
WebLogic Server 8.1

Performance Tuning

Russell Raymundo

russellr@bea.com

©2004 BEA Systems, Inc. | 2

AGENDA

Performance Objectives

Tuning Methodology

Performance Tuning
Operating System

Database

JRockit JVM

WebLogic Server

Monitoring Performance

Application Analysis

Q & A

Demo

Understanding Your Performance

Objectives

©2004 BEA Systems, Inc. | 4

Application Performance Requirements

§ Performance Requirements
§ Throughput

§ Response Time

§ Reliability

§ Scalability

§ Understand your Application
§ Number of Users/Requests?

§ User activity? Hotspots?

§ Amount/Size of Data?

§ Database intensive? Why?

§ Constraints
§ Configuration (HW & SW)

§ Topology

§ Interoperability

§ Cost

©2004 BEA Systems, Inc. | 5

Design for Performance

§ Keep it simple

§ Overly complex or poorly designed applications hurt both
performance and maintainability

§ Emphasize caching

§ Look for opportunites in web server, app server, database

§ Design Patterns can help performance

§ Session Facade pattern reduce external method invocation

§ Value Object pattern reduce individual get/set requests

§ Measure early in development

Tuning Methodology

©2004 BEA Systems, Inc. | 7

Systematic Approach

§ Many factors can impact performance and scalability of
the system.

§ Application design, system topology, database
configuration and tuning, disk and network IO activity,
operating system configuration, and application server
controls.

§ No “Silver bullet” – Every layer and subsystem matters

§ Important to have process due to complexity of tuning
an overall system

©2004 BEA Systems, Inc. | 8

Iterative Process

1. Collect data: Gather performance data as the system
is exercised using stress tests and performance
monitoring tools to capture relevant data

2. Identify bottlenecks: Analyze the collected data to
identify performance bottlenecks

3. Identify alternatives: Identify, explore, and select
alternatives to address the bottlenecks

4. Apply solution: Apply the proposed solution.

5. Test: Evaluate the performance effect of the
corresponding action

©2004 BEA Systems, Inc. | 9

Techniques

§ In order to measure impact of a changes, make only a
single change at a time.

§ Once a given bottleneck is addressed, additional
bottlenecks may appear, so the process starts again
by collecting performance data and initiating the
cycle, until the desired level of performance is
attained.

Performance Tuning

©2004 BEA Systems, Inc. | 11

Operating System Tuning

§ Operation System Selection
§ Proprietary Unix, Linux, Windows…

§ Version

§ Windows tuning is generally minimal
§ Since HTTP server consume many TCP sockets. Descrease the

TcpTimedWaitDelay and increase MaxUserPort

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\

TcpTimedWaitDelay=dword:0000001e and TcpTimedWaitDelay=dword:fffe

§ Unix and Linux require more specific tuning
§ On Solaris, for better TCP socket performance, reduce the

tcp_time_wait_interval to 30 seconds

ndd -set /dev/tcp tcp_time_wait_interval 30000

§ Increase number of file descriptors

Parameter changes in /etc/security/limits.conf (soft nofile 8192 hard nofile 8192)

§ On Linux, for better packet transfer performance, set the /sbin/ifconfig
lo mtu parameter to reduce fragmentation of large packets:

/sbin/ifconfig lo mtu 1500

©2004 BEA Systems, Inc. | 12

Operating System Tuning

§ For examples of the actual tuning done on specific
configurations for an end-to-end benchmark
(SPECjAppServer2002) see:

§ http://www.spec.org/osg/jAppServer2002/results/jAppServer2002.html

§ Sample OS tuning from the driver (client) for a
SPECjAppServer result:

§ Parameters added to /etc/sysctl.conf

fs.file-max=65535

net.ipv4.tcp_sack=0

net.ipv4.tcp_timestamps=0

§ The Linux max thread limit is 1024 by default. Rebuilt
libpthread.so after increasing the limit to 8192.

§ Changed max thread stack size to 256K from 2048K.

©2004 BEA Systems, Inc. | 13

Good Database Design

§ Database is common bottleneck

§ Distribute the database workload across multiple disks

§ Proper organization and sizing of tables

§ Reduce contention

§ Avoid table scans - Every query must hit a good, selective
index.

