Debugging with GDB

The GNU Source-Level Debugger

HP Eighteenth Edition, for GDB
September 2008

Richard Stallman, Roland Pesch, Stan Shebs, et al.

(Send bugs and comments on GDB to bug-gdb@gnu.org with copy to
wdb-help@cup.hp.com)

Debugging with GDB

TgXinfo 2003-02-03.16

Copyright (©) 2008 Free Software Foundation, Inc.

Published by the Free Software Foundation
59 Temple Place - Suite 330,

Boston, MA 02111-1307 USA

ISBN 1-882114-77-9

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Table of Contents

Summary of GDB................... 1
Free software 1
Contributors to GDB........ 1

1 A Sample GDB Session 5
1.1 Loading the Executable........... 5
1.2 Setting Display width......... 6
1.3 Setting Breakpoints 6
1.4 Running the executable under GDB 6
1.5 Stepping to the next line in the source program............ 6
1.6 Stepping into a subroutine 6
1.7 Examining the Stack, 7
1.8 Printing Variable Values................................. 7
1.9 Listing Source Code ... 7
1.10 Setting Variable Values During a Session................. 8

2 Getting In and Out of GDB............... 11
2.1 Invoking GDB 11

2.1.1 Choosing files i 11
2.1.2 Choosing modesoiiiiiiiinaa.. 13
2.1.3 Redirecting WDB input and output to a file 15
2.2 Quitting GDB 15
2.3 Shell commands.oo ... 16

3 GDBCommandscccu.... 17
3.1 Command Syntaxuueiiineeiiineeanaan. 17
3.2 Command completion oo, 17
3.3 Gettinghelp ... 19

4 Running Programs Under GDB 23
4.1 Compiling for debugging................................ 23
4.2 Starting your programeeuineeeiineeen... 23
4.3 Arguments To Your Program............................ 24
4.4 Program Environment............. 25
4.5 Working directory i 26
4.6 Program Input and Output 26
4.7 Debugging a Running Process........................... 27
4.8 Killing the child processo . 28
4.9 Debugging programs with multiple threads............... 28

4.10 Debugging programs with multiple processes 31

il Debugging with GDB

5 Stopping and Continuing.................. 33
5.1 Breakpoints......... ... 33

5.1.1 Setting breakpoints.............. 33

5.1.2 Setting catchpoints 37

5.1.3 Deleting breakpoints........................... 38

5.1.4 Disabling breakpoints....................... ... 39

5.1.5 Break conditions.............. 40

5.1.6 Breakpoint command lists...................... 41

5.1.7 Breakpoint menus 42

5.1.8 “Cannot insert breakpoints” 43

5.2 Continuing and stepping.............ooiiiiii.. 43

5.3 Signals 46

5.4 Stopping and starting multi-thread programs............. 48

6 Examining the Stack...................... 51
6.1 Stack frames............. i 51

6.2 Stacks Without frames 51

6.3 Commands for Examining the Stack 52

6.4 Backtraces......... ... 52

6.5 Selecting aframe............. 53

6.6 Information about a frame.............................. 54

7 Examining Source Files................... 57
7.1 Printing source lines............. o7

7.2 Searching source files........... 58

7.3 Specifying source directories 59

7.4 Source and machine code 99

8 Examining Data.......................... 63
8.1 EXPressions...........uiiniinen i 63

8.2 Program variables.......... 64

8.3 Artificial arrays 65

8.4 Output formats 66

8.5 Examining memory................. i 67

8.6 Automatic display......... ... 68

8.7 Print settingscoi 70

8.8 Value history 74

8.9 Convenience variables 75

8.10 Registers 76

8.11 Printing Floating Point Values 78

8.12 Floating point hardware 78

9 Using GDB with Different Languages...... 79
9.1 Switching between source languages 79

9.1.1 List of filename extensions and languages........ 79

9.1.2 Setting the working language 80

9.1.3 Having GDB infer the source language 80

9.2 Displaying the language 80

9.3 Type and range checking................................ 81

9.3.1 An overview of type checking 81

9.3.2 An overview of range checking 82

9.4 Supported languages i 83

941 Cand CH++ ..o 83

9.4.1.1 Cand C++ operators 84

9.4.1.2 Cand C++ constants 85

9.4.1.3 CH++ expressions.ovveeeernnna... 86

9.4.1.4 Cand C++ defaults 87

9.4.1.5 C and C++ type and range checks 88

9.4.1.6 GDBand C.......................... 88

9.4.1.7 GDB features for C++................. 88

942 Fortran........... 89

9.4.2.1 Fortran types......................... 90

9.4.2.2 Fortran operators 90

9.4.2.3 Fortran special issues.................. 91

10 Examining the Symbol Table............. 93
11 Altering Execution 97
11.1 Assignment to variables................................ 97

11.2 Continuing at a different address 98

11.3 Giving your program a signal 99

11.4 Returning from a function 99

11.5 Calling program functions 100

11.6 Patching programs 100

12 GDBFiles..........ooiiiiiiiiiiia... 103
12.1 Commands to specify files 103

12.2 Specifying shared library locations..................... 106

12.3 Errors reading symbol files................. 107

13 Specifying a Debugging Target 109
13.1 Active targets. 109

13.2 Commands for managing targets 109

13.3 Choosing target byte order............................ 111

iii

iv Debugging with GDB
14 HP-UX Configuration-Specific Information

....................................... 113
14.1 Summary of HP Enhancements to GDB 113
14.2 HP-UX dependencies..............ccoviiiiiiinao... 116
14.2.1 Linker Dependencies......................... 116
14.2.2 Dependent Standard Library Routines for Run
Time Checking 116
14.3 Supported Platforms and Modes 117
14.4 HP-UX targets.ooouniiiniii 118
14.5 Support for Alternate root.................., 118
14.6 Specifying object file directories 119
14.7 Fix and continue debugging........................... 120
14.7.1 Fix and Continue compiler dependencies 121
14.7.2 Fix and Continue restrictions................. 121
14.7.3 Using Fix and Continue...................... 122
14.7.4 FExample Fix and Continue session............ 122
14.8 Inline Support ... 124
14.8.1 Inline Debugging in HP 9000 Systems......... 125
14.8.2 Inline Debugging in Integrity Systems......... 126
14.8.2.1 Debugging Inline Functions in Integrity
Systems. ... 127
14.9 Debugging Macrosouuieiineinnen.. 128
14.9.1 Viewing and Evaluating Macro Definitions. 128
14.9.1.1 Compiler Options to Enable Macro
Debugging 129
14.9.2 Examples for Macro Debugging............... 130
14.10 Debugging Memory Problems........................ 133
14.10.1 When to suspect a memory leak 133
14.10.2 Memory debugging restrictions 133
14.10.3 Memory Debugging Methodologies........... 134
14.10.4 Debugging Memory in Interactive Mode.. 134
14.10.4.1 Commands for interactive memory
debugging 134
14.10.4.2 Example for interactive debugging session
.. 137
14.10.5 Debugging Memory in Batch Mode 138
14.10.5.1 Setting Configuration Options for Batch
Modecovvii 138
14.10.5.2 Environment variable setting for Batch
mode debugging 141
14.10.5.3 Example for Batch Mode RTC...... 143
14.10.6 Debugging Memory Interactively After Attaching
to a Running Process 144
14.10.7 Configuring memory debugging settings...... 146
14.10.7.1 Specifying the stack depth.......... 146
14.10.7.2 Specifying minimum leak size....... 146
14.10.7.3 Specifying minimum block size. 147

14.10.8 Scenarios in memory debugging.............. 147

14.11

14.10.8.1 Stop when freeing unallocated or

deallocated blocks 147
14.10.8.2 Stop when freeing a block if bad writes
occurred outside block boundary 147
14.10.8.3 Stop when a specified block address is
allocated or deallocated 148
14.10.8.4 Scramble previous memory contents at
malloc/free calls.............. 148
14.10.8.5 Detect dangling pointers and dangling
blocks. ... 148
14.10.8.6 Detect in-block corruption of freed blocks
.. 149
14.10.8.7 Specify the amount of guard bytes for
every block of allocated memory 149
14.10.9 Comparison of Memory Debugging Commands in
Interactive Mode and Batch Mode 149
14.10.10 Heap Profiling 152
14.10.10.1 Commands for heap profiling 152
14.10.10.2 info heaparena 152
14.10.10.3 info heap arena [0 [1]2]..] blocks
StaCKS 152
14.10.10.4 info module ADDRESS............. 153
14.10.10.5 info heap process 153
14.10.10.6 Example for heap profiling......... 153
14.10.11 Memory Checking Analysis for User Defined
Memory Management Routines 154
14.10.12 Commands to track the change in data segment
value 154
Thread Debugging Support 155
14.11.1 Support for Enabling and Disabling Specific
Threads........ ..o 155
14.11.2 Backtrace Support for Thread Debugging 156
14.11.3 Advanced Thread Debugging Support........ 156
14.11.3.1 Pre-requisites for Advanced Thread
Debugging 157
14.11.3.2 Enabling and Disabling Advanced
Thread Debugging Features............... 157
14.11.3.3 Commands to view information on
pthread primitives 160
14.11.4 Debugging Threads Interactively After Attaching
toaProcess........... 160
14.11.5 Thread Debugging in Batch Mode 162
14.11.5.1 Pre-requisites for Batch mode of Thread
Debugging 162
14.11.5.2 Limitations in Batch mode of thread
debugging 164

14.11.6 Thread Debugging in +check Mode........... 164

vi

Debugging with GDB

14.11.7 Known issues with Thread Debugging for

Interactive and Batch mode 165
14.12 Debugging MPI Programs 165
14.13 Debugging multiple processes (programs with fork and
viork calls) 166
14.13.1 Ask mode for set follow-fork-mode........ 166
14.13.2 serial mode for set follow-fork-mode....... 166
14.13.3 Support for showing unwind info............. 166
14.13.4 Printing CFM and PFS registers............. 167
14.14 Debugging Core Files........... 167
14.14.1 Generating core files with packcore
/unpackcore/getcore ... 167
14.14.2 Support for the dumpcore command 168
14.14.2.1 Enhancements to the dumpcore
commandii 169
14.14.3 Support for display of run time type information
... 169
14.15 Printing the Execution Path Entries for the Current Frame
or Thread 169
14.15.1 Compiler Dependencies for Printing the Execution
Path Entries........ 170
14.15.2 Example Illustrating Execution Path Recovery
... 171
14.16 Invoking GDB Before a Program Aborts.............. 173
14.17 Aborting a Command Line Call 173
14.18 Instruction Level Stepping........................... 174
14.19 Enhanced support for watchpoints and breakpoints.... 174
14.19.1 Deferred watchpoints 174
14.19.2 Hardware watchpoints 175
14.19.3 Hardware breakpoints 175
14.19.3.1 Setting breakpoints in unstripped shared
library ... 175
14.19.4 Support for procedural breakpoints 175
14.19.5 Support for template breakpoints............ 176
14.20 Debugging support for shared libraries................ 176
14.20.1 Using shared library as main program........ 176
14.20.2 Setting Deferred Breakpoints in Shared Library
... 177
14.20.3 Using catchloadcouin .. 177
14.20.4 Privately mapping shared libraries........... 177
14.20.5 Selectively Mapping Shared Libraries As Private
... 178
14.20.6 Setting breakpoints in shared library......... 179
14.21 Debugging support for Decimal Floating Point data type
.. 179

14.21.1 Printing Decimal Floating point data types... 179
14.21.1.1 Printing Decimal floating point constant
.. 179

14.23

14.24
14.25

14.26
14.27

14.28

14.21.1.2 Printing Decimal floating point variable
.. 179
14.21.2 Handling Decimal Floating Point Data types.. 180
14.21.3 Evaluating Decimal Floating Point data types

... 180
14.21.3.1 Printing type of Decimal Floating Point
variable 181
Additional Support for binary floating point data type
... 181
14.22.1 Support for Binary Floating Point constants f, 1
... 182
14.22.2 Support Binary Floating Point variables with
format specifier........... 182
Language support......... ... 182
14.23.1 Enhanced Java Debugging Support 182
14.23.1.1 Java Stack Unwind Features........ 183
14.23.1.2 gdb Subcommands for Java VM
Debugging 184
14.23.1.3 Java corefile debugging support 185
14.23.1.4 Java attach mode debugging support
.. 186
14.23.2 Enhanced support for C++ templates......... 186
14.23.3 Support for __fpreg data type on IPF 187
14.23.4 Support for _Complex variables in HP C 187
14.23.5 Support for debugging namespaces........... 188
14.23.6 Command for evaluating the address of an
EXPIESSION . . v v vttt 189
Viewing Wide Character Strings 189
Support for output logging.............. 189
14.25.1 Support for dumping array in an ASCII file .. 189
14.25.2 Support for Fortran array slices.............. 190
14.25.3 Displaying enumerators 190
14.25.4 Support for debugging typedefs.............. 191
14.25.5 Support for steplast command for C and C++
... 191
Getting information from a non-debug executable 192
Debugging optimized code 192
14.27.1 Debugging Optimized Code at Various
Optimization Levels............................. 194
14.27.1.1 +00and +01....................... 194
14.27.1.2 +02/+03/+04/-ipo................. 194
Debugging with ARIES........... 196
14.28.1 Debugging the application using GDB under
ARIES . ..o 196
14.28.1.1 Limitations of GDB Support under
ARIES 197

14.28.2 Attaching GDB to an already running emulated
PIOCESS .« v ee et e e e e e e e 197

vii

viii Debugging with GDB

14.28.3 Detecting memory leaks using GDB under ARIES

... 197
14.29 Visual Interface for WDB............................ 198
14.29.1 Starting and stopping Visual Interface for WDB
... 198
14.29.2 Navigating the Visual Interface for WDB display
... 199
14.29.3 Specifying foreground and background colors. . 200
14.29.4 Using the X-window graphical interface 201
14.29.5 Using the TUI mode........................ 201
14.29.6 Changing the size of the source or debugger pane
... 202
14.29.7 Using commands to browse through source files
... 202
14.29.8 Loading source files......................... 203
14.29.9 Editing source files 203
14.29.10 Editing the command line and command-line
historyo 203
14.29.11 Saving the contents of a debugging session to a
file. ..o 203
14.30 Support forddd.......... ... 203
14.31 Support for XDB commands 204
14.31.1 stop in/at dbx commands................... 204
14.32 GNU GDB Logging Commands 204
14.33 Support for command line calls in a stripped executable
.. 204
14.33.1 Support for command line calls in a stripped
executable on PA-RISC systems 204
14.33.2 Additional support for command line calls in a
stripped executable, 205
14.33.2.1 For 32-bit applications:............. 205
14.33.2.2 For 64-bit applications 205
14.33.3 Support for debugging stripped binaries 205
14.33.3.1 Printing of locals and globals in a
stripped module 206
14.33.3.2 Backtrace on stripped frames 206
14.33.3.3 Command line calls to non-stripped
library ... 206
14.33.3.4 Setting breakpoints in unstripped shared
library ... 206
14.34 Displaying the current block scope information........ 206

14.35 Linux supportcooeii 206

15 The HP-UX Terminal User Interface..... 209

15.1 Starting the TUL....... 209

15.2 Automatically running a program at startup 210

15.3 Screen Layouts............ ... 211

15.3.1 Source pane................oiiiiiiiiaiiia... 211

15.3.2 Disassembly pane.............. 211

15.3.3 Source/Disassembly pane 212

15.3.4 Disassembly/Register pane 213

15.3.5 Source/Register pane 214

15.4 Cycling through the panes............................ 215

15.5 Changing pane focus 215

15.6 Scrolling panes.oo i 218

15.7 Changing the register display 218

15.8 Changing the pane size 220

15.9 Refreshing and updating the window 221

16 XDB to WDB Transition Guide 223
16.1 By-function lists of XDB commands and HP WDB

equivalents 223

16.1.1 Invocation commands........................ 224

16.1.2 Window mode commands 224

16.1.3 File viewing commands 225

16.1.4 Source directory mapping commands.......... 226

16.1.5 Data Viewing and modification commands. 227

16.1.6 Stack viewing commands..................... 229

16.1.7 Status-viewing command..................... 229

16.1.8 Job control commands 230

16.2 Overall breakpoint commands......................... 231

16.2.1 Auxiliary breakpoint commands 231

16.2.2 Breakpoint creation commands 232

16.2.3 Breakpoint status commands................. 233

16.2.4 All-procedures breakpoint commands 234

16.2.5 Global breakpoint commands................. 235

16.2.6 Assertion control commands.................. 235

16.2.7 Record and playback commands.............. 235

16.2.8 Macro facility commands..................... 236

16.2.9 Signal control commands..................... 236

16.2.10 Miscellaneous commands.................... 237

16.3 XDB data formats and HP WDB equivalents........... 238

16.4 XDB location syntax and HP WDB equivalents 240

16.5 XDB special language operators and HP WDB equivalents

.. 241

16.6 XDB special variables and HP WDB equivalents. 241

16.7 XDB variable identifiers and HP WDB equivalents. 243
16.8 Alphabetical lists of XDB commands and HP WDB

equivalents 243

16.8.1 A Lo 244

Debugging with GDB

16.8.3 Cthrough D 246

16.8.4 Fthrough K........ 247

16.8.5 Lo 248

16.8.6 M through Poovva) 249

16.8.7 Qthrough S 250

16.8.8 T o 252

16.8.9 UthroughZ 252

16.8.10 Symbols ... 254
Controlling GDB 259
17.1 Setting the GDB Prompt 259
17.2 Setting Command Editing Options in GDB 259
17.3 Setting Command History Feature in GDB............. 259
17.4 Setting the GDB Screen Size.......................... 261
17.5 Supported Number Formats........................... 261
17.6 Optional warnings and messages 262
17.7 Optional messages about internal happenings........... 263
Canned Sequences of Commands 265
18.1 User-defined commands. 265
18.2 User-defined command hooks 266
18.3 Command files......... 267
18.4 Commands for controlled output 267
Using GDB under GNU Emacs 269
GDB Annotations 271
20.1 What is an annotation?............... 271
20.2 The server prefixo 271
20.3 Values. 272
204 Frames. 273
20.5 Displays.......oi 274
20.6 Annotation for GDB input.............. 275
20.7 EITOTS. ..ot 275
20.8 Information on breakpoints 276
20.9 Invalidation notices............ 276
20.10 Running the program 277
20.11 Displaying sourcec.c.oooiiiiiiiiiine... 277

20.12 Annotations We Might Want in the Future............ 278

21 The ¢pB/MI Interface 279

Function and purposeooo i 279
Notation and terminology 279
21.1 GpB/MI Command Syntax.................c..oooouo... 279
21.1.1 GpB/MI Input syntax 279

21.1.2 ¢@pB/MI Output syntax 280

21.1.3 Simple examples of GDB/MI interaction. 282

21.2 GDB/MI compatibility with CLI....................... 282
21.3 GDB/MI output recordsiiii... 283
21.3.1 GDB/MI result records 283

21.3.2 GDB/MI stream records 283

21.3.3 GDB/MI out-of-band records 283

21.4 GpB/MI command description format.................. 284
21.5 GDB/MI breakpoint table commands................... 285
21.6 GDB/MI Data manipulation 293
21.7 GDB/MI program control.......................oi.... 303
21.8 Miscellaneous GDB commands in GDB/MI.............. 314
21.9 &pB/MI Stack Manipulation Commands 316
21.10 GpB/MI Symbol query commands 321
21.11 &pB/MI Target Manipulation Commands 324
21.12 ¢DpB/MI thread commands 329
21.13 GDB/MI tracepoint commands. 331
21.14 GDB/MI variable objects 331
22 Reporting Bugsin GDB................ 337
22.1 Haveyoufound abug?........... 337
22.2 How toreport bugs i 337
Appendix A Installing GDB................ 341
A.1 Compiling GDB in another directory................... 342
A.2 Specifying names for hosts and targets 343
A.3 configureoptions...................... ... 344

xii Debugging with GDB

Summary of GDB 1

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what is going on “inside”
another program while it executes—or what another program was doing at the moment it
crashed.

GDB allows you to do the following:
e Load the executable along with any required arguments.
e Stop your program on specified blocks of code.
e Examine your program when it has stopped running due to an error.

e Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

You can use GDB to debug programs written in C, C++ and Fortran. For more infor-
mation, refer to the Section 9.4 [Supported languages|, page 83. For more information on
supported languages, refer to the Section 9.4.1 [C and C++], page 84.

GDB can be used to debug programs written in Fortran, although it may be necessary
to refer to some variables with a trailing underscore. See Section 9.4.2 [Fortran]|, page 90.

This version of the manual documents WDB, implemented on HP 9000 or HP Integrity
systems running Release 11.x of the HP-UX operating system. WDB can be used to debug
code generated by the HP ANSI C, HP ANSI aC++ and HP Fortran compilers as well as
the GNU C and C++ compilers. It does not support the debugging of Pascal, Modula-2 or
Chill programs.

Free software

GDB is free software, protected by the GNU General Public License (GPL). The GPL
gives you the freedom to copy or adapt a licensed program—but every person getting a
copy also gets with it the freedom to modify that copy (which means that they must get
access to the source code), and the freedom to distribute further copies. Typical software
companies use copyrights to limit your freedoms; the Free Software Foundation uses the
GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other GNU programs.
Many others have contributed to its development. This section attempts to credit major
contributors. One of the virtues of free software is that everyone is free to contribute to
it; with regret, we cannot actually acknowledge everyone here. The file ‘ChangeLog’ in the
GDB distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome. If you or your friends
(or enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

2 Debugging with GDB

So that they may not regard their many labors as thankless, we particularly thank those
who shepherded GDB through major releases: Andrew Cagney (release 5.0); Jim Blandy
(release 4.18); Jason Molenda (release 4.17); Stan Shebs (release 4.14); Fred Fish (releases
4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu Grossman and John Gilmore (releases 4.8,
4.7, 4.6, 4.5, and 4.4); John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim Kingdon
(releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1, and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in GDB, with significant
additional contributions from Per Bothner. James Clark wrote the GNU C++ demangler.
Early work on C++ was by Peter TerMaat (who also did much general update work leading
to release 3.0).

GDB 4 uses the BFD subroutine library to examine multiple object-file formats; BFD
was a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John
Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support
for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the IST Optimum V support. Per Bothner,
Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete
contributed Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki
Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support. David Johnson con-
tributed Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support. Jeff
Law contributed HP PA and SOM support. Keith Packard contributed NS32K support.
Doug Rabson contributed Acorn Risc Machine support. Bob Rusk contributed Harris
Nighthawk CX-UX support. Chris Smith contributed Convex support (and Fortran de-
bugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed
SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould Powern-
ode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry
support.

Andreas Schwab contributed M68K Linux support.
Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several
machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging. Intel Corporation, Wind River Systems, AMD, and ARM contributed remote
debugging modules for the 1960, VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 sup-
port, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Summary of GDB 3

Hitachi America, Ltd. sponsored the support for H8/300, H8/500, and Super-H proces-
Sors.

NEC sponsored the support for the v850, Vrdxxx, and VrHxxx processors.
Mitsubishi sponsored the support for D10V, D30V, and M32R /D processors.
Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.
Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.
Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, lan Taylor, and Stu Grossman made nearly innumerable
bug fixes and cleanups throughout GDB.

The following people at the Hewlett-Packard Company contributed support for the PA-
RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.x (narrow mode), HP’s implementation
of kernel threads, HP’s aC++ compiler, and the terminal user interface: Ben Krepp, Richard
Title, John Bishop, Susan Macchia, Kathy Mann, Satish Pai, India Paul, Steve Rehrauer,
and Elena Zannoni. Kim Haase, Rosario de la Torre, Alex McKale, Michael Coulter, Carl
Burch, Bharath Chndramohan, Diwakar Nag, Muthuswami, Dennis Handly, Subash Babu
and Dipshikha Basu provided HP-specific information in this manual.

Cygnus Solutions has sponsored GDB maintenance and much of its development since
1991. Cygnus engineers who have worked on GDB full time include Mark Alexander, Jim
Blandy, Per Bothner, Kevin Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin
Hunt, Jim Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek Radouch, Keith Seitz,
Stan Shebs, David Taylor, and Elena Zannoni. In addition, Dave Brolley, lan Carmichael,
Steve Chamberlain, Nick Clifton, JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank
Figler, Doug Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff Holcomb,
Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner, Jason Merrill, Catherine
Moore, Drew Moseley, Ken Raeburn, Gavin Romig-Koch, Rob Savoye, Jamie Smith, Mike
Stump, Ian Taylor, Angela Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim
Wilson, and David Zuhn have made contributions both large and small.

Debugging with GDB

Chapter 1: A Sample GDB Session 5

1 A Sample GDB Session

This chapter describes the most common GDB commands with the help of an example.
The following topics are discussed:

e Loading the Executable

e Setting the Display Width

e Setting Breakpoints

e Running the Executable under GDB

e Stepping to the next line

e Stepping into a Subroutine

e Examining the Stack

e Printing Variable Values

e Listing the Source Code

e Setting Variable Values During a Debug Session
In this sample session, we emphasize user input like this: input, to make it easier to pick

out from the surrounding output.

One of the preliminary versions of GNU m4 (a generic macro processor) exhibits the
following bug: sometimes, when we change its quote strings from the default, the commands
used to capture one macro definition within another stop working. In the following short m4
session, we define a macro foo which expands to 0000; we then use the m4 built-in defn to
define bar as the same thing. However, when we change the open quote string to <QUOTE>
and the close quote string to <UNQUOTE>, the same procedure fails to define a new synonym
baz:

$ cd gnu/m4 //change your current directory to the location where the m4 ex-
ecutable is stored.
$./m4 //run the m4 application

define(fo0,0000)

foo
0000
define(bar,defn(‘foo’))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))
baz

C-d
m4: End of input: O0: fatal error: EOF in string

1.1 Loading the Executable

Let us use GDB to try to see what is going on.
$ (gdb) m4

HP gdb 3.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00.

6 Debugging with GDB

Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 3.0 (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the conditions to
change it and/or distribute copies. Type "show warranty" for warranty/support.
GDB reads only enough symbol data to know where to find the rest when needed; as a

result, the first prompt comes up very quickly.
1.2 Setting Display width

We now tell GDB to use a narrower display width than usual, so that examples fit in
this manual.
((gdb)) set width 70

We need to see how the m4 built-in changequote works. Having looked at the source,
we know the relevant subroutine is m4_changequote, so we set a breakpoint there with the
GDB break command.

1.3 Setting Breakpoints

Here we describe how to set a breakpoint.

((gdb)) break m4_changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.

1.4 Running the executable under GDB

Using the run command, we start m4 under GDB control. As long as the control does
not reach the m4_changequote subroutine, the program runs as usual.

((gdb)) run
Starting program: /work/Editorial/gdb/gnu/m4/m4
define(fo0,0000)

foo

0000
To trigger the breakpoint, we call changequote. GDB suspends execution of m4, displaying
information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, mé4_changequote (argc=3, argv=0x33c70)
at builtin.c:879
879 if (bad_argc (TOKEN_DATA_TEXT(argv[0]),argc,1,3))

1.5 Stepping to the next line in the source program

Now we use the command n (next) to advance execution to the next line of the current
function.

((gdb)) n
882 set_quotes((argc >= 2) 7 TOKEN_DATA_TEXT(argv[1])\
: nil,

Chapter 1: A Sample GDB Session 7

1.6 Stepping into a subroutine

The set_quotes looks like a promising subroutine. We can go into it by using the command
s (step) instead of next. step goes to the next line to be executed in any subroutine, so
it steps into set_quotes.

((gdb)) s

set_quotes (1q=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote != def_lquote)

1.7 Examining the Stack

The display that shows the subroutine where m4 is now suspended (and its arguments) is
called a stack frame display. It shows a summary of the stack. We can use the backtrace
command (which can also be spelled bt), to see where we are in the stack as a whole: the
backtrace command displays a stack frame for each active subroutine.

((gdb)) bt

#0 set_quotes (1q=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
at input.c:530

#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
at builtin.c:882

#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242

#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
at macro.c:71

#4 0x79dc in expand_input () at macro.c:40

#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The first two times, we can use ‘s’;
the next two times we use n to avoid falling into the xstrdup subroutine.

((gdb)) s

0x3b5c 532 if (rquote != def_rquote)

((gdb)) s

0x3b80 535 lquote = (1q == nil || *1q == ’\0’) 7 \

def_lquote : xstrdup(lq);

((gdb)) n

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
: xstrdup(rq);

((gdb)) n

538 len_lquote = strlen(rquote);

1.8 Printing Variable Values

The last line displayed looks a little odd in the listing above; we can examine the variables
lquote and rquote to see if they are in fact the new left and right quotes we specified. We
use the command p (print) to view their values.

((gdb)) p lquote

$1 = 0x35d40 "<QUOTE>"

((gdb)) p rquote
$2 = 0x35d50 "<UNQUOTE>"

8 Debugging with GDB

1.9 Listing Source Code

lquote and rquote are indeed the new left and right quotes. To look at some context, we
can display ten lines of source surrounding the current line with the 1 (1ist) command.

((gdb)) 1

533 xfree(rquote) ;

534

535 lquote = (1q == nil || *1q == ’\0’) 7 def_lquote\
: xstrdup (1q);

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
: xstrdup (zq);

537

538 len_lquote = strlen(rquote);

539 len_rquote = strlen(lquote);

540 }

541

542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine
the values of those variables.

((gdb)) n

539 len_rquote = strlen(lquote);
((gdb)) n

540 }

((gdb)) p len_lquote

$3 =9

((gdb)) p len_rquote

$4 = 7

1.10 Setting Variable Values During a Session

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the
lengths of 1quote and rquote respectively. We can set them to better values using the p
command, since it can print the value of any expression—and that expression can include
subroutine calls and assignments.

((gdb)) p len_lquote=strlen(lquote)

$5 =7
((gdb)) p len_rquote=strlen(rquote)
$6 = 9

Is that enough to fix the problem of using the new quotes with the m4 built-in defn? We can
allow m4 to continue executing with the ¢ (continue) command, and then try the example
that caused trouble initially:

((gdb)) ¢

Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz

0000
Success! The new quotes now work just as well as the default ones. The problem seems to
have been just the two typos defining the wrong lengths. We allow m4 to exit by giving it
an EOF as input:

Chapter 1: A Sample GDB Session 9

C-d

Program exited normally.
The message ‘Program exited normally.’ is from GDB; it indicates m4 has finished exe-
cuting. We can end our GDB session with the GDB quit command.

((gdb)) quit

10

Debugging with GDB

Chapter 2: Getting In and Out of GDB 11

2 Getting In and Out of GDB

This chapter discusses how to start GDB, and exit out of it. The essentials are:
e type ‘(gdb)’ to start GDB.
e type quit or C-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program (gdb). Once started, GDB reads commands from
the terminal until you tell it to exit.

You can also run (gdb) with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described here are designed to cover a variety of situations;
in some environments, some of these options may effectively be unavailable.

The most usual way to start GDB is with one argument, specifying an executable pro-
gram:

(gdb) program
You can also start with both an executable program and a core file specified:
(gdb) program core

You can, instead, specify a process ID as a second argument, if you want to debug a
running process:

(gdb) program 1234

would attach GDB to process 1234 (unless you also have a file named ‘1234’; GDB does
check for a core file first).

Taking advantage of the second command-line argument requires a fairly complete op-
erating system; when you use GDB as a remote debugger attached to a bare board, there
may not be any notion of “process”, and there is often no way to get a core dump. GDB
will warn you if it is unable to attach or to read core dumps.

You can run (gdb) without printing the front material, which describes GDB’s non-
warranty, by specifying -silent:
gdb -silent
You can further control how GDB starts up by using command-line options. GDB itself
can remind you of the options available.
Type
(gdb) -help
to display all available options and briefly describe their use (‘(gdb) -h’ is a shorter equiv-

alent).

All options and command line arguments you give are processed in sequential order. The
order makes a difference when the ‘-x’ option is used.

12 Debugging with GDB

2.1.1 Choosing files

When GDB starts, it reads any arguments other than options as specifying an executable
file and core file (or process ID). This is the same as if the arguments were specified by the
‘-se’ and ‘-c¢’ options respectively. (GDB reads the first argument that does not have an
associated option flag as equivalent to the ‘-se’ option followed by that argument; and the
second argument that does not have an associated option flag, if any, as equivalent to the
‘~c’ option followed by that argument.)

If GDB has not been configured to included core file support, such as for most embedded
targets, then it will complain about a second argument and ignore it.

Many options have both long and short forms; both are shown in the following list.
GDB also recognizes the long forms if you truncate them, so long as enough of the option is
present to be unambiguous. (If you prefer, you can flag option arguments with ‘-=’ rather
than ‘-’, though we illustrate the more usual convention.)

-symbols file
-s file Read symbol table from file file.

-exec file
-e file Use file file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

-se file Read symbol table from file file and use it as the executable file.

-core file
-c file Use file file as a core dump to examine.

—-Cc number
Connect to process ID number, as with the attach command (unless there is
a file in core-dump format named number, in which case ‘-c’ specifies that file
as a core dump to read).

-command file
-x file Execute GDB commands from file file. See Section 18.3 [Command files],
page 267.

—-directory directory
-d directory
Add directory to the path to search for source files.

-m

-mapped Warning: this option depends on operating system facilities that are not sup-
ported on all systems.
If memory-mapped files are available on your system through the mmap system
call, you can use this option to have GDB write the symbols from your program
into a reusable file in the current directory. If the program you are debugging
is called ‘/tmp/fred’, the mapped symbol file is ‘/tmp/fred.syms’. Future
GDB debugging sessions notice the presence of this file, and can quickly map
in symbol information from it, rather than reading the symbol table from the
executable program.

Chapter 2: Getting In and Out of GDB 13

The ‘.syms’ file is specific to the host machine where GDB is run. It holds
an exact image of the internal GDB symbol table. It cannot be shared across
multiple host platforms.

-r

-readnow Read each symbol file’s entire symbol table immediately, rather than the default,
which is to read it incrementally as it is needed. This makes startup slower,
but makes future operations faster.

4

You typically combine the -mapped and -readnow options in order to build a ‘.syms’
file that contains complete symbol information. (See Section 12.1 [Commands to specify
files|, page 103, for information on ‘.syms’ files.) A simple GDB invocation to do nothing
but build a ‘.syms’ file for future use is:

gdb -batch -nx -mapped -readnow programname

2.1.2 Choosing modes

You can run GDB in various alternative modes—for example, in batch mode or quiet
mode.

-nx

-n Do not execute commands found in any initialization files (normally called
‘.gdbinit’, or ‘gdb.ini’ on PCs). Normally, GDB executes the commands in
these files after all the command options and arguments have been processed.
See Section 18.3 [Command files|, page 267.

-quiet

-silent

-q “Quiet”. Do not print the introductory and copyright messages. These mes-
sages are also suppressed in batch mode.

-batch Run in batch mode. Exit with status 0 after processing all the command files
specified with ‘-x’ (and all commands from initialization files, if not inhibited
with ‘-n’). Exit with nonzero status if an error occurs in executing the GDB
commands in the command files.

Batch mode may be useful for running GDB as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
message

Program exited normally.
(which is ordinarily issued whenever a program running under GDB control
terminates) is not issued when running in batch mode.

-nowindows

-nw “No windows”. If GDB comes with a graphical user interface (GUI) built in,
then this option tells GDB to only use the command-line interface. If no GUI
is available, this option has no effect.

-windows

-w If GDB includes a GUI, then this option requires it to be used if possible.

14

Debugging with GDB

-cd directory

-dbx

—fullname
-f

—epoch

Run GDB using directory as its working directory, instead of the current direc-
tory.
Support additional dbx commands, including:

e use

e status (in dbx mode, status has a different meaning than in default GDB
mode.)

e whereis
e func
o file
e assign
e call

e stop

GNU Emacs sets this option when it runs GDB as a subprocess. It tells GDB to
output the full file name and line number in a standard, recognizable fashion
each time a stack frame is displayed (which includes each time your program
stops). This recognizable format looks like two ‘\032’ characters, followed by
the file name, line number and character position separated by colons, and a
newline. The Emacs-to-GDB interface program uses the two ‘\032’ characters
as a signal to display the source code for the frame.

The Epoch Emacs-GDB interface sets this option when it runs GDB as a sub-
process. It tells GDB to modify its print routines so as to allow Epoch to
display values of expressions in a separate window.

—annotate level

—async

This option sets the annotation level inside GDB. Its effect is identical to using
‘set annotate level’ (see Chapter 20 [Annotations|, page 271). Annotation
level controls how much information does GDB print together with its prompt,
values of expressions, source lines, and other types of output. Level 0 is the
normal, level 1 is for use when GDB is run as a subprocess of GNU Emacs, level
2 is the maximum annotation suitable for programs that control GDB.

Use the asynchronous event loop for the command-line interface. GDB pro-
cesses all events, such as user keyboard input, via a special event loop. This
allows GDB to accept and process user commands in parallel with the debugged
process being run', so you don’t need to wait for control to return to GDB be-
fore you type the next command. (Note: as of version 5.0, the target side of
the asynchronous operation is not yet in place, so ‘~async’ does not work fully

yet.)
When the standard input is connected to a terminal device, GDB uses the
asynchronous event loop by default, unless disabled by the ‘-noasync’ option.

1 GDB built with DIGPP tools for MS-DOS/MS-Windows supports this mode of operation, but the event
loop is suspended when the debug target runs.

Chapter 2: Getting In and Out of GDB 15

-noasync Disable the asynchronous event loop for the command-line interface.

-baud bps

-b bps Set the line speed (baud rate or bits per second) of any serial interface used by
GDB for remote debugging.

-tty device

-t device
Run using device for your program’s standard input and output.

-tui Use a Terminal User Interface. For information, use your Web browser
to read the file ‘tui.html’, which is usually installed in the directory
/opt/langtools/wdb/doc on HP-UX systems. Do not use this option if you
run GDB from Emacs (see see Chapter 19 [Using GDB under GNU Emacs],
page 269).

-xdb Run in XDB compatibility mode, allowing the use of certain XDB commands.

For information, see the file ‘xdb_trans.html’, which is usually installed in the
directory /opt/langtools/wdb/doc on HP-UX systems.

-interpreter interp
Use the interpreter interp for interface with the controlling program or device.
This option is meant to be set by programs which communicate with GDB
using it as a back end. For example, ‘-—~interpreter=mi’ causes GDB to use
the gdbmi interface (see Chapter 21 [The GDB/MI Interface|, page 279).

-write Open the executable and core files for both reading and writing. This is equiv-
alent to the ‘set write on’ command inside GDB (see Section 11.6 [Patching],
page 100).

-statistics

This option causes GDB to print statistics about time and memory usage after
it completes each command and returns to the prompt.

-version This option causes GDB to print its version number and no-warranty blurb,
and exit.

-pid This option causes GDB to attach to a running process.
-inline This option causes the debugger to start with the inline debugging on.

-src_no_g
This option is used to set the limited source level debugging without compiling.

2.1.3 Redirecting WDB input and output to a file

To redirect WDB input and output to a file, use either of these commands to start the
debugger:

$ script logl
$ gdb
or
$ gdb | tee logl

16 Debugging with GDB

2.2 Quitting GDB

quit [expression]|

q To exit GDB, use the quit command (abbreviated q), or type an end-of-file
character (usually C-d). If you do not supply expression, GDB will terminate
normally; otherwise it will terminate using the result of expression as the error
code.

An interrupt (often C-c) does not exit from GDB, but rather terminates the action of
any GDB command that is in progress and returns to GDB command level. It is safe to
type the interrupt character at any time because GDB does not allow it to take effect until
a time when it is safe.

You can use the detach command to release an attached process or device.

2.3 Shell commands

If you need to execute occasional shell commands during your debugging session, there
is no need to leave or suspend GDB; you can just use the shell command.

shell command string
Invoke a standard shell to execute command string. If it exists, the environment
variable SHELL determines which shell to run. Otherwise GDB uses the default
shell (‘/bin/sh’ on Unix systems, ‘COMMAND.COM’ on MS-DOS, etc.).

The utility make is often needed in development environments. You do not have to use
the shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments. This is equivalent to
‘shell make make-args’.

Chapter 3: GDB Commands 17

3 GDB Commands

You can abbreviate a GDB command to the first few letters of the command name, if
that abbreviation is unambiguous; and you can repeat certain GDB commands by typing
just ®ET). You can also use the key to get GDB to fill out the rest of a word in a
command (or to show you the alternatives available, if there is more than one possibility).

3.1 Command syntax

e A GDB command is a single line of input. There is no limit on how long it can be.

e [t starts with a command name, and is followed by arguments whose meaning depends
on the command name.

e GDB command names can be truncated if that abbreviation is unambiguous. The pos-
sible command abbreviations are listed in the documentation for individual commands.
In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s. You can test abbreviations by using them as arguments to the help command.

e A blank line as input to GDB (typing just (RET)) means to repeat the previous com-
mand. Some commands (for example, run) do not repeat this way. These are com-
mands whose unintentional repetition might cause trouble and which you are unlikely
to want to repeat. The list and x commands, when you repeat them with RET),
construct new arguments rather than repeating exactly as typed. This permits easy
scanning of source or memory.

e GDB can also use in another way: to partition lengthy output, in a way similar
to the common utility more (see (undefined) [Screen size|, page (undefined)). Since it is
easy to press one too many in this situation, GDB disables command repetition
after any command that generates this sort of display.

e Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see Section 18.3 [Command files], page 267).

3.2 Command completion

GDB can fill in the rest of a word in a command for you, if there is only one possibility;
it can also show you what the valid possibilities are for the next word in a command, at
any time. This works for GDB commands, GDB subcommands, and the names of symbols
in your prograim.

Press the key whenever you want GDB to fill out the rest of a word. If there is
only one possibility, GDB fills in the word, and waits for you to finish the command (or
press to enter it). For example, if you type

((gdb)) info bre

GDB fills in the rest of the word ‘breakpoints’, since that is the only info subcommand
beginning with ‘bre’:

((gdb)) info breakpoints

18 Debugging with GDB

You can either press at this point, to run the info breakpoints command, or
backspace and enter something else, if ‘breakpoints’ does not look like the command you
expected. (If you were sure you wanted info breakpoints in the first place, you might as
well just type immediately after ‘info bre’, to exploit command abbreviations rather
than command completion.)

If there is more than one possibility for the next word when you press (TAB), GDB sounds
a bell. You can either supply more characters and try again, or just press a second
time; GDB displays all the possible completions for that word. For example, you might
want to set a breakpoint on a subroutine whose name begins with ‘make_’, but when you
type b make_(TAB) GDB just sounds the bell. Typing again displays all the function
names in your program that begin with those characters, for example:

((gdb)) b make_ (TAB
GDB sounds bell; press again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list

((gdb)) b make_
After displaying the available possibilities, GDB copies your partial input (‘b make_’ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather
than pressing twice. M-? means 7. You can type this either by holding down
a key designated as the shift on your keyboard (if there is one) while typing 7, or as
followed by 7.

Sometimes the string you need, while logically a “word”, may contain parentheses or
other characters that GDB normally excludes from its notion of a word. To permit word
completion to work in this situation, you may enclose words in ’ (single quote marks) in

GDB commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of the same
function, distinguished by argument type). For example, when you want to set a breakpoint
you may need to distinguish whether you mean the version of name that takes an int
parameter, name (int), or the version that takes a float parameter, name (float). To use
the word-completion facilities in this situation, type a single quote ’ at the beginning of
the function name. This alerts GDB that it may need to consider more information than
usual when you press or M-7 to request word completion:

((gdb)) b ’bubble(M-7?
bubble (double,double) bubble(int,int)
((gdb)) b ’bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this
happens, GDB inserts the quote for you (while completing as much as it can) if you do not
type the quote in the first place:

((gdb)) b bub
GDB alters your input line to the following, and rings a bell:

Chapter 3: GDB Commands 19

((gdb)) b ’bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet started
typing the argument list when you ask for completion on an overloaded symbol.

For more information about overloaded functions, see Section 9.4.1.3 [C++ expressions],
page 86. You can use the command set overload-resolution off to disable overload
resolution; see Section 9.4.1.7 [GDB features for C++|, page 88.

3.3 Getting help

You can always ask GDB itself for information on its commands, using the command
help.

help
h You can use help (abbreviated h) with no arguments to display a short list of
named classes of commands:

((gdb)) help
List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without
stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.
((gdb))

help class
Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, here is the help display for
the class status:

((gdb)) help status
Status inquiries.

List of commands:

info -- Generic command for showing things
about the program being debugged
show -- Generic command for showing things

about the debugger

20

Debugging with GDB

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.
((gdb))

help command

With a command name as help argument, GDB displays a short paragraph on
how to use that command.

apropos args

The apropos args command searches through all of the GDB commands, and
their documentation, for the regular expression specified in args. It prints out
all matches found. For example:

apropos reload

results in:

set symbol-reloading -- Set dynamic symbol table reloading
multiple times in one run

show symbol-reloading -- Show dynamic symbol table reloading
multiple times in one run

complete args

The complete args command lists all the possible completions for the begin-
ning of a command. Use args to specify the beginning of the command you
want completed. For example:

complete i

results in:
if
ignore
info
inspect

This is intended for use by GNU Emacs.

In addition to help, you can use the GDB commands info and show to inquire about the
state of your program, or the state of GDB itself. Each command supports many topics of
inquiry; this manual introduces each of them in the appropriate context. The listings under
info and under show in the Index point to all the sub-commands. See [Index], page 347.

info

set

show

This command (abbreviated i) is for describing the state of your program. For
example, you can list the arguments given to your program with info args,
list the registers currently in use with info registers, or list the breakpoints
you have set with info breakpoints. You can get a complete list of the info
sub-commands with help info.

You can assign the result of an expression to an environment variable with set.
For example, you can set the GDB prompt to a $-sign with set prompt $.

In contrast to info, show is for describing the state of GDB itself. You can
change most of the things you can show, by using the related command set;
for example, you can control what number system is used for displays with set
radix, or simply inquire which is currently in use with show radix.

To display all the settable parameters and their current values, you can use
show with no arguments; you may also use info set. Both commands produce
the same display.

Chapter 3: GDB Commands 21

Here are three miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

show version

Show what version of GDB is running. You should include this information in
GDB bug-reports. If multiple versions of GDB are in use at your site, you may
need to determine which version of GDB you are running; as GDB evolves, new
commands are introduced, and old ones may wither away. Also, many system
vendors ship variant versions of GDB, and there are variant versions of GDB
in GNU/Linux distributions as well. The version number is the same as the one
announced when you start GDB.

show copying
Display information about permission for copying GDB.

show warranty
Display the aNU “NO WARRANTY?” statement, or a warranty, if your version
of GDB comes with one.

22

Debugging with GDB

Chapter 4: Running Programs Under GDB 23

4 Running Programs Under GDB

When you run a program under GDB, you must first generate debugging information
when you compile it using compiler option cc -g -0.

You may start GDB with its arguments, if any, in an environment of your choice. If you
are doing native debugging, you may redirect your program’s input and output, debug an
already running process, or kill a child process.

4.1 Compiling for debugging

Following points are noteable while compiling programs for debugging:
e Compile your program with the -g-0 option to generate debugging information.

e The -g-0 option is supported by HP ANSI C and HP aC++ compilers and GNU gcc
compiler.

e Some compilers do not support the -g-0 options together.
e The -g-0 options do not work on machines with instruction scheduling.
Note:

Older versions of the GNU C compiler permitted a variant option ‘-gg’ for debugging
information. GDB no longer supports this format; if your ¢NU C compiler has this
option, do not use it.

4.2 Starting your program

run
r Use the run command to start your program under GDB. You must first spec-
ify the program name (except on VxWorks) with an argument to GDB (see
Chapter 2 [Getting In and Out of GDB]J, page 11), or by using the file or
exec-file command (see Section 12.1 [Commands to specify files|, page 103).

Note:

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. (In environments
without processes, run jumps to the start of your program.)

The execution of a program is affected by the information it receives from the parent
process. You must provide GDB the information before starting the program. (You can
change the information after starting your program, but such changes only affect your
program the next time you start it.) The information that must be passed to GDB can be
categorized into four categories:

arguments.
Specify the arguments to give your program as the arguments of the run com-
mand. If a shell is available on your target, the shell is used to pass the ar-
guments, so that you may use normal conventions (such as wildcard expansion

24

Debugging with GDB

or variable substitution) in describing the arguments. On Unix systems, you
can control which shell is used with the SHELL environment variable. GDB
uses the C shell (/usr/bin/csh). See (undefined) [Your program’s arguments,
page (undefined).

environment.

Your program inherits its environment from GDB. However, you can use the
GDB commands set environment and unset environment to change parts of
the environment that affect your program. See (undefined) [Your program’s
environment|, page (undefined).

working directory.

Your program inherits its working directory from GDB. You can set the GDB
working directory with the cd command in GDB. See Section 4.5 [Your pro-
gram’s working directory], page 26.

standard input and output.

Note:

Your program as default uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run command
line, or you can use the tty command to set a different device for your program.
See Section 4.6 [Your program’s input and output], page 26.

Warning: You can redirect input and output, but you cannot use pipes to
pass the output of the program you are debugging to another program; if you
attempt this, GDB is likely to wind up debugging the wrong program.

e When you issue the run command, your program begins to execute immediately. See
Chapter 5 [Stopping and continuing], page 33, for discussion of how to arrange for
your program to stop. Omnce your program has stopped, you may call functions in
your program, using the print or call commands. See Chapter 8 [Examining Datal,
page 63.

e If the modification time of your symbol file has changed since the last time GDB read
its symbols, GDB discards its symbol table, and reads it again. When it does this,
GDB tries to retain your current breakpoints.

4.3 Arguments To Your Program

The arguments to your program can be specified by the arguments of the run com-
mand. On HP-UX, they are passed to the C shell (/usr/bin/csh), which expands wildcard
characters and performs redirection of I/O, and thence to your program.

On non-Unix systems, the program is usually invoked directly by GDB, which emulates
I/0O redirection via the appropriate system calls, and the wildcard characters are expanded
by the startup code of the program, not by the shell.

The run command used with no arguments uses the same arguments used by the previous
run, or those set by the set args command.

Following commands are used to pass the argument values to your program:

Chapter 4: Running Programs Under GDB 25

set args Specify the arguments to be used the next time your program is run. If set
args has no arguments, run executes your program with no arguments. Once
you have run your program with arguments, using set args before the next
run is the only way to run it again without arguments.

show args Show the arguments to give your program when it is started.

4.4 Program Environment

The environment consists of a set of environment variables and their values. Envi-
ronment variables conventionally record information such as your user name, your home
directory, your terminal type, and your search path for programs to run. Usually you set
up environment variables with the shell and they are inherited by all the other programs
you run. When debugging, it can be useful to try running your program with a modified
environment without having to start GDB over again.

show envvar
List all the environment variables used by GDB.

show paths
Display the list of search paths for executables (the PATH environment variable).

show environment [varname]
Print the value of environment variable varname to be given to your program
when it starts. If you do not supply varname, print the names and values of
all environment variables to be given to your program. You can abbreviate
environment as env.

set environment varname [=value]
Set environment variable varname to value. The value changes for your program
only, not for GDB itself. The value may be any string; the values of environment
variables are just strings, and any interpretation is supplied by your program
itself. The value parameter is optional; if it is eliminated, the variable is set to
a null value.

For example, this command:
set env USER = foo

tells the debugged program, when subsequently run, that its user is named
‘foo’. (The spaces around ‘=" are used for clarity here; they are not actually
required.)

unset environment varname
Remove variable varname from the environment to be passed to your program.
This is different from ‘set env varname =’; unset environment removes the
variable from the environment, rather than assigning it an empty value.

path directory
Add directory to the front of the PATH environment variable (the search path
for executables), for both GDB and your program. You may specify several
directory names, separated by whitespace or by a system-dependent separator

26 Debugging with GDB

character (‘:” on Unix, ‘;’ on MS-DOS and MS-Windows). If directory is
already in the path, it is moved to the front, so it is searched sooner.

You can use the string ‘$cwd’ to refer to whatever is the current working directory at
the time GDB searches the path. If you use ‘.’ instead, it refers to the directory where you
executed the path command. GDB replaces ‘.’ in the directory argument (with the current
path) before adding directory to the search path.

4.5 Working directory

Each time you start your program with run, it inherits its working directory from the
current working directory of GDB. The GDB working directory is initially whatever it
inherited from its parent process (typically the shell), but you can specify a new working
directory in GDB with the cd command.

The GDB working directory also serves as a default for the commands that specify files
for GDB to operate on. See Section 12.1 [Commands to specify files|, page 103.

Following commands are used to set the working directory for your program:

cd directory
Set the GDB working directory to directory.

pwd Print the GDB working directory.
4.6 Program Input and Output

By default, the program you run under GDB does input and output to the same terminal
that GDB uses. GDB switches the terminal to its own terminal modes to interact with you,
but it records the terminal modes your program was using and switches back to them when
you continue running your program.

Following commands are used for redirecting the input and output:

info terminal
Displays information recorded by GDB about the terminal modes your program
is using.

tty
Another way to specify where your program should do input and output is with
the tty command. This command accepts a file name as argument, and causes
this file to be the default for future run commands. It also resets the controlling
terminal for the child process, for future run commands. For example,

tty /dev/ttyb
directs that processes started with subsequent run commands default to do
input and output on the terminal ‘/dev/ttyb’ and have that as their controlling
terminal.
Note:

e You can redirect your program input and output using shell redirection with the run
command. For example,

Chapter 4: Running Programs Under GDB 27

run > outfile
starts your program, diverting its output to the file ‘outfile’.

e An explicit redirection in run overrides the tty command’s effect on the input/output
device, but not its effect on the controlling terminal.

e When you use the tty command or redirect input in the run command, only the input
for your program is affected. The input for GDB still comes from your terminal.

4.7 Debugging a Running Process

You can use GDB to debug a running process by specifying the process ID. Following
commands are used to debug a running process:

attach process-id
This command attaches to a running process—one that was started outside
GDB. (info files shows your active targets.) The command takes as argument
a process ID. The usual way to find out the process-id of a Unix process is with
the ps utility, or with the ‘jobs -1’ shell command.

attach does not repeat if you press a second time after executing the
command.

Note:

e To use attach, your program must be running in an environment which supports
processes; for example, attach does not work for programs on bare-board targets that
lack an operating system.

e You must also have permission to send the process a signal.

e When you use attach, the debugger finds the program running in the process first by
looking in the current working directory, then (if the program is not found) by using the
source file search path (see Section 7.3 [Specifying source directories], page 59). You
can also use the file command to load the program. See Section 12.1 [Commands to
Specify Files|, page 103.

GDB stops the process being attached for debugging. You can examine and modify an
attached process with the GDB commands that are available when you start processes
with run. You can insert breakpoints; you can step and continue; you can modify
storage. See Section 5.1 [Breakpoints in shared libraries], page 33. If you want the
process to continue running, you can use the continue command after attaching GDB
to the process.

detach

When you have finished debugging the attached process, you can use the detach
command to release it from GDB control. The process continues its execution
after being detached. After the detach command, that process and GDB be-
come completely independent once more, and you are ready to attach another
process or start one with run. detach does not repeat if you press again
after executing the command.

28 Debugging with GDB

If you exit GDB or use the run command while you have an attached process, you kill
that process. By default, GDB asks for confirmation if you try to do either of these things;
you can control whether or not you need to confirm by using the set confirm command
(see Section 17.6 [Optional warnings and messages|, page 262).

NOTE: When GDB attaches to a running program you may get a message
saying "Attaching to process #nnnnn failed."

The most likely cause for this message is that you have attached to a process
that was started across an NFS mount. Versions of the HP-UX kernel before
11.x have a restriction that prevents a debugger from attaching to a process
started from an NFS mount, unless the mount was made non-interruptible
with the -nointr flag, see mount (1).

4.8 Killing the child process

Following command is used to kill the child process:

kill Kill the child process in which your program is running under GDB.

The ki1l command is useful if you wish to debug a core dump instead of a running
process. GDB ignores any core dump file while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have
breakpoints set on it inside GDB. You can use the kill command in this situation to permit
running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running in a
process. In this case, when you next type run, GDB notices that the file has changed, and
reads the symbol table again (while trying to preserve your current breakpoint settings).

4.9 Debugging programs with multiple threads

In some operating systems, such as HP-UX and Solaris, a single program may have more
than one thread of execution. The precise semantics of threads differ from one operating
system to another, but in general the threads of a single program are akin to multiple
processes—except that they share one address space (that is, they can all examine and
modify the same variables). On the other hand, each thread has its own registers and
execution stack, and private memory.

GDB provides these facilities for debugging multi-thread programs:
e automatic notification of new threads
e thread-specific breakpoints

Warning: These facilities are not yet available on every GDB configura-
tion where the operating system supports threads. If your GDB does not
support threads, these commands have no effect. For example, a system
without thread support shows no output from ‘info threads’, and always
rejects the thread command, like this:

Chapter 4: Running Programs Under GDB 29

((gdb)) info threads

((gdb)) thread 1

Thread ID 1 not known. Use the "info threads" command to
see the IDs of currently known threads.

Following commands are used to debug multi-threaded programs:
e ‘thread threadno’, a command to switch among threads
e ‘info threads’, a command to inquire about existing threads

e ‘thread apply [threadno] [all] args’, a command to apply a command to a list of
threads

The GDB thread debugging facility allows you to observe all threads while your program
runs—but whenever GDB takes control, one thread in particular is always the focus of
debugging. This thread is called the current thread. Debugging commands show program
information from the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target system’s
identification for the thread with a message in the form ‘[New systag]’. systag is a thread
identifier whose form varies depending on the particular system. For example, on LynxOS,
you might see

[New process 35 thread 27]
when GDB notices a new thread. In contrast, on an SGI system, the systag is simply
something like ‘process 368’, with no further qualifier.
For debugging purposes, GDB associates its own thread number—always a single
integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program. GDB displays for
each thread (in this order):

1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)

3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current
thread.

For example,

((gdb)) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()
* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

On HP-UX systems:

For debugging purposes, GDB associates its own thread number—a small integer as-
signed in thread-creation order—with each thread in your program.

Whenever GDB detects a new thread in your program, it displays both GDB’s thread
number and the target system’s identification for the thread with a message in the form
‘[New systag]’. systag is a thread identifier whose form varies depending on the particular
system. For example, on HP-UX, you see

30 Debugging with GDB

[New thread 2 (system thread 26594)]
when GDB notices a new thread.

On HP-UX systems, you can control the display of thread creation messages. Following
commands are used to control the display of thread creation:

set threadverbose on
Enable the output of informational messages regarding thread creation. The
default setting is on. You can set it to off to stop the display of messages.

set threadverbose off
Disable the output of informational messages regarding thread creation. The
default setting is on. You can set it to on to display messages.

show threadverbose
Display whether set threadverbose is on or off.

Here are commands to get more information about threads:

info threads

Display a summary of all threads currently in your program. GDB displays for
each thread (in this order):

1. the thread number assigned by GDB

2. the target system’s thread identifier (systag)

3. the current stack frame summary for that thread
4

. the priority of a thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current
thread.

For example,

((gdb)) info threads
* 3 system thread 26607 worker (wptr=0x7b09c318 "@") \
at quicksort.c:137
2 system thread 26606 0x7b0030d8 in __ksleep (O \
from /usr/1ib/libc.2
1 system thread 27905 0x7b003498 in _brk () \
from /usr/1lib/libc.2

thread threadno

Make thread number threadno the current thread. The command argument
threadno is the internal GDB thread number, as shown in the first field of the
‘info threads’ display. GDB responds by displaying the system identifier of
the thread you selected, and its current stack frame summary:

((gdb)) thread 2

[Switching to thread 2 (system thread 26594)]

0x34e5 in sigpause ()
As with the ‘[New ...] " message, the form of the text after ‘Switching to’
depends on your system’s conventions for identifying threads.

Chapter 4: Running Programs Under GDB 31

thread apply [threadno] [all] args
The thread apply command allows you to apply a command to one or more
threads. Specify the numbers of the threads that you want affected with the
command argument threadno. threadno is the internal GDB thread number,
as shown in the first field of the ‘info threads’ display. To apply a command
to all threads, use thread apply all args.

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically
selects the thread where that breakpoint or signal happened. GDB alerts you to the context
switch with a message of the form ‘[Switching to systag]’ to identify the thread.

See Section 5.4 [Stopping and starting multi-thread programs|, page 48, for more infor-
mation about how GDB behaves when you stop and start programs with multiple threads.

See (undefined) [Setting watchpoints], page (undefined), for information about watch-
points in programs with multiple threads.

Note:

On HP-UX 11.x, debugging a multi-thread process can cause a deadlock if the process
is waiting for an NFS-server response. A thread can be stopped while asleep in this state,
and NFS holds a lock on the rnode while asleep.

To prevent the thread from being interrupted while holding the rnode lock, make the
NFS mount non-interruptible with the ‘-nointr’ flag. See mount(1).

4.10 Debugging programs with multiple processes

On most systems, GDB has no special support for debugging programs which create
additional processes using the fork function. When a program forks, GDB will continue
to debug the parent process and the child process will run unimpeded. If you have set a
breakpoint in any code which the child then executes, the child will get a SIGTRAP signal
which (unless it catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn’t too
painful. Put a call to sleep in the code which the child process executes after the fork. It
may be useful to sleep only if a certain environment variable is set, or a certain file exists,
so that the delay need not occur when you don’t want to run GDB on the child. While the
child is sleeping, use the ps program to get its process ID. Then tell GDB (a new invocation
of GDB if you are also debugging the parent process) to attach to the child process (see
Section 4.7 [Attach], page 27). From that point on you can debug the child process just like
any other process which you attached to.

On HP-UX (11.x and later only), GDB provides support for debugging programs that
create additional processes using the fork or vfork function.

By default, when a program forks, GDB will continue to debug the parent process and
the child process will run unimpeded.

If you want to follow the child process instead of the parent process, use the command
set follow-fork-mode.

set follow-fork-mode mode
Set the debugger response to a program call of fork or vfork. A call to fork
or vfork creates a new process. The mode can be:

32 Debugging with GDB

parent The original process is debugged after a fork. The child process
runs unimpeded. This is the default.

child The new process is debugged after a fork. The parent process runs
unimpeded.

show follow-fork-mode
Display the current debugger response to a fork or vfork call.

If you ask to debug a child process and a vfork is followed by an exec, GDB executes
the new target up to the first breakpoint in the new target. If you have a breakpoint set on
main in your original program, the breakpoint will also be set on the child process’s main.

When a child process is spawned by vfork, you cannot debug the child or parent until
an exec call completes.

If you issue a run command to GDB after an exec call executes, the new target restarts.
To restart the parent process, use the file command with the parent executable name as
its argument.

You can use the catch command to make GDB stop whenever a fork, vfork, or exec
call is made. See Section 5.1.2 [Setting catchpoints]|, page 37.

Chapter 5: Stopping and Continuing 33

5 Stopping and Continuing

The principal purpose of a debugger is to let you stop your program before it terminates
abnormaly or runs into trouble, so that you can investigate and determine the reason.

