
available free space. You can use this option to allow installation into
minfree space, or to attempt an install, copy, or package operation
even though it may fail because the disk reaches its absolute limit.

If set to false, space checks are still performed but a warning is issued
that the system may not be usable if the disk fills past the minfree
threshold. An installation will fail if you run out of disk space.

Applies to swcopy, swinstall and swpackage.

• enforce_kernbld_failure = true

Controls whether or not a failure in either of the kernel build steps
(system_prep and mk_kernel) is fatal to the install session. A failure
to build a kernel causes the install process to exit if in non-interactive
mode, or to suspend if in an interactive mode.

If set to false, a failure return from a kernel build process is ignored,
and the install session proceeds. The currently running kernel
remains in place.

Applies only to swinstall.
434 Appendix A

Command Options
Options Listed Alphabetically
• enforce_locatable=true

When set to the default value of true, this option generates an error if
a command tries to relocate a non-relocatable fileset. (Relocatable
filesets are packaged with the is_relocatable attribute set to true.)
When set to false, the usual error handling process is overridden, and
SD-UX permits the command to relocate the fileset.

Note that although this option is defined for swverify, there is no
swverify behavior associated with the option.

Applies to swinstall and swverify.

• enforce_scripts=true

Controls the handling of errors generated by scripts. If true, and a
script returns an error, the command halts, and an error message
appears reporting that the execution failed. If false, script-generated
errors are treated as warnings, and the command attempts to
continue. A warning message appears and reports that the command
was successful. Where appropriate, the message identifies the phase
in which the error occurred (configure/unconfigure,
preinstall/postinstall, preremove/postremove, etc.).

Applies to swask, swconfig, swinstall and swremove.

• files=

When adding or deleting file objects, this option can list the path
names of those files. There is no supplied default. File objects being
added can also be specified in the given product specification file.

If there is more than one path name, they must be separated by white
space and surrounded by double-quotes.

Applies only to swmodify.

• follow_symlinks=false

Do not follow symbolic links that exist in the packaging source;
instead, package them as symlinks.

Applies only to swpackage.
Appendix A 435

Command Options
Options Listed Alphabetically
• include_file_revisions=false

Normally set to false, controls whether swpackage includes each
source file’s revision attribute in the product(s) being packaged.
Because this operation is very time consuming, the revision
attributes are not included by default.

A value of true for this keyword causes swpackage to execute the
what and possibly the ident commands (in that order) to try to
determine a file’s revision.

Applies only to swpackage.

• install_cleanup_cmd= /usr/lbin/sw/install_clean

The script called by the agent to perform release-specific install
cleanup steps immediately after the last postinstall script has been
run. For an OS update, this script should at least remove commands
that were saved by the install_setup script.

Applies only to swagent.

• installed_software_catalog=products

Defines the directory path where the Installed Products Database
(IPD, information describing the installed software) is stored. When
set to an absolute path, this option defines the location of the IPD.
When this option contains a relative path, the controller appends the
path to the path specified by the admin_directory option to
determine the path to the IPD. For alternate roots, this path is
resolved relative to the location of the alternate root. (This option
does not affect where software is installed, only the IPD location.)

This option permits the simultaneous installation and removal of
multiple software applications by multiple users or multiple
processes, with each application or group of applications using a
different IPD.

Caution: use a specific installed_software_catalog to manage a
specific application. SD-UX does not support multiple descriptions of
the same application in multiple IPDs.

See also the admin_directory option.

Applies to swacl, swask, swconfig, swinstall, swlist, swmodify,
swremove, and swverify.
436 Appendix A

Command Options
Options Listed Alphabetically
• install_setup_cmd=/usr/lbin/sw/install_setup

Defines a script called by the agent to perform release-specific install
preparation. For an OS update, this script should copy commands
needed for the checkinstall, preinstall, and postinstall scripts to an
accessible location while the OS updates the system commands.

This script is executed before any kernel filesets are loaded.

Applies only to swagent.

• job_title=

When running large numbers of jobs, you may want to add more
information to help you identify a specific job. Providing a value for
this lets you add an ASCII string that will be displayed along with the
ID and other job attributes when you invoke swjob or the job browser.

Applies to swconfig, swcopy, swinstall, swremove, and swverify.

• kernel_build_cmd=/usr/sbin/mk_kernel

This is the script called by the agent for kernel building.

Applies only to swagent.

• kernel_path=/stand/vmunix

The path to the system’s bootable kernel. It is passed to the
kernel_build_cmd via the SW_KERNEL_PATH environment variable.

Applies only to swagent.

• layout_version=1.0

Specifies the POSIX layout version to which the SD-UX commands
conform when writing distributions and swlist output. Supported
values are 1.0 (default) and 0.8. SD-UX for HP-UX version 11.10 and
later can read or write either version.

SD-UX object and attribute syntax conforms to layout version 1.0 of
the IEEE Standard 1387.2, Software Administration (POSIX).
SD-UX still accepts the keyword names associated with the older
layout version, but you should only use layout version 0.8 to create
distributions readable by older versions of SD-UX.

Layout version 1.0 adds significant functionality not recognized by
systems supporting only version 0.8, including:
Appendix A 437

Command Options
Options Listed Alphabetically
— Category class objects (formerly the category and
category_title attributes within the bundle or product class).

— Patch-handling attributes, including applied_patches ,
is_patch , and patch_state .

— The fileset architecture attribute at the fileset level, which
permits you to specify the architecture of the target system on
which the software will run.

In addition to adding new attributes and objects, layout version 1.0
changes the following preexisting 0.8 objects and attributes:

— Replaces the depot media_sequence_number attribute for the
media object with a sequence number attribute.

— Replaces the vendor definition within products and bundles with a
vendor_tag attribute and a corresponding vendor object defined
outside the product or bundle.

— Pluralizes the corequisite and prerequisite fileset attributes.

— Changes the timestamp attribute to mod_time .

Applies to swcopy, swlist, swmodify and swpackage.

• level=

Specifies a software level for swacl, swlist and swreg.

For swlist, this option lists all objects down to the specified level. Both
the specified levels and the depth of the specified
software_selections control the depth of the swlist output. The
supported software levels are:

— bundle -- show all objects down to the bundle level.

— product -- show all objects down to the product level. Also use
-l bundle -l product to show bundles.

— subproduct -- show all objects down to the subproduct level.

— fileset -- show all objects down to the fileset level. Also use
-l fileset -l subproduct to show subproducts.

— file -- show all objects down to the file level (depots, products,
filesets, and files).

— control_file -- show all objects down to the control_file level.
438 Appendix A

Command Options
Options Listed Alphabetically
— category -- show all categories of available software objects.

— patch -- show all applied patches. (See also the
show_superseded_patches option.)

The supported depot and root levels are:

— depot -- show only the depot level (depots that exist at the
specified target hosts.

— root -- list all alternate roots.

— shroot -- list all registered shared roots (HP-UX 10.X only).

— prroot -- list all private roots (HP-UX 10.X only).

For swacl, this option specifies the level of ACLs to view or modify:

— host -- view or modify the ACL protecting the host systems
identified by the target_selections .

— depot -- view or modify the ACL protecting the software depots
identified by the target_selections .

— root -- view or modify the ACL protecting the root file systems
identified by the target_selections .

— product -- view or modify the ACL protecting the software
product identified by the software_selection . Applies only to
products in depots, not installed products in roots

— product_template -- view or modify the template ACL used to
initialize the ACLs of future products added to the software depots
identified by the target_selections .

— global_soc_template -- view or modify the template ACL used to
initialize the ACLs of future software depots or root file systems
added to the hosts identified by the target_selections .

— global_product_template -- view or modify the template ACL
used to initialize the product_template ACLs of future software
depots added to the hosts identified by the target_selections .
Appendix A 439

Command Options
Options Listed Alphabetically
For swreg, this option defines the level of object to register or
unregister.

— depot -- depots that exist at the specified target hosts.

— root -- all alternate roots.

— shroot -- all registered shared roots (HP-UX 10.X only).

— prroot -- all registered private roots (HP-UX 10.X only).

Applies to swacl, swlist, and swreg.

• log_msgid=0

Adds numeric identification numbers to the beginning of SD-UX log
file messages:

— 0 (default) adds no identifiers to messages.

— 1 adds identifiers to ERROR messages only.

— 2 adds identifiers to ERROR and WARNING messages.

— 3 adds identifiers to ERROR, WARNING, and NOTE messages.

— 4 adds identifiers to ERROR, WARNING, NOTE, and certain
other informational messages.

Applies to swconfig, swcopy, swinstall, swmodify, swpackage, swreg,
swremove, and swverify.
440 Appendix A

Command Options
Options Listed Alphabetically

s

• logdetail=false

Controls the amount of detail written to the log file. When set to true,
this option adds detailed task information, such as options specified,
progress statements, and additional summary information, to the log
file.

Table A-1 shows the possible combinations of loglevel and
logdetail options.

Applies to swconfig, swcopy, swinstall, swreg, swremove and swverify.

Table A-1 loglevel and logdetail Combinations

Log Level Log Detail Information Included

loglevel=0 (not applicable) No information is written to the log file

loglevel=1 logdetail=false Only key events are logged. This is the
default setting for both options.

loglevel=1 logdetail=true Event detail as above plus task progres
messages. (Settingloglevel=1 is
optional because 1 is the default value.)

loglevel=2 logdetail=false Event and file level messages only.
(Settinglogdetail=false is optional
because false is the default value.)

loglevel=2a logdetail=true All information is logged.

a. This combination duplicates the logfile behavior as HP-UX 10.x
releases. Setting both theloglevel=2 andlogdetail=true options
is required.
Appendix A 441

Command Options
Options Listed Alphabetically
• logfile=/var/adm/sw/<command>.log

This is the default controller log file for each command. The agent log
files are always located relative to the target depot or target root:
/var/spool/sw/swagent.log and /var/adm/sw/swagent.log ,
respectively.

Applies to all commands except swacl, swlist and swjob.

• loglevel=1

This option controls the log level for events logged to the command log
file, the target agent log file and the source agent log file by
prepending identification numbers to SD-UX log file messages. This
information is in addition to the detail controlled by the logdetail
option. A value of:

— 0 -- provides no information to the log files

— 1 -- enables verbose logging to the log files

— 2 -- enables very verbose logging to the log files.

Applies to swconfig, swcopy, swinstall, swmodify, swpackage,
swremove and swverify.

• match_target=false

If set to true, forces selection of filesets from the source that match
filesets already installed on the target system.

Filesets on the source which specify an installed fileset as an
“ancestor” will be selected.

This option overrides any other software selections.

Selections cannot be ambiguous.

Applies only to swinstall.

• max_agents=-1

The maximum number of agents that are permitted to run
simultaneously. The value of -1 means there is no limit.

Applies only to swagentd.
442 Appendix A

Command Options
Options Listed Alphabetically
• max_targets=25

When set to a positive integer, this option limits the number of
concurrent install or copy operations to the number specified. As each
copy or install operation completes, another target is selected and
started until all targets are completed.

Server and network performance determines the optimal setting; a
recommended starting point is 25 (the default value). If you set this
option to a value of less than one, SD-UX attempts to install or copy
to all targets at once.

Applies to swcopy and swinstall.

• media_capacity=1330

If creating a distribution tape or multiple-directory media such as a
CD-ROM, this keyword specifies the capacity of the tape in one
million byte units (not Mbytes). This option is required if the media is
not a DDS tape or a disk file. Without this option, swpackage sets the
size to the default of 1,330 million bytes for tape or to the amount of
free space on the disk up to minfree for a disk file.

SD-UX uses the same format across multiple directory media as it
does for multiple serial media, including calculations of the correct
size based partitioning of filesets and setting of the
media_sequence_number attributes.

Applies only to swpackage.

• media_type=directory

Defines the type of distribution to create. The recognized types are
directory and tape . Without this option, swpackage creates a
distribution directory (depot) by default.

Applies only to swpackage.

• minimum_job_polling_interval=1

Defines how often, in minutes, the daemon will “wake up” and scan
the job queue to determine if any scheduled jobs need to be initiated
or if any active jobs need their remote target status cached locally.

If set to 0, no scheduled jobs will be initiated, and no caching of active
jobs will occur.

Applies only to swagentd.
Appendix A 443

Command Options
Options Listed Alphabetically
• mount_all_filesystems=true

Normally set to true, the commands automatically try to mount all
file systems in the file system table (/etc/fstab) at the beginning of
the analysis phase and make sure that all those file systems are
mounted before proceeding.

When set to false, no additional file systems are mounted.

Applies to swconfig, swcopy, swinstall, swremove, swverify.

• mount_cmd=/sbin/mount

Specifies the command called by the agent to mount all file systems.

Applies only to swagent.

• objects_to_register=

Defines the default objects to register or unregister. If there is more
than one object, they must be separated by spaces.

There is no supplied default. See also select_local .

Applies only to swreg.

• one_liner=<attributes>

Defines the attributes listed in the non-verbose listing.

If there is more than one attribute, they must be separated by a space
and surrounded by quotes.

one_liner="revision size title"

You must choose which attributes (that is, revision, size, title, etc.) a
default listing of software should use. Note: the tag attribute is
always displayed for bundles, products, subproducts and filesets; the
path is always displayed for files.

Any attributes may be chosen but a particular attribute may not exist
for all applicable software classes (bundle, product, subproduct,
fileset). For example, the software attribute, title is available for
bundles, products, subproducts and filesets, but the attribute
architecture is only available for products and filesets.

In the absence of the -v or -a option, swlist displays one_liner
information for each software object (bundles, products, subproducts
and filesets).

Applies only to swlist.
444 Appendix A

Command Options
Options Listed Alphabetically
• os_name

Specifies fileset selection for an HP-UX update. (This option should
always be used with the os_release option.) You must specify this
option from the command line or when invoking the swinstall GUI.

This options has the following syntax:

os_name=operating_system : width

— operating_system specifies the name of the operating system,
such as HP-UX. See the uname(1) manual page for complete
information.

— width specifies the word width in bits (either 32 or 64) of the OS to
be installed.

— operating_system and width must be separated by a colon (:).

Applies only to swinstall.

• os_release

Specifies fileset selection for an HP-UX update. (This option should
always be used with the os_name option.) You must specify this option
from the command line or when invoking the swinstall GUI.

This options has the following syntax:

os_release= release

release specifies the HP-UX release. Values include:

B.10.01
B.10.10
B.10.20
B.10.30
B.11.00

Applies only to swinstall.

