The graPHIGS Programming Interface:

Technical Reference

<|lI!

The graPHIGS Programming Interface:

Technical Reference

<|lI!

Note
FBefore using this information and the product it supports, read the information in|Appendix F, “Notices,” on page 407

Twelfth Edition (October 2000)

This edition applies to the GDDM/graPHIGS Programming Interface, Version 2, Release 2.5, program number
5688-093, AlXwindows Environment/6000 (1.3) AIXwindows/3D feature, Program Number 5601-257, and to all
subsequent releases of this product until otherwise indicated in new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas
78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub @ austin.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . . Vii
Who Should Use This Book . Vi
Highlighting . . Vii
ISO 9000 . Vi
Related Publications . Vii
Part 1. Workstations 1
Chapter 1. General Information for Workstations . . 3
Accessing a Workstation .3
Description Tables in the graPHIGS API .5
Chapter 2. Supported Workstations . . 15
The X Workstation Family 15
Additional Notes for DWA Adapters . . 36
The XSOFT Workstation . .41
The 6090 Workstation . . 43
The 5080 Workstation. . . 44
The GDDM Workstation . . 45
The GDF Workstation . . 45
The CGM Workstation. . 47
The IMAGE Workstation . . 57
Chapter 3. Workstation Description Tables . . 65
General Workstation Facilities . .o . 66
General Output Facilities. . 69
Polyline Facilities .74
Polymarker Facilities . . 78
Text Facilities . . 80
Interior Facilities . . 85
Edge Facilities . 89
Color Facilities .92
Generalized Drawing Pr|m|t|ve (GDP) FaC|I|t|es . 95
Generalized Structure Element (GSE) Facilities . 97
Escape Facilities. . .98
Image Facilities. . 100
Advanced Output FaC|I|t|es . 101
Curve and Surface Facilities . . 1083
Advanced Attribute Facilities . . 104
General Input Facilities . . 108
Available Triggers . . 113
Locator Devices . 115
Stroke Devices . . 117
Valuator Devices . . 120
Choice Devices. . 124
Pick Devices. . 130
String Devices . . 133
Button Devices . . 138
Scalar Devices . . 140
Vector Devices . . 141
Break Action . . 142

© Copyright IBM Corp. 1994, 2002

Part 2. Distributed graPHIGS API . 143
Chapter 4. The graPHIGS API Nucleus . 145
Connecting to the Nucleus. - . 145
The Nucleus Description Table . . 146
gPafut Command . . 149
gPinit Command . 149
gPhost Command . . 152
gPqg Command . . 153
gPterm Command. . . . 154
makegP Command(AIX PS/2 onIy) . 155
Chapter 5. graPHIGS API Host and Workstation Connectmty . 157
The graPHIGS API Gateway Daemon e . 157
The SOCKETS Connection Method . 161
graPHIGS/GAM Direct Connection. . 163
chgPcon Command . . . 165
gPgated Command . 168
I1s6098 Command . . 171
IsgPcon Command . 172
mkgPcon Command . . 174
Chapter 6. Enabling User Exits for Conferencing . . 177
Starting and Stopping the Conference Utility Controller . . 179
The Conference Controller. Coe . 179
The User Exit Routine . . 179
The Application Intercept Exit Routlne . 181
Part 3. Defaults and Nicknames . . 185
Chapter 7. Controlling the Environment with Defaults and Nicknames . . 187
Overview of Controlling the Environment . 187
The External Defaults File (EDF) . 188
The Application Defaults Interface Block (ADIB) . 189
Defaults C e e e . 190
Nicknames . . 199
PROCOPTS . . 203
Part 4. Character Sets and Fonts . 219
Chapter 8. Character Set Facilities of the graPHIGS API . 221
Identifying a Character Set e . 221
Identifying a Font . . . 221
Using the Character Set FaC|I|t|es . . 222
Chapter 9. Character Sets and Fonts Provided by the API. . 223
Using the Unicode Character Set . . Co . 223
Using Kaniji Character Sets in the Operating System . . 223
Character Code Points and Symbols . . . 224
Chapter 10. User-Definable Fonts . 257
Defining Your Own Characters . . 257
Displaying a Text String. . 260
Font File Organization Overview . 264
Overview of Font File Contents . . 266

iV The graPHIGS Programming Interface: Technical Reference

Font File Naming Conventions . . 267
Font File Format Specifications 268
IBM 5080 Character Set Restrictions . . 276
Part 5. Format and Content of Structure Element Records . 277
Chapter 11. Structure Element Content as Returned by GPQED . 279
General Format. e e e . 283
Structure Element Codes . . 284
Common Data Types. . 289
Output Primitives . . . 292
Attribute Setting Structure Elements . . 307
Transformation Setting Structure Elements. . 325
Miscellaneous Structure Elements . . 328
Chapter 12. Structure Element Content as Returned by GPQE . . 333
Output Primitives . e e e e e . 333
Attributes . . 339
Modeling and Vlewmg . . 343
Miscellaneous Structure EIements . 346
Appendix A. State Lists . . 349
Operating States List (OSL) . . 349
The graPHIGS API Descriptor Table (PDT) . 350
The graPHIGS API State List (PSL) . . 351
Structure Store State List (SSL). . 352
Workstation State List (WSL). . 353
The graPHIGS API Error State List (ESL) . 363
Utility Function State List (USL). . 364
Appendix B. Event Data Formats . 367
Event Summary . 367
Event Data Format . 367
Appendix C. Plotting with graPHIGS . . 371
Plotting on the RS/6000 . . 371
Plotting GDF Files. . . 371
Plotting on AIX PS/2 . . 390
Plotting on VM/MVS . . 390
Plotting CGM Files . 391
Appendix D. Printing with graPHIGS . . 397
Appendix E. How the Mnemonics are Generated . 399
Deletions . . 399
Abbreviations . 399
Appendix F. Notices . 407
Trademarks . . 408
Index . 409

Contents

\'}

Vi The graPHIGS Programming Interface: Technical Reference

About This Book

This book provides technical information about the functions and limitations of the graPHIGS API and its
supported workstations. It also contains reference information, both general and specific, about particular
aspects of writing applications, namely on Character Set Facilities and on Defaults and Nicknames. The

purpose of this book is to provide a comprehensive volume of technical information needed to accurately
code or modify applications using the graPHIGS API.

Who Should Use This Book

This book is intended for application programmers.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items
whose names are predefined by the system. Also identifies graphical objects such as
buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see
displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information on graPHIGS API products:
+ |The graPHIGS Programming Interface: ISO PHIGS Subroutine Reference]
+ [The graPHIGS Programming Interface: Understanding Conceptd

© Copyright IBM Corp. 1994, 2002 Vii

Viii The graPHIGS Programming Interface: Technical Reference

Part 1. Workstations

© Copyright IBM Corp. 1994, 2002

2 The graPHIGS Programming Interface: Technical Reference

Chapter 1. General Information for Workstations

This chapter contains two areas pertaining to all workstations supported by the graPHIGS API. The first
section, [Accessing a Workstation| describes the workstation types and how [connection identifiers| are used

by the graPHIGS API when opening a workstation. The second section, [Description Tables in the
graPHIGS API, provides lists of the initial default values in the graPHIGS API Traversal State List and view

table entries in the Workstation View Table Data at initialization.

Accessing a Workstation

To display graphical data from an application program, the graPHIGS API requires information about the
workstation. The graPHIGS API must know the capabilities and characteristics of the workstation as well
as the information to access the workstation using the operating system. This information is identified to

the graPHIGS API with the workstation type and connection identifier parameters of the Open Workstation
and Create Workstation (GPCRWS) subroutines.

The final workstation type and connection identifier used by the graPHIGS API are the result of processing
the nicknames in the External Defaults File (EDF) or the Application Defaults Interface Block (ADIB) and
may differ from the parameters specified on GPOPWS and GPCRWS. See [Controlling the Environment|
[with Defaults and Nicknames]

Workstation Types

Workstations of a certain class that share specific characteristics are referred to as a workstation type. For
example, 5080 workstations are of the same type, although each may or may not have certain optional
features (such as color capability). However, 5080 workstations are of a different workstation type than
NATIVE workstations because of different capabilities.

The workstation category of the user’s physical workstation is identified by the workstation type parameter
on the Open Workstation or Create Workstation (GPCRWS) subroutine call.

The graPHIGS API supports the following workstation types:

Table 1. Workstation Category, Type, and Environment

Category Workstation Type Parameter Environment

6090 6090 VM/CMS MVS

5080 5080 VM/CMS MVS

GDDM Devices |GDDM VM/CMS MVS

GDF Files GDF VM/CMS MVS AIX RS/6000
CGM CGM VM/CMS MVS AIX RS/6000
X X AIX RS/6000

X XSOFT AIX RS/6000

X XDWA AIX RS/6000

IMAGE files IMAGE AIX RS/6000

When you specify the workstation type parameter on the [GPOPWS| or [GPCRWS| subroutine calls, the
workstation type is passed as an 8-byte character string, left-justified with blanks padding on the right of
the type (example, *NATIVE °).

Refer to [Workstation Description Tables| for information about the supported workstation types.

© Copyright IBM Corp. 1994, 2002 3

For information about using nickname processing to pass workstation types to the graPHIGS API, see
[Controlling the Environment with Defaults and Nicknames]

The data values of the Workstation Description Table (WDT) describe the capabilities and characteristics
of a workstation type. The data values of the WDT are available to your application through the WDT
group of inquiries. Refer tofor additional information. The workstation type parameter of the
WDT inquiries identifies the category of workstation whose data is requested. (The WDT group of inquiries
return only data that does not change during the processing of your application. The WSL group of
inquiries return the current state of workstation data values that your application can change.)

When either the Open Workstation or Create Workstation (GPCRWS) subroutine calls create a

workstation resource, the graPHIGS API creates a new unique workstation type. This created ("realized”)
workstation type precisely describes the actual capabilities of the created workstation. For example, 5080
workstations may, in general, support the dial input devices. However, a particular 5080 may not have the
dials present. The actual WDT will not have an entry for the valuator devices, where the general
("generic”) WDT will have such an entry. The actual workstation type is available to your application using
the Inquire Realized Workstation Category and Type subroutine. You can then use the returned
realized workstation type as the wstype parameter on the WDT group of inquiries.

Connection Identifiers
The connection identifier specified on Open Workstation and Create Workstation (GPCRWS)

subroutines is used by the graPHIGS API to access a specific device for processing. The identifier is
passed to the operating system, typically for allocation of the workstation.

For the 6090, the connection identifier is an "*" (asterisk).

For the 5080 in the S/390 environment, the connection identifier must be the DDNAME (MVS) or FILEDEF
name (VM) which defines the device you wish to access. On VM, for example, issue the following
command prior to running your application:

FILEDEF IBM5080 GRAF 120

You would specify 1BM5080 on [GPOPWS| or [GPCRWS| as the connection identifier parameter and the
graPHIGS API would attempt to open a 5080 at virtual address 120.

For GDDM supported devices, the connection identifier is used as the "name-list” by the graPHIGS API
when it issues the GDDM call DSOPEN. See GDDM Base: Programming Reference for details of the
DSOPEN call and the name-list parameter. For example, specifying a connection identifier of * will indicate
to GDDM (by passing a name-list of "*") that the user console is to be used as the workstation.

GDDM nickname processing may be performed on the data passed on the DSOPEN call (see GDDM
Base: Programming Reference). The DSOPEN call issued by the graPHIGS API takes the form:

DSOPEN (DEVID, FAM, DEVTOK, 0, ©, NAMEC, NAMEL)

name list, the first entry
of which is set equal to
the connection identifier
name count and is always set to 1
GDDM device token (always '=*')
GDDM family (always 1)
[default] encoded device identifier

The connection identifier defines the workstation you wish to access.

» The connection identifier for a NATIVE workstation is the device name for the workstation you are using.
The device names are:

*hft/n’ Lower case; causes graPHIGS API to open /dev/hft/n

4 The graPHIGS Programming Interface: Technical Reference

*’ Causes graPHIGS API to open /dev/hft (which will open
dev/hft/n where n is the next available number)

» The connection identifier for an X workstation specifies which X server the graPHIGS API workstation
window will be associated with.

Tx’ the graPHIGS API will connect to the server specified in
the operating system environment DISPLAY variable.
’host:serverscreen This is a standard X server specification, where host is the

host name where an X server is running, server is the
server ID, and screen is the screen number.

For information about using nickname processing to pass connection identifiers to the graPHIGS API, see
[Controlling the Environment with Defaults and Nicknames|

For further information about the connection identifier passed when generating GDF files, CGM files, or
IMAGE files, see[The GDF Workstation| [The CGM Workstation| or[The IMAGE Workstation|

Description Tables in the graPHIGS API

This section contains two tables:
« [The graPHIGS API Traversal State List]
« |Workstation View Table Datal

The data types of the returned values are identified by the following codes:

Data Type Definition

| Integer A whole number

R Real A floating-point number

S String A character string

E Enumeration A data type comprised of a set of values. The set is defined by enumerating the
identifiers denoting the values.

n Quantity This specifies an undesignated quantity of data.

Note: The notation of n (number) [default] ¢ (data type) indicates a collection of data of that type. This can
be indicated in one of two ways:

* By using notation such as 3[default]R (three real numbers), which could specify something like
the x, y, and z coordinates of a three-dimensional point or RGB values

* By using a variable number such as n[default]l, which specifies a collection of n integers.

The values identified with the symbol * reflect the default value of a workstation configuration variable; that
is, this may not be the actual workstation value after the is opened.

