Java Memory Management on HP-
UX

Laksh Venkatasubramanian
HP Java Labs

h p © 2003 Hewlett-Packard Development Company, L.P.

The information contained herein is subject to change without notice

HP-UX Virtual Memory Layout

- HP-UX 32 Bit Process

- Four 1 GB Quadrants A
A) SHARE MAGIC Shared Text
B) EXEC_MAGIC

Text (private)

DATA (private)

DATA (private)
Private Memory Mapped Files

STACK

Private Memory Mapped Files

STACK

Shared Objects
(Libraries,
Memory Mapped Files)

Shared Objects
(Libraries,
Memory Mapped Files)

Shared Objects
(Libraries,
Memory Mapped Files)

Shared Objects
(Libraries,
Memory Mapped Files)

Type of Executables on HP-UX [,5,3

There are 3 magic numbers that can be used for a 32-bit
executable (11.00 and greater).
/usr/bin/chatr labels the following type of executables in output

- SHARE_MAGIC: shared executable
- EXEC_ MAGIC: normal executable
- SHMEM_MAGIC: normal SHMEM_ MAGIC executable

For 64 bit (11.00 and greater) executables, there is currently no
need to have different magic numbers available as the standard
one allows up to 4TB for the program text, another 4TB for its
private data and a total of 8TB for shared areas.

Type of Executables on HP-UX [,5,3

SHARE_MAGIC is the default on 11.0. SHARE_MAGIC is also
called DEMAND MAGIC. With SHARE_MAGIC, quadrant 1 is
used for program text, quadrant 2 is used for program data,
and quadrants 3 and 4 are for shared items.

EXEC_MAGIC allows a greater process data space by allowing
text and data to share quadrant 1. Quadrant 2 is still solely
used for data, and quadrants 3 and 4 are also the same as with
SHARE_MAGIC executables. EXEC_ MAGIC applications are
created by linking the application with the -N option.

SHMEM_MAGIC makes 2.75 GB of shared memory available to
an application. With SHMEM_MAGIC all of the text and data is
In quadrant 1 freeing up quadrant 2 for shared items. The

SHMEM_MAGIC processes on the system will share quadrant 2
for shared memory, as well as sharing quadrants 3 and 4 with

other processes on the system.

EXEC_MAGIC vs SHARED MAGIC

A

invent

EXEC MAG C

Quad 3
Private

(93p)

Quad 4
Private

(g4p)

SHARED MAG C

Quadrant 1
0x00000000-
Ox3FFFFFFF

Text starts at the
beginning of this
space and data starts
immediately after the
end of the text.

Same

Same

Text only and read
only.

Quadrant 2
0x40000000-
Ox 7FFFFFFF

Data and Stack

Data and Stack

Quadrant 3
0x80000000-
Ox BFFFFFFF

Shared objects

Private
Data

Private
Data

Shared objects

Quadrant 4
0xC0000000-
OxCOO00FFF

Kernel gateway page

Same

Same

Kernel gateway
page

Quadrant 4
0xC0003000-
Ox EFFFFFFF

Shared objects

Private
Data

Shared objects

Quadrant 4
OxFO0000000-
Ox FFFFFFFF

PDC 1/0 address
space

Same

PDC 1/0 address
space

Enabling 3" and 4t quadrants for private)
data invent

PA-RISC

- ‘chatr +q3p enable <program=>’ - an extra 1Gb of private data
IS made available to a process (Both SHARED MAGIC and
EXEC_MAGIC program can have guadrant 3 and gquadrant 4
private). You cannot access shared objects available to other
programs in their quadrant 3 when you enable this option.

- ‘chatr +g4p enable <program=>’ - this changes quadrants 3 and
4 to be private. You cannot access any shared memory or
shared mmap'ed files available to other programs.

Before using g3 or g4 private programs check and see if there
are patches that are needed.

ITANIUM (11.23)
- chatr +as mpas <program>’ will enable all quadrants to be private.

Patches for g3p g4p functionality [ﬁﬂ

HP-UX 11.0 PA-RISC
- Required Patches: PHKL 27282, PHKL 23409, PHKL 28766,

PHKL 26136
- 11.0 supports only g3p. It does not support g4p functionality.

