
AIX

5L

Version

5.2

Technical

Reference:

Communications,

Volume

1

SC23-4161-04

���

AIX

5L

Version

5.2

Technical

Reference:

Communications,

Volume

1

SC23-4161-04

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices,”

on

page

327.

Fifth

Edition

(May

2003)

This

edition

applies

to

AIX

5L

Version

5.2

and

to

all

subsequent

releases

of

this

product

until

otherwise

indicated

in

new

editions.

A

reader’s

comment

form

is

provided

at

the

back

of

this

publication.

If

the

form

has

been

removed,

address

comments

to

Information

Development,

Department

H6DS-905-6C006,

11501

Burnet

Road,

Austin,

Texas

78758-3493.

To

send

comments

electronically,

use

this

commercial

Internet

address:

aix6kpub@austin.ibm.com.

Any

information

that

you

supply

may

be

used

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1997,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Who

Should

Use

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Highlighting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Case-Sensitivity

in

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

ISO

9000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

32-Bit

and

64-Bit

Support

for

the

UNIX98

Specification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

Related

Publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

Chapter

1.

Data

Link

Controls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

dlcclose

Entry

Point

of

the

GDLC

Device

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

dlcconfig

Entry

Point

of

the

GDLC

Device

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

dlcioctl

Entry

Point

of

the

GDLC

Device

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

dlcmpx

Entry

Point

of

the

GDLC

Device

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

dlcopen

Entry

Point

of

the

GDLC

Device

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

dlcread

Entry

Point

of

the

GDLC

Device

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

dlcselect

Entry

Point

of

the

GDLC

Device

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

dlcwrite

Entry

Point

of

the

GDLC

Device

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

close

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

ioctl

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

open

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

readx

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

select

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

writex

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

open

Subroutine

Extended

Parameters

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

read

Subroutine

Extended

Parameters

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

write

Subroutine

Extended

Parameters

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Datagram

Data

Received

Routine

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Exception

Condition

Routine

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

I-Frame

Data

Received

Routine

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Network

Data

Received

Routine

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

XID

Data

Received

Routine

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

ioctl

Operations

(op)

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Parameter

Blocks

by

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

DLC_ADD_FUNC_ADDR

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

DLC_ADD_GRP

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

DLC_ALTER

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

DLC_CONTACT

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

DLC_DEL_FUNC_ADDR

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

DLC_DEL_GRP

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

DLC_DISABLE_SAP

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

DLC_ENABLE_SAP

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

DLC_ENTER_LBUSY

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

DLC_ENTER_SHOLD

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

DLC_EXIT_LBUSY

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

DLC_EXIT_SHOLD

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

DLC_GET_EXCEP

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

DLC_HALT_LS

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

DLC_QUERY_LS

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

DLC_QUERY_SAP

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

DLC_START_LS

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

DLC_TEST

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

DLC_TRACE

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

IOCINFO

ioctl

Operation

for

DLC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

©

Copyright

IBM

Corp.

1997,

2003

iii

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

DL_ATTACH_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

DL_BIND_ACK

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

DL_BIND_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

DL_CONNECT_CON

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

DL_CONNECT_IND

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

DL_CONNECT_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

DL_CONNECT_RES

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

DL_DATA_IND

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

DL_DATA_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

DL_DETACH_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

DL_DISABMULTI_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

DL_DISCONNECT_IND

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

DL_DISCONNECT_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

DL_ENABMULTI_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

DL_ERROR_ACK

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

DL_GET_STATISTICS_ACK

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

DL_GET_STATISTICS_REQ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

DL_INFO_ACK

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

DL_INFO_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

DL_OK_ACK

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

DL_PHYS_ADDR_ACK

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

DL_PHYS_ADDR_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

DL_PROMISCOFF_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

DL_PROMISCON_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

DL_RESET_CON

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

DL_RESET_IND

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

DL_RESET_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

DL_RESET_RES

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

DL_SUBS_BIND_ACK

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

DL_SUBS_BIND_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

DL_SUBS_UNBIND_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

DL_TEST_CON

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

DL_TEST_IND

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

DL_TEST_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

DL_TEST_RES

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

DL_TOKEN_ACK

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

DL_TOKEN_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

DL_UDERROR_IND

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

DL_UNBIND_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

DL_UNITDATA_IND

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

DL_UNITDATA_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

DL_XID_CON

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

DL_XID_IND

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

DL_XID_REQ

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

DL_XID_RES

Primitive

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Chapter

3.

eXternal

Data

Representation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

xdr_accepted_reply

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

xdr_array

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

xdr_bool

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

xdr_bytes

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

xdr_callhdr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

xdr_callmsg

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

xdr_char

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

xdr_destroy

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

iv

Technical

Reference:

Communications,

Volume

1

xdr_enum

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

xdr_float

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

xdr_free

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

xdr_getpos

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

xdr_inline

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

xdr_int

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

xdr_long

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

xdr_opaque

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

xdr_opaque_auth

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

xdr_pmap

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

xdr_pmaplist

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

xdr_pointer

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

xdr_reference

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

xdr_rejected_reply

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

xdr_replymsg

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

xdr_setpos

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

xdr_short

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

xdr_string

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

xdr_u_char

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

xdr_u_int

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

xdr_u_long

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

xdr_u_short

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

xdr_union

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

xdr_vector

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

xdr_void

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

xdr_wrapstring

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

xdr_authunix_parms

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

xdr_double

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

xdrmem_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

xdrrec_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

xdrrec_endofrecord

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

xdrrec_eof

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

xdrrec_skiprecord

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

xdrstdio_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

cfxfer

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

fxfer

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

g32_alloc

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

g32_close

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

g32_dealloc

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

g32_fxfer

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

g32_get_cursor

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

g32_get_data

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

g32_get_status

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

g32_notify

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

g32_open

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

g32_openx

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

g32_read

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

g32_search

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

g32_send_keys

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

g32_write

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

G32ALLOC

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

G32DLLOC

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

G32READ

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

G32WRITE

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Contents

v

Chapter

5.

Network

Computing

System

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

lb_$lookup_interface

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

lb_$lookup_object

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

lb_$lookup_object_local

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

lb_$lookup_range

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

lb_$lookup_type

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

lb_$register

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

lb_$unregister

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

pfm_$cleanup

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

pfm_$enable

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

pfm_$enable_faults

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

pfm_$inhibit

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

pfm_$inhibit_faults

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

pfm_$init

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

pfm_$reset_cleanup

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

pfm_$rls_cleanup

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

pfm_$signal

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

rpc_$alloc_handle

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

rpc_$bind

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

rpc_$clear_binding

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

rpc_$clear_server_binding

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

rpc_$dup_handle

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

rpc_$free_handle

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

rpc_$inq_binding

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

rpc_$inq_object

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

rpc_$listen

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

rpc_$name_to_sockaddr

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

rpc_$register

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

rpc_$set_binding

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

rpc_$sockaddr_to_name

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

rpc_$unregister

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

rpc_$use_family

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

rpc_$use_family_wk

Library

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

uuid_$decode

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

uuid_$encode

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

uuid_$gen

Library

Routine

(NCS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

225

nis_add_entry

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

nis_first_entry

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

nis_list

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

nis_local_directory

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

nis_lookup

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

nis_modify_entry

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

nis_next_entry

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

nis_perror

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

nis_remove_entry

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

nis_sperror

(NIS+

API)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

yp_all

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

yp_bind

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

yp_first

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

yp_get_default_domain

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

yp_master

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

yp_match

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

yp_next

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

yp_order

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

vi

Technical

Reference:

Communications,

Volume

1

yp_unbind

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

yp_update

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

yperr_string

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

ypprot_err

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Chapter

7.

New

Database

Manager

(NDBM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

dbm_close

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

dbm_delete

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

dbm_fetch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

dbm_firstkey

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

dbm_nextkey

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

dbm_open

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

dbm_store

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

dbmclose

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

dbminit

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

delete

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

fetch

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

firstkey

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

nextkey

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

store

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Chapter

8.

Remote

Procedure

Calls

(RPC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

auth_destroy

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

authdes_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

authdes_getucred

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

authnone_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

authunix_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

authunix_create_default

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

callrpc

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

cbc_crypt,

des_setparity,

or

ecb_crypt

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

clnt_broadcast

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

clnt_call

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

clnt_control

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

clnt_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

clnt_destroy

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

clnt_freeres

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

clnt_geterr

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

clnt_pcreateerror

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

clnt_perrno

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

clnt_perror

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

clnt_spcreateerror

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

clnt_sperrno

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

clnt_sperror

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

clntraw_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

clnttcp_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

clntudp_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

get_myaddress

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

getnetname

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

host2netname

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

key_decryptsession

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

key_encryptsession

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

key_gendes

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

key_setsecret

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

netname2host

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

netname2user

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

pmap_getmaps

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Contents

vii

pmap_getport

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

pmap_rmtcall

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

pmap_set

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

pmap_unset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

registerrpc

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

rtime

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

svc_destroy

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

svc_freeargs

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

svc_getargs

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

svc_getcaller

Macro

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

svc_getreqset

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

svc_register

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

svc_run

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

svc_sendreply

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

svc_unregister

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

svcerr_auth

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

svcerr_decode

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

svcerr_noproc

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

svcerr_noprog

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

svcerr_progvers

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

svcerr_systemerr

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

svcerr_weakauth

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

svcfd_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

svcraw_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

svctcp_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

svcudp_create

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

user2netname

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

xprt_register

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

xprt_unregister

Subroutine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

Data

Link

Provider

Interface

(DLPI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Appendix.

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

viii

Technical

Reference:

Communications,

Volume

1

About

This

Book

This

book

provides

information

on

application

programming

interfaces

for

use

on

system

units.

This

book

is

part

of

the

six-volume

technical

reference

set,

AIX

5L

Version

5.2

Technical

Reference,

that

provides

information

on

system

calls,

kernel

extension

calls,

and

subroutines

in

the

following

volumes:

v

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

1

and

AIX

5L

Version

5.2

Technical

Reference:

Base

Operating

System

and

Extensions

Volume

2

provide

information

on

system

calls,

subroutines,

functions,

macros,

and

statements

associated

with

base

operating

system

runtime

services.

v

AIX

5L

Version

5.2

Technical

Reference:

Communications

Volume

1

and

AIX

5L

Version

5.2

Technical

Reference:

Communications

Volume

2

provide

information

on

entry

points,

functions,

system

calls,

subroutines,

and

operations

related

to

communications

services.

v

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1

and

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

2

provide

information

about

kernel

services,

device

driver

operations,

file

system

operations,

subroutines,

the

configuration

subsystem,

the

communications

subsystem,

the

low

function

terminal

(LFT)

subsystem,

the

logical

volume

subsystem,

the

M-audio

capture

and

playback

adapter

subsystem,

the

printer

subsystem,

the

SCSI

subsystem,

and

the

serial

DASD

subsystem.

This

edition

supports

the

release

of

AIX

5L

Version

5.2

with

the

5200-01

Recommended

Maintenance

package.

Any

specific

references

to

this

maintenance

package

are

indicated

as

AIX

5.2

with

5200-01.

Who

Should

Use

This

Book

This

book

is

intended

for

experienced

C

programmers.

To

use

the

book

effectively,

you

should

be

familiar

with

commands,

system

calls,

subroutines,

file

formats,

and

special

files.

Highlighting

The

following

highlighting

conventions

are

used

in

this

book:

Bold

Identifies

commands,

subroutines,

keywords,

files,

structures,

directories,

and

other

items

whose

names

are

predefined

by

the

system.

Also

identifies

graphical

objects

such

as

buttons,

labels,

and

icons

that

the

user

selects.

Italics

Identifies

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

user.

Monospace

Identifies

examples

of

specific

data

values,

examples

of

text

similar

to

what

you

might

see

displayed,

examples

of

portions

of

program

code

similar

to

what

you

might

write

as

a

programmer,

messages

from

the

system,

or

information

you

should

actually

type.

Case-Sensitivity

in

AIX

Everything

in

the

AIX

operating

system

is

case-sensitive,

which

means

that

it

distinguishes

between

uppercase

and

lowercase

letters.

For

example,

you

can

use

the

ls

command

to

list

files.

If

you

type

LS,

the

system

responds

that

the

command

is

″not

found.″

Likewise,

FILEA,

FiLea,

and

filea

are

three

distinct

file

names,

even

if

they

reside

in

the

same

directory.

To

avoid

causing

undesirable

actions

to

be

performed,

always

ensure

that

you

use

the

correct

case.

©

Copyright

IBM

Corp.

1997,

2003

ix

ISO

9000

ISO

9000

registered

quality

systems

were

used

in

the

development

and

manufacturing

of

this

product.

32-Bit

and

64-Bit

Support

for

the

UNIX98

Specification

Beginning

with

Version

4.3,

the

operating

system

is

designed

to

support

The

Open

Group’s

UNIX98

Specification

for

portability

of

UNIX-based

operating

systems.

Many

new

interfaces,

and

some

current

ones,

have

been

added

or

enhanced

to

meet

this

specification,

making

Version

4.3

even

more

open

and

portable

for

applications.
At

the

same

time,

compatibility

with

previous

releases

of

the

operating

system

is

preserved.

This

is

accomplished

by

the

creation

of

a

new

environment

variable,

which

can

be

used

to

set

the

system

environment

on

a

per-system,

per-user,

or

per-process

basis.
To

determine

the

proper

way

to

develop

a

UNIX98-portable

application,

you

may

need

to

refer

to

The

Open

Group’s

UNIX98

Specification,

which

can

be

obtained

on

a

CD-ROM

by

ordering

Go

Solo

2:

The

Authorized

Guide

to

Version

2

of

the

Single

UNIX

Specification,

a

book

which

includes

The

Open

Group’s

UNIX98

Specification

on

a

CD-ROM.

Related

Publications

The

following

books

contain

information

about

or

related

to

application

programming

interfaces:

v

AIX

5L

Version

5.2

System

Management

Guide:

Operating

System

and

Devices

v

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks

v

AIX

5L

Version

5.2

General

Programming

Concepts:

Writing

and

Debugging

Programs

v

AIX

5L

Version

5.2

Communications

Programming

Concepts

v

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts

v

AIX

5L

Version

5.2

Files

Reference

x

Technical

Reference:

Communications,

Volume

1

Chapter

1.

Data

Link

Controls

dlcclose

Entry

Point

of

the

GDLC

Device

Manager

Purpose

Closes

a

generic

data

link

control

(GDLC)

channel.

Syntax

#include

<sys/device.h>

int

dlcclose

(

devno,

chan)

Note:

The

dlc

prefix

is

replaced

with

the

three-digit

prefix

for

the

specific

GDLC

device

manager

being

closed.

Description

Each

GDLC

supports

the

dlcclose

entry

point

as

its

switch

table

entry

for

the

close

subroutine.

The

file

system

calls

this

entry

point

from

the

process

environment

only.The

dlcclose

entry

point

is

called

when

a

user’s

application

program

invokes

the

close

subroutine

or

when

a

kernel

user

calls

the

fp_close

kernel

service.

This

routine

disables

a

GDLC

channel

for

the

user.

If

this

is

the

last

channel

to

close

on

the

port,

the

GDLC

device

manager

issues

a

close

to

the

network

device

handler

and

deletes

the

kernel

process

that

serviced

device

handler

events

on

behalf

of

the

user.

Parameters

devno

Indicates

major

and

minor

device

numbers.

This

is

a

dev_t

device

number

that

specifies

both

the

major

and

minor

device

numbers

of

the

GDLC

device

manager.

There

is

one

dev_t

device

number

for

each

type

of

GDLC,

such

as

Ethernet,

Token-Ring,

or

SDLC.

chan

Specifies

the

channel

ID

assigned

by

GDLC

in

the

dlcmpx

routine

at

open

time.

Return

Values

0

Indicates

a

successful

operation.

EBADF

Indicates

a

bad

file

number.

This

value

is

defined

in

the

/usr/include/sys/errno.h

file.

Related

Information

The

close

subroutine.

The

ddclose

device

entry

point.

The

dlcmpx

entry

point

of

the

GDLC

device

manager,

dlcopen

entry

point

of

the

GDLC

device

manager.

The

fp_close

kernel

service.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

©

Copyright

IBM

Corp.

1997,

2003

1

dlcconfig

Entry

Point

of

the

GDLC

Device

Manager

Purpose

Configures

the

generic

data

link

control

(GDLC)

device

manager.

Syntax

#include

<sys/uio.h>

#include

<sys/device.h>

int

dlcconfig

(

devno,

op,

uiop)

Note:

The

dlc

prefix

is

replaced

with

the

three-digit

prefix

for

the

specific

GDLC

device

manager

being

configured.

Description

The

dlcconfig

entry

point

is

called

during

the

kernel

startup

procedures

to

initialize

the

GDLC

device

manager

with

its

device

information.

The

operating

system

also

calls

this

routine

when

the

GDLC

is

being

terminated

or

queried

for

vital

product

data.

Each

GDLC

supports

the

dlcconfig

entry

point

as

its

switch

table

entry

for

the

sysconfig

subroutine.

The

file

system

calls

this

entry

point

from

the

process

environment

only.

Parameters

devno

Indicates

major

and

minor

device

numbers.

This

is

a

dev_t

device

number

that

specifies

both

the

major

and

minor

device

numbers

of

the

GDLC

device

manager.

One

dev_t

device

number

exists

for

each

type

of

GDLC,

such

as

Ethernet,

Token-Ring,

or

SDLC.

op

Specifies

the

operation

code

that

indicates

the

function

to

be

performed:

CFG_INIT

Initializes

the

GDLC

device

manager.

CFG_TERM

Terminates

the

GDLC

device

manager.

CFG_QVPD

Queries

GDLC

vital

product

data.

This

operation

code

is

optional.

uiop

Points

to

the

uio

structure

specifying

the

location

and

length

of

the

caller’s

data

area

for

the

CFG_INIT

and

CFG_QVPD

operation

codes.

No

data

areas

are

specifically

defined

for

GDLC,

but

DLCs

can

define

the

data

areas

for

a

particular

network.

Return

Values

The

following

return

values

are

defined

in

the

/usr/include/sys/errno.h

file:

0

Indicates

a

successful

operation.

EINVAL

Indicates

an

invalid

value.

ENODEV

Indicates

that

no

such

device

handler

is

present.

EFAULT

Indicates

that

a

kernel

service,

such

as

the

uiomove

or

devswadd

kernel

service,

has

failed.

Related

Information

The

ddconfig

device

entry

point.

The

uiomove

kernel

service.

2

Technical

Reference:

Communications,

Volume

1

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dlcioctl

Entry

Point

of

the

GDLC

Device

Manager

Purpose

Issues

specific

commands

to

generic

data

link

control

(GDLC).

Syntax

#include

<sys/device.h>

#include

<sys/gdlextcb.h>

int

dlcioctl

(devno,

op,

arg,

devflag,

chan,

ext)

Note:

The

dlc

prefix

is

replaced

with

the

three-digit

prefix

for

the

specific

GDLC

device

manager

being

controlled.

Description

The

dlcioctl

entry

point

is

called

when

an

application

program

invokes

the

ioctl

subroutine

or

when

a

kernel

user

calls

the

fp_ioctl

kernel

service.

The

dlcioctl

routine

decodes

commands

for

special

functions

in

the

GDLC.

Each

GDLC

supports

the

dlcioctl

entry

point

as

its

switch

table

entry

for

the

ioctl

subroutine.

The

file

system

calls

this

entry

point

from

the

process

environment

only.

Parameters

devno

Indicates

major

and

minor

device

numbers.

This

is

a

dev_t

device

number

that

specifies

both

the

major

and

minor

device

numbers

of

the

GDLC

device

manager.

One

dev_t

device

number

exists

for

each

type

of

GDLC,

such

as

Ethernet,

Token-Ring,

or

SDLC.

op

Specifies

the

parameter

from

the

subroutine

that

specifies

the

operation

to

be

performed.

See

″ioctl

Operations

(op)

for

DLC″

for

a

list

of

all

possible

operators.

arg

Indicates

the

parameter

from

the

subroutine

that

specifies

the

address

of

a

parameter

block.

See

″Parameter

Blocks

by

ioctl

Operation

for

DLC″

for

a

list

of

all

possible

arguments.

devflag

Specifies

the

flag

word

with

the

following

flags

defined:

DKERNEL

Entry

point

called

by

kernel

routine

using

the

fp_open

kernel

service.

This

indicates

that

the

arg

parameter

points

to

kernel

space.

DREAD

Open

for

reading.

This

flag

is

ignored.

DWRITE

Open

for

writing.

This

flag

is

ignored.

DAPPEND

Open

for

appending.

This

flag

is

ignored.

DNDELAY

Device

open

in

nonblocking

mode.

This

flag

is

ignored.

chan

Specifies

the

channel

ID

assigned

by

GDLC

in

the

dlcmpx

routine

at

open

time.

ext

Specifies

the

extended

subroutine

parameter.

This

parameter

is

ignored

by

GDLC.

Chapter

1.

Data

Link

Controls

3

Return

Values

The

following

return

values

are

defined

in

the

/usr/include/sys/errno.h

file.

Value

Description

0

Indicates

a

successful

operation.

EBADF

Indicates

a

bad

file

number.

EINVAL

Indicates

an

invalid

value.

ENOMEM

Indicates

insufficient

resources

to

satisfy

the

ioctl

subroutine.

Related

Information

The

ioctl

subroutine.

The

ddioctl

device

driver

entry

point.

The

dlcmpx

entry

point

of

the

GDLC

device

manager.

ioctl

Operations

(op)

for

DLC.

The

fp_ioctl

kernel

service,

fp_open

kernel

service.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dlcmpx

Entry

Point

of

the

GDLC

Device

Manager

Purpose

Decodes

the

device

handler’s

special

file

name

appended

to

the

open

call.

Syntax

#include

<sys/device.h>

int

dlcmpx

(

devno,

chanp,

channame)

Note:

The

dlc

prefix

is

replaced

with

the

three-digit

prefix

for

the

specific

GDLC

device

manager

being

opened.

Description

The

operating

system

calls

the

dlcmpx

entry

point

when

a

generic

data

link

control

(GDLC)

channel

is

allocated.

This

routine

decodes

the

name

of

the

device

handler

appended

to

the

end

of

the

GDLC

special

file

name

at

open

time.

GDLC

allocates

the

channel

and

returns

the

value

in

the

chanp

parameter.

This

routine

is

also

called

following

a

close

subroutine

to

deallocate

the

channel.

In

this

case

the

chanp

parameter

is

passed

to

GDLC

to

identify

the

channel

being

deallocated.

Since

GDLC

allocates

a

new

channel

for

each

open

subroutine,

a

dlcmpx

routine

follows

each

call

to

the

dlcclose

routine.

Each

GDLC

supports

the

dlcmpx

entry

point

as

its

switch

table

entry

for

the

open

and

close

subroutines.

The

file

system

calls

this

entry

point

from

the

process

environment

only.

4

Technical

Reference:

Communications,

Volume

1

Parameters

devno

Indicates

major

and

minor

device

numbers.

This

is

a

dev_t

device

number

that

specifies

both

the

major

and

minor

device

numbers

of

the

GDLC

device

manager.

There

is

one

dev_t

device

number

for

each

type

of

GDLC,

such

as

Ethernet,

Token-Ring,

or

SDLC.

chanp

Specifies

the

channel

ID

returned

if

a

valid

path

name

exists

for

the

device

handler,

and

the

openflag

is

set.

If

no

channel

ID

is

allocated,

this

parameter

is

set

to

a

value

of

-1

by

GDLC.

channame

Points

to

the

appended

path

name

(path

name

extension)

of

the

device

handler

that

is

used

by

GDLC

to

attach

to

the

network.

If

this

is

null,

the

channel

is

deallocated.

Return

Values

The

following

return

values

are

defined

in

the

/usr/include/sys/errno.h

file:

Value

Description

0

Indicates

a

successful

operation.

EBADF

Indicates

a

bad

file

number.

EINVAL

Indicates

an

invalid

value.

Related

Information

The

close

subroutine,

open

subroutine.

The

ddmpx

device

entry

point.

The

dlcclose

entry

point

for

the

GDLC

device

manager,

dlcopen

entry

point

for

the

GDLC

device

manager.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dlcopen

Entry

Point

of

the

GDLC

Device

Manager

Purpose

Opens

a

generic

data

link

control

(GDLC)

channel.

Syntax

#include

<sys/device.h>

#include

<sys/gdlextcb.h>

int

dlcopen

(

devno,

devflag,

chan,

ext)

Note:

The

dlc

prefix

is

replaced

with

the

three-digit

prefix

for

the

specific

GDLC

device

manager

being

opened.

Description

The

dlcopen

entry

point

is

called

when

a

user’s

application

program

invokes

the

open

or

openx

subroutine,

or

when

a

kernel

user

calls

the

fp_open

kernel

service.

The

GDLC

device

manager

opens

the

specified

communications

device

handler

and

creates

a

kernel

process

to

catch

posted

events

from

that

port.

Additional

opens

to

the

same

port

share

both

the

device

handler

open

and

the

GDLC

kernel

process

created

on

the

original

open.

Each

GDLC

supports

the

dlcopen

entry

point

as

its

switch

table

entry

for

the

open

and

openx

subroutines.

The

file

system

calls

this

entry

point

from

the

process

environment

only.

Chapter

1.

Data

Link

Controls

5

Note:

It

may

be

more

advantageous

to

handle

the

actual

device

handler

open

and

kernel

process

creation

in

the

dlcmpx

routine.

This

is

left

as

a

specific

DLC’s

option.

Parameters

devno

Indicates

major

and

minor

device

numbers.

This

is

a

dev_t

device

number

that

specifies

both

the

major

and

minor

device

numbers

of

the

GDLC

device

manager.

One

dev_t

device

number

exists

for

each

type

of

GDLC,

such

as

Ethernet,

Token-Ring,

or

SDLC.

devflag

Specifies

the

flag

word

with

the

following

flags

defined:

DKERNEL

Entry

point

called

by

kernel

routine

using

the

fp_open

kernel

service.

All

command

extensions

and

ioctl

arguments

are

in

kernel

space.

DREAD

Open

for

reading.

This

flag

is

ignored.

DWRITE

Open

for

writing.

This

flag

is

ignored.

DAPPEND

Open

for

appending.

This

flag

is

ignored.

DNDELAY

Device

open

in

nonblocking

mode.

This

flag

is

ignored.

chan

Specifies

the

channel

ID

assigned

by

GDLC

in

the

dlcmpx

routine.

ext

Specifies

the

extended

subroutine

parameter.

This

is

a

pointer

to

the

dlc_open_ext

extended

I/O

structure

for

the

open

subroutine.

Return

Values

The

following

return

values

are

defined

in

the

/usr/include/sys/errno.h

file.

Value

Description

0

Indicates

a

successful

operation.

ECHILD

Indicates

that

the

device

manager

cannot

create

a

kernel

process.

EINVAL

Indicates

an

invalid

value.

ENODEV

Indicates

that

no

such

device

handler

is

present.

ENOMEM

Indicates

insufficient

resources

to

satisfy

the

open

subroutine.

EFAULT

Indicates

that

a

kernel

service,

such

as

the

copyin

or

initp

kernel

service

was

unsuccessful.

Related

Information

The

open

or

openx

subroutine.

The

ddopen

device

entry

point.

The

dlcclose

entry

point

of

the

GDLC

device

manager,

dlcmpx

entry

point

of

the

GDLC

device

manager.

The

fp_open

kernel

service,

copyin

kernel

service,

initp

kernel

service.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

6

Technical

Reference:

Communications,

Volume

1

dlcread

Entry

Point

of

the

GDLC

Device

Manager

Purpose

Reads

receive

data

from

generic

data

link

control

(GDLC).

Syntax

#include

<sys/device.h>

#include

<sys/gdlextcb.h>

int

dlcread

(devno,

uiop,

chan,

ext)

Note:

The

dlc

prefix

is

replaced

with

the

three-digit

prefix

for

the

specific

GDLC

device

manager

being

read.

Description

The

dlcread

entry

point

is

called

when

a

user

application

program

invokes

the

readx

subroutine.

Kernel

users

do

not

call

an

fp_read

kernel

service.

All

receive

data

is

returned

to

the

user

in

the

same

order

as

received.

The

type

of

data

that

was

read

is

indicated,

as

well

as

the

service

access

point

(SAP)

and

link

station

(LS)

identifiers.

The

following

fields

in

the

uio

and

iov

structures

are

used

to

control

the

read-data

transfer

operation:

Field

Description

uio_iov

Points

to

an

iovec

structure.

uio_iovcnt

Indicates

the

number

of

elements

in

the

iovec

structure.

This

must

be

set

to

a

value

of

1.

Vectored

read

operations

are

not

supported.

uio_offset

Indicates

the

file

offset

established

by

a

previous

fp_lseek

kernel

service.

This

field

is

ignored

by

GDLC.

uio_segflag

Indicates

whether

the

data

area

is

in

application

or

kernel

space.

This

is

set

to

the

UIO_USERSPACE

value

by

the

file

I/O

subsystem

to

indicate

application

space.

uio_fmode

Contains

the

value

of

the

file

mode

set

with

the

open

applications

subroutine

to

GDLC.

uio_resid

Specifies

initially

the

total

byte

count

of

the

receive

data

area.

GDLC

decrements

this

count

for

each

packet

byte

received

using

the

uiomove

kernel

service.

iovec

structure

Contains

the

starting

address

and

length

of

the

received

data.

iov_base

Specifies

where

GDLC

writes

the

address

of

the

received

data.

This

field

is

a

variable

in

the

iovec

structure.

iov_len

Contains

the

byte

length

of

the

data.

This

field

is

a

variable

in

the

iovec

structure.

Each

GDLC

supports

the

dlcread

entry

point

as

its

switch

table

entry

for

the

readx

subroutine.

The

file

system

calls

this

entry

point

from

the

process

environment

only.

Parameters

devno

Indicates

major

and

minor

device

numbers.

This

is

a

dev_t

device

number

that

specifies

both

the

major

and

minor

device

numbers

of

the

GDLC

device

manager.

One

dev_t

device

number

exists

for

each

type

of

GDLC,

such

as

Ethernet,

Token-Ring,

or

SDLC.

uiop

Points

to

the

uio

structure

containing

the

read

parameters.

chan

Specifies

the

channel

ID

assigned

by

GDLC

in

the

dlcmpx

routine

at

open

time.

ext

Specifies

the

extended

subroutine

parameter.

This

is

a

pointer

to

the

extended

I/O

structure.

The

argument

to

this

parameter

must

always

be

in

the

application

space.

See

the

″read

Subroutine

Extended

Parameters

for

DLC″

for

more

information

on

this

parameter.

Chapter

1.

Data

Link

Controls

7

Return

Values

Successful

read

operations

and

those

truncated

due

to

limited

user

data

space

each

return

a

value

of

0

(zero).

If

more

data

is

received

from

the

media

than

will

fit

into

the

application

data

area,

the

DLC_OFLO

value

indicator

is

set

in

the

command

extension

area

(dlc_io_ext)

to

indicate

that

the

read

is

truncated.

All

excess

data

is

lost.

The

following

return

values

are

defined

in

the

/usr/include/sys/errno.h

file:

Value

Description

EBADF

Indicates

a

bad

file

number.

EINTR

Indicates

that

a

signal

interrupted

the

routine

before

it

received

data.

EINVAL

Indicates

an

invalid

value.

ENOMEM

Indicates

insufficient

resources

to

satisfy

the

read

operation.

Related

Information

The

open

subroutine,

readx

subroutine.

The

ddread

device

entry

point.

The

dlcmpx

entry

point

of

the

GDLC

device

manager,

dlcwrite

entry

point

of

the

GDLC

device

manager.

The

fp_lseek

kernel

service,

fp_read

kernel

service,

uiomove

kernel

service.

read

Subroutine

Extended

Parameters

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dlcselect

Entry

Point

of

the

GDLC

Device

Manager

Purpose

Selects

for

asynchronous

criteria

from

generic

data

link

control

(GDLC),

such

as

receive

data

completion

and

exception

conditions.

Syntax

#include

<sys/device.h>

#include

<sys/poll.h>

#include

<sys/gdlextcb.h>

int

dlcselect

(devno,

events,

reventp,

chan)

Note:

The

dlc

prefix

is

replaced

with

the

three-digit

prefix

for

the

specific

GDLC

device

manager

being

selected.

Description

The

dlcselect

entry

point

is

called

when

a

user

application

program

invokes

a

select

or

poll

subroutine.

This

allows

the

user

to

select

receive

data

or

exception

conditions.

The

POLLOUT

write-availability

criteria

is

not

supported.

If

no

results

are

available

at

the

time

of

a

select

subroutine,

the

user

process

is

put

to

sleep

until

an

event

occurs.

If

one

or

more

events

specified

in

the

events

parameter

are

true,

the

dlcselect

routine

updates

the

reventp

(returned

events)

parameter

(passed

by

reference)

by

setting

the

corresponding

event

bits

that

indicate

which

events

are

currently

true.

8

Technical

Reference:

Communications,

Volume

1

If

none

of

the

requested

events

are

true,

the

dlcselect

routine

sets

the

returned

events

parameter

to

a

value

of

0

(passed

by

reference

using

the

reventp

parameter)

and

checks

the

POLLSYNC

flag

in

the

events

parameter.

If

this

flag

is

true,

the

routine

returns

because

the

event

request

was

a

synchronous

request.

If

the

POLLSYNC

flag

is

false,

an

internal

flag

is

set

for

each

event

requested

in

the

events

parameter.

When

one

or

more

of

the

requested

events

become

true,

GDLC

issues

the

selnotify

kernel

service

to

notify

the

kernel

that

a

requested

event

or

events

have

become

true.

The

internal

flag

indicating

that

the

event

was

requested

is

then

reset

to

prevent

renotification

of

the

event.

If

the

port

in

use

is

in

a

closed

state,

implying

that

the

requested

event

or

events

can

never

be

satisfied,

GDLC

sets

the

returned

events

flags

to

a

value

of

1

for

each

event

that

can

never

be

satisfied.

This

is

done

so

that

the

select

or

poll

subroutine

does

not

wait

indefinitely.

Kernel

users

do

not

call

an

fp_select

kernel

service

since

their

receive

data

and

exception

notification

functions

are

called

directly

by

GDLC.

″open

Subroutine

Extended

Parameters

for

DLC″

details

how

these

function

handlers

are

specified.

Each

GDLC

supports

the

dlcselect

entry

point

as

its

switch

table

entry

for

the

select

or

poll

subroutines.

The

file

system

calls

this

entry

point

from

the

process

environment

only.

Parameters

devno

Indicates

major

and

minor

device

numbers.

This

is

a

dev_t

device

number

that

specifies

both

the

major

and

minor

device

numbers

of

the

GDLC

device

manager.

One

dev_t

device

number

exists

for

each

type

of

GDLC,

such

as

Ethernet,

Token-Ring,

or

SDLC.

events

Identifies

the

events

to

check.

The

following

events

are:

POLLIN

Read

selection.

POLLOUT

Write

selection.

This

is

not

supported

by

GDLC.

POLLPRI

Exception

selection.

POLLSYNC

This

request

is

a

synchronous

request

only.

The

routine

should

not

perform

a

selnotify

kernel

service

routine

due

to

this

request

if

the

events

occur

later.

reventp

Identifies

a

returned

events

pointer.

This

is

a

parameter

passed

by

reference

to

indicate

which

of

the

selected

events

are

true

at

the

time

of

the

call.

See

the

preceding

events

parameter

for

possible

values.

chan

Specifies

the

channel

ID

assigned

by

GDLC

in

the

dlcmpx

routine

at

open

time.

Return

Values

The

following

return

values

are

defined

in

the

/usr/include/sys/errno.h

file:

Value

Description

0

Indicates

a

successful

operation.

EBADF

Indicates

a

bad

file

number.

EINTR

Indicates

that

a

signal

interrupted

the

subroutine

before

it

found

any

of

the

selected

events.

EINVAL

Indicates

that

the

specified

POLLOUT

write

selection

is

not

supported.

Chapter

1.

Data

Link

Controls

9

Related

Information

The

select

subroutine,

poll

subroutine.

The

ddselect

device

entry

point,

dlcmpx

entry

point.

The

fp_select

kernel

service.

open

Subroutine

Extended

Parameters

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dlcwrite

Entry

Point

of

the

GDLC

Device

Manager

Purpose

Writes

transmit

data

to

generic

data

link

control

(GDLC).

Syntax

#include

<sys/uio.h>

#include

<sys/device.h>

#include

<sys/gdlextcb.h>

int

dlcwrite

(devno,

uiop,

chan,

ext)

Note:

The

dlc

prefix

is

replaced

with

the

three-digit

prefix

for

the

specific

GDLC

device

manager

being

written.

Description

The

dlcwrite

entry

point

is

called

when

a

user

application

program

invokes

a

writex

subroutine

or

when

a

kernel

user

calls

the

fp_write

kernel

service.

An

extended

write

is

used

in

order

to

specify

the

type

of

data

being

sent,

as

well

as

the

service

access

point

(SAP)

and

link

station

(LS)

identifiers.

The

following

fields

in

the

uio

and

iov

structures

are

used

to

control

the

write

data

transfer

operation:

Field

Description

uio_iov

Points

to

an

iovec

structure.

uio_iovcnt

Indicates

the

number

of

elements

in

the

iovec

structure.

This

must

be

set

to

a

value

of

1

for

the

kernel

user,

indicating

that

there

is

a

single

communications

memory

buffer

(mbuf)

chain

associated

with

the

write

subroutine.

uio_offset

Specifies

the

file

offset

established

by

a

previous

fp_lseek

kernel

service.

This

field

is

ignored

by

GDLC.

uio_segflag

Indicates

whether

the

data

area

is

in

application

or

kernel

space.

This

field

is

set

to

the

UIO_USERSPACE

value

by

the

file

I/O

subsystem

if

the

data

area

is

in

application

space.

The

field

must

be

set

to

the

UIO_SYSSPACE

value

by

the

kernel

user

to

indicate

kernel

space.

uio_fmode

Contains

the

value

of

the

file

mode

set

during

an

application

open

subroutine

to

GDLC

or

can

be

set

directly

during

a

fp_open

kernel

service

to

GDLC.

uio_resid

Contains

the

total

byte

count

of

the

transmit

data

area

for

application

users.

For

kernel

users,

GDLC

ignores

this

field

since

the

communications

memory

buffer

(mbuf)

also

carries

this

information.

iovec

structure

Contains

the

starting

address

and

length

of

the

transmit.

(See

the

iov_base

and

iov_len

fields.)

iov_base

Specifies

a

variable

in

the

iovec

structure

where

GDLC

gets

the

address

of

the

application

user’s

transmit

data

area

or

the

address

of

the

kernel

user’s

transmit

mbuf.

10

Technical

Reference:

Communications,

Volume

1

Field

Description

iov_len

Specifies

a

variable

in

the

iovec

structure

that

contains

the

byte

length

of

the

application

user’s

transmit

data

area.

This

variable

is

ignored

by

GDLC

for

kernel

users,

since

the

transmit

mbuf

contains

a

length

field.

Each

GDLC

supports

the

dlcwrite

entry

point

as

its

switch

table

entry

for

the

writex

subroutine.

The

file

system

calls

this

entry

point

from

the

process

environment

only.

Parameters

devno

Indicates

major

and

minor

device

numbers.

This

is

a

dev_t

device

number

that

specifies

both

the

major

and

minor

device

numbers

of

the

GDLC

device

manager.

One

dev_t

device

number

exists

for

each

type

of

GDLC,

such

as

Ethernet,

Token-Ring,

or

SDLC.

uiop

Points

to

the

uio

structure

containing

the

write

parameters.

chan

Specifies

the

channel

ID

assigned

by

GDLC

in

the

dlcmpx

routine

at

open

time.

ext

Specifies

the

extended

subroutine

parameter.

This

is

a

pointer

to

the

extended

I/O

structure.

This

data

must

be

in

the

application

space

if

the

uio_fmode

field

indicates

an

application

subroutine

or

in

the

kernel

space

if

the

uio_fmode

field

indicates

a

kernel

subroutine.

See

the

″write

Subroutine

Extended

Parameters

for

DLC″

for

more

information

on

this

parameter.

Return

Values

The

following

return

values

are

defined

in

the

/usr/include/sys/errno.h

file:

Value

Description

0

Indicates

a

successful

operation.

EAGAIN

Indicates

that

transmit

is

temporarily

blocked

and

a

sleep

cannot

be

issued.

EBADF

Indicates

a

bad

file

number

(application).

EINTR

Indicates

that

a

signal

interrupted

the

routine

before

it

could

complete

successfully.

EINVAL

Indicates

an

invalid

value,

such

as

too

much

data

for

a

single

packet.

ENOMEM

Indicates

insufficient

resources

to

satisfy

the

write

subroutine,

such

as

a

lack

of

communications

memory

buffers

(mbufs).

ENXIO

Indicates

an

invalid

file

pointer

(kernel).

Related

Information

The

open

subroutine,

writex

subroutine.

The

dlcmpx

entry

point

of

the

GDLC

device

manager,

dlcread

entry

point

of

the

GDLC

device

manager,

ddwrite

device

entry

point.

The

fp_lseek

kernel

service,

fp_open

kernel

service,

fp_write

kernel

service.

write

Subroutine

Extended

Parameters

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

close

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

Purpose

Closes

the

generic

data

link

control

(GDLC)

device

manager

using

a

file

descriptor.

Chapter

1.

Data

Link

Controls

11

Syntax

int

close

(

fildes)

Description

The

close

subroutine

disables

a

GDLC

channel.

If

this

is

the

last

channel

to

close

on

a

port,

the

GDLC

device

manager

is

reset

to

an

idle

state

on

that

port

and

the

communications

device

handler

is

closed.

Each

GDLC

supports

the

close

subroutine

interface

by

way

of

its

dlcclose

and

dlcmpx

entry

points.

This

subroutine

can

be

called

from

the

process

environment

only.

Parameters

fildes

Specifies

the

file

descriptor

of

the

GDLC

being

closed.

Return

Values

0

Indicates

a

successful

operation.

EBADF

Indicates

a

bad

file

number.

This

value

is

defined

in

the

/usr/include/sys/errno.h

file.

If

an

error

occurs,

a

value

of

-1

is

also

returned.

Related

Information

The

close

subroutine.

open

Subroutine

Interface

for

DLC

Devices

.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

ioctl

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

Purpose

Transfers

special

commands

to

generic

data

link

control

(GDLC)

using

a

file

descriptor.

Syntax

#include

<sys/ioctl.h>

#include

<sys/devinfo.h>

#include

<sys/gdlextcb.h>

int

ioctl

(

fildes,

op,

arg);

Description

The

ioctl

subroutine

initiates

various

GDLC

functions,

such

as

changing

configuration

parameters,

contacting

a

remote

link,

and

testing

a

link.

Most

of

these

operations

can

be

completed

before

returning

to

the

user

(synchronously).

Since

some

operations

take

longer,

asynchronous

results

are

returned

later

using

the

exception

condition

notification.

Application

users

can

obtain

these

exceptions

using

the

DLC_GET_EXCEP

ioctl

operation.

For

more

information

on

the

functions

that

can

be

initiated

using

the

ioctl

subroutine,

see

″ioctl

Operations

(op)

for

DLC″

and

″Parameter

Blocks

by

ioctl

Operation

for

DLC″.

Each

GDLC

supports

the

ioctl

subroutine

interface

via

its

dlcioctl

entry

point.

This

subroutine

may

be

called

from

the

process

environment

only.

12

Technical

Reference:

Communications,

Volume

1

Parameters

fildes

Specifies

the

file

descriptor

of

the

target

GDLC.

op

Specifies

the

operation

to

be

performed

by

GDLC.

See

″ioctl

Operations

(op)

for

DLC″

for

a

listing

of

all

possible

operators.

arg

Specifies

the

address

of

the

parameter

block.

See

″Parameter

Blocks

by

ioctl

Operations

for

DLC″

for

a

listing

of

possible

values.

Return

Values

0

Indicates

a

successful

operation.

If

an

error

occurs,

a

value

of

-1

is

returned

with

one

of

the

following

error

values

available

using

the

errno

global

variable,

as

defined

in

the

/usr/include/sys/errno.h

file:

Value

Description

EBADF

Indicates

a

bad

file

number.

EINVAL

Indicates

an

invalid

argument.

ENOMEM

Indicates

insufficient

resources

to

satisfy

the

ioctl

subroutine.

Related

Information

The

ioctl

subroutine.

ioctl

Operations

(op)

for

DLC.

Parameter

Blocks

by

ioctl

Operation

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Introduction

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

open

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

Purpose

Opens

the

generic

data

link

control

(GDLC)

device

manager

by

special

file

name.

Syntax

#include

<fcntl.h>

#include

<sys/gdlextcb.h>

int

open

(

path,

oflag,

mode)

or

int

openx

(path,

oflag,

mode,

ext)

Description

The

open

subroutine

allows

the

application

user

to

open

a

GDLC

device

manager

by

specifying

the

DLC

special

file

name

and

the

target

device

handler

special

file

name.

Since

the

GDLC

device

manager

is

multiplexed,

more

than

one

process

can

open

it

(or

the

same

process

many

times)

and

still

have

unique

channel

identifications.

Chapter

1.

Data

Link

Controls

13

Each

open

carries

the

communications

device

handler’s

special

file

name

so

that

the

DLC

knows

on

which

port

to

transfer

data.

This

name

must

directly

follow

the

DLC’s

special

file

name.

For

example,

in

the

/dev/dlcether/ent0

character

string,

ent0

is

the

special

file

name

of

the

Ethernet

device

handler.

GDLC

obtains

this

name

using

its

dlcmpx

routine.

Each

GDLC

supports

the

open

subroutine

interface

by

way

of

its

dlcopen

and

dlcmpx

entry

points.

This

subroutine

may

be

called

from

the

process

environment

only.

Parameters

path

Consists

of

a

character

string

containing

the

/dev

special

file

name

of

the

GDLC

device

manager,

with

the

name

of

the

communications

device

handler

appended

as

follows:

/dev/dlcether/ent0

oflag

Specifies

a

value

for

the

file

status

flag.

The

GDLC

device

manager

ignores

all

but

the

following

flags:

O_RDWR

Open

for

reading

and

writing.

This

must

be

set

for

GDLC

or

the

open

will

fail.

O_NDELAY,

O_NONBLOCK

Subsequent

reads

with

no

data

present

and

writes

that

cannot

get

enough

resources

will

return

immediately.

The

calling

process

is

not

put

to

sleep.

mode

Specifies

the

O_CREAT

mode

parameter.

This

is

ignored

by

GDLC.

ext

Specifies

the

extended

subroutine

parameter.

This

is

a

pointer

to

the

dlc_open_ext

extended

I/O

structure

for

the

open

subroutines.

See

″open

Subroutine

Extended

Parameters

for

DLC″

for

more

information

on

this

parameter.

Return

Values

Upon

successful

completion,

the

open

subroutine

returns

a

valid

file

descriptor

that

identifies

the

opened

GDLC

channel.

If

an

error

occurs,

a

value

of

-1

is

returned

with

one

of

the

following

error

values

available

using

the

errno

global

variable,

as

defined

in

the

/usr/include/sys/errno.h

file:

Value

Description

ECHILD

Indicates

that

the

device

manager

cannot

create

a

kernel

process.

EINVAL

Indicates

an

invalid

value.

ENODEV

Indicates

that

no

such

device

handler

is

present.

ENOMEM

Indicates

insufficient

resources

to

satisfy

the

open

subroutine.

EFAULT

Indicates

that

a

kernel

service,

such

as

the

copyin

or

initp

kernel

service,

has

failed.

Related

Information

The

dlcmpx

entry

point.

The

copyin

kernel

service,

initp

kernel

service.

close

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices,

open

Subroutine

Extended

Parameters

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

14

Technical

Reference:

Communications,

Volume

1

readx

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

Purpose

Allows

receive

application

data

to

be

read

using

a

file

descriptor.

Syntax

#include

<sys/gdlextcb.h>

#include

<sys/uio.h>

int

readx

(fildes,

buf,

len,

ext)

Description

The

receive

queue

for

this

application

user

is

interrogated

for

any

pending

data.

The

oldest

data

packet

is

copied

to

user

space,

with

the

type

of

data,

the

link

station

correlator,

and

the

service

access

point

(SAP)

correlator

written

to

the

extension

area.

When

attempting

to

read

an

empty

receive

data

queue,

the

default

action

is

to

delay

until

data

is

available.

If

the

O_NDELAY

or

O_NONBLOCK

flags

are

specified

in

the

open

subroutine,

the

readx

subroutine

returns

immediately

to

the

caller.

Data

is

transferred

using

the

uiomove

kernel

service

between

the

user

space

and

kernel

communications

memory

buffers

(mbufs).

A

complete

receive

packet

must

fit

into

the

user’s

read

data

area.

Generic

data

link

control

(GDLC)

does

not

break

up

received

packets

into

multiple

user

data

areas.

Each

GDLC

supports

the

readx

subroutine

interface

via

its

dlcread

entry

point.

This

subroutine

can

be

called

from

the

process

environment

only.

Parameters

fildes

Specifies

the

file

descriptor

returned

from

the

open

subroutine.

buf

Points

to

the

user

data

area.

len

Contains

the

byte

count

of

the

user

data

area.

ext

Specifies

the

extended

subroutine

parameter.

This

is

a

pointer

to

the

dlc_io_ext

extended

I/O

structure

for

the

readx

subroutine.

″read

Subroutine

Extended

Parameters

for

DLC″

provides

more

information

on

this

parameter.

Note:

It

is

the

user’s

responsibility

to

set

the

ext

parameter

area

to

0

(zero)

before

issuing

the

readx

subroutine

to

insure

valid

entries

when

no

data

is

available.

Return

Values

Upon

successful

completion,

the

readx

subroutine

returns

the

number

of

bytes

read

and

placed

into

the

application

data

area.

If

more

data

is

received

from

the

media

than

will

fit

into

the

application

data

area,

the

DLC_OFLO

flag

is

set

in

the

dlc_io_ext

command

extension

area

to

indicate

that

the

read

is

truncated.

All

excess

data

is

lost.

If

no

data

is

available

and

the

application

user

has

specified

the

O_NDELAY

or

O_NONBLOCK

flags

at

open

time,

a

0

(zero)

is

returned.

If

an

error

occurs,

a

value

of

-1

is

returned

with

one

of

the

following

error

numbers

available

using

the

errno

global

variable,

as

defined

in

the

/usr/include/sys/errno.h

file:

Value

Description

EBADF

Indicates

a

bad

file

number.

Chapter

1.

Data

Link

Controls

15

Value

Description

EINTR

Indicates

that

a

signal

interrupted

the

subroutine

before

it

received

data.

EINVAL

Indicates

an

invalid

value.

ENOMEM

Indicates

insufficient

resources

to

satisfy

the

read

operation.

Related

Information

The

open

subroutine,

readx

subroutine.

The

uiomove

kernel

service.

read

Subroutine

Extended

Parameters

for

DLC,

writex

Subroutine

Interface

for

DLC

Devices.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

select

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

Purpose

Allows

data

to

be

sent

using

a

file

descriptor.

Syntax

#include

<sys/select.h>

int

select

(nfdsmsgs,

readlist,

writelist,

exceptlist,

timeout)

Description

The

select

subroutine

checks

the

specified

file

descriptor

and

message

queues

to

see

if

they

are

ready

for

reading

(receiving)

or

writing

(sending),

or

if

they

have

an

exception

condition

pending.

Note:

Generic

data

link

control

(GDLC)

does

not

support

transmit

for

nonblocked

notification

in

the

full

sense.

If

the

writelist

parameter

is

specified

in

the

select

call,

GDLC

always

returns

as

if

transmit

is

available.

There

is

no

checking

to

see

if

internal

buffering

is

available

or

if

internal

control-block

locks

are

free.

These

resources

are

much

too

dynamic,

and

tests

for

their

availability

can

be

done

reasonably

only

at

the

time

of

use.

The

readlist

and

exceptlist

parameters

are

fully

supported.

Whenever

the

selection

criteria

specified

by

the

SelType

parameter

is

true,

the

file

system

returns

a

value

that

indicates

the

total

number

of

file

descriptors

and

message

queues

that

satisfy

the

selection

criteria.

The

fdsmask

bit

masks

are

modified

so

that

bits

set

to

a

value

of

1

indicate

file

descriptors

that

meet

the

criteria.

The

msgids

arrays

are

altered

so

that

message

queue

identifiers

that

do

not

meet

the

criteria

are

replaced

with

a

value

of

-1.

If

the

selection

is

not

satisfied,

the

calling

process

is

put

to

sleep

waiting

on

a

selwakeup

subroutine

at

a

later

time.

Each

GDLC

supports

the

select

subroutine

interface

via

its

dlcselect

entry

point.

This

subroutine

can

be

called

from

the

process

environment

only.

Parameters

nfdsmsgs

Specifies

the

number

of

file

descriptors

and

message

queues

to

check.

16

Technical

Reference:

Communications,

Volume

1

sellist

The

readlist,

writelist,

and

exceptlist

parameters

specify

what

to

check

for

during

reading,

writing,

and

exceptions,

respectively.

Each

sellist

is

a

structure

that

contains

a

file

descriptor

bit

mask

(fdsmask)

and

message

queue

identifiers

(msgids).

The

writelist

criterion

is

always

set

to

True

by

GDLC.

timeout

Points

to

a

structure

that

specifies

the

maximum

length

of

time

to

wait

for

at

least

one

of

the

selection

criteria

to

be

met

(if

the

timeout

parameter

is

not

a

null

pointer).

Return

Values

Upon

successful

completion,

the

select

subroutine

returns

a

value

that

indicates

the

total

number

of

file

descriptors

and

message

queues

that

satisfy

the

selection

criteria.

The

return

value

is

similar

to

the

nfdsmsgs

parameter

in

that

the

low-order

16

bits

give

the

number

of

file

descriptors.

Also,

the

high-order

16

bits

give

the

number

of

message

queue

identifiers.

These

values

indicate

the

sum

total

that

meet

each

of

the

read

and

exception

criteria.

If

the

time

limit

specified

by

the

timeout

parameter

expires,

then

the

select

subroutine

returns

a

value

of

0

(zero).

If

an

error

occurs,

a

value

of

-1

is

returned

with

one

of

the

following

error

values

available

using

the

errno

global

variable,

as

defined

in

the

/usr/include/sys/errno.h

file:

EBADF

Indicates

a

bad

file

number.

EINTR

Indicates

that

a

signal

interrupted

the

subroutine

before

it

found

any

of

the

selected

events.

EINVAL

Indicates

that

one

of

the

parameters

contained

an

invalid

value.

Related

Information

The

select

subroutine.

Select/Poll

Logic

for

ddwrite

and

ddread

Routines

in

AIX

5L

Version

5.2

Technical

Reference:

Kernel

and

Subsystems

Volume

1.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

writex

Subroutine

Interface

for

Data

Link

Control

(DLC)

Devices

Purpose

Allows

application

data

to

be

sent

using

a

file

descriptor.

Syntax

#include

<sys/gdlextcb.h>

#include

<sys/uio.h>

int

writex

(fildes,

buf,

len,

ext)

Description

Four

types

of

data

can

be

sent

to

generic

data

link

control

(GDLC).

Network

data

can

be

sent

to

a

service

access

point

(SAP),

while

normal,

Exchange

Identification

(XID)

or

datagram

data

can

be

sent

to

a

link

Chapter

1.

Data

Link

Controls

17

station

(LS).

Data

is

transferred

using

the

uiomove

kernel

service

between

the

application

user

space

and

kernel

communications

I/O

buffers

(mbufs).

All

data

must

fit

into

a

single

packet

for

each

write

subroutine.

The

generic

data

link

control

does

not

separate

the

user’s

write

data

area

into

multiple

transmit

packets.

A

maximum

write

data

size

is

passed

back

to

the

user

at

DLC_ENABLE_SAP

completion

and

at

DLC_START_LS

completion

for

this

purpose.

See

DLC_SAPE_RES

and

DLC_STAS_RES

for

further

information.

Normally,

GDLC

can

immediately

satisfy

a

write

subroutine

by

completing

the

data

link

headers

and

sending

the

transmit

packet

down

to

the

device

handler.

In

some

cases,

however,

transmit

packets

can

be

blocked

by

the

particular

protocol’s

flow

control

or

by

a

resource

outage.

GDLC

reacts

to

this

differently,

based

on

the

system

blocked

or

nonblocked

file

status

flags.

These

are

set

for

each

channel

using

the

O_NDELAY

and

O_NONBLOCK

values

passed

on

open

or

fcntl

subroutines

with

the

F_SETFD

parameter.

GDLC

only

looks

at

the

uio_fmode

field

on

each

write

subroutine

to

determine

whether

the

operation

is

blocked

or

nonblocked.

Nonblocked

writes

that

cannot

get

enough

resources

to

queue

the

data

return

an

error

indication.

Blocked

write

subroutines

put

the

calling

process

to

sleep

until

the

resources

free

up

or

an

error

occurs.

Each

GDLC

supports

the

writex

subroutine

interface

via

its

dlcwrite

entry

point.

This

subroutine

may

be

called

from

the

process

environment

only.

Note:

GDLC

does

not

support

nonblocked

transmit

users

based

on

resource

availability

using

the

selwakeup

subroutine.

Internal

resources

such

as

communications

I/O

buffers

and

control

block

locks

are

very

dynamic.

Any

write

subroutines

that

fail

with

errors

(such

as

EAGAIN

or

ENOMEM)

should

be

retried

at

the

user’s

discretion.

Parameters

fildes

Specifies

the

file

descriptor

returned

from

the

open

subroutine.

buf

Points

to

the

user

data

area.

len

Contains

the

byte

count

of

the

user

data

area.

ext

Specifies

the

extended

subroutine

parameter.

This

is

a

pointer

to

the

dlc_io_ext

extended

I/O

structure

for

the

writex

subroutine.

″write

Subroutine

Extended

Parameters

for

DLC″

provides

more

information

on

this

parameter.

Return

Values

Upon

successful

completion,

this

service

returns

the

number

of

bytes

that

were

written

into

a

communications

packet

from

the

user

data

area.

If

an

error

occurs,

a

value

of

-1

is

returned

with

one

of

the

following

error

values

available

using

the

errno

global

variable,

as

defined

in

the

/usr/include/sys/errno.h

file.

Value

Description

EAGAIN

Indicates

insufficient

resources

to

satisfy

the

write.

For

example,

the

routine

was

unable

to

obtain

a

necessary

lock.

The

user

can

try

again

later.

EBADF

Indicates

a

bad

file

number.

EINTR

Indicates

that

a

signal

interrupted

the

subroutine

before

it

completed

successfully.

EINVAL

Indicates

an

invalid

value,

such

as

too

much

data

for

a

single

packet.

18

Technical

Reference:

Communications,

Volume

1

Value

Description

EIO

Indicates

that

an

I/O

error

has

occurred,

such

as

loss

of

the

port.

ENOMEM

Indicates

insufficient

resources

to

satisfy

the

write

operation.

For

example,

a

lack

of

communications

memory

buffers

(mbufs).

The

user

can

try

again

later.

Related

Information

The

fcntl

subroutine,

open

subroutine,

writex

subroutine.

The

uiomove

kernel

service.

Parameter

Blocks

by

ioctl

Operation

for

DLC.

readx

Subroutine

Interface

for

DLC

Devices,

write

Subroutine

Extended

Parameters

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

open

Subroutine

Extended

Parameters

for

DLC

Purpose

Alters

certain

defaulted

parameters

for

an

extended

open

(openx)

subroutine.

Syntax

struct

dlc_open_ext

{

__ulong32_t

maxsaps;

int

(*

rcvi_fa)();

int

(*

rcvx_fa)();

int

(*

rcvd_fa)();

int

(*

rcvn_fa)();

int

(*

excp_fa)();

};

Description

An

extended

open

or

openx

subroutine

can

be

issued

to

alter

certain

defaulted

parameters,

such

as

maximum

service

access

points

(SAPs)

and

ring

queue

depths.

Kernel

users

may

change

these

normally

defaulted

parameters,

but

are

required

to

provide

additional

parameters

to

notify

the

dlcopen

routine

that

these

callers

are

to

be

treated

as

kernel

processes

and

not

as

application

processes.

Additional

parameters

passed

include

functional

addresses

that

generic

data

link

control

(GDLC)

calls

to

notify

about

asynchronous

events,

such

as

receive

data

available.

The

maxsaps

parameter

is

optional

for

both

the

application

and

the

kernel

user.

The

other

five

parameters

are

mandatory

for

kernel

users

but

are

ignored

by

GDLC

for

application

users.

There

are

no

default

values.

Each

field

must

be

filled

in

by

the

kernel

user.

All

functional

entry

addresses

must

be

valid.

That

is,

entry

points

that

the

kernel

user

does

not

wish

to

support

must

at

least

point

to

a

routine

which

frees

the

communication’s

memory

buffer

(mbuf)

passed

on

the

call.

These

DLC

extended

parameters

for

the

open

subroutine

are

part

of

the

data

link

control

in

BOS

Extensions

2

for

the

device

manager

you

are

using.

Chapter

1.

Data

Link

Controls

19

See

the

/usr/include/sys/gdlextcb.h

file

for

more

details

on

GDLC

structures.

Parameters

maxsaps

Specifies

the

maximum

number

of

SAPs

the

user

channel

uses

to

start

and

run

concurrently.

Any

value

from

1

to

127

can

be

specified.

If

the

default

value

of

1

is

desired,

the

user

must

set

the

field

to

0

(zero)

before

issuing

the

open

subroutine.

rcvi_fa

Points

to

the

address

of

a

user

I-Frame

Data

Received

routine

that

handles

the

sequenced

receive

data

completions.

This

field

is

valid

for

kernel

users

only

and

must

be

set

to

0

(zero)

by

application

users.

rcvx_fa

Points

to

the

address

of

a

user

XID

Data

Received

routine

that

handles

the

exchange

ID

receive

data

completions.

rcvd_fa

Points

to

the

address

of

a

user

Datagram

Data

Received

routine

that

handles

the

datagram

receive

data

completions.

rcvn_fa

Points

to

the

address

of

a

user

Network

Data

Received

routine

that

handles

the

network

receive

data

completions.

excp_fa

Points

to

the

address

of

a

user

Exception

Condition

routine

that

handles

the

exception

conditions,

such

as

DLC_SAPE_RES

(SAP-enabled)

or

DLC_CONT_RES

(LS-contacted).

Related

Information

The

open

or

openx

subroutine.

The

dlcopen

entry

point.

List

of

Kernel

Routines

for

DLC.

Parameter

Blocks

by

ioctl

Operation

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

read

Subroutine

Extended

Parameters

for

DLC

Purpose

Provide

generic

data

link

control

(GDLC)

with

a

structure

to

return

data

types

and

service

access

point

(SAP)

and

link

station

(LS)

correlators.

Syntax

#define

DLC_INFO

0x80000000

#define

DLC_XIDD

0x40000000

#define

DLC_DGRM

0x20000000

#define

DLC_NETD

0x10000000

#define

DLC_OFLO

0x00000002

#define

DLC_RSPP

0x00000001

struct

dlc_io_ext

{

__ulong32_t

sap_corr;

20

Technical

Reference:

Communications,

Volume

1

__ulong32_t

ls_corr;

__ulong32_t

flags;

__ulong32_t

dlh_len;

};

Description

An

extended

read

or

readx

subroutine

must

be

issued

by

an

application

user

to

provide

GDLC

with

a

structure

to

return

the

type

of

data

and

the

SAP

and

LS

correlators.

Parameters

sap_corr

Specifies

the

user’s

SAP

identifier

of

the

received

data.

ls_corr

Specifies

the

user’s

LS

identifier

of

the

received

data.

flags

Specifies

flags

for

the

readx

subroutine.

The

following

flags

are

supported:

DLC_INFO

Indicates

that

normal

sequenced

data

has

been

received

for

a

link

station

using

an

I-Frame

Data

Received

routine.

If

buffer

overflow

(OFLO)

is

indicated,

the

received

data

has

been

truncated

because

the

received

data

length

exceeds

either

the

maximum

I-field

size

derived

at

completion

of

DLC_START_LS

ioctl

operation

or

the

application

user’s

buffer

size.

DLC_XIDD

Indicates

that

exchange

identification

(XID)

data

has

been

received

for

a

link

station

using

an

XID

Data

Received

routine.

If

buffer

overflow

(OFLO)

is

indicated,

the

received

XID

has

been

truncated

because

the

received

data

length

exceeds

either

the

maximum

I-field

size

derived

at

DLC_START_LS

completion

or

the

application

user’s

buffer

size.

If

response

pending

(RSPP)

is

indicated,

an

XID

response

is

required

and

must

be

provided

to

GDLC

using

a

write

XID

as

soon

as

possible

to

avoid

repolling

and

possible

termination

of

the

remote

LS.

DLC_DGRM

Indicates

that

a

datagram

has

been

received

for

an

LS

using

a

Datagram

Data

Received

routine.

If

buffer

overflow

(OFLO)

is

indicated,

the

received

data

has

been

truncated

because

the

received

data

length

exceeds

either

the

maximum

I-field

size

derived

at

DLC_START_LS

completion

or

the

application

user’s

buffer

size.

DLC_NETD

Indicates

that

data

has

been

received

from

the

network

for

a

service

access

point

using

a

Network

Data

Received

routine.

This

may

be

link-establishment

data

such

as

X.21

call-progress

signals

or

Smartmodem

command

responses.

It

can

also

be

data

destined

for

the

user’s

SAP

when

no

link

station

has

been

started

that

fits

the

addressing

of

the

packet

received.

If

buffer

overflow

(OFLO)

is

indicated,

the

received

data

has

been

truncated

because

the

received

data

length

exceeds

either

the

maximum

packet

size

derived

at

DLC_ENABLE_SAP

completion

or

the

application

user’s

buffer

size.

Network

data

contains

the

entire

MAC

layer

packet,

excluding

any

fields

stripped

by

the

adapter

such

as

Preamble

or

CRC.

DLC_OFLO

Indicates

that

overflow

of

the

user

data

area

has

occurred

and

the

data

was

truncated.

This

error

does

not

set

a

u.u_error

indication.

DLC_RSPP

Indicates

that

the

XID

received

requires

an

XID

response

to

be

sent

back

to

the

remote

link

station.

Chapter

1.

Data

Link

Controls

21

dlh_len

Specifies

data

link

header

length.

This

field

has

a

different

meaning

depending

on

whether

the

extension

is

for

a

readx

subroutine

call

to

GDLC

or

a

response

from

GDLC.

On

the

application

readx

subroutine,

this

field

indicates

whether

the

user

wishes

to

have

datalink

header

information

prefixed

to

the

data.

If

this

field

is

set

to

0

(zero),

the

data

link

header

is

not

to

be

copied

(only

the

I-field

is

copied).

If

this

field

is

set

to

any

nonzero

value,

the

data

link

header

information

is

included

in

the

read

operation.

On

the

response

to

an

application

readx

subroutine,

this

field

contains

the

number

of

data

link

header

bytes

received

and

copied

into

the

data

link

header

information

field.

On

asynchronous

receive

function

handlers

to

the

kernel

user,

this

field

contains

the

length

of

the

data

link

header

within

the

communications

memory

buffer

(mbuf).

These

DLC

extended

parameters

for

the

read

subroutine

are

part

of

the

data

link

control

in

BOS

Extensions

2

for

the

device

manager

you

are

using.

Related

Information

The

read,

readx,

readv,

or

readvx

subroutine.

List

of

Kernel

Routines

for

DLC.

Parameter

Blocks

by

ioctl

Operation

for

DLC.

write

Subroutine

Extended

Parameters

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

write

Subroutine

Extended

Parameters

for

DLC

Purpose

Provide

generic

data

link

control

(GDLC)

with

data

types,

service

access

points

(SAPs),

and

link

station

(LS)

correlators.

Syntax

#define

DLC_INFO

0x80000000

#define

DLC_XIDD

0x40000000

#define

DLC_DGRM

0x20000000

#define

DLC_NETD

0x10000000

__ulong32_t

sap_corr;

__ulong32_t

ls_corr;

__ulong32_t

flags;

__ulong32_t

dlh_len;

};

Description

An

extended

write

or

writex

subroutine

must

be

issued

by

an

application

or

kernel

user

to

provide

GDLC

with

data

types,

SAPs,

and

LS

correlators.

These

DLC

extended

parameters

for

the

write

subroutine

are

part

of

the

data

link

control

in

BOS

Extensions

2

for

the

device

manager

you

are

using.

22

Technical

Reference:

Communications,

Volume

1

Parameters

sap_corr

Specifies

the

GDLC

SAP

correlator

of

the

write

data.

This

field

must

contain

the

same

correlator

value

passed

back

form

GDLC

in

the

gdlc_sap_corr

field

when

the

SAP

was

enabled.

dlh_len

Not

used

for

writes.

ls_corr

Specifies

the

GDLC

LS

correlator

of

the

write

data.

This

field

must

contain

the

same

correlator

value

passed

back

from

GDLC

in

the

gdlc_ls_corr

field

when

the

LS

was

started.

flags

Specifies

flags

for

the

writex

subroutine.

The

following

flags

are

supported:

DLC_INFO

Requests

a

sequenced

data

class

of

information

to

be

sent

(generally

called

I-frames).

This

request

is

valid

any

time

the

target

link

station

has

been

started

and

contacted.

DLC_XIDD

Requests

an

exchange

identification

(XID)

non-sequenced

command

or

response

packet

to

be

sent.

This

request

is

valid

any

time

the

target

link

station

has

been

started

with

the

following

rules:

GDLC

sends

the

XID

as

a

command

as

long

as

no

DLC_TEST,

DLC_CONTACT,

DLC_HALT_LS,

or

DLC_XIDD

write

subroutine

is

already

in

progress,

and

no

received

XID

is

waiting

for

a

response.

If

a

received

XID

is

waiting

for

a

response,

GDLC

automatically

sends

the

write

XID

as

that

response.

If

no

response

is

pending

and

a

command

is

already

in

progress,

the

write

is

rejected

by

GDLC.

DLC_DGRM

Requests

a

datagram

packet

to

be

sent.

A

datagram

is

an

unnumbered

information

(UI)

response.

This

request

is

valid

any

time

the

target

link

station

has

been

started.

DLC_NETD

Requests

that

network

data

be

sent.

Examples

of

network

data

include

special

modem

control

data

or

user-generated

medium

access

control

(MAC)

and

logical

link

control

(LLC)

headers.

Network

data

must

contain

the

entire

MAC

layer

packet

headers

so

that

the

packet

can

be

sent

without

the

data

link

control

(DLC)’s

intervention.

GDLC

only

provides

a

pass-through

function

for

this

type

of

write.

This

request

is

valid

any

time

the

SAP

is

open.

Chapter

1.

Data

Link

Controls

23

Related

Information

The

write

or

writex

subroutine.

List

of

Kernel

Routines

for

DLC.

read

Subroutine

Extended

Parameters

for

DLC.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Datagram

Data

Received

Routine

for

DLC

Purpose

Receives

a

datagram

packet

each

time

it

is

coded

by

the

kernel

user

and

called

by

generic

data

link

control

(GDLC).

Syntax

#include

<sys/gdlextcb.h>

int

(*dlc_open_ext.rcvd_fa)(

m,

ext)

struct

mbuf

*m;

struct

dlc_io_ext

*ext;

Description

The

DLC

Datagram

Data

Received

routine

receives

a

datagram

packet

each

time

it

is

coded

by

the

kernel

user

and

called

by

GDLC.

Each

GDLC

supports

a

subset

of

the

data-received

routines.

It

is

critical

to

performance

that

the

Datagram

Data

Received

routine

be

coded

to

minimize

the

amount

of

time

spent

prior

to

returning

to

the

GDLC

that

called

it.

Parameters

m

Points

to

a

communications

memory

buffer

(mbuf).

ext

Specifies

the

receive

extension

parameter.

This

is

a

pointer

to

the

dlc_io_ext

extended

I/O

structure

for

read

operations.

Return

Values

DLC_FUNC_OK

Indicates

that

the

received

datagram

mbuf

data

has

been

accepted.

DLC_FUNC_RETRY

Indicates

that

the

received

datagram

mbuf

data

cannot

be

accepted

at

this

time.

GDLC

should

retry

this

function

later.

The

actual

retry

wait

period

depends

on

the

DLC

in

use.

Excessive

retries

may

close

the

link

station.

Related

Information

read

Subroutine

Extended

Parameters

for

DLC

.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

24

Technical

Reference:

Communications,

Volume

1

Exception

Condition

Routine

for

DLC

Purpose

Notifies

the

kernel

user

each

time

an

asynchronous

event

occurs

in

generic

data

link

control

(GDLC).

Syntax

#include

<sys/gdlextcb.h>

int

(*dlc_open_ext.excp_fa)(

ext)

struct

dlc_getx_arg

*ext;

Description

The

DLC

Exception

Condition

routine

notifies

the

kernel

user

each

time

an

asynchronous

event

occurs,

such

as

DLC_SAPD_RES

(SAP-disabled)

or

DLC_CONT_RES

(contacted),

in

GDLC.

Each

GDLC

supports

a

subset

of

the

data-received

routines.

It

is

critical

to

performance

that

the

Exception

Condition

routine

for

DLC

be

coded

to

minimize

the

amount

of

time

spent

prior

to

returning

to

the

GDLC

that

called

it.

Parameters

ext

Specifies

the

same

structure

for

a

dlc_getx_arg

(get

exception)

ioctl

subroutine.

Return

Values

DLC_FUNC_OK

Indicates

that

the

exception

has

been

accepted.

Note:

The

function

call

above

has

a

hidden

parameter

extension

for

internal

use

only,

defined

as

int

*chanp,

the

channel

pointer.

Related

Information

The

ioctl

subroutine.

Parameter

Blocks

by

ioctl

Operation

for

DLC

.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

I-Frame

Data

Received

Routine

for

DLC

Purpose

Receives

a

normal

sequenced

data

packet

each

time

it

is

coded

by

the

kernel

user

and

called

by

generic

data

link

control

(GDLC).

Syntax

#include

<sys/gdlextcb.h>

int

(*dlc_open_ext.rcvi_fa)(

m,

ext)

struct

mbuf

*m;

struct

dlc_io_ext

*ext;

Chapter

1.

Data

Link

Controls

25

Description

The

DLC

I-Frame

Data

Received

routine

receives

a

normal

sequenced

data

packet

each

time

it

is

coded

by

the

kernel

user

and

called

by

GDLC.

Each

GDLC

supports

a

subset

of

the

data-received

routines.

It

is

critical

to

performance

that

the

I-Frame

Data

Received

routine

be

coded

to

minimize

the

amount

of

time

spent

prior

to

returning

to

the

GDLC

that

called

it.

Parameters

m

Points

to

a

communications

memory

buffer

(mbuf).

ext

Specifies

the

receive

extension

parameter.

This

is

a

pointer

to

the

dlc_io_ext

extended

I/O

structure

for

reads.

The

argument

to

this

parameter

must

be

in

the

kernel

space.

Return

Values

DLC_FUNC_OK

Indicates

that

the

received

I-frame

function

call

is

accepted.

DLC_FUNC_BUSY

Indicates

that

the

received

I-frame

function

call

cannot

be

accepted

at

this

time.

The

ioctl

command

operation

DLC_EXIT_LBUSY

must

be

issued

later

using

the

ioctl

subroutine.

DLC_FUNC_RETRY

Indicates

that

the

received

I-frame

function

call

cannot

be

accepted

at

this

time.

GDLC

should

retry

this

function

call

later.

The

actual

retry

wait

period

depends

on

the

DLC

in

use.

Excessive

retries

can

be

subject

to

a

halt

of

the

link

station.

Related

Information

The

ioctl

subroutine.

Parameter

Blocks

by

ioctl

Operation

for

DLC

.

read

Subroutine

Extended

Parameters

for

DLC

.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Network

Data

Received

Routine

for

DLC

Purpose

Receives

network-specific

data

each

time

it

is

coded

by

the

kernel

user

and

called

by

generic

data

link

control

(GDLC).

Syntax

#include

<sys/gdlextcb.h>

int

(*dlc_open_ext.rcvn_fa)(

m,

ext)

struct

mbuf

*m;

struct

dlc_io_ext

*ext;

Description

The

DLC

Network

Data

Received

routine

receives

network-specific

data

each

time

the

routine

is

coded

by

the

kernel

user

and

called

by

GDLC.

26

Technical

Reference:

Communications,

Volume

1

Each

GDLC

supports

a

subset

of

the

data-received

routines.

It

is

critical

to

performance

that

the

Network

Data

Received

routine

be

coded

to

minimize

the

amount

of

time

spent

prior

to

returning

to

the

GDLC

that

called

it.

Parameters

m

Points

to

a

communications

memory

buffer

(mbuf).

ext

Specifies

the

receive

extension

parameter.

This

is

a

pointer

to

the

dlc_io_ext

extended

I/O

structure

for

read

operations.

Return

Values

DLC_FUNC_OK

Indicates

that

the

received

network

mbuf

data

has

been

accepted.

DLC_FUNC_RETRY

Indicates

that

the

received

network

mbuf

data

cannot

be

accepted

at

this

time.

GDLC

should

retry

this

function

call

later.

The

actual

retry

wait

period

depends

on

the

DLC

in

use.

Excessive

retries

can

cause

a

disabling

of

the

service

access

point.

Related

Information

read

Subroutine

Extended

Parameters

for

DLC

.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

XID

Data

Received

Routine

for

DLC

Purpose

Receives

an

exchange

identification

(XID)

packet

each

time

it

is

coded

by

the

kernel

user

and

called

by

generic

data

link

control

(GDLC).

Syntax

#include

<sys/gdlextcb.h>

int

(*dlc_open_ext.rcvx_fa)(

m,

ext)

struct

mbuf

*m;

struct

dlc_io_ext

*ext;

Description

The

DLC

XID

Data

Received

routine

receives

an

XID

packet

each

time

the

routine

is

coded

by

the

kernel

user

and

called

by

GDLC.

Each

GDLC

supports

a

subset

of

the

data-received

routines.

It

is

performance

critical

that

the

XID

Data

Received

routine

be

coded

to

minimize

the

amount

of

time

spent

prior

to

returning

to

the

GDLC

that

called

it.

Parameters

m

Points

to

a

communication

memory

buffer

(mbuf).

ext

Specifies

the

receive

extension

parameter.

This

is

a

pointer

to

the

dlc_io_ext

extended

I/O

structure

for

reads.

The

argument

to

this

parameter

must

be

in

the

kernel

space.

Chapter

1.

Data

Link

Controls

27

Return

Values

DLC_FUNC_OK

Indicates

that

the

received

XID

mbuf

data

has

been

accepted.

DLC_FUNC_RETRY

Indicates

that

the

received

XID

mbuf

data

cannot

be

accepted

at

this

time.

GDLC

should

retry

this

function

call

later.

The

actual

retry

wait

period

depends

on

the

DLC

in

use.

Excessive

retries

may

close

the

link

station.

Related

Information

read

Subroutine

Extended

Parameters

for

DLC

.

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

ioctl

Operations

(op)

for

DLC

Syntax

#define

DLC_ENABLE_SAP

1

#define

DLC_DISABLE_SAP

2

#define

DLC_START_LS

3

#define

DLC_HALT_LS

4

#define

DLC_TRACE

5

#define

DLC_CONTACT

6

#define

DLC_TEST

7

#define

DLC_ALTER

8

#define

DLC_QUERY_SAP

9

#define

DLC_QUERY_LS

10

#define

DLC_ENTER_LBUSY

11

#define

DLC_EXIT_LBUSY

12

#define

DLC_ENTER_SHOLD

13

#define

DLC_EXIT_SHOLD

14

#define

DLC_GET_EXCEP

15

#define

DLC_ADD_GRP

16

#define

DLC_ADD_FUNC_ADDR

17

#define

DLC_DEL_FUNC_ADDR

18

#define

DLC_DEL_GRP

19

#define

IOCINFO

/*

see

/usr/include/sys/ioctl.h

*/

Description

Note:

If

the

operation’s

notification

is

returned

asynchronously

to

the

user

by

way

of

exception,

application

users

should

refer

to

″DLC_GET_EXCEP

ioctl

Operation

for

DLC″

and

kernel

users

should

refer

to

″Exception

Condition

Routine

for

DLC″

for

more

information.

Each

GDLC

supports

a

subset

of

ioctl

subroutine

operations.

These

ioctl

operations

are

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

They

may

be

called

from

the

process

environment

only.

28

Technical

Reference:

Communications,

Volume

1

The

following

ioctl

command

operations

are

supported

for

generic

data

link

control

(GDLC):

Operation

Description

DLC_ADD_FUNC_ADDR

Adds

a

group

or

multicast

receive

functional

address

to

a

port.

This

command

allows

additional

functional

address

bits

to

be

added

to

the

current

receive

functional

address

mask,

as

supported

by

the

individual

device

handlers.

See

device

handler

specifications

to

determine

which

address

values

are

supported.

Note:

Currently,

token

ring

is

the

only

local

area

network

(LAN)

protocol

supporting

functional

addresses.

DLC_ADD_GRP

Adds

a

group

or

multicast

receive

address

to

a

port.

This

command

allows

additional

address

values

to

be

filtered

in

receive

as

supported

by

the

individual

communication

device

handlers.

See

device

handler

specifications

to

determine

which

address

values

are

supported.

DLC_ALTER

Alters

link

station

(LS)

configuration.

DLC_CONTACT

Contacts

the

remote

LS.

This

ioctl

operation

does

not

complete

processing

before

returning

to

the

user.

The

DLC_CONTACT

notification

is

returned

asynchronously

to

the

user

by

way

of

exception.