• package_in_place=no

Setting this option to yes causes swpackage to build the products such
that the depot does not actually contain the files that make up a
product. Instead, the depot references the original source files used to
build a product. This lets you package products in a development or
test environment without consuming the extra disk space required to
create a distribution depot.

Applies only to swpackage.
Appendix A 445

Command Options
Options Listed Alphabetically
• patch_commit=false

Commits a patch by removing files saved for patch rollback. The
default value is false. When set to true, this option removes the saved
files for the patches specified in the software selections for the
command. Once you have run this option on a patch, you cannot
remove the patch unless you remove the associated base software
that the patch modified.

Applies only to swmodify.

• patch_filter=*.*

Specifies a software_specification for a patch filter.

This option can be is used in conjunction with the
autoselect_patches and patch_match_target options to filter the
selected patches to meet the criteria specified by
software_specification . The default software_specification
value is *.* .

Note that patch filtering is overridden if you specify software with a
command or if you use the * wildcard to select software

Applies to swask, swcopy and swinstall.

• patch_match_target=false

If set to true, this option selects the latest patches (software packaged
with the is_patch attribute set to true) that correspond to software
on the target root or depot.

The patch_filter= option can be used with the
patch_match_target option.

Applies to swcopy and swinstall.

• patch_one_liner=title patch_state

Use this command to specify the attributes displayed for each object
listed when the -l patch option is invoked and when no -a or -v
option is specified. The default display attributes are title and
patch_state .

Applies to swlist and swjob.
446 Appendix A

Command Options
Options Listed Alphabetically
• patch_save_files=true

Saves patched files, which permits future rollback of patches. When
set to false, patches cannot be rolled back (removed) unless the base
software modified by the patch is removed at the same time.

Applies to swinstall.

• polling_interval=2

Applies only to interactive sessions. Specifies how often, in seconds,
SD-UX polls each target for status information during the analysis
and execution phases. When you must operate across wide-area
networks, you can increase the polling interval to reduce network
overhead. Specifying a high numbers for this option creates longer
intervals between polls.

Applies to swcopy, swinstall and swremove.

• preserve_create_time=false

Preserves the original create time when you copy depots, which
produces consistent results when you use the copies. The default of
false sets the create_time of software bundles, products, and filesets
equal to the time swcopy created the new depot. When set to true, the
create_time is set to that specified in the source depot from which the
current selections were copied. Note that using this option when
copying to a master depot can change the objects that are visible
when you use the create_time_filter option.

Applies to swcopy.

• preview=false

If true, run this command in preview mode only (complete the
analysis phase and exit). This option has the same effect as specifying
-p on the command line.

Applies to swcopy, swinstall, swremove, and swconfig.

• reboot_cmd=/sbin/reboot

This is the command called by the agent to reboot the system.

Applies to swagent.
Appendix A 447

Command Options
Options Listed Alphabetically
• reconfigure=false

This option prevents software that is already in the configured state
from being reconfigured. If set to true, configured software can be
reconfigured.

Applies to swconfig.

• register_new_depot=true

Normally set to true, a newly created depot is registered on its host.
This allows other commands to automatically see this depot.

If set to false, new depots are not registered. This could allow you to
create a private depot on which to test, then later register it with
swreg.

Applies only to swcopy.

• register_new_root=true

Causes swinstall to register a newly-created alternate root with the
local swagentd, which lets other SD-UX commands see this root.

If set to false, a new root is not automatically registered. (You can use
the swreg command to register the depot later.)

Applies only to swinstall.

• reinstall=false

Prevents SD-UX from re-installing (overwriting) an existing revision
of a fileset. If set to true, the fileset are re-installed.

Applies to swcopy and swinstall.

• reinstall_files=false

Controls the overwriting of files, which may enhance performance on
slow networks or disks. At the default value of false, SD-UX compares
each file in a source fileset to corresponding files on the target system.
SD-UX compares the files based on size, timestamp, and (optionally)
the checksum. If the files are identical the files on the target system
are not overwritten.

When set to true, SD-UX does not compare files and overwrites any
identical files on the target.

See also the reinstall and reinstall_files_use_cksum options.

Applies to swcopy, swinstall and swpackage.
448 Appendix A

Command Options
Options Listed Alphabetically
• reinstall_files_use_cksum=true
reinstall_files_use_cksum=false (swpackage only)

Controls the use of checksum comparisons when the
reinstall_files option is set to false. The default value of true
causes SD-UX to compute and compare checksums to determine if a
new file should overwrite an old file. Use of checksums slows the
comparison but is a more robust check for equivalency than size and
time stamp.

If set to false, SD-UX does not compute checksums and compares files
only by size and timestamp.

Applies to swcopy, swinstall and swpackage.

• remove_empty_depot=true

When the last product or bundle in a depot is removed, the depot
itself is removed.

If set to false, the depot is not removed when the last product (or
bundle) in it is removed. This preserves that depot’s ACL.

Applies only to swremove.

• remove_obsolete_filesets=false

This command controls whether swcopy automatically removes
obsolete filesets from target products in the target depot. If set to
true, swcopy removes obsolete filesets from the target products that
were written during the copy process. Removal occurs after the copy
is complete. Filesets are defined as obsolete if they were not part of
the most recent packaging of the product residing on the source
depot.

Applies only to swcopy.

• remove_setup_cmd=/usr/lbin/sw/remove_setup

Defines the script called by the agent to perform release-specific
removal preparation. For an OS update, this script invokes the tlink
command when a fileset is removed.

Applies only to swagentd.
Appendix A 449

Command Options
Options Listed Alphabetically
• retry_rpc=1

This command defines the number of times a lost source connection is
retried during file transfers. If set from 1 to 9, the install of each
fileset is attempted that number of times. The reinstall_files
option should also be set to false to avoid installing files that were
successfully installed within the fileset.

This option also applies to the controller contacting the agent. If the
agent session fails to start for any reason, the controller tries to
recontact that agent for the number of times specified in retry_rpc ,
using the values from the retry_rpc_interval option to determine
how long to wait between each attempt to recontact the agent.

Applies to swcopy and swinstall.

• retry_rpc_interval={0}

Specifies in minutes the length of the interval for repeated attempts
to make a connection to a target after an initial failure. Used in
conjunction with the retry_rpc option.

If the number of values in this option equals the value of retry_rpc ,
SD-UX tries to reestablish a source connection for the number of
times specified in retry_rpc . If the number of values in
retry_rpc_interval is less than the value in retry_rpc , SD-UX
repeats the final interval value until the number of retries matches
retry_rpc .

For example, if an agent session failed to start and retry_rpc was set
to 9 and retry_rpc_interval was set to {1 2 4 8 15} to allow long
waits to handle transient network failures, the controller would
attempt to recontact the agent after 1 minute for the first retry, then
2 minutes for the second retry, 4 for the third retry, then 8, then 15 for
all additional retries until nine retries were attempted. With these
values, a file load failure could cause the operation to pause for 90
minutes (1+2+4+8+15+15+15+15+15). If both options were set to 5,
the controller would try to contact the target five times over a
30-minute period.

Applies to swcopy and swinstall.
450 Appendix A

Command Options
Options Listed Alphabetically
• reuse_short_job_numbers=true

When assigning job ID numbers, SD-UX uses numbers less than
10,000. Typically, old jobs are removed long before job number 9,999
is reached, so the job number quickly rolls over from 9999 back to 1.
When you execute a large numbers of jobs that are not removed
before the ID numbers reach 9,999, SD-UX may have performance
delays while it searches for unused job numbers.

Setting reuse_short_job_numbers to false causes SD-UX to begin
using numbers above 10,000. This avoids possible searching delays
and lets the job ID numbers increase to 8 digits (99,999,999) if
necessary. (This prevents roll-over from 9999 back to 1, so is usually
not desirable.)

See also the autoremove_job option.

Applies to swconfig, swcopy, swinstall, swremove, and swverify.

• rpc_binding_info=ncacn_ip_tcp:[2121] ncadg_ip_udp:[2121]

Determines on what protocol sequence(s) and endpoint(s) the
swagentd daemon listens. If the connection fails for one protocol
sequence, the next is attempted. SD-UX supports both the tcp and
udp protocols on most platforms.

The value can have the following form:

— A DCE string binding containing a protocol sequence and an
endpoint (a port number). The syntax is:

protocol_sequence: [endpoint]

— The name of a DCE protocol sequence with no endpoint specified.
This syntax is:

ncadg_ip_udp or ncacn_ip_tcp

Since no endpoint is specified, the DCE endpoint mapper rpcd
must be running and is used to find the endpoint registered by
swagentd

— The literal string all . This entry means to use all protocol
sequences supported by the DCE Remote Procedure Call (RPC)
runtime. It should be the only entry in the list. The rpcd must be
running.

Applies to all commands except swask, swmodify, and swpackage.
Appendix A 451

Command Options
Options Listed Alphabetically
• rpc_binding_info_alt_source=ncadg_ip_udp:[2121]

Defines the protocol sequence(s) and endpoint(s) used when the agent
attempts to contact an alternate source depot specified by the
alternate_source option. SD-UX supports both the
udp(ncadg_ip_udp:[2121]) and
tcp(ncacn_ip_tcp:[2121]) protocol sequence/endpoint.

Applies to swagent.

• rpc_timeout=5

Relative length of the communications timeout. This is a value in the
range from 0 to 9 and is interpreted by the DCE RPC. Higher values
mean longer times; you may need a higher value for a slow or busy
network. Lower values give faster recognition of attempts to contact
hosts that are not up or are not running swagentd.

Each value is approximately twice as long as the lower one. A value of
5 is about 30 seconds for the ncadg_ip_udp protocol sequence. This
option may be ignored when using the ncacn_ip_tcp protocol
sequence.

Applies to all commands except swmodify and swpackage.

• run_as_superuser=true

This option controls SD-UX’s nonprivileged mode. This option is
ignored (treated as true) when the invoking user is super-user.

At the default value of true, SD-UX operations are performed
normally, with permissions for operations either granted to a local
super-user or set by ACLs. (See Chapter 9 , “SD-UX Security,” on
page 251 for details on ACLs.)

When set to false and the invoking user is local and is not super-user,
nonprivileged mode is invoked:

— Permissions for operations are based on the user’s file system
permissions.

— ACLs are ignored.

— Files created by SD-UX have the uid and gid of the invoking user,
and the mode of created files is set according to the invoking user’s
umask.

Nonprivileged mode is intended only for managing applications that
are specially designed and packaged. This mode cannot be used to
452 Appendix A

Command Options
Options Listed Alphabetically
manage the HP-UX operating system or patches to it. This option is
not compatible with remote operations. Setting this option to true
forces the autoremove_job option to true. For a full explanation of
nonprivileged SD-UX, see Chapter 12 , “Nonprivileged SD,” on page
411.

See also the admin_directory option.

Applies to all commands except swagent, swagentd, and install-sd.

• select_local=true

Normally set to true, selects the default depot or installation
directory of the local host as the target of the command.

Applies to swacl, swconfig, swcopy, swinstall, swlist, swreg,
swremove, swverify.

• show_superseded_patches=false

If false, swlist will not display superseded patches. To see them, you
must set this option to true. Even if you explicitly swlist the
superseded patch, it will not display unless this option is true.

Applies only to swlist.

• software=

Defines the default software_selections .

There is no supplied default. If there is more than one
software_selection , they must be surrounded by brackets { } or
quotes. Software is usually specified in a software_selections input
file, as options on the command line or in the GUI or TUI.

Applies to all commands except swreg.

• software_view=products

Indicates which software view is to be used in the GUI. It can be set
to products , all_bundles , or a bundle category tag (shows only
bundles of that category). The default view is all_bundles plus
products that are not part of a bundle.

Applies to swcopy, swinstall, swlist and swremove.
Appendix A 453

Command Options
Options Listed Alphabetically
• source=

Specify a source to automatically bypass the GUI and CLI source
selection dialog box. This has the same effect as the -s source
command line option. Specify the source using the following syntax:

[path]

Applies to swcopy and swinstall.

• source_cdrom=/SD_CDROM

Defines the default location of the source CD-ROM. The syntax is:

[host][:][path]

Applies only to swinstall.

• source_depot_audit=true

If both source and target machine are updated to SD-UX revision
B.11.00 or later, the system administrator at the source depot
machine can set this option to track which user pulls which software
from a depot on the source machine and when the software is pulled.

A user running swinstall or swcopy from a target machine cannot set
this option; only the administrator of the source depot machine can
set it.

When source_depot_audit is set to its default value of true, a
swaudit.log file is created on the source depot (for writable directory
depots) or in /var/tmp (for tar images, CD-ROMs, or other
nonwritable depots).

To view, print, or save the audit information, invoke the swlist
interactive user interface by typing:

swlist -i -d

You can view audit information based on language preference, as long
as the system has the corresponding SD-UX message catalog files on
it. For example, you can view the source audit information in
Japanese during one invocation of swlist, then view the same
information in English at the next invocation.

Applies to swagent.
454 Appendix A

Command Options
Options Listed Alphabetically
• source_file=psf

This keyword defines the default product_specification_file to
read as input to the packaging or swmodify session. It may be a
relative or absolute path.

Applies to swpackage and swmodify.

• source_tape=/dev/rmt/0m

Defines the default tape location, usually the character-special file of
a local tape device. You can also use the host:path syntax, but the
host must match the local host. The -s option overrides this value.

Applies to swcopy and swinstall.

• source_type=directory

The default source type (choices are cdrom , file , directory , or tape)
that points to one of the next three options. The source type derived
from the -s source file option overrides this default.

The cdrom and tape values apply to swcopy and swinstall. The file
value applies only to swpackage.

• system_file_path=/stand/system

The path to the kernel’s template file. The path is passed to the
system_prep_command via the SW_SYSTEM_FILE_PATH environment
variable.

Applies only to swagent.

• system_prep_cmd=/usr/lbin/sysadm/system_prep

The kernel build preparation script called by the agent. This script
must do any necessary preparation so that control scripts can
correctly configure the kernel that is about to be built.

Applies only to swagent.

• targets=

There is no supplied default (see also select_local). If there is more
than one target, they must be separated by spaces. Targets are
usually specified in a target input file, as options on the command line
or in the GUI.

Applies to all commands.
Appendix A 455

Command Options
Options Listed Alphabetically
• target_type

See media_type .

• uncompress_cmd=

This is the command called by the source agent to uncompress files
when installing, copying or packaging.