§ Partition tables

§ Careful with ORDER BY clauses – Large results sets
require sorting even if only reading a few rows.

©2004 BEA Systems, Inc. | 14

Optimize Database Disk I/O

§ Use a larger block/buffer size

§ Place log file on separate disk

§ Increase logfile size to reduce frequency of checkpoints

§ Use Raid-0 “striping”

§ To improve Read/Write data transfer performance

§ Use Raid-1 “mirroring”

§ To increase redundancy and improve Read latency

©2004 BEA Systems, Inc. | 15

JVM Tuning

§ Garbage Collection is biggest factor in JVM performance

§ Automatic Memory Management – Clean up objects from heap
that are no longer in use

§ Applications that create unnecessarily large numbers of objects
make problem worse

§ for best performance set the minimum and maximum values to be
the same

§ use 80-85% of available RAM

§ Depending on application, spin locks could be beneficial

§ JRockit 1.4.2 On by default

-XXenablefatspin

§ Sun’s JDK – Off by default (Windows default On previous to 1.4.2)

-XX:+UseSpinning -XX:PreBlockSpin=100

©2004 BEA Systems, Inc. | 16

JVM Tuning – JRockit 1.4.2

§ Garbage Collector
§ Gencon – Generational Concurrent

§ Singlecon – Single-spaced Concurrent (Default for –client option)

§ Parallel – Single-spaced Parallel (Default for –server option)

§ Two Garbage collector options

§ Generational – Heap divided into two sections, an old generation
and a young generation (nursery).

§ Single-spaced – All objects live out their lives in a single space on
the heap

§ Two Garbage Collection algorithms

§ Concurrent – Marking and sweeping “concurrently” with all other
processing

§ Parallel – Stops all Java threads when heap is full and uses every
CPU to perform a complete mark and sweep

©2004 BEA Systems, Inc. | 17

JVM Tuning – JRockit 1.4.2

High Performance

§ Use parallel garbage collectors (-Xgc:parallel)

High Responsiveness

§ Use single-spaced or generational concurrent garbage
collectors (-Xgc:singlecon or -Xgc:gencon)

§ Set the size of the nursery for generational (-Xns)

§ If you are creating a lot of temporary objects you should have
a large nursery

§ Larger nurseries usually result in slightly longer pauses, so,
while you should try to make the nursery as large as possible,
don't make it so large that pause times are unacceptable

§ You can see the nursery pause times in WebLogic JRockit JVM
by starting the JVM with –Xgcpause or –Xverbose:gc

©2004 BEA Systems, Inc. | 18

JVM Tuning – JRockit 1.4.2

§ -XXaggressive:opt,memory

§ Opt – performs optimization at a higher frequency in the
from the start and then gradually lower its frequency

§ Memory – uses available memory aggressively such as
large pages where available, increase heap compaction,
etc.

§ -Xgcprio:throughput or pausetime

§ Dynamically choose between which collector and options
based on goal of throughput or pausetimes.

©2004 BEA Systems, Inc. | 19

Determine Optimal Heap Size

1. Monitor the performance of WebLogic Server under
maximum load while running your application

2. Use -verbosegc (Sun JDK) / -Xverbose:gc (JRockit)
For example:

% java –server -ms32m -mx200m -Xverbose:gc-classpath $CLASSPATH -
Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\bea"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"
weblogic.Server
>> logfile.txt 2>&1

©2004 BEA Systems, Inc. | 20

Determine Optimal Heap Size

3. Analyze the following data points:

§ How often is garbage collection taking place? In the
weblogic.log file, compare the time stamps around the
garbage collection.

§ How long is garbage collection taking? Full garbage
collection should not take longer than 3 to 5 seconds.
Lower heap if major GC time is greater.

§ What is your average memory footprint? In other words,
what does the heap settle back down to after each full
garbage collection? If the heap always settles to 85
percent free, you might set the heap size smaller.

