
System Administration Guide:
Security Services

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 806–4078–06
December 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, SUNOS, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, SunOS, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011025@2471

Contents

Preface 17

1 Security Services Overview 23

Introduction to Security 23

Authentication 24

Access Control 24

Secure Communication 25

Auditing 25

2 Authentication Services Topics 27

3 Using Authentication Services (Tasks) 29

Overview of Secure RPC 29

NFS Services and Secure RPC 30

DES Encryption 30

Kerberos Authentication 30

Diffie-Hellman Authentication 31

Administering Diffie-Hellman Authentication 34

� How to Restart the Keyserver 34

� How to Set Up a Key in NIS+ Credentials for Diffie-Hellman Authentication
35

How to Set Up a New User Key Using NIS+ Credentials for Diffie-Hellman
Authentication 36

� How to Set Up a root Key Using NIS Credentials With Diffie-Hellman
Authentication 36

3

How to Create a New User Key Using NIS Credentials with Diffie-Hellman
Authentication 37

� How to Share and Mount Files With Diffie-Hellman Authentication 38

PAM (Overview) 38

Benefits of Using PAM 39

PAM Components 39

Stacking Feature 40

Password-Mapping Feature 40

PAM (Tasks) 41

PAM (Task Map) 41

Planning for PAM 41

� How to Add a PAM Module 42

� How to Prevent Unauthorized Access From Remote Systems With PAM 43

� How to Initiate PAM Error Reporting 43

PAM (Reference) 44

PAM Modules 44

PAM Module Types 45

PAM Configuration File 46

4 Using Secure Shell (Tasks) 51

Introduction to Secure Shell 51

Using Secure Shell (Task Map) 54

Using Secure Shell 55

� How to Create a Public/Private Key Pair 55

� How to Log Into Another Host Using Secure Shell 56

� How to Log in with No Password Using ssh-agent 56

� How to Set ssh-agent to Run Automatically 58

� How to Use Secure Shell Port Forwarding 58

� How to Copy Files with Secure Shell 60

� How to Transfer Files Remotely Using sftp 60

� How to Set Up Default Connections to Hosts Outside a Firewall 61

How to Connect to Hosts Outside a Firewall from the Command Line 62

5 Secure Shell Administration 63

A Typical Secure Shell Session 63

Session Characteristics 63

Authentication 64

4 System Administration Guide: Security Services • December 2001 (Beta)

Command Execution and Data Forwarding 64

Configuring the Secure Shell 65

Secure Shell Client Configuration 65

Secure Shell Server Configuration 67

Maintaining Known Hosts on a Site-Wide Basis 68

Secure Shell Files 69

6 Introduction to SEAM 73

What Is SEAM? 73

How SEAM Works 74

Initial Authentication: the Ticket-Granting Ticket 75

Subsequent Authentications 77

Principals 78

Realms 78

Security Services 80

SEAM Releases 80

SEAM 1.0 Components 81

SEAM Components in the Solaris 9 Release 82

SEAM Components in the Solaris 8 Release 82

SEAM 1.0.1 Components 83

7 Planning for SEAM 85

SEAM Configuration Decisions 85

Realms 85

Mapping Hostnames Onto Realms 87

Client and Service Principal Names 87

Ports for the KDC and Admin Services 87

Slave KDCs 88

Database Propagation 88

Clock Synchronization 88

8 Configuring SEAM 91

SEAM Configuration Task Map 91

Configuring KDC Servers 92

� How to Configure a Master KDC 93

� How to Configure a Slave KDC 97

Contents 5

Configuring Cross-Realm Authentication 100

� How to Establish Hierarchical Cross-Realm Authentication 100

� How to Establish Direct Cross-Realm Authentication 101

Configuring SEAM NFS Servers 102

� How to Configure SEAM NFS Servers 103

� How to Create a Credential Table 104

� How to Add a Single Entry to the Credential Table 105

� How to Set Up a Secure NFS Environment With Multiple Kerberos Security
Modes 105