Inside GDB, your program can stop for several reasons, such as a signal, a breakpoint, or
reaching a new line after a GDB command such as step. You can then examine and change
variables, set new breakpoints or remove old ones, and then continue execution. Usually,
the messages shown by GDB provide information on the status of your program—but you
can also explicitly request this information at any time.

info program
Display information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

5.1 Breakpoints

A breakpoint makes your program stop whenever a certain point in the program is
reached. For each breakpoint, you can add conditions to control in finer detail whether
your program stops. You can set breakpoints with the break command and its variants.
(see Section 5.1.1 [Setting breakpoints], page 33) You can stop your program by line number,
function name or an address in the program.

You can arrange to have values from your program displayed automatically whenever
GDB stops at a breakpoint. See Section 8.6 [Automatic display], page 68.

In HP-UX, SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can set breakpoints
in shared libraries before the executable is run. See Section 14.20 [Stopping and starting in
shared libraries], page 176.

A catchpoint is another special breakpoint that stops your program when a certain kind
of event occurs, such as the throwing of a C++ exception or the loading of a library. As with
watchpoints, you use a different command to set a catchpoint (see Section 5.1.2 [Setting
catchpoints|, page 37), but aside from that, you can manage a catchpoint like any other
breakpoint. (To stop when your program receives a signal, use the handle command; see
Section 5.3 [Signals|, page 46.)

GDB assigns a number to each breakpoint, watchpoint, or catchpoint when you create
it; these numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled or disabled; if disabled,
it has no effect on your program until you enable it again.

Some GDB commands accept a range of breakpoints on which to operate. A breakpoint
range is either a single breakpoint number, like ‘5’, or two such numbers, in increasing
order, separated by a hyphen, like ‘6-7". When a breakpoint range is given to a command,
all breakpoint in that range are operated on.

5.1.1 Setting breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger conve-
nience variable ‘$bpnum’ records the number of the breakpoint you've set most recently;

34 Debugging with GDB

see Section 8.9 [Convenience variables|, page 75, for a discussion of what you can do with
convenience variables.

You have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to function function. When using source languages
that permit overloading of symbols, such as C++, function may refer to more
than one possible place to break. See Section 5.1.7 [Breakpoint menus|, page 42,
for a discussion of that situation.

break +offset

break -offset
Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected stack frame. (See Section 6.1
[Frames|, page 51, for a description of stack frames.)

break linenum
Set a breakpoint at line linenum in the current source file. The current source
file is the last file whose source text was printed. The breakpoint will stop your
program just before it executes any of the code on that line.

break filename :linenum
Set a breakpoint at line linenum in source file filename.

break filename :function
Set a breakpoint at entry to function function found in file filename. Specifying
a file name as well as a function name is superfluous except when multiple files
contain similarly named functions.

break *address
Set a breakpoint at address address. You can use this to set breakpoints in
parts of your program which do not have debugging information or source files.

break When called without any arguments, break sets a breakpoint at the next in-
struction to be executed in the selected stack frame (see Chapter 6 [Examining
the Stack], page 51). In any selected frame but the innermost, this makes your
program stop as soon as control returns to that frame. This is similar to the
effect of a finish command in the frame inside the selected frame—except that
finish does not leave an active breakpoint. If you use break without an argu-
ment in the innermost frame, GDB stops the next time it reaches the current
location; this may be useful inside loops.

GDB normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to pro-
ceed past a breakpoint without first disabling the breakpoint. This rule applies
whether or not the breakpoint already existed when your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero—that is, if cond
evaluates as true. ‘...’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Section 5.1.5 [Break
conditions], page 40, for more information on breakpoint conditions.

Chapter 5: Stopping and Continuing 35

tbreak args
Set a breakpoint enabled only for one stop. args are the same as for the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted after the first time your program stops there. See Sec-
tion 5.1.4 [Disabling breakpoints|, page 39.

hbreak args

Set a hardware-assisted breakpoint. args are the same as for the break com-
mand and the breakpoint is set in the same way, but the breakpoint requires
hardware support and some target hardware may not have this support. The
main purpose of this is EPROM/ROM code debugging, so you can set a break-
point at an instruction without changing the instruction. This can be used
with the new trap-generation provided by SPARClite DSU and some x86-based
targets. These targets will generate traps when a program accesses some data
or instruction address that is assigned to the debug registers. However the
hardware breakpoint registers can take a limited number of breakpoints. For
example, on the DSU, only two data breakpoints can be set at a time, and GDB
will reject this command if more than two are used. Delete or disable unused
hardware breakpoints before setting new ones (see Section 5.1.4 [Disabling],
page 39). See Section 5.1.5 [Break conditions], page 40.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. args are the
same as for the hbreak command and the breakpoint is set in the same way.
However, like the tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbreak command,
the breakpoint requires hardware support and some target hardware may not
have this support. See Section 5.1.4 [Disabling breakpoints], page 39. See also
Section 5.1.5 [Break conditions], page 40.

rbreak regex
Set breakpoints on all functions matching the regular expression regex. This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.

The syntax of the regular expression is the standard one used with tools like
‘grep’. Note that this is different from the syntax used by shells, so for instance
foo* matches all functions that include an fo followed by zero or more os. There
is an implicit .* leading and trailing the regular expression you supply, so to
match only functions that begin with foo, use “foo.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.

info breakpoints [n]

info break [n]

info watchpoints [n]
Print a table of all breakpoints, watchpoints, and catchpoints set and not
deleted, with the following columns for each breakpoint:

36 Debugging with GDB

Breakpoint Numbers

Type Breakpoint, watchpoint, or catchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted when
hit.

Enabled or Disabled
Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints
that are not enabled.

Address Where the breakpoint is in your program, as a memory address.

What Where the breakpoint is in the source for your program, as a file
and line number.

If a breakpoint is conditional, info break shows the condition on the line fol-
lowing the affected breakpoint; breakpoint commands, if any, are listed after
that.

info break with a breakpoint number n as argument lists only that break-
point. The convenience variable $_ and the default examining-address for the
x command are set to the address of the last breakpoint listed (see Section 8.5
[Examining memory|, page 67).

info break displays a count of the number of times the breakpoint has been
hit. This is especially useful in conjunction with the ignore command. You
can ignore a large number of breakpoint hits, look at the breakpoint info to see
how many times the breakpoint was hit, and then run again, ignoring one less
than that number. This will get you quickly to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are conditional,
this is even useful (see Section 5.1.5 [Break conditions], page 40).

GDB itself sometimes sets breakpoints in your program for special purposes, such as
proper handling of longjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with -1; ‘info breakpoints’ does not display them.

You can see these breakpoints with the GDB maintenance command ‘maint info
breakpoints’.

maint info breakpoints
Using the same format as ‘info breakpoints’, display both the breakpoints
you've set explicitly, and those GDB is using for internal purposes. Internal
breakpoints are shown with negative breakpoint numbers. The type column
identifies what kind of breakpoint is shown:

breakpoint
Normal, explicitly set breakpoint.

watchpoint
Normal, explicitly set watchpoint.

longjmp Internal breakpoint, used to handle correctly stepping through
longjmp calls.

Chapter 5: Stopping and Continuing 37

longjmp resume
Internal breakpoint at the target of a longjmp.

until Temporary internal breakpoint used by the GDB until command.
finish Temporary internal breakpoint used by the GDB finish command.

shlib events
Shared library events.

5.1.2 Setting catchpoints

You can use catchpoints to cause the debugger to stop for certain kinds of program
events, such as C++ exceptions or the loading of a shared library. Use the catch command
to set a catchpoint.

catch event
Stop when event occurs. event can be any of the following;:

throw The throwing of a C++ exception.

catch The catching of a C++ exception.

exec A call to exec. This is currently only available for HP-UX.
fork A call to fork. This is currently only available for HP-UX.
vfork A call to vfork. This is currently only available for HP-UX.
load

load libname
The dynamic loading of any shared library, or the loading of the
library libname. This is currently only available for HP-UX.

unload

unload libname
The unloading of any dynamically loaded shared library, or the
unloading of the library libname. This is currently only available
for HP-UX.

tcatch event
Set a catchpoint that is enabled only for one stop. The catchpoint is automat-
ically deleted after the first time the event is caught.

Use the info break command to list the current catchpoints.

There are currently some limitations to C++ exception handling (catch throw and catch
catch) in GDB:

e If you call a function interactively, GDB normally returns control to you when the
function has finished executing. If the call raises an exception, however, the call may
bypass the mechanism that returns control to you and cause your program either to
abort or to simply continue running until it hits a breakpoint, catches a signal that
GDB is listening for, or exits. This is the case even if you set a catchpoint for the
exception; catchpoints on exceptions are disabled within interactive calls.

38 Debugging with GDB

e You cannot raise an exception interactively.

e You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling: if you need to know
exactly where an exception is raised, it is better to stop before the exception handler is
called, since that way you can see the stack before any unwinding takes place. If you set
a breakpoint in an exception handler instead, it may not be easy to find out where the
exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of GNU C++, exceptions are raised by calling a library function
named __raise_exception which has the following ANSI C interface:

/* addr is where the exception identifier is stored.
id is the exception identifier. =x/
void __raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding takes place, set a
breakpoint on __raise_exception (see Section 5.1 [Breakpoints; watchpoints; and excep-
tions], page 33).

With a conditional breakpoint (see Section 5.1.5 [Break conditions], page 40) that de-
pends on the value of id, you can stop your program when a specific exception is raised.
You can use multiple conditional breakpoints to stop your program when any of a number
of exceptions are raised.

5.1.3 Deleting breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has
done its job and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in your
program. With the delete command you can delete individual breakpoints, watchpoints,
or catchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores
breakpoints on the first instruction to be executed when you continue execution without
changing the execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected
stack frame (see Section 6.5 [Selecting a frame|, page 53). When the innermost
frame is selected, this is a good way to delete a breakpoint where your program
just stopped.

clear function
clear filename :function
Delete any breakpoints set at entry to the function function.

clear linenum
clear filename:linenum
Delete any breakpoints set at or within the code of the specified line.

Chapter 5: Stopping and Continuing 39

delete [breakpoints| [range. . .]
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint ranges
specified as arguments. If no argument is specified, delete all breakpoints (GDB
asks confirmation, unless you have set confirm off). You can abbreviate this
command as d.

5.1.4 Disabling breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable
it. This makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you can enable it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with the enable and
disable commands, optionally specifying one or more breakpoint numbers as arguments.
Use info break or info watch to print a list of breakpoints, watchpoints, and catchpoints
if you do not know which numbers to use.

A breakpoint, watchpoint, or catchpoint can have any of four different states of enable-
ment:

e Enabled. The breakpoint stops your program. A breakpoint set with the break com-
mand starts out in this state.

e Disabled. The breakpoint has no effect on your program.
e Enabled once. The breakpoint stops your program, but then becomes disabled.

e Enabled for deletion. The breakpoint stops your program, but immediately after it
does so it is deleted permanently. A breakpoint set with the tbreak command starts
out in this state.

You can use the following commands to enable or disable breakpoints, watchpoints, and
catchpoints:

disable [breakpoints| [range. . .]
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the breakpoint
is enabled again later. You may abbreviate disable as dis.

enable [breakpoints| [range. . .]
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints| once range. ..
Enable the specified breakpoints temporarily. GDB disables any of these break-
points immediately after stopping your program.

enable [breakpoints| delete range. ..
Enable the specified breakpoints to work once, then die. GDB deletes any of
these breakpoints as soon as your program stops there.

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting breakpoints],
page 33), breakpoints that you set are initially enabled; subsequently, they become

40 Debugging with GDB

disabled or enabled only when you use one of the commands above. (The command until
can set and delete a breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 [Continuing and stepping], page 44.)

5.1.5 Break conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is just a Boolean expression
in your programming language (see Section 8.1 [Expressions|, page 63). A breakpoint with
a condition evaluates the expression each time your program reaches it, and your program
stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C, if
you want to test an assertion expressed by the condition assert, you should set the condition
‘I assert’ on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint
is inspecting the value of an expression anyhow—but it might be simpler, say, to just set a
watchpoint on a variable name, and specify a condition that tests whether the new value is
an interesting one.

Break conditions can have side effects, and may even call functions in your program.
This can be useful, for example, to activate functions that log program progress, or to
use your own print functions to format special data structures. The effects are completely
predictable unless there is another enabled breakpoint at the same address. (In that case,
GDB might see the other breakpoint first and stop your program without checking the
condition of this one.) Note that breakpoint commands are usually more convenient and
flexible than break conditions for the purpose of performing side effects when a breakpoint
is reached (see Section 5.1.6 [Breakpoint command lists], page 41).

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the break command. See Section 5.1.1 [Setting breakpoints]|, page 33. They can also be
changed at any time with the condition command.

You can also use the if keyword with the watch command. The catch command does
not recognize the if keyword; condition is the only way to impose a further condition on
a catchpoint.

condition bnum expression

Specify expression as the break condition for breakpoint, watchpoint, or catch-
point number bnum. After you set a condition, breakpoint bnum stops your
program only if the value of expression is true (nonzero, in C). When you
use condition, GDB checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in the context of your
breakpoint. If expression uses symbols not referenced in the context of the
breakpoint, GDB prints an error message:

No symbol "foo" in current context.

GDB does not actually evaluate expression at the time the condition command
(or a command that sets a breakpoint with a condition, like break if ...) is
given, however. See Section 8.1 [Expressions]|, page 63.

Chapter 5: Stopping and Continuing 41

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if
your program reaches a breakpoint whose ignore count is positive, then instead of stopping,
it just decrements the ignore count by one and continues. As a result, if the ignore count
value is n, the breakpoint does not stop the next n times your program reaches it.

ignore bnum count
Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, your program’s execution does not stop; other
than to decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a break-
point, you can specify an ignore count directly as an argument to continue,
rather than using ignore. See Section 5.2 [Continuing and stepping], page 44.

If a breakpoint has a positive ignore count and a condition, the condition is
not checked. Once the ignore count reaches zero, GDB resumes checking the
condition.

You could achieve the effect of the ignore count with a condition such as
‘$foo-- <= 0’ using a debugger convenience variable that is decremented each
time. See Section 8.9 [Convenience variables], page 75.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

5.1.6 Breakpoint command lists

You can give any breakpoint (or watchpoint or catchpoint) a series of commands to
execute when your program stops due to that breakpoint. For example, you might want to
print the values of certain expressions, or enable other breakpoints.

commands |bnum]
. command-1list ...
end Specify a list of commands for breakpoint number bnum. The commands them-
selves appear on the following lines. Type a line containing just end to terminate
the commands.

To remove all commands from a breakpoint, type commands and follow it im-
mediately with end; that is, give no commands.

With no bnum argument, commands refers to the last breakpoint, watchpoint,
or catchpoint set (not to the breakpoint most recently encountered).

Pressing as a means of repeating the last GDB command is disabled within a
command-list.

42 Debugging with GDB

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are
ignored. This is because any time you resume execution (even with a simple next or step),
you may encounter another breakpoint—which could have its own command list, leading
to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled output,
and are often useful in silent breakpoints. See Section 18.4 [Commands for controlled
output], page 268.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever x is positive.

break foo if x>0
commands

silent

printf "x is %d\n",x
cont

end

One application for breakpoint commands is to compensate for one bug so you can test
for another. Put a breakpoint just after the erroneous line of code, give it a condition
to detect the case in which something erroneous has been done, and give it commands to
assign correct values to any variables that need them. End with the continue command so
that your program does not stop, and start with the silent command so that no output
is produced. Here is an example:

break 403
commands
silent

set x =y + 4
cont

end

5.1.7 Breakpoint menus

Some programming languages (notably C++) permit a single function name to be de-
fined several times, for application in different contexts. This is called overloading. When a
function name is overloaded, ‘break function’ is not enough to tell GDB where you want
a breakpoint. If you realize this is a problem, you can use something like ‘break func-
tion (types)’ to specify which particular version of the function you want. Otherwise,
GDB offers you a menu of numbered choices for different possible breakpoints, and waits
for your selection with the prompt ‘>’. The first two options are always ‘[0] cancel’ and

Chapter 5: Stopping and Continuing 43

‘[1] all’. Typing 1 sets a breakpoint at each definition of function, and typing 0 aborts
the break command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbol String: :after. We choose three particular definitions of that function
name:

((gdb)) b String::after

[0] cancel

[1] all

[2] file:String.cc; line number:867

[3] file:String.cc; line number:860

[4] file:String.cc; line number:875

[6] file:String.cc; line number:853

[6] file:String.cc; line number:846

[7] file:String.cc; line number:735

>246

Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at Oxb344: file String.cc, line 875.
Breakpoint 3 at Oxafcc: file String.cc, line 846.
Multiple breakpoints were set.

Use the "delete" command to delete unwanted
breakpoints.

((gdb))

5.1.8 “Cannot insert breakpoints”

Under some operating systems, breakpoints cannot be used in a program if any other
process is running that program. In this situation, attempting to run or continue a program
with a breakpoint causes GDB to print an error message:

Cannot insert breakpoints.
The same program may be running in another process.

When this happens, you have three ways to proceed:

1. Remove or disable the breakpoints, then continue.

2. Suspend GDB, and copy the file containing your program to a new name. Resume
GDB and use the exec-file command to specify that GDB should run your program
under that name. Then start your program again.

3. Relink your program so that the text segment is nonsharable, using the linker option
‘~N’. The operating system limitation may not apply to nonsharable executables.

A similar message can be printed if you request too many active hardware-assisted
breakpoints and watchpoints:

Stopped; cannot insert breakpoints.
You may have requested too many hardware breakpoints and watchpoints.

This message is printed when you attempt to resume the program, since only then GDB
knows exactly how many hardware breakpoints and watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the hardware-
assisted breakpoints and watchpoints, and then continue.

44 Debugging with GDB

5.2 Continuing and stepping

Continuing means resuming program execution until your program completes normally.
In contrast, stepping means executing just one more “step” of your program, where “step”
may mean either one line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing or when stepping, your program may
stop even sooner, due to a breakpoint or a signal. (If it stops due to a signal, you may want
to use handle, or use ‘signal 0’ to resume execution. See Section 5.3 [Signals|, page 46.)

continue [ignore-count|

c [ignore-count]

fg [ignore-count|
Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
ignore-count allows you to specify a further number of times to ignore a break-
point at this location; its effect is like that of ignore (see Section 5.1.5 [Break
conditions], page 40).

The argument ignore-count is meaningful only when your program stopped due
to a breakpoint. At other times, the argument to continue is ignored.

The synonyms c and fg (for foreground, as the debugged program is deemed
to be the foreground program) are provided purely for convenience, and have
exactly the same behavior as continue.

To resume execution at a different place, you can use return (see Section 11.4 [Returning
from a function], page 99) to go back to the calling function; or jump (see Section 11.2
[Continuing at a different address]|, page 98) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;
watchpoints; and catchpoints], page 33) at the beginning of the function or the section
of your program where a problem is believed to lie, run your program until it stops at
that breakpoint, and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a different source line,
then stop it and return control to GDB. This command is abbreviated s.

Warning: 1f you use the step command while control is within
a function that was compiled without debugging information, ex-
ecution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function
which is compiled without debugging information. To step through
functions without debugging information, use the stepi command,
described below.

The step command only stops at the first instruction of a source line. This
prevents the multiple stops that could otherwise occur in switch statements, for
loops, etc. step continues to stop if a function that has debugging information
is called within the line. In other words, step steps inside any functions called
within the line.

Chapter 5: Stopping and Continuing 45

step count

Also, the step command only enters a function if there is line number infor-
mation for the function. Otherwise it acts like the next command. This avoids
problems when using cc -g1 on MIPS machines. Previously, step entered sub-
routines if there was any debugging information about the routine.

Continue running as in step, but do so count times. If a breakpoint is reached,
or a signal not related to stepping occurs before count steps, stepping stops
right away.

next [count]|

finish

until

Continue to the next source line in the current (innermost) stack frame. This
is similar to step, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stack level that was executing when you gave the
next command. This command is abbreviated n.

An argument count is a repeat count, as for step.

The next command only stops at the first instruction of a source line. This
prevents multiple stops that could otherwise occur in switch statements, for
loops, etc.

Continue running until just after function in the selected stack frame returns.
Print the returned value (if any).

Contrast this with the return command (see Section 11.4 [Returning from a
function], page 99).

Continue running until a source line past the current line, in the current stack
frame, is reached. This command is used to avoid single stepping through a loop
more than once. It is like the next command, except that when until encoun-
ters a jump, it automatically continues execution until the program counter is
greater than the address of the jump.

This means that when you reach the end of a loop after single stepping though
it, until makes your program continue execution until it exits the loop. In con-
trast, a next command at the end of a loop simply steps back to the beginning
of the loop, which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.
until may produce somewhat counterintuitive results if the order of machine
code does not match the order of the source lines. For example, in the following
excerpt from a debugging session, the f (frame) command shows that execution
is stopped at line 206; yet when we use until, we get to line 195:

((gdb)) £

#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input () ;

((gdb)) until

195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated
code for the loop closure test at the end, rather than the start, of the loop—

46 Debugging with GDB

even though the test in a C for-loop is written before the body of the loop.
The until command appeared to step back to the beginning of the loop when
it advanced to this expression; however, it has not really gone to an earlier
statement—mnot in terms of the actual machine code.

until with no argument works by means of single instruction stepping, and
hence is slower than until with an argument.

until location

u location
Continue running your program until either the specified location is reached,
or the current stack frame returns. location is any of the forms of argument
acceptable to break (see Section 5.1.1 [Setting breakpoints|, page 33). This form
of the command uses breakpoints, and hence is quicker than until without an

argument.

stepi

stepi arg

si Execute one machine instruction, then stop and return to the debugger.
It is often useful to do ‘display/i $pc’ when stepping by machine instructions.
This makes GDB automatically display the next instruction to be executed,
each time your program stops. See Section 8.6 [Automatic display|, page 68.
An argument is a repeat count, as in step.

nexti

nexti arg

ni Execute one machine instruction, but if it is a function call, proceed until the

function returns.

An argument is a repeat count, as in next.

5.3 Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For example,
in Unix SIGINT is the signal a program gets when you type an interrupt character (often C-
c); SIGSEGV is the signal a program gets from referencing a place in memory far away from
all the areas in use; SIGALRM occurs when the alarm clock timer goes off (which happens
only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (they kill your program
immediately) if the program has not specified in advance some other way to handle the
signal. SIGINT does not indicate an error in your program, but it is normally fatal so it can
carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tell
GDB in advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to
interfere with their role in the functioning of your program) but to stop your program

Chapter 5: Stopping and Continuing 47

immediately whenever an error signal happens. You can change these settings with the
handle command.

Note: Use caution if you disable all signals from certain processes. Disabling
‘SIGTRAP’ in your program may cause your program to hang.

HP-UX uses ‘SIGTRAP’ to communicate with the debugger. If you disable all
signals from certain processes so that signals will be delivered to the right
process, your program may hang when you try to debug it. This behavior occurs
because if you disable ‘SIGTRAP’, the debugger no longer receives notification
of events such as breakpoint hits and loading or unloading of shared libraries.

To prevent this problem:

Make certain you set this flag:

(gdb) set complain-if-sigtrap-disabled on

Also make certain the following warning was not emitted by the debugger before
your program hung:

Warning: Thread %d (in process %d) has disabled SIGTRAPs.
Debugging this thread is probably impossible.

If you do not want to see this message again, use:

"set complain-if-sigtrap-disabled 0"

info signals
info handle

Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types of
signals.

info handle is an alias for info signals.

handle signal keywords...

Change the way GDB handles signal signal. signal can be the number of a
signal or its name (with or without the ‘SIG’ at the beginning). The keywords
say what change to make.

The keywords allowed by the handle command can be abbreviated. Their full names

are:

nostop

stop

print

noprint

pass

nopass

GDB should not stop your program when this signal happens. It may still print
a message telling you that the signal has come in.

GDB should stop your program when this signal happens. This implies the
print keyword as well.

GDB should print a message when this signal happens.

GDB should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

GDB should allow your program to see this signal; your program can handle
the signal, or else it may terminate if the signal is fatal and not handled.

GDB should not allow your program to see this signal.

48 Debugging with GDB

When a signal stops your program, the signal is not visible to the program until you
continue. Your program sees the signal then, if pass is in effect for the signal in question
at that time. In other words, after GDB reports a signal, you can use the handle command
with pass or nopass to control whether your program sees that signal when you continue.

You can also use the signal command to prevent your program from seeing a signal, or
cause it to see a signal it normally would not see, or to give it any signal at any time. For
example, if your program stopped due to some sort of memory reference error, you might
store correct values into the erroneous variables and continue, hoping to see more execution;
but your program would probably terminate immediately as a result of the fatal signal once
it saw the signal. To prevent this, you can continue with ‘signal 0’. See Section 11.3
[Giving your program a signal], page 99.

5.4 Stopping and starting multi-thread programs

When your program has multiple threads (see Section 4.9 [Debugging programs with
multiple threads], page 28), you can choose whether to set breakpoints on all threads, or
on a particular thread.

break linespec thread threadno

break linespec thread threadno if ...
linespec specifies source lines; there are several ways of writing them, but the
effect is always to specify some source line.

Use the qualifier ‘thread threadno’ with a breakpoint command to specify
that you only want GDB to stop the program when a particular thread reaches
this breakpoint. threadno is one of the numeric thread identifiers assigned by
GDB, shown in the first column of the ‘info threads’ display.

If you do not specify ‘thread threadno’ when you set a breakpoint, the break-
point applies to all threads of your program.

You can use the thread qualifier on conditional breakpoints as well; in this
case, place ‘thread threadno’ before the breakpoint condition, like this:
((gdb)) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution stop,
not just the current thread. This allows you to examine the overall state of the program,
including switching between threads, without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start executing. This is true
even when single-stepping with commands like step or next.

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling
is up to your debugging target’s operating system (not controlled by GDB), other threads
may execute more than one statement while the current thread completes a single step.
Moreover, in general other threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or even
single-stepping. This happens whenever some other thread runs into a breakpoint, a signal,
or an exception before the first thread completes whatever you requested.

Chapter 5: Stopping and Continuing 49

On some OSes, you can lock the OS scheduler and thus allow only a single thread to
run.

set scheduler-locking mode

Set the scheduler locking mode. If it is off, then there is no locking and any
thread may run at any time. If on, then only the current thread may run
when the inferior is resumed. The step mode optimizes for single-stepping.
It stops other threads from “seizing the prompt” by preempting the current
thread while you are stepping. Other threads will only rarely (or never) get a
chance to run when you step. They are more likely to run when you ‘next’ over
a function call, and they are completely free to run when you use commands
like ‘continue’, ‘until’, or ‘finish’. However, unless another thread hits a
breakpoint during its timeslice, they will never steal the GDB prompt away
from the thread that you are debugging.

show scheduler-locking
Display the current scheduler locking mode.

50

Debugging with GDB

Chapter 6: Examining the Stack 51

6 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped
and how it got there.

Each time your program performs a function call, information about the call is gener-
ated.The information includes the location of the call in your program, the arguments of
the call, and the local variables of the function being called. The information is saved in a
block of data called a stack frame. The stack frames are allocated in a region of memory
called the call stack.

The GDB commands for examining the stack allow you to view all of this information.

6.1 Stack frames

The call stack is divided up into contiguous pieces called stack frames, or frames for
short; each frame is the data associated with one call to one function. The frame contains
the arguments given to the function, the local variables, and the address at which the
function is executing.

When your program is started, the stack has only one frame, that of the function main.
This is called the initial frame or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation
is eliminated. If a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer has a
convention for choosing one byte whose address serves as the address of the frame. Usually
this address is kept in a register called the frame pointer register while execution is going
on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost
frame, one for the frame that called it, and so on upward. These numbers do not really
exist in your program; they are assigned by GDB to give you a way of designating stack
frames in GDB commands.

One of the stack frames is selected by GDB and the GDB commands refer implicitly to
the selected frame. In particular, whenever you ask GDB for the value of a variable in your
program, the value is found in the selected frame. There are special GDB commands to
select whichever frame you are interested in. See Section 6.5 [Selecting a frame], page 53.

When your program stops, GDB automatically selects the currently executing frame and
describes it briefly, similar to the frame command (see Section 6.6 [Information about a
frame], page 54).

6.2 Stacks Without frames

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, the gce option

52 Debugging with GDB

‘~fomit-frame-pointer’
generates functions without a frame.) This is occasionally done with heavily used li-
brary functions to save the frame setup time. GDB has limited facilities for dealing with
these function invocations. If the innermost function invocation has no stack frame, GDB
nevertheless regards it as though it had a separate frame, which is numbered zero as usual,
allowing correct tracing of the function call chain. However, GDB has no provision for
frameless functions elsewhere in the stack.

6.3 Commands for Examining the Stack

The following commands are used for examining the stack:

frame args
Select and print a stack frame. With no argument, prints the selected stack
frame. An argument specifies the frame to select. It can be a stack frame
number or the address of the frame. With argument, nothing is printed if input
is coming from a command file or a user-defined command.

select-frame
The select-frame command allows you to move from one stack frame to an-
other without printing the frame. This is the silent version of frame.

6.4 Backtraces

A backtrace is a report of the active stack frames instantiated by the execution of a
program. It shows one line per frame, for all the active frames, starting with the currently
executing frame (frame zero), followed by its caller (frame one), and on up the stack.

The following commands are used for backtrace:

backtrace
bt Print a backtrace of the entire stack: one line per frame for all frames in the
stack.

You can stop the backtrace at any time by typing the system interrupt charac-
ter, normally C-c.

backtrace n
bt n Similar, but print only the innermost n frames.

backtrace -n
bt -n Similar, but print only the outermost n frames.

backtrace-other-thread
Print backtrace of all stack frames for a thread with stack pointer SP and
program counter PC. This command is useful in cases where the debugger does
not support a user thread package fully.

The names where and info stack (abbreviated info s) are additional aliases for
backtrace.

Chapter 6: Examining the Stack 53

Each line in the backtrace shows the frame number and the function name. The program
counter value is also shown—unless you use set print address off. The backtrace also
shows the source file name and line number, as well as the arguments to the function. The
program counter value is omitted if it is at the beginning of the code for that line number.

Here is an example of a backtrace. It was made with the command ‘bt 3’, so it shows
the innermost three frames.
#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993
#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
at macro.c:71
(More stack frames follow...)
The display for frame zero does not begin with a program counter value, indicating that

your program has stopped at the beginning of the code for line 993 of builtin.c.
6.5 Selecting a frame

Most commands for examining the stack and other data in your program work on
whichever stack frame is selected at the moment.

The following commands are used for selecting a stack frame; all of them finish by
printing a brief description of the stack frame selected.

frame n

fn Select frame number n. Recall that frame zero is the innermost (currently
executing) frame, frame one is the frame that called the innermost one, and so
on. The highest-numbered frame is the one for main.

frame addr
f addr

Select the frame at address addr. This is useful mainly if the chaining of stack
frames has been damaged by a bug, making it impossible for GDB to assign
numbers properly to all frames. In addition, this can be useful when your
program has multiple stacks and switches between them.

Note:

e On the SPARC architecture, frame needs two addresses to select an arbi-
trary frame: a frame pointer and a stack pointer.

e On the MIPS and Alpha architecture, it needs two addresses: a stack
pointer and a program counter.

e On the 29k architecture, it needs three addresses: a register stack pointer,
a program counter, and a memory stack pointer.

up n Move n frames up the stack. For positive numbers n, this advances toward the
outermost frame, to higher frame numbers, to frames that have existed longer.
n defaults to one.

down n Move n frames down the stack. For positive numbers n, this advances toward
the innermost frame, to lower frame numbers, to frames that were created more
recently. n defaults to one. You may abbreviate down as do.

54 Debugging with GDB

All of these commands end by printing two lines of output describing the frame. The
first line shows the frame number, the function name, the arguments, and the source file
and line number of execution in that frame. The second line shows the text of that source
line.

For example:

((gdb)) up

#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
at env.c:10

10 read_input_file (argvl[il);

After such a printout, the 1ist command with no arguments prints ten lines centered
on the point of execution in the frame. See Section 7.1 [Printing source lines], page 57.

up-silently n

down-silently n
These two commands are variants of up and down, respectively; they differ
in that they do their work silently, without causing display of the new frame.
They are intended primarily for use in GDB command scripts, where the output
might be unnecessary and distracting.

6.6 Information about a frame

The following commands are used to print information about the selected stack frame:

frame

f When used without any argument, this command does not change which frame
is selected, but prints a brief description of the currently selected stack frame.
It can be abbreviated £. With an argument, this command is used to select a
stack frame. See Section 6.5 [Selecting a frame], page 53.

info frame
info f This command prints a verbose description of the selected stack frame, includ-
ing:
e the address of the frame
e the address of the next frame down (called by this frame)
e the address of the next frame up (caller of this frame)
e the language in which the source code corresponding to this frame is written
e the address of the frame’s arguments
e the address of the frame’s local variables

e the program counter saved in it (the address of execution in the caller
frame)

e which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made
the stack format fail to fit the usual conventions.

info frame addr

info f addr
Print a verbose description of the frame at address addr, without selecting that
frame. The selected frame remains unchanged by this command. This requires

Chapter 6: Examining the Stack 55

the same kind of address (more than one for some architectures) that you specify
in the frame command. See Section 6.5 [Selecting a frame], page 53.

info args Print the arguments of the selected frame, each on a separate line.

info locals
Print the local variables of the selected frame, each on a separate line. These
are all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

info catch
Print a list of all the exception handlers that are active in the current stack
frame at the current point of execution. To see other exception handlers, visit
the associated frame (using the up, down, or frame commands); then type info
catch. See Section 5.1.2 [Setting catchpoints]|, page 37.

56

Debugging with GDB

Chapter 7: Examining Source Files 57

7 Examining Source Files

GDB can print parts of the source code of your program, since the debugging information
recorded in the program tells GDB what source files were used to build it. When your
program stops, GDB spontaneously prints the line where it stopped. Likewise, when you
select a stack frame (see Section 6.5 [Selecting a frame], page 53), GDB prints the line where
execution in that frame has stopped. You can print other portions of source files by explicit
command.

You can invoke GDB from its GNU Emacs interface to view the source code see Chapter 19
[Using GDB under GNU Emacs|, page 269.

7.1 Printing source lines

To print lines from a source file, use the 1list command (abbreviated 1). By default, ten
lines are printed. There are several ways to specify what part of the file you want to print.

The following forms of the 1ist command are used:

list linenum
Prints lines centered around line number linenum in the current source file.

list function
Prints lines centered around the beginning of function function.

list Prints more lines. The list command prints lines following the lines printed
by a previously executed 1list command. If the command prior to executing
a list just printed the stack frame, then the list command only prints the
lines around that line.

list - Prints lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the 1ist command.

The number of lines printed by GDB can be set by the set listsize command. The
following two forms are supported:

set listsize count
Makes the 1ist command display count source lines (unless the 1ist argument
explicitly specifies some other number).

show listsize
Displays the number of lines that 1ist prints.

Repeating a list command with discards the argument, so it is equivalent to
typing just 1ist. This is more useful than listing the same lines again. An exception is
made for an argument of ‘=’; that argument is preserved in repetition so that each repetition
moves up in the source file.

In general, the 1ist command expects you to supply zero, one or two linespecs.

Linespecs specify source lines. There are several ways of writing them, but the most
common way is to specify some source line.

The following arguments can be given to the 1ist command:

58 Debugging with GDB

list linespec
Print lines centered around the line specified by linespec.

list first,last
Print lines from first to last. Both arguments must be linespecs.

list ,last
Print lines ending with Ilast.

list first,
Print lines starting with first.

list + Print lines just after the lines last printed.
list - Print lines just before the lines last printed.
list As described in the preceding table.

A single source line can be specified in the following ways:

number Specifies line number of the current source file. When a 1list command has
two linespecs, this refers to the same source file as the first linespec.

+offset Specifies the line offset lines after the last line printed. When used as the second
linespec in a 1ist command that has two, this specifies the line offset lines down
from the first linespec.

-offset Specifies the line offset lines before the last line printed.

filename :number
Specifies line number in the source file filename.

function Specifies the line that begins the body of the function function. For example:
in C, this is the line with the open brace.

filename :function
Specifies the line of the open-brace that begins the body of the function function
in the file filename. You only need the file name with a function name to avoid
ambiguity when there are identically named functions in different source files.

xaddress Specifies the line containing the program address address. address may be any
expression.

7.2 Searching source files

There are two commands for searching through the current source file for a regular
expression.

forward-search regexp

search regexp
The command ‘forward-search regexp’ checks each line, starting with one of
the following in the last line listed, for a match of the regexp. It lists the line
that is found. You can use the synonym ‘search regexp’ or abbreviate the
command name as fo.

Chapter 7: Examining Source Files 59

reverse-search regexp
The command ‘reverse-search regexp’ checks each line, starting with the
one before the last line listed and going backward, for a match for the regexp.
It lists the line(s) that is found. You can abbreviate this command as rev.

7.3 Specifying source directories

Executable programs sometimes do not record the directories of the source files from
which they were compiled. Even when they do, the directories can be moved between the
compilation and your debugging session. GDB has a list of directories to search for source
files; this is called the source path. Each time GDB looks for a source file, it tries all the
directories in the list, in the order they are present in the list, until it finds a file with the
desired name. Note that the executable search path is not used for this purpose. Neither
is the current working directory, unless it happens to be in the source path.

If GDB cannot find a source file in the source path, and the object program records a
directory, GDB tries that directory too. If the source path is empty, and there is no record
of the compilation directory, GDB looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, GDB clears out any information it has
cached about where the source files are located and where each line is in the respective file.

When you start GDB, its source path includes only ‘cdir’ and ‘cwd’, in that order.
To add other directories, you can use the directory command.

directory dirname ...

dir dirname ...
Add directory dirname to the front of the source path. Several directory names
may be given to this command, separated by ‘:’ (‘;” on MS-DOS and MS-
Windows, where ‘:” usually appears as part of absolute file names) or a white-
space. You can specify a directory that is already in the source path; this moves
it forward, so GDB searches it sooner.

You can use the string ‘$cdir’ to refer to the compilation directory (if one
is recorded), and ‘$cwd’ to refer to the current working directory. ‘$cwd’ is
not the same as ‘.’. The former tracks the current working directory as it
changes during your GDB session, while the latter is immediately expanded to
the current directory at the time you add an entry to the source path.

directory
Reset the source path to empty again. This requires confirmation from the
user.

show directories
Print the source path and display the directories it contains.

If your source path is cluttered with directories that are no longer of interest, GDB can
end up detecting the wrong version of the source. To correct this situation, follow these
steps:

1. Use directory with no arguments to reset the source path to empty.
2. Use directory with suitable arguments to reinstall the directories you want in the
source path. You can add all the directories in one command.

60 Debugging with GDB

7.4 Source and machine code

You can use the command info line to map source lines to program addresses (and
vice versa), and the command disassemble to display a range of addresses as machine
instructions. When run under GNU Emacs mode, the info line command causes the arrow
to point to the line specified. Also, info line prints addresses in symbolic form as well as
hex.

info line linespec
Print the starting and ending addresses of the compiled code for source line
linespec. You can specify source lines in any of the ways understood by the
list command (see Section 7.1 [Printing source lines|, page 57).

For example, we can use info line to discover the location of the object code for the
first line of function.

m4_changequote:

((gdb)) info line m4_changequote

Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source line covers a par-
ticular address. For example,

((gdb)) info line *0x63ff

Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the starting
address of the line, so that ‘x/i’ is sufficient to begin examining the machine code (see
Section 8.5 [Examining memory], page 67). Also, this address is saved as the value of the
convenience variable $_ (see Section 8.9 [Convenience variables], page 75).

disassemble
This specialized command dumps a range of memory as machine instructions.
The default memory range is the function surrounding the program counter of
the selected frame. A single argument to this command is a program counter
value; GDB dumps the function surrounding this value. Two arguments specify
a range of addresses (first inclusive, second exclusive) to dump.

The following example shows the disassembly of a range of addresses of HP PA-RISC
2.0 code:

((gdb)) disas 0x32c4 0x32e4
Dump of assembler code from 0x32c4 to 0x32e4:

0x32c4 <main+204>: addil 0,dp

0x32c8 <main+208>: 1dw 0x22c(sr0,r1),r26
0x32cc <main+212>: 1dil 0x3000,r31
0x32d0 <main+216>: ble 0x3f8(sr4,r31)
0x32d4 <main+220>: ldo 0(r31),rp

0x32d8 <main+224>: addil -0x800,dp
0x32dc <main+228>: 1do 0x588(r1),r26
0x32e0 <main+232>: 1dil 0x3000,r31

End of assembler dump.

Chapter 7: Examining Source Files 61

Some architectures have more than one commonly-used set of instruction mnemonics or
other syntax.

set disassembly-flavor instruction-set
Select the instruction set to use when disassembling the program via the
disassemble or x/i commands.

Currently this command is only defined for the Intel x86 family. You can set
instruction-set to either intel or att. The default is att, the AT&T flavor
used by default by Unix assemblers for x86-based targets.

62

Debugging with GDB

Chapter 8: Examining Data 63

8 Examining Data

The usual way to examine data in your program is with the print command (abbreviated
p), or its synonym inspect. It evaluates and prints the value of an expression of the
language your program is written in (see Chapter 9 [Using GDB with Different Languages],
page 79).

The following forms of print command are supported:

print expr

print /f expr
expr is an expression (in the source language). By default the value of expr is
printed in a format appropriate to its data type; you can choose a different for-
mat by specifying ‘/f’, where f is a letter specifying the format; see Section 8.4
[Output formats]|, page 66.

print

print /f If you omit expr, GDB displays the last value again (from the value history; see
Section 8.8 [Value history|, page 74). This allows you to conveniently inspect
the same value in an alternative format.

A more low-level way of examining data is with the x command. It examines data in
memory at a specified address and prints it in a specified format. See Section 8.5 [Examining
memory|, page 67.

If you are interested in information about types, or about how the fields of a struct
or a class are declared, use the ptype exp command rather than print. See Chapter 10
[Examining the Symbol Table], page 93.

8.1 Expressions

print and many other GDB commands accept an expression and compute its value. Any
kind of constant, variable or operator defined by the programming language you are using
is valid in an expression in GDB. This includes conditional expressions, function calls, casts
and string constants. It unfortunately does not include symbols defined by preprocessor
#define commands.

GDB supports array constants in expressions input by the user. The syntax is {element,
element. . .}. For example, you can use the command print {1, 2, 3} to build up an array
in memory that calls malloc in the target program.

Because C is so widespread, most of the expressions shown in examples in this manual
are in C. See Chapter 9 [Using GDB with Different Languages]|, page 79, for information
on how to use expressions in other languages.

In this section, we discuss operators that you can use in GDB expressions regardless of
your programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

GDB supports these operators, in addition to those common to programming languages:

64 Debugging with GDB

@ ‘@’ is a binary operator for treating parts of memory as arrays. Refer to See
Section 8.3 [Artificial arrays], page 65, for more information.

‘.17 allows you to specify a variable in terms of the file or function where it is
defined. See Section 8.2 [Program variables|, page 64.

{type} addr
Refers to an object of type type stored at address addr in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around binary operators, just as in a cast). This construct is allowed
regardless of what kind of data is normally supposed to reside at addr.

8.2 Program variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Section 6.5
[Selecting a frame]|, page 53); they must be either:

e global (or file-static)

or

e visible according to the scope rules of the programming language from the point of
execution in that frame

This means that in the function

foo (a)
int a;
{
bar (a);
{
int b = test ();
bar (b);
}
}

you can examine and use the variable a whenever your program is executing within the
function foo, but you can only use or examine the variable b while your program is executing
inside the block where b is declared.

However, you can refer to a variable or function whose scope is a single source file even if
the current execution point is not in this file. But it is possible to have more than one such
variable or function with the same name (in different source files). If that happens, referring
to that name has unpredictable effects. If you wish, you can specify a static variable in a
particular function or file, using the colon-colon notation:

file::variable
function: :variable

Here file or function is the name of the context for the static variable. In the case of file
names, you can use quotes to make sure GDB parses the file name as a single word. For
example, to print a global value of x defined in ‘f2.c’:

Chapter 8: Examining Data 65

((gdb)) p ’f2.c’::x
This use of ‘::’ is very rarely in conflict with the very similar use of the same notation
in C++. GDB also supports use of the C++ scope resolution operator in GDB expressions.

Warning: Occasionally, a local variable may appear to have the wrong value
at certain points in a function just after entry to a new scope, and just before
exit.

You may see this problem when you are stepping by machine instructions. This is
because, on most machines, it takes more than one instruction to set up a stack frame
(including local variable definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack frame; after you
begin stepping through that group of instructions, local variable definitions may be gone.

This may also happen when the compiler does significant optimizations. To be sure of
always seeing accurate values, turn off all optimization when compiling.

Another possible effect of compiler optimizations is to optimize unused variables out of
existence, or assign variables to registers (as opposed to memory addresses). Depending
on the support for such cases offered by the debug info format used by the compiler, GDB
might not be able to display values for such local variables. If that happens, GDB will print
a message like this:

No symbol "foo" in current context.

To solve such problems, either recompile without optimizations, or use a different debug
info format, if the compiler supports several such formats. For example, GCC, the GNU
C/C++ compiler usually supports the ‘-gstabs’ option. The ‘-gstabs’ produces debug
information in a format that is superior to formats such as COFF. You may be able to use
DWARF-2 (‘-gdwarf-2’), which is also an effective form for debug info. See Section 4.1
[Compiling for Debugging], page 23.

¢

8.3 Artificial arrays

It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a pointer
exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array, using
the binary operator ‘@’. The left operand of ‘@ should be the first element of the desired
array and be an individual object. The right operand should be the desired length of the
array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of
memory immediately following those that hold the first element, and so on. Here is an
example. If a program says

int *array = (int *) malloc (len * sizeof (int));
you can print the contents of array with
p *array@len

The left operand of ‘@ must reside in memory. Array values made with ‘@ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when

66 Debugging with GDB

used in expressions. Artificial arrays most often appear in expressions via the value history
(see Section 8.8 [Value history], page 74), after printing one out.

Another way to create an artificial array is to use a cast. This re-interprets a value as if
it were an array. The value need not be in memory:

((gdb)) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678%}

As a convenience, if you leave the array length out (as in ‘(type[1)value’), GDB
calculates the size to fill the value (as ‘sizeof (value)/sizeof (type)’:

((gdb)) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structures, the elements of interest may not actually be adjacent—for example, if you
are interested in the values of pointers in an array. One useful work-around in this situation
is to use a convenience variable (See (see Section 8.9 [Convenience variables|, page 75))
as a counter in an expression that prints the first interesting value, and then repeat that
expression via (RET). For instance, suppose you have an array dtab of pointers to structures,
and you are interested in the values of a field fv in each structure. Here is an example of
what you might type:

set $i = 0

p dtab[$i++]->fv
RET

RET

8.4 Output formats

By default, GDB prints a value according to its data type. Sometimes this is not what
you want. For example, you might want to print a number in hex, or a pointer in decimal.
Or you might want to view data in memory at a certain address as a character string or as
an instruction. To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

X Regard the bits of the value as an integer, and print the integer in hexadecimal.
d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o) Print as integer in octal.

t Print as integer in binary. The letter ‘t’ stands for “two”.!

1 4y cannot be used because these format letters are also used with the x command, where ‘b’ stands for
“byte”; see Section 8.5 [Examining memory]|, page 67.

Chapter 8: Examining Data 67

a Print as an address, both absolute in hexadecimal and as an offset from the
nearest preceding symbol. You can use this format used to discover where (in
what function) an unknown address is located:

((gdb)) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

c Regard as an integer and print it as a character constant.

f Regard the bits of the value as a floating point number and print using typical
floating point syntax.

For example, to print the program counter in hex (see Section 8.10 [Registers], page 77),
type
p/x $pc
Note that no space is required before the slash; this is because command names in GDB
cannot contain a slash.
To reprint the last value in the value history with a different format, you can use the

print command with just a format and no expression. For example, ‘p/x’ reprints the last
value in hex.

8.5 Examining memory

You can use the command x (for “examine”) to examine memory in any of several
formats, independent of your program data types.

x/nfu addr
x addr
X Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how
to format it; addr is an expression giving the address where you want to start displaying
memory. If you use defaults for nfu, you need not type the slash ‘/’. Several commands set
convenient defaults for addr.

n, the repeat count
The repeat count is a decimal integer and the default is 1. It specifies how
much memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print, ‘s’ (null-terminated
string), or ‘i’ (machine instruction). The default is ‘x” (hexadecimal) initially.
The default changes each time you use either x or print.

u, the unit size
The unit size is any of

b Bytes.
h Halfwords (two bytes).
W Words (four bytes). This is the initial default.

68 Debugging with GDB

g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the
next time you use x. (For the ‘s’ and ‘i’ formats, the unit size is ignored and
is normally not written.)

addr, starting display address

addr is the address where you want GDB to begin displaying memory. The ex-
pression need not have a pointer value (though it may); it is always interpreted
as an integer address of a byte of memory. Refer to See Section 8.1 [Expres-
sions], page 63, for more information on expressions. The default for addr is
usually just after the last address examined—but several other commands also
set the default address: info breakpoints (to the address of the last break-
point listed), info line (to the starting address of a line), and print (if you
use it to display a value from memory).

For example, ‘x/3uh 0x54320’ is a request to display three halfwords (h) of memory,
formatted as unsigned decimal integers (‘u’), starting at address 0x54320. ‘x/4xw $sp’
prints the four words (‘w’) of memory above the stack pointer (here, ‘$sp’; see Section 8.10
[Registers|, page 77) in hexadecimal (‘x’).

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either order
works. The output specifications ‘4xw’ and ‘4wx’ mean exactly the same thing. (However,
the count n must come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s’ and ‘i’, you might still want to
use a count n; for example, ‘31’ specifies that you want to see three machine instructions,
including any operands. The command disassemble gives an alternative way of inspecting
machine instructions; see Section 7.4 [Source and machine code|, page 60.

All the defaults for the arguments to x are designed to make it easy to continue scanning
memory with minimal specifications each time you use x. For example, after you have
inspected three machine instructions with ‘x/3i addr’, you can inspect the next seven with
just ‘x/7’. If you use to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

The addresses and contents printed by the x command are not saved in the value history
because there is often too much of them and they would get in the way. Instead, GDB
makes these values available for subsequent use in expressions as values of the convenience
variables $_ and $__. After an x command, the last address examined is available for use
in expressions in the convenience variable $_. The contents of that address, as examined,
are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units were
printed on the last line of output.

8.6 Automatic display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that GDB prints its

Chapter 8: Examining Data 69

value each time your program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38

3: bar[5] = (struct hack *) 0x3804
This display shows item numbers, expressions and their current values. As with displays
you request manually using x or print, you can specify the output format you prefer; in
fact, display decides whether to use print or x depending on how elaborate your format
specification is—it uses x if you specify a unit size, or one of the two formats (‘i’ and ‘s’)
that are only supported by x; otherwise it uses print.

display expr
Add the expression expr to the list of expressions to display each time your
program stops. See Section 8.1 [Expressions|, page 63.

display does not repeat if you press again after using it.

display/fmt expr
For fmt specifying only a display format and not a size or count, add the
expression expr to the auto-display list but arrange to display it each time in
the specified format fmt. See Section 8.4 [Output formats|, page 66.

display/fmt addr
For fmt ‘i’ or ‘s’, or including a unit-size or a number of units, add the expres-
sion addr as a memory address to be examined each time your program stops.
Examining means in effect doing ‘x/fmt addr’. See Section 8.5 [Examining
memory|, page 67.

For example, ‘display/i $pc’ can be helpful, to view the machine instruction about to
be executed each time execution stops (‘$pc’ is a common name for the program counter;
see Section 8.10 [Registers|, page 77).

undisplay dnums. ..
delete display dnums. ..
Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you press after using it. (Otherwise you
would just get the error ‘No display number ...".)

disable display dnums...
Disable the display of item numbers dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be enabled again later.

enable display dnums. ..
Enable display of item numbers dnums. It becomes effective once again in auto
display of its expression, until you specify otherwise.

display Display the current values of the expressions on the list, just as is done when
your program stops.

info display
Print the list of expressions previously set up to display automatically, each
one with its item number, but without showing the values. This includes dis-
abled expressions, which are marked as such. It also includes expressions which

70 Debugging with GDB

would not be displayed right now because they refer to automatic variables not
currently available.

If a display expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up. Such an expression is disabled when execution enters
a context where one of its variables is not defined. For example, if you give the command
display last_char while inside a function with an argument last_char, GDB displays
this argument while your program continues to stop inside that function. When it stops
elsewhere, where there is no variable last_char, the display is disabled automatically. The
next time your program stops where last_char is meaningful, you can enable the display
expression again.

8.7 Print settings

GDB provides the following ways to control how arrays, structures, and symbols are
printed.

These settings are useful for debugging programs in any language:

set print address
set print address on
GDB prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays the
contents of those addresses. The default is on. For example, this is what a
stack frame display looks like with set print address on:
((gdb)) £
#0 set_quotes (1g=0x34c78 "<<", rq=0x34c88 ">>")
at input.c:530
530 if (lquote != def_lquote)
set print address off
Do not print addresses when displaying their contents. For example, this is the
same stack frame displayed with set print address off:
((gdb)) set print addr off

((gdb)) f£
#0 set_quotes (lg="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)

You can use ‘set print address off’ to eliminate all machine dependent dis-
plays from the GDB interface. For example, with print address off, you
should get the same text for backtraces on all machines—whether or not they
involve pointer arguments.

show print address
Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest previous symbol
plus an offset. If that symbol does not uniquely identify the address (for example, it is a
name whose scope is a single source file), you may need to clarify it. One way to do this is
with info line. For example ‘info line *0x4537’. Alternately, you can set GDB to print
the source file and the line number when it prints a symbolic address:

Chapter 8: Examining Data 71

set print symbol-filename on
Tell GDB to print the source file name and line number of a symbol in the
symbolic form of an address.

set print symbol-filename off
Do not print source file name and line number of a symbol. This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and line number of a
symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and line numbers is when
disassembling code. GDB shows you the line number and source file that corresponds to
each instruction.

Also, you may wish to see the symbolic form only if the address being printed is reason-
ably close to the closest earlier symbol:

set print max-symbolic-offset max-offset
Tell GDB to only display the symbolic form of an address if the offset between
the closest symbol and the address is less than max-offset. The default is 0,
which tells GDB to always print the symbolic form of an address if any symbol
precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a symbolic address.

If you have a pointer and you are not sure where it points, try ‘set print
symbol-filename on’. Then you can determine the name and source file location of the
variable where it points, using ‘p/a pointer’. This interprets the address in symbolic
form. For example, here GDB shows that a variable ptt points at another variable t,
defined in ‘hi2.c’:

((gdb)) set print symbol-filename on
((gdb)) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, ‘p/a’ does not show the
symbol name and filename of the referent, even with the appropriate set print
options turned on.

Other settings to control how different kinds of objects are printed:

set print array

set print array on
Pretty print arrays. This format is more convenient to read, but uses more
space. The default is off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for displaying arrays.

72 Debugging with GDB

set print elements number-of-elements
Set a limit on how many elements of an array GDB will print. If GDB is printing
a large array, it stops printing after it has printed the number of elements set
by the set print elements command. This limit also applies to the display of
strings. When GDB starts, this limit is set to 200. Setting number-of-elements
to zero means that the printing is unlimited.

show print elements
Display the number of elements of a large array that GDB will print. If the
number is 0, then the printing is unlimited.

set print null-stop
Cause GDB to stop printing the characters of an array when the first NULL
is encountered. This is useful when large arrays actually contain only short
strings. The default is off.

set print pretty on
Cause GDB to print structures in an indented format with one member per
line, like this:

$1 = {
next = 0x0,
flags = {
sweet = 1,
sour = 1
},
meat = 0x54 "Pork"
}

set print pretty off
Cause GDB to print structures in a compact format, like this:
$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

This is the default format.

show print pretty
Show which format GDB is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set, GDB displays any
eight-bit characters (in strings or character values) using the notation \nnn.
This setting is best if you are working in English (Ascir) and you use the high-
order bit of characters as a marker or “meta” bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more international char-
acter sets, and is the default.

show print sevenbit-strings
Show whether or not GDB is printing only seven-bit characters.

set print union on
Tell GDB to print unions which are contained in structures. This is the default
setting.

Chapter 8: Examining Data 73

set print union off
Tell GDB not to print unions which are contained in structures.

show print union
Ask GDB whether or not it will print unions which are contained in structures.

For example, given the declarations

typedef enum {Tree, Bug} Species;

typedef enum {Big_tree, Acorn, Seedling} Tree_forms;

typedef enum {Caterpillar, Cocoon, Butterfly}
Bug_forms;

struct thing {
Species it;
union {
Tree_forms tree;
Bug_forms bug;
} form;

};

struct thing foo = {Tree, {Acorn}};

with set print union on in effect ‘p foo’ would print

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in effect it would print
$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle

set print demangle on
Print C++ names in their source form rather than in the encoded (“mangled”)
form passed to the assembler and linker for type-safe linkage. The default is
on.

show print demangle
Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle

set print asm-demangle on
Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies. The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in mangled or de-
mangled form.

set demangle-style style
Choose among several encoding schemes used by different compilers to represent
C++ names.

On HP-UX, WDB automatically chooses the appropriate style.

The choices for style currently supported are:

auto Allow GDB to choose a decoding style by inspecting your program.

74 Debugging with GDB

gnu Decode based on the GNU C++ compiler (g++) encoding algorithm.
hp Decode based on the HP ANSI C++ (aCC) encoding algorithm.

lucid Decode based on the Lucid C++ compiler (1cc) encoding algorithm.
arm Decode using the algorithm in the C++ Annotated Reference Man-

ual. Warning: this setting alone is not sufficient to allow debug-
ging cfront generated executables. GDB would require further
enhancement to permit that.

If you omit style, you will see a list of possible formats.

show demangle-style
Display the encoding style currently in use for decoding C++ symbols.

set print object

set print object on
When displaying a pointer to an object, identify the actual (derived) type of
the object rather than the declared type, using the virtual function table.

set print object off
Display only the declared type of objects, without reference to the virtual func-
tion table. This is the default setting.

show print object
Show whether actual, or declared, object types are displayed.

set print static-members
set print static-members on
Print static members when displaying a C++ object. The default is on.

set print static-members off
Do not print static members when displaying a C++ object.

show print static-members
Show whether C++ static members are printed, or not.

set print vtbl

set print vtbl on
Pretty print C++ virtual function tables. The default is off. (The vtbl com-
mands do not work on programs compiled with the HP ANSI C++ compiler
(aCC).)

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.

8.8 Value history

Values printed by the print command are saved in the GDB value history. This allows
you to refer to them in other expressions. Values are kept until the symbol table is re-read

Chapter 8: Examining Data 75

or discarded (for example with the file or symbol-file commands). When the symbol
table changes, the value history is discarded, since the values may contain pointers back to
the types defined in the symbol table.

The values printed are given history numbers by which you can refer to them. These
are a range of integers starting with one. print shows you the history number assigned to
a value by printing ‘$num =’ before the value; here num is the history number.

To refer to any previous value, use ‘$’ followed by the history number of the value. The
way print labels its output is designed to remind you of this. Just $ refers to the most
recent value in the history, and $$ refers to the value before that. $$n refers to the nth
value from the end; $$2 is the value just prior to $$, $$1 is equivalent to 3, and $$0 is
equivalent to $.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It suffices to type
p *$
If you have a chain of structures where the component next points to the next one, you
can print the contents of the next one with this:
p *$.next
You can print successive links in the chain by repeating this command using the key.

Note that the history records values, not expressions. If the value of x is 4 and you type
these commands:

print x
set x=b

then the value recorded in the value history by the print command remains 4 even though
the value of x has changed.

show values
Print the last ten values in the value history, with their item numbers. This is
like ‘p $$9’ repeated ten times, except that show values does not change the
history.

show values n
Print ten history values centered on history item number n.

show values +
Print ten history values following the values last printed. If no more values are
available, show values + produces no display.

Pressing to repeat show values n has exactly the same effect as ‘show values +’.

8.9 Convenience variables

GDB provides convenience variables that you can use within GDB to hold on to a value
and refer to it later. These variables exist entirely within GDB. They are not part of your
program, and setting a convenience variable has no direct effect on further execution of your
program. That is why you can use them freely.

76 Debugging with GDB

Convenience variables are prefixed with ‘¢’. Any name preceded by ‘$’ can be used for
a convenience variable, unless it is one of the predefined machine-specific register names
(see Section 8.10 [Registers|, page 77). (Value history references, in contrast, are numbers
preceded by ‘$’. See Section 8.8 [Value history|, page 74.)

You can save a value in a convenience variable with an assignment expression, just as
you would set a variable in your program. For example:

set $foo = *object_ptr
would save in $foo the value contained in the object pointed to by object_ptr.

Using a convenience variable for the first time creates it, but its value is void until you
assign a new value. You can alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any
type of value, including structures and arrays, even if that variable already has a value of
a different type. The convenience variable, when used as an expression, has the type of its
current value.

show convenience
Print a list of convenience variables used so far, and their values. Abbreviated
show conv.

A convenient variable can be used as a counter to be incremented or a pointer to be
advanced. For example, to print a field from successive elements of an array of structures:

set $1 =0
print bar[$i++]->contents

Repeat that command by typing ®RET).

Some convenience variables are created automatically by GDB and assigned values.

$_ The variable $_ is automatically set by the x command to the last address
examined (see Section 8.5 [Examining memory|, page 67). Other commands
which provide a default address for x to examine, also set $_ to that address.
These commands include info line and info breakpoint. The type of $_ is
void * except when set by the x command, in which case it is a pointer to the
type of $__.

$__ The variable $__ is automatically set by the x command to the value found in
the last address examined. Its type is chosen to match the format in which the
data was printed.

$_exitcode
The variable $_exitcode is automatically set to the exit code when the program
being debugged terminates.

On HP-UX systems, if you refer to a function or variable name that begins with a dollar
sign, GDB searches for a user or system name first, before it searches for a convenience
variable.

Chapter 8: Examining Data 77

8.10 Registers

You can refer to machine register contents, in expressions, as variables with names
starting with ‘$’. The names of registers are different for each machine. Use info registers
to view the names used on your machine.

info registers
Print the names and values of all registers except floating-point registers (in
the selected stack frame).

info all-registers
Print the names and values of all registers, including floating-point registers.

info registers regname ...
Print the relativized value of each specified register regname. As discussed in
detail below, register values are normally relative to the selected stack frame.
regname may be any register name valid on the machine you are using, with or
without the initial ‘$’.

GDB has four standard register names that are available (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical mnemonics for
registers. The register names $pc and $sp are used for the program counter register and
the stack pointer. $fp is used for a register that contains a pointer to the current stack
frame, and $ps is used for a register that contains the processor status. For example, you
could print the program counter in hex with

p/x $pc
or print the instruction to be executed next with

x/1i $pc
or add four to the stack pointer? with

set $sp += 4

Whenever possible, these four standard register names are available on your machine

even though the machine has different canonical mnemonics, so long as there is no conflict.
The info registers command shows the canonical names. For example, on the SPARC,

info registers displays the processor status register as $psr but you can also refer to it
as $ps; and on x86-based machines $ps is an alias for the EFLAGS register.