4. Make sure that the heap size is not larger than the
available free RAM on your system

©2004 BEA Systems, Inc. | 21

Execute Queue

§ Application Server Tuning focuses on execute queue
and threads

§ Basic operations of queues/threads

§ Socket muxer places requests on queue

§ Threads for that queue pick up and process requests from
start to finish

§ Queue size will grow if incoming requests exceed
throughput of system

©2004 BEA Systems, Inc. | 22

Execute Queue

§ Application Specific Execute Queue

§ Separate execute queues and pools of threads assigned to specific
web applications or EJB applications

§ EJBs use the dispatch-policy element in weblogic-ejb-jar.xml

<dispatch-policy>MyQueue</dispatch-policy>

§ Web Apps use the wl-dispatch-policy in weblogic.xml or the
servlet param-name wl-dispatch-policy in web.xml

§ Non-Configurable Execute Queue

§ Weblogic.admin.HTTP and weblogic.admin.RMI

§ Reserved for the administrator console.

§ Weblogic.kernel.System and weblogic.kernel.NonBlocking

§ Internal queues used for deadlock prevention, triggers and application
polling

©2004 BEA Systems, Inc. | 23

Tuning Execute Queue

§ Weblogic allows the tuning of thread count per execute
queue

§ Default Execute Queue is weblogic.kernel.Default

§ Default thread count is 15 for Development Mode and 25 for
Production Mode

§ Best thread count depends on application and machine

§ Ideally it will keep all processors busy without unnecessary
contact switching which could degrade performance.

§ I/O operations cause threads to block

§ Iterative testing is best approach to determine count

§ Test with realistic environment (database contents, load, etc)

§ Application should be not be the bottleneck so you can
concentrate on application server

©2004 BEA Systems, Inc. | 24

Tuning Execute Queue

§ Guidelines

§ Increase the thread count if the CPU is under utilized and queue
length is high. This should make better use of the CPUs.

§ Decrease the thread if CPU is high and queue is backing up. Also
explore other avenues to lower CPU utilization such as JVM
parameters or application issues

§ Other bottlenecks such as database could prevent thread queue
changes to make a performance difference

§ Application-Specific Queues

§ Only affects the assigned queue during the I/O muxer operation

§ Multiple applications co-located on the same Weblogic Server instance
can also use this technique to throttle less-critical requests (using a
smaller thread pool)

©2004 BEA Systems, Inc. | 25

Web

§ JSP/Servlet hits can account for large percentage of
the CPU time

§ Always serve static content (html, img, js, …) from web
server

§ Disable JSP page checks and servlet reloading

§ Set jsp-param pageCheckSeconds=-1

§ Servlet-reload-check-secs=-1 in container descriptor or
ServletReloadCheckSecs=-1 in config.xml
WebAppComponent

©2004 BEA Systems, Inc. | 26

Web – Http Session

§ Manage HTTP session state carefully
§ Minimize session state

§ Use multiple objects in session to optimize replication

§ Choose appropriate session persistence mechanism

§ Local memory, cookie, file, JDBC, and in-memory replication

§ Use HttpServletRequest for data pass between webapp
components during a single request (e.g. from Action class
to JSP page)

§ Clean up by removing session objects in a timely manner

weblogic.xml
<session-param>

<param-name>PersistentStoreType</param-name>
<param-value>memory</param-value>

</session-param>

©2004 BEA Systems, Inc. | 27

Web – Http Session Persistence

§ Five different built-in implementations of session
persistence

§ Memory (local, non-replicated)

§ Cookie (session state on the client)

§ replicated (in-memory replication for clustering)

§ File (file system based)

§ Jdbc (uses database connection pool)

0

5

10

15

20

25

Memory In-Memory
Replication

Cookie JDBC File

Session Management Type

R
el

at
iv

e
Pe

rf
or

m
an

ce

©2004 BEA Systems, Inc. | 28

Server Tuning

§ WebLogic Server Native I/O Performance Packs
§ Platform-optimized native socket multiplexes can improve

performance

§ Increase the number simultaneous connections that can be
handled

§ Pure-Java socket reader implementation

§ Mainly for platforms with no performance packs

§ Can be tuned through Socket Reader threads

<Server ThreadPoolPercentSocketReader=“30”>

§ Tuning connection backlog buffering

§ The AcceptBackLog attribute specifies how many TCP connections
can be buffered before refusing additional requests, default is 50