The graPHIGS API Traversal State List

Table 2. The graPHIGS API Traversal Defaults Table
Description Data Type Default Value

Annotation height scale factor R 1.0

Annotation path E 1=RIGHT
(1=RIGHT,
2=LEFT,
3=UP,
4=DOWN)

Chapter 1. General Information for Workstations 5

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description | Data Type Default Value
Annotation Text Alignment
Horizontal E 1=NORMAL
(1=NORMAL,
2=LEFT_ALIGN,
3=CENTER,
4=RIGHT_ALIGN)
Vertical E 1=NORMAL
(1=NORMAL,
2=TOP,
3=CAP,
4=BASE,
5=BOTTOM)
Annotation up vector 2[default]R 0.0, 1.0
Antialiasing identifier | 1=NONE
(1=NONE,
2=PERFORM)
Back data modification matrix 3[default]3[default]R 1.0, 0.0, 0.0
0.0, 1.0, 0.0
0.0, 0.0, 1.0
Back interior color index 3[default]R See note*
Back interior color source type E VERTEX
Back specular color 3[default]R See note*
Back Surface Properties
Ambient reflection coefficient R 1.0
Diffuse reflection coefficient R 1.0
Specular reflection coefficient R 1.0
Specular reflection exponential R 0.0
Transparency coefficient 0.0
Character base vector 2[default]R 1.0, 0.0
Character expansion factor R 1.0
Character height R 0.01
Character line scale factor R 1.0
Character positioning mode | 1=CONSTANT
(1=CONSTANT,
2=PROPORTIONAL)
Color processing mode index | 0
Character spacing R 0.0
Character up vector 2[default]R 0.0,1.0
Class set names, number of | 0
Curve Approximation Criteria
Criteria: | 1=WS_DEPENDENT
(1=WS_DEPENDENT,
2=CONSTANT_SUBDIVISION_BETWEEN_KNOTS,
3=VARIABLE_SUBDIVISION BETWEEN_KNOTS)
Control value R 1.0

6 The graPHIGS Programming Interface: Technical Reference

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description

| Data Type

Default Value

Data Filtering for Data Mapping

Magnification data filtering method
(1=SAMPLE_IN_BASE,
2=INTERP_IN_BASE)

1=SAMPLE_IN_BASE

Minification data filtering method
(1=SAMPLE_IN_BASE,
2=INTERP_IN_BASE,
3=SAMPLE_IN_SQUARE_MM,
4=SAMPLE_IN_AND_INTERP_BTWN_SQUARE_MM
5=INTERP_IN_SQUARE_MM,
6=INTERP_IN_AND_BTWN_SQUARE_MM,
7=SAMPLE_IN_RECT_MM,
8=SAMPLE_IN_AND_INTERP_BTWN_RECT MM,
9=INTERP_IN_RECT_MM)

1=SAMPLE_IN_BASE

u-dimension bounding method
(1=CLAMP,
2=REPEAT)

1=CLAMP

v-dimension bounding method
(1=CLAMP,
2=REPEAT)

1=CLAMP

Data mapping method
(-1=IMAGE_ARRAY,
1=DM_METHOD_COLOR,
2=SINGLE_VALUE_UNIFORM,
4=BI_VALUE_UNIFORM)

1=DM_METHOD_COLOR

Data mapping table index

Data modification matrix

3[default]3[default]R

oo Ne]
[cNoNo]

-
O = O

[l o N o]
_ o o
[l oM o]

Data Morphing

Data morphing scale factors

n[default]R

{1.0}

Data morphing scale factors, number of

Default attribute source flag items:

Polyline line type
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Polyline line width scale factor
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Polyline color
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Marker type
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Marker size scale factor
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Chapter 1. General Information for Workstations

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description

Data Type

Default Value

Polymarker color
(1=BUNDLED,
2=INDIVIDUAL)

E

2=INDIVIDUAL

Text font
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Text precision
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Text color
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Character expansion factor
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Character spacing
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Interior style
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Interior style index
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Interior color
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Edge flag
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Edge line type
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Edge line width scale factor
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Edge color
(1=BUNDLED,
2=INDIVIDUAL)

2=INDIVIDUAL

Depth cue index

0

Destination blending function
(1=DSTBF_ZERO,

2=DSTBF_ONE,
3=DSTBF_SRC_ALPHA,
4=DSTBF_ONE_MINUS_SRC_ALPHA,
5=DSTBF_DST_ALPHA,
6=DSTBF_ONE_MINUS_DST_ALPHA,
7=DSTBF_DST_COLOR,
8=DSTBF_ONE_MINUS_SRC_COLOR)

4=DSTBF_ONE_MINUS_SRC_ALPHA

Edge bundle table index

8 The graPHIGS Programming Interface: Technical Reference

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value
Edge color 3[default]R See note*
Edge flag E 1=0FF
(1=0FF,
2=0N,
3=GEOMETRY_ONLY)
Edge line type | 1=SOLID
Edge line width scale factor R 1.0
Face distinguish mode | 1=NONE
(1=NONE,
2=COLOR_SURFACE_PROPERTIES)
Face lighting method E 1=FACE_INDEPENDENT
(1=FACE_INDEPENDENT,
2=FACE_DEPENDENT)
Frame buffer comparison:
Operation E 1=NO_OPERATION
(1=NO_OPERATION,
2=WRITE_WHEN_EQUAL,
3=WRITE_WHEN_NOT_EQUAL)
Mask | N/A
Comparison value | N/A
Frame buffer write protect mask | 0
Geometric Text Alignment
Horizontal E 1=NORMAL
(1=NORMAL,
2=LEFT_ALIGN,
3=CENTER,
4=RIGHT_ALIGN)
Vertical E 1=NORMAL
(1=NORMAL,
2=TOP,
3=CAP,
4=BASE,
5=BOTTOM)
Geometric text path E 1=RIGHT
(1=RIGHT,
2=LEFT,
3=UP,
4=DOWN)
Global modeling transformations 4[default]4[default]R 1.0, 0.0, 0.0, 0.0
0.0, 1.0, 0.0, 0.0
0.0, 0.0, 1.0, 0.0
0.0, 0.0, 0.0, 1.0
Highlighting color 3[default]R See note*

Chapter 1. General Information for Workstations

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description

Data Type

Default Value

HLHSR (hidden line, hidden surface removal
identifier)
(1=VISUALIZE_IF_NOT_HIDDEN,
2=VISUALIZE_IF_HIDDEN,
3=VISUALIZE_ALWAYS,
4=NOT_VISUALIZE,
5=FACE_DEPENDENT_VISUALIZATION,
6=NO_UPDATE,
7=GREATER_THAN,
8=EQUAL_TO,
9=LESS_THAN,
10=NOT_EQUAL,
11=LESS_THAN_OR_EQUAL_TO)

1=VISUALIZE_IF_NOT_HIDDEN

Interior bundle table index

1

Interior color

3[default]R

See note*

Interior color source type

E

VERTEX

Interior shading method
(1=SHADING_NONE,
2=SHADING_COLOR,
3=SHADING_DATA)

E

2=SHADING_COLOR

Interior style
(1=HOLLOW,
2=S0LID,
3=HATCH,
4=PATTERN,
5=EMPTY)

1=HOLLOW

Interior style index

Label identifier

Light color source type

VERTEX

Light Source State

Number of light sources

List of active light sources

N/A

Lighting calculation mode
(1=NONE,
2=PER_AREA,
3=PER_VERTEX)

1=NONE

Line type

1=SOLID_LINE

Line width scale factor

R

Local modeling transformations

4[default]4[default]R

.
.

-

ol o N O]

e e e e

[l NoNo)
M

[cNoNoNo)
-
-
_ o o o
[cNoNoNo)

[cN oo

(el oo No)
M

NN o)

Marker size scale factor

Marker type

3=ASTERISK

Modeling clipping indicator
(1=NOCLIP,
2=CLIP)

1=NOCLIP

10 The graPHIGS Programming Interface: Technical Reference

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description

Data Type

Default Value

Parametric surface characteristics
(1=NONE,
2=ISOPARAMETRIC_LINES)

E

1=NONE

Pick identifier

Polygon culling
(1=NONE,
2=BACK,
3=FRONT)

1=NONE

Polyhedron edge culling mode
(1=NONE,

2=BOTH_BACK,
3=BOTH_FRONT,
4=BOTH_BACK_OR_BOTH_FRONT,
5=BACK_AND_FRONT,
6=LEAST_ONE_BACK,
7=LEAST_ONE_FRONT)

1=NONE

Polyline bundle table index

1

Polyline color

3[default]R

See note*

Polyline end type
(1=FLAT,
2=ROUND,
3=SQUARE)

E

1=FLAT

Polyline shading method
(1=POLYLINE_SHADING_NONE,
2=POLYLINE_SHADING_COLOR)

1=POLYLINE_SHADING_NONE

Polymarker bundle table index

1

Polymarker color

3[default]R

See note*

Reflectance model
(1=REFLECTANCE_NONE,
2=AMB,
3=AMB_DIFF,
4=AMB_DIFF_SPEC)

E

1=REFLECTANCE_NONE

Source blending function
(1=SRCBF_ZERO0,

2=SRCBF_ONE,
3=SRCBF_SRC_ALPHA,
4=SRCBF_ONE_MINUS_SRC_ALPHA,
5=SRCBF_DST_ALPHA,
6=SRCBF_ONE_MINUS_DST_ALPHA,
7=SRCBF_DST_COLOR,
8=SRCBF_ONE_MINUS_DST_COLOR,
9=SRCBF_MIN_SRC_ALPHA_ONE_MINUS_DST_ALPHA)

3=SRCBF_SRC_ALPHA

Specular color

3[default]R

See note*

Surface Approximation Criteria

Criteria
(1=WS_DEPENDENT,
2=CONSTANT_SUBDIVISION_BETWEEN_KNOTS,
3=VARIABLE SUBDIVISION BETWEEN_KNOTS)

1=WS_DEPENDENT

Control value

2[default]R

1.0, 1.0

Surface Properties

Chapter 1. General Information for Workstations

1

Table 2. The graPHIGS API Traversal Defaults Table (continued)

Description Data Type Default Value
Ambient reflection coefficient R 1.0
Diffuse reflection coefficient R 1.0
Specular reflection coefficient R 1.0
Specular reflection exponential R 0.0
Transparency coefficient R 0.0
Text bundle table index | 1
Text Color 3[default]R See note*
Text font | 1
Text precision E 1=STRING_PREC
(1=STRING_PREC,
2=CHAR_PREC,
3=STROKE_PREC)
Transparency coefficient R 0.0

Trimming curve approximation criteria:

Criteria | 1=WS_DEPENDENT
(1=WS_DEPENDENT,

2=CONSTANT_SUBDIVISION_BETWEEN_KNOTS,

3=VARIABLE_SUBDIVISION BETWEEN_KNOTS)

Control value 3[default]R 1.0,1.0, 1.0

Vertex Morphing

Vertex morphing scale factors n[default]R {1.0}

Vertex morphing scale factors, number of | 1
View index | 0
Z-buffer protect mask | 0

Note: The default color is the color value contained in entry 1 of the rendering color table.

Workstation View Table Data

When a workstation is opened with Open Workstation or Create Workstation (GPCRWS), a
Workstation State List (WSL) is created. The WSL is initialized from information in the actual Workstation
Description Table (WDT) that is modified to reflect the capabilities of the specific workstation to be used.
The workstation transformation values and the view table in the WSL are initialized to the following values.
The right-hand column lists the appropriate inquiry subroutine and parameter.

Table 3. WSL View Parameters at Initialization

Description Data Type Default Value Inquiry
Workstation window 6[default]R 0.0, 1.0, 0.0,
1.0, 0.0, 1.0
Workstation viewport 6[default]R 0.0, Wrx, 0.0,
wry, 0.0, Wvz

Note: For a square display surface, WVX, WVY, and WV.Z are the maximum device coordinate values in the x, y,
and z directions. For a non-square display surface, the largest square portion of the display surface in the lower left
corner is used.

View Table Entry Values

12 The graPHIGS Programming Interface: Technical Reference

Table 3. WSL View Parameters at Initialization (continued)

Description Data Type Default Value Inquiry
Viewing transformation matrix 16[default]R 1.0, 0.0, 0.0, 0.0 GPQCVR
0.0, 1.0, 0.0, 0.0 |[Group 18, 19]
0.0, 0.0, 1.0, 0.0
0.0, 0.0, 0.0, 1.0
View Mapping Matrix 4[default]4[default]R 1.0, 0.0, 0.0, 0.0 GPQCVR
0.0, 1.0, 0.0, 0.0 |[Group 22, 23]
0.0, 0.0, 1.0, 0.0
0.0, 0.0, 0.0, 1.0
Window 4[default]R -1.0, 1.0, -1.0, GPQCVR
1.0 [Group 16, 17]
Viewport 6[default]R 0.0, 1.0, 0.0, GPQCVR
1.0, 0.0, 1.0 [Group 14, 15]
Projection reference point 3[default]R 0.0, 0.0, 1.0 GPQCVR
[Group 16, 17]
View plane distance R 0.0 GPQCVR
[Group 16, 17]
Near plane distance R 1.0 GPQCVR
[Group 16, 17]
Far plane distance R 0.0 GPQCVR
[Group 16, 17]
Projection type E 1=PARALLEL
(1=PARALLEL,
2=PERSPECTIVE)
Window clipping indicator E 2=0N GPQCVR
(1=0FF, [Group 1]
1=0N)
Far clipping indicator E 2=0N GPQCVR
(1=0FF, [Group 3]
2=0N)
Near clipping indicator E 2=0N GPQCVR
(1=0FF, [Group 2]
2=0N)
Shielding color type E 1=INDEXED GPQCVR
(1=INDEXED, [Group 3]
2=DIRECT)
Shielding color | or 3[default]R 0 GPQCVR
[Group 5]
Shielding indicator E 1=0FF GPQCVR
(1=0FF, [Group 4]
2=0N)
View border color type E 1=INDEXED GPQCVR
(1=INDEXED, [Group 7]
2=DIRECT)
View border color | or 3[default]R 1 GPQCVR
[Group 7]
View border indicator E 1=0FF GPQCVR
(1=0FF, [Group 6]
2=0N)

View Active Flag for Input

Chapter 1. General Information for Workstations

13

Table 3. WSL View Parameters at Initialization (continued)

Description Data Type Default Value Inquiry
For view 0 E 1=ACTIVE GPQCVR
(1=INACTIVE, [Group 20]
2=ACTIVE)
For all other views E 1=INACTIVE GPQCVR
(1=INACTIVE, [Group 20]
2=ACTIVE)
View Active Flag for Output
For view 0 E 2=ACTIVE GPQCVR
(1=INACTIVE, [Group 21]
2=ACTIVE)
For all other views E 1=INACTIVE GPQCVR
(1=INACTIVE, [Group 21]
2=ACTIVE)
Temporary view indicator E 1=0FF GPQCVR
(1=0FF, [Group 9]
2=0N)
HLHSR (hidden line, hidden surface E 1=0FF GPQCVR
removal) mode [Group 10]
(1=0FF,
2=ON_THE_FLY)
Transparency mode E 1=0FF GPQCVR
(1=0FF, [Group 11]
2=PARTIAL_TRANSPARENT,
3=BLEND,
4=BLEND ALL)
Antialiasing mode E 1=0FF GPQCVR
(1=0FF, [Group 24]
2=SUBPIXEL_ON_THE_FLY,
3=NON_SUBPIXEL_ON_THE_FLY)
Initial color processing index | 0 GPQCVR
[Group 12]
Initial frame buffer write protect mask | 0 GPQCVR
[Group 13]
Shield alpha value | 255 GPQCVR
[Group 25]

14 The graPHIGS Programming Interface: Technical Reference

Chapter 2. Supported Workstations

This chapter contains general information about the workstations supported by the graPHIGS API. It
describes functions and limitations of particular workstations when running graPHIGS API applications.
Consider these when writing your application programs.

You should obtain and use the latest level of microcode for your workstation when applicable. This ensures
that you have fixes for microcode problems and possible performance enhancements. Ask the person
responsible for installing the graPHIGS API on your system to refer to the Program Directory supplied with
the latest release for information about the latest microcode release(s).

The X Workstation Family
The X Workstation represents the family of X workstations supported by the graPHIGS API.