DLC_DEL_GRP

Removes

a

group

or

multicast

address

that

was

previously

added

to

a

port

with

a

DLC_ENABLE_SAP

or

DLC_ADD_GRP

ioctl

operation.

DLC_DEL_FUNC_ADDR

Removes

a

group

or

multicast

receive

functional

address

from

a

port.

This

command

removes

functional

address

bits

from

the

current

receive

functional

address

mask,

as

supported

by

the

individual

device

handlers.

See

device

handler

specifications

to

determine

which

address

values

are

supported.

Note:

Currently,

token

ring

is

the

only

local

area

network

protocol

supporting

functional

addresses.

DLC_DISABLE_SAP

Disables

a

service

access

point

(SAP).

This

ioctl

operation

does

not

fully

complete

the

disable

SAP

processing

before

returning

to

the

user.

The

DLC_DISABLE_SAP

notification

is

returned

asynchronously

to

the

user

later

by

way

of

exception.

DLC_ENABLE_SAP

Enables

an

SAP.

This

ioctl

operation

does

not

fully

complete

the

enable

SAP

processing

before

returning

to

the

user.

The

DLC_ENABLE_SAP

notification

is

returned

asynchronously

to

the

user

later

by

way

of

exception.

DLC_ENTER_LBUSY

Enters

local

busy

mode

on

an

LS.

DLC_ENTER_SHOLD

Enters

short

hold

mode

on

an

LS.

DLC_EXIT_LBUSY

Exits

local

busy

mode

on

an

LS.

DLC_EXIT_SHOLD

Exits

short

hold

mode

on

an

LS.

DLC_GET_EXCEP

Returns

asynchronous

exception

notifications

to

the

application

user.

Note:

This

ioctl

command

operation

is

not

used

by

the

kernel

user

since

all

exception

conditions

are

passed

to

the

kernel

user

by

their

exception

handler

routine.

DLC_HALT_LS

Halts

an

LS.

This

ioctl

operation

does

not

complete

processing

before

returning

to

the

user.

Notification

of

the

ioctl

operation,

DLC_HALT_LS,

is

returned

asynchronously

to

the

user

by

way

of

exception.

DLC_QUERY_LS

Queries

an

LS.

DLC_QUERY_SAP

Queries

an

SAP.

DLC_START_LS

Starts

an

LS.

This

ioctl

operation

does

not

complete

processing

before

returning

to

the

user.

Notification

of

the

ioctl

operation,

DLC_START_LS,

is

returned

asynchronously

to

the

user

by

way

of

exception.

DLC_TEST

Tests

LS

connectivity.

This

ioctl

operation

does

not

complete

processing

before

returning

to

the

user.

Notification

of

the

ioctl

operation,

DLC_TEST

completion,

is

returned

asynchronously

to

the

user

by

way

of

exception.

DLC_TRACE

Traces

LS

activity.

IOCINFO

Returns

a

structure

that

describes

the

device.

Refer

to

the

description

of

the

/usr/include/sys/devinfo.h

file.

The

first

byte

is

set

to

an

ioctype

of

DD_DLC.

The

subtype

and

data

are

defined

by

the

individual

DLC

devices.

Related

Information

Parameter

Blocks

by

ioctl

Operation

for

DLC

.

Chapter

1.

Data

Link

Controls

29

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Parameter

Blocks

by

ioctl

Operation

for

DLC

Description

Each

command

operation

has

a

specific

parameter

block

associated

with

the

command

pointed

to

by

the

arg

pointer.

Some

parameters

are

sent

to

the

generic

data

link

control

(GDLC)

and

others

are

returned.

The

ioctl

command

operations

for

DLC

are:

v

DLC_ADD_FUNC_ADDR

ioctl

Operation

for

DLC

v

DLC_ADD_GRP

ioctl

Operation

for

DLC

v

DLC_ALTER

ioctl

Operation

for

DLC

v

DLC_CONTACT

ioctl

Operation

for

DLC

v

DLC_DEL_FUNC_ADDR

ioctl

Operation

for

DLC

v

DLC_DEL_GRP

ioctl

Operation

for

DLC

v

DLC_DISABLE_SAP

ioctl

Operation

for

DLC

v

DLC_ENABLE_SAP

ioctl

Operation

for

DLC

v

DLC_ENTER_LBUSY

ioctl

Operation

for

DLC

v

DLC_ENTER_SHOLD

ioctl

Operation

for

DLC

v

DLC_EXIT_LBUSY

ioctl

Operation

for

DLC

v

DLC_EXIT_SHOLD

ioctl

Operation

for

DLC

v

DLC_GET_EXCEP

ioctl

Operation

for

DLC

v

DLC_HALT_LS

ioctl

Operation

for

DLC

v

DLC_QUERY_LS

ioctl

Operation

for

DLC

v

DLC_QUERY_SAP

ioctl

Operation

for

DLC

v

DLC_START_LS

ioctl

Operation

for

DLC

v

DLC_TEST

ioctl

Operation

for

DLC

v

DLC_TRACE

ioctl

Operation

for

DLC

v

IOCINFO

ioctl

Operation

for

DLC

DLC_ADD_FUNC_ADDR

ioctl

Operation

for

DLC

The

DLC_ADD_FUNC_ADDR

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

adds

a

functional

address

mask

any

time

a

service

access

point

(SAP)

has

been

enabled

via

DLC_ENA_SAP

ioctl.

Multiple

functional

address

bits

may

be

specified.

struct

dlc_func_addr

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

len_func_addr_mask;

/*

length

of

functional

*/

/*

address

mask

*/

uchar_t

func_addr_mask[DLC_MAX_ADDR];

/*

functional

address

*/

/*

mask

*/

};

30

Technical

Reference:

Communications,

Volume

1

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

generic

data

link

control

(GDLC)

service

access

point

(SAP)

correlator

being

requested

to

delete

a

functional

address

from

a

port.

len_func_addr_mask

Contains

the

byte

length

of

the

functional

address

mask

to

be

added.

func_addr_mask

Contains

the

functional

address

mask

value

to

be

ORed

with

the

functional

address

on

the

adapter.

See

the

individual

DLC

interface

documentation

to

determine

the

length

and

format

of

this

field.

DLC_ADD_GRP

ioctl

Operation

for

DLC

The

DLC_ADD_GRP

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

adds

a

group

or

multicast

receive

address:

struct

dlc_add_grp

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

grp_addr_len;

/*

group

address

length

*/

uchar_t

grp_addr[DLC_MAX_ADDR];

/*

grp

addr

to

be

added

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

generic

data

link

control

(GDLC)

service

access

point

(SAP)

Correlator

being

requested

to

add

a

group

or

multicast

address

to

a

port.

grp_addr_len

Contains

the

byte

length

of

the

group

or

multicast

address

to

be

added.

grp_addr

Contains

the

group

or

multicast

address

value

to

be

added.

DLC_ALTER

ioctl

Operation

for

DLC

The

DLC_ALTER

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

alters

a

link

station’s

(LS)

configuration

parameters:

#define

DLC_MAX_ROUT

20

/*

Maximum

Size

of

Routing

Info

*/

struct

dlc_alter_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

__ulong32_t

flags;

/*

Alter

Flags

*/

__ulong32_t

repoll_time;

/*

New

Repoll

Timeout

*/

__ulong32_t

ack_time;

/*

New

Acknowledge

Timeout

*/

__ulong32_t

inact_time;

/*

New

Inactivity

Timeout

*/

__ulong32_t

force_time;

/*

New

Force

Timeout

*/

__ulong32_t

maxif;

/*

New

Maximum

I-Frame

Size

*/

Chapter

1.

Data

Link

Controls

31

__ulong32_t

xmit_wind;

/*

New

Transmit

Value

*/

__ulong32_t

max_repoll;

/*

New

Max

Repoll

Value

*/

__ulong32_t

routing_len;

/*

Routing

Length

*/

u_char_t

routing[DLC_MAX_ROUT];

/*

New

Routing

Data

*/

__ulong32_t

result_flags;

/*

Returned

flags

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Indicates

the

generic

data

link

control

(GDLC)

service

access

point

(SAP)

correlator

of

the

target

LS.

gdlc_ls_corr

Indicates

the

GDLC

LS

correlator

to

be

altered.

flags

Specifies

alter

flags.

The

following

flags

are

supported:

DLC_ALT_RTO

Alter

repoll

timeout:

0

=

Do

not

alter

repoll

timeout.

1

=

Alter

configuration

with

value

specified.

Alters

the

length

of

time

the

LS

waits

for

a

response

before

repolling

the

remote

station.

When

specified,

the

repoll

timeout

value

specified

in

the

LS

configuration

is

overridden

by

the

value

supplied

in

the

repoll

timeout

field

of

the

Alter

command.

This

new

value

remains

in

effect

until

another

value

is

specified

or

the

LS

is

halted.

DLC_ALT_AKT

Alter

acknowledgment

timeout:

0

=

Do

not

alter

the

acknowledgment

timeout.

1

=

Alter

configuration

with

value

specified.

Alters

the

length

of

time

the

LS

delays

the

transmission

of

an

acknowledgment

for

a

received

I-frame.

When

specified,

the

acknowledgment

timeout

value

specified

in

the

LS

configuration

is

overridden

by

the

value

supplied

in

the

acknowledgment

timeout

field

of

the

Alter

command.

This

new

value

remains

in

effect

until

another

value

is

specified

or

the

LS

is

halted.

DLC_ALT_ITO

Alter

inactivity

timeout:

0

=

Do

not

alter

inactivity

timeout.

1

=

Alter

configuration

with

value

specified.

Alters

the

maximum

length

of

time

allowed

without

receive

link

activity

from

the

remote

station.

When

specified,

the

inactivity

timeout

value

specified

in

the

LS

configuration

is

overridden

by

the

value

supplied

in

the

inactivity

timeout

field

of

the

Alter

command.

This

new

value

remains

in

effect

until

another

value

is

specified

or

the

LS

is

halted.

DLC_ALT_FHT

Alter

force

halt

timeout:

0

=

Do

not

alter

force

halt

timeout.

1

=

Alter

configuration

with

value

specified.

Alters

the

period

to

wait

for

a

normal

disconnection

before

forcing

the

halt

LS

to

occur.

When

specified,

the

force

halt

timeout

value

specified

in

the

LS

configuration

is

overridden

by

the

value

supplied

in

the

force

halt

timeout

field

of

the

Alter

command.

This

new

value

remains

in

effect

until

another

value

is

specified

or

the

LS

is

halted.

32

Technical

Reference:

Communications,

Volume

1

Field

Description

DLC_ALT_MIF

Maximum

I-field

length:

0

=

Do

not

alter

maximum

I-field

length.

1

=

Alter

configuration

with

value

specified.

Sets

the

value

for

the

maximum

length

of

transmit

or

receive

data

in

one

I-field.

If

received

data

exceeds

this

length,

a

buffer

overflow

indication

set

by

GDLC

in

the

receive

extension.

When

specified,

the

maximum

I-field

length

value

specified

in

the

LS

configuration

is

overridden

by

the

value

supplied

in

the

maximum

I-field

length

specified

in

the

Alter

command.

This

new

value

remains

in

effect

until

another

value

is

specified

or

the

LS

is

halted.

DLC_ALT_XWIN

Alter

transmit

window:

0

=

Do

not

alter

transmit

window.

1

=

Alter

configuration

with

value

specified.

Alters

the

maximum

number

of

information

frames

that

can

be

sent

in

one

transmit

burst.

When

specified,

the

transmit

window

count

value

specified

in

the

LS

configuration

is

overridden

by

the

value

supplied

in

the

transmit

window

field

of

the

Alter

command.

This

new

value

remains

in

effect

until

another

value

is

specified

or

the

LS

is

halted.

DLC_ALT_MXR

Alter

maximum

repoll:

0

=

Do

not

alter

maximum

repoll.

1

=

Alter

configuration

with

value

specified.

Alters

the

maximum

number

of

retries

for

an

acknowledged

command

frame,

or

in

the

case

of

an

I-frame

timeout,

the

number

of

times

the

nonresponding

remote

LS

will

be

polled

with

a

supervisory

command

frame.

When

specified,

the

maximum

repoll

count

value

specified

in

the

LS

configuration

is

overridden

by

the

value

supplied

in

the

maximum

repoll

count

field

of

the

Alter

command.

This

new

value

remains

in

effect

until

another

value

is

specified

or

the

LS

is

halted.

DLC_ALT_RTE

Alter

routing:

0

=

Do

not

alter

routing.

1

=

Alter

configuration

with

value

specified.

Alters

the

route

that

subsequent

transmit

packets

take

when

transferring

data

across

a

local

area

network

bridge.

When

specified,

the

routing

length

and

routing

data

values

specified

in

the

LS

configuration

are

overridden

by

the

values

supplied

in

the

routing

fields

of

the

Alter

command.

These

new

values

remain

in

effect

until

another

route

is

specified

or

the

LS

is

halted.

Chapter

1.

Data

Link

Controls

33

Field

Description

DLC_ALT_SM1

Set

primary

SDLC

Control

mode:

0

=

Do

not

alter

SDLC

Control

mode.

1

=

Set

SDLC

Control

mode

to

primary.

Sets

the

local

station

to

a

primary

station

in

NDM,

waiting

for

a

command

from

PU

services

to

write

an

XID

or

TEST,

or

a

command

to

contact

the

secondary

for

NRM

data

phase.

This

control

can

only

be

issued

if

not

already

in

NRM,

and

no

XID,

TEST,

or

SNRM

is

in

progress.

This

flag

cannot

be

set

if

the

DLC_ALT_SM2

flag

is

set.

DLC_ALT_SM2

Set

secondary

SDLC

Control

mode:

0

=

Do

not

alter

SDLC

Control

mode.

1

=

Set

SDLC

Control

mode

to

secondary.

Sets

the

local

station

to

a

secondary

station

in

NDM,

waiting

for

XID,

TEST,

or

SNRM

from

the

primary

station.

This

control

can

only

be

issued

if

not

already

in

NRM,

and

no

XID,

TEST,

or

SNRM

is

in

progress.

This

flag

cannot

be

set

if

the

DLC_ALT_SM1

flag

is

set.

DLC_ALT_IT1

Set

notification

for

Inactivity

Time-Out

mode:

0

=

Do

not

alter

Inactivity

Time-Out

mode.

1

=

Set

Inactivity

Time-Out

mode

to

notification

only.

Inactivity

does

not

cause

the

LS

to

be

halted,

but

notifies

the

user

of

inactivity

without

termination.

DLC_ALT_IT2

Set

automatic

halt

for

Inactivity

Time-Out

mode:

0

=

Do

not

alter

Inactivity

Time-Out

mode.

1

=

Set

Inactivity

Time-Out

mode

to

automatic

halt.

repoll_time

Provides

a

new

value

to

replace

the

LS

repoll

time-out

value

whenever

the

DLC_ALT_RTO

flag

is

set.

ack_time

Provides

a

new

value

to

replace

the

LS

acknowledgment

time-out

value

whenever

the

DLC_ALT_AKT

flag

is

set.

inact_time

Provides

a

new

value

to

replace

the

LS

inactivity

time-out

value

whenever

the

alter

DLC_ALT_ITO

flag

is

set.

force_time

Provides

a

new

value

to

replace

the

LS

force

halt

time-out

value

whenever

the

DLC_ALT_FHT

flag

is

set.

maxif

Provides

a

new

value

to

replace

the

LS-started

result

value

for

the

maximum

I-field

size

whenever

the

DLC_ALT_MIF

flag

is

set.

GDLC

does

not

allow

this

value

to

exceed

the

capacity

of

the

receive

buffer

and

only

increases

the

internal

value

to

the

allowed

maximum.

xmit_wind

Provides

a

new

value

to

replace

the

LS

transmit

window

count

value

whenever

the

DLC_ALT_XWIN

flag

is

set.

max_repoll

Provides

the

new

value

that

is

to

replace

the

LS

maximum

repoll

count

value

whenever

the

DLC_ALT_MXR

flag

is

set.

routing_len

Provides

a

new

value

to

replace

the

LS

routing

field

length

whenever

the

DLC_ALT_RTE

flag

is

set.

routing

Provides

a

new

value

to

replace

the

LS

routing

data

whenever

the

DLC_ALT_RTE

flag

is

set.

34

Technical

Reference:

Communications,

Volume

1

Field

Description

result_flags

Returns

the

following

result

indicators

at

the

completion

of

the

alter

operation,

depending

on

the

command:

DLC_MSS_RES

Indicates

mode

set

secondary.

Set

to

1,

this

bit

indicates

that

the

station

mode

has

been

set

to

secondary

as

a

result

of

the

user

issuing

an

Alter

(set

mode

secondary)

command.

DLC_MSSF_RES

Indicates

mode

set

secondary

was

unsuccessful.

Set

to

1,

this

bit

indicates

that

the

station

mode

has

been

not

set

to

secondary

as

a

result

of

the

user

issuing

an

Alter

(set

mode

secondary)

command.

This

occurs

whenever

an

SDLC

LS

is

already

in

data

phase

or

an

SDLC

primary

command

sequence

has

not

yet

completed.

DLC_MSP_RES

Indicates

mode

set

primary.

Set

to

1,

this

bit

indicates

that

the

station

mode

has

been

set

to

primary

as

a

result

of

the

user

issuing

an

Alter

(set

mode

primary)

command.

DLC_MSPF_RES

Indicates

mode

set

primary

was

unsuccessful.

Set

to

1,

this

bit

indicates

that

the

station

mode

has

not

been

set

to

primary

as

a

result

of

the

user

issuing

an

Alter

(set

mode

primary)

command.

This

occurs

whenever

an

SDLC

LS

is

already

in

data

phase.

The

protocol-dependent

area

allows

additional

fields

to

be

provided

by

a

specific

protocol

type.

Corresponding

flags

may

be

necessary

to

support

additional

fields.

This

optional

data

area

must

directly

follow

(or

append

to)

the

end

of

the

dlc_alter_arg

structure.

DLC_CONTACT

ioctl

Operation

for

DLC

The

DLC_CONTACT

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

contacts

a

remote

station

for

a

particular

local

link

station

(LS):

struct

dlc_corr_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

GDLC

SAP

correlator

of

the

target

LS.

gdlc_ls_corr

Contains

the

GDLC

LS

correlator

to

be

contacted.

DLC_DEL_FUNC_ADDR

ioctl

Operation

for

DLC

The

DLC_DEL_FUNC_ADDR

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

deletes

a

previously

defined

functional

address

mask

any

time

a

service

access

point

(SAP)

has

been

enabled

with

a

DLC_ENA_SAP

ioctl.

Multiple

functional

address

bits

can

be

specified.

Chapter

1.

Data

Link

Controls

35

struct

dlc_func_addr

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

len_func_addr_mask;

/*

length

of

functional

*/

/*

address

mask

*/

uchar_t

func_addr_mask[DLC_MAX_ADDR];

/*functional

add.

mask

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Indicates

the

generic

data

link

control

(GDLC)

service

access

point

(SAP)

identifier

being

requested

to

delete

a

functional

address

from

a

port.

len_func_addr_mask

Contains

the

byte

length

of

the

functional

address

mask

to

be

deleted.

func_addr_mask

Contains

the

functional

address

mask

value

to

be

deleted

from

with

the

functional

address

on

the

adapter.

See

the

individual

DLC

interface

documentation

to

determine

the

length

and

format

of

this

field.

DLC_DEL_GRP

ioctl

Operation

for

DLC

The

DLC_DEL_GRP

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

removes

a

previously

defined

group

or

multicast

address:

struct

dlc_add_grp

{

__ulong32_t

gdlc_sap_corr;

/*GDLC

SAP

correlator

*/

__ulong32_t

grpaddr_len;

/*group

address

length

*/

uchar_t

grp_addr[DLC_MAX_ADDR];

/*group

address

to

be

removed

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Indicates

the

generic

data

link

control

(GDLC)

service

access

point

(SAP)

identifier

being

requested

to

remove

a

group

or

multicast

address

from

a

port.

This

field

is

known

as

the

GDLC

SAP

Correlator

field.

grp_addr_len

Contains

the

byte

length

of

the

group

or

multicast

address

to

be

removed.

grp_addr

Contains

the

group

or

multicast

address

to

be

removed.

DLC_DISABLE_SAP

ioctl

Operation

for

DLC

The

DLC_DISABLE_SAP

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

disables

a

service

access

point

(SAP):

36

Technical

Reference:

Communications,

Volume

1

struct

dlc_corr_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

<not

used

for

disabling

a

SAP>

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

GDLC

SAP

correlator.

The

field

indicates

the

GDLC

SAP

identifier

to

be

disabled.

gdlc_ls_corr

Contains

GDLC

LS

correlator.

The

GDLC

LS

identifier

is

returned

to

the

user

as

soon

as

resources

are

determined

to

be

available.

This

correlator

must

accompany

all

commands

associated

with

this

LS.

DLC_ENABLE_SAP

ioctl

Operation

for

DLC

The

DLC_ENABLE_SAP

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

enables

a

service

access

point

(SAP):

#define

DLC_MAX_NAME

20

#define

DLC_MAX_GSAPS

7

#define

DLC_MAX_ADDR

8

#define

DLC_ESAP_NTWK

0x40000000

#define

DLC_ESAP_LINK

0x20000000

#define

DLC_ESAP_PHYC

0x10000000

#define

DLC_ESAP_ANSW

0x08000000

#define

DLC_ESAP_ADDR

0x04000000

struct

dlc_esap_arg

{

__ulong32_t

gdlc_sap_corr;

__ulong32_t

user_sap_corr;

__ulong32_t

len_func_addr_mask;

uchar_t

func_addr_mask

[DLC_MAX_ADDR];

__ulong32_t

len_grp_addr;

uchar_t

grp_addr

[DLC_MAX_ADDR];

__ulong32_t

max_ls;

__ulong32_t

flags;

__ulong32_t

len_laddr_name;

u_char_t

laddr_name

[DLC_MAX_NAME];

u_char_t

num_grp_saps;

u_char_t

grp_sap

[DLC_MAX_GSAPS];

u_char_t

res1[3];

u_char_t

local_sap;

};

Chapter

1.

Data

Link

Controls

37

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Specifies

the

generic

data

link

control’s

(GDLC)

SAP

identifier

that

is

returned

to

the

user.

This

correlator

must

accompany

all

subsequent

commands

associated

with

this

SAP.

user_sap_corr

Specifies

an

identifier

or

correlator

the

user

wishes

to

have

returned

on

all

SAP

results

from

GDLC.

It

allows

the

user

of

multiple

SAPs

to

choose

a

correlator

to

route

the

SAP-specific

results.

len_func_addr_mask

Specifies

the

byte

length

of

the

following

functional

address

mask.

This

field

must

be

set

to

0

if

no

functional

address

is

required.

Length

values

of

0

through

8

are

supported.

func_addr_mask

Specifies

the

functional

address

mask

to

be

ORed

with

the

functional

address

on

the

adapter.

This

address

mask

allows

packets

that

are

destined

for

specified

functions

to

be

received

by

the

local

adapter.

See

individual

DLC

interface

documentation

to

determine

the

format

and

length

of

this

field.

Note:

GDLC

does

not

distinguish

whether

a

received

packet

was

accepted

by

the

adapter

due

to

a

pre-set

network,

group,

or

functional

address.

If

the

SAP

address

matches

and

the

packet

is

otherwise

valid

(no

protocol

errors,

for

instance),

the

received

packet

is

passed

to

the

user.

len_grp_addr

Specifies

the

byte

length

of

the

following

group

address.

This

field

must

be

set

to

0

(zero)

if

no

group

address

is

required.

Length

values

of

0

through

8

are

supported.

grp_addr

Specifies

the

group

address

value

to

be

written

to

the

adapter.

It

allows

packets

that

are

destined

for

a

specific

group

to

be

received

by

the

local

adapter.

Note:

Most

adapters

allow

only

one

group

address

to

be

active

at

a

time.

If

this

field

is

nonzero

and

the

adapter

rejects

the

group

address

because

it

is

already

in

use,

the

enable

SAP

call

fails

with

an

appropriate

error

code.

max_ls

Specifies

the

maximum

number

of

link

stations

(LSs)

allowed

to

operate

concurrently

on

a

particular

SAP.

The

protocol

used

determines

the

values

for

this

field.

38

Technical

Reference:

Communications,

Volume

1

Field

Description

flags

Supports

the

following

flags

of

the

DLC_ENABLE_SAP

ioctl

operation:

DLC_ESAP_NTWK

Teleprocessing

network

type:

0

=

Switched

(default)

1

=

Leased

DLC_ESAP_LINK

Teleprocessing

link

type:

0

=

Point

to

point

(default)

1

=

Multipoint

DLC_ESAP_PHYC

Physical

network

call

(teleprocessing):

0

=

Listen

for

incoming

call

1

=

Initiate

call

DLC_ESAP_ADDR

Local

address

or

name

indicator.

Specifies

whether

the

local

address

or

name

field

contains

an

address

or

a

name:

0

=

Local

name

specified

(default)

1

=

Local

address

specified

DLC_ESAP_ANSW

Teleprocessing

autocall

or

autoanswer:

0

=

Manual

call

and

answer

(default)

1

=

Automatic

call

and

answer

len_laddr_name

Specifies

the

byte

length

of

the

following

local

address

or

name.

Length

values

of

1

through

20

are

supported.

laddr_name

Contains

the

unique

network

name

or

address

of

the

user

local

SAP

as

indicated

by

the

DLC_ESAP_ADDR

flag.

Some

protocols

allow

the

local

SAP

to

be

identified

by

name

(for

example,

Name-Discovery

Services)

and

others

by

address

(for

example,

Address

Resolve

Procedures).

Other

protocols

such

as

Synchronous

Data

Link

Control

(SDLC)

do

not

identify

the

local

SAP.

Check

the

individual

DLC’s

usage

of

this

field

for

the

protocol

you

are

operating.

num_grp_saps

Specifies

the

number

of

group

SAPs

to

which

the

user’s

local

SAP

responds.

If

no

group

SAPs

are

needed,

this

field

must

contain

a

0.

Up

to

seven

group

SAPs

can

be

specified.

grp_sap

Contains

the

specific

group

SAP

values

to

which

the

user

local

SAP

responds

(seven

maximum).

local_sap

Specifies

the

local

SAP

address

opened.

Receive

packets

with

this

LSAP

value

indicated

in

the

destination

SAP

field

are

routed

to

the

LSs

opened

under

this

particular

SAP.

The

protocol-specific

data

area

allows

parameters

to

be

defined

by

the

specific

GDLC

device

manager,

such

as

X.21

call-progress

signals

or

Smartmodem

call-establishment

data.

This

optional

data

area

must

directly

follow

(or

append

to)

the

end

of

the

dlc_esap_arg

structure.

Chapter

1.

Data

Link

Controls

39

DLC_ENTER_LBUSY

ioctl

Operation

for

DLC

The

DLC_ENTER_LBUSY

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

enters

local

busy

mode

on

a

particular

link

station

(LS):

struct

dlc_corr_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

GDLC

SAP

correlator

of

the

target

LS.

gdlc_ls_corr

Contains

the

GDLC

LS

correlator

to

enter

local

busy

mode.

DLC_ENTER_SHOLD

ioctl

Operation

for

DLC

The

DLC_ENTER_SHOLD

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

enters

short

hold

mode

on

a

particular

link

station

(LS):

struct

dlc_corr_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

generic

data

link

control

(GDLC)

service

access

point

(SAP)

correlator

of

the

target

LS.

gdlc_ls_corr

Contains

the

GDLC

LS

correlator

to

enter

short

hold

mode.

DLC_EXIT_LBUSY

ioctl

Operation

for

DLC

The

DLC_EXIT_LBUSY

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

exits

local

busy

mode

on

a

particular

link

station

(LS):

struct

dlc_corr_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

};

40

Technical

Reference:

Communications,

Volume

1

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

GDLC

SAP

correlator

of

the

target

LS.

gdlc_ls_corr

Contains

the

GDLC

LS

correlator

to

exit

local

busy

mode.

DLC_EXIT_SHOLD

ioctl

Operation

for

DLC

The

DLC_EXIT_SHOLD

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

exits

short

hold

mode

on

a

particular

link

station

(LS):

struct

dlc_corr_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

generic

data

link

control

(GDLC)

service

access

point

(SAP)

correlator

of

the

target

LS.

gdlc_ls_corr

Contains

the

GDLC

LS

correlator

to

exit

short

hold

mode.

DLC_GET_EXCEP

ioctl

Operation

for

DLC

The

DLC_GET_EXCEP

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

returns

asynchronous

exception

notifications

to

the

application

user:

struct

dlc_getx_arg

{

__ulong32_t

user_sap_corr;

/*

user

SAP

corr

-

RETURNED

*/

__ulong32_t

user_ls_corr;

/*

user

ls

corr

-

RETURNED

*/

__ulong32_t

result_ind;

/*

the

flags

identifying

the

type

*/

/*

of

excep*/

int

result_code;

/*

the

manner

of

excep

*/

u_char_t

result_ext[DLC_MAX_EXT];/*

excep

specific

ext

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

user_sap_corr

Indicates

the

user

service

access

point

(SAP)

correlator

for

this

exception.

user_ls_corr

Indicates

the

user

link

station

(LS)

correlator

for

this

exception.

Chapter

1.

Data

Link

Controls

41

Field

Description

result_ind

Result

indicators:

DLC_TEST_RES

Test

complete:

a

nonextended

result.

Set

to

1,

this

bit

indicates

that

the

link

test

has

completed

as

indicated

in

the

result

code.

DLC_SAPE_RES

SAP

enables:

an

extended

result.

Set

to

1,

this

bit

indicates

that

the

SAP

is

active

and

ready

for

LSs

to

be

started.

See

DLC_SAPE_RES

operation

for

the

format

of

the

extension

area.

DLC_SAPD_RES

SAP

disabled:

a

nonextended

result.

Set

to

1,

this

bit

indicates

that

the

SAP

has

been

terminated

as

indicated

in

the

result

code.

DLC_STAS_RES

Link

station

started:

an

extended

result.

Set

to

1,

this

bit

indicates

that

the

link

station

is

connected

to

the

remote

station

in

asynchronous

or

normal

disconnected

mode.

GDLC

is

waiting

for

link

receive

data

from

the

device

driver

or

additional

commands

from

the

user

such

as

the

DLC_CONTACT

ioctl

operation.

See

the

DLC_STAS_RES

operation

for

the

format

of

the

extension

area.

DLC_STAH_RES

Link

station

halted:

a

nonextended

result.

Set

to

1,

this

bit

indicates

that

the

LS

has

terminated

due

to

a

DLC_HALT_LS

ioctl

operation

from

the

user,

a

remote

discontact,

or

an

error

condition

indicated

in

the

result

code.

DLC_DIAL_RES

Dial

the

phone:

a

nonextended

result.

Set

to

1,

this

bit

indicates

that

the

user

can

now

manually

dial

an

outgoing

call

to

the

remote

station.

DLC_IWOT_RES

Inactivity

without

termination:

a

nonextended

result.

Set

to

1,

this

bit

indicates

that

the

LS

protocol

activity

from

the

remote

station

has

terminated

for

the

length

of

time

specified

in

the

configuration

(receive

inactivity

timeout).

The

local

station

remains

active

and

notifies

the

user

if

the

remote

station

begins

to

respond.

Additional

notifications

of

inactivity

without

termination

are

suppressed

until

the

inactivity

condition

clears

up.

DLC_IEND_RES

Inactivity

ended:

a

nonextended

result.

Set

to

1,

this

bit

indicates

that

the

LS

protocol

activity

from

the

remote

station

has

restarted

after

a

condition

of

inactivity

without

termination.

DLC_CONT_RES

Contacted:

a

nonextended

result.

Set

to

1,

this

bit

indicates

that

GDLC

has

either

received

a

Set

Mode,

or

has

received

a

positive

response

to

a

Set

Mode

initiated

by

the

local

LS.

GDLC

is

now

able

to

send

and

receive

normal

sequenced

data

on

this

LS.

DLC_RADD_RES

Remote

address/name

change:

an

extended

result.

Set

to

1,

this

bit

indicates

that

the

remote

LS

address

(or

name)

has

been

changed

from

the

previous

value.

This

can

occur

on

synchronous

data

link

control

(SDLC)

links

when

negotiating

a

point-to-point

connection,

for

example.

See

the

DLC_RADD_RES

operation

for

the

format

of

the

extension

area.

42

Technical

Reference:

Communications,

Volume

1

Field

Description

result_code

Indicates

the

result

code.

The

following

values

specify

the

result

codes

for

GDLC.

Negative

return

codes

that

are

even

indicate

that

the

error

condition

can

be

remedied

by

restarting

the

LS

returning

the

error.

Return

codes

that

are

odd

indicate

that

the

error

is

catastrophic,

and,

at

the

minimum,

the

SAP

must

be

restarted.

Additional

error

data

may

be

obtained

from

the

GDLC

error

log

and

link

trace

entries.

DLC_SUCCESS

The

result

indicated

was

successful.

DLC_PROT_ERR

Protocol

error.

DLC_BAD_DATA

A

bad

data

compare

on

a

TEST.

DLC_NO_RBUF

No

remote

buffering

on

test.

DLC_RDISC

Remote

initiated

discontact.

DLC_DISC_TO

Discontact

abort

timeout.

DLC_INACT_TO

Inactivity

timeout.

DLC_MSESS_RE

Mid

session

reset.

DLC_NO_FIND

Cannot

find

the

remote

name.

DLC_INV_RNAME

Invalid

remote

name.

DLC_SESS_LIM

Session

limit

exceeded.

DLC_LST_IN_PRGS

Listen

already

in

progress.

DLC_LS_NT_COND

LS

unusual

network

condition.

DLC_LS_ROUT

Link

station

resource

outage.

DLC_REMOTE_BUSY

Remote

station

found,

but

busy.

DLC_REMOTE_CONN

Specified

remote

is

already

connected.

DLC_NAME_IN_USE

Local

name

already

in

use.

DLC_INV_LNAME

Invalid

local

name.

Chapter

1.

Data

Link

Controls

43

Field

Description

DLC_SAP_NT_COND

SAP

network

unusual

network

condition.

DLC_SAP_ROUT

SAP

resource

outage.

DLC_USR_INTRF

User

interface

error.

DLC_ERR_CODE

Error

in

the

code

has

been

detected.

DLC_SYS_ERR

System

error.

result_ext

Indicates

result

extension.

Several

results

carry

extension

areas

to

provide

additional

information

about

them.

The

user

must

provide

a

full-sized

area

for

each

result

requested

since

there

is

no

way

to

tell

if

the

next

result

is

extended

or

nonextended.

The

extended

result

areas

are

described

by

type

below.

DLC_SAPE_RES

SAP

Enabled

Result

Extension

The

following

parameter

block

enables

a

service

access

point

(SAP)

result

extension:

struct

dlc_sape_res

{

__ulong32_t

max_net_send;

/*

maximum

write

network

data

length

*/

__ulong32_t

lport_addr_len;

/*

local

port

network

address

length

*/

u_char_t

lport_addr[DLC_MAX_ADDR];/*

the

local

port

address

*/

};

The

fields

of

this

extension

are:

Field

Description

max_net_send

Indicates

the

maximum

number

of

bytes

that

the

user

can

write

for

each

packet

when

writing

network

data.

This

is

generally

based

on

a

communications

mbuf/mbufs

page

cluster

size,

but

is

not

necessarily

limited

to

a

single

mbuf

structure

since

mbuf

clusters

can

be

linked.

lport_addr_len

Indicates

the

byte

length

of

the

local

port

network

address.

lport_addr

Indicates

the

hexadecimal

value

of

the

local

port

network

address.

DLC_STAS_RES

Link

Station

Started

Result

Extension

The

following

parameter

block

starts

a

link

station

(LS)

result

extension:

struct

dlc_stas_res

{

ulong32_t

maxif;

/*

max

size

of

the

data

sent

*/

/*

on

a

write

*/

ulong32_t

rport_addr_len;

/*

remote

port

network

address

*/

/*

length

*/

u_char_t

rport_addr[DLC_MAX_ADDR];

/*

remote

port

address

*/

ulong32_t

rname_len;

/*

remote

network

name

length

*/

u_char_t

rname[DLC_MAX_NAME];

/*

remote

network

name

*/

uchar_t

res[3];

/*

reserved

*/

44

Technical

Reference:

Communications,

Volume

1

uchar_t

rsap;

/*

remote

SAP

*/

ulong32_t

max_data_off;

/*

the

maximum

data

offsets

for

sends*/

};

The

fields

of

this

extension

are:

Field

Description

maxif

Contains

the

maximum

byte

size

allowable

for

user

data.

This

value

is

derived

from

the

value

supplied

by

the

user

at

the

start

link

station

(DLC_START_LS)

and

the

actual

number

of

bytes

that

can

be

handled

by

the

GDLC

and

device

handler

on

a

single

transmit

or

receive.

Generally

this

value

is

less

than

the

size

of

a

communications

mbuf

page

cluster.

However,

some

communications

devices

may

be

able

to

link

page

clusters

together,

so

the

maximum

I-field

receivable

may

exceed

the

length

of

a

single

mbuf

cluster.

The

returned

value

never

exceeds

the

value

supplied

by

the

user,

but

may

be

smaller

if

buffering

is

not

large

enough

to

hold

the

specified

value.

rport_addr_len

Contains

the

byte

length

of

the

remote

port

network

address.

rport_addr

Contains

the

hexadecimal

value

of

the

remote

port

network

address.

rname_len

Contains

the

byte

length

of

the

remote

port

network

name.

This

is

returned

only

when

name

discovery

procedures

are

used

to

locate

the

remote

station.

Otherwise

this

field

is

set

to

0

(zero).

Network

names

can

be

1

to

20

characters

in

length.

rname

Contains

the

name

used

by

the

remote

SAP.

This

field

is

valid

only

if

name-discovery

procedures

were

used

to

locate

the

remote

station.

rsap

Contains

the

hexadecimal

value

of

the

remote

SAP

address.

max_data_off

Contains

the

write

data

offset

in

bytes

of

a

communications

mbuf

cluster

where

transmit

data

must

minimally

begin.

This

allows

ample

room

for

the

DLC

and

MAC

headers

to

be

inserted

if

needed.

Some

DLCs

may

be

able

to

prepend

additional

mbuf

clusters

for

their

headers,

and

in

this

case

will

set

this

field

to

0

(zero).

This

field

is

only

valid

for

kernel

users

that

pass

in

a

communications

mbuf

structure

on

write

operations.

Note:

To

align

the

data

moves

to

a

particular

byte

boundary,

the

kernel

user

may

wish

to

choose

a

value

larger

than

the

minimum

value

returned.

DLC_STAH_RES

Link

Station

Halted

Result

Extension

The

following

parameter

block

halts

the

link

station

(LS)

result

extension:

struct

dlc_stah_res

{

__ulong32_t

conf_ls_corr;

/*

conflicting

link

station

corr

*/

};

Chapter

1.

Data

Link

Controls

45

The

field

of

this

extension

is:

Field

Description

conf_ls_corr

Indicates

conflicting

link

station

correlator.

Contains

the

user’s

link

station

identifier

that

already

has

the

specified

remote

station

attached.

This

extension

is

valid

only

if

the

result

code

value

indicates

-936

(specified

remote

is

already

connected).

DLC_RADD_RES

Remote

Address/Name

Change

Result

Extension

The

following

parameter

block

changes

the

remote

address

or

name

of

the

result

extension:

struct

dlc_radd_res

{

__ulong32_t

rname_len;

/*

remote

network

name/addr

length

*/

u_char

rname[DLC_MAX_NAME];/*

remote

network

name/addr

*/

};

The

fields

of

this

extension

are:

Field

Description

rname_len

Indicates

the

remote

network

address

or

name

length.

Contains

the

byte

length

of

the

updated

remote

SAP’s

network

address

or

name.

rname

Contains

the

updated

address

or

name

being

used

by

the

remote

SAP.

DLC_HALT_LS

ioctl

Operation

for

DLC

The

DLC_HALT_LS

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

halts

a

link

station

(LS):

struct

dlc_corr_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

GDLC

SAP

correlator:

The

GDLC

SAP

identifier

of

the

target

LS.

gdlc_ls_corr

Contains

the

GDLC

LS

correlator:

The

GDLC

LS

identifier

to

be

halted.

DLC_QUERY_LS

ioctl

Operation

for

DLC

The

DLC_QUERY_LS

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

queries

statistics

of

a

particular

link

station

(LS):

46

Technical

Reference:

Communications,

Volume

1

struct

dlc_qls_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

ls

correlator

*/

__ulong32_t

user_sap_corr;

/*

user’s

SAP

correlator

-

RETURNED

*/

__ulong32_t

user_ls_corr;

/*

user’s

link

station

corr-RETURNED

*/

u_char_t

ls_diag[DLC_MAX_DIAG];

/*

the

char

name

of

the

ls

*/

__ulong32_t

ls_state;

/*

current

ls

state

*/

__ulong32_t

ls_sub_state;

/*

further

clarification

of

state

*/

struct

dlc_ls_counters

counters;

__ulong32_t

protodd_len;

/*protocol

dependent

data

byte

length*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Specifies

the

generic

data

link

control

(GDLC)

service

access

point

(SAP)

correlator

of

the

target

LS.

gdlc_ls_corr

Specifies

the

GDLC

LS

correlator

to

be

queried.

user_sap_corr

Specifies

the

user

SAP

correlator

returned

for

routing

purposes.

user_ls_corr

Specifies

the

user

LS

correlator,

that

is

the

user

LS

identifier

returned

for

routing

purposes.

ls_diag

Contains

the

link

station

(LS)

diagnostic

tag.

Indicates

the

ASCII

character

string

tag

passed

to

GDLC

at

the

DLC_START_LS

ioctl

operation

to

identify

the

station

being

queried.

For

example,

SNA

services

puts

the

attachment

profile

name

in

this

field.

ls_state

Contains

the

current

state

of

this

LS:

DLC_OPENING

Indicates

the

SAP

or

link

station

is

in

the

process

of

opening.

DLC_OPENED

Indicates

the

SAP

or

link

station

has

been

opened.

DLC_CLOSING

Indicates

the

SAP

or

link

station

is

the

process

of

closing.

DLC_INACTIVE

Indicates

the

link

station

is

currently

inactive.

ls_sub_state

Contains

the

current

substate

of

this

LS.

Several

indicators

may

be

active

concurrently.

DLC_CALLING

Indicates

the

link

station

is

calling.

DLC_LISTENING

Indicates

the

link

station

is

listening.

DLC_CONTACTED

Indicates

the

link

station

is

contacted

into

sequenced

data

mode.

DLC_LOCAL_BUSY

Indicates

the

local

link

station

is

currently

busy.

DLC_REMOTE_BUSY

Indicates

the

remote

link

station

is

currently

busy.

Chapter

1.

Data

Link

Controls

47

Field

Description

counters

Contains

link

station

reliability/availability/serviceability

counters.

These

14

reliability/availability/serviceability

counters

are

shown

as

an

example

only.

Each

GDLC

device

manager

provides

as

many

of

these

counters

as

necessary

to

diagnose

specific

network

problems

for

its

protocol

type.

test_cmds_sent

Specifies

the

number

of

test

commands

sent.

test_cmds_fail

Specifies

the

number

of

test

commands

failed.

test_cmds_rec

Specifies

the

number

of

test

commands

received.

data_pkt_sent

Specifies

the

number

of

sequenced

data

packets

sent.

data_pkt_resent

Specifies

the

number

of

sequenced

data

packets

resent.

max_cont_resent

Specifies

the

maximum

number

of

contiguous

resendings.

data_pkt_rec

Indicates

data

packets

received.

inv_pkt_rec

Specifies

the

number

of

invalid

packets

received.

adp_rec_err

Specifies

the

number

of

data-detected

receive

errors.

adp_send_err

Specifies

the

number

of

data-detected

transmit

errors.

rec_inact_to

Specifies

the

number

of

received

inactivity

timeouts.

cmd_polls_sent

Specifies

the

number

of

command

polls

sent.

cmd_repolls_sent

Specifies

the

number

of

command

repolls

sent.

cmd_cont_repolls

Specifies

the

maximum

number

of

continuous

repolls

sent.

protodd_len

Indicates

length

of

protocol-dependent

data.

This

field

contains

the

byte

length

of

the

following

area.

The

protocol-dependent

data

contains

any

additional

statistics

that

a

particular

GDLC

device

manager

might

provide.

See

the

individual

GDLC

specifications

for

information

on

the

specific

fields

returned.

This

optional

data

area

must

directly

follow

(or

append

to)

the

end

of

the

dlc_qls_arg

structure.

48

Technical

Reference:

Communications,

Volume

1

DLC_QUERY_SAP

ioctl

Operation

for

DLC

The

DLC_QUERY_SAP

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

queries

statistics

of

a

particular

service

access

point

(SAP):

#define

DLC_MAX_DIAG

16

/*

the

max

string

of

chars

in

the

*/

/*

diag

name

*/

struct

dlc_qsap_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

user_sap_corr;

/*

user

SAP

correlator

(returned)

*/

__ulong32_t

sap_state;

/*

state

of

the

SAP,returned

by

kernel*

uchar_t

dev[DLC_MAX_DIAG];

/*

the

returned

device

handler’s

*/

/*

device

name

*/

__ulong32_t

devdd_len;

/*

device

driver

dependent

data

*/

/*

byte

length

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

generic

data

link

control

(GDLC)

SAP

correlator

to

be

queried.

user_sap_corr

Contains

the

user

SAP

correlator

returned

for

routing

purposes.

sap_state

Contains

the

current

SAP

state:

DLC_OPENING

Indicates

the

SAP

or

link

station

is

in

the

process

of

opening.

DLC_OPENED

Indicates

the

SAP

or

link

station

has

been

opened.

DLC_CLOSING

Indicates

the

SAP

or

link

station

is

the

process

of

closing.

dev

Contains

the

/dev

directory

name

of

the

communications

I/O

device

handler

being

used

by

this

SAP.

devdd_len

Contains

the

byte

length

of

the

expected

device

driver

statistics

that

will

be

appended

to

the

dlc_qsap_arg

structure.

The

device

driver-

dependent

data

contains

the

device

statistics

of

the

attached

network

device

handler.

This

is

generally

the

query

device

statistics

(reliability/availability/serviceability

log

area)

returned

from

an

ioctl

operation

issued

to

the

device

handler

by

the

Data

Link

Control

(DLC).

See

the

individual

GDLC

device

manager

specifications,

discussed

in

the

Generic

Data

Link

Control

(GDLC)

Environment

Overview,

for

information

on

the

particular

fields

returned.

The

optional

data

area

must

directly

follow

or

append

to

the

end

of

the

dlc_qsap_arg

structure.

Chapter

1.

Data

Link

Controls

49

DLC_START_LS

ioctl

Operation

for

DLC

The

DLC_START_LS

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

starts

a

link

station

(LS)

on

a

particular

SAP

as

a

caller

or

listener:

#define

DLC_MAX_DIAG

16

/*

the

maximum

string

of

chars

*/

/*

in

the

diag

name

*/

struct

dlc_sls_arg

{

__ulong32_t

gdlc_ls_corr;

/*

GDLC

User

link

station

correlator

*/

u_char_t

ls_diag[DLC_MAX_DIAG];

/*

the

char

name

of

the

ls

*/

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

user_ls_corr;

/*

User’s

SAP

correlator

*/

__ulong32_t

flags;

/*

Start

Link

Station

flags

*/

__ulong32_t

trace_chan;

/*

Trace

Channel

(rc

of

trcstart)*/

__ulong32_t

len_raddr_name;

/*

Length

of

the

remote

name/addr*/

u_char_t

raddr_name[DLC_MAX_NAME];

/*

The

Remote

addr/name

*/

__ulong32_t

maxif;

/*

Maximum

number

of

bytes

in

an

*/

/*

I-field

*/

__ulong32_t

rcv_wind;

/*

Maximum

size

of

receive

window

*/

__ulong32_t

xmit_wind;

/*

Maximum

size

of

transmit

window

*/

u_char_t

rsap;

/*

Remote

SAP

value

*/

u_char_t

rsap_low;

/*

Remote

SAP

low

range

value

*/

u_char_t

rsap_high;

/*

Remote

SAP

high

range

value

*/

u_char_t

res1;

/*

Reserved

*/

__ulong32_t

max_repoll;

/*

Maximum

Repoll

count

*/

__ulong32_t

repoll_time;

/*

Repoll

timeout

value

*/

__ulong32_t

ack_time;

/*

Time

to

delay

trans

of

an

ack

*/

__ulong32_t

inact_time;

/*

Time

before

inactivity

times

out

*/

__ulong32_t

force_time;

/*

Time

before

a

forced

disconnect

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_ls_corr

Contains

GDLC

LS

correlator.

The

GDLC

LS

identifier

returned

to

the

user

as

soon

as

resources

are

determined

to

be

available.

This

correlator

must

accompany

all

commands

associated

with

this

LS.

ls_diag

Contains

LS

diagnostic

tag.

Any

ASCII

1

to

16-character

name

written

to

GDLC

trace,

error

log,

and

status

entries

for

LS

identification.

(The

end-of-name

delimiter

is

the

AIX

null

character.)

gdlc_sap_corr

Contains

GDLC

LS

correlator.

Specifies

the

SAP

with

which

to

associate

this

link

station.

This

field

must

contain

the

same

correlator

value

passed

to

the

user

in

the

gdlc_sap_corr

field

by

GDLC

when

the

SAP

was

enabled.

user_ls_corr

Contains

user

LS

correlator.

Specifies

an

identifier

or

correlator

that

the

user

wishes

to

have

returned

on

all

LS

results

and

data

from

GDLC.

It

allows

the

user

of

multiple

link

stations

to

route

the

station-specific

results

based

on

a

correlator.

50

Technical

Reference:

Communications,

Volume

1

Field

Description

flags

Contains

common

LS

flags.

The

following

flags

are

supported:

DLC_TRCO

Trace

control

on:

0

=

Disable

link

trace.

1

=

Enable

link

trace.

DLC_TRCL

Trace

control

long:

0

=

Link

trace

entries

are

short

(80

bytes).

1

=

Link

trace

entries

are

long

(full

packet).

DLC_SLS_STAT

Station

type

for

SDLC:

0

=

Secondary

(default)

1

=

Primary

DLC_SLS_NEGO

Negotiate

station

type

for

SDLC:

0

=

No

(default)

1

=

Yes

DLC_SLS_HOLD

Hold

link

on

inactivity:

0

=

No

(default).

Terminate

the

LS.

1

=

Yes,

hold

it

active.

DLC_SLS_LSVC

LS

virtual

call:

0

=

Listen

for

incoming

call.

1

=

Initiate

call.

DLC_SLS_ADDR

Address

indicator:

0

=

Remote

is

identified

by

name

(discovery).

1

=

Remote

is

identified

by

address

(resolve,

SDLC).

Field

Description

trace_chan

Specifies

the

channel

number

obtained

from

the

trcstart

subroutine.

This

field

is

valid

only

if

the

DLC_TRCO

indicator

is

set

active.

len_raddr_name

Specifies

the

byte

length

of

the

remote

address

or

name.

This

field

must

be

set

to

0

if

no

remote

address

or

name

is

required

to

start

the

LS.

Length

values

of

0

through

20

are

supported.

raddr_name

Contains

the

unique

network

address

of

the

remote

node

if

the

DLC_SLS_ADDR

indicator

is

set

active.

Contains

the

unique

network

name

of

the

remote

node

if

the

DLC_SLS_ADDR

indicator

is

reset.

Addresses

are

entered

in

hexadecimal

notation,

and

names

are

entered

in

character

notation.

This

field

is

only

valid

if

the

previous

length

field

is

nonzero.

maxif

Specifies

the

maximum

number

of

I-field

bytes

that

can

be

in

one

packet.

This

value

is

reduced

by

GDLC

if

the

device

handler

buffer

sizes

are

too

small

to

hold

the

maximum

I-field

specified

here.

The

resultant

size

is

returned

from

GDLC

when

the

link

station

has

been

started.

rcv_wind

The

receive

window

specifies

the

maximum

number

of

sequentially

numbered

receive

I-frames

the

local

station

can

accept

before

sending

an

acknowledgment.

Chapter

1.

Data

Link

Controls

51

Field

Description

xmit_wind

Specifies

the

transmit

window

and

the

maximum

number

of

sequentially

numbered

transmitted

I-frames

that

can

be

outstanding

at

any

time.

rsap

Specifies

the

remote

SAP

address

being

called.

This

field

is

valid

only

if

the

DLC_SLS_LSVC

indicator

or

the

DLC_SLS_ADDR

indicator

is

set

active.

rsap_low

Specifies

the

lowest

value

in

the

range

of

remote

SAP

address

values

that

the

local

SAP

responds

to

when

listening

for

a

remote-initiated

attachment.

This

value

cannot

be

the

null

SAP

(0x00)

or

the

discovery

SAP

(0xFC),

and

must

have

the

low-order

bit

set

to

0

(B`nnnnnnn0’)

to

indicate

an

individual

address.

rsap_high

Specifies

the

highest

value

in

the

range

of

remote

SAP

address

values

that

the

local

SAP

responds

to,

when

listening

for

a

remote-initiated

attachment.

This

value

cannot

be

the

null

SAP

(0x00)

or

the

discovery

SAP

(0xFC),

and

must

have

the

low-order

bit

set

to

0

(B`nnnnnnn0’)

to

indicate

an

individual

address.

max_repoll

Specifies

the

maximum

number

of

retries

for

an

unacknowledged

command

frame,

or

in

the

case

of

an

I-frame

timeout,

the

number

of

times

the

nonresponding

remote

link

station

is

polled

with

a

supervisory

command

frame.

repoll_time

Contains

the

timeout

value

(in

increments

defined

by

the

specific

GDLC)

used

to

specify

the

amount

of

time

allowed

prior

to

retransmitting

an

unacknowledged

command

frame.

ack_time

Contains

the

timeout

value

(in

increments

defined

by

the

specific

GDLC)

used

to

specify

the

amount

of

time

to

delay

the

transmission

of

an

acknowledgment

for

a

received

I-frame.

inact_time

Contains

the

timeout

value

(in

increments

of

1

second)

used

to

specify

the

maximum

amount

of

time

allowed

before

receive

inactivity

returns

an

error.

force_time

Contains

the

timeout

value

(in

increments

of

1

second)

specifying

the

period

to

wait

for

a

normal

disconnection.

Once

the

timeout

occurs,

the

disconnection

is

forced

and

the

link

station

is

halted.

The

protocol-specific

data

area

allows

parameters

to

be

defined

by

a

specific

GDLC

device

manager,

such

as

Token-Ring

dynamic

window

increment

or

SDLC

primary

slow

poll.

This

optional

data

area

must

directly

follow

(or

append

to)

the

end

of

the

dlc_sls_arg

structure.

DLC_TEST

ioctl

Operation

for

DLC

The

DLC_TEST

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

tests

the

link

to

a

remote

for

a

particular

local

link

station

(LS):

struct

dlc_corr_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Indicates

the

GDLC

SAP

correlator

of

the

target

LS.

gdlc_ls_corr

Indicates

the

GDLC

LS

correlator

to

be

tested.

52

Technical

Reference:

Communications,

Volume

1

DLC_TRACE

ioctl

Operation

for

DLC

The

DLC_TRACE

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

The

following

parameter

block

traces

link

station

(LS)

activity

for

short

or

long

activities:

struct

dlc_trace_arg

{

__ulong32_t

gdlc_sap_corr;

/*

GDLC

SAP

correlator

*/

__ulong32_t

gdlc_ls_corr;

/*

GDLC

link

station

correlator

*/

__ulong32_t

trace_chan;

/*

Trace

Channel

(rc

of

trcstart)

*/

__ulong32_t

flags;

/*

Trace

Flags

*/

};

The

fields

of

this

ioctl

operation

are:

Field

Description

gdlc_sap_corr

Contains

the

GDLC

SAP

correlator.

The

correlator

returned

by

GDLC

when

the

SAP

was

enabled

by

the

user.

This

correlator

identifies

the

user

SAP

to

the

GDLC

protocol

process.

gdlc_ls_corr

Contains

the

GDLC

LS

correlator.

The

correlator

returned

by

GDLC

when

the

LS

was

started

by

the

user.

This

correlator

identifies

the

user

LS

to

the

GDLC

protocol

process.

trace_chan

Specifies

the

trace

channel

number

obtained

from

the

trcstart

subroutine.

This

field

is

only

valid

if

the

DLC_TRCO

indicator

is

set

active.

flags

Specifies

trace

flags.

The

following

flags

are

supported:

DLC_TRCO

Trace

control

on:

0

=

Disable

link

trace.

1

=

Enable

link

trace.

DLC_TRCL

Trace

control

long:

0

=

Link

trace

entries

are

short

(80

bytes).

1

=

Link

trace

entries

are

long

(full

packet).

IOCINFO

ioctl

Operation

for

DLC

This

operation

returns

a

structure

that

describes

the

device.

The

first

byte

is

set

to

an

ioctype

of

DD_DLC.

The

subtype

and

data

are

defined

by

the

individual

DLC

devices.

See

the

/usr/include/sys/devinfo.h

file

for

details.

The

IOCINFO

ioctl

operation

is

selectable

through

the

fp_ioctl

kernel

service

or

the

ioctl

subroutine.

It

can

be

called

from

the

process

environment

only.

Related

Information

Generic

Data

Link

Control

(GDLC)

Environment

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

1.

Data

Link

Controls

53

54

Technical

Reference:

Communications,

Volume

1

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

DL_ATTACH_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

associate

a

physical

point

of

attachment

(PPA)

with

a

stream.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_ppa;

}

dl_attach_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_ATTACH_REQ

primitive

requests

that

the

DLS

provider

associate

a

PPA

with

a

stream.

The

DL_ATTACH_REQ

primitive

is

needed

for

style

2

DLS

providers

to

identify

the

physical

medium

over

which

communication

is

to

transpire.

Parameters

dl_primitive

Specifies

the

DL_ATTACH_REQ

message.

dl_ppa

Specifies

the

identifier

of

the

PPA

to

be

associated

with

the

stream.

The

dlpi

driver

is

implemented

a

style

2

provider

The

value

of

the

dl_ppa

parameter

must

include

identification

of

the

communication

medium.

For

media

that

multiplex

multiple

channels

over

a

single

physical

medium,

this

identifier

should

also

specify

a

specific

communication

channel

(where

each

channel

on

a

physical

medium

is

associated

with

a

separate

PPA).

Note:

Because

of

the

provider-specific

nature

of

this

value,

DLS

user

software

that

is

to

be

protocol

independent

should

avoid

hard-coding

the

PPA

identifier.

The

DLS

user

should

retrieve

the

necessary

PPA

identifier

from

some

other

entity

(such

as

a

management

entity)

and

insert

it

without

inspection

into

the

DL_ATTACH_REQ

primitive.

States

Valid

The

primitive

is

valid

in

the

DL_UNATTACHED

state.

New

The

resulting

state

is

DL_ATTACH_PENDING.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user

resulting

in

the

DL_UNBOUND

state.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned

and

the

resulting

state

is

unchanged.

©

Copyright

IBM

Corp.

1997,

2003

55

Error

Codes

DL_ACCESS

Indicates

the

DLS

user

does

not

have

proper

permission

to

use

the

requested

PPA.

DL_BADPPA

Indicates

the

specified

PPA

is

invalid.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

Related

Information

The

DL_BIND_REQ

primitive,

DL_OK_ACK

primitive,

DL_ERROR_ACK

primitive.

DL_BIND_ACK

Primitive

Purpose

Reports

the

successful

bind

of

a

data

link

service

access

point

(DLSAP)

to

a

stream.

Structure

The

message

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_sap;

ulong

dl_addr_length;

ulong

dl_addr_offset;

ulong

dl_max_conind;

ulong

dl_xidtest_flg;

}

dl_bind_ack_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_BIND_ACK

primitive

reports

the

successful

bind

of

a

DLSAP

to

a

stream

and

returns

the

bound

DLSAP

address

to

the

data

link

service

(DLS)

user.

This

primitive

is

generated

in

response

to

a

DL_BIND_REQ

primitive.

Parameters

dl_primitive

Specifies

the

DL_BIND_ACK

primitive.

dl_sap

Specifies

the

DLSAP

address

information

associated

with

the

bound

DLSAP.

It

corresponds

to

the

dl_sap

parameter

of

the

associated

DL_BIND_REQ

primitive,

which

contains

part

or

all

of

the

DLSAP

address.

For

the

portion

of

the

DLSAP

address

conveyed

in

the

DL_BIND_REQ

primitive,

this

parameter

contains

the

corresponding

portion

of

the

address

for

the

DLSAP

that

was

actually

bound.

dl_addr_length

Specifies

the

length

of

the

complete

DLSAP

address

that

was

bound

to

the

Data

Link

Provider

Interface

(DLPI)

stream.

The

bound

DLSAP

is

chosen

according

to

the

guidelines

presented

under

the

description

of

the

DL_BIND_REQ

primitive.

dl_addr_offset

Specifies

where

the

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PCPROTO

block.

56

Technical

Reference:

Communications,

Volume

1

dl_max_conind

Specifies

whether

a

DL_CODLS

stream

will

allow

incoming

connection

idications

(DL_CONNECT_IND).

If

the

value

is

zero,

the

stream

cannot

accept

any

DL_CONNECT_IND

messages;

the

stream

will

only

accept

DL_CONNECT_REQ.

If

the

value

is

greater

than

zero,

then

this

stream

is

a

listening

stream,

and

indicates

how

many

DL_CONNECT_IND’s

can

be

pending

at

one

time.

dl_xidtest_flg

Specifies

the

XID

and

test

responses

supported

by

the

provider.

Valid

values

are:

0

The

DLS

user

will

be

handling

all

XID

and

TEST

traffic.

DL_AUTO_XID

Automatically

handles

XID

responses.

DL_AUTO_TEST

Automatically

handles

test

responses.

DL_AUTO_XID|DL_AUTO_TEST

Automatically

handles

both

XID

and

TEST

responses.

States

Valid

The

primitive

is

valid

in

the

DL_BIND_PENDING

state.

New

The

resulting

state

is

DL_IDLE.

Related

Information

The

DL_BIND_REQ

primitive.

DL_BIND_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

bind

a

data

link

service

access

point

(DLSAP)

to

a

stream.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_sap;

ulong

dl_max_conind;

ushort

dl_service_mode;

ushort

dl_conn_mgmt;

ulong

dl_xidtest_flg;

}

dl_bind_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

A

stream

is

active

when

the

DLS

provider

can

transmit

and

receive

protocol

data

units

destined

to

or

originating

from

the

stream.

The

physical

point

of

attachment

(PPA)

associated

with

each

stream

must

be

initialized

when

the

DL_BIND_REQ

primitive

has

been

processed.The

PPA

is

initialized

when

the

DL_BIND_ACK

primitive

is

received.

If

the

PPA

cannot

be

initialized,

the

DL_BIND_REQ

primitive

fails.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

57

Parameters

dl_primitive

Specifies

the

DL_BIND_REQ

primitive.

dl_sap

Identifies

the

DLSAP

to

be

bound

to

the

Data

Link

Provider

Interface

(DLPI)

stream.

This

parameter

can

contain

either

the

full

DLSAP

address

or

a

portion

of

the

address

sufficient

to

uniquely

identify

the

DLSAP.

The

DL_BIND_ACK

primitive

returns

the

full

address

of

the

bound

DLSAP.

The

dl_sap

parameter

is

a

ulong

containing

and

ethertype

for

DL_ETHER,

or

a

single

byte

SAP

for

802.2

networks.

The

DLS

provider

adheres

to

the

following

rules

when

it

binds

a

DLSAP

address:

v

The

DLS

provider

must

define

and

manage

its

DLSAP

address

space.

v

The

DLS

provider

allows

the

same

DLSAP

to

be

bound

to

multiple

streams.

The

DLS

provider

may

not

be

able

to

bind

the

specified

DLSAP

address

for

the

following

reasons:

v

The

DLS

provider

statically

associated

a

specific

DLSAP

with

each

stream.

The

value

of

the

dl_sap

parameter

is

ignored

by

the

DLS

provider

and

the

DL_BIND_ACK

primitive

returns

the

DLSAP

address

that

is

already

associated

with

the

stream.

Note:

Because

of

the

provider-specific

nature

of

the

DLSAP

address,

protocol-independent

DLS

user

software

should

not

have

this

value

hard-coded.

The

DLS

user

should

retrieve

the

necessary

DLSAP

address

from

the

appropriate

header

file

for

that

protocol

and

insert

it

without

inspection

into

the

DL_BIND_REQ

primitive.

dl_max_conind

Specifies

the

maximum

number

of

outstanding

DL_CONNECT_IND

primitives

allowed

on

the

DLPI

stream.

This

field

controls

whether

a

connection-oriented

stream

will

accept

incoming

connection

indications.

This

parameter

can

have

one

of

the

following

values:

0

The

stream

cannot

accept

any

DL_CONNECT_IND

primitives.

>0

The

DLS

user

accepts

the

specified

number

of

DL_CONNECT_IND

primitives

before

having

to

respond

with

a

DL_CONNECT_RES

or

DL_DISCONNECT_REQ

primitive.

The

DLS

provider

may

not

be

able

to

support

the

value

supplied

in

the

dl_max_conind

parameter

for

the

following

reasons:

v

If

the

provider

cannot

support

the

specified

number

of

outstanding

connect

indications,

it

should

set

the

value

down

to

a

number

it

can

support.

v

Only

one

stream

that

is

bound

to

the

indicated

DLSAP

can

have

an

allowed

number

of

maximum

outstanding

connect

indications

greater

than

0.

If

a

DL_BIND_REQ

primitive

specifies

a

value

greater

than

0,

but

another

stream

has

already

bound

itself

to

the

DLSAP

with

a

value

greater

than

0,

the

request

fails.

The

DLS

provider

then

sets

the

dl_errno

parameter

of

the

DL_ERROR_ACK

primitive

to

a

value

of

DL_BOUND.

v

A

connection

cannot

be

accepted

on

a

stream

bound

with

a

dl_max_conind

greater

than

zero.

No

other

streams

in

which

the

value

of

the

dl_max_conind

parameter

is

greater

than

0

can

be

bound

to

the

same

DLSAP.

This

restriction

prevents

more

than

one

stream

bound

to

the

same

DLSAP

from

receiving

connect

indications

and

accepting

connections.

–

A

DLS

user

should

always

be

able

to

request

a

dl_max_conind

parameter

value

of

0,

since

this

indicates

to

the

DLS

provider

that

the

stream

will

only

be

used

to

originate

connect

requests.

–

A

stream

in

which

the

dl_max_conind

parameter

has

a

negotiated

value

greater

than

0

cannot

originate

connect

requests.

Note:

This

field

is

ignored

in

connectionless-mode

service.

58

Technical

Reference:

Communications,

Volume

1

dl_service_mode

Specifies

the

following

modes

of

service

for

this

stream:

DL_CODLS

Selects

the

connection-oriented

only

mode.

The

connection

primitives

will

be

accepted.

In

addition,

an

arbitrary

number

of

streams

may

bind

to

the

same

dl_sap

on

the

same

interface,

as

long

as

dl_max_conind

is

zero.

No

incoming

datagram

traffic

will

be

sent

up

this

stream.

Such

frames

will

either

be

routed

to

a

DL_CLDLS

stream,

or

silently

discarded.

DL_CLDLS

Selects

the

connectionless

only

mode.

The

connection

primitives

will

not

be

accepted.

This

mode

selects

exclusive

control

of

connectionless

traffic.

All

datagrams

(DL_UNITDATA_IND)

from

any

remote

station

addressed

to

this

dl_sap

will

be

received

on

this

stream,

even

if

another

stream

is

currently

connected

on

the

same

dl_sap.

Only

one

stream

per

interface

may

bind

DL_CLDS.

DL_CLDLS|DL_CODLS

Selects

the

connection-oriented

service

augmented

with

conectionless

traffic.

An

arbitrary

number

of

streams

may

bind

to

the

same

dl_sap

on

the

same

interface.

This

mode

is

mutually

exclusive

with

DL_CLDLS.

If

the

DLS

provider

does

not

support

the

requested

service

mode,

a

DL_ERROR_ACK

primitive

is

generated.

This

primitive

conveys

a

value

of

DL_UNSUPPORTED.

dl_conn_mgmt

This

field

is

ignored.

dl_xidtest_flg

Indicates

to

the

DLS

provider

that

XID

or

test

responses

for

this

stream

are

to

be

automatically

generated

by

the

DLS

provider.

The

xidtest_flg

parameter

contains

a

bit

mask

that

can

specify

either,

both,

or

neither

of

the

following

values:

DL_AUTO_XID

Indicates

to

the

DLS

provider

that

automatic

responses

to

XID

commands

are

to

be

generated.

DL_AUTO_TEST

Indicates

to

the

DLS

provider

that

automatic

responses

to

test

commands

are

to

be

generated.

DL_AUTO_XID|DL_AUTO_TEST

Indicates

to

the

DLS

provider

that

automatic

responses

to

both

XID

commands

and

test

commands

are

to

be

generated.

The

DLS

provider

supports

automatic

handling

of

XID

and

test

responses.

If

an

automatic

XID

or

test

response

has

been

requested,

the

DLS

provider

does

not

generate

DL_XID_IND

or

DL_TEST_IND

primitives.

Therefore,

if

the

provider

receives

an

XID

request

(DL_XID_REQ)

or

test

request

(DL_TEST_REQ)

from

the

DLS

user,

the

DLS

provider

returns

a

DL_ERROR_ACK

primitive,

specifying

a

DL_XIDAUTO

or

DL_TESTAUTO

error

code,

respectively.

If

no

value

is

specified

in

the

dl_xidtest_flg

parameter,

the

DLS

provider

does

not

automatically

generate

XID

and

test

responses.

The

value

informs

the

DLS

provider

that

the

DLS

user

will

be

handling

all

XID

and

TEST

traffic.

A

nonzero

value

indicates

the

DLS

provider

is

responsible

for

either

XID

or

TEST

traffic

or

both.

If

the

driver

handles

XID

or

TEST,

the

DLS

user

will

not

receive

any

incoming

XID

or

TEST

frames,

nor

be

allowed

to

send

them.

States

Valid

The

primitive

is

valid

in

the

DL_UNBOUND

state.

New

The

resulting

state

is

DL_BIND_PENDING.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

59

Acknowledgments

Successful

The

DL_BIND_ACK

primitive

is

sent

to

the

DLS

user.

The

resulting

state

is

DL_IDLE.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned.

The

resulting

state

is

unchanged.

Error

Codes

DL_ACCESS

Indicates

the

DLS

user

does

not

have

proper

permission

to

use

the

requested

DLSAP

address.

DL_BADADDR

Indicates

the

DLSAP

address

information

is

invalid

or

is

in

an

incorrect

format.

DL_BOUND

Indicates

the

DLS

user

attempted

to

bind

a

second

stream

to

a

DLSAP

with

a

dl_max_conind

parameter

value

greater

than

0,

or

the

DLS

user

attempted

to

bind

a

second

connection

management

stream

to

the

PPA.

DL_INITFAILED

Indicates

the

automatic

initialization

of

the

PPA

failed.

DL_NOADDR

Indicates

the

DLS

provider

cannot

allocate

a

DLSAP

address

for

this

stream.

DL_NOAUTO

Indicates

automatic

handling

of

XID

and

test

responses

is

not

supported.

DL_NOTINIT

Indicates

the

PPA

was

not

initialized

prior

to

this

request.

DL_NOTESTAUTO

Indicates

automatic

handling

of

test

responses

is

not

supported.

DL_NOXIDAUTO

Indicates

automatic

handling

of

XID

responses

is

not

supported.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

DL_UNSUPPORTED

Indicates

the

DLS

provider

does

not

support

the

requested

service

mode

on

this

stream.

Related

Information

The

DL_BIND_ACK

primitive,

DL_ERROR_ACK

primitive.

DL_CONNECT_CON

Primitive

Purpose

Informs

the

local

data

link

service

(DLS)

user

that

the

requested

data

link

connection

has

been

established.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_resp_addr_length;

ulong

dl_resp_addr_offset;

ulong

dl_qos_length;

ulong

dl_qos_offset;

ulong

dl_growth;

}

dl_connect_con_t;

Description

The

DL_CONNECT_CON

primitive

informs

the

local

DLS

user

that

the

requested

data

link

connection

has

been

established.

The

primitive

contains

the

data

link

service

access

point

(DLSAP)

address

of

the

responding

DLS

user.

Note:

This

primitive

applies

to

connection

mode.

60

Technical

Reference:

Communications,

Volume

1

Parameters

dl_primitive

Specifies

the

DL_CONNECT_CON

primitive.

dl_resp_addr_length

Specifies

the

length

of

the

address

of

the

responding

DLSAP

associated

with

the

newly

established

data

link

connection.

dl_resp_addr_offset

Specifies

where

responding

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_qos_length

The

DLS

provider

does

not

support

QOS

parameters.

This

value

is

set

to

0.

dl_qos_offset

The

DLS

provider

does

not

support

QOS

parameters.

This

value

is

set

to

0.

dl_growth

Defines

a

growth

field

for

future

enhancements

to

this

primitive.

Its

value

must

be

set

to

zero.

States

Valid

The

primitive

is

valid

in

the

DL_OUTCON_PENDING

state.

New

The

resulting

state

is

DL_DATAXFER.

Related

Information

DL_CONNECT_REQ

primitive.

DL_CONNECT_IND

Primitive

Purpose

Informs

the

local

data

link

service

(DLS)

user

that

a

remote

(calling)

DLS

user

is

attempting

to

establish

a

data

link

connection.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure.

typedef

struct

{

ulong

dl_primitive;

ulong

dl_correlation;

ulong

dl_called_addr_length;

ulong

dl_called_addr_offset;

ulong

dl_calling_addr_length;

ulong

dl_calling_addr_offset;

ulong

dl_qos_length;

ulong

dl_qos_offset;

ulong

dl_growth;

}

dl_connect_req_t;

Description

The

DL_CONNECT_IND

primitive

informs

the

local

DLS

user

that

a

remote

(calling)

DLS

user

is

attempting

to

establish

a

data

link

connection.

The

primitive

contains

the

data

link

service

access

point

(DLSAP)

addresses

of

the

calling

and

called

DLS

user.

The

DL_CONNECT_IND

primitive

also

contains

a

number

that

allows

the

DLS

user

to

correlate

the

primitive

with

a

subsequent

DL_CONNECT_RES,

DL_DISCONNECT_REQ,

or

DL_DISCONNECT_IND

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

61

The

number

of

outstanding

DL_CONNECT_IND

primitives

issued

by

the

DLS

provider

must

not

exceed

the

value

of

the

dl_max_conind

parameter

specified

by

the

DL_BIND_ACK

primitive.

If

this

limit

is

reached

and

an

additional

connect

request

arrives,

the

DLS

provider

does

not

pass

the

corresponding

connect

indication

to

the

DLS

user

until

a

response

is

received

for

an

outstanding

request.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_CONNECT_IND

primitive.

dl_correlation

Specifies

the

correlation

number

to

be

used

by

the

DLS

user

to

associate

this

message

with

the

DL_CONNECT_RES,

DL_DISCONNECT_REQ,

or

DL_DISCONNECT_IND

primitive

that

is

to

follow.

This

value

enables

the

DLS

user

to

multithread

connect

indications

and

responses.

All

outstanding

connect

indications

must

have

a

distinct,

nonzero

correlation

value

set

by

the

DLS

provider.

dl_called_addr_length

Specifies

the

length

of

the

address

of

the

DLSAP

for

which

this

DL_CONNECT_IND

primitive

is

intended.

This

address

is

the

full

DLSAP

address

specified

by

the

calling

DLS

user

and

is

typically

the

value

returned

on

the

DL_BIND_ACK

associated

with

the

given

stream.

dl_called_addr_offset

Specifies

where

the

called

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_calling_addr_length

Specifies

the

length

of

the

address

of

the

DLSAP

from

which

the

DL_CONNECT_REQ

primitive

was

sent.

dl_calling_addr_offset

Specifies

where

the

calling

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_qos_length

The

DLS

provider

does

not

support

QOS

parameters.

This

length

field

is

set

to

0.

dl_qos_offset

The

DLS

provider

does

not

support

QOS

parameters.

This

length

field

is

set

to

0.

dl_growth

Defines

a

growth

field

for

future

enhancements

to

this

primitive.

Its

value

must

be

set

to

0.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

state.

It

is

also

valid

in

the

DL_INCON_PENDING

state

when

the

maximum

number

of

outstanding

DL_CONNECT_IND

primitives

has

not

been

reached

on

this

stream.

New

The

resulting

state

is

DL_INCON_PENDING,

regardless

of

the

current

state.

Acknowledgments

The

DLS

user

must

send

either

the

DL_CONNECT_RES

primitive

to

accept

the

connect

request

or

the

DL_DISCONNECT_REQ

primitive

to

reject

the

connect

request.

In

either

case,

the

responding

message

must

convey

the

correlation

number

received

from

the

DL_CONNECT_IND

primitive.

The

DLS

provider

uses

the

correlation

number

to

identify

the

connect

request

to

which

the

DLS

user

is

responding.

Related

Information

The

DL_BIND_ACK

primitive,

DL_CONNECT_RES

primitive,

DL_DISCONNECT_IND

primitive,

DL_DISCONNECT_REQ

primitive.

62

Technical

Reference:

Communications,

Volume

1

DL_CONNECT_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

establish

a

data

link

connection

with

a

remote

DLS

user.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

ulong

dl_qos_length;

ulong

dl_qos_offset;

ulong

dl_growth;

}

dl_connect_req_t;

Description

The

DL_CONNECT_REQ

primitive

requests

that

the

DLS

provider

establish

a

data

link

connection

with

a

remote

DLS

user.

The

request

contains

the

data

link

service

access

point

(DLSAP)

address

of

the

remote

DLS

user.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_CONNECT_REQ

primitive.

dl_dest_addr_length

Specifies

the

length

of

the

DLSAP

address

that

identifies

the

DLS

user

with

whom

a

connection

is

to

be

established.

If

the

called

user

is

implemented

using

DLPI,

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Specifies

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_qos_length

The

DLS

provider

does

not

support

any

QOS

parameter

values.

This

value

is

set

to

0.

dl_qos_offset

The

DLS

provider

does

not

support

any

QOS

parameter

values.

This

value

is

set

to

0.

dl_growth

Defines

a

growth

field

for

future

enhancements

to

this

primitive.

Its

value

must

be

set

to

0.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

state.

New

The

resulting

state

is

DL_OUTCON_PENDING.

Acknowledgments

There

is

no

immediate

response

to

the

connect

request.

However,

if

the

connect

request

is

accepted

by

the

called

DLS

user,

the

DL_CONNECT_CON

primitive

is

sent

to

the

calling

DLS

user,

resulting

in

the

DL_DATAXFER

state.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

63

If

the

connect

request

is

rejected

by

the

called

DLS

user,

the

called

DLS

user

cannot

be

reached,

or

the

DLS

provider

or

called

DLS

user

do

not

agree

on

the

specified

quality

of

service,

a

DL_DISCONNECT_IND

primitive

is

sent

to

the

calling

DLS

user,

resulting

in

the

DL_IDLE

state.

If

the

request

is

erroneous,

the

DL_ERROR_ACK

primitive

is

returned

and

the

resulting

state

is

unchanged.

Error

Codes

DL_ACCESS

Indicates

the

DLS

user

does

not

have

proper

permission

to

use

the

requested

DLSAP

address.

DL_BADADDR

Indicates

the

DLSAP

address

information

is

invalid

or

is

in

an

incorrect

format.

DL_BADQOSPARAM

Indicates

the

QOS

parameters

contain

invalid

values.

DL_BADQOSTYPE

Indicates

the

QOS

structure

type

is

not

supported

by

the

DLS

provider.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

DL_UNSUPPORTED

Indicates

the

DLS

user

has

indicated

QOS

parameters,

which

are

unsupported.

Related

Information

The

DL_CONNECT_CONprimitive,

DL_DISCONNECT_IND

primitive,

DL_ERROR_ACK

primitive,

DL_BIND_ACK

primitive.

DL_CONNECT_RES

Primitive

Purpose

Directs

the

data

link

service

(DLS)

provider

to

accept

a

connect

request

from

a

remote

DLS

user.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_correlation;

ulong

dl_resp_token;

ulong

dl_qos_length;

ulong

dl_qos_offset;

ulong

dl_growth;

}

dl_connect_res_t;

Description

The

DL_CONNECT_RES

primitive

directs

the

DLS

provider

to

accept

a

connect

request

from

a

remote

(calling)

DLS

user

on

a

designated

stream.

The

DLS

user

can

accept

the

connection

on

the

same

stream

where

the

connect

indication

arrived,

or

on

a

different,

previously

bound

stream.

The

response

contains

the

correlation

number

from

the

corresponding

DL_CONNECT_IND

primitive,

selected

quality

of

service

(QOS)

parameters,

and

an

indication

of

the

stream

on

which

to

accept

the

connection.

After

issuing

this

primitive,

the

DLS

user

can

immediately

begin

transferring

data

using

the

DL_DATA_REQ

primitive.

However,

if

the

DLS

provider

receives

one

or

more

DL_DATA_REQ

primitives

from

the

local

DLS

user

before

it

has

established

a

connection,

the

provider

must

queue

the

data

transfer

requests

internally

until

the

connection

is

successfully

established.

64

Technical

Reference:

Communications,

Volume

1

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_CONNECT_RES

primitive.

dl_correlation

Specifies

the

correlation

number

that

was

received

with

the

corresponding

DL_CONNECT_IND

primitive.