GDB always considers the contents of an ordinary register as an integer when the register
is examined in this way. Some machines have special registers which can hold nothing but
floating point; these registers are considered to have floating point values. There is no way
to refer to the contents of an ordinary register as floating point value (although you can
print it as a floating point value with ‘print/f $regname’).

Some registers have distinct raw and virtual data formats. This means that the data

format in which the register contents are saved by the operating system is not the same
one that your program normally sees. For example, the registers of the 68881 floating point

2 This is a way of removing one word from the stack, on machines where stacks grow downward in memory
(most machines, nowadays). This assumes that the innermost stack frame is selected; setting $sp is not
allowed when other stack frames are selected. To pop entire frames off the stack, regardless of machine
architecture, use return; see Section 11.4 [Returning from a function], page 99.

78 Debugging with GDB

coprocessor are always saved in “extended” (raw) format, but all C programs expect to work
with “double” (virtual) format. In such cases, GDB normally works with the virtual format
only (the format that makes sense for your program), but the info registers command
prints the data in both formats.

Normally, register values are relative to the selected stack frame (see Section 6.5 [Select-
ing a frame|, page 53). This means that you get the value that the register would contain
if all stack frames farther in were exited and their saved registers restored. In order to see
the true contents of hardware registers, you must select the innermost frame (with ‘frame
0).

However, GDB must deduce where registers are saved, from the machine code generated
by your compiler. If some registers are not saved, or if GDB is unable to locate the saved
registers, the selected stack frame makes no difference.

8.11 Printing Floating Point Values

You can print the values of floating-point registers in different formats.
To print both single and double-precision values:
(gdb) info reg $frb5
frb (single precision) 10.1444092
frb5
To get the bit pattern, try the following macro:
define pbits
set *((float *) $sp)=%arg0
p/x *((int *) $sp)
end
This is what the macro produces:

(gdb) pbits $£fr6
$1 = 0x4082852d

8.12 Floating point hardware

Depending on the configuration, GDB may be able to give you more information about
the status of the floating point hardware.

info float
Display hardware-dependent information about the floating point unit. The
exact contents and layout vary depending on the floating point chip. Currently,
‘info float’ is supported on the ARM and x86 machines.

Chapter 9: Using GDB with Different Languages 79

9 Using GDB with Different Languages

Although programming languages generally have common aspects, they are rarely ex-
pressed in the same manner. For instance, in ANSI C, dereferencing a pointer p is accom-
plished by *p, but in Modula-2, it is accomplished by p~. Values can also be represented
(and displayed) differently. Hex numbers in C appear as ‘Oxlae’, while in Modula-2 they
appear as ‘1AEH’.

Language-specific information is built into GDB for some languages, allowing you to
express operations like the above in the native language of your program, and allowing
GDB to output values in a manner consistent with the syntax of the native language. The
language you use to build expressions is called the working language.

9.1 Switching between source languages

There are two ways to control the working language. You can have GDB set it automat-
ically, or you can select it manually. You can use the set language command for either
purpose. On startup, GDB sets the default language automatically. The working language
is used to determine how expressions are interpreted, how values are printed, etc.

In addition to the working language, every source file that GDB knows about has its
own working language. For some object file formats, the compiler might indicate which
language a particular source file is in. However, most of the time GDB infers the language
from the name of the file. The language of a source file controls whether C++ names are
demangled—this way backtrace can show each frame appropriately for its own language.
There is no way to set the language of a source file from within GDB, but you can set the
language associated with a filename extension. See Section 9.2 [Displaying the language],
page 80.

This is a common problem when you use a program, such as cfront or £2c, that gen-
erates C but is written in another language. In that case, make the program use #line
directives in its C output; that way GDB will know the correct language of the source code
of the original program, and will display that source code, not the generated C code.

9.1.1 List of filename extensions and languages

If a source file name ends in one of the following extensions, then GDB infers that its
language is the one indicated.

‘.c’ C source file

4 C?
‘.cc’

‘-Cp’
4 9

. Cpp

‘oexx’

R = C++ source file

80 Debugging with GDB

3 . f?

[4 . F7

¢, £90’ Fortran source file. GDB does not distinguish between Fortran 77 and Fortran
90 files.

3 . S’

©.8’ Assembler source file. This actually behaves almost like C, but GDB does not

skip over function prologues when stepping.

In addition, you may set the language associated with a filename extension. See Sec-
tion 9.2 [Displaying the language], page 80.

9.1.2 Setting the working language

If you allow GDB to set the language automatically, expressions are interpreted the same
way in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the command ‘set
language lang’, where lang is the name of a language, such as c. For a list of the supported
languages, type ‘set language’.

Setting the language manually prevents GDB from updating the working language au-
tomatically. This can lead to confusion if you try to debug a program when the working
language is not the same as the source language, when an expression is acceptable to both
languages—but means different things. For instance, if the current source file were written
in C, and GDB was parsing Modula-2, a command such as:

print a = b + ¢
might not have the effect you intended. In C, this means to add b and ¢ and place the

result in a. The result printed would be the value of a. In Modula-2, this means to compare
a to the result of b+c, yielding a BOOLEAN value.

9.1.3 Having GDB infer the source language

To have GDB set the working language automatically, use ‘set language local’ or ‘set
language auto’. GDB then infers the working language. That is, when your program stops
in a frame (usually by encountering a breakpoint), GDB sets the working language to the
language recorded for the function in that frame. If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was defined in a source file that
does not have a recognized extension), the current working language is not changed, and
GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one source
language. However, program modules and libraries written in one source language can be
used by a main program written in a different source language. Using ‘set language auto’
in this case frees you from having to set the working language manually.

9.2 Displaying the language

The following commands help you find out which language is the working language, and
also what language source files were written in.

Chapter 9: Using GDB with Different Languages 81

show language
Display the current working language. This is the language you can use with
commands such as print to build and compute expressions that may involve
variables in your program.

info frame
Display the source language for this frame. This language becomes the working
language if you use an identifier from this frame. See Section 6.6 [Information
about a frame|, page 54, to identify the other information listed here.

info source
Display the source language of this source file. Refer to See Chapter 10 [Ex-
amining the Symbol Table], page 93, to identify the other information listed
here.

In unusual circumstances, you may have source files with extensions not in the standard
list. You can then set the extension associated with a language explicitly:

set extension-language .ext language
Set source files with extension .ext to be assumed to be in the source language
language. However, this is not valid on Unix systems.

info extensions
List all the filename extensions and the associated languages. Not valid on Unix
systems.

9.3 Type and range checking

Some languages are designed to guard you against making seemingly common errors
through a series of compile and run-time checks. These include checking the type of argu-
ments to functions and operators, and making sure mathematical overflows are caught at
run time. Checks such as these help to ensure the correctness of the program once it has
been compiled by eliminating type mismatches, and providing active checks for range errors
when your program is running.

GDB can check for conditions like the above if you wish. Although GDB does not check
the statements in your program, it can check expressions entered directly into GDB for
evaluation via the print command, for example. As with the working language, GDB
can also decide whether or not to check automatically based on your source language. See
Section 9.4 [Supported languages|, page 83, for the default settings of supported languages.

9.3.1 An overview of type checking

Some languages are strongly typed, meaning that the arguments to operators and func-
tions have to be of the correct type, otherwise an error occurs. These checks prevent type
mismatch errors from causing run-time problems. For example,

1+2 =3

1+2.3

but

82 Debugging with GDB

The second example fails because the CARDINAL 1 is not type-compatible with the REAL
2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker to
skip checking; to treat any mismatches as errors and abandon the expression; or to only
issue warnings when type mismatches occur, and evaluate the expression anyway. When
you choose the last of these, GDB evaluates expressions like the second example above, but
also issues a warning.

Even if you turn type checking off, there may be other reasons related to type that
prevent GDB from evaluating an expression. For instance, GDB does not know how to
add an int and a struct foo. These particular type errors have nothing to do with the
language in use, and usually arise from expressions, such as the one described above, which
make little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For instance C requires the
arguments to arithmetical operators to be numbers. In C, enumerated types and pointers
can be represented as numbers, so that they are valid arguments to mathematical operators.
See Section 9.4 [Supported languages|, page 83, for further details on specific languages.

GDB provides some additional commands for controlling the type checker:

set check type auto
Set type checking on or off based on the current working language. See Sec-
tion 9.4 [Supported languages|, page 83, for the default settings for each lan-

guage.

set check type on

set check type off
Set type checking on or off, overriding the default setting for the current working
language. Issue a warning if the setting does not match the language default.
If any type mismatches occur in evaluating an expression while type checking
is on, GDB prints a message and aborts evaluation of the expression.

set check type warn
Cause the type checker to issue warnings, but to always attempt to evaluate the
expression. Evaluating the expression may still be impossible for other reasons.
For example, GDB cannot add numbers and structures.

show type Show the current setting of the type checker, and whether or not GDB is setting
it automatically.

9.3.2 An overview of range checking

In some languages it is an error to exceed the bounds of a type; this is enforced with
run-time checks. Such range checking is meant to ensure program correctness by making
sure computations do not overflow, or indices on an array element access do not exceed the
bounds of the array.

For expressions you use in GDB commands, you can tell GDB to treat range errors in
one of three ways: ignore them, always treat them as errors and abandon the expression,
or issue warnings but evaluate the expression anyway.

Chapter 9: Using GDB with Different Languages 83

A range error can result from numerical overflow, from exceeding an array index bound,
or when you type a constant that is not a member of any type. Some languages, however,
do not treat overflows as an error. In many implementations of C, mathematical overflow
causes the result to “wrap around” to lower values—for example, if m is the largest integer
value, and s is the smallest, then

m+ 1 = s

This, too, is specific to individual languages, and in some cases specific to individual
compilers or machines. Refer to See Section 9.4 [Supported languages|, page 83, for further
details on specific languages.

GDB provides the following additional commands for controlling the range checker:

set check range auto
Set range checking on or off based on the current working language. See Sec-
tion 9.4 [Supported languages|, page 83, for the default settings for each lan-

guage.

set check range on

set check range off
Set range checking on or off, overriding the default setting for the current work-
ing language. A warning is issued if the setting does not match the default
language. If a range error occurs and range checking is on, then a message is
printed and evaluation of the expression is aborted.

set check range warn
Output messages when the GDB range checker detects a range error, but at-
tempt to evaluate the expression anyway. Evaluating the expression may still
be impossible for other reasons, such as accessing memory that the process does
not own (a typical example from many Unix systems).

show range
Show the current setting of the range checker, and whether or not it is being
set automatically by GDB.

9.4 Supported languages

GDB supports C, C++, and Fortran. Refer to Section 9.4.2 [Fortran], page 90 for specific
information about Fortran.

Some GDB features may be used in expressions regardless of the language you use: the
GDB @ and :: operators, and the ‘{type}addr’ construct (see Section 8.1 [Expressions],
page 63) can be used with the constructs of any supported language.

The following section discusses GDB support for each source language. These sections
are not meant to be language tutorials or references, but serve only as a reference guide to
what the GDB expression parser accepts, and what input and output formats should look
like for different languages.

84 Debugging with GDB

9.4.1 C and C++

Since C and C++ are so closely related, many features of GDB apply to both languages.
Whenever this is the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the C++ compiler and GDB.
Therefore, to debug your C++ code effectively, you must compile your C++ programs with
a supported C++ compiler, such as GNU g++, or the HP ANSI C++ compiler (aCC).

For best results when using GNU C++, use the stabs debugging format. You can select
that format explicitly with the g++ command-line options ‘-gstabs’ or ‘-gstabs+’. Refer
to section “Options for Debugging Your Program or aNu CC” in Using GNU CC, for more
information.

9.4.1.1 C and C++ operators

Operators must be defined on values of specific types. For instance, + is defined on
numbers, but not on structures. Operators are often defined on groups of types.

For the purposes of C and C++, the following definitions hold:

e Integral types include int with any of its storage-class specifiers; char; enum; and, for
C++, bool.

e Floating-point types include float, double, and long double (if supported by the
target platform).

e Pointer types include all types defined as (type *).
e Scalar types include all of the above.

The following operators are supported. They are listed here in order of increasing prece-
dence:

, The comma or sequencing operator. Expressions in a comma-separated list are
evaluated from left to right, with the result of the entire expression being the
last expression evaluated.

= Assignment. The value of an assignment expression is the value assigned. De-
fined on scalar types.

op= Used in an expression of the form a op= b, and translated to a = a op b. op=
and = have the same precedence. op is any one of the operators |, =, &, <<, >>,
oK /7 -

7. The ternary operator. a ? b : ¢ can be thought of as: if a then b else c¢. a

should be of an integral type.
[Logical OR. Defined on integral types.
&& Logical AND. Defined on integral types.
| Bitwise OR. Defined on integral types.
Bitwise exclusive-OR. Defined on integral types.

& Bitwise AND. Defined on integral types.

Chapter 9: Using GDB with Different Languages 85

== I= Equality and inequality. Defined on scalar types. The value of these expressions
is 0 for false and non-zero for true.

<, >, <=, >=
Less than, greater than, less than or equal, greater than or equal. Defined on
scalar types. The value of these expressions is 0 for false and non-zero for true.

<<, >> left shift, and right shift. Defined on integral types.

Q The GDB “artificial array” operator (see Section 8.1 [Expressions]|, page 63).

+, - Addition and subtraction. Defined on integral types, floating-point types and
pointer types.

* /% Multiplication, division, and modulus. Multiplication and division are defined
on integral and floating-point types. Modulus is defined on integral types.

++, —— Increment and decrement. When appearing before a variable, the operation is
performed before the variable is used in an expression; when appearing after it,
the value of the variable is used before the operation takes place.

* Pointer dereferencing. Defined on pointer types. Same precedence as ++.

& Address operator. Defined on variables. Same precedence as ++.

For debugging C++, GDB implements a use of ‘&’ beyond what is allowed in the
C++ language itself: you can use ‘&(&ref)’ (or, if you prefer, simply ‘&&ref’)
to examine the address where a C++ reference variable (declared with ‘&ref’)
is stored.

- Negative. Defined on integral and floating-point types. Same precedence as ++.

! Logical negation. Defined on integral types. Same precedence as ++.

- Bitwise complement operator. Defined on integral types. Same precedence as
++.

.= Structure member, and pointer-to-structure member. For convenience, GDB
regards the two as equivalent, choosing whether to dereference a pointer based
on the stored type information. Defined on struct and union data.

Sk, =>% Dereferences pointers to members.

(] Array indexing. a[i] is defined as *(a+i). Same precedence as —>.

O Function parameter list. Same precedence as =>.

C++ scope resolution operator. Defined on struct, union, and class types.

Double colons also represent the GDB scope operator (see Section 8.1 [Expres-
sions|, page 63). Same precedence as : :, above.

If an operator is redefined in the user code, GDB usually attempts to invoke the redefined
version instead of using the original meaning.

86

Debugging with GDB

9.4.1.2 C and C++ constants

GDB allows you to express the constants of C and C++ in the following ways:

Integer constants are a sequence of digits. Octal constants are specified by a leading
‘0’ (i.e. zero), and hexadecimal constants by a leading ‘0x’ or ‘0X’. Constants can also
end with a letter ‘1’ specifying that the constant should be treated as a long value.

Floating point constants are a sequence of digits, followed by a decimal point, followed
by a sequence of digits, and optionally followed by an exponent. An exponent is of the
form: ‘e[[+]|-]nnn’, where nnn is a sequence of digits. The ‘+’ is optional for positive
exponents. A floating-point constant may also end with a letter ‘f” or ‘F’, specifying
that the constant should be treated as being of the float (as opposed to the default
double) type; or with a letter ‘1’ or ‘L’ which specifies a long double constant.

Enumerated constants consist of enumerated identifiers, or their integral equivalents.

Character constants are a single character surrounded by single quotes (?), or a number
or the ordinal value of the corresponding character (usually its AscIr value). Within
quotes, the single character may be represented by a letter or by escape sequences,
which are of the form ‘\nnn’, where nnn is the octal representation of the character’s
ordinal value; or of the form ‘\x’, where ‘x’ is a predefined special character—for
example, ‘\n’ for newline.

String constants are a sequence of character constants surrounded by double quotes (").
Any valid character constant (as described above) may appear. Double quotes within
the string must be preceded by a backslash, so for instance ‘"a\"b’c"’ is a string of
five characters.

Pointer constants are an integral value. You can also write pointers to constants using
the C operator ‘&’.

Array constants are comma-separated lists surrounded by braces ‘{’ and ‘}’; for ex-
ample, ‘{1,2,3} is a three-element array of integers, ‘{{1,2}, {3,4}, {5,6}} is a
three-by-two array, and ‘{&"hi", &"there", &"fred"} is a three-element array of
pointers.

9.4.1.3 C++ expressions

1.

GDB expression handling can interpret most C++ expressions.

Warning: GDB can only debug C++ code if you use the proper compiler. Typ-
ically, C++ debugging depends on the use of additional debugging information
in the symbol table, and thus requires special support. In particular, if your
compiler generates a.out, MIPS ECOFF, RS/6000 XCOFF, or ELF with stabs ex-
tensions to the symbol table, these facilities are all available. (With aNu CC,
you can use the ‘-gstabs’ option to request stabs debugging extensions explic-
itly.) Where the object code format is standard COFF or DWARF in ELF, on the
other hand, most of the C++ support in GDB does not work.

Member function calls are allowed; you can use expressions like

count = aml->GetOriginal(x, y)

Chapter 9: Using GDB with Different Languages 87

2. While a member function is active (in the selected stack frame), your expressions have
the same namespace available as the member function; that is, GDB allows implicit
references to the class instance pointer this following the same rules as C++.

3. You can call overloaded functions; GDB resolves the function call to the right definition,
with some restrictions. GDB does not perform overload resolution involving user-
defined type conversions, calls to constructors, or instantiations of templates that do not
exist in the program. It also cannot handle ellipsis argument lists or default arguments.

It does perform integral conversions and promotions, floating-point promotions, arith-
metic conversions, pointer conversions, conversions of class objects to base classes, and
standard conversions such as those of functions or arrays to pointers; it requires an
exact match on the number of function arguments.

Overload resolution is always performed, unless you have specified set overload-
resolution off. See Section 9.4.1.7 [GDB features for C++], page 88.

You must specify set overload-resolution off in order to use an explicit function
signature to call an overloaded function, as in

p ’foo(char,int)’(°x’, 13)

The GDB command-completion facility can simplify this. Refer to Section 3.2 [Com-
mand completion|, page 17.

4. GDB understands variables declared as C++ references; you can use them in expressions
just as you do in C++ source—they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference vari-
ables are not displayed (unlike other variables); this avoids clutter, since references are
often used for large structures. The address of a reference variable is always shown,
unless you have specified ‘set print address off’.

5. GDB supports the C++ name resolution operator : :—your expressions can use it just as
expressions in your program do. Since one scope may be defined in another, you can use
: : repeatedly if necessary, for example in an expression like ‘scopel : : scope2: :name’.
GDB also allows resolving name scope by reference to source files, in both C and C++
debugging (see Section 8.2 [Program variables|, page 64).

In addition, when used with the HP aC++ compiler, GDB supports calling virtual func-
tions correctly, printing out virtual bases of objects, calling functions in a base subobject,
casting objects, and invoking user-defined operators.

Note: GDB cannot display debugging information for classes or functions de-
fined in a shared library that is not compiled for debugging (with the -g0
option). GDB displays the function with the message <no data fields>.

For example, after ‘d3’ is created by the following line:
‘RWCollectableDate d3(15,5,2001);’
printing the variable or class returns:

(gdb) p d3

$3 = {<No data fields>}

(gdb) ptype RWCollectableDate

type = class RWCollectableDate {
<no data fields>

88 Debugging with GDB

9.4.1.4 C and C++ defaults

If you allow GDB to set type and range checking automatically, they both default to off
whenever the working language changes to C or C++. This happens regardless of whether
you or GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source files whose
names end with ‘.c’, *.C’, or ‘.cc’, etc, and when GDB enters code compiled from one of
these files, it sets the working language to C or C++. Refer to See Section 9.1.3 [Having
GDB infer the source language|, page 80, for further details.

9.4.1.5 C and C++ type and range checks

By default, when GDB parses C or C++ expressions, type checking is not used. However,
if you turn type checking on, GDB considers two variable types equivalent if:

e The two variables are structured and have the same structure, union, or enumerated
tag.

e The two variables have the same type name, or types that have been declared equivalent
through typedef.

Range checking, if turned on, is done on mathematical operations. Array indices are not
checked, since they are often used to index a pointer that is not itself an array.

9.4.1.6 GDB and C

The set print union and show print union commands apply to the union type. When
set to ‘on’, any union that is inside a struct or class is also printed. Otherwise, it appears

as ‘“{...}.

The @ operator aids in the debugging of dynamic arrays, formed with pointers and a
memory allocation function. See Section 8.1 [Expressions|, page 63.

9.4.1.7 GDB features for C++

Some GDB commands are particularly useful with C++, and some are designed specifi-
cally for use with C++. Here is a summary:

breakpoint menus
When you want a breakpoint in a function whose name is overloaded, GDB
breakpoint menus help you specify which function definition you want. See
Section 5.1.7 [Breakpoint menus|, page 42.

rbreak regex
Setting breakpoints using regular expressions is helpful for setting breakpoints
on overloaded functions that are not members of any special classes. See Sec-
tion 5.1.1 [Setting breakpoints], page 33.

Chapter 9: Using GDB with Different Languages 89

catch throw

catch catch
Debug C++ exception handling using these commands. See Section 5.1.2 [Set-
ting catchpoints], page 37.

ptype typename
Print inheritance relationships as well as other information for type. typename.

See Chapter 10 [Examining the Symbol Table|, page 93.

set print demangle

show print demangle

set print asm-demangle

show print asm-demangle
Control whether C++ symbols display in their source form, both when displaying
code as C++ source and when displaying disassemblies. See Section 8.7 [Print
settings], page 70.

set print object

show print object
Choose whether to print derived (actual) or declared types of objects. See
Section 8.7 [Print settings|, page 70.

set print vtbl

show print vtbl
Control the format for printing virtual function tables. See Section 8.7 [Print
settings], page 70. (The vtbl commands do not work on programs compiled
with the HP ANSI C++ compiler (aCC).)

set overload-resolution on
Enable overload resolution for C++ expression evaluation. The default is on.
For overloaded functions, GDB evaluates the arguments and searches for a
function whose signature matches the argument types, using the standard C++
conversion rules (see Section 9.4.1.3 [C++ expressions|, page 86, for details). If
it cannot find a match, it emits a message.

set overload-resolution off
Disable overload resolution for C++ expression evaluation. For overloaded func-
tions that are not class member functions, GDB chooses the first function of
the specified name that it finds in the symbol table, whether or not its argu-
ments are of the correct type. For overloaded functions that are class member
functions, GDB searches for a function whose signature ezactly matches the
argument types.

show overload-resolution
Display current overload resolution setting for C++ expression evaluation.

Overloaded symbol names
You can specify a particular definition of an overloaded symbol, using the same
notation that is used to declare such symbols in C++: type symbol (types)
rather than just symbol. You can also use the GDB command-line word com-
pletion facilities to list the available choices, or to finish the type list for you.
See Section 3.2 [Command completion|, page 17, for details on how to do this.

90 Debugging with GDB

9.4.2 Fortran

You can use WDB to debug programs written in Fortran. WDB does not distinguish
between Fortran 77 and Fortran 90 files.

WDB provides the following command to control case sensitivity:

case-sensitive [on | off]
The default for Fortran is off, while for other languages the default is on.

Other supported features are:

Fortran 90 pointers

Structures and unions

Calling functions with integer, logical, real, complex arguments

Intrinsic support
9.4.2.1 Fortran types

Fortran types supported:

integer*1l, integer*2, integer*4, integer*8
logical*1l, logical*2, logical*4, logical*8
byte

real*4, real*8, real*16

complex*8, complex*16

character*len, character*(*) [len is a user supplied length]
arrays

e allocatable

e assumed-size

e assumed-shape

e adjustable

e automatic

e explicit-shape
Array elements are displayed in column-major order. Use () for array member
access (e.g, arr(i) instead of arr[i]). Use set print elements to control the

number of elements printed out when specifying a whole array. The default is
200 elements or the number of elements of the array, which ever is smaller.

9.4.2.2 Fortran operators

The following Fortran operators are listed here in the order of increasing precedence:
= Assignment

*’ _’ *’ /
Binary operators

Chapter 9: Using GDB with Different Languages 91

+, - Unary operators
*% Exponentiation
.EQ., = Equal

.NE., /= Not equal, or concatenation
LT., < Less than

.LE., <= Less than or equal to

.GT., > Greater than

.GE., >= Greater than or equal to

// Concatenation
.NOT. Logical negation
.AND. Logical AND

.OR. Logical OR

.EQV. Logical equivalence
.NEQV., .XOR.

Logical non-equivalence

Logical constants are represented as .TRUE. or .FALSE.

GDB includes support for viewing Fortran common blocks.

info common
Lists common blocks visible in the current frame.

info common <common_block_name>
Lists values of variables in the named common block.

Fortran entry points are supported.

You can set a break point specifying an entry point name.

9.4.2.3 Fortran special issues

Fortran allows main to be a non-main procedure; therefore, to set a breakpoint in the
main program, use break _MAIN_ or break <program_name>.

Do not use break main unless it is the name of a non-main procedure.

92

Debugging with GDB

Chapter 10: Examining the Symbol Table 93

10 Examining the Symbol Table

The commands described in this chapter allow you to inquire about the symbols (names
of variables, functions and types) defined in your program. This information is inherent in
the text of your program and does not change as your program executes. GDB finds it in
your program’s symbol table, in the file indicated when you started GDB (see Section 2.1.1
[Choosing files|, page 12), or by one of the file-management commands (see Section 12.1
[Commands to specify files], page 103).

Occasionally, you may need to refer to symbols that contain unusual characters, which
GDB ordinarily treats as word delimiters. The most frequent case is in referring to static
variables in other source files (see Section 8.2 [Program variables], page 64). File names are
recorded in object files as debugging symbols, but GDB would ordinarily parse a typical
file name, like ‘foo.c’, as the three words ‘foo’ *.” ‘c’. To allow GDB to recognize ‘foo.c’
as a single symbol, enclose it in single quotes; for example,

p ’foo.c’::x

looks up the value of x in the scope of the file ‘foo.c’.

info address symbol
Describe where the data for symbol is stored. For a register variable, this says
which register it is kept in. For a non-register local variable, this prints the
stack-frame offset at which the variable is always stored.

Note the contrast with ‘print &symbol’, which does not work at all for a regis-
ter variable, and for a stack local variable prints the exact address of the current
instantiation of the variable.

whatis expr
Print the data type of expression expr. expr is not actually evaluated, and any
side-effecting operations (such as assignments or function calls) inside it do not
take place. See Section 8.1 [Expressions|, page 63.

whatis Print the data type of $, the last value in the value history.

ptype typename
Print a description of data type typename. typename may be the name of a

type, or for C code it may have the form ‘class class-name’, ‘struct struct-
tag’, ‘union union-tag’ or ‘enum enum-tag’.

ptype expr
ptype Print a description of the type of expression expr. ptype differs from whatis
by printing a detailed description, instead of just the name of the type.

For example, for this variable declaration:
struct complex {double real; double imag;} v;

the two commands give this output:

94 Debugging with GDB

((gdb)) whatis v
type = struct complex
((gdb)) ptype v
type = struct complex {
double real;
double imag;
}
As with whatis, using ptype without an argument refers to the type of $, the
last value in the value history.

info types regexp

info types
Print a brief description of all types whose names match regexp (or all types in
your program, if you supply no argument). Each complete typename is matched
as though it were a complete line; thus, ‘1 type value’ gives information on
all types in your program whose names include the string value, but ‘i type
“value$’ gives information only on types whose complete name is value.

This command differs from ptype in two ways: first, like whatis, it does not
print a detailed description; second, it lists all source files where a type is
defined.

info source
Show the name of the current source file—that is, the source file for the function
containing the current point of execution—and the language it was written in.

info sources
Print the names of all source files in your program for which there is debugging
information, organized into two lists: files whose symbols have already been
read, and files whose symbols will be read when needed.

info functions
Print the names and data types of all defined functions.

info functions regexp
Print the names and data types of all defined functions whose names contain a
match for regular expression regexp. Thus, ‘info fun step’ finds all functions
whose names include step; ‘info fun “step’ finds those whose names start
with step.

info variables
Print the names and data types of all variables that are declared outside of
functions (i.e., excluding local variables).

info variables regexp
Print the names and data types of all variables (except for local variables) whose
names contain a match for regular expression regexp.

Some systems allow individual object files that make up your program to be
replaced without stopping and restarting your program. For example, in Vx-
Works you can simply recompile a defective object file and keep on running.
If you are running on one of these systems, you can allow GDB to reload the
symbols for automatically relinked modules:

Chapter 10: Examining the Symbol Table 95

set symbol-reloading on
Replace symbol definitions for the corresponding source file when
an object file with a particular name is seen again.

set symbol-reloading off
Do not replace symbol definitions when encountering object files of
the same name more than once. This is the default state; if you
are not running on a system that permits automatic relinking of
modules, you should leave symbol-reloading off, since otherwise
GDB may discard symbols when linking large programs, that may
contain several modules (from different directories or libraries) with
the same name.

show symbol-reloading
Show the current on or off setting.

set opaque-type-resolution on
Tell GDB to resolve opaque types. An opaque type is a type declared as a
pointer to a struct, class, or union—for example, struct MyType *—that
is used in one source file although the full declaration of struct MyType is in
another source file. The default is on.

A change in the setting of this subcommand will not take effect until the next
time symbols for a file are loaded.

set opaque-type-resolution off
Tell GDB not to resolve opaque types. In this case, the type is printed as
follows:

{<no data fields>}

show opaque-type-resolution
Show whether opaque types are resolved or not.

maint print symbols filename

maint print psymbols filename

maint print msymbols filename
Write a dump of debugging symbol data into the file filename. These com-
mands are used to debug the GDB symbol-reading code. Only symbols with
debugging data are included. If you use ‘maint print symbols’, GDB includes
all the symbols for which it has already collected full details: that is, filename
reflects symbols for only those files whose symbols GDB has read. You can
use the command info sources to find out which files these are. If you use
‘maint print psymbols’ instead, the dump shows information about symbols
that GDB only knows partially—that is, symbols defined in files that GDB
has skimmed, but not yet read completely. Finally, ‘maint print msymbols’
dumps just the minimal symbol information required for each object file from
which GDB has read some symbols. See Section 12.1 [Commands to specify
files], page 103, for a discussion of how GDB reads symbols (in the description
of symbol-file).

96

Debugging with GDB

Chapter 11: Altering Execution 97

11 Altering Execution

Once you think you have found an error in your program, you might want to find out
for certain whether correcting the apparent error would lead to correct results in the rest
of the run. You can find the answer by experiment, using the GDB features for altering
execution of the program.

For example, you can store new values into variables or memory locations, give your pro-
gram a signal, restart it at a different address, or even return prematurely from a function.

11.1 Assignment to variables

To alter the value of a variable, evaluate an assignment expression. See Section 8.1
[Expressions]|, page 63. For example,

print x=4

stores the value 4 into the variable x, and then prints the value of the assignment expression
(which is 4). See Chapter 9 [Using GDB with Different Languages|, page 79, for more
information on operators in supported languages.

If you are not interested in seeing the value of the assignment, use the set command
instead of the print command. set is really the same as print except that the expression’s
value is not printed and is not put in the value history (see Section 8.8 [Value history],
page 74). The expression is evaluated only for its effects.

The set command has a number of subcommands that conflict with the names of pro-
gram variables. The set variable command is a better alternative for setting program
variables. The following two examples illustrate the same:

e Example 1

((gdb)) whatis width

type = double

((gdb)) p width

$4 = 13

((gdb)) set width=47

Invalid syntax in expression.

The invalid expression, of course, is ‘=47’. In order to actually set the program’s
variable width, use

e Example 2
((gdb)) set var width=47

if your program has a variable g, you run into problems if you try to set a new value
with just ‘set g=4’, because GDB has the command set gnutarget, abbreviated set

g:

98 Debugging with GDB

((gdb)) whatis g
type = double
((gdb)) p g

$1 =1

((gdb)) set g=4
((gdb)) p g

$2 = 1

((gdb)) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/smith/cc_progs/a.out

"/home/smith/cc_progs/a.out": can’t open to read symbols:
Invalid bfd target.

((gdb)) show g

The current BFD target is "=4".

The steps shown above sets the gnutarget to an invalid value in place of the program
variable g.

In order to set the variable g, use
((gdb)) set var g=4
GDB allows more implicit conversions in assignments than C; you can freely store an

integer value into a pointer variable or vice versa, and you can convert any structure to any
other structure that is the same length or shorter.

To store values into arbitrary places in memory, use the ‘{. ..} construct to generate a
value of specified type at a specified address (see Section 8.1 [Expressions|, page 63). For
example, {int}0x83040 refers to memory location 0x83040 as an integer (which implies a
certain size and representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

11.2 Continuing at a different address

Ordinarily, when you continue your program, you do so at the place where it stopped,
with the continue command. You can continue at a selected address using one of the
following commands:

jump Iinespec
Resume execution at line linespec. Execution stops again immediately if there
is a breakpoint there. See Section 7.1 [Printing source lines|, page 57, for a
description of the different forms of linespec. It is common practice to use
the tbreak command in conjunction with jump. See Section 5.1.1 [Setting
breakpoints], page 33.

The jump command does not change the current stack frame, the stack pointer,
the contents of any memory location or any register other than the program

Chapter 11: Altering Execution 99

counter. If line linespec is in a different function from the one currently exe-
cuting, the results may be bizarre if the two functions expect different patterns
of arguments or of local variables. For this reason, the jump command requests
confirmation if the specified line is not in the function currently executing.
However, even bizarre results are predictable if you are well acquainted with
the machine-language code of your program.

jump *address
Resume execution at the instruction at address address.

On many systems, you can get much the same effect as the jump command by storing a
new value into the register $pc. This does not start the execution of your program at the
specified address, instead only changes the program counter.

For example,
set $pc = 0x485

makes the next continue command or stepping command execute at address 0x485, rather
than at the address where your program stopped. See Section 5.2 [Continuing and stepping],
page 44.

The most common occasion to use the jump command is to back up—perhaps with more
breakpoints set—over a portion of a program that has already executed, in order to examine
its execution in more detail.

11.3 Giving your program a signal

You can use the following command to send signals to your program:

signal signal
Resume execution where your program stopped, but immediately give it the
signal signal. signal can be the name or the number of a signal. For example,
on many systems signal 2 and signal SIGINT are both ways of sending an
interrupt signal.

Alternatively, if signal is zero, continue execution without giving a signal. This
is useful when your program stopped on account of a signal and would ordinary
see the signal when resumed with the continue command; ‘signal 0’ causes it
to resume without a signal.

signal does not repeat when you press a second time after executing the
command.

Invoking the signal command is not the same as invoking the kill utility from the shell.
Sending a signal with kill causes GDB to decide what to do with the signal depending on
the signal handling tables (see Section 5.3 [Signals|, page 46). The signal command passes
the signal directly to your program.

11.4 Returning from a function

You can use the following command to return from a function:

100 Debugging with GDB

return

return expression
You can cancel execution of a function call with the return command. If you
give an expression argument, its value is used as the return value from the
function value.

When you use return, GDB discards the selected stack frame (and all frames within
it). You can think of this as making the discarded frame return prematurely. If you wish
to specify a value to be returned, give that value as the argument to return.

This pops the selected stack frame (see Section 6.5 [Selecting a frame], page 53), and any
other frames inside of it, leaving its caller as the innermost remaining frame. That frame
becomes selected. The specified value is stored in the registers used for returning values of
functions.

The return command does not resume execution; it leaves the program stopped in the
state that would exist if the function had just returned. In contrast, the finish command
(see Section 5.2 [Continuing and stepping], page 44) resumes execution until the selected
stack frame returns naturally.

11.5 Calling program functions

call expr
Evaluate the expression expr without displaying void returned values.

You can use this variant of the print command if you want to execute a function from
your program, but without cluttering the output with void returned values. If the result
is not void, it is printed and saved in the value history.

For the A29K, a user-controlled variable call_scratch_address specifies the location
of a scratch area to be used when GDB calls a function in the target. This is necessary
because the usual method of putting the scratch area on the stack does not work in systems
that have separate instruction and data spaces.

11.6 Patching programs

By default, GDB opens the file containing the executable code of your program (or
the corefile) as read-only. This prevents accidental alteration to machine code; and it also
prevents you from intentionally patching your program binary.

If you would like to be able to patch the binary, you can specify that explicitly with the
set write command. For example, you might want to turn on internal debugging flags, or
even to make emergency repairs.

set write on

set write off
If you specify ‘set write on’, GDB opens executable and core files for both
reading and writing; if you specify ‘set write off’ (the default), GDB opens
them as read-only.

Chapter 11: Altering Execution 101

If you have already loaded a file, you must load it again (using the exec-file
or core-file command) after changing set write, for your new setting to take
effect.

show write
Display whether executable files and core files are opened for writing as well as
reading.

102 Debugging with GDB

Chapter 12: GDB Files 103

12 GDB Files

GDB needs to know the file name of the program to be debugged, both in order to read
its symbol table and in order to start your program. To debug a core dump of a previous
run, you must also tell GDB the name of the core dump file.

12.1 Commands to specify files

You can specify executable and core dump file names as arguments to the GDB start-up
command. (see Chapter 2 [Getting In and Out of GDB], page 11).

Occasionally it is necessary to change to a different file during a GDB session. In these
situations the GDB commands to specify new files are useful.

file filename

Use filename as the program to be debugged. It is read for its symbols and for
the contents of pure memory. It is also the program executed when you use the
run command. If you do not specify a directory and the file is not found in the
GDB working directory, GDB uses the environment variable PATH as a list of
directories to search, just as the shell does when looking for a program to run.
You can change the value of this variable, for both GDB and your program,
using the path command.

On systems with memory-mapped files, an auxiliary file named
‘filename.syms’ may hold symbol table information for filename. If so,
GDB maps in the symbol table from ‘filename.syms’, starting up more
quickly. See the descriptions of the file options ‘-mapped’ and ‘-readnow’
(available on the command line, and with the commands file, symbol-file,
or add-symbol-file, described below) for more information.

file file with no argument makes GDB discard any information it has on both
executable file and the symbol table.

exec-file [filename]
Specify that the program to be run (but not the symbol table) is found in file-
name. GDB searches the environment variable PATH if necessary to locate your

program. Omitting filename means to discard information on the executable
file.

symbol-file | filename |
Read symbol table information from file filename. PATH is searched when nec-
essary. Use the file command to get both symbol table and program to run
from the same file.

symbol-file with no argument clears out GDB information on the symbol
table of your program.

The symbol-file command causes GDB to forget the contents of its conve-
nience variables, the value history, and all breakpoints and auto-display expres-
sions. This is because they may contain pointers to the internal data recording
symbols and data types, which are part of the old symbol table data being
discarded inside GDB.

104 Debugging with GDB

symbol-file does not repeat if you press again after executing it once.

When GDB is configured for a particular environment, it understands debug-
ging information in whatever format is the standard generated for that envi-
ronment; you may use either a GNU compiler, or other compilers that adhere
to the local conventions.

For most kinds of object files, the symbol-file command does not normally
read the symbol table in full right away. Instead, it scans the symbol table
quickly to find which source files and which symbols are present. The details
are read later, one source file at a time, as they are needed.

The purpose of this two-stage reading strategy is to make GDB start up faster.
For the most part, it is invisible except for occasional pauses while the symbol
table details for a particular source file are being read. (The set verbose
command can turn these pauses into messages if desired. See Section 17.6
[Optional warnings and messages|, page 262.)

symbol-file filename | -readnow | [-mapped |

file filename | -readnow | [-mapped |
You can override the GDB two-stage strategy for reading symbol tables by
using the ‘-readnow’ option with any of the commands that load symbol table
information, if you want to be sure GDB has the entire symbol table available.

If memory-mapped files are available on your system through the mmap system
call, you can use another option, ‘-mapped’, to cause GDB to write the symbols
for your program into a reusable file. Future GDB debugging sessions map
in symbol information from this auxiliary symbol file (if the program has not
changed), rather than spending time reading the symbol table from the exe-
cutable program. Using the ‘-mapped’ option has the same effect as starting
GDB with the ‘-mapped’ command-line option.

You can use both options together, to make sure the auxiliary symbol file has
all the symbol information for your program.

The auxiliary symbol file for a program called myprog is called ‘myprog.syms’.
Once this file exists (so long as it is newer than the corresponding executable),
GDB always attempts to use it when you debug myprog; no special options or
commands are needed.

The .syms’ file is specific to the host machine where you run GDB. It holds
an exact image of the internal GDB symbol table. It cannot be shared across
multiple host platforms.

core-file [filename |
Specify the whereabouts of a core dump file to be used as the “contents of
memory”. Traditionally, core files contain only some parts of the address space
of the process that generated them; GDB can access the executable file itself
for other parts.

core-file with no argument specifies that no core file is to be used.

Note that the core file is ignored when your program is actually running under
GDB. So, if you have been running your program and you wish to debug a
core file instead, you must kill the subprocess in which the program is running.

Chapter 12: GDB Files 105

To do this, use the kill command (see Section 4.8 [Killing the child process],
page 28).

add-symbol-file filename address

add-symbol-file filename address [-readnow | [-mapped |

add-symbol-file filename address data_address bss_address

add-symbol-file filename -Ssection address
The add-symbol-file command reads additional symbol table information
from the file filename. You would use this command when filename has been
dynamically loaded (by some other means) into the program that is running.
address should be the memory address at which the file has been loaded; GDB
cannot figure this out for itself. You can specify up to three addresses, in which
case they are taken to be the addresses of the text, data, and bss segments
respectively. For complicated cases, you can specify an arbitrary number of
-ssection address pairs, to give an explicit section name and base address for
that section. You can specify any address as an expression.

The symbol table of the file filename is added to the symbol table originally read
with the symbol-file command. You can use the add-symbol-file command
any number of times; the new symbol data thus read keeps adding to the old.
To discard all old symbol data instead, use the symbol-file command without
any arguments.

add-symbol-file does not repeat if you press after using it.

4

You can use the ‘-mapped’ and ‘-readnow’ options just as with the symbol-
file command, to change how GDB manages the symbol table information for
filename.

section The section command changes the base address of section SECTION of the
exec file to ADDR. This can be used if the exec file does not contain section
addresses, (such as in the a.out format), or when the addresses specified in the
file itself are wrong. Each section must be changed separately. The info files
command, described below, lists all the sections and their addresses.

info files

info target
info files and info target are synonymous; both print the current target
(see Chapter 13 [Specifying a Debugging Target]|, page 109), including the
names of the executable and core dump files currently in use by GDB, and
the files from which symbols were loaded. The command help target lists all
possible targets rather than current ones.

All file-specifying commands allow both absolute and relative file names as arguments.
GDB always converts the file name to an absolute file name and remembers it that way.

GDB automatically loads symbol definitions from shared libraries when you use the run
command, or when you examine a core file. (Before you issue the run command, GDB
does not understand references to a function in a shared library, however—unless you are
debugging a core file).

On HP-UX, if the program loads a library explicitly, GDB automatically loads the
symbols at the time of the shl_load call. See Section 5.1 [Stopping and starting in shared
libraries|, page 33, for more information.

106 Debugging with GDB

info share
info sharedlibrary
Print the names of the shared libraries which are currently loaded.

sharedlibrary regex

share regex
Load shared object library symbols for files matching a Unix regular expression.
As with files loaded automatically, it only loads shared libraries required by your
program for a core file or after typing run. If regex is omitted all shared libraries
required by your program are loaded.

On HP-UX systems, GDB detects the loading of a shared library and automatically
reads in symbols from the newly loaded library, up to a threshold that is initially set but
that you can modify if you wish.

Beyond that threshold, symbols from shared libraries must be explicitly loaded. To load
these symbols, use the command sharedlibrary filename. The base address of the shared
library is determined automatically by GDB and need not be specified.

To display or set the threshold, use the commands:

set auto-solib-add threshold
Set the autoloading size threshold, in megabytes. If threshold is nonzero, sym-
bols from all shared object libraries will be loaded automatically when the
inferior begins execution or when the dynamic linker informs GDB that a new
library has been loaded, until the symbol table of the program and libraries
exceeds this threshold. Otherwise, symbols must be loaded manually, using the
sharedlibrary command. The default threshold is 100 megabytes.

show auto-solib-add
Display the current autoloading size threshold, in megabytes.

12.2 Specifying shared library locations

On HP-UX, when the shared libraries your program uses are in a different directory than
the path specified in the source or object files, specify the correct files to use with one of
two environment variables.

‘GDB_SHLIB_PATH’
Set this variable to a colon-separated list of directory path names where the
desired shared libraries reside. GDB searches specified list of directories for
shared libraries before searching the default system directories.

‘GDB_SHLIB_ROOT’
Set this variable to point to the root of the library in which the desired libraries
reside.

Note: If you set both the ‘GDB_SHLIB_PATH’ and ‘GDB_SHLIB_ROOT environment
variables, the ‘GDB_SHLIB_PATH’ behavior overrides ‘GDB_SHLIB_ROOT’.

These environment variables are useful when you are analyzing core files on a system
other than the one that produced the core file.

Chapter 12: GDB Files 107

For example, if you want GDB to search for libraries in ‘/home/debugger/1ib’ and
‘/tmp/1ib’ before searching the default system directories for libraries, you can use this
setting:

GDB_SHLIB_PATH=/home/debugger/1lib:/tmp/lib

With this setting, GDB searches the directories in the order specified until it finds a
library with the correct name.

In this example, if GDB encounters a library by the name of ‘/usr/lib/libsubs.sl’,
GDB searches first for ‘/home/debugger/lib/libsubs.sl’ and then for
‘/tmp/lib/libsubs.sl’. If neither of these exists, then GDB searches the
default system directories and finds ‘/usr/1ib/libsubs.sl’.

In most cases, ‘GDB_SHLIB_PATH’ allows more flexibility than ‘GDB_SHLIB_ROOT’ because
it allows you to specify more than one path. However, there are some cases in which you
may want to choose to use ‘GDB_SHLIB_ROOT’.

For example, if you have more than one shared library with the same name but different
path names, you may want to use ‘GDB_SHLIB_ROOT’ because GDB searches for libraries
based on the full path name.

Note that ‘GDB_SHLIB_PATH’ may not give you the results you expect because GDB
searches for libraries that match only the name, regardless of the path, and always accepts
the first library that matches the name.

For example, if you want to use ‘/tmp/usr/1lib/libsubs.sl’ and ‘/tmp/usr/share/lib/1libsubs.sl’,
you can set ‘GDB_SHLIB_ROOT’ to ‘/tmp’. Now whenever GDB encounters a library with
the name ‘/usr/lib/libsubs.sl’ and ‘/usr/share/1ib/libsubs.sl’;, GDB looks at
‘/tmp/usr/1lib/libsubs.sl’ and ‘/tmp/usr/share/1ib/libsubs.sl’ respectively.

12.3 Errors reading symbol files

While reading a symbol file, GDB occasionally encounters problems, such as symbol
types it does not recognize, or known bugs in compiler output. By default, GDB does not
notify you of such problems, since they are relatively common and primarily of interest to
people debugging compilers. If you are interested in seeing information about ill-constructed
symbol tables, you can either ask GDB to print only one message about each such type of
problem, no matter how many times the problem occurs; or you can ask GDB to print more
messages, to see how many times the problems occur, with the set complaints command
(see Section 17.6 [Optional warnings and messages|, page 262).

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol
The symbol information shows where symbol scopes begin and end (such as at
the start of a function or a block of statements). This error indicates that an
inner scope block is not fully contained in its outer scope blocks.

GDB circumvents the problem by treating the inner block as if it had the
same scope as the outer block. In the error message, symbol may be shown as
“(don’t know)” if the outer block is not a function.

108 Debugging with GDB

block at address out of order
The symbol information for symbol scope blocks should occur in order of in-
creasing addresses. This error indicates that it does not do so.

GDB does not circumvent this problem, and has trouble locating symbols in
the source file whose symbols it is reading. (You can often determine what
source file is affected by specifying set verbose on. See Section 17.6 [Optional
warnings and messages|, page 262.)

bad block start address patched
The symbol information for a symbol scope block has a start address smaller
than the address of the preceding source line. This is known to occur in the
SunOS 4.1.1 (and earlier) C compiler.

GDB circumvents the problem by treating the symbol scope block as starting
on the previous source line.

bad string table offset in symbol n
Symbol number n contains a pointer into the string table which is larger than
the size of the string table.

GDB circumvents the problem by considering the symbol to have the name
foo, which may cause other problems if many symbols end up with this name.

unknown symbol type Oxnn
The symbol information contains new data types that GDB does not yet know
how to read. Oxnn is the symbol type of the uncomprehended information, in
hexadecimal.

GDB circumvents the error by ignoring this symbol information. This usually
allows you to debug your program, though certain symbols are not accessible. If
you encounter such a problem and feel like debugging it, you can debug (gdb)
with itself, breakpoint on complain, then go up to the function read_dbx_
symtab and examine *bufp to see the symbol.

stub type has NULL name
GDB could not find the full definition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got...
The symbol information for a C++ member function is missing some information
that recent versions of the compiler should have output for it.

info mismatch between compiler and debugger
GDB could not parse a type specification output by the compiler.

Chapter 13: Specifying a Debugging Target 109

13 Specifying a Debugging Target

A target is the execution environment occupied by your program.

Often, GDB runs in the same host environment as your program; in that case, the
debugging target is specified as a side effect when you use the file or core commands. For
HP-UX specific information, see (undefined) [HP-UX Targets], page (undefined). When
you need more flexibility—for example, running GDB on a physically separate host, or
controlling a standalone system over a serial port or a realtime system over a TCP/IP
connection you can use the target command to specify one of the target types configured
for GDB (see Section 13.2 [Commands for managing targets|, page 109).

13.1 Active targets

There are three classes of targets: processes, core files, and executable files. GDB can
work concurrently on up to three active targets, one in each class. This allows you to (for

example) start a process and inspect its activity without abandoning your work on a core
file.

For example, if you execute ‘gdb a.out’, then the executable file a.out is the only active
target. If you designate a core file as well presumably from a prior run that crashed and
coredumped, then GDB has two active targets and uses them in tandem, looking first in
the corefile target, then in the executable file, to satisfy requests for memory addresses.
(Typically, these two classes of target are complementary, since core files contain only
the contents of the program read-write memory, variables, machine status etc. while the
executable files contain only the program text and initialized data.)

When you type run, your executable file becomes an active process target as well. When
a process target is active, all GDB commands requesting memory addresses refer to that
target; addresses in an active core file or executable file target are obscured while the process
target is active.

Use the core-file and exec-file commands to select a new core file or executable
target (see Section 12.1 [Commands to specify files|, page 103). To specify as a target a
process that is already running, use the attach command (see Section 4.7 [Debugging an
already-running process|, page 27).

13.2 Commands for managing targets

target type parameters
Connects the GDB host environment to a target machine or process. A target
is typically a protocol for talking to debugging facilities. You use the argument
type to specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically include
things like device names or host names to connect with, process numbers, and
baud rates.

The target command does not repeat if you press again after executing
the command.

110 Debugging with GDB

help target
Displays the names of all targets available. To display targets currently selected,
use either info target or info files (see Section 12.1 [Commands to specify
files], page 103).

help target name
Describe a particular target, including any parameters necessary to select it.

set gnutarget args
GDB uses its own library BFD to read your files. GDB knows whether it is
reading an executable, a core, or a .o file; however, you can specify the file
format with the set gnutarget command. Unlike most target commands,
with gnutarget the target refers to a program, not a machine.

Warning: To specify a file format with set gnutarget, you must
know the actual BFD name.

See Section 12.1 [Commands to specify files], page 103.

show gnutarget
Use the show gnutarget command to display what file format gnutarget is set
to read. If you have not set gnutarget, GDB will determine the file format for
each file automatically, and show gnutarget displays ‘The current BDF target
is "auto"’.

Here are some common targets (available, or not, depending on the GDB configuration):

target exec program
An executable file. ‘target exec program’ is the same as ‘exec-file pro-
gram’.

target core filename
A core dump file. ‘target core filename’ is the same as ‘core-file file-
name’.

target remote dev
Remote serial target in GDB-specific protocol. The argument dev specifies
what serial device to use for the connection (e.g. ‘/dev/ttya’). target remote
supports the load command. This is only useful if you have some other way of
getting the stub to the target system, and you can put it somewhere in memory
where it won’t get clobbered by the download.

target sim
Builtin CPU simulator. GDB includes simulators for most architectures. In
general,
target sim
load
run
works; however, you cannot assume that a specific memory map, device drivers,
or even basic I/0 is available, although some simulators do provide these.

Some configurations may include these targets as well:

Chapter 13: Specifying a Debugging Target 111

target nrom dev
NetROM ROM emulator. This target only supports downloading.

Different targets are available on different configurations of GDB; your configuration
may have more or fewer targets.

Many remote targets require you to download the executable code once you have suc-
cessfully established a connection.

load filename
Depending on what remote debugging facilities are configured into GDB, the
load command may be available. Where it exists, it is meant to make filename
(an executable) available for debugging on the remote system—by downloading,
or dynamic linking, for example. load also records the filename symbol table
in GDB, like the add-symbol-file command.

If your GDB does not have a 1oad command, attempting to execute it gets the
error message “You can’t do that when your target is ...”

The file is loaded at whatever address is specified in the executable. For some
object file formats, you can specify the load address when you link the program;
for other formats, like a.out, the object file format specifies a fixed address.

load does not repeat if you press again after using it.
13.3 Choosing target byte order

Some types of processors, such as the MIPS, PowerPC, and Hitachi SH, offer the ability
to run either big-endian or little-endian byte orders. Usually the executable or symbol will
include a bit to designate the endian-ness, and you will not need to worry about which to
use. However, you can adjust the processor byte order manually using one of the following
commands:

set endian big
Instruct GDB to assume the target is big-endian.

set endian little
Instruct GDB to assume the target is little-endian.

set endian auto
Instruct GDB to use the byte order associated with the executable.

show endian
Display GDB’s current idea of the target byte order.

Note that these commands merely adjust interpretation of symbolic data on the host,
and that they have absolutely no effect on the target system.

112 Debugging with GDB

Chapter 14: HP-UX Configuration-Specific Information 113

14 HP-UX Configuration-Specific Information

While nearly all GDB commands are available for all native and cross versions of the
debugger, there are some exceptions. This chapter describes features, commands and,
enhancements available only on HP-UX.

14.1 Summary of HP Enhancements to GDB

WDB provides the following features in addition to the standard GDB features:
e Support for debugging memory problems.
e Support for heap usage reporting

e The min-heap-size <num> option for set heap-check command reports the heap al-
locations that exceed the specified number <num> of bytes based on the cumulative
number of bytes that are allocated at each call-site, which is inclusive of multiple calls
to malloc at a particular call site.

e Heap checking commands info heap high-mem and set heap-check high-mem-count
X_number .

e Commands which, exit, info heap process and, info heap arena.

e WDB supports the +check compiler option on Integrity systems to invoke batch RTC,
to determine runtime memory problems.

e Enhanced batch RTC support, for better reporting, and options have replaced old ones.

e RTC heap corruption checks for calls to strcpy (), memset (), and memcpy () have been
added.

e Support for memory checking analysis for user defined memory management routines.

e High water mark records the number of times the brk() value changes.

e Heap analysis on programs with pending signals using the info leak command.

e Commands info module ADDRESS, show envvars, and info corruption.

e Command line option (-pid or -p) to attach to an existing process

e Support for debugging kernel threads and user threads.

e Support for enabling and disabling threads.

e Thread debugging commands set thread-check on/off, info thread [thread-id],
info mutex [mutex- id], info condvar [condvar-id], and, info rwlock [rwlock-
id].

e Enhanced thread debugging options for set thread-check command such as
recursive-relock, num-waiter, stack-util, thread-exit-no-join-detach,
thread-exit-own-mutex, cv-wait-no-mx, cv-multiple-mxs, mixed-sched-
policy, and unlock-not-own

e Serial debugging of a parent and child process.

e Support for Parallel Processing limited to pthread parallelism, but not the compiler-
generated parallelism, e.g. with directives.

e Implementation of ask mode for set follow-fork-mode.

e Support for setting breakpoints using shared library name.

114

Debugging with GDB

Support for core file commands packcore, unpackcore, getcore, dumpcore and info
rtti address.

On PA-RISC systems, sanity check for core files dumped by hardware generated signals
can be performed. HP WDB can detect and warn the user about certain cases of
corrupted core files.

Inline support is on by default on Integrity systems. On PA-RISC, the inline support
is still off by default.

For PA 64-bit applications, WDB can step into shared library bind-on-reference calls.
This support is available for PA 32-bit as well.

Interception of synchronous signals used by sigwait(), sigwaitinfo() and
sigtimedwait() functions. These signals are displayed by WDB just like
asynchronous signals but are always passed to the debugger whether nopass is set or
not.

Support for debugging hardware watchpoints and shared libraries.

For PA 64-bit applications, WDB can step into shared library bind-on-reference calls.
This support is available for PA 32-bit as well.

Implementation of -mapshared option to suppress mapping all the shared libraries in
a process private.

Support for deferred breakpoints on dlopened and shl_loaded libraries with stripped
main program.

Additional support for procedural breakpoints.

C99 variable arrays implemented on Integrity systems. This support is available on
PA-RISC as well.

The show envvars command can be used to print information on environment variables

supported by WDB.
Support for handling __fpreg data type.

Support for making changes to the program when debugging without having to re-
compile or re-link it.

Hardware breakpoints on Integrity systems.
Support for debugging PA-RISC Applications on Integrity systems.

Unwinding Java stack frames on Integrity systems. The 64-bit version of gdb can
unwind through Java stack frames using the shared library in the Java product.The
64-bit library is part of the JDK 1.4.2.10 and JDK 1.5.0.03 products.

Enhanced nexti and stepi commands. The WDB nexti and stepi commands, prints
the assembly instruction along with the next source line.

Enhanced info symbol ADDRESS command. The info symbol ADDRESS command has
been enhanced to search for a symbol at the given address. Previously, the info symbol
command could be used only to search the global namespace.

Enhanced Java debugging support.
Support for debugging C++ programs running under Linux Runtime Environment.
Support for stop in/at dbx commands.

Support for GNU GDB logging commands.

Chapter 14: HP-UX Configuration-Specific Information 115

e Support for persistent display of expressions across re-runs. The user does not need to
re-initiate the display settings for every run.

e Viewing wide character and wide-character strings of type wchar_t using the type
print command.

e Support for debugging of executables with method and expressions involving covariant
return types

e Support for commands, catch throw, catch catch, and info catch, for debugging
exception handlers in C++ on Integrity systems, with the aCC compiler A.06.00 and
later.

e Support for the steplast command for C and C++. However, steplast command is
not supported.

e Support for dumping an array into an ASCII file.

e Support for the Fortran array slices.

e Source level debugging of Fortran applications that contain nested routines.
e Support for making command line calls in a stripped executable.

e Support for a terminal user interface that provides view of source while debugging at
the WDB command line.

e Support for debugging 32-bit and 64-bit PA-RISC programs as well as 64-bit Itanium
programs .

e Support for assembly-level debugging.
e Support for a subset of xdb commands, enabled with -xdb mode.

e Support for Java/C/aCC++ stack unwinding with Java SDK version 1.3.1.02 or later
for HP-UX.

e Visual Interface for HP WDB -tui mode supports output logging
e Command line calls for 64-bit PA-RISC applications that are not linked with end.o.
e Command watch_target.

e Command line option set display-full-path that displays the full pathname of the
source file name while printing the frame information.

e Command line option set dereference [on |off] when off, WDB does not derefer-
ence char * variables by default.

e Support for show macro, and macro expand to view, and expand macro expressions.
e Support for evaluating macros.
e Support for printing the execution path entries in the current frame, or thread.

Note: For new commands see HP WDB Release Notes available at
http://www.hp.com/go/wdb.

116 Debugging with GDB

14.2 HP-UX dependencies

14.2.1 Linker Dependencies

Several features available in WDB depend on specific versions of the linker or the com-
piler.

e Linker patch required for +objdebug

For releases prior to HP-UX 11i v2 (for IA) and HP-UX 11i vl (for PA-RISC), you
must install the latest linker patch to generate object modules that enable faster linking
and smaller executable file sizes for large applications. See your your compiler release
notes for more details.

e Support for debugging incrementally linked 64-bit programs
This feature requires linker version B.11.18 or later on HP-UX 11i v1.

e Support to automatically preload librtc.sl with chatr +mem_check option. This
feature requires linker version B.11.61 and later on HP 9000 systems, and linker version
B.12.46 and later on Integrity systems. +mem_check option is used only for memory
debugging.

e Support to automatically preload librtc.sl with chatr +rtc option. This feature
requires linker version B.11.66 and later on HP 9000 systems, and linker version B.12.51

and later on Integrity systems. However, +mem_check option is retained with the latest
Linker version.

14.2.2 Dependent Standard Library Routines for Run Time
Checking

The Run Time Checking feature (Interactive and Batch Mode) of WDB cannot be used
with applications that re-define or over-ride the default system-supplied versions of the
standard library routines under 1libc.so and libdld.so. The following standard libraries
are dependencies for runtime checking:

abort () atoi()
chdir() dlsym()
strstr() strcat ()
ctime () dlclose()
memchr () strrchr ()
dlgetname () dlget ()
clock_gettime() strlen()
dlhook () dlmodinfo()
environ() getenv()
strlen() execl()
exit () fclose()
fork() strdup ()

Chapter 14: HP-UX Configuration-Specific Information 117

fopen()
fscanf ()

strcasecmp ()
getpagesize()

srand ()
uwx_register_callbacks()
open()

strcmp ()

pthread_self ()

shmctl ()
rand ()

shl_get ()

shl_findsym ()

time ()

shl_get_r(Q

uwx_init ()

creat ()

write()
pthread_getschedparam()
uwx_register_alloc_cb()

close()

fprintf ()
sscanf ()
getcwd ()
getpid ()
unlink()
lseek()
sprintf ()
printf ()
putenv()

strchr ()
uwx_self_lookupip()

shl_unload()

strtok_r()
uwx_get_reg()

perror ()
uwx_self_copyin()
uwx_step()
uwx_self_init_context()
uwx_self_init_info()
U_STACK_TRACE(Q)
strchr ()

The runtime checking (of dynamic memory, libraries, and pthreads) in the debugger relies
on the semantic and standard behavior of these library routines. Run Time Checking results
in unexpected and unpredictable behavior when used with applications that substitute or

re-define these library routines.