The graPHIGS API in the X11 Windowing Environment

This section discusses the interaction between a graPHIGS API application and the X Version 11 Window
System. It is not within the scope of this book to explain X or graPHIGS API concepts. Background for the
standard X and graPHIGS API terminology in this chapter may be found in|The graPHIGS Programming

[Interface: Understanding Conceptd

The X Window System supports multiple applications running in overlapping and hidden windows on one
or more screens. X applications, called clients, share common resources such as the keyboard, mouse,
display surface, and hardware colormaps. The functions provided in X for window creation, window
deletion, window re-sizing, colormap allocation, and event handling make this environment very different
from a user running a single full-screen application.

However, X is but one of many workstations supported by the graPHIGS API. This implies that a
graPHIGS API application does not need to recognize that it is running in an X window, and that special
support is not required to run under X. A graPHIGS API application is not developed specifically for the X
environment, and is expected to perform in an X window as if it were running full-screen.

All processing that is unique to the X environment will be handled by the graPHIGS API. For example,
when an overlapping window is moved, the application must maintain the contents of the window beneath.
X generates events in order to notify the client that the window must be re-drawn. It is the responsibility of
the graPHIGS API to manage all X resources and to ensure that the window contents accurately reflect
the graphic contents. When the user changes the size of the window, the graPHIGS API manages the
graphics and echo areas according to the window mapping method. (Refer to |Window Mapping and|
for more information). Such events are handled by the graPHIGS API on behalf of the application.
So in fact, the graPHIGS API ensures that upward compatibility will be maintained and existing
applications will run unchanged.

Graphic output for a logical graPHIGS API workstation will be displayed in one corresponding window. For
example, if an application opens four X workstations, four windows will be created with a workstation
associated to each window.

For the graPHIGS API to create X resources such as windows, it must communicate with an X server by
opening a connection to the server. The process by which the graPHIGS API chooses the server is
described in [Opening the X Workstation| This connection is private and the application cannot access the
connection. This allows an application to access both graPHIGS API and X11 functionality without
confusion; it can mix graPHIGS API calls with X calls to use both the advanced graphic capabilities
provided by the graPHIGS API and the user interface routines provided by X11 toolkits. Having opened a
workstation, an application can access X resources by opening its own connection to a server. An
application that is making X calls has access to all X windows on the screen because X has very

© Copyright IBM Corp. 1994, 2002 15

generous rules for sharing resources. An application could draw into the same window that the graPHIGS
API accesses. However, this is strongly discouraged because it would be impossible to synchronize
updates. An application mixing X subroutine calls with graPHIGS API subroutine calls should not use X to
access the graPHIGS API window.

Both an application coding to the X interface and the graPHIGS API should behave as well-behaved X
clients. The graPHIGS API has been designed to minimize its use of server resources.

Since both the graPHIGS API application and the graPHIGS API are considered to be a single X client, it
is necessary to understand how the API creates a window, maps the graphics to a window, and handles X
events. These topics will be covered in detail in the following sections:

Temporary Views
Temporary views are supported with the following limitations:

Direct Access Capabilities on the RS/6000:
» To perform the view drawing optimizations through use of temporary views:

— The graPHIGS API must obtain the system resources needed to save the graphic data under a
temporary view.

— The graphic data under a temporary view must not be changed.

Otherwise the temporary view is treated as a normal view and the most efficient uses of the temporary
view are not performed.

» The graphic data under a temporary view is preserved across one workstation update only.

View Mapping
If the projection reference point is between the near and far clip planes, the projection type is changed to
PARALLEL and an error is generated.

Supported Hardware for the X Workstation

In general, the graPHIGS API is intended to operate with an application on an IBM workstation. The
graphics generated by the graPHIGS API, when using the X workstation, may be displayed on any
equipment that supports a complete X server (X Version 11, Release 4 or later for the RS/6000 platform).
The graPHIGS API is designed to exploit the distributed, network transparent, and device independent
qualities of X. Because of these capabilities, the user may run a graPHIGS API application on the same
machine as the X server or may run a graPHIGS API application on another machine that is connected to
the machine on which the X server is being used for display.

IBM does not explicitly support the use of non-IBM equipment running an X server to display the output of
the graPHIGS API. However, if the X server supports a full implementation of the X protocol, then there
should be little difficulty in using this equipment in this way. The graPHIGS API requires that the target X
server support any of the StaticGray, GrayScale, StaticColor, or PseudoColor visual classes. The
DirectColor and TrueColor visual classes cannot be used for the X workstation type in XLIB mode.

On some IBM equipment, the graPHIGS API supports advanced rendering capabilities which are available
through a method called Direct Window Access (DWA). These capabilities are assisted through hardware
on the X workstation when in DWA mode. For a list of these DWA capabilities, see [Additional Capabilities|
[Available on RS/6000} DWA capabilities are only available when the graPHIGS API nucleus runs on the
same machine as the X server. In order to use the DWA capabilities on a remote machine, the application
must connect to a remote graPHIGS API nucleus running on that remote machine.

Brief listings of configurations supporting the X workstation for the graPHIGS API follow:

16 The graPHIGS Programming Interface: Technical Reference

Table 4. Configurations Supporting X Workstation for graPHIGS API Running on the RS/6000

DISPLAY ADAPTER FRAME BUFFER |BEST SUPPORTED X VISUAL CLASS
DEPTH AVAILABLE WORKSTATION
BUFFER CAPABILITIES
CONFIGURATION
(Single or
Double)?
POWER GXT6500P 24 bit Double DWA/XSOFT TrueColor
24 bit Double DWA/XSOFT DirectColor
8 bit Single XSOFT/XLIB PseudoColor
POWER GXT4500P 24 bit Double DWA/XSOFT TrueColor
24 bit Double DWA/XSOFT DirectColor
8 bit Single XSOFT/XLIB PseudoColor
POWER GXT6000P 24 bit Double DWA / XSOFT TrueColor
24 bit Double DWA / XSOFT DirectColor
8 bit Single XSOFT / XLIB PseudoColor
POWER GXT4000P 24 bit Double DWA / XSOFT TrueColor
24 bit Double DWA / XSOFT DirectColor
8 bit Single XSOFT / XLIB PseudoColor
POWER GXT300P 24 bit Single XSOFT TrueColor
24 bit Single XSOFT DirectColor
8 bit Single XSOFT / XLIB PseudoColor
POWER GXT2000P 24 bit Double DWA / XSOFT TrueColor
24 bit Double DWA / XSOFT DirectColor
8 bit Single XSOFT / XLIB PseudoColor
POWER GXT3000P 24 bit Double DWA / XSOFT TrueColor
24 bit Double DWA / XSOFT DirectColor
8 bit Single XSOFT / XLIB PseudoColor
POWER GXT1000 and 24 bit Double DWA / XSOFT TrueColor
POWER GXT800P 24 bit Double DWA / XSOFT DirectColor
8 bit Single XSOFT / XLIB PseudoColor
POWER GXT550P 24 bit Double DWA / XSOFT TrueColor
24 bit Double DWA / XSOFT DirectColor
8 bit Double DWA / XSOFT / XLIB PseudoColor
POWER GXT500P 24 bit Single XSOFT TrueColor
24 bit Single XSOFT DirectColor
8 bit Double DWA / XSOFT / XLIB PseudoColor
12 bit Double DWA DirectColor
POWER Gt4 (24 bit), 24 bit Double DWA / XSOFT DirectColor
POWER Gt4x (24 bit),
and POWER Gt4xi (24 | g pit Single XSOFT / XLIB PseudoColor

bit)

Chapter 2. Supported Workstations

17

Table 4. Configurations Supporting X Workstation for graPHIGS API Running on the RS/6000 (continued)

Display Adapter

DISPLAY ADAPTER FRAME BUFFER |BEST SUPPORTED X VISUAL CLASS
DEPTH AVAILABLE WORKSTATION
BUFFER CAPABILITIES
CONFIGURATION
(Single or
Double)?
POWER GXT255P 8 bit Double DWA / XSOFT / XLIB PseudoColor
24 bit Single XSOFT TrueColor
24 bit Single XSOFT DirectColor
POWER GXT250P 8 bit Double? DWA / XSOFT / XLIB PseudoColor
8 bit Single XSOFT / XLIB PseudoColor
POWER GXT500D 24 bit Double DWA / XSOFT TrueColor
24 bit Double DWA / XSOFT DirectColor
8 bit Double DWA / XSOFT / XLIB PseudoColor
POWER GXT500 24 bit Single DWA / XSOFT TrueColor
24 bit Single DWA / XSOFT DirectColor
8 bit Double DWA / XSOFT / XLIB PseudoColor
12 bit Double DWA DirectColor
POWER Gt1x 8 bit Single XSOFT / XLIB PseudoColor
POWER GXT100 (8 bit) |8 bit Single XSOFT / XLIB PseudoColor
POWER Gt4x (8 bit), 8 bit Double DWA / XSOFT PseudoColor
POWER Gt4xi (8 bit) 8 bit Single XSOFT / XLIB PseudoColor
POWER Gt4e (8 bit) 8 bit Double DWA / XSOFT PseudoColor
8 bit Single XSOFT / XLIB PseudoColor
POWER Gt3i 8 bit Single XSOFT / XLIB PseudoColor
POWER GTO (24 bit) 24 bit Double DWA / XSOFT DirectColor
8 bit Single XSOFT / XLIB PseudoColor
POWER GTO (8 bit) 8 bit Double DWA / XSOFT PseudoColor
8 bit Single XSOFT / XLIB PseudoColor
Color Graphics Display 8 bit Single XSOFT / XLIB PseudoColor
Adapter
GrayScale Graphics 4 bit Single XLIB GrayScale

2 Maximum screen size is 1024x768 for DWA capabilities.

Note: ' DWA capabilities support the double buffer configuration only. XSOFT and XLIB capabilities support the
single buffer configuration only.

Opening the X Workstation

When a graPHIGS API application wants to open a logical workstation, it must specify a workstation type

and connection identifier. The workstation type for the X workstation support must be ’X’ and the

connection ID can either be

DISPLAY.

%)

18 The graPHIGS Programming Interface: Technical Reference

or the standard X windows server specification ’host:server.screen’. If you
specify an asterisk, then the graPHIGS API connects to the server listed in the operating system variable

The value of the operating system variable LANG determines the graPHIGS API primary character set.
» If the LANG variable is set to:

- Jja_JP

- Ja_JpP

— En_JPor

— Jdp_JP

then the character set identifier 6 (Katakana) is used as the primary character set.
» If the LANG variable is set to:

— ko_KR

then the character set identifier 9 (single-byte Korean) is used as the primary character set.
» If the LANG variable is set to:

— zh TWor

— zh_CN

then the character set identifier 8 (Multi-Language) is used as the primary character set.
 If the LANG variable is

— any lower case letter other than "j", "k", or "z",

then the character set identifier 10 (ISO 8859-1) is used.

+ |f the LANG variable is set to any value other than those listed above, then the character set identifier 8
(Multi-Language) is used as the primary character set.

To check the operating system variable LANG, enter the "echo $LANG” command. To set the operating
system variable LANG, for example, to use Katakana (character set 6) as the primary character set
identifier, enter the commands "LANG=ja_JP” and "export LANG".

The workstation type and the connection identifier can be specified through the defaults processing (EDF
file or ADIB) and as parameters on the Open Workstation or the Create Workstation
(GPCRWS) subroutines. The following examples illustrate two ways of specifying the connection identifier
and workstation type:

1. Sample line from the External Defaults File (EDF) called PROFILE

AFMMNICK TOWSTYPE=X,
TOCONNID=unix:0

2. Sample 'C’ language call to Create the Workstation:
GPCRWS (wsid, ncid,1,"*","X ",0) ;
* The ncid should be 1 if you do not issue the Connect to Nucleus subroutine call.
« The third parameter is the length (1) of the connection ID ("*").
* The fourth parameter is the workstation type and must be 8 characters.

Note: See the description under[Additional notes for DWA Adapters| for more information on opening
graPHIGS Direct Window Access(DWA) Workstations.

Window Creation

The window associated with a workstation can be created by either the application or the graPHIGS API.
This has been designed to provide maximum flexibility. The application can create the window and pass
the window identifier to the API via the XWINDID PROCOPT. By default, the graPHIGS API will create the
window as a child of the root window (top-level window), using the same visual, depth and screen as the
root window. It will not create the window if the user specifies the XWINDID PROCOPT.

If the API creates the window on behalf of the application, the user may specify some information about
the window that will define the initial position, initial size and window appearance. This information is

Chapter 2. Supported Workstations 19

communicated to X through two mechanisms, the XCreateWindow subroutine call and properties. The
following will explain how the graPHIGS API will use these mechanisms to create a window:

Properties

X allows the graPHIGS API to associate information, called properties, with a window that other clients can
access. Properties that are processed by a window manager are called hints. A hint is appropriately
named because a window manager has the authority to interpret or ignore any property. This is to say that
it impossible to state exactly how the window will ultimately appear because each window manager will
interpret hints differently. The graPHIGS API has chosen a standard set of properties to define on a
window. These properties can be used by a window manager to define the initial position, initial size,
window title, icon name, icon bitmap, minimum aspect ratio, maximum aspect ratio, window border color
and the window border width.

The graPHIGS API will define these properties based on default information provided by the user. The
graPHIGS API will use the standard methods for collecting user preferences, namely the .Xdefaults file.
The user can specify a string, which is usually the application name, via a graPHIGS API PROCOPT called
XNAME (see . The graPHIGS API will use this string to identify defaults specified in the .Xdefaults
file. Table 5 describes the properties that the user can specify and the graPHIGS API system default action
if the user has not specified the attribute.

Table 5. Window Creation Defaults for .Xdefaults File

Description Format graPHIGS API Default Action

Initial Window Geometry

name.geometry: WidthxHeight+(-
IX+(-)Y

See discussion below

Minimum Window Size name.minSize: WidthxHeight 100x100
Window Title name.title: MyTitle Blank Title
Icon Name name.Mylcon: Mylcon Default to the Window Name

Icon Bitmap Filename

name.iconBitmap: BitmapFilename

No icon bitmap

Minimum Aspect Ratio

name.aspectMinimum: WidthxHeight

None specified

Maximum Aspect Ratio

name.aspectMaximum: WidthxHeight

None specified

Window Border color (Pixel Value)

name.borderColor: color

Zero

Window Border width

name.borderWidth: width

Zero

Note: The value of the XNAME PROCOPT(see [XNAME) is substituted here as name

Each of the defaults may be prefixed by a name or a wildcard. This name can be passed in via the

graPHIGS API XNAME PROCOPT (see [XNAME), otherwise, the graPHIGS API will default the name to
"graPHIGS".

If the user does not specify the initial window geometry, the graPHIGS API will create a window half the
width of the screen and with the same aspect ratio. This is to insure that the window is large enough for
the user to easily locate. Your window manager may prompt you to size or move the initial window if the
graPHIGS API specifies the initial window geometry. The values that the graPHIGS API supplies will be
used for the outline of the rubber band box that the window manager will display.