Configuring SEAM Clients 107

� How to Configure a SEAM Client 107

Setting Up Root Authentication to Mount NFS File Systems 110

Synchronizing Clocks between KDCs and SEAM Clients 110

Swapping Master and Slave KDCs 112

� How to Configure a Swappable Slave KDC 112

� How to Swap a Master and Slave KDC 114

Administering the Kerberos Database 116

Backing Up and Propagating the Kerberos Database 116

� How to Back Up the Kerberos Database 118

� How to Restore the Kerberos Database 119

� How to Manually Propagate the Kerberos Database to the Slave KDCs 120

Setting Up Parallel Propagation 120

� How to Set Up Parallel Propagation 121

Administering the Stash File 122

� How to Remove a Stash File 122

Increasing Security 123

� How to Restrict Access for KDC servers 123

9 SEAM Error Messages and Troubleshooting 125

SEAM Error Messages 125

SEAM Administration Tool Error Messages 125

Common SEAM Error Messages (A-M) 126

Common SEAM Error Messages (N-Z) 132

SEAM Troubleshooting 135

Problems With the Format of the krb5.conf File 135

Problems Propagating the Kerberos Database 135

Problems Mounting a Kerberized NFS File System 136

6 System Administration Guide: Security Services • December 2001 (Beta)

Problems Authenticating as Root 137

10 Administering Principals and Policies 139

Ways to Administer Principals and Policies 140

SEAM Administration Tool 140

Command-Line Equivalents of the SEAM Tool 141

Files Modified by the SEAM Tool 142

Print and Online Help Features of the SEAM Tool 142

Working With Large Lists in the SEAM Tool 142

� How to Start the SEAM Tool 143

Administering Principals 145

Administering Principals Task Map 146

Automating the Creation of New Principals 147

� How to View the List of Principals 147

� How to View a Principal’s Attributes 149

� How to Create a New Principal 151

� How to Duplicate a Principal 153

� How to Modify a Principal 153

� How to Delete a Principal 155

� How to Set Up Defaults for Creating New Principals 155

� How to Modify the Kerberos Administration Privileges 156

Administering Policies 158

Administering Policies Task Map 158

� How to View the List of Policies 159

� How to View a Policy’s Attributes 161

� How to Create a New Policy 163

� How to Duplicate a Policy 165

� How to Modify a Policy 165

� How to Delete a Policy 166

SEAM Tool Reference 167

SEAM Tool Panel Descriptions 167

Using the SEAM Tool With Limited Kerberos Administration Privileges 170

Administering Keytabs 172

Administering Keytabs Task Map 173

� How to Add a Service Principal to a Keytab 173

� How to Remove a Service Principal From a Keytab 174

� How to Display the Keylist (Principals) in a Keytab 175

Contents 7

� How to Temporarily Disable Authentication for a Service on a Host 176

11 Using SEAM 179

Ticket Management 179

Do You Need to Worry About Tickets? 180

� How to Create a Ticket 180

� How to View Tickets 181

� How to Destroy Tickets 182

Password Management 183

Advice on Choosing a Password 183

Changing Your Password 184

12 SEAM Reference 187

SEAM Files 187

PAM Configuration File 188

SEAM Commands 189

SEAM Daemons 190

SEAM Terminology 190

Kerberos-Specific Terminology 190

Authentication-Specific Terminology 191

Types of Tickets 192

How the Authentication System Works 196

Gaining Access to a Service Using SEAM 196

Obtaining a Credential for the Ticket-Granting Service 196

Obtaining a Credential for a Server 197

Obtaining Access to a Specific Service 198

Using the gsscred Table 199

13 Managing System Security Topics 201

14 Managing System Security (Overview) 203

Where to Find System Security Tasks 203

Controlling Access to a Computer System 204

Maintaining Physical Site Security 204

Maintaining Login and Access Control 204

Restricting Access to Data in Files 205

8 System Administration Guide: Security Services • December 2001 (Beta)

Maintaining Network Control 205

Monitoring System Usage 205

Setting the Correct Path 206

Securing Files 206

Installing a Firewall 206

Reporting Security Problems 207

File Security 207

File Administration Commands 207

File Encryption 208

Access Control Lists (ACLs) 208

System Security 208

Login Access Restrictions 209

Special Logins 209

Managing Password Information 210

Using the Restricted Shell 211

Tracking Superuser (Root) Login 212

Network Security 212

Firewall Systems 213

Authentication and Authorization 214

Sharing Files 215

Restricting Superuser (Root) Access 216

Using Privileged Ports 216

Using Automated Security Enhancement Tool (ASET) 216

15 Securing Files (Tasks) 217

File Security Features 217

User Classes 217

File Permissions 218

Directory Permissions 218

Special File Permissions (setuid, setgid and Sticky Bit) 219

Default umask 220

Displaying File Information 221

� How to Display File Information 221

Changing File Ownership 223

� How to Change the Owner of a File 223

� How to Change Group Ownership of a File 224

Changing File Permissions 225

Contents 9

� How to Change Permissions in Absolute Mode 227

� How to Change Special Permissions in Absolute Mode 228

� How to Change Permissions in Symbolic Mode 229

Searching for Special Permissions 230

� How to Find Files With setuid Permissions 230

Executable Stacks and Security 231

� How to Disable Programs From Using Executable Stacks 232

� How to Disable Executable Stack Message Logging 232

Using Access Control Lists (ACLs) 232

ACL Entries for Files 233

ACL Entries for Directories 234

� How to Set an ACL on a File 235

� How to Copy an ACL 237

� How to Check If a File Has an ACL 237

� How to Modify ACL Entries on a File 238

� How to Delete ACL Entries From a File 238

� How to Display ACL Entries for a File 239

16 Securing Systems (Tasks) 241

Displaying Security Information 241

� How to Display a User’s Login Status 241

� How to Display Users Without Passwords 243

Temporarily Disabling User Logins 243

� How to Temporarily Disable User Logins 244

Saving Failed Login Attempts 244

� How to Save Failed Login Attempts 244

Password Protection Using Dial-up Passwords 245

� How to Create a Dial-up Password 247

� How to Temporarily Disable Dial-up Logins 248

Restricting Superuser (root) Access on the Console 249

� How to Restrict Superuser (root) Login to the Console 249

Monitoring Who Is Using the su Command 249

� How to Monitor Who Is Using the su Command 250

� How to Display Superuser (root) Access Attempts to the Console 250

Modifying a System’s Abort Sequence 251

� How to Disable or Enable a System’s Abort Sequence 251

10 System Administration Guide: Security Services • December 2001 (Beta)

17 Role-Based Access Control (Overview) 253

RBAC: Replacing the Superuser Model 253

Solaris RBAC Elements 254

Privileged Applications 256

Applications Checking UIDs and GIDs 257

Applications Checking Authorizations 257

Profile Shell 257

Roles 257

Authorizations 258

Rights Profiles 258

Management Scope 259

18 Role-Based Access Control (Tasks) 261

Configuring RBAC (Task Map) 262

Planning for RBAC 262

� How to Plan Your RBAC Implementation 262

First-Time Use of the User Tool Collection 264

� How to Run the User Tool Collection 264

Initial User Setup 266

� How to Create Initial Users Using the User Accounts Tool 266

Initial Role Setup 268

� How to Create the First Role (Primary Administrator) Using the Administrative
Roles Tool 268