HP-UX 11i (11.11) PA-RISC

- Required Patch: PHKL 28428 (or its superseded patch)
- 11.11 supports both q3p and g4p.

HP-UX 11i v1.5 (11.22) ITANIUM
- Does not support g3p, gq4p functionality

HP-UX 11iv2 (11.23) ITANIUM
No patches are required

Kernel tunables D]

invent

maxdsiz, maxdsiz_64bit

Controls the size of the DATA region. We can call this the C-
heap to differentiate this from the JAVA-heap. sbrk(),malloc(),
etc. allocate memory in this region.

maxssiz, maxssiz_64bit

Controls the size of the primordial thread (main thread) stack.
By default, the JVM restricts the size of this stack to 2MB.

maxtsiz, maxtsiz_64bit

Controls the size of the TEXT region. This contains the
executable.

Kernel tunables D]

invent

Even though maxdsiz may be set to a large value, the actual
available heap space (DATA) might be much lower because the
memory mapped (mmap) segments that are mapped private,
STACK, TEXT (EXEC_MAGIC case), Java heap, Java threads,
etc. also share this address space.

Similarly, even though maxtsiz might be a large value, it

consumes only as much physical/virtual memory as the
executable requires.

On the contrary, maxssiz consumes as much virtual space as
the value it is set to. In other words , raising maxssiz may
cause user processes which use all (or nearly all) of the
previously available data area to fail allocation with the
[ENOMEM] error, even with maxdsiz set above the current
amount of memory allocated for data by this process.

CINEIRTEES

SWAP
- swapinfo —mt (displays swap space usage on the system)

\Yle) \Yle) \Yle] PCT START/ Mb

TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME
dev 4096 0 4096 0% 0 - 1 /dev/vg00/lvol2
reserve - 266 -266

memory 4089 1313 2776 32%

total 8185 1579 6606 19%

Swap is reserved at the time virtual memory is allocated for a
process. But when the lazy-swap option is enabled, swap is
allocated at the time of actual use of memory.

Glance Memory Regions (/opt/perf/bin/gpm

Main Thread Stack

—| Java Heap - Permanent
System: slowbro Lust Update: 16:59:51 Int: 2 sec I'T'_°5
Java PID., 18702 PPID: 18701 User: laksh State: active \]ava Heap _ Old
Memory Region.: All 73 Selected
Data RSS (kb): 8156 Data ¥5S (kb): 8160 DATA = C'heap
Text RSS (kb): 24 Text V55 (kb): 28
Stack RSS (kb): 1088 Stack V55 (kb): 2112
Shared Mem RS5 (kb): (o] Shared Mem VS5 (kb): 0 COde CaChe
Other RSS (kb): 42316 DOther ¥S5S (kb): 200452
Private RSS (kb): 45320
Shared RS55 {(kb): 6264 / |
RSS V55
Type File Name P/S KB KB Java H eap - New
MEMMAF | <mmap> Priwv B40kb 84 . O0mb i A
MEMMAFP | {mmap> Priw 14, 8mb 42, Amb
MEMMAP | <mmap> Priwv B4k 32.0mb
MEMMAP | <mmap> Priwv 7Z.1mb 21.3mk
MEMMAF | Ffopt/javal .3/ jreslibsrt ., jar Shared 6. Omb 13.0mb
MEMMAFP | Sopt/. ../ dre/lib/PA_RISC2, 0/ server/libjvin, sl Priwv G, Amb 8. 4mb
DATA Jopt/. . ./ bin/PA_RISC2 . 0/native_threads/ java Priwv 5. Omb &, 0mb
MEMMAP | fopt/javal . 3/ jre/lib/s118n, jar Shared 48kb 3.0mb
STACK <stack> Priwv 1.1mb Z.1mb
MEMMAP | {mmap> Priwv 1., Omb> 2, 0mb .
MEMMAP | <mmap> Priv 1.0mb 2.0mb VM Runtime
MEMMAP | fusrslib/libc.2 Priwv 1.1mb 1.3mb
MEMMAFP | fusrslibslibcl .2 Priwv S508kb 864kb 1
MEMMAFP | fopts.. ./ Jre/lib/PA_RISC2,0/server/libjvm.sl Priwv B84kb 684kb Compller Threads
MEMMAP | <mmap> Priwv /76kb 516kb —
MEMMAFP | <mmap> Priwv 16kb 516kb
MEMMAP | <mmap> Priwv 4kb 516kb
MEMMAF | <mmap> Priwv 4kb 512kb
MEMMAF | <mmap> Priwv 52kb 260kb
MEMMAFP | Sfopts/javal.3/ jre/lib/PA_RISC2,0/1ibjava.sl Priwv 156kb 176kb
MEMMAP | fusrslib/libm.2 Priwv 116kb 152kb \]ava Thread
MEMMAF | <mmap> Priwv 4kb 128kb
MEMMAFP | <mmap> Priwv 120kb 120kb
MEMMAP | fusrs/lib/dld.sl Shared 92kb 108kb
MEMMAP | fusr/lib/1ibCsup.2 Priwv 92kb 108kb
MEMMAFP | fusrslib/libpthread.1 Priwv 100kb 100kb
MEMMAF | fusr/libslibecl,2 Priwv 8kb 96kb
MEMMAFP | fopt/javal .3/ jreflib/sunrsasign, jar Shared 20kb 88kb
MEMMAFP | <mmap> Priwv 32kb 88kb
MEMMAF | <mmap> Priwv 84kb 84kb
MEMMAFP | foptsjaval .3/ jreslib/PA_RISC2.0/1ibzip.sl Priwv 56 kb 76kb
MEMMAP | fopts.../PA_RISC2,0/native_threads/libhpi.sl Priwv 44k 72kb