The

DLS

provider

uses

the

correlation

number

to

identify

the

connect

indication

to

which

the

DLS

user

is

responding.

dl_resp_token

Specifies

one

of

the

following

values:

>0

Specifies

the

token

associated

with

the

responding

stream

on

which

the

DLS

provider

is

to

establish

the

connection.

This

stream

must

be

in

the

DL_IDLE

state.

The

token

value

for

a

stream

can

be

obtained

by

issuing

a

DL_TOKEN_REQ

primitive

on

that

stream.

0

Indicates

the

DLS

user

is

accepting

the

connection

on

the

stream

where

the

connect

indication

arrived.

dl_qos_length

The

DLS

provider

does

not

support

QOS

parameters.

This

value

is

set

to

0.

dl_qos_offset

The

DLS

provider

does

not

support

QOS

parameters.

This

value

is

set

to

0.

dl_growth

Defines

a

growth

field

for

future

enhancements

to

this

primitive.

Its

value

must

be

set

to

0.

States

Valid

The

primitive

is

valid

in

the

DL_INCON_PENDING

state.

New

The

resulting

state

is

DL_CONN_RES_PENDING.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user.

If

no

outstanding

connect

indications

remain,

the

resulting

state

for

the

current

stream

is

DL_IDLE.

Otherwise,

it

remains

DL_INCON_PENDING.

For

the

responding

stream

(designated

by

the

dl_resp_token

parameter),

the

resulting

state

is

DL_DATAXFER.

If

the

current

stream

and

responding

stream

are

the

same,

the

resulting

state

of

that

stream

is

DL_DATAXFER.

These

streams

can

only

be

the

same

when

the

response

corresponds

to

the

only

outstanding

connect

indication.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned

on

the

stream

where

the

DL_CONNECT_RES

primitive

was

received,

and

the

resulting

state

of

that

stream

and

the

responding

stream

is

unchanged.

Error

Codes

DL_ACCESS

Indicates

the

DLS

user

does

not

have

proper

permission

to

use

the

requested

data

link

service

access

point

(DLSAP)

address.

DL_BADCORR

Indicates

the

correlation

number

specified

in

this

primitive

does

not

correspond

to

a

pending

connect

indication.

DL_BADQOSPARAM

Indicates

the

QOS

parameters

contain

invalid

values.

DL_BADQOSTYPE

Indicates

the

QOS

structure

type

is

not

supported

by

the

DLS

provider.

DL_BADTOKEN

Indicates

the

token

for

the

responding

stream

is

not

associated

with

a

currently

open

stream.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state,

or

the

responding

stream

was

not

in

a

valid

state

for

establishing

a

connection.

DL_PENDING

Indicates

the

current

and

responding

streams

are

the

same,

and

there

is

more

than

one

outstanding

connect

indication.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

65

Related

Information

The

DL_CONNECT_IND

primitive,

DL_CONNECT_RES

primitive,

DL_DATA_REQ

primitive,

DL_ERROR_ACK

primitive,

DL_OK_ACK

primitive.

DL_DATA_IND

Primitive

Purpose

Conveys

a

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

provider

to

the

DLS

user.

Structure

The

primitive

consists

of

one

or

more

M_DATA

message

blocks

containing

at

least

one

byte

of

data.

(That

is,

there

is

no

DLPI

data

structure

associated

with

this

primitive.)

Description

The

DL_DATA_IND

primitive

conveys

a

DLSDU

from

the

DLS

provider

to

the

DLS

user.

The

DLS

provider

guarantees

to

deliver

each

DLSDU

to

the

local

DLS

user

in

the

same

order

as

received

from

the

remote

DLS

user.

If

the

DLS

provider

detects

unrecoverable

data

loss

during

data

transfer,

this

may

be

indicated

to

the

DLS

user

by

a

DL_RESET_IND

primitive,

or,

if

the

connection

is

lost,

by

a

DL_DISCONNECT_IND

primitive.

Note:

This

primitive

applies

to

connection

mode.

States

Valid

The

primitive

is

valid

in

the

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_DISCONNECT_IND

primitive,

DL_RESET_IND

primitive.

DL_DATA_REQ

Primitive

Purpose

Conveys

a

complete

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

user

to

the

DLS

provider

for

transmission

over

the

data

link

connection.

Structure

This

primitive

consists

of

one

or

more

M_DATA

message

blocks

containing

at

least

one

byte

of

data.

(That

is,

there

is

no

DLPI

data

structure

associated

with

this

primitive.)

Description

The

DL_DATA_REQ

primitive

conveys

a

complete

DLSDU

from

the

DLS

user

to

the

DLS

provider

for

transmission

over

the

data

link

connection.

The

DLS

provider

guarantees

to

deliver

each

DLSDU

to

the

remote

DLS

user

in

the

same

order

as

received

from

the

local

DLS

user.

If

the

DLS

provider

detects

unrecoverable

data

loss

during

data

transfer,

the

DLS

user

can

be

notified

by

a

DL_RESET_IND

primitive.

If

the

connection

is

lost,

the

user

can

be

notified

by

a

DL_DISCONNECT_IND

primitive.

66

Technical

Reference:

Communications,

Volume

1

To

simplify

support

of

a

read/write

interface

to

the

data

link

layer,

the

DLS

provider

must

recognize

and

process

messages

that

consist

of

one

or

more

M_DATA

message

blocks

without

a

preceding

M_PROTO

message

block.

This

message

type

may

originate

from

the

write

subroutine.

Notes:

1.

This

does

not

imply

that

the

Data

Link

Provider

Interface

(DLPI)

directly

supports

a

pure

read/write

interface.

If

such

an

interface

is

desired,

a

streams

module

could

be

implemented

to

be

pushed

above

the

DLS

provider.

2.

(Support

of

Direct

User-Level

Access)

A

streams

module

would

implement

more

field

processing

itself

to

support

direct

user-level

access.

This

module

could

collect

messages

and

send

them

in

one

larger

message

to

the

DLS

provider,

or

break

large

DLSDUs

passed

to

the

DLS

user

into

smaller

messages.

The

module

would

only

be

pushed

if

the

DLS

user

was

a

user-level

process.

3.

The

DL_DATA_REQ

primitive

applies

to

connection

mode.

States

Valid

The

primitive

is

valid

in

the

DL_DATAXFER

state.

If

it

is

received

in

the

DL_IDLE

or

DL_PROV_RESET_PENDING

state,

the

primitive

is

discarded

without

generating

an

error.

New

The

resulting

state

is

unchanged.

Acknowledgments

Successful

No

response

is

generated.

Unsuccessful

A

streams

M_ERROR

message

is

issued

to

the

DLS

user

specifying

an

errno

global

value

of

EPROTO.

This

action

should

be

interpreted

as

a

fatal,

unrecoverable,

protocol

error.

A

request

will

fail

under

the

following

conditions:

v

The

primitive

was

issued

from

an

invalid

state.

If

the

request

is

issued

in

the

DL_IDLE

or

DL_PROV_RESET_PENDING

state.

However,

the

request

is

discarded

without

generating

an

error.

v

The

amount

of

data

in

the

current

DLSDU

is

not

within

the

DLS

provider’s

acceptable

bounds

as

specified

by

the

dl_min_sdu

and

dl_max_sdu

parameters

of

the

DL_INFO_ACK

primitive.

Related

Information

The

DL_DISCONNECT_IND

primitive,

DL_INFO_ACK

primitive,

DL_RESET_IND

primitive.

DL_DETACH_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

style

2

provider

detach

a

physical

point

of

attachment

(PPA)

from

a

stream.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

}

dl_detach_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

67

Description

For

style

2

DLS

providers,

the

DL_DETACH_REQ

primitive

requests

the

DLS

provider

detach

a

PPA

from

a

stream.

Parameters

dl_primitive

Specifies

the

DL_DETACH_REQ

primitive.

States

Valid

The

primitive

is

valid

in

the

DL_UNBOUND

state.

New

The

resulting

state

is

DL_DETACH_PENDING.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user.

The

resulting

state

is

DL_UNATTACHED.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Error

Codes

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

Related

Information

The

DL_ERROR_ACK

primitive,

DL_OK_ACK

primitive.

DL_DISABMULTI_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

disable

specific

multicast

addresses

on

a

per

stream

basis.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_addr_length;

ulong

dl_addr_offset;

}

dl_disabmulti_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_DISABMULTI_REQ

primitive

requests

that

the

DLS

provider

disable

specific

multicast

addresses

on

a

per

stream

basis.

68

Technical

Reference:

Communications,

Volume

1

The

DLS

provider

must

not

run

in

the

interrupt

environment.

If

the

DLS

provider

runs

in

the

interrupt

environment,

the

system

returns

a

DL_ERROR_ACK

primitive

with

an

error

code

of

DL_SYSERR

and

an

operating

system

error

code

of

0.

Parameters

dl_primitive

Specifies

the

DL_DISABMULTI_REQ

primitive.

dl_addr_length

Specifies

the

length

of

the

physical

address.

dl_addr_offset

Indicates

where

the

multicast

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

any

state

in

which

a

local

acknowledgement

is

not

pending,

with

the

exception

of

the

DL_UNATTACH

state.

New

The

resulting

state

is

unchanged.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Error

Codes

DL_BADADDR

Indicates

the

data

link

service

access

point

(DLSAP)

address

information

is

invalid

or

is

in

an

incorrect

format.

DL_NOTENAB

Indicates

the

address

specified

is

not

enabled.

DL_NOTSUPPORTED

Indicates

the

primitive

is

known

but

not

supported

by

the

DLS

provider.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

DL_ERROR_ACK

primitive

indicates

the

system

error.

Related

Information

The

DL_OK_ACK

primitive,

DL_ERROR_ACK

primitive,

DL_ENABMULTI_REQ

primitive.

DL_DISCONNECT_IND

Primitive

Purpose

Informs

the

data

link

service

(DLS)

user

that

the

data

link

connection

on

the

current

stream

has

been

disconnected,

or

that

a

pending

connection

has

been

cancelled.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_originator;

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

69

ulong

dl_reason;

ulong

dl_correlation;

}

dl_disconnect_ind_t;

Description

The

DL_DISCONNECT_IND

primitive

informs

the

DLS

user

of

one

of

the

following

conditions:

v

The

data

link

connection

on

the

current

stream

has

been

disconnected.

v

A

pending

connection

from

either

the

DL_CONNECT_REQ

or

DL_CONNECT_IND

primitive

has

been

cancelled.

The

primitive

indicates

the

origin

and

the

cause

of

the

disconnect.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_DISCONNECT_IND

primitive.

dl_originator

Indicates

whether

the

disconnect

originated

from

a

DLS

user

or

provider.

Valid

values

are

DL_USER

and

DL_PROVIDER.

dl_reason

Specifies

the

reason

for

the

disconnect.

Reasons

for

disconnect

are:

DL_DISC_PERMANENT_CONDITION

Indicates

the

connection

was

released

because

of

a

permanent

condition.

DL_DISC_TRANSIENT_CONDITION

Indicates

the

connection

was

released

because

of

a

temporary

condition.

DL_CONREJ_DEST_UNKNOWN

Indicates

the

connect

request

has

an

unknown

destination.

DL_CONREJ_DEST_UNREACH_PERMANENT

Indicates

the

connection

was

released

because

the

destination

for

connect

request

could

not

be

reached.

This

is

a

permanent

condition.

DL_CONREJ_DEST_UNREACH_TRANSIENT

Indicates

the

connection

was

released

because

the

destination

for

connect

request

could

not

be

reached.

This

is

a

temporary

condition.

DL_CONREJ_QOS_UNAVAIL_PERMANENT

Indicates

the

requested

quality

of

service

(QOS)

parameters

became

permanently

unavailable

while

establishing

a

connection.

DL_CONREJ_QOS_UNAVAIL_TRANSIENT

Indicates

the

requested

QOS

parameters

became

temporarily

unavailable

while

establishing

a

connection.

DL_DISC_UNSPECIFIED

Indicates

the

connection

was

closed

because

of

an

unspecified

reason.

dl_correlation

If

the

value

is

nonzero,

specifies

the

correlation

number

contained

in

the

DL_CONNECT_IND

primitive

being

cancelled.This

value

permits

the

DLS

user

to

associate

the

message

with

the

proper

DL_CONNECT_IND

primitive.

If

the

disconnect

request

indicates

the

release

of

a

connection

that

is

already

established,

or

is

indicating

the

rejection

of

a

previously

sent

DL_CONNECT_REQ

primitive,

the

value

of

the

dl_correlation

parameter

is

zero.

70

Technical

Reference:

Communications,

Volume

1

States

Valid

The

primitive

is

valid

in

any

of

the

following

states:

v

DL_DATAXFER

v

DL_INCON_PENDING

v

DL_OUTCON_PENDING

v

DL_PROV_RESET_PENDING

v

DL_USER_RESET_PENDING

New

The

resulting

state

is

DL_IDLE.

Related

Information

The

DL_CONNECT_IND

primitive,

DL_CONNECT_REQ

primitive.

DL_DISCONNECT_REQ

Primitive

Purpose

Requests

that

an

active

data

link

be

disconnected.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_reason;

ulong

dl_correlation;

}

dl_disconnect_req_t;

Description

The

DL_DISCONNECT_REQ

primitive

requests

the

data

link

service

(DLS)

provider

to

disconnect

an

active

data

link

connection

or

one

that

was

in

the

process

of

activation.

The

DL_DISCONNECT_REQ

primitive

can

be

sent

in

response

to

a

previously

issued

DL_CONNECT_IND

or

DL_CONNECT_REQ

primitive.

If

an

incoming

DL_CONNECT_IND

primitive

is

being

refused,

the

correlation

number

associated

with

that

connect

indication

must

be

supplied.

The

message

indicates

the

reason

for

the

disconnect.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_DISCONNECT_REQ

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

71

dl_reason

Indicates

one

of

the

following

reasons

for

the

disconnect:

DL_DISC_NORMAL_CONDITION

Indicates

normal

release

of

a

data

link

connection.

DL_DISC_ABNORMAL_CONDITION

Indicates

abnormal

release

of

a

data

link

connection.

DL_CONREJ_PERMANENT_COND

Indicates

a

permanent

condition

caused

the

rejection

of

a

connect

request.

DL_CONREJ_TRANSIENT_COND

Indicates

a

transient

condition

caused

the

rejection

of

a

connect

request.

DL_DISC_UNSPECIFIED

Indicates

the

connection

was

closed

for

an

unspecified

reason.

dl_correlation

Specifies

one

of

the

following

values:

0

Indicates

either

the

disconnect

request

is

releasing

an

established

connection

or

is

cancelling

a

previously

sent

DL_CONNECT_REQ

primitive.

>0

Specifies

the

correlation

number

that

was

contained

in

the

DL_CONNECT_IND

primitive

being

rejected.

This

value

permits

the

DLS

provider

to

associate

the

primitive

with

the

proper

DL_CONNECT_IND

primitive

when

rejecting

an

incoming

connection.

States

Valid

The

primitive

is

valid

in

any

of

the

following

states:

v

DL_DATAXFER

v

DL_INCON_PENDING

v

DL_OUTCON_PENDING

v

DL_PROV_RESET_PENDING

v

DL_USER_RESET_PENDING

New

v

DL_DISCON11_PENDING

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user

resulting

in

the

DL_IDLE

state.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Error

Codes

DL_BADCORR

Indicates

the

correlation

number

specified

in

this

primitive

does

not

correspond

to

a

pending

connect

indication.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

Related

Information

The

DL_CONNECT_IND

primitive,

DL_OK_ACK

primitive,

DL_ERROR_ACK

primitive,

DL_CONNECT_REQ

primitive.

72

Technical

Reference:

Communications,

Volume

1

DL_ENABMULTI_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

enable

specific

multicast

addresses

on

a

per

stream

basis.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_addr_length;

ulong

dl_addr_offset;

}

dl_enabmulti_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_ENABMULTI

primitive

requests

that

the

DLS

provider

enable

specific

multicast

addresses

on

a

per

stream

basis.

It

is

invalid

for

a

DLS

provider

to

pass

upstream

messages

that

are

destined

for

any

address

other

than

those

explicitly

enabled

on

that

stream

by

the

DLS

user.

If

a

duplicate

address

is

requested,

the

system

returns

a

DL_OK_ACK

primitive,

with

no

operation

performed.

If

the

stream

is

closed,

all

multicast

addresses

associated

with

the

stream

will

be

unregistered.

The

DLS

provider

must

not

run

in

the

interrupt

environment.

If

the

DLS

provider

runs

in

the

interrupt

environment,

the

system

returns

a

DL_ERROR_ACK

primitive

with

a

DL_SYSERR

error

code

and

an

operating

system

error

code

of

0.

Parameters

dl_primitive

Specifies

the

DL_ENABMULTI

primitive.

dl_addr_length

Specifies

the

length

of

the

multicast

address.

dl_addr_offset

Indicates

where

the

multicast

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

any

state

in

which

a

local

acknowledgement

is

not

pending,

with

the

exception

of

the

DL_UNATTACH

state.

New

The

resulting

state

is

unchanged.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

73

Error

Codes

DL_BADADDR

Indicates

the

data

link

service

access

point

(DLSAP)

address

information

is

invalid

or

is

in

an

incorrect

format.

DL_NOTSUPPORTED

Indicates

the

primitive

is

known

but

not

supported

by

the

DLS

provider.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state,

or

the

responding

stream

was

not

in

a

valid

state

for

establishing

a

connection.

DL_TOOMANY

Indicates

the

limit

has

been

exceeded

for

the

maximum

number

of

DLSAPs

per

stream.

DL_SYSERR

Indicates

a

system

error.

The

DL_ERROR_ACK

primitive

indicates

the

error.

Related

Information

The

DL_OK_ACK

primitive,

DL_ERROR_ACK

primitive,

DL_DISABMULTI_REQ

primitive.

DL_ERROR_ACK

Primitive

Purpose

Informs

the

data

link

service

(DLS)

user

that

a

request

or

response

was

invalid.

Structure

The

message

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_error_primitive;

ulong

dl_errno;

ulong

dl_unix_errno;

}

dl_ok_ack_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_ERROR_ACK

primitive

informs

the

DLS

user

that

the

previously

issued

request

or

response

was

invalid.

This

primitive

identifies

the

primitive

in

error,

specifies

a

Data

Link

Provider

Interface

(DLPI)

error

code,

and

if

appropriate,

indicates

an

operating

system

error

code.

Parameters

dl_primitive

Specifies

the

DL_ERROR_ACK

primitive.

dl_error_primitive

Identifies

the

primitive

that

caused

the

error.

dl_errno

Specifies

the

DLPI

error

code

associated

with

the

failure.

See

the

individual

request

or

response

for

the

error

codes

that

are

applicable.

In

addition

to

those

errors:

DL_BADPRIM

Indicates

an

unrecognized

primitive

was

issued

by

the

DLS

user.

DL_NOTSUPPORTED

Indicates

an

unsupported

primitive

was

issued

by

the

DLS

user.

dl_unix_errno

Specifies

the

operating

system

error

code

associated

with

the

failure.

This

value

should

be

nonzero

only

when

the

dl_errno

parameter

is

set

to

DL_SYSERR.

It

is

used

to

report

operating

system

failures

that

prevent

the

processing

of

a

given

request

or

response.

74

Technical

Reference:

Communications,

Volume

1

States

Valid

The

primitive

is

valid

in

all

states

that

have

a

pending

acknowledgment

or

confirmation.

New

The

resulting

state

is

the

same

as

the

one

from

which

the

acknowledged

request

or

response

was

generated.

Related

Information

The

DL_OK_ACK

primitive.

DL_GET_STATISTICS_ACK

Primitive

Purpose

Returns

statistics

in

response

to

the

DL_GET_STATISTICS_REQ

primitive.

Structure

The

message

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_stat_length;

ulong

dl_stat_offset;

}

dl_get_statistics_ack_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_GET_STATISTICS_ACK

primitive

returns

statistics

in

response

to

the

DL_GET_STATISTICS_REQ

primitive.

The

/usr/include/sys/dlpistats.h

file

defines

the

statistics

that

the

DL_GET_STATISTICS_ACK

and

DL_GET_STATISTICS_REQ

primitives

support.

The

primitives

support

the

statistics

both

globally

(totals

for

all

streams)

and

per

stream.

Per

stream,

or

local,

statistics

can

be

requested

only

for

the

stream

over

which

the

DL_GET_STATISTICS_REQ

primitive

is

requested.

The

global

and

local

statistics

structures

are

returned

concatenated.

The

offset

in

the

M_PCPROTO

message,

returned

by

the

DL_GET_STATISTICS_ACK

primitive,

indicates

where

the

two

concatenated

structures

begin.

The

first

statistics

structure

contains

information

about

the

local

stream

over

which

the

DL_GET_STATISTICS_REQ

primitive

was

issued.

The

second

statistics

structure

contains

the

global

statistics

collected

and

summed

for

all

streams.

The

structures

for

the

local

statistics

are

initialized

to

zero

when

the

stream

is

opened.

The

structure

for

the

global

statistics

is

initialized

to

zero

when

the

dlpi

kernel

extension

is

loaded.

The

statistics

structures

can

be

reset

to

zero

using

the

DL_ZERO_STATS

IOCTL

command.

See

″IOCTL

Specifics″

in

Data

Link

Provider

Interface

Information.

The

statistics

collected

by

the

DLPI

provider

are

considered

vague.

There

are

no

locks

protecting

the

counters

to

prevent

write

collisions.

Parameters

dl_primitive

Specifies

the

DL_GET_STATISTICS_ACK

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

75

dl_stat_length

Specifies

the

length

of

the

statistics

structure.

dl_stat_offset

Indicates

where

the

statistics

information

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PCPROTO

block.

States

Valid

The

primitive

is

valid

in

any

attached

state

in

which

a

local

acknowledgement

is

not

pending.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_GET_STATISTICS_REQ

primitive.

″IOCTL

Specifics″

in

Data

Link

Provider

Interface

Information.

DL_GET_STATISTICS_REQ

Purpose

Directs

the

data

link

service

(DLS)

provider

to

return

statistics

to

the

DLS

user.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

}

dl_get_statistics_req_t;

The

dl_get_statistics_req_t

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_GET_STATISTICS_REQ

primitive

directs

the

DLS

provider

to

return

statistics.

Parameters

dl_primitive

Specifies

the

DL_GET_STATISTICS_REQ

primitive.

States

Valid

The

primitive

is

valid

in

any

attached

state

in

which

a

local

acknowledgment

is

not

pending.

New

The

resulting

state

is

unchanged.

Acknowledgments

Successful

The

DL_GET_STATISTICS_ACK

primitive

is

sent

to

the

DLS

user.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned

to

the

DLS

user.

76

Technical

Reference:

Communications,

Volume

1

Error

Codes

DL_NOTSUPPORTED

Indicates

the

primitive

is

known

but

not

supported

by

the

DLS

provider.

DL_SYSERR

Indicates

a

system

error.

The

DL_ERROR_ACK

primitive

indicates

the

error.

Related

Information

The

DL_GET_STATISTICS_ACK

primitive,

DL_ERROR_ACKprimitive.

DL_INFO_ACK

Primitive

Purpose

Returns

information

about

the

Data

Link

Provider

Interface

(DLPI)

stream

in

response

to

the

DL_INFO_REQ

primitive.

Structure

The

message

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_max_sdu;

ulong

dl_min_sdu;

ulong

dl_addr_length;

ulong

dl_mac_type;

ulong

dl_reserved;

ulong

dl_current_state;

long

dl_sap_length;

ulong

dl_service_mode;

ulong

dl_qos_length;

ulong

dl_qos_offset;

ulong

dl_qos_range_length;

ulong

dl_qos_range_offset;

ulong

dl_provider_style;

ulong

dl_addr_offset;

ulong

dl_version;

ulong

dl_brdcst_addr_length;

ulong

dl_brdcst_addr_offset;

ulong

dl_growth;

}

dl_info_ack_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_INFO_ACK

primitive

returns

information

about

the

DLPI

stream

to

the

data

link

service

(DLS).

The

DL_INFO_ACK

primitive

is

a

response

to

the

DL_INFO_REQ

primitive.

Parameters

dl_primitive

Specifies

the

DL_INFO_ACK

primitive.

dl_max_sdu

Specifies

the

maximum

number

of

bytes

that

can

be

transmitted

in

a

data

link

service

data

unit

(DLSDU).

This

value

must

be

a

positive

integer

greater

than

or

equal

to

the

value

of

the

dl_min_sdu

parameter.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

77

dl_min_sdu

Specifies

the

minimum

number

of

bytes

that

can

be

transmitted

in

a

DLSDU.

The

minimum

value

is

1.

dl_addr_length

Specifies

the

length,

in

bytes,

of

the

provider’s

data

link

service

access

point

(DLSAP)

address.

For

hierarchical

subsequent

binds,

the

length

returned

is

the

total

length.

The

total

length

is

the

sum

of

the

values

for

the

physical

address,

service

access

point

(SAP),

and

subsequent

address

length.

dl_mac_type

Specifies

the

type

of

medium

supported

by

this

DLPI

stream.

Possible

values

include:

DL_CSMACD

Indicates

the

medium

is

carrier

sense

multiple

access

with

collision

detection

(ISO

8802/3).

DL_TPR

Indicates

the

medium

is

token-passing

ring

(ISO

8802/5).

DL_ETHER

Indicates

the

medium

is

Ethernet

bus.

DL_FDDI

Indicates

the

medium

is

a

Fiber

Distributed

Data

Interface.

DL_OTHER

Indicates

any

other

medium.

dl_reserved

Indicates

a

reserved

field,

the

value

of

which

must

be

set

to

0.

dl_current_state

Specifies

the

state

of

the

DLPI

interface

for

the

stream

the

DLS

provider

issues

this

acknowledgement.

dl_sap_length

Indicates

the

current

length

of

the

SAP

component

of

the

DLSAP

address.

The

specified

value

must

be

an

integer.

The

absolute

value

of

the

dl_sap_length

parameter

provides

the

length

of

the

SAP

component

within

the

DLSAP

address.

The

value

can

be

one

of

the

following:

>0

Indicates

the

SAP

component

precedes

the

physical

component

within

the

DLSAP

address.

<0

Indicates

the

physical

component

precedes

the

SAP

component

within

the

DLSAP

address.

0

Indicates

that

no

SAP

has

been

bound.

dl_service_mode

Specifies

which

service

modes

that

the

DLS

provider

supports

if

the

DL_INFO_ACK

primitive

is

returned

before

the

DL_BIND_REQ

primitive

is

processed.

This

parameter

contains

a

bit-mask

specifying

the

following

value:

DL_CODLS

Indicates

connection-oriented

DLS.

DL_CLDLS

Indicates

connectionless

DLS.

Once

a

specific

service

mode

has

been

bound

to

the

stream,

this

field

returns

that

specific

service

mode.

dl_qos_length

The

DLS

provider

does

not

support

qos

parameters.

This

value

is

set

to

0.

dl_qos_offset

The

DLS

provider

does

not

support

qos

parameters.

This

value

is

set

to

0.

dl_qos_range_length

The

DLS

provider

does

not

support

qos

parameters.

This

value

is

set

to

0.

dl_qos_range_offset

The

DLS

provider

does

not

support

qos

parameters.

This

value

is

set

to

0.

78

Technical

Reference:

Communications,

Volume

1

dl_provider_style

Specifies

the

style

of

the

DLS

provider

associated

with

the

DLPI

stream.

The

following

provider

class

is

defined:

DL_STYLE2

Indicates

the

DLS

user

must

explicitly

attach

a

PPA

to

the

DLPI

stream

using

the

DL_ATTACH_REQ

primitive.

dl_addr_offset

Specifies

the

offset

of

the

address

that

is

bound

to

the

associated

stream.

If

the

DLS

user

issues

a

DL_INFO_REQ

primitive

before

binding

a

DLSAP,

the

value

of

the

dl_addr_length

parameter

is

set

to

0.

dl_version

Indicates

the

version

of

the

supported

DLPI.

dl_brdcst_addr_length

Indicates

the

length

of

the

physical

broadcast

address.

dl_brdcst_addr_offset

Indicates

where

the

physical

broadcast

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

PCPROTO

block.

dl_growth

Specifies

a

growth

field

for

future

use.

The

value

of

this

parameter

is

0.

States

Valid

The

primitive

is

valid

in

any

state

in

response

to

a

DL_INFO_REQ

primitive.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_INFO_REQ

primitive,

DL_BIND_REQ

primitive,

DL_ATTACH_REQ

primitive.

DL_INFO_REQ

Primitive

Purpose

Requests

information

about

the

Data

Link

Provider

Interface

(DLPI)

stream.

Structure

The

message

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

}

dl_info_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_INFO_REQ

primitive

requests

information

from

the

data

link

service

(DLS)

provider

about

the

DLPI

stream.

This

information

includes

a

set

of

provider-specific

parameters,

as

well

as

the

current

state

of

the

interface.

Parameters

dl_primitive

Conveys

the

DL_INFO_REQ

primitive.

States

Valid

The

primitive

is

valid

in

any

state

in

which

a

local

acknowledgment

is

not

pending.

New

The

resulting

state

is

unchanged.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

79

Acknowledgments

The

DLS

provider

responds

to

the

information

request

with

a

DL_INFO_ACK

primitive.

Related

Information

The

DL_INFO_ACK

primitive.

DL_OK_ACK

Primitive

Purpose

Acknowledges

that

a

previously

issued

primitive

was

received

successfully.

Structure

The

message

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_correct_primitive;

}

dl_ok_ack_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_OK_ACK

primitive

acknowledges

to

the

data

link

service

(DLS)

user

that

a

previously

issued

primitive

was

received

successfully.

It

is

only

initiated

for

the

primitives

listed

in

the

″States″

section.

Parameters

dl_primitive

Specifies

the

DL_OK_ACK

primitive.

dl_correct_primitive

Identifies

the

received

primitive

that

is

being

acknowledged.

States

Valid

The

primitive

is

valid

in

response

to

the

following

primitives:

v

DL_ATTACH_REQ

v

DL_DETACH_REQ

v

DL_UNBIND_REQ

v

DL_SUBS_UNBIND_REQ

v

DL_PROMISCON_REQ

v

DL_ENABMULTI_REQ

v

DL_DISABMULTI_REQ

v

DL_PROMISCOFF_REQ

New

The

resulting

state

depends

on

the

current

state

and

is

fully

defined

in

″Allowable

Sequence

of

DLPI

Primitives″

in

your

copy

of

the

AT&T

DLPI

Specifications.

Related

Information

The

DL_ATTACH_REQ

primitive,

DL_DETACH_REQ

primitive,

DL_UNBIND_REQprimitive,

DL_SUBS_UNBIND_REQ

primitive,

DL_PROMISCON_REQ

primitive,

DL_ENABMULTI_REQ

primitive,

DL_DISABMULTI_REQ

primitive,

DL_PROMISCOFF_REQ

primitive.

80

Technical

Reference:

Communications,

Volume

1

DL_PHYS_ADDR_ACK

Primitive

Purpose

Returns

the

value

for

the

physical

address

to

the

data

link

service

(DLS)

user

in

response

to

a

DL_PHYS_ADDR_REQ

primitive.

Structure

The

message

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_addr_length;

ulong

dl_addr_offset;

}

dl_phys_addr_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_PHYS_ADDR_ACK

primitive

returns

the

value

for

the

physical

address

to

the

DLS

user

in

response

to

a

DL_PHYS_ADDR_REQ

primitive.

Parameters

dl_primitive

Specifies

the

DL_

PHYS_ADDR_ACK

primitive.

dl_addr_length

Specifies

the

length

of

the

physical

address.

dl_addr_offset

Indicates

where

the

physical

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PCPROTO

block.

States

Valid

The

primitive

is

valid

in

any

state

in

response

to

a

DL_PHYS_ADDR_REQ

primitive.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_PHYS_ADDR_REQ

primitive.

DL_PHYS_ADDR_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

return

the

current

value

of

the

physical

address

associated

with

the

stream.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

81

ulong

dl_primitive;

ulong

dl_addr_type;

}

dl_phys_addr_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_PHYS_ADDR_REQ

primitive

requests

that

the

DLS

provider

return

the

current

value

of

the

physical

address

associated

with

the

stream.

Parameters

dl_primitive

Specifies

the

DL_PHYS_ADDR_REQ

primitive.

dl_addr_type

Specifies

the

requested

address.

The

value

is:

DL_CURR_PHYS_ADDR

Current

physical

address.

States

Valid

The

primitive

is

valid

in

any

attached

state

in

which

a

local

acknowledgment

is

not

pending.

For

a

style

2

DLS

provider,

this

is

after

a

PPA

is

attached

using

the

DL_ATTACH_REQ

provider.

New

The

resulting

state

is

unchanged.

Acknowledgments

Successful

The

DL_PHYS_ADDR_ACK

primitive

is

sent

to

the

DLS

user.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned

to

the

DLS

user.

Error

Codes

DL_NOTSUPPORTED

Indicates

the

primitive

is

known

but

not

supported

by

the

DLS

provider.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_UNSUPPORTED

Indicates

the

requested

address

type

is

not

supplied

by

the

DLS

provider.

DL_SYSERR

Indicates

a

system

error

occurred

and

the

provider

did

not

have

access

to

the

physical

address.

Related

Information

The

DL_PHYS_ADDR_ACK

primitive,

DL_ERROR_ACK

primitive.

DL_PROMISCOFF_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

disable

promiscuous

mode

on

a

per-stream

basis,

at

either

the

physical

level

or

the

service

access

point

(SAP)

level.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

82

Technical

Reference:

Communications,

Volume

1

typedef

struct

{

ulong

dl_primitive;

ulong

dl_level;

}

dl_promiscoff_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

A

device

in

promiscuous

mode

lets

a

user

view

all

packets,

not

just

those

destined

for

the

user.

The

DL_PROMISCOFF_REQ

primitive

requests

that

the

DLS

provider

disable

promiscuous

mode

on

a

per-stream

basis,

at

either

the

physical

level

or

the

SAP

level.

If

the

DLS

user

disables

the

promiscuous

mode

at

the

physical

level,

the

DLS

user

no

longer

receives

a

copy

of

every

packet

on

the

wire

for

all

SAPs.

If

the

DLS

user

disables

the

promiscuous

mode

at

the

SAP

level,

the

DLS

user

no

longer

receives

a

copy

of

every

packet

on

the

wire

directed

to

that

user

for

all

SAPs.

If

the

DLS

user

disables

the

promiscuous

mode

for

all

multicast

addresses,

the

DLS

user

no

longer

receives

all

packets

on

the

wire

that

have

either

a

multicast

or

group

destination

address.

This

includes

broadcast.

An

application

issuing

the

DL_PROMISCOFF_REQ

primitive

must

have

root

authority.

Otherwise,

the

DLS

provider

returns

the

DL_ERROR_ACK

primitive

with

an

error

code

of

DL_ACCESS.

The

DLS

provider

must

not

run

in

the

interrupt

environment.

If

it

does,

the

system

returns

a

DL_ERROR_ACK

primitive

with

an

error

code

of

DL_SYSERR

and

an

operating

system

error

code

of

0.

Parameters

dl_primitive

Specifies

the

DL_PROMISCOFF_REQ

primitive.

dl_level

Indicates

promiscuous

mode

at

the

physical

or

SAP

level.

Possible

values

include:

DL_PROMISC_PHYS

Indicates

promiscuous

mode

at

the

physical

level.

DL_PROMISC_SAP

Indicates

promiscuous

mode

at

the

SAP

level.

DL_PROMISC_MULTI

Indicates

promiscuous

mode

for

all

multicast

addresses.

States

Valid

The

primitive

is

valid

in

any

state

in

which

an

acknowledgement

is

not

pending,

with

the

exception

of

DL_UNATTACH.

New

The

resulting

state

is

unchanged.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

83

Error

Codes

DL_ACCESS

Indicates

the

DLS

user

does

not

have

permission

to

issue

the

primitive.

DL_NOTENAB

Indicates

the

mode

is

not

enabled.

DL_NOTSUPPORTED

Indicates

the

primitive

is

known

but

not

supported

by

the

DLS

provider.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

DL_UNSUPPORTED

Indicates

the

DLS

provider

does

not

supply

the

requested

level.

Related

Information

The

DL_OK_ACK

primitive,

DL_ERROR_ACK

primitive.

DL_PROMISCON_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

enable

promiscuous

mode

on

a

per

stream

basis,

at

either

the

physical

level

or

the

service

access

point

(SAP)

level.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_level;

}

dl_promiscon_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

A

device

in

promiscuous

mode

lets

a

user

view

all

packets,

not

just

those

destined

for

the

user.

The

DL_PROMISCON_REQ

primitive

requests

that

the

DLS

provider

enable

promiscuous

mode

on

a

per-stream

basis,

either

at

the

physical

level

or

at

the

SAP

level.

The

DLS

provider

routes

all

received

messages

on

the

media

to

the

DLS

user

until

either

a

DL_DETACH_REQ

or

a

DL_PROMISCOFF_REQ

primitive

is

received

or

the

stream

is

closed.

If

the

DLS

user

enables

the

promiscuous

mode

at

the

physical

level,

the

DLS

user

receives

a

copy

of

every

packet

on

the

wire

for

all

SAPs.

If

the

DLS

user

enables

the

promiscuous

mode

at

the

SAP

level,

the

DLS

user

receives

a

copy

of

every

packet

on

the

wire

directed

to

that

user

for

all

SAPs.

If

the

DLS

user

enables

the

promiscuous

mode

for

all

multicast

addresses,

the

DLS

user

receives

all

packets

on

the

wire

that

have

either

a

multicast

or

group

destination

address.

This

includes

broadcast.

If

the

DLS

user

issues

duplicate

requests,

the

system

returns

a

DL_OK_ACK

primitive

and

does

not

perform

the

operation.

84

Technical

Reference:

Communications,

Volume

1

An

application

issuing

the

DL_PROMISCON_REQ

primitive

must

have

root

authority.

Otherwise,

the

DLS

provider

returns

the

DL_ERROR_ACK

primitive

with

an

error

code

of

DL_ACCESS.

The

DLS

provider

must

not

run

in

the

interrupt

environment.

If

it

does,

the

system

returns

a

DL_ERROR_ACK

primitive

with

an

error

code

of

DL_SYSERR

and

an

operating

system

error

code

of

0.

The

above

code

fragment

.

The

following

sample

code

fragment

discards

the

DL_UNITDATA_IND

header,

and

will

work

with

dlpi:

if

(raw_mode)

{

if

(mp->b_datap->db_type

==

M_PROTO)

{

union

DL_primitives

*p;

p

=

(union

DL_primitives

*)mp->b_rptr;

if

(p->dl_primitive

==

DL_UNITDATA_IND)

{

mblk_t

*mpl

=

mp->b_cont;

freeb(mp);

mp

=

mpl;

}

}

}

For

compatibility

with

future

releases,

it

is

recommended

that

you

parse

the

frame

yourself.

The

MAC

and

LLC

headers

are

presented

in

the

M_DATA

message

for

promiscuous

mode.

Parameters

dl_primitive

Specifies

the

DL_PROMISCON_REQ

primitive.

dl_level

Indicates

promiscuous

mode

at

the

physical

or

SAP

level.

Possible

values

include:

DL_PROMISC_PHYS

Indicates

promiscuous

mode

at

the

physical

level.

DL_PROMISC_SAP

Indicates

promiscuous

mode

at

the

SAP

level.

DL_PROMISC_MULTI

Indicates

promiscuous

mode

for

all

multicast

addresses.

States

Valid

The

primitive

is

valid

in

any

state

in

which

an

acknowledgement

is

not

pending,

with

the

exception

of

DL_UNATTACH.

New

The

resulting

state

is

unchanged.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Error

Codes

DL_ACCESS

Indicates

the

DLS

user

does

not

have

permission

to

issue

the

primitive.

DL_NOTSUPPORTED

Indicates

the

primitive

is

known

but

not

supported

by

the

DLS

provider.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

85

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

DL_UNSUPPORTED

Indicates

the

DLS

provider

does

not

support

the

requested

service

on

this

stream.

Related

Information

The

DL_OK_ACK

primitive,

DL_ERROR_ACK

primitive,

DL_DETACH_REQ

primitive,

DL_PROMISCOFF_REQ

primitive.

DL_RESET_CON

Primitive

Purpose

Informs

the

data

link

service

(DLS)

user

that

the

reset

has

been

completed.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

}

dl_reset_con_t;

Description

The

DL_RESET_CON

primitive

informs

the

DLS

user

initiating

the

reset

that

the

reset

has

been

completed.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_RESET_CON

primitive.

States

Valid

The

primitive

is

valid

in

the

DL_USER_RESET_PENDING

state.

New

The

resulting

state

is

DL_DATAXFER.

Related

Information

DL_RESET_IND

Primitive

DL_RESET_IND

Primitive

Purpose

Indicates

a

data

link

service

(DLS)

connection

has

been

reset.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

86

Technical

Reference:

Communications,

Volume

1

typedef

struct

{

ulong

dl_primitive;

ulong

dl_originator;

ulong

dl_reason;

}

dl_disconnect_ind_t;

Description

The

DL_RESET_IND

primitive

informs

the

DLS

user

that

either

the

remote

DLS

user

is

resynchronizing

the

data

link

connection,

or

the

DLS

provider

is

reporting

loss

of

data

from

which

it

can

not

recover.

The

primitive

indicates

the

reason

for

the

reset.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_RESET_IND

primitive.

dl_originator

Specifies

whether

the

reset

was

originated

by

the

DLS

user

or

DLS

provider.

The

values

are

DL_USER

or

DL_PROVIDER,

respectively.

dl_reason

Indicates

one

of

the

following

reasons

for

the

reset:

DL_RESET_FLOW_CONTROL

Indicates

flow

control

congestion.

DL_RESET_LINK_ERROR

Indicates

the

occurrence

of

a

data

link

error.

DL_RESET_RESYNCH

Indicates

a

request

for

resynchronization

of

a

data

link

connection.

States

Valid

The

primitive

is

valid

in

the

DL_DATAXFER

state.

New

The

resulting

state

is

DL_PROV_RESET_PENDING.

Acknowledgments

The

DLS

user

should

issue

a

DL_RESET_RES

primitive

to

continue

the

resynchronization

procedure.

Related

Information

The

DL_RESET_RES

primitive.

DL_RESET_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

begin

resynchronizing

a

data

link

connection.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

}

dl_reset_req_t;

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

87

Description

The

DL_RESET_REQ

primitive

requests

that

the

DLS

provider

begin

resynchronizing

a

data

link

connection.

Notes:

1.

No

guarantee

exists

that

data

in

transit

when

the

DL_RESET_REQ

primitive

is

initiated

will

be

delivered.

2.

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_RESET_REQ

primitive.

States

Valid

The

primitive

is

valid

in

state

DL_DATAXFER.

New

The

resulting

state

is

DL_USER_RESET_PENDING.

Acknowledgments

Successful

There

is

no

immediate

response

to

the

reset

request.

However,

as

resynchronization

completes,

the

DL_RESET_CON

primitive

is

sent

to

the

initiating

DLS

user,

resulting

in

the

DL_DATAXFER

state.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned

and

the

resulting

state

is

unchanged.

Error

Codes

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

Related

Information

The

DL_RESET_CON

primitive,

DL_ERROR_ACK

primitive.

DL_RESET_RES

Primitive

Purpose

Directs

the

data

link

service

(DLS)

provider

to

complete

resynchronizing

the

data

link

connection.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

}

dl_reset_res_t;

88

Technical

Reference:

Communications,

Volume

1

Description

The

DL_RESET_RES

primitive

directs

the

DLS

provider

to

complete

resynchronizing

the

data

link

connection.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_RESET_RES

primitive.

States

Valid

The

primitive

is

valid

in

the

DL_PROV_RESET_PENDING

state.

New

The

resulting

state

is

DL_RESET_RES_PENDING.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user,

and

the

resulting

state

is

DL_DATAXFER.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Error

Codes

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

Related

Information

DL_RESET_IND

Primitive

DL_SUBS_BIND_ACK

Primitive

Purpose

Reports

the

successful

bind

of

a

subsequent

data

link

service

access

point

(DLSAP)

to

a

stream

and

returns

the

bound

DLSAP

address

to

the

data

link

service

(DLS)

user.

Structure

The

message

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_subs_sap_length;

ulong

dl_subs_sap_offset;

}

dl_subs_bind_ack_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

89

Description

The

DL_SUBS_BIND_ACK

primitive

reports

the

successful

bind

of

a

subsequent

DLSAP

to

a

stream

and

returns

the

bound

DLSAP

address

to

the

DLS

user.

This

primitive

is

generated

in

response

to

a

DL_BIND_REQ

primitive.

Parameters

dl_primitive

Specifies

the

DL_SUBS_BIND_ACK

primitive.

dl_subs_sap_length

Specifies

the

length

of

the

specified

DLSAP.

dl_subs_sap_offset

Indicates

where

the

DLSAP

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_SUBS_BIND_PND

state.

New

The

resulting

state

is

DL_IDLE.

Related

Information

The

DL_SUBS_BIND_REQ

primitive.

DL_SUBS_BIND_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

bind

a

subsequent

data

link

service

access

point

(DLSAP)

to

the

stream.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_subs_sap_offset;

ulong

dl_subs_sap_length;

ulong

dl_subs_bind_class;

}

dl_subs_bind_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_SUBS_BIND_REQ

primitive

requests

that

the

DLS

provider

bind

a

subsequent

DLSAP

to

the

stream.

The

DLS

user

must

identify

the

address

of

the

subsequent

DLSAP

to

be

bound

to

the

stream.

The

802.2

networks

accept

either

DL_HIERARCHICAL_BIND

or

DL_PEER_BIND.

The

dl_subs_sap_length

parameter

must

be

5

(sizeof

snap)

for

hierarchical

binds,

and

dl_subs_sap_offset

must

point

to

a

complete

SNAP.

For

peer

binds,

dl_subs_sap_length

may

be

either

1

or

5,

and

dl_subs_sap_offset

must

point

to

either

a

single

byte

SAP

or

a

complete

SNAP

(as

in

hierarchical

binds).

In

the

case

of

SNAP

binds,

DL_PEER_BIND

and

DL_HIERARCHICAL_BIND

are

synonymous,

and

fully

interchangeable.

90

Technical

Reference:

Communications,

Volume

1

Several

distinct

SAPs/SNAPs

may

be

bound

on

any

single

stream.

Since

a

DSAP

address

field

is

limited

to

8

bits,

a

maximum

of

256

SAPS/SNAPS

can

be

bound

to

a

single

stream.

Closing

the

stream

or

issuing

DL_UNBIND_REQ

causes

all

SAPs

and

SNAPs

to

be

unbound

automatically,

or

each

subs

sap

can

be

individually

unbound.

DL_ETHER

supports

only

DL_PEER_BIND,

and

dl_subs_sap_offset

must

point

to

an

ethertype

(dl_subs_sap_length

==

sizeof(ushort)).

Examples:

Preferred

Request

Sap

DL_BIND_REQ

0xaa

DL_SUBS_BIND_REQ/DL_HIERARCHICAL_BIND

08.00.07.80.9b

DL_SUBS_BIND_REQ/DL_HIERARCHICAL_BIND

08.00.07.80.f3

or

Equivalent

Effect

Sap

DL_BIND_REQ

0xaa

DL_SUBS_BIND_REQ/DL_PEER_BIND

08.00.07.80.9b

DL_SUBS_BIND_REQ/DL_PEER_BIND

08.00.07.80.f3

or

Equivalent

Effect

Sap

DL_BIND_REQ

0xaa

DL_SUBS_BIND_REQ/DL_HIERARCHICAL_BIND

08.00.07.80.9b

DL_SUBS_BIND_REQ/DL_PEER_BIND

08.00.07.80.f3

Parameters

dl_primitive

Specifies

the

DL_SUBS_BIND_REQ

primitive.

dl_subs_sap_length

Specifies

the

length

of

the

specified

DLSAP.

dl_subs_sap_offset

Indicates

where

the

DLSAP

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_subs_bind_class

Specifies

either

peer

or

hierarchical

addressing.

Possible

values

include:

DL_PEER_BIND

Specifies

peer

addressing.

The

DLSAP

specified

is

used

instead

of

the

DLSAP

bound

in

the

bind

request.

DL_HIERARCHICAL_BIND

Specifies

hierarchical

addressing.

The

DLSAP

specified

is

used

in

addition

to

the

DLSAP

specified

using

the

bind

request.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

state.

New

The

resulting

state

is

DL_SUBS_BIND_PND.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

91

Acknowledgments

Successful

The

DL_SUBS_BIND_ACK

primitive

is

sent

to

the

DLS

user,

and

the

resulting

state

is

DL_IDLE.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Error

Codes

DL_ACCESS

Indicates

the

DLS

user

does

not

have

proper

permission

to

use

the

requested

DLSAP

address.

DL_BADADDR

Indicates

the

DLSAP

address

information

is

invalid

or

is

in

an

incorrect

format.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

DL_TOOMANY

Indicates

the

limit

has

been

exceeded

for

the

maximum

number

of

DLSAPs

per

stream.

DL_UNSUPPORTED

Indicates

the

DLS

provider

does

not

support

the

requested

addressing

class.

Related

Information

The

DL_ERROR_ACK

primitive,

DL_SUBS_BIND_ACK

primitive.

DL_SUBS_UNBIND_REQ

Primitive

Purpose

Requests

that

the

data

link

service

(DLS)

provider

unbind

the

data

link

service

access

point

(DLSAP)

that

was

bound

by

a

previous

DL_SUBS_BIND_REQ

primitive

from

this

stream.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_subs_sap_length;

ulong

dl_subs_sap_offset;

}

dl_subs_unbind_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_SUBS_UNBIND_REQ

primitive

requests

that

the

DLS

provider

unbind

the

DLSAP

that

was

bound

by

a

previous

DL_SUBS_BIND_REQ

primitive

from

this

stream.

Parameters

dl_primitive

Specifies

the

DL_SUBS_UNBIND_REQ

primitive.

dl_subs_sap_length

Specifies

the

length

of

the

specified

DLSAP.

dl_subs_sap_offset

Indicates

where

the

DLSAP

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

92

Technical

Reference:

Communications,

Volume

1

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

state.

New

The

resulting

state

is

DL_SUBS_UNBIND_PND.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user.

The

resulting

state

is

DL_IDLE.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Error

Codes

DL_BADADDR

Indicates

the

DLSAP

address

information

is

invalid

or

is

in

an

incorrect

format.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

Related

Information

The

DL_OK_ACK

primitive,

DL_ERROR_ACK

primitive,

DL_SUBS_BIND_REQ

primitive.

DL_TEST_CON

Primitive

Purpose

Conveys

the

test-response

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

provider

to

the

DLS

user

in

response

to

a

DL_TEST_REQ

primitive.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

zero

or

more

M_DATA

blocks

containing

zero

or

more

bytes

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_flag;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

ulong

dl_src_addr_length;

ulong

dl_src_addr_offset;

}

dl_test_con_t;

Description

The

DL_TEST_CON

primitive

conveys

the

test-response

DLSDU

from

the

DLS

provider

to

the

DLS

user

in

response

to

a

DL_TEST_REQ

primitive.

Note:

This

primitive

applies

to

XID

and

test

operations.

Parameters

dl_primitive

Specifies

the

DL_TEST_CON

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

93

dl_flag

Indicates

flag

values

for

the

request

as

follows:

DL_POLL_FINAL

Indicates

whether

the

poll/final

bit

is

set.

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

Data

Link

Provider

Interface

(DLPI),

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_src_addr_length

Specifies

the

length

of

the

DLSAP

address

of

the

source

DLS

user.

dl_src_addr_offset

Indicates

where

the

source

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

or

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_BIND_ACK

primitive.

DL_TEST_IND

Primitive

Purpose

Conveys

the

test-response

indication

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

provider

to

the

DLS

user.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

zero

or

more

M_DATA

blocks

containing

zero

or

more

bytes

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_flag;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

ulong

dl_src_adr_length;

ulong

dl_src_addr_offset;

}

dl_test_ind_t;

Description

The

DL_TEST_IND

primitive

conveys

the

test-response

indication

DLSDU

from

the

DLS

provider

to

the

DLS

user.

Note:

This

primitive

applies

to

XID

and

test

operations.

Parameters

dl_primitive

Specifies

the

DL_TEST_IND

primitive.

dl_flag

Indicates

flag

values

for

the

request

as

follows:

DL_POLL_FINAL

Indicates

whether

the

poll/final

bit

is

set.

94

Technical

Reference:

Communications,

Volume

1

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_src_addr_length

Specifies

the

length

of

the

DLSAP

address

of

the

source

DLS

user.

dl_src_addr_offset

Indicates

where

the

source

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

or

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_BIND_ACK

primitive.

DL_TEST_REQ

Primitive

Purpose

Conveys

one

test-command

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

user

to

the

DLS

provider

for

transmission

to

a

peer

DLS

provider.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

zero

or

more

M_DATA

blocks

containing

zero

or

more

bytes

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_flag;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

}

dl_test_req_t;

Description

The

DL_TEST_REQ

primitive

conveys

one

test-command

DLSDU

from

the

DLS

user

to

the

DLS

provider

for

transmission

to

a

peer

DLS

provider.

A

DL_ERROR_ACK

primitive

is

always

returned.

Note:

This

primitive

applies

to

XID

and

test

operations.

Parameters

dl_primitive

Specifies

the

DL_TEST_REQ

primitive.

dl_flag

Indicates

flag

values

for

the

request

as

follows:

DL_POLL_FINAL

Indicates

whether

the

poll/final

bit

is

set.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

95

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

or

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Acknowledgments

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned

for

an

invalid

test-command

request.

Note:

It

is

recommended

that

the

DLS

user

use

a

timeout

procedure

to

recover

from

a

situation

when

the

peer

DLS

user

does

not

respond.

Error

Code

DL_OUTSTATE

The

primitive

was

issued

from

an

invalid

state.

DL_BADADDR

The

DLSAP

address

information

was

invalid

or

was

in

an

incorrect

format.

DL_BADDATA

The

amount

of

data

in

the

current

DLSDU

exceeded

the

DLS

provider’s

DLSDU

limit.

DL_SYSERR

A

system

error

has

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

DL_TESTAUTO

Indicates

the

previous

bind

request

specified

automatic

handling

of

test

responses.

Related

Information

The

DL_BIND_ACK

primitive,

DL_ERROR_ACK

primitive.

DL_TEST_RES

Primitive

Purpose

Conveys

the

test-response

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

user

to

the

DLS

provider

in

response

to

a

DL_TEST_IND

primitive.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

zero

or

more

M_DATA

blocks

containing

zero

or

more

bytes

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_flag;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

}

dl_test_res_t;

96

Technical

Reference:

Communications,

Volume

1

Description

The

DL_TEST_RES

primitive

conveys

the

test-response

DLSDU

from

the

DLS

user

to

the

DLS

provider

in

response

to

a

DL_TEST_IND

primitive.

Note:

This

primitive

applies

to

XID

and

test

operations.

Parameters

dl_primitive

Specifies

the

DL_TEST_RES

primitive.

dl_flag

Indicates

flag

values

for

the

request

as

follows:

DL_POLL_FINAL

Indicates

whether

the

poll/final

bit

is

set.

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

or

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_BIND_ACK

primitive.

DL_TOKEN_ACK

Primitive

Purpose

Specifies

the

connection-response

token

assigned

to

a

stream.

Structure

The

primitive

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_token;

}

dl_token_req_t;

Description

The

DL_TOKEN_ACK

primitive

is

sent

in

response

to

the

DL_TOKEN_REQ

primitive.

The

DL_TOKEN_ACK

primitive

specifies

the

connection-response

token

assigned

to

the

stream.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_TOKEN_ACK

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

97

dl_token

Specifies

the

connection-response

token

associated

with

a

stream.

This

value

must

be

a

nonzero

value.

After

an

initial

DL_TOKEN_REQ

primitive

is

issued

on

a

stream,

the

data

link

service

(DLS)

provider

generates

the

same

token

value

for

each

subsequent

DL_TOKEN_REQ

primitive

issued

on

the

stream.

The

DLS

provider

generates

a

token

value

for

each

stream

upon

receipt

of

the

first

DL_TOKEN_REQ

primitive

issued

on

that

stream.

The

same

token

value

is

returned

in

response

to

all

subsequent

DL_TOKEN_REQ

primitives

issued

on

a

stream.

States

Valid

The

primitive

is

valid

in

any

state

in

response

to

a

DL_TOKEN_REQ

primitive.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_TOKEN_REQ

primitive.

DL_TOKEN_REQ

Primitive

Purpose

Requests

that

a

connection-response

token

be

assigned

to

the

stream

and

returned

to

the

data

link

service

(DLS)

user.

Structure

The

primitive

consists

of

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

}

dl_token_req_t;

Description

The

DL_TOKEN_REQ

primitive

requests

that

a

connection-response

token

be

assigned

to

the

stream

and

returned

to

the

DLS

user.

This

token

can

be

supplied

in

the

DL_CONNECT_RES

primitive

to

indicate

the

stream

on

which

a

connection

is

to

be

established.

Note:

This

primitive

applies

to

connection

mode.

Parameters

dl_primitive

Specifies

the

DL_TOKEN_REQ

primitive.

States

Valid

The

primitive

is

valid

in

any

state

in

which

a

local

acknowledgement

is

not

pending.

New

The

resulting

state

is

unchanged.

Acknowledgments

The

DLS

provider

responds

to

the

information

request

with

a

DL_TOKEN_ACK

primitive.

98

Technical

Reference:

Communications,

Volume

1

Related

Information

The

DL_CONNECT_RES

primitive,

DL_TOKEN_ACK

primitive.

DL_UDERROR_IND

Primitive

Purpose

Informs

the

data

link

service

(DLS)

user

that

a

previously

sent

DL_UNITDATA_REQ

primitive

produced

an

error

or

could

not

be

delivered.

Structure

The

message

consists

of

either

one

M_PROTO

message

block

or

one

M_PCPROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

ulong

dl_unix_errno;

ulong

dl_errno;

}

dl_uderror_ind_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_UDERROR_IND

primitive

informs

the

DLS

user

that

a

previously

sent

DL_UNITDATA_REQ

primitive

produced

an

error

or

could

not

be

delivered.

The

primitive

indicates

the

destination

DLSAP

address

associated

with

the

failed

request,

and

returns

an

error

value

that

specifies

the

reason

for

failure.

There

is,

however,

no

guarantee

that

such

an

error

report

will

be

generated

for

all

undeliverable

data

units,

because

connectionless-mode

data

transfer

is

not

a

confirmed

service.

Parameters

dl_primitive

Specifies

the

DL_UDERROR_IND

primitive.

dl_dest_addr_length

Specifies

the

length

of

the

DLSAP

address

of

the

destination

DLS

user.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_unix_errno

Specifies

the

operating

system

code

associated

with

the

failure.

This

value

should

be

nonzero

only

when

the

dl_errno

parameter

is

set

to

DL_SYSERR.

It

is

used

to

report

operating

system

failures

that

prevent

the

processing

of

a

given

request

or

response.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

99

dl_errno

Indicates

the

Data

Link

Provider

Interface

(DLPI)

error

code

associated

with

the

failure.

Possible

values

include:

DL_BADADDR

Indicates

the

DLSAP

address

information

is

invalid

or

is

in

an

incorrect

format.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_UNSUPPORTED

Indicates

the

DLS

provider

does

not

support

the

requested

priority.

DL_UNDELIVERABLE

Indicates

the

request

was

valid

but

for

some

reason

the

DLS

provider

could

not

deliver

the

data

unit

(for

example,

due

to

lack

of

sufficient

local

buffering

to

store

the

data

unit).

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_UNITDATA_REQ

primitive.

DL_UNBIND_REQ

Primitive

Purpose

Requests

the

data

link

service

(DLS)

provider

to

unbind

a

data

link

service

access

point

(DLSAP).

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure:

typedef

struct

{

ulong

dl_primitive;

}

dl_unbind_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_UNBIND_REQ

primitive

requests

that

the

DLS

provider

unbind

the

DLSAP

that

had

been

bound

by

a

previous

DL_BIND_REQ

primitive.

If

one

or

more

DLSAPs

were

bound

to

the

stream

with

a

DL_SUBS_BIND_REQ

primitive

and

have

not

been

unbound

with

a

DL_SUBS_UNBIND_REQ

primitive,

the

DL_UNBIND_REQ

primitive

unbinds

all

the

subsequent

DLSAPs

for

that

stream

along

with

the

DLSAP

bound

with

the

previous

DL_BIND_REQ

primitive.

At

the

successful

completion

of

the

request,

the

DLS

user

can

issue

a

new

DL_BIND_REQ

primitive

for

a

potentially

new

DLSAP.

Parameters

dl_primitive

Specifies

the

DL_UNBIND_REQ

primitive.

100

Technical

Reference:

Communications,

Volume

1

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

state.

New

The

resulting

state

is

DL_UNBIND_PENDING.

Acknowledgments

Successful

The

DL_OK_ACK

primitive

is

sent

to

the

DLS

user,

and

the

resulting

state

is

DL_UNBOUND.

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned,

and

the

resulting

state

is

unchanged.

Error

Codes

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_SYSERR

Indicates

a

system

error

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

Related

Information

The

DL_BIND_REQ

primitive,

DL_ERROR_ACK

primitive,

DL_OK_ACK

primitive,

DL_SUBS_BIND_REQ

primitive,

DL_SUBS_UNBIND_REQ

primitive.

DL_UNITDATA_IND

Primitive

Purpose

Conveys

one

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

provider

to

the

DLS

user.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

one

or

more

M_DATA

blocks

containing

at

least

one

byte

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

ulong

dl_src_addr_length;

ulong

dl_src_addr_offset;

ulong

dl_group_address;

}

dl_unitdata_ind_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_UNITDATA_IND

primitive

conveys

one

DLSDU

from

the

DLS

provider

to

the

DLS

user.

Note:

The

amount

of

user

data

that

may

be

transferred

in

a

single

DLSDU

is

limited.

This

limit

is

conveyed

by

the

dl_max_sdu

parameter

of

the

DL_INFO_ACK

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

101

Parameters

dl_primitive

Specifies

the

DL_UNITDATA_IND

primitive.

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

the

full

DLSAP

address

is

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_src_addr_length

Specifies

the

length

of

the

DLSAP

address

of

the

source

DLS

user.

dl_src_addr_offset

Indicates

where

the

source

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_group_address

Indicates

the

address

set

by

the

DLS

provider

upon

receiving

and

passing

upstream

a

data

message

when

the

destination

address

of

the

data

message

is

a

multicast

or

broadcast

address.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_INFO_ACK

primitive,

DL_BIND_ACK

primitive,

DL_UDERROR_IND

primitive.

DL_UNITDATA_REQ

Primitive

Purpose

Conveys

one

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

user

to

the

DLS

provider

for

transmission

to

a

peer

DLS

user.

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

one

or

more

M_DATA

blocks

containing

at

least

one

byte

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

dl_priority_t

dl_priority;

}

dl_unitdata_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

The

DL_UNITDATA_REQ

primitive

conveys

one

DLSDU

from

the

DLS

user

to

the

DLS

provider

for

transmission

to

a

peer

DLS

user.

The

amount

of

user

data

that

may

be

transferred

in

a

single

DLSDU

is

limited.

This

limit

is

conveyed

by

the

dl_max_sdu

parameter

of

the

DL_INFO_ACK

primitive.

102

Technical

Reference:

Communications,

Volume

1

Because

connectionless-mode

data

transfer

is

an

unacknowledged

service,

the

DLS

provider

makes

no

guarantees

of

delivery

of

connectionless

DLSDUs.

It

is

the

responsibility

of

the

DLS

user

to

do

any

necessary

sequencing

or

retransmissions

of

DLSDUs

in

the

event

of

a

presumed

loss.

Parameters

dl_primitive

Specifies

the

DL_UNITDATA_REQ

primitive.

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

the

full

DLSAP

address

is

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_priority

Indicates

the

priority

value

within

the

supported

range

for

this

particular

DLSDU.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

state.

New

The

resulting

state

is

unchanged.

Acknowledgments

If

the

DLS

provider

accepts

the

data

for

transmission,

there

is

no

response.

This

does

not,

however,

guarantee

that

the

data

will

be

delivered

to

the

destination

DLS

user,

because

the

connectionless-mode

data

transfer

is

not

a

confirmed

service.

If

the

request

is

erroneous,

the

DL_UDERROR_IND

primitive

is

returned,

and

the

resulting

state

is

unchanged.

If

for

some

reason

the

request

cannot

be

processed,

the

DLS

provider

may

generate

a

DL_UDERROR_IND

primitive

to

report

the

problem.

There

is,

however,

no

guarantee

that

such

an

error

report

will

be

generated

for

all

undeliverable

data

units,

because

connectionless-mode

data

transfer

is

not

a

confirmed

service.

Error

Codes

DL_BADADDR

Indicates

the

DLSAP

address

information

is

invalid

or

is

in

an

incorrect

format.

DL_BADDATA

Indicates

the

amount

of

data

in

the

current

DLSDU

exceeds

the

DLS

provider’s

DLSDU

limit.

DL_OUTSTATE

Indicates

the

primitive

was

issued

from

an

invalid

state.

DL_UNSUPPORTED

Indicates

the

DLS

provider

does

not

support

the

requested

priority.

Related

Information

The

DL_INFO_ACK

primitive,

DL_BIND_ACK

primitive,

DL_UDERROR_IND

primitive.

DL_XID_CON

Primitive

Purpose

Conveys

an

XID

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

provider

to

the

DLS

user

in

response

to

a

DL_XID_REQ

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

103

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

zero

or

more

M_DATA

blocks

containing

zero

or

more

bytes

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_flag;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

ulong

dl_src_addr_length;

ulong

dl_src_addr_offset;

}

dl_xid_con_t;

Description

The

DL_XID_CON

conveys

an

XID

DLSDU

from

the

DLS

provider

to

the

DLS

user

in

response

to

a

DL_XID_REQ

primitive.

Note:

This

primitive

applies

to

XID

and

test

operations.

Parameters

dl_primitive

Specifies

the

DL_XID_CON

primitive.

dl_flag

Indicates

flag

values

for

the

request

as

follows:

DL_POLL_FINAL

Indicates

whether

the

poll/final

bit

is

set.

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_src_addr_length

Specifies

the

length

of

the

DLSAP

address

of

the

source

DLS

user.

dl_src_addr_offset

Indicates

where

the

source

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

or

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_BIND_ACK

primitive,

DL_XID_REQ

primitive.

DL_XID_IND

Primitive

Purpose

Conveys

an

XID

data

link

service

data

unit

(DLSDU)

from

the

DLS

provider

to

the

data

link

service

(DLS)

user.

104

Technical

Reference:

Communications,

Volume

1

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

zero

or

more

M_DATA

blocks

containing

zero

or

more

bytes

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_flag;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

ulong

dl_src_addr_length;

ulong

dl_src_addr_offset;

}

dl_xid_ind_t;

Description

The

DL_XID_IND

primitive

conveys

an

XID

DLSDU

from

the

DLS

provider

to

the

DLS

user.

Note:

This

primitive

applies

to

XID

and

test

operations.

Parameters

dl_primitive

Specifies

the

DL_XID_IND

primitive.

dl_flag

Indicates

flag

values

for

the

request

as

follows:

DL_POLL_FINAL

Indicates

whether

the

poll/final

bit

is

set.

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

dl_src_addr_length

Specifies

the

length

of

the

DLSAP

address

of

the

source

DLS

user.

dl_src_addr_offset

Indicates

where

the

source

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

or

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_BIND_ACK

primitive.

DL_XID_REQ

Primitive

Purpose

Conveys

one

XID

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

user

to

the

DLS

provider

for

transmission

to

a

peer

DLS

user.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

105

Structure

The

message

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

zero

or

more

M_DATA

blocks

containing

zero

or

more

bytes

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_flag;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

}

dl_xid_req_t;

This

structure

is

defined

in

/usr/include/sys/dlpi.h.

Description

Conveys

one

XID

DLSDU

from

the

DLS

user

to

the

DLS

provider

for

transmission

to

a

peer

DLS

user.

A

DL_ERROR_ACK

primitive

is

always

returned.

Note:

This

primitive

applies

to

XID

and

test

operations.

Parameters

dl_primitive

Specifies

the

DL_XID_REQ

primitive.

dl_flag

Indicates

flag

values

for

the

request

as

follows:

DL_POLL_FINAL

Indicates

whether

the

poll/final

bit

is

set.

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

or

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Acknowledgments

Unsuccessful

The

DL_ERROR_ACK

primitive

is

returned

for

an

invalid

XID

request.

Note:

It

is

recommended

that

the

DLS

user

use

a

timeout

procedure

to

recover

from

a

situation

when

there

is

no

response

from

the

peer

DLS

User.

Error

Codes

DL_OUTSTATE

The

primitive

was

issued

from

an

invalid

state.

DL_BADADDR

The

DLSAP

address

information

was

invalid

or

was

in

an

incorrect

format.

DL_BADDATA

The

amount

of

data

in

the

current

DLSDU

exceeded

the

DLS

provider’s

DLSDU

limit.

DL_SYSERR

A

system

error

has

occurred.

The

system

error

is

indicated

in

the

DL_ERROR_ACK

primitive.

106

Technical

Reference:

Communications,

Volume

1

DL_XIDAUTO

Indicates

the

previous

bind

request

specified

that

the

provider

would

handle

XID.

Related

Information

The

DL_BIND_ACK

primitive,

DL_ERROR_ACK

primitive.

DL_XID_RES

Primitive

Purpose

Conveys

an

XID

data

link

service

data

unit

(DLSDU)

from

the

data

link

service

(DLS)

user

to

the

DLS

provider

in

response

to

a

DL_XID_IND

primitive.

Structure

The

primitive

consists

of

one

M_PROTO

message

block,

which

contains

the

following

structure,

followed

by

zero

or

more

M_DATA

blocks

containing

zero

or

more

bytes

of

data:

typedef

struct

{

ulong

dl_primitive;

ulong

dl_flag;

ulong

dl_dest_addr_length;

ulong

dl_dest_addr_offset;

}

dl_xid_res_t;

Description

The

DL_XID_RES

primitive

conveys

an

XID

DLSDU

from

the

DLS

user

to

the

DLS

provider

in

response

to

a

DL_XID_IND

primitive.

Note:

This

primitive

applies

to

XID

and

test

operations.

Parameters

dl_primitive

Specifies

the

DL_XID_RES

primitive.

dl_flag

Indicates

flag

values

for

the

request

as

follows:

DL_POLL_FINAL

Indicates

whether

the

poll/final

bit

is

set.

dl_dest_addr_length

Specifies

the

length

of

the

data

link

service

access

point

(DLSAP)

address

of

the

destination

DLS

user.

If

the

destination

user

is

implemented

using

the

Data

Link

Provider

Interface

(DLPI),

this

address

is

the

full

DLSAP

address

returned

on

the

DL_BIND_ACK

primitive.

dl_dest_addr_offset

Indicates

where

the

destination

DLSAP

address

begins.

The

value

of

this

parameter

is

the

offset

from

the

beginning

of

the

M_PROTO

message

block.

States

Valid

The

primitive

is

valid

in

the

DL_IDLE

or

DL_DATAXFER

state.

New

The

resulting

state

is

unchanged.

Related

Information

The

DL_BIND_ACK

primitive.

Chapter

2.

Data

Link

Provider

Interface

(DLPI)

107

108

Technical

Reference:

Communications,

Volume

1

Chapter

3.

eXternal

Data

Representation

xdr_accepted_reply

Subroutine

Purpose

Encodes

RPC

reply

messages.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

int

xdr_accepted_reply

(

xdrs,

ar)

XDR

*xdrs;

struct

accepted_reply

*ar;

Description

The

xdr_accepted_reply

subroutine

encodes

Remote

Procedure

Call

(RPC)

reply

messages.

The

routine

generates

message

replies

similar

to

RPC

message

replies

without

using

the

RPC

program.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

ar

Specifies

the

address

of

the

structure

that

contains

the

RPC

reply.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_array

Subroutine

Purpose

Translates

between

variable-length

arrays

and

their

corresponding

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_array

(xdrs,

arrp,

sizep,

maxsize,

elsize,

elproc)

XDR

*

xdrs;

char

**

arrp;

u_int

*

sizep;

©

Copyright

IBM

Corp.

1997,

2003

109

u_int

maxsize;

u_int

elsize;

xdrproc_t

elproc;

Description

The

xdr_array

subroutine

is

a

filter

primitive

that

translates

between

variable-length

arrays

and

their

corresponding

external

representations.

This

subroutine

is

called

to

encode

or

decode

each

element

of

the

array.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

arrp

Specifies

the

address

of

the

pointer

to

the

array.

If

the

arrp

parameter

is

null

when

the

array

is

being

deserialized,

the

XDR

program

allocates

an

array

of

the

appropriate

size

and

sets

the

parameter

to

that

array.

sizep

Specifies

the

address

of

the

element

count

of

the

array.

The

element

count

cannot

exceed

the

value

for

the

maxsize

parameter.

maxsize

Specifies

the

maximum

number

of

array

elements.

elsize

Specifies

the

byte

size

of

each

of

the

array

elements.

elproc

Translates

between

the

C

form

of

the

array

elements

and

their

external

representations.

This

parameter

is

an

XDR

filter.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_bool

Subroutine

Purpose

Translates

between

Booleans

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_bool

(

xdrs,

bp)

XDR

*xdrs;

bool_t

*bp;

Description

The

xdr_bool

subroutine

is

a

filter

primitive

that

translates

between

Booleans

(C

integers)

and

their

external

representations.

When

encoding

data,

this

filter

produces

values

of

either

1

or

0.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

110

Technical

Reference:

Communications,

Volume

1

bp

Specifies

the

address

of

the

Boolean

data.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_bytes

Subroutine

Purpose

Translates

between

internal

counted

byte

arrays

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_bytes

(

xdrs,

sp,

sizep,

maxsize)

XDR

*xdrs;

char

**sp;

u_int

*sizep;

u_int

maxsize;

Description

The

xdr_bytes

subroutine

is

a

filter

primitive

that

translates

between

counted

byte

arrays

and

their

external

representations.

This

subroutine

treats

a

subset

of

generic

arrays,

in

which

the

size

of

array

elements

is

known

to

be

1

and

the

external

description

of

each

element

is

built-in.

The

length

of

the

byte

array

is

explicitly

located

in

an

unsigned

integer.

The

byte

sequence

is

not

terminated

by

a

null

character.

The

external

representation

of

the

bytes

is

the

same

as

their

internal

representation.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

sp

Specifies

the

address

of

the

pointer

to

the

byte

array.

sizep

Points

to

the

length

of

the

byte

area.

The

value

of

this

parameter

cannot

exceed

the

value

of

the

maxsize

parameter.

maxsize

Specifies

the

maximum

number

of

bytes

allowed

when

XDR

encodes

or

decodes

messages.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

3.

eXternal

Data

Representation

111

xdr_callhdr

Subroutine

Purpose

Describes

RPC

call

header

messages.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

xdr_callhdr

(

xdrs,

chdr)

XDR

*xdrs;

struct

rpc_msg

*chdr;

Description

The

xdr_callhdr

subroutine

describes

Remote

Procedure

Call

(RPC)

call

header

messages.

This

subroutine

generates

call

headers

that

are

similar

to

RPC

call

headers

without

using

the

RPC

program.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

chdr

Points

to

the

structure

that

contains

the

header

for

the

call

message.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_callmsg

Subroutine

Purpose

Describes

RPC

call

messages.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

xdr_callmsg

(

xdrs,

cmsg)

XDR

*xdrs;

struct

rpc_msg

*cmsg;

Description

The

xdr_callmsg

subroutine

describes

Remote

Procedure

Call

(RPC)

call

messages.

This

subroutine

generates

messages

similar

to

RPC

messages

without

using

the

RPC

program.

112

Technical

Reference:

Communications,

Volume

1

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

cmsg

Points

to

the

structure

that

contains

the

text

of

the

call

message.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_char

Subroutine

Purpose

Translates

between

C

language

characters

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_char

(

xdrs,

cp)

XDR

*xdrs;

char

*cp;

Description

The

xdr_char

subroutine

is

a

filter

primitive

that

translates

between

C

language

characters

and

their

external

representations.

Note:

Encoded

characters

are

not

packed

and

occupy

4

bytes

each.

For

arrays

of

characters,

the

programmer

should

consider

using

the

xdr_bytes,

xdr_opaque,

or

xdr_string

routine.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

cp

Points

to

the

character.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

3.

eXternal

Data

Representation

113

xdr_destroy

Macro

Purpose

Destroys

the

XDR

stream

pointed

to

by

the

xdrs

parameter.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

void

xdr_destroy

(

xdrs)

XDR

*xdrs;

Description

The

xdr_destroy

macro

invokes

the

destroy

routine

associated

with

the

eXternal

Data

Representation

(XDR)

stream

pointed

to

by

the

xdrs

parameter

and

frees

the

private

data

structures

allocated

to

the

stream.

The

use

of

the

XDR

stream

handle

is

undefined

after

it

is

destroyed.

Parameters

xdrs

Points

to

the

XDR

stream

handle.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_enum

Subroutine

Purpose

Translates

between

a

C

language

enumeration

(enum)

and

its

external

representation.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_enum

(

xdrs,

ep)

XDR

*xdrs;

enum_t

*ep;

Description

The

xdr_enum

subroutine

is

a

filter

primitive

that

translates

between

a

C

language

enumeration

(enum)

and

its

external

representation.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

114

Technical

Reference:

Communications,

Volume

1

ep

Specifies

the

address

of

the

enumeration

data.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_float

Subroutine

Purpose

Translates

between

C

language

floats

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_float

(

xdrs,

fp)

XDR

*xdrs;

float

*fp;

Description

The

xdr_float

subroutine

is

a

filter

primitive

that

translates

between

C

language

floats

(normalized

single-precision

floating-point

numbers)

and

their

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

fp

Specifies

the

address

of

the

float.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_free

Subroutine

Purpose

Deallocates,

or

frees,

memory.

Library

C

Library

(libc.a)

Chapter

3.

eXternal

Data

Representation

115

Syntax

#include

<rpc/xdr.h>

void

xdr_free

(

proc,

objp)

xdrproc_t

proc;

char

*objp;

Description

The

xdr_free

subroutine

is

a

generic

freeing

routine

that

deallocates

memory.

The

proc

parameter

specifies

the

eXternal

Data

Representation

(XDR)

routine

for

the

object

being

freed.

The

objp

parameter

is

a

pointer

to

the

object

itself.

Note:

The

pointer

passed

to

this

routine

is

not

freed,

but

the

object

it

points

to

is

freed

(recursively).

Parameters

proc

Points

to

the

XDR

stream

handle.

objp

Points

to

the

object

being

freed.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_getpos

Macro

Purpose

Returns

an

unsigned

integer

that

describes

the

current

position

in

the

data

stream.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

u_int

xdr_getpos

(

xdrs)

XDR

*xdrs;

Description

The

xdr_getpos

macro

invokes

the

get-position

routine

associated

with

the

eXternal

Data

Representation

(XDR)

stream

pointed

to

by

the

xdrs

parameter.

This

routine

returns

an

unsigned

integer

that

describes

the

current

position

in

the

data

stream.

Parameters

xdrs

Points

to

the

XDR

stream

handle.

Return

Values

This

macro

returns

an

unsigned

integer

describing

the

current

position

in

the

stream.

In

some

XDR

streams,

it

returns

a

value

of

-1,

even

though

the

value

has

no

meaning.

116

Technical

Reference:

Communications,

Volume

1

Related

Information

The

xdr_setpos

macro.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_inline

Macro

Purpose

Returns

a

pointer

to

the

buffer

of

a

stream

pointed

to

by

the

xdrs

parameter.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

long

*x_inline

(

xdrs,

len)

XDR

*xdrs;

int

len;

Description

The

xdr_inline

macro

invokes

the

inline

subroutine

associated

with

the

eXternal

Data

Representation

(XDR)

stream

pointed

to

by

the

xdrs

parameter.

The

subroutine

returns

a

pointer

to

a

contiguous

piece

of

the

stream’s

buffer,

whose

size

is

specified

by

the

len

parameter.

The

buffer

can

be

used

for

any

purpose,

but

it

is

not

data-portable.

The

xdr_inline

macro

may

return

a

value

of

null

if

it

cannot

return

a

buffer

segment

of

the

requested

size.

Parameters

xdrs

Points

to

the

XDR

stream

handle.

len

Specifies

the

size,

in

bytes,

of

the

internal

buffer.

Return

Values

This

macro

returns

a

pointer

to

a

piece

of

the

stream’s

buffer.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

andUnderstanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_int

Subroutine

Purpose

Translates

between

C

language

integers

and

their

external

representations.

Library

C

Library

(libc.a)

Chapter

3.

eXternal

Data

Representation

117

Syntax

#include

<rpc/xdr.h>

xdr_int

(

xdrs,

ip)

XDR

*xdrs;

int

*ip;

Description

The

xdr_int

subroutine

is

a

filter

primitive

that

translates

between

C

language

integers

and

their

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

ip

Specifies

the

address

of

the

integer.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_long

Subroutine

Purpose

Translates

between

C

language

long

integers

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_long

(

xdrs,

lp)

XDR

*xdrs;

long

*lp;

Description

The

xdr_long

filter

primitive

translates

between

C

language

long

integers

and

their

external

representations.

This

primitive

is

characteristic

of

most

eXternal

Data

Representation

(XDR)

library

primitives

and

all

client

XDR

routines.

Parameters

xdrs

Points

to

the

XDR

stream

handle.

This

parameter

can

be

treated

as

an

opaque

handler

and

passed

to

the

primitive

routines.

lp

Specifies

the

address

of

the

number.