Making Root a Role 270

� How to Make Root a Role 270

Managing RBAC Information (Task Map) 271

Using Privileged Applications 272

� How to Assume a Role at the Command Line 272

� How to Assume a Role in the Console Tools 273

Creating Roles 274

� How to Create a Role Using the Administrative Roles Tool 274

� How to Create a Role From the Command Line 275

Changing Role Properties 277

� How to Change a Role Using the Administrative Roles Tool 277

� How to Change a Role From the Command Line 278

Creating or Changing a Rights Profile 279

� How to Create or Change a Rights Profile Using the Rights Tool 279

Contents 11

� How to Change Rights Profiles From the Command Line 283

Modifying a User’s RBAC Properties 283

� How to Modify a User’s RBAC Properties Using the User Accounts Tool 284

� How to Modify a User’s RBAC Properties From the Command Line 284

Securing Legacy Applications 285

� How to Add Security Attributes to a Legacy Application 285

� How to Add Security Attributes to Commands in a Script 285

� How to Check for Authorizations in a Script or Program 285

19 Role-Based Access Control (Reference) 287

RBAC Elements: Reference Information 287

Configuring Suggested Roles 287

Contents of Rights Profiles 288

Authorizations 292

Databases Supporting RBAC 293

Overview of Databases Supporting RBAC 293

user_attr Database 296

auth_attr Database 297

prof_attr Database 299

exec_attr Database 300

policy.conf File 301

RBAC Commands 301

Command-Line Applications for Managing RBAC 301

Commands Requiring Authorizations 303

20 Using Automated Security Enhancement Tool (Tasks) 305

Automated Security Enhancement Tool (ASET) 305

ASET Security Levels 306

ASET Tasks 307

ASET Execution Log 309

ASET Reports 310

ASET Master Files 313

ASET Environment File (asetenv) 314

Configuring ASET 314

Restoring System Files Modified by ASET 317

Network Operation Using the NFS System 318

12 System Administration Guide: Security Services • December 2001 (Beta)

ASET Environment Variables 319

ASET File Examples 322

Running ASET 323

� How to Run ASET Interactively 324

� How to Run ASET Periodically 325

� How to Stop Running ASET Periodically 325

� How to Collect ASET Reports on a Server 326

Troubleshooting ASET Problems 327

ASET Error Messages 327

21 Auditing Topics 331

22 Auditing Overview 333

What Is Auditing? 333

Auditing Terminology 334

Audit Events 335

Audit Classes 336

Audit Directory 337

How Does Auditing Work? 337

How is Auditing Related to Security? 338

How Can I Configure Auditing? 338

Audit Events, Classes, and Policies 338

Audit Flags 339

Audit File Storage Issues 339

Stored Audit Files vs. Printed Audit Files 340

Why is /etc/security Important? 340

Audit Utilities 341

23 Audit Planning 343

How Does Auditing Work? 343

What is an Audit Trail? 344

Audit File Names 344

Deciding What to Audit 345

What Files Can I Change? 346

Determining Which Systems to Audit 349

Determining Which Audit Policies to Use 350

Contents 13

Determining Audit Events and Classes 353

Determining Where to Store Audit Files 356

Primary and Secondary Audit Directories 357

Setting Up or Modifying Audit Directories 358

Determining Audit Space Usage 358

Device Allocation 360

Managing Device Allocation 360

How the Allocate Mechanism Works 360

Risks Associated with Device Use 362

Using Device Allocation 362

Setting Up an Archive Policy 363

Warnings 364

Determining the Warning Levels 364

The audit_warn Script 365

When Should I Change Audit Parameters? 366

Using the Audit Data 367

Controlling the Cost of Auditing 367

Determining When to Merge Audit Records 368

Changing Audit Trail File Locations 369

Preventing Audit Trail Overflow 370

Using the Results from Audit Trail Analysis 370

How the Audit Trail is Created 370

The Audit Daemon’s Role 371

24 Managing Auditing (Tasks) 373

Configuring Audit Files 373

� How to Change Audit Flags 373

� How to Change User’s Audit Characteristics 374

� How to Create Audit Classes 375

� How to Create Audit Events 375

Configuring an Audit Server 376

� How to Create Partitions for Auditing 376

Setting Up Auditing 378

� How to Enable Auditing 378

� How to Disable Auditing 378

14 System Administration Guide: Security Services • December 2001 (Beta)

25 Audit Reference 381

Audit Files 381

The /etc/system File 382

The audit_class File 382

The audit_control File 383

The audit_data File 385

The audit_event File 385

The audit_startup File 385

The audit_user File 386

The audit_warn File 387

The device_maps File 388

Audit Programs 389

The audit Program 389

The auditd Daemon 389

The auditconfig Program 390

The auditreduce Program 390

The praudit Program 391

Using crontab and atjob 391

Audit Record Structure 393

Audit Token Structure 393

acl token 395

arbitrary Token 395

arg Token 396

attr Token 397

exec_args Token 397

exec_env Token 398

exit Token 399

file Token 399

groups Token (Obsolete) 400

header Token 401

in_addr Token 401

ip Token 402

ipc Token 402

ipc_perm Token 403

iport Token 404

newgroups Token 404

opaque Token 405

Contents 15

path Token 405

process Token 406

return Token 407

seq Token 408

socket Token 408

subject Token 409

text Token 410

trailer Token 411

Utilities Summary 412

Glossary 415

16 System Administration Guide: Security Services • December 2001 (Beta)

Preface

System Administration Guide: Security Services is part of a six-volume set that covers a
significant part of the Solaris™ system administration information. This book assumes
that you have already installed the SunOS™ 5.9 operating system, and you have set
up any networking software that you plan to use. The SunOS 5.9 operating system is
part of the Solaris 9 product family, which also includes many features, including the
Solaris Common Desktop Environment (CDE).

Note – The Solaris operating environment runs on two types of hardware, or
platforms—SPARC™ and IA. The Solaris operating environment runs on both 64-bit
and 32-bit address spaces. The information in this document pertains to both
platforms and address spaces unless called out in a special chapter, section, note,
bullet, figure, table, example, or code example.

Who Should Use This Book
This book is intended for anyone responsible for administering one or more systems
running the Solaris 9 release. To use this book, you should have 1-2 years of UNIX®

system administration experience. Attending UNIX system administration training
courses might be helpful.

17

How the System Administration
Volumes Are Organized
Here is a list of the topics covered by the volumes of the System Administration
Guides.

System Administration Guide: Basic
Administration
� “Solaris Administration Tool Roadmap” in System Administration Guide: Basic

Administration

� “Working With the Solaris Management Console Tools (Tasks)” in System
Administration Guide: Basic Administration

� “Managing Users and Groups Topics” in System Administration Guide: Basic
Administration

� “Managing Server and Client Support Topics” in System Administration Guide: Basic
Administration

� “Shutting Down and Booting a System Topics” in System Administration Guide: Basic
Administration

� “Managing Removable Media Topics” in System Administration Guide: Basic
Administration

� “Managing Software Topics” in System Administration Guide: Basic Administration

� “Managing Devices Topics” in System Administration Guide: Basic Administration

� “Managing Disks Topics” in System Administration Guide: Basic Administration

� “Managing File Systems Topics” in System Administration Guide: Basic
Administration

� “Backing Up and Restoring Data Topics” in System Administration Guide: Basic
Administration

System Administration Guide: Advanced
Administration
� “Managing Printing Services Topics” in System Administration Guide: Advanced

Administration

18 System Administration Guide: Security Services • December 2001 (Beta)

� “Managing Terminals and Modems Topics” in System Administration Guide:
Advanced Administration

� “Managing System Resources Topics” in System Administration Guide: Advanced
Administration

� “Managing System Performance Topics” in System Administration Guide: Advanced
Administration

� “Troubleshooting Solaris Software Topics” in System Administration Guide: Advanced
Administration

System Administration Guide: IP Services
� “TCP/IP Topics” in System Administration Guide: IP Services

� “DHCP Topics” in System Administration Guide: IP Services

� “IPv6 Topics” in System Administration Guide: IP Services

� “IP Security Topics” in System Administration Guide: IP Services

� “Mobile IP Topics” in System Administration Guide: IP Services

� “IP Network Multipathing Topics” in System Administration Guide: IP Services

System Administration Guide: Naming and
Directory Services (DNS, NIS, and LDAP)
� “Overview of Naming and Directory Services” in System Administration Guide:

Naming and Directory Services (DNS, NIS, and LDAP)

� “The Name Service Switch” in System Administration Guide: Naming and Directory
Services (DNS, NIS, and LDAP)

� “Introduction to DNS” in System Administration Guide: Naming and Directory Services
(DNS, NIS, and LDAP)

� “Network Information Service (NIS): An Overview” in System Administration Guide:
Naming and Directory Services (DNS, NIS, and LDAP)

� “NIS+: An Introduction” in System Administration Guide: Naming and Directory
Services (DNS, NIS, and LDAP)

� “LDAP: An Overview” in System Administration Guide: Naming and Directory
Services (DNS, NIS, and LDAP)

� “Administering FNS: Attributes Overview” in System Administration Guide: Naming
and Directory Services (DNS, NIS, and LDAP)

Preface 19

System Administration Guide: Resource
Management and Network Services
� “Solaris 9 Resource Manager Topics” in System Administration Guide: Resource

Management and Network Services

� “SLP Topics” in System Administration Guide: Resource Management and Network
Services

� “Mail Services Topics” in System Administration Guide: Resource Management and
Network Services

� “Accessing Remote File Systems Topics” in System Administration Guide: Resource
Management and Network Services

� “Modem–Related Network Services Topics” in System Administration Guide:
Resource Management and Network Services