Before enabling the Run Time Checking feature in WDB, use the nm(1) command
to determine if the application or the dependent libraries in the application re-define or

substitute these standard library routines

14.3 Supported Platforms and Modes

e Supported Platforms

HP WDB supports source-level debugging of programs written in HP C, HP aC++,
and Fortran 90 on Integrity systems running on HP-UX 11i v2 or later and PA- RISC

systems running HP-UX 11i v1 and later.
e Support for assembly-level debugging

HP WDB provides support for assembly-level debugging.

e Support for automatic loading of debug information

Debug information is automatically loaded from modules when an application is com-

piled with the +objdebug option.

118 Debugging with GDB

e Support for debugging PA-RISC programs on Itanium-based systems

You can debug PA-RISC applications and core files on Itanium-based systems. When
you start HP WDB, if the debug target is a PA-RISC binary program, the debugger
automatically loads PA-RISC WDB. The PA-RISC version of HP WDB is provided as

part of the HP-UX operating system.
e Support for debugging large core files (> 2GB)

HP WDB supports debugging of core files with sizes more than 2 GB.
e Support co-variant type

HP WDB can step into a co-variant function. The compiler-generated function called
thunks, which is used internally by the compiler to support co-variant return type,
is not shown when you do a backtrace or switch from one frame to another frame.
Similarly, using a finish or return command at a co-variant callee function directly
returns the control back to the caller of thunks.

e New attach command line options and handling (-pid or -p)

HP WDB accepts -pid or -p followed by a process ID to attach a running process to
the debugger.

Note:

HP WDB cannot be attached to a process that is traced by tools which
use ttrace, such as Caliper, adb, and tusc. The debugger displays the
following error message on attempting to attach to such a process:

Attaching to process <pid> failed.
Hint: Check if this process is already being traced by another gdb or
other ttrace tools like caliper and tusc.
Hint: Check whether program is on an NFS-mounted file-system.
If so, you will need to mount the file system with the "nointr" option
with mount (1) or make a local copy of the program to resolve this problem.

14.4 HP-UX targets

On HP-UX systems, GDB has been configured to support debugging of processes running
on the PA-RISC and Itanium architectures. This means that the only possible targets are:

e An executable that has been compiled and linked to run on HP-UX. This includes
binaries that have been marked as SHMEM_MAGIC.

e A live HP-UX process, either started by WDB (with the run command) or started
outside of WDB and attached to (with the attach command).

e A core file generated by an HP-UX process that previously aborted execution.
GDB on HP-UX has not been configured to support remote debugging, or to support
programs running on other platforms.

WDB can only debug C++ programs compiled with HP aC++, the ANSI-compatible C++
compiler.

Chapter 14: HP-UX Configuration-Specific Information 119

14.5 Support for Alternate root

HP WDB supports alternate root functionality, which is helpful when you do not want
to use the system-installed HP WDB or its components.

The environment variable WDB_ROOT specifies the alternate root for HP WDB. You must
specify a structure similar to the default /opt/langtools used for HP WDB. You can use
the environment variable GDB_ROOT to specify an alternate root for GDB.

If you specify both WDB_ROOT and GDB_ROOT, the value for GDB_ROOT is ignored.

HP WDB supports these environment variables to override the location of different
component of HP WDB.

Defined Variable WDB Location GDB location librtc.sl location
None /opt/langtools/bin /opt/langtools/bin /opt/langtools/lib
WDB_ROOT $WDB_ROOT/bin $WDB_ROOT/bin $WDB_ROOT/1ib
GDB_ROOT n/a $GDB_ROOT/bin /opt/langtools/bin
GDB_SERVER n/a $GDB_SERVER n/a

LIBRTC_SERVER n/a n/a $LIBRTC_SERVER

Note: If you define WDB_ROOT or GDB_ROOT but do not create the correct directory struc-
ture below it, the debugger may fail.

14.6 Specifying object file directories

GDB enables automatic loading of debug information from object modules when an
application is compiled with the +objdebug option.

GDB uses the full path name to the object module files and searches the same directories
for source files.

Although this behavior is transparent, you can control when and how object files are
loaded with three commands:

objectdir path
Specifies a colon (:) separated list of directories in which GDB searches for ob-
ject files. These directories are added to the beginning of the existing objectdir
path. If you specify a directory that is already in the objectdir path, the spec-
ified directory is moved up in the objectdir path so that it is searched earlier.

GDB recognizes two special directory names: $cdir, which refers to the com-
pilation directory (if available) and $cwd, which tracks GDB’s current working
directory.

objectload file.c
Causes GDB to load the debug information for file.c immediately. The default
is to load debug information from object modules on demand.

objectretry file.c
Forces GDB to retry loading an object file if GDB encounters a file error while
reading an object module. File errors that might cause this include incorrect
permissions, file not found, or if the objectdir path changes. By default, GDB
does not try to read an object file after an error.

120 Debugging with GDB

pathmap

Enables you to define a list of substitution rules to be applied to path names to
identify object files and the corresponding source files. The pathmap command,
however, may not find source files if the object files are not available.

This minimizes or eliminates the need to specify multiple objectdir commands
when object files are moved from the compilation directories or when compila-
tion directories are mounted over NFS.

To use this feature, the program must be compiled with the +objdebug option.
For information on how pathmap works type help pathmap at the HP WDB
prompt.

If the debugger cannot find the source: files.

1. Make certain the files were compiled with the >~g’ switch. Type info sources to find
the list of files that the debugger knows were compiled with ’-g’.

Make certain that the debugger can find the source file. Type show dir to find the list
of directories the debugger uses to search for source files and type set dir to change
that path.

On HP-UX, the debug information does not contain the full path name to the source
file, only the relative path name that was recorded at compile time. Consequently,
you may need several dir commands for a complex application with multiple source
directories. One way to do this is to place them in a ‘.gdbinit’ file placed in the
directory used to debug the application.

A sample of the ‘. gdbinit’ file might look like the following;:

dir /home/fred/appx/system
dir /home/fred/appx/display
dir /home/fred/appx/actor

dir /home/fred/appx/actor/sys

When you compile the program with the +objdebug option, the debugger may find
the source files without using the dir command. This happens because the debugger
stores the full path name to the object files and searches for source files in the same
directories.

14.7 Fix and continue debugging

Fix and continue enables you to see the result of changes you make to a program you
are debugging without having to re-compile and re-link the entire program.

For example, you can edit a function and use the fix command, which automatically
re-compiles the code, links it into a shared library, and continues execution of the program,
without leaving the debugger.

With Fix and Continue, you can experiment with various ways of fixing problems until
you are satisfied with the correction, before you exit the debugger.

The advantages include:

Chapter 14: HP-UX Configuration-Specific Information 121

file

You do not have to recompile and relink the entire program.
You do not have to reload the program into the debugger.
You can resume execution of the program from the fix location.

You can speed up the development cycle.

Note:
Fix and Continue is only supported with the most recent versions of HP C
and HP aC++ on PA-RISC systems.
In command-line mode, you use the edit command before invoking the fix command.
The edit command has the following syntax:
edit filel file2
where file
represents one or more source files for the current executable. If you do not specify a
file name, WDB edits the currently open source file.

When you edit a file with the edit command and save the changes, the original source
contains the changes, even if you do not use the fix command to recompile the program

in the debugger.

14.7.1 Fix and Continue compiler dependencies

Fix and Continue is supported only for PA-RISC on HP-UX 11.x with these compilers:
HP C/ANSI C A.11.01.20, or later
HP aC++ A.03.25, or later
HP Fortran 90 2.4, or later

14.7.2 Fix and Continue restrictions

Fix and Continue has the following restrictions and behaviors:
You cannot recompile code that has been optimized.

You cannot add, delete, or reorder the local variables and parameters in a function
currently active on the stack.

If you fix a routine in a file that contains function pointers, those function pointers
become invalid and will likely cause the program to receive a SIGSEGV error if the
pointers are used.

You cannot change the type of a local variable, file static, global variable, or parameter
of a function.

You cannot add any function calls that increase the size of the parameter area.

You cannot change a local or file static or global variable to be a register variable, and
vice-versa.

You cannot add an alloca() function to a frame that did not previously use alloca().
New structure fields can be added at the end of a structure object, not in the middle
of a structure. New fields are only accessible by the modified files. Old structure fields
remain intact; no swapping of them is permitted.

122 Debugging with GDB

e If the redefined function is in the call stack but not on the top of the call stack, the
modified code will not be executed when the execution resumes.

The modified function will be executed when it is called next time, or a rerun.

e Breakpoints in the original source file are moved to the modified file. Breakpoints in
the already instantiated functions on the call stack in the original file are lost.

e If you change the name of a function and there was a breakpoint set to the old function,
WDB does not move the breakpoint to the new function. The old breakpoint is still
valid.

e If the number of lines of the modified file is different from that of the original file, the
placement of breakpoints may not be correct.

e When the program resumes, the program counter is moved to the beginning of the
same line in the modified function. The program counter may be at the wrong line.

14.7.3 Using Fix and Continue

When WDB recompiles a fixed source file, it uses the same compiler and the same options
that were used to create the original executable. If the compiler generates any syntax errors
or it encounters any of the restrictions, WDB does not patch the changes into the executable
image being debugged.

After you successfully recompile the changes, WDB uses the fixed version of the code
when you use any of the execution commands such as step, run, or continue.

When you use the edit command, WDB then monitors any edited source files for addi-
tional changes. After you enter the initial £ix command, WDB checks for additional saved
changes to a source file each time you enter a program execution command. If a saved
source file has been changed, WDB asks if you want to fix the changed source, allowing you
to apply repeated fixes without explicitly entering the fix command.

The Fix and Continue facility enables you to make the following changes:
e Change existing function definitions.
e Disable, reenable, save, and delete redefinitions
e Adding global and file static variables.
e Add new structure fields to the end of a structure type object.

e Set breakpoints in and single-step within redefined code.

You must rebuild the program after you use the fix command because the
changes you make are temporarily patched into the executable image. The
changes are lost if you load a different executable and are not reflected in
the original executable when you exit the debugger.

14.7.4 Example Fix and Continue session

This example shows how you can make and test changes to a function without leaving
the debugger session.

Here is a short sample C program with an error:

Chapter 14: HP-UX Configuration-Specific Information 123

int sum (num) int num;

{
int j, total = O;
for (j = 0; j <= num; j++)
total += num;

main()
{
int num = 10;
printf("The sum from 1 to %d is = %d\n", num, sum(num));

}
Compile the program.

cc sum.c -g —o mysum

/usr/ccs/bin/1d: (Warning) At least one PA 2.0 object file
(sum.o) was detected.
The linked output may not run on a PA 1.x system.

. Run the program.

./mysum

The sum from 1 to 10 is = 0
This result is obviously wrong. We need to debug the program.
. Run the debugger:
gdb mysum

HP gdb 3.0 for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 3.0 (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the
conditions to change it and/or distribute copies. Type

"show warranty" for warranty/support.

If the TERM environment variable is not set to hpterm, start the debugger and set the
terminal type for editing in WDB with this command (ksh shell):

TERM=hpterm gdb mysum
The problem might be that there is no return for the num function. You can correct
this without leaving the debugger.
. Set a break point at main:
(gdb) b main
Breakpoint 1 at 0x23£8: file sum.c, line 11.
. Run the program:
(gdb) run
Starting program: /tmp/hmc/mysum

124

10.

Debugging with GDB

Breakpoint 1, main () at sum.c:11

11 int num = 10;
When the program stops at the break point, use the edit command to make changes
to the source file.

Because you are going to edit the current file, you do not need to specify a source file
name.

(gdb) edit
The edit command opens a new terminal session using your environment variable
settings for terminal and editor. The debugger automatically loads the source file.
Make the necessary changes. In this case, add:

return total;
to the function named num.

Save the edited source file and exit the editor. This saves the changes in the actual
source file for the program.

Use the fix command to recompile the program to see the results of the changes:

(gdb) fix

Compiling /dev/src/sum.c...
Linking. ..

Applying code changes to sum.c.
Fix succeeded.

The fix command creates a new executable that includes the changes you made to the
source file.

The debugger automatically uses the new executable and picks up the debugging session
where you stopped before using the edit command.

For example, you can continue stepping through the program and you will find the new
return total; statement in the source view. You can print the value of total, and
see that the result is 110.

When you finish with the debugging session, you can exit the debugger normally:
(gdb) q
The following modules in /dev/src/mysum have been fixed:

/dev/src/sum.c
Remember to remake the program.

The debugger message lists the source files that you have changed during the debugging
session.

Note:

You must rebuild the program after you use the fix command because
the changes you make are temporarily patched into the executable image.
The changes are lost when you exit the debugger or you load a different
executable.

Chapter 14: HP-UX Configuration-Specific Information 125

14.8 Inline Support

HP WDB enables you to debug inline functions in applications compiled with -g option.
To enable inline debugging in HP 9000 systems, the applications must be compiled with
the +inline_debug option (introduced in the A.03.65 and later versions of the HP aC++
compiler). In Integrity systems, the applications that are compiled with -g option support
inline debugging by default and require no additional options. Compiler versions A.06.02
and later support the inline debugging feature in Integrity systems.

14.8.1 Inline Debugging in HP 9000 Systems

To debug inline functions in HP 9000 systems, complete the following steps:
Step 1:

Compile the source files with the +inline_debug option.
For example:

/opt/aCC/bin/aCC -g +inline_debug test.c

Step 2:

Inline debugging is enabled by default. To explicitly enable or disable inline de-
bugging, complete either of the following steps before loading the application to the debugger:

$ gdb --inline=<on/off> a.out
or
(gdb) set inline-debug <on/off>

Step 3:

You can use the following commands for debugging inline functions in HP 9000 systems:

step

next

list
backtrace
frame <n>
info locals
info args

The following commands are not available for debugging inline functions in HP 9000 systems:
breakpoint

info frame
disassembly

126 Debugging with GDB

Note:

Inline debugging commands are not available for inlined template functions
and inlined functions which are defined after the call site.

14.8.2 Inline Debugging in Integrity Systems

In Integrity systems, applications that are compiled with -g option support inline debug-
ging by default. Compiler versions A.06.02 and later support the inline debugging feature
in Integrity systems and require no additional options.

WDB 5.6 and later versions enable you to set and modify breakpoints in inline functions
for programs compiled with optimization level less than +O2. The breakpoint features for
inline functions are introduced as additional options in the set inline-debug command.

You can toggle the options for inline debugging by entering either of the following com-
mands:

(gdb) set inline-debug <option>
or

$ gdb --inline= <option>
The following options available for the set inline-debug command:

e on
e off
e inline_bp_all

e inline_bp_individual

The set inline-debug on command enables the inline debugging feature without the
inline breakpoints options in Integrity systems. This command is enabled by default.

The set inline-debug off command disables the inline debugging feature. You can
disable inline debugging by entering this command before attaching the debugger to the
application.

The set inline-debug inline_bp_all command enables you to set and modify break-
points on all instances of a particular inline function. It also enables the inline debugging
feature. A single instance of the specified inline function is displayed as a representative in-
stance for all the instances of the specified inline function. This creates a single-breakpoint
illusion for multiple instances of the inline function. You can set and modify breakpoints
on all the instances of the inline functions by setting and modifying breakpoints on the
displayed instance of the inline function. You must enter this command before attaching
the debugger to the application.

The set inline-debug inline_bp_individual command enables you to set and mod-
ify breakpoints on a specific instance of an inline function. It also enables the inline debug-
ging feature. All instances of the inline function are displayed separately with individual
breakpoint occurrences. You can set or delete individual breakpoints on a specific instance

Chapter 14: HP-UX Configuration-Specific Information 127

of an inline function without modifying the breakpoints on other instances of the inline
function. You must enter this command before attaching the debugger to the application.

Limitations:

e The inline breakpoint features are not available for programs that are com-
piled with +O2 optimization level and above.

e The inline breakpoint features can degrade performance of the application that is be-
ing debugged. You can explicitly disable the breakpoint features when the fea-
tures are not required and continue to use other inline debugging features, such as step

and next.

14.8.2.1 Debugging Inline Functions in Integrity Systems

To debug inline functions in Integrity systems, complete the following steps:
Step 1:
The application must be compiled with the -g option for inline debugging. No ad-

ditional options are required.
For example:

/opt/aCC/bin/aCC -g test.c
Step 2:
Inline debugging without the breakpoint feature is enabled by default. You can mod-
ify the inline debugging settings by toggling the options for the set inline-
debug command.

e To enable inline debugging without inline breakpoint support, enter ei-
ther of the following commands:

(gdb) set inline-debug on
or

$ gdb --inline = on

e To set and modify breakpoints collectively on all instances of inline func-
tions and enable inline debugging, enter either of the following commands:

(gdb) set inline-debug inline_bp_all
or

$ gdb --inline = inline_bp_all

128 Debugging with GDB

e To set and modify individual breakpoints on specific instances of inline func-
tions and enable inline debugging, enter either of the following commands be-
fore debugging the application:

(gdb) set inline-debug inline_bp_individual
or

$ gdb --inline = inline_bp_individual

e To disable inline debugging, enter either of the following commands be-
fore debugging the application:

(gdb) set inline-debug off
or

$ gdb --inline= off

Step 3:

You can use the following commands for debugging inline functions in Integrity systems:

step

next

list
backtrace
frame <n>
info locals
info args
breakpoint

The following commands are not available for debugging inline functions in In-
tegrity systems:

info frame
disassembly

14.9 Debugging Macros

HP WDB 5.7 and later versions of the debugger enable you to display and evaluate
macro definitions for programs running on Integrity systems. This feature is available only
for compiler versions A.06.15 and later.

14.9.1 Viewing and Evaluating Macro Definitions

HP WDB 5.7 and later versions of the debugger provide the following support for de-
bugging macros:

Chapter 14: HP-UX Configuration-Specific Information 129

e Displaying Macro Definitions
HP WDB provides the following commands to display macro definitions:
- show macro [macro-name] or info macro [macro-name]
Displays the macro definition, source file name, and the line number. For example:

(gdb) info macro VAR2
Defined at scope.c:21
#define VAR2 201

- macro expand [macro-name]

Expands the macro and the parameters in the macro. If there are any parameters
in the macro, they are substituted in the macro definition when the definition is
displayed.

For example:

#define YY 6
#define MAC (67 + YY)

$ gdb
(gdb) macro expand MAC
expands to: (67 + 6)

e Evaluating Macros

HP WDB enables you to evaluate a macro and display the output. You can evaluate
the macro by using the commonly used gdb commands for evaluating and displaying
expressions, such as print. HP WDB supports the evaluation of macros with vari-
ables, constants, complex algebraic expressions involving variables, nested macros, and
function calls. HP WDB does not support the evaluation of macros with multiple
statements in the macro definitions, or the evaluation of macros with stringifying and
pasting tokens in the macro definitions.

14.9.1.1 Compiler Options to Enable Macro Debugging

To enable macro debugging, the program must be compiled with the
+macro_debug=[all|none|ref] compiler option.

Additionally, the program must be compiled with one of the -g options (-g, -g0, or -g1)
to enable macro debugging. For example:

cc —g +macro_debug=all -o sample sample.c
The following options are available for the +macro_debug compiler option:
all To view and evaluate all the macro expressions in the program, you must com-

pile the program with +macro_debug=all. This option can cause a significant
increase in object file size.

ref To view and evaluate only the reference macros in the program, you must
compile the program with +macro_debug=ref. This is the default for -g, -g0,
or —gl.

130 Debugging with GDB

none To disable macro debugging, you must compile the program with +macro_
debug=none

The macro debugging features are supported for +objdebug and +noobjdebug compiler
options.

14.9.2 Examples for Macro Debugging

The following example illustrates the use of the macro debugging:
Sample Program:
$ cat scope.c

#include <stdio.h>

#define USED1 100
#define USED2 200
#define UNUSED1 O
#define UNUSED2 O
#define DUMMY1
#define DUMMY2

© 0 NO O WN -

=
= O

int
main ()

{

e e e
g W N

int val = USED1,;

=
~N O

#undef UNUSED1
#undef USED2
#undef USED1
#define USED1 101
#define USED2 201

NDNDNND -~ =
W NP, O O 0

val = USED1 + USED2;

NN
a S

#undef USED1
#undef UNUSED2
#undef USED2
#define USED1 102

W NN NN
O © 00N O

val = USED1;

w w
N =

return O;
33 }

Sample Debugging Session

e The following debugging session illustrates macro debugging when the program is com-
piled with +macro_debug=all option:

Chapter 14: HP-UX Configuration-Specific Information 131

$ cc -g +macro_debug=all -o sc scope.c

$ gdb sc

HP gdb for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.

(gdb) b 13

Breakpoint 1 at 0x40007d0:0: file scope.c, line 13 from sc.
(gdb) b 23

Breakpoint 2 at 0x40007d0:2: file scope.c, line 23 from sc.
(gdb) b 30

Breakpoint 3 at 0x40007e0:0: file scope.c, line 30 from sc.
(gdb) r

Starting program: sc

Breakpoint 1, main () at scope.c:13
13 {

(gdb) print USED1

100

(gdb) print USED1+10
110

(gdb) info macro USED1
Defined at scope.c:4
#define USED1 100
(gdb) info macro USED2
Defined at scope.c:5
#define USED2 200

(gdb) ¢

Continuing.

Breakpoint 2, main () at scope.c:23
23 val = USED1 + USED2;

(gdb) info macro USED1
Defined at scope.c:20
#define USED1 101
(gdb) info macro USED2
Defined at scope.c:21
#define USED2 201
(gdb) c

Continuing.

Breakpoint 3, main () at scope.c:30

30 val = USED1;

(gdb) info macro USED1

Defined at scope.c:28

#define USED1 102

(gdb) info macro USED2

The macro ‘USED2’ has no definition in the current scope.
(gdb)

132 Debugging with GDB

e The following debugging session illustrates macro debugging when the program is com-
piled with +macro_debug=referenced option:

$ cc -g tmacro_debug=referenced -o scl scope.c

$ gdb scil

HP gdb for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.

(gdb) b 13

Breakpoint 1 at 0x40007d0:0: file scope.c, line 13 from scl.
(gdb) b 23

Breakpoint 2 at 0x40007d0:2: file scope.c, line 23 from scl.
(gdb) b 30

Breakpoint 3 at 0x40007e0:0: file scope.c, line 30 from scl.
(gdb) r

Starting program: scl

Breakpoint 1, main () at scope.c:13
13 {

(gdb) print USED1

100

(gdb) print USED1+10

110

(gdb) info macro USED1

Defined at scope.c:4

#define USED1 100

(gdb) info macro USED2

The macro ‘USED2’ has no definition in the current scope.
(gdb) ¢

Continuing.

Breakpoint 2, main () at scope.c:23
23 val = USED1 + USED2;
(gdb) info macro USED1

Defined at scope.c:20

#define USED1 101

(gdb) info macro USED2

Defined at scope.c:21

#define USED2 201

(gdb) ¢

Continuing.

Breakpoint 3, main () at scope.c:30
30 val = USED1;
(gdb) info macro USED1
Defined at scope.c:28

Chapter 14: HP-UX Configuration-Specific Information 133

#define USED1 102

(gdb) info macro USED2

The macro ‘USED2’ has no definition in the current scope.
(gdb) q

The program is running. Exit anyway? (y or n) y.

14.10 Debugging Memory Problems

You can use WDB to find leaks, profile heap usage and detect other heap-related errors
in HP C, HP aC++, and HP Fortran programs written for HP-UX 11.x systems. (Both
32-bit and 64-bit programs are supported.)

On HP-UX 11.x, the memory debugging features of WDB work with both single-threaded
and multi-threaded programs that use POSIX threads.

For more information on memory debugging with WDB, see the Debugging Dynamic
Memory Usage Errors Using HP WDB whitepaper at the HP WDB Documentation web-
page at:

http://www.hp.com/go/wdb.

14.10.1 When to suspect a memory leak

You should suspect a memory leak in the code when you notice that the system is
running out of swap space or running slower, or both.

Applications or non-kernel code (including daemons) that have memory leaks can even-
tually use up all swap space. You can run top(1) to verify whether the process data space
(SIZE, RES) is growing more than you expect.

If the system is running out of swap space, programs will fail with out-of-memory
(ENOMEM) errors or SIGBUS signals. In addition, the system might run slower and slower
until it comes to a stop; all processes requiring swap to continue running will wait for it
indefinitely. GDB allows you to catch out-of-memory conditions through runtime memory
checking. Use the command catch nomem to detect out-of-memory conditions. GDB will
stop whenever malloc returns NULL and allows you to look at the current context.

14.10.2 Memory debugging restrictions

Programs with these attributes are not supported:
e CMA or DCE threaded programs on 11.x (32-bit and 64-bit)
e Memory checking features. These features work only in programs that directly or

indirectly call malloc, realloc, free, mmap, or munmap from the standard C library
‘libc.sl’.

e Programs that link the archive version of the standard C library, 1ibc.a, or the core
library, 1ibcl.a, on HP-UX 11.x

Note: Linker with version number B.11.19 or higher is required for debugging memory
problems.

http://www.hp.com/go/wdb

134 Debugging with GDB

e From HP WDB 5.7 onwards, the archive version of the run time check library,
librtc.a, is not available. = You must use the shared version of the library,
librtc. [sll]so], instead.

14.10.3 Memory Debugging Methodologies

WDB enables you to debug memory problems in applications written for HP-UX 11.x
or later using C, aC++, FORTRAN 77, and Fortran 90.

WDB provides several commands that help expose memory-related problems.
HP WDB offers the following memory-debugging capabilities:

e Reports memory leaks

e Reports heap allocation profile

e Stops program execution if bad writes occur with string operations such as strcpy and
memcpy

e Stops program execution when freeing un-allocated or de-allocated blocks

e Stops program execution when freeing a block if bad writes occur outside block bound-
ary

e Stops program execution conditionally based on whether a specified block address is
allocated or de-allocated

e Scrambles previous memory contents at malloc() and free() calls

e Simulates and detects out-of-memory event errors

e Detects dangling pointers and dangling blocks

e Detects in-block corruption of freed blocks

e Specifies the amount of guard bytes for every block of allocated memory

e Displays the run time type information for C++ polymorphic objects

You can use any of the following methods to identify memory problems:
e See Section 14.10.4 [Debugging Memory in Interactive Mode|, page 134
e See Section 14.10.5 [Debugging Memory in Batch Mode], page 138

e See Section 14.10.6 [Debugging Memory Interactively After Attaching to a Running
Process|, page 145

14.10.4 Debugging Memory in Interactive Mode

This section describes the various commands which help in debugging memory problems
when the debugger is used in the interactive mode.

14.10.4.1 Commands for interactive memory debugging

To debug memory problems, use these commands:

set heap-check [on|off]
This toggles the capability for detection of leaks, heap profiles, bounds checking,
and checking for double free.

Chapter 14: HP-UX Configuration-Specific Information 135

info heap Displays a heap report, listing information such as the start of heap, end of
heap, heap size, heap allocations, size of blocks, and number of instances. The
report shows heap usage at the point you use the info heap command. The
report does not show allocations that have already been freed. For example, if
you make several allocations, free them all, and then you use info heap, the
result does not show any allocations.

info heap filename
Writes heap report output to the specified file.

info heap idnumber
Produces detailed information on the specified heap allocation including the
allocation call stack.

show heap-check
Displays all current settings for memory checking.

set heap-check interval < nn >
This command starts incremental heap growth profile. All allocations prior to
the execution of this command are ignored from report. If incremental heap
growth profile is already on, executing this command will reset the counters
and start a fresh collection.Interval is specified in seconds.

set heap-check repeat < nn >
This allows user to specify the number of intervals GDB should collect the
incremental heap growth. The default value is 100. Every repeat of the interval
tracks heap allocation during that interval.

Example:
< gdb > set heap—-check interval 10
< gdb > set heap-check repeat 100

Here WDB will create 100 incremental apart heap profiles which are 10 seconds
apart.

set heap-check reset
GDB stores incremental heap growth data in an internal file. During one session
data is appended to this file. If the session is very long, it is possible that this
file may become very large. This command discards the data existing in the file
and creates a new data file. Once this command is executed, the user cannot
see the old data.

info heap-interval < file name >
This command creates the report of heap growth. The data for each interval
has the start and end time of the interval. If file name is mentioned a detailed
report is written in the file.

set heap-check leaks [on | off]
Controls WDB memory leak checking.

info leaks
Displays a leak report, listing information such as the leaks, size of blocks, and
number of instances.

136 Debugging with GDB

info leaks filename
Writes the complete leak report output to the specified file.

info leak leaknumber
Produces detailed information on the specified leak including the allocation call
stack.

set heap-check block-size num-bytes
Instructs WDB to stop the program whenever it tries to allocate a block larger
than num-bytes in size.

set heap-check heap-size num-size
Instructs WDB to stop the program whenever it tries to increase the program
heap by at least num-bytes.

min-heap-size
This option reports the heap allocations that exceed the specified number <num>
of bytes based on the cumulative number of bytes that are allocated at each
call-site, which is inclusive of multiple calls to malloc at a particular call site.

set heap-check watch address
Stops the program whenever a block at a specified address is allocated or deal-
located.

set heap-check null-check [N | random]
Force malloc to return NULL after N or random number of invocations of malloc.
Use set heap-check random-range N and set heap-check seed-value N to
define the seed value and range for random number calculation. Useful for
simulating out-of-memory situations.

set heap-check null-check-size N
Force malloc to return NULL after N bytes have been allocated by the program.

catch nomem
Allows the user to get control of an out-of-memory event. The user can step
through once the nomem event is caught to see whether the out-of-memory event
is handled correctly.

set heap-check free [on | off]
When set to on, forces WDB to stop the program when it detects a call to
free() with an improper argument, a call to realloc() that does not point to
a valid currently allocated heap block, or a call to free a block of memory, which
has been corrupted. Refer to ’set heap-check bounds’ for details on detecting
memory corruption.

set heap-check string [on | off]
Toggles validation of calls to strcpy, strncpy, memcpy, memccpy, memset,
memmove, bzero, and, bcopy. WDB 5.6 and later versions of the debugger
also validates calls to strcat and strncat.

set heap-check bounds [on | off]
Allocates extra space at the beginning and end of a heap block during alloca-
tion and fills it with a specific pattern. When blocks are freed, WDB verifies

Chapter 14: HP-UX Configuration-Specific Information 137

whether these patterns are intact. If they are corrupted, an underflow or over-
flow must have occurred and WDB reports the problem. This option increases
the program’s memory requirements.

set heap-check scramble [on | off]
Scrambles a memory block and overwrites it with a specific pattern when it
is allocated or deallocated. This change to the memory contents increases the
chance that erroneous behaviors, such as attempting to access space that is
freed or depending on initial values of malloc() blocks, cause the program to
fail.

info dangling
Displays a list of all the dangling pointers and dangling blocks that are potential
sources of memory corruption(may have false positives).

info corruption
Checks for corruption in the currently allocated heap blocks.In addition, it lists
the potential in-block corruptions in all the freed blocks.

set heap-check min-leak-size num
Collects a stack trace only when the size of the leak exceeds the number of
bytes you specify for this value. Larger values improve run-time performance.
The default value is zero (0) bytes.

set heap-check frame-count num
Controls the depth of the call stack collected. Larger values increase run time.
The default value is four (4) stack frames.

set heap-check header-size num of bytes
Sets the Header guard for each block of the allocated memory. The default
number of bytes for the footer is 16 bytes if this option is not used. If the user
specifies a value less than 16 for the number of bytes, the debugger ignores it
and takes the default of 16 bytes. If the user specifies more than 16 bytes,
then the debugger considers the largest and closest 16 byte integral from the
user-specified value.

Example:
If the user specifies 60 bytes, the debugger takes it as 48 bytes. If the user
specifies 65, the debugger considers 64 bytes.

set heap-check footer-size num of bytes
Sets the Footer guard for each block of the allocated memory. The default
number of bytes for the footer is one byte if this option is not used.

14.10.4.2 Example for interactive debugging session

This example describes checking a program running on HP-UX 11.x using linker version
B.11.19 or later:

1. Link the program with /usr/1ib/libc.sl instead of 1ibc.a.
2. Run the debugger and load the program:
> gdb a.out

138 Debugging with GDB

3. Turn on leak checking:
(gdb) set heap-check leaks on
4. Set one or more breakpoints in the code where you want to examine cumulative leaks:
(gdb) b myfunction
5. Run the program in the debugger:
(gdb) run
6. Use the info command to show list of memory leaks:
(gdb) info leaks

Scanning for memory leaks...done

2439 bytes leaked in 25 blocks

No. Total bytes Blocks Address Function
0 1234 1 0x40419710 foo()

1 333 1 0x40410bf8 main()

2 245 8 0x40410838 strdup()
[...]

The debugger assigns each leak a numeric identifier.
7. To display a stack trace for a specific leak, use the info leak command and specify
the number from the list associated with a leak:
(gdb) info leak 2

245 bytes leaked in 8 blocks (10.05% of all bytes leaked)
These range in size from 26 to 36 bytes and are allocated
in strdup O
in link_the_list () at test.c:55
in main () at test.c:13
in _start O

14.10.5 Debugging Memory in Batch Mode

HP WDB supports batch mode memory leak detection, also called batch Run Time
Checking (Batch RTC). Most of the memory debugging features supported in interactive
mode are also supported in batch mode.

Note:

The batch mode commands may not always work when invoked through a
shell script.

14.10.5.1 Setting Configuration Options for Batch Mode

You can specify the batch mode configuration through a configuration file called
rtcconfig. The configuration file supports these variables:

Chapter 14: HP-UX Configuration-Specific Information 139

check_free=on|off (or) set heap-check free <on/off>
Enables detection of multiple incorrect free of memory

check_heap|heap=on|off (or) set heap-check <on/off>
Enables heap profiling.

check_leaks|leaks=on|off (or) set heap-check leaks <on/off>
Enables leak detection.

check_string=on|off (or) set heap-check string <on/off>
Enables detection for writing out of boundary for strcpy, strncpy, memcpy,
memccpy, memset, memmove, bzero, bcopy.

check_bounds |bounds=on|off (or) set heap-check bounds <on/off>
Enables checking of bounds corruption.

files=<filel:file2:...|fileN>
Specifies the executables for which memory leak detection is enabled. if files
option is not specified, after setting BATCH_RTC=on, RTC will instrument ALL
executables.

frame_count=no_frames (or) set heap-check frame-count <no_frames>
Sets the number of frames to be printed for leak context.

min_heap_size=block_size (or) set heap-check min-heap-size <block_size>
Sets the minimum block size to use for heap reporting.

min_leak_size=block_size (or) set heap-check min-leak-size <block_size>
Sets the minimum block size to use for leak detection.

output_dir=output_data_dir
Species the name of the output data directory.

scramble_blocks=on|off (or) set heap-check scramble <on/off>
Enables block scrambling.

Batch mode leak detection stops the application at the end, when libraries are being
unloaded, and invokes HP WDB to print the leak or heap data.
Note:
It is incorrect usage to use spaces before or after the '=’ symbol in the batch

mode configuration options in the configuration file, rtcconfig. Additionally,
it is incorrect usage to use spaces before the batch mode configuration options.

For example:

Correct Usage:
$ cat rtcconfig
check_leaks=on
check_heap=on
files=batchrtc4
$

Incorrect Usage:

140

Debugging with GDB

$ cat rtcconfig

check_leaks=on
check_heap = on
files=batchrtc4
$

Steps for Batch Mode Memory Debugging

To use batch memory debugging, complete the following steps:

Compile the source files

Create an rtcconfig file in the current directory.

3. Define an environment variable BATCH_RTC. If you are using the Korn or Posix shell,

enter the following command at the HP-UX prompt:
export BATCH_RTC=on
Complete one of the following steps to preload the 1ibrtc runtime library:

e Set the target application to preload librtc by using the +rtc option for the

chatr command. In addition to automatically loading the librtc library, the
+rtc option for the chatr command also maps the shared libraries as private.

To enable or disable the target application to preload the librtc runtime library,
enter the following command at the HP-UX prompt:

$ chatr +rtc <enable|disable> <executable>
Note: The chatr +rtc option preloads the 1ibrtc runtime library from the fol-
lowing default paths:
- For 32 bit IPF applications,
/opt/langtools/lib/hpux32/1librtc.so
- For 64 bit IPF applications,
/opt/langtools/lib/hpux64/librtc.so
- For 32 bit PA applications,
opt/langtools/lib/librtc.sl
- For 64-bit PA applications,
/opt/langtools/1lib/pa20_64/1librtc.sl
To preload the 1ibrtc runtime library from a path that is different from the default
paths, you must use the LD_PRELOAD environment variable.
(0r)

Instead of automatically preloading 1ibrtc and mapping the shared libraries, you
can explicitly preload the required librtc library after mapping the shared li-
braries private.

In the case of HP 9000 systems, you must explicitly map the share libraries as
private by using the +dbg enable option for the chatrcommand, as follows:

$ chatr +dbg enable ./<executable>
(This step is not required on Integrity systems.)

Chapter 14: HP-UX Configuration-Specific Information 141

To explicitly preload the 1librtc runtime library and start the target application,
enter one of the following commands:

- For 32 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable>
- For 64 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable>
- For 32 bit PA applications,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable>
- For 64-bit PA applications,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable>
If LD_PRELOAD and chatr +rtc are used to preload the librtc runtime library ,
the librtc runtime library is loaded from the path specified by LD_PRELOAD.
Note:

Batch Mode RTC displays one of the following errors and causes the pro-
gram to temporarily hang if the version of WDB and librtc. [sl|so] do
not match, or if WDB is not available on the system:
"/opt/langtools/bin/gdb: unrecognized option ‘-brtc’

Use ‘/opt/langtools/bin/gdb --help’ for a complete list of options."
(OR)

"execl failed. Cannot print RTC info: No such file or directory"
This error does not occur under normal usage where WDB or
librtc. [sl]so] is used from the default location at /opt/langtools/. ..
However, this error occurs if GDB_SERVER and/or LIBRTC_SERVER are set
to a mismatched version of WDB or librtc. [s1]so] respectively.

5. At the end of the run, output data file is created in output_data_dir, if defined in
rtcconfig,or the current directory. HP WDB creates output data file for each run. It
creates a separate file for leak detection and heap information. The naming convention
for output files is as follows:
<file_name>.<pid>.<suffix>
Where, <pid> is the process id and the value for <suffix> can be either leaks, heap, or
mem.

Note:

During operations such as system(3s)and popen(), which invoke a new
shell, 1librtc.sl|so must not be loaded to the invoked shell. You must
use LD_PRELOAD_ONCE, instead of LD_PRELOAD, to exclusively load the
librtc.sllso file to the calling process only. Following is the syntax for
using LD_PRELOAD_ONCE:

LD_PRELOAD_ONCE= /opt/langtools/lib/librtc.sl

14.10.5.2 Environment variable setting for Batch mode debugging

Batch mode memory leak detection uses the following environment variables:

142 Debugging with GDB

e GDBRTC_CONFIG species the location of rtc configuration file. If this option is not
specified, the configuration file is assumed to be in the current location, and has the
filename rtcconfig. If user prefers to set this option, it must include the filename.

e Incorrect usage:
export GDBRTC_CONFIG=./
export GDBRTC_CONFIG=/tmp
e Correct usage:
export GDBRTC_CONFIG=/tmp/yet_another_config
export GDBRTC_CONFIG=/tmp/rtcconfig
e BATCH_RTC enables or disables batch memory leak detection.

e GDB_SERVER is used to override the default path from where the gdb executable is used
to provide the information on memory leak. By default, /opt/langtools/bin/gdb is
used to print the output. This can be overriden by setting GDB_SERVER appropriately.

e RTC_MALLOC_CONFIG is used to override the default config and rtcconfig file settings.
This variable can be set as follows:

export RTC_MALLOC_CONFIG=config_stringl[;config strings].
e The config_strings are separated by ;.
e The following config_strings options exist for RTC_MALLOC_CONFIG:

abort_on_bounds=[01]
Aborts execution when heap objects bounds check fail, value is 1,
and the environment variable RTC_NO_ABORT is not set.

abort_on_bad_free=[01]
Aborts execution when free or realloc is trying to free a heap
object which is not valid, value is 1, and environment variable
RTC_NO_ABORT is not set.

abort_on_nomem=[01]
Aborts execution when out of memory if value is 1, and environ-
ment variable RTC_NO_ABORT is not set.

leak_logfile=stderr[+]filename
The log file for batch mode must be specified.
stderr: error message goes to stderr

[+]filename: error message goes to filename, + means output is
appended to the file.

mem_logfile=stderr[+]filename
heap_logfile=stderr[+]filename

e Specify config_strings for +check=malloc on Itanium or WDB memory
check batch mode on Integrity systems.

e RTC_PROCESS_GDBINIT is an optional environment variable used to enable process-

ing of the .gdbinit file. You can use the .gdbinit file to specify path settings
such as dir, objectdir, and pathmap to set the path of the source and object files

Chapter 14: HP-UX Configuration-Specific Information 143

in case the source or object paths are different than the current directory, so that
the generated RTC reports display the symbol names and line numbers correctly.

This feature is optionally enabled only when the RTC_PROCESS_GDBINIT environ-
ment variable is set to 1.

There are limitations on what commands in the .gdbinit file. If there are erroneous
commands in the .gdbinit file, the batch RTC session can possibly hang and not
produce the expected RTC reports. Following are some examples:

1. If the ’q’ (quit) command is used, the session would hang and finally terminate
after approximately 10 mins, and not generate any RTC reports. It would
print the error message "Broken synchronization between child/parent
process".

2. If any gdb command that would take more processing time is used, this would
interfere with the assumptions of RTC and the session may hang and print the
error message "Broken synchronization between child/parent process".

14.10.5.3 Example for Batch Mode RTC

This section illustrates examples of batch mode RT'C on HP 9000 and Integrity Systems.
e Example for Batch Mode RTC of a PA-RISC 32 bit Executable

Step 1: Compile the source files.

Step 2: The rtcconfig file must entries, such as the following:
check_heap=on
check_leaks=on
check_free=on
files=executable_name
output_dir=/tmp/results

Step 3: Set the following environment variables as follows:
export BATCH_RTC=on

Step 4: Complete one of the following steps:

- Map the shared libraries privately using chatr, as follows:
chatr +dbg enable <executable>
Explicitly preload the librtc runtime library and start the target applica-
tion, as follows:

LD_PRELOAD=/opt/langtools/lib//librtc.sl <executable>
<arguments>
(0r)

- Set the target application to preload librtc by using the +rtc option for
the chatr command. In addition to automatically loading the librtc
library, the +rtc option for the chatr command also maps the shared
libraries as private.

To set the target application to preload the 1ibrtc runtime library, enter
the following command at the HP-UX prompt:

$ chatr +rtc enable <executable>

144 Debugging with GDB

e Example for Batch Mode RTC on Integrity Systems: Example-1

Step 1: Compile the source files.

Step 2: The rtcconfig file must contain entries such as the following:
check_heap=on
check_leaks=on
check_free=on
files=executable_name
output_dir=/tmp/results

Step 3: Set the following environment variables as follows:
export BATCH_RTC=on

Step 4: Complete one of the following steps:

- Preload the 1librtc runtime library, as follows: LD
PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable>
<arguments if any>

(0r)

- Preload the librtc runtime library, as follows: $ chatr +rtc enable
<executable>

e Example from Integrity Systems: Example-2

Step 1: Compile the source files.

Step 2: The rtcconfig file should contain entries such as the following:
check_heap=on
check_leaks=on
check_free=on
files=execl:exec2:exec3
output_dir=/tmp/results

Step 3: Set the following environment variables as follows:
export BATCH_RTC=on

Step 4: Complete one of the following steps:

- Use the +rtc option for the chatr command on each of the required
executable files that must be instrumented, as follows:

$ chatr +rtc enable execl exec2 exec3
(0r)

- Preload the librtc library as follows:
export LD_PRELOAD /opt/langtools/lib/hpux32/librtc.so
Step 5: Run the program as follows:
./execl
Suppose execl eventually spawns exec2, exec3, exec4, exech, only execl,

exec2, exec3 will be instrumented based on the settings in the rtcconfig
file.

Chapter 14: HP-UX Configuration-Specific Information 145

14.10.6 Debugging Memory Interactively After Attaching to a
Running Process

HP WDB accepts -pid or -p followed by a process ID to attach a running process to
the debugger.

To use Batch RTC after attaching GDB to a running process, complete the following
steps:

1. Complete one of the following steps to preload the librtc runtime library:

- Set the target application to preload librtc by using the +rtc option for the
chatr command.In addition to automatically loading the librtc library, the
+rtc option for the chatr command also maps the shared libraries as private.

To enable or disable the target application to preload the librtc runtime
library, enter the following command at the HP-UX prompt:

$ chatr +rtc <enable|disable> <executable>
Note: To attach and find leaks for PA-32 applications from the startup, the

environment variable RTC_INIT should be set to on in addition to preloading
the librtc. [sllso] library before starting the application, as follows:

$ RTC_INIT=on <executable>
(0r)

- Instead of automatically preloading librtc and mapping the shared libraries,
you can explicitly preload the required 1ibrtc library.

In the case of HP 9000 systems, you must explicitly map the share libraries as
private by using the +dbg enable option for the chatr command, as follows:

$ chatr +dbg enable ./<executable> (This step is not required on Integrity
systems.)

To explicitly preload the librtc runtime library and start the target applica-
tion, enter one of the following commands:

- For 32 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so <executable>

- For 64 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable>

- For 32 bit PA applications,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable>

- For 64-bit PA applications,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable>

Note: To attach and find leaks for PA-32 applications from the startup, the

environment variable RTC_INIT should be set to on in addition to preloading
the librtc. [sllso] library before starting the application, as follows:

$ LD_PRELOAD=/opt/langtools/lib/librtc.sl RTC_INIT=on <application>
If RTC_INIT is turned on, librtc starts recording heap information for PA32

process, by default. Hence, you must set this environment variable only when
it is required, and you must not export this environment variable for shell.

146

Debugging with GDB

2. Run the program.

3. Start a debugging session as follows:
gdb -leaks <executable-name> <process-id>

4. Use info heap and info leaks commands to obtain a memory analysis report of
the application.

Note: From HP WDB 5.7 onwards, the archive version of the run time check li-
brary, librtc.a, is not available. You must use the shared version of the library,
librtc. [sl]so], instead.

14.10.7 Configuring memory debugging settings

The following configuration settings are supported to control the level of details of
information required to be displayed when debugging memory leaks.

14.10.7.1 Specifying the stack depth

Memory debugging reduces the performance of an application by 20-40% because of
stack unwinding. To provide a clear profile of every allocation in the program, the
debugger collects the stack trace information for every allocation in the debugged ap-
plication. Reducing the stack depth (the number of stack frames that the debugger
collects for each allocation) reduces the performance degradation.

The set heap-check frame-count command enables you to control the depth of the
stack frames that are collected by WDB for each allocation. By default, four stack
frames are displayed from the allocating call stack.

To set the depth of the stack frames that is collected by WDB, enter the following
command at the gdb prompt:

$ set heap-check frame-count [num]

The stack depth, [num], is the number of stack frames that WDB collects for each
allocation.

You can specify a higher value for [num] to view more stack frames for each reported
allocation. However, the performance of the application is reduced because of the
increased stack depth.

14.10.7.2 Specifying minimum leak size

WDB enables you to specify the minimum leak size for stack trace collection to improve
the program’s performance.

Stack trace collection slows down the program because it occurs on every allocation
call. Therefore, if the program is allocation-intensive, WDB can spend a substantial
amount of time collecting stack traces.

You can improve performance by using the command:
set heap-check min-leak-size num

For example, if you use,

Chapter 14: HP-UX Configuration-Specific Information 147

set heap-check min-leak-size 100

WDB does not collect stack traces for allocations smaller than 100 bytes. HP WDB
still reports leaks smaller than this size, but does not include a stack trace.

14.10.7.3 Specifying minimum block size

The min-heap-size option reports the heap allocations that exceed the specified num-
ber <num> of bytes based on the cumulative number of bytes that are allocated at each
call-site, which is inclusive of multiple calls to malloc at a particular call site.

Example: set heap-check min-heap-size 100

When the option min-heap-size is set to 100, GDB reports all the cumulative block
allocations that 100 bytes at each call-site.

14.10.8 Scenarios in memory debugging

14.10.8.1 Stop when freeing unallocated or deallocated blocks

WDB enables you to locate improper calls to free() and realloc(), with the com-
mand

e In interactive debugging mode: set heap-check free [on | off].

e In batch mode debugging: check_free [on | off].
With this setting on, whenever the program calls free() or realloc() WDB inspects
the parameters to verify that they are pointing to valid currently allocated heap blocks.

If WDB detects an erroneous call to free(), it stops the program and reports this
condition. You can then look at the stack trace to understand where and how the
problem occurred.

14.10.8.2 Stop when freeing a block if bad writes occurred
outside block boundary

WDB enables you to locate problems caused by heap block overflow or underflow with
the command
e In Interactive debugging mode: set heap-check bounds [on | off]

e In batch mode debugging: check_bounds [on | off].

When bounds checking is turned on, WDB allocates extra space at the beginning and
end of a block during allocation and fills it up with a specific pattern. When blocks
are freed, WDB verifies whether these patterns are intact. If they are corrupted, an
underflow or overflow must have occurred and WDB reports the problem. If you want
to find corruption at any time, use the info corruption command.

The info corruption command can detect memory corruption in an application. That
is, it reports all the memory blocks that have over-writes and under-writes.

Syntax:

148

Debugging with GDB

info corruption [<file name>]

The run time memory checking must be enabled before using the info corruption
command to detect memory corruption. The corruption information is written to a file
specified in the .file name argument if provided. Otherwise, it is printed to the stdout.

Note: Turning on bounds checking increases the program’s memory re-
quirements because the extra guard bytes must be allocated at the begin-
ning and end of each block.

14.10.8.3 Stop when a specified block address is allocated or
deallocated

To stop a program whenever a block at a specified address is allocated or deallocated,
use the command:

set heap-check watch address
You can use this to debug situations such as multiple free () calls to the same block.

Limitation : This is not supported in batch mode debugging.

14.10.8.4 Scramble previous memory contents at malloc/free
calls

WDB enables you to potentially expose latent memory access defects with the com-
mand:
e In Interactive debugging mode: set heap-check scramble [on | off]

e In batch mode debugging: scramble_blocks [on | off].

When this setting is turned on, any time a memory block is allocated or deallocated,
WDB scrambles the space and overwrites it with a specific pattern.

This change to the memory contents increases the chance that erroneous behaviors will
cause the program to fail. Examples of such behavior include attempting to access
space that is freed or depending on initial values of malloc() blocks.

You can now look at the stack trace to understand where and how the problem occurred.

Note: Turning on scrambling slows down the program slightly, because at
every malloc() and free() call, the space involved must be overwritten.

14.10.8.5 Detect dangling pointers and dangling blocks

A pointer is a Dangling pointer if the block of memory it points to, has been freed by
the application. The block is called Dangling Block.

The same freed block could be subsequently allocated to the application in response
to another memory allocation request. In this scenario, if the application incorrectly
tries to write into the freed memory block using the dangling pointer, it could result in
incorrect or an undefined program behavior, as the new owner or function owning the
same allocated block would find different values in the heap block.

Note:

Chapter 14: HP-UX Configuration-Specific Information 149

Software literature names this concept as premature free or Reading/writing freed mem-
orYy using a pointer.

WDB tracks the dangling pointers and dangling blocks using a modified version of
Garbage collection. The enabler for doing this is by retaining all the freed blocks
internally within RT'C without actually freeing it as long as possible. It displays all the
potential pointers to the freed dangling blocks, in the application data space.

The pointers are potential because the pointers need not be actual pointers and could
be a datum value and hence there are chances of false positives in the dangling report.

Note:

WDRB tries to help as much as possible to detect if these pointers are of type datum or
real pointers. In a —g compiled binary, WDB performs a look-up on a symbol table to
find the symbol name and type to find the symbol name of the potential pointer and if
its of pointer type, then the corresponding dangling block is really dangling(not a false
positive).

WDB turns on these checks, only when you specify set heap-check retain-freed-
blocks on.

14.10.8.6 Detect in-block corruption of freed blocks

HP WDB detects all the attempts of a program to write to the freed dangling blocks
using dangling pointers.We detect such in-block corruptions and are reported as part
of the existing info corruption command output.

14.10.8.7 Specify the amount of guard bytes for every block of
allocated memory

HP WDB enables you to programmatically control the size of guard bytes for every
block of the allocated memory. You can use these guard bytes to spot very rare and
non-trivial boundary (buffer over-run and buffer under-run) corruptions. This again
is available optionally when the user specifies set heap-check retain-freed-blocks
<on>.

14.10.9 Comparison of Memory Debugging Commands in
Interactive Mode and Batch Mode

HP WDB 5.6 and later versions provide consistency in format for the batch mode
options and the interactive mode commands.

The following table lists the memory debugging commands available in batch and
interactive mode:

150

Debugging with GDB

Memory Debugging Commands in Interactive and Batch Mode

Command Description

Interactive mode

Batch mode

Toggles heap profiling and
detection of leaks, bounds,

and double free

Toggle the leak detection
capability

Toggle validation of calls to
strcpy, strncpy, memcpy,
memccpy, memset, memmove,

bzero and, bcopy

Toggle validation of calls to
free()

Specify whether freed
blocks should be scrambled

Toggle bounds check on
heap blocks

Specify the minimum size
of a block for stack trace
collection. GDB will report
blocks of size greater than
or equal to <num> at each

call-site.

set heap-check [on |
off]

set heap-check leaks
[on |off]

set heap-check string
[on | off]

set heap-check free
[on |off]

set heap-check

scramble [on |off]

set heap-check bounds
[on| off]

set heap-check

min-heap-size <num>

check_heap= [on | off] (or) set
heap-check [on | off]

check_leaks =[on | off]
set heap-check leaks [on
loff]

(or)

check_string= [on |off] (or)
set heap-check string [on |
off]

check_free = [on |off] (or)
set heap-check free [on |

off]

scramble_blocks=[on| off](or)
set heap-check scramble [on
|off]

check_bounds = [on | off]
set heap-check bounds [on]|
off]

(or)

min_heap_size = <num> (or)
set heap-check min-heap-size
<num>

Specify the minimum size
of a block for stack trace
collection. GDB report
leaks of blocks, smaller
than this value. However,

no stack trace is provided.

Specify the depth of call
stack to be captured

Instruct GDB to stop,
whenever a block at the
given address gets allocated

or deallocated.

Instructs malloc to return
null after <num> invoca-
tions of malloc.

Instructs malloc to return
null after <num> bytes have

been allocated by malloc.

Specifies the seed value to
be used for generating ran-

dom null-check-count

Specifies the random range

to be used by random range

Specifies the time interval
to be used for incremental
memory profile

Perform incremental profile
for <num> interval periods
where each period duration
is defined by set heap-check
interval command. The de-
fault value is 100.

Chapter 14: HP-UX Configuration-Specific Information

set heap-check

min-leak-size <num>

set heap-check

frame-count <num>

set heap-check watch

address

set heap-check

null-check <num>

set heap-check
null-check-size
<gize>

set heap-check

seed-value <num>

set heap-check

random-range <num>

set heap-check

interval <num>

set heap-check repeat

<num>

151

min_leak_size = <num> (or)
set heap-check min-leak-size
<num>

frame_count = <num> (or) set
heap-check frame-count <num>

Not supported in batch mode

Not supported in batch mode

Not supported in batch mode

Not supported in batch mode

Not supported in batch mode

Not supported in batch mode

Not supported in batch mode

152

Debugging with GDB

NULL pointer return by catch nomem Not supported in batch mode
memory allocators; used
with set heap-check on,
with/without null-check

enabled

Note:

The files=<executable-name> and output_dir=<path> options are ex-
clusive to batch mode debugging.

14.10.10 Heap Profiling

The heap profile is useful for identifying how memory is being used by the program.
You can use WDB to profile an application’s current heap usage.

14.10.10.1 Commands for heap profiling

info heap Displays a heap report, listing information such as the start of the heap,
end of the heap, heap allocations, size of blocks, and number of instances.
The report shows heap usage at the point you use the info heap command.

The report does not show allocations that have already been freed. For
example, if you make several allocations, free them all, and then you use
info heap, the result does not show any allocations.

info heap filename
Writes heap report output to the specified file.

info heap idnumber
Produces detailed information on the specified heap allocation including
the allocation call stack.

set heap-check frame-count num
Controls the depth of the call stack collected. Larger values increase run
time. The default value is four (4) stack frames.

show heap-check
Displays all current settings for memory checking.

14.10.10.2 info heap arena

The info heap arena command enables the user to view high level memory usage
details of each arena. The info heap arena is not supported in batch mode. This
command is available only for applications running on 11i v3 or later.

Chapter 14: HP-UX Configuration-Specific Information 153

14.10.10.3 info heap arena [0 [1]2]..] blocks stacks

Displays the memory profile report for block level and overall memory usage with stack
trace where applicable. This command is available only for applications running on 11i
v3 or later.

14.10.10.4 info module ADDRESS

The info module command identifies load modules, and determines whether it lies
in the text or data region for a given address. This command is available only for
applications running on 11i v3 or later.

Syntax:
info module ADDRESS

14.10.10.5 info heap process

The info heap process command enables the user to view a high level memory usage
report of a process. This command is available only for applications running on 11i v3
or later.

14.10.10.6 Example for heap profiling

This example shows how to use this feature on HP-UX 11.x:

1. If the linker version is earlier than B.11.19, link with /opt/langtools/1lib/pa20_
64/1librtc.sl for PA-64 programs. For a 32-bit program, you must link with
‘/opt/langtools/lib/librtc.sl’.

If the dynamic linker version is B.11.19 or later, skip this step because WDB
automatically loads the ‘librtc.sl’ library.

2. Turn on profiling with the set heap-check on command:
(gdb) set heap-check on
3. Set a breakpoint:
(gdb) b myfunction
4. When the program is stopped at a breakpoint, use the info heap command:

(gdb) info heap
Analyzing heap ...done

Actual Heap Usage:

Heap Start = 0x40408000
Heap End = 0x4041a900
Heap Size = 76288 bytes

Outstanding Allocations:
41558 bytes allocated in 28 blocks

154

Debugging with GDB

No. Total bytes Blocks Address Function
0 34567 1 0x40411000 foo()
1 4096 1 0x7bd63000 bar()
2 1234 1 0x40419710 baz()
3 245 8 0x404108b0 boo ()

[...]

The display shows the currently allocated heap blocks. Any blocks that have been
allocated and already freed are not listed.

To look at a specific allocation, specify the allocation number with the info heap
command:
(gdb) info heap 1
4096 bytes at 0x7bd63000 (9.86% of all bytes allocated)
in bar () at test.c:108
in main () at test.c:17
in _start O
in $START$ ()

When multiple blocks are allocated from the same call stack, WDB displays additional
information:
(gdb) info heap 3
245 bytes in 8 blocks (0.59% of all bytes allocated)
These range in size from 26 to 36 bytes and are allocated
in boo ()
in 1link_the_list () at test.c:55
in main () at test.c:13
in _start O

14.10.11 Memory Checking Analysis for User Defined Memory
Management Routines

Many user applications have their own memory management routines. These custom
allocator routines are either user defined or sometimes wrappers to the default memory
management routines. Memory checking features has been extended for user defined
memory management routines. Memory leak, profile of heap memory or memory errors
can be obtained for user defined memory management routines.
Limitations:

e This feature routes to default memory routines instead of calling user defined

memory management routines to obtain memory analysis.

e This feature is not supported in batch mode and attach mode debugging.

14.10.12 Commands to track the change in data segment value

The high water mark records the number of times the brk() value changes. The
following commands are supported:

Chapter 14: HP-UX Configuration-Specific Information 155

info heap high-mem
Displays the number of times brk () value changes for a given run.

set heap-check high-mem-count X_number
Stops when brk () value has moved X_number of times.

Limitations:
e This feature assumes that an application has a deterministic memory allocation
pattern from one run to another.
e The high_mem feature is not supported in batch mode debugging.

14.11 Thread Debugging Support

HP WDB provides thread-debugging support for kernel, user, and MxN threads. You
can exclusively disable or enable specific thread execution. Advanced thread debugging
support in HP WDB enables you to view information on pthread primitives and detect
certain thread-related conditions.

Note: WDB supports pthread parallelism, but it does not support
compiler-generated parallelism such as parallelism with directives.

14.11.1 Support for Enabling and Disabling Specific Threads

When you suspect that a specific thread is causing a problem while debugging a multi-
threaded application, you can suspend the execution of other threads in the application
and debug the doubtful thread exclusively. HP WDB 3.2 and later versions provide
the following commands to disable and enable specific thread execution:

e thread disable - This command prevents the specified threads from running until
they are enabled again using the thread enable command.
e thread enable - This command enables the specified thread to run when you issue

the continue or step command. By default, all threads are in the enabled state.
You can use the thread enable command to reactivate a disabled thread.

Consider the following example:

(gdb) info thread

system thread 4189 0x7f666da8

in __pthread_create_system+0x3d8 () from /usr/lib/libpthread.1

2 system thread 4188 worker (wptr=0x40004640 ") at quicksort.c:135

1 system thread 4184 0x7f66f728 in _lwp_create+0x10 () from /usr/lib/libpthread.1

To disable a thread, execute the following command:

(gdb) thread disable 1
warning: ATTENTION!! Disabling threads may result in
deadlocks in the program.Disabling thread 1

To enable a thread, execute the following command:

156

Debugging with GDB

(gdb) thread enable 1
Enabling thread 1

14.11.2 Backtrace Support for Thread Debugging

The following commands are available as backtrace support for thread debugging:

bt

The bt command provides the stack trace of the current thread that is being
executed or the thread that accepts the signal in case of a core file.

thread apply all bt

You can use the thread apply all bt command to display the backtrace of all
threads. The bt command only provides the stack trace of the current thread
under execution.

backtrace_other_thread

The backtrace_other_thread command prints the backtrace of all stack frames
for a thread with stack pointer SP, program counter PC and address of gr32 in
the backing store BSP. This command enables you to view the stack trace when
the stack is corrupted. When using this command, you must ensure that the SP,
PC, and BSP values are valid.

The syntax for the backtrace_other_thread command is as follows:

backtrace_other_thread SP PC BSP

14.11.3 Advanced Thread Debugging Support

Advanced thread debugging support is available for multi-threaded applications run-
ning on HP-UX 11iv2, or HP-UX 11iv3.

HP WDB 5.5 and later versions provide advanced thread debugging features to display
extended information on the state of pthread primitives such as mutexes, read-write
locks and conditional variables.

HP WDB 5.6 and later versions provide advanced thread-debugging options to detect
the following thread-related conditions:

The thread attempts to acquire a non-recursive mutex that it currently holds.

The thread attempts to unlock a mutex or a read-write lock that it has not ac-
quired.

The thread waits (blocked) on a mutex or read-write lock that is held by a thread
with a different scheduling policy.

Different threads non-concurrently wait on the same condition variable, but with
different associated mutexes.

The thread terminates execution without unlocking the associated mutexes or
read-write locks.

The thread waits on a condition variable for which the associated mutex is not
locked.

Chapter 14: HP-UX Configuration-Specific Information 157

The thread terminates execution, and the resources associated with the terminated
thread continues to exist in the application because the thread has not been joined
or detached.

The thread uses more than the specified percentage of the stack allocated to the
thread.