118

Technical

Reference:

Communications,

Volume

1

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

When

in

64

BIT

mode,

if

the

value

of

the

long

integer

can

not

be

expressed

in

32

BIT,

xdr_long

will

return

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_opaque

Subroutine

Purpose

Translates

between

fixed-size

opaque

data

and

its

external

representation.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_opaque

(

xdrs,

cp,

cnt)

XDR

*xdrs;

char

*cp;

u_int

cnt;

Description

The

xdr_opaque

subroutine

is

a

filter

primitive

that

translates

between

fixed-size

opaque

data

and

its

external

representation.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

cp

Specifies

the

address

of

the

opaque

object.

cnt

Specifies

the

size,

in

bytes,

of

the

object.

By

definition,

the

actual

data

contained

in

the

opaque

object

is

not

machine-portable.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_opaque_auth

Subroutine

Purpose

Describes

RPC

authentication

messages.

Chapter

3.

eXternal

Data

Representation

119

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

xdr_opaque_auth

(

xdrs,

ap)

XDR

*xdrs;

struct

opaque_auth

*ap;

Description

The

xdr_opaque_auth

subroutine

describes

Remote

Procedure

Call

(RPC)

authentication

information

messages.

It

generates

RPC

authentication

message

data

without

using

the

RPC

program.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

ap

Points

to

the

structure

that

contains

the

authentication

information.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_pmap

Subroutine

Purpose

Describes

parameters

for

portmap

procedures.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

xdr_pmap

(

xdrs,

regs)

XDR

*xdrs;

struct

pmap

*regs;

Description

The

xdr_pmap

subroutine

describes

parameters

for

portmap

procedures.

This

subroutine

generates

portmap

parameters

without

using

the

portmap

interface.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

regs

Points

to

the

buffer

or

register

where

the

portmap

daemon

stores

information.

120

Technical

Reference:

Communications,

Volume

1

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

portmap

daemon.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_pmaplist

Subroutine

Purpose

Describes

a

list

of

port

mappings

externally.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

xdr_pmaplist

(

xdrs,

rp)

XDR

*xdrs;

struct

pmaplist

**rp;

Description

The

xdr_pmaplist

subroutine

describes

a

list

of

port

mappings

externally.

This

subroutine

generates

the

port

mappings

to

Remote

Procedure

Call

(RPC)

ports

without

using

the

portmap

interface.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

rp

Points

to

the

structure

that

contains

the

portmap

listings.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

portmap

daemon.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_pointer

Subroutine

Purpose

Provides

pointer

chasing

within

structures

and

serializes

null

pointers.

Library

C

Library

(libc.a)

Chapter

3.

eXternal

Data

Representation

121

Syntax

#include

<rpc/xdr.h>

xdr_pointer

(xdrs,

objpp,

objsize,

xdrobj)

XDR

*

xdrs;

char

**

objpp;

u_int

objsize;

xdrproc_t

xdrobj;

Description

The

xdr_pointer

subroutine

provides

pointer

chasing

within

structures

and

serializes

null

pointers.

This

subroutine

can

represent

recursive

data

structures,

such

as

binary

trees

or

linked

lists.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

objpp

Points

to

the

character

pointer

of

the

data

structure.

objsize

Specifies

the

size

of

the

structure.

xdrobj

Specifies

the

XDR

filter

for

the

object.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_reference

Subroutine

Purpose

Provides

pointer

chasing

within

structures.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_reference

(

xdrs,

pp,

size,

proc)

XDR

*xdrs;

char

**pp;

u_int

size;

xdrproc_t

proc;

Description

The

xdr_reference

subroutine

is

a

filter

primitive

that

provides

pointer

chasing

within

structures.

This

primitive

allows

the

serializing,

deserializing,

and

freeing

of

any

pointers

within

one

structure

that

are

referenced

by

another

structure.

122

Technical

Reference:

Communications,

Volume

1

The

xdr_reference

subroutine

does

not

attach

special

meaning

to

a

null

pointer

during

serialization.

Attempting

to

pass

the

address

of

a

null

pointer

can

cause

a

memory

error.

The

programmer

must

describe

data

with

a

two-armed

discriminated

union.

One

arm

is

used

when

the

pointer

is

valid;

the

other

arm,

when

the

pointer

is

null.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

pp

Specifies

the

address

of

the

pointer

to

the

structure.

When

decoding

data,

XDR

allocates

storage

if

the

pointer

is

null.

size

Specifies

the

byte

size

of

the

structure

pointed

to

by

the

pp

parameter.

proc

Translates

the

structure

between

its

C

form

and

its

external

representation.

This

parameter

is

the

XDR

procedure

that

describes

the

structure.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_rejected_reply

Subroutine

Purpose

Describes

RPC

message

rejection

replies.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

xdr_rejected_reply

(

xdrs,

rr)

XDR

*xdrs;

struct

rejected_reply

*rr;

Description

The

xdr_rejected_reply

subroutine

describes

Remote

Procedure

Call

(RPC)

message

rejection

replies.

This

subroutine

can

be

used

to

generate

rejection

replies

similar

to

RPC

rejection

replies

without

using

the

RPC

program.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

rr

Points

to

the

structure

that

contains

the

rejected

reply.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Chapter

3.

eXternal

Data

Representation

123

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_replymsg

Subroutine

Purpose

Describes

RPC

message

replies.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

xdr_replymsg

(

xdrs,

rmsg)

XDR

*xdrs;

struct

rpc_msg

*rmsg;

Description

The

xdr_replymsg

subroutine

describes

Remote

Procedure

Call

(RPC)

message

replies.

Use

this

subroutine

to

generate

message

replies

similar

to

RPC

message

replies

without

using

the

RPC

program.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

rmsg

Points

to

the

structure

containing

the

parameters

of

the

reply

message.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_setpos

Macro

Purpose

Changes

the

current

position

in

the

XDR

stream.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_setpos

(

xdrs,

pos)

XDR

*xdrs;

u_int

pos;

124

Technical

Reference:

Communications,

Volume

1

Description

The

xdr_setpos

macro

invokes

the

set-position

routine

associated

with

the

eXternal

Data

Representation

(XDR)

stream

pointed

to

by

the

xdrs

parameter.

The

new

position

setting

is

obtained

from

the

xdr_getpos

macro.

The

xdr_setpos

macro

returns

a

value

of

false

if

the

set

position

is

not

valid

or

if

the

requested

position

is

out

of

bounds.

A

position

cannot

be

set

in

some

XDR

streams.

Trying

to

set

a

position

in

such

streams

causes

the

macro

to

fail.

This

macro

also

fails

if

the

programmer

requests

a

position

that

is

not

in

the

stream’s

boundaries.

Parameters

xdrs

Points

to

the

XDR

stream

handle.

pos

Specifies

a

position

value

obtained

from

the

xdr_getpos

macro.

Return

Values

Upon

successful

completion

(if

the

stream

is

positioned

successfully),

this

macro

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

xdr_getpos

macro.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_short

Subroutine

Purpose

Translates

between

C

language

short

integers

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_short

(

xdrs,

sp)

XDR

*xdrs;

short

*sp;

Description

The

xdr_short

subroutine

is

a

filter

primitive

that

translates

between

C

language

short

integers

and

their

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

sp

Specifies

the

address

of

the

short

integer.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Chapter

3.

eXternal

Data

Representation

125

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_string

Subroutine

Purpose

Translates

between

C

language

strings

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_string

(

xdrs,

sp,

maxsize)

XDR

*xdrs;

char

**sp;

u_int

maxsize;

Description

The

xdr_string

subroutine

is

a

filter

primitive

that

translates

between

C

language

strings

and

their

corresponding

external

representations.

Externally,

strings

are

represented

as

sequences

of

ASCII

characters,

while

internally,

they

are

represented

with

character

pointers.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

sp

Specifies

the

address

of

the

pointer

to

the

string.

maxsize

Specifies

the

maximum

length

of

the

string

allowed

during

encoding

or

decoding.

This

value

is

set

in

a

protocol.

For

example,

if

a

protocol

specifies

that

a

file

name

cannot

be

longer

than

255

characters,

then

a

string

cannot

exceed

255

characters.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_u_char

Subroutine

Purpose

Translates

between

unsigned

C

language

characters

and

their

external

representations.

Library

C

Library

(libc.a)

126

Technical

Reference:

Communications,

Volume

1

Syntax

#include

<rpc/xdr.h>

xdr_u_char

(

xdrs,

ucp)

XDR

*xdrs;

char

*ucp;

Description

The

xdr_u_char

subroutine

is

a

filter

primitive

that

translates

between

unsigned

C

language

characters

and

their

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

ucp

Points

to

an

unsigned

integer.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_u_int

Subroutine

Purpose

Translates

between

C

language

unsigned

integers

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_u_int

(

xdrs,

up)

XDR

*xdrs;

u_int

*up;

Description

The

xdr_u_int

subroutine

is

a

filter

primitive

that

translates

between

C

language

unsigned

integers

and

their

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

up

Specifies

the

address

of

the

unsigned

long

integer.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Chapter

3.

eXternal

Data

Representation

127

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_u_long

Subroutine

Purpose

Translates

between

C

language

unsigned

long

integers

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_u_long

(

xdrs,

ulp)

XDR

*xdrs;

u_long

*ulp;

Description

The

xdr_u_long

subroutine

is

a

filter

primitive

that

translates

between

C

language

unsigned

long

integers

and

their

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

ulp

Specifies

the

address

of

the

unsigned

long

integer.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_u_short

Subroutine

Purpose

Translates

between

C

language

unsigned

short

integers

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_u_short

(

xdrs,

usp)

XDR

*xdrs;

u_short

*usp;

128

Technical

Reference:

Communications,

Volume

1

Description

The

xdr_u_short

subroutine

is

a

filter

primitive

that

translates

between

C

language

unsigned

short

integers

and

their

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

usp

Specifies

the

address

of

the

unsigned

short

integer.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_union

Subroutine

Purpose

Translates

between

discriminated

unions

and

their

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_union

(xdrs,

dscmp,

unp,

armchoices,

defaultarm)

XDR

*

xdrs;

enum_t

*

dscmp;

char

*

unp;

struct

xdr_discrim

*

armchoices;

xdrproc_t

(*

defaultarm);

Description

The

xdr_union

subroutine

is

a

filter

primitive

that

translates

between

discriminated

C

unions

and

their

corresponding

external

representations.

It

first

translates

the

discriminant

of

the

union

located

at

the

address

pointed

to

by

the

dscmp

parameter.

This

discriminant

is

always

an

enum_t

value.

Next,

this

subroutine

translates

the

union

located

at

the

address

pointed

to

by

the

unp

parameter.

The

armchoices

parameter

is

a

pointer

to

an

array

of

xdr_discrim

structures.

Each

structure

contains

an

ordered

pair

of

parameters

[value,

proc].

If

the

union’s

discriminant

is

equal

to

the

associated

value,

then

the

specified

process

is

called

to

translate

the

union.

The

end

of

the

xdr_discrim

structure

array

is

denoted

by

a

routine

having

a

null

value.

If

the

discriminant

is

not

found

in

the

choices

array,

then

the

defaultarm

structure

is

called

(if

it

is

not

null).

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

dscmp

Specifies

the

address

of

the

union’s

discriminant.

The

discriminant

is

an

enumeration

(enum_t)

value.

Chapter

3.

eXternal

Data

Representation

129

unp

Specifies

the

address

of

the

union.

armchoices

Points

to

an

array

of

xdr_discrim

structures.

defaultarm

A

structure

provided

in

case

no

discriminants

are

found.

This

parameter

can

have

a

null

value.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_vector

Subroutine

Purpose

Translates

between

fixed-length

arrays

and

their

corresponding

external

representations.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_vector

(xdrs,

arrp,

size,

elsize,

elproc)

XDR

*

xdrs;

char

*

arrp;

u_int

size,

elsize;

xdrproc_t

elproc;

Description

The

xdr_vector

subroutine

is

a

filter

primitive

that

translates

between

fixed-length

arrays

and

their

corresponding

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

arrp

Specifies

the

pointer

to

the

array.

size

Specifies

the

element

count

of

the

array.

elsize

Specifies

the

size

of

each

of

the

array

elements.

elproc

Translates

between

the

C

form

of

the

array

elements

and

their

external

representation.

This

is

an

XDR

filter.

Return

Values

Upon

successful

completion,

this

routine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

130

Technical

Reference:

Communications,

Volume

1

xdr_void

Subroutine

Purpose

Supplies

an

XDR

subroutine

to

the

RPC

system

without

transmitting

data.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_void

()

Description

The

xdr_void

subroutine

has

no

function

parameters.

It

is

passed

to

other

Remote

Procedure

Call

(RPC)

subroutines

that

require

a

function

parameter,

but

does

not

transmit

data.

Return

Values

This

subroutine

always

returns

a

value

of

1.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_wrapstring

Subroutine

Purpose

Calls

the

xdr_string

subroutine.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_wrapstring

(

xdrs,

sp)

XDR

*xdrs;

char

**sp;

Description

The

xdr_wrapstring

subroutine

is

a

primitive

that

calls

the

xdr_string

subroutine

(xdrs,

sp,

MAXUN.UNSIGNED),

where

the

MAXUN.UNSIGNED

value

is

the

maximum

value

of

an

unsigned

integer.

The

xdr_wrapstring

subroutine

is

useful

because

the

Remote

Procedure

Call

(RPC)

package

passes

a

maximum

of

two

eXternal

Data

Representation

(XDR)

subroutines

as

parameters,

and

the

xdr_string

subroutine

requires

three.

Parameters

xdrs

Points

to

the

XDR

stream

handle.

sp

Specifies

the

address

of

the

pointer

to

the

string.

Chapter

3.

eXternal

Data

Representation

131

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

xdr_string

subroutine.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_authunix_parms

Subroutine

Purpose

Describes

UNIX-style

credentials.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

xdr_authunix_parms

(

xdrs,

app)

XDR

*xdrs;

struct

authunix_parms

*app;

Description

The

xdr_authunix_parms

subroutine

describes

UNIX-style

credentials.

This

subroutine

generates

credentials

without

using

the

Remote

Procedure

Call

(RPC)

authentication

program.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

app

Points

to

the

structure

that

contains

the

UNIX-style

authentication

credentials.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdr_double

Subroutine

Purpose

Translates

between

C

language

double-precision

numbers

and

their

external

representations.

132

Technical

Reference:

Communications,

Volume

1

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdr_double

(

xdrs,

dp)

XDR

*xdrs;

double

*dp;

Description

The

xdr_double

subroutine

is

a

filter

primitive

that

translates

between

C

language

double-precision

numbers

and

their

external

representations.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

dp

Specifies

the

address

of

the

double-precision

number.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Understanding

XDR

Library

Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdrmem_create

Subroutine

Purpose

Initializes

in

local

memory

the

XDR

stream

pointed

to

by

the

xdrs

parameter.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

void

xdrmem_create

(

xdrs,

addr,

size,

op)

XDR

*xdrs;

char

*addr;

u_int

size;

enum

xdr_op

op;

Description

The

xdrmem_create

subroutine

initializes

in

local

memory

the

eXternal

Data

Representation

(XDR)

stream

pointed

to

by

the

xdrs

parameter.

The

XDR

stream

data

is

written

to

or

read

from

a

chunk

of

memory

at

the

location

specified

by

the

addr

parameter.

Chapter

3.

eXternal

Data

Representation

133

Parameters

xdrs

Points

to

the

XDR

stream

handle.

addr

Points

to

the

memory

where

the

XDR

stream

data

is

written

to

or

read

from.

size

Specifies

the

length

of

the

memory

in

bytes.

op

Specifies

the

XDR

direction.

The

possible

choices

are

XDR_ENCODE,

XDR_DECODE,

or

XDR_FREE.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdrrec_create

Subroutine

Purpose

Provides

an

XDR

stream

that

can

contain

long

sequences

of

records.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

void

xdrrec_create

(xdrs,

sendsize,

recvsize,

handle,

readit,

writeit)

XDR

*

xdrs;

u_int

sendsize;

u_int

recvsize;

char

*

handle;

int

(*

readit)

(),

(*

writeit)

();

Description

The

xdrrec_create

subroutine

provides

an

eXternal

Data

Representation

(XDR)

stream

that

can

contain

long

sequences

of

records

and

handle

them

in

both

the

encoding

and

decoding

directions.

The

record

contents

contain

data

in

XDR

form.

The

routine

initializes

the

XDR

stream

object

pointed

to

by

the

xdrs

parameter.

Note:

This

XDR

stream

implements

an

intermediate

record

stream.

As

a

result,

additional

bytes

are

in

the

stream

to

provide

record

boundary

information.

Parameters

xdrs

Points

to

the

XDR

stream

handle.

sendsize

Sets

the

size

of

the

input

buffer

to

which

data

is

written.

If

0

is

specified,

the

buffers

are

set

to

the

system

defaults.

recvsize

Sets

the

size

of

the

output

buffer

from

which

data

is

read.

If

0

is

specified,

the

buffers

are

set

to

the

system

defaults.

handle

Points

to

the

input/output

buffer’s

handle,

which

is

opaque.

readit

Points

to

the

subroutine

to

call

when

a

buffer

needs

to

be

filled.

Similar

to

the

read

system

call.

writeit

Points

to

the

subroutine

to

call

when

a

buffer

needs

to

be

flushed.

Similar

to

the

write

system

call.

134

Technical

Reference:

Communications,

Volume

1

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdrrec_endofrecord

Subroutine

Purpose

Causes

the

current

outgoing

data

to

be

marked

as

a

record.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdrrec_endofrecord

(

xdrs,

sendnow)

XDR

*xdrs;

bool_t

sendnow;

Description

The

xdrrec_endofrecord

subroutine

causes

the

current

outgoing

data

to

be

marked

as

a

record

and

can

only

be

invoked

on

streams

created

by

the

xdrrec_create

subroutine.

If

the

value

of

the

sendnow

parameter

is

nonzero,

the

data

in

the

output

buffer

is

marked

as

a

completed

record

and

the

output

buffer

is

optionally

written

out.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

sendnow

Specifies

whether

the

record

should

be

flushed

to

the

output

tcp

stream.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

xdrrec_create

subroutine.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdrrec_eof

Subroutine

Purpose

Checks

the

buffer

for

an

input

stream

that

indicates

the

end

of

file

(EOF).

Chapter

3.

eXternal

Data

Representation

135

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdrrec_eof

(

xdrs)

XDR

*xdrs;

Description

The

xdrrec_eof

subroutine

checks

the

buffer

for

an

input

stream

to

see

if

the

stream

reached

the

end

of

the

file.

This

subroutine

can

only

be

invoked

on

streams

created

by

the

xdrrec_create

subroutine.

Parameters

xdrs

Points

to

the

eXternal

Data

Representation

(XDR)

stream

handle.

Return

Values

After

consuming

the

rest

of

the

current

record

in

the

stream,

this

subroutine

returns

a

value

of

1

if

the

stream

has

no

more

input,

and

a

value

of

0

otherwise.

Related

Information

The

xdrrec_create

subroutine.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdrrec_skiprecord

Subroutine

Purpose

Causes

the

position

of

an

input

stream

to

move

to

the

beginning

of

the

next

record.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/xdr.h>

xdrrec_skiprecord

(

xdrs)

XDR

*xdrs;

Description

The

xdrrec_skiprecord

subroutine

causes

the

position

of

an

input

stream

to

move

past

the

current

record

boundary

and

onto

the

beginning

of

the

next

record

of

the

stream.

This

subroutine

can

only

be

invoked

on

streams

created

by

the

xdrrec_create

subroutine.

The

xdrrec_skiprecord

subroutine

tells

the

eXternal

Data

Representation

(XDR)

implementation

that

the

rest

of

the

current

record

in

the

stream’s

input

buffer

should

be

discarded.

136

Technical

Reference:

Communications,

Volume

1

Parameters

xdrs

Points

to

the

XDR

stream

handle.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

xdrrec_create

subroutine.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xdrstdio_create

Subroutine

Purpose

Initializes

the

XDR

data

stream

pointed

to

by

the

xdrs

parameter.

Library

C

Library

(libc.a)

Syntax

#include

<stdio.h>

#include

<rpc/xdr.h>

void

xdrstdio_create

(

xdrs,

file,

op)

XDR

*xdrs;

FILE

*file;

enum

xdr_op

op;

Description

The

xdrstdio_create

subroutine

initializes

the

eXternal

Data

Representation

(XDR)

data

stream

pointed

to

by

the

xdrs

parameter.

The

XDR

stream

data

is

written

to

or

read

from

the

standard

input/output

stream

pointed

to

by

the

file

parameter.

Note:

The

destroy

routine

associated

with

such

an

XDR

stream

calls

the

fflush

function

on

the

file

stream,

but

never

calls

the

fclose

function.

Parameters

xdrs

Points

to

the

XDR

stream

handle

to

initialize.

file

Points

to

the

standard

I/O

device

that

data

is

written

to

or

read

from.

op

Specifies

an

XDR

direction.

The

possible

choices

are

XDR_ENCODE,

XDR_DECODE,

or

XDR_FREE.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Understanding

XDR

Non-Filter

Primitives

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

3.

eXternal

Data

Representation

137

138

Technical

Reference:

Communications,

Volume

1

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

cfxfer

Function

Purpose

Checks

the

status

of

the

programmatic

File

Transfer.

Library

File

Transfer

Library

(libfxfer.a)

C

Syntax

#include

<fxfer.h>

cfxfer

(

sxfer)

struct

fxs

*sxfer;

Pascal

Syntax

%include

fxfer.inc

%include

fxhfile.inc

function

pcfxfer

(var

Sxfer

:

fxs)

:

integer;

external;

FORTRAN

Syntax

INTEGER

FCFXFER

EXTERNAL

FCFXFER

CHARACTER*XX

SRC,

DST,

TIME

INTEGER

BYTCNT,

STAT

INTEGER

ERRNO

RC

=

FCFXFER

(SRC,

DST,

BYTCNT,

+

STAT,

ERRNO,

TIME,

RC)

Description

The

cfxfer

function

returns

the

status

of

the

file

transfer

request

made

by

the

fxfer

function.

This

function

must

be

called

once

for

each

file

transfer

request.

The

cfxfer

function

places

the

status

in

the

structure

specified

by

the

sxfer

parameter

for

C

and

Pascal.

For

FORTRAN,

status

is

placed

in

each

corresponding

parameter.

Each

individual

file

transfer

and

file

transfer

status

completes

the

requests

in

the

order

the

requests

are

made.

If

multiple

asynchronous

requests

are

made:

v

To

a

single

host

session,

the

cfxfer

function

returns

the

status

of

each

request

in

the

same

order

the

requests

are

made.

v

To

more

than

one

host

session,

the

cfxfer

function

returns

the

status

of

each

request

in

the

order

it

is

completed.

If

the

file

transfer

is

run

asynchronously

and

the

cfxfer

function

is

immediately

called,

the

function

returns

a

status

not

available

-2

code.

An

application

performing

a

file

transfer

should

not

call

the

cfxfer

function

©

Copyright

IBM

Corp.

1997,

2003

139

until

an

error

-1

or

ready

status

0

is

returned.

The

application

program

can

implement

the

status

check

in

a

FOR

LOOP

or

a

WHILE

LOOP

and

wait

for

a

-1

or

0

to

occur.

The

cfxfer

function

is

part

of

the

Host

Connection

Program

(HCON).

C

Parameters

sxfer

Specifies

an

fxs

structure

as

defined

in

the

fxfer.h

file.

The

fxs

C

structure

is:

struct

fxs

{

int

fxs_bytcnt;

char

*fxs_src;

char

*fxs_dst;

char

*fxs_ctime;

int

fxs_stat;

int

fxs_errno;

}

Pascal

Parameters

Sfxfer

Specifies

a

record

of

type

fxs

as

defined

within

the

fxfer.inc

file.

The

Pascal

fxs

record

format

is:

fxs

=

record

fxs_bytcnt

:

integer;

fxs_src

:

stringptr;

fxs_dst

:

stringptr;

fxs_ctime

:

stringptr;

fxs_stat

:

integer;

fxs_errno

:

integer;

end;

C

and

Pascal

fxs

Field

Descriptions

fxc_bytcnt

Indicates

the

number

of

bytes

transferred.

fxc_src

Points

to

a

static

buffer

containing

the

source

file

name.

The

static

buffer

is

overwritten

by

each

call.

fxc_dst

Points

to

a

static

buffer

containing

the

destination

file

name.

The

static

buffer

is

overwritten

by

each

call.

fxs_ctime

Specifies

the

time

the

destination

file

is

created

relative

to

Greenwich

Mean

Time

(GMT)

midnight

on

January

1,

1970.

fxs_stat

Specifies

the

status

of

the

file

transfer

request.

fxs_errno

Specifies

the

error

number

that

results

from

an

error

in

a

system

call.

FORTRAN

Parameters

SRC

Specifies

a

character

array

of

XX

length

containing

the

source

file

name.

DST

Specifies

a

character

array

of

XX

length

containing

the

destination

file

name.

BYTCNT

Indicates

the

number

of

bytes

transferred.

STAT

Specifies

the

status

of

the

file

transfer

request.

ERRNO

Specifies

the

error

number

that

results

from

an

error

in

a

system

call.

TIME

Specifies

the

time

the

destination

file

is

created.

140

Technical

Reference:

Communications,

Volume

1

Return

Values

The

cfxfer

function

returns

the

following:

Value

Description

0

Ready

status-success.

The

structure

member

fxs.fxs_stat

contains

status

of

fxfer

function.

-1

Error

status.

Failure

of

cfxfer

function.

The

fxs

structure

has

NOT

been

set.

1

Status

is

not

yet

available.

The

fx_statxxxxxx

status

file

contains

the

status

of

each

file

transfer

request

made

by

the

application

program.

The

fxfer

function

fills

in

the

xxxxxx

portion

of

the

fx_stat

file

based

on

random

letter

generation

and

places

the

file

in

the

$HOME

directory.

Files

$HOME/fx_statxxxxxx

Temporary

file

used

for

status

/usr/lib/libfxfer.a

Library

containing

C,

FORTRAN,

and

Pascal

interface

file-transfer

functions

/usr/include/fxfer.h

C

file-transfer

include

file

with

structures

and

definitions

/usr/include/fxfer.inc

Pascal

file-transfer

include

file

with

structure

/usr/include/fxconst.inc

Pascal

file-transfer

function

constants

/usr/include/fxhfile.inc

Pascal

file-transfer

invocation

include

file

Related

Information

The

fxfer

command.

The

fxfer

function,

g32_fxfer

function.

fxfer

Function

Purpose

Initiates

a

file

transfer

from

within

a

program.

Library

File

Transfer

Library

(libfxfer.a)

C

Syntax

#include

<fxfer.h>

fxfer

(

xfer,

sessionname)

struct

fxc

*xfer;

char

*sessionname;

Pascal

Syntax

%include

/usr/include/fxfer.inc

%include

/usr/include/fxhfile.inc

%include

/usr/include/fxconst.inc

function

pfxfer

(var

xfer

:

fxc;

sessionname

:

stringptr)

:

integer;

external;

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

141

FORTRAN

Syntax

INTEGER

FFXFER

EXTERNAL

FFXFER

CHARACTER*XX

SRCF,

DSTF,

LOGID,

INPUTFLD,

CODESET,

SESSIONNAME

INT

FLAGS,

RECL,

BLKSIZE,

SPACE,

INCR,

UNIT,

RC

RC

=

FFXFER

(

SRCF,

DSTF,

LOGID,

FLAGS,

RECL,

BLKSIZE,

+

SPACE,

INCR,

UNIT,

INPUTFLD,

CODESET,

SESSIONNAME)

Description

The

fxfer

function

transfers

a

file

from

a

specified

source

to

a

specified

destination.

The

file

transfer

is

accomplished

as

follows:

v

In

the

C

or

Pascal

language,

the

fxfer

or

pfxfer

function

transfers

a

file

specified

by

the

fxc_src

variable

to

the

file

specified

by

the

fxc_dst

variable.

Both

variables

are

defined

in

the

fxc

structure.

v

In

the

FORTRAN

language,

the

FFXFER

function

transfers

a

file

specified

by

the

SRCF

variable

to

the

file

specified

by

the

DSTF

variable.

The

fxfer

function

is

part

of

the

Host

Connection

Program

(HCON).

The

fxfer

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

This

function

requires

one

of

the

following

operating

system

environments

be

installed

on

the

mainframe

host:

VM/SP

CMS,

VM/XA

CMS,

MVS/SP

TSO/E,

MVS/XA,

TSO/E,

CICS/VS,

VSE/ESA,

or

VSE/SP.

This

function

requires

that

the

System/370

Host-Supported

File

Transfer

Program

(IND$FILE

or

its

equivalent)

be

installed

on

the

mainframe

host.

The

file

names

are

character

strings.

The

local-system

file

names

must

be

in

operating

system

format.

The

host

file

names

must

conform

to

the

host

naming

convention,

which

must

be

one

of

the

following

formats:

Format

Description

VM/CMS

FileName

FileType

FileMode

MVS/TSO

DataSetName

[(MemberName)][/Password]

CICS/VS

FileName

(up

to

8

characters)

VSE/ESA

FileName

(up

to

8

characters)

Note:

The

VSE

host

is

not

supported

in

a

double-byte

character

set

(DBCS)

environment.

C

Parameters

xfer

Specifies

a

pointer

to

the

fxc

structure

defined

in

the

fxfer.h

file.

sessionname

Points

to

the

name

of

a

session.

The

session

profile

for

that

session

specifies

the

host

connectivity

to

be

used

by

the

file

transfer

programming

interface.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

Session

variables

are

defined

in

a

HCON

session

profile.

If

the

value

of

the

sessionname

parameter

is

set

to

a

null

value,

the

fxfer

function

assumes

you

are

running

in

an

e789

subshell.

142

Technical

Reference:

Communications,

Volume

1

Pascal

Parameters

xfer

Specifies

a

record

of

fxc

type

within

the

fxfer.inc

file.

sessionname

Points

to

the

name

of

a

session.

The

session

profile

indicated

by

the

sessionname

parameter

defines

the

host

connectivity

to

be

used

by

the

file

transfer

programming

interface.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

Session

variables

are

defined

in

an

HCON

session

profile.

If

the

sessionname

parameter

is

set

to

char(0),

the

pfxfer

function

assumes

you

are

running

in

an

e789

subshell.

FORTRAN

Parameters

SRCF

Specifies

a

character

array

of

XX

length

containing

the

source

file

name.

DSTF

Specifies

a

character

array

of

XX

length

containing

the

destination

file

name.

LOGID

Specifies

a

character

array

of

XX

length

containing

the

host

logon

ID.

SESSIONNAME

Points

to

the

name

of

a

session.

The

SESSIONNAME

parameter

names

a

session

profile

that

defines

the

host

connectivity

to

be

used

by

the

file

transfer

programming

interface.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

Session

variables

are

defined

in

a

HCON

session

profile.

If

the

SESSIONNAME

parameter

is

set

to

char(0),

the

FFXFER

function

assumes

you

are

running

in

an

e789

subshell.

FLAGS

Contains

the

option

flags

value,

which

is

the

sum

of

the

desired

option

values:

1

Upload

2

Download

4

Translate

on

8

Translate

carriage

return

line

feed

16

Replace

32

Append

64

Queue

128

Fixed-length

records

256

Variable-length

records

512

Undefined

length

(TSO

only)

1024

Host

system

TSO

2048

Host

system

CMS

4096

Host

system

CICS/VS

8192

Host

system

VSE/ESA

RECL

Specifies

the

logical

record

length.

BLKSIZE

Specifies

the

block

size.

SPACE

Specifies

the

allocation

space.

INCR

Specifies

the

allocation

space

increment.

UNIT

Specifies

the

unit

of

allocation:

-1

Specifies

the

number

of

TRACKS.

-2

Specifies

the

number

of

CYLINDERS.

A

positive

number

indicates

the

number

of

bytes

to

allocate.

INPUTFLD

Specifies

the

host

input

table

field.

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

143

CODESET

Specifies

an

alternate

code

set

to

use

for

ASCII

to

EBCDIC

and

EBCDIC

to

ASCII

translations:

CHAR(0)

Uses

current

operating-system

ASCII

code

page.

IBM-932

Uses

IBM

code

page

932

for

translation

in

a

DBCS

environment.

ISO8859-1

Uses

ISO

8859-1

Latin

alphabet

number

1

code

page.

ISO8859-7

Uses

ISO

8859-7

Greek

alphabet.

ISO8859-9

Uses

ISO

8859-9

Turkish

alphabet.

IBM-eucJP

Uses

IBM

Extended

UNIX

code

for

translation

in

the

Japanese

Language

environment.

IBM-eucKR

Translates

Korean

language.

IBM-eucTW

Translates

traditional

Chinese

language.

Notes:

1.

All

FORTRAN

character

array

strings

must

be

terminated

by

a

null

character,

as

in

the

following

example:

SRCF

=

’rtfile’//CHAR(0)

2.

The

VSE

host

system

is

not

supported

in

a

DBCS

environment.

3.

The

unique

DBCS

file-transfer

flags

are

not

supported

by

this

function.

Return

Values

If

the

fxfer

function

is

called

synchronously,

it

returns

a

value

of

0

when

the

transfer

is

completed.

The

application

program

can

then

issue

a

cfxfer

function

call

to

obtain

the

status

of

the

file

transfer.

If

the

fxfer

function

is

called

asynchronously,

it

returns

0.

The

application

program

can

issue

a

cfxfer

function

call

to

determine

when

the

file

transfer

is

completed

and

to

obtain

the

status

of

the

file

transfer.

If

the

status

cannot

be

reported

by

the

cfxfer

function

due

to

an

I/O

error

on

the

fx_statxxxxxx

status

file,

the

cfxfer

function

returns

a

-1.

If

the

status

is

not

ready,

the

cfxfer

function

returns

a

-2.

The

fx_statxxxxxx

status

file

contains

the

status

of

each

file

transfer

request

made

by

the

application

program.

The

fxfer

function

fills

in

the

xxxxxx

portion

of

the

fx_stat

file

based

on

random

letter

generation

and

places

the

file

in

the

$HOME

directory.

Files

$HOME/fx_statxxxxxx

Temporary

file

used

for

status

information.

/usr/lib/libfxfer.a

Library

containing

C,

FORTRAN,

and

Pascal

interface

file-transfer

functions.

/usr/include/fxfer.h

C

file-transfer

include

file

with

structures

and

definitions.

/usr/include/fxfer.inc

Pascal

file-transfer

include

file

with

structures.

/usr/include/fxconst.inc

Pascal

file-transfer

function

constants.

/usr/include/fxhfile.inc

144

Technical

Reference:

Communications,

Volume

1

Pascal

file-transfer

invocation

include

file.

Related

Information

The

file-transfer

check

status

function

is

the

cfxfer

function.

g32_alloc

Function

Purpose

Initiates

interaction

with

a

host

application.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_alloc

(

as,

applname,

mode)

struct

g32_api

*as;

char

*applname;

int

mode;

Pascal

Syntax

function

g32allc

(var

as

:

g32_api;

applname

:

stringptr;

mode

:

integer):

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32ALLOC

INTEGER

RC,

MODE,

AS(9),

G32ALLOC

CHARACTER*

XX

NAME

RC

=

G32ALLOC

(AS,

NAME,

MODE)

Description

The

g32_alloc

function

initiates

interaction

with

a

host

application

and

sets

the

API

mode.

The

host

application

program

is

invoked

by

entering

its

name,

using

the

3270

operatorless

interface.

If

invocation

of

the

host

program

is

successful

and

the

mode

is

API/API,

control

of

the

session

is

passed

to

the

application.

If

the

mode

is

API/3270,

the

emulator

retains

control

of

the

session.

The

application

communicates

with

the

session

by

way

of

the

3270

operatorless

interface.

The

g32_alloc

function

may

be

used

only

after

a

successful

open

using

the

g32_open

or

g32_openx

function.

The

g32_alloc

function

must

be

issued

before

using

any

of

the

message

or

3270

operatorless

interface

functions.

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

145

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Applications

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_alloc

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_alloc

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

CICS

and

VSE

do

not

support

API/API

or

API/API_T

modes.

C

Parameters

as

Specifies

a

pointer

to

a

g32_api

structure.

Status

information

is

returned

in

this

structure.

applname

Specifies

a

pointer

to

the

name

of

the

host

application

to

be

executed.

This

string

should

be

the

entire

string

necessary

to

start

the

application,

including

any

necessary

parameters

or

options.

When

specifying

an

applname

parameter,

place

the

host

application

name

in

double

quotes

(″Testload″)

or

specify

a

pointer

to

a

character

string.

mode

Specifies

the

API

mode.

The

types

of

modes

that

can

be

used

are

contained

in

the

g32_api.h

file

and

are

defined

as

follows:

MODE_3270

The

API/3270

mode

lets

local

system

applications

act

like

a

3270

operatorless

interface.

Applications

in

this

mode

use

the

3270

operatorless

interface

to

communicate

with

the

host

application.

In

API/3270

mode,

if

the

value

of

the

applname

parameter

is

a

null

pointer,

no

host

application

is

started.

MODE_API

The

API/API

mode

is

a

private

protocol

for

communicating

with

host

applications

that

assume

they

are

communicating

with

a

program.

Applications

in

this

mode

use

the

message

interface

to

communicate

with

host

applications

using

the

host

API.

The

API

program

must

use

HCON’s

API

and

must

have

a

corresponding

host

API

program

that

uses

HCON’s

host

API

for

the

programs

to

communicate.

Note:

When

a

session

is

in

this

mode,

all

activity

to

the

screen

is

stopped

until

this

mode

is

exited.

API/3270

mode

functions

cannot

be

used

while

in

the

API/API

mode.

The

keyboard

is

locked.

MODE_API_T

The

API_T

mode

is

the

same

as

the

MODE_API

type

except

this

mode

translates

messages

received

from

the

host

from

EBCDIC

to

ASCII,

and

translates

messages

sent

to

the

host

from

ASCII

to

EBCDIC.

The

translation

tables

used

are

determined

by

the

language

characteristic

in

the

HCON

session

profile.

Note:

A

host

application

started

in

API/API

or

API/API_T

mode

must

issue

a

G32ALLOC

function

as

the

API

waits

for

an

acknowledgment

from

the

host

application,

when

starting

an

API/API

mode

session.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

applname

Specifies

a

stringptr

containing

the

name

of

the

host

application

to

be

executed.

This

string

should

be

the

entire

string

necessary

to

start

the

host

application,

including

any

necessary

parameters

and

options.

A

null

application

name

is

valid

in

3270

mode.

mode

Specifies

the

mode

desired

for

the

session.

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

NAME

Specifies

the

name

of

the

application

that

is

to

execute

on

the

host.

MODE

Specifies

the

desired

mode

for

the

API.

146

Technical

Reference:

Communications,

Volume

1

Return

Values

0

Indicates

successful

completion.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

an

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

The

following

example

illustrates

the

use

of

the

g32_alloc

function

in

C

language:

#include

<g32_api.h>

/*

API

include

file

*/

main

()

{

struct

g32_api

*as,

asx;

/*

API

status

*/

int

session_mode

=

MODE_API

/*

api

session

mode.

Other

modes

are

MODE_API_T

and

MODE_3270

*/

char

appl_name

[20]

/*

name

of

the

application

to

run

on

the

host

*/

int

return;

/*

return

code

*/

.

.

.

strcpy

(appl_name,

"APITESTN");

/*

name

of

host

application

*/

return

=

g32_alloc(as,

appl_name,

session_mode);

.

.

.

return

=

g32_dealloc(as);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_close

Function

Purpose

Detaches

from

a

session.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

147

C

Syntax

#include

<g32_api.h>

g32_close

(

as)

struct

g32_api

*as;

Pascal

Syntax

function

g32clse

(var

as

:

g32_api)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32CLOSE

INTEGER

AS(9),

G32CLOSE

RC

=

G32CLOSE(AS)

Description

The

g32_close

function

disconnects

from

a

3270

session.

If

the

g32_open

or

g32_openx

function

created

a

session,

the

g32_close

function

logs

off

from

the

host

and

terminates

the

session.

A

session

must

be

terminated

(using

the

g32_dealloc

function)

before

issuing

the

g32_close

function.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Application

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_close

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_close

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

C

Parameters

as

Specifies

a

pointer

to

a

g32_api

structure.

Status

is

returned

in

this

structure.

Pascal

Parameters

as

Specifies

a

g32_api

structure.

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

Return

Values

0

Indicates

successful

completion.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

an

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

The

following

example

fragment

illustrates

the

use

of

the

g32_close

function

in

C

language:

148

Technical

Reference:

Communications,

Volume

1

#include

<g32_api.h>

/*

API

include

file

*/

main()

{

struct

g32_api

*as;

/*

g32

structure

*/

int

return;

.

.

.

return

=

g32_close(as);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_dealloc

Function

Purpose

Ends

interaction

with

a

host

application.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_dealloc(

as)

struct

g32_api

*as;

Pascal

Syntax

function

g32deal

(var

as

:

g32_api)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32DEALLOC

INTEGER

AS(9),

G32DEALLOC

RC

=

G32DEALLOC(AS)

Description

The

g32_dealloc

function

ends

interaction

with

the

operating

system

application

and

the

host

application.

The

function

releases

control

of

the

session.

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

149

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Application

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_dealloc

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_dealloc

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

C

Parameters

as

Specifies

a

pointer

to

a

g32_api

structure.

Status

is

returned

in

this

structure.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

Return

Values

0

Indicates

successful

completion.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

an

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

The

following

example

illustrates

the

use

of

the

g32_dealloc

function

in

C

language:

#include

<g32_api.h>

/*

API

include

file

*/

main

()

{

struct

g32_api

*as,

asx;

/*

asx

is

statically

defined

*/

int

session_mode

=

MODE_API;

/*

api

session

mode.

Other

modes

are

MODE_API_T

*/

char

appl_name

[20];

/*

name

of

the

application

to

run

on

the

host

*/

int

return;

/*

return

code

*/

.

.

.

strcpy

(appl_name,

"APITESTN");

/*

name

of

host

application

*/

return

=

g32_alloc(as,

appl_name,

session_mode);

.

.

.

return

=

g32_dealloc(as);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

150

Technical

Reference:

Communications,

Volume

1

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_fxfer

Function

Purpose

Invokes

a

file

transfer.

Libraries

HCON

Library

File

Transfer

Library

(libfxfer.a)

C

(libg3270.a)

Pascal

(libg3270p.a)

Fortran

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

#include

<fxfer.h>

g32_fxfer

(

as,

xfer)

struct

g32_api

*as;

struct

fxc

*xfer;

Pascal

Syntax

const

%include

/usr/include/g32const.inc

%include

/usr/include/g32fxconst.inc

type

%include

/usr/include/g32types.inc

%include

/usr/include/fxhfile.inc

function

g32fxfer(var

as

:

g32_api;

var

xfer

:

fxc)

:

integer;

external;

FORTRAN

Syntax

INTEGER

G32FXFER,

RC,

AS(9)

EXTERNAL

G32FXFER

CHARACTER*XX

SRCF,

DSTF,

INPUTFLD,

CODESET

INTEGER

FLAGS,RECL,BLKSIZE,SPACE,INCR,UNIT

RC

=

G32FXFER(AS,SCRF,

DSTF,

FLAGS,

RECL,

BLKSIZE,

SPACE,

+

INCR,

UNIT,

INPUTFLD,

CODESET)

Description

The

g32_fxfer

function

allows

a

file

transfer

to

take

place

within

an

API

program

without

the

API

program

having

to

invoke

a

g32_close

and

relinquish

the

link.

The

file

transfer

is

run

in

a

programmatic

fashion,

meaning

the

user

must

set

up

the

flag

options,

the

source

file

name,

and

the

destination

file

name

using

either

the

programmatic

fxfer

fxc

structure

for

C

and

Pascal

or

the

numerous

variables

for

FORTRAN.

The

g32_fxfer

function

will

detach

from

the

session

without

terminating

it,

run

the

specified

file

transfer,

and

then

reattach

to

the

session.

If

a

g32_alloc

function

has

been

issued

before

invoking

the

g32_fxfer

command,

be

sure

that

the

corresponding

g32_dealloc

function

is

incorporated

into

the

program

before

the

g32_fxfer

function

is

called.

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

151

The

status

of

the

file

transfer

can

be

checked

by

using

the

cfxfer

file-transfer

status

check

function

after

the

g32_fxfer

function

has

been

invoked.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Application

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_fxfer

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_fxfer

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

This

function

requires

that

the

Host-Supported

File

Transfer

Program

(IND$FILE

or

its

equivalent)

be

installed

on

the

host.

C

Parameters

as

Specifies

a

pointer

to

the

g32_api

structure.

Status

is

returned

in

this

structure.

xfer

Specifies

a

pointer

to

the

fxc

structure

defined

in

the

fxfer.h

file.

Pascal

Parameters

as

Specifies

a

record

of

type

g32_api.

xfer

Specifies

a

record

of

type

fxc

within

the

fxfer.inc

file.

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

SRCF

Specifies

a

character

array

of

XX

length

containing

the

source

file

name.

DSTF

Specifies

a

character

array

of

XX

length

containing

the

destination

file

name.

FLAGS

Contains

the

option

flags

value,

which

is

the

sum

of

the

desired

option

values

listed

below:

1

Upload

2

Download

4

Translate

On

8

Translate

Carriage

Return

Line

Feed

16

Replace

32

Append

64

Queue.

This

option

may

be

specified

by

the

user,

but

it

is

blocked

by

the

G32FXFER

command.

128

Fixed

Length

Records

256

Variable

Length

Records

512

Undefined

Length

(TSO

only)

1024

Host

System

TSO

2048

Host

System

CMS

4096

Host

System

CICS/VS

8192

Host

System

VSE/ESA

RECL

Specifies

the

logical

record

length.

BLKSIZE

Specifies

the

block

size

(TSO

only).

SPACE

Specifies

the

allocation

space

(TSO

only).

152

Technical

Reference:

Communications,

Volume

1

INCR

Specifies

the

allocation

space

increment

(TSO

only).

UNIT

Specifies

the

unit

of

allocation

(TSO

only),

which

is:

-1

Number

of

TRACKS

-2

Number

of

CYLINDERS.

A

positive

number

indicates

the

number

of

blocks

to

be

allocated.

INPUTFLD

Specifies

the

host

input

table

field.

CODESET

Specifies

an

alternate

code

set

to

use

for

ASCII

to

EBCDIC

and

EBCDIC

to

ASCII

translations.

The

following

code

sets

are

supported:

CHAR(

0)

Uses

current

operating

system

ASCII

code

page.

IBM850

Uses

IBM

code

page

850

for

translation

in

a

single

byte

code

set

(SBCS)

environment.

IBM932

Uses

IBM

code

page

932

for

translation

in

a

double

byte

code

set

(DBCS)

environment.

ISO8859-1

Uses

ISO

8859-1

Latin

alphabet

number

1

code

page.

ISO8859-7

Uses

ISO

8859-7

Greek

alphabet.

ISO8859-9

Uses

ISO

8859-9

Turkish

alphabet.

IBMeucJP

Uses

IBM

Extended

UNIX

Code

for

translation

in

the

Japanese

Language

environment.

IBMeucKR

Korean

language.

IBMeucTW

Traditional

Chinese

language.

Notes:

1.

All

FORTRAN

character

array

strings

must

be

null-terminated.

For

2.

example:

SRCF

=

’rtfile’//CHAR(0)

3.

The

Host

System

VSE

is

not

supported

in

the

DBCS

environment.

4.

The

unique

DBCS

file

transfer

flags

are

not

supported

by

this

function.

Return

Values

0

Indicates

successful

completion.

The

user

may

call

the

cfxfer

function

to

get

the

status

of

the

file

transfer.

1

Indicates

the

file

transfer

did

not

complete

successfully.

The

user

may

call

the

cfxfer

function

to

get

the

status

of

the

file

transfer.

-1

Indicates

the

g32_fxfer

command

failed

while

accessing

the

link.

The

errcode

field

in

the

g32_api

structure

is

set

to

an

error

code

identifying

the

error.

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

The

following

example

fragment

illustrates

the

use

of

the

g32_fxfer

function

in

an

api_3270

mode

program

in

C

language:

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

153

#include

<g32_api.h>

/*

API

include

file

*/

#include

<fxfer.h>

/*

file

transfer

include

file

*/

main()

{

struct

g32_api

*as,asx;

struct

fxc

*xfer;

struct

fxs

sxfer;

int

session_mode=MODE_3270;

char

*aixfile="/etc/motd";

char

*hostfile="test

file

a";

char

sessionname[30],uid[30],pw[30];

int

mlog=0,ret=0;

as

=

&asx;

sessionname

=

’\0’;

/*

We

are

assuming

SNAME

is

set

*/

.

.

ret=g32_open(as,mlog,uid,pw,sessionname);

printf("The

g32_open

return

code

=

%d\n",ret);

.

.

/*

Malloc

space

for

the

file

transfer

structure

*/

xfer

=

(struct

fxc

*)

malloc(2048);

/*

Set

the

file

transfer

flags

to

upload,

replace,

translate

and

Host

CMS

*/

xfer->fxc_opts.f_flags

=

FXC_UP

|

FXC_REPL

|

FXC_TNL

|

FXC_CMS;

xfer->fxc_opts.f_lrecl

=

80;

/*

Set

the

Logical

Record

length

to

80

*/

xfer->fxc_opts.f_inputfld

=

(char

*)0;

/*

Set

Input

Field

to

NULL

*/

xfer->fxc_opts.f_aix_codepg

=

(char

*)0;

/*

Set

Alternate

Codepg

to

NULL

*/

xfer->fxc_src

=

aixfile;

/*

Set

the

Source

file

name

to

aixfile

*/

xfer->fxc_dst

=

hostfile;

/*

Set

the

Destination

file

name

to

hostfile

*/

ret=g32_fxfer(as,xfer);

printf("The

g32_fxfer

return

code

=

%d\n",ret);

/*

If

the

file

transfer

completed

then

get

the

status

code

of

the

file

transfer

*/

if

((ret

==

0)

||

(ret

==

1))

{

ret

=

cfxfer(&sxfer);

if

(ret

==

0)

{

printf("Source

file:

%s\n",sxfer.fxs_src);

printf("Destination

file:

%s\n",

\

sxfer.fxs_dst);

printf("Byte

Count:

%d\n",sxfer.fxs_bytcnt);

printf("File

transfer

time:

%d\n",sxfer.fxs_ctime);

printf("Status

Message

Number:

%d\n",sxfer.fxs_stat);

printf("System

Call

error

number:%d\n",sxfer.fxs_errno);

}

}

.

.

.

ret=g32_close(as);

printf("The

g32_close

return

code

=

%d\n",ret);

return(0);

}

The

following

example

fragment

illustrates

the

use

of

the

g32_fxfer

function

in

an

api_3270

mode

program

in

Pascal

language.

program

test1(input,output);

const%include

/usr/include/g32const.inc

%include

/usr/include/fxconst.inc

type

%include

/usr/include/g32hfile.inc

154

Technical

Reference:

Communications,

Volume

1

%include

/usr/include/g32types.inc

%include

/usr/include/fxhfile.inc

var

as:g32_api;

xfer:fxc;

sxfer:fxs;

ret,sess_mode,flag:integer;

session,timeout,uid,pw:stringptr;

source,destination:stringptr;

begin

sess_mode

=

MODE_3270;

flag

:=

0;

{

Initialize

API

stringptrs

and

create

space

}

new(uid,8);

uid@

:=

chr(0);

new(pw,8);

pw@

:=

chr(0);

new(session,2);

session@

:=

’a’;

{

Open

session

a

}

new(timout,8);

timeout

:=

’60’;

{

Call

g32openx

and

open

session

a

}

ret

:=

g32openx(as,flag,uid,pw,session,timeout);

writeln(’The

g32openx

return

code

=

’,ret:4);

.

.

.

{

Set

up

the

file

transfer

options

and

file

names

}

new(source,1024);

source

:=

’testfile’;

{

Source

file,

assumes

testfile

exists

in

the

current

directory

}

new(destination,1024);

destination

:=

’testfile’;

{

Destination

file,

TSO

file

testfile

}

{

Set

flags

to

Upload,

Replace,

Translate

and

Host

TSO

}

xfer.fxc_opts.f_flags

:=

FXC_UP

+

FXC_TSO

+

FXC_REPL

+

\

FXC_TNL;

xfer.fxc_src

:=

source;

xfer.fxc_dst

:=

destination;

{Call

the

g32_fxfer

using

the

specified

flags

and

file

names}

ret

:=

g32fxfer(as,xfer);

writeln(’The

g32fxfer

return

code

=

’,ret:4);

{

If

g32_fxfer

returned

with

1

or

0

call

the

file

transfer

\

status

check

function

}

if

(ret

>=

0)

then

begin

ret

:=

pcfxfer(sxfer);

if

(ret

=

0)

then

begin

writeln(’Source

file:

’,sxfer.fxs_src@);

writeln(’Destination

file:

’,sxfer.fxs_dst@);

writeln(’File

Transfer

Time:

’,sxfer.fxs_ctime@);

writeln(’Byte

Count:

’,sxfer.fxs_bytcnt);

writeln(’Status

Message

Number:

’,sxfer.fxs_stat);

writeln(’System

Call

Error

Number:

’,sxfer.fxs_errno);

end;

end;

.

.

.

{

Close

the

session

using

the

g32close

function

}

ret

:=

g32close(as);

writeln(’The

g32close

return

code

=

’,ret:4);

end.

The

following

example

fragment

illustrates

the

use

of

the

g32_fxfer

function

in

an

api_3270

mode

program

in

FORTRAN

language:

INTEGER

G32OPENX,G32FXFER,G32CLOSE,FCFXFER

INTEGER

RET,’AS(9)FLAG

EXTERNAL

G32OPENX

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

155

EXTERNAL

G32FXFER

EXTERNAL

G32CLOSE

EXTERNAL

FCFXFER

CHARACTER*8

UID

CHARACTER*8

PW

CHARACTER*2

SESSION

CHARACTER*8

TIMEOUT

CHARACTER*256

SRCF

CHARACTER*256

DSTF

CHARACTER*256

SRC

CHARACTER*256

DST

CHARACTER*64

INPUTFLD

CHARACTER*8

CODESET

CHARACTER*40

TIME

INTEGER

BYTCNT,STAT,ERRNO,TIME

INTEGER

FLAGS,RECL,BLKSIZE,SPACE,INCR,UNIT

C

Set

up

all

FORMAT

statement

1

FORMAT("THE

G32OPENX

RETURN

CODE

=

",I4)

2

FORMAT("THE

G32FXFER

RETURN

CODE

=

",I4)

3

FORMAT("THE

G32CLOSE

RETURN

CODE

=

",I4)

4

FORMAT("THE

FCFXFER

RETURN

CODE

=

",I4)

5

FORMAT("--------------------------------------")

10

FORMAT("SOURCE

FILE:

",A)

11

FORMAT("DESTINATION

FILE:

",A)

12

FORMAT("BYTE

COUNT:

",I10)

13

FORMAT("TIME:

",A)

14

FORMAT("STATUS

MESSAGE

NUMBER:

",I10)

15

FORMAT("SYSTEM

CALL

ERROR

NUMBER:

",I10)

C

Set

up

all

character

values

for

the

G32OPENX

command

UID

=

CHAR(0)

PW

=

CHAR(0)

SESSION

=

’z’//CHAR(0)

TIMEOUT

=

’60’//CHAR(0)

FLAG

=

0

SRCF

=

’testcase1’//CHAR(0)

DSTF

=

’/home/test.case1’//CHAR(0)

C

Source

and

Destination

files

for

the

fcfxfer

status

C

check

command

SRC

=

CHAR(0)

DST

=

CHAR(0)

C

Set

Input

Field

to

NULL

INPUTFLD

=

CHAR(0)

C

Set

Alternate

AIX

codeset

to

NULL

CODESET

=

CHAR(0)

C

Set

the

G32FXFER

file

transfer

flags

and

options

C

Take

the

defaults

for

Logical

Record

Length,

Block

Size,

C

and

Space

RECL

=

0

BLKSIZE

=

0

SPACE

=

0

C

Set

FLAGS

to

download

(2),

translate(4),

and

Host

TSO(1024)

FLAGS

=

1030

C

Call

G32OPENX

RET

=

G32OPENX(AS,FLAG,UID,PW,sessionname,TIMEOUT)

WRITE(*,1)

RET

.

.

.

C

Call

G32FXFER

RET

=

G32FXFER(AS,SRCF,DSTF,FLAGS,RECL,BLKSIZE,SPACE

+

INCR,UNIT,INPUTFLD,CODESET)

WRITE(*,2)

RET

.

.

.

C

Call

G32CLOSE

156

Technical

Reference:

Communications,

Volume

1

RET

=

G32CLOSE(AS)

WRITE(*,3)

RET

C

Call

FCFXFER

for

file

transfer

status

output

RET

=

FCFXFER(SRC,DST,BYTCNT,STAT,ERRNO,TIME)

WRITE(*,4)

RET

WRITE(*,5)

WRITE(*,10)

SRC

WRITE(*,11)

DST

WRITE(*,12)

BYTCNT

WRITE(*,13)

TIME

WRITE(*,14)

STAT

WRITE(*,15)

ERRNO

WRITE(*,5)

STOP

END

Files

/usr/include/fxfer.h

Contains

the

file-transfer

include

file

with

structures

and

definitions

for

C.

/usr/include/fxconst.inc

Contains

the

Pascal

fxfer

function

constants.

/usr/include/fxhfile.inc

Contains

Pascal

file-transfer

invocation

include

file.

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_get_cursor

Function

Purpose

Sets

the

row

and

column

components

of

the

g32_api

structure

to

the

current

cursor

position

in

a

presentation

space.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_get_cursor

(

as)

struct

g32_api

as

Pascal

Syntax

function

g32curs

(var

as

:

g32_api)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32GETCURSOR

INTEGER

AS(9),

G32GETCURSOR

RC

=

G32GETCURSOR(AS)

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

157

Description

The

g32_get_cursor

function

obtains

the

row

and

column

address

of

the

cursor

and

places

these

values

in

the

as

structure.

An

application

can

only

use

the

g32_get_cursor

function

in

API/3270

mode.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Applications

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_get_cursor

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_get_cursor

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

C

Parameters

as

Specifies

a

pointer

to

the

g32_api

structure.

This

structure

contains

the

row

(row)

and

column

(column)

address

of

the

cursor.

Status

information

is

also

set

in

this

structure.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

Return

Values

0

Indicates

successful

completion.

v

The

corresponding

row

element

of

the

as

structure

is

the

row

position

of

the

cursor.

v

The

corresponding

column

element

of

the

as

structure

is

the

column

position

of

the

cursor.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

the

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

Note:

The

following

example

is

missing

the

required

g32_open

and

g32_alloc

functions

which

are

necessary

for

every

HCON

Workstation

API

program.

The

following

example

fragment

illustrates,

in

C

language,

the

use

of

the

g32_get_cursor

function

in

an

api_3270

mode

program:

#include

<g32_api.h>

/*

API

include

file

*/

#include

<g32_keys.h>

main()

{

struct

g32_api

*as;

/*

g32

structure

*/

char

*buffer;

/*

pointer

to

char

string

*/

int

return;

/*

return

code

*/

char

*malloc();

/*

C

memory

allocation

function*/

.

.

.

return

=

g32_notify(as,1);

/*

Turn

notification

on

*/

158

Technical

Reference:

Communications,

Volume

1

buffer

=

malloc(10);

return

=

g32_get_cursor(as);

/*

get

location

of

cursor

*/

printf

("The

cursor

position

is

row:

%d

col:

%d/n",

as

->

row,

as

->

column);

/*

Get

data

from

host

starting

at

the

current

row

and

column

*/

as

->

length

=

10;

/*

length

of

a

pattern

on

host

*/

return

=

g32_get_data(as,buffer);

/*

get

data

from

host

*/

printf("The

data

returned

is

<%s>\n",buffer);

/*

Try

to

search

for

a

particular

pattern

on

host

*/

as

->row

=1;

/*

row

to

start

search

*/

as

->column

=1;

/*

column

to

start

search

*/

return

=

g32_search(as,"PATTERN");

/*Send

a

clear

key

to

the

host

*/

return

=

g32_send_keys(as,CLEAR);

/*

Turn

notification

off

*/

return

=

g32_notify(as,0);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_get_data

Function

Purpose

Obtains

current

specified

display

data

from

the

presentation

space.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_get_data

(

as,

buffer)

struct

g32_api

*as;

char

*buffer;

Pascal

Syntax

function

g32data

(var

as

:

g32_api;

buffer

:

integer)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32GETDATA

INTEGER

AS(9),

G32GETDATA

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

159

CHARACTER

*XX

Buffer

RC

=

G32GETDATA(AS,

Buffer)

Description

The

g32_get_data

function

obtains

current

display

data

from

the

presentation

space.

The

transfer

continues

until

either

the

transfer

length

is

exhausted

or

the

starting

point

is

reached.

If

the

transfer

length

is

greater

than

the

presentation

space,

then

the

g32_get_data

function

only

reads

data

that

equals

one

presentation

space

and

leaves

the

rest

of

the

buffer

unchanged.

The

g32_get_data

function

can

only

be

used

in

API/3270

session

mode.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Applications

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_get_data

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_get_data

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

In

a

double-byte

character

set

(DBCS)

environment,

the

g32_get_data

function

only

obtains

SBCS

data

from

the

presentation

space

even

if

Kanji

or

Katakana

characters

are

displayed

on

the

screen.

The

DBCS

data

are

not

available.

C

Parameters

as

Specifies

a

pointer

to

the

g32_api

structure

containing

the

row

(row)

and

column

(column)

address

where

the

data

begins,

and

the

length

(length)

of

data

to

return.

Status

information

is

also

returned

in

this

structure.

buffer

Specifies

a

pointer

to

a

buffer

where

the

data

is

placed.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

buffer

Specifies

an

address

of

a

character-packed

array.

The

array

must

be

the

same

length

or

greater

than

the

length

field

in

the

g32_api

structure.

Note:

The

address

of

a

packed

array

can

be

obtained

by

using

the

addr()

system

call:

buffer

:=

addr

(<message

array

name>

[1]).

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

buffer

Specifies

the

character

array

that

receives

the

retrieved

data.

The

array

must

be

the

same

length

or

greater

than

the

length

field

in

the

g32_api

structure.

Note:

If

the

size

of

the

buffer

is

smaller

than

AS(LENGTH),

a

memory

fault

may

occur.

Return

Values

0

Indicates

successful

completion.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

the

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

160

Technical

Reference:

Communications,

Volume

1

Examples

The

following

example

fragment

illustrates

the

use

of

the

g32_get_data

function

in

an

api_3270

mode

program

in

C

language.

Note:

The

following

example

is

missing

the

required

g32_open

and

g32_alloc

functions

which

are

necessary

for

every

HCON

Workstation

API

program.

#include

<g32_api.h>

/*

API

include

file

*/

#include

<g32_keys.h>

main()

{

struct

g32_api

*as;

/*

g32

structure

*/

char

*buffer;

/*

pointer

to

char

string

*/

int

return;

/*

return

code

*/

char

*malloc();

/*

C

memory

allocation

function

*/

.

.

.

return

=

g32_notify(as,1);

/*

Turn

notification

on

*/

buffer

=

malloc(10);

return

=

g32_get_cursor(as);

/*

get

location

of

cursor

*/

printf

("

The

cursor

position

is

row:

%d

col:

%d/n",

as

->

row,

as

->

column);

/*

Get

data

from

host

starting

at

the

current

row

and

column

*/

as

->

length

=

10;

/*

length

of

a

pattern

on

host

*/

return

=

g32_get_data(as,buffer);

/*

get

data

from

host

*/

printf("The

data

returned

is

<%s>\n",buffer);

/*

Try

to

search

for

a

particular

pattern

on

host

*/

as

->row

=1;

/*

row

to

start

search

*/

as

->column

=1;

/*

column

to

start

search

*/

return

=

g32_search(as,"PATTERN");

/*Send

a

clear

key

to

the

host

*/

return

=

g32_send_keys(as,CLEAR);

/*

Turn

notification

off

*/

return

=

g32_notify(as,0);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_get_status

Function

Purpose

Returns

status

information

of

the

logical

path.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

161

C

Syntax

#include

<g32_api.h>

g32_get_status

(

as)

struct

g32_api

*as;

Pascal

Syntax

function

g32stat

(var

as:

g32_api)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32GETSTATUS

INTEGER

AS(9),G32GETSTATUS

RC

=

G32GETSTATUS(

AS)

Description

The

g32_get_status

function

obtains

status

information

about

the

communication

path.

The

function

is

called

after

an

API

application

determines

that

an

error

has

occurred

while

reading

from

or

writing

to

the

communication

path

or

after

a

time

out.

The

HCON

session

profile

specifies

the

communication

path.

The

g32_get_status

function

can

only

be

used

in

API/API,

API/API_T,

and

API/3270

modes.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Application

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_get_status

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_get_status

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

C

Parameters

as

Specifies

a

pointer

to

a

g32_api

structure;

status

is

returned

in

this

structure.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

FORTRAN

Parameters

AS

Specifies

a

g32_api

equivalent

structure

as

an

array

of

integers.

Note:

This

function

is

used

to

determine

the

condition

or

status

of

the

link.

It

should

not

be

used

to

determine

whether

the

previous

I/O

operation

was

successful

or

unsuccessful

(the

return

code

will

provide

this

information).

Return

Values

0

Indicates

successful

completion.

162

Technical

Reference:

Communications,

Volume

1

Error

Codes

The

values

of

errcode

are

as

follows:

Error

Code

Description

G32_NO_ERROR

0,

indicates

no

error

has

occurred.

G32_COMM_CHK

-1,

indicates

a

communications

check

has

occurred.

G32_PROG_CHK

-2,

indicates

a

program

check

has

occurred

within

the

emulator.

G32_MACH_CHK

-3,

indicates

a

machine

check

has

occurred.

G32_FATAL_ERROR

-4,

indicates

a

fatal

error

has

occurred

within

the

emulator.

G32_COMM_REM

-5,

indicates

a

communications

check

reminder

has

occurred.

If

errcode

is

anything

other

than

G32_NO_ERROR,

then

xerrinfo

contains

an

emulator

program

error

code.

Value

Description

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

the

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

The

following

example

fragment

illustrates

the

use

of

the

g32_get_status

function

in

C

language:

#include

<g32_api.h>

/*

API

include

file

*/

main()

{

struct

g32_api

*as;

/*

g32

structure

*/

int

return;

return

=

g32_write(as,

mssg,

length);

/*

see

if

unsuccessful

*/

if

(return

<

0)

{

return

=

g32_get_status(as);

printf("Return

from

g32_get_status

=

%d

\n",return);

printf("errcode

=

%d

xerrinfor

=

%d

\n",

as

->

errcode

,

as

->

xerrinfo);

.

.

.

Implementation

Specifics

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_notify

Function

Purpose

Turns

data

notification

on

or

off.

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

163

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_notify

(

as,

note)

struct

g32_api

*as;

int

note;

Pascal

Syntax

subroutine

g32note

(var

as

:

g32_api;

note

:

integer)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32NOTIFY

INTEGER

AS(9),

Note,

G32NOTIFY

RC

=

G32NOTIFY(AS,

Note)

Description

The

g32_notify

subroutine

is

used

to

turn

notification

of

data

arrival

on

or

off.

The

g32_notify

subroutine

may

be

used

only

by

applications

in

an

API/3270

session

mode.

If

an

application

wants

to

know

when

the

emulator

receives

data

from

the

host,

it

turns

notification

on.

This

causes

the

emulator

to

send

a

message

to

the

application

whenever

it

receives

data

from

the

host.

The

message

is

sent

to

the

IPC

message

queue

whose

file

pointer

is

stored

in

the

eventf

field

of

the

as

data

structure.

The

application

may

then

use

the

poll

system

call

to

wait

for

data

from

the

host.

Once

notified

the

application

should

clear

notification

messages

from

the

IPC

queue,

using

the

msgrcv

subroutine.

When

the

application

no

longer

wants

to

be

notified,

it

should

turn

notification

off

with

another

g32_notify

call.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Application

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_notify

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_notify

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

C

Parameters

as

Specifies

a

pointer

to

the

g32_api

structure.

Status

is

returned

in

this

structure.

note

Specifies

to

turn

notification

off

(if

the

note

parameter

is

zero)

or

on

(if

the

note

parameter

is

nonzero).

Pascal

Parameters

as

Specifies

a

g32_api

structure.

164

Technical

Reference:

Communications,

Volume

1

note

Specifies

an

integer

that

signals

whether

to

turn

notification

off

(if

the

note

parameter

is

zero)

or

on

(if

the

note

parameter

is

nonzero).

FORTRAN

Parameters

AS

Specifies

a

g32_api

equivalent

structure

as

an

array

of

integers.

Note

Specifies

to

turn

notification

off

(if

the

Note

parameter

is

zero)

or

on

(if

the

Note

parameter

is

nonzero).

Return

Values

0

Indicates

successful

completion.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

the

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

Note:

The

following

example

is

missing

the

required

g32_open

and

g32_alloc

functions,

which

are

necessary

for

every

HCON

Workstation

API

program.

The

example

fragment

illustrates,

in

C

language,

the

use

of

the

g32_notify

function

in

an

api_3270

mode

program:

#include

<sys/types.h>

#include

<sys/ipc.h>

#include

<sys/poll.h>

#include

<sys/msg.h>

#include

"g32_api.h"

**

Note

that

the

following

function

is

an

example

of

g32_notify

function

use.

It

is

meant

to

be

called

from

an

API

application

program

that

has

already

performed

a

g32_open()or

g32_openx()

and

a

g32_alloc()

function

call.

The

function

will

accept

the

as

structure,

a

search

pattern,

and

a

timeout

(in

seconds)

as

arguments.

The

purpose

for

calling

this

function

is

to

search

for

a

certain

pattern

on

the

"screen"

within

a

given

amount

of

time.

As

soon

as

the

host

updates

the

screen

(presentation

space),the

notification

is

sent

(the

poll

returns

with

a

success).

This

data

may

not

be

your

desired

pattern,

so

this

routine

will

retry

until

the

timeout

is

reached.

The

function

will

poll

on

the

message

queue

and

search

the

presentation

space

each

time

the

API

is

notified.

If

the

pattern

is

found,

a

success

is

returned.

If

the

pattern

is

not

found

in

the

specified

timeout

period,

a

failure

(-1)

is

returned.

The

application

should

pass

the

timeout

value

in

seconds.

**/

search_pres_space

(as,pattern,timeout)

struct

g32_api

*as;

/*

Pointer

to

api

structure

*/

char

*pattern;

/*

Pattern

to

search

for

in

presentation

space

*/

int

timeout;

/*

The

maximum

time

to

wait

before

returning

a

failure

*/

{

char

done=0;

/*

Flag

used

to

test

if

loop

is

finished

*/

int

rc;

/*

return

code

*/

long

smsg;

/*

message

buffer

*/

unsigned

long

nfdmsgs;

/*

Specified

number

of

file

descriptors

and

number

of

message

queues

to

check.

Low

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

165

order

16

bits

is

the

number

of

elements

in

array

of

pollfd.

High

order

16

bits

is

number

of

elements

in

array

of

pollmsg.*/

struct

pollmsg

msglstptr;

/*

structure

defined

in

poll.h

contains

message

queue

id,

requested

events,

and

returned

events

*/

timeout

*=

1000

/*

convert

to

milliseconds

for

poll

call

*/

g32_notify

(as,

1);

/*

turn

on

the

notify

*/

rc

=

g32_search(as,pattern);

/*

search

the

presentation

space

for

the

pattern

*/

if

(rc

==

0)

{

done

=

1;

}

/*Loop

while

the

pattern

not

found

and

the

timeout

has

not

been

reached

*/

/*

Note

that

this

is

done

in

500

ms.

increments

*/

while

(

!(done)

&&

(timeout

>

0)

)

{

/*

wait

a

max

of

500

ms

for

a

response

from

the

host

*/

/*

This

is

done

via

the

poll

system

call

*/

nfdmsgs

=

(1<<16);

/*

One

element

in

the

msglstptr

array.

Since

the

low

order

bits

are

zero,

they

will

be

ignored

by

the

poll

*/

msglstptr.msgid

=

as->eventf;

/*

The

message

queue

id

*/

msglstptr.reqevents

=

POLLIN;

/*Set

flag

to

check

if

input

is

present

on

message

queue

*/

/*

poll

on

the

message

queue.

A

return

code

of

1

signifies

data

from

the

host.

An

rc

of

0

signifies

a

timeout.

An

rc

<

0

signifies

an

error

*/

rc

=

poll

(&msglstptr,nfdmsgs,(long)500);

rc

=

rc

>>

16;

/*

shift

return

code

into

low

order

bits

*/

/*

If

the

poll

found

something,

do

another

search

*/

if

(rc

=

1)

{

/*

call

msgrcv

system

call,

retrying

until

success

*/

/*

This

is

done

to

flush

the

IPC

queue

*/

do

{

rc

=

msgrcv(as->eventf,(struct

msgbuf

*)&smsg,

(size_t)0,(long)1,IPC_NOWAIT|IPC_NOERROR);

}

while

(

rc

==

G32ERROR);

rc

=

g32_search

(as,pattern);

/*

Search

for

pattern

*/

/*

if

pattern

is

found,

set

done

flag

to

exit

loop

*/

if

(rc

==

0)

{

done

=

1;

}

}

timeout

-=

500;

/*

decrement

the

timeout

by

500ms

*/

}

/*

end

while

*/

g32_notify

(as,0);

/*

turn

the

notify

off

again

*/

if

(done)

{

return

(0);

/*

search

was

successful

*/

}

else

{

return

(-1);

/*

failure

*/

}

}

166

Technical

Reference:

Communications,

Volume

1

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_open

Function

Purpose

Attaches

to

a

session.

If

the

session

does

not

exist,

the

session

is

started.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_open

(as,

flag,

uid,

pw,

sessionname)

struct

g32_api

*

as;

int

flag;

char

*

uid;

char

*

pw;

char

*

sessionname;

Pascal

Syntax

function

g32open(var

as

:

g32_api;

flag

:

integer;

uid

:

stringptr;

pw

:

stringptr;

sessionname

:

stringptr)

:

integer;

external;

FORTRAN

Syntax

INTEGER

G32OPEN,

RC,

AS(9),

FLAG

EXTERNAL

G32OPEN

CHARACTER*XX

UID,

PW,

SESSIONNAME

RC

=

G32OPEN(AS,

FLAG,

UID,

PW,

SESSIONNAME)

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

167

Description

The

g32_open

function

attaches

to

a

session

with

the

host.

If

the

session

does

not

exist,

the

session

is

started

automatically.

The

user

is

logged

on

to

the

host

if

requested.

This

function

is

a

subset

of

the

capability

provided

by

the

g32_openx

function.

An

application

program

must

call

the

g32_open

or

g32_openx

function

before

calling

any

other

API

function.

If

an

API

application

is

running

implicitly,

an

automatic

login

is

performed.

The

g32_open

function

can

be

nested

for

multiple

opens

as

long

as

a

distinct

as

structure

is

created

and

passed

to

each

open.

Corresponding

API

functions

will

map

to

each

open

session

according

to

the

as

structure

passed

to

each.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Application

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_open

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_open

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

CICS/VS

and

VSE/ESA

do

not

support

API/API

or

API/API_T

modes.

C

Parameters

as

Specifies

a

pointer

to

the

g32_api

structure.

Status

is

returned

in

this

structure.

flag

Signals

whether

the

login

procedure

should

be

performed.

Flag

values

are

as

follows:

v

If

the

emulator

is

running

and

the

user

is

logged

in

to

the

host,

the

value

of

the

flag

parameter

must

be

0.

v

If

the

emulator

is

running,

the

user

is

not

logged

in

to

the

host,

and

the

API

logs

in

to

the

host,

the

value

of

the

flag

parameter

must

be

set

to

1.

v

If

the

emulator

is

not

running

and

the

API

application

executes

an

automatic

login/logoff

procedure,

the

value

of

the

flag

parameter

is

ignored.

uid

Specifies

a

pointer

to

the

login

ID

string

if

the

g32_open

function

logs

in

to

the

host.

If

the

login

ID

is

a

null

string,

the

login

procedure

prompts

the

user

for

both

the

login

ID

and

the

password

unless

the

host

login

ID

is

specified

in

the

session

profile

in

which

case

the

user

is

prompted

only

for

a

password.

The

login

ID

is

a

string

consisting

of

the

host

user

ID

and,

optionally,

a

list

of

comma-separated

AUTOLOG

variables,

which

is

passed

to

the

implicit

procedure.

The

following

is

a

sample

list

of

AUTOLOG

variables:

userid,

node_id,

trace,

time=n,...

pw

Specifies

a

pointer

to

the

password

string

associated

with

the

login

ID

string.

The

following

usage

considerations

apply

to

the

pw

parameter:

v

If

no

password

is

to

be

specified,

the

user

can

specify

a

null

string.

v

If

no

value

is

provided

and

the

program

is

running

implicitly,

the

login

procedure

prompts

the

user

for

the

password.

v

If

the

uid

parameter

is

a

null

string,

the

pw

parameter

is

ignored.

sessionname

Specifies

a

pointer

to

the

name

of

a

session.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

168

Technical

Reference:

Communications,

Volume

1

flag

Signals

whether

the

login

procedure

should

be

performed.

v

If

the

emulator

is

running,

the

user

is

logged

in

to

the

host,

and

the

API

application

executes

as

a

subshell

of

the

emulator,

the

value

of

the

flag

parameter

must

be

0.

v

If

the

emulator

is

running,

the

user

is

not

logged

in

to

the

host,

and

the

API

application

executes

as

a

subshell

of

the

emulator

and

the

application

is

to

perform

an

automatic

login/logoff

procedure,

the

value

of

the

flag

parameter

must

be

set

to

1.

v

If

the

emulator

is

not

running

and

the

API

application

executes

an

automatic

login/logoff

procedure,

the

value

of

the

flag

parameter

is

ignored.

uid

Specifies

a

pointer

to

the

login

ID

string.

If

the

user

ID

is

a

null

string,

the

login

procedure

prompts

the

user

for

both

the

user

ID

and

the

password

unless

the

host

login

ID

is

specified

in

the

session

profile.

In

the

latter

case,

the

user

is

prompted

only

for

a

password.

pw

Specifies

a

pointer

to

the

password

string

associated

with

the

login

ID

string.

If

it

points

to

a

null

string,

the

login

procedure

prompts

the

user

for

the

password.

This

parameter

is

ignored

if

the

uid

parameter

is

a

null

string.

sessionname

Specifies

a

pointer

to

the

name

of

a

session,

which

indicates

the

host

connectivity

to

be

used

by

the

API

application.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

FORTRAN

Parameters

When

creating

strings

in

FORTRAN

that

are

to

be

passed

as

parameters,

the

strings

must

be

terminated

by

with

a

null

character,

CHAR(0).

Parameter

Description

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

FLAG

Signals

whether

the

login

procedure

should

be

performed.

UID

Specifies

a

pointer

to

the

login

ID

string.

If

the

user

ID

is

a

null

string,

the

login

procedure

prompts

the

user

for

both

the

user

ID

and

the

password

unless

the

host

login

ID

is

specified

in

the

session

profile.

In

the

latter

case,

the

user

is

prompted

only

for

a

password.

PW

Specifies

a

pointer

to

the

password

string

associated

with

the

login

ID

string.

If

the

parameter

specifies

a

null

string,

the

login

procedure

prompts

the

user

for

the

password.

This

parameter

is

ignored

if

the

uid

parameter

is

a

null

string.

SESSIONNAME

Specifies

the

name

of

a

session,

which

indicates

the

host

connectivity

to

be

used

by

the

API

application.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

Return

Values

Upon

successful

completion:

v

A

value

of

0

is

returned.

v

The

lpid

field

in

the

g32_api

structure

is

set

to

the

session

ID.

Upon

unsuccessful

completion:

v

A

value

of

-1

is

returned.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

an

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

The

following

example

fragment

illustrates

the

use

of

the

g32_open

function

in

an

api_3270

mode

program

in

C

language:

#include

<g32_api.h>

main()

{

struct

g32_api

*as,

asx;

/*

asx

is

statically

declared*/

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

169

int

flag=0;

int

ret;

as

=

&asx;

/*

as

points

to

an

allocated

structure

*/

ret=g32_open(as,flag,"mike","mypassword","a");

.

.

.

}

The

following

example

fragment

illustrates

the

use

of

the

g32_open

function

in

an

api_3270

mode

program

in

Pascal

language:

program

apitest

(input,

output);

const

%include

/usr/include/g32const.inc

type

%include

/usr/include/g32types.inc

var

as

:

g32_api;

rc

:

integer;

flag

:

integer;

sn

:

stringptr;

ret

:

integer;

uid,

pw

:

stringptr;

%include

/usr/include/g32hfile.inc

begin

flag

:=

0;

new(uid,20);

uid@

:=

chr(0);

new

(pw,20);

pw@

:=

chr(0);

new

(sn,1);

sn@

:=

’a’;

ret

:=

g32open(as,flag,uid,pw,sn);

.

.

.

end.

The

following

example

fragment

illustrates

the

use

of

the

g32_open

function

in

an

api_3270

mode

program

in

FORTRAN

language:

INTEGER

G32OPEN

INTEGER

RC,

AS(9),

FLAG

CHARACTER*20

UID

CHARACTER*10

PW

CHARACTER*2

SN

EXTERNAL

G32OPEN

UID

=

CHAR(0)

PW

=

CHAR(0)

SN

=

’a’//CHAR(0)

FLAG

=

0

RC

=

G32OPEN(AS,

FLAG,

UID,

PW,

SN)

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Contains

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

170

Technical

Reference:

Communications,

Volume

1

g32_openx

Function

Purpose

Attaches

to

a

session

and

provides

extended

open

capabilities.