� “Working With Remote Systems Topics” in System Administration Guide: Resource
Management and Network Services

System Administration Guide: Security Services
� “Security Services Overview” in System Administration Guide: Security Services

� “Using Authentication Services (Tasks)” in System Administration Guide: Security
Services

� “Using Secure Shell (Tasks)” in System Administration Guide: Security Services

� “Introduction to SEAM” in System Administration Guide: Security Services

� “Managing System Security Topics” in System Administration Guide: Security Services

� “Role-Based Access Control (Overview)” in System Administration Guide: Security
Services

� “Using Automated Security Enhancement Tool (Tasks)” in System Administration
Guide: Security Services

� “Auditing Overview” in System Administration Guide: Security Services

System Administration Guide: Naming and
Directory Services (FNS and NIS+)
� “NIS+: An Introduction” in System Administration Guide: Naming and Directory

Services (FNS and NIS+)

� “Federated Naming Service (FNS)” in System Administration Guide: Naming and
Directory Services (FNS and NIS+)

20 System Administration Guide: Security Services • December 2001 (Beta)

Related Books
This is a list of related documentation that is refered to in this book.

� Cheswick, William R. and Steven M. Bellovin. Firewalls and Internet Security.
Addison Wesley, 1994.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

Preface 21

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

22 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 1

Security Services Overview

This book focuses on the Solaris™ Operating Environment features that can help make
a site more secure. It is intended for system administrators and users of these security
products. It discusses these topics:

� “Introduction to Security” on page 23
� “Authentication” on page 24
� “Access Control” on page 24
� “Secure Communication” on page 25
� “Auditing” on page 25

Introduction to Security
To help an organization secure its computing environment, the Solaris Operating
Environment software provides:

� Authentication—The ability to securely identify a user, requiring the user’s name
and some form of proof (typically a password) .

� Access Control—Restricting users to only those parts of the system necessary for
their job.

� Secure Communication—Ensuring that authenticated parties can communicate
without interception, modification, or spoofing.

� Auditing—The ability to identify the source of security changes to the system,
including file access, security-related system calls, and authentication failures.

For a general discussion of system security, see Chapter 14.

23

Authentication
Authentication is a mechanism that identifies a user or service based on predefined
criteria. Authentication systems range from simple name-password pairs to more
elaborate challenge-response systems, such as smart cards and biometrics. Strong
authentication mechanisms rely on a user supplying information that only that person
knows, such as a username, and something that can be verified, such as a smart card
or fingerprint. The Solaris Operating Environment features for authentication include:

� Secure RPC—An authentication technique based on the Diffie-Hellman method.
This is covered in “Overview of Secure RPC” on page 29.

� Pluggable Authentication Module (PAM)—A framework that enables various
authentication technologies to be plugged in without disturbing system entry
services, such as login or ftp. See “PAM (Overview)” on page 38.

� Sun Enterprise Authentication Module (SEAM)—A client/server architecture that
provides authentication with encryption. See Chapter 6.

� Smart Card—A plastic card with a microprocessor and memory that can be used
with a card reader to access systems. See Solaris Smartcard Administration Guide.

� Login Administration Tools—Various commands for administering a user’s ability
to log in or to abort a session. See Chapter 16.

Access Control
Access control enables users or administrators to restrict the users permitted to access
resources on the system. The Solaris Operating Environment features for access
control include:

� UNIX® permissions—Attributes of a file or directory that control the users and
groups permitted to read, write, or execute a file, or search a directory. See
Chapter 15.

� Role-Based Access Control (RBAC)—An architecture for creating special,
restricted user accounts permitted to perform specific security-related tasks. See
Chapter 17.

� Device Allocation—A facility that enables restriction on who can use a device,
such as a floppy or CD-ROM drive. It ensures that a device is used by only one
qualified user at a time. See allocate(1).

� Security Enhancement—Through the use of scripts, system files and parameters
can be adjusted to reduce security risks. See Chapter 20.

24 System Administration Guide: Security Services • December 2001 (Beta)

Secure Communication
The basis of secure communication is requiring authentication with encryption.
Authentication helps ensure that the source and destination are the intended parties.
Encryption codes the communication at the source and decodes it at the target to
prevent intruders from reading any transmissions they might manage to intercept. The
Solaris Operating Environment features for secure communication include:

� Sun Enterprise Authentication Module (SEAM)—A client/server architecture that
provides encryption with authentication. See Chapter 6.

� Internet Protocol Security Architecture (IPsec)—An architecture providing IP
datagram protection including confidentiality, strong integrity of the data, partial
sequence integrity (replay protection), and data authentication. See “IPsec
(Overview)” in System Administration Guide: IP Services.

� Solaris Secure Shell—A protocol for protecting data transfers and interactive user
network sessions from eavesdropping, session hijacking, and man-in-the-middle
attacks. Strong authentication is provided through public key cryptography.
X-windows and other network services can be tunneled safely over secure shell
connections for additional protection. See Chapter 4.

Auditing
Auditing is a fundamental concept of security and maintainability. It is the process of
examining the history of actions and events on a system to find out what happened.
Auditing entails keeping a log of what was done, by whom, when it was done, and
what was affected. For more information on Solaris Operating Environment auditing,
see Chapter 22.

Security Services Overview 25

26 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 2

Authentication Services Topics

Chapter 3 Provides information about Diffie-Hellman
authentication and the Pluggable Authentication Module
(PAM) framework.

Chapter 4 Provides a introduction to Solaris secure shell, as well as
step-by-step instructions.

Chapter 5 Provides a description of the files that are used to
configure Solaris secure shell.

Chapter 6 Provides overview information about SEAM.

Chapter 7 Provides a list of information or issues that need to be
resolved before configuring SEAM.

Chapter 8 Provides step-by-step configuration instructions for
SEAM.

Chapter 9 Provides a list of SEAM error messages, how to fix the
condition that generates the messages and how to
troubleshoot some error conditions.

Chapter 10 Provides step-by-step instructions for administering
principles and policies with gkadmin and at the
command line.

Chapter 11 Provides user instructions for SEAM.

Chapter 12 Provides additional information about SEAM.

27

28 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 3

Using Authentication Services (Tasks)

The first section of this chapter provides information about the Diffie-Hellman
authentication mechanism that may be used with Secure RPC. The second section
covers the Pluggable Authentication Module (PAM) framework. PAM provides a
method to “plug-in” authentication services and provides support for multiple
authentication services.

This is a list of the step-by-step instructions in this chapter.

� “How to Restart the Keyserver” on page 34
� “How to Set Up a Key in NIS+ Credentials for Diffie-Hellman Authentication”

on page 35
� “How to Set Up a root Key Using NIS Credentials With Diffie-Hellman

Authentication” on page 36
� “How to Share and Mount Files With Diffie-Hellman Authentication” on page 38
� “How to Add a PAM Module” on page 42
� “How to Prevent Unauthorized Access From Remote Systems With PAM”

on page 43
� “How to Initiate PAM Error Reporting” on page 43

Overview of Secure RPC
Secure RPC is a method of authentication that authenticates both the host and the user
making a request. Secure RPC uses Diffie-Hellman. This authentication mechanisms
use DES encryption. Applications that use Secure RPC include NFS and the NIS+
name service.