The window border color is specified as a pixel value and not as a named color. This is due to the fact
that the graPHIGS APl may associate a colormap to the window and the named color will not necessarily
correspond to the pixel value.

A sample .Xdefaults file with the above defaults is supplied when you install the graPHIGS API diskettes.
For the graPHIGS API to find your defaults, you will have to place the default information in your
Xdefaults file in your SHOME directory.

20 The graPHIGS Programming Interface: Technical Reference

Converting Coordinates

The Convert Coordinate Values (GPCCV) subroutine can be used by the application to convert coordinate
units among the NPC, DC, and window units (WU) ranges.

Inquiring Window Size

The Inquire Mapped Display Surface Size subroutine returns the size of the area that displays
the DC range. In the 1=MAPPED method, the display is constrained to an area with the same aspect ratio as
the display surface’. In the 2=DIRECT method, the value returned is the current size of the window,
constrained to the same area as the root window. The application can use this value as the current size of
the displayable part of DC.

Note: ' This constraint disappears when you use the [XWINDASP PROCOPT|to alter the aspect ratio of
the root window.

XCreateWindow

Information derived from the .Xdefaults file will be used to change some of the X window attributes via the
XCreateWindow subroutine call. The .Xdefaults information is only processed when the window is created
by the graPHIGS API and therefore the corresponding window attributes will only be changed at this time.
Window attributes are also changed by the graPHIGS API in order to process events and color. The
following table briefly illustrates which attributes will be used by the graPHIGS API. The column on the left
applies when the API creates the window and the column on the right applies when the application creates
the window.

Table 6. Attribute Table

Attribute graPHIGS API Application
1) background_pixmap *

2) background_pixel *

3) border_pixmap *

4) border_pixel *

5) bit_gravity + +
6) win_gravity

7) backing_store + +
8) backing_planes + +
9) backing_pixel + +
10) override_redirect

11) save_under + +
12) event_mask * *

13) do_not_propogate

14) colormap * 1
15) cursor * *
Key:

* = the graPHIGS API will change this attribute
+ = the graPHIGS API may use this attribute in the future

Note: ' This is dependent on the XNOCLRMP PROCOPT (see [XNOCLRMP (Do Not Create an X Color Map)).

When the graPHIGS API has created and associated a colormap to the window, the API will require that a
window manager be installed. This ensures that the graPHIGS API colormap will be installed by the
window manager when the pointing icon is in the graPHIGS API window. The client should avoid grabbing
the input focus and installing the colormap and allow the window manager to perform these actions.

Chapter 2. Supported Workstations 21

Additional Capabilities Available on RS/6000

Under specific circumstances described in the list below, the graPHIGS API provides access to graphics
processor capabilities not normally available through the X Protocol. These additional capabilities allow
exploitation of hardware features of a graphics processor. The availability of these capabilities is indicated
in the actual WDT of the workstation. Specific capabilities are described in [Workstation Description Tables|
as direct access features of the X workstation type.

See [Table 4. Configuration supporting X Workstation for graPHIGS API Running on the RS/6000] to
determine which adapters support DWA mode. To obtain direct access to any of these adapters, the
following conditions are necessary:

» The application connects to a graPHIGS API nucleus running on a RS/6000.

* The X workstation connection id specifies an X server running on the same physical RS/6000 as the
graPHIGS API nucleus to which the [GPOPWS| or [GPCRWS]| procedure is directed.

PROCOPTs Supported by the X Workstation
XWINDID

The application can pass the graPHIGS API a window ID and the API will use this for the workstation
display window. If the application creates the window, then it cannot change the window ID without closing
the workstation and re-opening the workstation with a new ID. It is the responsibility of the application to
map the window before opening the workstation.

A potential problem with an application creating its own window is that it cannot know for certain whether
the graPHIGS nucleus on which the X workstation will be created is local to the X server where the
window was created. For example, if the application intended to open an XDWA workstation but the
application’s window was created on an X server that is remote to the graPHIGS nucleus, then an XDWA
workstation will fail during its initialization. This situation can happen readily if the graPHIGS nucleus that
is connected to has been changed via a TONUC or DEFNUC default in an EDF. The application could use
the (Inquire Nucleus Environment) subroutine to get the Internet address and the hostname of
the system that the nucleus is running in order to avoid this situation. Also, you can see the |GPES
subroutine (escape 1018) for information on getting a list of supported visuals in order to guarantee that
the application’s window will be usable by the graPHIGS nucleus.

It is important to remember when defining your window that the client should avoid installing the colormap,
and allow the window manager to perform these actions. The window manager will install the colormap
automatically for top level windows. For descendents of the top level windows which have different
colormaps, there is no current convention as to how their colormaps will be made active. Typically,
descendents of a top level window will share the colormap associated with the top level window. See
[XWINDID (X Window Identifier)| for additional information.

The following code illustrates the steps necessary to create a window and pass the window identifier to the
graPHIGS API:

22 The graPHIGS Programming Interface: Technical Reference

/* Declare the defaults data structure */
struct

{

int adib_len ;

struct
{
int len ;
int code ; /* code for following nicknames =*/

/* nickname - must be in adib */
char fromws[8] ;

char fromconn[8] ;

char tows[8] ;

char toconn[8] ;

/* PROCOPT for window id=/
struct
{
int len ;
int code ;
int window_id ;
} adsl ;

} nicknames ;
} adib ;

/* Open a connection to the server =/
if (!(dpy = XOpenDisplay(NULL)))
{

printf("Cannot open display \n");
exit(0);
}
/* Create an X window using a simple version of XCreateWindow */
win = XCreateSimpleWindow(dpy,
RootWindow(dpy,0),
DisplayWidth(dpy,0)/4,
DisplayHeight(dpy,0)/4,
DisplayWidth(dpy,0)/2,
DisplayHeight (dpy,0)/2,
0,0,0);
/* Map the window */
XMapWindow (dpy, win);
XSync (dpy, FALSE) ;

/* initialize the adib */
adib.adib_len
adib.nicknames.code
adib.nicknames.len

sizeof(adib) ;
2001
sizeof(adib.nicknames) ;

strncpy(adib.nicknames. fromws," ",8) ;

strncpy(adib.nicknames. fromconn," ",8) ;
strncpy(adib.nicknames.tows "X ",8) ;
strncpy(adib.nicknames.toconn ,"= ",8) ;

sizeof(adib.nicknames.adsl) ;
25
win

adib.nicknames.adsl.len
adib.nicknames.adsl.code
adib.nicknames.adsl.window_id

/* pass the defaults to the graPHIGS API x/
GPOPPH(erfile,&adib) ;

XNAME
This name will be used to resolve the defaults in the .Xdefaults file. The following example illustrates the
format of XNAME and the corresponding format of the defaults in the .Xdefaults file:

Chapter 2. Supported Workstations 23

AFMMNICK TOWSTYPE=X,
TOCONNID=unix:0,
PROCOPT=((XNAME ,MyName))

.Xdefaults file in your SHOME directory

MyName.geometry: 500x500+0+0
MyName.title : MyTitle

If the XNAME PROCOPT (see [XNAME (X Default String)) is not specified, then the graPHIGS API will use the
string "graPHIGS" to resolve the defaults. The .Xdefaults file would look like the following:

graPHIGS.geometry: 500x500+0+0
graPHIGS.title : MyTitle

XNOCLRMP

This option is only processed by the graPHIGS API if the application has also specified the XWINDID
PROCOPT (see [XWINDID (X Window Identifier)). The API will not create a colormap if this PROCOPT has been
defined. This implies that the application cannot access the colormap via the graPHIGS API. The API will
initialize the display colormap as non-modifiable by the application. This allows the application to have full
control over the colormap without graPHIGS API intervention. Refer to |Interaction of X and graPHIGS AP||
[Color Resources| and [XNOCLRMP (Do Not Create an X Color Map)| for more detailed information.

XWINDASP

When the workstation is created, the graPHIGS APl X-Windows device driver establishes the display
surface size in the Workstation Description Table (WDT). The graPHIGS APl PROCOPT XWINDASP (see
[XWINDASP (Window Aspect Ratio)) is provided to allow the application or user to specify the aspect ratio
of the display surface that is mapped to the window. If the window already exists (identified using the
XWINDID PROCOPT (see [XWINDASP (Window Aspect Ratio)), then the graPHIGS API X-Windows device
driver uses the largest subarea of the window that has the aspect ratio specified in the XWINDASP PROCOPT.
If the window does not exist, then a window is created, using hints in the X defaults file (or workstation
defaults if the X defaults file hints do not exist). The graPHIGS API X-Windows device driver uses the
largest subarea of the created window that has the aspect ratio specified in the XWINDASP PROCOPT. If the
XWINDASP PROCOPT is not specified, then the aspect ratio of the root window is used. Refer to
fthe Environment with Defaults and Nicknames| for the format of the PROCOPT in the External Defaults File
(EDF) or the Applications Interface Defaults Block (ADIB).

Other Supported PROCOPTs
Refer to [Controlling the Environment with Defaults and Nicknames| for information relating to the other
supported PROCOPTS.

X Events

SYNCPROC mode

On the operating system, the graPHIGS API has been using an IBM extension to Xlib (X Asynchronous
Event Handling) in order to receive X events. Using this extension, the graPHIGS API defines an event
handler and receives X events (that pertain to the windows for any graPHIGS X workstations that are
open) via an X signal handler. This technique allows the graPHIGS X workstations to handle events
regardless of whether the application process is executing graPHIGS API code or not.

Unfortunately, the use of this asynchronous event extension has caused problems for some graPHIGS
applications. Because of these problems, another method of handling X events was needed, one which
used a synchronous method to receive X events. To use this method, a graPHIGS application has to:

+ Turn on the graPHIGS SYNCPROC default (see [Controlling the Environment with Defaults and|

for more information on using graPHIGS defaults).

24 The graPHIGS Programming Interface: Technical Reference

 Call (Inquire the list of Socket Identifiers) to get a list of socket identifiers currently used by the
graPHIGS API. This routine should be called every time a graPHIGS resource (for example, a
graPHIGS nucleus or any nucleus resource) is created or destroyed.

* The socket identifiers have to be used by a routine that will tell the application when one or more of the
sockets is active. The XtAppAddinput subroutine is one way of giving the X Toolkit the socket
information (along with a callback subroutine) so that an XtAppPending subroutine (or an
XtAppMainLoop subroutine) could be used to check on the sockets. The application could also set the
socket identifiers into a read mask and then use a select subroutine to wait for one or more of the
sockets to become active. The method used to discover whether one or more of the sockets is active
depends on the application being used.

* When one or more of the sockets is active, then the (GPRDEV| (Redrive Events) subroutine must be
called so that the graPHIGS API can handle the events.

» |GPRDEV|should also be called when the application uses graPHIGS workstation subroutines that cause
an update to the graPHIGS workstation window.

+ If the application uses graPHIGS events, then it must continue to either use an event handler or call
GPAWEV| (Await Event) to retrieve these graPHIGS events.

Examples of running with the graPHIGS SYNCPROC mode can be found in the following sample
programs:

 /ust/lpp/graPHIGS/samples/samp/sampc.c
 /ust/lpp/graPHIGS/samples/widgets/lib/gPWorkstation.c and
» /ust/lpp/graPHIGS/samples/widgets/samples/viewers/viewers.c

Unfortunately, using a synchronous event handling method is complicated and depends heavily on the
design of the graPHIGS application. Also, there are cases where using synchronous event handling cannot
work without code changes (for example, when input devices are used in request mode).

For this reason, many graPHIGS applications would not want to use this method and, in general, most
applications either handle all events themselves (which they can do if the applications create their own X
windows and pass the window identifiers in a procopt in the Create Workstation subroutine or
the Open graPHIGS subroutine and they do not use graPHIGS input devices), or the
applications let the graPHIGS workstations handle the X events.

In the AIX 4.3, the default Xlib subroutine libraries moved from X11R5 to X11R6, and the Asynchronous X
Event Handling extension which exists in X11R5 on the operating system was not ported to X11R6. Thus,
the graPHIGS API, by default, must handle X events synchronously. The graPHIGS workstations cannot
use a signal handler to handle X events because the X11R6 libraries are not reentrant. A separate thread
cannot be used to handle X events because most applications are not linked such that the pthreads library
can be used. So, to allow graPHIGS applications to run without modification when using X11R6, the
graPHIGS shell creates a separate process that contains the graPHIGS nucleus: a graPHIGS child
nucleus. See[Advanced Concepts| for more information about the concepts of the graPHIGS shell and
nucleus.

With the graPHIGS nucleus in a separate process, the graPHIGS workstations are readily able to monitor
their X display connections for X events. graPHIGS applications that are using the SYNCPROC default will
continue to have the shell and nucleus in the same process (since they are already handling X events in a
synchronous manner).

Most graPHIGS applications should not be affected by the use of the graPHIGS child nucleus. However,
some applications may see performance problems— especially applications that use a lot of graPHIGS
inquiry subroutines. This is due to the overhead involved in process context swapping that occurs when
switching between the graPHIGS shell and the graPHIGS nucleus. If a graPHIGS application finds that it
has a performance problem when running in X11R6 and the application does not use the SYNCPROC
default, as long as the application is not dependent on any X11R6 function (for example, if the application

Chapter 2. Supported Workstations 25

was created on an earlier version of the operating system and was not rewritten to make use of new
functionality of X11R6), then the application can run with the X11R5 libraries and the graPHIGS API will
run as in previous releases.

To use the X11R5 libraries, the operating system variable LIBPATH must be set up to point to the
lusr/lpp/X11/R5 directory before it points to /usr/lib or /lib. For example, using a ksh, the command to set
up the LIBPATH would be:

export LIBPATH=/usr/1pp/X11/R5:$LIBPATH

If the application sets up an implicit LIBPATH (that is, a path specified when using a load subroutine), then
it must make sure to have /usr/lpp/X11/R5 in the path before /ustr/lib or /lib.

Window Deletion

Many current window managers provide a means for the end-user to "close” or delete a window (via a
pull-down menu, a special key sequence, or a similar method). The action that a window manager takes in
this case is specific to that window manager. Often, the default case is for a window manager to issue
XKi11Client (), which simply closes the connection to the X Windows display. The client receives an X I/O
Error and is expected to terminate immediately. However, this is unacceptable for an application that may
have resources open or active that should be closed or saved.

The graPHIGS API is notified of the window deletion via the WM_DELETE_WINDOW protocol as defined by the
X11.4 ICCCM. The application may request a WINDOW_DELETE notification event (107) through the
WINDOW DELETE_NOTIFY escape (1012).

There are three ways in which the application can interact with the WINDOW_DELETE function:
» The application enables the event

* The application disables (or does not enable) the event (the default case)

+ The application uses the XWINDID PROCOPT (see [XWINDID (X Window Identifier)).