This command processes files that were stored on the media in
compressed format. If the compression_type of the file is gzip , the
internal compression (funzip) is used instead of the external
uncompress command.

Applies to swagent and swpackage.

• uncompress_files=false

When set to true, files are uncompressed using the current
uncompress_cmd before storing them on the target depot.

Only one of the uncompress_files and compress_files options may
be set to true during a swpackage session.

The uncompress_files option may not be set to true if
package_in_place is set to true or if the media_type is set to tape .

Applies to swcopy and swpackage.

• use_alternate_source=false

At the default value of false, swinstall or swcopy begins an analysis or
task with a request that includes information describing the source
binding and depot path for the local host to use as the software
source.

If true, the local host uses its own configured value. On the local host,
the agent’s configured value for alternate_source is specified in
host:/path format. If this value contains only a path component (for
example, alternate_source=:/path), the agent applies this path to
the file system of its own local host.

If only the host component exists (for example,
alternate_source=host), the agent applies the controller-supplied
path to this host. If there is no configured value at all for the
alternate_source , the agent applies the controller-supplied path to
its own local host.

Applies to swcopy and swinstall.
456 Appendix A

Command Options
Options Listed Alphabetically
• verbose=

By default, the command sends output to stdout for task summary
messages. Alternatively, the verbose option can be set to 0 for session
level messages (no output to stdout) or (for swpackage and
swmodify) to 2 for file level messages.

Error and warning messages are always written to stderr .

For the swlist command, a verbose listing includes all attributes that
have been defined for the appropriate level of each
software_selection operand. The attributes are listed one per line,
prefaced by the attribute keyword.

The -v option overrides this default, if it is set to 0.

Applies to all commands.

• write_remote_files=false

Prevents file operations on remote (NFS) file systems. All files
destined for installation, copy, removal, or packaging on targets on a
remote (NFS) file systems are skipped.

If set to true and if the superuser has write permission on the remote
file system, the remote files are not skipped.

Applies to swconfig, swcopy, swinstall, swpackage, and swremove.
Appendix A 457

Command Options
Options Listed Alphabetically
458 Appendix A

Troubleshooting
B Troubleshooting

This appendix explains how SD-UX error messages are used, reviews the
SD-UX error logging process. lists common problems you might
encounter, and suggests how to resolve them.

Topics:

“Error Logging” on page 460

“Common Problems” on page 463
Appendix B 459

Troubleshooting
Error Logging
Error Logging
All SD-UX commands (except swlist and swacl) log error messages,
summary information about the session, and operation details to a
command-specific logfile located (by default) in
/var/adm/sw/< command>.log . For example, if you wanted to examine
the logfile for swinstall, you would look in the file
/var/adm/sw/swinstall.log . You can also examine target agent
logfiles for a current session from the swinstall, swcopy, or swremove
GUIs.

If you have log-in access to a target host, you can see its agent logfile(s)
directly. The location of the agent logfile varies, depending on the type of
target:

• /var/adm/sw/swagent.log when operating on a host’s primary root.

• /<root_path>/var/adm/sw/swagent.log for an alternate root.

• /<depot_path>/swagent.log for a target or source depot.

The default location of a host’s daemon logfile is
/var/adm/sw/swagentd.log . This logfile contains information for
problems starting agents, particularly for problems where you have
access denied to a depot or root.

NOTE When both the source and target machine are updated to HP-UX 10.30
or later, the system administrator at the source depot machine can track
which user pulls which software from a depot and when the software is
pulled. Refer to the source_depot_audit option in Appendix A ,
“Command Options,” or “Source Depot Auditing” on page 160.
460 Appendix B

Troubleshooting
Error Logging
Error Messages

SD-UX error messages indicate that a problem occurred that will
influence the overall outcome of an operation.

For example, if a target in an install session fails the analysis phase due
to insufficient disk space, you would find the following error message in
the agent log file:

ERROR:
The estimated disk space used on filesystem "/" is
14104 Kbyte blocks. This operation will exceed the
minimum free space for this disk. You should free up at
least 2280 Kbyte blocks to avoid installing beyond this
threshold of available user disk space. If you are
running interactive "swinstall", you must return to the
Selection Window and Unmark this target before using
"swremove" to free disk space.

Warning Messages

Warning messages let you know that something unexpected and
potentially undesirable occurred. A warning does not prevent the SD
session from continuing. Warning messages during analysis of an
interactive session give you the chance to continue or stop.

For example, if the fileset SD-DATABASE.SD-DATABASE2 is being
installed in multiple locations on a target system, you would find the
following warning message in the agent log file:

WARNING:A version of fileset
"SD-DATABASE.SD-DATABASE2,r=9.00.1C"
is already installed in another location (see previous
lines). Installing this version will create multiple
installed versions. This new multiple version will be
installed because the "allow_multiple_versions" option
is
set to "true".
Appendix B 461

Troubleshooting
Error Logging
Notes

Notes are used to notify you of an event that is not erroneous,
unexpected or undesirable, but that you should be aware of:

NOTE:
The fileset "SD-DATABASE.SD-DATABASE1,r=9.00.1C" is
already installed. If you wish to reinstall this
fileset, change the "reinstall" option to "true".
462 Appendix B

Troubleshooting
Common Problems
Common Problems
This section presents a selection of problems you might encounter and
how to resolve them:

Problem

Cannot contact target host’s daemon or agent

GUI won’t start or missing support files

Access to an object is denied

Slow network performance

Connection timeouts and other WAN problems

Disk space analysis is incorrect

The packager fails

Daemon logfile is too long

Cannot read a tape depot

Installation fails

swinstall or swremove fails with a lock error
Appendix B 463

Troubleshooting
Common Problems
Cannot Contact Target Host’s Daemon or Agent

If you see the following error message:

ERROR: Could not contact host <hostname>. Make sure the
hostname is correct.

it means that the hostname you specified could not be found in the hosts
database. Make sure you have typed the hostname correctly (you can use
the nslookup command to verify hostnames). If the target hostname is
not in the hosts database, but you know its network address, you can use
it (in standard “dot” notation) in place of the hostname.

If you see this error message:

ERROR:Remote Procedure Call to a daemon has failed.
Could not start a management session for <target>.
Make sure the host is accessible from the network,
and that its daemon, swagentd, is running. If the
daemon is running see the daemon logfile
on this target for more information.

it means SD-UX could not contact the daemon program on a specific
target system. Note that this may occur even if you haven’t specified any
targets, for example, if the daemon on your local host is not running.

Resolution If the SD-UX daemon/agent is not installed on a given target system, you
must install it before you can use SD-UX.

If you’ve verified that the daemon/agent component has been installed on
a target system and you still have trouble contacting it, check to see that
the daemon is running:

1. On the target system, type:

ps -e | grep swagentd

2. If the daemon does not appear to be running, you can start it by
typing (as root on the target system):

/usr/sbin/swagentd

3. If you attempt to start a daemon when one is already running, you
will see a message about the other daemon; this is harmless.

You can also kill and restart a currently running daemon by typing:

/usr/sbin/swagentd -r
464 Appendix B

Troubleshooting
Common Problems
Other possible causes for this problem are listed in the section
“Connection Timeouts and Other WAN Problems” on page 471.

TIP An easy way to determine if a target system has the SD-UX daemon
installed and running is to type:

/usr/sbin/swlist -l depot @ < one or more target hostnames >

which will attempt to contact each target to get a list of registered
depots. Those targets which have the SD-UX daemon installed will
report either:

Initializing...
Target <hostname> has the following depot(s):
<...insert list of depots...>

or

Initializing...
WARNING: No depot was found for <hostname>.

For more information on daemon activity, see the daemon logfile in
/var/adm/sw/swagentd.log .
Appendix B 465

Troubleshooting
Common Problems
GUI Won’t Start or Missing Support Files

You can start the GUI in these ways:

• For swinstall, swcopy, or swremove, type the command with no
additional options or arguments.

• Include the -i option with any other options and arguments when
you type the command on the command line. (Required for swlist.)

• For the Job Browser, type sd on the command line.

When using the GUI, you might encounter these problems:

• Can’t open the display or display is set incorrectly

• Missing GUI support files

Resolution If you have invoked the GUI on a remote system, you may see the
following error messages:

Xlib: connection to <display> refused by server
Xlib: Client is not authorized to connect to Server
Error: Can’t Open display.

Check that you have set the $DISPLAY environment variable correctly on
the remote system to identify your display. If it is correct, you may have
to enable the remote host to make connections to your X server via the
xhost(1) command or by modifying your /etc/X*.hosts file.

If you see the error message:

swinstall: Error: cannot read file:
/usr/lib/sw/ui/smc_install_copy.ui

— or —

swremove: Error: cannot read file:
/usr/lib/sw/ui/smc_remove.ui

the system is telling you that the file
/usr/lib/sw/ui/smc_install_copy.ui must be installed on the
system to run either swinstall or swcopy interactively or that the
/usr/lib/sw/ui/smc_remove.ui file must be installed to run
swremove. Make sure that the directory /usr/lib/sw/ui exists and
includes the requested file. If the file does not exist, you must reinstall
the SD-CMDS fileset from your OS media.
466 Appendix B

Troubleshooting
Common Problems
Access To An Object Is Denied

Denial of access to SD-UX objects may have a number of causes,
including:

• ACL permissions

• Inter-host secrets

• Working with image copies of depots

Resolution Generally, when SD-UX denies access to an object, a message tells you
that you do not have the required access permission. Yet, it may be
unclear which object is not accessible. For example, when you use swcopy
to copy a product from system A to a depot, SD-UX checks these ACLs:

1. If the destination depot does NOT exist, the host ACL is checked to
verify that the user has “insert” permission.

2. If the destination depot does exist, the depot ACL is checked to verify
that the user has write permission.

3. The source depot’s ACL is checked to make sure the user has read
permission on the source depot.

4. The source product’s ACL is also checked to make sure that the user
and the destination system both have read access to the product.

If any of these access permissions is absent, the whole operation is
disallowed, and you must read the error message carefully to
understanding the exact cause. To see more about what type of security
or access problems exist, see the daemon log file on the target system:
/var/adm/sw/swagentd.log

The Effects of ACL Modifications

The default ACLs make it fairly easy to administer ACLs, but do not
always give the desired level of access control. When you change an ACL
to restrict access, especially by removing the any_other read permission,
you may restrict access in unexpected ways. Host entries are required for
any destination systems for swcopy and swinstall operations.

See Chapter 9 , “SD-UX Security,” on page 251 for a full discussion of the
access tests performed or each operation.
Appendix B 467

Troubleshooting
Common Problems
Do Not Modify ACL Files Without swacl

Since SD-UX stores ACLs in the file system as plain text files, you may
try to edit them with a conventional editor. This can lead to unexpected
corruption of the ACL. Most cases of this corruption simply result in a
message indicating the corruption, but inserting additions to the ACL
file without updating the num_entries value can result in unreported
problems and cause SD-UX to deny access. A common failure could occur,
for instance, if a you inserted user entry in the ACL file. This could push
the any_other entry down beyond the num_entries limit. The ACL
manager would never read the any_other entry, and you would have
access problems. The best guard against this situation is to always use
the swacl command to manipulate ACLs.

Inter-host Secrets

The default /var/adm/sw/security/secrets file contains a single
entry:

default -sdu-

If you wish to explicitly name all hosts from which controllers can be run,
you must replace the -sdu- with a different default secret, or eliminate
the entire entry. See Chapter 9 , “SD-UX Security,” on page 251 for a
thorough discussion of the secrets file.

The controller (for swinstall, swcopy, etc.) looks up the secret for the
system on which it runs and passes it in an encrypted form to its agent.
The agent receiving a request from the controller looks up the secret for
the host from which the call comes, encrypts it, and compares the
encryption to that provided by the controller. If the two secrets do not
match, access is denied. If you have problems with this mechanism,
make sure that all systems have matching entries. You can also revert to
the old secrets file (/etc/newconfig/sd/secrets on 9.x and
/usr/newconfig/var/adm/sw/security/secrets on 10.x) on all hosts,
or simply copy a single secrets file to all hosts.

Working With Depot Images

You may encounter a problem in using cp, tar, cpio, dd, and other
commands to copy images of depots for use on other systems. Depot and
product ACLs in the image have built-in knowledge of the host on which
the depot originated. In particular, an ACL default realm will be wrong
and local users will be confused with users on the originating host. For
example, attempts to add local users to the access list will, in fact, grant
468 Appendix B

Troubleshooting
Common Problems
access to remote users. There is no way to alter the default realm of an
ACL from that set when it is created.

Another common problem with such images occurs if you import them to
systems that cannot resolve all the hostnames (see resolver(4) and
nslookup(1)) that exist in the ACLs.

If your purpose is to create a “staged” installation, use swcopy to
propagate the depot. This creates new ACLs, based on local templates,
for each instance of the depot.

If the sole intent of a depot is for such image distribution, you may wish
to set the swpackage create_target_acls option to false to prevent
ACL creation on the depot and products during the swpackage operation.
This option creates tape and CD-ROM images. Depots and products
without ACLs grant the local superuser all privileges, while all other
users and systems have read access. Note that when you copy or install
this ACL-less depot with swcopy or swinstall, the copies (installations)
are automatically protected by ACLs based on templates on the
destination host.
Appendix B 469

Troubleshooting
Common Problems
Slow Network Performance

When using swinstall or swcopy in an environment where network
bandwidth is the “bottleneck,” the file transfer rate between source and
target can become very slow.

Resolution The compress_files=true option compresses files transferred from a
source depot to a target. This can reduce network usage by
approximately 50%; the exact amount of compression depends on the
type of files. Binary files compress less than 50%, text files more.

The greatest throughput improvements are seen when transfers are
across a slow network (approximately 50kbyte/sec or less), and the
source depot server is serving a few target hosts at a time.

NOTE This option should be set to true only when network bandwidth is clearly
restricting total throughput. If this option is used with a fast network or
with a depot server simultaneously connected to many target hosts, this
option can actually reduce overall throughput or performance, unless the
source depot is already compressed.

If it is not clear that this option will help in your situation, compare the
throughput of a few install or copy tasks (both with and without
compression) before changing this option value.

See Chapter 8 , “Reliability and Performance,” on page 233 for more
information about performance options.
470 Appendix B

Troubleshooting
Common Problems
Connection Timeouts and Other WAN Problems

Low-throughput, wide-area networks can cause SD-UX to encounter
time-out problems when establishing and maintaining network
connections with remote agents on other systems.