The number of threads waiting on any pthread object exceeds the specified thresh-
old number.

14.11.3.1 Pre-requisites for Advanced Thread Debugging

The following pre-requisites apply for advanced thread debugging:

The advanced thread debugging features are supported only on HP-UX 11i v2 and
later on both PA-RISC and Integrity systems.

The tracing pthread library is required for advanced thread-debugging. The
pthread tracer library is available by default on systems running on HP-UX 11i
v2 or later. You must install HP WDB 5.5 or later versions of the debugger to
support enhanced thread debugging. The installation scripts for HP WDB 5.5 and
later versions of the debugger automatically add links at /opt/langtools/lib/
to replace the standard libpthread library with libpthread tracer library at
run time.

The thread debugging feature in HP WDB is dependent on the availability of the
dynamic Linker Version B.11.19.

HP WDB uses librtc.sl to enable thread debugging support. If the debugger
is installed in a directory other than the default /opt/langtools/bin directory,
you must use the environment variable, LIBRTC_SERVER, to export the path of the
appropriate version of librtc.sl.

HP WDB does not support debugging of programs that link with the archive ver-
sion of the standard C library libc.a or the core library 1ibcl.a. The programs
must be linked with libc.sl.

The advanced thread debugging commands work only if set thread-check is set
to on.

For PA-RISC 32-bit applications, the dynamic library path look-up must be en-
abled for advanced thread debugging. To enable dynamic library path look-up for
advanced thread debugging, enter the following command at HP-UX prompt:

chatr +s enable <PA32-bitApp>

This command automatically enables dynamic library path look-up. No additional
environmental variables are required to be set.

14.11.3.2 Enabling and Disabling Advanced Thread Debugging

Features

HP WDB 5.6 and later versions of the debugger provide advanced thread debugging
features for debugging multi-threaded applications running on 11i v2, or 11i v3. These
features are available as options to the set thread-check command. The syntax for
the set thread-check command is as follows:

158

Debugging with GDB

set thread check { [on|off]| [option] [on|off] | [option] [num]}

The set thread-check [on|off] command enables or disables advanced thread de-
bugging. This feature is off by default. The set thread-check [on|off] command
must be enabled prior to running the application under the debugger, to force the
underlying runtime system to collect information on pthread primitives.

The advanced thread debugging features can be enabled only if the set thread-check
[on] command is enabled. The following advanced thread debugging options are avail-
able for the set thread-check command:

e recursive-relock [on]|off]

This set thread-check recursive-relock [on|off] command checks if a
thread has attempted to acquire a non-recursive mutex that it currently holds.
Re-locking a non-recursive mutex results in a deadlock. At run-time, the debugger
keeps track of each mutex in the application and the thread that currently holds
each mutex. When a thread attempts to acquire a lock on a non-recursive mutex,
the debugger checks if the thread currently holds the lock object for the mutex.
The debugger transfers the execution control to the user and prints a warning
message when this condition is detected.

e unlock-not-own [on]|off]

The set thread-check unlock-not-own [on|off] command checks if a thread
has attempted to unlock a mutex or a read-write lock that it has not acquired.
The debugger transfers the execution control to the user and prints a warning
message when this condition is detected.

e mixed-sched-policy [on|off]

The set thread-check mixed-sched-policy [on|off] command checks if a
thread is waiting (blocked) on a mutex or a read-write lock that is held by
a thread with a different scheduling policy. This is not an application error
and does not always result in deadlock. However, it degrades the application
performance. The debugger transfers the execution control to the user and prints
a warning message when this condition is detected.

e cv-multiple-mxs [on|off]

The set thread-check cv-multiple-mxs [on|off] command checks if an ap-
plication uses the same condition variable in multiple calls, by different threads
to pthread_cond_wait () or pthread_cond_timedwait (), but specifies different
mutexes. The debugger transfers the execution control to the user and prints a
warning message when this condition is detected.

All threads that concurrently wait on any single condition variable must specify
the same associated mutex. For example,the pthread implementation does not
allow thread 1 to wait on condition variable A by specifying mutex A, while
thread 2 waits on the same condition variable A by specifying mutex B. This
returns an EINVAL error to the application. In contrast to this obvious EINVAL
error, the cv-multiple-mxs option detects the less-obvious and non-concurrent
use of multiple mutexes with the same condition variable by different threads. This
option detects potential EINVAL errors that exist as a result of different timings or
execution paths.

Chapter 14: HP-UX Configuration-Specific Information 159

This option is used to detect unintentional use of multiple mutexes with the same
condition variable by different threads. In the case of applications that use a
dynamic pool of mutexes, the cv-multiple-mxs option is not required because
this usage is normal and expected application behavior.

e cv-wait-no-mx [on]|off]

The set thread-check cv-wait-no-mx [on|off] checks if the associated mutex
of a condition variable is locked when the thread calls the pthread_cond_wait ()
routine. The debugger transfers the execution control to the user and prints a
warning message when this condition is detected. This check is not a POSIX.1
standard requirement for the pthread_cond_wait() routine. It is an additional
check provided by WDB.

e thread-exit-own-mutex [on|off]

The set thread-check thread-exit-own-mutex [on|off] command checks if
any thread has terminated execution without unlocking the mutexes or read-write
locks that are associated with the thread. The debugger transfers the execution
control to the user and prints a warning message when this condition is detected.
This situation can result in deadlocks if other threads are waiting to acquire the
locked mutexes or read-write locks.

e thread-exit-no-join-detach [on|off]

The set thread-check thread-exit-no-join-detach [on|off] command
checks if a thread has terminated execution (either successfully or because of an
exception or a cancel) without joining or detaching the thread. The debugger
transfers the execution control to the user and prints a warning message when
this condition is detected. The resources associated with a terminated thread
continue to exist in the application if the thread is not joined or detached. The
thread must be explicitly joined or detached, or it must be created with the
detach attribute. When an application repeatedly creates threads without a
join or detach operation, the application leaks resources. This may result in
application failure.

e stack-util [num]

The set thread-check stack-util [num] command checks if any thread has used
more than the specified percentage [num] of the stack allocation. The debugger
transfers the execution control to the user and prints a warning message when this
condition is detected. You can use this option to verify if there is a margin of safety
in stack utilization by the threads. The application must ensure that the thread
stack size is sufficient for all the operations of the thread. Each thread is assigned
a stack allocation when it is created. If the stack allocation is not specified for a
thread, the default value is used. The stack allocation cannot be modified after a
thread is created. If a thread attempts to use more stack space than the allocated
stack space, it results in a stack overflow. Stack overflow can result in memory
access violations, bus errors, or segmentation faults.

e num-waiters [num]

The set thread-check num-waiters [num] command checks if the number of
threads waiting on any pthread object exceeds the specified threshold number

160

Debugging with GDB

[num]. The debugger transfers the execution control to the user and prints a
warning message when this condition is detected.

14.11.3.3 Commands to view information on pthread
primitives

WDB 5.5 and later versions of the debugger display extended information on pthread
primitives for multi-threaded applications running on HP-UX 11i v2, or 11i v3. This
feature is available only if the set thread-check [on|off] command is enabled. The
following commands enable you to view extended information on threads, mutexes,
read-write locks and conditional variables in multi-threaded applications:

e info thread [thread-id]

The info thread [thread-id] command displays a list of known threads. If a
thread-id is provided, the command displays extended information on the speci-
fied thread.

e info mutex [mutex-id]

The info mutex [mutex-id] command displays a list of known mutexes. If a
mutex-id is provided, the command displays extended information on the specified
mutex.

e info condvar [condvar-id]

The info condvar [condvar-id] command displays a list of known condition
variables. If condvar-id is provided, the command displays extended information
on the specified condition variable.

e info rwlock [rwlock-id]

The info rwlock [rwlock-id] command displays a list of known read-write locks.
If rwlock-id is provided, the command displays extended information on the
specified read-write lock.

14.11.4 Debugging Threads Interactively After Attaching to a
Process

HP WDB provides support to attach a running process to the debugger. To use thread
debugging commands after attaching GDB to a running process, complete the following
steps:

1. Set LD_LIBRARY_PATH to include the appropriate directory, by entering one of the
following commands:

- For 32 bit IPF applications,
LD_LIBRARY_PATH=/opt/langtools/wdb/1lib/hpux32

- For 64 bit IPF applications,
LD_LIBRARY_PATH=/opt/langtools/wdb/1lib/hpux64

- For 32 bit PA applications,
LD_LIBRARY_PATH=/opt/langtools/wdb/1lib

Chapter 14: HP-UX Configuration-Specific Information 161

- For 64-bit PA applications,
LD_LIBRARY_PATH=/opt/langtools/wdb/1ib/pa20_64
2. Complete one of the following steps to preload the 1ibrtc runtime library:

e Set the target application to preload librtc by using the +rtc option for the
chatr command. In addition to automatically loading the 1librtc library, the
+rtc option for the chatr command also maps the shared libraries as private.

To enable or disable the target application to preload the librtc runtime
library, enter the following command at the HP-UX prompt:

$ chatr +rtc <enable|disable> <executable>
Note: The chatr +rtc option preloads the librtc runtime library from the
following default paths:
- For 32 bit IPF applications,
/opt/langtools/1lib/hpux32/1librtc.so
- For 64 bit IPF applications,
/opt/langtools/1lib/hpux64/librtc.so
- For 32 bit PA applications,
opt/langtools/lib/librtc.sl
- For 64-bit PA applications,
/opt/langtools/1lib/pa20_64/1librtc.sl
To preload the 1ibrtc runtime library from a path that is different from the
default paths, you must use the LD_PRELOAD environment variable.
(0r)

e Instead of automatically preloading 1ibrtc and mapping the shared libraries,
you can explicitly preload the required librtc library after mapping the
shared libraries private.

In the case of HP 9000 systems, you must explicitly map the share libraries as
private by using the +dbg enable option for the chatrcommand, as follows:

$ chatr +dbg enable ./<executable>
(This step is not required on Integrity systems.)

To explicitly preload the 1ibrtc runtime library and start the target applica-
tion, enter one of the following commands:

- For 32 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux32/1librtc.so <executable>

- For 64 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable>

- For 32 bit PA applications,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable>

- For 64-bit PA applications,
LD_PRELOAD=/opt/langtools/lib/pa20_64/1librtc.sl <executable>

162 Debugging with GDB

If LD_PRELOAD and chatr +rtc are used to preload the librtc runtime library
, the librtc runtime library is loaded from the path specified by LD_PRELOAD.

3. Complete one of the following steps:

- Attach the debugger to the required process and enable thread debugging, as
follows:

gdb -thread -p <pid>
or
gdb -thread <executable> <pid>

- Alternately, you can attach the process to the debugger and consequently
invoke thread debugging, as follows:

$ gdb <executable> <pid>
(gdb)set thread-check on

14.11.5 Thread Debugging in Batch Mode

HP WDB supports batch mode of debugging threads for HP-UX 11iv2 and later, on
Integrity systems and on HP-UX 11i v3 in PA-RISC systems for 64 bit applications.
The debugger provides a log file with the list of thread-related errors that occur in the
application.

In batch mode, the debugger detects the all the thread-conditions that are detected
during an interactive debugging session.

The debugger reports extended information such as variable address, name, id and
other specifications related to the involved pthread objects. In addition, it displays the
stack trace of the executing thread at the point of error.

Note:

Use the set frame-count setting in the rtconfig file to control the depth of the stack
trace file. This command controls the depth of the call stack collected. Larger values
increase the run time.

14.11.5.1 Pre-requisites for Batch mode of Thread Debugging

The various prerequisites for Batch mode of Thread Debugging are as follows:

- The thread-debugging feature in HP WDB is dependent on the availability of the
dynamic linker version B.11.19.

- Advanced thread-debugging feature requires the pthread tracer library which is
available by default on systems running HP-UX 11i v2 or later.
Steps to debug threads in batch mode
1. Compile the source files.

- Set the LD_LIBRARY_PATH environment variable, based on the platform as
follows:

- For IPF 32 bit applications, set
LD_LIBRARY_PATH=/opt/langtools/wdb/lib/hpux32

Chapter 14: HP-UX Configuration-Specific Information 163

- For IPF 64 bit applications, set
LD_LIBRARY_PATH=/opt/langtools/wdb/1ib/hpux64

- For PA 64 bit applications, set
LD_LIBRARY_PATH=/opt/langtools/wdb/lib/pa20_64

2. Map the share libraries as private for HP 9000 systems using the following com-
mand:

$ chatr +dbg enable ./<executable>
Note: This step is not applicable for Integrity systems.

3. Create a configuration file, rtcconfig to specify the various thread conditions that
you want the debugger to detect.

Note: The configuration file contains lines of the following form:

set thread-check [on|off] | [option] [on|off] | [option] [num]
And/Or

set frame-count [num]

And/Or

files=<name of the executable on which the thread checking is to be
done>

For more information, Section 14.11.3.2 [Enabling and Disabling Advanced Thread
Debugging Features|, page 157

4. Set the environment variable BATCH_RTC to on as: Set BATCH_RTC=on
5. Complete one of the following steps to preload the 1librtc runtime library:

e Set the target application to preload librtc by using the +rtc option for the
chatr command. In addition to automatically loading the librtc library, the
+rtc option for the chatr command also maps the shared libraries as private.

To enable or disable the target application to preload the librtc runtime
library, enter the following command at the HP-UX prompt:

$ chatr +rtc <enable|disable> <executable>
Note: The chatr +rtc option preloads the librtc runtime library from the
following default paths:
- For 32 bit IPF applications,
/opt/langtools/1lib/hpux32/librtc.so
- For 64 bit IPF applications,
/opt/langtools/lib/hpux64/librtc.so
- For 64-bit PA applications,
/opt/langtools/1lib/pa20_64/1librtc.sl
To preload the 1ibrtc runtime library from a path that is different from the
default paths, you must use the LD_PRELOAD environment variable.
(0r)

e Instead of automatically preloading 1ibrtc and mapping the shared libraries,
you can explicitly preload the required librtc library after mapping the
shared libraries private.

164

Debugging with GDB

In the case of HP 9000 systems, you must explicitly map the share libraries as
private by using the +dbg enable option for the chatrcommand, as follows:

$ chatr +dbg enable ./<executable>
(This step is not required on Integrity systems.)

To explicitly preload the 1librtc runtime library and start the target applica-
tion, enter one of the following commands:

- For 32 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux32/1ibrtc.so <executable>

- For 64 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so <executable>

- For 64-bit PA applications,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl <executable>

If LD_PRELOAD and chatr +rtc are used to preload the 1ibrtc runtime library
, the 1ibrtc runtime library is loaded from the path specified by LD_PRELOAD.

If HP WDB detects any thread error condition during the application run, the
error log is output to a file in the current working directory. The output file has
the following naming convention:

<executable name>.<pid>.threads

Where
<pid>is the process id.

14.11.5.2 Limitations in Batch mode of thread debugging

The feature does not obtain the thread-error information in batch mode for forked pro-
cess in a multiprocessing application. However, if the librtc.sl library is preloaded,
the debugger obtains the thread-error information in the batch mode for exec-ed ap-
plication.

You cannot specify an alternate output directory for the thread-error log. The thread-
error log file is output into the current working directory only.
HP WDB cannot execute both batch mode thread check and batch mode heap check

together. If the rtcconfig file has both entries, then batch heap check overrides the
batch thread check.

14.11.6 Thread Debugging in +check Mode

A new compiler option +check=thread enables batch mode thread debugging features
of HP WDB.

Note: This feature is available only for compiler versions A.06.20 and later.

It is a convenient way of launching the batch mode advanced thread checking features
without setting any other environment variables at runtime. In other words, batch
mode thread checking has two modes of invocation. The first method is to use the run-
time environment variables LD_LIBRARY_PATH, LD_PRELOAD and BATCH_RTC on existing

Chapter 14: HP-UX Configuration-Specific Information 165

precompiled applications. The second method is to use the +check=thread option at
the compile time.

+check=thread must only be used with multithreaded programs. It is not enabled by
+check=all. This functionality requires HP WDB 5.9 or later.

The default configuration used by +check=thread option is as follows:

thread-check=1;recursive-relock=1;unlock-not-own=1;
mix-sched-policy=1;cv-multiple-mxs=1;cv-wait-no-mx=1;
thread-exit-own-mutex=1;thread-exit-no-join-detach=1;stack-util=80;
num-waiters=0;frame_count=4;output_dir=.;

Behavior of the +check=thread option can be changed by users by providing their own
rtcconfig file. The user specified rtcconfig file can be in the current directory or in
a directory specified by the GDBRTC_CONFIG environment variable.

If any thread error condition is detected during the application run, the error log will
be output to a file in the current working directory. The output file will have the
following naming convention:

<executable name>.<pid>.threads,

where <pid> is the process identifier.

14.11.7 Known issues with Thread Debugging for Interactive
and Batch mode

Issue 1:

During the execution of advanced thread checking for applications that fork, in the
interactive mode, the following message appears if the GDB follows the child:

Pthread analysis file missing!

This error message appears because the thread-error information for the forked process
is not available.

However, if the forked process exec()s another binary, the thread-error information is
available for the exec -ed binary.

Issue 2:

In both interactive and batch modes, if the applications exceed their thread stack
utilization, the following error message appears:

Error accessing memory address

This occurs when GDB attempts a command line call on an already overflowing thread
stack.

14.12 Debugging MPI Programs

You can attach the debugger to Message Passing Interface (MPI) programs for debug-
ging. You must set the one of the following environment variables before you launch
the MPI process:

set MPI_FLAGS= egdb for invoking GDB

166

Debugging with GDB

or
set MPI_FLAGS= ewdb for invoking WDB

For more information, see the mpidebug(1) and mpienv(1) manpages.

Attaching the debugger to an MPI process (or to any other process that has not been
compiled for debugging) can result in the following warning:

warning: reading ’r3’ register: No data

14.13 Debugging multiple processes (programs with fork
and vfork calls)

14.13.1 Ask mode for set follow-fork-mode

The ask command prompts the user to select between parent and child as the debugger
response to a program call of fork/vfork. Based on the user selection, the parent or
the child process is debugged.

For example:
(gdb) set follow-fork-mode ask (gdb) show follow-fork-mode
The debugger response to a program call to fork or vfork is ask.

(gdb) run Starting program: sample [New process 4941] Select follow-fork-
mode: [0] parent [1] child

14.13.2 serial mode for set follow-fork-mode

The option serial, for the follow-fork-mode command, enables debugging of a parent
and child process within a debugger session. During a debug session, if the parent
process forks a child, the debugger starts debugging the child process. When the child
process exits, the debugger switches back to the parent process. The follow-fork-
mode will work only if there is a wait() call by the parent process. This feature is
enabled by setting the follow-fork-mode flag to serial, as specified in the following
example:
(gdb) set follow-fork-mode serial
The follow-fork-mode is not supported under following conditions:

e MxN threaded programs

e Parent process is 32-bit and child process is 64-bit and vice versa. For the follow-
fork-mode to work both parent and child process must be of the same mode.

14.13.3 Support for showing unwind info

The maint info unwind command prints the unwind information for the regions un-
winded at the given address expression. Usage:

maint info unwind exp

Chapter 14: HP-UX Configuration-Specific Information 167

where exp is an address expression.

For example:

(gdb) maint info unwind $pc

modsched:

0x4000930 .. 0x4000a20, end_prologue@0x4000970
Info block version:0x0, flags:0x0, length:4 *x 4 == 16
0x40172b20: (Oc) Rlprologue rlen=12
0x40172b21: (e8) P7preds_when t=11

0x40172b23: (bl) P3preds_gr gr=41

0x40172b25: (ea) P7lc_when t=7

0x40172b27: (b2) P3lc_gr gr=40

0x40172b29: (61) R3body rlen=33

0x40172b2b: (81) Bllabel_state label=1
0x40172b2c: (c0) B2epilogue t=44

0x40172b2e: (00) Rlprologue rlen=0

0x40172b2f: (00) Rlprologue rlen=0

14.13.4 Printing CFM and PF'S registers

On Integrity systems, HP WDB prints Current Frame Marker (CFM) and Previous
Frame State (PFS) ar64 registers in two different formats:

e raw values

e special formats identifying the size of rotating registers, frame and locals.

For example,
ar64: 0xc00000000000050¢ (sor:0, sol:10, sof:12)
cfm: 0x800000000000450a (sor:1, sol:10, sof:10)

14.14 Debugging Core Files

14.14.1 Generating core files with packcore
/unpackcore/getcore

The contents of a core file can be viewed only on a system which has all the shared
libraries that were in use on the system on which the core file was generated. If you
want to view the content of the core file on a system which does not have the shared
libraries, you have to set the environment variables GDB_SHLIB_PATH or GDB_SHLIB_
ROOT to make it search for the desired libraries. The commands packcore, unpackcore,
and core simplify the process of examining the contents of a core file on a system other
than the one in which it was generated.

The packcore command is used on the system which generated the core file. When
you are examining the core file on the original system, you can execute packcore to

168

Debugging with GDB

make a packcore.tar.Z file. This is a compressed tar file which contains the core
file, the executable, and all the shared libraries that were used by the program when it
generated the core file.The core file is removed after it is added to the packcore.tar.Z
file.

The packcore command has one optional argument, basename, which can be used
instead of packcore to make packcore.tar.Z.

The packcore.tar.Z file can be copied to a different system and the gdb command
unpackcore unpacks the packcore.tar.Z file in the current directory, creating a
new packcore directory. After unpacking the packcore file, the unpackcore command
invokes getcore to load the executable and the core file from the packcore directory,
and sets GDB_SHLIB_PATH to the modules directory in the packcore directory. The
modules directory holds all of the shared libraries that were used when the core file
was generated.

The unpackcore command has two optional arguments. The first defaults to
packcore.tar.Z and is the name of the packcore file to be unpacked. The second
argument is given if the core file is too large to fit in the packcore file. It is the
path to the core file to be used if the packcore directory does not contain a core file.
If used,this second argument causes a symbolic link to be created in the packcore
directory in place of the missing core file.

The getcore command can be used to examine a packcore directory which was pre-
viously created by unpackcore. It takes one optional argument, the name of the
packcore directory, which defaults to packcore.

14.14.2 Support for the dumpcore command

HP WDB provides the command, dumpcore to generate a core image file for a process
running under the debugger during execution.

The dumpcore command does not require any argument. It saves the core image for
the current process being debugged in the file named core.<pid>, where <pid> is the
process ID number.

To dump the core for a live process, you must pass the following commands:

(gdb) run Starting program: sample Breakpoint 3, main () at sample.c:1010 b
= foo(a); (gdb) dumpcore Dumping core to the core file core.24091(gdb)

When starting from the HP WDB command line:

(gdb) file sample

Reading

symbols from sample...done

(gdb) set live-core 1

(gdb) core-file core.24091

Core was generated by ’sample’.#0 main () at sample.c:1010 b = foo(a);
(gdb) backtrace#0 main () at sample.c:10

(gdb)

When starting from the shell prompt:

Chapter 14: HP-UX Configuration-Specific Information 169

% gdb ——lcore a.out core.<pid>

For example:

% ./gdb ——lcore sample core.24091

HP gdb. ..

Type "show warranty" for warranty/support. ...

Core was generated by ’sample’ .#0 main () at sample.c:10
(gdb)

14.14.2.1 Enhancements to the dumpcore command

HP WDB provides an option for the dumpcore command, to specify a <core-
filename>, to generate a core image file of a process running under the debugger in
the middle of execution and saves it in the file named <core-filename>.

The dumpcore command with no arguments saves the core image for the current process
being debugged in the file named core.<pid>, where pid is the process ID number.

To analyze this core file with HP WDB on HP-UX 11i version 2, you must do the
following:

When starting from HP WDB command line:
(gdb) core-file [core.pid | core-filename]
When starting from shell prompt:

$ gdb -core a.out [core.pid | core-filename]
14.14.3 Support for display of run time type information

HP WDB enables you to view the run time type information for C++ polymorphic
object.

info rtti address This command displays run time type information for C++ poly-
morphic object. The input to this command is address of the C++ polymorphic object.
GDB displays the de-mangled type name as output.

Note:
This command is supported only on Integrity systems.
Sample output:

(gdb) info rtti <address>
RTTI: <run time type/class name>

14.15 Printing the Execution Path Entries for the
Current Frame or Thread

HP WDB 5.7 and later versions of the debugger enable you to print the execution path
entries in the current frame, or the current thread for programs running on Integrity
systems. This feature enables the display of the execution path taken across branched

170

Debugging with GDB

modules. The first instruction in each block associated with the executed branch is
displayed.

This feature is supported only for compiler versions A.06.15 and later.

HP WDB supports the following commands to print the execution path entries in the
current frame, or in the current thread:

e info exec-path [start_index] [end_index] (aliased to info ep)

Lists all the local execution path entries in the current frame. The [start_index]
and [end_index] indicate the range of table indexes (execution path entries) that
must be displayed.

If [end_index] is not specified, the debugger displays the complete table of exe-
cution path entries, starting from [start_index].

If [start_index] and [end_index] are not specified, the complete table of exe-
cution path entries is displayed.

For example:
(gdb) i ep4 10
e info exec-path summary

Prints the summary information about all the local execution path entries in the
current frame. This command displays the total number of branches for the frame,
the number of branches executed in this frame in the last iteration, and the last
executed branch number.

e info global-exec-path [start_index] [end_index] (aliased to info gep)
Lists all the global execution path entries for the current thread.

The [start_index] and [end_index] indicate the range of table indexes (execu-
tion path entries) that must be displayed.

If [end_index] is not specified, the debugger displays the complete table of exe-
cution path entries, starting from [start_index].

If [start_index] and [end_index] are not specified, the complete table of exe-
cution path entries is displayed.

e info global-exec-path summary

Prints the summary information about all the global execution path entries in the
current frame. This command displays the total number of global execution path
entries that can be stored, the number of global execution path entries in this
frame in the last iteration, and the last executed global execution path number.

e exec-path [up] [down] [path_index] (aliased to ep)

Enables you to select, print, and navigate through the execution path entries.
When no arguments are specified, it prints the selected execution path entry. You
can specify the argument as an execution path index from the info exec-path or
the info global-exec-path commands. Alternately, you can use the up or down
command to navigate through the execution path entries.

Chapter 14: HP-UX Configuration-Specific Information 171

14.15.1 Compiler Dependencies for Printing the Execution
Path Entries

The +pathtrace compiler option provides a mechanism to record program execution
control flow into global path tables, local path tables, or both. This saved information
enables the debugger to print the execution path entries in the current thread or frame.
To print the execution path entries in the current thread or frame for programs running
on Integrity systems, you can set the required sub-options for the +pathtrace compiler
option.

You must set the following +pathtrace compiler option to enable the debugger to print
the execution path entries:

+pathtrace= [<global|global_fixed_size>:<local>]

For more information on this feature, see the following example.

14.15.2 Example Illustrating Execution Path Recovery

The following example illustrates the use of the execution path recovery feature in HP
WDB:

Sample Program:

$cat execpath.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main()

{
int a =3, b =0, ¢c = 4;

if (a)
printf ("Value of a greater than O\n");

if (b)
printf("Value of b greater than O\n");

if (o)
printf("Value of ¢ greater than O\n");

printf("All condition checking done\n");

return O;
}
Sample Debugging Session:

$cc +pathtrace -g execpath.c
$gdb a.out
HP gdb ...

172 Debugging with GDB

Type "show warranty" for warranty/support.

(gdb) b main

Breakpoint 1 at 0x4000a60:0: file execpath.c, line 7 from a.out.
(gdb) r

Starting program: a.out

Breakpoint 1, main () at execpath.c:7

7 int a =3, b =0, ¢c = 4;

(gdb) n

9 if (a)

(gdb) i ep

Local execution path table for main():

empty

(gdb) i gep

Global execution path table:

empty

(gdb) n

10 printf("Value of a greater than O\n");
(gdb) n

Value of a greater than O

12 if (b)

(gdb) i ep

Local execution path table for main():

0 0x4000a80:2 (execpath.c:10)
(gdb) i gep

Global execution path table:

GO 0x4000a80:2 main (execpath.c:10)
(gdb) n

15 if ()

(gdb) i ep

Local execution path table for main():

0 0x4000a80:2 (execpath.c:10)
(gdb) i gep

Global execution path table:

GO 0x4000a80:2 main (execpath.c:10)
(gdb) n

16 printf("Value of c¢ greater than O\n");
(gdb) n

Value of c greater than O

18 printf("All condition checking done\n");
(gdb) i ep

Local execution path table for main():

0 0x4000a80:2 (execpath.c:10)
2 0x4000bd0:2 (execpath.c:16)

(gdb) i ep summary
Summary for local execution path table for main()

Chapter 14: HP-UX Configuration-Specific Information 173

Size: 3 *Total Number of Branch Paths in Current Function
Effective entries: 2 *Number of Branches executed till this instant
Current entry: 2 * Last executed branch number

(gdb) i gep

Global execution path table:

GO 0x4000a80:2 main (execpath.c:10)

G1 0x4000bd0: 2 main (execpath.c:16)

(gdb) i gep summary
Summary for global execution path table

Size: 65536 *Maximum execution path entries to be stored
Effective entries: 2 *Number of global execution path entries
Current entry: 1 *The last Global Path ID executed

(gdb)

14.16 Invoking GDB Before a Program Aborts

This -crashdebug option enables GDB to monitor the execution of a process or a
program. It invokes GDB when the program execution is about to abort. Once the
debugger is invoked, you can debug the application using the normal debugger com-
mands. This option enables you to debug a live process instead of getting a core dump
if the program is about to abort.

You can examine the state of the process, make changes to the state and continue
program execution, force a core dump, or terminate execution. It enables you to
control program execution under the debugger if the program is about to abort. You
can load a new process or attach to a running process for monitoring.

To monitor a new process, enter the following command:
gdb -crashdebug <command> <options>
To monitor a running process, attach to the process using the following command:

gdb -crashdebug -pid <pid>
14.17 Aborting a Command Line Call

When a command line call is issued and it is interrupted by a breakpoint or a signal
before completing the program execution, the abort command enables the user to
abort the command line call without allowing the signal to modify the state of the
debugged process.

When a signal interrupts program execution, it can modify the process state of the de-
bugged program and result in an abrupt termination of the program (due to addressing
errors from a call that is not a part of the source program). In such cases, the abort
command is particularly useful in exiting the command line call without modifying the
process state of the debugged program.

The following example illustrates the use of the abort command:

(gdb) break main
Breakpoint 1 at 0x2c74: file .../address_error.c, line 41.

174 Debugging with GDB

(gdb) run
Starting program: ./address_error

Breakpoint 1, main () at ./address_error.c:41
41 fun (count, count*1.1);
(gdb) p fun(10, 1.1)
Program received signal SIGBUS, Bus error
si_code: O - BUS_UNKNOWN - Unknown Error.
0x2c38 in fun (i=10, f=0) at ./address_error.c:37
37 count = *p;
The program being debugged was signaled while in a function called from GDB.
GDB remains in the frame where the signal was received.
To change this behavior use "set unwindonsignal on"
Evaluation of the expression containing the function (fun) will be abandoned.
(gdb) bt
#0 0x2c38 in fun (i=10, f=0) at ../address_error.c:37
#1 0x1920 in _sr4export+0x8 ()
#2 <function called from gdb>
#3 0x2c74 in main () at ./address_error.c:40
(gdb) abort
Abort gdb command line call? (y or n) y
#0 main () at ./address_error.c:41
41 fun (count, countx*1.1);
(gdb) bt
#0 main () at ./address_error.c:41
(gdb) quit
The program is running. Exit anyway? (y or n) y

14.18 Instruction Level Stepping

During instruction level stepping with nexti and stepi, WDB prints the assembly
instruction along with the next source line.

(gdb) stepi 0x101530:0 st4 [r9]=r34 1337 args.argc = argc;

It also prints DOC line information, which includes actual line number and the column
number, when debugging a binary with -g -0.

(gdb) stepi ;;; [8, 1] 0x4000820:1 nop.m 0x0

GDB cannot step into a function with no debug information. GDB cannot do a next
over a line when there is not debug information. However, the continue command
works in such situations.

14.19 Enhanced support for watchpoints and breakpoints

Chapter 14: HP-UX Configuration-Specific Information 175

14.19.1 Deferred watchpoints

When you try to set a watchpoint in an expression, HP WDB places a deferred watch-
point if HP WDB cannot evaluate the expression. The watchpoint is automatically
enabled whenever the expression can be evaluated during the programs execution.
This is especially useful when placing the watchpoints on unallocated addresses.

14.19.2 Hardware watchpoints

HP WDB provides support for hardware watchpoints on HP-UX 11.x.

14.19.3 Hardware breakpoints

The hbreak command sets hardware assisted breakpoints.
hbreak args

The arguments (args) is same as that for the break command and the breakpoint is set
in the same way. However, the breakpoint uses hardware assisted breakpoint registers.
There are only two hardware breakpoints that can be set on Integrity systems. This
is useful in ROM code debugging and shared library debugging for libraries, including
d1ld, that are not loaded private.

The normal breakpoints are converted to a hardware breakpoint when WDB cannot
set a normal breakpoint in the shared library.

14.19.3.1 Setting breakpoints in unstripped shared library

GDB will not be able to put breakpoints using symbolic names(of the symbols not in
export list) or line numbers in the stripped modules.

GDB will be able to place breakpoints using symbol names in the unstripped shared
libraries loaded into the stripped executable.

14.19.4 Support for procedural breakpoints

HP WDB enables you to set breakpoints at the beginning (first executable line) of every
function that can be debugged. In addition, you can specify a set of commands to be
performed when the breakpoint is reached. These breakpoints work like procedural
breakpoints in the xdb debugger.

The breakpoint commands are rbp and rdp.

e rbp: Sets breakpoints at the first executable statement in all the functions that
can be debugged, including any shared libraries that are already loaded. The rbp
command sets breakpoints in all the functions, which can be debugged, in all the
source files. After you set these breakpoints, you can manage them like any standard
breakpoints. You can delete them, disable them, or make them conditional.Each
time you use the rbp command, HP WDB adds an additional breakpoint at the
beginning of each function that performs the commands you specify, if any.

176 Debugging with GDB

e rdp: Deletes all the breakpoints set by the rbp command.

This example shows how to set a breakpoint at the start of each procedure that displays
information at the breakpoint:

(gdb) file a.out

Reading symbols from a.out...done.

(gdb) rbp

Breakpoints set from 170 to 211

Type commands to execute when the breakpoint is hit (one command per line).

End with a line saying just "end".

>info break

>end

(gdb)

14.19.5 Support for template breakpoints

With HP WDB 5.0, you can set breakpoints on all instantiations of the template class
by just specifying the template name with member function name.
For example:

(gdb) break ::
It is not necessary to specify the instantiation type.
Setting a breakpoint on a template method with multiple instantiations displays a
menu showing all instantiations and the user can choose to set breakpoints on all or
any one or none.
For example:

(gdb) file test

Reading symbols from test...done.

(gdb) b MyClass: :MyMember

[0] cancel

[1] all

[2] MyClass::MyMember(int, int) at test.C:14

[3] MyClass::MyMember (int, float) at test.C:14

[4] MyClass::MyMember(int, double) at test.C:14

14.20 Debugging support for shared libraries

On HP-UX, shared libraries are special. Until the library is loaded, GDB does not
know the names of symbols. However, GDB gives you two ways to set breakpoints in
shared libraries:

e deferred breakpoints

e catch load command

14.20.1 Using shared library as main program

If the main program is in a shared library and you try to load it as follows:

Chapter 14: HP-UX Configuration-Specific Information 177

(gdb) symbol-file main.sl

Load new symbol table from "main.sl"? (y or n) y
Reading symbols from main.sl

done.

Things don’t appear to work.

This command is not the correct thing to do. This command assumes that main.sl is
loaded at its link time address. This is not not true for shared libraries.

Do not use symbol-file with shared libraries.

Instead, what you should do is to use the deferred breakpoint feature to set breakpoints
on any functions necessary before the program starts running.

(gdb) b main

Breakpoint 1 (deferred) at "main" ("main" was not found).

Breakpoint deferred until a shared library containing "main" is loaded.
(gdb) r

Once the program has started running, it will hit the breakpoint. In addition, the de-
bugger will then already know about the sources for main, since it gets this information
when the shared library is loaded.

14.20.2 Setting Deferred Breakpoints in Shared Library

On HP-UX, GDB automatically loads symbol definitions from shared libraries when
you use the run command, or when you examine a core file. (Before you issue the run
command, GDB does not understand references to a function in a shared library—
unless you are debugging a core file.)

When you specify a breakpoint using a name that GDB does not recognize, the debug-
ger warns you with a message that it is setting a deferred breakpoint on the name you
specified. If any shared library is loaded with a matching name, then GDB sets the
breakpoint.

For example, if you type:
‘break foo’

the debugger does not know whether foo is a misspelled name or whether it is the name
of a routine that has not yet been loaded from a shared library. The debugger displays
a warning message that it is setting a deferred breakpoint on foo. If any shared library
is loaded that contains a foo, then GDB sets the breakpoint.

If this is not what you want (for example, if the name was mistyped), then you can
delete the breakpoint.

14.20.3 Using catch load

The ‘catch load <libname>’ command causes the debugger to stop when the partic-
ular library is loaded. This gives you a chance to set breakpoints before routines are
executed.

178

Debugging with GDB

14.20.4 Privately mapping shared libraries

In cases where you attach to a running program and you try to set a breakpoint in a
shared library, GDB may generate the following message:
The shared libraries were not privately mapped; setting a breakpoint
in a shared library will not work until you rerun the program.
GDB generates this message because the debugger sets breakpoints by replacing an
instruction with a BREAK instruction. The debugger cannot set a breakpoint in a shared
library because doing so can affect other processes on the system in addition to the
process being debugged.
To set the breakpoint you must kill the program and then rerun it so that the dynamic
linker maps a copy of the shared library privately. There are two ways to run the
program:
e Rerun the program under GDB to have the debugger cause d1d to map all shared
libraries as private, enabling breakpoint debugging.
e On PA-RISC systems, use the following command on an executable:
‘/opt/langtools/bin/pxdb -s on executable-name’

The pxdb -s on command marks the executable so that d1d maps shared libraries
as private when the program starts up.

You can verify the status of the shared library with this command:
‘/opt/langtools/bin/pxdb -s status executable-name’

e On both PA-RISC and [A64 systems, use the following command on an executable:
‘chatr +dbg enable executable-name’

This is similar to the pxdb command described above wherein it directs the d1d
to load the shared libraries as private when the program starts up.

14.20.5 Selectively Mapping Shared Libraries As Private

The -mapshared option suppresses mapping all shared libraries in a process private.
This option enables new functions in the dynamic loader (patch PHSSS_33110 or later)
to designate individual shared libraries for debugging. By default, HP WDB instructs
the shared library dynamic loader, d1d.s1(5), to map shared libraries in a process
private, regardless of whether the chatr command is run for a particular shlib with
+dbg or not.

The -mapshared option is used to save virtual memory for debugging applications
with large amounts of code in shared libraries on machines with simultaneous debug
sessions. The chatr +dbg option, and the _HP_DLDOPTS environment variable are used
to identify shared libraries for debugging. The -mapshared option ensures that the text
segments of all other shared libraries is shared across the system. The shared libraries
are not mapped private and cannot have breakpoints set in them.

The set mapshared on command can be used to change modes from the (gdb) prompt.
(gdb) set mapshared on

The set mapshared off command can be used to load shared libraries after the current
point is mapped private.

Chapter 14: HP-UX Configuration-Specific Information 179

(gdb) set mapshared off

The -mapshared option is implemented on both PA-RISC and Itanium platforms in
HP WDB 5.2. This option is provided in the WDB GUI and HP WDB. The default
behavior does not change if the -mapshared option for all shared libraries in processes
started under the debugger, or dynamically loaded after an attach, are mapped private.

14.20.6 Setting breakpoints in shared library

Breakpoints can be set on functions in a shared library, by specifying the library name
with the function name.

(gdb) b libutil.sl:fun Breakpoint 1 at 0x79a86228: file simple.c,
line 13 from /CLO/Components/WDB/build/hppal.1-hp-hpux11.00/gdb/
simple_shared/lib.sl

14.21 Debugging support for Decimal Floating Point
data type

HP WDB 5.9 enables you to print and evaluate decimal floating point data types for
programs running on the September 2008 release of HP-UX 11iv3, Integrity systems.
This feature is available only for compiler versions A.06.20 and later.

The various features supported for decimal floating point data types are as follows:
e Printing Decimal Floating point data types
e Printing Decimal floating point constant
e Printing Decimal floating point variable
e Handling Decimal Floating Point data types
e Evaluating Decimal Floating Point data types
e Printing Type of Decimal floating point data type.

14.21.1 Printing Decimal Floating point data types

HP WDB 5.9 enables you to print a decimal floating point data type constant or
variable. It handles and prints decimal floating point constant or variable when you
use common GDB commands such as stack trace and commands line calls.

14.21.1.1 Printing Decimal floating point constant

(gdb) print <num><df/dd/d1/DF/DD/DL>

df, DF - _Decimal32
dd, DD - _Decimal64
dl, DL - _Decimall28

This prints the decimal floating point constant based on the data type.

180

Debugging with GDB

14.21.1.2 Printing Decimal floating point variable

(gdb) print/<fmt> <var-name>
<fmt> = df, dd, dl
<var-name> - variable name

This prints the decimal floating point variable. If you specify format <fmt> then it
prints the variable based on its data type.

14.21.2 Handling Decimal Floating Point Data types

GDB supports decimal floating point values in command line call of functions that
contain decimal floating point arguments and which return decimal floating point ar-
guments.

(gdb) print func1(1.2dd)

14.21.3 Evaluating Decimal Floating Point data types

HP WDB 5.9 enables you to evaluate the decimal floating point variable and displays
the output. Use the commonly used GDB commands for evaluating and displaying
expressions such as print to evaluate the decimal floating point variable.

HP WDB supports:
e Evaluation of expressions with decimal floating point constants and variables.
e Setting or assignment of decimal floating point constant or variable.

e Arithmetic operations such as addition, subtraction, multiplication, division, and
negation with decimal floating point constants or variables.

e Comparison operations such as ==,!=, > >=, <, <= with decimal floating point
constants or variables.

e Conversion between data types during assignment, arithmetic and comparison
operations and while printing values in specified format.
Assignment of Decimal floating point value to variable:

(gdb) print <variable> = <dfp-const>/<dfp-var>
<dfp-const> = decimal floating point constant
<dfp-var> = decimal floating point variable

This assigns decimal floating point value to the variable according to its data type.
Arithmetic Operations:

(gdb) print a(opl)b
(gdb) print (op2)a

opl = addition, subtraction, multiplication and division.
op2 = negation

Chapter 14: HP-UX Configuration-Specific Information 181

This performs arithmetic operation with decimal floating point data types.
Comparison Operations:

(gdb) p <dfp-val> (op) <dfp-val>

Where

op = ==,!=,>>= < <=

If expression contains comparison operation, then GDB compares the decimal floating
point data types accordingly.

(gdb) p 1.2dd == 1.2dd
(gdb) 2.4

14.21.3.1 Printing type of Decimal Floating Point variable

(gdb) ptype <dfp-const>/<dfp-var>

This prints the type of the Decimal floating point variable or constant.

(gdb) ptype 1.22dd
type = _Decimal64

Conversion of types:

GDB handles conversion of data types during assignment, printing, and arithmetic and
comparison operation.

(gdb) p 1.2df +1.2dd

This converts double data type (1.2) to _Decimal64 data type and performs addition
operation with _Decimal64 data type (1.2dd) and prints value in _Decimal64 type.

HP WDB handles exceptions such as overflow, infinity and division by zero for Decimal
Floating Point data type.

(gdb) print 1.2dd / O
(gdb) inf

HP WDB handles finite, infinite and NaN(Not a Number) values of decimal floating
point data type.

Note:
HP WDB will not support:
e Command line calls of intrinsic functions(Mathematical functions like
cos, sin, log etc)
e Decimal Floating Point data type support for Fortran and C++
e HP-UX 11iv2 Integrity and HP 9000 systems

182

Debugging with GDB

14.22 Additional Support for binary floating point data
type

14.22.1 Support for Binary Floating Point constants f, 1

If the binary floating point constant contains the letter £ or 1 then HP WDB recognizes
it as float or long double binary floating point constant. Generally a floating point
constant without £ or 1 is considered as double binary floating point constant.

(gdb) p <num><f/1>

This prints the binary floating point constant depending upon its data type.

14.22.2 Support Binary Floating Point variables with format
specifier

HP WDB 5.9 introduces the following new format specifiers for binary floating point
variables which print the variables in the specified binary floating point format:

(gdb) p/f <var-name>

This prints the binary floating point value as float.

(gdb) p/db <var-name>

This prints the binary floating point value as double.
(gdb) p/1 <var-name>

This prints the binary floating point value as long double.

14.23 Language support

14.23.1 Enhanced Java Debugging Support

HP WDB shows stack traces of mixed Java, C, and C++ programs. It supports unwind-
ing across Java frames and provides an effective way to examine stack traces containing
mixed language frames (Java and C/C++) of both live Java processes and core files.
This has been implemented by adding subcommands for Java VM debugging to gdb.
The stack trace functionality requires Java SDK version 1.3.1.02 or later versions, for
HP-UX. To find the availability of Java SDK version 1.3.1.02 or later, go to the HP
web site for Java, http://www.hp.com/go/java. Java stack unwind and the gdb Java
subcommands features are available in gdb version 4.5 and later versions. From gdb
version 5.3 and later versions, it requires SDK 1.4.2.10 and later versions, or JDK
1.5.0.03 and later versions in order to use the Java VM debugging features.

In order to use this functionality, the GDB_JAVA_UNWINDLIB environment variable must
be set to the path name of the Java unwind library. This environment variable must
be set for normal java debugging and java corefile debugging. The default location of
the Java unwind library on various systems is shown following. The examples are for
SDK 1.4; if you are using JDK 1.5, substitute /opt/javal.5 for /opt/javal.4.

Chapter 14: HP-UX Configuration-Specific Information 183

- For 32 bit IPF applications,
export GDB_JAVA_UNWINDLIB = /opt/javal.4/jre/1ib/IA64N/server/libjunwind.so
- For 64 bit IPF applications,
export GDB_JAVA_UNWINDLIB = /opt/javal.4/jre/1ib/IA64W/server/libjunwind.so
- For 32 bit PA applications,
export GDB_JAVA_UNWINDLIB = /opt/javal.4/jre/1ib/PA_RISC/server/libjunwind.sl
- For 64-bit PA applications,
export GDB_JAVA_UNWINDLIB = /opt/javal.4/jre/1ib/PA_RISC2.0/server/libjunwind.sl
export GDB_JAVA_UNWINDLIB = /opt/javal.4/jre/1ib/PA_RISC2.0W/server/libjunwind.sl

If the SDK is installed in a location other than the default, substitute the non-default
location for /opt/javal.4 in the previous commands.

14.23.1.1 Java Stack Unwind Features

The Java stack unwind features are useful for troubleshooting problems in the Java
VM. Following is a list of the Java stack unwind features:

e View mixed language frames information, including Java frames and C/C++ native
frames, in a gdb backtrace.

e Distinguish various Java frame types including interpreted, compiled, and adapter
frames.

e View Java method name, signature, and class package name for Java method
frames.

Additional stack unwind features are available starting with SDK 1.4.2. These features
fall into three categories: Java stack unwind enhancements, Java heap support, and
Java threads support.

These additional features are available as part of the Java stack unwind enhancements:
e View Java compiled frame inlined methods.
e View Java interpreted or compiled frame specific information.
e View Java interpreted or compiled frame arguments and local variables.
e Disassemble Java method bytecodes.

e Print out the Java unwind table.

These additional features are available as part of the Java heap support:
e View Java heap parameters.
e Dump Java object.
e Print Java heap histogram.
e Find all the instances of a given Java class.
e Find all the references to a given object in the Java heap.
e Find out the object OOP (object-oriented pointer) of the given field address.

These additional features are available as part of Java threads support:

e View Java threads state information.

184 Debugging with GDB

e View current Java thread information.

e View Java interpreted frame monitors information.

14.23.1.2 gdb Subcommands for Java VM Debugging

Commands for Examining Java Virtual Machine(JVM) internals

To view the gdb commands that support Java VM debugging, type help java at the
gdb prompt.

(gdb) help java

Java and JVM debugging commands.

List of java subcommands:

java args -- Show the current or specified Java frame arguments info

java bytecodes -- Disassemble the given Java method’s bytecodes

java heap-histogram -- Show the Java heap object histogram

java instances -- Find all the instances of the given klassOop in the Java heap
java jvm-state -- Show Java virtual machine’s current internal states

java locals -- Show the current or specified Java frame locals info

java mutex-info -- Print out details of the static mutexes

java object -- Print out the given Java object’s fields info

java oop -- Find the Java object oop of the given Java heap address

java references -- Find all the references to the given Java object in the Java heap
java unwind-info -- Show the unwind info of the code where the given pc is located
java unwind-table -- Print out the dynamically generated Java Unwind Table

Type help java followed by java subcommand name for full documentation. Command
name abbreviations are allowed if unambiguous.

Java VM Debugging Commands
The following commands have been added to enhance Java debugging support:
backtrace

Prints backtrace of mixed Java and native frames. Standard backtrace

command of GDB has been enhanced to work with mixed Java and native
stack frames.

info frame
Prints Java frame specific information for a Java frame. Standard frame
command of GDB has been enhanced to interpret a Java stack frame.

info threads
Prints state information for Java threads.

thread Prints detailed state information for the current Java thread.

Java subcommands

The following Java subcommands have been added:

java args <frame-number>
Prints the current or specified Java frame arguments information

Chapter 14: HP-UX Configuration-Specific Information 185

java

java

java

java

java

java

java

java

java

java

java

bytecodes <methodOop>

Disassembles the given Java method bytecode
heap-histogram

Displays the Java heap object histogram

instances <klassQOop>
Locates the instances of the given klassOop in the Java heap.

jvm-state
Prints current status of JVM internal states

locals
Prints the current or specified Java frame locals information

mutex-info
Prints details of static mutexes

object <object-ptr>
Prints the given Java object field information

oop <Java_heap_address>
Locates Java object oop of the given Java heap address

references <oop>
Locates references to the given Java object in the Java heap

unwind-info <pc>
Prints unwind information of the code where the PC is located

unwind-table
Prints the dynamically generated Java Unwind Table

Type help java followed by the subcommand name for full documentation. Command
name abbreviations are allowed if they are unambiguous.

14.23.1.3 Java corefile debugging support

HP WDB shows stack traces of mixed Java, C, and C++ programs for java
corefile.GDB_JAVA_UNWINDLIB environment variable must be set to the path name
of the Java unwind library as explained above.

Following are examples that illustrate the gdb command-line options for invoking gdb
on a core file:

1. Invoke gdb on a core file generated when running a 32-bit Java application on an
Integrity system with /opt/javal.4/bin/java:

$ gdb /opt/javal.4/bin/IA64N/java core.java

2. Invoke gdb on a core file generated when running a 64-bit Java application on an
Integrity system with /opt/javal.4/bin/java -d64:

$ gdb /opt/javal.4/bin/IA64W/java core.java

3. Invoke gdb on a core file generated when running a 32-bit Java application on
PA-RISC using /opt/javal.4/bin/java:

186 Debugging with GDB

$ gdb /opt/javal.4/bin/PA_RISC2.0/java core.java

4. Invoke gdb on a core file generated when running a 64-bit Java application on
PA-RISC using /opt/javal.4/bin/java:

$ gdb /opt/javal.4/bin/PA_RISC2.0W/java core.java

When debugging a core file, it is good practice to rename the file from core to another
name to avoid accidentally overwriting it.

If the Java and system libraries used by the failed application reside in non-standard
locations, then the GDB_SHLIB_PATH environment variable must be set to specify the
location of the libraries.

14.23.1.4 Java attach mode debugging support

HP WDB supports java debugging in attach mode also. GDB_JAVA_UNWINDLIB envi-
ronment variable must be set to the path name of the Java unwind library. From
gdb version 5.6 and later versions, GDB_JAVA_UNWINDLIB environment variable
need not be set to the path name of the Java unwind library. HP WDB uses the
libjunwind.sl specified by the Java Virtual Machine.

The following examples illustrate how to invoke gdb on a hung process:
1. Determine the process id:

$ ps -u userl | grep java
23989 pts/9 8:52 java

2. Attach gdb to the running process:
$ gdb -p 23989

HP gdb 5.0 for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest 5.0 (based on GDB) is covered by the
GNU General Public License.Type "show copying" to see the con-

ditions to
change it and/or distribute copies. Type "show warranty" for
warranty/support.

Reading symbols from /opt/javal.4/bin/IA64N/java...

(no debugging symbols found)...done.

Attaching to program: /opt/javal.4/bin/IA64N/java, process 23989
(no debugging symbols found)...

Reading symbols from /usr/lib/hpux32/libpthread.so.1...

(no debugging symbols found)...done.

Reading symbols from /usr/lib/hpux32/libdl.so.1...

NOTE:

If the version of gdb on the system is older than version 4.5, it will be necessary to
specify the full path of the Java executable in order to use the gdb subcommands. For
example: gdb /opt/javal.4/bin/PA_RISC2.0/java p 23989

Chapter 14: HP-UX Configuration-Specific Information 187

14.23.2 Enhanced support for C++ templates

This version of HP WDB includes these features to support C++ templates:

e Setting breakpoints in template class functions and template functions without
having to specify details about the instantiation.

e The ptype command shows any one of the class instantiations.

A option -v in ptype command will now display the field offset and size information of
a struct/union/class in addition to the default type information.

Syntax:
ptype [-v] [struct|union|enum|class]
Example:

(gdb) ptype -v struct info
type = struct info /* off O bits, len 512 bits */
int i;
/* off O bits, len 32 bits */
char a[20];
/* off 32 bits, len 160 bits */
struct details d;
/* off 192 bits, len 256 bits */
int b : 2;
/* off 448 bits, len 2 bits */
int ¢ : 3;
/* off 450 bits, len 3 bits */
< filler >
/* off 453 bits, len 27 bits */
float f;
/* off 480 bits, len 32 bits */

14.23.3 Support for __fpreg data type on IPF

WDB internally converts __fpreg data type to long double data type to evaluate an
expression or to print the value of the expression. Since long double data type has only
15 bit exponent as opposed to 17 bit exponent of __fpreg, some precision is lost when
the exponent is larger than that can fit in 15 bits.

14.23.4 Support for _Complex variables in HP C

HP C on Itanium systems supports a _Complex data type built from any of the floating
point types.

A _Complex number holds a pair of floating point numbers; the first is the "real part"
and the second is the " imaginary part".

Here are examples of declarations and initializations using _Complex numbers:

188

Debugging with GDB

float _Complex glob_float_complex;

double _Complex glob_double_complex = 6;

long double _Complex glob_long_double_complex = _Imaginary_I;
__float80 _Complex glob_float80_complex = 8 + 9 * _Imaginary_TI;

_Imaginary_I is a keyword which represents the square root of -1.

The debugger has limited support for _Complex variables. No arithmetic operations
are allowed with _Complex numbers. A _Complex number may be cast or assigned to
any numeric data type and vice versa.

A _Complex variable can be initialized with an expression of the form:

A + B * _Imaginary_I
Where A and B are ordinary numeric expressions, perhaps in parentheses.
This is also the format in which the debugger displays a _Complex value.

Imaginary values cannot be assigned to variables because there is no imaginary data
type. You can take a normal number and multiply it by an imaginary number and get
another imaginary number. You can take a normal number and add it to an imaginary
number to get a complex number.

Complex numbers cannot be used in arithmetic expressions in the debugger.

For more information of _Complex type, refer to the HP C/ANSI C documentation.
14.23.5 Support for debugging namespaces

This release of HP WDB provides full support for debugging namespaces.

You do not need to use fully qualified names to access symbols within a namespace.
The debugger can compile a list of namespaces active in the scope that you are in and,
when possible, choose an appropriate symbol.

The debugger recognizes using declarations, using directives, namespace aliases, nested
namespaces, and unqualified lookup within a namespace. It also recognizes using di-
rectives and aliases, and using declarations within namespaces.

When the debugger has a list of possible resolutions for a given symbol, it displays a
menu that shows all names fully qualified whenever namespaces are involved. You can
choose the appropriate symbol from the list.

For example, if you stop the debugger in a function that contains an int i using
directive for a namespace such as:

using namespace A::AB::ABC::ABCD
You can use the command print i and if the only possible resolution for i is
A::AB::ABC::ABCD::i the debugger prints out the name of the symbol and its value.
If, however, a global i exists, the debugger displays a menu from which to choose:

(1) i

(2) A::AB::ABC::ABCD::i

>

Setting breakpoints on functions works in the same way.

Chapter 14: HP-UX Configuration-Specific Information 189

The debugger also allows semi-qualified names. For example, if you stop in a function
in namespace B, which is nested in namespace A, and namespace A has an int i, you
can use print B::i to display the value of A::B::i.

To disable namespace support, use the command:

(gdb) set namespaces-enabled off

14.23.6 Command for evaluating the address of an expression

The watch_target command takes an expression as an argument, evaluates it to an
address, and watches the target of that address.

For example:
(gdb) watch_target current_frame
This is equivalent to executing:

(gdb) print current_frame $1 = (struct frame_info *) 0x7fdf78 (gdb) watch
x(struct frame_info *) 0x7£df78

14.24 Viewing Wide Character Strings

HP WDB print command can print wide characters and wide-character strings of the
type wchar_t. The user must use the /W option of the print command to print wide
characters and wide-character strings.

print /W <wide-char-symbol-name>
14.25 Support for output logging

The Visual Interface for HP WDB terminal user interface (TUI) mode supports the
command, log logfile_name, that saves the content of a session to the specified log

file.

When you use the log command, the debugger saves a snapshot of the current session,
from the start of the session to the point where you issued the log command. Each
time you use the log command, HP WDB overwrites the specified log file with a new
snapshot from the start of the session.

To run the Visual Interface for HP WDB, use the following command:
$vdb -tui

To redirect HP WDB output to a log file named mylogfile, use the log command in
the following manner:

(gdb) log mylogfile
The Visual Interface for HP WDB stores the log file, mylogfile, in the current direc-
tory.

To view the log file from Visual Interface for HP WDB, start a shell process and use
the following command:

(gdb) shell vi mylogfile

190

Debugging with GDB

14.25.1 Support for dumping array in an ASCII file

HP WDBN supports dumping an array into an ASCII file.

The array elements are stored in Array format of Matrix Market in a predefined
(column-major order for Fortran arrays) order. The objective is to provide a sim-
ple mechanism to facilitate the exchange of matrix data and to enable easier parsing
of the array elements.

For common file formats, see http://math.nist.gov/MatrixMarket /formats.html.
To dump an array, ARRAY, to a file named DUMPFILE, use the following command:
(gdb) dump2file ARRAY DUMPFILE

The entries of ARRAY are dumped into an ASCII file named DUMPFILE in the array
format. The file is created in the current working directory. The content of the file has
the following format:

JhArrayBrowsing matrix array ARRAY
% A 5x5 matrix
55

N 0O O N O

where, ARRAY is the name of the array, and its size is 5x5.

The first two lines are comments about this file and the array. The third line denotes
the array coordinates. From the fourth line, the elements of the array are listed.

Note: This feature is not supported for the Fortran array slices.

14.25.2 Support for Fortran array slices

HP WDB prints Fortran array slices if you specify a range of elements by the Fortran
90 array section syntax. For instance, for an array X declared by REAL, DIMENSION (-
1:1, 2:10) :: X, you could print all five even-numbered elements of the row with the
first dimension equal to 0 by typing the WDB command print X(0,2:10:2).

14.25.3 Displaying enumerators

You can display the union of several enumeration elements by specifying a value if the
elements of the enumeration type are the powers of 2 and the given value is a sum of
any given combination of the enumeration elements.

For example, assume you have an enumerated type named color in the program, with
these elements: RED=0, ORANGE=1, YELLOW=2, GREEN=8, and BLUE=16. If you use the
command printf 3, the debugger displays ORANGE | YELLOW, the elements corresponding

Chapter 14: HP-UX Configuration-Specific Information 191

to 1 and 2. If you print 5, you will get the value, 5, because it does not form the
sum of any combination in the set. However, if you wanted to print 25, you will get
Orange | Green | Blue.

Values that do not form the sum of any combination of the elements will be displayed
as integers while the values that form the sum of any combination of the elements will
be printed as unions.

14.25.4 Support for debugging typedefs

When you have a typedef class as a template parameter, you can set a breakpoint on
a member function by using the command:

break Class<typedef_classB>::memfunc

14.25.5 Support for steplast command for C and C++

Typically, if a function call has arguments that make further function calls, executing
a simple step command in GDB steps into the argument evaluation call. HP WDB
includes the steplast command, which helps to step into a function, and not into the
calls for evaluating the arguments. However, the steplast command is not available
on Integrity systems. The following example illustrates how GDB behaves when you
execute the steplast command:

(gdb) 16 foo (bar ()); ---> bar() will return 10 (gdb) steplast foo (x=10) at
foo.c:4 4 int k = 10;

If the steplast command is not meaningful for the current line, GDB displays the
following error message:

"Steplast is not meaningful for the current line."
For example,

(gdb) 4 int k = 10; (gdb) sl ---> alias to "steplast" command error: Steplast
is not meaningful for the current line

To execute the steplast command in C++ compiled applications, you must compile
the application using the HP aC++ version A.03.50 or later with the -g0 option.

In C++, the steplast command is helpful while debugging heavy templated functions,
because it directly steps into the call, thus skipping the constructor calls, if any. This
behavior is unlike the step command that steps into the constructor itself.

Consider the following example:

void call_me (string s) ... (gdb)

10

call_me ("hello");

(gdb) steplast call_me (s=static npos = 4294967295,

static nullref = ref_hdr = mutex_= dummyl = 0x7f4£79e0, dummy2 = 2136325568,
refs_ = 2136327612,

capacity_ = 2136327468, nchars_ = 2136327464, eos_char = 64 ’Q’,

alloc_ = <No data fields>,

value_allocator = alloc_ = 0x7f7£f133c,

192

Debugging with GDB

data_ = 0x40003a64 "hello") at str.C:55
printf ("Will just print the value of \n");

If there are multiple top-level calls, the steplast command enables you to step into
each top-level call. For example, for the following line, the steplast command takes
you to the first top-level call, (foo()):

foo(bar()) + bar(foo());

Debug foo (), use the finish command to exit from the first top-level call, (foo()),
execute the steplast command to step into the next top-level call, (bar()). The
following example illustrates the use of steplast command:

(gdb) 10 foo(bar()) + bar(foo()) (gdb) sl Use the steplast (sl) command to
step

14.26 Getting information from a non-debug executable

You can get some information about the arguments passed to the functions displayed
in the stack trace in a non-debug, optimized executable.

When GDB has no debug information; it does not know where the arguments are
located or even the type of the arguments. GDB cannot infer this in an optimized,
non-debug executable.

However, for integer arguments you can find the first few parameters for the top-of-
stack frame by looking at the registers. On PA-RISC systems, the first parameter will
be in $r26, the second in $r25 and so on. On IPF systems, the first few parameters
will be in $gr32 and $gr33.