§ Tuning chunk size can improve performance with large
payloads

§ -Dweblogic.Chunksize=n (The default is 4K)

§ Should be set on both the server and client JVM

©2004 BEA Systems, Inc. | 29

JDBC Connection Pooling

§ JDBC Connection pools
§ Start with a capacity of half the number of threads

§ If application uses database heavily, closer to 90-100% might help

§ Request in excess of capacity have to queue

§ Set InitialCapacity = MaxCapacity

§ Prepared statement cache size

§ WebLogic Server can cache and reuse prepared and callable
statements used by applications

§ Reduces both network roundtrips and preparation work in the
database

§ Each connection in a connection pool has its own individual cache

§ The default JDBC connection pool is set to 10

§ Each prepared statement cache is an open cursor in the database

©2004 BEA Systems, Inc. | 30

JDBC Tuning

§ Tuning the JDBC Connection Pool

§ PinnedToThread

§ If true, pins connections to threads

§ Avoids connection-pool contention

§ May result in more than optimal number of DB connections

§ AutoConnectionClose (new in 8.1 SP3)

§ If true, turns on JDBC connection leak detection and automatic
cleanup

§ True by default, consider setting to false

§ Puts greater pressure on garbage collection, causing
performance degradation

§ JDBC Driver

§ Oracle 10g driver significantly faster than Oracle 9.2 driver

©2004 BEA Systems, Inc. | 31

EJB

§ Pooling
§ Stores anonymous beans

§ Stateless Session Beans, MDBs and Entity Beans

§ Caching
§ Contains instances that have an identity

§ Stateful Session Beans

§ CMP Entity Beans

§ JNDI Lookup Strategies

§ JNDI lookups are expensive. Cache home interfaces and
Datasource references

§ Local interfaces
§ Use for ejb-to-ejb calls within same application

§ Alternatively, use call-by-reference

©2004 BEA Systems, Inc. | 32

Stateless Session Beans

§ Lifecycle

§ Controls parallelism
<max-beans-in-free-pool>

§ Can avoid expensive one-time work
<initial-beans-in-free-pool>

Does not
Exist

Pooled

1. setSessionContext()

2. ejbCreate()

Method

Bean destroyed

©2004 BEA Systems, Inc. | 33

Tuning Stateful Session Beans

The Stateful Session Bean Lifecycle

Does not
Exist

Cached

1. setSessionContext()

2. ejbCreate()

Method

1. unsetSessionContext()

2. ejbRemove()

Store

ejbPassivate()

ejbActivate()

©2004 BEA Systems, Inc. | 34

Tuning Stateful Session Beans

§ In general,

§ Use judiciously, specially if replicated

§ Replication is an expensive operation

§ Always call ejbRemove()

§ Unused beans occupy space in cache

§ Container could incur passivation overhead

©2004 BEA Systems, Inc. | 35

Tuning Stateful Session Beans

§ The Stateful Session Bean Cache

§ <max-beans-in-cache>

§ Set to expected number of concurrent users

§ <idle-timeout-seconds>

§ Bean is passivated after this interval

§ Set to maximum expected think-time for requests

§ Also controls the session-timeout trigger interval

§ <session-timeout-seconds> (new in 8.1 SP3)

§ Bean is destroyed after this interval

§ Set to larger than <idle-timeout-seconds>

©2004 BEA Systems, Inc. | 36

Tuning CMP Entity Beans

The Entity Bean Lifecycle

Does not
Exist

Ready
(Cached)

setEnityContext()

Method

unsetSessionContext()

DB

ejbStore()

ejbLoad()

Pooled

ejbPassivate()

ejbRemove()

ejbCreate()/ejbPostCreate()

ejbActivate()

©2004 BEA Systems, Inc. | 37

Tuning CMP Entity Beans

§ Concurrency-control

§ In increasing order of cache-friendliness:

§ Exclusive, Database, Optimistic, Read-only

§ 95% of CMP bean tuning is caching

©2004 BEA Systems, Inc. | 38

Tuning CMP Entity Beans

§ Tuning persistence parameters

§ Field-groups

§ Group commonly used fields and associate with finders

§ Incorrectly specified field-groups could result in additional DB
access

§ Tuned-updates

§ Always on

§ Prevents unnecessary DB writes

©2004 BEA Systems, Inc. | 39

Tuning CMP Entity Beans

§ Caching

§ <cache-between-transactions>

§ <max-beans-in-cache>

§ Set larger values for more frequently-used beans

§ The cache is not accessed for custom-finders

§ <include-updates>

§ Set to true by default (false for optimistic concurrency),
consider setting to false

§ Pooling

§ <max-beans-in-free-pool>

§ Set appropriately if setEntityContext() is expensive

©2004 BEA Systems, Inc. | 40

Tuning CMP Entity Beans

§ Tuning persistence parameters

§ <enable-batch-operations>

§ Uses JDBC 2.0 batch operations to store multiple beans using
single DB operation

§ Set to true (default)

§ Implicitly defers all updates and inserts to the end of tx

©2004 BEA Systems, Inc. | 41

Tuning CMP Entity Beans

§ Tuning persistence parameters
§ CMR caching

§ Container loads related beans using single SQL when enabled

§ Can result in dramatic performance improvement

§ Transaction Management

§ Transaction attribute

§ Transaction isolation

§ READ_COMMITTED, REPEATABLE_READ,
READ_COMMITTED_FOR_UPDATE, SERIALIZABLE

§ Preferable alternative to READ_COMMITTED_FOR_UPDATE is <use-
select-for-update>

§ Preferable alternative to REPEATABLE_READ is optimistic-
concurrency+cache-between-transactions+verify-reads

§ Caveats for alternatives: DB must support exclusive read-locks

©2004 BEA Systems, Inc. | 42

Tuning Message Driven Beans

§ MDB lifecycle similar to Stateless Session Beans

§ The MDB Pool

§ Controls parallelism

§ <max-beans-in-free-pool>

§ Can avoid expensive one-time work

§ <initial-beans-in-free-pool>

§ The number of receiver for MDB

§ Running in the default queue

Min ((default_pool_size) / 2 + 1, <max-beans-free-pool>

§ Running in a separate thread queue (dispatch-policy)

Min (config-pool-size, <max-beans-free-pool>)

©2004 BEA Systems, Inc. | 43

JMS

§ Excellent reference:

§ “BEA WebLogic JMS Performance Guide” at edocs.bea.com

§ Message Design Tips

§ Serialization costs vary by message type

§ Generally Byte, Stream < Object, Map < Text, XML

§ Avoid use of Strings in message properties

§ Minimize message size, consider compressing large messages

§ Message selectors are expensive (especially Xpath)

§ Use Indexed Topic Subscribers if possible

§ Use multiple destinations instead of selectors

§ Message paging degrades performance (disabled by default)

©2004 BEA Systems, Inc. | 44

JMS

§ Use flow control in cases of receiver overflow
§ Set quotas on destinations and increase blocking send timeouts

§ Tune connection factory flow control

§ Use request-response design where appropriate (receivers send
periodic acknowledgements to sender side queue)

§ Asynchronous consumers generally faster than
synchronous
§ Tune connection factory’s MessagesMaximum for asynchronous

consumers (unless ordered redelivery in use)

§ Choose appropriate acknowledgement mode
(some affect QOS)

§ Use distributed destinations for cluster scalability

§ Enable automatic pooling of JMS resources in EJBs and
servlets by providing resource-ref declarations for
connection factories and destinations

©2004 BEA Systems, Inc. | 45

JMS

§ Choose delivery mode and store based on
performance/reliability tradeoff

§ Primary advantage of JDBC store is ease of failover—
alternative is file store with shared disk

0 1000 2000 3000 4000 5000 6000

File Store—Direct Writes
(Disk Caching Disabled)

File Store—Cache Flush

JDBC Store—Oracle

File Store—Direct Writes
(Disk Caching Enabled)

File Store—Disabled
Synchronous Writes

Non-Persistent

©2004 BEA Systems, Inc. | 46

Transaction Performance

§ Keep transaction short

§ Choose appropriate isolation level

§ Minimize distributed transaction (2PC) costs
§ Use local transactions and non-XA drivers where possible

§ Experiment with various JDBC drivers for your database
(XA driver performance is highly variable)