If you see the following messages:

ERROR:A Remote Procedure Call to a daemon has failed.
Could not start a management session for <target>.
Make sure the host is accessible from the network, and
that its daemon, swagentd, is running. If the daemon is
running see the daemon logfile on this target for more
information.

or

ERROR: Could not perform the requested operation for
<target>, possibly due to a network communications
failure. Check that the host is still accessible from
the network.

and you have verified that the system is up and the daemon program
(swagentd) is running on it, it may be that network delays are causing
the connection to time-out.

Resolution Increase the time-out value used by SD-UX when performing Remote
Procedure Calls (RPCs) by specifying a higher value for the rpc_timeout
option, either via the command line or in the defaults file. RPC time-out
values range from 0 to 9, with 9 being the longest time-out. The default
RPC time-out value is 5. Note that these values do not represent any
specific time units. See Appendix A , “Command Options,” on page 419
for more information on the rpc_timeout option.

Increasing the rpc_timeout can also help in situations where the target
agents in an install or copy session are timing out when trying to contact
the source agent. This problem is indicated by the following error
messages in the agent log file:

ERROR: Could not open remote depot/root <path> due to
an RPC or network I/O error.
ERROR: Cannot open source. Check above for errors, as
well as the daemon logfile on the source host (default
location:/var/adm/sw/swagentd.log).
ERROR: Cannot continue the Analysis Phase until the
previous errors are corrected.
Appendix B 471

Troubleshooting
Common Problems
Another factor that can affect RPC timeouts on a slow network is the
choice of network protocol. SD-UX supports both UDP- and TCP-based
communication (the default is TCP). TCP communication is more
reliable on a WAN because it is connection-based. SD will fall back to a
UDP connection if the TCP connection fails for some reason. The default
binding can be set with the -x rpc_binding_info option.

Note that the daemon program (swagentd) listens for both UDP- and
TCP-based RPCs by default. See Appendix A , “Command Options,” on
page 419 for more information on the rpc_binding_info option.

A final WAN-related issue may arise when using the interactive GUI.
During the analysis and execution phases of an interactive session, each
target agent is periodically polled for up-to-date status information. The
polling_interval option can be used to control the number of seconds
that elapse between successive status polls of a given target system. On
networks where even this minor data transfer is a problem, you can
increase this polling interval, thus decreasing the frequency of polling,
and reducing an interactive session’s overall demands on the network.
See Appendix A , “Command Options,” on page 419 for more information
on the polling_interval option.
472 Appendix B

Troubleshooting
Common Problems
Disk Space Analysis Is Incorrect

Your installation or copy operation runs out of space even though the
disk space analysis succeeded. Upon further checking, you find that the
results of the disk space analysis differ from the actual space available.

Resolution Possible causes of this problem:

• A control script associated with the installation has consumed disk
space by creating or copying additional files that aren’t accounted for
during analysis.

• Your target systems were not idle when the analysis was done and
some other activity (unrelated to SD-UX) was consuming disk space.

• The depot from which the product was installed or copied was created
by swpackage with the package_in_place option set to true, and
source files have been modified since the product was packaged. The
swverify command can be used to diagnose this problem.

Packager Fails

A swpackage operation may fail because of the incorrect use of the end
keyword in the Product Specification File (PSF).

Resolution The end keyword marks the end of a depot, vendor, product, subproduct
or fileset specification in a PSF. It requires no value and is optional.
However, if you use it and it is incorrectly placed, the specification will
fail. Check to make sure, if you use it, there is an end keyword for every
object specification (especially the last one).
Appendix B 473

Troubleshooting
Common Problems
Command Logfile Grows Too Large

If you want to reduce the contents of a SD-UX command logfile, follow
this procedure:

Resolution To reduce messages to a minimum, set the verbose command option to 0
in one of the option files or by using the -x option on the command line.
For example, entering -x spackage.verbose=0 on the command line
when you run swpackage would reduce the number of entries to the
swpackage log to a minimum. See Appendix A , “Command Options,” on
page 419 for details about setting options.

Daemon Logfile Is Too Long

If you want to shorten (truncate) the SD-UX daemon logfile because it is
getting too long, follow this procedure:

Resolution If the daemon is currently running, DO NOT remove its logfile. The
running daemon continues to log messages to its logfile even after you’ve
removed it, causing any subsequent information to be lost. Also, the disk
space used by the logfile will not be freed as long as the daemon is
running.

Instead, truncate the logfile by typing (as root):

echo > /var/adm/sw/swagentd.log

This replaces the previous data in the log with an empty string.

If you inadvertently remove the daemon logfile while it is running, you
must kill and restart the daemon if you want to see subsequent daemon
log messages and free up the disk space used by the logfile. You can stop
(kill) a daemon by typing:

usr/sbin/swagentd -k

You can also kill and restart a currently running daemon by typing:

usr/sbin/swagentd -r
474 Appendix B

Troubleshooting
Common Problems
Cannot Read a Tape Depot

If you are trying to access a tape depot and see the following error
message in the daemon logfile, it means that the tape is either corrupt or
is not in SD-UX format.

ERROR:The INDEX file on the source did not exist or could
not be read.
ERROR:The target <depot_path> could not be opened.

Resolution Make sure that you have correctly specified the tape device and that the
correct tape is in the drive. SD-UX only reads tapes that are in SD-UX
format. For example, SD-UX does not read update format tapes.

Installation Fails

An installation may fail while only part way through the process.

Resolution SD-UX gives you several restart options:

• Re-execute the same command from the command line.

• Recall the session file swinstall.last that was automatically saved
for you. (See “Session Files” on page 59.)

• Reset the checkpointing options.

By default, SD-UX checkpoints to the fileset level, meaning that the
operation will start transferring files with the last fileset to be
attempted. By setting the reinstall_files option to false, SD-UX
restarts distribution and installation with the file that was last
attempted. (SD-UX does not support checkpointing below the file
level.)

You can override all checkpointing by setting both the reinstall and
reinstall_files options to true. See Appendix A , “Command
Options,” on page 419 for more information.
Appendix B 475

Troubleshooting
Common Problems
Swinstall or Swremove Fails With a Lock Error

Swinstall or swremove fails with the following message:

Cannot lock “/” because another command holds a conflicting
lock. The process id of that command is ####.

Resolution Another SD command is running that prevents the swinstall or
swremove command from running. Wait for that command to finish and
try again.
476 Appendix B

Replacing or Updating SD-UX
C Replacing or Updating SD-UX

This appendix describes how to replace or update SD-UX using the
install-sd command.

Topics:

“Re-installing SD-UX” on page 478

“Replacing an Unusable Version of SD-UX” on page 480

“Installing a Newer Version of SD-UX” on page 481
Appendix C 477

Replacing or Updating SD-UX
Re-installing SD-UX
Re-installing SD-UX
The software product called SW-DIST provides all SD-UX functionality,
commands, and tools. This product is included on your HP-UX 11i media.

If the files that make up SW-DIST are deleted or corrupted, you may need
to re-install the product. The install-sd command lets you install the
SD-UX product from HP-UX 11i media or a depot. This command also
installs any SD-UX patches that exist in the source depot.

• The install-sd command is not supported on HP-UX versions
10.20 or 11.00.

• You need the 11i version of SW-DIST to install or copy any HP-UX
software that has been packaged in the 11i SD-UX format.

• The update-ux command replaces the swgettools script used by
previous versions of SD-UX for OS updates.

For More
Information

For complete instructions for updating HP-UX, see:

• HP-UX 11i Installation and Update Guide

• update-ux(1M) manpage

These documents are available on your HP-UX Instant Information
CD-ROM and in the HP-UX 11i section of:

http://docs.hp.com/

Prerequisites

The install-sd command and an accompanying swagent.Z file require at
least 2 MB of free space in the /var/tmp directory. If there is not enough
space in this directory, install-sd will fail. To determine if /var/tmp has
adequate space, enter:

bdf /var/tmp
478 Appendix C

Replacing or Updating SD-UX
Re-installing SD-UX
Using install-sd

Syntax install-sd -s source_depot_location

Options and
Operands

The source_depot_location option specifies an absolute path to the
source media location. Possible media locations are:

• A local directory

• A CD-ROM mount point that has an SD-UX media CD-ROM loaded

• A remote system (or host) and depot combination, which you must
specify with this syntax:

system_name :/ depot_path

For example:

swtest:/var/spool/sw

Command Notes • The command returns a value of 0 to indicate successful completion
and a value of 1 to indicate an error.

• An install-sd session writes messages for major tasks and the begin
and end of each session. All WARNING and ERROR conditions are
written to stderr.

• Detailed events are logged to /var/adm/sw/install-sd.log

Example install-sd -s swtest:/var/spool/sw
Appendix C 479

Replacing or Updating SD-UX
Replacing an Unusable Version of SD-UX
Replacing an Unusable Version of SD-UX
If the version of SD-UX on the target system is unusable, you must first
load install-sd and the swagent.Z file onto your system into /var/tmp ,
then use install-sd to re-install SW-DIST. The install-sd utility ships in
the catalog/SW-DIST/pfiles directory.

Use cp (if you are copying from a local CD-ROM) or rcp (if you are
copying from a software depot on a remote system) to load install-sd onto
your system.

For example, to load install-sd from a local CD-ROM mounted at
/SD_CDROM into /var/tmp :

Step 1. Copy install-sd onto your system from the CD-ROM:

cp /SD_CDROM/catalog/SW-DIST/pfiles/ \
install-sd /var/tmp

Step 2. Copy the swagent.Z file from the CD-ROM:

cp /SD_CDROM/catalog/SW-DIST/pfiles/ \
swagent.Z /var/tmp

Step 3. Make install-sd executable:

chmod +x /var/tmp/install-sd

Step 4. Execute install-sd:

/var/tmp/install-sd -s /SD_CDROM

The SW-DIST product then installs itself onto your system from the

CD-ROM.
480 Appendix C

Replacing or Updating SD-UX
Installing a Newer Version of SD-UX
Installing a Newer Version of SD-UX
If you want to install a newer version of SD-UX on your system
and/usr/sbin/install-sd is not yet on your system, use this
procedure.

(In both steps, source_depot_location is the absolute path to the depot
or media that contains the newer version of SD-UX.)

Step 1. As root, enter:

/usr/sbin/swinstall -r -s \
source_depot_location\SW-DIST.SD-UPDATE \
@ /var/adm/sw/install-sd.root 2>/dev/null

Step 2. Install the newer version:

/usr/sbin/install-sd -s source_depot_location
Appendix C 481

Replacing or Updating SD-UX
Installing a Newer Version of SD-UX
482 Appendix C

Software Distributor Files and File System Structure
D Software Distributor Files and
File System Structure

This chapter contains information on key Software Distributor files.

For additional information, refer to the following manual reference
pages:

sd(5) For most current information on Software Distributor
files

sd(4) For file layouts of all Software Distributor files.

swpackage(4) For file layouts of Software Distributor files created
during packaging.

Topics:

“Agent File System Structure” on page 484

“Software Distributor Controller File System Structure” on page 487

“Installed Products Database” on page 488
Appendix D 483

Software Distributor Files and File System Structure
Agent File System Structure
Agent File System Structure

The agent component is organized as follows:

/dev/rmt/Om Default location of the target tape
device file

/usr/contrib/bin Location of the gzip executables used
in file compression

/usr/lbin/swagent The SD-UX agent

/usr/lbin/sw Directory containing utilities used by
swinstall and swremove

/usr/lbin/sw/control_utils File containing common utilities used
by SD control scripts.

/usr/sbin Directory that contains the Software
Distributor daemon (and all other
executables)

/usr/lib/sw/examples Directory that contains various
example packages and PSF files

/usr/lib/sw/sys.defaults File that lists all options and their
default values

/var/adm/sw Directory that contains all the data
for the Software Distributor product
and the default location of logfiles

/var/spool/sw Default directory of the local
Software Distributor depot

/var/adm/sw/defaults Software Distributor system-wide
defaults file

/var/adm/sw/host_object List of depots registered at the local
host

/var/adm/sw/host_object_np List of depots registered at the local
host during nonprivileged mode
484 Appendix D

Software Distributor Files and File System Structure
Agent File System Structure
/var/adm/sw/products The Installed Products Database
(IPD), a series of files and
subdirectories that contain
information about all products
installed under the root (/) directory

/var/adm/sw/queue Directory that contains the Jobs
database.

/var/adm/sw/save Directory that is SD’s save area for
patches

/var/adm/sw/save_custom Directory that is a custom save area
for patches

/var/adm/sw/security Directory that contains the host
Access Control List (ACL), all
default ACLs, and the secrets file

/var/adm/sw/swagent.log Agent logfile containing details on
installed software operations

/var/adm/sw/swagentd.log Daemon log file containing details on
host and security operations

/var/adm/sw/sw<task>.log Controller logfile containing a
summary of each job, where<task>
is one of these values:

• install
• remove
• config
• modify
• package
• reg
• verify

/var/adm/sw/tmp Directory for temporary files

/var/home/USER_NAME Default location for admin_directory
during nonprivileged mode
Appendix D 485

Software Distributor Files and File System Structure
Agent File System Structure
$HOME/.swdefaults File containing user-specified default
values. If this file does not exist,
Software Distributor looks for
user-specific defaults in
$HOME/.sw/defaults
486 Appendix D

Software Distributor Files and File System Structure
Software Distributor Controller File System Structure
Software Distributor Controller File System
Structure
The controller file system structure is comprised of all files in agent (see
“Agent File System Structure” on page 484) plus the following files:

/usr/lib/sw/help Directory that contains the help
files for on-line help

/usr/lib/sw/ui Directory that contains the
description files used by the
GUIs

/usr/lib/X11/app-defaults X11 resource definitions for the
GUIs

/usr/lib/nls/msg/$LANG/sw*.cat Message catalogs for the
daemon, agent, and shared
messages

/usr/newconfig/var/adm/sw Data files that are conditionally
copied into/var/adm/sw .

/var/adm/sw/queue Directory that contains all the
data for jobs

/var/adm/sw/sw<task>.log Controller logfile

/var/adm/sw/defaults.hosts System-leveldefaults. hosts file
for the GUIs

/var/adm/sw/.sdkey Key file that enables the remote
operations GUI

/var/adm/sw/target_hosts Location of the cache file for
each target host

/var/adm/sw/ui/preferences Directory that stores the GUI
user view preferences
Appendix D 487

Software Distributor Files and File System Structure
Installed Products Database
Installed Products Database

Software Distributor commands keep track of installations, products,
and filesets on the system with the Installed Product Database (IPD).
Located in the directory /var/adm/sw/products , the IPD is a series of
files and subdirectories that contain information about all the products
that are installed under the root directory (/). This information includes
all the attributes describing the products, filesets, and files. The
swinstall, swconfig, and swremove tasks automatically add to, change,
and delete this IPD information as the commands are executed.