14.27 Debugging optimized code

HP WDB supports debugging of optimized code (compiled with both -g and -0) for
HP aC++, HP ANSI C and HP WDB for HP Itanium.

The following commands evaluate the name of a function and hence are affected by the
optimization level of the program being debugged (in particular, due to inlining):

e break

e call

e clear

e disassem

e list
The following commands evaluate an expression referring to variables in the user pro-
gram and hence, are affected by the optimization level of the program being debugged:

e break

e call

e cond

e jump

e return

Chapter 14: HP-UX Configuration-Specific Information 193

e print

e set <var>

e watch

e whatis x
Note: The break and call commands involve evaluation of both the name of a function
and an expression.

The following commands are also affected by the optimization level of the program
being debugged:

e backtrace
e display
e down
e finish
e frame
e info *
® next
e step
e tbreak
e rbreak
e up
The following commands are not affected by the optimization level of the program
being debugged:
e attach
e catch
e commands
e continue
e core
e delete
e define
e detach
e disable
e cnable *
® exec
e file
e forw
e handle *
e help *
e ignore
e kill
e load

194

Debugging with GDB

e nexti

e path

e quit

® rev

e run

e set args, set env, set <param>
e show args, show <param>
e signal

e source

e stepi

e symbol

e target

o tty

e undisplay

e unset env

e until

14.27.1 Debugging Optimized Code at Various Optimization
Levels

The following sections describe debugging optimized code support at each optimization
level.

14.27.1.1 +00 and +01

At +01 level, optimizations that affect the user visible state of a program are avoided.
Line numbers are accurately associated with each machine instruction. Global or
local variables may be examined, except for unused variables (which may be elimi-
nated). New values may be assigned to a global and a local variable (set <var> =
<expression>) when stepping by line (step/next/break <line>). However, while
stepping by instruction (stepi/mnexti) at optimization level +01, assign a value to a
variable only if stopped at the very first instruction. This is a must as local optimiza-
tions are performed within a statement.

Backtrace commands (backtrace) may be used to display the current nest of function
calls, including for calls that are inlined. Note that even at +01, C++ methods that
are defined within a class and Fortran arithmetic statement functions are implicitly
inlinable and are inlined. Other functions are not inlined, regardless of the inline
pragmas or keywords.

14.27.1.2 +02/+03/+04/-ipo

Stepping by line number (step/next) and running to a breakpoint(break) moves the
state of a program forward. However, the program execution does not necessarily stop
at the given line.

Chapter 14: HP-UX Configuration-Specific Information 195

You can set breakpoints (break) at the entry to a routine that is not inlined and
examine the values of parameters when the program execution stops at the entry of a
routine. The local variables can be examined within a function. However, the values of
the local variables may not be available at all code locations in the function. Assignment
of new values to formal parameters or local variables is NOT supported in code compiled
with optimization above +01.

Optimization of code results in the reordering of the instructions and the source line-
numbers. Hence, the value of the variable, which is printed by the debugger may not
correspond to the reported source code location. The debugger may print the value of
the variable at a source code location either before or after the reported source code
location.(If the printed value is not current with respect to the current source line,
the printed value will be the immediately previous or immediately later value for the
variable.)

Backtrace commands (backtrace) can be used to display the current nest of function
calls, including calls that are inlined. When stopped within the code for an inlined
call, the parameters and the local variables of the inlined routine are not reported
or available. The disassem command does not work for functions that have no code
(because all calls to these functions are inlined or these functions are not called at all).

HP WDB 5.7 and later versions provide support to prevent the debugged program
from stopping at instructions that are predicated false. The program execution can be
stopped by a software breakpoint, a hardware breakpoint, or an asynchronous signal. In
the case of optimizations such as if-conversion, the predicated false instructions indicate
that an alternate source path is executed. Hence, stopping the program at a predicated
false instruction results in the misleading conclusion that the path corresponding to
the predicated false instruction is executed. To prevent this ambiguity, HP WDB does
not stop at predicated false instructions.

The predicated false instructions are equated to NOPs (No OPeration), because these
instructions do not modify the processor state. The exception to this rule is the use
of certain instructions, such as wtop, wexit, and frcpa, which modify the processor
state even when predicated false. In such cases, the debugger stops at the instruc-
tions irrespective of the predicate value of the instructions. Assembly and low-level
programmers, who require the old behavior of the debugger to stop at the instructions
irrespective of the predicate value of these instructions, can explicitly turn off this
feature. To explicitly turn off this feature, enter the following command at the gdb
prompt:

(gdb) set no-predication-handling
The following limitations apply when debugging optimized code:

e Support for high-level loop transformations such as modulo-scheduled loops, or
LNO-optimized loop nests is limited. (This limited support includes all loop opti-
mizations that are enabled at +03 and above, and some loop optimizations at +02
or -0.)

e Debug support for local aggregates and arrays is limited.

e Complete debug support for inlined subroutines is not available.

e Values that are not at the current code location will be reported as being un-

196

Debugging with GDB

available, even if these values can be computed from some other values that are
available.

e Step operations may include occasional "backwards" steps, because of the re-
ordered code during optimization.

e The program stops at asynchronous signal stops even if the reported instruction
is predicated false.

Complete support is available for debugging at the assembly language level. Stepping
by instructions (stepi/nexti) steps as expected and reports the associated source line
numbers for each instruction.

Note: The -ipo compilation implies the +noobjdebug option because the
-ipo object files do not store executable code or debug info.

14.28 Debugging with ARIES

The ARIES fast interpreter emulates a complete set of non-privileged PA-RISC instruc-
tions with no user intervention. During interpretation, it monitors the applications
execution pattern and translates only the frequently executed code into native Itanium
(R)code at runtime.

14.28.1 Debugging the application using GDB under ARIES

ARIES supports debugging of HP 9000 HP-UX applications on HP-UX 11i Integrity
servers using the HP 9000 HP-UX GDB.

e Both the GDB and the application run under ARIES.
e No change in GDB user interface (including WDB GUI).
e Negligible loss of performance in interactive mode.

e The HP 9000 GDB is included by default as part of the Integrity HP-UX
WDB/GDB package.

e All GDB commands work just like they would on an HP 9000 server.
Use the following steps to debug HP 9000 HP-UX applications on HP-UX 11i Integrity
servers using GDB:

1. Set the environment variable PA_DEBUG to 1.

2. Set the environment variable SHELL to point to an HP 9000 shell, copied from an
HP 9000 HP-UX system from /usr/bin path.

3. Add /usr/ccs/bin to the PATH environment variable.
4. Invoke GDB as:
gdb PA-RISC_executable

After the debugging is finished, perform the following steps:
1. Unset the environment variable PA_DEBUG.
2. Restore the original value of the SHELL environment variable.

3. The rest of the debugging operations are the same as that on the HP 9000 HP-UX
platform.

Chapter 14: HP-UX Configuration-Specific Information 197

Note:Make sure that the user has write permission on /tmp directory and
that there is enough space to create a temporary file of one page size as
obtained by sysconf (_SC_PAGE_SIZE) system call.

14.28.1.1 Limitations of GDB Support under ARIES

No support for debuggers other than HP 9000 HP-UX GDB for debugging HP
9000 applications under ARIES on HP-UX 11i Integrity servers.

No support for old GDB versions (of HP-UX 10.20 and earlier). However, debug-
ging of HP-UX 10.20 applications using a HP-UX 11.0 (and newer) HP 9000 GDB
is supported.

HP 9000 GDB behaves differently for child processes created using fork() and
viork() system calls. ARIES emulates fork() and vfork() system calls identi-
cally. The exact behavior shown by HP 9000 GDB under ARIES may differ from
that on a HP 9000 HP-UX server.

If the debugged process is blocking in a system call, any attempt to get to the
GDB command prompt by pressing ctrl-C does not work. The process needs to
be killed from a different shell.

ARIES does not provide true emulation of MxN threads, and thus does not support
debugging of HP 9000 applications that are linked with pthreads library and create
threads in MxN model.

Note:The HP 9000 applications linked with MxN pthreads library are
emulated under ARIES as traditional 1x1 threads, and thus can only
be debugged under ARIES as any other non-MxN multi-threaded ap-
plication.

ARIES supports debugging of 32-bit and 64-bit HP 9000 HP-UX applications using
32-bit HP 9000 HP-UX GDB. 64-bit HP 9000 HP-UX gdb is not supported under
ARIES.

14.28.2 Attaching GDB to an already running emulated

process

You can attach GDB to an already running HP 9000 application process on HP-UX 11i
for HP Integrity servers to debug the application. After a successful attach, all of the
GDB commands work in exactly the same manner as they do on an HP 9000 HP-UX
server.

Use the steps below to attach GDB to HP 9000 application process under ARIES on
HP-UX 11i Integrity servers:

Perform the same preparatory steps as required for debugging an HP 9000 HP-UX
application using GDB under ARIES on HP-UX 11i Integrity server.

Invoke GDB as follows:
PA-RISC_executable PA-RISC_process_ID

After the debugging, the process can continue or abort, as specified by the user. This
feature is especially useful when triaging problems in an environment with a large
number of processes and a mix of Integrity native and HP 9000 processes.

198

Debugging with GDB

14.28.3 Detecting memory leaks using GDB under ARIES

Applications cannot leak memory under ARIES unless they do so on HP 9000 servers.
HP GDB can be used to detect memory leaks of HP 9000 applications under ARIES.
Refer to HP GDB documentation for more details.

14.29 Visual Interface for WDB

WDB includes an HP-supported Visual Interface for WDB with both graphical and
terminal modes. The interface is based on Vim 5.7 and WDB. This interface replaces
the —tui mode on Itanium-based systems.

When you use the interface you are actually using vim, which is a vi-compatible editor.
With the interface you can use vi commands to browse in the WDB display.

Most of Visual Interface for WDB functionality is also available for emacs users. Visual
Interface for WDB does not require knowledge of vi commands.

Visual Interface for WDB identifies you as an emacs user by looking at the environment
variable ‘$EDITOR’. If this variable has a value that matches emacs, or gmacs, or xemacs,
then Visual Interface for WDB starts in emacs mode automatically.

Note: If the program expects unbuffered input or uses curses, termcap, or
terminfo, or otherwise transmits escape or control sequences to the termi-
nal, you must use one of the following methods to run Visual Interface for
WDB:

e Start the process in one terminal and attach to it with Visual Interface
for WDB.

e Use the ‘tty’ command at the debugger prompt so the program’s input
and output are directed to another terminal.

Note: if the underlying GDB terminates abnormally when you are using
Visual Interface for WDB, do not close the Visual Interface for WDB win-
dow. Wait for a minute or two. Visual Interface for WDB captures the
stack trace and the debugging session details and sends you an email. You
can then forward this to HP when you report the problem. This is helpful
to HP in reconstructing the crash scenario.

14.29.1 Starting and stopping Visual Interface for WDB

You can use Visual Interface for WDB in either of two modes:
e X-window-based graphical interface: Supports mouse and keyboard commands.
e Terminal interface: Supports keyboard commands only.
Visual Interface for WDB accepts the same command line arguments as GDB so you

can add options to the startup command. See the man page for GDB for the list of
arguments.

e To start Visual Interface for WDB in graphical mode with mouse support, run
Visual Interface for WDB with the command:

Chapter 14: HP-UX Configuration-Specific Information 199

/opt/langtools/bin/vdb

To start Visual Interface for WDB in terminal user interface mode, run Visual
Interface for WDB with the command:

/opt/langtools/bin/vdb -tui
To stop Visual Interface for WDB, type quit on the WDB command line:
(wdb) quit

14.29.2 Navigating the Visual Interface for WDB display

The Visual Interface for WDB window consists of two areas:

Source pane at the top

Debugger pane at the bottom

You can use the arrow and pagination keys on the keyboard to move the cursor:

Pagination keys move the cursor in the source window, at the top, above the status
line.

Holding the shift key down while using the pagination keys moves the cursor in
the debugger window.

The up and down arrow keys move the cursor in the source window.

Holding the shift key down while using the up and down arrow keys move the
cursor in the debugger window.

The left and right arrow keys move the cursor in the debugger window.

Two rows of labeled softkeys at the bottom of the display give you quick access to
common commands.

Visual Interface for WDB GUI display

200

Debugging with GDB

33 #include <stdlib.h>
34 #include "Deck.h"
35 #include "Player.h"
36 #include "House.h"

37
38 int main ()
39 {
*> 40 srand ((int) time(0));
41

42 Deck theDeck;

43 Player thePlayer (100);

44 House theHouse (16);

45

46 theHouse.Instructions() ;

47 }
File: BlackJack.C Function: main Line: 40 Pc: 0x3eal
(wdb) b main
Breakpoint 1 at 0Ox3eal: file BlackJack.C, line 40.
(wdb) run
Starting program: /work/wdb/blackjack/blackjack

Breakpoint 1, main () at BlackJack.C:40

40 srand ((int) time(0));
(wdb)
N
(N
Run Resume Stop Up Visual Finish Print Type List
Interface for
WDB
Faq Stop Next Down Prompt Print* Edit Credits
\ J

You can click the softkey or press a function key on the keyboard to invoke the com-
mand.

The function keys F1 through F8 correspond to the bottom row of softkeys. The
function keys F9 and up correspond to the top row.

14.29.3 Specifying foreground and background colors

To change the foreground and background colors, update the ‘.Xdefaults’ file in the
home directory. The resources are the same as for ‘hpterm’.

Here is a sample entry:

Chapter 14: HP-UX Configuration-Specific Information 201

HPterm*foreground: white
HPterm*background: rghb:68/90/C4

14.29.4 Using the X-window graphical interface

To start Visual Interface for WDB in graphical mode with mouse support, run Visual
Interface for WDB with the command:

/opt/langtools/bin/vdb

Visual Interface for WDB opens an ‘hpterm’ window, ignoring the value of the TERM
environment variable, for debugging a program.

With a mouse you can do the following;:
e Left-click the line number to insert or remove breakpoints.

e Left-click an identifier to select the identifier as an operand for the Print, Print*,
Type, and List softkeys.

e Where necessary, manually select an expression by dragging the cursor over it.

e Right-click the line number to activate a pop-up menu with several useful com-
mands.

e Right-click an identifier to automatically select it and use the selection as an
operand for the pop-up window that appears.

e Right-click an empty region for a third pop-up menu with several useful actions.
For example, see Section 14.29.11 [Saving session to file|, page 203.

e Left-click the command softkeys at the bottom of Visual Interface for WDB win-
dow.

e Click the middle button to paste the selection.

e Drag the status bar with the mouse to resize the debugger window relative to the
source window.

14.29.5 Using the TUI mode

To start Visual Interface for WDB in terminal user interface (TUI) mode, run Visual
Interface for WDB with the command:

/opt/langtools/bin/vdb -tui

This mode works well with hpterm and xterm and fairly well with dtterm and VT100
(telnet) terminals.

Note: A defect in dtterm may truncate the display of lines that do not fit within the
window. To work around this defect, refresh the display with (CTRL)-L or widen the
terminal window so source lines do not wrap.

If you use xterm and dtterm, update the ‘.Xdefaults’ file with keyboard translations
to get the shifted arrows and shifted paging keys to work.

For xterm, use the following:

XTerm*vt100.translations: #override \

202

Debugging with GDB

Shift <Key>Prior: string(0x2) \n \

Shift <Key>Next: string(0x6) \n \

Shift <Key>Up: string(0x5) \n \

Shift <Key>Down: string(0x19) \n \

Shift <Key>Left: string(0x1b) string(i) \n \
Shift <Key>Right: string(0x1b) string(la)

For DtTerm use the following:
xDtTerm*Translations: #override\n \
Shift <Key>osfPageUp: string(0x2) \n \
Shift <Key>osfPageDown: string(0x6) \n \

Shift <Key>osfUp: string(0x5) \n \

Shift <Key>osfDown: string(0x19) \n \

Shift <Key>osfLeft: string(0x1b) string(i) \n \
Shift <Key>osfRight: string(0x1b) string(la)

Mouse operations are not supported in the —tui mode. Also the paging and shift keys
do not work well with VT100.

14.29.6 Changing the size of the source or debugger pane

1. Escape to vi command mode first.

2. Drag the status bar using the mouse.

If you are using -tui mode, use these commands to change the size of the current
window:

(CTRL)-W +

to increase

(CTRD)-W -

to decrease

In Visual Interface for WDB, the current window is usually the debugger window.

14.29.7 Using commands to browse through source files

Visual Interface for WDB is based on ‘vim’, so you can also use the ‘vi’ commands to
browse. For example, (CTRL)-B, (CTRL)-F, (CTRL)-D, (CTRL)-U are useful for browsing
the debugger window. These commands work whether or not you escape to ‘vi’ mode.

These ‘vim’ commands require you to escape to ‘vi’ mode.

For example:

A Search forward
e Search backward
(n7

‘N’ Repeat search

A Match braces

Chapter 14: HP-UX Configuration-Specific Information 203

3 [[7
‘171’ Skip to the next procedure

‘:1ine number’
Go to any line number

All these commands require you to escape to ‘vi’ command mode first. When you
are done, type a for append or i for insert or other ‘vi’ commands to return to text
insertion mode.

Or you can simply click the Prompt softkey.

14.29.8 Loading source files

Escape to ‘vi’ command mode and use the :e command to load a source file.
e filename

When the source files are located in multiple directories, you can simply specify the
base name alone as long as file names are unique and the appropriate dir commands
have been executed.

Pressing the Prompt softkey takes you to the command prompt and also updates the
source window so that the cursor remains where the program is stopped.

14.29.9 Editing source files

To edit a file, kill the process then click the Edit button. If you do not kill the process,
the source file and binaries can get out of sync.

14.29.10 Editing the command line and command-line history

Visual Interface for WDB preserves the entire session’s transactions so you can browse
through these at any time.

To edit the command line, press to enter vi mode and then use vi commands.
You can recall previous commands in history by using [jk"P"N]. Complete command

lines using)

14.29.11 Saving the contents of a debugging session to a file

You can save the contents of the current debugging session, including debugger in-
put/output and program input/output) to a file.

To save a session to a file:
1. Right-click an empty region of the source or debugger pane.
2. Choose "Save Session to vdb.pid" from the pop-up menu.

The debugger writes the input and output to a file whose name ends in the pid
of the debugger. If you save the session more than once, the new transactions are
appended to the file.

204 Debugging with GDB

14.30 Support for ddd

GDB works with ddd, the free GDB GUI shell available at http://mumm. ibr.cs.tu-bs.de/.

While this is not formally supported by Hewlett-Packard, these two do work together.
Note however if you have ddd issues, you’ll need to report them to the ddd support
channel.

14.31 Support for XDB commands

HP WDB provides support for a subset of XDB commands, enabled with the -xdb
option.

14.31.1 stop in/at dbx commands

The commands <stop in function/address> and <stop at line> are equivalent of
dbx <break function/address /line> command. WDB supports the <stop in/at>
command in non-dbx mode.

For example:

$ gdb a.out (gdb) stop in main Breakpoint 1 at 0x2a34: file list.c, line 18
from /tmp/a.out (gdb) stop at 256 Breakpoint 2 at Ox2a6c: file list.c, line
25 from /tmp/a.out (gdb)

14.32 GNU GDB Logging Commands

The following commands control GDB logging activities:
e set logging file: Set the current log file
e set logging off: Set logging off
e set logging on: Set logging on

e set logging overwrite[on|off]: Set whether logging overwrites or appends to
the log file.

e set logging redirect [on|off]: Set the logging output mode

14.33 Support for command line calls in a stripped
executable

HP WDB enables you to perform command line calls in a stripped executable.

14.33.1 Support for command line calls in a stripped
executable on PA-RISC systems

In WDB, to perform command line calls in a shared library without the help of dynamic
linker (using end.o), you must execute the following command:

http://mumm.ibr.cs.tu-bs.de/

Chapter 14: HP-UX Configuration-Specific Information 205

chatr -B immediate <executable>
In addition, modify all the calls to shl_load() to specify BIND_IMMEDIATE.

To perform command line calls after attaching a running process to GDB, you must
execute one of the following commands:

e /opt/langtools/bin/pxdb -s on <executable>
e chatr +dbg enable <executable>

14.33.2 Additional support for command line calls in a
stripped executable

HP WDB enables you to perform command line calls in a stripped executable. The
various scenarios in which you can make command line calls in a stripped executable
are as follows:

14.33.2.1 For 32-bit applications:

To perform command line calls in a shared library, without the help of dynamic linker
(using end.o), you must perform the following operations:

e Execute the chatr -B immediate <executable> command.

e Modify all the calls to shl_load() to specify BIND_IMMEDIATE, if any.
To perform command line calls after attaching GDB to a running process, without the
help of dynamic linker (using end.o), you must do the following for the program:

e Execute the chatr -B immediate <executable> command

e Modify all the calls to shl_load() to specify BIND_IMMEDIATE, if any.

e Execute the /opt/langtools/bin/pxdb -s on <executable> or chatr +dbg
enable <executable> command.

To avoid changing of the run-time binding behavior of a program to
BIND_IMMEDIATE, to perform command line call, do the following:

e Use the linker option, +ea, to export symbols from an object file.
e Install the linker patch, PHSS_28870 (for 11.0) or PHSS_28871 (for 11i).
e Execute the following commands:

cc —c file.c
cc file.o -Wl,+ea,/opt/langtools/lib/end.o -s

14.33.2.2 For 64-bit applications

To perform command line calls in a stripped executable, linked with end.o, you need
to do the following:

e In the +std link mode, GDB supports this feature without any changes. You must
export the __wdb_call_dummy symbol as shown in the next line.

e In the +compat link mode, execute the following command:
cc +DD64-g file.c -Wl,+ee,__wdb_call_dummy -s

206

Debugging with GDB

14.33.3 Support for debugging stripped binaries

HP WDB provides limited support for debugging stripped binaries.

14.33.3.1 Printing of locals and globals in a stripped module

GDB will not be able to print the locals and statics declared in a module which has
been stripped. GDB will be able to print the exported symbols since exported symbols
are not stripped with strip command (they stay in .dynsym).

GDB will be able to access the globals or locals defined in other unstripped shared
libraries loaded into the stripped executable when you are in the right scope.

14.33.3.2 Backtrace on stripped frames

GDB should be able to backtrace properly stripped frames. Arguments will not be
displayed (as in the case of non -g binary). If it is a fully archived stripped binary,
function names will not be displayed (but PCs will be).

14.33.3.3 Command line calls to non-stripped library

Command line calls to the functions (exported symbols) in the stripped binary work
fine. Command line calls to the non-stripped library work normally regardless where
the process is stopped.

14.33.3.4 Setting breakpoints in unstripped shared library

GDB will not be able to put breakpoints using symbolic names(of the symbols not in
export list) or line numbers in the stripped modules.

GDB will be able to place breakpoints using symbol names in the unstripped shared
libraries loaded into the stripped executable.

14.34 Displaying the current block scope information

The which command takes a symbol as an argument and prints the information on a
given symbol. It prints the following information:

e current block scope addresses
e line information of the definition of the symbol
e filename in which the definition of the symbol occurs
The which command does not work for global and type symbols since they do not
contain line information.
Syntax:
which <symbol>

For example : (gdb) which i Line 4 of "example.c" block starts at address
0x29a8 <main> and ends at 0x29e4 <main+0x3c>

Chapter 14: HP-UX Configuration-Specific Information 207

14.35 Linux support

Linux Runtime Environment (LRE) on HP-UX Itanium enables users to execute Intel
Itanium Linux applications on HP-UX. HP WDB provides a prototype for LRE debug-
ging, which allows you to debug applications ported from Linux that run under LRE.
This provides a minimal debugging capability for LRE.

208 Debugging with GDB

Chapter 15: The HP-UX Terminal User Interface 209

15 The HP-UX Terminal User Interface

By default, GDB runs in line mode. For users who prefer an interface similar (though
not identical) to that of the XDB debugger, HP provides a terminal user interface (TUI),
which appears when you invoke the gdb command with the —tui option.

Use the =xdb option to enable the use of a number of XDB commands. See the Chapter 16
[XDB to WDB Transition Guide], page 223.

15.1 Starting the TUI

Invoke the debugger using a command like the following:
gdb -xdb -tui a.out

These examples use the default terminal screen size of 24 by 80 characters. Figure 1
displays the terminal screen window:

Figure 1: The terminal window

|31 /* Try two test cases. */
|32 print_average (my_list, first, last);
|33 print_average (my_list, first, last - 3);

w
(e}

File: average.c Procedure: 77 Line: 77 pc: 77

Wildebeest is free software, covered by the GNU General Public License, and
you are welcome to change it and/or distribute copies of it under certain
conditions. Type "show copying" to see the conditions. There is
absolutely no warranty for Wildebeest. Type "show warranty" for details.
---Type <return> to continue, or q <return> to quit---

Wildebeest was built for PA-RISC 1.1 or 2.0 (narrow), HP-UX 11.00.

(gdb)
\

210 Debugging with GDB

The terminal window is divided into two panes: a Source pane at the top and a Command
pane at the bottom. In the middle is a locator bar that shows the current file, procedure,
line, and program counter (PC) address, when they are known to the debugger.

When you set a breakpoint on the main program by issuing the command
b main

an asterisk (*) appears opposite the first executable line of the program. When you execute
the program up to the first breakpoint by issuing the command

run

a right angle bracket (>) points to the current location. So after you issue those commands,
the window looks something like this:

Figure 2

|29 int main(void)

|31 /* Try two test cases. */
*>|32 print_average (my_list, first, last);
|33 print_average (my_list, first, last - 3);

File: average.c Procedure: main Line: 32 pc: 0x3524

(gdb) b main

Breakpoint 1 at 0x3524: file average.c, line 32.
(gdb) run

Starting program: /home/work/wdb/a.out

Breakpoint 1, main () at average.c:32

(gdb)
N J

Chapter 15: The HP-UX Terminal User Interface 211

15.2 Automatically running a program at startup

WDB does not start running the target executable at startup as do ‘xdb’ and HP DDE.
This makes it easy to set break points before the target program’s main function.

To make WDB automatically start running the target program add these lines to your
startup file, ‘. gdbinit”:

break main
run

15.3 Screen Layouts

The TUI supports four panes within the terminal window, in various combinations:
e Command
e Source
e Disassembly
e Register
The Command pane is always present. The possible configurations of the other panes
are:
e Source
e Disassembly
e Source/Disassembly
e Disassembly /Register
e Source/Register
The layout command (abbreviated 1a) enables you to change from one window config-
uration to another.

Note: You can abbreviate any command to its shortest unambiguous form.

15.3.1 Source pane

The Source pane, Figure 1, appears by default when you invoke the debugger. You can
also make it appear by issuing the command

la src

15.3.2 Disassembly pane

The Disassembly pane appears when you issue the command
la asm

The pane looks like this:

212 Debugging with GDB

Figure 3

53 print_average (my_list, first, last);
*>|0x3524 <main+8> addil L’-0x800,%dp,%rl

[

[
| 0x3528 <main+12> 1do 0x730(%r1),%r26 |
| 0x352¢c <main+16> 1di 9,%r24 |
|0x3530 <main+20> 1di 0,%r25 |
|0x3534 <main+24> 1dil L’0x3000,%r31 |
|0x3538 <main+28> be,1l 0x498(%sr4,%r31) |
|0x353¢c <main+32> copy %r31,%rp |
555 print_average (my_list, first, last - 3); [
| 0x3540 <main+36> addil L’-0x800,%dp,%rl |
| 0x3544 <main+40> ldo 0x730(%r1),%r26 |
| 0x3548 <main+44> 1di 6,%r24 |
| 0x354¢c <main+48> 1di 0,%r25 |
| === [

File: average.c Procedure: main Line: 32 pc: 0x3524

(gdb) b main

Breakpoint 1 at 0x3524: file average.c, line 32.
(gdb) r

Starting program: /home/work/wdb/a.out

Breakpoint 1, main () at average.c:32
(gdb) la asm
(gdb)

-

15.3.3 Source/Disassembly pane

The Source/Disassembly pane appears when you issue the command
la split

You can also reach this pane from the Source pane with the XDB command:
td

The window looks like this:

Figure 4

Chapter 15: The HP-UX Terminal User Interface 213

*>:32 print_average (my_list, first, last);
:33 print_average (my_list, first, last - 3);

I35 print_average (my_list, first, last);
*>|0x3524 <main+8> addil L’-0x800,%dp,%rl

I
I
| 0x3528 <main+12> 1do 0x730(%r1),%r26 |
|0x352¢c <main+16> 1di 9,%r24 |
|0x3530 <main+20> 1di 0,%r25 |
|0x3534 <main+24> 1dil L’0x3000,%r31 |
e |
File: average.c Procedure: main Line: 32 pc: 0x3524
Breakpoint 1 at 0x3524: file average.c, line 32.
(gdb) r

Starting program: /home/work/wdb/a.out

Breakpoint 1, main () at average.c:32
(gdb) la asm

(gdb) la split

(gdb)

- J

15.3.4 Disassembly/Register pane

The Disassembly/Register pane appears when you issue the command
la regs

when the current pane is the Source/Disassembly pane. By default, the debugger displays
the general registers.

The window looks like this:

Figure 5

214 Debugging with GDB

-
:flags 29000041 rl 51a800 rp 7£6ceb97

:xr3 7£7£0000 r4 1 r5 7£7£06f4

:r6 7£7£06fc r7 7£7£0800 r8 7£7£0800

:r9 40006b10 r1l0 O r1l 40004b78

:r12 1 r1i3 0 r14 0

:r15 0 r16 40003fb8 rl7 4

I35 print_average (my_list, first, last);
*>|0x3524 <main+8> addil L’-0x800,%dp,%rl

I
I
| 0x3528 <main+12> 1do 0x730(%r1),%r26 |
|0x352¢c <main+16> 1di 9,%r24 |
|0x3530 <main+20> 1di 0,%r25 |
|0x3534 <main+24> 1dil L’0x3000,%r31 |
o |
File: average.c Procedure: main Line: 32 pc: 0x3524
(gdb) r

Starting program: /home/work/wdb/a.out

Breakpoint 1, main () at average.c:32
(gdb) la asm

(gdb) la split

(gdb) la regs

(gdb)

N

15.3.5 Source/Register pane

The Source/Register pane appears when you issue the command
la regs
when the current pane is the Source pane.

The screen looks like this:

Figure 6

Chapter 15: The HP-UX Terminal User Interface

215

(gdb) la asm
(gdb) la split
(gdb) la regs
(gdb) la src
(gdb) la regs
(gdb)

N

Breakpoint 1, main () at average.c:32

:flags 29000041 rl 51a800 rp 7£6ceb97
:r3 7£7£0000 r4 1 r5 7£7£06f4
:r6 7£7£06fc r7 7£7£0800 r8 7£7£0800
:r9 40006b10 r1l0 O r1l 40004b78
:r12 1 ri3 0 r1i4 0
:r15 0 r16 40003fb8 rl7 4
*> |32 print_average (my_list, first, last);

|33 print_average (my_list, first, last - 3);

|34 }

|35

|36

|37

o |
File: average.c Procedure: main Line: pc: 0x3524

15.4 Cycling through the panes

Use the commands
la next
and
la prev

to move from one pane to another without specifying a window name. If you specify la
next repeatedly, the order the debugger uses is

Source (src)

Disassembly (asm)

Source/Register
e Disassembly/Register

Source/Disassembly (split)

If you invoked the gdb command with the -xdb option as well as the -tui option, you
can also use the following commands:

td Toggle between Source and Disassembly /Register panes.

ts Toggle split-screen mode.

216 Debugging with GDB

15.5 Changing pane focus

The command pane always has keyboard focus, so that you can enter debugger com-
mands. If there is only one other pane (Source or Disassembly), the other pane has the
logical focus, so that you can scroll within that pane by using the arrow keys or the
and keys (on some keyboards these are and Next)).

Note: In the command pane, the scrolling behavior only works for an ‘hpterm’ and not
for an ‘xterm’ or ‘dtterm’.

If you are in split-screen mode, you may want to change the logical focus of the pane.
To do so, use the command

focus {win_name | prev | next}

where win_name can be src, asm, regs, or cmd.

Remember, if you change the focus to a pane other than the command pane, you need to
use focus cmd to switch back to the command pane to enter or scroll through commands.

For example, with the sequence of commands just issued, you are in split-screen mode
with the focus in the Source pane.

The pane with logical focus has a border constructed from " |" and "-".

A pane that does not have logical focus has a border constructed from ":"vand ".":

Figure 7

Chapter 15: The HP-UX Terminal User Interface

217

:flags 29000041
:r3 7£7£0000
:r6 7£7£f06fc
:r9 40006b10
r12 1

:rl5 0

File: average.c

(gdb) la asm
(gdb) la split
(gdb) la regs
(gdb) la src
(gdb) la regs
(gdb)

N

rl 51a800

rd 1

r7 7£7£0800
r10 O

ri3 0

r16 40003fb8

rp 7£6ceb97
r5 7£7£06f4
r8 7£7£0800
r1l 40004b78
r14 0
rl7 4

print_average (my_list, first, last);
print_average (my_list, first, last - 3);

Procedure: main Line:

Breakpoint 1, main () at average.c:32

pc: 0x3524

By default, the Source pane can scroll. To change the focus so that you can scroll in the
Register pane, use the focus command (abbreviated foc or fs):

fs regs

or

foc next

If you then use the key to scroll in the Register pane, the window looks like

this:

Figure 8

218 Debugging with GDB

-
| |
|flags 29000041 rl 51a800 rp 7£6ceb97 |
|r3 7£7£0000 r4 1 r5 7£7£06f4 |
|r6 7£7£06fc r7 7£7£0800 r8 7£7£0800 |
|r9 40006b10 r1l0 O r1l 40004b78 |
lr12 1 ri3 0 ri4 0 I
[ri5 0 r16 40003fb8 rl7 4 |
| o |
*>:32 print_average (my_list, first, last);

:33 print_average (my_list, first, last - 3);
134 }
:35
:36
:37
File: average.c Procedure: main Line: 32 pc: 0x3524

(gdb) la asm

(gdb) la split

(gdb) la regs

(gdb) la src

(gdb) la regs

(gdb) foc next

Focus set to REGS window.
(gdb)

N

15.6 Scrolling panes

To scroll within a pane, you can use the arrow keys or the (Page Up) and (Page Down) keys
(on some keyboards these are and (Next)). You can also use the following commands:

{+ | -} [num_lines] [win_name]
Vertically scroll the pane forward (+) or backward (=). + or - with no arguments
scrolls the pane forward or backward one page. Use num_lines to specify how
many lines to scroll the pane. Use win_name to specify a pane other than the
one with logical focus.

{< | >}[num_char] [win_name]
Horizontally scroll the pane left (<) or right (>) the specified number of char-
acters. If you do not specify num_char, the pane is scrolled one character.

Note that a space is required between the +, =, <, or > and the number.
To scroll the command pane, use the scroll bars on the terminal pane.

15.7 Changing the register display

To look at the floating-point or special registers instead of the general registers, and then
to return to the general registers, you can use the following XDB commands:

Chapter 15: The HP-UX Terminal User Interface 219

fr
display $fregs
Display the floating-point registers.
ST
display $sregs
Display the special registers.
gr
display $gregs
Display the general registers.

For example, if you use the fr command, the window looks like this:

Figure 9
(N
|------ |
|flags 29000041 rl 51a800 rp 7£6ceb597 |
|r3 7£7£0000 rd 1 r5 7f7£06f4 |
|r6 7£7£f06fc r7 7£7£0800 r8 7£7£0800 |
|r9 40006b10 r1i0 O ri1 40004b78 |
[r12 1 ri3 0 ri4 O |
[r15 0 r16 40003fb8 rl7 4 |
:30 {
:31 /* Try two test cases. */
*>:32 print_average (my_list, first, last);
:33 print_average (my_list, first, last - 3);
134 }
:35
File: average.c Procedure: main Line: 32 pc: 0x3524
(gdb) la regs
(gdb) la src
(gdb) la regs
(gdb) foc next
Focus set to REGS window.
(gdb) fr
#0 main () at average.c:32
(gdb)
- J

The default floating-point register display is single-precision. To change the register
display to double-precision and then back again, use the XDB toggle float command:

toggle $fregs

220 Debugging with GDB

The window looks like this:

Figure 10
-
|- |
[fpsr O fpel 0 |
[fpe2 0 fpe3 0 |
|fped O fpe5 0 |
|fpe6 0 fpe7 0 I
|fr4 0 fraR 0 |
fr5 1.0000000000000011 fr5R 7.00649232e-45
*>1:32 print_average (my_list, first, last);
:33 print_average (my_list, first, last - 3);
:34 }
:35
:36
:37
File: average.c Procedure: main Line: 32 pc: 0x3524

(gdb) la regs

(gdb) la src

(gdb) la regs

(gdb) foc next

Focus set to REGS window.
(gdb) fr

(gdb) tf

(gdb)

=

15.8 Changing the pane size

To specify a new height for a pane or to increase or decrease the current height, use the
winheight command (abbreviated winh or wh).

The syntax is:
winheight [win_name] [+ | -] num_lines

If you omit win_name, the pane with logical focus is resized. When you increase the
height of a pane, the height of the Command pane is decreased by the same amount, and
vice versa. The height of any other panes remains unchanged.

For example, the command

Chapter 15: The HP-UX Terminal User Interface 221

wh src +3
increases the size of the source pane, and decreases the size of the command pane, by 3
lines.

To find out the current sizes of all panes, use the info win command. For example, if
you have a split-screen layout, the command output might be as follows:

(gdb) i win
SRC (8 lines)
REGS (8 lines)
CMD (8 lines)

If you use the mouse or window menus to resize the terminal window during a debugging
session, the window remains the same size it was when you started. To change the window
size, you must exit the debugger and restart it.

15.9 Refreshing and updating the window

If the screen display is disrupted for some reason, use the refresh command (ref) to
restore the windows to their previous state:

ref

If you use stack-navigation commands such as up, down, and frame to change your
source location, and you want to return the display to the current point of execution, use
the update command (upd):

upd

222 Debugging with GDB

Chapter 16: XDB to WDB Transition Guide 223

16 XDB to WDB Transition Guide

This transition aid is designed for XDB users who are learning WDB, an HP-supported
version of the industry-standard GDB debugger. Select one of these lists for a table that
shows WDB equivalents for many common XDB commands and other features.

Invoke WDB with the command gdb -tui to obtain a terminal user interface (TUI)
similar to that provided by XDB. Commands marked "(with -tui)" are valid when you use
the —tui option.

Invoke WDB with the command gdb -xdb to turn on XDB compatibility mode, which
enables you to use many XDB commands as synonyms for GDB commands. Commands
marked "(with -xdb)" are valid when you use the -xdb option.

You may use both -xdb and -tui at the same time. Some commands are valid only
when you use both options.

For a tutorial introduction to WDB, refer to the Getting Started with WDB.

e Section 16.1 [By-Function Lists of XDB Commands and HP WDB Equivalents],
page 223.

e Section 16.2 [XDB Data Formats and HP WDB Equivalents], page 231.

e Section 16.3 [XDB Data Formats and HP WDB Equivalents], page 238.

e Section 16.4 [XDB Location Syntax and HP WDB Equivalents|, page 240.

e Section 16.5 [XDB Special Language Operators and HP WDB Equivalents], page 241.
e Section 16.6 [XDB Special Variables and HP WDB Equivalents|, page 242.

e Section 16.7 [XDB Variable Identifiers and HP WDB Equivalents], page 243.

e Section 16.8 [Alphabetical Lists of XDB Commands and HP WDB Equivalents],
page 243.

16.1 By-function lists of XDB commands and HP WDB
equivalents

e Section 16.1.1 [Invocation Commands], page 224.
e Section 16.1.2 [Window Mode Commands]|, page 224.
e Section 16.1.3 [File Viewing Commands]|, page 225.

[
[
[
e Section 16.1.4 [Source Directory Mapping Commands], page 227.
e Section 16.1.5 [Data Viewing and Modification Commands], page 227.
e Section 16.1.6 [Stack Viewing Commands|, page 229.

e Section 16.1.7 [Status Viewing Command], page 229.

e Section 16.1.8 [Job Control Commands|, page 230.

e Section 16.2 [Overall Breakpoint Commands]|, page 231.

e Section 16.2.1 [Auxiliary Breakpoint Commands|, page 231.

e Section 16.2.2 [Breakpoint Creation Commands]|, page 232.

e Section 16.2.3 [Breakpoint Status Commands]|, page 233.
[

e Section 16.2.4 [All-Procedures Breakpoint Commands], page 234.

../GDBtutorial.html

224

e Section 16.2.5 [Global Breakpoint Commands|, page 235.

e Section 16.2.6 [Assertion Control Commands], page 235.

e Section 16.2.7 [Record and Playback Commands], page 235.
e Section 16.2.8 [Macro Facility Commands]|, page 236.

e Section 16.2.9 [Signal Control Commands|, page 236.

e Section 16.2.10 [Miscellaneous Commands|, page 237.

16.1.1 Invocation commands

Debugging with GDB

By default, HP WDB runs in line mode. To run it with a terminal user interface similar
to that of XDB, use the -tui option.

The following table lists the XDB and the equivalent WDB commands for invoking the

terminal user interface:
XDB Command

xdb program

xdb program corefile

xdb -4 dir

xdb -P pid program

xdb -i

xdb -o

WDB Equivalent

gdb -xdb program,

-tui program

gdb -xdb program -c corefile

gdb -xdb -d dir

gdb -xdb program pid

(after starting) run < file

(after starting) run > file

16.1.2 Window mode commands

gdb -xdb

Meaning

Debug program

Debug core file

Specify alternate direc-
tory to search for source
files

Attach to running pro-
gram at invocation

Specify input to target
program

Specify output from tar-

get program

The following commands are TUI mode or XDB compatibility mode commands. They
are available when you invoke WDB by using the —tui or -xdb or both options.

XDB WDB Equivalent

Command

Meaning

Chapter 16: XDB to WDB Transition Guide 225

{+ 1 -}r A{+|-}r (with -xdb -tui), {+ | -} data (with -tui) Scroll floating-point reg-
isters forward or back-
ward (src, cmd, and asm
are also valid window

names)
fr fr (with -xdb -tui), display $fregs (with -tui) Display floating-point
registers
gr gr (with -xdb -tui), display $regs (with -tui) Display general registers
ST sr (with -xdb -tui), display $sregs (with -tui) Display special registers
td td (with -xdb -tui) Toggle disassembly
mode
tf tf (with -xdb -tui), toggle $fregs (with -tui) Toggle float register dis-

play precision

ts ts (with -xdb -tui) Toggle split-screen mode

u u (with -xdb -tui), update (with —tui) Update screen to current
execution point

U U (with -xdb -tui), refresh (with -tui) Refresh all windows
W w number (with -xdb -tui), winheight src Set size of source window
number

number (with -tui)

16.1.3 File viewing commands

The following table lists the XDB and the equivalent WDB commands for viewing source
files:

XDB Command WDB Equivalent Meaning

{+ | -}number] {+ | -} number| (with -tui; note Move view location forward or
that a space is required between + backward in source file number

or - and the number) lines

226

/[string]

?[string]

D "de'"

1d

1f

1f [string]

v location

va address

va label

va label + offset

(with -xdb), search

regexp, forw regexp

/|string]

?[string] (with -xdb), rev regexp

D "dir" (with -xdb), dir

pathname

L (with -xdb)

1d (with -xdb), show

directories

1f (with -xdb), info sources

No equivalent

fo or rev

fo or rev

v (with -xdb), list

v location (with -xdb), 1list

location

va address (with -xdb), disas

address

va label (with -xdb), disas label

va label + offset (with -xdb),

disas label + offset

Debugging with GDB

Search source forward for [last]
string

Search source backward for [last]
string

Add a directory search path for
source files

Show current viewing location or
current point of execution

List source directory search path
(list all directories)

List all source files

List matching files

Repeat previous search

Repeat previous search in oppo-
site direction

Show one source window forward
from current

View source at location in source
window

View address in disassembly win-
dow

View label in disassembly window
(label is a location)

View label + offset in disassembly

window

Chapter 16: XDB to WDB Transition Guide 227

16.1.4 Source directory mapping commands

Use the D or dir command to add new directories to be searched for source files. See
See Section 16.1.3 [XDB-fil], page 225.

GDB does not provide a source directory mapping capability and therefore does not
have any equivalent of the apm, dpm, and 1lpm commands.

16.1.5 Data Viewing and modification commands

There are many info commands in addition to those shown here. Use help info to get
a list.

The following table lists the XDB and equivalent WDB commands for viewing and

modifying the program data:

XDB Command
1

WDB Equivalent
1 (with -xdb), info args followed
by info locals

Meaning

List all parameters and locals of
current procedure

1lc [string] lc [string] (with -xdb), info List all (or matching) commons
common string

1g [string] lg [string] (with -xdb), info List all (or matching) globals
variables [string]

11 [string] info functions [string], info List the contents of the linker
variables [string|, maint print symbol table
msymbols file

1m show user List all string macros

1m string show user string List matching string macros

lo info func [[class|: :]|[string] List all (or matching) overloaded

[[class]: :][string] functions

1p info functions Show current scope, list program

blocks, list names (symbols)
1p info func [[class]: :|string info List all (or matching) procedures

[[class]: :]string

1r

addr [[class]: :|string

1r (with -xdb), info all-reg

List all registers

228

1r string

1s [string]

mm string

p expr|\format

p expr?format

p class::

p $lang

p {+ | -}[\format

Pq expr

pq expr?format

pq class: :

1r string (with -xdb), info reg

string

No equivalent

info sharedlibrary

No equivalent

p[/format expr [Note: The count
and size portions of formats are
not allowed in the p (print) com-
mand. They are allowed in the x

command (examine memory).]

p/format & ; expr

No equivalent

show language

Use x/format command to obtain
initial value, then use x with no
argument to obtain value of next
memory location. To obtain value
of previous memory location, use
"x $_ - 1",

set expr, set var expr

No equivalent

No equivalent

Debugging with GDB

List matching registers

List all (or matching) special vari-
ables

Show memory map of all loaded
shared libraries

Show memory map of matching
loaded shared libraries

Print value using the specified for-
mat

Print address using specified for-
mat

Print static members of class

Inquire what language is used

Print value of next/previous mem-
ory location using format

Evaluate using the specified for-
mat

Determine address using specified
format

Evaluate static members of class

Chapter 16: XDB to WDB Transition Guide 229

pq {+ | No equivalent Evaluate next/previous memory
-} \format location using format

16.1.6 Stack viewing commands

The GDB concept of the top and bottom of the stack is the opposite of XDB, so the XDB
up is GDB down.

The following table lists the XDB and equivalent WDB commands for viewing the stack
contents:

XDB Command WDB Equivalent Meaning

down up View procedure one level nearer
outermost frame of stack (higher
number)

down number up number View procedure number levels

nearer outermost frame of stack

t [depth] t [depth] (with -xdb), bt [depth] Print stack trace to depth

T [depth] T [depth] (with -xdb), bt full Print stack trace and show local
[depth] vars

top frame O View procedure at innermost

frame of stack

up down View procedure one level nearer
innermost frame of stack (lower
number)

up number down number View procedure number levels

nearer innermost frame of stack

V [depth] V [depth] (with -xdb), frame Display text for current active
[depth] procedure or at specified depth on
stack

16.1.7 Status-viewing command

Type the show command with no arguments to get a list of current debugger settings.

230

XDB Command
I

WDB Equivalent
info (many kinds), show (many

kinds)

16.1.8 Job control commands

Debugging with GDB

Meaning

Display state of debugger and pro-
gram

The following table lists the XDB and equivalent WDB commands for controlling pro-

gram execution:

XDB Command

c location

C [location]

g line

g #label

g {+ | -}ines

g{+ |-}

WDB Equivalent

c, continue

until location

c, continue

until location

g line (with -xdb), go line, tb line
followed by jump line

No equivalent

g {+ | -}lines (with -xdb), go {+
| -}lines, tb {+ | -}lines followed
by jump {+ | -}lines

g {+ | -} (with -xdb), go {+ | -}1,
tb {+ | -}1 followed by jump {+ |
-1

k

Meaning

Continue from breakpoint, ignor-
ing any pending signal

Continue from breakpoint, ignor-
ing any pending signal, set tempo-
rary breakpoint at location

Continue, allowing any pending
signal

Continue, allowing any pending
signal, set temporary breakpoint
at location

Go to line in current procedure

Go to label in current procedure

Go forward or back given # lines

Go forward or back 1 line

Detach and terminate target

Chapter 16: XDB to WDB Transition Guide

r [arguments]

s number

S number

r [arguments]

R (with -xdb), r

s number, si number

S (with -xdb), n, ni

S number (with -xdb), n number,

ninumber

16.2 Overall breakpoint commands

231

Run with last arguments [or with
new arguments]

Rerun with no arguments

Single step (into procedures) (si:
step by instruction)

Single step number steps (into
procedures) (si: step by instruc-
tion)

Step over (ni:
struction)

step over by in-

Step over by number statements
or instructions (ni: step over by
instruction)

The following table lists the XDB and equivalent WDB commands for setting additional

breakpoints:

XDB Command

1b

tb

WDB Equivalent

1b (with -xdb), i b

No equivalent

16.2.1 Awuxiliary breakpoint commands

Meaning

List breakpoints

Toggle overall breakpoint state

The following table lists the XDB and equivalent WDB auxiliary breakpoint related

commands:

XDB Command

WDB Equivalent

Meaning

232 Debugging with GDB

"any_string" p "any_string" Print any_string

if expr {cmds} if expr cmds [else cmds| end Conditionally execute cmds
[{cmds}]

Q Q (with -xdb), silent (must be Quiet breakpoints

first command in a commands list)
16.2.2 Breakpoint creation commands

The GDB equivalent of the count and cmds arguments is to use the commandsbnum
command to set an ignore count and/or to specify commands to be executed for that
breakpoint.

For C++ programs, you can use the regular-expression breakpoint command rbreak to
set breakpoints on all the member functions of a class or on overloaded functions outside a
class.

The following table lists the XDB and equivalent WDB commands for creating break-
points:

XDB Command WDB Equivalent Meaning
b loc b loc Set a breakpoint at the specified
location
b b Set a breakpoint at the current
line
ba address ba address (with -xdb), b Set breakpoint at a code address
xaddress
bb [depth] No equivalent (use b proc) Set breakpoint at procedure be-
ginning
bi expr. proc b class: :proc cond bnum (this Set an instance breakpoint at the
== expr) first executable line of expr. proc
bi -c expr No equivalent Set an instance breakpoint at first

executable line of all non-static
member functions of the instance
of a class (no base classes)

Chapter 16: XDB to WDB Transition Guide

bi -C expr

bpc -c class

bpc -C class

bpo proc

bpo class: : proc

bt [depth]

bt proc

bu [depth]

bx [depth]

No equivalent

rb “class: : *

Use rb “class: :* for base classes
also

rb proc

b class: : proc

No equivalent

b proc commands bnum finish c
end
bu [depth] (with -xdb). The

finish command is equivalent to
the sequence bu, c, db (to continue

out of the current routine).

bx [depth] (with -xdb)

16.2.3 Breakpoint status commands

233

Set an instance breakpoint at
first executable line of all non-
static member functions of the
instance’s class (base classes in-
cluded)

Set a class breakpoint at first exe-
cutable line of all member func-
tions of the instance’s class (no
base classes)

Set a class breakpoint at first ex-
ecutable line of all member func-
tions of the class (base classes in-
cluded)

Set breakpoints on overloaded
functions outside a class

Set breakpoints on overloaded
functions in a class

Set trace breakpoint at proce-
dure at specified depth on pro-
gram stack

Set trace breakpoint at proc

Set up-level breakpoint

Set a breakpoint at procedure exit

The following table lists the XDB and equivalent WDB commands for changing the

breakpoint status:

234

XDB Command

ab number

ab *

ab @shared-
library

bc number expr

db

db number

db *

sb number

sb *

sb @shared-
library

WDB Equivalent

enable number

enable

No equivalent

(with -xdb),
(within a

bc number expr
ignorenumber expr

commands list)

clear

delete number

delete

disable number

disable

No equivalent

Debugging with GDB

Meaning

Activate suspended breakpoint of
the given number

Activate all suspended break-
points

Activate suspended breakpoints in
named shared library

Set a breakpoint count

Delete breakpoint at current line

Delete breakpoint of the given
number

Delete all breakpoints

Suspend breakpoint of the given
number

Suspend all breakpoints

Suspend breakpoints in named
shared library

16.2.4 All-procedures breakpoint commands

GDB does not provide the ability to set breakpoints on all procedures with a single
command. Therefore, it does not have any equivalent of the following commands:

bp
bpt
bpx
dp
Dpt

Chapter 16: XDB to WDB Transition Guide 235

Dpx
16.2.5 Global breakpoint commands

The following table lists the XDB and equivalent WDB commands for setting global
breakpoints:

XDB Command WDB Equivalent Meaning

abc cmds No exact equivalent, but display Set or delete cmds to execute at
expr is equivalent to abc print every stop

expr

dbc undisplay Stop displaying values at each
stop

16.2.6 Assertion control commands

GDB does not provide the ability to trace by instruction. Watchpoints, however, provide
similar functionality to xdb assertions.

For example, watchpoints can be:
e Enabled (corresponds to aa)
e Disabled (corresponds to da)
e Listed (corresponds to info watch)

e Added (corresponds to x)

WDB does not have explicit equivalents for the following commands:

a
aa
da
la
sa
ta
X

16.2.7 Record and playback commands

Use the source command to read commands from a file. GDB does not provide a
recording capability like XDB’s, but you can use the set history save command to record
all GDB commands in the file ./.gdb_history (similar to the $HOME/.xdbhist file). The
history file is not saved until the end of your debugging session.

To change the name of the history file, use set history filename.

To stop recording, use set history save off.

236

Debugging with GDB

To display the current history status, use show history.

For an equivalent of the XDB record-all facility, pipe the output of the gdb command to
the tee(1) command. For example:

gdb a.out | tee mylogfile

This solution works with the default line-mode user interface, not with the terminal user

interface.

16.2.8 Macro facility commands

Use the show user or help user-defined command to obtain a list of all user-defined

commands.

The following table lists the XDB and the equivalent WDB commands for handling

macros:

XDB Command

def name
replacement-text

tm

undef name

undef *

WDB Equivalent
def name [GDB prompts for
commands]

No equivalent

def name [follow with empty

command list]

No equivalent

16.2.9 Signal control commands

Meaning

Define a user-defined command

Toggle the macro substitution
mechanism

Remove the macro definition for
name

Remove all macro definitions

The following table lists the XDB and equivalent WDB commands for signal control:

XDB Command

1z

z number s

z number i

WDB Equivalent

1z (with -xdb), info signals

z number s (with -xdb), handle
numberstop, handle number

nostop

z number i (with -xdb), handle
numbernopass, handle number

pass

Meaning

List signal handling

Toggle stop flag for signal number

Toggle ignore flag for signal num-
ber

Chapter 16: XDB to WDB Transition Guide

z number r

z number Q

z number r (with -xdb), handle
number print, handle number

noprint
z number Q (with -xdb), handle

number noprint

16.2.10 Miscellaneous commands

237

Toggle report flag for signal num-
ber

Do not print the new state of the
signal

Some of the additional XDB and the equivalent WDB commands are discussed below:

XDB Command

Return

| emd_line

{cmd_list}

Control-C

[text]

f ["printf-style-
fmt"]
h

M{t | c} [expr[;
expr...]]

WDB Equivalent

Return

Return

No equivalent (one command per

line in command list)

! emd_line (with -xdb), she
cmd_line
commands [number| ... end

Control-C

[text]

am (with -xdb), set height num

No equivalent

No equivalent

Meaning

Repeat previous command

Repeat previous command

Separate commands in command
list

Invoke a shell
list

Execute command (group

commands)

Interrupt the program

A comment

Activate more (turn on pagina-
tion)

Set address printing format

Help

Print object or corefile map

238 Debugging with GDB

q q Quit debugger

sm sm (with -xdb), set height 0 Suspend more (turn off pagina-
tion)

ss file No equivalent Save (breakpoint, macro, asser-

tion) state

tc No equivalent Toggle case sensitivity in searches

16.3 XDB data formats and HP WDB equivalents

The format of the print command is different in XDB and GDDB:

XDB: p expr\fmt
GDB: p/fmt expr

Use the set print pretty command to obtain a structured display similar to the default
XDB display.

The following table lists the XDB and equivalent WDB commands for setting data
display formats:

XDB Command WDB Equivalent Meaning

b d Byte in decimal

B (1) d Byte in decimal

c c Character

C (1) c Wide character

d d Decimal integer

D (1) d Long decimal integer

e No equivalent e floating-point notation as float

Chapter 16: XDB to WDB Transition Guide

No equivalent

No equivalent

No equivalent

Use x/i command

No equivalent

No equivalent

print

No equivalent

No equivalent

239

e floating-point notation as dou-
ble

f floating-point notation as float

f floating-point notation as dou-
ble

g floating-point notation as float

g floating-point notation as dou-
ble

Machine instruction (disassem-
bly)

Formatted structure display

Formatted structure display with
base classes

Normal (default) format, based on
type

FExpression in octal as integer

Expression in octal as long integer

Print name of procedure contain-
ing address

String

Formatted structure display

240 Debugging with GDB

t whatis, ptype Show type of the expression

T (1) ptype Show type of expression, including
base class information

u u Expression in unsigned decimal
format
U (1) u Expression in long unsigned deci-

mal format

W No equivalent Wide character string

W (1) No equivalent Address of wide character string
X X Print in hexadecimal

X (1) X Print in long hexadecimal

z t Print in binary

Z (1) t Print in long binary

(1) HP WDB will display data in the size appropriate for the data. It will not extend
the length displayed in response to one of the uppercase formchars (e.g. 0, D, F).

16.4 XDB location syntax and HP WDB equivalents

The following command lists the XDB and the equivalent WDB commands for locating
source lines:

XDB Location Syntax WDB Equivalent Meaning

line line Source line and code address

file]: line] file[: line] Source line and code address

Chapter 16: XDB to WDB Transition Guide 241

proc proc Procedure name

[file:|proc[: proc|...]][: line] ~ No equivalent Source line and code address
[file:|proc[: proc]...]][: #label|] No equivalent Source line and code address
[class]: : proc [class]: : proc Source line and code address
[class]: : proc]: line] No equivalent Source line and code address
[class]: : proc[#label] No equivalent Source line and code address
proctline No equivalent Code address

[class]: : proc#line No equivalent Code address

#label No equivalent Source line and code address
nameQ@shared-library No equivalent Address of name in shared library

shared-library

16.5 XDB special language operators and HP WDB
equivalents

The following table lists the XDB and the equivalent WDB commands for language
operators:

XDB Language Operator WDB Equivalent Meaning
$addr Depends on language Unary operator, address of object
$in No equivalent Unary Boolean operator, execu-

tion in procedure

$sizeof sizeof Unary operator, size of object

242

Debugging with GDB

16.6 XDB special variables and HP WDB equivalents

GDB does not provide special variables of the kind that XDB has, but you can use show

and set to display and modify many debugger settings.

XDB Special Variable

$cplusplus

$depth

$fpa

$fpa_reg

$lang

$line

$malloc

$print

$regname

$result

$signal

WDB Equivalent

No equivalent

No equivalent

No equivalent

No equivalent

show language

No equivalent

No equivalent

No equivalent

$regname

Use $n (value history
number assigned to the

desired result)

No equivalent

Meaning

C++ feature control flags

Default stack depth for local vari-
ables

Treat FPA sequence as one in-
struction

Address register for FPA se-
quences

Current language for expression
evaluation

Current source line number

Debugger allocation

(bytes)

memory

Display mode for character data

Hardware registers

Return value of last command line
procedure call

Current child procedure signal
number

Chapter 16: XDB to WDB Transition Guide

$step No equivalent

$var $var

243

Number of instructions debugger
will step in non-debuggable pro-
cedures before free-running

Define or use special variable (con-
venience variable)

16.7 XDB variable identifiers and HP WDB equivalents

XDB Variable Identifier WDB Equivalent

var var

class: :var class: :var

[[class]: :]proc:[class: :|var proc: :var

[[class]: :]proc:depth:|class: :No equivalent

. (dot) FEmpty string; for exam-
ple, p is the equivalent of
P -

:var or ::var ::var to distinguish a

global from a local vari-

able with same name

Meaning

Search for var

Search class for var (bug: not yet)

Search proc for var (static vari-
ables only)

Search proc for depth on stack

Shorthand for last thing you
looked at

Search for global variable only

16.8 Alphabetical lists of XDB commands and HP WDB

equivalents

e Section 16.8.1 [A], page 244.

e Section 16.8.2 [B], page 244.

e Section 16.8.3 [C though D], page 246.

e Section 16.8.4 [F through K], page 247.
e Section 16.8.5 [L], page 248.

e Section 16.8.6 [M through P], page 249.
e Section 16.8.7 [Q through S|, page 250.
e Section 16.8.8 [T], page 252.

244 Debugging with GDB

e Section 16.8.9 [U through Z], page 252.
e Section 16.8.10 [Symbols], page 254.