If

the

session

does

not

exist,

the

session

is

started.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_openx

(as,

flag,

uid,

pw,

sessionname,

timeout)

struct

g32_api

*

as;

int

flag;

char

*

uid;

char

*

pw;

char

*

sessionname;

char

*

timeout;

Pascal

Syntax

function

g32openx(var

as

:

g32_api;

flag:

integer;

uid

:

stringptr;

pw

:

stringptr;

sessionname

:

stringptr;

timeout

:

stringptr)

:

integer;

external;

FORTRAN

Syntax

INTEGER

G32OPENX,RC,

AS(9),

FLAG

EXTERNAL

G32OPENX

CHARACTER*

XX

UID,

PW,

SESSIONNAME

RC

=

G32OPENX

(AS,

FLAG,

UID,

PW,

SESSIONNAME,

TIMEOUT)

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

171

Description

The

g32_openx

function

attaches

to

a

session.

If

the

session

does

not

exist,

the

session

is

started.

This

is

an

automatic

login.

The

user

is

logged

in

to

the

host

if

requested.

The

g32_openx

function

provides

additional

capability

beyond

that

of

the

g32_open

function.

An

application

program

must

call

g32_openx

or

g32_open

before

any

other

API

function.

If

an

API

application

is

run

automatically,

the

function

performs

an

automatic

login.

The

g32_openx

function

can

be

nested

for

multiple

opens

as

long

as

a

distinct

as

structure

is

created

and

passed

to

each

open.

Corresponding

API

functions

will

map

to

each

open

session

according

to

the

as

structure

passed

to

each.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Applications

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_openx

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_openx

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

CICS

and

VSE

do

not

support

API/API

or

API/API_T

modes.

C

Parameters

The

g32_openx

function

allows

for

a

varying

number

of

parameters

after

the

flag

parameter.

The

as

and

flag

parameters

are

required;

the

uid,

pw,

session,

and

timeout

parameters

are

optional.

With

the

g32_open

function,

the

timeout

parameter

does

not

exist

and

the

parameters

for

uid,

pw,

and

session

are

not

optional.

The

reason

for

making

the

last

four

parameters

optional

is

that

the

system

either

prompts

for

the

needed

information

(uid

and

pw)

or

defaults

with

valid

information

(session

or

timeout).

Unless

all

of

the

parameters

are

defined

for

this

function,

the

parameter

list

in

the

calling

statement

must

be

terminated

with

the

integer

0

(like

the

exec

function).

Providing

an

integer

of

1

forces

a

default

on

a

parameter.

Use

the

default

to

provide

a

placeholder

for

optional

parameters

that

you

do

not

need

to

supply.

Parameter

Description

as

Specifies

a

pointer

to

the

g32_api

structure.

flag

Requires

one

of

the

following:

v

Set

the

flag

parameter

to

0,

if

the

emulator

is

running

and

the

user

is

logged

on

to

host.

v

Set

the

flag

parameter

to

1

if

the

emulator

is

running,

the

user

is

not

logged

on

to

host,

and

the

API

application

is

to

perform

the

login/logoff

procedure.

The

g32_openx

function

ignores

the

flag

parameter,

if

the

emulator

is

not

running

and

the

API

application

executes

an

automatic

login/logoff

procedure.

uid

Specifies

a

pointer

to

the

login

ID

string.

If

the

login

ID

is

a

null

string,

the

login

procedure

prompts

the

user

for

both

the

login

ID

and

the

password,

unless

the

host

login

ID

is

specified

in

the

session

profile.

In

the

latter

case

the

user

is

prompted

only

for

a

password.

The

login

ID

is

a

string

consisting

of

the

host

user

ID

and

an

optional

list

of

additional

variables

separated

by

commas,

as

shown

in

the

example:

userid,var1,var2,...

In

this

example,

var1

is

the

login

script

name

(when

using

AUTOLOG)

and

var2

is

the

optional

trace

and

time

values.

The

list

is

passed

to

the

automatic

procedure.

172

Technical

Reference:

Communications,

Volume

1

Parameter

Description

pw

Specifies

a

pointer

to

the

password

string

associated

with

the

login

ID

string.

The

following

usage

considerations

apply

to

the

pw

parameter:

v

If

no

password

is

to

be

specified,

the

user

can

specify

a

null

string.

v

If

no

value

is

provided

and

the

program

is

running

automatically,

the

login

procedure

prompts

the

user

for

the

password.

v

If

the

uid

parameter

is

a

null

string,

the

pw

parameter

is

ignored.

sessionname

Points

to

the

name

of

a

session.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

Parameters

for

each

session

are

specified

in

a

per

session

profile.

timeout

Specifies

a

pointer

to

a

numerical

string

that

specifies

the

amount

of

nonactive

time

in

seconds

allowed

to

occur

between

the

workstation

and

the

host

operations

(that

is,

g32_read

and

G32WRITE).

This

parameter

is

optional.

If

no

value

is

provided

in

the

calling

statement,

the

default

value

is

15.

The

minimum

value

allowed

is

1.

There

is

no

maximum

value

limitation.

Pascal

Parameters

When

using

C

as

a

programming

language,

you

can

make

use

of

the

feature

of

variable

numbered

parameters.

In

Pascal,

however,

this

feature

is

not

allowed.

Therefore,

calls

to

the

g32_openx

function

must

contain

all

six

parameters.

To

use

defaults

for

the

four

optional

parameters

of

C,

provide

a

variable

whose

value

is

a

null

string.

Note:

The

use

of

the

integer

1

is

not

allowed

in

the

Pascal

version

of

the

g32_openx

function.

Space

must

be

allocated

for

any

string

pointers

prior

to

calling

the

g32_openx

function.

Parameter

Description

as

Specifies

the

g32_api

structure.

flag

Signals

whether

the

login

procedure

should

be

performed:

v

Set

the

flag

parameter

to

0.

If

the

emulator

is

running,

the

user

is

logged

on

to

host.

v

Set

the

flag

parameter

to

1.

If

the

emulator

is

running,

the

user

is

not

logged

on

to

host,

and

the

API

application

performs

the

login/logoff

procedure.

v

If

the

emulator

is

not

running

and

the

API

application

executes

an

automatic

login/logoff

procedure,

the

value

of

flag

is

ignored.

uid

Specifies

a

pointer

to

the

login

ID

string.

If

the

login

ID

is

a

null

string,

the

login

procedure

prompts

the

user

for

both

the

login

ID

and

the

password,

unless

the

host

login

ID

is

specified

in

the

session

profile.

In

the

latter

case

the

user

is

prompted

only

for

a

password.

pw

Specifies

a

pointer

to

the

password

string

associated

with

the

login

ID

string.

The

following

usage

considerations

apply

to

the

pw

parameter:

v

If

no

password

is

to

be

specified,

the

user

can

specify

a

null

string.

v

If

no

value

is

provided

and

the

program

is

running

automatically,

the

login

procedure

prompts

the

user

for

the

password.

v

If

the

uid

parameter

is

a

null

string,

the

pw

parameter

is

ignored.

sessionname

Points

to

the

name

of

a

session.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

Parameters

for

each

session

are

specified

in

a

per

session

profile.

timeout

Specifies

a

pointer

to

a

numerical

string

that

specifies

the

amount

of

nonactive

time

in

seconds

allowed

to

occur

between

the

workstation

and

the

host

operations

(that

is,

g32_read

and

g32WRITE).

This

parameter

is

optional.

If

no

value

is

provided

in

the

calling

statement,

the

default

value

is

15.

The

minimum

value

allowed

is

1.

There

is

no

maximum

value

limitation.

FORTRAN

Parameters

FORTRAN

calls

to

G32_OPENX

must

contain

all

six

parameters.

To

use

defaults

for

the

four

optional

parameters

of

C

language,

provide

a

variable

whose

value

is

a

null

string.

Note

that

the

use

of

the

integer

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

173

1

is

not

allowed

in

the

FORTRAN

version

of

this

function.

When

creating

strings

in

FORTRAN

that

are

to

pass

as

parameters,

the

strings

must

be

linked

with

a

null

character,

CHAR(0).

Parameter

Description

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

FLAG

Signals

that

the

login

procedure

should

be

performed:

v

Set

the

FLAG

parameter

to

0,

if

the

emulator

is

running,

the

user

is

logged

on

to

host.

v

Set

the

FLAG

parameter

to

1,

if

the

emulator

is

running,

the

user

is

not

logged

on

to

host.

v

If

the

emulator

is

not

running

and

the

API

application

executes

an

automatic

login/logoff

procedure,

the

value

of

the

FLAG

parameter

is

ignored.

UID

Specifies

a

pointer

to

the

login

ID

string.

If

the

login

ID

is

a

null

string,

the

login

procedure

prompts

the

user

for

both

the

login

ID

and

the

password,

unless

the

host

login

ID

is

specified

in

the

session

profile.

In

the

latter

case

the

user

is

prompted

only

for

a

password.

PW

Specifies

a

pointer

to

the

password

string

associated

with

the

login

ID

string.

The

following

usage

considerations

apply

to

the

pw

parameter:

v

If

no

password

is

to

be

specified,

the

user

can

specify

a

null

string.

v

If

no

value

is

provided

and

the

program

is

running

automatically,

the

login

procedure

prompts

the

user

for

the

password.

v

If

the

uid

parameter

is

a

null

string,

the

pw

parameter

is

ignored.

SESSIONNAME

Specifies

the

name

of

a

session.

The

session

name

is

a

single

character

in

the

range

of

a

through

z.

Capital

letters

are

interpreted

as

lowercase

letters.

Parameters

for

each

session

are

specified

in

a

per

session

profile.

TIMEOUT

Specifies

a

numerical

string

that

specifies

the

amount

of

nonactive

time

in

seconds

allowed

to

occur

between

the

workstation

and

the

host

operations

(that

is,

g32_read/g32WRITE).

There

is

no

maximum

to

this,

but

the

minimum

is

1.

Return

Values

0

Indicates

successful

completion.

The

lpid

field

in

the

g32_api

structure

is

set

to

the

session

ID.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

an

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

1.

To

use

the

g32_openx

function

with

fewer

than

four

optional

string

constant

parameters

specified

and

with

AUTOLOG,

enter:

g32_openx

(AS,

0,

"john,

tso,

trace",

"j12hn");

2.

To

use

the

g32_openx

function

with

fewer

than

four

optional

string

constant

parameters

specified

and

with

the

automatic

login

facility,

enter:

g32_openx

(AS,

1,

"john",

"j12hn",

"Z",

0);

3.

To

use

the

g32_openx

function

with

all

optional

parameters

not

specified,

enter:

g32_openx

(AS,

1,

0);

OR

g32_openx

(AS,

0,

0);

4.

To

use

the

g32_openx

function

with

four

variable

optional

parameters,

enter:

g32_openx

(AS,

0,

UID,

Pw,

Sessionname,

TimeOut);

5.

To

use

the

g32_openx

function

with

fewer

than

four

variable

optional

parameters,

enter:

g32_openx

(AS,

1,

UID,

Pw,

0);

6.

To

use

the

g32_openx

function

with

two

default

optional

parameters,

enter:

g32_openx

(AS,

0,

1,

1,

1,

"60");

174

Technical

Reference:

Communications,

Volume

1

7.

To

use

the

g32_openx

function

with

a

mixture:

g32_openx

(AS,

0,

1,

1,

Session,

0);

8.

To

use

the

g32_openx

function

within

a

program

segment

in

the

C

language:

#include

<g32_api.h>

main()

{

struct

g32_api

*as,

asx;

/*

asx

is

a

temporary

struct

*/

/*

g32.api

so

that

storage

*/

/*

is

allocated

*/

int

flag=0;

int

ret;

sn

=

&nm;

as

=

&asx;

/*

as

points

to

an

allocated

structure

*/

ret=g32_openx(as,flag,"mike","mypassword","a","60");

.

.

.

}

Note:

Only

the

first

two

parameters

are

mandatory.

The

remaining

parameters

can

be

terminated

with

a

0.

For

example:

ret

=

g32_openx(as.flag,0);

Null

characters

may

be

substituted

for

any

of

the

string

values

if

profile

or

command

values

are

desired.

9.

To

use

the

g32_openx

function

within

a

program

segment

in

the

Pascal

language:

program

apitest

(input,

output);

const

%include

/usr/include/g32const.inc

type

%include

/usr/include/g32types.inc

var

as

:

g32_api;

rc

:

integer;

flag

:

integer;

sn

:

stringptr;

timeout

:

stringptr;

ret

:

integer;

uid,

pw

:

stringptr;

%include

/usr/include/g32hfile.inc

begin

flag

:=

0;

new(uid,20);

uid@

:=

chr(0);

new

(pw,20);

pw@

:=

chr(0);

new

(sn,1);

sn@

:=

’a’;

new

(timeout,32);

timeout@

:=

’60’;

ret

:=

g32openx(as,flag,uid,pw,sn,timeout);

.

.

.

end.

10.

To

use

the

g32_openx

function

within

a

program

segment

in

the

FORTRAN

language:

INTEGER

G32OPENX

INTEGER

RC,

AS(9),

FLAG

CHARACTER*20

UID

CHARACTER*10

PW

CHARACTER*10

TIMEOUT

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

175

CHARACTER*1

SN

EXTERNAL

G32OPENX

UID

=

CHAR(0)

TIMEOUT

=

CHAR(0)

MODEL

=

CHAR(0)

PW

=

CHAR(0)

SN

=

’a’//CHAR(0)

TIMEOUT

=

’60’//CHAR(0)

FLAG

=

0

RC

=

G32OPENX(AS,

FLAG,

UID,

PW,

SN,

TIMEOUT)

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_read

Function

Purpose

Receives

a

message

from

a

host

application.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_read

(

as,

msgbuf,

msglen)

struct

g32_api

*as;

char

**msgbuf;

int

*msglen;

Pascal

Syntax

function

g32read

(var

as

:

g32_api;

var

buffer

:

stringptr;

var

msglen

:

integer)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32READ

INTEGER

AS(9),

BUFLEN,

G32READ

CHARACTER

*XX

MSGBUF

RC=

G32READ

(

AS,

MSGBUF,

BUFLEN)

176

Technical

Reference:

Communications,

Volume

1

Description

The

g32_read

function

receives

a

message

from

a

host

application.

The

g32_read

function

may

only

be

used

by

those

applications

having

API/API

or

API/API_T

mode

specified

with

the

g32_alloc

function.

v

In

C

or

Pascal,

a

buffer

is

obtained,

a

pointer

to

the

buffer

is

saved,

and

the

message

from

the

host

is

read

into

the

buffer.

The

length

of

the

message

and

the

address

of

the

buffer

are

returned

to

the

user

application.

v

In

FORTRAN,

the

calling

procedure

must

pass

a

buffer

large

enough

for

the

incoming

message.

The

BUFLEN

parameter

must

be

the

actual

size

of

the

buffer.

The

G32READ

function

uses

the

BUFLEN

parameter

as

the

upper

array

bound.

Therefore,

any

messages

larger

than

BUFLEN

are

truncated

to

fit

the

buffer.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Application

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_read

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_read

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

In

a

DBCS

environment,

the

g32_read

function

only

reads

SBCS

data

from

a

host

in

the

MODE_API_T

mode.

C

Parameters

as

Specifies

a

pointer

to

a

g32_api

structure.

msgbuf

Specifies

a

pointer

to

a

buffer

where

a

message

from

the

host

is

placed.

The

API

obtains

space

for

this

buffer

by

using

the

malloc

library

subroutine,

and

the

user

is

responsible

for

releasing

it

by

issuing

a

free

call

after

the

g32_read

function.

msglen

Specifies

a

pointer

to

an

integer

where

the

length,

in

bytes,

of

the

msgbuf

parameter

is

placed.

The

message

length

must

be

greater

than

0

but

less

than

or

equal

to

the

maximum

I/O

buffer

size

parameter

specified

in

the

HCON

session

profile.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

buffer

Specifies

a

stringptr

structure.

The

API

obtains

space

for

this

buffer

by

using

the

malloc

C

library

subroutine,

and

the

user

is

responsible

for

releasing

it

by

issuing

a

dispose

subroutine

after

the

g32_read

function.

msglen

Specifies

an

integer

where

the

number

of

bytes

read

is

placed.

The

message

length

must

be

greater

than

0

(zero)

but

less

than

or

equal

to

the

maximum

I/O

buffer

size

parameter

specified

in

the

HCON

session

profile.

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure.

BUFLEN

Specifies

the

size,

in

bytes,

of

the

value

contained

in

the

MSGBUF

parameter.

The

message

length

must

be

greater

than

0

and

less

than

or

equal

to

the

maximum

I/O

buffer

size

parameter

specified

in

the

HCON

session

profile.

MSGBUF

Specifies

the

storage

area

for

the

character

data

read

from

the

host.

Return

Values

>

0

(greater

than

or

equal

to

zero)

Indicates

successful

completion.

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

177

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

the

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

The

following

example

illustrates

the

use

of

the

g32_read

function

in

C

language.

#include

<g32_api>

/*

API

include

file

*/

main()

{

struct

g32_api

*as,

asx

/*

g32_api

structure

*/

char

**msg_buf;

/*

pointer

to

host

msg

buffer

*/

char

*messg;

/*

pointer

to

character

string

*/

int

msg_len;

/*

pointer

to

host

msg

length

*/

char

*

malloc();

/*

C

memory

allocation

function

*/

int

return;

/*

return

code

is

no.

of

bytes

read

*/

.

.

.

as

=

&asx;

msg_buff

=

&messg;

/*

point

to

a

string

*/

return

=

g32_read(as,

msg_buff,

&msg_len);

.

.

.

free

(*msg_buff);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_search

Function

Purpose

Searches

for

a

character

pattern

in

a

presentation

space.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_search

(

as,

pattern)

struct

g32_api

*as;

178

Technical

Reference:

Communications,

Volume

1

char

*pattern;

Pascal

Syntax

function

g32srch(var

as

:

g32_api;

pattern

:

stringptr)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32SEARCH

INTEGER

AS(9),

G32SEARCH

CHARACTER

*XX

PATTERN

RC

=

G32SEARCH(AS,

PATTERN)

Description

The

g32_search

function

searches

for

the

specified

byte

pattern

in

the

presentation

space

associated

with

the

application.

Note:

The

g32_search

function

can

only

be

used

in

API/3270

mode.

The

search

is

performed

from

the

row

and

column

given

in

the

g32_api

structure

to

the

end

of

the

presentation

space.

Note

that

the

row

and

column

positions

start

at

1

(one)

and

not

0.

If

you

start

at

0

for

row

and

column,

an

invalid

position

error

will

result.

The

g32_search

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_search

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

In

a

DBCS

environment,

the

g32_search

function

only

searches

the

presentation

space

for

an

SBCS

character

pattern.

This

function

does

not

support

Katakana

or

DBCS

characters.

Pattern

Matching

In

any

given

search

pattern,

the

following

characters

have

special

meaning:

Character

Description

?

The

question

mark

is

the

arbitrary

character,

matching

any

one

character.

*

The

asterisk

is

the

wildcard

character,

matching

any

sequence

of

zero

or

more

characters.

\

The

backslash

is

the

escape

character

meaning

the

next

character

is

to

be

interpreted

literally.

Note:

The

pattern

cannot

contain

two

consecutive

wildcard

characters.

Pattern

Matching

Example

The

string

AB?DE

matches

any

of

ABCDE,

AB9DE,

ABxDE,

but

does

not

match

ABCD,

ABCCDE,

or

ABDE.

The

string

AB*DE

matches

any

of

ABCDE,

AB9DE,

ABCCDE,

ABDE,

but

does

not

match

ABCD,

ABCDF,

or

ABC.

Pattern

Matching

in

C

and

Pascal

If

the

pattern

needs

to

contain

either

a

question

mark

or

an

asterisk

as

a

literal

character,

these

symbols

must

be

preceded

by

two

escape

characters

(\\?

or

*).

For

example,

to

search

for

the

string,

How

are

you

today?,

the

pattern

might

be:

How

are

you

today

\\?

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

179

The

backslash

can

be

used

as

a

literal

character

by

specifying

four

backslash

characters

(\\\\)

in

the

pattern.

For

example,

to

search

for

the

string,

We

found

the

\.,

the

pattern

might

be:

We

found

the

\\\\.

Pattern

Matching

in

FORTRAN

If

the

pattern

needs

to

contain

either

a

question

mark

or

an

asterisk

as

a

literal

character,

these

symbols

must

be

preceded

by

one

escape

character

(\?

or

*).

For

example,

to

search

for

the

string,

How

are

you

today?,

the

pattern

might

be:

How

are

you

today\?

The

backslash

can

be

used

as

a

literal

character

by

specifying

two

backslash

characters

(\\)

in

the

pattern.

For

example,

to

search

for

the

string,

We

found

the

\.,

the

pattern

might

be:

We

found

the

\\.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Application

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

C

Parameters

as

Specifies

a

pointer

to

a

g32_api

structure.

It

also

contains

the

row

and

column

where

the

search

should

begin.

Status

information

is

returned

in

this

structure.

pattern

Specifies

a

pointer

to

a

byte

pattern,

which

is

searched

for

in

the

presentation

space.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

pattern

Specifies

a

pointer

to

a

string

containing

the

pattern

to

search

for

in

the

presentation

space.

The

string

must

be

at

least

as

long

as

the

length

indicated

in

the

g32_api

structure.

FORTRAN

Parameters

AS

Specifies

a

g32_api

equivalent

structure

as

an

array

of

integers.

PATTERN

Specifies

a

string

that

is

searched

for

in

the

presentation

space.

Return

Values

0

Indicates

successful

completion.

v

The

corresponding

row

field

of

the

as

structure

is

the

row

position

of

the

beginning

of

the

matched

string.

v

The

corresponding

column

field

of

the

as

structure

is

the

column

position

of

the

beginning

of

the

matched

string.

v

The

corresponding

length

field

of

the

as

structure

is

the

length

of

the

matched

string.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

the

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

Note:

The

following

example

is

missing

the

required

g32_open

and

g32_alloc

functions

which

are

necessary

for

every

HCON

Workstation

API

program.

180

Technical

Reference:

Communications,

Volume

1

The

following

example

fragment

illustrates

the

use

of

the

g32_search

function

in

an

api_3270

mode

program

in

C

language:

#include

<g32_api.h>

/*

API

include

file

*/

#include

<g32_keys.h>

main()

{

struct

g32_api

*as;

/*

g32

structure

*/

char

*buffer;

/*

pointer

to

char

string

*/

int

return;

/*

return

code

*/

char

*malloc();

/*

C

memory

allocation

function

*/

.

.

.

return

=

g32_notify(as,1);

/*

Turn

notification

on

*/

buffer

=

malloc(10);

return

=

g32_get_cursor(as);

/*

get

location

of

cursor

*/

printf

("

The

cursor

position

is

row:

%d

col:

%d/n",

as

->

row,

as

->

column);

/*

Get

data

from

host

starting

at

the

current

row

and

column

*/

as

->

length

=

10;

/*

length

of

a

pattern

on

host

*/

return

=

g32_get_data(as,buffer);

/*

get

data

from

host

*/

printf("The

data

returned

is

<%s>\n",buffer);

/*

Try

to

search

for

a

particular

pattern

on

host

*/

as

->row

=1;

/*

row

to

start

search

*/

as

->column

=1;

/*

column

to

start

search

*/

return

=

g32_search(as,"PATTERN");

/*Send

a

clear

key

to

the

host

*/

return

=

g32_send_keys(as,CLEAR);

/*

Turn

notification

off

*/

return

=

g32_notify(as,0);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_send_keys

Function

Purpose

Sends

key

strokes

to

the

terminal

emulator.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

#include

<g32_keys.h>

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

181

g32_send_keys

(

as,

buffer)

struct

g32_api

*as;

char

*buffer;

Pascal

Syntax

const

%include

/usr/include/g32keys.inc

function

g32sdky

(var

as

:

g32_api;

buffer

:

stringptr)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32SENDKEYS

INTEGER

AS(9),

G32SENDKEYS

CHARACTER

*XX

BUFFER

RC

=

G32SENDKEYS(

AS,

BUFFER)

Description

The

g32_send_keys

function

sends

one

or

more

key

strokes

to

a

terminal

emulator

as

though

they

came

from

the

keyboard.

ASCII

characters

are

sent

by

coding

their

ASCII

value.

Other

keys

(such

as

Enter

and

the

cursor-movement

keys)

are

sent

by

coding

their

values

from

the

g32_keys.h

file

(for

C

programs)

or

g32keys.inc

file

(for

Pascal

programs).

FORTRAN

users

send

other

keys

by

passing

the

name

of

the

key

through

the

G32SENDKEYS

buffer.

Note:

The

g32_send_keys

function

can

only

send

128

characters

per

call.

The

g32_send_keys

function

can

be

chained

when

more

than

128

characters

must

be

sent.

The

g32_send_keys

function

can

only

be

used

in

API/3270

mode.

The

g32_send_keys

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_send_keys

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

In

a

DBCS

environment,

the

g32_send_keys

function

only

sends

SBCS

keystrokes,

including

ASCII

characters,

to

a

terminal

emulator.

DBCS

characters

are

ignored.

C

Parameters

as

Specifies

a

pointer

to

the

g32_api

structure.

Status

is

returned

in

this

structure.

buffer

Specifies

a

pointer

to

a

buffer

of

key

stroke

data.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

Status

is

returned

in

this

structure.

buffer

Specifies

a

pointer

to

a

string

containing

the

keys

to

be

sent

to

the

host.

The

string

must

be

at

least

as

long

as

indicated

in

the

g32_api

structure.

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

182

Technical

Reference:

Communications,

Volume

1

BUFFER

The

character

array

containing

the

key

sequence

to

send

to

the

host.

A

special

emulator

key

can

be

sent

by

the

g32_send_keys

function

as

follows:

BUFFER

=

’ENTER’//CHAR(0)

RC

=

G32SENDKEYS

(AS,BUFFER)

The

special

emulator

strings

recognized

by

the

g32_send_keys

function

are

as

follows:

CLEAR

DELETE

DUP

ENTER

EOF

ERASE

FMARK

HOME

INSERT

NEWLINE

RESET

SYSREQ

LEFT

RIGHT

UP

DOWN

LLEFT

RRIGHT

UUP

DDOWN

TAB

BTAB

ATTN

PA1

PA2

PA3

PF1

PF2

PF3

PF4

PF5

PF6

PF7

PF8

PF9

PF10

PF11

PF12

PF13

PF14

PF15

PF16

PF17

PF18

PF19

PF20

PF21

PF22

PF23

PF24

CURSEL

Return

Values

0

Indicates

successful

completion.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

the

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

Note:

The

following

example

is

missing

the

required

g32_open

and

g32_alloc

functions

which

are

necessary

for

every

HCON

workstation

API

program.

The

following

example

fragment

illustrates,

in

C

language,

the

use

of

the

g32_send_keys

function

in

an

api_3270

mode

program:

#include

<g32_api.h>

/*

API

include

file

*/

*include

<g32_keys.h>

main()

{

struct

g32_api

*as;

/*

g32

structure

*/

char

*buffer;

/*

pointer

to

char

string

*/

int

return;

/*

return

code

*/

char

*malloc();

/*

C

memory

allocation

function

*/

.

.

.

return

=

g32_notify(as,1);

/*

Turn

notification

on

*/

buffer

=

malloc(10);

return

=

g32_get_cursor(as);

/*

get

location

of

cursor

*/

printf

("

The

cursor

position

is

row:

%d

col:

%d/n",

as

->

row,

as

->

column);

/*

Get

data

from

host

starting

at

the

current

row

and

column

*/

as

->

length

=

10;

/*

length

of

a

pattern

on

host

*/

return

=

g32_get_data(as,buffer);

/*

get

data

from

host

*/

printf("The

data

returned

is

<%s>\n",buffer);

/*

Try

to

search

for

a

particular

pattern

on

host

*/

as

->row

=1;

/*

row

to

start

search

*/

as

->column

=1;

/*

column

to

start

search

*/

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

183

return

=

g32_search(as,"PATTERN");

/*Send

a

clear

key

to

the

host

*/

return

=

g32_send_keys(as,CLEAR);

/*

Turn

notification

off

*/

return

=

g32_notify(as,0);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32_keys.h

Defines

key

values

for

C

language

use.

/usr/include/g32keys.inc

Defines

key

values

for

Pascal

language

use.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

g32_write

Function

Purpose

Sends

a

message

to

a

host

application.

Libraries

HCON

Library

C

(libg3270.a)

Pascal

(libg3270p.a)

FORTRAN

(libg3270f.a)

C

Syntax

#include

<g32_api.h>

g32_write

(

as,

msgbuf,

msglen)

struct

g32_api

*as;

char

*msgbuf;

int

msglen;

Pascal

Syntax

function

g32wrte

(var

as

:

g32_api;

buffer

:

integer;

msglen

:

integer)

:

integer;

external;

FORTRAN

Syntax

EXTERNAL

G32WRITE

INTEGER

AS(9),

MSGLEN,

G32WRITE

CHARACTER*

XX

MSGBUF

RC

=

G32WRITE(AS,

MSGBUF,

MSGLEN)

184

Technical

Reference:

Communications,

Volume

1

Description

The

g32_write

function

sends

the

message

pointed

to

by

the

msgbuf

parameter

to

the

host.

This

function

may

only

be

used

by

those

applications

having

API/API

or

API/API_T

mode

specified

by

the

g32_alloc

command.

HCON

application

programs

using

the

Pascal

language

interface

must

include

and

link

both

the

C

and

Pascal

libraries.

Applications

programs

using

the

FORTRAN

language

for

the

HCON

API

must

include

and

link

both

the

C

and

FORTRAN

libraries.

The

g32_write

function

is

part

of

the

Host

Connection

Program

(HCON).

The

g32_write

function

requires

one

or

more

adapters

used

to

connect

to

a

host.

In

a

DBCS

environment,

the

g32_write

function

only

sends

SBCS

data

to

a

host

in

the

MODE_API_T

mode.

C

Parameters

as

Specifies

the

pointer

to

a

g32_api

structure.

msgbuf

Specifies

a

pointer

to

a

message,

which

is

a

byte

string.

msglen

Specifies

the

length,

in

bytes,

of

the

message

pointed

to

by

the

msgbuf

parameter.

The

value

of

the

msglen

parameter

must

be

greater

than

0

and

and

less

than

or

equal

to

the

maximum

I/O

buffer

size

specified

in

the

HCON

session

profile.

Pascal

Parameters

as

Specifies

the

g32_api

structure.

buffer

Specifies

an

address

of

a

character-packed

array.

Note:

The

address

of

a

packed

array

can

be

obtained

by

the

addr()

function

call:

buffer

:=

addr

(<msg

array

name>

[1]).

msglen

Specifies

an

integer

indicating

the

length

of

the

message

to

send

to

the

host.

The

msglen

parameter

must

be

greater

than

0

and

less

than

or

equal

to

the

maximum

I/O

buffer

size

specified

in

the

HCON

session

profile.

FORTRAN

Parameters

AS

Specifies

the

g32_api

equivalent

structure

as

an

array

of

integers.

MSGBUF

Specifies

a

character

array

containing

the

data

to

be

sent

to

the

host.

MSGLEN

Specifies

the

number

of

bytes

to

be

sent

to

the

host.

The

MSGLEN

parameter

must

be

greater

than

0

and

less

than

or

equal

to

the

maximum

I/O

buffer

size

specified

in

the

HCON

session

profile.

Return

Values

>

0

(greater

than

or

equal

to

zero)

Indicates

successful

completion.

-1

Indicates

an

error

has

occurred.

v

The

errcode

field

in

the

g32_api

structure

is

set

to

the

error

code

identifying

the

error.

v

The

xerrinfo

field

can

be

set

to

give

more

information

about

the

error.

Examples

The

following

example

illustrates,

in

C

language,

the

use

of

the

g32_write

function:

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

185

#include

<g32_api>

/*

API

include

*/

main()

{

struct

g32_api

*as;

/*

the

g32

structure

*/

char

*messg;

/*

pointer

to

a

character

string

to

send

to

the

host

*/

int

length;

/*

Number

of

bytes

sent

*/

char

*malloc();

/*

C

memory

allocation

function

*/

int

return;

/*

return

code

is

no.

of

bytes

sent

*/

.

.

.

messg

=

malloc(30);

/*

allocate

30

bytes

for

the

string

*/

/*

initialize

message

string

with

information

*/

strcpy(messg,"string

to

be

sent

to

host/0");

length

=

strlen(messg);

/*

length

of

the

message

*/

return

=

g32_write(as,messg,length);

.

.

.

Files

/usr/include/g32_api.h

Contains

data

structures

and

associated

symbol

definitions.

/usr/include/g32const.inc

Defines

Pascal

API

constants.

/usr/include/g32hfile.inc

Defines

Pascal

API

external

definitions.

/usr/include/g32types.inc

Defines

Pascal

API

data

types.

G32ALLOC

Function

Purpose

Starts

interaction

with

an

API

application

running

simultaneously

on

the

local

system.

Syntax

G32ALLOC

Description

The

G32ALLOC

function

starts

a

session

with

an

application

program

interface

(API)

application

by

sending

a

message

to

the

g32_alloc

system

call

indicating

that

the

allocation

is

complete.

The

G32ALLOC

function

is

a

HCON

API

function

that

can

be

called

by

a

370

Assembler

application

program.

The

G32ALLOC

function

is

part

of

the

Host

Connection

Program

(HCON).

The

G32ALLOC

function

requires

one

or

more

adapters

used

to

connect

to

a

mainframe

host.

Return

Values

This

call

sets

register

0

to

the

following

values:

Value

Description

>

0

Indicates

a

normal

return

or

a

successful

call.

The

value

returned

indicates

the

maximum

number

of

bytes

that

may

be

transferred

to

an

operating

system

application

by

way

of

G32WRITE

or

received

from

an

operating

systems

application

by

way

of

G32READ.

<

0

Indicates

less

than

0.

Host

API

error

condition.

186

Technical

Reference:

Communications,

Volume

1

Examples

The

following

370

Assembler

code

example

illustrates

the

use

of

the

host

G32ALLOC

function:

L

R11,=v(G32DATA)

USING

G32DATAD,R11

G32ALLOC

/*

Allocate

a

session

*/

LTR

R0,R0

BNM

OK

/*

Normal

completion

*/

C

R0,G32ESESS

/*

Session

error

*/

BE

SESSERR

C

R0,G32ESYS

/*

System

error

*/

BE

SYSERR

.

.

.

Related

Information

Session

control

subroutines

are

the

g32_alloc

subroutine,

g32_close

subroutine,

g32_dealloc

subroutine,

g32_open

subroutine,

and

g32_openx

subroutine.

Message

interface

subroutines

are

the

g32_get_status

subroutine,

g32_read

subroutine,

and

g32_write

subroutine.

Additional

host

interface

functions

are

the

G32DLLOC

function,

G32READ

function,

and

G32WRITE

function.

G32DLLOC

Function

Purpose

Terminates

interaction

with

an

API

application

running

simultaneously

on

the

local

system.

Syntax

G32DLLOC

Description

The

G32DLLOC

function

ends

interaction

with

an

API

application.

The

G32DLLOC

function

is

a

HCON

API

function

that

can

be

called

by

a

370

Assembler

applications

program.

The

G32DLLOC

function

requires

one

or

more

adapters

used

to

connect

to

a

mainframe

host.

Return

Values

This

call

sets

register

0

(zero)

to

the

following

values:

Value

Description

0

Indicates

a

normal

return

or

a

successful

call.

<

0

Indicates

less

than

zero.

An

error

condition

exists.

Examples

The

following

370

Assembler

code

example

illustrates

the

use

of

the

host

G32DLLOC

function:

L

R11,=v(G32DATA)

USING

G32DATAD,R11

G32DLLOC

/*

Deallocate

a

session.

*/

C

R0,

G32ESESS

/*

Check

for

G32

error.

*/

BE

SESSERR

/*

Branch

if

error.

*/

C

R0,

G32ESYS

/*

Check

for

system

error.

*/

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

187

BE

SYSERR

/*

Branch

if

error.

*/

.

.

.

Related

Information

Session

control

subroutines

are

the

g32_alloc

subroutine,

g32_close

subroutine,

g32_dealloc

subroutine,

g32_open

subroutine,

and

g32_openx

subroutine.

Message

interface

subroutines

are

the

g32_read

subroutine,

g32_get_status

subroutine,

and

g32_write

subroutine.

Additional

host

interface

functions

are

the

G32ALLOC

function,

G32READ

function,

and

G32WRITE

function.

G32READ

Function

Purpose

Receives

a

message

from

the

API

application

running

simultaneously

on

the

local

system.

Syntax

G32READ

Description

The

G32READ

function

receives

a

message

from

an

application

programming

interface

(API)

application.

The

G32READ

function

returns

when

a

message

is

received.

The

status

of

the

transmission

is

returned

in

register

zero

(R0).

The

G32READ

function

returns

the

following

information:

Return

Description

R0

Indicates

the

number

of

bytes

read.

R1

Indicates

the

address

of

the

message

buffer.

In

VM/CMS,

storage

for

the

read

command

is

obtained

using

the

DMSFREE

macro.

R0

contains

the

number

of

bytes

read.

R1

contains

the

address

of

the

buffer.

It

is

the

responsibility

of

the

host

application

to

release

the

buffer

with

a

DMSFRET

call.

Assuming

the

byte

count

and

address

are

in

R0

and

R1,

respectively,

the

following

code

fragment

should

be

used

to

free

the

buffer:

The

G32READ

function

is

part

of

the

Host

Connection

Program

(HCON).

The

G32READ

function

requires

one

or

more

adapters

used

to

connect

to

a

mainframe

host.

SRL

R0,3

A

R0,=F’1’

DMSFRET

DWORDS=(0),LOC=(1)

In

MVS/TSO,

storage

for

the

READ

command

is

obtained

using

the

GETMAIN

macro.

R0

contains

the

number

of

bytes

read.

R1

contains

the

address

of

the

buffer.

The

host

application

must

release

the

buffer

with

a

FREEMAIN

call.

Attention:

In

MVS/TSO,

when

programming

an

API

assembly

language

application,

you

must

be

careful

with

the

TPUT

macro.

If

it

is

used

in

a

sequence

of

G32READ

and

G32WRITE

subroutines,

it

188

Technical

Reference:

Communications,

Volume

1

will

interrupt

the

API/API

mode

and

switch

the

host

to

the

API/3270

mode

to

exit.

You

will

not

be

able

to

get

the

API/API

mode

back

until

you

send

the

Enter

key.

Return

Values

The

G32READ

function

sets

register

zero

(R0)

to

the

following

values:

Value

Description

>

0

Normal

return.

Indicates

the

length

of

the

message

as

the

number

of

bytes

read.

<

0

Less

than

zero.

Indicates

a

host

API

error

condition.

Examples

The

following

370

Assembler

code

example

illustrates

the

use

of

the

host

G32READ

function:

.

.

.

MEMORY

L

12,=v(G32DATA)

/*

SET

POINTER

TO

API

DATA

AREA

*/

.

.

.

L

2,=F`2’

G32READ

/*

RECEIVE

MESSAGE

FROM

AIX

*/

ST

1,ADDR

/*

STORE

ADDRESS

OF

MESSAGE

*/

ST

0,LEN

/*

STORE

LENGTH

OF

MESSAGE

*/

BAL

14,CHECK

.

.

.

Related

Information

For

documentation

on

the

DMSFREE

and

DMSFRET

macros,

consult

the

VM/SP

Entry

System

Programmer’s

Guide.

For

documentation

on

the

GETMAIN

and

FREEMAIN

macros,

consult

the

MVS/XA

System

Macros

and

Facilities,

Volume

2

or

MVS/XA

Supervisor

Services

and

Macros.

G32WRITE

Function

Purpose

Sends

a

message

to

an

API

application

running

simultaneously

on

the

local

system.

Syntax

G32WRITE

MSG,

LEN

Description

The

G32WRITE

function

sends

a

message

to

an

API

application.

The

maximum

number

of

bytes

that

may

be

transferred

is

specified

by

the

value

returned

in

register

zero

(R0)

after

a

successful

completion

of

the

G32ALLOC

function.

The

G32

WRITE

function

is

a

HCON

API

function

that

can

be

called

by

a

370

Assembler

applications

program.

The

G32WRITE

function

requires

one

or

more

adapters

used

to

connect

to

a

mainframe

host.

Chapter

4.

AIX

3270

Host

Connection

Program

(HCON)

189

Parameters

MSG

Gives

the

address

of

the

message

to

be

sent.

It

may

be:

Label

A

label

on

a

DC

or

DS

statement

declaring

the

message.

0(reg)

A

register

containing

the

address

of

the

message.

LEN

Specifies

the

length,

in

bytes,

of

the

message.

It

is

a

full

word,

whose

contents

cannot

exceed

the

value

returned

by

the

G32ALLOC

function

in

R0.

It

must

be:

Label

The

address

of

a

full

word

containing

the

length

of

the

message.

Return

Values

The

G32WRITE

function

sets

register

0

to

the

following

values:

Value

Description

0

Indicates

a

normal

return;

call

successful.

<

0

Less

than

0.

Indicates

a

host

API

error

condition.

Examples

The

following

370

Assembler

code

example

illustrates

the

use

of

the

host

G32WRITE

function:

L

R11,=v(G32DATA)

USING

G32DATAD,R11

G32WRITE

MSG1,

LEN1

/*

write

"Hello"

to

AIX

*/

LTR

R0,R0

/*

check

return

code

*/

BE

WRITEOK

/*

if

good,

go

to

write

*/

(

error

code

)

.

.

.

MSG1

DC

C

’HELLO’

LEN1

DC

AL4(*-MSG1)

190

Technical

Reference:

Communications,

Volume

1

Chapter

5.

Network

Computing

System

(NCS)

lb_$lookup_interface

Library

Routine

(NCS)

Purpose

Looks

up

information

about

an

interface

in

the

Global

Location

Broker

(GLB)

database.

Syntax

void

lb_$lookup_interface

(

object_interface,

lookup_handle)

void

lb_$lookup_interface

(

max_results,

num_results,

results,

status)

uuid_$t

*object_interface;

lb_$lookup_handle_t

*lookup_handle;

unsigned

long

max_results;

unsigned

long

*num_results;

lb_$entry_t

results

[

];

status_$t

*status;

Description

The

lb_$lookup_interface

routine

returns

GLB

database

entries

whose

fields

in

the

object_interface

parameters

match

the

specified

interface.

It

returns

information

about

all

replicas

of

all

objects

that

can

be

accessed

through

that

interface.

The

lb_$lookup_interface

routine

cannot

return

more

than

the

number

of

matching

entries

specified

by

the

max_results

parameter

at

one

time.

The

lookup_handle

parameter

directs

this

routine

to

do

sequential

lookup

calls

to

find

all

matching

entries.

Notes:

1.

The

Location

Broker

does

not

prevent

modification

of

the

database

between

lookup

calls,

which

can

cause

the

locations

of

entries

relative

to

a

lookup_handle

value

to

change.

If

multiple

calls

are

made

to

find

all

matching

results

in

the

database,

the

returned

information

may

skip

or

duplicate

entries

from

the

database.

2.

It

is

also

possible

for

the

results

of

a

single

lookup

call

to

skip

or

duplicate

entries.

This

can

occur

if

the

size

of

the

results

exceeds

the

size

of

a

remote

procedure

call

(RPC)

packet

(64KB).

Parameters

Input

object_interface

Points

to

the

Universal

Unique

Identifier

(UUID)

of

the

interface

being

looked

up.

max_results

Specifies

the

maximum

number

of

matching

entries

that

can

be

returned

by

a

single

call.

This

should

be

the

number

of

elements

in

the

results

parameter

array.

Input/Output

lookup_handle

Specifies

a

location

in

the

database.

On

input,

the

lookup_handle

value

indicates

the

location

in

the

database

where

the

search

begins.

An

input

value

of

lb_$default_lookup_handle

specifies

that

the

search

starts

at

the

beginning

of

the

database.

On

return,

the

lookup_handle

parameter

indicates

the

next

unsearched

part

of

the

database

(that

is,

the

point

at

which

the

next

search

should

begin).

A

return

value

of

lb_$default_lookup_handle

indicates

that

the

search

reached

the

end

of

the

database.

Any

other

value

indicates

that

the

search

found

the

number

of

matching

entries

specified

by

the

max_results

parameter

before

it

reached

the

end

of

the

database.

©

Copyright

IBM

Corp.

1997,

2003

191

Output

num_results

Points

to

the

number

of

entries

that

are

returned

in

the

results

parameter

array.

results

Specifies

the

array

that

contains

the

matching

GLB

database

entries,

up

to

the

number

specified

in

the

max_results

parameter.

If

the

array

contains

any

entries

for

servers

on

the

local

network,

those

entries

appear

first.

status

Points

to

the

completion

status.

Examples

To

look

up

information

in

the

GLB

database

about

a

matrix

multiplication

interface,

enter:

lb_$lookup_interface

(&matrix_if_id,

&lookup_handle,

results_array_size,

&num_results,

&matrix_if_results_array,

&status);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

lb_$lookup_object

Library

Routine

(NCS)

Purpose

Looks

up

information

about

an

object

in

the

Global

Location

Broker

(GLB)

database.

Syntax

void

lb_$lookup_object

(

object,

lookup_handle)

void

lb_$lookup_object

(

max_results,

num_results,

results,

status)

uuid_$t

*object;

lb_$lookup_handle_t

*lookup_handle;

unsigned

long

max_results;

unsigned

long

*num_results;

lb_$entry_t

results

[

];

status_$t

*status;

Description

The

lb_$lookup_object

routine

returns

GLB

database

entries

whose

fields

in

the

object

parameter

match

the

specified

object.

It

returns

information

about

all

replicas

of

an

object

and

all

interfaces

to

the

object.

The

lb_$lookup_object

routine

cannot

return

more

than

the

number

of

matching

entries

specified

by

max_results

parameter

at

one

time.

The

lookup_handle

parameter

directs

this

routine

to

do

sequential

lookup

calls

to

find

all

matching

entries.

Notes:

1.

The

Location

Broker

does

not

prevent

modification

of

the

database

between

lookup

calls,

which

can

cause

the

locations

of

entries

relative

to

a

value

of

the

lookup_handle

parameter

to

change.

If

multiple

calls

are

made

to

find

all

matching

results

in

the

database,

the

returned

information

may

skip

or

duplicate

entries

from

the

database.

2.

It

is

also

possible

for

the

results

of

a

single

lookup

call

to

skip

or

duplicate

entries.

This

can

occur

if

the

size

of

the

results

exceeds

the

size

of

a

remote

procedure

call

(RPC)

packet

(64KB).

192

Technical

Reference:

Communications,

Volume

1

Parameters

Input

object

Points

to

the

Universal

Unique

Identifier

(UUID)

of

the

object

being

looked

up.

max_results

Specifies

the

maximum

number

of

matching

entries

that

can

be

returned

by

a

single

call.

This

should

be

the

number

of

elements

in

the

results

parameter

array.

Input/Output

lookup_handle

Specifies

a

location

in

the

database.

On

input,

the

value

of

the

lookup_handle

parameter

indicates

the

location

in

the

database

where

the

search

begins.

An

input

value

of

lb_$default_lookup_handle

specifies

that

the

search

starts

at

the

beginning

of

the

database.

On

return,

the

lookup_handle

parameter

indicates

the

next

unsearched

part

of

the

database

(that

is,

the

point

at

which

the

next

search

should

begin).

A

return

value

of

lb_$default_lookup_handle

indicates

that

the

search

reached

the

end

of

the

database.

Any

other

value

indicates

that

the

search

found

at

most

the

number

of

matching

entries

specified

by

the

max_results

parameter

before

it

reached

the

end

of

the

database.

Output

num_results

Points

to

the

number

of

entries

that

were

returned

in

the

results

parameter

array.

results

Specifies

the

array

that

contains

the

matching

GLB

database

entries,

up

to

the

number

specified

in

the

max_results

parameter.

If

the

array

contains

any

entries

for

servers

on

the

local

network,

those

entries

appear

first.

status

Points

to

the

completion

status.

Examples

To

look

up

GLB

database

entries

for

the

bank

bank_id,

enter:

lb_$lookup_object(&bank_id,

&lookup_handle,

MAX_LOCS,

&n_locs,

bank_loc,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

lb_$lookup_object_local

Library

Routine

Purpose

Looks

up

information

about

an

object

in

a

Local

Location

Broker

(LLB)

database.

Syntax

void

lb_$lookup_object_local

(

object,

sockaddr,

slength,

lookup_handle)

void

lb_$lookup_object_local

(

max_results,

num_results,

results,

status)

uuid_$t

*object;

socket_$addr_t

*sockaddr;

unsigned

long

slength;

lb_$lookup_handle_t

*lookup_handle;

unsigned

long

max_results;

unsigned

long

*num_results;

lb_$entry_t

results

[

];

status_$t

*status;

Chapter

5.

Network

Computing

System

(NCS)

193

Description

The

lb_$lookup_object_local

routine

searches

the

specified

LLB

database

and

returns

all

entries

whose

fields

in

the

object

parameter

match

the

specified

object.

It

returns

information

about

all

replicas

of

an

object

and

all

interfaces

to

the

object

that

are

located

on

the

specified

host.

The

lb_$lookup_interface

routine

cannot

return

more

than

the

number

of

matching

entries

specified

by

the

max_results

parameter

at

one

time.

The

lookup_handle

parameter

directs

this

routine

to

do

sequential

lookup

calls

to

find

all

matching

entries.

Notes:

1.

The

Location

Broker

does

not

prevent

modification

of

the

database

between

lookup

calls.

This

can

cause

the

locations

of

entries

relative

to

a

value

of

the

lookup_handle

parameter

to

change.

If

multiple

calls

are

made

to

find

all

matching

results

in

the

database,

the

returned

information

may

skip

or

duplicate

entries

from

the

database.

2.

It

is

also

possible

for

the

results

of

a

single

lookup

call

to

skip

or

duplicate

entries.

This

can

occur

if

the

size

of

the

results

exceeds

the

size

of

a

remote

procedure

call

(RPC)

packet

(64KB).

Parameters

Input

object

Points

to

the

Universal

Unique

Identifier

(UUID)

of

the

object

being

looked

up.

sockaddr

Specifies

the

location

of

the

LLB

database

to

be

searched.

The

socket

address

must

specify

the

network

address

of

a

host.

However,

the

port

number

in

the

socket

address

is

ignored.

The

lookup

request

is

always

sent

to

the

host’s

LLB

port.

slength

Specifies

the

length,

in

bytes,

of

the

socket

address

specified

by

the

sockaddr

parameter.

max_results

Specifies

the

maximum

number

of

matching

entries

that

can

be

returned

by

a

single

call.

This

should

be

the

number

of

elements

in

the

results

parameter

array.

Input/Output

lookup_handle

Specifies

a

location

in

the

database.

On

input,

the

value

of

the

lookup_handle

parameter

indicates

the

location

in

the

database

where

the

search

begins.

An

input

value

of

lb_$default_lookup_handle

specifies

that

the

search

starts

at

the

beginning

of

the

database.

On

return,

the

lookup_handle

indicates

the

next

unsearched

part

of

the

database

(that

is,

the

point

at

which

the

next

search

should

begin).

A

return

value

of

lb_$default_lookup_handle

indicates

that

the

search

reached

the

end

of

the

database.

Any

other

value

indicates

that

the

search

found

at

most

the

number

of

matching

entries

specified

by

the

max_results

parameter

before

it

reached

the

end

of

the

database.

Output

num_results

Points

to

the

number

of

entries

that

were

returned

in

the

results

parameter

array.

results

Specifies

the

array

that

contains

the

matching

GLB

database

entries,

up

to

the

number

specified

in

the

max_results

parameter.

If

the

array

contains

any

entries

for

servers

on

the

local

network,

those

entries

appear

first.

status

Points

to

the

completion

status.

Examples

In

the

following

example,

the

repob

object

is

replicated,

with

only

one

replica

located

on

any

host.

To

look

up

information

about

the

repob

object,

enter:

lb_$lookup_object_local

(&repob_id,

&location,

location_length,

&lookup_handle,

1,

&num_results,

myob_entry,

&st);

194

Technical

Reference:

Communications,

Volume

1

Since

there

is

only

one

replica

located

on

any

host,

the

routine

returns

at

most

one

result.

Related

Information

lb_$lookup_range

Library

Routine

Purpose

Looks

up

information

in

a

Global

Location

Broker

(GLB)

or

Local

Location

Broker

(LLB)

database.

Syntax

void

lb_$lookup_range

(

object,

object_type,

object_interface,

location,

lookup_handle)

void

lb_$lookup_range

(

location_length,

max_results,

num_results,

results,

status)

uuid_$t

*object;

uuid_$t

*object_type;

uuid_$t

*object_interface;

socket_$addr_t

*location;

unsigned

long

location_length;

lb_$lookup_handle_t

*lookup_handle;

unsigned

long

max_results;

unsigned

long

*num_results;

lb_$entry_t

results

[

];

status_$t

*status;

Description

The

lb_$lookup_range

routine

returns

database

entries

that

contain

matching

object,

obj_type,

and

obj_interface

identifiers.

A

value

of

uuid_$nil

in

any

of

these

input

parameters

acts

as

a

wildcard

and

matches

all

values

in

the

corresponding

entry

field.

You

can

include

wild

cards

in

any

combination

of

these

parameters.

The

lb_$lookup_interface

routine

cannot

return

more

than

the

number

of

matching

entries

specified

by

the

max_results

parameter

at

one

time.

The

lookup_handle

parameter

directs

this

routine

to

do

sequential

lookup

calls

to

find

all

matching

entries.

Notes:

1.

The

Location

Broker

does

not

prevent

modification

of

the

database

between

lookup

calls,

which

can

cause

the

locations

of

entries

relative

to

a

value

of

the

lookup_handle

parameter

value

to

change.

If

multiple

calls

are

made

to

find

all

matching

results

in

the

database,

the

returned

information

may

skip

or

duplicate

entries

from

the

database.

2.

The

results

of

a

single

lookup

call

can

possibly

skip

or

duplicate

entries.

This

can

occur

if

the

size

of

the

results

exceeds

the

size

of

a

remote

procedure

call

(RPC)

packet

(64KB).

Parameters

Input

object

Points

to

the

Universal

Unique

Identifier

(UUID)

of

the

object

being

looked

up.

object_type

Points

to

the

UUID

of

the

type

being

looked

up.

object_interface

Points

to

the

UUID

of

the

interface

being

looked

up.

location

Points

to

the

location

of

the

database

to

be

searched.

If

the

value

of

the

location_length

parameter

is

0,

the

GLB

database

is

searched.

Otherwise,

the

LLB

database

at

the

host

specified

by

the

socket

address

is

searched.

If

the

LLB

database

is

searched,

the

port

number

in

the

socket

address

is

ignored,

and

the

lookup

request

is

sent

to

the

LLB

port.

Chapter

5.

Network

Computing

System

(NCS)

195

location_length

Specifies

the

length,

in

bytes,

of

the

socket

address

indicated

by

the

location

parameter.

A

value

of

0

indicates

that

the

GLB

database

is

to

be

searched.

max_results

Specifies

the

maximum

number

of

matching

entries

that

can

be

returned

by

a

single

call.

This

should

be

the

number

of

elements

in

the

results

array.

Input/Output

lookup_handle

Specifies

a

location

in

the

database.

On

input,

the

value

of

the

lookup_handle

parameter

indicates

the

location

in

the

database

where

the

search

begins.

An

input

value

of

lb_$default_lookup_handle

specifies

that

the

search

starts

at

the

beginning

of

the

database.

On

return,

the

lookup_handle

parameter

indicates

the

next

unsearched

part

of

the

database

(that

is,

the

point

at

which

the

next

search

should

begin).

A

return

value

of

lb_$default_lookup_handle

indicates

that

the

search

reached

the

end

of

the

database.

Any

other

value

indicates

that

the

search

found

the

number

of

matching

entries

specified

by

the

max_results

parameter

before

it

reached

the

end

of

the

database.

Output

num_results

Points

to

the

number

of

entries

that

were

returned

in

the

results

parameter

array.

results

Specifies

the

array

that

contains

the

matching

GLB

database

entries,

up

to

the

number

specified

in

the

max_results

parameter.

If

the

array

contains

any

entries

for

servers

on

the

local

network,

those

entries

appear

first.

status

Points

to

the

completion

status.

Examples

To

look

up

information

in

the

GLB

database

about

the

change_if

interface

to

the

proc_db2

object

(which

is

of

the

proc_db

type),

enter:

lb_$lookup_range

(&proc_db2_id,

&proc_db_id,

&change_if_id,

glb,

0,

&lookup_handle,

10,

&num_results,

results,

&st);

The

name

glb

is

defined

elsewhere

as

a

null

pointer.

The

results

parameter

is

a

10-element

array

of

the

lb_$entry_t

type.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

lb_$lookup_type

Library

Routine

Purpose

Looks

up

information

about

a

type

in

the

Global

Location

Broker

(GLB)

database.

Syntax

void

lb_$lookup_type

(

object_type,

lookup_handle,

max_results)

void

lb_$lookup_type

(

num_results,

results,

status)

uuid_$t

*object_type;

lb_$lookup_handle_t

*lookup_handle;

unsigned

long

max_results;

unsigned

long

*num_results;

lb_$entry_t

results

[

];

status_$t

*status;

196

Technical

Reference:

Communications,

Volume

1

Description

The

lb_$lookup_type

routine

returns

GLB

database

entries

whose

fields

in

the

object_type

parameter

match

the

specified

type.

It

returns

information

about

all

replicas

of

all

objects

of

that

type

and

about

all

interfaces

to

each

object.

The

lb_$lookup_type

routine

cannot

return

more

than

the

number

of

matching

entries

specified

by

the

max_results

parameter

at

one

time.

The

lookup_handle

parameter

directs

this

routine

to

do

sequential

lookup

calls

to

find

all

matching

entries.

Notes:

1.

The

Location

Broker

does

not

prevent

modification

of

the

database

between

lookup

calls,

which

can

cause

the

locations

of

entries

relative

to

a

value

of

the

lookup_handle

parameter

to

change.

If

multiple

calls

are

made

to

find

all

matching

results

in

the

database,

the

returned

information

may

skip

or

duplicate

entries

from

the

database.

2.

It

is

also

possible

for

the

results

of

a

single

lookup

call

to

skip

or

duplicate

entries.

This

can

occur

if

the

size

of

the

results

exceeds

the

size

of

a

remote

procedure

call

(RPC)

packet

(64KB).

Parameters

Input

object_type

Points

to

the

Universal

Unique

Identifier

(UUID)

of

the

type

being

looked

up.

max_results

Specifies

the

maximum

number

of

matching

entries

that

can

be

returned

by

a

single

call.

This

should

be

the

number

of

elements

in

the

results

parameter

array.

Input/Output

lookup_handle

Specifies

a

location

in

the

database.

On

input,

the

value

of

the

lookup_handle

parameter

indicates

the

location

in

the

database

where

the

search

begins.

An

input

value

of

lb_$default_lookup_handle

specifies

that

the

search

starts

at

the

beginning

of

the

database.

On

return,

the

lookup_handle

parameter

indicates

the

next

unsearched

part

of

the

database

(that

is,

the

point

at

which

the

next

search

should

begin).

A

return

value

of

lb_$default_lookup_handle

indicates

that

the

search

reached

the

end

of

the

database.

Any

other

value

indicates

that

the

search

found

at

most

the

number

of

matching

entries

specified

by

the

max_results

parameter

before

it

reached

the

end

of

the

database.

Output

num_results

Points

to

the

number

of

entries

that

were

returned

in

the

results

parameter

array.

results

Specifies

the

array

that

contains

the

matching

GLB

database

entries,

up

to

the

number

specified

in

the

max_results

parameter.

If

the

array

contains

any

entries

for

servers

on

the

local

network,

those

entries

appear

first.

status

Points

to

the

completion

status.

Examples

To

look

up

information

in

the

GLB

database

about

the

array_proc

type,

enter:

lb_$lookup_type

(&array_proc_id,

&lookup_handle,

10,

&num_results,

&results,

&st)

The

results

parameter

is

a

10-element

array

of

the

lb_$entry_t

type.

Chapter

5.

Network

Computing

System

(NCS)

197

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

lb_$register

Library

Routine

(NCS)

Purpose

Registers

an

object

and

an

interface

with

the

Location

Broker.

Syntax

void

lb_$register

(

object,

object_type,

object_interface,

flags,

annotation)

void

lb_$register

(

sockaddr,

slength,

entry,

status)

uuid_$t

*object;

uuid_$t

*object_type;

uuid_$t

*object_interface;

b_$server_flag_t

*flags;

char

annotation

[

];

socket_$addr_t

*sockaddr;

unsigned

long

slength;

lb_$entry_t

*entry;

status_$t

*status;

Description

The

lb_$register

routine

registers

with

the

Location

Broker

a

specific

interface

to

an

object

and

the

location

of

a

server

that

exports

that

interface.

This

routine

replaces

an

existing

entry

in

the

Location

Broker

database

that

matches

the

object,

object_type,

and

object_interface

parameters

as

well

as

both

the

address

family

and

host

in

the

socket

address

specified

by

the

sockaddr

parameter.

If

no

such

entry

exists,

the

routine

adds

a

new

entry

to

the

database.

If

the

flags

parameter

has

a

value

of

lb_$server_flag_local,

the

entry

is

registered

only

in

the

Local

Location

Broker

(LLB)

database

at

the

host

where

the

call

is

issued.

Otherwise,

the

entry

is

registered

in

both

the

LLB

and

the

Global

Location

Broker

(GLB)

databases.

Parameters

Input

object

Points

to

the

Universal

Unique

Identifier

(UUID)

of

the

object

being

looked

up.

object_type

Points

to

the

UUID

of

the

type

being

looked

up.

object_interface

Points

to

the

UUID

of

the

interface

being

looked

up.

flags

Points

to

the

server

that

implements

the

interface.

The

value

must

be

0

or

lb_$server_flag_local.

annotation

Specifies

information,

such

as

textual

descriptions

of

the

object

and

the

interface.

It

is

set

in

a

64-character

array.

sockaddr

Points

to

the

socket

address

of

the

server

that

exports

the

interface

to

the

object.

slength

Specifies

the

length,

in

bytes,

of

the

socket

address

(sockaddr)

parameter.

Output

entry

Points

to

the

copy

of

the

entry

that

was

entered

in

the

Location

Broker

database.

status

Points

to

the

completion

status.

198

Technical

Reference:

Communications,

Volume

1

Examples

To

register

the

bank

interface

to

the

bank_id

object,

enter:

lb_$register

(&bank_id,

&bank_$uuid,

&bank_$if_spec.id,

0,

BankName,

&saddr,

slen,

&entry,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

lb_$unregister

Library

Routine

Purpose

Removes

an

entry

from

the

Location

Broker

database.

Syntax

void

lb_$unregister

(

entry,

status)

lb_$entry_t

*entry;

status_$t

*status;

Description

The

lb_$unregister

routine

removes

from

the

Location

Broker

database

the

entry

that

matches

the

value

supplied

in

the

entry

parameter.

The

value

of

the

entry

parameter

should

be

identical

to

that

returned

by

the

lb_$register

routine

when

the

database

entry

was

created.

However,

the

lb_$unregister

routine

does

not

compare

all

of

the

fields

in

the

entry

parameter.

It

ignores

the

flags

field,

the

annotation

field,

and

the

port

number

in

the

saddr

field.

This

routine

removes

the

entry

from

the

Local

Location

Broker

(LLB)

database

on

the

local

host

(the

host

that

issues

the

call).

If

the

flags

field

of

the

entry

parameter

is

not

the

value

lb_$server_flag_local,

this

routine

also

removes

the

entry

from

all

replicas

of

the

Global

Location

Broker

(GLB)

database.

Parameters

Input

entry

Points

to

the

entry

being

removed

from

the

Location

Broker

database.

Output

status

Points

to

the

completion

status.

Examples

To

unregister

the

entry

specified

by

the

BankEntry

results

structure,

which

was

obtained

from

a

previous

call

to

the

lb_$register

routine,

enter:

lb_$unregister

(&BankEntry,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

5.

Network

Computing

System

(NCS)

199

pfm_$cleanup

Library

Routine

Purpose

Establishes

a

cleanup

handler.

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

status_$t

pfm_$cleanup(

cleanup_record)

pfm_$cleanup_rec

*cleanup_record;

Description

The

pfm_$cleanup

routine

establishes

a

cleanup

handler

that

is

executed

when

a

fault

occurs.

A

cleanup

handler

is

a

piece

of

code

executed

before

a

program

exits

when

a

signal

is

received

by

the

process.

The

cleanup

handler

begins

with

a

call

to

the

pfm_$cleanup

routine.

This

routine

registers

an

entry

point

with

the

system

where

program

execution

resumes

when

a

fault

occurs.

When

a

fault

occurs,

execution

resumes

after

the

most

recent

call

to

the

pfm_$cleanup

routine.

There

can

be

more

than

one

cleanup

handler

in

a

program.

Multiple

cleanup

handlers

are

executed

consecutively

on

a

last-in-first-out

basis

(LIFO),

starting

with

the

most

recently

established

handler

and

ending

with

the

first

cleanup

handler.

The

system

provides

a

default

cleanup

handler

established

at

program

invocation.

The

default

cleanup

handler

is

always

called

last,

just

before

a

program

exits,

and

releases

any

system

resources

still

held

before

returning

control

to

the

process

that

invoked

the

program.

When

called

to

establish

a

cleanup

handler,

the

pfm_$cleanup

routine

returns

the

pfm_$cleanup_set

status

to

indicate

that

the

cleanup

handler

was

successfully

established.

When

the

cleanup

handler

is

entered

in

response

to

a

fault

signal,

the

pfm_$cleanup

routine

effectively

returns

the

value

of

the

fault

that

triggered

the

handler.

Note:

Cleanup

handler

code

runs

with

asynchronous

faults

inhibited.

When

the

pfm_$cleanup

routine

returns

something

other

than

pfm_$cleanup_set

status,

which

indicates

that

a

fault

has

occurred,

there

are

four

possible

ways

to

leave

the

cleanup

code:

v

The

program

can

call

the

pfm_$signal

routine

to

start

the

next

cleanup

handler

with

a

different

fault

signal.

v

The

program

can

call

the

pfm_$exit

routine

to

start

the

next

cleanup

handler

with

the

same

fault

signal.

v

The

program

can

continue

with

the

code

following

the

cleanup

handler.

It

should

generally

call

the

pfm_$enable

routine

to

re-enable

asynchronous

faults.

Execution

continues

from

the

end

of

the

cleanup

handler

code;

it

does

not

resume

where

the

fault

signal

was

received.

v

The

program

can

re-establish

the

handler

by

calling

the

pfm_$reset_cleanup

routine

before

proceeding.

Parameters

Input

cleanup_record

A

record

of

the

context

in

which

the

pfm_$cleanup

routine

is

called.

A

program

should

treat

this

as

an

opaque

data

structure

and

not

try

to

alter

or

copy

its

contents.

It

is

needed

by

the

pfm_$cleanup

and

pfm_$reset_cleanup

routines

to

restore

the

context

of

the

calling

process

at

the

cleanup

handler

entry

point.

200

Technical

Reference:

Communications,

Volume

1

Examples

To

establish

a

cleanup

handler

for

a

routine,

use

the

following:

fst

=

pfm_cleanup(crec)

where

fst

is

of

type

status_$t

and

crec

is

of

type

pfm_$cleanup_crec.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pfm_$enable

Library

Routine

Purpose

Enables

asynchronous

faults.

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

void

pfm_$enable

(void)

Description

The

pfm_$enable

routine

enables

asynchronous

faults

after

they

have

been

inhibited

by

a

call

to

the

pfm_$inhibit

routine.

The

pfm_$enable

routine

causes

the

operating

system

to

pass

asynchronous

faults

on

to

the

calling

process.

While

faults

are

inhibited,

the

operating

system

holds

at

most

one

asynchronous

fault.

Consequently,

when

the

pfm_$enable

subroutine

returns,

there

can

be

at

most

one

fault

waiting

on

the

process.

If

more

than

one

fault

was

received

between

calls

to

the

pfm_$inhibit

and

pfm_$enable

routines,

the

process

receives

the

first

asynchronous

fault

received

while

faults

were

inhibited.

Examples

To

enable

asynchronous

interrupts

to

occur

after

a

call

to

the

pfm_$inhibit

routine,

use

the

following:

pfm_$enable(

);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pfm_$enable_faults

Library

Routine

Purpose

Enables

asynchronous

faults.

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

void

pfm_$enable_faults

(void)

Chapter

5.

Network

Computing

System

(NCS)

201

Description

The

pfm_$enable_faults

routine

enables

asynchronous

faults

after

they

have

been

inhibited

by

a

call

to

the

pfm_$inhibit_faults

routine.

The

pfm_$enable_faults

routine

causes

the

operating

system

to

pass

asynchronous

faults

on

to

the

calling

process.

While

faults

are

inhibited,

the

operating

system

holds

at

most

one

asynchronous

fault.

Consequently,

when

pfm_$enable_faults

returns,

there

can

be

at

most

one

fault

waiting

on

the

process.

If

more

than

one

fault

was

received

between

calls

to

the

pfm_$inhibit_faults

and

pfm_$enable_faults

routines,

the

process

receives

the

first

asynchronous

fault

received

while

faults

were

inhibited.

Examples

To

enable

faults

to

occur

after

a

call

to

pfm_$inhibit_faults,

use

the

following:

pfm_$enable_faults(

);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pfm_$inhibit

Library

Routine

Purpose

Inhibits

asynchronous

faults.

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

void

pfm_$inhibit

(void)

Description

The

pfm_$inhibit

routine

prevents

asynchronous

faults

from

being

passed

to

the

calling

process.

While

faults

are

inhibited,

the

operating

system

holds

at

most

one

asynchronous

fault.

Consequently,

a

call

to

the

pfm_$inhibit

routine

can

result

in

the

loss

of

some

signals.

For

that

and

other

reasons,

it

is

good

practice

to

inhibit

faults

only

when

absolutely

necessary.

Note:

This

routine

has

no

effect

on

the

processing

of

synchronous

faults,

such

as

access

violations

or

floating-point

and

overflow

exceptions.

Examples

To

prevent

asynchronous

interrupts

from

occurring

in

a

critical

portion

of

a

routine,

use

the

following:

pfm_$inhibit(

);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pfm_$inhibit_faults

Library

Routine

Purpose

Inhibits

asynchronous

faults,

but

allows

task

switching.

202

Technical

Reference:

Communications,

Volume

1

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

void

pfm_$inhibit_faults

(void)

Description

The

pfm_$inhibit

routine

prevents

asynchronous

faults,

except

for

time-sliced

task

switching,

from

being

passed

to

the

calling

process.

While

faults

are

inhibited,

the

operating

system

holds

at

most

one

asynchronous

fault.

Consequently,

a

call

to

the

pfm_$inhibit_faults

routine

can

result

in

the

loss

of

some

signals.

For

that

and

other

reasons,

it

is

good

practice

to

inhibit

faults

only

when

absolutely

necessary.

Note:

This

routine

has

no

effect

on

the

processing

of

synchronous

faults,

such

as

access

violations

or

floating-point

and

overflow

exceptions.

Examples

To

prevent

faults

from

occurring

in

a

critical

portion

of

a

routine,

use

the

following:

pfm_$inhibit_faults(

);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pfm_$init

Library

Routine

Purpose

Initializes

the

program

fault

management

(PFM)

package.

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

void

pfm_$init

(

flags)

unsigned

long

flags;

Description

The

pfm_$init

routine

initializes

the

PFM

package.

Applications

that

use

the

PFM

package

should

invoke

the

pfm_$init

routine

before

invoking

any

other

Network

Computing

System

(NCS)

routines.

Parameters

Input

flags

Indicates

which

initialization

activities

to

perform.

Currently

only

one

value

is

valid:

pfm_$init_signal_handlers.

This

causes

C

signals

to

be

intercepted

and

converted

to

PFM

signals.

The

signals

intercepted

are

SIGINT,

SIGILL,

SIGFPE,

SIGTERM,

SIGHUP,

SIGQUIT,

SIGTRAP,

SIGBUS,

SIGSEGV,

and

SIGSYS.

Chapter

5.

Network

Computing

System

(NCS)

203

Examples

To

initialize

the

PFM

subsystem,

enter:

pfm_$init(pfm_$init_signal_handlers);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pfm_$reset_cleanup

Library

Routine

Purpose

Resets

a

cleanup

handler.

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

void

pfm_$reset_cleanup

(

cleanup_record,

status)

pfm_$cleanup_rec

*cleanup_record;

status_$t

*status;

Description

The

pfm_$reset_cleanup

routine

re-establishes

the

cleanup

handler

last

entered

so

that

any

subsequent

errors

enter

it

first.

This

procedure

should

only

be

used

within

cleanup

handler

code.

Parameters

Input

cleanup_

record

Indicates

a

record

of

the

context

at

the

cleanup

handler

entry

point.

It

is

supplied

by

the

pfm_$cleanup

routine

when

the

cleanup

handler

is

first

established.

Output

status

Points

to

the

completion

status.

Examples

To

re-establish

a

cleanup

handler,

enter:

pfm_$reset_cleanup(crec,

st);

where

the

crec

cleanup

record

is

a

valid

cleanup

handler.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

204

Technical

Reference:

Communications,

Volume

1

pfm_$rls_cleanup

Library

Routine

Purpose

Releases

cleanup

handlers.

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

void

pfm_$rls_cleanup(

cleanup_record,

status)

pfm_$cleanup_rec

*cleanup_record;

status_$t

*status;

Description

The

pfm_$rls_cleanup

routine

releases

the

cleanup

handler

associated

with

the

cleanup_record

parameter

and

all

cleanup

handlers

established

after

it.

Parameters

Input

cleanup_record

Indicates

the

cleanup

record

for

the

first

cleanup

handler

to

release.

Output

status

Points

to

the

completion

status.

If

the

status

parameter

has

a

value

of

pfm_$bad_rls_order,

it

means

that

the

caller

attempted

to

release

a

cleanup

handler

before

releasing

all

handlers

established

after

it.

This

status

is

only

a

warning.

The

intended

cleanup

handler

is

released,

along

with

all

cleanup

handlers

established

after

it.

Examples

To

release

an

established

cleanup

handler,

enter:

pfm_$rls_cleanup(crec,

st);

where

crec

is

a

valid

cleanup

record

established

by

the

pfm_$cleanup

routine.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pfm_$signal

Library

Routine

(NCS)

Purpose

Signals

the

calling

process.

Syntax

#include

<idl/c/base.h>

#include

<idl/c/pfm.h>

Chapter

5.

Network

Computing

System

(NCS)

205

void

pfm_$signal

(

fault_signal)

status_$t

*fault_signal;

Description

The

pfm_$signal

routine

signals

the

fault

specified

by

the

fault_signal

parameter

to

the

calling

process.

It

is

usually

called

to

leave

cleanup

handlers.

Note:

This

routine

does

not

return

when

successful.

Parameters

Input

fault_

signal

Indicates

a

fault

code.

Examples

To

send

the

calling

process

a

fault

signal,

enter:

pfm_$signal(fst);

where

fst

is

a

valid

PFM

fault.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$alloc_handle

Library

Routine

Purpose

Creates

a

Remote

Procedure

Call

(RPC)

handle.

Syntax

handle_t

rpc_$alloc_handle

(

object_id,

family,

status)

uuid_$t

*object_id;

unsigned

long

family;

status_$t

*status;

Description

The

rpc_$alloc_handle

routine

creates

an

unbound

RPC

handle

that

identifies

a

particular

object

but

not

a

particular

server

or

host.

A

remote

procedure

call

made

using

an

unbound

handle

is

broadcast

to

all

Local

Location

Brokers

(LLBs)

on

the

local

network.

If

the

call’s

interface

and

the

object

identified

by

the

handle

are

both

registered

with

any

LLB,

that

LLB

forwards

the

request

to

the

registering

server.

The

client

RPC

runtime

library

returns

the

first

response

that

it

receives

and

binds

the

handle

to

the

server.

Note:

This

routine

is

used

by

clients

only.

206

Technical

Reference:

Communications,

Volume

1

Parameters

Input

object_id

Points

to

the

Universal

Unique

Identifier

(UUID)

of

the

object

to

be

accessed.

If

there

is

no

specific

object,

specify

uuid_$nil

as

the

value.

family

Specifies

the

address

family

to

use

in

communications

to

access

the

object.

Output

status

Points

to

the

completion

status.

Return

Values

Upon

successful

completion,

the

rpc_$alloc_handle

routine

returns

an

RPC

handle

identifying

the

remote

object

in

the

form

handle_t.

This

handle

is

used

as

the

first

input

parameter

to

remote

procedure

calls

with

explicit

handles.

Examples

The

following

statement

allocates

a

handle

that

identifies

the

Acme

company’s

payroll

database

object:

handle

=

rpc_$alloc_handle

(&acme_pay_id,

socket_$dds,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$bind

Library

Routine

Purpose

Allocates

an

Remote

Procedure

Call

(RPC)

handle

and

sets

its

binding

to

a

server.

Syntax

handle_t

rpc_$bind

(

object_id,

sockaddr,

slength,

status)

uuid_$t

*object_id;

socket_$addr_t

*sockaddr;

unsigned

long

slength;

us_$t

*status;

Description

The

rpc_$bind

function

creates

a

fully

bound

RPC

handle

that

identifies

a

particular

object

and

server.

This

routine

is

equivalent

to

an

rpc_$alloc_handle

routine

followed

by

an

rpc_$set_binding

routine.

Note:

This

routine

is

used

by

clients

only.

Parameters

Input

object_id

Points

to

the

Universal

Unique

Identifier

(UUID)

of

the

object

to

be

accessed.

If

there

is

no

specific

object,

specify

uuid_$nil

as

the

value.

sockaddr

Points

to

the

socket

address

of

the

server.

slength

Specifies

the

length,

in

bytes,

of

the

socket

address

(sockaddr)

parameter.

Chapter

5.

Network

Computing

System

(NCS)

207

Output

status

Points

to

the

completion

status.

Return

Values

Upon

successful

completion,

this

routine

returns

an

RPC

handle

(handle_t)

that

identifies

the

remote

object.

This

handle

is

used

as

the

first

input

parameter

to

remote

procedure

calls

with

explicit

handles.

Examples

The

following

example

binds

a

banking

client

program

to

the

specified

object

and

socket

address:

h

=rpc_$bind(&bank_id,

&bank_loc[0].saddr,

bank_loc[0].saddr_len,

&st);

The

bank_loc

structure

is

the

results

parameter

of

a

previous

Location

Broker

lookup

call.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$clear_binding

Library

Routine

Purpose

Unsets

the

binding

between

a

Remote

Procedure

Call

(RPC)

handle

and

a

host

and

server.

Syntax

void

rpc_$clear_binding

(

handle,

status)

handle_t

handle;

status_$t

*status;

Description

The

rpc_$clear_binding

routine

removes

any

association

between

an

RPC

handle

and

a

particular

server

and

host,

but

does

not

remove

the

association

between

the

handle

and

an

object.

This

routine

saves

the

RPC

handle

so

that

it

can

be

reused

to

access

the

same

object,

either

by

broadcasting

or

after

resetting

the

binding

to

another

server.

A

remote

procedure

call

made

using

an

unbound

handle

is

broadcast

to

all

Local

Location

Brokers

(LLBs)

on

the

local

network.

If

the

call’s

interface

and

the

object

identified

by

the

handle

are

both

registered

with

any

LLB,

that

LLB

forwards

the

request

to

the

registering

server.

The

client

RPC

runtime

library

returns

the

first

response

that

it

receives

and

binds

the

handle

to

the

server.

The

rpc_$clear_binding

routine

reverses

an

rpc_$set_binding

routine.

Parameters

Input

handle

Specifies

the

RPC

handle

from

which

the

binding

is

being

cleared.

Output

status

Points

to

the

completion

status.

208

Technical

Reference:

Communications,

Volume

1

Note:

This

routine

is

used

by

clients

only.

Examples

To

clear

the

binding

represented

in

a

handle,

enter:

rpc_$clear_binding(handle,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$clear_server_binding

Library

Routine

Purpose

Unsets

the

binding

between

a

Remote

Procedure

Call

(RPC)

handle

and

a

server.

Syntax

void

rpc_$clear_server_binding

(

handle,

status)

handle_t

handle;

status_$t

*status;

Description

The

rpc_$clear_server_binding

routine

removes

the

association

between

an

RPC

handle

and

a

particular

server

(which

is

a

particular

port

number),

but

does

not

remove

the

associations

with

an

object

and

a

host.

For

example,

the

routine

unmaps

the

handle

to

the

port

number,

but

it

leaves

the

object

and

host

associated

through

a

network

address.

This

routine

replaces

a

fully

bound

handle

with

a

bound-to-host

handle.

A

bound-to-host

handle

identifies

an

object

located

on

a

particular

host,

but

does

not

identify

a

server

exporting

an

interface

to

the

object.

If

a

client

uses

a

bound-to-host

handle

to

make

a

remote

procedure

call,

the

call

is

sent

to

the

Local

Location

Broker

(LLB)

forwarding

port

at

the

host

identified

by

the

handle.

If

the

call’s

interface

and

the

object

identified

by

the

handle

are

both

registered

with

the

host’s

LLB,

the

LLB

forwards

the

request

to

the

registering

server.

When

the

client

RPC

runtime

library

receives

a

response,

it

binds

the

handle

to

the

server.