2/8/2005 (c) Copyright Hewlett Packard Company, 2005 page 11

Glance Memory Regions [ﬁﬂ

- RSS (Resident Set Size) - The size (in KB unless otherwise
Indicated) of the resident memory occupied by a memory
region

- VSS (Virtual Set Size) - The size (in KB unless otherwise
Indicated) of the virtual memory occupied by a memory region

Java Memory Regions [’5/3

- The JAVA threads are private mmap segments. The default size
for this mmap is 512KB(32bit), 1MB(64bit).

- JVM CodeCache (holds compiled JAVA methods) is a private
mmap segment. The default size is 32MB.

- The JAVA heap is a private mmap (Use -XheaplnitialSizes to
determine sizes of different generations) segment. The three
regions in HotSpot JVM heap (new, old and permanent) are
allocated as three different mmap regions in 32bit mode In
1.3.1 or greater JVMs.

The JAVA heap is mapped MAP_NORESERVE (lazy swap). When
multiple processes are spawned, memory and swap have to be
estimated carefully, otherwise running processes may abort in
the middle of a run due to insufficient swap space, instead of
processes aborting at startup time.

Java -XheaplnitialSizes

Defaults when no options are specified-
NewRatio: 3

SurvivorRatio: 8

MaxTenuringThreshold: 32

Survivor size: 589824

Eden size: 5177344

New Size reserved: 22347776 Initial: 6356992
Old Size reserved: 44761088 Initial: 12779520
Perm Size reserved: 67108864 initial: 1048576

New size will default to around 1/3™ the total heap size if —Xmn
IS not specified. —Xmn is an alias for —XX:NewsSize. If this value
IS higher than MaxNewsSize, MaxNewsSize will be set to this value
as well. New generation will be resized to 1/3" the total heap as
the heap grows from —Xms to —Xmx.

Large Heap Size with 32-bit Java

For Java invoked from the command line, Java will
automatically choose an appropriate executable.

PA-RISC

- For heaps less than 1500MB, the executable is ‘java’
(EXEC_MAGIC executable).

- For heaps greater than or equal to 1500MB, and less than
2400MB the executable is ‘java _q3p’ (HP-UX 11.00 or greater).

- For heaps of 2400MB to 3800MB, the executable is ‘java_g4p’
(HP-UX 11.11 or greater).