16.8.1 A

XDB Command Equivalent WDB Command

a [cmds] No equivalent

aa number No equivalent

aa * No equivalent

ab number enable number

ab * enable

ab @shared-library No equivalent

abc cmds No exact equivalent, but display expr is equivalent to abc
print expr

am am (with -xdb), set height num

apm oldpath [newpath] No equivalent

apm "" [newpath] No equivalent

16.8.2 B

XDB Command Equivalent WDB Command

b loc b loc

Chapter 16: XDB to WDB Transition Guide 245

ba address

bb

bc

bi

bi

bi

bp

bp

[depth]

number expr

expr . proc

-c expr

-C expr

cmds

bpc —c class

bpc -C class

bpo proc

bpo class: : proc

bpt

bpt cmds

bpx

ba address (with -xdb), b *address

No equivalent (use b proc)

bc number expr (with -xdb), ignore number expr (within a
commands list)

b class: : proc cond bnum (this == expr)

No equivalent

No equivalent

No equivalent

No equivalent

rb “class: : *

Use rb ~class: : * for base classes also

rb proc

b class: : proc

No equivalent

No equivalent

No equivalent

246

bpx cmds

bt [depth]

bt proc

bu [depth]

bx [depth]

16.8.3 C through D

XDB Command

¢ location

C location

D "de'"

da number

da *

db

Debugging with GDB

No equivalent

No equivalent

b proc commands bnum
finish

C
end

bu [depth] (with -xdb). The finish command is equivalent to
the sequence bu, ¢, db (to continue out of the current routine).

bx [depth| (with -xdb)

Equivalent WDB Command

c, continue

until location

c, continue

until location

D "dir" (with -xdb), dir pathname

No equivalent

No equivalent

clear

Chapter 16: XDB to WDB Transition Guide

db number
db *

dbc

def name replacement-text

down

down number

dp

dpm index

dpm *

Dpt

Dpx

16.8.4 F through K

XDB Command

f ["printf-style-fimt"|

fr

g line

delete number

delete

undisplay

def name [GDB prompts for commands]

up

up number

No equivalent

No equivalent

No equivalent

No equivalent

No equivalent

Equivalent WDB Command

No equivalent

fr (with -xdb -tui), display $fregs (with -tui)

g line (with -xdb), go line, tb line followed by jump line

247

248 Debugging with GDB

g #label No equivalent

g {+ | -}lines g {+ | -}ines (with -xdb), go {+ | -}lines tb {+ | -}lines
followed by jump {+ | -}lines

g {+ |-} g {+ | -} (with -xdb), go {+ | -}1, tb {+ | -}1 followed by
jump {+ | -}1

gr gr (with -xdb -tui), display $regs (with -tui)

h h

if expr {cmds} [{cmds}] if expr cmds [else cmds| end

I info (many kinds), show (many kinds)

k k

16.8.5 L

XDB Command Equivalent WDB Command

1 1 (with -xdb), info args followed by info locals

L L (with -xdb)

la No equivalent

1b 1b (with -xdb), i b

lc |strin lc |string| (with -xdb), info common strin
g g g

Chapter 16: XDB to WDB Transition Guide 249

1d 1d (with -xdb), show directories

1f 1f (with -xdb), info sources

1f [string] No equivalent

1g [string] 1g [string] (with -xdb), info variables [string]

11 [string] info functions [string], info variables [string], maint

print msymbols file

1m [string] show user [string]

lo [[class]: :][string] info func [[class|: :][string]

1p info functions

1p [[class]: :|string info func [[class]: :]string info addr [[class]: :|string
lpm No equivalent

1r 1r (with -xdb), info all-reg

1r string 1r string (with -xdb), info reg string

1s [string] No equivalent

1z 1z (with -xdb), info signals

16.8.6 M through P

XDB Command Equivalent WDB Command

250

M{t | c} [expr[; expr..]]]

mm string

p expr[\format]

p expr?format

p class::

p $lang

p {+ | -}[\format

Pq expr

pq expr?format

pq class: :

pq [+ | -][\format

16.8.7 Q through S

Debugging with GDB

No equivalent

info sharedlibrary

No equivalent

fo or rev

fo or rev

p[/format] expr [Note: The count and size portions of formats
are not allowed in the p (print) command. They are allowed
in the x command (examine memory).]

p/format & ; expr

No equivalent

show language

Use x/format command to obtain initial value, then use x
with no argument to obtain value of next memory location.
To obtain value of previous memory location, use "x $_ - 1".

set expr, set var expr

No equivalent

No equivalent

No equivalent

Chapter 16: XDB to WDB Transition Guide

XDB Command

r [arguments]

s number

S number

sa number

sa *

sb number

sb *

sb @shared-library

sm

She

Equivalent WDB Command

Q (with -xdb), silent (must be first command in a commands

list)

r [arguments]

R (with -xdb), r

s, si

s number, si number

S (with -xdb), n, ni

S number (with -xdb), n number, ninumber

No equivalent

No equivalent

disable number

disable

No equivalent

sm (with -xdb), set height 0

sr (with -xdb -tui), display $sregs (with -tui)

252 Debugging with GDB

ss file No equivalent

16.8.8 T

XDB Command Equivalent WDB Command

t [depth] t [depth] (with -xdb), bt [depth]

T [depth] T [depth] (with -xdb), bt full [depth]
ta No equivalent

tb No equivalent

tc No equivalent

td td (with -xdb -tui)

tf tf (with -xdb -tui), toggle $fregs (with -tui)
tm No equivalent

top frame O

tr [@] No equivalent

ts ts (with -xdb -tui)

16.8.9 U through Z

XDB Command Equivalent WDB Command

Chapter 16: XDB to WDB Transition Guide 253

u u (with -xdb -tui), update (with -tui)

U U (with -xdb -tui), refresh (with -tui)

undef name def name [follow with empty command list]

undef * No equivalent

up down

up number down number

v v (with -xdb), list

v location v location (with -xdb), 1list location

V [depth] V [depth] (with -xdb), frame [depth]

va address va address (with -xdb), disas address

va label va label (with -xdb), disas label

va label + offset va label + offset (with -xdb), disas label + offset

w number w number (with -xdb -tui), winheight src number (with -
tui)

x [expr] No equivalent

xdb program gdb -xdb program, gdb -xdb -tui program

xdb program corefile gdb -xdb program -c corefile

254

xdb -d dir

xdb -P pid program

xdb -i

xdb -o

z number s

z number i

z number r

z number Q

16.8.10 Symbols

XDB Symbol

line

file]: line]

proc

[file:|proc]: proc|...]][: line]

[file:|proc|: proc|...]|[: #label]

Debugging with GDB

gdb -xdb -d dir

gdb -xdb program pid

(after starting) run < file

(after starting) run > file

z number s (with -xdb), handle number stop,
number nostop

z number i (with -xdb), handle number nopass,

number pass

z number r (with -xdb), handle number print,

number noprint

z number Q (with -xdb), handle number noprint

Equivalent HP WDB Symbol

line

file[: line]

proc

No equivalent

No equivalent

handle

handle

handle

Chapter 16: XDB to WDB Transition Guide

[class]: : proc

[class]: : proc|: line]

[class]: : proc[#label]

proctline

[class]: : proc#line

name@shared-library

var

class: :var

[[class]: :]proc:[class: : |var

[[class]: :]proc: depth:[class: :]var

Return

"any_string"

. (dot)

{+1-}r

255

[class]: : proc

No equivalent

No equivalent

No equivalent

No equivalent

No equivalent

var

class: : var (bug: not yet)

proc: :var (static variables only)

No equivalent

Return

p "any_string"

Empty string; for example, p is the equiva-
lent of p .

Return

{+ | -}r (with -xdb -tui), {+ | -} data
(with -tui)

256 Debugging with GDB

{+ | -}[number] {+ | -}[number| (with -tui; note that a
space is required between + or - and the
number)

/[string] /[string] (with -xdb), search regexp, forw
regexp

?[string] ?[string] (with -xdb), rev regexp

; No equivalent (one command per line in
command list)

:var or ::var s var
! cmd_line ! cmd_line (with -xdb), she cmd_line
{cmd_list} commands [number] ... end

<file source file

<<file No equivalent

> No equivalent

>file No equivalent

>c No equivalent

>f No equivalent

>t No equivalent

>elc | £ | t] No equivalent

Chapter 16: XDB to WDB Transition Guide 257

>Qfile No equivalent
>> No equivalent
>>file No equivalent
>>Q No equivalent
>>0file No equivalent
Control-C Control-C

[text] # [text]

#label No equivalent

258 Debugging with GDB

Chapter 17: Controlling GDB 259

17 Controlling GDB

You can alter the way GDB interacts with you by using the set command. For commands
controlling how GDB displays data, see Section 8.7 [Print settings|, page 70. Other settings
are described here.

17.1 Setting the GDB Prompt

GDB indicates its readiness to read a command by printing a string called the prompt.
This string is normally ‘((gdb))’. You can change the prompt string with the set prompt
command. For instance, when debugging GDB with GDB, it is useful to change the prompt
in one of the GDB sessions so that you can always tell which one you are talking to.

Note: set prompt does not add a space for you after the prompt you set. This allows
you to set a prompt which ends in a space or a prompt that does not.

set prompt newprompt
Directs GDB to use newprompt as its prompt string henceforth.

show prompt
Prints a line of the form: ‘Gdb’s prompt is: your-prompt’

17.2 Setting Command Editing Options in GDB

GDB reads its input commands via the readline interface. This GNU library provides
consistent behavior for programs which provide a command line interface to the user. Ad-
vantages are GNU Emacs-style or vi-style inline editing of commands, csh-like history sub-
stitution, and a storage and recall of command history across debugging sessions.

You may control the behavior of command line editing in GDB with the command set.

set editing
set editing on
Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing
Show whether command line editing is enabled.

17.3 Setting Command History Feature in GDB

GDB can keep track of the commands you type during your debugging sessions, so that
you can be certain of precisely what happened. Use these commands to manage the GDB
command history facility.

To make command history understand your vi key bindings you need to create a
‘~/.inputrc’ file with the following contents:

260 Debugging with GDB

set editing-mode vi

The readline interface uses the ‘.inputrc’ file to control the settings.

set history filename fname
Set the name of the GDB command history file to fname. This is the file where
GDB reads an initial command history list, and where it writes the command
history from this session when it exits. You can access this list through history
expansion or through the history command editing characters listed below.
This file defaults to the value of the environment variable GDBHISTFILE, or to
‘./.gdb_history’ (‘./_gdb_history’ on MS-DOS) if this variable is not set.

set history save

set history save on
Record command history in a file, whose name may be specified with the set
history filename command. By default, this option is disabled.

set history save off
Stop recording command history in a file.

set history size size
Set the number of commands which GDB keeps in its history list. This defaults
to the value of the environment variable HISTSIZE, or to 256 if this variable is
not set.

History expansion assigns special meaning to the character !.

Since ! is also the logical not operator in C, history expansion is off by default. If you
decide to enable history expansion with the set history expansion on command, you may
sometimes need to follow ! (when it is used as logical not, in an expression) with a space
or a tab to prevent it from being expanded. The readline history facilities do not attempt
substitution on the strings /= and ! (, even when history expansion is enabled.

The commands to control history expansion are:

set history expansion on
set history expansion
Enable history expansion. History expansion is off by default.

set history expansion off
Disable history expansion.

The readline code comes with more complete documentation of editing and
history expansion features. Users unfamiliar with GNU Emacs or vi may wish
to read it.

show history

show history filename

show history save

show history size

show history expansion
These commands display the state of the GDB history parameters. show
history by itself displays all four states.

Chapter 17: Controlling GDB 261

show commands
Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number n.

show commands +
Print ten commands just after the commands last printed.

17.4 Setting the GDB Screen Size

Certain commands to GDB may produce large amounts of information output to the
screen. To help you read all of it, GDB pauses and asks you for input at the end of each
page of output. Type when you want to continue the output, or g to discard the
remaining output. Also, the screen width setting determines when to wrap lines of output.
Depending on what is being printed, GDB tries to break the line at a readable place, rather
than simply letting it overflow onto the following line.

Normally GDB knows the size of the screen from the terminal driver software. For
example, on Unix, GDB uses the termcap data base together with the value of the TERM
environment variable and the stty rows and stty cols settings. If this is not correct, you
can override it with the set height and set width commands:

set height Ipp

show height

set width cpl

show width
These set commands specify a screen height of Ipp lines and a screen width of
cpl characters. The associated show commands display the current settings.

If you specify a height of zero lines, GDB does not pause during output no
matter how long the output is. This is useful if output is to a file or to an
editor buffer.

Likewise, you can specify ‘set width 0’ to prevent GDB from wrapping its
output.

17.5 Supported Number Formats

You can always enter numbers in octal, decimal, or hexadecimal in GDB by the usual
conventions: octal numbers begin with ‘0’, decimal numbers end with ‘.’, and hexadecimal
numbers begin with ‘0x’. Numbers that begin with none of these are, by default, entered in
base 10; likewise, the default display for numbers—when no particular format is specified—
is base 10. You can change the default base for both input and output with the set radix
command.

set input-radix base
Set the default base for numeric input. Supported choices for base are decimal
8, 10, or 16. base must itself be specified either unambiguously or using the
current default radix; for example, any of

262 Debugging with GDB

set radix 012

set radix 10.

set radix Oxa
sets the base to decimal. On the other hand, ‘set radix 10’ leaves the radix
unchanged no matter what it was.

set output-radix base
Set the default base for numeric display. Supported choices for base are decimal
8, 10, or 16. base must itself be specified either unambiguously or using the
current default radix.

show input-radix
Display the current default base for numeric input.

show output-radix
Display the current default base for numeric display.

17.6 Optional warnings and messages

By default, GDB is silent about its inner workings. If you are running on a slow machine,
you may want to use the set verbose command. This makes GDB tell you when it does a
lengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those which announce that the
symbol table for a source file is being read; see symbol-file in Section 12.1 [Commands to
specify files], page 103.

set verbose on
Enables GDB output of certain informational messages.

set verbose off
Disables GDB output of certain informational messages.

show verbose
Displays whether set verbose is on or off.

By default, if GDB encounters bugs in the symbol table of an object file, it is silent;
but if you are debugging a compiler, you may find this information useful (see Section 12.3
[Errors reading symbol files], page 107).

set complaints limit
Permits GDB to output limit complaints about each type of unusual symbols
before becoming silent about the problem. Set limit to zero to suppress all com-
plaints; set it to a large number to prevent complaints from being suppressed.

show complaints
Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks the user to confirm on certain commands. For
example, if you try to run a program which is already running:

((gdb)) run
The program being debugged has been started already.

Chapter 17: Controlling GDB 263

Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own commands, you can
disable this “feature”:

set confirm off
Disables confirmation requests.

set confirm on
Enables confirmation requests (the default).

show confirm
Displays state of confirmation requests.

17.7 Optional messages about internal happenings

set debug arch
Turns on or off display of gdbarch debugging info. The default is off

show debug arch
Displays the current state of displaying gdbarch debugging information.

set debug event
Turns on or off display of GDB event debugging information. The default is
off.

show debug event
Displays the current state of displaying GDB event debugging info.

set debug expression
Turns on or off display of GDB expression debugging information. The default
is off.

show debug expression
Displays the current state of displaying GDB expression debugging info.

set debug overload
Turns on or off display of GDB C++ overload debugging info. This includes info
such as ranking of functions, etc. The default is off.

show debug overload
Displays the current state of displaying GDB C++ overload debugging info.

set debug remote
Turns on or off display of reports on all packets sent back and forth across the
serial line to the remote machine. The info is printed on the GDB standard
output stream. The default is off.

show debug remote
Displays the state of display of remote packets.

set debug serial
Turns on or off display of GDB serial debugging info. The default is off.

264 Debugging with GDB

show debug serial
Displays the current state of displaying GDB serial debugging info.

set debug target
Turns on or off display of GDB target debugging info. This info includes what
is going on at the target level of GDB, as it happens. The default is off.

show debug target
Displays the current state of displaying GDB target debugging info.

set debug varobj
Turns on or off display of GDB variable object debugging info. The default is
off.

show debug varobj
Displays the current state of displaying GDB variable object debugging info.

Chapter 18: Canned Sequences of Commands 265

18 Canned Sequences of Commands

In addition to breakpoint commands (see Section 5.1.6 [Breakpoint command lists],
page 41), GDB provides the following two ways to store sequence of commands for execution
as a unit:

e user-defined commands

e command files
18.1 User-defined commands

A user-defined command is a sequence of GDB commands to which you assign a new
name as a command. This is done with the define command. User commands may accept
up to 10 arguments separated by whitespace. Arguments are accessed within the user
command via $arg0. . . $arg9. The following example illustrates the use of canned sequence
of commands:

define adder
print $arg0 + $argl + $arg2
To execute the command use:
adder 1 2 3

This defines the command adder, which prints the sum of its three arguments. Note the
arguments are text substitutions, so they may reference variables, use complex expressions,
or even perform further functions calls.

The following contructs can be used to create canned sequence of commands:

define commandname
Define a command named commandname. If there is already a command by
that name, you are asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines, which
are given following the define command. The end of these commands is marked
by a line containing end.

if Takes a single argument, which is an expression to evaluate. It is followed by a
series of commands that are executed only if the expression is true (nonzero).
The if clause can be followed by an optional else clause. You can add a list of
commands to the else clause which get executed only if the expression is false.

while The syntax is similar to if: the command takes a single argument, which is
an expression to evaluate, and must be followed by the commands to execute,
one per line, terminated by an end. The commands are executed repeatedly as
long as the expression evaluates to true.

document commandname
Document the user-defined command commandname, so that it can be ac-
cessed by help. The command commandname must already be defined. This
command reads lines of documentation just as define reads the lines of the
command definition, ending with end. After the document command is fin-
ished, help on command commandname displays the documentation you have
written.

266 Debugging with GDB

You may use the document command again to change the documentation of a
command. Redefining the command with define does not change the docu-
mentation.

help user-defined
List all user-defined commands, with the first line of the documentation (if any)
for each.

show user

show user commandname
Display the GDB commands used to define commandname (but not its docu-
mentation). If no commandname is given, display the definitions for all user-
defined commands.

When user-defined commands are executed, the commands of the definition are not
printed. An error in any command stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed without asking
when used inside a user-defined command. Many GDB commands that normally print mes-
sages to say what they are doing omit the messages when used in a user-defined command.

18.2 User-defined command hooks

You may define hooks, which are a special kind of user-defined command. Whenever you
run the command ‘foo’, if the user-defined command ‘hook-foo’ exists, it is executed (with
no arguments) before that command.

In addition, a pseudo-command, ‘stop’ exists. Defining (‘hook-stop’) makes the asso-
ciated commands execute every time execution stops in your program: before breakpoint
commands are run, displays are printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, and treat them normally
during normal execution, you could define:

define hook-stop
handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGLARM pass
end

You can define a hook for any single-word command in GDB, and not for command
aliases; Also you should define a hook for the basic command name, e.g. backtrace rather
than bt. If an error occurs during the execution of your hook, execution of GDB commands
stops and GDB issues a prompt (before the command that you actually typed had a chance
to run).

Chapter 18: Canned Sequences of Commands 267

If you try to define a hook which does not match any known command, GDB issues a
warning from the define command.

18.3 Command files

A command file for GDB is a file of lines that are GDB commands. Comments (lines
starting with #) may also be included. An empty line in a command file does nothing; it
does not mean to repeat the last command, as it would from the terminal.

When you start GDB, it executes commands from its init files. These are files named
‘.gdbinit’ on Unix and ‘gdb.ini’ on DOS/Windows. During startup, GDB does the
following:

1. Reads the init file (if any) in your home directory!.

o

Processes command line options and operands.

3. Reads the init file (if any) in the current working directory.

4. Reads command files specified by the ‘-x’ option.

The init file in your home directory can set options (such as ‘set complaints’) that affect

subsequent processing of command line options and operands. Init files are not executed if
you use the ‘-nx’ option (see Section 2.1.2 [Choosing modes|, page 13).

It can be useful to create a ‘.gdbinit’ file in the directory where you are debugging an
application. This file will set the actions that apply for this application.

For example, one might add lines like:
dir /usr/src/path/to/source/files
to add source directories or:
break fatal
to set breakpoints on fatal error routines or diagnostic routines.

On some configurations of GDB, the init file is known by a different name (these are typ-
ically environments where a specialized form of GDB may need to coexist with other forms,
hence a different name for the specialized version’s init file). These are the environments
with special init file names:

e VxWorks (Wind River Systems real-time OS): ‘.vxgdbinit’
o OS68K (Enea Data Systems real-time OS): ‘. 0s68gdbinit’
e ES-1800 (Ericsson Telecom AB M68000 emulator): ‘.esgdbinit’

You can also request the execution of a command file with the source command:

source filename
Execute the command file filename.

The lines in a command file are executed sequentially. They are not printed as they are
executed. An error in any command terminates execution of the command file.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many GDB commands that normally print messages to say
what they are doing omit the messages when called from command files.

1 On DOS /Windows systems, the home directory is the one pointed to by the HOME environment variable.

268

Debugging with GDB

18.4 Commands for controlled output

During the execution of a command file or a user-defined command, normal GDB output
is suppressed; the only output that appears is what is explicitly printed by the commands
in the definition. This section describes three commands useful for generating exactly the
output you want.

echo text

Print text. Nonprinting characters can be included in text using C escape se-
quences, such as ‘\n’ to print a newline. No newline is printed unless you specify
one. In addition to the standard C escape sequences, a backslash followed by a
space stands for a space. This is useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise trimmed
from all arguments. To print ¢ and foo =’, use the command ‘echo \ and foo
=\ .

A backslash at the end of text can be used, as in C, to continue the command
onto subsequent lines. For example,

echo This is some text\n\
which is continued\n\
onto several lines.\n

produces the same output as

echo This is some text\n
echo which is continued\n
echo onto several lines.\n

output expression

Print the value of expression and nothing but that value: no newlines, no
‘$nn =’. The value is not entered in the value history either. See Section 8.1
[Expressions|, page 63, for more information on expressions.

output/fmt expression

Print the value of expression in format fmt. You can use the same formats as
for print. See Section 8.4 [Output formats], page 66, for more information.

printf string, expressions...

Print the values of the expressions under the control of string. The expressions
are separated by commas and may be either numbers or pointers. Their values
are printed as specified by string, exactly as if your program were to execute
the C subroutine

printf (string, expressions...);

For example, you can print two values in hex like this:

printf "foo, bar-foo = Ox%x, Ox%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are
the simple ones that consist of backslash followed by a letter.

Chapter 19: Using GDB under ¢NU Emacs 269

19 Using GDB under ¢NU Emacs

A special interface allows you to use GNU Emacs to view (and edit) the source files for
the program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the executable file you
want to debug as an argument. This command starts GDB as a subprocess of Emacs, with
input and output through a newly created Emacs buffer.

Using GDB under Emacs is just like using GDB normally except for two things:

e All “terminal” input and output goes through the Emacs buffer.

This applies both to GDB commands and their output, and to the input and output
done by the program you are debugging.

This is useful because it means that you can copy the text of previous commands and
input them again; you can even use parts of the output in this way.

All the facilities of Emacs’ Shell mode are available for interacting with your program.
In particular, you can send signals the usual way—for example, C-c C-c for an interrupt,
C-c C-z for a stop.

e GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds the source file for
that frame and puts an arrow (‘=>’) at the left margin of the current line. Emacs uses a
separate buffer for source display, and splits the screen to show both your GDB session and
the source.

Explicit GDB list or search commands still produce output as usual, but you probably
have no reason to use them from Emacs.

Warning: If the directory where your program resides is not your current di-
rectory, it can be easy to confuse Emacs about the location of the source files,
in which case the auxiliary display buffer does not appear to show your source.
GDB can find programs by searching your environment’s PATH variable, so the
GDB input and output session proceeds normally; but Emacs does not get
enough information back from GDB to locate the source files in this situation.
To avoid this problem, either start GDB mode from the directory where your
program resides, or specify an absolute file name when prompted for the M-x
gdb argument.

A similar confusion can result if you use the GDB file command to switch to
debugging a program in some other location, from an existing GDB buffer in
Emacs.
By default, M-x gdb calls the program called ‘gdb’. If you need to call GDB by a different
name (for example, if you keep several configurations around, with different names) you can
set the Emacs variable gdb-command-name; for example,

(setq gdb-command-name "mygdb")
(preceded by M-: or ESC :, or typed in the *scratch* buffer, or in your ‘. emacs’ file) makes
Emacs call the program named “mygdb” instead.

In the GDB I/O buffer, you can use these special Emacs commands in addition to the
standard Shell mode commands:

270 Debugging with GDB

C-hm Describe the features of Emacs’ GDB Mode.

M-s Execute to another source line, like the GDB step command; also update the
display window to show the current file and location.

M-n Execute to next source line in this function, skipping all function calls, like the
GDB next command. Then update the display window to show the current file
and location.

M-i Execute one instruction, like the GDB stepi command; update display window
accordingly.

M-x gdb-nexti
Execute to next instruction, using the GDB nexti command; update display
window accordingly.

C-c C-f Execute until exit from the selected stack frame, like the GDB finish com-
mand.

M-c Continue execution of your program, like the GDB continue command.

Warning: In Emacs v19, this command is C-c C-p.

M-u Go up the number of frames indicated by the numeric argument (see section
“Numeric Arguments” in The GNU Emacs Manual), like the GDB up command.

Warning: In Emacs v19, this command is C-c C-u.

M-d Go down the number of frames indicated by the numeric argument, like the
GDB down command.

Warning: In Emacs v19, this command is C-c C-d.

C-x & Read the number where the cursor is positioned, and insert it at the end of

the GDB I/O buffer. For example, if you wish to disassemble code around an
address that was displayed earlier, type disassemble; then move the cursor to
the address display, and pick up the argument for disassemble by typing C-x
&.
You can customize this further by defining elements of the list gdb-print-
command; once it is defined, you can format or otherwise process numbers picked
up by C-x & before they are inserted. A numeric argument to C-x & indicates
that you wish special formatting, and also acts as an index to pick an element
of the list. If the list element is a string, the number to be inserted is format-
ted using the Emacs function format; otherwise the number is passed as an
argument to the corresponding list element.

In any source file, the Emacs command C-x SPC (gdb-break) tells GDB to set a break-
point on the source line point is on.

If you accidentally delete the source-display buffer, an easy way to get it back is to type
the command £ in the GDB buffer, to request a frame display; when you run under Emacs,
this recreates the source buffer if necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the
source files in the usual way. You can edit the files with these buffers if you wish; but keep
in mind that GDB communicates with Emacs in terms of line numbers. If you add or delete
lines from the text, the line numbers that GDB knows cease to correspond properly with
the code.

Chapter 20: GDB Annotations 271

20 GDB Annotations

This chapter describes annotations in GDB. Annotations are designed to interface GDB
to graphical user interfaces or other similar programs which want to interact with GDB at
a relatively high level.

20.1 What is an annotation?

To produce annotations, start GDB with the --annotate=2 option.

Annotations start with a newline character, two ‘control-z’ characters, and the name
of the annotation. If there is no additional information associated with this annotation,
the name of the annotation is followed immediately by a newline. If there is additional
information, the name of the annotation is followed by a space, the additional information,
and a newline. The additional information cannot contain newline characters.

Any output not beginning with a newline and two ‘control-z’ characters denotes literal
output from GDB. Currently there is no need for GDB to output a newline followed by two
‘control-z’ characters, but if there was such a need, the annotations could be extended
with an ‘escape’ annotation which means those three characters as output.

A simple example of starting up GDB with annotations is:

$ gdb --annotate=2

GNU GDB 5.0

Copyright 2000 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditioms.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty"
for details.

This GDB was configured as '"sparc-sun-sunos4.1.3"

“Z"Zpre-prompt
(gdb)
“Z"Zprompt
quit

“Z"Zpost-prompt
$
Here ‘quit’ is input to GDB; the rest is output from GDB. The three lines beginning

~Z~Z’ (where ‘~Z’ denotes a ‘control-z’ character) are annotations; the rest is output from
GDB.

20.2 The server prefix

To issue a command to GDB without affecting certain aspects of the state which is
seen by users, prefix it with ‘server ’. This means that this command will not affect the
command history, nor will it affect GDB’s notion of which command to repeat if is

pressed on a line by itself.

272 Debugging with GDB

The server prefix does not affect the recording of values into the value history; to print
a value without recording it into the value history, use the output command instead of the
print command.

20.3 Values

When a value is printed in various contexts, GDB uses annotations to delimit the value
from the surrounding text.

If a value is printed using print and added to the value history, the annotation looks
like
“Z"Zvalue-history-begin history-number value-flags
history-string
“Z"Zvalue-history-value
the-value
“Z"Zvalue-history-end
where history-number is the number it is getting in the value history, history-string is
a string, such as ‘$5 =’, which introduces the value to the user, the-value is the output
corresponding to the value itself, and value-flags is ‘*’ for a value which can be dereferenced
and ‘=’ for a value which cannot.

If the value is not added to the value history (it is an invalid float or it is printed with
the output command), the annotation is similar:
“Z"Zvalue-begin value-flags
the-value
“Z"Zvalue-end

When GDB prints an argument to a function (for example, in the output from the
backtrace command), it annotates it as follows:
“Z"Zarg-begin
argument-name
"Z"Zarg-name-end
separator-string
~Z"Zarg-value value-flags
the-value
“Z"Zarg-end
where argument-name is the name of the argument, separator-string is text which sep-
arates the name from the value for the user’s benefit (such as ‘=’), and value-flags and
the-value have the same meanings as in a value-history-begin annotation.

When printing a structure, GDB annotates it as follows:
“Z"Zfield-begin value-flags
field-name
“Z"Zfield-name-end
separator-string
“Z~Zfield-value
the-value
~Z~Zfield-end
where field-name is the name of the field, separator-string is text which separates the
name from the value for the user’s benefit (such as ‘=’), and value-flags and the-value have
the same meanings as in a value-history-begin annotation.

When printing an array, GDB annotates it as follows:

Chapter 20: GDB Annotations 273

“Z"Zarray-section-begin array-index value-flags
where array-index is the index of the first element being annotated and value-flags has
the same meaning as in a value-history-begin annotation. This is followed by any
number of elements, where the element can be either a single element or a repeated element
as shown in the examples below:

¢,’ whitespace ; omitted for the first element
the-value

“Z"Zelt

¢,’ whitespace ; omitted for the first element
the-value

“Z"Zelt-rep number-of-repititions
repetition-string
“Z"Zelt-rep-end
In both cases, the-value is the output for the value of the element and whitespace can
contain spaces, tabs, and newlines. In the repeated case, number-of-repititons is the number
of consecutive array elements which contain that value, and repetition-string is a string
which is designed to convey to the user that repitition is being depicted.

Once all the array elements have been output, the array annotation is ended with

“Z"Zarray-section-end

20.4 Frames

Whenever GDB prints a frame, it annotates it. For example, this applies to frames
printed when GDB stops, output from commands such as backtrace or up, etc.

The frame annotation begins with
“Z Zframe-begin level address
level-string
where level is the number of the frame (0 is the innermost frame, and other frames have
positive numbers), address is the address of the code executing in that frame, and level-
string is a string designed to convey the level to the user. address is in the form ‘0x’ followed
by one or more lowercase hex digits (note that this does not depend on the language). The
frame ends with
“Z"Zframe-end
Between these annotations is the main body of the frame, which can consist of
[]
“Z~Zfunction-call
function-call-string
where function-call-string is text designed to convey to the user that this frame is
associated with a function call made by GDB to a function in the program being
debugged.

“Z"Zsignal-handler-caller

signal-handler-caller-string
where signal-handler-caller-string is text designed to convey to the user that this frame
is associated with whatever mechanism is used by this operating system to call a signal
handler (it is the frame which calls the signal handler, not the frame for the signal
handler itself).

274 Debugging with GDB

e A normal frame.

This can optionally (depending on whether this is thought of as interesting information
for the user to see) begin with

“Z"Zframe-address

address

~Z~Zframe-address-end

separator-string
where address is the address executing in the frame (the same address as in the frame-
begin annotation, but printed in a form which is intended for user consumption—in
particular, the syntax varies depending on the language), and separator-string is a
string intended to separate this address from what follows for the user’s benefit.

Then comes

“Z~Zframe-function-name

function-name

“Z Zframe-args

arguments
where function-name is the name of the function executing in the frame, or ‘7?7’ if not
known, and arguments are the arguments to the frame, with parentheses around them
(each argument is annotated individually as well, see Section 20.3 [Value Annotations],
page 272).
If source information is available, a reference to it is then printed:

“Z~Zframe-source-begin

source-intro-string

“Z"Zframe-source-file

filename
~Z"Zframe-source-file-end

;Z”Zframe—source—line

line-number

“Z"Zframe-source-end
where source-intro-string separates for the user’s benefit the reference from the text
which precedes it, filename is the name of the source file, and line-number is the line
number within that file (the first line is line 1).

If GDB prints some information about where the frame is from (which library, which
load segment, etc.; currently only done on the RS/6000), it is annotated with
~Z"Zframe-where
information
Then, if source is to be actually displayed for this frame (for example, this is not true
for output from the backtrace command), then a source annotation (see Section 20.11
[Source Annotations|, page 278) is displayed. Unlike most annotations, this is output
instead of the normal text which would be output, not in addition.

20.5 Displays

When GDB is told to display something using the display command, the results of the
display are annotated:
"Z"Zdisplay-begin
number

Chapter 20: GDB Annotations 275

“Z"Zdisplay-number-end

number-separator

"Z"Zdisplay-format

format

“Z"Zdisplay-expression

expression

“Z"Zdisplay-expression-end

expression-separator

“Z"Zdisplay-value

value

“Z"Zdisplay-end

where number is the number of the display, number-separator is intended to separate the

number from what follows for the user, format includes information such as the size, format,
or other information about how the value is being displayed, expression is the expression
being displayed, expression-separator is intended to separate the expression from the text

that follows for the user,and value is the actual value being displayed.

20.6 Annotation for GDB input

When GDB prompts for input, it annotates this fact so it is possible to know when to
send output, when the output from a given command is over, etc.

Different kinds of input each have a different input type. Each input type has three
annotations: a pre- annotation, which denotes the beginning of any prompt which is being
output, a plain annotation, which denotes the end of the prompt, and then a post- anno-
tation which denotes the end of any echo which may (or may not) be associated with the
input. For example, the prompt input type features the following annotations:

“Z"Zpre-prompt
~Z"Zprompt
“Z"Zpost-prompt

The input types are

prompt When GDB is prompting for a command (the main GDB prompt).

commands When GDB prompts for a set of commands, like in the commands command.
The annotations are repeated for each command which is input.

overload-choice
When GDB wants the user to select between various overloaded functions.

query When GDB wants the user to confirm a potentially dangerous operation.

prompt-for-continue
When GDB is asking the user to press return to continue. Note: Don’t expect
this to work well; instead use set height O to disable prompting. This is
because the counting of lines is buggy in the presence of annotations.

20.7 Errors

~Z"Zquit

This annotation occurs right before GDB responds to an interrupt.

276 Debugging with GDB

“Z"Zerror
This annotation occurs right before GDB responds to an error.

Quit and error annotations indicate that any annotations which GDB was in the middle
of may end abruptly. For example, if a value-history-begin annotation is followed by a
error, one cannot expect to receive the matching value-history-end. One cannot expect
not to receive it either; however, an error annotation does not necessarily mean that GDB
is immediately returning all the way to the top level.

A quit or error annotation may be preceded by
“Z"Zerror-begin
Any output between that and the quit or error annotation is the error message.

Warning messages are not yet annotated.

20.8 Information on breakpoints

The output from the info breakpoints command is annotated as follows:

“Z"Zbreakpoints-headers
header-entry
“Z"Zbreakpoints-table

where header-entry has the same syntax as an entry (see below) but instead of containing
data, it contains strings which are intended to convey the meaning of each field to the user.
This is followed by any number of entries. If a field does not apply for this entry, it is
omitted. Fields may contain trailing whitespace. Each entry consists of:

“Z"Zrecord
~Z~Zfield O
number
~Z"Zfield 1
type
~Z"Zfield 2
disposition
~Z"Zfield 3
enable
~Z"Zfield 4
address
~Z"Zfield 5
what
~Z"Zfield 6
frame
“Z"Zfield 7
condition
~Z"Zfield 8
ignore-count
~Z"Zfield 9
commands

Note that address is intended for user consumption—the syntax varies depending on the
language.

The output ends with
“Z"Zbreakpoints-table-end

Chapter 20: GDB Annotations 277

20.9 Invalidation notices

The following annotations say that certain pieces of state may have changed:

“Z"Zframes-invalid
The frames (for example, output from the backtrace command) may have
changed.

~Z~Zbreakpoints-invalid
The breakpoints may have changed. For example, the user just added or deleted
a breakpoint.

20.10 Running the program

When the program starts executing due to a GDB command such as step or continue,
“Z"Zstarting

is output. When the program stops,
“Z"Zstopped

is output. Before the stopped annotation, a variety of annotations describe how the
program stopped.

"Z"Zexited exit-status
The program exited, and exit-status is the exit status (zero for successful exit,
otherwise nonzero).

"Z"Zsignalled

The program exited with a signal. After the "Z"Zsignalled, the annotation
continues:

intro-text

“Z"Zsignal-name

name

“Z"Zsignal-name-end

middle-text

“Z"Zsignal-string

string

“Z"Zsignal-string-end

end-text
where name is the name of the signal, such as SIGILL or SIGSEGV, and string is
the explanation of the signal, such as I1legal Instruction or Segmentation
fault. intro-text, middle-text, and end-text are for the user’s benefit and have

no particular format.

"Z"Zsignal
The syntax of this annotation is just like signalled, but GDB is just saying
that the program received the signal, not that it was terminated with it.

“Z"Zbreakpoint number
The program hit breakpoint number number.

"Z”Zwatchpoint number
The program hit watchpoint number number.

278 Debugging with GDB

20.11 Displaying source

The following annotation is used instead of displaying source code:

“Z"Zsource filename:line:character:middle:addr

where filename is an absolute file name indicating which source file, line is the line
number within that file (where 1 is the first line in the file), character is the character
position within the file (where 0 is the first character in the file) (for most debug formats
this will necessarily point to the beginning of a line), middle is ‘middle’ if addr is in the
middle of the line, or ‘beg’ if addr is at the beginning of the line, and addr is the address
in the target program associated with the source which is being displayed. addr is in the
form ‘0x’ followed by one or more lowercase hex digits (note that this does not depend on
the language).

20.12 Annotations We Might Want in the Future

- target-invalid
the target might have changed (registers, heap contents, or
execution status). For performance, we might eventually want
to hit ‘registers-invalid’ and ‘all-registers-invalid’ with
greater precision

- systematic annotation for set/show parameters (including
invalidation notices).

- similarly, ‘info’ returns a list of candidates for invalidation
notices.

Chapter 21: The ¢pB/MI Interface 279

21 The ¢DB/MI Interface

Function and purpose

GDB/MI is a line based machine oriented text interface to GDB. It is specifically intended
to support the development of systems which use the debugger as just one small component
of a larger system.

This chapter is a specification of the GDB/MI interface. It is written in the form of a
reference manual.

Notation and terminology

This chapter uses the following notation:
e | separates two alternatives.
e [something] indicates that something is optional: it may or may not be given.
e (group)* means that group inside the parentheses may repeat zero or more times.
e (group)+ means that group inside the parentheses may repeat one or more times.

e '"string" means a literal string.

Acknowledgments

In alphabetic order: Andrew Cagney, Fernando Nasser, Stan Shebs and Elena Zannoni.

21.1 ¢pB/MI Command Syntax

21.1.1 cpB/mI Input syntax

command +—>
cli-command | mi-command

cli-command
[token] cli-command nl, where cli-command is any existing GDB CLI com-
mand.

mi-command —
[token] "-" operation (" " option)*x [" -="1]1 (" " parameter)* nl

token — "any sequence of digits"
option —
"-" parameter [" " parameter]

parameter —
non-blank-sequence | c-string

280 Debugging with GDB

operation —
any of the operations described in this chapter

non-blank-sequence —
anything, provided it doesn’t contain special characters such as "-", nl, """ and
of course " "

c-string —
""" seven-bit-iso-c-string-content """

nl +— CR | CR-LF
Notes:
e The CLI commands are still handled by the MI interpreter; their output is described
below.

e The token, when present, is passed back when the command finishes.

e Some MI commands accept optional arguments as part of the parameter list. Each
option is identified by a leading ‘-’ (dash) and may be followed by an optional argument
parameter. Options occur first in the parameter list and can be delimited from normal
parameters using ‘-=’ (this is useful when some parameters begin with a dash).

Pragmatics:
e We want easy access to the existing CLI syntax (for debugging).

e We want it to be easy to spot a MI operation.

21.1.2 cp/mM1 Output syntax

The output from GDB/MI consists of zero or more out-of-band records followed, option-
ally, by a single result record. This result record is for the most recent command. The
sequence of output records is terminated by ‘(gdb)’.

If an input command was prefixed with a token then the corresponding output for that
command will also be prefixed by that same token.

output >
(out-of-band-record)* [result-record] "(gdb)" nl

result-record +
[token] """ result-class ("," result)* nl

out-of-band-record —
async-record | stream-record

async-record
exec-async-output | status-async-output | notify-async-output
exec—async-output —
[token] "*" async-output
status-async-output —
[token] "+" async-output
notify-async-output —
[token] "=" async-output

Chapter 21: The ¢pB/MI Interface 281

async-output
async-class ("," result)* nl

result-class —
"done" | "running" | "connected" | "error" | "exit"

async-class —
"stopped" | others (where others will be added depending on the needs—this
is still in development).

result +—
variable "=" value

variable +—
string

value — const | tuple | list

const — c-string

tuple — "{}" | "{" result ("," result)* "}"

list +— n[Im | "[" value ("," value)* "1" | "[" result ("," result)* "]"

stream-record +—
console-stream-output | target-stream-output | log-stream-output

console-stream-output —
""" c-string
target-stream-output
"@" c-string
log-stream—-output —
"&" c-string
nl — CR | CR-LF

token — any sequence of digits.

Notes:
e All output sequences end in a single line containing a period.

e The token is from the corresponding request. If an execution command is interrupted
by the ‘~exec-interrupt’ command, the token associated with the ‘*stopped’ message
is the one of the original execution command, not the one of the interrupt command.

e status-async-output contains on-going status information about the progress of a slow
operation. It can be discarded. All status output is prefixed by ‘+’.

e exec-async-output contains asynchronous state change on the target (stopped, started,
disappeared). All async output is prefixed by ‘*’.

e notify-async-output contains supplementary information that the client should handle
(e.g., a new breakpoint information). All notify output is prefixed by ‘=’.

e console-stream-output is output that should be displayed as is in the console. It is the
textual response to a CLI command. All the console output is prefixed by <™.

282 Debugging with GDB

e target-stream-output is the output produced by the target program. All the target
output is prefixed by ‘@’.

e Jog-stream-output is output text coming from GDB’s internals, for instance messages
that should be displayed as part of an error log. All the log output is prefixed by ‘&’.

e New GDB/MI commands should only output lists containing values.

See Section 21.3.2 [GDB/MI Stream Records], page 283, for more details about the various
output records.

21.1.3 Simple examples of ¢pB/MI interaction

This subsection presents several simple examples of interaction using the GDB/MI inter-
face. In these examples, ‘=>" means that the following line is passed to GDB/MI as input,
while ‘<=" means the output received from GDB/MI.

Evaluate expression

Here is an example to evaluate an expression:

-> -data-evaluate-expression 2+3

<- (gdb)
<- “done,value="5"
<- (gdb)

and later:

<- *stop,reason="stop",address="0x123",source="a.c:123"
<- (gdb)

Simple CLI command

Here is an example of a simple CLI command being passed through GDB/MI and on to
the CLI.

-> print 1+2

<- &"print 1+2\n"
<- “"$1 = 3\n"

<- “done

<- (gdb)

A bad command

Here is what happens if you pass a bad command:

-> -rubbish
<- “error,msg="Undefined MI command: rubbish"
<- (gdb)

Chapter 21: The ¢pB/MI Interface 283

21.2 GDB/MI compatibility with CLI

To help users get familiar with GDB CLI, GBB/MI accepts existing CLI commands. As
specified by the syntax, such commands can be directly entered into the GDB/MI interface
and GDB will respond.

This mechanism is provided as an aid to developers of GDB/MI clients and not as a
reliable interface into the CLI. Since the command is being interpreteted in an environment
that assumes GDB/MI behaviour, the exact output of such commands is likely to end up
being an un-supported hybrid of GbB/MI and CLI output.

21.3 GDB/MI output records

21.3.1 cpB/wmiI result records

In addition to a number of out-of-band notifications, the response to a GDB/MI command
includes one of the following result indications:

"“done" ["," results]
The synchronous operation was successful, results are the return values.

"“running"
The asynchronous operation was successfully started. The target is running.

"“error" "," c-string
The operation failed. The c-string contains the corresponding error message.

21.3.2 cepB/MI stream records

GDB internally maintains a number of output streams: the console, the target, and the
log. The output intended for each of these streams is funneled through the GDB/MI interface
using stream records.

Each stream record begins with a unique prefix character which identifies its stream (see
Section 21.1.2 [GDB/MI Output Syntax]|, page 280). In addition to the prefix, each stream
record contains a string-output. This is either raw text (with an implicit new line) or a
quoted C string (which does not contain an implicit newline).

"~" string-output
The console output stream contains text that should be displayed in the CLI
console window. It contains the textual responses to CLI commands.

"@" string-output

The target output stream contains any textual output from the running target.
"&" string-output

The log stream contains internal debugging messages being produced by GDB.

284 Debugging with GDB

21.3.3 c¢ps/MI out-of-band records

Out-of-band records are used to notify the ¢DB/MI client of additional changes that
have occurred. Those changes can either be a consequence of GDB/MI (e.g., a breakpoint
modified) or a result of target activity (e.g., target stopped).

The following is a preliminary list of possible out-of-band records.

ll*ll IIStopll
21.4 ¢pB/MI command description format

The remaining sections describe blocks of commands. Each block of commands is laid
out in a fashion similar to this section.

Note the line breaks shown in the examples are here only for readability. They donot
appear in the real output. Also note that the commands with a non-available example
(N.A.) are not yet implemented.

Motivation

The motivation for this collection of commands.
Introduction
A brief introduction to this collection of commands as a whole.
Commands
For each command in the block, the following is described:
Synopsis
-command args...

GDB command

The corresponding GDB CLI command.

Result
Out-of-band

Notes

Chapter 21: The ¢pB/MI Interface 285

Example

21.5 GpB/MI breakpoint table commands

This section documents GDB/MI commands for manipulating breakpoints.

The -break-after Command

Synopsis

-break-after number count

The breakpoint number number is not in effect until it has been hit count times. To see
how this is reflected in the output of the ‘~break-list’ command, see the description of
the ‘-break-1list’ command below.

GDB command

The corresponding GDB command is ‘ignore’.
Example

(gdb)

-break-insert main
“done,bkpt=number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0" ,func="main",file="hello.c",line="5",times="0" (gdb)
-break-after 1 3

“done

(gdb)

-break-1list

“done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],

body= [bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0" ,func="main" ,file="hello.c",line="5",times="0",
ignore="3"}13}

(gdb)

The -break-condition command

286 Debugging with GDB

Synopsis

-break-condition number expr
Breakpoint number will stop the program only if the condition in expr is true. The con-
dition becomes part of the ‘~break-1ist’ output (see the description of the ‘~break-list’
command below).

GDB command

The corresponding GDB command is ‘condition’.
Example

(gdb)

-break-condition 1 1

“done

(gdb)

-break-list

“done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0" ,func="main" ,file="hello.c",line="5",cond="1",
times="0",ignore="3"1}]}

(gdb)

The -break-delete command

Synopsis

-break-delete (breakpoint)+

Delete the breakpoint(s) whose number(s) are specified in the argument list. This is
obviously reflected in the breakpoint list.

GDB command
The corresponding GDB command is ‘delete’.
Example

(gdb)

Chapter 21: The ¢pB/MI Interface 287

-break-delete 1

“done

(gdb)

-break-1list

“done,BreakpointTable={nr_rows="0",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[]}

(gdb)

The -break-disable command

Synopsis

-break-disable (breakpoint)+

Disable the named breakpoint(s). The field ‘enabled’ in the break list is now set to ‘n’
for the named breakpoint(s).

GDB command
The corresponding GDB command is ‘disable’.

Example

(gdb)

-break-disable 2

“done

(gdb)

-break-list

“done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number", colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="n",
addr="0x000100d0" ,func="main",file="hello.c",line="5",times="0"}]}
(gdb)

The -break-enable command

288 Debugging with GDB

Synopsis

-break-enable (breakpoint)+

Enable (previously disabled) breakpoint(s).
GDB command

The corresponding GDB command is ‘enable’.

Example

(gdb)

-break-enable 2

“done

(gdb)

-break-list

“done,BreakpointTable={nr_rows="1" ,nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0" ,func="main",file="hello.c",line="5",times="0"}]}
(gdb)

The -break-info Command

Synopsis

-break-info breakpoint

Get information about a single breakpoint.
GDB command

The corresponding GDB command is ‘info break breakpoint’.
Example

N.A.

The -break-insert command

Chapter 21: The ¢pB/MI Interface 289

Synopsis

-break-insert [-t] [-h] [-r]
[-c condition] [-i ignore-count]
[-p thread] [line | addr]

If specified, line, can be one of:

function

filename:linenum

filename:function

*address

The possible optional parameters of this command are:
-t Insert a temporary breakpoint.
‘~n’ Insert a hardware breakpoint.

‘~c condition’
Make the breakpoint conditional on condition.

‘-i ignore-count’
Initialize the ignore-count.

-r Insert a regular breakpoint in all the functions whose names match the given
regular expression. Other flags are not applicable to regular expression.

Result

The result is in the form:

“done,bkptno="number" ,func="funcname",
file="filename",line="lineno"

where number is the GDB number for this breakpoint, funcname is the name of the function
where the breakpoint was inserted, filename is the name of the source file which contains
this function, and lineno is the source line number within that file.

Note: this format is open to change.

GDB command

The corresponding GDB commands are ‘break’, ‘tbreak’, ‘hbreak’, ‘thbreak’, and
‘rbreak’.

Example

(gdb)

-break-insert main
“done,bkpt=number="1",type="breakpoint",disp="keep",enabled="y",addr="0x0001072c",
file="recursive2.c",line="4",times="0"

(gdb)

-break-insert -t foo

290

The

Debugging with GDB

“done, bkpt=number="2",type="breakpoint",disp="keep",enabled="y",addr="0x00010774",

file="recursive2.c",line="11",times="0" (gdb)

-break-list

“done,BreakpointTable={nr_rows="2" ,nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number", colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x0001072c", func="main",file="recursive2.c",line="4",times="0"},
bkpt={number="2",type="breakpoint",disp="del",enabled="y",
addr="0x00010774" ,func="foo0",file="recursive2.c",line="11",times="0"}]}
(gdb)

-break-insert -r foo.*

~“int foo(int, int);

“done, bkpt={number="3",addr="0x00010774" ,file="recursive2.c",line="11"}
(gdb)

-break-list command

Synopsis

-break-list

Displays the list of inserted breakpoints, showing the following fields:

‘Number’ number of the breakpoint

‘Type’

type of the breakpoint: ‘breakpoint’ or ‘watchpoint’

‘Disposition’

should the breakpoint be deleted or disabled when it is hit: ‘keep’ or ‘nokeep’

‘Enabled’ is the breakpoint enabled or no: ‘y’ or ‘n’

‘Address’ memory location at which the breakpoint is set

‘What’ logical location of the breakpoint, expressed by function name, file name, line
number
‘Times’ number of times the breakpoint has been hit

If there are no breakpoints or watchpoints, the BreakpointTable body field is an empty

list.

GDB command

The corresponding GDB command is ‘info break’.

Example

(gdb)
-break-list

Chapter 21: The ¢pB/MI Interface 291

“done,BreakpointTable={nr_rows="2" ,nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0" ,func="main",file="hello.c",line="5",times="0"},
bkpt={number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x00010114",func="foo",file="hello.c",line="13",times="0"}]}
(gdb)

Here’s an example of the result when there are no breakpoints:

(gdb)

-break-list

“done ,BreakpointTable={nr_rows="0",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number", colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[12}

(gdb)

The -break-watch command

Synopsis

-break-watch [-a | -r]

Create a watchpoint. With the ‘-a’ option it will create an access watchpoint, i.e. a
watchpoint that triggers either on a read from or on a write to the memory location. With
the ‘-r’ option, the watchpoint created is a read watchpoint, i.e. it will trigger only when
the memory location is accessed for reading. Without either of the options, the watchpoint
created is a regular watchpoint, i.e. it will trigger when the memory location is accessed
for writing. See (undefined) [Setting watchpoints], page (undefined).

Note that ‘-break-1ist’ will report a single list of watchpoints and breakpoints inserted.

GDB command
The corresponding GDB commands are ‘watch’, ‘awatch’, and ‘rwatch’.
Example

Setting a watchpoint on a variable in the main function:
(gdb)
-break-watch i
“done,wpt=number="2",exp="1i"
(gdb)
-exec-continue

292 Debugging with GDB

“running

(gdb)

*stopped,reason="watchpoint-trigger" ,wpt=number="2",exp="1i",value=0ld="0" ,new="7"
,thread-id="1",frame=addr="0x000029c4" ,func="main" ,,args=[],file="hello.c",line="8"
(gdb)

Setting a watchpoint on a variable local to a function. GDB will stop the program
execution twice: first for the variable changing value, then for the watchpoint going out of
scope.

(gdb)

-break-watch j

“done,wpt=number="2",exp="j"

(gdb)

-exec-continue

“running

(gdb)

*stopped,reason="watchpoint-trigger" ,wpt=number="2",exp="j",value=0ld="0" ,new="17",
thread-id="1",frame=addr="0x00002%c" ,func="call",args=[],file="hello.c",line="10"
(gdb)

-exec-continue

“running

(gdb)

*stopped,reason="watchpoint-scope" ,wpnum="2",thread-id="1",frame=addr="0x000029%ec",
func="main",args=[],file="hello.c",line="18"

(gdb)

Listing breakpoints and watchpoints, at different points in the program execution. Note
that once the watchpoint goes out of scope, it is deleted.

-break-watch j

“done,wpt=number="2",exp="j"

(gdb)

-break-list

“done,BreakpointTable=nr_rows="2",nr_cols="6",hdr=[width="3",
alignment="-1",col_name="number",colhdr="Num",width="14",alignment="-1",
col_name="type",colhdr"Type",width="4",alignment="-1",col_name="disp",
colhdr="Disp",width="3",alinment="-1",col_name="enabled",colhdr="Enb",
width="10",alignment="-1",col_name"addr",colhdr="Address",
width="40",alignment="2",col_name="what",colhdr="What] ,body=[bkpt=number="1",
type="breakpoint",disp="keep",enabled="y",addr="0x00029b4" ,func="call",
file="hello.c",line="9",times="1",bkpt=number="2",type="wathpoint",disp="keep",
enabled="y",addr="",what="j",times="0"]

(gdb)

-exec-continue

“running

(gdb)

*stopped,reason="watchpoint-trigger" ,wpt=number="2",exp="j",value=0ld="0",ne="17",
thread-id="1",frame=addr="0x000029bc",func="call",args=[],file="hello.c,line="10"
(gdb)

-break-list
“done,BreakpointTable=nr_rows="2",nr_cols="6",hdr=[width="3",alignment="-1",
col_name="number",colhdr="Num",width="14",alignment="-1",col_name="type",colhdr"Type",
width="4",alignment="-1",col_name="disp",colhdr="Disp",width="3",alinment="-1",
col_name="enabled",colhdr="Enb",width="10",alignment="-1",col_name"addr",colhdr="Address",
width="40",alignment="2",col_name="what",colhdr="What],body=[bkpt=number="1",
type="breakpoint",disp="keep",enabled="y",addr="0x00029b4" ,func="call",file="hello.c",
line="9",times="1",bkpt=number="2",type="wathpoint",disp="keep",enabled="y",addr="",
what="j",times="1"]

(gdb)

Chapter 21: The ¢pB/MI Interface 293

—-exec-continue

“running

(gdb)

*stopped,reason="watchpoint-scope" ,wpnum="2",thread-id="1",frame=addr="0x000029ec",
func="main",args=[],file="hello.c",line="18"

(gdb)

-break-list
“done,BreakpointTable=nr_rows="1",nr_cols="6",hdr=[width="3",alignment="-1",
col_name="number",colhdr="Num",width="14",alignment="-1",col_name="type",colhdr="Type",
width="4",alignment="-1",col_name="disp",colhdr="Disp",width="3",alignment="-1",
col_name="enabled",colhdr="Enb",width="10",alignment="-1",col_name="addr",
colhdr="Address" ,width="40",alignment="2",col_name="what",colhdr="What"],
body=[bkpt=number="1",type="breakpoint",disp="keep",enabled="y",addr="0x000029b4",
func="call",file="hello.c",line="9",times="1"]

(gdb)

21.6 ¢pB/MI Data manipulation

This section describes the GDB/MI commands that manipulate data: examine memory
and registers, evaluate expressions, etc.

The -data-disassemble command

Synopsis

—-data-disassemble
[-s start-addr -e end-addr]
| [-f filename -1 linenum [-n lines]]
-- mode

Where:

‘start-addr’
is the beginning address (or $pc)

‘end-addr’
is the end address

‘filename’
is the name of the file to disassemble

‘linenum’ 1is the line number to disassemble around

‘lines’ is the the number of disassembly lines to be produced. If it is -1, the whole
function will be disassembled, in case no end-addr is specified. If end-addr is
specified as a non-zero value, and lines is lower than the number of disassembly
lines between start-addr and end-addr, only lines lines are displayed; if lines
is higher than the number of lines between start-addr and end-addr, only the
lines up to end-addr are displayed.

‘mode’ is either 0 (meaning only disassembly) or 1 (meaning mixed source and disas-
sembly).

294 Debugging with GDB

Result

The output for each instruction is composed of four fields:
e Address
e Func-name
o Offset

e Instruction

Note that whatever included in the instruction field, is not manipulated directly by
GDB/MLI, i.e. it is not possible to adjust its format.

GDB command

There is no direct mapping from this command to the CLI.

Example

Disassemble from the current value of $pc to $pc + 20:

(gdb)

-data-disassemble -s $pc -e "$pc + 20" -- O

“done,

asm_insns=[
{address="0x000107c0",func-name="main" ,,offset="4",
inst="mov 2, %00"},

{address="0x000107c4" ,func-name="main" ,offset="8",
inst="sethi %hi(0x11800), %o02"},

{address="0x000107c8" ,func-name="main" ,offset="12",
inst="or %02, 0x140, %ol\t! 0x11940 <_lib_version+8>"},
{address="0x000107cc" ,func-name="main" ,offset="16",
inst="sethi %hi(0x11800), %o02"},

{address="0x000107d0" ,func-name="main" ,offset="20",
inst="or %02, 0x168, %o4\t! 0x11968 <_lib_version+48>"}]
(gdb)

Disassemble the whole main function. Line 32 is part of main.

-data-disassemble -f basics.c -1 32 -- 0

“done,asm_insns=[

{address="0x000107bc" ,func-name="main" ,offset="0",

inst="save Y%sp, -112, %sp"},
{address="0x000107c0",func-name="main" ,offset="4",

inst="mov 2, %o00"},

{address="0x000107c4" ,func-name="main" ,offset="8",

inst="sethi %hi(0x11800), %o02"},

[...]

{address="0x0001081c" ,func-name="main" ,offset="96",inst="ret "},
{address="0x00010820" ,func-name="main",offset="100",inst="restore "}]

(gdb)

Disassemble 3 instructions from the start of main:
(gdb)
—-data-disassemble -f basics.c -1 32 -n 3 —=- 0

“done,asm_insns=[
{address="0x000107bc" ,func-name="main",offset="0",

Chapter 21: The ¢pB/MI Interface 295

inst="save Y%sp, -112, Y%sp"},
{address="0x000107c0" ,func-name="main",offset="4",
inst="mov 2, %00"},

{address="0x000107c4" ,func-name="main" ,offset="8",
inst="sethi %hi(0x11800), %02"}]

(gdb)

Disassemble 3 instructions from the start of main in mixed mode:
(gdb)
-data-disassemble -f basics.c -1 32 -n 3 -- 1

“done,asm_insns=[

src_and_asm_line={line="31",

file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
testsuite/gdb.mi/basics.c",line_asm_insn=[

{address="0x000107bc" ,func-name="main" ,offset="0",

inst="save Y%sp, -112, %sp"}1},

src_and_asm_line={line="32",

file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
testsuite/gdb.mi/basics.c",line_asm_insn=[

{address="0x000107c0" ,func-name="main" ,offset="4",

inst="mov 2, %o0"},

{address="0x000107c4" ,func-name="main" ,offset="8",

inst="sethi %hi(0x11800), %o02"}1}]

(gdb)

The -data-evaluate-expression command

Synopsis

-data-evaluate-expression expr

Evaluate expr as an expression. The expression could contain an inferior function call.
The function call will execute synchronously. If the expression contains spaces, it must be
enclosed in double quotes.

GDB command

The corresponding GDB commands are ‘print’, ‘output’, and ‘call’. In gdbtk only,
there’s a corresponding ‘gdb_eval’ command.

Example

In the following example, the numbers that precede the commands are the tokens de-
scribed in Section 21.1 [GDB/MI Command Syntax], page 279. Notice how GDB/MI returns
the same tokens in its output.

211-data-evaluate-expression A
211"°done,value="1"

(gdb)
311-data-evaluate-expression &A
311°done,value="0xefffeb7c"
(gdb)
411-data-evaluate-expression A+3

296 Debugging with GDB

411"done,value="4"

(gdb)

511-data-evaluate-expression "A + 3"
511"done,value="4"

(gdb)

The -data-list-changed-registers Command

Synopsis

-data-list-changed-registers

Display a list of the registers that have changed.

GDB command

GDB doesnot have a direct analog for this command; gdbtk has the corresponding
command ‘gdb_changed_register_list’.

Example

On a PPC MBX board:

(gdb)
-exec—-continue
“running

(gdb)
*xstopped,reason="breakpoint-hit",bkptno="1",frame={func="main",
args=[],file="try.c",line="5"}

(gdb)

-data-list-changed-registers

‘done’changed_registers= [IIOII , Il1|| . II2|I , II4I| . II5II s ll6ll , II7II s |I8Il , I|9II ,
"10" , Il11ll . I|13|| . II14II . II15I| , ll16ll s ll17ll s |I18ll s "19" s IIQOII s ll21ll s |l22ll s Il23ll s
||24|| , Il25l| , Il26l| . II27I| . ll28ll , II3OII , ll31’l s ll64ll s ||65l| s ||66|| , "67" s ll69ll]
(gdb)

The -data-list-register-names command

Synopsis

-data-list-register-names [(regno)+]

Show a list of register names for the current target. If no arguments are given, it shows a
list of the names of all the registers. If integer numbers are given as arguments, it will print
a list of the names of the registers corresponding to the arguments. To ensure consistency
between a register name and its number, the output list may include empty register names.

Chapter 21: The ¢pB/MI Interface 297

GDB command

GDB does not have a command which corresponds to ‘-data-list-register—-names’.
In gdbtk there is a corresponding command ‘gdb_regnames’.

Example

For the PPC MBX board:

(gdb)

-data-list-register-names
“done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
"rg8","ro","r10","r11","r12","r13","r14" ,"r15","r16","r17","r18",
"ri9","r20","r21","r22","r23","r24" ,"r25" , "r26","r27","r28" ,"r29",
"r30","r31","fOo","£1","£2" "£3", "f4" "f5" , "fE" ,"£7","£8","f9",
"fio","f11", "f12","£13","f14" ,"f15" ,"f16","£17","£18","£19","f20",
"f21","f22" "£23","£24" ,"£26" "f26" ,"£27","£28","£29","£30","£31",
", tpe",'"ps","cr","1lr","ctr","xer"]

(gdb)

-data-list-register-names 1 2 3
“done,register-names=["r1","r2","r3"]

(gdb)

The -data-list-register-values command

Synopsis

-data-list-register-values fmt [(regno)*]

Display the registers contents. fmt is the format according to which the registers’ con-
tents are to be returned, followed by an optional list of numbers specifying the registers to
display. A missing list of numbers indicates that the contents of all the registers must be
returned.

Allowed formats for fmt are:

X Hexadecimal
o) Octal

t Binary

d Decimal

r Raw

N Natural

GDB command

The corresponding GDB commands are ‘info reg’, ‘info all-reg’, and (in gdbtk)
‘gdb_fetch_registers’.