29

NFS Services and Secure RPC
The NFS software enables several hosts to share files over the network. Under the NFS
system, a server holds the data and resources for several clients. The clients have
access to the file systems that the server shares with the clients. Users logged in to the
client machine can access the file systems by mounting them from the server. To the
user on the client machine, it appears as if the files are local to the client. One of the
most common uses of the NFS environment is to allow systems to be installed in
offices, while keeping all user files in a central location. Some features of the NFS
system, such as the mount -nosuid option, can be used to prohibit the opening of
devices as well as file systems by unauthorized users.

The NFS environment uses Secure RPC to authenticate users who make requests over
the network. This is known as Secure NFS. The authentication mechanism, AUTH_DH,
uses DES encryption with Diffie-Hellman authentication to ensure authorized access.
The AUTH_DH mechanism has also been called AUTH_DES.

“Administering the Secure NFS System” in System Administration Guide: Resource
Management and Network Services describes how to set up and administer Secure NFS.
Setting up the NIS+ tables and entering names in the cred table are discussed in
System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP). See
“Implementation of Diffie-Hellman Authentication” on page 31 for an outline of the
steps involved in RPC authentication.

DES Encryption
The Data Encryption Standard (DES) encryption functions use a 56-bit key to encrypt
data. If two credential users (or principals) know the same DES key, they can
communicate in private, using the key to encipher and decipher text. DES is a
relatively fast encryption mechanism. A DES chip makes the encryption even faster;
but if the chip is not present, a software implementation is substituted.

The risk of using just the DES key is that an intruder can collect enough cipher-text
messages encrypted with the same key to be able to discover the key and decipher the
messages. For this reason, security systems such as Secure NFS change the keys
frequently.

Kerberos Authentication
Kerberos is an authentication system developed at MIT. Encryption in Kerberos is
based on DES. Kerberos V4 support is no longer supplied as part of Secure RPC, but a
client-side implementation of Kerberos V5, which uses RPCSEC_GSS, is included with
the Solaris 8 release. For more information see **link to security book—SEAM
overview.

30 System Administration Guide: Security Services • December 2001 (Beta)

Diffie-Hellman Authentication
The Diffie-Hellman method of authenticating a user is non-trivial for an intruder to
crack. The client and the server each has its own private key (sometimes called a secret
key) which they use together with the public key to devise a common key. They use
the common key to communicate with each other, using an agreed-upon
encryption/decryption function (such as DES). This method was identified as DES
authentication in previous Solaris releases.

Authentication is based on the ability of the sending system to use the common key to
encrypt the current time, which the receiving system can decrypt and check against its
current time. Make sure you synchronize the time on the client and the server.

The public and private keys are stored in an NIS or NIS+ database. NIS stores the keys
in the publickey map, and NIS+ stores the keys in the cred table. These files
contain the public key and the private key for all potential users.

The system administrator is responsible for setting up NIS or NIS+ tables and
generating a public key and a private key for each user. The private key is stored
encrypted with the user’s password. This makes the private key known only to the
user.

Implementation of Diffie-Hellman Authentication
This section describes the series of transactions in a client-server session using DH
authorization (AUTH_DH).

Generating the Public and Secret Keys

Sometime prior to a transaction, the administrator runs either the newkey or
nisaddcred commands that generates a public key and a secret key. (Each user has a
unique public key and secret key.) The public key is stored in a public database; the
secret key is stored in encrypted form in the same database. To change the key pair,
use the chkey command.

Running the keylogin Command

Normally, the login password is identical to the secure RPC password. In this case, a
keylogin is not required. If the passwords are different, the users have to log in, and
then do a keylogin explicitly.

The keylogin program prompts the user for a secure RPC password and uses the
password to decrypt the secret key. The keylogin program then passes the decrypted
secret key to a program called the keyserver. (The keyserver is an RPC service with a

Using Authentication Services (Tasks) 31

local instance on every computer.) The keyserver saves the decrypted secret key and
waits for the user to initiate a secure RPC transaction with a server.

If the passwords are the same, the login process passes the secret key to the keyserver.
If the passwords are required to be different and the user must always run keylogin,
then the keylogin program may be included in the user’s environment configuration
file, such as ~/.login, ~/.cshrc, or ~/.profile, so that it runs automatically
whenever the user logs in.

Generating the Conversation Key

When the user initiates a transaction with a server:

1. The keyserver randomly generates a conversation key.

2. The kernel uses the conversation key to encrypt the client’s time stamp (among
other things).

3. The keyserver looks up the server’s public key in the public-key database (see the
publickey(4) man page).

4. The keyserver uses the client’s secret key and the server’s public key to create a
common key.

5. The keyserver encrypts the conversation key with the common key.

First Contact With the Server

The transmission including the encrypted time stamp and the encrypted conversation
key is then sent to the server. The transmission includes a credential and a verifier. The
credential contains three components:

� The client’s net name
� The conversation key, encrypted with the common key
� A “window,” encrypted with the conversation key

The window is the difference the client says should be allowed between the server’s
clock and the client’s time stamp. If the difference between the server’s clock and the
time stamp is greater than the window, the server would reject the client’s request.
Under normal circumstances this will not happen, because the client first synchronizes
with the server before starting the RPC session.

The client’s verifier contains:

� The encrypted time stamp
� An encrypted verifier of the specified window, decremented by 1

The window verifier is needed in case somebody wants to impersonate a user and
writes a program that, instead of filling in the encrypted fields of the credential and
verifier, just stuffs in random bits. The server will decrypt the conversation key into

32 System Administration Guide: Security Services • December 2001 (Beta)

some random key and use it to try to decrypt the window and the time stamp. The
result will be random numbers. After a few thousand trials, however, there is a good
chance that the random window/time stamp pair will pass the authentication system.
The window verifier makes guessing the right credential much more difficult.

Decrypting the Conversation Key

When the server receives the transmission from the client:

1. The keyserver local to the server looks up the client’s public key in the publickey
database.

2. The keyserver uses the client’s public key and the server’s secret key to deduce the
common key—the same common key computed by the client. (Only the server and
the client can calculate the common key because doing so requires knowing one
secret key or the other.)

3. The kernel uses the common key to decrypt the conversation key.

4. The kernel calls the keyserver to decrypt the client’s time stamp with the decrypted
conversation key.

Storing Information on the Server

After the server decrypts the client’s time stamp, it stores four items of information in
a credential table:

� The client’s computer name
� The conversation key
� The window
� The client’s time stamp

The server stores the first three items for future use. It stores the time stamp to protect
against replays. The server accepts only time stamps that are chronologically greater
than the last one seen, so any replayed transactions are guaranteed to be rejected.