§ Make sure database server CPU is not the bottleneck

§ Use separate physical drives for WLS transaction logs and
JMS file stores

§ Use of Direct-Write for transaction log file may improve
performance with hardware write-cache enabled

§ XA requires more threads due to longer running
transactions

©2004 BEA Systems, Inc. | 47

Transaction Performance

§ JMS and JDBC in a transaction

§ JMS and JDBC in a transaction (even if it is the same
database) requires 2PC

§ JMS has to use XA enabled Connection Factory

§ JDBC has to use an XA driver

§ JDBC non-XA driver can be used with “2PC emulation”
(EnableTwoPhaseCommit=“true”). This is fake XA.

§ JMS and JMS in a transaction

§ Using 2 destinations from different JMS servers in a
transaction will use 2PC

©2004 BEA Systems, Inc. | 48

Clustering

§ Use WebLogic clustering for scalability and high availability

§ WebLogic Clusterable Objects: Servlets, JSPs, EJBs , RMI, JMS
connection factories and destinations, JDBC connections.

§ Vertical scaling

§ More powerful machines

§ Adding managed servers to the same physical machines to
efficiently utilize the machines full processing power

§ Load balancing disk I/O by having multiple managed servers use
separate physical disks for transaction logs

§ Horizontal Scaling

§ Adding managed servers to a separate physical machine

§ CPU bound scenarios benefit most, where adding an identical
machine to the cluster should give near linear scalability

©2004 BEA Systems, Inc. | 49

Clustering

§ Linear scalability across clusters

§ From the WebLogic Capacity Planning Guide
http://e-docs.bea.com/wls/docs81/capplan/

Light-Weight (MedRec) Using Clustered Configuration

0

200

400

600

800

1000

4X700 Mhz
W2K-1 Node

4X700 Mhz
W2K-2 Nodes

4X700 Mhz
W2K-3 Nodes

4X700 Mhz
W2K-4 Nodes

Number of Nodes

Th
ro

ug
hp

ut

TPS

Light-Weight (MedRec) Using Clustered Configuration

0

100

200

300
400

500

4x400 Mhz
Solaris - 1

Node

4x400 Mhz
Solaris - 2

Nodes

4x400 Mhz
Solaris - 3

Nodes

4x400 Mhz
Solaris - 4

Nodes

Number of Nodes

Th
ro

ug
hp

ut

TPS

Windows Platform Solaris Platform

Monitoring Performance

©2004 BEA Systems, Inc. | 51

Operating System Monitoring

§ Windows Performance Monitor

§ Windows utility to monitor system characteristics

§ Displays statistics for:

§ Processors

§ Memory

§ File handles

§ Threads

§ Processes

§ Network activity

©2004 BEA Systems, Inc. | 52

Operating System Monitoring

§ Unix provides many tools for monitoring system

§ sar: system activity

§ mpstat: per-processor statistics

§ vmstat: virtual memory statistics

§ netstat: network statistics

§ iostat: Input/Output statistics

©2004 BEA Systems, Inc. | 53

JRockit Monitoring

©2004 BEA Systems, Inc. | 54

JRockit Management Console

§ Enabled using JRockit –Xmanagement option

§ low cost monitoring 1-2% overhead

©2004 BEA Systems, Inc. | 55

Execute Queue

©2004 BEA Systems, Inc. | 56

Monitor Execute Queue

©2004 BEA Systems, Inc. | 57

Monitor Execute Threads

©2004 BEA Systems, Inc. | 58

Monitor Execute Threads

©2004 BEA Systems, Inc. | 59

Monitor JDBC Connections

©2004 BEA Systems, Inc. | 60

Transaction Performance

Application Analysis

©2004 BEA Systems, Inc. | 62

Profiling Tools – Borland OptimizeIt

§ CPU and Memory profiler for Java applicaitons

§ Supports instrumentation or sampling for CPU profiling

§ Heavy overhead > 10%

©2004 BEA Systems, Inc. | 63

Profiling Tools
JRockit Runtime Analyzer

§ Internal tool used to analyze runtime performance of
applications running on JRockit

§ Low cost overhead < 3%

Q & A

www.bea.com