You cannot manually edit the IPD files, but swmodify lets you change
local IPD and local depot catalog information.

The equivalent IPD files for a depot are called catalog files. When a depot
is created or modified using swcopy, catalog files are built (by default in
/var/spool/sw/catalog) that describe the depot and its contents.

The IPD also contains a swlock file that manages simultaneous read
and/or write access to software objects, and ACLs.

For More
Information

• “Modifying the IPD (swmodify)” on page 114
488 Appendix D

Glossary
NOTE: A glossary term appears
in boldface when defined for the
first time in the text of this
manual. Italicized terms in the
following glossary refer to other
terms in the glossary.

A

Access Control Lists (ACL) A
structure attached to a software
object that defines access
permissions for multiple users
and groups. It extends the
permissions defined by the HP-UX
file system’s mode bits by letting
you specify the access rights of
many individuals and groups
instead of just one of each.

Administrative Host See local
host.

Agent The agent (swagent) runs
on the local host. It services all
selection, analysis, execution and
status requests. It is scheduled by
the daemon and guided by the
SD-UX controller.

Alternate Depot Directory A
depot directory located someplace
other than the default location.

Alternate Root/Alternate Root
Directory A Target for software
installation, where the Target is
not the primary Root (/) and where
the software can be stored or
referenced, but not configured or
used.

Analysis/Analysis Phase The
second phase of a software
installation, copy, or remove
operation, during which the host
executes a series of checks to
determine if the selected products
can be installed, copied, removed,
or verified on the host. The checks
include the execution of check
scripts and disk space analysis
(DSA).

Ancestor An attribute that
names a previous version of a
fileset. This is used to match
filesets on a target system. If the
match_target option is set to
true, SD-UX matches the ancestor
fileset name to the new fileset
name.

Applied The state in which a
patch is installed. When a patch is
installed, by default it has the
patch_state of applied. Other
patch states include committed
and superseded and
committed/superseded.

Architecture A keyword that
represents the operating system
platform on which the product
runs.

Archive file A .o file that needs
to be replaced in an existing
archive using the ar command.
Used for patch files.

Ask An operation in which SD-UX
runs an interactive request script
to get a response from the user.
489

Request scripts can be run by the
swask, swconfig, and swinstall
commands.

Attributes Informationdescribing
a software object’s characteristics.
For example, product attributes
include revision number, tag
(name), and contents (list of
filesets). Fileset attributes include
tag, revision, kernel, and reboot.
File attributes include mode,
owner, and group. An essential
part of the Product Specification
File, attributes include such
information as the product’s short
name or tag, a one-line full name
title or a one paragraph
description of the object. Other
attributes include a
multi-paragraph README file, a
copyright information statement
and others.

Authorization In SD-UX
security, checking that a user has
the necessary permissions to
perform a specific action, as
defined by an Access Control List.

B

Base software Software that will
be modified by a patch.

Building phase Packaging the
source files and information into a
product, and creating/merging the
product into the destination
depot/media.

Bundles A collection of filesets

that are encapsulated for a specific
purpose. By specifying a bundle,
all products or filesets under that
bundle are automatically included
in the operation.

C

Cache File A file that contains
the name and attributes of targets
selected by swinstall or swcopy.

Catalog/Catalog directory An
area within a depot that contains
all the information needed by
SD-UX to define the organization
and contents of the products stored
in the depot. It includes a global
INDEX file and a directory of
information for each product
version in the depot. It is
sometimes referred to as the
catalog directory.

Category This keyword defines
the “category” attribute for the
product object. It refers to the type
of software being packaged.

CD-ROM Compact Disc-Read
Only Memory or a SD-UX depot
that resides on a CD-ROM.

Centralized management See
remote operations.

Checkinstall script An optional,
script associated with a product or
fileset, executed by swinstall
during the analysis phase. The
result returned by the script
determines if the fileset can be
490

installed or updated.

Checkremove script An
optional script associated with a
fileset that is executed during the
swremove analysis phase. The
result returned by the script
determines if the fileset can be
removed.

checksum Cyclic Redundancy
Check (CRC), a computed value
that is compared with stored data
to tell if a file has been corrupted
during transfer.

CLI Command Line Interface. See
Command Line User Interface.

Client Usually refers to diskless
server computer. Previous
versions of SD-UX supported
diskless clients.

CLUI See Command Line User
Interface. All SD-UX commands
can be run from the command
line. See also GUI, TUI, and IUI.

Codeword To protect software
from unauthorized installation,
HP (and other vendors) use special
codewords and customer
identification numbers to lock the
software to a particular owner.
These codewords and customer
IDs are provided to you when you
purchase the software or receive it
as update.

Command line options

Optional parameters for a

command entered with the
command itself at the HP-UX
command line prompt. See also
default options.

Command Line User Interface
(CLI/CLUI) Text-formatted
commands and options entered at
an HP-UX command line prompt
or executed by a script. SD-UX
also has a Graphical User
Interface (GUI) and a Terminal
User Interface (TUI) for the sd,
swinstall, swcopy, swlist, and
swremove commands.

Committed The state in which a
patch is applied and rollback files
have been deleted. Other patch
states include applied and
superseded and
committed/superseded.

Committed/superseded A patch
state in which the patch is both
committed and superseded.

Compatibility Filtering The
ability of swinstall to filter the
software available from a source
according to the host’s uname
attributes. Software products are
created to run on specific
computer hardware and operating
systems. Many versions of the
same products may exist, each of
which runs on a different
combination of computer
hardware and operating system.
By default, swinstall does not
allow selection and installation of
incompatible software.
491

Compatible Software Asoftware
product that will operate on a
given hardware system. Software
that passes compatibility filtering
for a local host. Also see
Incompatible Software.

Configure Script An optional
script associated with a fileset and
automatically executed by
swinstall (or manually executed by
swconfig) after the installation of
filesets is complete.

Container ACL Template A
special ACL
(global_soc_template) that is
used to create initial ACLs for
depot and roots. See also product
ACL template.

Contents A keyword used to
assign filesets to subproducts. This
allows a fileset to be contained in
multiple subproducts.

Controller The SD-UX programs
or commands (swinstall, swcopy,
etc.) that are invoked by the user
on the local host and that direct
the actions of an SD-UX agent.

Control Script Optional scripts
packaged with software or added
to software by modifying the IPD.
Control scripts are run during
swconfig, swinstall, swremove, or
swverify operations. Control
scripts may include: configure or
unconfigure for swconfig;
checkinstall, preinstall, postinstall
and configure scripts for swinstall;

the checkremove, unconfigure,
preremove, and postremove scripts
for swremove; and the fix or verify
script for swverify.

Copyright A keyword that defines
the copyright attribute for the
destination depot (media) being
created/modified by swpackage. It
refers to the copyright information
for the software product.

Corequisite A dependency in
which a fileset requires that
another fileset be installed or
configured at the same time. For
example, if fileset A requires that
fileset B is installed at the same
time, fileset B is a corequisite.

Critical Fileset A fileset
containing software critical to the
correct operation of the host.
Critical filesets are those with the
reboot and/or kernel fileset flags.
During swinstall’s load phase,
critical filesets are loaded and
customized before other filesets.

Cumulative patch See
superseding patch.

D

Daemon The SD-UX program
that schedules the agent to
perform software management
tasks. On a SD-UX controller, the
daemon polls the job queue for
scheduled jobs.

data_model_revision The
492

internal attribute for SD-UX
INDEX file syntax.
Layout_version 1.0 uses
data_model_revision 2.40;
whereas, layout_version 0.8 uses
data_model_revision 2.10.

DCE Distributed Computing
Environment. Technology used by
SD-UX for distributed
communications. Controllers,
daemons, and agents
communicate using the DCE
Remote Procedure Call (RPC).

Default Hosts File The file
(either
/var/adm/sw/defaults.hosts
for system level defaults) or
/$HOME/.sw/defaults.hosts for
user level defaults) that contains
the default list of hosts for SD-UX
commands.

Defaults File The file (either
/var/adm/sw/defaults for
system-wide defaults or
$HOME/.sw/defaults for user-
level defaults), which contains the
default options and operands for
each SD-UX command.

Default Options Changeable
values that affect SD-UX
command behaviors and policies.
Default options are contained in
the defaults file. See Appendix A,
“Command Options,” on page 419
for more information.

Delegation SD-UX provides a
controlled access to depot-resident

products: both the host where the
agent is running and the user
initiating the call (delegation)
must have read access.

Dependency A relationship
between fileset in which one
requires another in a specific
manner. For example, before
fileset A can be installed, it may
require fileset B to be installed.
SD-UX supports corequisite,
exrequisite, and prerequisite
dependencies. See Dependent.

Dependent A fileset that has a
dependency on another fileset. For
example, if fileset A depends on
fileset B, then B is a dependent or
has a dependency on A.

Depot A repository of software
products and a catalog, organized
so SD-UX commands can use it as
a software source. The contents of
a depot reside in a directory
structure with a single, common
root. A depot can exist as a
directory tree on a SD-UX file
system or on CD-ROM media, and
it can exist as a tar archive on a
serial media (tape). All depots
share a single logical format,
independent of the type of media
on which the depot resides. Depots
can reside on a local or remote
system. You can package software
directly into a depot or copy
packaged software into the depot
from elsewhere.

Depot Source See depot.
493

Destination The path at which a
file will be installed.

Developer Host A system where
software application files are
placed for further integration and
preparation for distribution. You
may use a developer host to
assemble, organize, and create
product tapes or depots.

Description An attribute for
products and filesets, usually a
paragraph description of that
product or fileset.

Details Dialog In the GUI or
TUI, a dialog box that lets you get
more information about a specific
process to monitor its progress.

Directory In packaging, a
keyword that defines the a
directory for a product object. The
directory specified is a default,
absolute pathname to the directory
in which the product will be
installed.

Directory Depot The directory
on a target host where a depot is
located. The default is
/var/spool/sw .

Disk Space Analysis (DSA) A
process that determines if a host’s
available disk space is sufficient
for the selected products to be
installed.

Downdating Overwriting an
installed version of software with

an older version.

DSA See Disk Space Analysis

E

End An optional keyword that
ends the software object
specification in a PSF. No value is
required.

Exrequisite A dependency in
which a fileset requires the
absence of another fileset before it
can be installed or configured. For
example, if fileset A cannot be
installed or configured if fileset B
is already installed, fileset B is an
exrequisite for fileset A.

F

Fileset A collection of files. Most
SD-UX operations are performed
on filesets.

G

Group In SD-UX security, a set of
users.

Group Name In SD-UX security,
the user’s primary group.

Graphical User Interface
(GUI) An OSF/Motif ™ user
interface, with windows and
pull-down menus, provided with
the sd, swinstall, swcopy, swlist,
and swremove commands. See also
the Command Line User Interface
(CLUI) and Terminal User
494

Interface (TUI).

GUI See Graphical User Interface.

H

HOME A variable that contains
the path of the current user’s local
log-in directory.

Host A computer system upon
which SD-UX operations are
performed. See local host and
controller.

Host ACL The ACL that is
attached to and controls access to
the host object.

I

Incompatible Software

Software products are created to
run on specific computer
hardware and operating systems.
Many versions of the same
products may exist, each of which
runs on a different combination of
hardware and operating system.
Incompatible software does not
operate on the host(s) because of
the host’s computer hardware or
operating system. The default
condition in swinstall is to
disallow selection and installation
of incompatible software.

INDEX/INDEX file In packaging,
an INDEX file defines attribute
and organizational information
about an object (for example,
depot, product, or fileset). INDEX

files exist in the depot catalog and
the Installed Products Database to
describe their contents.

INFO An INFO file provides
information about the files
contained within a fileset. This
information includes type, mode,
ownership, checksum, size, and
pathname attributes. INFO files
exist in the depot catalog and the
Installed Products Database to
describe the files contained in
each existing fileset.

Input Files Defaults files, option
files, software selection files,
target host files, and session files
that modify and control the
behavior of the SD-UX commands.

install-sd A command that lets
you install the SD-UX product
from media or a depot onto a
workstation or server. You may
need to install SD-UX if the
version on your system is
corrupted or deleted. This
command, along with update-ux,
replaces the older swgettools
command.

Installed Product A product
that has been installed on a host
so that its files can be used by
end-users, as opposed to a product
residing in a depot on a host’s file
system. Sometimes referred to as
an available product.

Installed Products Database
(IPD) Describes the products that
495

are installed on any given host (or
within an alternate root). Installed
product information is created by
swinstall, and managed by
swmodify. The contents of an IPD
reside in a directory structure with
a single common root.

Instance_ID A product attribute
in the Installed Products Database
(IPD) that lets you uniquely
identify products with the same
tag (name) or revision.

IPD See Installed Products
Database.

Is_Locatable In packaging, a
keyword that defines whether a
product can be installed to an
alternate product directory or not.
If specified, the attribute is set to a
value of true. If not specified, the
attribute is assigned a value of
false.

IUI Interactive User Interface, a
generic term that can mean either
the Graphical User Interface (GUI)
or the Terminal User Interface
(TUI).

J

Job A SD-UX task created by the
swinstall, swcopy, swremove,
swverify, or swconfig commands.
You create, monitor, schedule, and
delete jobs using the Job Browser.
You can also monitor jobs using the
swjob command.

Job Browser A GUI program
that lets you create, monitor,
schedule, and delete jobs. The GUI
is activated by the sd command.
You can also monitor jobs using the
swjob command.

Job ID Unique numbers
generated by SD-UX to identify
jobs.

K

Kernel Fileset A fileset that
contains files used to generate the
operating system kernel. During
the swinstall load phase, kernel
filesets are loaded and customized
before other filesets.

Keyword In packaging, a word (or
statement) that tells swpackage
about the structure or content of
the software objects being
packaged by the user. Packaging
information is input to swpackage
using a Product Specification File.

L

Load/Load Phase The third
phase of a software installation or
copy operation; when swinstall and
swcopy load product files on to the
host; and when swinstall performs
product-specific customization.