Note – Implicit in these procedures is the name of the caller, who must be
authenticated in some manner. The keyserver cannot use DES authentication to do this
because it would create a deadlock. To solve this problem, the keyserver stores the
secret keys by UID and grants requests only to local root processes.

Verifier Returned to the Client

The server returns a verifier to the client, which includes:

� The index ID, which the server records in its credential cache
� The client’s time stamp minus 1, encrypted by conversation key

Using Authentication Services (Tasks) 33

The reason for subtracting 1 from the time stamp is to ensure that the time stamp is
invalid and cannot be reused as a client verifier.

Client Authenticates the Server

The client receives the verifier and authenticates the server. The client knows that only
the server could have sent the verifier because only the server knows what time stamp
the client sent.

Additional Transactions

With every transaction after the first, the client returns the index ID to the server in its
second transaction and sends another encrypted time stamp. The server sends back
the client’s time stamp minus 1, encrypted by the conversation key.

Administering Diffie-Hellman
Authentication
A system administrator can implement policies that help secure the network. The level
of security required will differ with each site. This section provides instructions for
some tasks associated with network security.

� How to Restart the Keyserver
1. Become superuser.

2. Verify whether the keyserv daemon (the keyserver) is running.

ps -ef | grep keyserv
root 100 1 16 Apr 11 ? 0:00 /usr/sbin/keyserv

root 2215 2211 5 09:57:28 pts/0 0:00 grep keyserv

3. Start the keyserver if it isn’t running.

/usr/sbin/keyserv

34 System Administration Guide: Security Services • December 2001 (Beta)

� How to Set Up a Key in NIS+ Credentials for
Diffie-Hellman Authentication
For detailed description of NIS+ security, see System Administration Guide: Naming and
Directory Services (DNS, NIS, and LDAP).

1. Become superuser.

2. Edit the /etc/nsswitch.conf file and add the following line:

publickey: nisplus

3. Initialize the NIS+ client.

nisinit -cH hostname

hostname is the name of a trusted NIS+ server that contains an entry in its tables for the
client machine.

4. Add the client to the cred table by typing the following commands.

nisaddcred local

nisaddcred des

5. Verify the setup by using the keylogin command.

If you are prompted for a password, the procedure has succeeded.

Example—Setting Up a New Key for root on a NIS+ Client
The following example uses the host pluto to set up earth as an NIS+ client. You
can ignore the warnings. The keylogin command is accepted, verifying that earth
is correctly set up as a secure NIS+ client.

nisinit -cH pluto
NIS Server/Client setup utility.
This machine is in the North.Abc.COM. directory.
Setting up NIS+ client ...
All done.
nisaddcred local
nisaddcred des
DES principal name : unix.earth@North.Abc.COM
Adding new key for unix.earth@North.Abc.Com (earth.North.Abc.COM.)

Network password: xxx <Press Return>
Warning, password differs from login password.
Retype password: xxx <Press Return>

keylogin
Password:

#

Using Authentication Services (Tasks) 35

How to Set Up a New User Key Using NIS+
Credentials for Diffie-Hellman Authentication

1. Add the user to the cred table on the root master server by typing the following
command:

nisaddcred -p unix.UID@domainname -P username.domainname. des

Note that, in this case, the username-domainname must end with a dot (.)

2. Verify the setup by logging in as the client and typing the keylogin command.

Example—Setting Up a New Key for an NIS+ User
The following example gives DES security authorization to user george.

nisaddcred -p unix.1234@North.Abc.com -P george.North.Abc.COM. des
DES principal name : unix.1234@North.Abc.COM
Adding new key for unix.1234@North.Abc.COM (george.North.Abc.COM.)

Password:
Retype password:

rlogin rootmaster -l george
keylogin
Password:

#

� How to Set Up a root Key Using NIS Credentials
With Diffie-Hellman Authentication

1. Become superuser on the client.

2. Edit the /etc/nsswitch.conf file and add the following line:

publickey: nis

3. Create a new key pair by using the newkey command.

newkey -h hostname

hostname is the name of the client.

36 System Administration Guide: Security Services • December 2001 (Beta)

Example—Setting Up an NIS+ Client to Use
Diffie-Hellman Security
The following example sets up earth as a secure NIS client.

newkey -h earth
Adding new key for unix.earth@North.Abc.COM
New Password:
Retype password:
Please wait for the database to get updated...
Your new key has been successfully stored away.

#

How to Create a New User Key Using NIS
Credentials with Diffie-Hellman Authentication

1. Log in to the server as superuser.

Only the system administrator, logged in to the NIS+ server, can generate a new key
for a user.

2. Create a new key for a user.

newkey -u username

username is the name of the user. The system prompts for a password. The system
administrator can type a generic password. The private key is stored encrypted with
the generic password.

newkey -u george
Adding new key for unix.12345@Abc.North.Acme.COM
New Password:
Retype password:
Please wait for the database to get updated...
Your new key has been successfully stored away.

#

3. Tell the user to log in and type the chkey -p command.

This allows the user to re-encrypt their private key with a password known only to the
user.

earth% chkey -p
Updating nis publickey database.
Reencrypting key for unix.12345@Abc.North.Acme.COM
Please enter the Secure-RPC password for george:
Please enter the login password for george:
Sending key change request to pluto...

#

Using Authentication Services (Tasks) 37

Note – The chkey command can be used to create a new key-pair for a user.

� How to Share and Mount Files With Diffie-Hellman
Authentication

Prerequisite

The Diffie-Hellman publickey authentication must be enabled on the network. See
“How to Set Up a Key in NIS+ Credentials for Diffie-Hellman Authentication”
on page 35 and “How to Set Up a root Key Using NIS Credentials With Diffie-Hellman
Authentication” on page 36.

To share a file system with Diffie-Hellman authentication:

1. Become superuser.

2. Share the file system with Diffie-Hellman authentication.

share -F nfs -o sec=dh /filesystem

To mount a file system with Diffie-Hellman authentication:

1. Become superuser.

2. Mount the file system with Diffie-Hellman authentication.

mount -F nfs -o sec=dh server:resource mountpoint

The -o sec=dh option mounts the file system with AUTH_DH authentication.

PAM (Overview)
The Pluggable Authentication Module (PAM) framework lets you “plug in” new
authentication technologies without changing system entry services such as login,
ftp, telnet, and so on. You can also use PAM to integrate UNIX login with other
security mechanisms like DCE or Kerberos. Mechanisms for account, session, and
password management can also be “plugged in” using this framework.

38 System Administration Guide: Security Services • December 2001 (Beta)

Benefits of Using PAM
The PAM framework allows a system administrator to choose any combination of
system entry services (ftp, login, telnet, or rsh, for example) for user
authentication. Some of the benefits PAM provides are:

� Flexible configuration policy

� Per application authentication policy
� The ability to choose a default authentication mechanism
� Multiple passwords on high-security systems

� Ease of use for the end user

� No retyping of passwords if they are the same for different mechanisms

� The ability to use a single password for multiple authentication methods with
the password mapping feature, even if the passwords associated with each
authentication method are different

� The ability to prompt the user for passwords for multiple authentication
methods without having the user enter multiple commands

� The ability to pass optional parameters to the user authentication services

PAM Components
The PAM software consists of a library, several modules, and a configuration file. New
versions of several system entry commands or daemons which take advantage of the
PAM interfaces are also included.