The Application Enables the Event

If an application enables the event through the use of the escape call, the graPHIGS API puts a new event
on the event queue when the end user initiates a window close (via some window manager specific
action). This event is WINDOW _DELETE (107). The graPHIGS API takes no other actions. If the application
chooses to ignore the event, the window stays on the screen, and normal processing may continue. The
intent, however, is to allow the application to conduct some "close down” confirmation dialogue with the
end user. The application may then, at its option, close the workstation or close graPHIGS API.

The Application Disables the Event

With this default case, or when the application explicitly disables the event, the graPHIGS API generates
an error when the end user initiates a window close. The error number is 930, message number 2045. At
this point, the graPHIGS API also unmaps (removes) the window.

The application may define an error handler to trap this error and then somehow notify the mainline
application code that the window has gone away. In this way, the application may at least do some "close
down” of its own.

The Application Uses the XWINDID PROCOPT

The method by which a client of an X window receives the WM _DELETE_WINDOW message is to request it via
XSetVMProtocols. When an application uses the XWINDID PROCOPT (see [XWINDID (X Window Identifier)),
the graPHIGS API nucleus is not the client of the window and is unable to request the VM_DELETE_WINDOW
protocol messages. In this case, the application should enable the WM _DELETE_WINDOW protocol to avoid
having the window manager issue XKi11CTient on the window. If the application chooses to not enable the
WM_DELETE_WINDOW protocol itself, then the results are unpredictable, and an abend or a hang could occur.
The following sample code illustrates how an application may enable the WM_DELETE_WINDOW protocol:

26 The graPHIGS Programming Interface: Technical Reference

int npcol;

Status xrc;

Atom *newpcols,*pcols;
int i;

if ((wmproto =
XInternAtom(dpy,
"WM_PROTOCOLS",True))
== None)
goto DW_SKIP ;

if ((wn_delwin =
XInternAtom(dpy,
"WM_DELETE_WINDOW",True))
== None)
goto DW_SKIP ;

/* Both atoms exist at the server, continue...
npcol = 03
if (XGetWMProtocols(dpy,win,&pcols,&npcol))
/* non-zero return code ==> call failed
/* ...just skip...
goto DW_SKIP ;

/* scan the 1ist of protocols -- see if WM _DELETE_WINDOW
/* is already there
for (i = 0; i < npcol; i++)
if (pcols[i] == wm_delwin)
break;
/* if already there, just skip
if (i < npcol) goto DW_FREE ;

/* Allocate storage for old 1ist plus one more
newpcols = (Atom =*)

malloc((npcol+l)=*sizeof(Atom)) ;
if (newpcols == (Atom *)0)

printf(
"malloc failed!\n");
/* Output error message */
goto DW_FREE ;
1

/* if there was an old Tlist, copy it in
if (npcol) memcpy(newpcols,pcols, npcol * sizeof(Atom));

/* Append WM_DELETE_WINDOW protocol atom to Tist
newpcols[npcol] = wm_delwin;

/* Set new list of protocols for this window
XSetWMProtocols(dpy,win,newpcols,npcol + 1);

free(newpcols);

DW_FREE:
XFree(pcols);

DW_SKIP: ;

*/
*/

*/
*/

*/

Chapter 2. Supported Workstations

27

Window Mapping and Resize

The PHIGS static model for the display surface is maintained by the graPHIGS API and the device
coordinates are defined as the size of the root window on the default screen. Typically, these are the
maximum extents of the display surface. X allows windows to be larger than the display surface, but the
larger windows will not be completely visible.

The Set Device Coordinate Mapping Method subroutine allows your application to select either
1=MAPPED or 2=DIRECT as the window mapping method. The 1=MAPPED method of display is the default.
When using the 2=DIRECT display method, the graPHIGS API displays the device coordinate (DC) range
directly in the X-Window with no scaling. This method of display is analogous to a "porthole” rather than
the "rubber sheet” behavior exhibited by the 1=MAPPED method of display.

Mapped Display Method

If the window mapping method is set to 1=MAPPED, the graPHIGS API will scale all the data for a
workstation to the current window size, maintaining the aspect ratio of the device coordinates. A
workstation with square device coordinates will be mapped to the largest square region in the window and
a workstation with rectangular device coordinates will be mapped to the largest rectangular region in the
window. The display surface will also be centered in the window.

With the exception of the pixel primitive, all primitives, including annotation text and polymarkers, are
scaled to the window. The pixel primitive position is transformed to the new window size but the size of the
pixel primitive represents a fixed number of pixels on the screen. In addition to the primitives, all the input
echo areas, echoes, and pick aperture are scaled.

Direct Display Method

When a workstation is opened, the DC values in the workstation description table are initialized using the
size of the root window for the DC limits. When graPHIGS API data is displayed in an X-Window, the
lower-left corner of the DC volume is aligned with the lower-left corner of the window. If the window is
smaller than the DC range addressed in the data, then the window clips the data. If the window is larger
than the display data, the area of the window beyond the DC range of the data is unused.

28 The graPHIGS Programming Interface: Technical Reference

Workstation Disploy Surface in DC

Window

Figure 1. Direct Method of Display to X-Window. This illustration depicts the clipping of text by a window. The
illustration shows a rectangular region (the window) within a larger region (the display surface). The smaller region
contains the first five letters of the word geometry (geome). A ghost image of the last three letters of geometry (try) is
shown in the larger region.

When the 2=DIRECT method is used, neither the geometry nor the rendered size (line width, for example),
is scaled. The area available for display is the only thing that changes. The application can, however, use
the transformation pipeline to cause the geometry to grow or shrink. A control variable is available to scale
the primitive nominal DC sizes, allowing the application to stretch, shrink, or leave them unchanged. The
scaled nominal primitive size is used with various scale factor attributes, such as the line width scale
factor, to render the primitive. This control allows applications to globally scale primitive sizes without
changing scale factor attributes. This scale factor affects the following DC values:

* Nominal line width

* Nominal marker size

* Nominal edge width

* Nominal annotation height

The 2=DIRECT display method, used with other graPHIGS API functions, allows an application to fill an
X-window when the user resizes the window. The following sequence is an example:

1. The transformation pipeline transforms a region of the Normalized Projection Coordinate system (NPC)
to a viewport in device coordinates (DC), filling the X-window.

2. The application uses the Window Resize Notification Control Escape to enable event notification when
a resize occurs.

3. The application receives the resize event and uses the Get Window subroutine to
determine the new window size.

4. The application changes the view table and workstation transformation to the new values so that the
specified area of World Coordinates fills the new X-window area.

5. The application issues update workstation, causing the window to be redrawn with the new
transformation values.

Chapter 2. Supported Workstations 29

While this processing takes place, no WDT or WSL values associated with device coordinates are
changed. The maximum DC value that the application can specify is the size of the root window.
Specifying larger values results in an error. DC values smaller than the WDT DC are clipped to the current
window size. This adjustment is not an application error nor is any warning returned to the application.

For any window mapping method, the application can request notification when a window resize occurs.
The graPHIGS API enables (or disables) the notification of window resize events through an escape
function (1009: Window Resize Notification Control). When this notification is enabled, all window resize
events are sent to the graPHIGS API application by using the graPHIGS event queue. When the
application gets control back from the Await Event subroutine, an event code indicates that the
window size has changed.

Be aware that resizing the graPHIGS APl window causes an implicit update of the display. Any deferred
actions on the display surface will occur with a resize. The application can request, through escape 1009
(Window Resize Notification Control), whether or not it wants the graPHIGS API to redraw the contents of
the window when a resize occurs. By default, the graPHIGS API redraws the contents of the window when
a resize occurs.

The inquiry subroutine, Inquire Mapped Display Surface Size allows the application to obtain
the display size on an X workstation. This size is referred to as the mapped display surface size. The
GPQMDS subroutine returns the size of the window in device coordinates (i.e. meters) and in address
units.

The Geometric Text Culling Escape, which accepts a size in device coordinates, is interpreted as the size
on the physical screen and not as a size on the workstation display surface, and thus the cull size is not
scaled to the window. Geometric Text Culling is an optimization used by the X device driver to replace
geometric text with a box, or completely clip it, when the geometric text is too small to read. When the
window size is increased and the text is large enough to be read, the cull size is not scaled to allow the
text to be drawn.

Exposure Events

The application can request notification when a window exposure occurs. The graPHIGS API enables (or
disables) the notification of window exposure events through the escape function (1011: Window Exposure
Notification Control). When notification is enabled, all window expose events are sent to the graPHIGS API
application using the graPHIGS API event queue as event class 106. The graPHIGS API exposure event
includes data which must be retrieved using the Get Window subroutine, for event class 106
(Window Exposure Event). GPGWIN returns a bit field of flags indicating which views have been affected
by the exposure.

Additionally, the application can use the Window Exposure Notification Control Escape to specify if the
graPHIGS API should update the currently displayed screen when a window exposure occurs. If the
application chooses to update the display itself, the graPHIGS API clears the exposed rectangular region
on the visible rendering target at the earliest possible moment. For DWA clients, the rectangles are not
cleared while Immediate Elements are being rendered within a Begin Structure - End Structure sequence.
When the graPHIGS API clears exposed regions, only the visible rendering target is cleared. No other
rendering targets or rendering resources are affected by the clear. (Refer to [Explicit Traversal Control| for
additional information.)

Note: An implicit update may occur to reflect the current contents of STRUCTURE STORE on DWA
Adapters. See[Table 4. Configurations Supporting X Workstation for graPHIGS APl Running on the|
|RS/6000| to determine which adapters support DWA mode.

Collapsing Events

The graPHIGS API attempts to collapse multiple X Windows exposure and configure notify events into a
single graPHIGS API event class. For multiple exposure events, the graPHIGS API returns a single
Window Exposure Event (event class 106) with a list of views affected by all the exposed regions of the

30 The graPHIGS Programming Interface: Technical Reference

window. For combinations of window exposure and configure notify, only the configure notify is returned to
the application as a Window Resize natification, and no Window Exposure events are returned in this
case.

Interaction of X and graPHIGS API Color Resources

Color management is one of the most difficult topics that an X windows application must deal with.
Therefore, the graPHIGS API has been designed so that applications do not have to be aware that they
are operating in an X window. For those applications that wish to have a closer integration with other
clients, the graPHIGS API provides the flexibility to manage the interaction of color with other X clients.

The major difficulty in managing color resources is that the physical resources of a display are limited and
must be shared by all clients using that display. The X server isolates the client from these limitations by
virtualizing the color resources so that each client can use as many colors as it needs. Each window has a
colormap that defines the mapping between the pixel values used in the window and the color that will
appear on the monitor. Different windows can share colormaps or have unique ones. The colormap is
associated to the window through the colormap attribute of the window.

When virtual color allocations exceed the available physical resources, only a subset of the clients can
have their requested colors active at one time. For top level windows which are children of the root, the
decision as to which colormaps should be active is left up to the window manager. For descendents of the
top level windows which have different colormaps, there is no current convention as to how their
colormaps should be made active. Typically, the descendents of a top level window will share the
colormap associated with the top level window.

When the number of virtual colormaps exceeds the number of physical colormaps, the window manager
will enforce some policy as to which windows have their virtual colormaps loaded into the physical ones.
The window manager will typically ensure that the top level window that contains the pointing device has
its colormap loaded. This implies that other windows may not have their colormap installed and therefore
will be displayed with the wrong colors. This produces what has become known as the "false color
effect”: as the input focus moves from window to window, the colors in some windows may change. Most
window managers install the colormap of the window that has the input focus. In the worst case, some
windows may become invisible or incomprehensible because the pixel values used in those windows
correspond to approximately the same intensities of black or white in the currently installed colormap. To
avoid this "technicolor effect”, either the hardware must provide additional physical colormaps or the
clients must be programmed to share colormap entries.

X also defines six different techniques for mapping pixel values into a color or intensity on a monitor.
These are referred to as visual classes. The visual class of a window is defined when it is created and
must be one that is supported by the server for the target screen. The six visual classes are:

» StaticGray
* GrayScale
» StaticColor
* PseudoColor
* TrueColor

» DirectColor

If you are unfamiliar with these concepts, you should refer to the X documentation since these are key to
understanding how a graPHIGS API workstation interacts with the resources of an X server.

One of the important attributes of visual classes StaticGray, StaticColor, and TrueColor is that their

colormaps are read only while the other three visual classes have colormaps that can be modified as well
as read.

Chapter 2. Supported Workstations 31

When the graPHIGS API creates a window, the visual class will default to that of the root window on the
target screen. If the application creates the window, the graPHIGS API will use the visual class of the
window that is passed in. The visual class will be used to determine some characteristics of the graPHIGS
API workstation that is created. (See the subroutine for information on the Inquire X Visual List
Information escape.) These characteristics are summarized in the following table:

Table 7. WDT Content For Each Visual Class

Content (Note
4)

StaticGray GrayScale StaticColor Pseudo-Color | TrueColor Direct-Color
(Note 1) (Note 1)

Frame Buffer |Indexed Indexed Indexed Indexed Component Component
Type
No. Frame 1 1 1 1 3 3
Buffer
Components
Color Available |No No Yes Yes Yes Yes
Display Color |See Note 2 See Note 2 See Note 2 See Note 2 See Note 2 See Note 2
Table Size
Is the Display |No See Note 3 No See Note 3 No See Note 3
Color Table
modifiable?
Available Echo | XOR XOR and Bit XOR XOR and Bit XOR XOR and Bit
Methods Plane Plane Plane
Rendering Identity Index | Identity Index |ldentity Index |Identity Index |Identity Index |ldentity Index
Color Table Map Map Map Map Map Map
Default

Color Models

Default Color |0 See Note 5 0 See Note 5 0 See Note 5
Table for

Default Color Bitwise Bitwise Bitwise Bitwise Bitwise Bitwise
Processing

Method

Available Color | Workstation_ Workstation_ Workstation_ Workstation_ Workstation_ Workstation_
Processing Dependent, Dependent, Dependent, Dependent, Dependent, Dependent,
Methods Bitwise Bitwise Bitwise Bitwise Bitwise Bitwise
Available RGB RGB RGB RGB RGB RGB
Rendering

Notes:

1. This visual class is supported only on DWA and XSOFT workstations.

2. The display color table will have the same number of entries as the X colormap if XOR echo method is
used or an overlay bit plane is available. If bit plane echo is used, the display color table will have half

the number of entries as the X colormap.

3. If the application specifies the XNOCLRMP PROCOPT (see |PROCOPT (Processing Options)) to
suppress the creation of a colormap by the graPHIGS API, the display color table is not modifiable
through the graPHIGS API. Its content must be modified through the X programming interface.

4. Identity Index Map means that the pixel values produced by the graPHIGS API rendering pipeline will
be equal to the color index in the WSL or structure elements as specified by the application.