Local Host The host on which
SD-UX commands are being
executed. Sometimes called the
administrative host. The local host
executes the controller, which may
496

direct operations on multiple
remote systems when remote
operations are enabled.

Locatable Product A product
that can be relocated to an
alternate product directory when
it is installed. If a product is not
locatable, then it must always be
installed within the defined
product directory.

Logging Each SD-UX command
records its actions in log files (the
swlist command is an exception).
The default location for the
various log files is
/var/adm/sw/<command>.log

M

Machine_Type In packaging, a
keyword that type of systems on
which the product will run. (If not
specified, the keyword is assigned
a wildcard value of * (meaning it
will run on all machines.) If there
are multiple machine platforms,
you must separate each machine
designation with a | (vertical bar).

Make Tape Phase In packaging
software to a distribution tape,
this phase actually copies the
contents of the temporary depot to
the tape.

Media Physical data storage
media on which software is stored,
such as tape, CD-ROM, or DVD.

Minfree Minimum Free

Threshold, the minimum amount
of free disk space required to store
products being packaged.

multi_stream See multiple
architecture.

Multiple Architecture A single
product that contains different
versions of the same fileset.

N

Network Source There can be
multiple network sources from a
single host, each one a different
depot served by that host’s single
swagentd daemon. A network
source is identified by the host
name and depot directory.

Nodes Another name for client
host. See Client.

Number In packaging, a keyword
that defines the part or
manufacturing number of the
distribution media (CD or tape
depot).

O

Object The pieces of software
that SD-UX packages, distributes,
installs, and manages. There are
three classes of objects: software
(installed on target roots or
available in depots), containers
(depot, roots, alternate roots), and
jobs.

OS Operating System.
497

owner An attribute indicating the
owner of the file (string).

P

Package Installable SD-UX
format software created with
swpackage. Packaged software can
be placed in a depot for
distribution.

Packager The swpackage
program, which packages software
for later distribution to Target
systems.

Packaging The task of creating a
package.

Package Building Phase A
phase where swpackage builds
source files and information into a
product object, and inserts the
product into an existing depot. If
the depot does not exist,
swpackage creates a new depot but
does not register it.

Package Selection Phase In
packaging, reading the
product_specification_file to
determine the product, subproduct
and fileset structure; the files
contained in each fileset; and the
attributes associated with these
objects.

Patch Software designed to
update specific bundles, products,
subproducts, filesets, or files on
your system. There are point
patches and superseding

(cumulative) patches. By
definition, patch software is
packaged with the is_patch
attribute set to true.

Path An attribute that specifies
the full pathname for a file.

Point patches Patches that patch
separate parts of the same base
fileset.

POSIX POSIX 1387.2-1995 IEEE
standard, on which SD-UX is
based.

Postinstall Script An optional,
script associated with a fileset that
is executed by swinstall after the
corresponding fileset has been
installed or updated.

Postremove Script An optional,
script associated with a fileset that
is executed by swremove after the
corresponding fileset has been
removed.

Prerequisite A dependency in
which one fileset requires another
fileset to be installed or configured
before the first fileset can be
installed or configured. For
example, fileset A may require that
fileset B is installed before fileset A
can be installed. Therefore, fileset
B is a prerequisite for fileset A. See
dependency, corequisite, and
exrequisite.

Preinstall Script An optional,
script associated with a fileset that
498

is executed by swinstall before
installing or updating the fileset.

Preremove Script An optional,
script associated with a fileset
that is executed by swremove
before removing the fileset.

Primary Root A system on
which software is installed and
configured.

Principal In SD-UX security, the
user (or host system, for agents
making RPCs) that originates a
call to another system.

Product A collection of
subproducts and/or filesets.

Product ACL Template In
SD-UX security, the ACL used to
initialize the ACLs that protect
new products on depots that are
created by the host.

Product Directory The root
directory of a product object, in
which most of its files are
contained. You can change
(relocate) the default product
directory when you installing a
locatable product.

Product Specification File
(PSF) An input file that defines
the structure and attributes of the
files to be packaged by swpackage.

Product Version A depot can
contain multiple versions of a
product. Product versions have

the same tag attribute, but
different version attributes. See
Multiple Version. The installed
products database supports
multiple installed versions of a
product. Installed versions have
the same tag attribute, but
different version attributes or a
different product directory.

Protected software Software
that you cannot install or copy
unless you provide a codeword and
customer ID. (These are found on
your software certificate in your
media kit.) You can use
codeword-protected software only
on systems that for which you
have a valid license to use that
software.

PSF See Product Specification
File.

Pull Getting software products
from a depot to be installed or
copied onto the local system. See
also push.

Push Performing software
management (usually installing or
copying) on multiple remote target
systems from a central controller.
See remote operations.

R

Readme This keyword defines
the “readme” attribute for the
product object. A text file of the
README information for the
product; either the text value
499

itself or a file name that contains
the text.

Realm In SD-UX security, the
scope of the authority by which the
principal is authenticated.

Register/Registration A process
that determines what depots are
available on a given host and
makes them available for use.
Registration information consists
of the depot or root’s identifier (its
path in the host file system). This
information is maintained by the
daemon which reads its own file at
start-up.

Remote Host A Host other than
the one on which the SD-UX
commands are being executed.

Remote Operations Performing
operations on remote systems from
a single controller system. Remote
operations must be enabled. (Also
called centralized management or
single point administration.) See
Chapter 6, “Remote Operations
Overview,” on page 189 for more
information.

Remote Procedure Call (RPC)

Refers to the operations with
Agents on a remote computer.

Request script An interactive
control script that gets a response
from the user. A request script
prompts the user for a response,
reads the user’s answer, and stores
the results in a response file.

Request scripts can be run by the
swask, swconfig, and swinstall
commands.

Response file A file that is
generated by an interactive request
script and contains the user’s
response.

Revision This keyword defines
the “revision” attribute for the
product object. The revision
information (release number,
version) for the product.

Root The root directory of a
system (/). See Root Directory.

Root Directory The directory on
a target host in which all the files
of the selected products will be
installed. The default (/), can be
changed to install into a directory
that will eventually act as the root
to another system. See Alternate
Root Directory.

RPC Remote Procedure Call. DCE
technology for distributed
communications and data transfer.

S

sd The command that invokes the
Job Browser, a GUI program that
lets you create, monitor, schedule,
and delete jobs. The swjob
command lets you monitor jobs
from the command line. You can
also activate the Job Browser with
the swjob -i command.
500

SD format See SD-UX format.

SD-UX format The format and
syntax of SD-UX software in
depots. See Layout_version.

Secret In SD-UX security, a
password used to verify the
authenticity of the caller’s host.
SD-UX manages sets of hosts by
restricting and changing the
default secret on all controller and
target hosts in the network. See
shared secrets file.

Security Controlling access to
software objects. In SD-UX,
security is achieved by a
combination of Access Control
Lists (ACLs) associated with
objects and commands, and the
security inherent in the file
system permissions on which the
software is stored. See Access
Control List.

Selection, Selection Phase The
first phase of a software
installation, copy, remove, or
verify operation, during which the
user selects the software products
to be installed, copied, or removed
from the host.

Server A system on the network
that acts as a software source for
other systems on the network.

ServiceControl Manager
(SCM) An HP program that
permits central management of
many system administration

functions. You can run SD-UX
from SCM.

Session/Session File Each
invocation of a SD-UX command
defines a session. Most SD
commands let you use the
-C session_file option to save
command options, source
information, software selections,
and host selections and re-use this
information with the
-S session_file option. You can
also save and re-use session
information from the GUI
programs.

Shared Secrets File In SD-UX
security, a file containing the
passwords used to encrypt and
decrypt distributed
communications for added
security.

Single Point Administration
(SPA) The ability to
simultaneously distribute to,
manage, or monitor multiple
remote targets from a single
controller system. See remote
management.

Software depot An SD-UX
format structure that contains one
or more software products that
can be installed on other systems
or copied to other depots.

Software file An input file of
previously defined software
selections to be used as operands
for a command. You specify a
501

software file with the
-f software_file command line
option.

Software group A group of
software selections read or saved
from the GUI programs.

Software object The objects
packaged, distributed, installed, or
managed by SD-UX. A software
object may be a file, fileset, bundle,
or product. Most operations are
performed on filesets .

Software selection A group of
software objects that you have
selected for an operation. You can
save these software selections for
later re-use. See software group.

Software Selection Window A
GUI window that lets you select
the software files you want to
install, copy, or remove.

Software source A depot used as
the source of a swinstall or swcopy
operation.

Source See software source.

SPA See Single Point
Administration.

Staging A way of setting up
intermediate depots that are local
to each group of targets on local
area networks. This can reduce the
amount of network traffic.

Staged installation See staging.

State An attribute that indicates
the current state of the fileset.
During installation, software is
transitioned through the following
states: non-existent, transient,
installed, and configured. During
removal, software is transitioned
through these states: configured,
installed, transient, and
non-existent. If a task fails during
a transient state, the state is set to
corrupt.

Subproducts An optional
grouping of filesets, used to
partition a product that contains
many filesets or to offer the user
different views of the filesets.

Superseded The state in which a
patch was applied but was then
replaced by a superseding patch.
Other patch states include applied
and committed.

Superseding patch A patch that
supersedes all previous patches to
a given fileset.

SW-DIST A software product that
provides all of the SD-UX
functionality. SW-DIST is included
on your HP-UX 11i media. If
SW-DIST is damaged, missing, or
corrupted on your system, you
cannot install or copy any HP-UX
software that is packaged in the
SD-UX format, including a newer
SW-DIST product. You can
re-install SD-UX with the
install-sd command.
502

swacl A SD-UX command that
allows you to modify Access
Control List permissions that
provide software security.

swadm In SD-UX security, the
default user identification group.

swagent The SD-UX agent
program that makes changes to
depots and roots. It is directed by
the controller and scheduled by
the daemon

swagentd The SD-UX daemon
that provides various services,
including: initiation of
communication between the
controller and agent; serving one
or more depots to multiple
requesting agents on remote hosts.

swask A SD-UX command that
lets you run an interactive request
script to get a response from the
user. Request scripts can also be
run by the swconfig and swinstall
commands.

swconfig A SD-UX command
that configures previously
installed software and make the
software ready for use.

swcopy A SD-UX command that
copies software from a software
source to a depot or from one
depot to another. The swcopy
command can add products to an
existing depot, replace products
already on a depot, or create a
new depot.

swgettools A SD-UX command
used in previous HP-UX releases
to install the new SW-DIST
product from media. This
command has been replaced by
install-sd and update-ux.

swinstall A SD-UX command
that installs software. swinstall
may also perform software
configuration.

swlist A SD-UX command that
lists software objects, their
attributes, and their organization.
It lists both installed software and
software contained within a depot.

swlock A file that contains the
read or write access to software
objects and ACLs.

swmodify A SD-UX command
that lets you change information
in the installed products database
or depot catalog files.

swpackage A SD-UX command
that uses a product specification
file (PSF) to organize software
products and package them into a
depot. The depot can be accessed
directly by SD-UX commands or
mastered onto CD-ROM or tape.

swreg A SD-UX command used to
register or unregister depots.

swremove A SD-UX command
that removes previously installed
software or removes packaged
software from a depot.
503

swverify A SD-UX command that
verifies installed software or depot
software for correctness and
completeness.

Systems Computers, either
stand-alone or networked to other
computers. See local host.

T

Tag In packaging, a keyword that
defines the distribution tag or
software object’s name attribute
for the destination depot (media).

Tape Depot A software depot
stored in a tar (tape archive)
format. Within the archive,
directory and file entries are
organized using the same
structure as any other SD-UX
format depot.) Tape depots such as
cartridge tapes, DAT and 9-track
tape are referred to by the file
system path to the tape drive’s
device file.

Tape Media Software media that
uses tar to store SD-UX software
products and control files. It
usually resides on a serial media
such as a DDS, cartridge,
nine-track, or other tape, though it
can also be a regular file that
contains the tar archive. Within
the tar archive, directory and file
entries are organized using the
same structure as any other depot.

Tape Source See tape depot.

Target Any system on which
software is to be installed or
managed with SD-UX. There are
typically multiple targets on a
network, identified by system
name, network address, user
name, or by a user group. Targets
can contain a primary root, an
alternate root, or depots. A target
may also be the object of remote
operations.

Target Group Most SD-UX
commands let you use the
-t target_file option to read a
list of previously defined target
selections as operands for the
command. You can also read or
save target group files from the
GUI programs when remote
operations are enabled.

Target Selection A group of
systems or software objects that
you have selected as targets for an
operation. You can save these
selections for later re-use. See
target group.

TUI Terminal user interface. A
character-based display with
windows and pull-down menus
that works on ASCII terminals.
The TUI uses the keyboard to
navigate (no mouse). See also
Command Line User Interface and
Graphical User Interface.

TUI See Terminal User Interface.

Title A one-line, full name
attribute that identifies the
504

product with a title.

U

UDP/IP User Datagram Protocol.
Comparable with TCP/IP, but
runs connections less and is
intended to be used in more
reliable network environments
(LAN).

Uname Attribute When a target
is contacted for a software
management operation, the
system’s four uname attributes
(operating system name, release,
version and hardware machine
type) are obtained. Used to
determine software compatibility
with the proposed host.

Unconfigure Script An optional
script that undoes the
configuration done by the
configure script. Unconfigure
scripts are associated with filesets
and are automatically executed by
swremove before the removal of
filesets begins. You can also run
unconfigure scripts with swconfig.

Unregister Using the swreg
command to remove the
registration of a depot. This makes
the depot unavailable to network
access.

Update Overwriting software
objects already installed on the
system and replacing them with
new objects.

update-ux A command that
automates part of the HP-UX
update process. It replaces the
swgettools script used in previous
versions of SD-UX. The install-sd
updates the SD-UX product
without performing an OS update.

User name The user (or host
system for agents making remote
procedure calls (RPCs) to other
agents) that is originating the
RPC call.

UUID In packaging, a keyword
that for the vendor object. Useful
for NetLS vendors and for those
who want to select products from
two vendors who have chosen the
same vendor_tag .

V - Z

Vendor If a vendor specification
is included in the PSF, swpackage
requires the vendor and tag
keywords.

Vendor_tag Associates the
product or bundle with the
last-defined vendor object, if that
object has a matching tag
attribute.