The figure below illustrates the relationship between the applications, the PAM library,
the pam.conf file, and the PAM modules.

Using Authentication Services (Tasks) 39

ftp telnet login
Applications

PAM modules
pam_unix.so.1 pam_dial_auth.so.1 pam_dce.so.1

PAM library

pam.confile

FIGURE 3–1 How PAM Works

The applications (ftp, telnet, and login) use the PAM library to access the
appropriate module. The pam.conf file defines which modules to use, and in what
order they are to be used with each application. Responses from the modules are
passed back through the library to the application.

The following sections describe this relationship.

PAM Library
The PAM library, /usr/lib/libpam, provides the framework to load the
appropriate modules and manage the stacking process. It provides a generic structure
to which all of the modules can plug in.

Stacking Feature
The PAM framework provides a method for authenticating users with multiple
services using stacking. Depending on the configuration, the user can be prompted for
passwords for each authentication method. The order in which the authentication
services are used is determined through the PAM configuration file.

Password-Mapping Feature
The stacking method can require that a user remember several passwords. With the
password-mapping feature, the primary password is used to decrypt the other

40 System Administration Guide: Security Services • December 2001 (Beta)

passwords, so the user doesn’t need to remember or enter multiple passwords. The
other option is to synchronize the passwords across each authentication mechanism.
Note that this could increase the security risk, since the security of each mechanism is
limited by the least secure password method used in the stack.

PAM (Tasks)
The section below discusses some of the tasks that may be required to make the PAM
framework fully functional. In particular, you should be aware of some of the security
issues associated with the PAM configuration file.

PAM (Task Map)
TABLE 3–1 PAM Task Map

Task Description For Instructions, Go To ...

Plan for your PAM
Installation

Consider configuration issues and make
decisions about them before starting the
software configuration process.

“Planning for PAM” on page 41

(Optional) Add new PAM
modules

Sometimes site-specific modules must be
written and installed to cover requirements
that are not part of the generic software. This
procedure covers the installation process.

“How to Add a PAM Module”
on page 42

(Optional) Block access
through ~/.rhosts

Steps to further increase security by
preventing access through ~/.rhosts.

“How to Prevent Unauthorized
Access From Remote Systems
With PAM” on page 43

(Optional) Initiate error
reporting

Steps to start reporting of PAM error messages
through syslog.

“How to Initiate PAM Error
Reporting” on page 43

Planning for PAM
When deciding how best to employ PAM in your environment, start by focusing on
these issues:

� Determine what your needs are, especially which modules you should select.

� Identify the services that need special attention; use OTHER if appropriate.

� Decide on the order in which the modules should be run.

Using Authentication Services (Tasks) 41

� Select the control flag for that module.

� Choose any options necessary for the module.

Here are some suggestions to consider before changing the configuration file:

� Use the OTHER entry for each module type so that every application does not have
to be included.

� Make sure to consider the security implications of the sufficient and
optional control flags.

� Review the man pages associated with the modules to understand how each
module will function, what options are available, and the interactions between
stacked modules.

Caution – If the PAM configuration file is misconfigured or gets corrupted, it is
possible that even the superuser would be unable to log in. Since sulogin does
not use PAM, the superuser would then be required to boot the machine into single
user mode and fix the problem.

After changing the /etc/pam.conf file, review it as much as possible while still
logged in as superuser. Test all of the commands that might have been affected by
your changes. For example, if you added a new module to the telnet service, use
the telnet command and verify that the changes you made behave as expected.

� How to Add a PAM Module
1. Become superuser.

2. Determine which control flags and other options should be used.

Refer to “PAM Modules” on page 44 information on the module.

3. Copy the new module to /usr/lib/security/sparcv9.

In the Solaris 8 release, the module should be moved to /usr/lib/security.

4. Set the permissions so that the module file is owned by root and permissions are
555.

5. Edit the PAM configuration file, /etc/pam.conf, and add this module to the
appropriate services.

Verification
It is very important to do some testing before the system is rebooted in case the
configuration file is misconfigured. Run rlogin, su, and telnet before rebooting the

42 System Administration Guide: Security Services • December 2001 (Beta)

system. If the service is a daemon spawned only once when the system is booted, it
may be necessary to reboot the system before you can verify that the module has been
added.

� How to Prevent Unauthorized Access From
Remote Systems With PAM
Remove the rlogin auth rhosts_auth.so.1 entry from the PAM configuration
file. This prevents reading the ~/.rhosts files during an rlogin session and
therefore prevents unauthenticated access to the local system from remote systems. All
rlogin access requires a password, regardless of the presence or contents of any
~/.rhosts or /etc/hosts.equiv files.

Note – To prevent other unauthenticated access to the ~/.rhosts files, remember to
disable the rsh service. The best way to disable a service is to remove the service
entry from /etc/inetd.conf. Changing the PAM configuration file does not
prevent the service from being started.

� How to Initiate PAM Error Reporting
1. Edit the /etc/syslog.conf to add any of the following PAM error reporting

entries:

� auth.alert — messages about conditions that should be fixed immediately

� auth.crit — critical messages

� auth.err — error messages

� auth.info — informational messages

� auth.debug — debugging messages

2. Restart the syslog daemon or send a SIGHUP signal to it to activate the PAM error
reporting.

Example—Initiating PAM Error Reporting
The example below displays all alert messages on the console. Critical messages are
mailed to root. Informational and debug messages are added to the
/var/log/pamlog file.

auth.alert /dev/console
auth.crit ’root’

auth.info;auth.debug /var/log/pamlog

Using Authentication Services (Tasks) 43

Each line in the log contains a time stamp, the name of the system that generated the
message, and the message itself. The pamlog file is capable of logging a large amount
of information.

PAM (Reference)
PAM employs run-time pluggable modules to provide authentication for system entry
services. These modules are broken into four different types based on their function:
authentication, account management, session management, and password
management. A stacking feature is provided to let you authenticate users through
multiple services, as well as a password-mapping feature to not require that users
remember multiple passwords.

PAM Modules
Each PAM module implements a specific mechanism. When setting up PAM
authentication, you need to specify both the module and the module type, which
defines what the module will do. More than one module type (auth, account, session,
or password) may be associated with each module.

The following list describes each of the PAM modules. The path each module is
determined by the instruction set that is available in the Solaris release that is
installed. For instance, the value for $ISA could be sparc or i386. See the
isalist(5) man page for more information.