Subsequent

remote

procedure

calls

that

use

this

handle

are

then

sent

directly

to

the

bound

server’s

port.

The

rpc_$clear_server_binding

routine

is

used

for

client

error

recovery

when

a

server

terminates.

The

port

that

a

server

uses

when

it

restarts

is

not

necessarily

the

same

port

that

it

used

previously.

Therefore,

the

binding

that

the

client

was

using

may

not

be

correct.

This

routine

enables

the

client

to

unbind

from

the

nonfunctioning

server

while

retaining

the

binding

to

the

host.

When

the

client

sends

a

request,

the

binding

is

automatically

set

to

the

server’s

new

port.

Note:

This

routine

is

used

by

clients

only.

Parameters

Input

handle

Specifies

the

RPC

handle

from

which

the

server

binding

is

being

cleared.

Chapter

5.

Network

Computing

System

(NCS)

209

Output

status

Points

to

the

completion

status.

Examples

To

clear

the

server

binding

represented

in

a

handle,

enter:

rpc_$clear_server_binding(handle,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$dup_handle

Library

Routine

Purpose

Makes

a

copy

of

a

Remote

Procedure

Call

(RPC)

handle.

Syntax

handle_t

rpc_$dup_handle

(

handle,

status)

handle_t

handle;

status_$t

*status;

Description

The

rpc_$dup_handle

routine

returns

a

copy

of

an

existing

RPC

handle.

Both

handles

can

then

be

used

in

the

client

program

for

concurrent

multiple

accesses

to

a

binding.

Because

all

duplicates

of

a

handle

reference

the

same

data,

a

call

to

the

rpc_$set_binding,

rpc_$clear_binding,

or

rpc_$clear_server_binding

routine

made

on

any

one

duplicate

affects

all

duplicates.

However,

an

RPC

handle

is

not

freed

until

the

rpc_$free_handle

routine

is

called

on

all

copies

of

the

handle.

Note:

This

routine

is

used

by

clients

only.

Parameters

Input

handle

Specifies

the

RPC

handle

to

be

copied.

Output

status

Points

to

the

completion

status.

Return

Values

Upon

successful

completion,

this

routine

returns

the

duplicate

handle

(handle_t).

Examples

To

create

a

copy

of

a

handle,

enter:

thread_2_handle

=

rpc_$dup_handle(handle,

&st);

The

copy

is

called

thread_2_handle.

210

Technical

Reference:

Communications,

Volume

1

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$free_handle

Library

Routine

Purpose

Frees

a

Remote

Procedure

Call

(RPC)

handle.

Syntax

void

rpc_$free_handle

(

handle,

status)

handle_t

handle;

status_$t

*status;

Description

The

rpc_$free_handle

routine

frees

an

RPC

handle

by

clearing

the

association

between

the

handle

and

a

server

or

an

object,

and

then

releasing

the

resources

identified

by

the

RPC

handle.

The

client

program

cannot

use

a

handle

after

it

is

freed.

To

make

multiple

RPC

calls

using

the

same

interface

but

different

socket

addresses,

replace

the

binding

in

an

existing

handle

with

the

rpc_$set_binding

routine

instead

of

creating

a

new

handle

with

the

rpc_$free_handle

and

rpc_$bind

routines.

To

free

copies

of

RPC

handles

created

by

the

rpc_$dup_handle

routine,

use

the

rpc_$free_handle

routine

once

for

each

copy

of

the

handle.

However,

the

RPC

runtime

library

does

not

differentiate

between

calling

the

rpc_$free_handle

routine

several

times

on

one

copy

of

a

handle

and

calling

it

one

time

for

each

of

several

copies

of

a

handle.

Therefore,

if

you

use

duplicate

handles,

you

must

ensure

that

no

thread

inadvertently

makes

multiple

rpc_$free_handle

calls

on

a

single

handle.

Note:

This

routine

is

used

by

clients

only.

Parameters

Input

handle

Specifies

the

RPC

handle

to

be

freed.

Output

status

Points

to

the

completion

status.

Examples

To

free

two

copies

of

a

handle,

enter:

rpc_$free_handle(handle,

&st);

rpc_$free_handle(thread_2_handle,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

5.

Network

Computing

System

(NCS)

211

rpc_$inq_binding

Library

Routine

(NCS)

Purpose

Returns

the

socket

address

represented

by

a

Remote

Procedure

Call

(RPC)

handle.

Syntax

void

rpc_$inq_binding

(

handle,

sockaddr,

slength,

status)

handle_t

handle;

socket_$addr_t

*sockaddr;

unsigned

long

*slength;

status_$t

*status;

Description

The

rpc_$inq_binding

routine

enables

a

client

to

determine

the

socket

address,

and

therefore

the

server,

identified

by

an

RPC

handle.

It

can

be

used

to

determine

which

server

is

responding

to

a

remote

procedure

call

when

a

client

uses

an

unbound

handle

in

the

call.

Note:

This

routine

is

used

by

clients

only.

Parameters

Input

handle

Specifies

an

RPC

handle.

Output

sockaddr

Points

to

the

socket

address

represented

by

the

handle

parameter.

slength

Points

to

the

length,

in

bytes,

of

the

socket

address

(sockaddr).

status

Points

to

the

completion

status.

Return

Values

The

rpc_$inq_binding

routine

fails

if

the

following

is

true:

Value

Description

rpc_$unbound_handle

The

handle

is

not

bound

and

does

not

represent

a

specific

host

address.

Examples

The

Location

Broker

administrative

tool,

lb_admin,

uses

the

following

statement

to

determine

the

particular

GLB

that

responded

to

a

lookup

request:

rpc_$inq_binding(glb_$handle,

&global_broker_addr,

&global_broker_addr_len,

&status);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

212

Technical

Reference:

Communications,

Volume

1

rpc_$inq_object

Library

Routine

(NCS)

Purpose

Returns

the

object

Universal

Unique

Identifier

(UUID)

represented

by

a

Remote

Procedure

Call

(RPC)

handle.

Syntax

void

rpc_$inq_object

(

handle,

object_id,

status)

handle_t

handle;

uuid_$t

*object_id;

status_$t

*status;

Description

The

rpc_$inq_object

routine

enables

a

server

to

determine

the

particular

object

that

a

client

is

accessing.

A

server

must

use

the

rpc_$inq_object

routine

if

it

exports

an

interface

through

which

multiple

objects

may

be

accessed.

A

server

can

make

this

call

only

if

the

interface

uses

explicit

handles

(that

is,

if

each

operation

in

the

interface

has

a

handle

argument).

If

the

interface

uses

an

implicit

handle,

the

handle

identifier

is

not

passed

to

the

server.

Note:

This

routine

is

used

by

servers

only.

Parameters

Input

handle

Specifies

an

RPC

handle.

Output

object_id

Points

to

the

UUID

of

the

object

identified

by

the

handle

parameter.

status

Points

to

the

completion

status.

Examples

A

database

server

that

manages

multiple

databases

must

determine

the

particular

database

to

be

accessed

whenever

it

receives

a

remote

procedure

call.

Each

manager

routine

therefore

makes

the

following

call:

rpc_$inq_object(handle,

&db_uuid,

&st);

The

routine

then

uses

the

returned

UUID

to

identify

the

database

to

be

accessed.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$listen

Library

Routine

Purpose

Listens

for

and

handles

remote

procedure

call

packets.

Chapter

5.

Network

Computing

System

(NCS)

213

Syntax

void

rpc_$listen

(

max_calls,

status)

unsigned

long

max_calls;

status_$t

*status;

Description

The

rpc_$listen

routine

dispatches

incoming

remote

procedure

call

requests

to

manager

procedures

and

returns

the

responses

to

the

client.

You

must

issue

an

rpc_$use_family

or

rpc_$use_family_wk

routine

before

you

use

the

rpc_$listen

routine.

Note:

This

routine

is

used

by

servers

only.

Parameters

Input

max_calls

Specifies

the

maximum

number

of

calls

(in

the

range

1

through

10)

that

a

server

is

allowed

to

process

concurrently.

Although

concurrent

processes

are

not

supported

in

this

operating

system’s

implementation

of

Network

Computing

System

(NCS),

this

parameter

is

provided

for

compatibility

with

other

NCS

implementations.

Output

status

Points

to

the

completion

status.

Return

Values

This

routine

normally

does

not

return.

Examples

To

have

a

server

listen

for

incoming

remote

procedure

call

requests,

enter:

rpc_$listen(5,

&status);

Note:

The

max_calls

parameter,

which

is

set

at

5

in

the

example,

is

insignificant

because

this

implementation

of

NCS

does

not

support

concurrent

processes.

The

parameter

is

provided

for

compatibility

with

other

implementations.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$name_to_sockaddr

Library

Routine

Purpose

Converts

a

host

name

and

port

number

to

a

socket

address.

Syntax

void

rpc_$name_to_sockaddr

(

name,

nlength,

port,

family,

sockaddr,

slength,

status)

char

*name;

unsigned

long

nlength;

unsigned

long

port;

unsigned

long

family;

214

Technical

Reference:

Communications,

Volume

1

socket_$addr_t

*sockaddr;

unsigned

long

*slength;

status_$t

*status;

Description

The

rpc_$name_to_sockaddr

routine

provides

the

socket

address

for

a

socket,

given

the

host

name,

the

port

number,

and

the

address

family.

You

can

specify

the

socket

address

information

either

as

one

text

string

in

the

name

parameter,

or

by

passing

each

of

the

three

elements

as

a

separate

parameter.

When

three

separate

elements

are

passed,

the

name

parameter

should

contain

only

the

host

name.

Parameters

Input

name

Points

to

a

host

name,

and

optionally,

a

port

and

an

address

family,

in

the

form:

family:host[port].

The

family:

and

[port]

parameters

are

optional.

If

you

specify

a

family

variable

as

part

of

the

name

parameter,

you

must

specify

socket_$unspec

in

the

family

parameter.

The

only

supported

value

for

the

family

variable

is

ip.

The

host

parameter

specifies

the

host

name,

and

port

specifies

a

port

number

in

integer

form.

nlength

Specifies

the

number

of

characters

in

the

name

parameter.

port

Specifies

the

socket

port

number.

If

you

are

not

specifying

a

well-known

port,

this

parameter

should

have

the

value

socket_$unspec_port.

The

returned

socket

address

will

specify

the

Local

Location

Broker

(LLB)

forwarding

port

at

the

host.

If

you

specify

the

port

number

in

the

name

parameter,

this

parameter

is

ignored.

family

Specifies

the

address

family

to

use

for

the

socket

address.

This

value

corresponds

to

the

communications

protocol

used

to

access

the

socket

and

determines

how

the

socket

address

(sockaddr)

parameter

is

expressed.

If

you

specify

the

address

family

in

the

name

parameter,

this

parameter

must

have

the

value

socket_$unspec.

Output

sockaddr

Points

to

the

socket

address

corresponding

to

the

name,

port,

and

family

parameters.

slength

Points

to

the

length,

in

bytes,

of

the

socket

address

(specified

by

the

sockaddr

parameter).

status

Points

to

the

completion

status.

Examples

To

place

in

the

sockaddr

structure

a

socket

address

that

specifies

the

LLB

forwarding

port

at

the

host

identified

by

host_name,

enter:

rpc_$name_to_sockaddr(host_name,

strlen(host_name),

socket_$unspec_port,socket_$dds,

&sockaddr,

&slen,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$register

Library

Routine

Purpose

Registers

an

interface

at

a

server.

Chapter

5.

Network

Computing

System

(NCS)

215

Syntax

void

rpc_$register

(

if_spec,

epv,

status)

rpc_$if_spec_t

*if_spec;

rpc_$epv_t

epv;

status_$t

*status;

Description

The

rpc_$register

routine

registers

an

interface

with

the

Remote

Procedure

Call

(RPC)

runtime

library.

After

an

interface

is

registered,

the

RPC

runtime

library

passes

requests

for

that

interface

to

the

server.

You

can

call

rpc_$register

multiple

times

with

the

same

interface

(for

example,

from

various

subroutines

of

the

same

server),

but

each

call

must

specify

the

same

entry

point

vector

(EPV).

Each

registration

increments

a

reference

count

for

the

registered

interface.

An

equal

number

of

calls

to

the

rpc_$unregister

routine

are

then

required

to

unregister

the

interface.

Parameters

Input

if_spec

Points

to

the

interface

being

registered.

epv

Specifies

the

EPV

for

the

operations

in

the

interface.

Output

status

Points

to

the

completion

status.

Note:

This

routine

is

used

by

servers

only.

Return

Values

The

rpc_$register

routine

fails

if

one

or

more

of

the

following

is

true:

Value

Description

rpc_$too_many_ifs

The

maximum

number

of

interfaces

is

already

registered

with

the

server.

rpc_$illegal_register

You

are

trying

to

register

an

interface

that

is

already

registered,

and

you

are

using

an

EPV

different

from

the

one

used

when

the

interface

was

first

registered.

Examples

To

register

a

bank

interface

with

the

bank

server

host’s

RPC

runtime

library,

enter:

rpc_$register(&bank_$if_spec,

bank_$server_epv,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$set_binding

Library

Routine

Purpose

Associates

a

Remote

Procedure

Call

(RPC)

handle

with

a

server.

216

Technical

Reference:

Communications,

Volume

1

Syntax

rpc_$set_binding

(

handle,

sockaddr,

slength,

status)

struct

handle_t

*handle;

struct

socket_$addr_t

*sockaddr;

int

slength;

struct

status_$t

*status;

Description

The

rpc_$set_binding

routine

sets

the

binding

of

an

RPC

handle

to

the

specified

server.

The

handle

then

identifies

a

specific

object

at

a

specific

server.

Any

subsequent

remote

procedure

calls

that

a

client

makes

using

the

handle

are

sent

to

this

destination.

This

routine

can

also

replace

an

existing

binding

in

a

fully

bound

handle,

or

set

the

binding

in

an

unbound

handle.

Note:

This

routine

is

used

by

clients

only.

Parameters

Input

handle

Specifies

an

RPC

handle.

sockaddr

Specifies

the

socket

address

of

the

server

with

which

the

handle

is

being

associated.

slength

Specifies

the

length,

in

bytes,

of

the

socket

address

(sockaddr)

parameter.

Output

status

Specifies

the

completion

status.

Examples

To

set

the

binding

on

the

m_handle

handle

to

the

first

server

in

the

results

array,

which

was

returned

by

a

previous

Location

Broker

lookup

call,

enter:

rpc_$set_binding(m_handle,

&lb_reslts[0].saddr,

lb_reslts[0].saddr_len,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$sockaddr_to_name

Library

Routine

Purpose

Converts

a

socket

address

to

a

host

name

and

port

number.

Syntax

void

rpc_$sockaddr_to_name

(

sockaddr,

slength,

name,

nlength,

port,

status)

socket_$addr_t

*sockaddr;

unsigned

long

slength;

unsigned

long

*nlength;

char

*name;

unsigned

long

*port;

status_$t

*status;

Chapter

5.

Network

Computing

System

(NCS)

217

Description

The

rpc_$sockaddr_to_name

routine

provides

the

address

family,

the

host

name,

and

the

port

number

identified

by

the

specified

socket

address.

Parameters

Input

sockaddr

Points

to

a

socket

address.

slength

Specifies

the

length,

in

bytes,

of

socket

address

(sockaddr)

parameter.

Input/Output

nlength

On

input,

points

to

the

length

of

the

name

parameter

in

the

buffer.

On

output,

points

to

the

number

of

characters

returned

in

the

name

parameter.

Output

name

Points

to

a

character

string

that

contains

the

host

name

and

the

address

family

in

the

format:

family:host.

The

value

of

the

family

parameter

must

be

ip.

port

Points

to

the

socket

port

number.

status

Points

to

the

completion

status.

Examples

To

take

the

bank

server’s

socket

address,

return

the

server’s

host

name

and

port,

and

then

print

the

information,

enter:

rpc_$sockaddr_to_name(&saddr,

slen,

name,

&namelen,

&port,

&st);

printf("(bankd)

name=\"%.*s\",

port=%d\n",

name,

namelen,

port;

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$unregister

Library

Routine

Purpose

Unregisters

an

interface.

Syntax

void

rpc_$unregister

(

if_spec,

status)

rpc_$if_spec_t

*if_spec;

status_$t

*status;

Description

The

rpc_$unregister

routine

unregisters

an

interface

that

the

server

previously

registered

with

the

Remote

Procedure

Call

(RPC)

runtime

library.

After

an

interface

is

unregistered,

the

RPC

runtime

library

does

not

pass

requests

for

that

interface

to

the

server.

If

a

server

uses

multiple

calls

to

the

rpc_$register

routine

to

register

an

interface

more

than

once,

then

the

server

must

call

the

rpc_$unregister

routine

an

equal

number

of

times

to

unregister

the

interface.

218

Technical

Reference:

Communications,

Volume

1

Parameters

Input

if_spec

Points

to

the

interface

being

unregistered.

Output

status

Points

to

the

completion

status.

Note:

This

routine

is

used

by

servers

only.

Examples

To

unregister

a

matrix

arithmetic

interface,

use

the

following:

rpc_$unregister

(&matrix_$if_spec,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$use_family

Library

Routine

Purpose

Creates

a

socket

of

a

specified

address

family

for

a

Remote

Procedure

Call

(RPC)

server.

Syntax

void

rpc_$use_family

(

family,

sockaddr,

slength,

status)

unsigned

long

family;

socket_$addr_t

*sockaddr;

unsigned

long

*slength;

status_$t

*status;

Description

The

rpc_$use_family

routine

creates

a

socket

for

a

server

without

specifying

its

port

number.

(The

RPC

runtime

software

assigns

the

port

number.)

Use

this

routine

to

create

the

server

socket

unless

the

server

must

listen

on

a

particular

well-known

port.

If

the

socket

must

listen

on

a

specific

well-known

port,

use

the

rpc_$use_family_wk

routine

to

create

the

socket.

A

server

can

listen

on

more

than

one

socket.

However,

a

server

normally

does

not

listen

on

more

than

one

socket

for

each

address

family,

regardless

of

the

number

of

interfaces

that

it

exports.

Therefore,

most

servers

should

make

this

call

once

for

each

supported

address

family.

Note:

This

routine

is

used

by

servers

only.

Parameters

Input

family

Specifies

the

address

family

of

the

socket

to

be

created.

This

value

corresponds

to

the

communications

protocol

used

to

access

the

socket

and

determines

how

the

socket

address

(sockaddr)

parameter

is

expressed.

Chapter

5.

Network

Computing

System

(NCS)

219

Output

sockaddr

Points

to

the

socket

address

of

the

socket

on

which

the

server

listens.

slength

Points

to

the

length,

in

bytes,

of

the

socket

address

(sockaddr)

parameter.

status

Points

to

the

completion

status.

Return

Values

The

rpc_$use_family

routine

can

fail

if

one

or

more

of

the

following

is

true:

Value

Description

rpc_$cant_create_sock

The

RPC

runtime

library

is

unable

to

create

a

socket.

rpc_$cant_bind_sock

The

RPC

runtime

library

created

a

socket

but

is

unable

to

bind

it

to

a

socket

address.

rpc_$too_many_sockets

The

server

is

trying

to

use

more

than

the

maximum

number

of

sockets

allowed.

The

server

has

called

the

rpc_$use_family

or

rpc_$use_family_wk

routines

too

many

times.

Examples

To

create

the

bank

server’s

socket,

enter:

rpc_$use_family(atoi(argv[1]),

&saddr,

&slen,

&st);

The

numeric

value

of

the

address

family

to

be

used

is

supplied

as

an

argument

to

the

program.

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rpc_$use_family_wk

Library

Routine

Purpose

Creates

a

socket

with

a

well-known

port

for

a

Remote

Procedure

Call

(RPC)

server.

Syntax

void

rpc_$use_family_wk

(

family,

if_spec,

sockaddr,

slength,

status)

unsigned

long

family;

rpc_$if_spec_t

*if_spec;

socket_$addr_t

*sockaddr;

unsigned

long

*slength;

status_$t

*status;

Description

The

rpc_$use_family_wk

routine

creates

a

socket

that

uses

the

port

specified

with

the

if_spec

parameter.

Use

this

routine

to

create

a

socket

if

a

server

must

listen

on

a

particular

well-known

port.

Otherwise,

create

the

socket

with

the

rpc_$use_family

routine.

A

server

can

listen

on

more

than

one

socket.

However,

a

server

normally

does

not

listen

on

more

than

one

socket

for

each

address

family,

regardless

of

the

number

of

interfaces

that

it

exports.

Therefore,

most

servers

that

use

well-known

ports

should

make

this

call

once

for

each

supported

address

family.

Note:

This

routine

is

used

by

servers

only.

220

Technical

Reference:

Communications,

Volume

1

Parameters

Input

family

Specifies

the

address

family

of

the

socket

to

be

created.

This

value

corresponds

to

the

communications

protocol

used

to

access

the

socket

and

determines

how

the

socket

address

(sockaddr)

parameter

is

expressed.

if_spec

Points

to

the

interface

that

will

be

registered

by

the

server.

The

well-known

port

is

specified

as

an

interface

attribute.

Output

sockaddr

Points

to

the

socket

address

of

the

socket

on

which

the

server

listens.

slength

Points

to

the

length,

in

bytes,

of

the

socket

address

(sockaddr)

parameter.

status

Points

to

the

completion

status.

Return

Values

The

rpc_$use_family_wk

routine

fails

if

one

of

the

following

is

true:

Value

Description

rpc_$cant_create_sock

The

RPC

runtime

library

is

unable

to

create

a

socket.

rpc_$cant_bind_sock

The

RPC

runtime

library

created

a

socket

but

is

unable

to

bind

it

to

a

socket

address.

rpc_$too_many_sockets

The

server

is

trying

to

use

more

than

the

maximum

number

of

sockets

allowed.

The

server

has

called

the

rpc_$use_family

or

rpc_$use_family_wk

routines

too

many

times.

rpc_$addr_in_use

The

specified

address

and

port

are

already

in

use.

This

is

caused

by

multiple

calls

to

the

rpc_$use_family_wk

routine

with

the

same

well-known

port.

Examples

To

create

a

well-known

socket

for

an

array

processor

server,

enter:

rpc_$use_family_wk

(socket_$internet,

&matrix_$if_spec,

&sockaddr,

slen,

&st);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

uuid_$decode

Library

Routine

(NCS)

Purpose

Converts

a

character-string

representation

of

a

Universal

Unique

Identifier

(UUID)

into

a

UUID.

Syntax

void

uuid_$decode

(

uuid_string,

uuid,

status)

char

*uuid_string;

uuid_$t

*uuid;

status_$t

*status;

Chapter

5.

Network

Computing

System

(NCS)

221

Description

The

uuid_$decode

routine

returns

the

UUID

corresponding

to

a

valid

character-string

representation

of

a

UUID.

Parameters

Input

uuid_string

Points

to

the

character-string

representation

of

a

UUID

in

the

form

uuid_$string_t.

Output

uuid

Points

to

the

UUID

that

corresponds

to

the

character

string

represented

in

the

uuid_string

parameter.

status

Points

to

the

completion

status.

Examples

The

following

call

returns

as

my_uuid

the

UUID

corresponding

to

the

character-string

representation

in

my_uuid_rep:

uuid_$decode

(my_uuid_rep,

&my_uuid,

&status);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

uuid_$encode

Library

Routine

(NCS)

Purpose

Converts

a

Universal

Unique

Identifier

(UUID)

into

its

character-string

representation.

Syntax

void

uuid_$encode

(

uuid,

uuid_string)

uuid_$t

*uuid;

char

*uuid_string;

Description

The

uuid_$encode

call

returns

the

character-string

representation

of

a

UUID.

Parameters

Input

uuid

Points

to

the

UUID.

Output

uuid_string

Points

to

the

character-string

representation

of

a

UUID,

in

the

form

uuid_$string_t.

222

Technical

Reference:

Communications,

Volume

1

Examples

The

following

call

returns

as

my_uuid_rep

the

character-string

representation

for

the

UUID

my_uuid:

uuid_$encode

(&my_uuid,

my_uuid_rep);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

uuid_$gen

Library

Routine

(NCS)

Purpose

Generates

a

new

Universal

Unique

Identifier

(UUID).

Syntax

void

uuid_$gen

(

uuid)

uuid_$t

*uuid;

Description

The

uuid_$gen

routine

returns

a

new

UUID.

Parameters

Output

uuid

Points

to

the

new

UUID

in

the

form

of

uuid_$t.

Examples

The

following

call

returns

as

my_uuid

a

new

UUID:

uuid_$gen

(&my_uuid);

Related

Information

Remote

Procedure

Call

(RPC)

Runtime

Library

(NCS)

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

5.

Network

Computing

System

(NCS)

223

224

Technical

Reference:

Communications,

Volume

1

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

nis_add_entry

(NIS+

API)

Purpose

Used

to

add

the

NIS+

object

to

the

NIS+

table_name.

Syntax

cc

[

flag

.

.

.

]

file.

.

.

-lnsl

[

library.

.

.

]

#include

<rpcsvc/nis.h>

nis_result

*

nis_add_entry(nis_name

table_name,

nis_object

object,

u_long*

flags);

Description

One

of

a

group

of

NIS+

APIs

that

is

used

to

search

and

modify

NIS+

tables,

nis_add_entry(

)

is

used

to

add

the

NIS+

object

to

the

NIS+

table_name..

Entries

within

a

table

are

named

by

NIS+

indexed

names.

An

indexed

name

is

a

compound

name

that

is

composed

of

a

search

criteria

and

a

simple

NIS+

name

that

identifies

a

table

object.

A

search

criteria

is

a

series

of

column

names

and

their

associated

values

enclosed

in

bracket

[

]

characters.

Indexed

names

have

the

following

form:

[

colname=value,...],tablename

nis_add_entry(

)

will

add

the

NIS+

object

to

the

NIS+

table_name.

The

flags

parameter

is

used

to

specify

the

failure

semantics

for

the

add

operation:

0

The

default

(flags

=

0)

is

to

fail

if

the

entry

being

added

already

exists

in

the

table.

ADD_OVERWRITE

Specifies

that

the

existing

object

is

to

be

overwritten

if

it

exists

(a

modify

operation),

or

added

if

it

does

not

exist.

With

the

ADD_OVERWRITE

flag,

this

function

will

fail

with

the

error

NIS_PERMISSION

if

the

existing

object

does

not

allow

modify

privileges

to

the

client.

RETURN_RESULT

Specifies

that

the

server

will

return

a

copy

of

the

resulting

object

if

the

operation

was

successful.

To

succeed,

nis_add_entry(

)must

inherit

the

PAF_TRUSTED_PATH

attribute.

Return

Values

These

functions

return

a

pointer

to

a

structure

of

type

nis_result:

struct

nis_result

{

nis_error

status;

struct

{

u_int

objects_len;

nis_object

*

objects_val;

}

objects;

netobj

cookie;

u_long

zticks;

u_long

dticks;

u_long

aticks;

u_long

cticks;

};

The

status

member

contains

the

error

status

of

the

the

operation.

A

text

message

that

describes

the

error

can

be

obtained

by

calling

the

function

nis_sperrno(

).

©

Copyright

IBM

Corp.

1997,

2003

225

The

objects

structure

contains

two

members:

objects_val

is

an

array

of

nis_object

structures;

objects_len

is

the

number

of

cells

in

the

array.

These

objects

will

be

freed

by

a

call

to

nis_freeresult(

).

If

you

need

to

keep

a

copy

of

one

or

more

objects,

they

can

be

copied

with

the

function

nis_clone_object(

)

and

freed

with

the

function

nis_destroy_object(

).

The

various

ticks

contain

details

of

where

the

time

(in

microseconds)

was

taken

during

a

request.

They

can

be

used

to

tune

one’s

data

organization

for

faster

access

and

to

compare

different

database

implementations.

zticks

The

time

spent

in

the

NIS+

service

itself,

this

count

starts

when

the

server

receives

the

request

and

stops

when

it

sends

the

reply.

dticks

The

time

spent

in

the

database

backend,

this

time

is

measured

from

the

time

a

database

call

starts

until

a

result

is

returned.

If

the

request

results

in

multiple

calls

to

the

database,

this

is

the

sum

of

all

the

time

spent

in

those

calls.

aticks

The

time

spent

in

any

accelerators

or

caches.

This

includes

the

time

required

to

locate

the

server

needed

to

resolve

the

request.

cticks

The

total

time

spent

in

the

request,

this

clock

starts

when

you

enter

the

client

library

and

stops

when

a

result

is

returned.

By

subtracting

the

sum

of

the

other

ticks

values

from

this

value

you

can

obtain

the

local

overhead

of

generating

an

NIS+

request.

Subtracting

the

value

in

dticks

from

the

value

in

zticks

will

yield

the

time

spent

in

the

service

code

itself.

Subtracting

the

sum

of

the

values

in

zticks

and

aticks

from

the

value

in

cticks

will

yield

the

time

spent

in

the

client

library

itself.

Note:

All

of

the

tick

times

are

measured

in

microseconds.

Errors

The

client

library

can

return

a

variety

of

error

returns

and

diagnostics.

Following

are

some

of

the

more

pertinent

ones:

NIS_BADATTRIBUTE

The

name

of

an

attribute

did

not

match

up

with

a

named

column

in

the

table,

or

the

attribute

did

not

have

an

associated

value.

NIS_BADNAME

The

name

passed

to

the

function

is

not

a

legal

NIS+

name.

NIS_BADREQUEST

A

problem

was

detected

in

the

request

structure

passed

to

the

client

library.

NIS_CACHEEXPIRED

The

entry

returned

came

from

an

object

cache

that

has

expired.

This

means

that

the

time

to

live

value

has

gone

to

zero

and

the

entry

may

have

changed.

If

the

flag

NO_CACHE

was

passed

to

the

lookup

function,

the

lookup

function

will

retry

the

operation

to

get

an

unexpired

copy

of

the

object.

NIS_CBERROR

An

RPC

error

occurred

on

the

server

while

it

was

calling

back

to

the

client.

The

transaction

was

aborted

at

that

time

and

any

unsent

data

was

discarded.

NIS_CBRESULTS

Even

though

the

request

was

successful,

all

of

the

entries

have

been

sent

to

your

callback

function

and

are

thus

not

included

in

this

result.

NIS_FOREIGNNS

The

name

could

not

be

completely

resolved.

When

the

name

passed

to

the

function

would

resolve

226

Technical

Reference:

Communications,

Volume

1

in

a

namespace

that

is

outside

the

NIS+

name

tree,

this

error

is

returned

with

a

NIS+

object

of

type

DIRECTORY.

The

returned

object

contains

the

type

of

namespace

and

contact

information

for

a

server

within

that

namespace.

NIS_INVALIDOBJ

The

object

pointed

to

by

object

is

not

a

valid

NIS+

entry

object

for

the

given

table.

This

could

occur

if

it

had

a

mismatched

number

of

columns,

or

a

different

data

type

(for

example,

binary

or

text)

than

the

associated

column

in

the

table.

NIS_LINKNAMEERROR

The

name

passed

resolved

to

a

LINK

type

object

and

the

contents

of

the

object

pointed

to

an

invalid

name.

NIS_MODFAIL

The

attempted

modification

failed.

NIS_NAMEEXISTS

An

attempt

was

made

to

add

a

name

that

already

exists.

To

add

the

name,

first

remove

the

existing

name

and

then

add

the

new

name

or

modify

the

existing

named

object.

NIS_NAMEUNREACHABLE

This

soft

error

indicates

that

a

server

for

the

desired

directory

of

the

named

table

object

could

not

be

reached.

This

can

occur

when

there

is

a

network

partition

or

the

server

has

crashed.

Attempting

the

operation

again

may

succeed.

See

the

HARD_LOOKUP

flag.

NIS_NOCALLBACK

The

server

was

unable

to

contact

the

callback

service

on

your

machine.

This

results

in

no

data

being

returned.

NIS_NOMEMORY

Generally

a

fatal

result.

It

means

that

the

service

ran

out

of

heap

space.

NIS_NOSUCHNAME

This

hard

error

indicates

that

the

named

directory

of

the

table

object

does

not

exist.

This

occurs

when

the

server

that

should

be

the

parent

of

the

server

that

serves

the

table

does

not

know

about

the

directory

in

which

the

table

resides.

NIS_NOSUCHTABLE

The

named

table

does

not

exist.

NIS_NOT_ME

A

request

was

made

to

a

server

that

does

not

serve

the

given

name.

Normally

this

will

not

occur;

however,

if

you

are

not

using

the

built

in

location

mechanism

for

servers,

you

may

see

this

if

your

mechanism

is

broken.

NIS_NOTFOUND

No

entries

in

the

table

matched

the

search

criteria.

If

the

search

criteria

was

null

(return

all

entries),

then

this

result

means

that

the

table

is

empty

and

may

safely

be

removed

by

calling

the

nis_remove(

).

If

the

FOLLOW_PATH

flag

was

set,

this

error

indicates

that

none

of

the

tables

in

the

path

contain

entries

that

match

the

search

criteria.

NIS_NOTMASTER

A

change

request

was

made

to

a

server

that

serves

the

name,

but

it

is

not

the

master

server.

This

can

occur

when

a

directory

object

changes

and

it

specifies

a

new

master

server.

Clients

that

have

cached

copies

of

the

directory

object

in

the

/var/nis/NIS_SHARED_DIRCACHE

file

will

need

to

have

their

cache

managers

restarted

(use

nis_cachemgr

-i

to

flush

this

cache).

NIS_NOTSAMEOBJ

An

attempt

to

remove

an

object

from

the

namespace

was

aborted

because

the

object

that

would

have

been

removed

was

not

the

same

object

that

was

passed

in

the

request.

NIS_NOTSEARCHABLE

The

table

name

resolved

to

a

NIS+

object

that

was

not

searchable.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

227

NIS_PARTIAL

This

result

is

similar

to

NIS_NOTFOUND,

except

that

it

means

the

request

succeeded

but

resolved

to

zero

entries.

When

this

occurs,

the

server

returns

a

copy

of

the

table

object

instead

of

an

entry

so

that

the

client

may

then

process

the

path

or

implement

some

other

local

policy.

NIS_RPCERROR

This

fatal

error

indicates

the

RPC

subsystem

failed

in

some

way.

Generally

there

will

be

a

syslog(3)

message

indicating

why

the

RPC

request

failed.

NIS_S_NOTFOUND

The

named

entry

does

not

exist

in

the

table;

however,

not

all

tables

in

the

path

could

be

searched,

so

the

entry

may

exist

in

one

of

those

tables.

NIS_S_SUCCESS

Even

though

the

request

was

successful,

a

table

in

the

search

path

was

not

able

to

be

searched,

so

the

result

may

not

be

the

same

as

the

one

you

would

have

received

if

that

table

had

been

accessible.

NIS_SUCCESS

The

request

was

successful.

NIS_SYSTEMERROR

Some

form

of

generic

system

error

occurred

while

attempting

the

request.

Check

the

syslog(3)

record

for

error

messages

from

the

server.

NIS_TOOMANYATTRS

The

search

criteria

passed

to

the

server

had

more

attributes

than

the

table

had

searchable

columns.

NIS_TRYAGAIN

The

server

connected

to

was

too

busy

to

handle

your

request.

add_entry(

),

remove_entry(

),

and

modify_entry(

)

return

this

error

when

the

master

server

is

currently

updating

its

internal

state.

It

can

be

returned

to

nis_list(

)

when

the

function

specifies

a

callback

and

the

server

does

not

have

the

resources

to

handle

callbacks.

NIS_TYPEMISMATCH

An

attempt

was

made

to

add

or

modify

an

entry

in

a

table,

and

the

entry

passed

was

of

a

different

type

than

the

table.

Summary

of

Trusted

To

succeed,

nis_add_entry(

)

must

inherit

the

PAF_TRUSTED_PATH

attribute.

Related

Information

nis_first_entry,

nis_list,

nis_local_directory,

nis_lookup,

nis_modify_entry,

nis_next_entry,

nis_perror,

nis_remove_entry,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

nis_first_entry

(NIS+

API)

Purpose

Used

to

fetch

entries

from

a

table

one

at

a

time.

228

Technical

Reference:

Communications,

Volume

1

Syntax

cc

[

flag

.

.

.

]

file.

.

.

-lnsl

[

library.

.

.

]

#include

<rpcsvc/nis.h>

nis_result

*

nis_first_entry(nis_name

table_name)

Description

One

of

a

group

of

NIS+

APIs

that

is

used

to

search

and

modify

NIS+

tables,

nis_first_entry(

)

is

used

to

fetch

entries

from

a

table

one

at

a

time.

Entries

within

a

table

are

named

by

.NIS+

indexed

names.

An

indexed

name

is

a

compound

name

that

is

composed

of

a

search

criteria

and

a

simple

NIS+

name

that

identifies

a

table

object.

A

search

criteria

is

a

series

of

column

names

and

their

associated

values

enclosed

in

bracket

[

]

characters.

Indexed

names

have

the

following

form:

[

colname=value,...],tablename

nis_first_entry(

)

fetches

entries

from

a

table

one

at

a

time.

This

mode

of

operation

is

extremely

inefficient

and

callbacks

should

be

used

instead

whenever

possible.

The

table

containing

the

entries

of

interest

is

identified

by

name.

If

a

search

criteria

is

present

in

name

it

is

ignored.

The

value

of

cookie

within

the

nis_result

structure

must

be

copied

by

the

caller

into

local

storage

and

passed

as

an

argument

to

nis_next_entry(

).

Return

Values

These

functions

return

a

pointer

to

a

structure

of

type

nis_result:

struct

nis_result

{

nis_error

status;

struct

{

u_int

objects_len;

nis_object

*

objects_val;

}

objects;

netobj

cookie;

u_long

zticks;

u_long

dticks;

u_long

aticks;

u_long

cticks;

};

The

status

member

contains

the

error

status

of

the

the

operation.

A

text

message

that

describes

the

error

can

be

obtained

by

calling

the

function

nis_sperrno(

).

The

objects

structure

contains

two

members:

objects_val

is

an

array

of

nis_object

structures;

objects_len

is

the

number

of

cells

in

the

array.

These

objects

will

be

freed

by

a

call

to

nis_freeresult(

).

If

you

need

to

keep

a

copy

of

one

or

more

objects,

they

can

be

copied

with

the

function

nis_clone_object(

)

and

freed

with

the

function

nis_destroy_object(

).

The

various

ticks

contain

details

of

where

the

time

(in

microseconds)

was

taken

during

a

request.

They

can

be

used

to

tune

one’s

data

organization

for

faster

access

and

to

compare

different

database

implementations.

zticks

The

time

spent

in

the

NIS+

service

itself,

this

count

starts

when

the

server

receives

the

request

and

stops

when

it

sends

the

reply.

dticks

The

time

spent

in

the

database

backend,

this

time

is

measured

from

the

time

a

database

call

starts,

until

a

result

is

returned.

If

the

request

results

in

multiple

calls

to

the

database,

this

is

the

sum

of

all

the

time

spent

in

those

calls.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

229

aticks

The

time

spent

in

any

accelerators

or

caches.

This

includes

the

time

required

to

locate

the

server

needed

to

resolve

the

request.

cticks

The

total

time

spent

in

the

request,

this

clock

starts

when

you

enter

the

client

library

and

stops

when

a

result

is

returned.

By

subtracting

the

sum

of

the

other

ticks

values

from

this

value

you

can

obtain

the

local

overhead

of

generating

an

NIS+

request.

Subtracting

the

value

in

dticks

from

the

value

in

zticks

will

yield

the

time

spent

in

the

service

code

itself.

Subtracting

the

sum

of

the

values

in

zticks

and

aticks

from

the

value

in

cticks

will

yield

the

time

spent

in

the

client

library

itself.

Note:

All

of

the

tick

times

are

measured

in

microseconds.

Errors

The

client

library

can

return

a

variety

of

error

returns

and

diagnostics.

Following

are

some

of

the

more

pertinent

ones:

NIS_BADATTRIBUTE

The

name

of

an

attribute

did

not

match

up

with

a

named

column

in

the

table,

or

the

attribute

did

not

have

an

associated

value.

NIS_BADNAME

The

name

passed

to

the

function

is

not

a

legal

NIS+

name.

NIS_BADREQUEST

A

problem

was

detected

in

the

request

structure

passed

to

the

client

library.

NIS_CACHEEXPIRED

The

entry

returned

came

from

an

object

cache

that

has

expired.

This

means

that

the

time

to

live

value

has

gone

to

zero

and

the

entry

may

have

changed.

If

the

flag

NO_CACHE

was

passed

to

the

lookup

function,

the

lookup

function

will

retry

the

operation

to

get

an

unexpired

copy

of

the

object.

NIS_CBERROR

An

RPC

error

occurred

on

the

server

while

it

was

calling

back

to

the

client.

The

transaction

was

aborted

at

that

time

and

any

unsent

data

was

discarded.

NIS_CBRESULTS

Even

though

the

request

was

successful,

all

of

the

entries

have

been

sent

to

your

callback

function

and

are

thus

not

included

in

this

result.

NIS_FOREIGNNS

The

name

could

not

be

completely

resolved.

When

the

name

passed

to

the

function

would

resolve

in

a

namespace

that

is

outside

the

NIS+

name

tree,

this

error

is

returned

with

aNIS+

object

of

type

DIRECTORY.

The

returned

object

contains

the

type

of

namespace

and

contact

information

for

a

server

within

that

namespace.

NIS_INVALIDOBJ

The

object

pointed

to

by

object

is

not

a

valid

NIS+

entry

object

for

the

given

table.

This

could

occur

if

it

had

a

mismatched

number

of

columns,

or

a

different

data

type

(for

example,

binary

or

text)

than

the

associated

column

in

the

table.

NIS_LINKNAMEERROR

The

name

passed

resolved

to

a

LINK

type

object

and

the

contents

of

the

object

pointed

to

an

invalid

name.

NIS_MODFAIL

The

attempted

modification

failed.

230

Technical

Reference:

Communications,

Volume

1

NIS_NAMEEXISTS

An

attempt

was

made

to

add

a

name

that

already

exists.

To

add

the

name,

first

remove

the

existing

name

and

then

add

the

new

name

or

modify

the

existing

named

object.

NIS_NAMEUNREACHABLE

This

soft

error

indicates

that

a

server

for

the

desired

directory

of

the

named

table

object

could

not

be

reached.

This

can

occur

when

there

is

a

network

partition

or

the

server

has

crashed.

Attempting

the

operation

again

may

succeed.

See

the

HARD_LOOKUP

flag.

NIS_NOCALLBACK

The

server

was

unable

to

contact

the

callback

service

on

your

machine.

This

results

in

no

data

being

returned.

NIS_NOMEMORY

Generally

a

fatal

result.

It

means

that

the

service

ran

out

of

heap

space.

NIS_NOSUCHNAME

This

hard

error

indicates

that

the

named

directory

of

the

table

object

does

not

exist.

This

occurs

when

the

server

that

should

be

the

parent

of

the

server

that

serves

the

table

does

not

know

about

the

directory

in

which

the

table

resides.

NIS_NOSUCHTABLE

The

named

table

does

not

exist.

NIS_NOT_ME

A

request

was

made

to

a

server

that

does

not

serve

the

given

name.

Normally

this

will

not

occur;

however,

if

you

are

not

using

the

built

in

location

mechanism

for

servers,

you

may

see

this

if

your

mechanism

is

broken.

NIS_NOTFOUND

No

entries

in

the

table

matched

the

search

criteria.

If

the

search

criteria

was

null

(return

all

entries),

then

this

result

means

that

the

table

is

empty

and

may

safely

be

removed

by

calling

the

nis_remove(

).

If

the

FOLLOW_PATH

flag

was

set,

this

error

indicates

that

none

of

the

tables

in

the

path

contain

entries

that

match

the

search

criteria.

NIS_NOTMASTER

A

change

request

was

made

to

a

server

that

serves

the

name,

but

it

is

not

the

master

server.

This

can

occur

when

a

directory

object

changes

and

it

specifies

a

new

master

server.

Clients

that

have

cached

copies

of

the

directory

object

in

the

/var/nis/NIS_SHARED_DIRCACHE

file

will

need

to

have

their

cache

managers

restarted

(use

nis_cachemgr

-i

to

flush

this

cache).

NIS_NOTSAMEOBJ

An

attempt

to

remove

an

object

from

the

namespace

was

aborted

because

the

object

that

would

have

been

removed

was

not

the

same

object

that

was

passed

in

the

request.

NIS_NOTSEARCHABLE

The

table

name

resolved

to

a

NIS+

object

that

was

not

searchable.

NIS_PARTIAL

This

result

is

similar

to

NIS_NOTFOUND,

except

that

it

means

the

request

succeeded

but

resolved

to

zero

entries.

When

this

occurs,

the

server

returns

a

copy

of

the

table

object

instead

of

an

entry

so

that

the

client

may

then

process

the

path

or

implement

some

other

local

policy.

NIS_RPCERROR

This

fatal

error

indicates

the

RPC

subsystem

failed

in

some

way.

Generally

there

will

be

a

syslog(3)

message

indicating

why

the

RPC

request

failed.

NIS_S_NOTFOUND

The

named

entry

does

not

exist

in

the

table;

however,

not

all

tables

in

the

path

could

be

searched,

so

the

entry

may

exist

in

one

of

those

tables.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

231

NIS_S_SUCCESS

Even

though

the

request

was

successful,

a

table

in

the

search

path

was

not

able

to

be

searched,

so

the

result

may

not

be

the

same

as

the

one

you

would

have

received

if

that

table

had

been

accessible.

NIS_SUCCESS

The

request

was

successful.

NIS_SYSTEMERROR

Some

form

of

generic

system

error

occurred

while

attempting

the

request.

Check

the

syslog(3)

record

for

error

messages

from

the

server.

NIS_TOOMANYATTRS

The

search

criteria

passed

to

the

server

had

more

attributes

than

the

table

had

searchable

columns.

NIS_TRYAGAIN

The

server

connected

to

was

too

busy

to

handle

your

request.

add_entry(

),

remove_entry(

),

and

modify_entry(

)

return

this

error

when

the

master

server

is

currently

updating

its

internal

state.

It

can

be

returned

to

nis_list(

)

when

the

function

specifies

a

callback

and

the

server

does

not

have

the

resources

to

handle

callbacks.

NIS_TYPEMISMATCH

An

attempt

was

made

to

add

or

modify

an

entry

in

a

table,

and

the

entry

passed

was

of

a

different

type

than

the

table.

Related

Information

nis_add_entry,

nis_list,

nis_local_directory,

nis_lookup,

nis_modify_entry,

nis_next_entry,

nis_perror,

nis_remove_entry,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

nis_list

(NIS+

API)

Purpose

Used

to

search

a

table

in

the

NIS+

namespace.

Syntax

cc

[

flag

.

.

.

]

file.

.

.

-lnsl

[

library.

.

.

]

#include

<rpcsvc/nis.h>

nis_result

*

nis_list(name,

flags,

callback

userdata);

nis_name

name;

u_long

flags;

int

(*callback)(

);

void

userdata;

232

Technical

Reference:

Communications,

Volume

1

Description

One

of

a

group

of

NIS+

APIs

that

is

used

to

search

and

modify

NIS+

tables,

nis_list(

)

is

used

to

search

a

table

in

the

NIS+

namespace..

Entries

within

a

table

are

named

by

NIS+

indexed

names.

An

indexed

name

is

a

compound

name

that

is

composed

of

a

search

criteria

and

a

simple

NIS+

name

that

identifies

a

table

object.

A

search

criteria

is

a

series

of

column

names

and

their

associated

values

enclosed

in

bracket

[

]

characters.

Indexed

names

have

the

following

form:

[

colname=value,...],tablename

The

list

function,

nis_list(

),

takes

an

indexed

name

as

the

value

for

the

name

parameter.

Here,

the

tablename

should

be

a

fully

qualified

NIS+

name

unless

the

EXPAND_NAME

flag

is

set.

The

second

parameter,

flags,

defines

how

the

function

will

respond

to

various

conditions.

The

value

for

this

parameter

is

created

by

logically

OR

ing

together

one

or

more

flags

from

the

following

list:

FOLLOW_LINKS

If

the

table

specified

in

name

resolves

to

be

a

LINK

type

object,

this

flag

specifies

that

the

client

library

follow

that

link

and

do

the

search

at

that

object.

If

this

flag

is

not

set

and

the

name

resolves

to

a

link,

the

error

NIS_NOTSEARCHABLE

will

be

returned.

FOLLOW_PATH

This

flag

specifies

that

if

the

entry

is

not

found

within

this

table,

the

list

operation

should

follow

the

path

specified

in

the

table

object.

When

used

in

conjunction

with

the

ALL_RESULTS

flag,

it

specifies

that

the

path

should

be

followed

regardless

of

the

result

of

the

search.

When

used

in

conjunction

with

the

FOLLOW_LINKS

flag,

named

tables

in

the

path

that

resolve

to

links

will

be

followed

until

the

table

they

point

to

is

located.

If

a

table

in

the

path

is

not

reachable

because

no

server

that

serves

it

is

available,

the

result

of

the

operation

will

be

either

a

″soft″

success

or

a

″soft″

failure

to

indicate

that

not

all

tables

in

the

path

could

be

searched.

If

a

name

in

the

path

names

is

either

an

invalid

or

non-existent

object,

then

it

is

silently

ignored.

HARD_LOOKUP

This

flag

specifies

that

the

operation

should

continue

trying

to

contact

a

server

of

the

named

table

until

a

definitive

result

is

returned

(such

as

NIS_NOTFOUND).

Warning:

Use

the

flag

HARD_LOOKUP

carefully

since

it

can

cause

the

application

to

block

indefinitely

during

a

network

partition.

ALL_RESULTS

This

flag

can

only

be

used

in

conjunction

with

FOLLOW_PATH

and

a

callback

function.

When

specified,

it

forces

all

of

the

tables

in

the

path

to

be

searched.

If

name

does

not

specify

a

search

criteria

(imply

that

all

entries

are

to

be

returned),

then

this

flag

will

cause

all

of

the

entries

in

all

of

the

tables

in

the

path

to

be

returned.

NO_CACHE

This

flag

specifies

that

the

client

library

should

bypass

any

client

object

caches

and

get

its

information

directly

from

either

the

master

server

or

a

replica

server

for

the

named

table.

MASTER_ONLY

This

flag

is

even

stronger

than

NO_CACHE

as

it

specifies

that

the

client

library

should

only

get

its

information

from

the

master

server

for

a

particular

table.

This

guarantees

that

the

information

will

be

up-to-date.

However,

there

may

be

severe

performance

penalties

associated

with

contacting

the

master

server

directly

on

large

networks.

When

used

in

conjunction

with

the

HARD_LOOKUP

flag,

this

will

block

the

list

operation

until

the

master

server

is

up

and

available.

EXPAND_NAME

When

specified,

the

client

library

will

attempt

to

expand

a

partially

qualified

name

by

calling

nis_getnames(

),

which

uses

the

environment

variable

NIS_PATH.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

233

RETURN_RESULT

This

flag

is

used

to

specify

that

a

copy

of

the

returning

object

be

returned

in

the

nis_result

structure

if

the

operation

was

successful.

The

third

parameter

to

nis_list(

),

callback,

is

an

optional

pointer

to

a

function

that

will

process

the

ENTRY

type

objects

that

are

returned

from

the

search.

If

this

pointer

is

NULL,

then

all

entries

that

match

the

search

criteria

are

returned

in

the

nis_result

structure;

otherwise,

this

function

will

be

called

once

for

each

entry

returned.

When

called,

this

function

should

return

0

when

additional

objects

are

desired,

and

1

when

it

no

longer

wishes

to

see

any

more

objects.

The

fourth

parameter,

userdata,

is

simply

passed

to

callback

function

along

with

the

returned

entry

object.

The

client

can

use

this

pointer

to

pass

state

information

or

other

relevant

data

that

the

callback

function

might

need

to

process

the

entries.

Return

Values

These

functions

return

a

pointer

to

a

structure

of

type

nis_result:

struct

nis_result

{

nis_error

status;

struct

{

u_int

objects_len;

nis_object

*

objects_val;

}

objects;

netobj

cookie;

u_long

zticks;

u_long

dticks;

u_long

aticks;

u_long

cticks;

};

The

status

member

contains

the

error

status

of

the

the

operation.

A

text

message

that

describes

the

error

can

be

obtained

by

calling

the

function

nis_sperrno(

).

The

objects

structure

contains

two

members:

objects_val

is

an

array

of

nis_object

structures;

objects_len

is

the

number

of

cells

in

the

array.

These

objects

will

be

freed

by

a

call

to

nis_freeresult(

).

If

you

need

to

keep

a

copy

of

one

or

more

objects,

they

can

be

copied

with

the

function

nis_clone_object(

)

and

freed

with

the

function

nis_destroy_object(

).

The

various

ticks

contain

details

of

where

the

time

(in

microseconds)

was

taken

during

a

request.

They

can

be

used

to

tune

one’s

data

organization

for

faster

access

and

to

compare

different

database

implementations.

zticks

The

time

spent

in

the

NIS+

service

itself,

this

count

starts

when

the

server

receives

the

request

and

stops

when

it

sends

the

reply.

dticks

The

time

spent

in

the

database

backend,

this

time

is

measured

from

the

time

a

database

call

starts,

until

a

result

is

returned.

If

the

request

results

in

multiple

calls

to

the

database,

this

is

the

sum

of

all

the

time

spent

in

those

calls.

aticks

The

time

spent

in

any

accelerators

or

caches.

This

includes

the

time

required

to

locate

the

server

needed

to

resolve

the

request.

cticks

The

total

time

spent

in

the

request,

this

clock

starts

when

you

enter

the

client

library

and

stops

when

a

result

is

returned.

By

subtracting

the

sum

of

the

other

ticks

values

from

this

value

you

can

obtain

the

local

overhead

of

generating

anNIS+

request.

Subtracting

the

value

in

dticks

from

the

value

in

zticks

will

yield

the

time

spent

in

the

service

code

itself.

Subtracting

the

sum

of

the

values

in

zticks

and

aticks

from

the

value

in

cticks

will

yield

the

time

spent

in

the

client

library

itself.

234

Technical

Reference:

Communications,

Volume

1

Note:

All

of

the

tick

times

are

measured

in

microseconds.

Errors

The

client

library

can

return

a

variety

of

error

returns

and

diagnostics.

Following

are

some

of

the

more

pertinent

ones:

NIS_BADATTRIBUTE

The

name

of

an

attribute

did

not

match

up

with

a

named

column

in

the

table,

or

the

attribute

did

not

have

an

associated

value.

NIS_BADNAME

The

name

passed

to

the

function

is

not

a

legal

NIS+

name.

NIS_BADREQUEST

A

problem

was

detected

in

the

request

structure

passed

to

the

client

library.

NIS_CACHEEXPIRED

The

entry

returned

came

from

an

object

cache

that

has

expired.

This

means

that

the

time

to

live

value

has

gone

to

zero

and

the

entry

may

have

changed.

If

the

flag

NO_CACHE

was

passed

to

the

lookup

function,

the

lookup

function

will

retry

the

operation

to

get

an

unexpired

copy

of

the

object.

NIS_CBERROR

An

RPC

error

occurred

on

the

server

while

it

was

calling

back

to

the

client.

The

transaction

was

aborted

at

that

time

and

any

unsent

data

was

discarded.

NIS_CBRESULTS

Even

though

the

request

was

successful,

all

of

the

entries

have

been

sent

to

your

callback

function

and

are

thus

not

included

in

this

result.

NIS_FOREIGNNS

The

name

could

not

be

completely

resolved.

When

the

name

passed

to

the

function

would

resolve

in

a

namespace

that

is

outside

the

NIS+

name

tree,

this

error

is

returned

with

a

NIS+

object

of

type

DIRECTORY.

The

returned

object

contains

the

type

of

namespace

and

contact

information

for

a

server

within

that

namespace.

NIS_INVALIDOBJ

The

object

pointed

to

by

object

is

not

a

valid

NIS+

entry

object

for

the

given

table.

This

could

occur

if

it

had

a

mismatched

number

of

columns,

or

a

different

data

type

(for

example,

binary

or

text)

than

the

associated

column

in

the

table.

NIS_LINKNAMEERROR

The

name

passed

resolved

to

a

LINK

type

object

and

the

contents

of

the

object

pointed

to

an

invalid

name.

NIS_MODFAIL

The

attempted

modification

failed.

NIS_NAMEEXISTS

An

attempt

was

made

to

add

a

name

that

already

exists.

To

add

the

name,

first

remove

the

existing

name

and

then

add

the

new

name

or

modify

the

existing

named

object.

NIS_NAMEUNREACHABLE

This

soft

error

indicates

that

a

server

for

the

desired

directory

of

the

named

table

object

could

not

be

reached.

This

can

occur

when

there

is

a

network

partition

or

the

server

has

crashed.

Attempting

the

operation

again

may

succeed.

See

the

HARD_LOOKUP

flag.

NIS_NOCALLBACK

The

server

was

unable

to

contact

the

callback

service

on

your

machine.

This

results

in

no

data

being

returned.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

235

NIS_NOMEMORY

Generally

a

fatal

result.

It

means

that

the

service

ran

out

of

heap

space.

NIS_NOSUCHNAME

This

hard

error

indicates

that

the

named

directory

of

the

table

object

does

not

exist.

This

occurs

when

the

server

that

should

be

the

parent

of

the

server

that

serves

the

table

does

not

know

about

the

directory

in

which

the

table

resides.

NIS_NOSUCHTABLE

The

named

table

does

not

exist.

NIS_NOT_ME

A

request

was

made

to

a

server

that

does

not

serve

the

given

name.

Normally

this

will

not

occur;

however,

if

you

are

not

using

the

built

in

location

mechanism

for

servers,

you

may

see

this

if

your

mechanism

is

broken.

NIS_NOTFOUND

No

entries

in

the

table

matched

the

search

criteria.

If

the

search

criteria

was

null

(return

all

entries),

then

this

result

means

that

the

table

is

empty

and

may

safely

be

removed

by

calling

the

nis_remove(

).

If

the

FOLLOW_PATH

flag

was

set,

this

error

indicates

that

none

of

the

tables

in

the

path

contain

entries

that

match

the

search

criteria.

NIS_NOTMASTER

A

change

request

was

made

to

a

server

that

serves

the

name,

but

it

is

not

the

master

server.

This

can

occur

when

a

directory

object

changes

and

it

specifies

a

new

master

server.

Clients

that

have

cached

copies

of

the

directory

object

in

the

/var/nis/NIS_SHARED_DIRCACHE

file

will

need

to

have

their

cache

managers

restarted

(use

nis_cachemgr

-i

to

flush

this

cache).

NIS_NOTSAMEOBJ

An

attempt

to

remove

an

object

from

the

namespace

was

aborted

because

the

object

that

would

have

been

removed

was

not

the

same

object

that

was

passed

in

the

request.

NIS_NOTSEARCHABLE

The

table

name

resolved

to

a

NIS+

object

that

was

not

searchable.

NIS_PARTIAL

This

result

is

similar

to

NIS_NOTFOUND

except

that

it

means

the

request

succeeded

but

resolved

to

zero

entries.

When

this

occurs,

the

server

returns

a

copy

of

the

table

object

instead

of

an

entry

so

that

the

client

may

then

process

the

path

or

implement

some

other

local

policy.

NIS_RPCERROR

This

fatal

error

indicates

the

RPC

subsystem

failed

in

some

way.

Generally

there

will

be

a

syslog(3)

message

indicating

why

the

RPC

request

failed.

NIS_S_NOTFOUND

The

named

entry

does

not

exist

in

the

table;

however,

not

all

tables

in

the

path

could

be

searched,

so

the

entry

may

exist

in

one

of

those

tables.

NIS_S_SUCCESS

Even

though

the

request

was

successful,

a

table

in

the

search

path

was

not

able

to

be

searched,

so

the

result

may

not

be

the

same

as

the

one

you

would

have

received

if

that

table

had

been

accessible.

NIS_SUCCESS

The

request

was

successful.

NIS_SYSTEMERROR

Some

form

of

generic

system

error

occurred

while

attempting

the

request.

Check

the

syslog(3)

record

for

error

messages

from

the

server.

NIS_TOOMANYATTRS

The

search

criteria

passed

to

the

server

had

more

attributes

than

the

table

had

searchable

columns.

236

Technical

Reference:

Communications,

Volume

1

NIS_TRYAGAIN

The

server

connected

to

was

too

busy

to

handle

your

request.

add_entry(

),

remove_entry(

),

and

modify_entry(

)

return

this

error

when

the

master

server

is

currently

updating

its

internal

state.

It

can

be

returned

to

nis_list(

)

when

the

function

specifies

a

callback

and

the

server

does

not

have

the

resources

to

handle

callbacks.

NIS_TYPEMISMATCH

An

attempt

was

made

to

add

or

modify

an

entry

in

a

table,

and

the

entry

passed

was

of

a

different

type

than

the

table.

Environment

NIS_PATH

When

set,

this

variable

is

the

search

path

used

by

nis_list(

)

if

the

flag

EXPAND_NAME

is

set.

Notes:

v

The

path

used

when

the

flag

FOLLOW_PATH

is

specified

is

the

one

present

in

the

first

table

searched.

The

path

values

in

tables

that

are

subsequently

searched

are

ignored.

v

It

is

legal

to

call

functions

that

would

access

the

nameservice

from

within

a

list

callback.

However,

calling

a

function

that

would

itself

use

a

callback,

or

calling

nis_list(

)

with

a

callback

from

within

a

list

callback

function,

is

not

currently

supported.

Related

Information

nis_add_entry,

nis_first_entry,

nis_local_directory,

nis_lookup,

nis_modify_entry,

nis_next_entry,

nis_perror,

nis_remove_entry,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

nis_local_directory

(NIS+

API)

Purpose

Returns

the

name

of

the

NIS+

domain

for

this

machine.

Syntax

cc

[

flag

.

.

.

]

file.

.

.

-lnsl

[

library.

.

.

]

#include

<rpcsvc/nis.h>

nis_name

nis_local_directory(void)

Description

One

of

a

group

of

NIS+

APIs

that

return

several

default

NIS+

names

associated

with

the

current

process,

nis_local_directory(

)

returns

the

name

of

the

NIS+

domain

for

this

machine.

This

is

currently

the

same

as

the

Secure

RPC

domain

returned

by

the

sysinfo(2)

system

call.

Note:

The

result

returned

by

this

routine

is

a

pointer

to

a

data

structure

with

the

NIS+

library,

and

should

be

considered

a

″read-only″

result

and

should

not

be

modified.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

237

Environment

nis_group

This

variable

contains

the

name

of

the

local

NIS+

group.

If

the

name

is

not

fully

qualified,

the

value

returned

by

nis_local_directory(

)

will

be

concatenated

to

it.

Related

Information

nis_add_entry,

nis_first_entry,

nis_list,

nis_lookup,

nis_modify_entry,

nis_next_entry,

nis_perror,

nis_remove_entry,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

nis_lookup

(NIS+

API)

Purpose

Used

to

resolve

an

NIS+

name

and

return

a

copy

of

that

object

from

an

NIS+

server.

Syntax

cc

[

flag

.

.

.

]

file.

.

.

-lnsl

[

library.

.

.

]

#include

<rpcsvc/nis.h>

nis_result

*

nis_lookup(nis_name

name,

u_long

flags);

void

nis_freeresult(nis_result

*

result);

Description

One

of

a

group

of

NIS+

APIs

that

is

used

to

locate

and

manipulate

all

NIS+

objects

except

the

NIS+

entry

objects,

nis_lookup(

)

resolves

an

NIS+

name

and

returns

a

copy

of

that

object

from

an

NIS+

server.

This

function

should

be

used

only

with

names

that

refer

to

an

NIS+Directory,

NIS+Table,

NIS+Group,

or

NIS+Private

object.

If

a

name

refers

to

an

NIS+

entry

object,

the

functions

listed

in

nis_subr(3N)

should

be

used.

nis_lookup

returns

a

pointer

to

a

nis_result

structure

that

must

be

freed

by

calling

nis_freeresult(

)

when

you

have

finished

using

it.

If

one

or

more

of

the

objects

returned

in

the

structure

need

to

be

retained,

they

can

be

copied

with

nis_clone_object(3N).

nis_lookup(

)

takes

two

parameters,

the

name

of

the

object

to

be

resolved

in

name,

and

a

flags

parameter,

flags.

The

object

name

is

expected

to

correspond

to

the

syntax

of

a

non-indexed

NIS+

name.

The

nis_lookup(

)

function

is

the

only

function

from

this

group

that

can

use

a

non-fully

qualified

name.

If

the

parameter

name

is

not

a

fully

qualified

name,

then

the

flag

EXPAND_NAME

must

be

specified

in

the

call.

If

this

flag

is

not

specified,

the

function

will

fail

with

the

error

NIS+BADNAME.

The

flags

parameter

is

constructed

by

logically

OR

ing

zero

or

more

flags

from

the

following

list:

EXPAND_NAME

When

specified,

the

client

library

will

attempt

to

expand

a

partially

qualified

name

by

calling

the

function

nis_getnames(

),

which

uses

the

environment

variable

nis_path.

238

Technical

Reference:

Communications,

Volume

1

FOLLOW_LINKS

When

specified,

the

client

library

will

″follow″

links

by

issuing

another

NIS+

lookup

call

for

the

object

named

by

the

link.

If

the

linked

object

is

itself

a

link,

then

this

process

will

iterate

until

either

an

object

is

found

that

is

not

a

link

type

object,

or

the

library

has

followed

16

links.

HARD_LOOKUP

When

specified,

the

client

library

will

retry

the

lookup

until

it

is

answered

by

a

server.

Using

this

flag

will

cause

the

library

to

block

until

at

least

one

NIS+

server

is

available.

If

the

network

connectivity

is

impaired,

this

can

be

a

relatively

long

time.

MASTER_ONLY

When

specified,

the

client

library

will

bypass

any

object

caches

and

any

domain

replicas

and

fetch

the

object

from

the

NIS+

master

server

for

the

object’s

domain.

This

insures

that

the

object

returned

is

up-to-date

at

the

cost

of

a

possible

performance

degradation

and

failure

if

the

master

server

is

unavailable

or

physically

distant.

NO_CACHE

When

specified,

the

client

library

will

bypass

any

object

caches

and

will

get

the

object

from

either

the

master

NIS+

server

or

one

of

its

replicas.

The

status

value

may

be

translated

to

ascii

text

using

the

function

nis_sperrno(

).

On

return,

the

objects

array

in

the

result

will

contain

one

and

possibly

several

objects

that

were

resolved

by

the

request.

If

the

FOLLOW_LINKS

flag

was

present,

on

success

the

function

could

return

several

entry

objects

if

the

link

in

question

pointed

within

a

table.

If

an

error

occurred

when

following

a

link,

the

objects

array

will

contain

a

copy

of

the

link

object

itself.

Return

Values

These

functions

return

a

pointer

to

a

structure

of

type

nis_result:

struct

nis_result

{

nis_error

status;

struct

{

u_int

objects_len;

nis_object

*

objects_val;

}

objects;

netobj

cookie;

u_long

zticks;

u_long

dticks;

u_long

aticks;

u_long

cticks;

};

The

status

member

contains

the

error

status

of

the

the

operation.

A

text

message

that

describes

the

error

can

be

obtained

by

calling

the

function

nis_sperrno(

).

The

objects

structure

contains

two

members:

objects_val

is

an

array

of

nis_object

structures;

objects_lenis

the

number

of

cells

in

the

array.

These

objects

will

be

freed

by

a

call

to

nis_freeresult(

).

If

you

need

to

keep

a

copy

of

one

or

more

objects,

they

can

be

copied

with

the

function

nis_clone_object(

)

and

freed

with

the

function

nis_destroy_object(

).

The

various

ticks

contain

details

of

where

the

time

(in

microseconds)

was

taken

during

a

request.

They

can

be

used

to

tune

one’s

data

organization

for

faster

access

and

to

compare

different

database

implementations.

zticks

The

time

spent

in

the

NIS+

service

itself,

this

count

starts

when

the

server

receives

the

request

and

stops

when

it

sends

the

reply.

dticks

The

time

spent

in

the

database

backend,

this

time

is

measured

from

the

time

a

database

call

starts,

until

a

result

is

returned.

If

the

request

results

in

multiple

calls

to

the

database,

this

is

the

sum

of

all

the

time

spent

in

those

calls.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

239

aticks

The

time

spent

in

any

accelerators

or

caches.

This

includes

the

time

required

to

locate

the

server

needed

to

resolve

the

request.

cticks

The

total

time

spent

in

the

request,

this

clock

starts

when

you

enter

the

client

library

and

stops

when

a

result

is

returned.

By

subtracting

the

sum

of

the

other

ticks

values

from

this

value

you

can

obtain

the

local

overhead

of

generating

an

NIS+

request.

Subtracting

the

value

in

dticks

from

the

value

in

zticks

will

yield

the

time

spent

in

the

service

code

itself.

Subtracting

the

sum

of

the

values

in

zticks

and

aticks

from

the

value

in

cticks

will

yield

the

time

spent

in

the

client

library

itself.

Note:

All

of

the

tick

times

are

measured

in

microseconds.

Errors

The

client

library

can

return

a

variety

of

error

returns

and

diagnostics.

Following

are

some

of

the

more

pertinent

ones:

NIS_BADNAME

The

name

passed

to

the

function

is

not

a

legal

NIS+

name.

NIS_CACHEEXPIRED

The

object

returned

came

from

an

object

cache

that

has

expired.

This

means

that

the

time

to

live

value

has

gone

to

zero

and

the

entry

may

have

changed.

If

the

flag

NO_CACHE

was

passed

to

the

lookup

function,

the

lookup

function

will

retry

the

operation

to

get

an

unexpired

copy

of

the

object.

NIS_FOREIGNNS

The

name

could

not

be

completely

resolved.

When

the

name

passed

to

the

function

would

resolve

in

a

namespace

that

is

outside

the

NIS+

name

tree,

this

error

is

returned

with

a

NIS+

object

of

type

DIRECTORY.

The

returned

object

contains

the

type

of

namespace

and

contact

information

for

a

server

within

that

namespace.

NIS_INVALIDOBJ

The

object

pointed

to

by

obj

is

not

a

valid

NIS+

object.

NIS_LINKNAMEERROR

The

name

passed

resolved

to

a

LINK

type

object

and

the

contents

of

the

object

pointed

to

an

invalid

name.

NIS_MODFAIL

The

attempted

modification

failed.

NIS_NAMEEXISTS

An

attempt

was

made

to

add

a

name

that

already

exists.

To

add

the

name,

first

remove

the

existing

name

and

then

add

the

new

name

or

modify

the

existing

named

object.

NIS_NAMEUNREACHABLE

A

server

for

the

directory

of

the

named

object

could

not

be

reached.

This

can

occur

when

there

is

a

network

partition

or

all

the

server

s

have

crashed.

Attempting

the

operation

again

may

succeed.

See

the

HARD_LOOKUP

flag.

NIS_NOMEMORY

Generally

a

fatal

result.

It

means

that

the

service

ran

out

of

heap

space.

NIS_NOSUCHNAME

This

hard

error

indicates

that

the

named

directory

of

the

table

object

does

not

exist.

This

occurs

when

the

server

that

should

be

the

parent

of

the

server

that

serves

the

table

does

not

know

about

the

directory

in

which

the

table

resides.

NIS_NOSUCHTABLE

The

named

table

does

not

exist.

240

Technical

Reference:

Communications,

Volume

1

NIS_NOT_ME

A

request

was

made

to

a

server

that

does

not

serve

the

given

name.

Normally

this

will

not

occur;

however,

if

you

are

not

using

the

built-in

location

mechanism

for

servers,

you

may

see

this

if

your

mechanism

is

broken.

NIS_NOTFOUND

The

named

object

does

not

exist

in

the

namespace.

NIS_NOTMASTER

An

attempt

was

made

to

update

the

database

on

a

replica

server.

NIS_NOTSAMEOBJ

An

attempt

to

remove

an

object

from

the

namespace

was

aborted

because

the

object

that

would

have

been

removed

was

not

the

same

object

that

was

passed

in

the

request.

NIS_RPCERROR

This

fatal

error

indicates

the

RPC

subsystem

failed

in

some

way.

Generally

there

will

be

a

syslog(3)

message

indicating

why

the

RPC

request

failed.

NIS_S_SUCCESS

The

request

was

successful;

however,

the

object

returned

came

from

an

object

cache

and

not

directly

from

the

server.

If

you

want

to

see

objects

from

object

caches,

you

must

specify

the

flag

NO_CACHE

when

you

call

the

lookup

function.

NIS_SUCCESS

The

request

was

successful.

NIS_SYSTEMERROR

A

generic

system

error

occurred

while

attempting

the

request.

Most

commonly

the

server

has

crashed

or

the

database

has

become

corrupted.

Check

the

syslog

record

for

error

messages

from

the

server.

NIS_TRYAGAIN

The

server

connected

to

was

too

busy

to

handle

your

request.

For

the

add,

remove,

and

modify

operations

this

is

returned

when

either

the

master

server

for

a

directory

is

unavailable

or

it

is

in

the

process

of

checkpointing

its

database.

It

can

also

be

returned

when

the

server

is

updating

its

internal

state

or,

in

the

case

of

nis_list(

),

if

the

client

specifies

a

callback

and

the

server

does

not

have

the

resources

to

handle

callbacks.

NIS_UNKNOWNOBJ

The

object

returned

is

of

an

unknown

type.

Environment

NIS_PATH

If

the

flag

EXPAND_NAME

is

set,

this

variable

is

the

search

path

used

by

nis_lookup(

).

Related

Information

nis_add_entry,

nis_first_entry,

nis_list,

nis_local_directory,

nis_modify_entry,

nis_next_entry,

nis_perror,

nis_remove_entry,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

241

nis_modify_entry

(NIS+

API)

Purpose

Used

to

modify

an

NIS+

object

identified

by

name.

Syntax

cc

[

flag

.

.

.

]

file.

.

.

-lnsl

[

library.

.

.

]

#include

<rpcsvc/nis.h>

nis_remove_entry

*

nis_remove_entry(nis_name

name,

nis_object

*

object,

u_long

flags);

Description

One

of

a

group

of

NIS+

APIs

that

is

used

to

search

and

modify

NIS+

tables;

nis_modify_entry(

)

is

used

to

remove

the

identified

entry

from

the

table

or

a

set

of

entries

identified

by

table_name.

Entries

within

a

table

are

named

by

NIS+

indexed

names.

An

indexed

name

is

a

compound

name

that

is

composed

of

a

search

criteria

and

a

simple

NIS+

name

that

identifies

a

table

object.

A

search

criteria

is

a

series

of

column

names

and

their

associated

values

enclosed

in

bracket

[

]

characters.

Indexed

names

have

the

following

form:

[

colname=value,...],tablename

nis_modify_entry(

)

modifies

an

object

identified

by

name.

The

parameter

object

should

point

to

an

entry

with

the

EN_MODIFIED

flag

set

in

each

column

that

contains

new

information.

The

owner,

group,

and

access

rights

of

an

entry

are

modified

by

placing

the

modified

information

into

the

respective

fields

of

the

parameter,

object:

zo_owner,

zo_group,

and

zo_access.

These

columns

will

replace

their

counterparts

in

the

entry

that

is

stored

in

the

table.

The

entry

passed

must

have

the

same

number

of

columns,

same

type,

and

valid

data

in

the

modified

columns

for

this

operation

to

succeed.

If

the

flags

parameter

contains

the

flag

MOD_SAMEOBJ,

the

object

pointed

to

by

object

is

assumed

to

be

a

cached

copy

of

the

original

object.

If

the

OID

of

the

object

passed

is

different

than

the

OID

of

the

object

the

server

fetches,

then

the

operation

fails

with

the

NIS_NOTSAMEOBJ

error.

This

can

be

used

to

implement

a

simple

read-modify-write

protocol

that

will

fail

if

the

object

is

modified

before

the

client

can

write

the

object

back.

If

the

flag

RETURN_RESULT

has

been

specified,

the

server

will

return

a

copy

of

the

resulting

object

if

the

operation

was

successful.

To

succeed,

nis_modify_entry(

)

must

inherit

the

PAF_TRUSTED_PATH

attribute.

Return

Values

These

functions

return

a

pointer

to

a

structure

of

type

nis_result:

struct

nis_result

{

nis_error

status;

struct

{

u_int

objects_len;

nis_object

*

objects_val;

}

objects;

netobj

cookie;

u_long

zticks;

242

Technical

Reference:

Communications,

Volume

1

u_long

dticks;

u_long

aticks;

u_long

cticks;

};

The

status

member

contains

the

error

status

of

the

the

operation.

A

text

message

that

describes

the

error

can

be

obtained

by

calling

the

function

nis_sperrno(

).

The

objects

structure

contains

two

members:

objects_val

is

an

array

of

nis_object

structures;

objects_len

is

the

number

of

cells

in

the

array.

These

objects

will

be

freed

by

a

call

to

nis_freeresult(

).

If

you

need

to

keep

a

copy

of

one

or

more

objects,

they

can

be

copied

with

the

function

nis_clone_object(

)

and

freed

with

the

function

nis_destroy_object(

).

The

various

ticks

contain

details

of

where

the

time

(in

microseconds)

was

taken

during

a

request.

They

can

be

used

to

tune

one’s

data

organization

for

faster

access

and

to

compare

different

database

implementations.

zticks

The

time

spent

in

the

NIS+

service

itself,

this

count

starts

when

the

server

receives

the

request

and

stops

when

it

sends

the

reply.

dticks

The

time

spent

in

the

database

backend,

this

time

is

measured

from

the

time

a

database

call

starts,

until

a

result

is

returned.

If

the

request

results

in

multiple

calls

to

the

database,

this

is

the

sum

of

all

the

time

spent

in

those

calls.

aticks

The

time

spent

in

any

accelerators

or

caches.

This

includes

the

time

required

to

locate

the

server

needed

to

resolve

the

request.

cticks

The

total

time

spent

in

the

request,

this

clock

starts

when

you

enter

the

client

library

and

stops

when

a

result

is

returned.

By

subtracting

the

sum

of

the

other

ticks

values

from

this

value

you

can

obtain

the

local

overhead

of

generating

an

NIS+

request.

Subtracting

the

value

in

dticks

from

the

value

in

zticks

will

yield

the

time

spent

in

the

service

code

itself.

Subtracting

the

sum

of

the

values

in

zticks

and

aticks

from

the

value

in

cticks

will

yield

the

time

spent

in

the

client

library

itself.

Note:

All

of

the

tick

times

are

measured

in

microseconds.

Errors

The

client

library

can

return

a

variety

of

error

returns

and

diagnostics.

Following

are

some

of

the

more

pertinent

ones:

NIS_BADATTRIBUTE

The

name

of

an

attribute

did

not

match

up

with

a

named

column

in

the

table,

or

the

attribute

did

not

have

an

associated

value.

NIS_BADNAME

The

name

passed

to

the

function

is

not

a

legal

NIS+

name.

NIS_BADREQUEST

A

problem

was

detected

in

the

request

structure

passed

to

the

client

library.

NIS_CACHEEXPIRED

The

entry

returned

came

from

an

object

cache

that

has

expired.

This

means

that

the

time

to

live

value

has

gone

to

zero

and

the

entry

may

have

changed.

If

the

flag

NO_CACHE

was

passed

to

the

lookup

function,

the

lookup

function

will

retry

the

operation

to

get

an

unexpired

copy

of

the

object.

NIS_CBERROR

An

RPC

error

occurred

on

the

server

while

it

was

calling

back

to

the

client.

The

transaction

was

aborted

at

that

time

and

any

unsent

data

was

discarded.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

243

NIS_CBRESULTS

Even

though

the

request

was

successful,

all

of

the

entries

have

been

sent

to

your

callback

function

and

are

thus

not

included

in

this

result.

NIS_FOREIGNNS

The

name

could

not

be

completely

resolved.

When

the

name

passed

to

the

function

would

resolve

in

a

namespace

that

is

outside

the

NIS+

name

tree,

this

error

is

returned

with

a

NIS+

object

of

type

DIRECTORY.

The

returned

object

contains

the

type

of

namespace

and

contact

information

for

a

server

within

that

namespace.

NIS_INVALIDOBJ

The

object

pointed

to

by

object

is

not

a

valid

NIS+

entry

object

for

the

given

table.

This

could

occur

if

it

had

a

mismatched

number

of

columns,

or

a

different

data

type

(for

example,

binary

or

text)

than

the

associated

column

in

the

table.

NIS_LINKNAMEERROR

The

name

passed

resolved

to

a

LINK

type

object

and

the

contents

of

the

object

pointed

to

an

invalid

name.

NIS_MODFAIL

The

attempted

modification

failed.

NIS_NAMEEXISTS

An

attempt

was

made

to

add

a

name

that

already

exists.

To

add

the

name,

first

remove

the

existing

name

and

then

add

the

new

name

or

modify

the

existing

named

object.

NIS_NAMEUNREACHABLE

This

soft

error

indicates

that

a

server

for

the

desired

directory

of

the

named

table

object

could

not

be

reached.

This

can

occur

when

there

is

a

network

partition

or

the

server

has

crashed.

Attempting

the

operation

again

may

succeed.

See

the

HARD_LOOKUP

flag.

NIS_NOCALLBACK

The

server

was

unable

to

contact

the

callback

service

on

your

machine.

This

results

in

no

data

being

returned.

NIS_NOMEMORY

Generally

a

fatal

result.

It

means

that

the

service

ran

out

of

heap

space.

NIS_NOSUCHNAME

This

hard

error

indicates

that

the

named

directory

of

the

table

object

does

not

exist.

This

occurs

when

the

server

that

should

be

the

parent

of

the

server

that

serves

the

table

does

not

know

about

the

directory

in

which

the

table

resides.