Verbose Listing A listing that is
used to display all attributes for
products, subproducts, filesets, or
files.
505

506

Index
Symbols
$HOME/.sw/sessions/ directory, 59
*systemFont, 51
*userFont, 51
/ (root directory), 62
/var/adm/sw/defaultsor $HOME/.sw/defaults

file, 57, 420
/var/adm/sw/products file, 114
/var/adm/sw/software/ directory, 56, 57
/var/spool/sw/catalog file, 114, 115
/var/tmp directory, 478
@ ("at") sign, 56

A
abort copy/install, 70
access enforcement, 152
access to files, 281
access, granting, 261
ACL

any_other, 270
command options, 254
creation, swpackage, 358
default template entries, 279
definition, 270
denied access, 467
depot, 273, 276, 468
editing, 266
effects of modification, 467
entry fields, 270
errors, 266
group, 270
header, 256
host, 275
key values, 271
manager, 287
matching, 269
modifying ACL files without using swacl,

468
object_group, 270
object_owner, 270
packaging, 356
permissions, 272
product, 274, 277
root, 273, 275
samples, 267
superuser access, 269
swacl command, 254
templates, 278
user, 270
warning, 266

ACLs, 252
actions menu, 65, 123
add software group, 124
adding

disk space requirements, 373
adding sources, 48, 64, 140
adding target groups, 197
adding target host, 265
advertising depots, 151
agent, 28
agent polling, 472
agent=, 422
agent_auto_exit=, 423
agent_timeout_minutes=1000, 423
agents

handling controller requests, 287
privileges, 284
security, 282
UNIX, using alternate sources, 245

allow_downdate=, 423
allow_incompatible default

for swconfig, 81
allow_incompatible option, 78
allow_incompatible=, 424
allow_multiple_versions default, 77
allow_multiple_versions option, 150, 250
allow_multiple_versions=, 424
allow_partial_bundles, 424
allow_split_patches, 424
alternate root

directory, 62
installing to, 78
option -r, 71
removing software from, 131

alternate sources, using, 243
alternate_source=, 425
analysis

progress and results, swremove, 124
Analysis Dialog, 67, 124, 143
analyzing

removal, 124
app-defaults file, 52
architecture field, 114
ask option, 425
ask=, 425
assigning management responsibility, 292
attribute listing, 444
attributes

definition, 94
patch software, 183
patch, file, 185
sample, 110
507

Index
audience for this guide, 20
authorization, depot, 152
authorization, RPC, 287
auto_kernel_build=, 426
automatic recovery, 427
automatic scrolling, 67, 125, 143
autoreboot=, 426
autorecover, 75, 426
autorecover_product=, 427
autorecover_product= default, 75
autoremove_job, 232, 427
autoselect_dependencies=, 427
autoselect_dependencies=true option, 32
autoselect_dependents=, 428
autoselect_patches=, 428
autoselect_reference_bundles=, 428

B
bundles, 28, 301
busy files, swremove, 121

C
-C option, 71, 84, 90, 97, 117, 127, 147, 152,

227, 349, 406
catalog files, 30, 114, 115

editing, 30, 115
CD-ROM

depot, 355
CD-ROM, mastering to, 355
change

default option, -x, 72, 85, 90, 99, 118, 128,
148, 153, 228, 350

source, 66
source dialog box, 66

change target, 124
changing

command options, 57, 420
IPD or catalog files, 114

check volatile=, 430
check_contents_uncompressed, 428
check_contents_use_chksum, 429
check_permissions=, 429
check_requisites=, 429
check_scripts=, 429
check_volatile option, 339
checking

dependencies, 88
states of versions, 88

checkinstall script, 369
details, 386

checkpointing, 241

checkremove script, 372
details, 390

client, definition, 27
client/server, 22
codeword=, 430
codewords, 33
codewords, using, 66, 76, 105, 142, 150
column editor in Job Browser, 41
command

description, 25
overview, 25

command lines, executing, 53
command option

editor, 45
command options

alphabetic list of, 422
changing, 57, 420
job-related, 231
precedence, 420

commands
SD-UX, 25

committing patches, 179
communication failure, 69, 145
compatibility filtering, 78
compress_cmd=, 430
compress_files option, 242, 470
compress_files=, 430
compress_index option, 430
compression, 242

compress_index option, 430
performance, 470

compression_type=, 431
config_cleanup_cmd=, 431
configuration

phases, 81
samples, 86

configure cleanup, 431
Configure Phase, 83
configure script, 371

details, 388
executing, 83

CONFIGURED state, 81
configuring after installing, 248
container ACL templates, 278, 280
control script

details, 385
environment variables, 379
execution of other commands, 394
file management, 399
format, 375
guidelines, 376
508

Index
input and output, 395
location and execution of, 385
request, 373, 377, 392
shells, 376
swask command, 405
testing, 400
types, 369
writing, 368

control script location, 378
control scripts, 302

must run as superuser, 281
unpostinstall, 246
unpreinstall, 246

control_files=, 431
controller, 190
controller log file, 442
controller privileges, 284
controller_source=, 432
controlling access, 281
copy

dialog, 146
copying

patches, 175
copying software

depots, 138
icon in Job Browser, 216
Job Browser, 225

corequisite, 33, 333
definition, 33

CORRUPT state, 82
cpio tape format, 348
create_target_acls option, 355, 469
create_target_acls=, 432
create_target_path=, 432
create_time_filter option, 432
creating a job, 222
creating jobs, 225
creation time, 447
credentials, 283
crwit, 272
cumulative patches, 164
custom lists, 104
customer identification number, 433
customer IDs, using, 76, 105, 150
customer_id, using, 76, 105, 150
customer_id=, 433
customer_ids, 33

D
daemon, 28

restarting, 58, 421

daemon logfile, 474
daemon/agent, 190

privileges, 284
DCE runtime library, 283
DCE-less operation, 283
default

option values, 57, 420
values, changing (swask), 407
values, changing (swconfig), 85, 351
values, changing (swcopy), 148
values, changing (swinstall), 72, 228
values, changing (swlist), 100
values, changing (swmodify), 119
values, changing (swreg), 154
values, changing (swremove), 129, 255
values, changing (swverify), 91

default options, listing of, 91, 100, 119, 129,
149, 154, 255, 351, 407

default secret, replacing, 468
default template ACL entries, 279
default values, changing, 57, 420
defaults

for patch management, 167
policy setting, 57, 420
precedence, 57, 420
swlist, 103

defaults.hosts file, 195
defer_configuration=, 433
defer_configure default, 80
defer_configure option, 248
definition

architecture field, 114
attributes, 94
bundles, 28
catalog files, 30, 114
client, 27
corequisite, 33
depot, 27, 135
fileset, 29
host, 27
Installed Products Database, 30, 114
local host, 27
locatable products, 77
nodes, 27
of terms, 489
prerequisite, 33
product, 29
server, 27
session files, 59
software objects, 28
509

Index
software selection files, 56, 57
subproduct, 29
system, 27
tags, 114
target, 27
terminology, 489
uname attributes, 114

delegation, 289
denied access, troubleshooting, 467
dependencies, 32, 81, 87, 434

swconfig, 82
swcopy, 137

dependents, 428
depot

ACL control, 273
ACL permissions, 276
advertising, 151
authorization, 152
cannot read, 475
CD-ROM, 355
copying, 138
definition, 27, 135
directory, 135
distribution, 27, 135
images, 468
listing, 158
listing contents, 159
lists, 109
management, 135
multiple, 135
on remote file systems, 362
registering, 151
registration, 151
removing software from, 122, 162
swreg command, 152, 154
tape, 136
unregistered, 152, 289
unregistering, 151

depot registration, secure, 289
description file, 66, 124, 142
developers, security for, 293
development depots for testing purposes, 293
direct access to Support Plus, 151, 154
directory

/var/tmp, 478
directory depot, 135
directory mapping, 337
directory structures, 300
disk space

analysis by swpackage, 347

analysis dialog, 68
button, 67, 69, 143, 145
failure, 69, 145
removing rollback files, 180
space files, 373
specifying requirements, 373

disk space analysis, 473
diskless clusters, 22
distribution depot specification, 319
distribution directory, 433
distribution tape, 443
distribution tape format, 348
distribution tape, creating a, 350
distribution_source_directory=, 433
distribution_target_directory=, 433
distribution_target_serial=, 434
documentation

manpages, 25
double click, 46

E
enablement

direct access, 151, 154
enforce_dependencies default, 32

swconfig, 81
enforce_dependencies=, 434
enforce_dsa=, 434
enforce_kernbld_failure=, 434
enforce_locatable, 435
enforce_scripts=, 435
environment variables

LANG, 379
LC_ALL, 379

environment variables, control scripts, 379
error message, control scripts, 376
errors

ACL, 266
cannot read tape depot, 475
daemon logfile, 474
denied access, 467
disk space analysis is incorrect, 473
GUI will not start, 466
installation fails, 475
installing a fileset, 241
messages, 459
network, 471
PSF syntax, 346
reading the PSF, 309
represented in Job Browser, 217, 222
resolving, 459
510

Index
RPC timeouts, 471
swpackage, 339, 341
troubleshooting, 459
UNIX packaging, 473
WAN connection timeouts, 471

examples
command options, 58
request scripts, 408
session file, 59
swask, 408
swconfig, 86
swmodify, 119
swremove, 129
swverify, 92

exclude file, 342
excluded

due to errors, 69, 145
from task, 69, 145

exrequisite, 333

F
-f option, 56, 71, 72, 84, 90, 97, 99, 117, 127,

128, 147, 148, 153, 227, 228, 350, 406
f1 key, Help, 50
failed operations, 461
FAQ, SD-UX, 20
features, swpackage, 349
file

catalog, 30, 114
exclude, 342
include, 342
level checks, swverify, 89
level specifying (swlist), 108
response, 392, 405
session, 59
software, 56
target, 57

file menu, 219
file specification, 335

explicit, 338
recursive (implicit), 340

file structures, 300
file system mounting, 444
file system protection, 281
files

compression, 242
defaults.hosts, 195
secrets, 285
shareable, 300
space, 373

files=, 435
fileset, 29

level, specifying (swlist, 108
patch, attributes, 183

fileset specification, 329
filesets, 300
filesystem structure

SD-UX agent, 484
SD-UX controller, 487

filter, 42
fix script, 372
flag

"yes", 36
Marked?, 65, 123, 141

follow_symlinks=, 435
fonts

fixed width, 51
variable width, 52

G
global_product_template, 257, 265, 278
global_soc_template, 257, 278
glossary, 489
go up, 46
Graphical User Interface (GUI), 25, 34, 63,

122, 138
swlist, 95, 209

group
access, 283
ACL, 270

GUI
will not start, 466

GUI and TUI
swlist, 95

H
help

f1 key, 50
menu, 50
on-line, 50

host
definition, 27
re-using in Job Browser, 225

host ACL, 279
permissions, 275

hosts keyword, 195
HP-UX SD Controller

definition, 190
511

Index
I
-i option, 71, 147, 227
images, depot, 468
important terms, 489
include file, 342
include_file_revisions=, 436
input files, 74
insert permission, 152
install

analysis, 66, 124, 142
dialog, 70, 126

install preferences, 205
install_cleanup_cmd=, 436
install_setup_cmd=, 437
installation

staged, 243
installed products database, 488
Installed Products Database (IPD), 30, 114
INSTALLED state, 81
installed_software_catalog, 436
installing

compatibility filtering, 78
failure, 475
icon in Job Browser, 216
patches, 171
PC, staging, 243
recovery, 246
retries, 238
retrying, 240
UNIX, staging, 243
UNIX, using alternate sources, 243
UNIX, with separate configure, 248

install-sd
options, 479
supporting files, 478
syntax, 479
updating SD with, 477

interactive option, -i, 71, 95, 147, 209, 227
inter-host secrets, 468
intermediate depots, 243
internal authentication, SD, 283
interpreter, script, 374
IPD, 30, 114, 488

editing, 30, 115
is_kernel attribute, 330
is_locatable attribute, 326, 330
is_reboot attribute, 76, 330

J
Job Browser

actions you can perform, 222

copy icon, 216
copying jobs, 225
description, 215
description of icons, 215
install icon, 216
invoking, 214
job with warnings icon, 217
remove job, 225
remove job icon, 218
re-using a source or target, 225
scheduled job icon, 217
security checks, 294
showing errors, 217, 222

Job Browser properties, 220
job description, 223
job log, 224
job results, 222
job_title, 231, 437
jobs

monitoring from command line, 227
options, 231
removing with swjob, 227
re-using job information, 225

K
kernel

rebuilding, 62
rebuilding for swcopy, 137

kernel build, 434
kernel fileset, 426
kernel_build_cmd=, 437
kernel_path=, 437
keyword syntax, PSF, 309
keywords

checkinstall script, details, 386
checkremove script, details, 390
configure script, details, 388
postinstall script, details, 387
postremove script, details, 391
preinstall script, details, 387
preremove script, details, 391
unconfigure script, details, 389
values, control scripts, 377
verify script, details, 389, 390

L
LANG environment variable, 379
language environment variables, 379
layout_version=, 437
512

Index
LC_ALL environment variable, 379
level

designation, swlist, 98, 105
of detail, swlist, 94

level=, 438
level= default, 103, 106
list

as input to other commands, 94
depot, 109
simple, 101
verbose, 110

listing
interactive swlist, 95, 209
patches, 178
software, 94

listing software
registered depots, 158
UNIX depot contents, 159

local host
definition, 27

local superuser, 289
locatable products, 77
locked software, 76, 105, 150
log file messages, 440
log_msgid=, 440
logdetail=, 441
logfile, 67, 125, 143

button, 69, 145
swremove, 124
too long, 474

logfile, swpackage, 352
logfile=, 442
loglevel option, 240
loglevel=, 442

M
making tapes (existing depot), 365
management responsibility, assigning, 292
managing

multiple versions, 77
managing patches, 163

committal, 179
copying, 175
default options, 167
features, 167
introduction, 164
listing, 178
packaging, 182
paradigm, 165
removal, 179

rollback, 179
verifying, 180

manpages, 25
mark

for copy, 123
for install, 65, 123
for remove, 123

marked, 36
Marked? flag, 65, 123, 141
master and intermediate depots, consistency

between, 245
master depot, 243
mastering a depot to a CD-ROM, 355
match_target option, 329
match_target=, 442
match_target= option, 66
matching ACLs to user, 269
Match-What-Target-Has, 66
max_agents=, 442
max_target option, 237
max_targets, 443
media_capacity option, 364
media_capacity=, 443
media_type=, 443
menubar, 36
menus, pull-down, 36
minimum_job_polling_interval, 443
mode bits, 287
modifying default values, 57, 420
modifying target groups, 197
monitoring job results, 208
mount_all_filesystems=, 444
mount_cmd=, 444
mouse, clicking, 36
multiple depots, 135
multiple tapes, writing to, 364
multiple versions, 249

in depots, 150
installing, 77
removing, 130
swconfig, 82

Multi-User mode, 22

N
network

errors, 471
problems, 470
protocols, 472

network depot, creating, 157
network requirements, 22
network servers, 135
network source, 135
513