5. The default will be the display color table if it is modifiable, 0 otherwise.

32 The graPHIGS Programming Interface: Technical Reference

The following discussion about colormap allocation assumes that the visual class of the window has a
corresponding colormap that is modifiable (GrayScale, PseudoColor or DirectColor). The application
programmer has a choice as to whether the application or the graPHIGS API allocates the colormap that is
to be used for the window that the graPHIGS API workstation will use. If the application does not pass in a
window identifier through a PROCOPT then the graPHIGS API automatically allocates a colormap as well
as the window. The colormap attribute of the window is then set to that of the allocated colormap. When
the application passes in the window identifier through a PROCOPT, the graPHIGS API will not allocate
and assign a colormap if the XNOCLRMP PROCOPT is specified (see XNOCLRMP (Do Not Create an X Color
. The colormap attribute of the window that was passed in will not be modified.

Only when the graPHIGS API allocates the colormap can it be modified through the [GPCR| and [GPXCR|
subroutine calls. The allocated colormap always corresponds to the display color table. When the
graPHIGS API does not allocate the colormap, the application must set the colormap through the X
programming interface. It cannot be modified through the graPHIGS API programming interface.

The bit plane echo method may require special treatment by the application. When a bit plane echo
method is provided, the graPHIGS API will draw all echoes in the most significant bit plane of each frame
buffer component. The echoes will be erased and drawn independently of the content of the other bit
planes. To produce a constant echo color, the upper half of the X colormap will be loaded with the echo
color and only the lower half of the colormap will be accessible to the graPHIGS API application. Bit plane
echo will not be granted by the graPHIGS API if the X visual class is StaticGray, StaticColor or TrueColor
since the colormap is not modifiable. In this case, the echo method will default to XOR or uses an overlay
bit plane if available. After successful creation of a graPHIGS API workstation, the application should
check whether bit plane echo method is being used or not. If it is, and the application has created the
colormap, then the application is responsible for loading the upper half of the colormap with the echo color.

So far, the X resources that the graPHIGS API uses have been discussed as well as how the application
can affect the allocation of these resources. In the following paragraphs, we will discuss differences
between the X concepts and PHIGS concepts and how the two might coexist using the mechanisms
described above.

One of the fundamental differences between X and PHIGS is that X is primarily concerned with
independent pixel values that the application will use. In contrast, PHIGS, PHIGS PLUS and graPHIGS
API applications are more concerned with color or ranges of colors. In the latter case, it is left entirely up
to the implementation as to what pixel values are generated and how the physical colormap is used.
Ranges of color are introduced in PHIGS PLUS and the graPHIGS API to support depth cueing, lighting,
shading, and direct color specification. In many cases, the implementation is most efficient if it can map
ranges of color to ranges of pixel values. In the graPHIGS API, additional functionality has been introduced
to give the application direct control over the pixel values that are generated. This was done to support
applications that need to create special effects, such as the simulation of overlay planes or to implement
some form of display priority that is independent of the traversal order. Even the applications that use the
direct control over the pixel values still need color ranges for lighting, shading, etc.

A large percentage of PHIGS and PHIGS PLUS applications could be supported if the implementation
maps the specified color values to the closest available on the device. Since the relative intensity of color
can be approximated on the gray visual classes, an application will be most portable across different
devices and visual classes if it relies on the implementation to map the specified colors to the closest
available. However, the quality of the display image will vary depending on the capabilities of the
hardware. This class of applications, which will be termed true color, does not need to manipulate the
graPHIGS API color processing parameters or the content of the display color table once they are
initialized. The TrueColor or DirectColor visual classes would produce the best results for this type of
usage.

Note: The graPHIGS API does not support the closest color approximation on StaticGray and StaticColor
visual classes.

Chapter 2. Supported Workstations 33

Some applications may require more accurate color approximation on some visual classes than can be
achieved through closest color approximation since the accuracy or quality decreases as the number of
simultaneously displayable colors decreases. For example, on an 8 bit plane system (256 colors), closest
color approximation is only acceptable if dithering is supported. Otherwise, the application needs more
direct control over the generation of pixel values to optimize the usage of color. The application could
choose to allow only 4 object colors. In this case, it could use 64 color table entries to represent different
intensities of each of the 4 colors.

If an application requires better color fidelity or any of the special effects described above, it must take a
more active role in how the pixel values are generated and how the pixel values get mapped to a color on
the monitor. To do this, it must manipulate the color processing parameters and content of the display
color table. This class of application will be termed direct pixel control. For visual classes that have read
only colormaps, it is almost impossible to support this class of application since the mapping between pixel
values and the resulting color is fixed. Fortunately, these visuals are becoming less common.

In order to share colors and to avoid the "technicolor effect”, either the colormap must be static (automatic
sharing) or the application must explicitly control the pixel values that are produced by the graPHIGS API.
In the former case, it has already been stated that it is difficult to support applications that require the
special effects described above as well as to optimize the fidelity of the color approximation. Therefore, the
best way to share the X color resources is for the application to take an active role in controlling the
generation of pixel values.

Since the graPHIGS API does not understand how the application will use the color facilities, it will allocate
an entire colormap instead of attempting to allocate specific colormap entries from X. This implies that the
"technicolor effect” will most likely result when the graPHIGS API allocates the colormap. If the application
wishes to minimize this effect, then it should suppress the creation of the colormap by specifying the
XNOCLRMP PROCOPT (see XNOCLRMP (Do Not Create an X Color Map)) and explicitly manipulate the color
processing parameters to control the pixel values that get generated.

To facilitate this usage, the default color processing parameters and content of the rendering color table
will be set to map color indexes directly to pixel values. The resulting pixel value will be the same as the
specified index. This will make it easier to share pixel values and colors with X. Notice that this initial setup
is not appropriate for using direct color specification unless the application calculates the color components
based on the desired pixel value and color processing parameters. If depth cueing, lighting, or shading are
enabled, the pixel values generated will not necessarily match the specified color index since the rendering
pipeline will modify them.

The following list summarizes the guidelines for applications that fall into the direct pixel control class. This
may be due to the special effects which are desired or because the application has limited color
requirements and wants to avoid the "technicolor effect.”

« If the application does not need color ranges, such as for depth cueing or shading, then it can
implement the following to minimize the technicolor effect:

1. Create the window through X, specifying the default visual class.

2. Create the graPHIGS API workstation, passing in the window identifier and suppressing colormap
creation.

3. As colors are needed, perform calls to the X programming interface to find the closest color
available in the default map or allocate a colormap entry from the default colormap.

4. Specify all attribute colors through the graPHIGS API as indices using the pixel values allocated
through X.

This technique works well for all visual classes including StaticGray and StaticColor.

Notice that for bit plane echo, an entire colormap probably needs to be allocated since half of the
colormap should be loaded with the echo color. This technique works well only when echo is not
required or when XOR echo method is used or when overlay bit plane method is used.

34 The graPHIGS Programming Interface: Technical Reference

The previous technique could also be used if limited ranges of color are required. The steps to
accomplish this would be:

1. Create the window through X, specifying the default visual class.

2. Create the graPHIGS API workstation, passing in the window identifier and suppressing colormap
creation.

3. Using the XAllocColorCells function in the X programming interface, attempt to allocate a range of
color cells from the X server. If the allocation from the default colormap fails, allocate a new
colormap and try again. If a new colormap is allocated, the colormap attribute of the window would
have to be modified.

4. Set the graPHIGS API color processing parameters to generate pixels in the range that were
allocated. For example, if four contiguous planes are requested from XAllocColorCells, it might
return a pixel value of 0x80 and a mask of 0x01, 0x02, 0x04, and 0x08. In this case, setting a color
processing representation to bitwise (0,4,0) with a pad of 0x80, would provide 16 pixel values
corresponding to 16 quantization levels of the green color component.

5. Colors could then be specified as direct pixel values through color indices if the rendering color table
has not been modified. The content of the rendering color table could be changed and direct color
used as long as the color processing parameters are set to generate pixels in the allocated ranges.

Notice that for bit plane echo, an entire colormap probably needs to be allocated since half of the
colormap should be loaded with the echo color. This technique works well only when echo is not
required or when XOR echo method is used or when overlay bit plane method is used.

This technique is a slight modification of the previous two. Instead of using the default map, the
application would allocate a new colormap and copy the default colormap to it. The application could
then set or use any entry without allocating it from X resulting in more flexibility. If the application then
started using colormap entries at the top first, it would minimize the impact on other windows which
typically share entries at the bottom of the colormap.

The simplest technique is to let the graPHIGS API allocate a colormap, realizing that users may
encounter the "technicolor effect.”

The following list summarizes the guidelines for applications that fall into the true color class and do not
want to worry about the pixel values that get generated:

If the visual class is TrueColor, the application can specify the desired color through either the rendering
color table or direct color elements freely.

For visual class GrayScale, PseudoColor, and DirectColor, the application could allocate the colormap
or allocate a subset of a colormap from X depending on its needs. Whether the application allocated the
colormap entries or not, it would set the graPHIGS API color processing parameters to include a few
bits from each color component in the resulting pixel value, and it would load the colormap with
corresponding color ramps (graduated color components). The application could then specify the
desired color through either the rendering color table or direct color elements freely. For a direct color
visual class, the colormap is usually loaded with ramps of red, green, and blue. This colormap content
is used frequently and should be sharable with other X clients. There are several standard colormaps
defined by X that might be appropriate for this class of application.

The visuals StaticGray, StaticColor cannot be used for this class of application since the graPHIGS API
does not currently provide an appropriate color approximation method.

A few final notes on color:

Color table animation cannot be performed on a visual class with a read only color table.

Pixel primitives cannot be displayed on visual classes with read only colormaps without modifying the
pixel values prior to display since the colormap cannot be changed.

Chapter 2. Supported Workstations 35

Additional Notes for DWA Adapters

Note: The following information applies to all DWA Adapters except the POWER GT4 Family and the
POWER GTO.

Using the visual associated with the window, the graPHIGS API supports creating graPHIGS windows as 8
bit Indexed, 24 bit TrueColor, or 24 bit DirectColor. Additionally, the graPHIGS window MUST be created in
the color planes and for the best performance, it is recommended that the X window (root window when X
is started) be created in the overlay planes. In support of echoes, the graPHIGS API will create a child
window in the overlay planes.

The graPHIGS window may be created as follows:

» By the application who then passes the window id to graPHIGS via the XWINDID procopt (see
[XWINDID (X Window Identifier)| for additional information).

* By the graPHIGS API on behalf of the application when the workstation is created.

The visual associated with the graPHIGS window being created is selected as follows:

» Specified by the application from the supported visuals for the color planes via the XGetVisuallnfo
function. It is then passed to the XCreateWindow function to create the graPHIGS window in the color
planes.

In this case, start X in the overlay planes as follows:
For POWER GXT255P and POWER GXT250P:

xinit -- -x dbe
For all other DWA Adapters (except the POWER GT4 Family and the POWER GTO):
xinit -- -x dbe -x abx

and within your application, select the desired visual and pass it to the XCreateWindow function.
This method allows you to start X in the overlay planes while the graPHIGS API is running in the color
planes, giving you the best performance. Windows in different planes will cause fewer graPHIGS
redraws, since there will be fewer exposure events. If your application is NOT currently written to select
a visual, this will require a change to your application.
If your system administrator has installed the sample programs, there will be a sample program and
README file in the /usr/lpp/graPHIGS/samples/windows directory showing how an application selects
the desired visual and creates a graPHIGS window.

» Defaults to using the visual associated with the root window (the window created when X was started).
This will occur if you do not pass a selected visual to the XCreateWindow function.
In this case, you start X in the color planes and select one of the following three graPHIGS API
supported frame buffer configurations for the root window:
— The 8 bit visual:

For POWER GXT255P and POWER GXT250P:
xinit -- -x dbe -Tayer 0

For all other DWA Adapters (except the POWER GT4 Family and the POWER GTO):
xinit -- -x dbe -x abx -Tayer 0
— The 24 bit DirectColor visual:
For POWER GXT255P:
xinit -- -x dbe -d 24 -cc DirectColor

For all other DWA Adapters (except the POWER GT4 Family and the POWER GTO):
xinit -- -x dbe -x abx -layer 0 -d 24 -cc DirectColor

— The 24 bit TrueColor visual:

36 The graPHIGS Programming Interface: Technical Reference

For POWER GXT255P:
xinit -- -x dbe -d 24 -cc TrueColor

For all other DWA Adapters (except the POWER GT4 Family and the POWER GTO):
xinit -- -x dbe -x abx -layer 0 -d 24 -cc TrueColor
This method produces the desired results and requires no change to your application, but it does not
give you the best performance. If the X window is manipulated, causing an exposure event, more
graPHIGS API redraws may occur since X and graPHIGS windows are both created in the color planes.

Additionally, the graPHIGS API uses an overlay window for echoes that it creates as a child of the
graPHIGS window. Since this overlay window has a transparent background pixel, the graPHIGS window
passed in MUST be in the base planes. Furthermore, if the graPHIGS window is passed in from the
application, and is NOT the top level window, the application must add a Window Manager Colormap
Install property to the application’s top level window for the graPHIGS created overlay window in order for
the overlay window’s colormap to be installed when the graPHIGS window gets focus.

The graPHIGS API and X Input Relationship

The graPHIGS API has been designed to be consistent with the behavior of other applications sharing the
same input devices, namely the keyboard and the mouse. The graPHIGS API will never grab these
devices but it will expect the server to direct input to the window when the window has the focus. The keys
on the keyboard will be interpreted according to the current keycode to keysym mapping. X maintains a
device independent mapping between the scancodes generated from the keyboard and the meaning of a
key. For example, the key top with the number "1’ will generate a keycode that will be mapped to the
keysym for number one. The graPHIGS API will interpret the keyboard events via keysyms. Therefore, if
you change the keycode to keysym mapping via the xmodmap utility, the graPHIGS API will automatically
interpret the new mapping. Typically, the character on the key will generate the identical keysym. This area
gets a little more difficult when you consider the control keys. The following list describes some of the
behavior that a particular server may display:

» A two button mouse works the following way under X windows. You will notice that button two is not the

right mouse button. Remember this when you run your application, otherwise you are likely to think that
there is a problem.

— Press Button 1 - generates an event indicating Button 1 pressed
— Press Button 2 - generates an event indicating Button 3 pressed
— Press Button 1 and 2 together - generates an event indicating Button 2 pressed.

* The available button and PFKey counts in the actual WDT will be for the maximum number of buttons
and PFKeys that the X workstation will support. There may be fewer PFKeys on your keyboard or
buttons on your mouse.

(Ref #1.) On platforms that support the Lighted Program Function Keys (LPFKs) and Dial X server
extensions, the graPHIGS API uses these extensions to access the lighted keys and dials (see
[Version 5.3 AIXwindows Programming Guide). When the graPHIGS API window receives input focus,
graPHIGS API assumes itself to be the owner of the LPFKs and Dials and attempts to set the attributes of
the devices (the lights mask and dial resolution) as needed.

graPHIGS applications can no longer be run on an operating system using X11R4 and displayed on an
operating system using X11R5 because of X input extension compatibility issues. (Please see the
/usr/lpp/X11/README for further explanation.) The recommended way to avert this problem is to open a
graPHIGS remote nucleus on the same system where it is desired to have the graphical output displayed.