ITANIUM

- For heaps of 1500MB to 3500MB, the executable is ~java_qg4p’
(HP-UX 11.23 or greater)

Large Heap Size with 32-bit Java [ﬁﬂ

HP-UX 11.11 (PA-RISC)

- Because of segmentation in the HP-UX virtual address space,
when the Java heap is larger than 3000MB, either new space (-
Xmn) or old space (-mx minus -Xmn) must be approximately
850MB or less (applicable to 11.11 only).

HP-UX 11.00 or greater

- You do not need to directly invoke any of the gq3p or g4p
programs. Just invoke 'java' as usual, and the appropriate
program will be run for you.

Components in a JAVA program

- Virtual Machine is written in C/C++
- JAVA code

- JAVA code calling native methods

- Native code calling into JAVA code

Memory Allocation [’5/3

- JAVA heap

All objects that are created with the ‘new’ keyword in JAVA
reside here.

- C heap
Memory allocated in native code with
— ‘malloc’ in C

— ‘new’ in C++

Java Objects [’5/3

- Necessary to make a distinction between live objects and
reachable objects
If we can reach an object from the root
set through any number of intermediate references, it is
termed reachable
These are reachable objects that are currently

being used by the program

Java Objects [’5/3

- When JNI references are not cleaned up properly, they

could prevent the collection of some unwanted JAVA
objects

- All objects that are reachable may not be live

- objects that are being referenced by some
long living objects. Even though their use in the program
IS over, they cannot be garbage collected as the long
living objects are still alive

Symptoms of Process Memory Growth [’5/3

- Java Heap Object Retention:
- Unaccountable growth of the Java Heap
- C Heap Memory Leak:
- Constantly increasing DATA RSS and VSS
- System running out of swap space
- Programs failing with out of memory (ENOMEM) errors

Reasons for Out of Memory Errors

- Virtual address space limitations
- Insufficient java heap

- Low values for kernel parameters

max_thread_proc Number of threads per process

nkthread Total number of threads

maxdsiz Data region size

IIES Total number of open files

maxfiles Soft limit for number of open files
per process

maxfiles |lim hard maximum number of file
descriptors per process

Virtual Address Space Usage: Example 1 D}

invent

A) maxtsiz — 1GB (Upper limit for TEXT region)

B) maxdsiz — 1GB (Upper limit for DATA region)

Address space is reserved for TEXT and DATA in incremental
amounts as needed.

C) maxssiz — 400MB (Upper limit for STACK region, reserved upfront)

D) Java heap - -Xms1lGB —Xmx1GB (Perm gen- 64MB default. Not
iIncluded in mx value.)

- New Size reserved: 357892096 Iinitial: 357892096
- Old Size reserved: 715849728 initial: 715849728
- Perm Size reserved: 67108864 Iinitial: 1048576

E) JVM Code Cache — 32MB
F) 300 threads in the application (300 * 512KB = 150MB)

Space left for the DATA (C-heap) region
Approximate (only significant, greater than 5MB, regions
shown in calculation)

2GB—-C—-D—-E—F - space consumed by TEXT

Virtual Address Space Usage: Example 2 [ﬁﬂ

A) maxtsiz — 1GB

B) maxdsiz — 1GB

C) maxssiz — 400MB

D) Java heap - -Xms500m —Xmx1500m (will invoke java_ q3p)

« New Size reserved: 524288000 initial: 174718976
e Old Size reserved: 1048576000 Initial: 349569024
« Perm Size reserved: 67108864 Initial: 1048576

E) JVM Code Cache — 32MB
F) 300 threads in the application (300 * 512KB = 150MB)

Space avalilable for the Java thread stacks
Approximate (only significant, greater than 5MB, regions
shown in calculation)

3GB - C—-D — E — space consumed by TEXT — space consumed
by DATA

OutOfMemoryError: Example 3

Throwable: java.lang.OutOfMemoryError: unable to

create new native thread
java.lang.OutOfMemoryError: unable to create new

native thread
at Java.lang.Thread.start(Native Method)

CHECK
- \Whether there Is enough space for private mmaps for
thread stacks.

- The number of threads in glance/gpm and see whether
max_thread_ proc and nkthread are set appropriately.