298 Debugging with GDB

Example

For a PPC MBX board (note: line breaks are for readability only, they donot appear in
the actual output):

(gdb)

-data-list-register-values r 64 65
“done,register-values=[{number="64",value="0xfe00a300"},
{number="65",value="0x00029002"}]

(gdb)

-data-list-register-values x
“done,register-values=[{number="0",value="0xfe0043c8"},
{number="1",value="0x3ff£88"}, {number="2",value="0xfffffffe"},
{number="3",value="0x0"},{number="4",value="0xa"},
{number="5",value="0x3fff68"}, {number="6",value="0x3fff58"},
{number="7",value="0xfe011e98"}, {number="8",value="0x2"},
{number="9" ,value="0xfa202820"}, {number="10",value="0xfa202808"},
{number="11",value="0x1"}, {number="12",value="0x0"},
{number="13",value="0x4544"},{number="14" ,value="0xffdfffff"},
{number="15",value="0xffffffff"},{number="16" ,value="0xfffffeff"},
{number="17",value="0xefffffed"},{number="18",value="0xfffffffe"},
{number="19" ,value="0xffffffff"},{number="20" ,value="0xffffffff"},
{number="21",value="0xffffffff"}, {number="22" ,value="0xffff£££7"},
{number="23",value="0xffffffff"},{number="24" ,value="0xffffffff"},
{number="25",value="0xffffffff"}, {number="26" ,value="0xfffffffb"},
{number="27",value="0xffffffff"},{number="28" ,value="0xf7bfffff"},
{number="29",value="0x0"},{number="30",value="0xfe010000"},
{number="31",value="0x0"}, {number="32",value="0x0"},
{number="33",value="0x0"}, {number="34" ,value="0x0"},
{number="35",value="0x0"}, {number="36",value="0x0"},
{number="37",value="0x0"}, {number="38",value="0x0"},
{number="39",value="0x0"}, {number="40",value="0x0"},
{number="41",value="0x0"}, {number="42" ,value="0x0"},
{number="43",value="0x0"}, {number="44" ,value="0x0"},
{number="45",value="0x0"}, {number="46",value="0x0"},
{number="47",value="0x0"}, {number="48" ,value="0x0"},

{number="49" ,value="0x0"}, {number="50",value="0x0"},
{number="51",value="0x0"}, {number="52" ,value="0x0"},
{number="53",value="0x0"}, {number="54" ,value="0x0"},
{number="55",value="0x0"}, {number="56",value="0x0"},
{number="57",value="0x0"}, {number="58",value="0x0"},
{number="59",value="0x0"}, {number="60",value="0x0"},
{number="61",value="0x0"}, {number="62",value="0x0"},
{number="63",value="0x0"}, {number="64",value="0xfe00a300"},
{number="65",value="0x29002"}, {number="66",value="0x202f04b5"},
{number="67",value="0xfe0043b0"}, {number="68" ,value="0xfe00b3ed"},
{number="69",value="0x20002b03"}]

(gdb)

The -data-read-memory command

Synopsis

—-data-read-memory [-o byte-offset]
address word-format word-size

Chapter 21: The ¢pB/MI Interface 299

nr-rows nr-cols [aschar]

where:

‘address’ An expression specifying the address of the first memory word to be read.
Complex expressions containing embedded white space should be quoted using
the C convention.

‘word-format’
The format to be used to print the memory words. The notation is the same

as for GDB print command (see Section 8.4 [Output formats|, page 66).

‘word-size’
The size of each memory word in bytes.

‘nr-rows’ The number of rows in the output table.
‘nr-cols’ The number of columns in the output table.

‘aschar’ If present, indicates that each row should include an Ascil dump. The value
of aschar is used as a padding character when a byte is not a member of the
printable AScCII character set (printable ASCII characters are those whose code
is between 32 and 126, inclusively).

‘byte-offset’
An offset to add to the address before fetching memory.

This command displays memory contents as a table of nr-rows by nr-cols words, each
word being word-size bytes. In total, nr-rows * nr-cols * word-size bytes are read
(returned as ‘total-bytes’). Should less than the requested number of bytes be returned
by the target, the missing words are identified using ‘N/A’. The number of bytes read from
the target is returned in ‘nr-bytes’ and the starting address used to read memory in ‘addr’.

The address of the next/previous row or page is available in ‘next-row’ and ‘prev-row’,
‘next-page’ and ‘prev-page’.

GDB command

The corresponding GDB command is ‘x’. gdbtk has ‘gdb_get_mem’ memory read com-
mand.

Example

Read six bytes of memory starting at bytes+6 but then offset by -6 bytes. Format as
three rows of two columns. One byte per word. Display each word in hex.

(gdb)

9-data-read-memory -o -6 -- bytes+6 x 1 3 2
9”done,addr="0x00001390" ,nr-bytes="6",total-bytes="6",
next-row="0x00001396" ,prev-row="0x0000138e" ,next-page="0x00001396",
prev-page="0x0000138a" ,memory=[

{addr="0x00001390" ,data=["0x00","0x01"]},

{addr="0x00001392" ,data=["0x02","0x03"]1},

{addr="0x00001394" ,data=["0x04","0x05"]}]

(gdb)

300 Debugging with GDB

Read two bytes of memory starting at address shorts + 64 and display as a single word

formatted in decimal.

(gdb)

5-data-read-memory shorts+64 d 2 1 1

5”done,addr="0x00001510" ,nr-bytes="2",total-bytes="2",

next-row="0x00001512" ,prev-row="0x0000150e",

next-page="0x00001512" ,prev-page="0x0000150e" ,memory=[

{addr="0x00001510" ,data=["128"]}]

(gdb)

Read thirty two bytes of memory starting at bytes+16 and format as eight rows of four
columns. Include a string encoding with ‘x’ used as the non-printable character.

(gdb)

4-data-read-memory bytes+16 x 1 8 4 x

4"done,addr="0x000013a0" ,nr-bytes="32",total-bytes="32",
next-row="0x000013c0" ,prev-row="0x0000139c",

next-page="0x000013c0" ,prev-page="0x00001380" ,memory=[
{addr="0x000013a0" ,data=["0x10","0x11","0x12","0x13"] ,ascii="xxxx"},
{addr="0x000013a4" ,data=["0x14","0x15","0x16","0x17"] ,ascii="xxxx"},
{addr="0x000013a8" ,data=["0x18","0x19","0Ox1a","0x1b"] ,ascii="xxxx"},
{addr="0x000013ac" ,data=["0x1c","0x1d","Oxle","0x1f"] ,ascii="xxxx"},
{addr="0x000013b0" ,data=["0x20","0x21","0x22","0x23"] ,ascii=" !\"#"},
{addr="0x000013b4" ,data=["0x24","0x25","0x26","0x27"] ,ascii="$%& "},
{addr="0x000013b8" ,data=["0x28","0x29","0x2a","0x2b"] ,ascii=" () *+"},
{addr="0x000013bc" ,data=["0x2c","0x2d", "0x2e","0x2f"] ,ascii=",-./"}]
(gdb)

The -display-delete command

Synopsis

-display-delete number
Delete the display number.

GDB command

The corresponding GDB command is ‘delete display’.
Example

N.A.

The -display-disable Command

Synopsis

—-display-disable number

Disable display number.

Chapter 21: The ¢pB/MI Interface 301

GDB command

The corresponding GDB command is ‘disable display’.
Example
N.A.

The -display-enable command

Synopsis

—-display-enable number

Enable display number.

GDB command

)

The corresponding GDB command is ‘enable display’.
Example
N.A.

The -display-insert Command

Synopsis

-display-insert expression

Display expression every time the program stops.
GDB command

The corresponding GDB command is ‘display’.
Example

N.A.

The -display-list command

302 Debugging with GDB

Synopsis

-display-list

List the displays. Do not show the current values.
GDB command

The corresponding GDB command is ‘info display’.
Example
N.A.

The -environment-cd command

Synopsis

-environment-cd pathdir

Set the GDB working directory.

GDB command

The corresponding GDB command is ‘cd’.

Example

(gdb)
-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
“done
(gdb)

The -environment-directory command

Synopsis

-environment-directory pathdir

Add directory pathdir to the beginning of search path for source files.

GDB command

The corresponding GDB command is ‘dir’.

Chapter 21: The ¢pB/MI Interface 303

Example

(gdb)
-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
“done
(gdb)

The -environment-path command

Synopsis
-environment-path (pathdir)+
Add directories pathdir to beginning of search path for object files.

GDB command

The corresponding GDB command is ‘path’.

Example

(gdb)
-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb
“done
(gdb)

The -environment-pwd command

Synopsis

-environment-pwd

Show the current working directory.
GDB command

The corresponding GDB command is ‘pwd’.

Example

(gdb)

-environment-pwd

“Working directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb.
“done

(gdb)

304 Debugging with GDB

21.7 GDB/MI program control

Program termination

As a result of execution, the inferior program can run to completion, if it doesnot en-
counter any breakpoints. In this case the output will include an exit code, if the program
has exited exceptionally.

Examples

Program exited normally:

(gdb)
-exec-run
“running
(gdb)
x = 55
*stopped,reason="exited-normally"
(gdb)
Program exited exceptionally:

(gdb)

-exec-run

“running

(gdb)

x = 55
*stopped,reason="exited",exit-code="01"
(gdb)

Another way the program can terminate is if it receives a signal such as SIGINT. In this
case, GDB/MI displays this:

(gdb)
*stopped,reason="exited-signalled",signal-name="SIGINT",
signal-meaning="Interrupt"

The -exec-abort command

Synopsis

—exec—abort

Kill the inferior running program.

GDB command

The corresponding GDB command is ‘kill’.

Example

N.A.

Chapter 21: The ¢pB/MI Interface 305

The -exec-arguments command

Synopsis

-exec-arguments args

Set the inferior program arguments, to be used in the next ‘-exec-run’.

GDB command

The corresponding GDB command is ‘set args’.

Example

Donot have one around.

The -exec-continue command

Synopsis

—exec—continue

Asynchronous command. Resumes the execution of the inferior program until a break-
point is encountered, or until the inferior exits.

GDB command

The corresponding GDB is ‘continue’.

Example

-exec-continue

“running

(gdb)

@Hello world

*stopped,reason="breakpoint-hit" ,bkptno="2",thread-id="1",frame=addr="0x000029d8",
func="foo",args=[],file="hello.c",line="16"file="hello.c",line="13"}

(gdb)

The -exec-finish command

Synopsis

-exec—-finish
Asynchronous command. Resumes the execution of the inferior program until the current
function is exited. Displays the results returned by the function.

306 Debugging with GDB

GDB command

The corresponding GDB command is ‘finish’.

Example

Function returning void.
-exec-finish
“running
(gdb)
Ohello from foo
*stopped,reason="function-finished",thread-id="1",frame=addr="0x000029ec",
func="main",args=[],file="hello.c",line="7file="hello.c",line="7"}
(gdb)
Function returning other than void. The name of the internal GDB variable storing the
result is printed, together with the value itself.
-exec—-finish
“running
(gdb)
*stopped,reason="function-finished",thread-id="1",
frame=addr="0x000107b0" ,func="foo0",
args=[name="a"] ,name="b",
file="recursive2.c",line="14"},
gdb-result-var="$1" ,return-value="0"
(gdb)

The -exec-interrupt command

Synopsis

-exec-interrupt

Asynchronous command. Interrupts the background execution of the target. Note how
the token associated with the stop message is the one for the execution command that has
been interrupted. The token for the interrupt itself only appears in the ‘“done’ output. If
the user is trying to interrupt a non-running program, an error message will be printed.

GDB command

The corresponding GDB command is ‘interrupt’.

Example

(gdb)
111-exec-continue
111" running

Chapter 21: The ¢pB/MI Interface 307

(gdb)

222-exec-interrupt

222"done

(gdb)

111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
frame={addr="0x00010140" ,func="foo" ,args=[],file="try.c",line="13"}
(gdb)

(gdb)
-exec-interrupt

“error,msg="mi_cmd_exec_interrupt: Inferior not executing."
(gdb)

The -exec-next command

Synopsis

—-exec—next

Asynchronous command. Resumes execution of the inferior program, stopping when the
beginning of the next source line is reached.

GDB command

The corresponding GDB command is ‘next’.

Example

-exec-next

“running

(gdb)
*stopped,reason="end-stepping-range",thread-id="1",frame=addr="0x00002a10",
func="main",args=[],file="hello.c",1line="24" (gdb)

The -exec-next-instruction command

Synopsis

-exec—next-instruction

Asynchronous command. Executes one machine instruction. If the instruction is a
function call continues until the function returns. If the program stops at an instruction in
the middle of a source line, the address will be printed as well.

GDB command

The corresponding GDB command is ‘nexti’.

308 Debugging with GDB

Example

(gdb)
—-exec-next-instruction
“running

(gdb)
*stopped,reason="end-stepping-range",thread-
id="1",frame=addr="0x00002a14" ,func="main",args=[],file="hello.c",line="24"

(gdb)

The -exec-return command

Synopsis

—exec-return

Makes current function return immediately. Doesn’t execute the inferior. Displays the
new current frame.

GDB command

The corresponding GDB command is ‘return’.

Example

(gdb)

-break-insert calll

“done, bkpt=number="1",type="breakpoint",disp="keep",enabled="y",addr="0x000029ac",
func="calll",file="hello.c",line="9",times="0"

(gdb)

-exec-run

“running

(gdb)

~|I3Il

*stopped,reason="breakpoint-hit" ,bkptno="1",thread-id="1",frame=addr="0x000029ac",
func="calll",args=[name="a"],file="hello.c",line="9"

(gdb)

-exec-return

“'ll2l|

"’ll3ll

“done, frame=level="0 ",addr="0x000029e8",func="call",args=[name="a",name="b"],
file="hello.c",line="17"

(gdb)

The -exec-run command

Synopsis

—exec—run

Chapter 21: The ¢pB/MI Interface 309

Asynchronous command. Starts execution of the inferior from the beginning. The
inferior executes until either a breakpoint is encountered or the program exits.

GDB command

The corresponding GDB command is ‘run’.

Example

(gdb)

-break-insert main
“done,bkpt=number="1",type="breakpoint",disp="keep",enabled="y",addr="0x00002a08",
func="main",file="hello.c",line="23",times="0"

(gdb)

-exec-run

“running

(gdb)

*stopped,reason="breakpoint-hit" ,bkptno="1",thread-id="1",frame=addr="0x00002a08",
func="main",args=[],file="hello.c",line="23"

(gdb)

The -exec-show-arguments command

Synopsis

-exec—show-arguments

Print the arguments of the program.
GDB command

The corresponding GDB command is ‘show args’.
Example
N.A.

The -exec-step Command

Synopsis

—-exec-step

Asynchronous command. Resumes execution of the inferior program, stopping when the
beginning of the next source line is reached, if the next source line is not a function call. If
it is, stop at the first instruction of the called function.

310

Debugging with GDB

GDB command

The corresponding GDB command is ‘step’.

Example

Stepping into a function:

-exec-step

“running

(gdb)

“'ll2l|

"’ll3ll
*stopped,reason="end-stepping-range",thread-id="1",frame=addr="0x000029d0",
func="call",args=[name="a",name="b"] ,file="hello.c",line="15"

(gdb)

Regular stepping:

-exec-step

“running

(gdb)

~l|2ll

"’ll3ll
*stopped,reason="end-stepping-range",thread-id="1",frame=addr="0x000029d8",
func="call",args=[name="a",name="b"] ,file="hello.c",line="16"

(gdb)

The -exec-step-instruction command

Synopsis

-exec-step-instruction

Asynchronous command. Resumes the inferior which executes one machine instruction.
The output, once GDB has stopped, will vary depending on whether we have stopped in
the middle of a source line or not. In the former case, the address at which the program
stopped will be printed as well.

GDB command

The corresponding GDB command is ‘stepi’.

Example

(gdb)

-exec-step-instruction

“running

(gdb)

"‘ll2ll

“‘IISII
*stopped,reason="end-stepping-range",thread-id="1",frame=addr="0x000029dc",
func="call",args=[name="a" ,name="b"],file="hello.c",line="16"

Chapter 21: The ¢pB/MI Interface 311

(gdb)

-exec-step-instruction
“running

(gdb)

*stopped,reason="end-stepping-range",
frame={addr="0x000100f4" ,func="foo" ,args=[] ,file="try.c",line="10"}
(gdb)

The -exec-until command

Synopsis

-exec-until [location]
Asynchronous command. Executes the inferior until the location specified in the argu-
ment is reached. If there is no argument, the inferior executes until a source line greater than
the current one is reached. The reason for stopping in this case will be ‘location-reached’.

GDB command

The corresponding GDB command is ‘until’.

Example

(gdb)

—exec-until recursive2.c:6

“running

(gdb)

x = bb
*stopped,reason="location-reached",thread-id="1",frame=addr="0x00002a24" ,func="main",args=[],
file="recursive2.c",line="6"

(gdb)

The -file-exec-and-symbols command

Synopsis

-file-exec-and-symbols file

Specify the executable file to be debugged. This file is the one from which the symbol
table is also read. If no file is specified, the command clears the executable and symbol
information. If breakpoints are set when using this command with no arguments, GDB will
produce error messages. Otherwise, no output is produced, except a completion notification.

GDB command

The corresponding GDB command is ‘file’.

312 Debugging with GDB

Example

(gdb)
-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
“done
(gdb)

The -file-exec-file command

Synopsis
-file-exec-file file
Specify the executable file to be debugged. Unlike ‘~file-exec-and-symbols’, the sym-

bol table is not read from this file. If used without argument, GDB clears the information
about the executable file. No output is produced, except a completion notification.

GDB command

The corresponding GDB command is ‘exec-file’.

Example

(gdb)
-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
“done
(gdb)

The -file-list-exec-sections command

Synopsis

-file-list-exec-sections

List the sections of the current executable file.

GDB command

The GDB command ‘info file’ shows, among the rest, the same information as this
command. gdbtk has a corresponding command ‘gdb_load_info’.

Example
N.A.

The -file-list-exec-source-files command

Chapter 21: The ¢pB/MI Interface 313

Synopsis

-file-list-exec—-source-files

List the source files for the current executable.

GDB command

There’s no GDB command which directly corresponds to this one. gdbtk has an analo-
gous command ‘gdb_listfiles’.

Example
N.A.

The -file-list-shared-libraries Command

Synopsis

-file-list-shared-libraries

List the shared libraries in the program.
GDB command

The corresponding GDB command is ‘info shared’.
Example

N.A.

The -file-list-symbol-files command

Synopsis

-file-list-symbol-files
List symbol files.

GDB command

The corresponding GDB command is ‘info file’ (part of it).

Example

N.A.

314 Debugging with GDB

The -file-symbol-file Command

Synopsis
-file-symbol-file file

Read symbol table info from the specified file argument. When used without arguments,
clears GDB’s symbol table info. No output is produced, except for a completion notification.

GDB command

The corresponding GDB command is ‘symbol-file’.

Example

(gdb)
-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
“done
(gdb)

21.8 Miscellaneous GDB commands in GDB/MI
The -gdb-exit Command

Synopsis

-gdb-exit
Exit GDB immediately.

GDB command

Approximately corresponds to ‘quit’.

Example

(gdb)
-gdb-exit

The -gdb-set command

Synopsis

-gdb-set

Set an internal GDB variable.

Chapter 21: The ¢pB/MI Interface

GDB command

The corresponding GDB command is ‘set’.

Example

(gdb)
-gdb-set $foo=3
“done
(gdb)

The -gdb-show command

Synopsis

-gdb-show

Show the current value of a GDB variable.

GDB command

9

The corresponding GDB command is ‘show’.

Example

(gdb)

-gdb-show annotate
“done,value="0"
(gdb)

The -gdb-version Command

Synopsis

-gdb-version

Show version information for GDB. Used mostly in testing.

GDB command

The corresponding GDB command is ‘show version’.

Example

(gdb)

-gdb-version

“GNU gdb 5.2.1

“Copyright 2000 Free Software Foundation, Inc.

315

316 Debugging with GDB

“GDB is free software, covered by the GNU General Public License, and
“you are welcome to change it and/or distribute copies of it under
~ certain conditions.
“Type "show copying" to see the conditioms.
“There is absolutely no warranty for GDB. Type "show warranty" for
~ details.
“This GDB was configured as
"--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
“done
(gdb)

21.9 apB/MI Stack Manipulation Commands

The -stack-info-frame command

Synopsis

-stack-info-frame

Get info on the current frame.
GDB command

The corresponding GDB command is ‘info frame’ or ‘frame’ (without arguments).
Example

N.A.

The -stack-info-depth Command

Synopsis

-stack-info-depth [max-depth]

Return the depth of the stack. If the integer argument max-depth is specified, do not
count beyond max-depth frames.

GDB command

There no equivalent GDB command.

Chapter 21: The ¢pB/MI Interface 317

Example

For a stack with frame levels 0 through 11:

(gdb)
-stack-info-depth
“done,depth="12"
(gdb)
-stack-info-depth 4
“done,depth="4"
(gdb)
-stack-info-depth 12
“done,depth="12"
(gdb)
-stack-info-depth 11
“done,depth="11"
(gdb)
-stack-info-depth 13
“done,depth="12"
(gdb)

The -stack-list-arguments Command

Synopsis

-stack-list-arguments show-values
[low-frame high-frame]

Display a list of the arguments for the frames between low-frame and high-frame (inclu-
sive). If low-frame and high-frame are not provided, list the arguments for the whole call
stack.

The show-values argument must have a value of 0 or 1. A value of 0 means that only
the names of the arguments are listed, a value of 1 means that both names and values of
the arguments are printed.

GDB command

GDB does not have an equivalent command. gdbtk has a ‘gdb_get_args’ command
which partially overlaps with the functionality of ‘-stack-list-arguments’.

Example

(gdb)

-stack-list-frames

“done,

stack=[

frame={level="0 ",addr="0x00010734",func="calleed",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"},
frame={level="1 ",addr="0x0001076c",func="callee3",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="17"},

318 Debugging with GDB

frame={level="2 ",addr="0x0001078c",func="callee2",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="22"%},
frame={level="3 ",addr="0x000107b4",func="calleel",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="27"},
frame={level="4 ",addr="0x000107e0",func="main",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="32"}]
(gdb)

-stack-list-arguments O

“done,

stack-args=[

frame={level="0",args=[]1},
frame={level="1",args=[name="strarg"]},
frame={level="2",args=[name="intarg" ,name="strarg"]},
frame={level="3",args=[name="intarg" ,name="strarg" ,name="fltarg"]},
frame={level="4", args=[]1}]

(gdb)

-stack-list-arguments 1

“done,

stack-args=[

frame={level="0",args=[1},

frame={level="1",

args=[{name="strarg",value="0x11940 \"A string argument.\""1}]},
frame={level="2",args=[

{name="intarg",value="2"},

{name="strarg",value="0x11940 \"A string argument.\""}1},
{frame={level="3",args=[

{name="intarg",value="2"},

{name="strarg",value="0x11940 \"A string argument.\""},
{name="fltarg",value="3.5"}]},

frame={level="4", args=[]1}]

(gdb)

-stack-list-arguments 0 2 2
“done,stack-args=[frame={level="2",args=[name="intarg" ,name="strarg"]}]
(gdb)

-stack-list-arguments 1 2 2

“done, stack-args=[frame={level="2",
args=[{name="intarg",value="2"},

{name="strarg",value="0x11940 \"A string argument.\""}]}]
(gdb)

The -stack-list-frames command

Synopsis

-stack-list-frames [low-frame high-frame]
List the frames currently on the stack. For each frame it displays the following info:

Chapter 21: The ¢pB/MI Interface 319

‘level’
‘addr’
‘func’
‘file’

‘line’

The frame number, 0 being the topmost frame, i.e. the innermost function.
The $pc value for that frame.

Function name.

File name of the source file where the function lives.

Line number corresponding to the $pc.

If invoked without arguments, this command prints a backtrace for the whole stack. If
given two integer arguments, it shows the frames whose levels are between the two arguments
(inclusive). If the two arguments are equal, it shows the single frame at the corresponding

level.

GDB command

The corresponding GDB commands are ‘backtrace’ and ‘where’.

Example

Full stack backtrace:

(gdb)

-stack-list-frames

“done, stack=

[frame={level="0 ",addr="0x0001076c",func="foo",
file="recursive2.c",line="11"},

frame={level="1 ",addr="0x000107a4" ,func="foo",
file="recursive2.c",line="14"},

frame={level="2 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="3 ",addr="0x000107a4" ,func="foo",
file="recursive2.c",line="14"},

frame={level="4 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="5 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="6 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="7 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="8 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="9 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="10",addr="0x000107a4" ,func="foo",
file="recursive2.c",line="14"},

frame={level="11",addr="0x00010738" ,,func="main",
file="recursive2.c",line="4"}]

(gdb)

Show frames between low_frame and high_frame:

(gdb)

-stack-list-frames 3 5

“done, stack=

[frame={level="3 ",addr="0x000107a4",func="foo",

320 Debugging with GDB

file="recursive2.c",line="14"},
frame={level="4 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},
frame={level="5 ",addr="0x000107a4" ,func="foo",
file="recursive2.c",line="14"}]
(gdb)
Show a single frame:

(gdb)

-stack-list-frames 3 3

“done, stack=

[frame={level="3 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"}]

(gdb)

The -stack-list-locals command

Synopsis

-stack-list-locals print-values
Display the local variable names for the current frame. With an argument of 0 prints
only the names of the variables, with argument of 1 prints also their values.

GDB Command

‘info locals’ in GDB, ‘gdb_get_locals’ in gdbtk.

Example

(gdb)

-stack-list-locals 0O

~done,locals=[name="A" ,name="B" ,name="C"]

(gdb)

-stack-list-locals 1

“done,locals=[{name="A",value="1"},{name="B",value="2"},
{name="C",value="3"}]

(gdb)

The -stack-select-frame Command

Synopsis

-stack-select-frame framenum
Change the current frame. Select a different frame framenum on the stack.

GDB command

)

The corresponding GDB commands are ‘frame’, ‘up’, ‘down’, ‘select-frame’,
‘up-silent’, and ‘down-silent’.

Chapter 21: The ¢pB/MI Interface 321

Example

(gdb)
-stack-select-frame 2
“done
(gdb)

21.10 ¢pB/MI Symbol query commands
The -symbol-info-address Command

Synopsis

-symbol-info-address symbol

Describe where symbol is stored.
GDB command

The corresponding GDB command is ‘info address’.
Example

N.A.

The -symbol-info-file Command

Synopsis

-symbol-info-file

Show the file for the symbol.

GDB command

)

There is no equivalent GDB command. gdbtk has ‘gdb_find_file’.
Example
N.A.

The -symbol-info-function Command

322 Debugging with GDB

Synopsis

-symbol-info-function

Show which function the symbol lives in.
GDB command

‘gdb_get_function’ in gdbtk.
Example

N.A.

The -symbol-info-line command

Synopsis

-symbol-info-line

Show the core addresses of the code for a source line.

GDB command

The corresponding GDB comamnd is ‘info line’. gdbtk has the ‘gdb_get_line’ and
‘gdb_get_file’ commands.

Example
N.A.

The -symbol-info-symbol command

Synopsis

-symbol-info-symbol addr

Describe what symbol is at location addr.

GDB command

The corresponding GDB command is ‘info symbol’.

Example

N.A.

Chapter 21: The ¢pB/MI Interface 323

The -symbol-list-functions command

Synopsis

-symbol-list-functions

List the functions in the executable.
GDB command

‘info functions’ in GDB, ‘gdb_listfunc’ and ‘gdb_search’ in gdbtk.
Example

N.A.

The -symbol-list-types command

Synopsis

-symbol-list-types
List all the type names.

GDB command

The corresponding commands are ‘info types’ in GDB, ‘gdb_search’ in gdbtk.
Example

N.A.

The -symbol-list-variables command

Synopsis

-symbol-list-variables

List all the global and static variable names.

GDB command

‘info variables’ in GDB, ‘gdb_search’ in gdbtk.

324 Debugging with GDB

Example

N.A.

The -symbol-locate command

Synopsis
-symbol-locate
GDB command
‘gdb_loc’ in gdbtk.
Example
N.A.

The -symbol-type command

Synopsis

-symbol-type variable
Show type of variable.

GDB command

The corresponding GDB command is ‘ptype’, gdbtk has ‘gdb_obj_variable’.

Example

N.A.

21.11 cpB/MI Target Manipulation Commands
The -target-attach command
Synopsis

-target-attach pid | file
Attach to a process pid or a file file outside of GDB.

Chapter 21: The ¢pB/MI Interface 325

GDB command

The corresponding GDB command is ‘attach’.

Example

N.A.

The -target-compare-sections command

Synopsis

-target-compare-sections [section]

Compare data of section section on target to the exec file. Without the argument, all
sections are compared.

GDB command

The GDB equivalent is ‘compare-sections’.

Example

N.A.

The -target-detach command

Synopsis

-target-detach

Disconnect from the remote target. There is no output.

GDB command

The corresponding GDB command is ‘detach’.

Example

(gdb)
-target-detach
“done
(gdb)

The -target-download command

326 Debugging with GDB

Synopsis

-target-download

Loads the executable onto the remote target. It prints out an update message every half
second, which includes the fields:

‘section’ The name of the section.

‘section-sent’
The size of what has been sent so far for that section.

‘section-size’
The size of the section.

‘total-sent’
The total size of what was sent so far (the current and the previous sections).

‘total-size’
The size of the overall executable to download.

Each message is sent as status record (see Section 21.1.2 [GDB/MI Output Syntax], page 280).

In addition, it prints the name and size of the sections, as they are downloaded. These
messages include the following fields:

‘section’ The name of the section.

‘section-size’
The size of the section.

‘total-size’
The size of the overall executable to download.

At the end, a summary is printed.

GDB command

The corresponding GDB command is ‘load’.

Example

Note: each status message appears on a single line. Here the messages have been broken
down so that they can fit onto a page.

(gdb)

-target-download
+download,{section=".text",section-size="6668",total-size="9880"}
+download,{section=".text",section-sent="512",section-size="6668",
total-sent="512",total-size="9880"}
+download,{section=".text",section-sent="1024",section-size="6668",
total-sent="1024",total-size="9880"}

+download, {section=".text",section-sent="1536",section-size="6668",
total-sent="1536",total-size="9880"}

+download, {section=".text",section-sent="2048",section-size="6668",
total-sent="2048",total-size="9880"}

+download, {section=".text",section-sent="2560",section-size="6668",

Chapter 21: The ¢pB/MI Interface

total-sent="2560",total-size="9880"}

+download, {section=".text",section-sent="3072",section-size="6668",
total-sent="3072",total-size="9880"}
+download,{section=".text",section-sent="3584",section-size="6668",
total-sent="3584",total-size="9880"}
+download,{section=".text",section-sent="4096",section-size="6668",
total-sent="4096",total-size="9880"}
+download,{section=".text",section-sent="4608",section-size="6668",
total-sent="4608",total-size="9880"}
+download,{section=".text",section-sent="5120",section-size="6668",
total-sent="5120",total-size="9880"}

+download, {section=".text",section-sent="5632",section-size="6668",
total-sent="5632",total-size="9880"}
+download,{section=".text",section-sent="6144",section-size="6668",
total-sent="6144",total-size="9880"}
+download,{section=".text",section-sent="6656",section-size="6668",
total-sent="6656",total-size="9880"}
+download,{section=".init",section-size="28",total-size="9880"}
+download,{section=".fini",section-size="28",total-size="9880"}
+download,{section=".data",section-size="3156",total-size="9880"}
+download,{section=".data",section-sent="512",section-size="3156",
total-sent="7236",total-size="9880"}
+download,{section=".data",section-sent="1024",section-size="3156",
total-sent="7748",total-size="9880"}
+download,{section=".data",section-sent="1536",section-size="3156",
total-sent="8260",total-size="9880"}
+download,{section=".data",section-sent="2048",section-size="3156",
total-sent="8772",total-size="9880"}

+download, {section=".data",section-sent="2560",section-size="3156",
total-sent="9284",total-size="9880"}

+download, {section=".data",section-sent="3072",section-size="3156",
total-sent="9796",total-size="9880"}
“done,address="0x10004",load-size="9880" ,transfer-rate="6586",
write-rate="429"

(gdb)

The -target-exec-status command

Synopsis

-target-exec-status

327

Provide information on the state of the target (whether it is running or not, for instance).

GDB command

There is no equivalent GDB command.

Example

N.A.

The -target-list-available-targets command

328 Debugging with GDB

Synopsis

-target-list-available-targets

List the possible targets to connect to.
GDB command

The corresponding GDB command is ‘help target’.
Example

N.A.

The -target-list-current-targets command

Synopsis

-target-list-current-targets

Describe the current target.
GDB command

The corresponding information is printed by ‘info file’ (among other things).
Example

N.A.

The -target-list-parameters command

Synopsis
-target-list-parameters
GDB command
No equivalent.

Example

N.A.

Chapter 21: The ¢pB/MI Interface 329

The -target-select command

Synopsis

-target-select type parameters ...

Connect GDB to the remote target. This command takes two args:
‘type’ The type of target, for instance ‘async’, ‘remote’, etc.

‘parameters’
Device names, host names and the like. See Section 13.2 [Commands for man-
aging targets|, page 109, for more details.

The output is a connection notification, followed by the address at which the target
program is, in the following form:

“connected,addr="address" ,func="function name",
args=[arg list]

GDB command
The corresponding GDB command is ‘target’.

Example

(gdb)

-target-select async /dev/ttya
“connected,addr="0xfe00a300" ,func="77",args=[]
(gdb)

21.12 ¢pB/MI thread commands
The -thread-info command

Synopsis
-thread-info

GDB command

No equivalent.

Example

N.A.

330 Debugging with GDB

The -thread-list-all-threads Command

Synopsis

-thread-list-all-threads

GDB command

The equivalent GDB command is ‘info threads’.
Example
N.A.

The -thread-list-ids command

Synopsis

-thread-list-ids
Produces a list of the currently known GDB thread ids. At the end of the list it also
prints the total number of such threads.

GDB command

Part of ‘info threads’ supplies the same information.
Example

No threads present, besides the main process:

(gdb)
-thread-list-ids
“done, thread-ids={},number-of-threads="0"
(gdb)
Several threads:
(gdb)
-thread-list-ids
“done,thread-ids={thread-id="3",thread-id="2",thread-id="1"},

number-of-threads="3"
(gdb)

The -thread-select command

Chapter 21: The ¢pB/MI Interface 331

Synopsis

-thread-select threadnum

Make threadnum the current thread. It prints the number of the new current thread,
and the topmost frame for that thread.

GDB command

The corresponding GDB command is ‘thread’.

Example

(gdb)

-exec-next

“running

(gdb)

“"0x7£7f0aec"

*stopped,reason="end-stepping-range" ,thread-id="2",frame=addr="0x00002ca4" ,func
="printme",args=[name="ip"],file="multithread.c",line="9"

(gdb)

—-thread-list-ids

“done,thread-ids=thread-id="2",thread-id="1" ,number-of-threads="2"

(gdb)

-thread-select 1

“done,new-thread-id="1",frame=level="0 ",addr="0x7ad47d70",func="_lwp_create","

+0x10",args=[],from="/usr/lib/libpthread.1"
(gdb)

21.13 GDB/MI tracepoint commands

The tracepoint commands are not yet implemented.

21.14 cpB/MI variable objects

Motivation for variable objects in GDB/MI

For the implementation of a variable debugger window (locals, watched expressions,
etc.), we are proposing the adaptation of the existing code used by Insight.
The two main reasons for that are:
1. It has been proven in practice (it is already on its second generation).
2. It will shorten development time (needless to say how important it is now).
The original interface was designed to be used by Tcl code, so it was slightly changed so

it could be used through GpB/MI. This section describes the GDB/MI operations that will
be available and gives some hints about their use.

Note: In addition to the set of operations described here, we expect the GUI implemen-
tation of a variable window to require, at least, the following operations:

332 Debugging with GDB

-gdb-show output-radix

-stack-list-arguments
-stack-list-locals

e -stack-select-frame

Introduction to variable objects in G¢pB/MI

The basic idea behind variable objects is the creation of a named object to represent a
variable, an expression, a memory location or even a CPU register. For each object created,
a set of operations is available for examining or changing its properties.

Furthermore, complex data types, such as C structures, are represented in a tree for-
mat. For instance, the struct type variable is the root and the children will represent the
struct members. If a child is itself of a complex type, it will also have children of its own.
Appropriate language differences are handled for C, C++ and Java.

When returning the actual values of the objects, this facility allows for the individual
selection of the display format used in the result creation. It can be chosen among: binary,
decimal, hexadecimal, octal and natural. Natural refers to a default format automatically
chosen based on the variable type (like decimal for an int, hex for pointers, etc.).

The following is the complete set of GDB/MI operations defined to access this function-
ality:

Operation Description

-var-create create a variable object

-var-delete delete the variable object and its children
-var-set-format set the display format of this variable
-var-show-format show the display format of this variable
-var-info-num-children tells how many children this object has
-var-list-children return a list of the object children
-var-info-type show the type of this variable object
-var-info-expression print what this variable object represents
-var-show-attributes is this variable editable? does it exist here?
-var-evaluate-expression get the value of this variable
-var-assign set the value of this variable
-var-update update the variable and its children

In the next subsection we describe each operation in detail and suggest how it can be
used.

Description and use of operations on variable objects

The -var-create command

Chapter 21: The ¢pB/MI Interface 333

Synopsis
-var-create {name | "-"}
{frame-addr | "*"} expression

This operation creates a variable object, which allows the monitoring of a variable, the
result of an expression, a memory cell or a CPU register.

The name parameter is the string by which the object can be referenced. It must
be unique. If ‘=’ is specified, the varobj system will generate a string “varNNNNNN”
automatically. It will be unique provided that one does not specify name on that format.
The command fails if a duplicate name is found.

The frame under which the expression should be evaluated can be specified by frame-
addr. A ‘¥’ indicates that the current frame should be used.

expression is any expression valid on the current language set (must not begin with a
‘*”), or one of the following:

e ‘xaddr’, where addr is the address of a memory cell

e ‘kaddr-addr’ — a memory address range (TBD)
e ‘$regname’ — a CPU register name
Result

This operation returns the name, number of children and the type of the object created.
Type is returned as a string as the ones generated by the GDB CLI:

name="name" ,numchild="N",type="type"

The -var-delete Command

Synopsis

-var—-delete name
Deletes a previously created variable object and all of its children.

Returns an error if the object name is not found.

The -var-set-format command

Synopsis

-var-set-format name format-spec
Sets the output format for the value of the object name to be format-spec.
The syntax for the format-spec is as follows:

format-spec +
{binary | decimal | hexadecimal | octal | natural}

334 Debugging with GDB

The -var-show-format command

Synopsis

-var-show-format name
Returns the format used to display the value of the object name.

format —
format-spec

The -var-info-num-children command

Synopsis

-var-info-num-children name
Returns the number of children of a variable object name:

numchild=n

The -var-list-children command

Synopsis

-var-list-children name
Returns a list of the children of the specified variable object:

numchild=n, children={{name=name,
numchild=n, type=typel, (repeats N times)}

The -var-info-type command

Synopsis

-var-info-type name

Returns the type of the specified variable name. The type is returned as a string in the
same format as it is output by the GDB CLI:

type=typename

The -var-info-expression command

Chapter 21: The ¢pB/MI Interface 335

Synopsis

-var-info-expression name
Returns what is represented by the variable object name:
lang=lang-spec,exp=expression

where lang-spec is {"C" | "C++" | "Java"}.

The -var-show-attributes command

Synopsis

-var-show-attributes name
List attributes of the specified variable object name:
status=attr [(,attr)*]
where attr is { { editable | noneditable } | TBD }.

The -var-evaluate-expression command

Synopsis

-var-evaluate-expression name

Evaluates the expression that is represented by the specified variable object and returns
its value as a string in the current format specified for the object:

value=value

The -var-assign Command

Synopsis

-var-assign name expression

Assigns the value of expression to the variable object specified by name. The object
must be ‘editable’.

The -var-update Command

Synopsis

-var-update {name | "x"}
Update the value of the variable object name by evaluating its expression after fetching
all the new values from memory or registers. A ‘*’ causes all existing variable objects to be
updated.

336 Debugging with GDB

Chapter 22: Reporting Bugs in GDB 337

22 Reporting Bugs in GDB

Your bug reports play an essential role in making GDB reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
But in any case the principal function of a bug report is to help the entire community by
making the next version of GDB work better. Bug reports are your contribution to the
maintenance of GDB.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

22.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

e If the debugger gets a fatal signal, for any input whatever, that is a GDB bug. Reliable
debuggers never crash.

e If GDB produces an error message for valid input, that is a bug. (Note that if you're
cross debugging, the problem may also be somewhere in the connection to the target.)

e If GDB does not produce an error message for invalid input, that is a bug. However,
you should note that your idea of “invalid input” might be our idea of “an extension”
or “support for traditional practice”.

e If you are an experienced user of debugging tools, your suggestions for improvement of
GDB are welcome in any case.

22.2 How to report bugs

If you obtained GDB (Hewlett-Packard Wildebeest (based on GDB 5.0-hpwdb-
20000516)) as part of your HP ANSI C, HP ANSI C++, or HP Fortran compiler kit, report
problems to your HP Support Representative.

If you obtained GDB (Hewlett-Packard Wildebeest (based on GDB 5.0-hpwdb-
20000516)) from the Hewlett-Packard Web site, report problems to your HP Support
Representative. Support is covered under the support contract for your HP compiler.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of the
variable you use in an example does not matter. Well, probably it does not, but one cannot
be sure. Perhaps the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the debugger into doing the right thing despite the bug.
Play it safe and give a specific, complete example. That is the easiest thing for you to do,
and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug. It may
be that the bug has been reported previously, but neither you nor we can know that unless
your bug report is complete and self-contained.

338 Debugging with GDB

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to fix the bug, you should include all these things:

e The version of GDB. GDB announces it if you start with no arguments; you can also
print it at any time using show version.

Without this, we will not know whether there is any point in looking for the bug in the
current version of GDB.

e The type of machine you are using, and the operating system name and version number.
e What compiler (and its version) was used to compile the program you are debugging—
e.g. “HP92453-01 A.10.32.03 HP C Compiler”. Use the what command with the

pathname of the compile command (‘what /opt/ansic/bin/cc’, for example) to obtain
this information.

e The command arguments you gave the compiler to compile your example and observe
the bug. For example, did you use ‘-0’7 To guarantee you will not omit something
important, list them all. A copy of the Makefile (or the output from make) is sufficient.
If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

e A complete input script, and all necessary source files, that will reproduce the bug.

e A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”

Of course, if the bug is that GDB gets a fatal signal, then we will certainly notice it.
But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of GDB is out of synch, or
you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and ours would not. If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for us. If you had
not told us to expect a crash, then we would not be able to draw any conclusion from
our observations.

Here are some things that are not necessary:
e A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.

Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

Chapter 22: Reporting Bugs in GDB 339

e A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.

Sometimes with a program as complicated as GDB it is very hard to construct an
example that will make the program follow a certain path through the code. If you do
not send us the example, we will not be able to construct one, so we will not be able
to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

e A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

340 Debugging with GDB

Appendix A: Installing GDB 341

Appendix A Installing GDB

If you obtain GDB (WDB) as part of the HP ANSI C, HP ANSI C++ Developer’s Kit
for HP-UX Release 11.x, or HP Fortran, you do not have to take any special action to build
or install GDB.

If you obtain GDB (WDB) from an HP web site, you may download either an swinstall
package or a source tree, or both.

Most customers will want to install the GDB binary that is part of the swinstall
package. To do so, use a command of the form

/usr/sbin/swinstall -s package-name WDB

Alternatively, it is possible to build GDB from the source distribution. If you want to
modify the debugger sources to tailor GDB to your needs, you may wish to do this. The
source distribution consists of a tar file containing the source tree rooted at ‘gdb-4.17/...".
The instructions that follow describe how to build a ‘gdb’ executable from this source
tree. HP believes that these instructions apply to the WDB source tree that it distributes.
However, HP does not explicitly support building a ‘gdb’ for any non-HP platform from
the WDB source tree. It may work, but HP has not tested it for any platforms other than
those described in the WDB Release Notes.

You can find additional information specific to Hewlett-Packard in the ‘README.HP.WDB’
file at the root of the source tree.

GDB comes with a configure script that automates the process of preparing GDB for
installation; you can then use make to build the gdb program.’

The GDB distribution includes all the source code you need for GDB in a single directory,
whose name is usually composed by appending the version number to ‘gdb’.

For example, the GDB version gdb-199991101 distribution is in the ‘gdb-gdb-199991101’
directory. That directory contains:

gdb-gdb-199991101/configure (and supporting files)
script for configuring GDB and all its supporting libraries

gdb-gdb-199991101/gdb
the source specific to GDB itself

gdb-gdb-199991101/bfd
source for the Binary File Descriptor library

gdb-gdb-199991101/include
GNU include files

gdb-gdb-199991101/1ibiberty
source for the ‘-~liberty’ free software library

gdb-gdb-199991101/0opcodes
source for the library of opcode tables and disassemblers

gdb-gdb-199991101/readline
source for the GNU command-line interface

L yf you have a more recent version of GDB than gdb-199991101, look at the ‘README’ file in the sources;
we may have improved the installation procedures since publishing this manual.

342 Debugging with GDB

gdb-gdb-199991101/glob
source for the GNU filename pattern-matching subroutine

gdb-gdb-199991101/mmalloc
source for the GNU memory-mapped malloc package

The simplest way to configure and build GDB is to run configure from the
‘gdb-version-number’ source directory, which in this example is the ‘gdb-gdb-199991101’
directory.

First switch to the ‘gdb-version-number’ source directory if you are not already in it;
then run configure. Pass the identifier for the platform on which GDB will run as an
argument.

For example:

cd gdb-gdb-199991101
./configure host
make

where host is an identifier such as ‘sun4’ or ‘decstation’, that identifies the platform where
GDB will run. (You can often leave off host; configure tries to guess the correct value by
examining your system.)

Running ‘configure host’ and then running make builds the ‘bfd’, ‘readline’,
‘mmalloc’, and ‘libiberty’ libraries, then gdb itself. The configured source files, and the
binaries, are left in the corresponding source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not recognize this
automatically when you run a different shell, you may need to run sh on it explicitly:

sh configure host

If you run configure from a directory that contains source directories for multiple
libraries or programs, such as the ‘gdb-gdb-199991101’ source directory for version gdb-
199991101, configure creates configuration files for every directory level underneath (unless
you tell it not to, with the ‘~-norecursion’ option).

You can run the configure script from any of the subordinate directories in the GDB
distribution if you only want to configure that subdirectory, but be sure to specify a path
to it.

For example, with version gdb-199991101, type the following to configure only the bfd
subdirectory:

cd gdb-gdb-199991101/bfd
../configure host

You can install (gdb) anywhere; it has no hardwired paths. However, you should make
sure that the shell on your path (named by the ‘SHELL’ environment variable) is publicly
readable. Remember that GDB uses the shell to start your program—some systems refuse
to let GDB debug child processes whose programs are not readable.

A.1 Compiling GDB in another directory

If you want to run GDB versions for several host or target machines, you need a different
gdb compiled for each combination of host and target. configure is designed to make this

Appendix A: Installing GDB 343

easy by allowing you to generate each configuration in a separate subdirectory, rather than
in the source directory. If your make program handles the ‘VPATH’ feature (GNU make does),
running make in each of these directories builds the gdb program specified there.

To build gdb in a separate directory, run configure with the ‘--srcdir’ option to

specify where to find the source. (You also need to specify a path to find configure itself
from your working directory. If the path to configure would be the same as the argument
to ‘-=srcdir’, you can leave out the ‘--srcdir’ option; it is assumed.)

For example, with version gdb-199991101, you can build GDB in a separate directory
for a Sun 4 like this:

cd gdb-gdb-199991101

mkdir ../gdb-sun4

cd ../gdb-sun4
../gdb-gdb-199991101/configure sun4d
make

When configure builds a configuration using a remote source directory, it creates a
tree for the binaries with the same structure (and using the same names) as the tree under
the source directory. In the example, you'd find the Sun 4 library ‘libiberty.a’ in the
directory ‘gdb-sun4/libiberty’, and GDB itself in ‘gdb-sun4/gdb’.

One popular reason to build several GDB configurations in separate directories is to
configure GDB for cross-compiling (where GDB runs on one machine—the host—while de-
bugging programs that run on another machine—the target). You specify a cross-debugging
target by giving the ‘--target=target’ option to configure.

When you run make to build a program or library, you must run it in a configured
directory—whatever directory you were in when you called configure (or one of its subdi-
rectories).

The Makefile that configure generates in each source directory also runs recursively.
If you type make in a source directory such as ‘gdb-gdb-199991101’ (or in a separate
configured directory configured with ‘--srcdir=dirname/gdb-gdb-199991101’), you will
build all the required libraries, and then build GDB.

When you have multiple hosts or targets configured in separate directories, you can run
make on them in parallel (for example, if they are NFS-mounted on each of the hosts); they
will not interfere with each other.

A.2 Specifying names for hosts and targets

The specifications used for hosts and targets in the configure script are based on a
three-part naming scheme, but some short predefined aliases are also supported. The full
naming scheme encodes three pieces of information in the following pattern:

architecture-vendor-os

For example, you can use the alias sun4 as a host argument, or as the value for target
in a -—target=target option. The equivalent full name is ‘sparc-sun-sunos4’.

The configure script accompanying GDB does not provide any query facility to list
all supported host and target names or aliases. configure calls the Bourne shell script

344 Debugging with GDB

config.sub to map abbreviations to full names; you can read the script, if you wish, or
you can use it to test your guesses on abbreviations—for example:

% sh config.sub i386-linux

i386-pc-linux-gnu

% sh config.sub alpha-linux

alpha-unknown-linux-gnu

% sh config.sub hp9k700

hppal.1-hp-hpux

% sh config.sub sund

sparc-sun-sunos4.1.1

% sh config.sub sun3

m68k-sun-sunos4.1.1

% sh config.sub i986v

Invalid configuration ‘i986v’: machine ‘i986v’ not recognized

config.sub is also distributed in the GDB source directory (‘gdb-gdb-199991101’, for
version gdb-199991101).

A.3 configure options

Here is a summary of the configure options and arguments that are most often useful
for building GDB. configure also has several other options not listed here. See Info file
‘configure.info’, node ‘What Configure Does’, for a full explanation of configure.

configure [--help]
[--prefix=dir]
[--exec-prefix=dir]|
[--srcdir=dirname]
[

--norecursion| [--rm]
[--target=target]|
host
You may introduce options with a single ‘=’ rather than ‘==’ if you prefer; but you may

abbreviate option names if you use ‘--’".
--help Display a quick summary of how to invoke configure.

--prefix=dir
Configure the source to install programs and files under directory ‘dir’.

-—exec-prefix=dir
Configure the source to install programs under directory ‘dir’.
-—-srcdir=dirname
Warning: using this option requires GNU make, or another make that imple-
ments the VPATH feature.
Use this option to make configurations in directories separate from the GDB
source directories. Among other things, you can use this to build (or maintain)
several configurations simultaneously, in separate directories. configure writes
configuration specific files in the current directory, but arranges for them to use
the source in the directory dirname. configure creates directories under the
working directory in parallel to the source directories below dirname.

Appendix A: Installing GDB 345

—--norecursion
Configure only the directory level where configure is executed; do not propa-
gate configuration to subdirectories.

--target=target
Configure GDB for cross-debugging programs running on the specified target.
Without this option, GDB is configured to debug programs that run on the
same machine (host) as GDB itself.

There is no convenient way to generate a list of all available targets.

host ... Configure GDB to run on the specified host.
There is no convenient way to generate a list of all available hosts.
There are many other options available as well, but they are generally needed for special
purposes only.

\enddocument

346 Debugging with GDB

Index 347

Index

(Index is nonexistent)

348 Debugging with GDB

The body of this manual is set in
cmrl0 at 10.95pt,
with headings in cmb10 at 10.95pt
and examples in cmtt10 at 10.95pt.
emtr10 at 10.95pt,
cmb10 at 10.95pt, and
cmsl10 at 10.95pt
are used for emphasis.

	Summary of GDB
	Free software
	Contributors to GDB

	A Sample GDB Session
	Loading the Executable
	Setting Display width
	Setting Breakpoints
	Running the executable under GDB
	Stepping to the next line in the source program
	Stepping into a subroutine
	Examining the Stack
	Printing Variable Values
	Listing Source Code
	Setting Variable Values During a Session

	Getting In and Out of GDB
	Invoking GDB
	Choosing files
	Choosing modes
	Redirecting WDB input and output to a file

	Quitting GDB
	Shell commands

	GDB Commands
	Command syntax
	Command completion
	Getting help

	Running Programs Under GDB
	Compiling for debugging
	Starting your program
	Arguments To Your Program
	Program Environment
	Working directory
	Program Input and Output
	Debugging a Running Process
	Killing the child process
	Debugging programs with multiple threads
	Debugging programs with multiple processes

	Stopping and Continuing
	Breakpoints
	Setting breakpoints
	Setting catchpoints
	Deleting breakpoints
	Disabling breakpoints
	Break conditions
	Breakpoint command lists
	Breakpoint menus
	``Cannot insert breakpoints''

	Continuing and stepping
	Signals
	Stopping and starting multi-thread programs

	Examining the Stack
	Stack frames
	Stacks Without frames
	Commands for Examining the Stack
	Backtraces
	Selecting a frame
	Information about a frame

	Examining Source Files
	Printing source lines
	Searching source files
	Specifying source directories
	Source and machine code

	Examining Data
	Expressions
	Program variables
	Artificial arrays
	Output formats
	Examining memory
	Automatic display
	Print settings
	Value history
	Convenience variables
	Registers
	Printing Floating Point Values
	Floating point hardware

	Using GDB with Different Languages
	Switching between source languages
	List of filename extensions and languages
	Setting the working language
	Having GDB infer the source language

	Displaying the language
	Type and range checking
	An overview of type checking
	An overview of range checking

	Supported languages
	C and C++
	C and C++ operators
	C and C++ constants
	C++ expressions
	C and C++ defaults
	C and C++ type and range checks
	GDB and C
	GDB features for C++

	Fortran
	Fortran types
	Fortran operators
	Fortran special issues

	Examining the Symbol Table
	Altering Execution
	Assignment to variables
	Continuing at a different address
	Giving your program a signal
	Returning from a function
	Calling program functions
	Patching programs

	GDB Files
	Commands to specify files
	Specifying shared library locations
	Errors reading symbol files

	Specifying a Debugging Target
	Active targets
	Commands for managing targets
	Choosing target byte order

	HP-UX Configuration-Specific Information
	Summary of HP Enhancements to GDB
	HP-UX dependencies
	Linker Dependencies
	Dependent Standard Library Routines for Run Time Checking

	Supported Platforms and Modes
	HP-UX targets
	Support for Alternate root
	Specifying object file directories
	Fix and continue debugging
	Fix and Continue compiler dependencies
	Fix and Continue restrictions
	Using Fix and Continue
	Example Fix and Continue session

	Inline Support
	Inline Debugging in HP 9000 Systems
	Inline Debugging in Integrity Systems
	Debugging Inline Functions in Integrity Systems

	Debugging Macros
	Viewing and Evaluating Macro Definitions
	Compiler Options to Enable Macro Debugging

	Examples for Macro Debugging

	Debugging Memory Problems
	When to suspect a memory leak
	Memory debugging restrictions
	Memory Debugging Methodologies
	Debugging Memory in Interactive Mode
	Commands for interactive memory debugging
	Example for interactive debugging session

	Debugging Memory in Batch Mode
	Setting Configuration Options for Batch Mode
	Environment variable setting for Batch mode debugging
	Example for Batch Mode RTC

	Debugging Memory Interactively After Attaching to a Running Process
	Configuring memory debugging settings
	Specifying the stack depth
	Specifying minimum leak size
	Specifying minimum block size

	Scenarios in memory debugging
	Stop when freeing unallocated or deallocated blocks
	Stop when freeing a block if bad writes occurred outside block boundary
	Stop when a specified block address is allocated or deallocated
	Scramble previous memory contents at malloc/free calls
	Detect dangling pointers and dangling blocks
	Detect in-block corruption of freed blocks
	Specify the amount of guard bytes for every block of allocated memory

	Comparison of Memory Debugging Commands in Interactive Mode and Batch Mode
	Heap Profiling
	Commands for heap profiling
	info heap arena
	info heap arena [0 |1|2|..] blocks stacks
	info module ADDRESS
	info heap process
	Example for heap profiling

	Memory Checking Analysis for User Defined Memory Management Routines
	Commands to track the change in data segment value

	Thread Debugging Support
	Support for Enabling and Disabling Specific Threads
	Backtrace Support for Thread Debugging
	Advanced Thread Debugging Support
	Pre-requisites for Advanced Thread Debugging
	Enabling and Disabling Advanced Thread Debugging Features
	Commands to view information on pthread primitives

	Debugging Threads Interactively After Attaching to a Process
	Thread Debugging in Batch Mode
	Pre-requisites for Batch mode of Thread Debugging
	Limitations in Batch mode of thread debugging

	Thread Debugging in +check Mode
	Known issues with Thread Debugging for Interactive and Batch mode

	Debugging MPI Programs
	Debugging multiple processes (programs with fork and vfork calls)
	Ask mode for set follow-fork-mode
	serial mode for set follow-fork-mode
	Support for showing unwind info
	Printing CFM and PFS registers

	Debugging Core Files
	Generating core files with packcore /unpackcore/getcore
	Support for the dumpcore command
	Enhancements to the dumpcore command

	Support for display of run time type information

	Printing the Execution Path Entries for the Current Frame or Thread
	Compiler Dependencies for Printing the Execution Path Entries
	Example Illustrating Execution Path Recovery

	Invoking GDB Before a Program Aborts
	Aborting a Command Line Call
	Instruction Level Stepping
	Enhanced support for watchpoints and breakpoints
	Deferred watchpoints
	Hardware watchpoints
	Hardware breakpoints
	Setting breakpoints in unstripped shared library

	Support for procedural breakpoints
	Support for template breakpoints

	Debugging support for shared libraries
	Using shared library as main program
	Setting Deferred Breakpoints in Shared Library
	Using catch load
	Privately mapping shared libraries
	Selectively Mapping Shared Libraries As Private
	Setting breakpoints in shared library

	Debugging support for Decimal Floating Point data type
	Printing Decimal Floating point data types
	Printing Decimal floating point constant
	Printing Decimal floating point variable

	Handling Decimal Floating Point Data types
	Evaluating Decimal Floating Point data types
	Printing type of Decimal Floating Point variable

	Additional Support for binary floating point data type
	Support for Binary Floating Point constants Œ f, l
	Support Binary Floating Point variables with format specifier

	Language support
	Enhanced Java Debugging Support
	Java Stack Unwind Features
	gdb Subcommands for Java VM Debugging
	Java corefile debugging support
	Java attach mode debugging support

	Enhanced support for C++ templates
	Support for __fpreg data type on IPF
	Support for _Complex variables in HP C
	Support for debugging namespaces
	Command for evaluating the address of an expression

	Viewing Wide Character Strings
	Support for output logging
	Support for dumping array in an ASCII file
	Support for Fortran array slices
	Displaying enumerators
	Support for debugging typedefs
	Support for steplast command for C and C++

	Getting information from a non-debug executable
	Debugging optimized code
	Debugging Optimized Code at Various Optimization Levels
	+O0 and +O1
	+O2/+O3/+O4/-ipo

	Debugging with ARIES
	Debugging the application using GDB under ARIES
	Limitations of GDB Support under ARIES

	Attaching GDB to an already running emulated process
	Detecting memory leaks using GDB under ARIES

	Visual Interface for WDB
	Starting and stopping Visual Interface for WDB
	Navigating the Visual Interface for WDB display
	Specifying foreground and background colors
	Using the X-window graphical interface
	Using the TUI mode
	Changing the size of the source or debugger pane
	Using commands to browse through source files
	Loading source files
	Editing source files
	Editing the command line and command-line history
	Saving the contents of a debugging session to a file

	Support for ddd
	Support for XDB commands
	stop in/at dbx commands

	GNU GDB Logging Commands
	Support for command line calls in a stripped executable
	Support for command line calls in a stripped executable on PA-RISC systems
	Additional support for command line calls in a stripped executable
	For 32-bit applications:
	For 64-bit applications

	Support for debugging stripped binaries
	Printing of locals and globals in a stripped module
	Backtrace on stripped frames
	Command line calls to non-stripped library
	Setting breakpoints in unstripped shared library

	Displaying the current block scope information
	Linux support

	The HP-UX Terminal User Interface
	Starting the TUI
	Automatically running a program at startup
	Screen Layouts
	Source pane
	Disassembly pane
	Source/Disassembly pane
	Disassembly/Register pane
	Source/Register pane

	Cycling through the panes
	Changing pane focus
	Scrolling panes
	Changing the register display
	Changing the pane size
	Refreshing and updating the window

	XDB to WDB Transition Guide
	By-function lists of XDB commands and HP WDB equivalents
	Invocation commands
	Window mode commands
	File viewing commands
	Source directory mapping commands
	Data Viewing and modification commands
	Stack viewing commands
	Status-viewing command
	Job control commands

	Overall breakpoint commands
	Auxiliary breakpoint commands
	Breakpoint creation commands
	Breakpoint status commands
	All-procedures breakpoint commands
	Global breakpoint commands
	Assertion control commands
	Record and playback commands
	Macro facility commands
	Signal control commands
	Miscellaneous commands

	XDB data formats and HP WDB equivalents
	XDB location syntax and HP WDB equivalents
	XDB special language operators and HP WDB equivalents
	XDB special variables and HP WDB equivalents
	XDB variable identifiers and HP WDB equivalents
	Alphabetical lists of XDB commands and HP WDB equivalents
	A
	B
	C through D
	F through K
	L
	M through P
	Q through S
	T
	U through Z
	Symbols

	Controlling GDB
	Setting the GDB Prompt
	Setting Command Editing Options in GDB
	Setting Command History Feature in GDB
	Setting the GDB Screen Size
	Supported Number Formats
	Optional warnings and messages
	Optional messages about internal happenings

	Canned Sequences of Commands
	User-defined commands
	User-defined command hooks
	Command files
	Commands for controlled output

	Using GDB under gnu Emacs
	GDB Annotations
	What is an annotation?
	The server prefix
	Values
	Frames
	Displays
	Annotation for GDB input
	Errors
	Information on breakpoints
	Invalidation notices
	Running the program
	Displaying source
	Annotations We Might Want in the Future

	The gdb/mi Interface
	Function and purpose
	Notation and terminology
	gdb/mi Command Syntax
	gdb/mi Input syntax
	gdb/mi Output syntax
	Simple examples of gdb/mi interaction

	gdb/mi compatibility with CLI
	gdb/mi output records
	gdb/mi result records
	gdb/mi stream records
	gdb/mi out-of-band records

	gdb/mi command description format
	gdb/mi breakpoint table commands
	gdb/mi Data manipulation
	gdb/mi program control
	Miscellaneous GDB commands in gdb/mi
	gdb/mi Stack Manipulation Commands
	gdb/mi Symbol query commands
	gdb/mi Target Manipulation Commands
	gdb/mi thread commands
	gdb/mi tracepoint commands
	gdb/mi variable objects

	Reporting Bugs in GDB
	Have you found a bug?
	How to report bugs

	Installing GDB
	Compiling GDB in another directory
	Specifying names for hosts and targets
	configure options

	Index