For applications that also use these input device extensions independent of the graPHIGS API, a
contention problem can result when the applications also attempt to set the attributes of the devices. To
avoid this contention, the application can issue the Set Physical Device Mode graPHIGS API
subroutine to disable the physical button device #1 (LPFKs) and all scalar devices (Dials). When the
physical devices are disabled, the graPHIGS API will not attempt to set the device attributes.

Chapter 2. Supported Workstations 37

When using physical device emulation on the X workstation, you may find it useful to translate the X
windows coordinate system to the physical vector device value ranges. The transformation requires the
use of the mapped display surface (see the Inquire Mapped Display Surface |GPQMDS|M subroutine), the
value ranges for the vector device (see the Inquire Physical Device Characteristics |GPQPDC| subroutine),
and the size of the X window (obtained from the X windows interface). The elements of this mapping are
described in [Window Mapping and Resize}

The algorithm to achieve a mapping from x coordinate position data to vector device value ranges is as
follows:

w X Window Geometry.

MDS Mapped Display Surface Components from the Inquire Mapped Display Surface
subroutine.

VR Value Range Descriptor from the Inquire Physical Device characteristics
subroutine.

v Value passed to the Emulate Physical Device subroutine.

P Position data in x coordinates.

1. Clip to the Mapped Display Surface, the display surface is centered in the X Window. The
clipping rectangle is computed as follows:

X components: (Wwidth - MDSwidth / 2)
(Wwidth - MDSwidth / 2 +MDSwidth)

Y components: (Wheight - MDSheight / 2)
(Wheight - MDSheight / 2 +MDSwidth)
2. Scale from the Mapped Display Surface (in address units) to the vector device value
ranges:

Scale Factors: (VRxhigh - VRxlow) / MDSwidth

Note: Only one scale factor is needed since the value ranges are maintained in the
same aspect ratio as the display surface.

3. Compute a value range from an X position data:
Vx= (Px - (Wheight - MDSwidth / 2)) * Scale Factor

Vy= (Wheight - (Wheight - MDSheight / 2)) =* Scale Factor

How the graPHIGS API Uses X Window System Cursors

Whenever a graPHIGS API "pointing” input device is active (pick, locator, or stroke), the graPHIGS API
changes the shape of the X pointing cursor when it enters the graPHIGS APl window, and restores the
shape of the cursor to its previous shape when it leaves. The shape of the cursor in the graPHIGS API
window depends on the echo area where it is positioned, and which input devices are active.

Normally, in non-X graPHIGS API environments, when no pointing input device is active, no pointing
cursor is displayed. However, in the X environment, the pointing cursor should never be hidden from the
user, who should always be able to locate the pointing cursor as he moves it from window to window. This
practice is part of being a well-behaved X client program. The shape of the pointing cursor in a graPHIGS
APl window with no pointing input devices active is the shape of the graPHIGS API window’s parent’s
cursor. In applications where the graPHIGS APl window is the top level window (direct descendant of the
root, or background window), the parent’s cursor will usually be the root window cursor. The root window’s
cursor will be displayed in the graPHIGS APl window when no pointing input devices are active. Note that
some window managers, such as the OSF/Motif window manager (mwm), will re-parent a window and
supply a different parent cursor.

38 The graPHIGS Programming Interface: Technical Reference

Fixed cursor type -1 (cross hair) extends to the limits of the graPHIGS API window. If the hardware cross
hair cursor is used (either by defining the gPHWCURS environment variable or via the[HWCURS]
, the cursor extends to the limit of the display. This is currently a limitation that exists in the X
cursor extension.

How the graPHIGS API Handles X Window System Errors

The X Window System handles error conditions by generating an X error event, which is queued back to
the X client program. The X error event contains information about the X request that caused the error
condition. The default action for most X clients is to simply print the error information and then terminate.
The graPHIGS API overrides this default action by intercepting this error event and signaling a graPHIGS
API error to the graPHIGS API application. This method allows the graPHIGS API application to detect the
error and close down in an orderly fashion, preserving application status and data, if desired. By
preventing the termination of the X client program, which is the graPHIGS API nucleus in this case, a
remote nucleus may continue to execute if one of the sessions using the nucleus experiences an X
terminating error condition.

The graPHIGS API nucleus may experience X error conditions for three reasons: resource shortages,
internal programming errors, and communication errors. All requests for X resources made by the
graPHIGS API nucleus are made during graPHIGS APl Open Workstation processing. X resources are
simply graphic objects that the X server manipulates, such as Pixmaps or Cursors. Therefore, any
resource shortage conditions will be detected during Open Workstation processing and will result in a
failure of the opening of the workstation. Resource shortage conditions may be caused by:

1. Using an X server that has a very limited set of resources. The graPHIGS API is not especially
resource intensive, so all but the most limited servers should have enough resources.

2. Running a large number of applications that use up the X resources. This type of shortage can be
corrected by removing some of the applications that are holding the resources.

X errors may also be caused by a problem internal to the graPHIGS API nucleus. The error information
returned by X is formatted into a graPHIGS API error message. This error information will give more
details about the error condition.

X communication errors are most likely to happen in a networked environment where the X client
(graPHIGS API nucleus) and the X server are running on different network nodes. If there is a break or
other problem with the network connection, the link between client and server fails, causing the
communication error. X communication errors may also occur if a client window is terminated abnormally,
such as by using a window manager to close a window. The graPHIGS API traps these errors and queues
an error notification to the graPHIGS API application. This is the default behavior, which may be modified
(see |[Window Deletion| for more details).

Editing in Quick Update Mode

Quick update operations fall into two categories, insertions and deletions. Even when editing structures in
replace mode, the operation consists of a deletion followed by an insertion.

Insertion
Insertions are done by adding structure elements to a structure in either insert or replace mode, or by
using the Copy Structure function.

The inserted primitives are drawn on the screen using the attribute and the traversal state that is in effect
at the point of insertion. The traversal state is the collection of all the current values of the various
attributes and transforms that are used to draw primitives on the screen. This traversal state is achieved
by pseudo-traversing the structures up to the point of insertion. Pseudo-traversal processes the structure
elements as if to draw them but does not send them to the screen. The resultant traversal state reflects
the correct data although the display contents remain unchanged except for the inserted primitives.

Chapter 2. Supported Workstations 39

For example, a polyline primitive inserted after a polyline color index attribute, is drawn with the color
specified in the polyline color index structure element. More importantly, it is drawn in the correct position
dictated by any preceding modeling transforms. In general, inserting an attribute structure element affects
certain primitives that follow the inserted attribute. This can be an expensive operation because the redraw
may include many primitives and must continue to the end of the structure, or until the same attribute
structure element is encountered in the structure. This redraw of affected primitives is called attribute
propagation.

Inserting an attribute structure element in a structure can cause a large part of the structure to be redrawn.
This can be very time-consuming and defeat the purpose of quick update. Therefore, no attributes are
propagated except color. Color is a far more common insertion attribute than line type or line width, either
of which could have undesired results such as wide holes or a cluttered screen, if inserted in quick update
mode.

The following structure provides an example:

GPOPST(1);
GPPLCI(3);
GPPL3(...);
GPPLCI(2);
GPPL3(...)
GPCLST();

If the first|GPPLCI| were replaced in quick update mode, then the first|GPPL3| primitive would have to be
drawn, but not the second.

If an execute structure element is encountered in the attribute propagation block, it is executed and drawn
normally. Even if a color attribute structure element is contained in the called structure, attribute
propagation continues after the execute structure because the return from the called structure cancels any
effect of any color attributes in the called structure.

If any attributes other than color are inserted, then quick update mode is aborted. But the primitives that
would be affected by these attributes are not always redrawn. The result may be incorrect display update.

The following two examples illustrate how attribute propagation can affect display in unexpected ways,
depending on implementation:

1. Primitives in the attribute propagation range that are NOT affected by inserted colors may or may not
be drawn. Theoretically, they can be skipped, but the implementation may choose to draw them.

2. Non-color attributes that are inserted following a color attribute in the same insertion operation may be
processed differently. One implementation may choose to propagate these attributes while another
may not.

Note that the first effect can influence the second. Inserting structure elements that have a global effect,
such as modeling transforms, and class names, causes quick update to be aborted and the screen to be
redrawn.

Deletion

Deleted primitives are simply undrawn in the background color. The background color is defined as the
shield color if the view has a shield, or black if there is no shield. Other primitives that overlap the deleted
primitives may be left with holes that are not repaired.

The deletion of an attribute does not affect the display. Deleted attributes are not propagated because the
workstation would have to backtrack to find the previous usage of the attribute in order to determine its
value prior to the deletion point, or pseudo-traverse from the start to the deletion point. It would then have
to forward propagate, drawing the affected primitives with the previous attribute value. This operation is

40 The graPHIGS Programming Interface: Technical Reference

considered too expensive to be quick. Therefore, deleted attributes do not cancel quick update but do not
change the contents of the screen. No special provision is made for the deletion of color attributes as is
done for the insertion of color attributes.

In many cases, the deletion of an attribute is immediately followed by an insertion of the same attribute.
This can happen, for example, if a structure edit is drawn in replace mode to change the value of a color
attribute. In this case, it is appropriate to propagate only inserted attributes to avoid propagating attributes
twice.

The treatment of deleted structure elements other than primitives is extremely implementation dependent.

The graPHIGS Programming Interface: Writing Applications contains information on how to select
modification modes.

The XSOFT Workstation

Overview

The graPHIGS XSOFT workstation is a complete implementation of the graPHIGS API in software. It can
replace the graphics sub-system by performing all graphics operations on the main CPU or workstation.

Traditionally, interactive computer graphics implementations such as graPHIGS have been implemented
with the power of hardware assist. This hardware assist was usually made available in the form of a
graphics sub-system consisting of general purpose processors, custom or semi-custom VLSI rasterizers
and a frame buffer. For example, the IBM 5080 and IBM POWER GTO are graphics subsystems that
connect to a mainframe or workstation respectively. The graphics subsystem is attached to the main CPU
or workstation and was necessary because the general purpose processors of the main CPU were not
capable of driving the graphics performance at interactive speeds. However, RISC processors have
evolved to the point of being able to partly or completely replace the graphics subsystems and drive the
computer graphics at interactive speeds.

Understanding XSOFT

At initialization GPCRWSHGPOPWS| the workstation allocates, in virtual memory, the virtual frame buffer
(rendering targets) and virtual Z-buffer (rendering resources) based on the initial size of the workstation
display surface. Thecall returns the size of the display surface as it is mapped into the
X-window. Should the display surface change size (via a window resize operation), the rendering targets
and the rendering resources are reallocated based on the new size. These virtual memory areas are freed
when the workstation is closed (GPCLWS).

During an implicit (GPUPWS), explicit (ETC operation), or simulated (quick update) update, the affected
structure elements undergo geometry processing and rasterization into these virtual resources. At the end
of the update, the displayed rendering target in virtual memory will be transferred to the X-window.

The XSOFT workstation uses the GP-MIT-SHM extension to X to make this process more efficient. The X
Windowing System has a rather small limit on the protocol buffer size. This restriction means that the
XSOFT rendering target would be transferred to the X server in small "chunks”, which impacts the visual
quality of the update as well as the interactive performance. The GP-MIT-SHM extension bypasses the
client-server protocol by transferring the rendering target in one piece through shared memory.

General Information
The XSOFT workstation includes the following:
* Full functionality

Chapter 2. Supported Workstations 41

The graPHIGS XSOFT workstation supports the full functionality of the graPHIGS API. This includes
HLHSR, lighting and shading, depth-cueing, transparency, blending and anti-aliasing in addition to basic
graphic functions. Previously, this functionality was not available across the varied domain of IBM
workstations, processors, and graphics adapters.

* Processor independence

The graPHIGS XSOFT workstation runs on all IBM workstations. This includes the IBM RS/6000
processor family.

» Adapter independence

The graPHIGS XSOFT workstation will run on any 2-D or 3-D 8-bit or 24-bit adapter that supports its
own graphics sub-system or does not have one available.

e Performance
— Scalability

The graPHIGS XSOFT workstation graphics performance can be directly correlated to the IBM
RS/6000. As the workstation’s processor specifications improve, the performance of the graPHIGS
XSOFT workstation will improve.

Configuring a graphics workstation for XSOFT

There are several items that need to be evaluated when considering the graPHIGS XSOFT workstation
and recommending specific configurations.

* Processor requirements
* Memory requirements. The memory requirements generally fall into several areas:

— Disk space requirements for the actual graphics XSOFT library. The graPHIGS XSOFT workstation
shared library is approximately 12 Mbytes in size. This memory is essential for obtaining the high
performance of the graPHIGS XSOFT workstation.

— Paging space requirements

— Virtual memory

» Graphics adapters

The graPHIGS XSOFT workstation will run on any 8-bit or 24-bit graphics adapter. However, since the
graPHIGS XSOFT workstation is dependent on the blt performance of the workstation, the faster the blt,
the better. The performance of bit blt operation on the High Speed Graphics Subsystem (GTO)
adversely effects the performance of the XSOFT workstation. This platform may not provide the
interactive performance necessary for production use. If high performance graphics at a low cost is a
concern, we recommend the use of 8-bit graphics adapters.

For assistance in configuring a system for a specific need, contact an IBM Customer Representative.

Starting the X Server

The XSOFT workstation device driver uses (when available) the graPHIGS Shared Memory Image
(GP-MIT-SHM) extension to X to provide a very efficient means of moving the image of the XSOFT
workstation to the X server display. The GP-MIT-SHM extension is very similar to the sample Shared
Memory Image extension (MIT-SHM) which comes from MIT.

The GP-MIT-SHM extension is only available to the XSOFT workstation device driver when the graPHIGS
nucleus is executing on the same machine as the X server and the X server has the GP-MIT-SHM extension
loaded.

To load the GP-MIT-SHM extension, start the X server with the -x gpshm command line option:
* For a system with X11R5 installed: xinit — -x gpshm
* For a system with X11R4 installed: xinit -x gpshm

Alternately, to automatically load the GP-MIT-SHM extension, add the following line to the static_ext file in
the /usr/lpp/X11/bin directory:

42 The graPHIGS Programming Interface: Technical Reference

gpshm /usr/1pp/graPHIGS/bin/1oadgpshm

X Stations And Distributed X-Windows

Whenever the graPHIGS nucleus and the X server are not running on the same machine, for example X
Stations and other distributed X-windows environments, the XSOFT workstation cannot take advantage of
the GP-MIT-SHM extension. Running without this extension limits the interactive performance of the XSOFT
workstation. The GP-MIT-SHM extension can be used in the distributed graPHIGS configuration when the
graPHIGS shell and nucleus are distributed but the X server is executing on the same machine as the
nucleus. Distributing the graPHIGS API in this manner does not limit the performance of the XSOFT
workstation.