NIS_NOSUCHTABLE

The

named

table

does

not

exist.

NIS_NOT_ME

A

request

was

made

to

a

server

that

does

not

serve

the

given

name.

Normally,

this

will

not

occur;

however,

if

you

are

not

using

the

built

in

location

mechanism

for

servers,

you

may

see

this

if

your

mechanism

is

broken.

NIS_NOTFOUND

No

entries

in

the

table

matched

the

search

criteria.

If

the

search

criteria

was

null

(return

all

entries),

then

this

result

means

that

the

table

is

empty

and

may

safely

be

removed

by

calling

the

nis_remove(

).

If

the

FOLLOW_PATH

flag

was

set,

this

error

indicates

that

none

of

the

tables

in

the

path

contain

entries

that

match

the

search

criteria.

NIS_NOTMASTER

A

change

request

was

made

to

a

server

that

serves

the

name,

but

it

is

not

the

master

server.

This

can

occur

when

a

directory

object

changes

and

it

specifies

a

new

master

server.

Clients

that

have

cached

copies

of

the

directory

object

in

the

/var/nis/NIS_SHARED_DIRCACHE

file

will

need

to

have

their

cache

managers

restarted

(use

nis_cachemgr

-i

to

flush

this

cache).

244

Technical

Reference:

Communications,

Volume

1

NIS_NOTSAMEOBJ

An

attempt

to

remove

an

object

from

the

namespace

was

aborted

because

the

object

that

would

have

been

removed

was

not

the

same

object

that

was

passed

in

the

request.

NIS_NOTSEARCHABLE

The

table

name

resolved

to

a

NIS+

object

that

was

not

searchable.

NIS_PARTIAL

This

result

is

similar

to

NIS_NOTFOUND

except

that

it

means

the

request

succeeded

but

resolved

to

zero

entries.

When

this

occurs,

the

server

returns

a

copy

of

the

table

object

instead

of

an

entry

so

that

the

client

may

then

process

the

path

or

implement

some

other

local

policy.

NIS_RPCERROR

This

fatal

error

indicates

the

RPC

subsystem

failed

in

some

way.

Generally

there

will

be

a

syslog(3)

message

indicating

why

the

RPC

request

failed.

NIS_S_NOTFOUND

The

named

entry

does

not

exist

in

the

table;

however,

not

all

tables

in

the

path

could

be

searched,

so

the

entry

may

exist

in

one

of

those

tables.

NIS_S_SUCCESS

Even

though

the

request

was

successful,

a

table

in

the

search

path

was

not

able

to

be

searched,

so

the

result

may

not

be

the

same

as

the

one

you

would

have

received

if

that

table

had

been

accessible.

NIS_SUCCESS

The

request

was

successful.

NIS_SYSTEMERROR

Some

form

of

generic

system

error

occurred

while

attempting

the

request.

Check

the

syslog(3)

record

for

error

messages

from

the

server.

NIS_TOOMANYATTRS

The

search

criteria

passed

to

the

server

had

more

attributes

than

the

table

had

searchable

columns.

NIS_TRYAGAIN

The

server

connected

to

was

too

busy

to

handle

your

request.

add_entry(

),

remove_entry(

),

and

modify_entry(

)

return

this

error

when

the

master

server

is

currently

updating

its

internal

state.

It

can

be

returned

to

nis_list(

)

when

the

function

specifies

a

callback

and

the

server

does

not

have

the

resources

to

handle

callbacks.

NIS_TYPEMISMATCH

An

attempt

was

made

to

add

or

modify

an

entry

in

a

table,

and

the

entry

passed

was

of

a

different

type

than

the

table.

Summary

of

Trusted

To

succeed,

nis_modify_entry(

)

must

inherit

the

PAF_TRUSTED_PATH

attribute.

Related

Information

nis_add_entry,

nis_first_entry,

nis_list,

nis_local_directory,

nis_lookup,

nis_next_entry,

nis_perror,

nis_remove_entry,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

245

nis_next_entry

(NIS+

API)

Purpose

Used

to

fetch

entries

from

a

table

one

at

a

time.

Syntax

cc

[

flag

.

.

.

]

file.

.

.

-lnsl

[

library.

.

.

]

#include

<rpcsvc/nis.h>

nis_result

*

nis_next_entry(nis_name

table_name,

netobj

cookie)

Description

One

of

a

group

of

NIS+

APIs

that

is

used

to

search

and

modify

NIS+

tables,

nis_next_entry(

)

is

used

to

retrieve

the

″next″

entry

from

a

table

specified

by

table_name.

Entries

within

a

table

are

named

by

NIS+

indexed

names.

An

indexed

name

is

a

compound

name

that

is

composed

of

a

search

criteria

and

a

simple

NIS+

name

that

identifies

a

table

object.

A

search

criteria

is

a

series

of

column

names

and

their

associated

values

enclosed

in

bracket

[

]

characters.

Indexed

names

have

the

following

form:

[

colname=value,...],tablename

nis_next_entry(

)

retrieves

the

″next″

entry

from

a

table

specified

by

table_name.

The

order

in

which

entries

are

returned

is

not

guaranteed.

Further,

should

an

update

occur

in

the

table

between

client

calls

to

nis_next_entry(

),

there

is

no

guarantee

that

an

entry

that

is

added

or

modified

will

be

seen

by

the

client.

Should

an

entry

be

removed

from

the

table

that

would

have

been

the

″next″

entry

returned,

the

error

NIS_CHAINBROKEN

is

returned

instead.

Return

Values

These

functions

return

a

pointer

to

a

structure

of

type

nis_result:

struct

nis_result

{

nis_error

status;

struct

{

u_int

objects_len;

nis_object

*

objects_val;

}

objects;

netobj

cookie;

u_long

zticks;

u_long

dticks;

u_long

aticks;

u_long

cticks;

};

The

status

member

contains

the

error

status

of

the

the

operation.

A

text

message

that

describes

the

error

can

be

obtained

by

calling

the

function

nis_sperrno(

).

The

objects

structure

contains

two

members:

objects_val

is

an

array

of

nis_object

structures;

objects_len

is

the

number

of

cells

in

the

array.

These

objects

will

be

freed

by

a

call

to

nis_freeresult(

).

If

you

need

to

keep

a

copy

of

one

or

more

objects,

they

can

be

copied

with

the

function

nis_clone_object(

)

and

freed

with

the

function

nis_destroy_object(

).

The

various

ticks

contain

details

of

where

the

time

(in

microseconds)

was

taken

during

a

request.

They

can

be

used

to

tune

one’s

data

organization

for

faster

access

and

to

compare

different

database

implementations.

246

Technical

Reference:

Communications,

Volume

1

zticks

The

time

spent

in

the

NIS+

service

itself,

this

count

starts

when

the

server

receives

the

request

and

stops

when

it

sends

the

reply.

dticks

The

time

spent

in

the

database

backend,

this

time

is

measured

from

the

time

a

database

call

starts,

until

a

result

is

returned.

If

the

request

results

in

multiple

calls

to

the

database,

this

is

the

sum

of

all

the

time

spent

in

those

calls.

aticks

The

time

spent

in

any

accelerators

or

caches.

This

includes

the

time

required

to

locate

the

server

needed

to

resolve

the

request.

cticks

The

total

time

spent

in

the

request,

this

clock

starts

when

you

enter

the

client

library

and

stops

when

a

result

is

returned.

By

subtracting

the

sum

of

the

other

ticks

values

from

this

value

you

can

obtain

the

local

overhead

of

generating

an

NIS+

request.

Subtracting

the

value

in

dticks

from

the

value

in

zticks

will

yield

the

time

spent

in

the

service

code

itself.

Subtracting

the

sum

of

the

values

in

zticks

and

aticks

from

the

value

in

cticks

will

yield

the

time

spent

in

the

client

library

itself.

Note:

All

of

the

tick

times

are

measured

in

microseconds.

Errors

The

client

library

can

return

a

variety

of

error

returns

and

diagnostics.

Following

are

some

of

the

more

pertient

ones:

NIS_BADATTRIBUTE

The

name

of

an

attribute

did

not

match

up

with

a

named

column

in

the

table,

or

the

attribute

did

not

have

an

associated

value.

NIS_BADNAME

The

name

passed

to

the

function

is

not

a

legal

NIS+

name.

NIS_BADREQUEST

A

problem

was

detected

in

the

request

structure

passed

to

the

client

library.

NIS_CACHEEXPIRED

The

entry

returned

came

from

an

object

cache

that

has

expired.

This

means

that

the

time

to

live

value

has

gone

to

zero

and

the

entry

may

have

changed.

If

the

flag

NO_CACHE

was

passed

to

the

lookup

function,

the

lookup

function

will

retry

the

operation

to

get

an

unexpired

copy

of

the

object.

NIS_CBERROR

An

RPC

error

occurred

on

the

server

while

it

was

calling

back

to

the

client.

The

transaction

was

aborted

at

that

time

and

any

unsent

data

was

discarded.

NIS_CBRESULTS

Even

though

the

request

was

successful,

all

of

the

entries

have

been

sent

to

your

callback

function

and

are

thus

not

included

in

this

result.

NIS_FOREIGNNS

The

name

could

not

be

completely

resolved.

When

the

name

passed

to

the

function

would

resolve

in

a

namespace

that

is

outside

the

NIS+

name

tree,

this

error

is

returned

with

a

NIS+

object

of

type

DIRECTORY.

The

returned

object

contains

the

type

of

namespace

and

contact

information

for

a

server

within

that

namespace.

NIS_INVALIDOBJ

The

object

pointed

to

by

object

is

not

a

valid

NIS+

entry

object

for

the

given

table.

This

could

occur

if

it

had

a

mismatched

number

of

columns,

or

a

different

data

type

(for

example,

binary

or

text)

than

the

associated

column

in

the

table.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

247

NIS_LINKNAMEERROR

The

name

passed

resolved

to

a

LINK

type

object

and

the

contents

of

the

object

pointed

to

an

invalid

name.

NIS_MODFAIL

The

attempted

modification

failed.

NIS_NAMEEXISTS

An

attempt

was

made

to

add

a

name

that

already

exists.

To

add

the

name,

first

remove

the

existing

name

and

then

add

the

new

name

or

modify

the

existing

named

object.

NIS_NAMEUNREACHABLE

This

soft

error

indicates

that

a

server

for

the

desired

directory

of

the

named

table

object

could

not

be

reached.

This

can

occur

when

there

is

a

network

partition

or

the

server

has

crashed.

Attempting

the

operation

again

may

succeed.

See

the

HARD_LOOKUP

flag.

NIS_NOCALLBACK

The

server

was

unable

to

contact

the

callback

service

on

your

machine.

This

results

in

no

data

being

returned.

NIS_NOMEMORY

Generally

a

fatal

result.

It

means

that

the

service

ran

out

of

heap

space.

NIS_NOSUCHNAME

This

hard

error

indicates

that

the

named

directory

of

the

table

object

does

not

exist.

This

occurs

when

the

server

that

should

be

the

parent

of

the

server

that

serves

the

table

does

not

know

about

the

directory

in

which

the

table

resides.

NIS_NOSUCHTABLE

The

named

table

does

not

exist.

NIS_NOT_ME

A

request

was

made

to

a

server

that

does

not

serve

the

given

name.

Normally,

this

will

not

occur;

however,

if

you

are

not

using

the

built

in

location

mechanism

for

servers,

you

may

see

this

if

your

mechanism

is

broken.

NIS_NOTFOUND

No

entries

in

the

table

matched

the

search

criteria.

If

the

search

criteria

was

null

(return

all

entries),

then

this

result

means

that

the

table

is

empty

and

may

safely

be

removed

by

calling

the

nis_remove(

).

If

the

FOLLOW_PATH

flag

was

set,

this

error

indicates

that

none

of

the

tables

in

the

path

contain

entries

that

match

the

search

criteria.

NIS_NOTMASTER

A

change

request

was

made

to

a

server

that

serves

the

name,

but

it

is

not

the

master

server.

This

can

occur

when

a

directory

object

changes

and

it

specifies

a

new

master

server.

Clients

that

have

cached

copies

of

the

directory

object

in

the

/var/nis/NIS_SHARED_DIRCACHE

file

will

need

to

have

their

cache

managers

restarted

(use

nis_cachemgr

-i

to

flush

this

cache).

NIS_NOTSAMEOBJ

An

attempt

to

remove

an

object

from

the

namespace

was

aborted

because

the

object

that

would

have

been

removed

was

not

the

same

object

that

was

passed

in

the

request.

NIS_NOTSEARCHABLE

The

table

name

resolved

to

a

NIS+

object

that

was

not

searchable.

NIS_PARTIAL

This

result

is

similar

to

NIS_NOTFOUND,

except

that

it

means

the

request

succeeded

but

resolved

to

zero

entries.

When

this

occurs,

the

server

returns

a

copy

of

the

table

object

instead

of

an

entry

so

that

the

client

may

then

process

the

path

or

implement

some

other

local

policy.

NIS_RPCERROR

This

fatal

error

indicates

the

RPC

subsystem

failed

in

some

way.

Generally

there

will

be

a

syslog(3)

message

indicating

why

the

RPC

request

failed.

248

Technical

Reference:

Communications,

Volume

1

NIS_S_NOTFOUND

The

named

entry

does

not

exist

in

the

table;

however,

not

all

tables

in

the

path

could

be

searched,

so

the

entry

may

exist

in

one

of

those

tables.

NIS_S_SUCCESS

Even

though

the

request

was

successful,

a

table

in

the

search

path

was

not

able

to

be

searched,

so

the

result

may

not

be

the

same

as

the

one

you

would

have

received

if

that

table

had

been

accessible.

NIS_SUCCESS

The

request

was

successful.

NIS_SYSTEMERROR

Some

form

of

generic

system

error

occurred

while

attempting

the

request.

Check

the

syslog(3)

record

for

error

messages

from

the

server.

NIS_TOOMANYATTRS

The

search

criteria

passed

to

the

server

had

more

attributes

than

the

table

had

searchable

columns.

NIS_TRYAGAIN

The

server

connected

to

was

too

busy

to

handle

your

request.

add_entry(

),

remove_entry(

),

and

modify_entry(

)

return

this

error

when

the

master

server

is

currently

updating

its

internal

state.

It

can

be

returned

to

nis_list(

)

when

the

function

specifies

a

callback

and

the

server

does

not

have

the

resources

to

handle

callbacks.

NIS_TYPEMISMATCH

An

attempt

was

made

to

add

or

modify

an

entry

in

a

table,

and

the

entry

passed

was

of

a

different

type

than

the

table.

Related

Information

nis_add_entry,

nis_first_entry,

nis_list,

nis_local_directory,

nis_lookup,

nis_modify_entry,

nis_perror,

nis_remove_entry,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

nis_perror

(NIS+

API)

Purpose

Prints

the

error

message

corresponding

to

status

as

″label:

error

message″

on

standard

error.

Syntax

cc

[

flag

...

]

file

...

-lnsl

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

249

[

library

...

]

#include

<rpcsvc/nis.h>

char

*

nis_sperrno(nis_error

status);

void

nis_perror(nis_error

status,

char

*

label);

void

nis_lerror(nis_error

status,

char

*

label);

char

*

nis_sperror_r(nis_error

status,

char

*

label,

char

*

buf,

int

length);

char

*

nis_sperror(nis_error

status,

char

*

label);

Description

One

of

a

group

of

NIS+

APIs

that

convert

NIS+

status

values

into

strings,

nis_perror

prints

the

error

messages

corresponding

to

status

as

″label:

error

messages″

on

standard

error.

Related

Information

nis_add_entry,

nis_first_entry,

nis_list,

nis_local_directory,

nis_lookup,

nis_modify_entry,

nis_next_entry,

nis_remove_entry,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

nis_remove_entry

(NIS+

API)

Purpose

Used

to

remove

an

NIS+

object

from

the

NIS+

table_name.

Syntax

cc

[

flag

.

.

.

]

file.

.

.

-lnsl

[

library.

.

.

]

#include

<rpcsvc/nis.h>

nis_result

*

nis_remove_entry(nis_name

name,

nis_object,

*

object,

u_long

flags);

Description

One

of

a

group

of

NIS+

APIs

that

is

used

to

search

and

modify

NIS+

tables,

nis_remove_entry(

)

is

used

to

remove

the

identified

entry

from

the

table

or

a

set

of

entries

identified

by

table_name.

Entries

within

a

table

are

named

by

NIS+

indexed

names.

An

indexed

name

is

a

compound

name

that

is

composed

of

a

search

criteria

and

a

simple

NIS+

name

that

identifies

a

table

object.

A

search

criteria

is

a

series

of

column

names

and

their

associated

values

enclosed

in

bracket

[

]

characters.

Indexed

names

have

the

following

form:

[

colname=value,...],tablename

nis_remove_entry(

)

removes

the

identified

entry

from

the

table

or

a

set

of

entries

identified

by

table_name.

If

the

parameter

object

is

non-null,

it

is

presumed

to

point

to

a

cached

copy

of

the

entry.

When

the

removal

is

attempted,

and

the

object

that

would

be

removed

is

not

the

same

as

the

cached

object

pointed

to

by

object,

then

the

operation

will

fail

with

an

NIS_NOTSAMEOBJ

error.

If

an

object

is

passed

with

this

function,

the

search

criteria

in

name

is

optional

as

it

can

be

constructed

from

the

values

within

the

entry.

However,

if

no

object

is

present,

the

search

criteria

must

be

included

in

the

name

parameter.

If

the

flags

variable

is

null,

and

the

search

criteria

does

not

uniquely

identify

an

entry,

the

250

Technical

Reference:

Communications,

Volume

1

NIS_NOTUNIQUE

error

is

returned

and

the

operation

is

aborted.

If

the

flag

parameter

REM_MULTIPLE

is

passed,

and

if

remove

permission

is

allowed

for

each

of

these

objects,

then

all

objects

that

match

the

search

criteria

will

be

removed.

Note

that

a

null

search

criteria

and

the

REM_MULTIPLE

flag

will

remove

all

entries

in

a

table.

To

succeed,

nis_remove_entry(

)

must

inherit

the

PAF_TRUSTED_PATH

attribute.

Return

Values

These

functions

return

a

pointer

to

a

structure

of

type

nis_result:

struct

nis_result

{

nis_error

status;

struct

{

u_int

objects_len;

nis_object

*

objects_val;

}

objects;

netobj

cookie;

u_long

zticks;

u_long

dticks;

u_long

aticks;

u_long

cticks;

};

The

status

member

contains

the

error

status

of

the

the

operation.

A

text

message

that

describes

the

error

can

be

obtained

by

calling

the

function

nis_sperrno(

).

The

objects

structure

contains

two

members:

objects_val

is

an

array

of

nis_object

structures;

objects_len

is

the

number

of

cells

in

the

array.

These

objects

will

be

freed

by

a

call

to

nis_freeresult(

).

If

you

need

to

keep

a

copy

of

one

or

more

objects,

they

can

be

copied

with

the

function

nis_clone_object(

)

and

freed

with

the

function

nis_destroy_object(

).

The

various

ticks

contain

details

of

where

the

time

(in

microseconds)

was

taken

during

a

request.

They

can

be

used

to

tune

one’s

data

organization

for

faster

access

and

to

compare

different

database

implementations.

zticks

The

time

spent

in

the

NIS+

service

itself,

this

count

starts

when

the

server

receives

the

request

and

stops

when

it

sends

the

reply.

dticks

The

time

spent

in

the

database

backend,

this

time

is

measured

from

the

time

a

database

call

starts

until

a

result

is

returned.

If

the

request

results

in

multiple

calls

to

the

database,

this

is

the

sum

of

all

the

time

spent

in

those

calls.

aticks

The

time

spent

in

any

accelerators

or

caches.

This

includes

the

time

required

to

locate

the

server

needed

to

resolve

the

request.

cticks

The

total

time

spent

in

the

request,

this

clock

starts

when

you

enter

the

client

library

and

stops

when

a

result

is

returned.

By

subtracting

the

sum

of

the

other

ticks

values

from

this

value

you

can

obtain

the

local

overhead

of

generating

an

NIS+

request.

Subtracting

the

value

in

dticks

from

the

value

in

zticks

will

yield

the

time

spent

in

the

service

code

itself.

Subtracting

the

sum

of

the

values

in

zticks

and

aticks

from

the

value

in

cticks

will

yield

the

time

spent

in

the

client

library

itself.

Note:

All

of

the

tick

times

are

measured

in

microseconds.

Errors

The

client

library

can

return

a

variety

of

error

returns

and

diagnostics.

Following

are

some

of

the

mor

pertient

ones:

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

251

NIS_BADATTRIBUTE

The

name

of

an

attribute

did

not

match

up

with

a

named

column

in

the

table,

or

the

attribute

did

not

have

an

associated

value.

NIS_BADNAME

The

name

passed

to

the

function

is

not

a

legal

NIS+

name.

NIS_BADREQUEST

A

problem

was

detected

in

the

request

structure

passed

to

the

client

library.

NIS_CACHEEXPIRED

The

entry

returned

came

from

an

object

cache

that

has

expired.

This

means

that

the

time

to

live

value

has

gone

to

zero

and

the

entry

may

have

changed.

If

the

flag

NO_CACHE

was

passed

to

the

lookup

function,

the

lookup

function

will

retry

the

operation

to

get

an

unexpired

copy

of

the

object.

NIS_CBERROR

An

RPC

error

occurred

on

the

server

while

it

was

calling

back

to

the

client.

The

transaction

was

aborted

at

that

time

and

any

unsent

data

was

discarded.

NIS_CBRESULTS

Even

though

the

request

was

successful,

all

of

the

entries

have

been

sent

to

your

callback

function

and

are

thus

not

included

in

this

result.

NIS_FOREIGNNS

The

name

could

not

be

completely

resolved.

When

the

name

passed

to

the

function

would

resolve

in

a

namespace

that

is

outside

the

NIS+

name

tree,

this

error

is

returned

with

a

NIS+

object

of

type

DIRECTORY.

The

returned

object

contains

the

type

of

namespace

and

contact

information

for

a

server

within

that

namespace.

NIS_INVALIDOBJ

The

object

pointed

to

by

object

is

not

a

valid

NIS+

entry

object

for

the

given

table.

This

could

occur

if

it

had

a

mismatched

number

of

columns,

or

a

different

data

type

(for

example,

binary

or

text)

than

the

associated

column

in

the

table.

NIS_LINKNAMEERROR

The

name

passed

resolved

to

a

LINK

type

object

and

the

contents

of

the

object

pointed

to

an

invalid

name.

NIS_MODFAIL

The

attempted

modification

failed.

NIS_NAMEEXISTS

An

attempt

was

made

to

add

a

name

that

already

exists.

To

add

the

name,

first

remove

the

existing

name

and

then

add

the

new

name

or

modify

the

existing

named

object.

NIS_NAMEUNREACHABLE

This

soft

error

indicates

that

a

server

for

the

desired

directory

of

the

named

table

object

could

not

be

reached.

This

can

occur

when

there

is

a

network

partition

or

the

server

has

crashed.

Attempting

the

operation

again

may

succeed.

See

the

HARD_LOOKUP

flag.

NIS_NOCALLBACK

The

server

was

unable

to

contact

the

callback

service

on

your

machine.

This

results

in

no

data

being

returned.

NIS_NOMEMORY

Generally

a

fatal

result.

It

means

that

the

service

ran

out

of

heap

space.

NIS_NOSUCHNAME

This

hard

error

indicates

that

the

named

directory

of

the

table

object

does

not

exist.

This

occurs

when

the

server

that

should

be

the

parent

of

the

server

that

serves

the

table

does

not

know

about

the

directory

in

which

the

table

resides.

252

Technical

Reference:

Communications,

Volume

1

NIS_NOSUCHTABLE

The

named

table

does

not

exist.

NIS_NOT_ME

A

request

was

made

to

a

server

that

does

not

serve

the

given

name.

Normally,

this

will

not

occur;

however,

if

you

are

not

using

the

built

in

location

mechanism

for

servers,

you

may

see

this

if

your

mechanism

is

broken.

NIS_NOTFOUND

No

entries

in

the

table

matched

the

search

criteria.

If

the

search

criteria

was

null

(return

all

entries),

then

this

result

means

that

the

table

is

empty

and

may

safely

be

removed

by

calling

the

nis_remove(

).

If

the

FOLLOW_PATH

flag

was

set,

this

error

indicates

that

none

of

the

tables

in

the

path

contain

entries

that

match

the

search

criteria.

NIS_NOTMASTER

A

change

request

was

made

to

a

server

that

serves

the

name,

but

it

is

not

the

master

server.

This

can

occur

when

a

directory

object

changes

and

it

specifies

a

new

master

server.

Clients

that

have

cached

copies

of

the

directory

object

in

the

/var/nis/NIS_SHARED_DIRCACHE

file

will

need

to

have

their

cache

managers

restarted

(use

nis_cachemgr

-i

to

flush

this

cache).

NIS_NOTSAMEOBJ

An

attempt

to

remove

an

object

from

the

namespace

was

aborted

because

the

object

that

would

have

been

removed

was

not

the

same

object

that

was

passed

in

the

request.

NIS_NOTSEARCHABLE

The

table

name

resolved

to

a

NIS+

object

that

was

not

searchable.

NIS_PARTIAL

This

result

is

similar

to

NIS_NOTFOUND

except

that

it

means

the

request

succeeded

but

resolved

to

zero

entries.

When

this

occurs,

the

server

returns

a

copy

of

the

table

object

instead

of

an

entry

so

that

the

client

may

then

process

the

path

or

implement

some

other

local

policy.

NIS_RPCERROR

This

fatal

error

indicates

the

RPC

subsystem

failed

in

some

way.

Generally

there

will

be

a

syslog(3)

message

indicating

why

the

RPC

request

failed.

NIS_S_NOTFOUND

The

named

entry

does

not

exist

in

the

table;

however,

not

all

tables

in

the

path

could

be

searched,

so

the

entry

may

exist

in

one

of

those

tables.

NIS_S_SUCCESS

Even

though

the

request

was

successful,

a

table

in

the

search

path

was

not

able

to

be

searched,

so

the

result

may

not

be

the

same

as

the

one

you

would

have

received

if

that

table

had

been

accessible.

NIS_SUCCESS

The

request

was

successful.

NIS_SYSTEMERROR

Some

form

of

generic

system

error

occurred

while

attempting

the

request.

Check

the

syslog(3)

record

for

error

messages

from

the

server.

NIS_TOOMANYATTRS

The

search

criteria

passed

to

the

server

had

more

attributes

than

the

table

had

searchable

columns.

NIS_TRYAGAIN

The

server

connected

to

was

too

busy

to

handle

your

request.

add_entry(

),

remove_entry(

),

and

modify_entry(

)

return

this

error

when

the

master

server

is

currently

updating

its

internal

state.

It

can

be

returned

to

nis_list(

)

when

the

function

specifies

a

callback

and

the

server

does

not

have

the

resources

to

handle

callbacks.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

253

NIS_TYPEMISMATCH

An

attempt

was

made

to

add

or

modify

an

entry

in

a

table,

and

the

entry

passed

was

of

a

different

type

than

the

table.

Summary

of

Trusted

To

succeed,

nis_remove_entry(

)

must

inherit

the

PAF_TRUSTED_PATH

attribute.

Related

Information

nis_add_entry,

nis_first_entry,

nis_list,

nis_local_directory,

nis_lookup,

nis_modify_entry,

nis_next_entry,

nis_perror,

and

nis_sperror.

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

nis_sperror

(NIS+

API)

Purpose

Returns

a

pointer

to

a

string

that

can

be

used

or

copied

using

the

strdup

function.

Syntax

cc

[

flag

...

]

file

...

-lnsl

[

library

...

]

#include

<rpcsvc/nis.h>

char

*

nis_sperror(nis_error

status,

char

*

label);

Description

One

of

a

group

of

NIS+

APIs

that

convert

NIS+

status

values

into

strings,

nis_sperror

returns

a

pointer

to

a

string

that

can

be

used

or

copied

using

the

strdup

function.

The

caller

must

supply

a

string

buffer,

buf,

large

enough

to

hold

the

error

string

(a

buffer

size

of

128

bytes

is

guaranteed

to

be

sufficiently

large).

status

and

label

are

the

same

as

for

nis_perror.

The

pointer

returned

by

the

function

is

a

pointer

to

buf.

length

specifies

the

number

of

characters

to

copy

from

the

error

string

to

buf.

The

string

is

returned

as

a

pointer

to

a

buffer

that

is

reused

on

each

call.

Note:

When

compiling

multithreaded

applications,

see

Writing

Reentrant

and

Thread-Safe

Code

for

information

about

the

use

of

the

_REENTRANT

flag.

Related

Information

nis_add_entry,

nis_first_entry,

nis_list,

nis_local_directory,

nis_lookup,

nis_modify_entry,

nis_next_entry,

nis_perror,

and

nis_remove_entry.

254

Technical

Reference:

Communications,

Volume

1

Network

Information

Services+

and

NIS+

Namespace

and

Structure

in

AIX

5L

Version

5.2

Network

Information

Services

(NIS

and

NIS+)

Guide.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

and

NIS+

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_all

Subroutine

Purpose

Transfers

all

of

the

key-value

pairs

from

the

Network

Information

Services

(NIS)

server

to

the

client

as

the

entire

map.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

yp_all

(

indomain,

inmap,

incallback)

char

*indomain;

char

*inmap;

struct

ypall_CallBack

*incallback

{

int

(*

foreach)

();

char

*

data;

};

foreach

(instatus,

inkey,

inkeylen,

inval,

invallen,

indata)

int

instatus;

char

*

inkey;

int

inkeylen;

char

*

inval;

int

invallen;

char

*

indata;

Description

The

yp_all

subroutine

provides

a

way

to

transfer

an

entire

map

from

the

server

to

the

client

in

a

single

request.

The

routine

uses

Transmission

Control

Protocol

(TCP)

rather

than

User

Datagram

Protocol

(UDP)

used

by

other

NIS

subroutines.

This

entire

transaction

takes

place

as

a

single

Remote

Procedure

Call

(RPC)

request

and

response.

The

yp_all

subroutine

is

used

like

any

other

NIS

procedure,

identifying

a

subroutine

and

map

in

the

normal

manner,

and

supplying

a

subroutine

to

process

each

key-value

pair

within

the

map.

The

memory

pointed

to

by

the

inkey

and

inval

parameters

is

private

to

the

yp_all

subroutine.

This

memory

is

overwritten

with

each

new

key-value

pair

processed.

The

foreach

function

uses

the

contents

of

the

memory

but

does

not

own

the

memory

itself.

Key

and

value

objects

presented

to

the

foreach

function

look

exactly

as

they

do

in

the

server’s

map.

Objects

not

terminated

by

a

new-line

or

null

character

in

the

server’s

map

are

not

terminated

by

a

new-line

or

null

character

in

the

client’s

map.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

255

Note:

The

remote

procedure

call

is

returned

to

the

yp_all

subroutine

only

after

the

transaction

is

completed

(successfully

or

unsuccessfully)

or

after

the

foreach

function

rejects

any

more

key-value

pairs.

Parameters

data

Specifies

state

information

between

the

foreach

function

and

the

mainline

code

(see

also

the

indata

parameter).

indomain

Points

to

the

name

of

the

domain

used

as

input

to

the

subroutine.

inmap

Points

to

the

name

of

the

map

used

as

input

to

the

subroutine.

incallback

Specifies

the

structure

containing

the

user-defined

foreach

function,

which

is

called

for

each

key-value

pair

transferred.

instatus

Specifies

either

a

return

status

value

of

the

form

NIS_TRUE

or

an

error

code.

The

error

codes

are

defined

in

the

rpcsvc/yp_prot.h

file.

inkey

Points

to

the

current

key

of

the

key-value

pair

as

returned

from

the

server’s

database.

inkeylen

Returns

the

length,

in

bytes,

of

the

inkey

parameter.

inval

Points

to

the

current

value

of

the

key-value

pair

as

returned

from

the

server’s

database.

invallen

Specifies

the

size

of

the

value

in

bytes.

indata

Specifies

the

contents

of

the

incallback->data

element

passed

to

the

yp_all

subroutine.

The

data

element

shares

state

information

between

the

foreach

function

and

the

mainline

code.

The

indata

parameter

is

optional

because

no

part

of

the

NIS

client

package

inspects

its

contents.

Return

Values

The

foreach

subroutine

returns

a

value

of

0

when

it

is

ready

to

be

called

again

for

additional

received

key-value

pairs.

It

returns

a

nonzero

value

to

stop

the

flow

of

key-value

pairs.

If

the

foreach

function

returns

a

nonzero

value,

it

is

not

called

again,

and

the

yp_all

subroutine

returns

a

value

of

0.

Related

Information

Network

Information

Service

(NIS)

Overview

for

System

Management

and

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_bind

Subroutine

Purpose

Used

in

programs

to

call

the

ypbind

daemon

directly

for

processes

that

use

backup

strategies

when

Network

Information

Services

(NIS)

is

not

available.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

yp_bind

(

indomain)

char

*indomain;

256

Technical

Reference:

Communications,

Volume

1

Description

In

order

to

use

NIS,

the

client

process

must

be

bound

to

an

NIS

server

that

serves

the

appropriate

domain.

That

is,

the

client

must

be

associated

with

a

specific

NIS

server

that

services

the

client’s

requests

for

NIS

information.

The

NIS

lookup

processes

automatically

use

the

ypbind

daemon

to

bind

the

client,

but

the

yp_bind

subroutine

can

be

used

in

programs

to

call

the

daemon

directly

for

processes

that

use

backup

strategies

(for

example,

a

local

file)

when

NIS

is

not

available.

Each

NIS

binding

allocates,

or

uses

up,

one

client

process

socket

descriptor,

and

each

bound

domain

uses

one

socket

descriptor.

Multiple

requests

to

the

same

domain

use

the

same

descriptor.

Note:

If

a

Remote

Procedure

Call

(RPC)

failure

status

returns

from

the

use

of

the

yp_bind

subroutine,

the

domain

is

unbound

automatically.

When

this

occurs,

the

NIS

client

tries

to

complete

the

operation

if

the

ypbind

daemon

is

running

and

either

of

the

following

is

true:

v

The

client

process

cannot

bind

a

server

for

the

proper

domain.

v

RPCs

to

the

server

fail.

Parameters

indomain

Points

to

the

name

of

the

domain

for

which

to

attempt

the

bind.

Return

Values

The

NIS

client

returns

control

to

the

user

with

either

an

error

or

a

success

code

if

any

of

the

following

occurs:

v

The

error

is

not

related

to

RPC.

v

The

ypbind

daemon

is

not

running.

v

The

ypserv

daemon

returns

the

answer.

Related

Information

The

ypbind

daemon,

ypserv

daemon.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_first

Subroutine

Purpose

Returns

the

first

key-value

pair

from

the

named

Network

Information

Services

(NIS)

map

in

the

named

domain.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

257

yp_first

(indomain,

inmap,

outkey,

outkeylen,

outval,

outvallen)

char

*

indomain;

char

*

inmap;

char

**

outkey;

int

*

outkeylen;

char

**

outval;

int

*

outvallen;

Description

The

yp_first

routine

returns

the

first

key-value

pair

from

the

named

NIS

map

in

the

named

domain.

Parameters

indomain

Points

to

the

name

of

the

domain

used

as

input

to

the

subroutine.

inmap

Points

to

the

name

of

the

map

used

as

input

to

the

subroutine.

outkey

Specifies

the

address

of

the

uninitialized

string

pointer

where

the

first

key

is

returned.

Memory

is

allocated

by

the

NIS

client

using

the

malloc

subroutine,

and

may

be

freed

by

the

application.

outkeylen

Returns

the

length,

in

bytes,

of

the

outkey

parameter.

outval

Specifies

the

address

of

the

uninitialized

string

pointer

where

the

value

associated

with

the

key

is

returned.

Memory

is

allocated

by

the

NIS

client

using

the

malloc

subroutine,

and

may

be

freed

by

the

application.

outvallen

Returns

the

length,

in

bytes,

of

the

outval

parameter.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

it

returns

an

error

as

described

in

the

rpcsvc/yp_prot.h

file.

Related

Information

The

malloc

subroutine.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

and

List

of

NIS

Programming

References

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_get_default_domain

Subroutine

Purpose

Gets

the

default

domain

of

the

node.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

yp_get_default_domain

(

outdomain)

char

**outdomain;

258

Technical

Reference:

Communications,

Volume

1

Description

Network

Information

Services

(NIS)

lookup

calls

require

both

a

map

name

and

a

domain

name.

Client

processes

can

get

the

default

domain

of

the

node

by

calling

the

yp_get_default_domain

routine

and

using

the

value

returned

in

the

outdomain

parameter

as

the

input

domain

(indomain)

parameter

for

NIS

remote

procedure

calls.

Parameters

outdomain

Specifies

the

address

of

the

uninitialized

string

pointer

where

the

default

domain

is

returned.

Memory

is

allocated

by

the

NIS

client

using

the

malloc

subroutine

and

should

not

be

freed

by

the

application.

Return

Values

Upon

successful

completion,

this

routine

returns

a

value

of

0.

If

unsuccessful,

it

returns

an

error

as

described

in

the

rpcsvc/ypclnt.h

file.

Related

Information

The

malloc

subroutine.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_master

Subroutine

Purpose

Returns

the

machine

name

of

the

Network

Information

Services

(NIS)

master

server

for

a

map.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

yp_master

(

indomain,

inmap,

outname)

char

*indomain;

char

*inmap;

char

**outname;

Description

The

yp_master

subroutine

returns

the

machine

name

of

the

NIS

master

server

for

a

map.

Parameters

indomain

Points

to

the

name

of

the

domain

used

as

input

to

the

subroutine.

inmap

Points

to

the

name

of

the

map

used

as

input

to

the

subroutine.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

259

outname

Specifies

the

address

of

the

uninitialized

string

pointer

where

the

name

of

the

domain’s

yp_master

server

is

returned.

Memory

is

allocated

by

the

NIS

client

using

the

malloc

subroutine,

and

may

be

freed

by

the

application.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

it

returns

one

of

the

error

codes

described

in

the

rpcsvc/yp_prot.h

file.

Related

Information

The

malloc

subroutine.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_match

Subroutine

Purpose

Searches

for

the

value

associated

with

a

key.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

yp_match

(indomain,

inmap,

inkey,

inkeylen,

outval,

outvallen)

char

*

indomain;

char

*

inmap;

char

*

inkey;

int

inkeylen;

char

**

outval;

int

*

outvallen;

Description

The

yp_match

subroutine

searches

for

the

value

associated

with

a

key.

The

input

character

string

entered

as

the

key

must

match

a

key

in

the

Network

Information

Services

(NIS)

map

exactly

because

pattern

matching

is

not

available

in

NIS.

Parameters

indomain

Points

to

the

name

of

the

domain

used

as

input

to

the

subroutine.

inmap

Points

to

the

name

of

the

map

used

as

input

to

the

subroutine.

inkey

Points

to

the

name

of

the

key

used

as

input

to

the

subroutine.

inkeylen

Specifies

the

length,

in

bytes,

of

the

key.

outval

Specifies

the

address

of

the

uninitialized

string

pointer

where

the

values

associated

with

the

key

are

returned.

Memory

is

allocated

by

the

NIS

client

using

the

malloc

subroutine,

and

may

be

freed

by

the

application.

260

Technical

Reference:

Communications,

Volume

1

outvallen

Returns

the

length,

in

bytes,

of

the

outval

parameter.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

it

returns

one

of

the

error

codes

described

in

the

rpcsvc/yp_prot.h

file.

Related

Information

The

malloc

subroutine.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_next

Subroutine

Purpose

Returns

each

subsequent

value

it

finds

in

the

named

Network

Information

Services

(NIS)

map

until

it

reaches

the

end

of

the

list.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

yp_next

(indomain,

inmap,

inkey,

inkeylen,

outkey,

outkeylen,

outval,

outvallen)

char

*

indomain;

char

*

inmap;

char

*

inkey;

int

inkeylen;

char

**

outkey;

int

*

outkeylen;

char

**

outval;

int

*

outvallen;

Description

The

yp_next

subroutine

returns

each

subsequent

value

it

finds

in

the

named

NIS

map

until

it

reaches

the

end

of

the

list.

The

yp_next

subroutine

must

be

preceded

by

an

initial

yp_first

subroutine.

Use

the

outkey

parameter

value

returned

from

the

initial

yp_first

subroutine

as

the

value

of

the

inkey

parameter

for

the

yp_next

subroutine.

This

will

return

the

second

key-value

pair

associated

with

the

map.

To

show

every

entry

in

the

NIS

map,

the

yp_first

subroutine

is

called

with

the

yp_next

subroutine

called

repeatedly.

Each

time

the

yp_next

subroutine

returns

a

key-value,

use

it

as

the

inkey

parameter

for

the

next

call.

The

concepts

of

first

and

next

depend

on

the

structure

of

the

NIS

map

being

processed.

The

routines

do

not

retrieve

the

information

in

a

specific

order,

such

as

the

lexical

order

from

the

original,

non-NIS

database

information

files

or

the

numerical

sorting

order

of

the

keys,

values,

or

key-value

pairs.

If

the

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

261

yp_first

subroutine

is

called

on

a

specific

map

with

the

yp_next

subroutine

called

repeatedly

until

the

process

returns

a

YPERR_NOMORE

message,

every

entry

in

the

NIS

map

is

seen

once.

If

the

same

sequence

of

operations

is

performed

on

the

same

map

at

the

same

server,

the

entries

are

seen

in

the

same

order.

Note:

If

a

server

operates

under

a

heavy

load

or

fails,

the

domain

can

become

unbound

and

then

bound

again

while

a

client

is

running.

If

it

binds

itself

to

a

different

server,

entries

may

be

seen

twice

or

not

at

all.

The

domain

rebinds

itself

to

protect

the

enumeration

process

from

being

interrupted

before

it

completes.

Avoid

this

situation

by

returning

all

of

the

keys

and

values

with

the

yp_all

subroutine.

Parameters

indomain

Points

to

the

name

of

the

domain

used

as

input

to

the

subroutine.

inmap

Points

to

the

name

of

the

map

used

as

input

to

the

subroutine.

inkey

Points

to

the

key

that

is

used

as

input

to

the

subroutine.

inkeylen

Returns

the

length,

in

bytes,

of

the

inkey

parameter.

outkey

Specifies

the

address

of

the

uninitialized

string

pointer

where

the

first

key

is

returned.

Memory

is

allocated

by

the

NIS

client

using

the

malloc

subroutine,

and

may

be

freed

by

the

application.

outkeylen

Returns

the

length,

in

bytes,

of

the

outkey

parameter.

outval

Specifies

the

address

of

the

uninitialized

string

pointer

where

the

values

associated

with

the

key

are

returned.

Memory

is

allocated

by

the

NIS

client

using

the

malloc

subroutine,

and

may

be

freed

by

the

application.

outvallen

Returns

the

length,

in

bytes,

of

the

outval

parameter.

Return

Values

Upon

successful

completion,

this

routine

returns

a

value

of

0.

If

unsuccessful,

it

returns

one

of

the

error

codes

described

in

the

rpcsvc/yp_prot.h

file.

Related

Information

The

malloc

subroutine,

yp_all

subroutine,

yp_first

subroutine.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_order

Subroutine

Purpose

Returns

the

order

number

for

an

Network

Information

Services

(NIS)

map

that

identifies

when

the

map

was

built.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

262

Technical

Reference:

Communications,

Volume

1

yp_order

(indomain,

inmap,

outorder)

char

*

indomain;

char

*

inmap;

int

*

outorder;

Description

The

yp_order

subroutine

returns

the

order

number

for

a

NIS

map

that

identifies

when

the

map

was

built.

The

number

determines

whether

the

local

NIS

map

is

more

current

than

the

master

NIS

database.

Parameters

indomain

Points

to

the

name

of

the

domain

used

as

input

to

the

subroutine.

inmap

Points

to

the

name

of

the

map

used

as

input

to

the

subroutine.

outorder

Points

to

the

returned

order

number,

which

is

a

10-digit

ASCII

integer

that

represents

the

operating

system

time,

in

seconds,

when

the

map

was

built.

Return

Values

Upon

successful

completion,

this

routine

returns

a

value

of

0.

If

unsuccessful,

it

returns

one

of

the

error

codes

described

in

the

rpcsvc/yp_prot.h

file.

Related

Information

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_unbind

Subroutine

Purpose

Manages

socket

descriptors

for

processes

that

access

multiple

domains.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

void

yp_unbind

(

indomain)

char

*indomain;

Description

The

yp_unbind

subroutine

is

available

to

manage

socket

descriptors

for

processes

that

access

multiple

domains.

When

the

yp_unbind

subroutine

is

used

to

free

a

domain,

all

per-process

and

per-node

resources

that

were

used

to

bind

the

domain

are

also

freed.

Parameters

indomain

Points

to

the

name

of

the

domain

used

as

input

to

the

subroutine.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

263

Return

Values

Upon

successful

completion,

this

routine

returns

a

value

of

0.

If

unsuccessful,

it

returns

one

of

the

error

codes

described

in

the

rpcsvc/yp_prot.h

file.

Related

Information

The

yp_bind

subroutine.

The

ypbind

daemon.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References,

Remote

Procedure

Call

(RPC)

Overview

for

Programming,

and

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yp_update

Subroutine

Purpose

Makes

changes

to

an

Network

Information

Services

(NIS)

map.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

yp_update

(indomain,

inmap,

ypop,

inkey,

inkeylen,

indata,

indatalen)

char

*

indomain;

char

*

inmap;

unsigned

ypop;

char

*

inkey;

int

inkeylen;

char

*

indata;

int

indatalen;

Description

Note:

This

routine

depends

upon

the

secure

Remote

Procedure

Call

(RPC)

protocol,

and

will

not

work

unless

the

network

is

running

it.

The

yp_update

subroutine

is

used

to

make

changes

to

a

NIS

map.

The

syntax

is

the

same

as

that

of

the

yp_match

subroutine

except

for

the

additional

ypop

parameter,

which

may

take

on

one

of

the

following

four

values:

Value

Description

ypop

_INSERT

Inserts

the

key-value

pair

into

the

map.

If

the

key

already

exists

in

the

map,

the

yp_update

subroutine

returns

a

value

of

YPERR_KEY.

ypop_CHANGE

Changes

the

data

associated

with

the

key

to

the

new

value.

If

the

key

is

not

found

in

the

map,

the

yp_update

subroutine

returns

a

value

of

YPERR_KEY.

ypop_STORE

Stores

an

item

in

the

map

regardless

of

whether

the

item

already

exists.

No

error

is

returned

in

either

case.

ypop_DELETE

Deletes

an

entry

from

the

map.

264

Technical

Reference:

Communications,

Volume

1

Parameters

indomain

Points

to

the

name

of

the

domain

used

as

input

to

the

subroutine.

inmap

Points

to

the

name

of

the

map

used

as

input

to

the

subroutine.

ypop

Specifies

the

update

operation

to

be

used

as

input

to

the

subroutine.

inkey

Points

to

the

input

key

to

be

used

as

input

to

the

subroutine.

inkeylen

Specifies

the

length,

in

bytes,

of

the

inkey

parameter.

indata

Points

to

the

data

used

as

input

to

the

subroutine.

indatalen

Specifies

the

length,

in

bytes,

of

the

data

used

as

input

to

the

subroutine.

Return

Values

Upon

successful

completion,

this

routine

returns

a

value

of

0.

If

unsuccessful,

it

returns

one

of

the

error

codes

described

in

the

rpcsvc/yp_prot.h

file.

Files

/var/yp/updaters

A

makefile

for

updating

NIS

maps.

Related

Information

The

yp_match

subroutine.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

yperr_string

Subroutine

Purpose

Returns

a

pointer

to

an

error

message

string.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

char

*yperr_string

(

incode)

int

incode;

Description

The

yperr_string

routine

returns

a

pointer

to

an

error

message

string.

The

error

message

string

is

null-terminated

but

contains

no

period

or

new-line

escape

characters.

Chapter

6.

Network

Information

Services

(NIS)

and

Network

Information

Services+

(NIS+)

265

Parameters

incode

Contains

Network

Information

Services

(NIS)

error

codes

as

described

in

the

rpcsvc/yp_prot.h

file.

Return

Values

This

subroutine

returns

a

pointer

to

an

error

message

string

corresponding

to

the

incode

parameter.

Related

Information

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

ypprot_err

Subroutine

Purpose

Takes

an

Network

Information

Services

NIS

protocol

error

code

as

input

and

returns

an

error

code

to

be

used

as

input

to

a

yperr_string

subroutine.

Library

C

Library

(libc.a)

Syntax

#include

<rpcsvc/ypclnt.h>

#include

<rpcsvc/yp_prot.h>

ypprot_err

(

incode)

u_int

incode;

Description

The

ypprot_err

subroutine

takes

a

NIS

protocol

error

code

as

input

and

returns

an

error

code

to

be

used

as

input

to

a

yperr_string

subroutine.

Parameters

incode

Specifies

the

NIS

protocol

error

code

used

as

input

to

the

subroutine.

Return

Values

This

subroutine

returns

a

corresponding

error

code

to

be

passed

to

the

yperr_string

subroutine.

Related

Information

The

yperr_string

subroutine.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

List

of

NIS

Programming

References

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

266

Technical

Reference:

Communications,

Volume

1

Chapter

7.

New

Database

Manager

(NDBM)

dbm_close

Subroutine

Purpose

Closes

a

database.

Library

C

Library

(libc.a)

Syntax

#include

<ndbm.h>

void

dbm_close

(

db)

DBM

*db;

Description

The

dbm_close

subroutine

closes

a

database.

Parameters

db

Specifies

the

database

to

close.

Related

Information

The

dbmclose

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dbm_delete

Subroutine

Purpose

Deletes

a

key

and

its

associated

contents.

Library

C

Library

(libc.a)

Syntax

#include

<ndbm.h>

int

dbm_delete

(

db,

key)

DBM

*db;

datum

key;

Description

The

dbm_delete

subroutine

deletes

a

key

and

its

associated

contents.

©

Copyright

IBM

Corp.

1997,

2003

267

Parameters

db

Specifies

a

database.

key

Specifies

the

key

to

delete.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

the

subroutine

returns

a

negative

value.

Related

Information

The

delete

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dbm_fetch

Subroutine

Purpose

Accesses

data

stored

under

a

key.

Library

C

Library

(libc.a)

Syntax

#include

<ndbm.h>

datum

dbm_fetch

(

db,

key)

DBM

*db;

datum

key;

Description

The

dbm_fetch

subroutine

accesses

data

stored

under

a

key.

Parameters

db

Specifies

the

database

to

access.

key

Specifies

the

input

key.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

datum

structure

containing

the

value

returned

for

the

specified

key.

If

the

subroutine

is

unsuccessful,

a

null

value

is

indicated

in

the

dptr

field

of

the

datum

structure.

Related

Information

The

fetch

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

268

Technical

Reference:

Communications,

Volume

1

dbm_firstkey

Subroutine

Purpose

Returns

the

first

key

in

a

database.

Library

C

Library

(libc.a)

Syntax

#include

<ndbm.h>

datum

dbm_firstkey

(

db)

DBM

*db;

Description

The

dbm_firstkey

subroutine

returns

the

first

key

in

a

database.

Parameters

db

Specifies

the

database

to

access.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

datum

structure

containing

the

value

returned

for

the

specified

key.

If

the

subroutine

is

unsuccessful,

a

null

value

is

indicated

in

the

dptr

field

of

the

datum

structure.

Related

Information

The

firstkey

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dbm_nextkey

Subroutine

Purpose

Returns

the

next

key

in

a

database.

Library

C

Library

(libc.a)

Syntax

#include

<ndbm.h>

datum

dbm_nextkey

(

db)

DBM

*db;

Description

The

dbm_nextkey

subroutine

returns

the

next

key

in

a

database.

Chapter

7.

New

Database

Manager

(NDBM)

269

Parameters

db

Specifies

the

database

to

access.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

datum

structure

containing

the

value

returned

for

the

specified

key.

If

the

subroutine

is

unsuccessful,

a

null

value

is

indicated

in

the

dptr

field

of

the

datum

structure.

Related

Information

The

nextkey

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dbm_open

Subroutine

Purpose

Opens

a

database

for

access.

Library

C

Library

(libc.a)

Syntax

#include

<ndbm.h>

DBM

*dbm_open

(

file,

flags,

mode)

char

*file;

int

flags,

mode;

Description

The

dbm_open

subroutine

opens

a

database

for

access.

The

subroutine

opens

or

creates

the

file.dir

and

file.pag

files,

depending

on

the

flags

parameter.

The

returned

DBM

structure

is

used

as

input

to

other

NDBM

routines.

Parameters

file

Specifies

the

path

to

open

a

database.

flags

Specifies

the

flags

required

to

open

a

subroutine.

mode

Specifies

the

mode

required

to

open

a

subroutine.

For

more

information

about

the

flags

and

mode

parameters,

see

the

open,

openx,

or

creat

subroutine.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

pointer

to

the

DBM

structure.

If

unsuccessful,

it

returns

a

null

value.

Related

Information

The

dbminit

subroutine,

open,

openx,

or

creat

subroutine.

270

Technical

Reference:

Communications,

Volume

1

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts..

dbm_store

Subroutine

Purpose

Places

data

under

a

key.

Library

C

Library

(libc.a)

Syntax

#include

<ndbm.h>

int

dbm_store

(db,

key,

content,

flags)

DBM

*

db;

datum

key,

content;

int

flags;

Description

The

dbm_store

subroutine

places

data

under

a

key.

Parameters

db

Specifies

the

database

to

store.

key

Specifies

the

input

key.

content

Specifies

the

value

associated

with

the

key

to

store.

flags

Contains

either

the

DBM_INSERT

or

DBM_REPLACE

flag.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

the

subroutine

returns

a

negative

value.

When

the

dbm_store

subroutine

is

called

with

the

flags

parameter

set

to

the

DBM_INSERT

flag

and

an

existing

entry

is

found,

it

returns

a

value

of

1.

If

the

flags

parameter

is

set

to

the

DBM_REPLACE

flag,

the

entry

will

be

replaced,

even

if

it

already

exists.

Related

Information

The

store

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dbmclose

Subroutine

Purpose

Closes

a

database.

Library

DBM

Library

(libdbm.a)

Chapter

7.

New

Database

Manager

(NDBM)

271

Syntax

#include

<dbm.h>

void

dbmclose

(

db)

DBM

*db;

Description

The

dbmclose

subroutine

closes

a

database.

Parameters

db

Specifies

the

database

to

close.

Related

Information

The

dbm_close

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

dbminit

Subroutine

Purpose

Opens

a

database

for

access.

Library

DBM

Library

(libdbm.a)

Syntax

#include

<dbm.h>

dbminit

(

file)

char

*file;

Description

The

dbminit

subroutine

opens

a

database

for

access.

At

the

time

of

the

call,

the

file.dir

and

file.pag

files

must

exist.

Note:

To

build

an

empty

database,

create

zero-length

.dir

and

.pag

files.

Parameters

file

Specifies

the

path

name

of

the

database

to

open.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

the

subroutine

returns

a

negative

value.

Related

Information

The

dbm_open

subroutine.

272

Technical

Reference:

Communications,

Volume

1

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

delete

Subroutine

Purpose

Deletes

a

key

and

its

associated

contents.

Library

DBM

Library

(libdbm.a)

Syntax

#include

<dbm.h>

delete

(

key)

datum

key;

Description

The

delete

subroutine

deletes

a

key

and

its

associated

contents.

Parameters

key

Specifies

the

key

to

delete.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

the

subroutine

returns

a

negative

value.

Related

Information

The

dbm_delete

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

fetch

Subroutine

Purpose

Accesses

data

stored

under

a

key.

Library

DBM

Library

(libdbm.a)

Syntax

#include

<dbm.h>

datum

fetch

(

key)

datum

key;

Chapter

7.

New

Database

Manager

(NDBM)

273

Description

The

fetch

subroutine

accesses

data

stored

under

a

key.

Parameters

key

Specifies

the

input

key.

Return

Values

Upon

successful

completion,

this

subroutine

returns

data

corresponding

to

the

specified

key.

If

the

subroutine

is

unsuccessful,

a

null

value

is

indicated

in

the

dptr

field

of

the

returned

datum

structure.

Related

Information

The

dbm_fetch

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

firstkey

Subroutine

Purpose

Returns

the

first

key

in

the

database.

Library

DBM

Library

(libdbm.a)

Syntax

#include

<dbm.h>

datum

firstkey

()

Description

The

firstkey

subroutine

returns

the

first

key

in

the

database.

Return

Values

Returns

a

datum

structure

containing

the

first

key

value

pair.

Related

Information

The

dbm_firstkey

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

nextkey

Subroutine

Purpose

Returns

the

next

key

in

a

database.

Library

DBM

Library

(libdbm.a)

274

Technical

Reference:

Communications,

Volume

1

Syntax

#include

<dbm.h>

datum

nextkey

(

key)

datum

key;

Description

The

nextkey

subroutine

returns

the

next

key

in

a

database.

Parameters

key

Specifies

the

input

key.

This

value

has

no

effect

on

the

return

value,

but

must

be

present.

Return

Values

Returns

a

datum

structure

containing

the

next

key-value

pair.

Related

Information

The

dbm_nextkey

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

store

Subroutine

Purpose

Places

data

under

a

key.

Library

DBM

Library

(libdbm.a)

Syntax

#include

<dbm.h>

int

store

(

key,

content)

datum

key,

content;

Description

The

store

subroutine

places

data

under

a

key.

Parameters

key

Specifies

the

input

key.

content

Specifies

the

value

associated

with

the

key

to

store.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

the

subroutine

returns

a

negative

value.

Chapter

7.

New

Database

Manager

(NDBM)

275

Related

Information

The

dbm_store

subroutine.

List

of

NDBM

and

DBM

Programming

References

and

NDBM

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

276

Technical

Reference:

Communications,

Volume

1

Chapter

8.

Remote

Procedure

Calls

(RPC)

auth_destroy

Macro

Purpose

Destroys

authentication

information.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

auth_destroy

(

auth)

auth

*auth;

Description

The

auth_destroy

macro

destroys

the

authentication

information

structure

pointed

to

by

the

auth

parameter.

Destroying

the

structure

deallocates

private

data

structures.

The

use

of

the

auth

parameter

is

undefined

after

calling

this

macro.

Parameters

auth

Points

to

the

authentication

information

structure

to

be

destroyed.

Related

Information

List

of

RPC

Programming

References.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

authdes_create

Subroutine

Purpose

Enables

the

use

of

Data

Encryption

Standard

(DES)

from

the

client

side.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

AUTH

*authdes_create

(name,

window,

syncaddr,

ckey)

char

*

name;

u_int

window;

struct

sockaddr

*

syncaddr;

des_block

*

ckey;

©

Copyright

IBM

Corp.

1997,

2003

277

Description

The

authdes_create

subroutine

interfaces

to

the

secure

authentication

system,

known

as

DES.

This

subroutine,

used

from

the

client

side,

returns

the

authentication

handle

that

allows

use

of

the

secure

authentication

system.

Note:

The

keyserv

daemon

must

be

running

for

the

DES

authentication

system

to

work.

Parameters

name

Specifies

the

network

name

(or

netname)

of

the

server

process

owner.

The

name

parameter

can

be

either

the

host

name

derived

from

the

host2netname

subroutine

or

the

user

name

derived

from

the

user2netname

subroutine.

window

Specifies

the

confirmation

of

the

client

credentials,

given

in

seconds.

A

small

value

for

the

window

parameter

is

more

secure

than

a

large

one.

However,

choosing

too

small

a

value

for

the

window

parameter

increases

the

frequency

of

resynchronizations

due

to

clock

drift.

syncaddr

Identifies

clock

synchronization.

If

the

syncaddr

parameter

has

a

null

value,

then

the

authentication

system

assumes

that

the

local

clock

is

always

in

sync

with

the

server’s

clock.

The

authentication

system

will

not

attempt

resynchronizations.

However,

if

an

address

is

supplied,

the

system

uses

the

address

for

consulting

the

remote

time

service

whenever

resynchronization

is

required.

This

parameter

usually

contains

the

address

of

the

RPC

server

itself.

ckey

Specifies

the

DES

key.

If

the

value

of

the

ckey

parameter

is

null,

the

authentication

system

generates

a

random

DES

key

to

be

used

for

the

encryption

of

credentials.

However,

if

a

DES

key

is

supplied,

the

supplied

key

is

used.

Return

Values

This

subroutine

returns

a

pointer

to

a

DES

authentication

object.

Related

Information

List

of

RPC

Programming

References.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

authdes_getucred

Subroutine

Purpose

Maps

a

Data

Encryption

Standard

(DES)

credential

into

a

UNIX

credential.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

authdes_getucred

(adc,

uid,

gid,

grouplen,

groups)

struct

authdes_cred

*

adc;

short

*

uid;

short

*

gid;

short

*

grouplen;

int

*

groups;

278

Technical

Reference:

Communications,

Volume

1

Description

The

authdes_getucred

subroutine

interfaces

to

the

secure

authentication

system

known

as

DES.

The

server

uses

this

subroutine

to

convert

a

DES

credential,

which

is

the

independent

operating

system,

into

a

UNIX

credential.

The

authdes_getucred

subroutine

retrieves

necessary

information

from

a

cache

instead

of

using

the

network

information

service

(NIS).

Note:

The

keyserv

daemon

must

be

running

for

the

DES

authentication

system

to

work.

Parameters

adc

Points

to

the

DES

credential

structure.

uid

Specifies

the

caller’s

effective

user

ID

(UID).

gid

Specifies

the

caller’s

effective

group

ID

(GID).

grouplen

Specifies

the

group’s

length.

groups

Points

to

the

group’s

array.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

keyserv

daemon.

List

of

RPC

Programming

References.

Network

Information

Service

(NIS)

Overview

for

System

Management

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

authnone_create

Subroutine

Purpose

Creates

null

authentication.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

AUTH

*authnone_create

(

)

Description

The

authnone_create

subroutine

creates

and

returns

a

default

Remote

Procedure

Call

(RPC)

authentication

handle

that

passes

null

authentication

information

with

each

remote

procedure

call.

Return

Values

This

subroutine

returns

a

pointer

to

an

RPC

authentication

handle.

Chapter

8.

Remote

Procedure

Calls

(RPC)

279

Related

Information

The

authunix_create

subroutine,

authunix_create_default

subroutine,

svcerr_auth

subroutine.

The

auth_destroy

macro.

List

of

RPC

Programming

References.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

authunix_create

Subroutine

Purpose

Creates

an

authentication

handle

with

operating

system

permissions.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

AUTH

*authunix_create

(host,

uid,

gid,

len,

aupgids)

char

*

host;

int

uid,

gid;

int

len,

*

aupgids;

Description

The

authunix_create

subroutine

creates

and

returns

a

Remote

Procedure

Call

(RPC)

authentication

handle

with

operating

system

permissions.

Parameters

host

Points

to

the

name

of

the

machine

on

which

the

permissions

were

created.

uid

Specifies

the

caller’s

effective

user

ID

(UID).

gid

Specifies

the

caller’s

effective

group

ID

(GID).

len

Specifies

the

length

of

the

groups

array.

aupgids

Points

to

the

counted

array

of

groups

to

which

the

user

belongs.

Return

Values

This

subroutine

returns

an

RPC

authentication

handle.

Related

Information

The

authnone_create

subroutine,

authunix_create_default

subroutine,

svcerr_auth

subroutine.

The

auth_destroy

macro.

List

of

RPC

Programming

References.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

280

Technical

Reference:

Communications,

Volume

1

authunix_create_default

Subroutine

Purpose

Sets

the

authentication

to

default.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

AUTH

*authunix_create_default()

Description

The

authunix_create_default

subroutine

calls

the

authunix_create

subroutine

to

create

and

return

the

default

operating

system

authentication

handle.

Return

Values

Upon

successful

completion,

this

subroutine

returns

an

authentication

handle.

Related

Information

The

authnone_create

subroutine,

authunix_create

subroutine,

svcerr_auth

subroutine.

The

auth_destroy

macro.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

callrpc

Subroutine

Purpose

Calls

the

remote

procedure

on

the

machine

specified

by

the

host

parameter.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

callrpc

(host,

prognum,

versnum,

procnum,

inproc,

in,

outproc,

out)

char

*

host;

u_long

prognum,

versnum,

procnum;

xdrproc_t

inproc;

char

*

in;

xdrproc_t

outproc;

char

*

out;

Description

The

callrpc

subroutine

calls

a

remote

procedure

identified

by

the

prognum

parameter,

the

versnum

parameter,

and

the

procnum

parameter

on

the

machine

pointed

to

by

the

host

parameter.

Chapter

8.

Remote

Procedure

Calls

(RPC)

281

This

subroutine

uses

User

Datagram

Protocol/Internet

Protocol

(UDP/IP)

as

a

transport

to

call

a

remote

procedure.

No

connection

will

be

made

if

the

server

is

supported

by

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP).

This

subroutine

does

not

control

time

outs

or

authentication.

Parameters

host

Points

to

the

program

name

of

the

remote

machine.

prognum

Specifies

the

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

procnum

Specifies

the

number

of

the

procedure

associated

with

the

remote

program

being

called.

inproc

Specifies

the

name

of

the

XDR

procedure

that

encodes

the

procedure

parameters.

in

Specifies

the

address

of

the

procedure

arguments.

outproc

Specifies

the

name

of

the

XDR

procedure

that

decodes

the

procedure

results.

out

Specifies

the

address

where

results

are

placed.

Return

Values

This

subroutine

returns

a

value

of

enum

clnt_stat.

Use

the

clnt_perrno

subroutine

to

translate

this

failure

status

into

a

displayed

message.

Related

information

The

clnt_broadcast

subroutine,

clnttcp_create

subroutine,

clntudp_create

subroutine,

clnt_perrno

subroutine,

registerrpc

subroutine,

svc_run

subroutine.

The

clnt_call

macro.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

cbc_crypt,

des_setparity,

or

ecb_crypt

Subroutine

Purpose

Implements

Data

Encryption

Standard

(DES)

encryption

routines.

Library

DES

library

(libdes.a)

Syntax

#

include

<des_crypt.h>

int

ecb_crypt

(

key,

data,

datalen,

mode)

char

*key;

char

*data;

unsigned

datalen;

unsigned

mode;

int

cbc_crypt(key,

data,

datalen,

mode,

ivec)

char

*key;

char

*data;

282

Technical

Reference:

Communications,

Volume

1

unsigned

datalen;

unsigned

mode;

char

ivec;

void

des_setparity(key)

char

*key;

Description

The

ecb_crypt

and

cbc_crypt

subroutines

implement

DES

encryption

routines,

set

by

the

National

Bureau

of

Standards.

v

The

ecb_crypt

subroutine

encrypts

in

ECB

(Electronic

Code

Book)

mode,

which

encrypts

blocks

of

data

independently.

v

The

cbc_crypt

subroutine

encrypts

in

CBC

(Cipher

Block

Chaining)

mode,

which

chains

together

successive

blocks.

CBC

mode

protects

against

insertions,

deletions,

and

substitutions

of

blocks.

Also,

regularities

in

the

clear

text

will

not

appear

in

the

cipher

text.

These

subroutines

are

not

available

for

export

outside

the

United

States.

Note:

The

DES

library

must

be

installed

to

use

these

subroutines.

Parameters

data

Specifies

that

the

data

is

to

be

either

encrypted

or

decrypted.

datalen

Specifies

the

length

in

bytes

of

data.

The

length

must

be

a

multiple

of

8.

key

Specifies

the

8-byte

encryption

key

with

parity.

To

set

the

parity

for

the

key,

which

for

DES

is

in

the

low

bit

of

each

byte,

use

the

des_setparity

subroutine.

ivec

Initializes

the

vector

for

the

chaining

in

8-byte.

This

is

updated

to

the

next

initialization

vector

upon

return.

mode

Specifies

whether

data

is

to

be

encrypted

or

decrypted.

This

parameter

is

formed

by

logically

ORing

the

DES_ENCRYPT

or

DES_DECRYPT

symbols.

For

software

versus

hardware

encryption,

logically

OR

the

DES_HW

or

DES_SW

symbols.

These

four

symbols

are

defined

in

the

/usr/include/des_crypt.h

file.

Return

Values

DESERR_BADPARAM

Specifies

that

a

bad

parameter

was

passed

to

routine.

DESERR_HWERR

Specifies

that

an

error

occurred

in

the

hardware

or

driver.

DESERR_NOHWDEVICE

Specifies

that

encryption

succeeded,

but

was

done

in

software

instead

of

the

requested

hardware.

DESERR_NONE

Specifies

no

error.

Note:

Given

the

stat

variable,

for

example,

which

contains

the

return

value

for

either

the

ecb_crypt

or

cbc_crypt

subroutine,

the

DES_FAILED(stat)

macro

is

false

only

for

the

DESERR_NONE

and

DESERR_NOHWDEVICE

return

values.

Files

/usr/include/des_crypt.h

Defines

macros

and

needed

symbols

for

the

mode

parameter.

Related

Information

Secure

NFS

in

AIX

5L

Version

5.2

Security

Guide.

Example

Using

DES

Authentication

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

8.

Remote

Procedure

Calls

(RPC)

283

clnt_broadcast

Subroutine

Purpose

Broadcasts

a

remote

procedure

call

to

all

locally

connected

networks.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

enum

clnt_stat

clnt_broadcast

(prognum,

versnum,

procnum,

inproc)

enum

clnt_stat

clnt_broadcast

(in,

outproc,

out,

eachresult)

u_long

prognum,

versnum,

procnum;

xdrproc_t

inproc;

char

*

in;

xdrproc_t

outproc;

char

*

out;

resultproc_t

eachresult;

Description

The

clnt_broadcast

subroutine

broadcasts

a

remote

procedure

call

to

all

locally

connected

networks.

The

remote

procedure

is

identified

by

the

prognum,

versnum,

and

procnum

parameters

on

the

workstation

identified

by

the

host

parameter.

Broadcast

sockets

are

limited

in

size

to

the

maximum

transfer

unit

of

the

data

link.

For

Ethernet,

this

value

is

1500

bytes.

When

a

client

broadcasts

a

remote

procedure

call

over

the

network,

a

number

of

server

processes

respond.

Each

time

the

client

receives

a

response,

the

clnt_broadcast

subroutine

calls

the

eachresult

routine.

The

eachresult

routine

takes

the

following

form:

eachresult

(out,

*addr)

char

*out;

struct

sockaddr_in

*addr;

Parameters

prognum

Specifies

the

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

procnum

Identifies

the

procedure

to

be

called.

inproc

Specifies

the

procedure

that

encodes

the

procedure’s

parameters.

in

Specifies

the

address

of

the

procedure’s

arguments.

outproc

Specifies

the

procedure

that

decodes

the

procedure

results.

out

Specifies

the

address

where

results

are

placed.

eachresult

Specifies

the

procedure

to

call

when

clients

respond.

addr

Specifies

the

address

of

the

workstation

that

sent

the

results.

Return

Values

If

the

eachresult

subroutine

returns

a

value

of

0,

the

clnt_broadcast

subroutine

waits

for

more

replies.

Otherwise,

the

clnt_broadcast

subroutine

returns

with

the

appropriate

results.

284

Technical

Reference:

Communications,

Volume

1

Related

Information

The

callrpc

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

and

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_call

Macro

Purpose

Calls

the

remote

procedure

associated

with

the

clnt

parameter.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

enum

clnt_stat

clnt_call

(clnt,

procnum,

inproc,

in,

outproc,

out,

tout)

CLIENT

*

clnt;

u_long

procnum;

xdrproc_t

inproc;

char

*

in;

xdrproc_t

outproc;

char

*

out;

struct

timeval

tout;

Description

The

clnt_call

macro

calls

the

remote

procedure

associated

with

the

client

handle

pointed

to

by

the

clnt

parameter.

Parameters

clnt

Points

to

the

structure

of

the

client

handle

that

results

from

a

Remote

Procedure

Call

(RPC)

client

creation

subroutine,

such

as

the

clntudp_create

subroutine

that

opens

a

User

Datagram

Protocol/Internet

Protocol

(UDP/IP)

socket.

procnum

Identifies

the

remote

procedure

on

the

host

machine.

inproc

Specifies

the

procedure

that

encodes

the

procedure’s

parameters.

in

Specifies

the

address

of

the

procedure’s

arguments.

outproc

Specifies

the

procedure

that

decodes

the

procedure’s

results.

out

Specifies

the

address

where

results

are

placed.

tout

Sets

the

time

allowed

for

results

to

return.

Related

Information

The

callrpc

subroutine,

clnt_perror

subroutine,

clnttcp_create

subroutine,

clntudp_create

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

and

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

8.

Remote

Procedure

Calls

(RPC)

285

clnt_control

Macro

Purpose

Changes

or

retrieves

various

information

about

a

client

object.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

bool_t

clnt_control

(cI,

req,

info)

CLIENT

*

cl;

int

req;

char

*

info;

Description

The

clnt_control

macro

is

used

to

change

or

retrieve

various

information

about

a

client

object.

User

Datagram

Protocol

(UDP)

and

Transmission

Control

Protocol

(TCP)

have

the

following

supported

values

for

the

req

parameter’s

argument

types

and

functions:

Values

for

the

req

Parameter

Argument

Type

Function

CLSET_TIMEOUT

struct

timeval

Sets

total

time

out.

CLGET_TIMEOUT

struct

timeval

Gets

total

time

out.

CLGET_SERVER_ADDR

struct

sockaddr

Gets

server’s

address.

The

following

operations

are

valid

for

UDP

only:

Values

for

the

req

Parameter

Argument

Type

Function

CLSET_RETRY_TIMEOUT

struct

timeval

Sets

the

retry

time

out.

CLGET_RETRY_TIMEOUT

struct

timeval

Gets

the

retry

time

out.

Notes:

1.

If

the

time

out

is

set

using

the

clnt_control

subroutine,

the

time-out

parameter

passed

to

the

clnt_call

subroutine

will

be

ignored

in

all

future

calls.

2.

The

retry

time

out

is

the

time

that

User

Datagram

Protocol/Remote

Procedure

Call

(UDP/RPC)

waits

for

the

server

to

reply

before

retransmitting

the

request.

Parameters

cl

Points

to

the

structure

of

the

client

handle.

req

Indicates

the

type

of

operation.

info

Points

to

the

information

for

request

type.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

286

Technical

Reference:

Communications,

Volume

1

Related

Information

The

clnttcp_create

subroutine,

clntudp_create

subroutine.

The

clnt_call

macro.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_create

Subroutine

Purpose

Creates

and

returns

a

generic

client

handle.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

CLIENT

*clnt_create

(host,

prognum,

versnum,

protocol)

char

*

host;

unsigned

prognum,

versnum;

char

*

protocol;

Description

Creates

and

returns

a

generic

client

handle.

Remote

Procedure

Calls

(RPC)

messages

transported

by

User

Datagram

Protocol/Internet

Protocol

(UDP/IP)

can

hold

up

to

8KB

of

encoded

data.

Use

this

transport

for

procedures

that

take

arguments

or

return

results

of

less

than

8KB.

Note:

When

the

clnt_create

subroutine

is

used

to

create

a

RPC

client

handle,

the

timeout

value

provided

on

subsequent

calls

to

clnttcp_call

are

ignored.

Using

the

clnt_create

subroutine

has

the

same

effect

as

using

clnttcp_create

followed

by

a

call

to

clnt_control

to

set

the

timeout

value

for

the

RPC

client

handle.

If

the

timeout

paramater

is

used

on

the

clnttcp_call

interface,

use

the

clnttcp_create

interface

to

create

the

client

handle.

Parameters

host

Identifies

the

name

of

the

remote

host

where

the

server

is

located.

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

protocol

Identifies

which

data

transport

protocol

the

program

is

using,

either

UDP

or

Transmission

Control

Protocol

(TCP).

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

client

handle.

Chapter

8.

Remote

Procedure

Calls

(RPC)

287

Related

Information

The

clnttcp_create

subroutine,

clntudp_create

subroutine.

The

clnt_control

macro,

clnt_destroy

macro.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_destroy

Macro

Purpose

Destroys

the

client’s

Remote

Procedure

Call

(RPC)

handle.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

clnt_destroy

(

clnt)

CLIENT

*clnt;

Description

The

clnt_destroy

macro

destroys

the

client’s

RPC

handle.

Destroying

the

client’s

RPC

handle

deallocates

private

data

structures,

including

the

clnt

parameter

itself.

The

use

of

the

clnt

parameter

becomes

undefined

upon

calling

the

clnt_destroy

macro.

Parameters

clnt

Points

to

the

structure

of

the

client

handle.

Related

Information

The

clntudp_create

subroutine,

clnt_create

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

and

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_freeres

Macro

Purpose

Frees

data

that

was

allocated

by

the

Remote

Procedure

Call/eXternal

Data

Representation

(RPC/XDR)

system.

Library

C

Library

(libc.a)

288

Technical

Reference:

Communications,

Volume

1

Syntax

#include

<rpc/rpc.h>

clnt_freeres

(

clnt,

outproc,

out)

CLIENT

*clnt;

xdrpoc_t

outproc;

char

*out;

Description

The

clnt_freeres

macro

frees

data

allocated

by

the

RPC/XDR

system.

This

data

was

allocated

when

the

RPC/XDR

system

decoded

the

results

of

an

RPC

call.

Parameters

clnt

Points

to

the

structure

of

the

client

handle.

outproc

Specifies

the

XDR

subroutine

that

describes

the

results

in

simple

decoding

primitives.

out

Specifies

the

address

where

the

results

are

placed.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_geterr

Macro

Purpose

Copies

error

information

from

a

client

handle.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

clnt_geterr

(

clnt,

errp)

CLIENT

*clnt;

struct

rpc_err

*errp;

Description

The

clnt_geterr

macro

copies

error

information

from

a

client

handle

to

an

error

structure.

Parameters

clnt

Points

to

the

structure

of

the

client

handle.

errp

Specifies

the

address

of

the

error

structure.

clnt_pcreateerror

Subroutine

Purpose

Indicates

why

a

client

Remote

Procedure

Call

(RPC)

handle

was

not

created.

Chapter

8.

Remote

Procedure

Calls

(RPC)

289

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

clnt_pcreateerror

(

s)

char

*s;

Description

The

clnt_pcreateerror

subroutine

writes

a

message

to

standard

error

output,

indicating

why

a

client

RPC

handle

could

not

be

created.

The

message

is

preceded

by

the

string

pointed

to

by

the

s

parameter

and

a

colon.

Use

this

subroutine

if

one

of

the

following

calls

fails:

the

clntraw_create

subroutine,

clnttcp_create

subroutine,

or

clntudp_create

subroutine.

Parameters

s

Points

to

a

character

string

that

represents

the

error

text.

Related

Information

The

clnt_create

subroutine,

clnt_spcreateerror

subroutine,

clntraw_create

subroutine,

clnttcp_create

subroutine,

clntudp_create

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_perrno

Subroutine

Purpose

Specifies

the

condition

of

the

stat

parameter.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

clnt_perrno

(

stat)

enum

clnt_stat

stat;

Description

The

clnt_perrno

subroutine

writes

a

message

to

standard

error

output,

corresponding

to

the

condition

specified

by

the

stat

parameter.

This

subroutine

is

used

after

a

callrpc

subroutine

fails.

The

clnt_perrno

subroutine

translates

the

failure

status

(the

enum

clnt_stat

subroutine)

into

a

message.

290

Technical

Reference:

Communications,

Volume

1

If

the

program

does

not

have

a

standard

error

output,

or

the

programmer

does

not

want

the

message

to

be

output

with

the

printf

subroutine,

or

the

message

format

used

is

different

from

that

supported

by

the

clnt_perrno

subroutine,

then

the

clnt_sperrno

subroutine

is

used

instead

of

the

clnt_perrno

subroutine.

Parameters

stat

Specifies

the

client

error

status

of

the

remote

procedure

call.

Return

Values

The

clnt_perrno

subroutine

translates

and

displays

the

following

enum

clnt_stat

error

status

codes:

RPC_SUCCESS

=

0

Call

succeeded.

RPC_CANTENCODEARGS

=

1

Cannot

encode

arguments.

RPC_CANTDECODERES

=

2

Cannot

decode

results.

RPC_CANTSEND

=

3

Failure

in

sending

call.

RPC_CANTRECV

=

4

Failure

in

receiving

result.

RPC_TIMEDOUT

=

5

Call

timed

out.

Related

Information

The

callrpc

subroutine,

clnt_sperrno

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_perror

Subroutine

Purpose

Indicates

why

a

remote

procedure

call

failed.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

clnt_perror

(

clnt,

s)

CLIENT

*clnt;

char

*s;

Description

The

clnt_perror

subroutine

writes

a

message

to

standard

error

output

indicating

why

a

remote

procedure

call

failed.

The

message

is

preceded

by

the

string

pointed

to

by

the

s

parameter

and

a

colon.

This

subroutine

is

used

after

the

clnt_call

macro.

Parameters

clnt

Points

to

the

structure

of

the

client

handle.

s

Points

to

a

character

string

that

represents

the

error

text.

Chapter

8.

Remote

Procedure

Calls

(RPC)

291

Return

Values

This

subroutine

returns

an

error

string

to

standard

error

output.

Related

Information

The

clnt_sperror

subroutine.

The

clnt_call

macro.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_spcreateerror

Subroutine

Purpose

Indicates

why

a

client

Remote

Procedure

Call

(RPC)

handle

was

not

created.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

char

*clnt_spcreateerror

(

s)

char

*s;

Description

The

clnt_spcreateerror

subroutine

returns

a

string

indicating

why

a

client

RPC

handle

was

not

created.