Index
networking requirements, 22
nodes, definition, 27
nonprivileged SD, 411

limitations, 413
overview, 412
packaging requirements, 414
set up, 414

num_entries value, 468

O
object list, 36
object permissions, 273
objects

patch software, 183
objects, software, 28
objects_to_register=, 444
one_liner=, 444
one_liner= default, 103, 106
on-line Help, 50
open item, 46
option menu, 221
options

alphabetic list of, 422
and defaults, swconfig, 119
and defaults, swremove, 129
changing, 57, 420
compress_index, 430
create_time_filter, 432
editor, 45
job-related, 231
menu, 45
precedence, 420
preserve_create_time, 447

OS update, 437, 449
os_name=, 445
os_release=, 445
overview, commands, 25

P
-p option, 71, 84, 127, 147
package_in_place=, 445
packaging

ACLs, 356
CD-ROM, 355
failures, 473
for nonprivileged SD, 414
making tapes, 365
overview, 298, 345
patch software, 182
registering depots, 354

remote file systems, 362
repackaging, 359
security, 356
writing to tapes, 364

packaging command, 344
Packaging Specification File (PSF)

and swmodify, 117
partitioning filesets on multiple tapes, 364
patch

default options, 167
patch filter, 169
patch match target, 169
patch one liner, 170
patch save files, 170
patch_commit=, 446
patch_filter=, 446
patch_match_target=, 446
patch_one_liner=, 446
patch_save_files=, 447
patches, 428, 446

commit, 179
committing, 179
copying, 175
cumulative, 164
default options, 167
explicit specification, 173
features for managing, 167
installing, 171
interactive installation, 176
introduction, 164
kernel and library files, 174
listing, 178
load order, 174
managing, 163
packaging, 182
paradigm, 165
removal, 179
rollback, 179
superseding, 164
updating, 174
verifying, 180

performance, 234
permission bits, 281
permission specification, default, 336
policy-setting, 57, 420
polling interval, increasing, 472
polling_interval option, 472
polling_interval=, 447
postinstall script, 370

details, 387
postremove script, 372
514

Index
details, 391
preinstall script, 369

details, 387
preremove script, 372

details, 391
prerequisite, 33, 333

definition, 33
preserve_create_time option, 447
pre-specified selections, 71, 147, 227
preview, 447
preview option, -p, 71, 84, 127, 147
privileged functions, 281
problem solving, 459
product, 29

description button, 67, 125, 143
description, swremove, 124
level, specifying (swlist), 106
summary button, 67, 125, 143

product ACL
control, 274
permissions, 277
templates, 278, 280

product specification, 324
Product Specification File (PSF), 455
product specification file, PSF, 304
Product Summary, swremove, 124
product_specification_file (PSF) for

swmodify, 117
product_template, 278
product-location directory pair, 130
products, 300
Products Ready column, 69, 145
Projected Actions

swremove, 125
proof of trustworthiness, 285
protected software, 33
protected software, installing example, 76
protecting SD objects, 273
protocol sequence, 425, 451
PSF, 304

and swmodify, 117
comment lines, 309
creating, 304
dependency class, 333
depot class, 319
directory mapping, 337
example, 306
example file specifications, 340
example permission specifications, 336
exclude files, 342
explicit file specification, 338

extensions, 342
file class, 335
fileset class, 329
include files, 342
keyword value, 309
keywords, 309
patch example, 186
product class, 324
quotes, 309
recursive file specification, 340
subproduct class, 328
syntax, 309
vendor class, 321

pull distribution, security in, 292
pull-down menus, 36
pushAgent, modifies ACLs at install time,

258

R
-r option, 71
read permission, 152
README, 104
ready, 69, 145

with errors, 69, 145
with warnings, 69, 145

realm, 283
reboot, system, 76
reboot_cmd=, 447
reconfigure=, 448
reconfigure=true/false option, 82
recovering updated files, 75
recovery, 246
referenced bundle, 428
refresh interval, Job Browser, 221
register_new_depot=, 448
register_new_root=, 448
registering a depot, 151
registering depots, 151
reinstall option, 150, 240
reinstall=, 448
reinstall_files option, 240
reinstall_files=, 448
reinstall_files_use_cksum option, 240
reinstall_files_use_cksum=, 449
reinstalling SD, 477
reliability, 234
remote access to Support Plus, 151, 154
remote operations, 189

installing software, 207
monitoring job results, 208
overview, 190
515

Index
preferences, 205
software selection, 203
swlist, 209
target selection, 201

Remote Procedure Call (RPC), 281
remove

simple, 129
window, 126

remove_empty_depot=, 449
remove_obsolete_filesets=, 449
remove_setup_cmd=, 449
removing

jobs, 227
patches, 179
software, 121
software from an alternate root, 131
software from depots, 162

removing software
icon in Job Browser, 218
Job Browser, 225

repackaging software, 359
request script, 373, 392

keyword, 377
request scripts

examples, 408
response file, 392
running from swinstall or swconfig, 408
swask command, 405

required permissions. troubleshooting, 467
resolver command, 469
response file, 392, 405
restarting the daemon, 58, 421
restricting access to depots, 263
restricting installation, 292
Resume button, 70
resume copy/install, 70
retry_interval, 239
retry_rpc, 238, 239
retry_rpc option, 238
retry_rpc=, 450
retry_rpc_interval, 450
reuse_short_job_numbers, 451
re-using packages, 359
revision attributes, 436
rollback, 75

patches, 179
root

directory, 62
root ACL

control, 273
permissions, 275

RPC authorization, 287
RPC timeouts, 471
rpc_binding_info option, 472
rpc_binding_info=, 451
rpc_binding_info_alt_source, 452
rpc_timeout option, 238, 471
rpc_timeout=, 452
run level, 22
Run Level requirements, 22

S
-S option, 72, 84, 90, 99, 118, 127, 147, 153,

227, 350, 406
-s option, 71, 99, 147, 406
samples

copying, 150
installation, 74

save session file option, -C, 71, 84, 90, 97, 117,
127, 147, 152, 227, 349, 406

save software group, 124
saving view information, 44
Scalability, 237
scheduling

icon in Job Browser, 217
script

fix, 372
interpreter, 374
request, 377, 392

scripts
request, 373

scripts, other, 373
sd

invoking, 214
security checks, 294

SD internal authentication, 283
SD-UX

commands, 25
FAQ, 20
manpages, 25
training, 20
web site, 20

SD-UX controller, 190
secrets

default, 285
inter-host, 468
matching, 468
security, 285

security
default, 252
denied access, 467
depots, 152
516

Index
for developers, 293
in "push" installations, 291
packaging, 356
pull distribution, 292
UNIX, 281

security checks
configuration, 295
copying, 294
installing, 295
Job Browser, 294
listing, 294
packaging, 294
registering depots, 296
removal, 295
verifying, 296

security tasks, 257
select_local=, 453
selecting software to copy, 141
selecting software to remove, 123
server, definition, 27
session

file, example, 59
files, 59

session file option, -S, 72, 84, 90, 99, 118, 127,
147, 153, 227, 350, 406

setuid root, 356
shareable files, 300
shared secrets file, 285
shells, control script, 376
show description of software, 66, 124, 142
show software for selection, 65, 141
show_superseded_patches, 453
single target installation, 200
Single-User mode, 22
software

dependencies, 32, 81, 87
objects, 28
selection file option, -f, 71, 72, 84, 90, 97, 99,

117, 127, 128, 147, 148, 153, 227, 228,
350, 406

selection files, 56, 57
source option, -s, 71, 99, 147, 406

Software Certificate, 33
software compatibility, 424
Software Distributor

introduction, 22
software group

adding, 124
saving, 124

Software Groups, 236
software installation, 426

software level, 438
software selection

remote operations, 203
Software Selection Window, 65, 141
software view, 453
software view default, 453
software=, 453
software_view=, 453
sorting, 44
source, 454

adding, 140
adding a, 48, 64
depot path, 48, 64, 140
host name, 48, 64, 140
network, 135
re-using in Job Browser, 225

Source Option, 236
source_cdrom=, 454
source_depot_audit=, 454
source_file=, 455
source_tape=, 455
source_type=, 455
space files, 373
Specify Source Dialog, 64, 140
staged installation, 243
staging, 243
states of versions, 88
structure

determining product, 300
software, 300

structure, software product, 28
stty, using to determine character mapping,

56, 211
subproduct, 29

level, specifying (swlist, 107
subproduct specification, 328
subproducts, 300
superseding patches, 164
superuser

ACL access, 269
authorization, 289
privileges, 281
swpackage, 356

supporting files
install-sd, 478

SW_CONTROL_DIRECTORY, 380
SW_DEFERRED_KERNBLD, 383
SW_INITIAL_INSTALL, 383
SW_KERNEL_PATH, 383
SW_LOCATION, 381
SW_PATH, 381
SW_ROOT_DIRECTORY, 382
517

Index
SW_SYSTEM_FILE_PATH, 384
swacl, 296

-D option, 266
-F option, 266
-l depot option, 258
-l host option, 260
-l product option, 260
-l root option, 259
listing user access, 258
-M option, 266
overview, 24

swacl command, 254
options, 254

swadm group, 256
swagent, 28, 190
swagentd, 28, 190

overview, 25
swask, 296, 405

examples, 408
syntax, 405

swconfig
command, 80
security checks, 295

swcopy
dependencies, 137
GUI overview, 138
overview, 23
security checks, 294

SW-DIST
loading new version, 477
reloading if corrupt, 477

swgettools, 478
swinstall

disk space analysis, 373
overview, 23
security checks, 295

swjob, 212
command information, 227
security checks, 294

swlist
-a (attribute) option, 97
command, 94
-d option, 97
examples, 101
-i option, 95, 97
-i option for remote operations, 209
-l depot option, 158
-l option, 98, 105
listing depot contents, 159
listing registered depots, 158

overview, 23
-R (shorthand) option, 97
security checks, 294
syntax, 97
-v (verbose) option, 97

swlock file, 115, 488
swmodify, 296

-a option, 116
-d option, 116
overview, 24
-P option, 117
-p option, 116
-r option, 116
-s option, 117
syntax, 116
-u option, 116
-V option, 116
-v option, 116

swpackage
logfile, 352
options, 349
overview, 23, 345
security checks, 294
syntax, 349

swreg
overview, 24, 151
security checks, 296

swremove
-d option, 127, 162
-i option, 127
-r option, 127
security checks, 295
syntax, 127

swverify
command, 87
-d option, 161
depot verification, 161
overview, 24
security checks, 296

symbolic links, 435
symlinks

swremove, 121
values, swverify, 89

syntax
install-sd, 479
swask, 405
swcopy, 147
swinstall, 71
swjob, 227
swlist, 97
518

Index
swmodify, 116
swremove, 127

system
definition, 27

system_file_path=, 455
system_prep_cmd=, 455

T
-t option, 57
table of contents, 94
tag attribute, always listed, 104
tags, 114
tape

changing, 70
depot, 136

tape device, 434
tape formats

cpio, 348
tar, 348

tape is ready response, 364
tape, partitioning filesets on multiple, 364
tar archive, 136
tar tape format, 348
target

changing, 124
definition, 27
definition for remote operations, 190
files, 57
remote, 190
re-using in Job Browser, 225
selection, 56
selection, swmodify, 118
syntax, 56

target directory, 432
Target Groups, 236
target groups, 197
target selection

remote operations, 195, 201
target_type, 456
target_type option, 350
targets=, 455
task specific permissions, 294
TCP/IP

protocol, 472
template ACL, 278

default entries, 279
Terminal User Interface (TUI), 25, 34, 63,

122, 138
terminate write-to-tape command, 364
terminology, 489
testing

configuration scripts, 401
installation scripts, 400
removal scripts, 403

timeout, 452
connection, 471
options, 238
resolving problems, 471

too-restrictive permissions, 355
training, available, 20
Trojan Horse, 289
troubleshooting SD, 459
tutorial prerequisites, 199

U
-u option

swconfig, 84
UDP communications, 472
umask value, 336
uname attributes, 78, 114
uncompress_cmd=, 456
uncompress_files option, 242
uncompress_files=, 456
unconfigure script, 372

details, 389
UNCONFIGURED state, 83
unconfiguring

removed software, 121
UNIX

Run Level, 22
user mode, 22

UNIX run level, 22
unpostinstall script, 370

for autorecovery, 246
unpreinstall script, 370

for autorecovery, 246
unregistered depot, 152, 289
unregistering a depot, 151
updating

creating a network depot, 157
patches, 174
SD-UX, 477

updating HP-UX, 478
use_alternate_source option, 243, 244
use_alternate_source=, 456
user

access, 283
ACL, 270
ACL matching, 269

user managing products in depots, 261
using depots, 133
519

Index
V
var/spool/sw, 135
vendor

defined attributes, 319
keyword, 321
specification, 321

vendor specification, 321
verbose

listings, samples, 113
lists, 110
option, -v, 71, 84, 90, 127, 147, 152, 227

verbose option, 349
verbose=, 457
verify

analysis phase, 88
installations, 87
operations, samples, 92
patches, 180
script, 371
script, details, 389, 390
scripts, executing, 89

verify script, 429
versions, 249
view menu, 219
view preferences, changing, 41
volatile, 430

W
WAN, 238, 243
WAN connection timeouts, 471
Web sites

FAQ for SD-UX, 20
HP education, 20

wide area network, 243
wildcard, 363
wildcarding, partial, 340
window

GUI components, 36
Software Selection, 65, 141
swremove, 126

writable depot, 135
write permission, 152
write_remote_files option, 362
write_remote_files=, 457
write-to-tape, terminate, 364

X
-x codeword=, 76
-x customer_id=, 76

-x option, 72, 85, 90, 99, 118, 128, 148, 153,
228, 350

XToolkit
-fn option, 51
-font option, 51
520

	Table 2�2 swinstall Command Options and Default Values
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