The XSOFT workstation supports lighting and interpolated features not supported on the X Stations by the
X workstation type. Occasional or "view only” users of an application may find the performance
acceptable. Applications with low frame rates, minimal user interactions, or user interactions implemented
entirely independent of the graPHIGS API may also find this configuration acceptable.

Applications can use the X workstation type to provide interactive performance in the distributed
environment and a second XSOFT workstation to provide a more advanced rendering. This is possible
through the graPHIGS ability to share Structure Store among more than one workstation. For more
information on this capability, see [Advanced Concepts|

Special Notes about Color
3D graphics applications have special needs for color processing. The XSOFT workstation creates a
private color table for use in the workstation’s X-window. The use of a private color table can cause the
"false color” effect on devices that support only one simultaneous colormap. The effect is caused by the
fact that the device can only display one colormap at a time. Therefore, when the focus is on the
graPHIGS window, all other windows are displayed with different colors. Although this problem is not
limited to the XSOFT workstation, the additional color demands of lighting and interpolated shading may
make this problem more noticeable. For more information about this, see [Interaction of X and graPHIGS)
[API Color Resources]

Lighting and interpolated shading techniques often require many colors to achieve the desired effect. Since
8-bit devices can only display 256 colors, the XSOFT workstation will dither colors on these devices.
Dithering is a technique where pixels of different color are placed adjacent to one another to give the
appearance of a third color. Image quality is vastly improved using this technique, although the individual
colors used in the dither can sometimes be noticed as a slight pattern in filled areas. Dithering is applied
to fill area primitives (i.e. polygons and triangles, etc.) and to lines when the color along the line is
interpolated (i.e. Polyline set with data or depth cued lines). Dithering is not applied to constant color lines,
text, markers, view shields, and view borders.

The 6090 Workstation
Shading (SHP) and Expanded Pixel Memory (EPM) are optional features on the 6090 workstation. Your
use of these optional features determines whether some functions are supported by the 6090 workstation.

If you go in and out of setup while your application is running, an implicit update of the screen will occur.

The actual primary character set is determined by the language setup as follows:
 If you specify character set 1-5 or 7 in setup, then the primary character set is 8 (Multi-Language).
 If you specify character set 6 in setup, then the primary character set is 6 (Katakana).

» Specifying character set 8 in setup associates U.S. English with a Kaniji keyboard. The primary
character set is 1 and the available input character sets are 1, 8, and 128.

Workstation Configuration
The pre-select highlight, line on line, cursor shape, and color setup options are ignored.

Chapter 2. Supported Workstations 43

Transformation Matrixes
You must put all transformation matrixes in your application in the following format:

R11 R12 R13 | 0.0
R21 R22 R23 | 0.0
R31 R32 R33 | 0.0

The values in the fourth column, (0.0, 0.0, 0.0, and 1.0) are always used regardless of what you specify in
your application program.

Temporary Views
Temporary views are not supported.

View Mapping
If the projection reference point is between the near and far clip planes, the projection type is changed to
PARALLEL and an error is generated.

The 5080 Workstation

General Information

The IBM 5080 Graphics System uses 16-bit integers for the coordinates of figures to be drawn. Since
graPHIGS API applications pass 32-bit floating-point coordinate parameters, a mapping must be done to
represent the coordinates received from the application in the correct format for the 5080. This mapping
(“normalization”) can result in distortion when the floating-point format cannot be mapped well into the
available integer range. For example, the extents of the data might be very small when compared to the
distance of the data from the origin of the coordinate system, or one extent of the data might be very small
when compared to other extents of the same data. To minimize these effects of normalization, center your
data about the coordinate system origin whenever possible.

Note: The maximum number of structure elements in a single structure that the 5080 can display is
32,767. When an update to the workstation is processed and the resultant element count exceeds
this limit, the update will be ignored and will result in an error.

Workstation Configuration

The pre-select highlighting and line on line setup options must be set to off. Cursor shape and color setup
options are ignored.

Display Models

The DISPLMOD PROCOPT is used to identify the use of different 5081 displays. The default is the 19-inch
display (5080-19). If you are using the 16-inch display (5081-16), specify 5081-16 as the PROCOPT value
(see PROCOPT (Processing Options)). If you are using the 23-inch display (6091-23), specify 5081-23 on
the PROCOPT value. All other values that start with the characters 5081- are treated as the 19-inch display.

Class Set

The class names which you can specify are limited to the range 0 through 255. Any class name
encountered which is greater than 255 or less than 0 is ignored.

Transformation Matrixes
All transformation matrixes specified by an application must have the following format:

44 The graPHIGS Programming Interface: Technical Reference

| R11 R12 R13 | 0.0
R21 R22 R23 | 0.0
R31 R32 R33 | 0.0

The values in the fourth column, (0.0, 0.0, 0.0, and 1.0), are always used regardless of what was specified
by the application.

Temporary views
Temporary views are not supported.

View Mapping

If the projection reference point is between the near and far clip planes, the projection type is changed to
PARALLEL and an error is generated.

The GDDM Workstation

Class Set

The class names which you may specify are limited to the range 0 through 255. Any class name
encountered which is greater than 255 or less than 0 is ignored.

View Mapping

If the projection reference point is between the near and far clip planes, the projection type is changed to
PARALLEL and an error is generated.

The GDF Workstation

General Information

The Graphics Data Format (GDF) workstation provides a means of capturing and storing data produced by
applications in a form which can be processed by other programs. This form consists of a sequence of
graphics orders and their parameters.

The GDF workstation is an output-only workstation which is not associated with a physical graphics
device. The GDF support assumes that the target display device has the characteristics of the
3270-PC/GX. When an application program interacts with a GDF workstation, images defined by the
application are converted into GDF display lists and stored in files. Subsequently, these files can be
processed by a program such as IBM Color Plotter Support for GDDM Graphics Data Format (CPS),
which can plot the file to the IBM family of plotters.

Note: The CPS programs are supplied with the graPHIGS API

The application is free to select a connection identifier which is used to derive the names of the files
created by the GDF workstation.

In the VM and MVS environments, a valid connection identifier consists of letters, numbers or
underscores. The file name is created by taking the first five characters of the connection identifier. If any
of these characters are blanks, they are replaced with a fill character. Lower case characters are
converted to upper case. An ’X’ replaces a blank first-position character, and a ’0’ replaces any other
blanks between the second and fifth positions. The GDF workstation then concatenates to the end of the
file name a three-digit update number in the range 001-999.

Chapter 2. Supported Workstations 45

In the VM and MVS environments, the logical record length of the file must be 400 bytes and it must be
fixed record format.

On VM/SP, the resulting file name is used as the file name of the generated file; the file type is always
ADMGDF. On MVS, the resulting file name is used as the member name in a partitioned data set that has
been allocated using the DDNAME of ADMGDF.

In the operating system, the connection identifier must be a valid file name which may include a full or
partial path name. The GDF workstation strips the optional path name from the connection identifier and
takes the first five characters from the resulting file name. Upper and lower case characters are valid. If
any of these characters are blanks, they are replaced with a fill character. An "X’ replaces a blank
first-position character, and a ’'0’ replaces any other blanks between the second and fifth positions. The
GDF workstation then concatenates to the end of the file name a three-digit update number in the range
001-999, and suffixes the extension. The file is then created in the current directory or in the directory
specified by the path name in the connection identifier.

A new file is generated each time the GDF workstation is updated. When a new file is created, the number
represented by the last three characters of the file name is increased by one. If this number exceeds 999,
it is reset to 001. A new file will overwrite an existing file which has the same name. At this point then, the
first file created during the session will be overwritten. Therefore, a maximum of 999 different files can be
generated during a session.

If, for example, an application specifies *ABC’ as the connection identifier for a GDF workstation, the files
created on successive workstation updates will be:

Table 8. Filename Examples

UPDATE NUMBER FILENAME
1 ABCO00001
ABC00002
ABCO00003
999 ABC00999
1000 ABCO00001
1001 ABC00002
Class Set

The class names which you may specify are limited to the range 0 through 255. Any class name
encountered which is greater than 255 or less than 0 is ignored.

GDF Conversion Utility

The CVTGDF utility converts a file which is in GDF format (a file generated by a GDF workstation running
on an operating system platform) to ADMGDF format, which is the format produced by a GDF workstation
running in the VM/SP or MVS environment. This utility resides in the directory /usr/bin.

To run the utility the syntax is:
cvtgdf /dir/fn.gdf

must be the file extension

46 The graPHIGS Programming Interface: Technical Reference

| the file name

specifies the directory in which the file resides
(if the file resides in the current

directory, this information may be omitted)

The converted output is placed in the /dir/fn.cfgdf file.

When uploading the file from the operating system to the VM or MVS host (using, for example, the 3278
emulation program), a record length of 400 and a fixed record format must be specified. On MVS, the file
must be placed in a dataset which has been allocated with the DDNAME ’GDF’.

View Mapping
If the projection reference point is between the near and far clip planes, the projection type is changed to
PARALLEL and an error is generated.

The CGM Workstation

General Information

The Computer Graphics Metafile (CGM) workstation provides a means for the application to store
graphical information about a picture in a file. The file format consists of a set of elements encoded in
CGM binary format according to ANSI standards. When an application program interacts with a CGM
workstation, images defined by the application are converted into a list of CGM elements and are stored in
a single file. The CGM workstation is an output-only workstation which is not associated with a physical
graphics device. The graPHIGS APl CGM support assumes that the target display device has the
characteristics of the 3270-PC/GX. See [General Output Facilities| for details.

The filename is derived from the connection identifier.

On the operating system, the filetype is CONNID.cgm. For example, if an application specified TSTALL as the
connection identifier on a CGM Workstation, the application creates the file: TSTALL.cgm. Upper and lower
case characters are allowed. If the connection identifier consists of all blanks, the output CGM file is
IBMCGM. cgm.

On MVS, the user must have allocated a sequential dataset with the DDNAME *CGM’.

On VM, the filename is always converted to uppercase and the filetype is always CGM. For example, if an
application specified ’ABC * as the connection identifier on a CGM Workstation, the application creates the
file: ABC CGM. This file includes all the graphics. If the connection identifier consists of all blanks, the
filename is IBMCGM. The CGM workstation recognizes both upper and lowercase.

The CGM file is opened when the workstation is opened. Failure to open the file is a failure to open the
workstation. Any data written to the CGM file with an Escape subroutine (1014) before the first
update to the workstation results in a non-conforming file.

Each update workstation operation creates a new picture in the file. The first update workstation operation
creates the header. The end metafile element is not generated until close workstation is issued, therefore
the CGM file does not conform unless you explicitly close the workstation. The output format is a fixed
record length of 400 bytes. The output is a single CGM metafile with each update workstation generating a
separate picture within the metafile.

Class Set

The class names which you may specify are limited to the range 0 through 255. Any class name
encountered which is greater than 255 or less than 0 is ignored.

Chapter 2. Supported Workstations 47

View Mapping
If the projection reference point is between the near and far clip planes, the projection type is changed to
PARALLEL and an error is generated.

CGM File Structure

For general information about CGM workstations, see [The CGM Workstation]

A CGM file represents a snapshot of a picture created by a program. The file holds an ordered set of
elements used to describe the picture in a completely device-independent way. As shown in the example
below, the structure of a CGM file accommodates more than one picture.

METAFILE PICTURE
| Begin metafile | | Begin picture |
| |
v v
| Metafile descriptor | | Picture descriptor |

Graphical primitives
and
Attributes elements

There are three standard ways of encoding all CGM elements:

Binary Stores all elements as a bit stream.
Character Stores the data in a compressed manner.
Clear text Represents all elements in readable text

The graPHIGS APl CGM device driver always uses the binary encoding method.

Binary encoding
All elements comprise an element header and the element data.

Element Header
The element header is made of an element class, an element identifier, and the parameter length. This
information can be stored in two formats.

» Short form (Only accommodates up to 30 bytes of data)

48 The graPHIGS Programming Interface: Technical Reference

Element Element Parameter
class Identifier List length

Element Element 11111
(indicates Tong format)
class Identifier
[P Parameter list length |

-- 0 - Indicates last partition
1 - More partitions
(Each partition may contain up to 32767 bytes)

Element Data

CGM defines different formats for integers and real values. The graPHIGS APl CGM device driver stores
integer values as two-byte integers. Negative values are represented as two’s complement. All real values
are represented as four-byte IEEE floating-point numbers.

Refer to the ANSI CGM documentation for detailed information about element data.

Delimiter Elements
In CGM, the following metafile will appear in the following order:

Begin Metafile Begins the file. This element has a single parameter which is a character
string that identifies the metafile and has a single parameter. For metafiles
produced by the graPHIGS API, this character string is graPHIGS API
Metafile./TD>

Begin Picture Delimits the beginning of a picture description and forces all attributes to be
reset to the default values. It contains a character string parameter
representing the name of the picture. For metafiles produced by the
graPHIGS API, the name of the picture is PICT n where n is incremented
from 1 to n. All pictures in a CGM file are independent from each other and
must start with this element. Each update workstation generates a new
picture in the output metafile.

Begin Picture Body Ends the picture description and starts the definition of the picture. This
includes a list of graphical primitives and attribute elements. There are no
parameters for this element.

End Picture Ends the picture. It has no parameters.

End Metafile Ends the metafile. It has no parameters.

Metafile Descriptor Elements
These elements inform the interpreter of the capabilities needed to interpret the CGM file successfully.
Included in these elements are:

Metafile Version Specifies the version of the CGM standard. The CGM device driver uses
version 1.

VDC Type Specifies the type of VDC values used. The CGM device driver uses only
real VDC (virtual device coordinates).

Integer Precision Specifies the precision for integers. The CGM device driver uses 16 bit

integers to represent integers.

Chapter 2. Supported Workstations 49

Real Precision Specifies the precision for the real numbers. The CGM device driver stores
reals as 32-bit floating-point numbers with 9 bits for the exponent and 23 bits
for the fraction. This is stored in IEEE floating-point format. The VDC real
precision parameter value is 0,9,23.

Index Precision Specifies the precision for indexes. Integers are used to represent indexes.
The CGM device driver uses 16 bit index precision.

Color Precision Specifies the precision for each color component contained in the color table.
The CGM device driver uses 16 bit integers to represent each color
component.

Color Index Precision Specifies the precision for the color index. The color indexes are stored in the

file as two-byte integers. The CGM device driver uses 16 bits to represent
color indexes

Maximum Color Index Specifies the largest color index stored in the file. This value is the number of
color entries for the application output color table. The maximum color index
is 255.

Color Value Extent Specifies the range of RGB values contained in the color table. These are

multiplied by 1000 before stored as integers in the file. All color values in the
CGM file are integers in the range from 0 to 1000. The parameters are a
minimum direct color value (0,0,0) and a maximum direct color value
(1000,1000,1000).

Metafile Element List Specifies all of the elements that are used in the CGM file. This list enables
the CGM interpreter to check the elements before translating the file. All
elements contained in this list are described in the following sections:

Picture Descriptor Elements
Picture descriptor elements describe the use of ot