Note:

This

subroutine

returns

the

pointer

to

static

data

that

is

overwritten

on

each

call.

Parameters

s

Points

to

a

character

string

that

represents

the

error

text.

Related

Information

The

clnt_pcreateerror

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_sperrno

Subroutine

Purpose

Specifies

the

condition

of

the

stat

parameter

by

returning

a

pointer

to

a

string

containing

a

status

message.

Library

C

Library

(libc.a)

292

Technical

Reference:

Communications,

Volume

1

Syntax

#include

<rpc/rpc.h>

char

*clnt_sperrno

(

stat)

enum

clnt_stat

stat;

Description

The

clnt_sperrno

subroutine

specifies

the

condition

of

the

stat

parameter

by

returning

a

pointer

to

a

string

containing

a

status

message.

The

string

ends

with

a

new-line

character.

Whenever

one

of

the

following

conditions

exists,

the

clnt_sperrno

subroutine

is

used

instead

of

the

clnt_perrno

subroutine

when

a

callrpc

routine

fails:

v

The

program

does

not

have

a

standard

error

output.

This

is

common

for

programs

running

as

servers.

v

The

programmer

does

not

want

the

message

to

be

output

with

the

printf

subroutine.

v

A

message

format

differing

from

that

supported

by

the

clnt_perrno

subroutine

is

being

used.

Note:

The

clnt_sperrno

subroutine

does

not

return

the

pointer

to

static

data,

so

the

result

is

not

overwritten

on

each

call.

Parameters

stat

Specifies

the

client

error

status

of

the

remote

procedure

call.

Return

Values

The

clnt_sperrno

subroutine

translates

and

displays

the

following

enum

clnt_stat

error

status

messages:

Message

Description

RPC_SUCCESS

=

0

Call

succeeded.

RPC_CANTENCODEARGS

=

1

Cannot

encode

arguments.

RPC_CANTDECODERES

=

2

Cannot

decode

results.

RPC_CANTSEND

=

3

Failure

in

sending

call.

RPC_CANTRECV

=

4

Failure

in

receiving

result.

RPC_TIMEDOUT

=

5

Call

timed

out.

Related

Information

The

clnt_perrno

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnt_sperror

Subroutine

Purpose

Indicates

why

a

remote

procedure

call

failed.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

Chapter

8.

Remote

Procedure

Calls

(RPC)

293

char

*clnt_sperror

(

cl,

s)

CLIENT

*cl;

char

*s;

Description

The

clnt_sperror

subroutine

returns

a

string

to

standard

error

output

indicating

why

a

Remote

Procedure

Call

(RPC)

call

failed.

This

subroutine

also

returns

the

pointer

to

static

data

overwritten

on

each

call.

Parameters

cl

Points

to

the

structure

of

the

client

handle.

s

Points

to

a

character

string

that

represents

the

error

text.

Return

Values

This

subroutine

returns

an

error

string

to

standard

error

output.

Related

Information

The

clnt_perror

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clntraw_create

Subroutine

Purpose

Creates

a

toy

Remote

Procedure

Call

(RPC)

client

for

simulation.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

CLIENT

*clntraw_create

(

prognum,

versnum)

u_long

prognum,

versnum;

Description

The

clntraw_create

subroutine

creates

a

toy

RPC

client

for

simulation

of

a

remote

program.

This

toy

client

uses

a

buffer

located

within

the

address

space

of

the

process

for

the

transport

to

pass

messages

to

the

service.

If

the

corresponding

RPC

server

lives

in

the

same

address

space,

simulation

of

RPC

and

acquisition

of

RPC

overheads,

such

as

round-trip

times,

are

done

without

kernel

interference.

Parameters

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

294

Technical

Reference:

Communications,

Volume

1

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

pointer

to

a

valid

RPC

client.

If

unsuccessful,

it

returns

a

value

of

NULL.

Related

Information

The

clnt_pcreateerror

subroutine,

svcraw_create

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clnttcp_create

Subroutine

Purpose

Creates

a

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

client

transport

handle.

Library

C

Library

(libc.a)

Syntax

CLIENT

*clnttcp_create

(addr,

prognum,

versnum,

sockp,

sendsz,

recvsz)

struct

sockaddr_in

*

addr;

u_long

prognum,

versnum;

int

*

sockp;

u_int

sendsz,

recvsz;

Description

The

clnttcp_create

subroutine

creates

a

Remote

Procedure

Call

(RPC)

client

transport

handle

for

a

remote

program.

This

client

uses

TCP/IP

as

the

transport

to

pass

messages

to

the

service.

The

TCP/IP

remote

procedure

calls

use

buffered

input/output

(I/O).

Users

can

set

the

size

of

the

send

and

receive

buffers

with

the

sendsz

and

recvsz

parameters.

If

the

size

of

either

buffer

is

set

to

a

value

of

0,

the

svctcp_create

subroutine

picks

suitable

default

values.

Parameters

addr

Points

to

the

Internet

address

of

the

remote

program.

If

the

port

number

for

this

Internet

address

(addr->sin_port)

is

a

value

of

0,

then

the

addr

parameter

is

set

to

the

actual

port

on

which

the

remote

program

is

listening.

The

client

making

the

remote

procedure

call

consults

the

remote

portmap

daemon

to

obtain

the

port

information.

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

sockp

Specifies

a

pointer

to

a

socket.

If

the

value

of

the

sockp

parameter

is

RPC_ANYSOCK,

the

clnttcp_create

subroutine

opens

a

new

socket

and

sets

the

sockp

pointer

to

the

new

socket.

sendsz

Sets

the

size

of

the

send

buffer.

recvsz

Sets

the

size

of

the

receive

buffer.

Return

Values

Upon

successful

completion,

this

routine

returns

a

valid

TCP/IP

client

handle.

If

unsuccessful,

it

returns

a

value

of

null.

Chapter

8.

Remote

Procedure

Calls

(RPC)

295

Related

Information

The

callrpc

subroutine,

clnt_pcreateerror

subroutine,

clntudp_create

subroutine,

svctcp_create

subroutine.

The

portmap

daemon.

The

clnt_call

macro.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

and

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

clntudp_create

Subroutine

Purpose

Creates

a

User

Datagram

Protocol/Internet

Protocol

(UDP/IP)

client

transport

handle.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

CLIENT

*clntudp_create

(addr,

prognum,

versnum,

wait,

sockp)

struct

sockaddr_in

*

addr;

u_long

prognum,

versnum;

struct

timeval

wait;

int

*

sockp;

Description

The

clntudp_create

subroutine

creates

a

Remote

Procedure

Call

(RPC)

client

transport

handle

for

a

remote

program.

The

client

uses

UDP

as

the

transport

to

pass

messages

to

the

service.

RPC

messages

transported

by

UDP/IP

can

hold

up

to

8KB

of

encoded

data.

Use

this

subroutine

for

procedures

that

take

arguments

or

return

results

of

less

than

8KB.

Parameters

addr

Points

to

the

Internet

address

of

the

remote

program.

If

the

port

number

for

this

Internet

address

(addr->sin_port)

is

0,

then

the

value

of

the

addr

parameter

is

set

to

the

port

that

the

remote

program

is

listening

on.

The

clntudp_create

subroutine

consults

the

remote

portmap

daemon

for

this

information.

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

wait

Sets

the

amount

of

time

that

the

UDP/IP

transport

waits

to

receive

a

response

before

the

transport

sends

another

remote

procedure

call

or

the

remote

procedure

call

times

out.

The

total

time

for

the

call

to

time

out

is

set

by

the

clnt_call

macro.

sockp

Specifies

a

pointer

to

a

socket.

If

the

value

of

the

sockp

parameter

is

RPC_ANYSOCK,

the

clntudp_create

subroutine

opens

a

new

socket

and

sets

the

sockp

pointer

to

that

new

socket.

296

Technical

Reference:

Communications,

Volume

1

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

valid

UDP

client

handle.

If

unsuccessful,

it

returns

a

value

of

null.

Related

Information

The

callrpc

subroutine,

clnt_pcreateerror

subroutine,

clnttcp_create

subroutine,

svcudp_create

subroutine.

The

portmap

daemon.

The

clnt_call

macro.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

and

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

get_myaddress

Subroutine

Purpose

Gets

the

user’s

Internet

Protocol

(IP)

address.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

get_myaddress

(

addr)

struct

sockaddr_in

*addr;

Description

The

get_myaddress

subroutine

gets

the

machine’s

IP

address

without

consulting

the

library

routines

that

access

the

/etc/hosts

file.

Parameters

addr

Specifies

the

address

where

the

machine’s

IP

address

is

placed.

The

port

number

is

set

to

a

value

of

htons

(PMAPPORT).

Related

Information

The

/etc/hosts

file.

Understanding

the

Internet

Protocol

(IP)

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

8.

Remote

Procedure

Calls

(RPC)

297

getnetname

Subroutine

Purpose

Installs

the

network

name

of

the

caller

in

the

array

specified

by

the

name

parameter.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

getnetname

(

name)

char

name

[MAXNETNAMELEN];

Description

The

getnetname

subroutine

installs

the

caller’s

unique,

operating-system-independent

network

name

in

the

fixed-length

array

specified

by

the

name

parameter.

Parameters

name

Specifies

the

network

name

(or

netname)

of

the

server

process

owner.

The

name

parameter

can

be

either

the

host

name

derived

from

the

host2netname

subroutine

or

the

user

name

derived

from

the

user2netname

subroutine.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

host2netname

subroutine,

user2netname

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

host2netname

Subroutine

Purpose

Converts

a

domain-specific

host

name

to

an

operating-system-independent

network

name.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

host2netname

(

name,

host,

domain)

char

*name;

char

*host;

char

*domain;

298

Technical

Reference:

Communications,

Volume

1

Description

The

host2netname

subroutine

converts

a

domain-specific

host

name

to

an

operating-system-independent

network

name.

This

subroutine

is

the

inverse

of

the

netname2host

subroutine.

Parameters

name

Points

to

the

network

name

(or

netname)

of

the

server

process

owner.

The

name

parameter

can

be

either

the

host

name

derived

from

the

host2netname

subroutine

or

the

user

name

derived

from

the

user2netname

subroutine.

host

Points

to

the

name

of

the

machine

on

which

the

permissions

were

created.

domain

Points

to

the

domain

name.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

netname2host

subroutine,

user2netname

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

key_decryptsession

Subroutine

Purpose

Decrypts

a

server

network

name

and

a

Data

Encryption

Standard

(DES)

key.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

key_decryptsession

(

remotename,

deskey)

char

*remotename;

des_block

*deskey;

Description

The

key_decryptsession

subroutine

interfaces

to

the

keyserv

daemon,

which

is

associated

with

the

secure

authentication

system

known

as

DES.

The

subroutine

takes

a

server

network

name

and

a

DES

key

and

decrypts

the

DES

key

by

using

the

public

key

of

the

server

and

the

secret

key

associated

with

the

effective

user

number

(UID)

of

the

calling

process.

User

programs

rarely

need

to

call

this

subroutine.

System

commands

such

as

keylogin

and

the

Remote

Procedure

Call

(RPC)

library

are

the

main

clients.

This

subroutine

is

the

inverse

of

the

key_encryptsession

subroutine.

Parameters

remotename

Points

to

the

remote

host

name.

deskey

Points

to

the

des_block

structure.

Chapter

8.

Remote

Procedure

Calls

(RPC)

299

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

it

returns

a

value

of

-1.

Related

Information

The

key_encryptsession

subroutine.

The

keylogin

command.

The

keyserv

daemon.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

key_encryptsession

Subroutine

Purpose

Encrypts

a

server

network

name

and

a

Data

Encryption

Standard

(DES)

key.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

key_encryptsession

(

remotename,

deskey)

char

*remotename;

des_block

*deskey;

Description

The

key_encryptsession

subroutine

interfaces

to

the

keyserv

daemon,

which

is

associated

with

the

secure

authentication

system

known

as

DES.

This

subroutine

encrypts

a

server

network

name

and

a

DES

key.

To

do

so,

the

routine

uses

the

public

key

of

the

server

and

the

secret

key

associated

with

the

effective

user

number

(UID)

of

the

calling

process.

System

commands

such

as

keylogin

and

the

Remote

Procedure

Call

(RPC)

library

are

the

main

clients.

User

programs

rarely

need

to

call

this

subroutine.

This

subroutine

is

the

inverse

of

the

key_decryptsession

subroutine.

Parameters

remotename

Points

to

the

remote

host

name.

deskey

Points

to

the

des_block

structure.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

it

returns

a

value

of

-1.

300

Technical

Reference:

Communications,

Volume

1

Related

Information

The

key_decryptsession

subroutine.

The

keylogin

command.

The

keyserv

daemon.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

key_gendes

Subroutine

Purpose

Asks

the

keyserv

daemon

for

a

secure

conversation

key.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

key_gendes

(

deskey)

des_block

*deskey;

Description

The

key_gendes

subroutine

interfaces

to

the

keyserv

daemon,

which

is

associated

with

the

secure

authentication

system

known

as

Data

Encryption

Standard

(DES).

This

subroutine

asks

the

keyserv

daemon

for

a

secure

conversation

key.

Choosing

a

key

at

random

is

not

recommended

because

the

common

ways

of

choosing

random

numbers,

such

as

the

current

time,

are

easy

to

guess.

User

programs

rarely

need

to

call

this

subroutine.

System

commands

such

as

keylogin

and

the

Remote

Procedure

Call

(RPC)

library

are

the

main

clients.

Parameters

deskey

Points

to

the

des_block

structure.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

it

returns

a

value

of

-1.

Related

Information

The

keylogin

command.

The

keyserv

daemon.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

8.

Remote

Procedure

Calls

(RPC)

301

key_setsecret

Subroutine

Purpose

Sets

the

key

for

the

effective

user

number

(UID)

of

the

calling

process.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

key_setsecret

(

key)

char

*key;

Description

The

key_setsecret

subroutine

interfaces

to

the

keyserv

daemon,

which

is

associated

with

the

secure

authentication

system

known

as

Data

Encryption

Standard

(DES).

This

subroutine

is

used

to

set

the

key

for

the

effective

UID

of

the

calling

process.

User

programs

rarely

need

to

call

this

subroutine.

System

commands

such

as

keylogin

and

the

Remote

Procedure

Call

(RPC)

library

are

the

main

clients.

Parameters

key

Points

to

the

key

name.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

it

returns

a

value

of

-1.

Related

Information

The

keylogin

command.

The

keyserv

daemon.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

netname2host

Subroutine

Purpose

Converts

an

operating-system-independent

network

name

to

a

domain-specific

host

name.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

302

Technical

Reference:

Communications,

Volume

1

netname2host

(

name,

host,

hostlen)

char

*name;

char

*host;

int

hostlen;

Description

The

netname2host

subroutine

converts

an

operating-system-independent

network

name

to

a

domain-specific

host

name.

This

subroutine

is

the

inverse

of

the

host2netname

subroutine.

Parameters

name

Specifies

the

network

name

(or

netname)

of

the

server

process

owner.

The

name

parameter

can

be

either

the

host

name

derived

from

the

host2netname

subroutine

or

the

user

name

derived

from

the

user2netname

subroutine.

host

Points

to

the

name

of

the

machine

on

which

the

permissions

were

created.

hostlen

Specifies

the

size

of

the

host

name.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

host2netname

subroutine,

user2netname

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

netname2user

Subroutine

Purpose

Converts

from

an

operating-system-independent

network

name

to

a

domain-specific

user

number

(UID).

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

netname2user

(name,

uidp,

gidp,

gidlenp,

gidlist)

char

*

name;

int

*

uidp;

int

*

gidp;

int

*

gidlenp;

int

*

gidlist;

Description

The

netname2user

subroutine

converts

from

an

operating-system-independent

network

name

to

a

domain-specific

UID.

This

subroutine

is

the

inverse

of

the

user2netname

subroutine.

Chapter

8.

Remote

Procedure

Calls

(RPC)

303

Parameters

name

Points

to

the

network

name

(or

netname)

of

the

server

process

owner.

The

name

parameter

can

be

either

the

host

name

derived

from

the

host2netname

subroutine

or

the

user

name

derived

from

the

user2netname

subroutine.

uidp

Points

to

the

user

ID.

gidp

Points

to

the

group

ID.

gidlenp

Points

to

the

size

of

the

group

ID.

gidlist

Points

to

the

group

list.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

host2netname

subroutine,

user2netname

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pmap_getmaps

Subroutine

Purpose

Returns

a

list

of

the

current

Remote

Procedure

Call

(RPC)

program-to-port

mappings

on

the

host.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

struct

pmaplist

*pmap_getmaps

(

addr)

struct

sockaddr_in

*addr;

Description

The

pmap_getmaps

subroutine

acts

as

a

user

interface

to

the

portmap

daemon.

The

subroutine

returns

a

list

of

the

current

RPC

program-to-port

mappings

on

the

host

located

at

the

Internet

Protocol

(IP)

address

pointed

to

by

the

addr

parameter.

Note:

The

rpcinfo

-p

command

calls

this

subroutine.

Parameters

addr

Specifies

the

address

where

the

machine’s

IP

address

is

placed.

Return

Values

If

there

is

no

list

of

current

RPC

programs,

this

procedure

returns

a

value

of

null.

304

Technical

Reference:

Communications,

Volume

1

Related

Information

The

pmap_set

subroutine,

pmap_unset

subroutine,

svc_register

subroutine.

The

rpcinfo

command.

The

portmap

daemon.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pmap_getport

Subroutine

Purpose

Requests

the

port

number

on

which

a

service

waits.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

u_short

pmap_getport

(addr,

prognum,

versnum,

protocol)

struct

sockaddr_in

*

addr;

u_long

prognum,

versnum,

protocol;

Description

The

pmap_getport

subroutine

acts

as

a

user

interface

to

the

portmap

daemon

in

order

to

return

the

port

number

on

which

a

service

waits.

Parameters

addr

Points

to

the

Internet

Protocol

(IP)

address

of

the

host

where

the

remote

program

supporting

the

waiting

service

resides.

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

protocol

Specifies

the

transport

protocol

the

service

recognizes.

Return

Values

Upon

successful

completion,

the

pmap_getport

subroutine

returns

the

port

number

of

the

requested

program;

otherwise,

if

the

mapping

does

not

exist

or

the

Remote

Procedure

Call

(RPC)

system

could

not

contact

the

remote

portmap

daemon,

this

subroutine

returns

a

value

of

0.

If

the

remote

portmap

daemon

could

not

be

contacted,

the

rpc_createerr

subroutine

contains

the

RPC

status.

Related

Information

The

portmap

daemon.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Chapter

8.

Remote

Procedure

Calls

(RPC)

305

pmap_rmtcall

Subroutine

Purpose

Instructs

the

portmap

daemon

to

make

a

remote

procedure

call.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

enum

clnt_stat

pmap_rmtcall

(addr,

prognum,

versnum,

procnum)\

enum

clnt_stat

pmap_rmtcall

(inproc,

in,

outproc,

out,

tout,

portp)

struct

sockaddr_in

*

addr;

u_long

prognum,

versnum,

procnum;

xdrproc_t

inproc;

char

*

in;

xdrproc_t

outproc;

char

*

out;

struct

timeval

tout;

u_long

*

portp;

Description

The

pmap_rmtcall

subroutine

is

a

user

interface

to

the

portmap

daemon.

The

routine

instructs

the

host

portmap

daemon

to

make

a

remote

procedure

call

(RPC).

Clients

consult

the

portmap

daemon

when

sending

out

RPC

calls

for

given

program

numbers.

The

portmap

daemon

tells

the

client

the

ports

to

which

to

send

the

calls.

Parameters

addr

Points

to

the

Internet

Protocol

(IP)

address

of

the

host

where

the

remote

program

that

supports

the

waiting

service

resides.

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

procnum

Identifies

the

procedure

to

be

called.

inproc

Specifies

the

eXternal

Data

Representation

(XDR)

routine

that

encodes

the

remote

procedure

parameters.

in

Points

to

the

address

of

the

procedure

arguments.

outproc

Specifies

the

XDR

routine

that

decodes

the

remote

procedure

results.

out

Points

to

the

address

where

the

results

are

placed.

tout

Sets

the

time

the

routine

waits

for

the

results

to

return

before

sending

the

call

again.

portp

Points

to

the

program

port

number

if

the

procedure

succeeds.

Related

Information

The

clnt_broadcast

subroutine.

The

portmap

daemon.

Internet

Protocol

(IP)

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

306

Technical

Reference:

Communications,

Volume

1

pmap_set

Subroutine

Purpose

Maps

a

remote

procedure

call

to

a

port.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

pmap_set

(prognum,

versnum,

protocol,

port)

u_long

prognum,

versnum,

protocol;

u_short

port;

Description

The

pmap_set

subroutine

acts

as

a

user

interface

to

the

portmap

daemon

to

map

the

program

number,

version

number,

and

protocol

of

a

remote

procedure

call

to

a

port

on

the

machine

portmap

daemon.

Note:

The

pmap_set

subroutine

is

called

by

the

svc_register

subroutine.

Parameters

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

protocol

Specifies

the

transport

protocol

that

the

service

recognizes.

The

values

for

this

parameter

can

be

IPPROTO_UDP

or

IPPROTO_TCP.

port

Specifies

the

port

on

the

machine’s

portmap

daemon.

Return

Values

Upon

successful

completion,

this

routine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

portmap

daemon.

The

pmap_getmaps

subroutine,

pmap_unset

subroutine,

svc_register

subroutine.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

pmap_unset

Subroutine

Purpose

Destroys

the

mappings

between

a

remote

procedure

call

and

the

port.

Library

C

Library

(libc.a)

Chapter

8.

Remote

Procedure

Calls

(RPC)

307

Syntax

#include

<rpc/rpc.h>

pmap_unset

(

prognum,

versnum)

u_long

prognum,

versnum;

Description

The

pmap_unset

subroutine

destroys

mappings

between

the

program

number

and

version

number

of

a

remote

procedure

call

and

the

ports

on

the

host

portmap

daemon.

Parameters

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

Related

Information

The

pmap_getmaps

subroutine,

pmap_set

subroutine,

svc_unregister

subroutine.

The

portmap

daemon.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

registerrpc

Subroutine

Purpose

Registers

a

procedure

with

the

Remote

Procedure

Call

(RPC)

service

package.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

registerrpc

(prognum,

versnum,

procnum,

procname,

inproc,

outproc)

u_long

prognum,

versnum,

procnum;

char

*

(*

procname)

();

xdrproc_t

inproc,

outproc;

Description

The

registerrpc

subroutine

registers

a

procedure

with

the

RPC

service

package.

If

a

request

arrives

that

matches

the

values

of

the

prognum

parameter,

the

versnum

parameter,

and

the

procnum

parameter,

then

the

procname

parameter

is

called

with

a

pointer

to

its

parameters,

after

which

it

returns

a

pointer

to

its

static

results.

Note:

Remote

procedures

registered

in

this

form

are

accessed

using

the

User

Datagram

Protocol/Internet

Protocol

(UDP/IP)

transport

protocol

only.

308

Technical

Reference:

Communications,

Volume

1

Parameters

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

procnum

Identifies

the

procedure

number

to

be

called.

procname

Identifies

the

procedure

name.

inproc

Specifies

the

eXternal

Data

Representation

(XDR)

subroutine

that

decodes

the

procedure

parameters.

outproc

Specifies

the

XDR

subroutine

that

encodes

the

procedure

results.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

-1.

Related

Information

The

callrpc

subroutine,

svcudp_create

subroutine.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

rtime

Subroutine

Purpose

Gets

remote

time.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

#include

<sys/types.h>

#include

<sys/time.h>

#include

<netinet/in.h>

int

rtime

(

addrp,

timep,

timeout)

struct

sockaddr_in

*addrp;

struct

timeval

*timep;

struct

timeval

*timeout;

Description

The

rtime

subroutine

consults

the

Internet

Time

Server

(TIME)

at

the

address

pointed

to

by

the

addrp

parameter

and

returns

the

remote

time

in

the

timeval

structure

pointed

to

by

the

timep

parameter.

Normally,

the

User

Datagram

Protocol

(UDP)

protocol

is

used

when

consulting

the

time

server.

If

the

timeout

parameter

is

specified

as

null,

however,

the

routine

instead

uses

Transmission

Control

Protocol

(TCP)

and

blocks

until

a

reply

is

received

from

the

time

server.

Parameters

addrp

Points

to

the

Internet

Time

Server.

timep

Points

to

the

timeval

structure.

timeout

Specifies

how

long

the

routine

waits

for

a

reply

before

terminating.

Chapter

8.

Remote

Procedure

Calls

(RPC)

309

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

0.

If

unsuccessful,

it

returns

a

value

of

-1,

and

the

errno

global

variable

is

set

to

reflect

the

cause

of

the

error.

Related

Information

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_destroy

Macro

Purpose

Destroys

a

Remote

Procedure

Call

(RPC)

service

transport

handle.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svc_destroy

(

xprt)

SVCXPRT

*xprt;

Description

The

svc_destroy

macro

destroys

an

RPC

service

transport

handle.

Destroying

the

service

transport

handle

deallocates

the

private

data

structures,

including

the

handle

itself.

After

the

svc_destroy

macro

is

used,

the

handle

pointed

to

by

the

xprt

parameter

is

no

longer

defined.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

Related

Information

The

clnt_destroy

macro,

svc_freeargs

macro.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_freeargs

Macro

Purpose

Frees

data

allocated

by

the

Remote

Procedure

Call/eXternal

Data

Representation

(RPC/XDR)

system.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

310

Technical

Reference:

Communications,

Volume

1

svc_freeargs

(

xprt,

inproc,

in)

SVCXPRT

*xprt;

xdrproc_t

inproc;

char

*in;

Description

The

svc_freeargs

macro

frees

data

allocated

by

the

RPC/XDR

system.

This

data

is

allocated

when

the

RPC/XDR

system

decodes

the

arguments

to

a

service

procedure

with

the

svc_getargs

macro.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

inproc

Specifies

the

XDR

routine

that

decodes

the

arguments.

in

Specifies

the

address

where

the

procedure

arguments

are

placed.

Related

Information

The

svc_getargs

macro,

svc_destroy

macro.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_getargs

Macro

Purpose

Decodes

the

arguments

of

a

Remote

Procedure

Call

(RPC)

request.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

svc_getargs

(

xprt,

inproc,

in)

SVCXPRT

*xprt;

xdrproc_t

inproc;

char

*in;

Description

The

svc_getargs

macro

decodes

the

arguments

of

an

RPC

request

associated

with

the

RPC

service

transport

handle.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

inproc

Specifies

the

eXternal

Data

Representation

(XDR)

routine

that

decodes

the

arguments.

in

Specifies

the

address

where

the

arguments

are

placed.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Chapter

8.

Remote

Procedure

Calls

(RPC)

311

Related

Information

The

svc_freeargs

macro.

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_getcaller

Macro

Purpose

Gets

the

network

address

of

the

caller

of

a

procedure.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

struct

sockaddr_in

*

svc_getcaller

(

xprt)

SVCXPRT

*xprt;

Description

The

svc_getcaller

macro

retrieves

the

network

address

of

the

caller

of

a

procedure

associated

with

the

Remote

Procedure

Call

(RPC)

service

transport

handle.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

Related

Information

The

svc_register

subroutine,

svc_run

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_getreqset

Subroutine

Purpose

Services

a

Remote

Procedure

Call

(RPC)

request.

Library

C

Library

(libc.a)

Syntax

#include

<sys/types.h>

#include

<sys/select.h>

#include

<rpc/rpc.h>

void

svc_getreqset

(

rdfds)

fd_set

*rdfds;

312

Technical

Reference:

Communications,

Volume

1

Description

The

svc_getreqset

subroutine

is

only

used

if

a

service

implementor

does

not

call

the

svc_run

subroutine,

but

instead

implements

custom

asynchronous

event

processing.

The

subroutine

is

called

when

the

select

subroutine

has

determined

that

an

RPC

request

has

arrived

on

any

RPC

sockets.

The

svc_getreqset

subroutine

returns

when

all

sockets

associated

with

the

value

specified

by

the

rdfds

parameter

have

been

serviced.

Parameters

rdfds

Specifies

the

resultant

read-file

descriptor

bit

mask.

Related

Information

The

select

subroutine,

svc_run

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

and

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_register

Subroutine

Purpose

Maps

a

remote

procedure.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

svc_register

(xprt,

prognum,

versnum,

dispatch,

protocol)

SVCXPRT

*

xprt;

u_long

prognum,

versnum;

void

(*

dispatch)

();

int

protocol;

Description

The

svc_register

subroutine

maps

a

remote

procedure

with

a

service

dispatch

procedure

pointed

to

by

the

dispatch

parameter.

If

the

protocol

parameter

has

a

value

of

0,

the

service

is

not

registered

with

the

portmap

daemon.

If

the

protocol

parameter

does

not

have

a

value

of

0

(or

if

it

is

IPPROTO_UDP

or

IPPROTO_TCP),

the

remote

procedure

triple

(prognum,

versnum,

and

protocol

parameters)

is

mapped

to

the

xprt->xp_port

port.

The

dispatch

procedure

takes

the

following

form:

dispatch

(request,

xprt)

struct

svc_req

*request;

SVCXPRT

*xprt;

Parameters

xprt

Points

to

a

Remote

Procedure

Call

(RPC)

service

transport

handle.

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

Chapter

8.

Remote

Procedure

Calls

(RPC)

313

dispatch

Points

to

the

service

dispatch

procedure.

protocol

Specifies

the

data

transport

used

by

the

service.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

The

pmap_set

subroutine,

pmap_getmaps

subroutine,

svc_unregister

subroutine.

The

portmap

daemon.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_run

Subroutine

Purpose

Waits

for

a

Remote

Procedure

Call

service

request

to

arrive.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svc_run

(void);

Description

The

svc_run

subroutine

waits

for

a

Remote

Procedure

Call

(RPC)

service

request

to

arrive.

When

a

request

arrives,

the

svc_run

subroutine

calls

the

appropriate

service

procedure

with

the

svc_getreqset

subroutine.

This

procedure

is

usually

waiting

for

a

select

subroutine

to

return.

Related

Information

The

callrpc

subroutine,

registerrpc

subroutine,

select

subroutine,

svc_getreqset

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programmingm

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_sendreply

Subroutine

Purpose

Sends

back

the

results

of

a

remote

procedure

call.

Library

C

Library

(libc.a)

314

Technical

Reference:

Communications,

Volume

1

Syntax

#include

<rpc/rpc.h>

svc_sendreply

(

xprt,

outproc,

out)

SVCXPRT

*xprt;

xdrproc_t

outproc;

char

*out;

Description

The

svc_sendreply

subroutine

sends

back

the

results

of

a

remote

procedure

call.

This

subroutine

is

called

by

a

Remote

Procedure

Call

(RPC)

service

dispatch

subroutine.

Parameters

xprt

Points

to

the

RPC

service

transport

handle

of

the

caller.

outproc

Specifies

the

eXternal

Data

Representation

(XDR)

routine

that

encodes

the

results.

out

Points

to

the

address

where

results

are

placed.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

and

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svc_unregister

Subroutine

Purpose

Removes

mappings

between

procedures

and

objects.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svc_unregister

(

prognum,

versnum)

u_long

prognum,

versnum;

Description

The

svc_unregister

subroutine

removes

mappings

between

dispatch

subroutines

and

the

service

procedure

identified

by

the

prognum

parameter

and

the

versnum

parameter.

It

also

removes

the

mapping

between

the

port

number

and

the

service

procedure

which

is

identified

by

the

prognum

parameter

and

the

versnum

parameter.

Parameters

prognum

Specifies

the

program

number

of

the

remote

program.

versnum

Specifies

the

version

number

of

the

remote

program.

Chapter

8.

Remote

Procedure

Calls

(RPC)

315

Related

Information

The

pmap_unset

subroutine,

svc_register

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svcerr_auth

Subroutine

Purpose

Indicates

that

the

service

dispatch

routine

cannot

complete

a

remote

procedure

call

due

to

an

authentication

error.

Library

RPC

Library

(libcrpc.a)

Syntax

#include

<rpc/rpc.h>

void

svcerr_auth

(

xprt,

why)

SVCXPRT

*xprt;

enum

auth_stat

why;

Description

The

svcerr_auth

subroutine

is

called

by

a

service

dispatch

subroutine

that

refuses

to

perform

a

remote

procedure

call

(RPC)

because

of

an

authentication

error.

This

subroutine

sets

the

status

of

the

RPC

reply

message

to

AUTH_ERROR.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

why

Specifies

the

authentication

error.

svcerr_decode

Subroutine

Purpose

Indicates

that

the

service

dispatch

routine

cannot

decode

the

parameters

of

a

request.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svcerr_decode

(

xprt)

SVCXPRT

*xprt;

316

Technical

Reference:

Communications,

Volume

1

Description

The

svcerr_decode

subroutine

is

called

by

a

service

dispatch

subroutine

that

cannot

decode

the

parameters

specified

in

a

request.

This

subroutine

sets

the

status

of

the

Remote

Procedure

Call

(RPC)

reply

message

to

the

GARBAGE_ARGS

condition.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

Related

Information

The

svc_getargs

macro.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svcerr_noproc

Subroutine

Purpose

Indicates

that

the

service

dispatch

routine

cannot

complete

a

remote

procedure

call

because

the

program

cannot

support

the

requested

procedure.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svcerr_noproc

(

xprt)

SVCXPRT

*xprt;

Description

The

svcerr_noproc

subroutine

is

called

by

a

service

dispatch

routine

that

does

not

implement

the

procedure

number

the

caller

has

requested.

This

subroutine

sets

the

status

of

the

Remote

Procedure

Call

(RPC)

reply

message

to

the

PROC_UNAVAIL

condition,

which

indicates

that

the

program

cannot

support

the

requested

procedure.

Note:

Service

implementors

do

not

usually

need

this

subroutine.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

svcerr_noprog

Subroutine

Purpose

Indicates

that

the

service

dispatch

routine

cannot

complete

a

remote

procedure

call

because

the

requested

program

is

not

registered.

Chapter

8.

Remote

Procedure

Calls

(RPC)

317

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svcerr_noprog

(

xprt)

SVCXPRT

*xprt;

Description

The

svcerr_noprog

subroutine

is

called

by

a

service

dispatch

routine

when

the

requested

program

is

not

registered

with

the

Remote

Procedure

Call

(RPC)

package.

This

subroutine

sets

the

status

of

the

RPC

reply

message

to

the

PROG_UNAVAIL

condition,

which

indicates

that

the

remote

server

has

not

exported

the

program.

Note:

Service

implementors

do

not

usually

need

this

subroutine.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

svcerr_progvers

Subroutine

Purpose

Indicates

that

the

service

dispatch

routine

cannot

complete

the

remote

procedure

call

because

the

requested

program

version

is

not

registered.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svcerr_progvers

(

xprt)

SVCXPRT

*xprt;

u_long

Description

The

svcerr_progvers

subroutine

is

called

by

a

service

dispatch

routine

when

the

requested

version

of

a

program

is

not

registered

with

the

Remote

Procedure

Call

(RPC)

package.

This

subroutine

sets

the

status

of

the

RPC

reply

message

to

the

PROG_MISMATCH

condition,

which

indicates

that

the

remote

server

cannot

support

the

client’s

version

number.

Note:

Service

implementors

do

not

usually

need

this

subroutine.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

318

Technical

Reference:

Communications,

Volume

1

svcerr_systemerr

Subroutine

Purpose

Indicates

that

the

service

dispatch

routine

cannot

complete

the

remote

procedure

call

due

to

an

error

that

is

not

covered

by

a

protocol.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svcerr_systemerr

(

xprt)

SVCXPRT

*xprt;

Description

The

svcerr_systemerr

subroutine

is

called

by

a

service

dispatch

subroutine

that

detects

a

system

error

not

covered

by

a

protocol.

For

example,

a

service

dispatch

subroutine

calls

the

svcerr_systemerr

subroutine

if

the

first

subroutine

can

no

longer

allocate

storage.

The

routine

sets

the

status

of

the

Remote

Procedure

Call

(RPC)

reply

message

to

the

SYSTEM_ERR

condition.

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

svcerr_weakauth

Subroutine

Purpose

Indicates

that

the

service

dispatch

routine

cannot

complete

the

remote

procedure

call

due

to

insufficient

authentication

security

parameters.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

void

svcerr_weakauth

(

xprt)

SVCXPRT

*xprt;

Description

The

svcerr_weakauth

subroutine

is

called

by

a

service

dispatch

routine

that

cannot

make

the

remote

procedure

call

(RPC)

because

the

supplied

authentication

parameters

are

insufficient

for

security

reasons.

The

svcerr_weakauth

subroutine

calls

the

svcerr_auth

subroutine

with

the

correct

RPC

service

transport

handle

(the

xprt

parameter).

The

subroutine

also

sets

the

status

of

the

RPC

reply

message

to

the

AUTH_TOOWEAK

condition

as

the

authentication

error

(AUTH_ERR).

Chapter

8.

Remote

Procedure

Calls

(RPC)

319

Parameters

xprt

Points

to

the

RPC

service

transport

handle.

Related

Information

The

svcerr_auth

subroutine,

svcerr_decode

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svcfd_create

Subroutine

Purpose

Creates

a

service

on

any

open

file

descriptor.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

SVCXPRT

*svcfd_create

(

fd,

sendsize,

recvsize)

int

fd;

u_int

sendsize;

u_int

recvsize;

Description

The

svcfd_create

subroutine

creates

a

service

on

any

open

file

descriptor.

Typically,

this

descriptor

is

a

connected

socket

for

a

stream

protocol

such

as

Transmission

Control

Protocol

(TCP).

Parameters

fd

Identifies

the

descriptor.

sendsize

Specifies

the

size

of

the

send

buffer.

recvsize

Specifies

the

size

of

the

receive

buffer.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

TCP-based

transport

handle.

If

unsuccessful,

it

returns

a

value

of

null.

Related

Information

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

and

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

320

Technical

Reference:

Communications,

Volume

1

svcraw_create

Subroutine

Purpose

Creates

a

toy

Remote

Procedure

Call

(RPC)

service

transport

handle

for

simulation.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

SVCXPRT

*svcraw_create

(

)

Description

The

svcraw_create

subroutine

creates

a

toy

RPC

service

transport

handle.

The

service

transport

handle

is

located

within

the

address

space

of

the

process.

If

the

corresponding

RPC

server

resides

in

the

same

address

space,

then

simulation

of

RPC

and

acquisition

of

RPC

overheads,

such

as

round-trip

times,

are

done

without

kernel

interference.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

pointer

to

a

valid

RPC

transport

handle.

If

unsuccessful,

it

returns

a

value

of

null.

Related

Information

The

clntraw_create

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svctcp_create

Subroutine

Purpose

Creates

a

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

service

transport

handle.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

SVCXPRT

*svctcp_create

(

sock,

sendsz,

recvsz)

int

sock;

u_int

sendsz,

rcvcsz;

Description

The

svctcp_create

subroutine

creates

a

Remote

Procedure

Call

(RPC)

service

transport

handle

based

on

TCP/IP

and

returns

a

pointer

to

it.

Chapter

8.

Remote

Procedure

Calls

(RPC)

321

Since

TCP/IP

remote

procedure

calls

use

buffered

I/O,

users

can

set

the

size

of

the

send

and

receive

buffers

with

the

sendsz

and

recvsz

parameters,

respectively.

If

the

size

of

either

buffer

is

set

to

a

value

of

0,

the

svctcp_create

subroutine

picks

suitable

default

values.

Parameters

sock

Specifies

the

socket

associated

with

the

transport.

If

the

value

of

the

sock

parameter

is

RPC_ANYSOCK,

the

svctcp_create

subroutine

creates

a

new

socket.

The

service

transport

handle

socket

number

is

set

to

xprt->xp_sock.

If

the

socket

is

not

bound

to

a

local

TCP/IP

port,

then

this

routine

binds

the

socket

to

an

arbitrary

port.

Its

port

number

is

set

to

xprt->xp_port.

sendsz

Specifies

the

size

of

the

send

buffer.

recvsz

Specifies

the

size

of

the

receive

buffer.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

valid

RPC

service

transport

handle.

If

unsuccessful,

it

returns

a

value

of

null.

Related

Information

The

registerrpc

subroutine,

svcudp_create

subroutine.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Sockets

Overview

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

svcudp_create

Subroutine

Purpose

Creates

a

User

Datagram

Protocol/Internet

Protocol

(UDP/IP)

service

transport

handle.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

SVCXPRT

*svcudp_create

(

sock)

int

sock;

Description

The

svcudp_create

subroutine

creates

a

Remote

Procedure

Call

(RPC)

service

transport

handle

based

on

UDP/IP

and

returns

a

pointer

to

it.

The

UDP/IP

service

transport

handle

is

used

only

for

procedures

that

take

up

to

8KB

of

encoded

arguments

or

results.

322

Technical

Reference:

Communications,

Volume

1

Parameters

sock

Specifies

the

socket

associated

with

the

service

transport

handle.

If

the

value

specified

by

the

sock

parameter

is

RPC_ANYSOCK,

the

svcudp_create

subroutine

creates

a

new

socket

and

sets

the

service

transport

handle

socket

number

to

xprt->xp_sock.

If

the

socket

is

not

bound

to

a

local

UDP/IP

port,

then

the

svcudp_create

subroutine

binds

the

socket

to

an

arbitrary

port.

The

port

number

is

set

to

xprt->xp_port.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

valid

RPC

service

transport.

If

unsuccessful,

it

returns

a

value

of

null.

Related

Information

The

registerrpc

subroutine,

svctcp_create

subroutine.

TCP/IP

Protocols

in

AIX

5L

Version

5.2

System

Management

Guide:

Communications

and

Networks.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

user2netname

Subroutine

Purpose

Converts

from

a

domain-specific

user

ID

to

a

network

name

that

is

independent

from

the

operating

system.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/rpc.h>

int

user2netname

(

name,

uid,

domain)

char

*name;

int

uid;

char

*domain;

Description

The

user2netname

subroutine

converts

from

a

domain-specific

user

ID

to

a

network

name

that

is

independent

from

the

operating

system.

This

subroutine

is

the

inverse

of

the

netname2user

subroutine.

Parameters

name

Points

to

the

network

name

(or

netname)

of

the

server

process

owner.

uid

Points

to

the

caller’s

effective

user

ID

(UID).

domain

Points

to

the

domain

name.

Return

Values

Upon

successful

completion,

this

subroutine

returns

a

value

of

1.

If

unsuccessful,

it

returns

a

value

of

0.

Chapter

8.

Remote

Procedure

Calls

(RPC)

323

Related

Information

The

host2netname

subroutine,

netname2user

subroutine.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xprt_register

Subroutine

Purpose

Registers

a

Remote

Procedure

Call

(RPC)

service

transport

handle.

Library

C

Library

(libc.a)

Syntax

#include

<rpc/svc.h>

void

xprt_register

(

xprt)

SVCXPRT

*xprt;

Description

The

xprt_register

subroutine

registers

an

RPC

service

transport

handle

with

the

RPC

program

after

the

transport

has

been

created.

This

subroutine

modifies

the

svc_fds

global

variable.

Note:

Service

implementors

do

not

usually

need

this

subroutine.

Parameters

xprt

Points

to

the

newly

created

RPC

service

transport

handle.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

xprt_unregister

Subroutine

Purpose

Removes

a

Remote

Procedure

Call

(RPC)

service

transport

handle.

Library

C

Library

(libc.a)

Syntax

void

xprt_unregister

(

xprt)

SVCXPRT

*xprt;

324

Technical

Reference:

Communications,

Volume

1

Description

The

xprt_unregister

subroutine

removes

an

RPC

service

transport

handle

from

the

RPC

service

program

before

the

transport

handle

can

be

destroyed.

This

subroutine

modifies

the

svc_fds

global

variable.

Note:

Service

implementors

do

not

usually

need

this

subroutine.

Parameters

xprt

Points

to

the

RPC

service

transport

handle

to

be

destroyed.

Related

Information

eXternal

Data

Representation

(XDR)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Remote

Procedure

Call

(RPC)

Overview

for

Programming

in

AIX

5L

Version

5.2

Communications

Programming

Concepts.

Data

Link

Provider

Interface

(DLPI)

v

DL_ATTACH_REQ

Primitive

v

DL_BIND_ACK

Primitive

v

DL_BIND_REQ

Primitive

v

DL_CONNECT_CON

Primitive

v

DL_CONNECT_IND

Primitive

v

DL_CONNECT_REQ

Primitive

v

DL_CONNECT_RES

Primitive

v

DL_DATA_IND

Primitive

v

DL_DATA_REQ

Primitive

v

DL_DETACH_REQ

Primitive

v

DL_DISABMULTI_REQ

Primitive

v

DL_DISCONNECT_IND

Primitive

v

DL_DISCONNECT_REQ

Primitive

v

DL_ENABMULTI_REQ

Primitive

v

DL_ERROR_ACK

Primitive

v

DL_GET_STATISTICS_REQ

Primitive

v

DL_GET_STATISTICS_ACK

Primitive

v

DL_INFO_ACK

Primitive

v

DL_INFO_REQ

Primitive

v

DL_OK_ACK

Primitive

v

DL_PHYS_ADDR_REQ

Primitive

v

DL_PHYS_ADDR_ACK

Primitive

v

DL_PROMISCOFF_REQ

Primitive

v

DL_PROMISCON_REQ

Primitive

v

DL_RESET_CON

Primitive

v

DL_RESET_IND

Primitive

v

DL_RESET_REQ

Primitive

v

DL_RESET_RES

Primitive

Chapter

8.

Remote

Procedure

Calls

(RPC)

325

v

DL_SUBS_BIND_ACK

Primitive

v

DL_SUBS_BIND_REQ

Primitive

v

DL_SUBS_UNBIND_REQ

Primitive

v

DL_TEST_CON

Primitive

v

DL_TEST_IND

Primitive

v

DL_TEST_REQ

Primitive

v

DL_TEST_RES

Primitive

v

DL_TOKEN_ACK

Primitive

v

DL_TOKEN_REQ

Primitive

v

DL_UDERROR_IND

Primitive

v

DL_UNBIND_REQ

Primitive

v

DL_UNITDATA_IND

Primitive

v

DL_UNITDATA_REQ

Primitive

v

DL_XID_CON

Primitive

v

DL_XID_IND

Primitive

v

DL_XID_REQ

Primitive

v

DL_XID_RES

Primitive

326

Technical

Reference:

Communications,

Volume

1

Appendix.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

"AS

IS"

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Dept.

LRAS/Bldg.

003

11400

Burnet

Road

Austin,

TX

78758-3498

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

©

Copyright

IBM

Corp.

1997,

2003

327

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

AIX

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

the

trademarks

or

service

marks

of

others.

328

Technical

Reference:

Communications,

Volume

1

Index

A
allocated

data
freeing

288,

310

API

applications
receiving

messages

from

188

sending

messages

to

189

starting

interaction

with

186

terminating

interactions

187

arrays
installing

network

name

298

translating

into

external

representations

109,

111,

130

asynchronous

faults
enabling

201

inhibiting

202

auth_destroy

macro

277

authdes_create

subroutine

277

authdes_getucred

subroutine

278

authentication

information
destroying

277

authentication

messages

119

authnone_create

subroutine

279

authunix_create

subroutine

280

authunix_create_default

subroutine

281

B
Booleans

translating

110

buffers
checking

for

end

of

file

135

C
C

language,

translating
characters

113

discriminated

unions

129

enumerations

114

floats

115

integers

110,

117

long

integers

118

numbers

132

short

integers

125

strings

126,

131

unsigned

characters

126

unsigned

integers

127

unsigned

long

integers

128

call

header

messages

112

call

messages

112

calling

processes
setting

keys

302

callrpc

subroutine

281

cbc_crypt

subroutine

282

cfxfer

function

139

cleanup

handlers
establishing

200

releasing

205

cleanup

handlers

(continued)
resetting

204

client

objects
changing

or

retrieving

286

clnt

parameter
calling

remote

procedure

285

clnt_broadcast

subroutine

284

clnt_call

macro

285

clnt_control

macro

286

clnt_create

subroutine

287

clnt_destroy

macro

288

clnt_freeres

macro

288

clnt_geterr

macro

289

clnt_pcreateerror

subroutine

289

clnt_perrno

subroutine

290

clnt_perror

subroutine

291

clnt_spcreateerror

subroutine

292

clnt_sperrno

subroutine

292

clnt_sperror

subroutine

293

clntraw_create

subroutine

294

clnttcp_create

subroutine

295

clntudp_create

subroutine

296

close

subroutine

interface

for

DLC

devices

11

connection-response

token

97

connection-response

token

assigned

98

conversation

key,

secure

301

cursor

position
setting

column

components

157

setting

row

components

157

D
data

marking

outgoing

as

records

135

Data

Encryption

Standard

282

data

link

connection

60,

61

Data

Link

Control

11

Data

Link

Provider

Interface

(DLPI)

79

data

link

service

(DLS)

60,

61,

63,

64,

66,

67,

68,

69,

73,

74,

76,

81,

82,

84,

86,

87,

88,

89,

90,

92,

93,

94,

95,

96,

98,

99,

100,

101,

103,

107

data

link

service

(DLS)

user

102,

104

data

link

service

access

point

(DLSAP)

89,

90,

92,

100

data

link

service

data

unit

(DLSDU)

66,

93,

94,

95,

96,

101,

102,

103,

104,

107

data

notification
toggling

163

data

streams
getting

position

of

116

data

types
receiving

GDLC

20,

22

databases
closing

267,

271

opening

for

access

270,

272

returning

first

key

269,

274

returning

next

key

269,

274

datagram

data

received

routine

(DLC)

24

©

Copyright

IBM

Corp.

1997,

2003

329

DBM

subroutines
dbmclose

271

dbminit

272

delete

273

fetch

273

firstkey

274

nextkey

274

store

275

dbm_close

subroutine

267

dbm_delete

subroutine

267

dbm_fetch

subroutine

268

dbm_firstkey

subroutine

269

dbm_nextkey

subroutine

269

dbm_open

subroutine

270

dbm_store

subroutine

271

dbmclose

subroutine

271

dbminit

subroutine

272

default

domains
getting

258

delete

subroutine

273

DES
enabling

use

of

277

DES

encryption

routines
starting

282

DES

keys
decrypting

299

encrypting

300

des_setparity

subroutine

282

device

handlers
decoding

name

4

disconnect

an

active

link

71

discriminated

unions
translating

129

DL_ATTACH_REQ

55

DL_BIND_ACK

56

DL_BIND_REQ

57

DL_CONNECT_CON

Primitive

60

DL_CONNECT_IND

Primitive

61

DL_CONNECT_REQ

Primitive

63

DL_CONNECT_RES

Primitive

64

DL_DATA_IND

Primitive

66

DL_DATA_REQ

Primitive

66

DL_DETACH_REQ

Primitive

67

DL_DISABMULTI_REQ

Primitive

68

DL_DISCONNECT_IND

Primitive

69

DL_DISCONNECT_REQ

Primitive

71

DL_ENABMULTI_REQ

Primitive

73

DL_ERROR_ACK

Primitive

74

DL_GET_STATISTICS_ACK

Primitive

75

DL_GET_STATISTICS_REQ

76

DL_GET_STATISTICS_REQ

Primitive

75

DL_INFO_ACK

Primitive

77

DL_INFO_REQ

Primitive

77,

79

DL_OK_ACK

Primitive

80

DL_PHYS_ADDR_ACK

Primitive

81

DL_PHYS_ADDR_REQ

Primitive

81

DL_PROMISCOFF_REQ

Primitive

82

DL_PROMISCON_REQ

Primitive

84

DL_RESET_IND

Primitive

86

DL_RESET_REQ

Primitive

87

DL_RESET_RES

Primitive

88

DL_SUBS_BIND_ACK

Primitive

89

DL_SUBS_BIND_REQ

Primitive

90,

92

DL_SUBS_UNBIND_REQ

Primitive

92

DL_TEST_CON

Primitive

93

DL_TEST_IND

Primitive

94,

96

DL_TEST_REQ

Primitive

93,

95

DL_TEST_RES

Primitive

96

DL_TOKEN_ACK

Primitive

97

DL_TOKEN_REQ

Primitive

98

DL_UDERROR_IND

Primitive

99

DL_UNBIND_REQ

Primitive

100

DL_UNITDATA_IND

Primitive

101

DL_UNITDATA_REQ

Primitive

99,

102

DL_XID_CON

Primitive

103

DL_XID_IND

Primitive

104,

107

DL_XID_REQ

105

DL_XID_REQ

Primitive

103

DL_XID_RES

Primitive

107

DLC
asynchronous

event

notification

25

asynchronous

exception

notification

41

device

descriptor

structures

53

extended

parameters

19,

20,

22

functional

address

masks

30,

35

ioctl

operations

28

parameter

blocks

30

receive

address

31

receiving

data
data

packet

25

datagram

packet

24

network-specific

26

XID

packet

27

DLC

ioctl

operations
DLC_ADD_FUNC_ADDR

30

DLC_ADD_GRP

31

DLC_ALTER

31

DLC_CONTACT

35

DLC_DEL_FUNC_ADDR

35

DLC_DEL_GRP

36

DLC_DISABLE_SAP

36

DLC_ENABLE_SAP

37

DLC_ENTER_LBUSY

40

DLC_ENTER_SHOLD

40

DLC_EXIT_LBUSY

40

DLC_EXIT_SHOLD

41

DLC_GET_EXCEP

41

DLC_HALT_LS

46

DLC_QUERY_LS

46

DLC_QUERY_SAP

49

DLC_STARTS_LS

50

DLC_TEST

52

DLC_TRACE

53

IOCINFO

53

DLC

kernel

routines
datagram

data

received

24

exception

condition

25

I-frame

data

received

25

network

data

received

26

XID

data

received

27

DLC

subroutine

interfaces
close

11

330

Technical

Reference:

Communications,

Volume

1

DLC

subroutine

interfaces

(continued)
ioctl

12

open

13

readx

15

select

16

writex

17

DLC_ADD_FUNC_ADDR

ioctl

operation

30

DLC_ADD_GRP

ioctl

operation

31

DLC_ALTER

ioctl

operation

31

DLC_CONTACT

ioctl

operation

35

DLC_DEL_FUNC_ADDR

ioctl

operation

35

DLC_DEL_GRP

36

DLC_DISABLE_SAP

ioctl

operation

36

DLC_ENABLE_SAP

ioctl

operation

37

DLC_ENTER_LBUSY

ioctl

operation

40

DLC_ENTER_SHOLD

ioctl

operation

40

DLC_EXIT_LBUSY

ioctl

operation

40

DLC_EXIT_SHOLD

ioctl

operation

41

DLC_GET_EXCEP

ioctl

operation

41

DLC_HALT_LS

ioctl

operation

46

DLC_QUERY_LS

ioctl

operation

46

DLC_QUERY_SAP

ioctl

operation

49

DLC_START_LS

ioctl

operation

50

DLC_TEST

ioctl

operation

52

DLC_TRACE

ioctl

operation

53

dlcclose

entry

point

1

dlcconfig

entry

point

2

dlcioctl

entry

point

3

dlcmpx

entry

point

4

dlcopen

entry

point

5

dlcread

entry

point

7

dlcselect

entry

point

8

dlcwrite

entry

point

10

DLPI
DL_ATTACH_REQ

55

DLPI

Primitive
DL_BIND_ACK

56

DL_BIND_REQ

57

DL_XID_REQ

105

E
ecb_crypt

subroutine

282

error

codes
using

as

input

to

NIS

subroutines

266

error

strings
returning

pointer

265

exception

condition

routine

(DLC)

25

external

representations,

translating

from
arrays

109,

111,

130

Booleans

110

C

language

characters

113,

126

C

language

enumerations

114

C

language

floats

115

C

language

integers

117

C

language

long

integers

118

C

language

numbers

132

C

language

short

integers

125

C

language

strings

126

C

language

unsigned

integers

127

C

language

unsigned

long

integers

128

external

representations,

translating

from

(continued)
C

language

unsigned

short

integers

128

discriminated

unions

129

opaque

data

119

F
fault

signals

205

fetch

subroutine

273

file

descriptors
creating

services

320

file

transfers
initiating

141

invoking

151

firstkey

subroutine

274

functional

address

masks

30,

35

fxfer

function

141

G
g32_alloc

function

145

g32_close

function

147

g32_dealloc

function

149

g32_fxfer

function

151

g32_get_cursor

function

157

g32_get_data

function

159

g32_get_status

function

161

g32_notify

function

163

g32_open

function

167

g32_openx

function

171

g32_read

function

176

g32_search

function

178

g32_send_keys

function

181

g32_write

function

184

G32ALLOC

function

186

G32DLLOC

function

187

G32READ

function

188

G32WRITE

function

189

GDLC
asynchronous

criteria

8

descriptor

readiness

16

ioctl

operations

28

providing

data

link

control

22

providing

generic

20

reading

receive

application

data

15

reading

receive

data

from

7

sending

application

data

17

transferring

commands

to

12

writing

transmit

data

to

10

GDLC

channels
allocating

4

closing

1

disabling

11

opening

5

GDLC

device

manager
closing

11

configuring

2

issuing

commands

to

3

opening

13

GDLC

device

manager

entry

points
dlcclose

1

Index

331

GDLC

device

manager

entry

points

(continued)
dlcconfig

2

dlcioctl

3

dlcmpx

4

dlcopen

5

dlcread

7

dlcselect

8

dlcwrite

10

Generic

Data

Link

Control

11

get_myaddress

subroutine

297

getnetname

subroutine

298

GLB

database
locating

information
on

interfaces

191,

195

on

objects

192,

195

on

types

195,

196

registering

objects

and

interfaces

198

removing

entries

199

Global

Location

Broker

191

H
HCON

functions
cfxfer

139

fxfer

141

g32_alloc

145

g32_close

147

g32_dealloc

149

g32_fxfer

151

g32_get_cursor

157

g32_get_data

159

g32_get_status

161

g32_notify

163

g32_open

167

g32_openx

171

g32_read

176

g32_search

178

g32_send_keys

181

g32_write

184

G32ALLOC

186

G32DLLOC

187

G32READ

188

host

applications
ending

interaction

149

initiating

interaction

145

receiving

messages

176

sending

messages

184

host

names
converting

socket

addresses

to

217

converting

to

network

names

298

converting

to

socket

addresses

214

host

parameter
calling

associated

remote

procedure

281

host2netname

subroutine

298

I
I-frame

data

received

routine

for

DLC

25

input

streams
moving

position

136

interfaces
registering

215

unregistering

218

invalid

request

or

response

74

IOCINFO

operation
DLC

53

ioctl

operations

(DLC)

28

ioctl

subroutine

interface

for

DLC

devices

12

IP

addresses
finding

297

K
key_decryptsession

subroutine

299

key_encryptsession

subroutine

300

key_gendes

subroutine

301

key_setsecret

subroutine

302

key-value

pairs

255,

261

returning

first

257

keys
accessing

data

stored

under

268,

273

deleting

267,

273

placing

data

under

271,

275

searching

for

associated

values

260

keyserv

daemon

301

L
lb_$lookup_interface

library

routine

191

lb_$lookup_object

library

routine

192

lb_$lookup_object_local

library

routine

193

lb_$lookup_range

library

routine

195

lb_$lookup_type

library

routine

196

lb_$register

library

routine

198

lb_$unregister

library

routine

199

link

stations

46

LLB

database
locating

information
on

interfaces

195

on

objects

193,

195

on

types

195

registering

objects

and

interfaces

198

removing

entries

199

local

busy

mode

40

Local

Location

Broker

191

Location

Broker

library

routines
lb_$lookup_interface

191

lb_$lookup_object

192

lb_$lookup_object_local

193

lb_$lookup_range

195

lb_$lookup_type

196

lb_$register

198

lb_$unregister

199

logical

paths
returning

status

information

161

LS

correlators
receiving

GDLC

20

LSs
altering

configuration

parameters

31

contacting

remote

station

35

halting

46

332

Technical

Reference:

Communications,

Volume

1

LSs

(continued)
local

busy

mode

40

querying

statistics

46

receiving

GDLC

22

result

extensions

44,

45,

46

short

hold

mode

40,

41

starting

50

testing

remote

link

52

tracing

activity

53

M
mappings

removing

315

master

servers
returning

machine

names

259

memory
freeing

115

message

replies

109,

123,

124

multicast

addresses

73

removing

36

N
name

parameter
installing

network

name

298

NDBM

subroutines
dbm_close

267

dbm_delete

267

dbm_fetch

268

dbm_firstkey

269

dbm_nextkey

269

dbm_open

270

dbm_store

271

netname2host

subroutine

302

netname2user

subroutine

303

network

addresses
retrieving

312

network

data

received

routine

(DLC)

26

Network

Information

Service

255

network

names
converting

to

host

names

302

converting

to

user

IDs

303

New

Database

Manager

library

267

nextkey

subroutine

274

NIS

maps
changing

264

returning

order

number

262

NIS

master

servers
returning

machine

names

259

NIS

subroutines
yp_all

255

yp_bind

256

yp_first

257

yp_get_default_domain

258

yp_master

259

yp_match

260

yp_next

261

yp_order

262

yp_unbind

263

yp_update

264

NIS

subroutines

(continued)
yperr_string

265

ypprot_err

266

O
opaque

data
translating

119

open

file

descriptors
creating

service

320

open

subroutine

interface

(DLC)

13

open

subroutine,

parameters

(DLC)

19

openx

subroutine
parameters

(DLC)

19

P
parameter

blocks

(DLC)

30

peer

DLS

provider

95

PFM

library

routines
pfm_$cleanup

200

pfm_$enable

201

pfm_$enable_faults

201

pfm_$inhibit

202

pfm_$inhibit_faults

202

pfm_$init

203

pfm_$reset_cleanup

204

pfm_$rls_cleanup

205

pfm_$signal

205

PFM

package
initializing

203

pfm_$cleanup

library

routine

200

pfm_$enable

library

routine

201

pfm_$enable_faults

library

routine

201

pfm_$inhibit

library

routine

202

pfm_$inhibit_faults

library

routine

202

pfm_$init

library

routine

203

pfm_$reset_cleanup

library

routine

204

pfm_$rls_cleanup

library

routine

205

pfm_$signal

library

routine

205

physical

address

81

physical

point

of

attachment

(PPA)

67

pmap_getmaps

subroutine

304

pmap_getport

subroutine

305

pmap_rmtcall

subroutine

306

pmap_set

subroutine

307

pmap_unset

subroutine

307

port

mappings
describing

121

port

numbers
requesting

305

portmap

procedures
describing

parameters

120

presentation

space
obtaining

display

data

159

searching

for

character

patterns

178

previously

issued

primitive

80

processes
managing

socket

descriptors

263

program-to-port

mappings
returning

list

304

Index

333

programmatic

file

transfers
checking

status

139

promiscuous

mode

82,

84

R
read

subroutine

parameters

(DLC)

20

readx

subroutine

interface

for

devices

(DLC)

15

readx

subroutine

parameters

(DLC)

20

records
marking

outgoing

data

as

135

skipping

136

registerrpc

subroutine

308

remote

DLS

user

63,

64

remote

procedure

calls

284

broadcasting

284

creating

with

portmap

daemon

306

error

in

authenticating

316

error

unknown

to

protocol

319

failing

291,

293

insufficient

authentication

319

mapping

307

sending

results

314

unmapping

307

unregistered

program

317

unregistered

program

version

318

unsupported

procedure

317

remote

procedures
mapping

313

remote

time
obtaining

309

RPC

authentication

handles
creating

280

creating

NULL

279

setting

to

default

281

RPC

authentication

messages

119

RPC

authentication

subroutines
authdes_create

277

authdes_getucred

278

authnone_create

279

authunix_create

280

authunix_create_default

281

xdr_authunix_parms

132

RPC

call

header

messages

112

RPC

call

messages

112

RPC

client

handles
copying

error

information

289

creating

and

returning

287

destroying

288

error

in

creating

289,

292

RPC

client

objects
changing

or

retrieving

286

RPC

client

subroutines
clnt_broadcast

284

clnt_create

287

clnt_pcreateerror

289

clnt_perrno

290

clnt_perror

291

clnt_spcreateerror

292

clnt_sperrno

292

clnt_sperror

293

RPC

client

subroutines

(continued)
clntraw_create

294

clnttcp_create

295

clntudp_create

296

RPC

client

transport

handles
creating

TCP/IP

295

creating

UDP/IP

296

RPC

clients
creating

toy

294

RPC

handles
allocating

207

associating

with

servers

216

clearing

bindings

208,

209

copying

210

creating

206

freeing

211

returning

object

UUID

213

returning

socket

addresses

212

RPC

library

routines
rpc_$alloc_handle

206

rpc_$bind

207

rpc_$clear_binding

208

rpc_$clear_server_binding

209

rpc_$dup_handle

210

rpc_$free_handle

211

rpc_$inq_binding

212

rpc_$inq_object

213

rpc_$listen

213

rpc_$name_to_sockaddr

214

rpc_$register

215

rpc_$set_binding

216

rpc_$sockaddr_to_name

217

rpc_$unregister

218

rpc_$use_family

219

rpc_$use_family_wk

220

RPC

macros
auth_destroy

277

clnt_call

285

clnt_control

286

clnt_destroy

288

clnt_freeres

288

clnt_geterr

289

svc_destroy

310

svc_freeargs

310

svc_getargs

311

svc_getcaller

312

RPC

message

replies

109,

123,

124

RPC

packets
handling

213

RPC

portmap

subroutines
pmap_getmaps

304

pmap_getport

305

pmap_rmtcall

306

pmap_set

307

pmap_unset

307

RPC

program-to-port

mappings
returning

list

304

RPC

reply

messages
encoding

109

RPC

requests
decoding

arguments

311

334

Technical

Reference:

Communications,

Volume

1

RPC

requests

(continued)
servicing

312

RPC

runtime

library
registering

interfaces

215

unregistering

interfaces

218

RPC

security

subroutines
cbc_crypt

282

des_setparity

282

ecb_crypt

282

key_decryptsession

299

key_encryptsession

300

key_gendes

301

key_setsecret

302

RPC

service

packages
registering

procedure

308

RPC

service

requests
waiting

for

arrival

314

RPC

service

subroutines
svc_getreqset

312

svc_register

313

svc_run

314

svc_sendreply

314

svc_unregister

315

svcerr_auth

316

svcerr_decode

316

svcerr_noproc

317

svcerr_noprog

317

svcerr_progvers

318

svcerr_systemerr

319

svcerr_weakauth

319

svcfd_create

320

svcraw_create

321

svctcp_create

321

svcudp_create

322

RPC

service

transport

handles
creating

TCP/IP

321

creating

toy

321

creating

UDP/IP

322

destroying

310

registering

324

removing

324

RPC

subroutines
callrpc

281

get_myaddress

297

getnetname

298

host2netname

298

netname2host

302

netname2user

303

receiving

XDR

subroutines

131

registerrpc

308

rtime

309

user2netname

323

xdr_accepted_reply

109

xdr_callhdr

112

xdr_callmsg

112

xdr_opaque_auth

119

xdr_pmap

120

xdr_pmaplist

121

xdr_rejected_reply

123

xdr_replymsg

124

xprt_register

324

RPC

subroutines

(continued)
xprt_unregister

324

rpc_$alloc_handle

library

routine

206

rpc_$bind

library

routine

207

rpc_$clear_binding

library

routine

208

rpc_$clear_server_binding

library

routine

209

rpc_$dup_handle

library

routine

210

rpc_$free_handle

library

routine

211

rpc_$inq_binding

library

routine

212

rpc_$inq_object

library

routine

213

rpc_$listen

library

routine

213

rpc_$name_to_sockaddr

library

routine

214

rpc_$register

library

routine

215

rpc_$set_binding

library

routine

216

rpc_$sockaddr_to_name

library

routine

217

rpc_$unregister

library

routine

218

rpc_$use_family

library

routine

219

rpc_$use_family_wk

library

routine

220

rtime

subroutine

309

S
SAPs

disabling

36

enabling

37

querying

statistics

49

receiving

GDLC

20,

22

result

extensions

44

secure

conversation

key

301

select

subroutine

interface

(DLC)

16

server

network

names
decrypting

299

encrypting

300

servers
registering

interface

215

unregistering

interface

218

service

access

point

(SAP)

82,

84

service

access

points

20

service

dispatch

routines
error

in

authenticating

316

error

in

decoding

requests

316

error

unknown

to

protocol

319

insufficient

authentication

319

unregistered

program

317

unregistered

program

version

318

unsupported

procedure

317

service

packages
registering

procedure

308

service

requests

314

sessions
attaching

167,

171

detaching

147

starting

167,

171

short

hold

mode

40,

41

socket

addresses
converting

host

names

to

214

converting

to

host

names

217

sockets
creating

for

RPC

servers

219,

220

stat

parameter
specifying

condition

290,

292

Index

335

store

subroutine

275

structures
providing

pointer

chasing

121,

122

serializing

null

pointers

121

svc_destroy

macro

310

svc_freeargs

macro

310

svc_getargs

macro

311

svc_getcaller

macro

312

svc_getreqset

subroutine

312

svc_register

subroutine

313

svc_run

subroutine

314

svc_sendreply

subroutine

314

svc_unregister

subroutine

315

svcerr_auth

subroutine

316

svcerr_decode

subroutine

316

svcerr_noproc

subroutine

317

svcerr_noprog

subroutine

317

svcerr_progvers

subroutine

318

svcerr_systemerr

subroutine

319

svcerr_weakauth

subroutine

319

svcfd_create

subroutine

320

svcraw_create

subroutine

321

svctcp_create

subroutine

321

svcudp_create

subroutine

322

T
terminal

emulators
sending

key

strokes

181

toy

RPC

clients
creating

294

toy

RPC

service

transport

handles
creating

321

transmission

over

the

data

link

connection

66

U
unions

translating

129

Universal

Unique

Identifiers

222

UNIX

credentials
generating

132

mapping

DES

credentials

278

user

IDs
converting

to

network

names

323

user2netname

subroutine

323

UUID

library

routines
uuid_$decode

221

uuid_$encode

222

uuid_$gen

223

uuid_$decode

library

routine

221

uuid_$encode

library

routine

222

uuid_$gen

library

routine

223

UUIDs
converting

221,

222

generating

223

W
write

subroutine,

parameters

(DLC)

22

writex

subroutine

interface

(DLC)

17

writex

subroutine,

parameters

(DLC)

22

X
XDR

library

filter

primitives
xdr_array

109

xdr_bool

110

xdr_bytes

111

xdr_char

113

xdr_double

132

xdr_enum

114

xdr_float

115

xdr_int

117

xdr_long

118

xdr_opaque

119

xdr_reference

122

xdr_short

125

xdr_string

126

xdr_u_char

126

xdr_u_int

127

xdr_u_long

128

xdr_u_short

128

xdr_union

129

xdr_vector

130

xdr_void

131

xdr_wrapstring

131

XDR

library

non-filter

primitives

114,

115,

116,

117,

121,

124,

133,

134,

135

xdrrec_endofrecord

135

xdrrec_skiprecord

136

xdrstdio_create

137

XDR

streams
changing

current

position

124

containing

long

sequences

of

records

134

destroying

114

initializing

137

initializing

local

memory

133

returning

pointer

to

buffer

117

XDR

subroutines
supplying

to

RPC

system

131

xdr_accepted_reply

subroutine

109

xdr_array

subroutine

109

xdr_authunix_parms

subroutine

132

xdr_bool

subroutine

110

xdr_bytes

subroutine

111

xdr_callhdr

subroutine

112

xdr_callmsg

subroutine

112

xdr_char

subroutine

113

xdr_destroy

macro

114

xdr_double

subroutine

132

xdr_enum

subroutine

114

xdr_float

subroutine

115

xdr_free

subroutine

115

xdr_getpos

macro

116

xdr_inline

macro

117

xdr_int

subroutine

117

xdr_long

subroutine

118

xdr_opaque

subroutine

119

xdr_opaque_auth

subroutine

119

xdr_pmap

subroutine

120

xdr_pmaplist

subroutine

121

336

Technical

Reference:

Communications,

Volume

1

xdr_pointer

subroutine

121

xdr_reference

subroutine

122

xdr_rejected_reply

subroutine

123

xdr_replymsg

subroutine

124

xdr_setpos

macro

124

xdr_short

subroutine

125

xdr_string

subroutine

126,

131

xdr_u_char

subroutine

126

xdr_u_int

subroutine

127

xdr_u_long

subroutine

128

xdr_u_short

subroutine

128

xdr_union

subroutine

129

xdr_vector

subroutine

130

xdr_void

subroutine

131

xdr_wrapstring

subroutine

131

xdrmem_create

subroutine

133

xdrrec_create

subroutine

134

xdrrec_endofrecord

subroutine

135

xdrrec_eof

subroutine

135

xdrrec_skiprecord

subroutine

136

xdrstdio_create

subroutine

137

XID

data

received

routine

for

DLC

27

xprt_register

subroutine

324

xprt_unregister

subroutine

324

Y
yp_all

subroutine

255

yp_bind

subroutine

256

yp_first

subroutine

257

yp_get_default_domain

subroutine

258

yp_master

subroutine

259

yp_match

subroutine

260

yp_next

subroutine

261

yp_order

subroutine

262

yp_unbind

subroutine

263

yp_update

subroutine

264

ypbind

daemon
calling

256

yperr_string

subroutine

265

ypprot_err

subroutine

266

Index

337

338

Technical

Reference:

Communications,

Volume

1

Readers’

Comments

—

We’d

Like

to

Hear

from

You

AIX

5L

Version

5.2

Technical

Reference:

Communications,

Volume

1

Publication

No.

SC23-4161-04

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC23-4161-04

SC23-4161-04

���

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Information

Development

Department

H6DS-905-6C006

11501

Burnet

Road

Austin,

TX

78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed

in

the

U.S.A.

SC23-4161-04

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the UNIX98 Specification
	Related Publications

	Chapter 1. Data Link Controls
	dlcclose Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcconfig Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcioctl Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcmpx Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcopen Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcread Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcselect Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcwrite Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	close Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ioctl Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	open Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	readx Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	select Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	writex Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	open Subroutine Extended Parameters for DLC
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	read Subroutine Extended Parameters for DLC
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	write Subroutine Extended Parameters for DLC
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	Datagram Data Received Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Exception Condition Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	I-Frame Data Received Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Network Data Received Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	XID Data Received Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ioctl Operations (op) for DLC
	Syntax
	Description
	Related Information

	Parameter Blocks by ioctl Operation for DLC
	Description

	DLC_ADD_FUNC_ADDR ioctl Operation for DLC
	DLC_ADD_GRP ioctl Operation for DLC
	DLC_ALTER ioctl Operation for DLC
	DLC_CONTACT ioctl Operation for DLC
	DLC_DEL_FUNC_ADDR ioctl Operation for DLC
	DLC_DEL_GRP ioctl Operation for DLC
	DLC_DISABLE_SAP ioctl Operation for DLC
	DLC_ENABLE_SAP ioctl Operation for DLC
	DLC_ENTER_LBUSY ioctl Operation for DLC
	DLC_ENTER_SHOLD ioctl Operation for DLC
	DLC_EXIT_LBUSY ioctl Operation for DLC
	DLC_EXIT_SHOLD ioctl Operation for DLC
	DLC_GET_EXCEP ioctl Operation for DLC
	DLC_SAPE_RES SAP Enabled Result Extension
	DLC_STAS_RES Link Station Started Result Extension
	DLC_STAH_RES Link Station Halted Result Extension
	DLC_RADD_RES Remote Address/Name Change Result Extension

	DLC_HALT_LS ioctl Operation for DLC
	DLC_QUERY_LS ioctl Operation for DLC
	DLC_QUERY_SAP ioctl Operation for DLC
	DLC_START_LS ioctl Operation for DLC
	DLC_TEST ioctl Operation for DLC
	DLC_TRACE ioctl Operation for DLC
	IOCINFO ioctl Operation for DLC
	Related Information

	Chapter 2. Data Link Provider Interface (DLPI)
	DL_ATTACH_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_BIND_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_BIND_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_CONNECT_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_CONNECT_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Related Information

	DL_CONNECT_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_CONNECT_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_DATA_IND Primitive
	Purpose
	Structure
	Description
	States
	Related Information

	DL_DATA_REQ Primitive
	Purpose
	Structure
	Description
	States
	Acknowledgments
	Related Information

	DL_DETACH_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_DISABMULTI_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_DISCONNECT_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_DISCONNECT_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_ENABMULTI_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_ERROR_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_GET_STATISTICS_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_GET_STATISTICS_REQ
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_INFO_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_INFO_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Related Information

	DL_OK_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_PHYS_ADDR_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_PHYS_ADDR_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_PROMISCOFF_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_PROMISCON_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_RESET_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_RESET_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Related Information

	DL_RESET_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_RESET_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_SUBS_BIND_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_SUBS_BIND_REQ Primitive
	Purpose
	Structure
	Description
	Examples:
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_SUBS_UNBIND_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_TEST_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_TEST_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_TEST_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Code
	Related Information

	DL_TEST_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_TOKEN_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_TOKEN_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Related Information

	DL_UDERROR_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_UNBIND_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_UNITDATA_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_UNITDATA_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_XID_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_XID_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_XID_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_XID_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	Chapter 3. eXternal Data Representation
	xdr_accepted_reply Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_array Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_bool Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_bytes Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_callhdr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_callmsg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_char Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_destroy Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xdr_enum Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_float Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_free Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xdr_getpos Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_inline Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_int Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_long Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_opaque Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_opaque_auth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_pmap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_pmaplist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_pointer Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_reference Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_rejected_reply Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_replymsg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_setpos Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_short Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_string Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_u_char Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_u_int Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_u_long Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_u_short Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_union Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_vector Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_void Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	xdr_wrapstring Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_authunix_parms Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_double Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdrmem_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xdrrec_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xdrrec_endofrecord Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdrrec_eof Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdrrec_skiprecord Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdrstdio_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	Chapter 4. AIX 3270 Host Connection Program (HCON)
	cfxfer Function
	Purpose
	Library
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	C and Pascal fxs Field Descriptions
	FORTRAN Parameters
	Return Values
	Files
	Related Information

	fxfer Function
	Purpose
	Library
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Files
	Related Information

	g32_alloc Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_close Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_dealloc Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_fxfer Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_get_cursor Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_get_data Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_get_status Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files

	g32_notify Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_open Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_openx Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_read Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_search Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_send_keys Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	g32_write Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples
	Files

	G32ALLOC Function
	Purpose
	Syntax
	Description
	Return Values
	Examples
	Related Information

	G32DLLOC Function
	Purpose
	Syntax
	Description
	Return Values
	Examples
	Related Information

	G32READ Function
	Purpose
	Syntax
	Description
	Return Values
	Examples
	Related Information

	G32WRITE Function
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples

	Chapter 5. Network Computing System (NCS)
	lb_$lookup_interface Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$lookup_object Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$lookup_object_local Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$lookup_range Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$lookup_type Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$register Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$unregister Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$cleanup Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$enable Library Routine
	Purpose
	Syntax
	Description
	Examples
	Related Information

	pfm_$enable_faults Library Routine
	Purpose
	Syntax
	Description
	Examples
	Related Information

	pfm_$inhibit Library Routine
	Purpose
	Syntax
	Description
	Examples
	Related Information

	pfm_$inhibit_faults Library Routine
	Purpose
	Syntax
	Description
	Examples
	Related Information

	pfm_$init Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$reset_cleanup Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$rls_cleanup Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$signal Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$alloc_handle Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$bind Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$clear_binding Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$clear_server_binding Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$dup_handle Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$free_handle Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$inq_binding Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$inq_object Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$listen Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$name_to_sockaddr Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$register Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$set_binding Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$sockaddr_to_name Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$unregister Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$use_family Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$use_family_wk Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	uuid_$decode Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	uuid_$encode Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	uuid_$gen Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+)
	nis_add_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Summary of Trusted
	Related Information

	nis_first_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Related Information

	nis_list (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Environment
	Notes:
	Related Information

	nis_local_directory (NIS+ API)
	Purpose
	Syntax
	Description
	Environment
	Related Information

	nis_lookup (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Environment
	Related Information

	nis_modify_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Summary of Trusted
	Related Information

	nis_next_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Related Information

	nis_perror (NIS+ API)
	Purpose
	Syntax
	Description
	Related Information

	nis_remove_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Summary of Trusted
	Related Information

	nis_sperror (NIS+ API)
	Purpose
	Syntax
	Description
	Related Information

	yp_all Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_bind Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_first Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_get_default_domain Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_master Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_match Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_next Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_order Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_unbind Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_update Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	yperr_string Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ypprot_err Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Chapter 7. New Database Manager (NDBM)
	dbm_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	dbm_delete Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_fetch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_firstkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_nextkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_store Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbmclose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	dbminit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	delete Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fetch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	firstkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	nextkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	store Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Chapter 8. Remote Procedure Calls (RPC)
	auth_destroy Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	authdes_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	authdes_getucred Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	authnone_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	authunix_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	authunix_create_default Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	callrpc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related information

	cbc_crypt, des_setparity, or ecb_crypt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	clnt_broadcast Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_call Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_control Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_destroy Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_freeres Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_geterr Macro
	Purpose
	Library
	Syntax
	Description
	Parameters

	clnt_pcreateerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_perrno Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_perror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_spcreateerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_sperrno Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_sperror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clntraw_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnttcp_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clntudp_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	get_myaddress Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	getnetname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	host2netname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	key_decryptsession Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	key_encryptsession Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	key_gendes Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	key_setsecret Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	netname2host Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	netname2user Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pmap_getmaps Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pmap_getport Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pmap_rmtcall Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pmap_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pmap_unset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	registerrpc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	rtime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svc_destroy Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svc_freeargs Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svc_getargs Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svc_getcaller Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svc_getreqset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svc_register Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svc_run Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	svc_sendreply Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svc_unregister Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svcerr_auth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_decode Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svcerr_noproc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_noprog Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_progvers Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_systemerr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_weakauth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svcfd_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svcraw_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	svctcp_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svcudp_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	user2netname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xprt_register Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xprt_unregister Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	Data Link Provider Interface (DLPI)

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