TABLE 3–2 PAM Modules

Module Name and Location Description

dial_auth

/usr/lib/security/$ISA/pam_dial_auth.so.1

Can only be used for authentication. It uses data stored
in the /etc/dialups and /etc/d_passwd files for
authentication. This is mainly used by login. See
pam_dial_auth(5) for more information.

krb5

/usr/lib/security/$ISA/pam_krb5_auth.so.1

Provides support for authentication, account
management, session management, and password
management. Kerberos credentials are used for
authentication. See pam_krb5(5) for more information.

ldap

/usr/lib/security/$ISA/pam_ldap.so.1

Provides support for authentication and password
management. Data from an LDAP server are used for
authentication. See pam_ldap(5) for more information.

44 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 3–2 PAM Modules (Continued)
Module Name and Location Description

projects

/usr/lib/security/$ISA/pam_projects.so.1

Provides support for account management. See
pam_projects(5) for more information.

rhosts_auth

/usr/lib/security/$ISA/pam_rhosts_auth.so.1

Can only be used for authentication. It uses data stored
in the ~/.rhosts and /etc/host.equiv files
through ruserok(). This is mainly used by the
rlogin and rsh commands. See
pam_rhosts_auth(5) for more information.

roles

/usr/lib/security/$ISA/pam_roles.so.1

Provides support for account management only. The
RBAC user_attr database is to determine the roles a user
can assume. See pam_roles(5) for more information.

sample

/usr/lib/security/$ISA/pam_sample.so.1

Provides support for authentication, account
management, session management, and password
management. Used for testing. See pam_sample(5) for
more information.

smartcard

/usr/lib/security/$ISA/pam_smartcard.so.1

Provide support for authentication only. See
pam_smartcard(5) for more information.

unix

/usr/lib/security/$ISA/pam_unix.so.1

Provides support for authentication, account
management, session management, and password
management. Any of the four module type definitions
can be used with this module. It uses UNIX passwords
for authentication. In the Solaris environment, the
selection of appropriate name services to get password
records is controlled through the
/etc/nsswitch.conf file. See pam_unix(5) for more
information.

For security reasons, these module files must be owned by root and must not be
writable through group or other permissions. If the file is not owned by root, PAM
will not load the module.

PAM Module Types
It is important to understand the PAM module types because the module type defines
the interface to the module. These are the four types of run-time PAM modules:

� The authentication modules provide authentication for the users and allow for
credentials to be set, refreshed, or destroyed. They provide a valuable
administration tool for user identification.

� The account modules check for password aging, account expiration, and access hour
restrictions. After the user is identified through the authentication modules, the

Using Authentication Services (Tasks) 45

account modules determine if the user should be given access.

� The session modules manage the opening and closing of an authentication session.
They can log activity or provide for clean-up after the session is over.

� The password modules allow for changes to the actual password.

PAM Configuration File
The PAM configuration file, /etc/pam.conf, determines the authentication services
to be used, and in what order they are used. This file can be edited to select
authentication mechanisms for each system-entry application.

Configuration File Syntax
The PAM configuration file consists of entries with the following syntax:

service_name module_type control_flag module_path module_options

service_name Name of the service (for example, ftp, login, telnet).

module_type Module type for the service.

control_flag Determines the continuation or failure semantics for the
module.

module_path Path to the library object that implements the service
functionality.

module_options Specific options that are passed to the service modules.

You can add comments to the pam.conf file by starting the line with a # (pound
sign). Use white spaces or tabs to delimit the fields.

Note – An entry in the PAM configuration file is ignored if one of the following
conditions exist: the line has less than four fields, an invalid value is given for
module_type or control_flag, or the named module is not found.

Valid Service Names
The table below lists some of the valid service names, the module types that can be
used with that service, and the daemon or command associated with the service name.

46 System Administration Guide: Security Services • December 2001 (Beta)

There are several module types that are not appropriate for each service. For example,
the password module type is only specified to go with the passwd command. There
is no auth module type associated with this command since it is not concerned with
authentication.

TABLE 3–3 Valid Service Names for /etc/pam.conf

Service Name Daemon or Command Module Type

cron /usr/sbin/cron auth, account

dtlogin /usr/dt/bin/dtlogin auth, account, session

dtsession /usr/dt/bin/dtsession auth

ftp /usr/sbin/in.ftpd auth, account, session

init /usr/sbin/init session

login /usr/bin/login auth, account, session

passwd /usr/bin/passwd password

ppp /usr/bin/ppp auth, account, session

rexd /usr/sbin/rpc.rexd account, session

rlogin /usr/sbin/in.rlogind auth, account, session

rsh /usr/sbin/in.rshd auth, account, session

sac /usr/lib/saf/sac session

ssh /usr/bin/ssh auth, account, session

su /usr/bin/su auth, account

telnet /usr/sbin/in.telnetd auth, account, session

ttymon /usr/lib/saf/ttymon session

uucp /usr/sbin/in.uucpd auth, account, session

Control Flags
To determine continuation or failure behavior from a module during the
authentication process, you must select one of four control flags for each entry. The
control flags indicate how a successful or a failed attempt through each module is
handled. Even though these flags apply to all module types, the following explanation
assumes that these flags are being used for authentication modules. The control flags
are as follows:

� required - This module must return success in order to have the overall result be
successful.

Using Authentication Services (Tasks) 47

If all of the modules are labeled as required, then authentication through all
modules must succeed for the user to be authenticated.

If some of the modules fail, then an error value from the first failed module is
reported.

If a failure occurs for a module flagged as required, all modules in the stack are
still tried but failure is returned.

If none of the modules are flagged as required, then at least one of the entries for
that service must succeed for the user to be authenticated.

� requisite - This module must return success for additional authentication to
occur.

If a failure occurs for a module flagged as requisite, an error is immediately
returned to the application and no additional authentication is done. If the stack
does not include prior modules labeled as required that failed, then the error
from this module is returned. If a earlier module labeled as required has failed,
the error message from the required module is returned.

� optional - If this module fails, the overall result can be successful if another
module in this stack returns success.

The optional flag should be used when one success in the stack is enough for a
user to be authenticated. This flag should only be used if it is not important for this
particular mechanism to succeed.

If your users need to have permission associated with a specific mechanism to get
their work done, then you should not label it as optional.

� sufficient - If this module is successful, skip the remaining modules in the
stack, even if they are labeled as required.

The sufficient flag indicates that one successful authentication will be enough
for the user to be granted access.

More information about these flags is provided in the section below, which
describes the default /etc/pam.conf file.

Generic pam.conf File
The generic /etc/pam.conf file specifies:

1. When running login, authentication must succeed for both the pam_unix and the
pam_dial_auth modules.

2. For rlogin, authentication through the pam_unix module must succeed, if
authentication through pam_rhost_auth fails.

3. The sufficient control flag indicates that for rlogin the successful
authentication provided by the pam_rhost_auth module is sufficient and the
next entry will be ignored.

48 System Administration Guide: Security Services • December 2001 (Beta)

4. Most of the other commands requiring authentication require successful
authentication through the pam_unix module.

5. Authentication for rsh must succeed through the pam_rhost_auth module.

The OTHER service name allows a default to be set for any other commands requiring
authentication that are not included in the file. The OTHER option makes it easier to
administer the file, since many commands that are using the same module can be
covered using only one entry. Also, the OTHER service name, when used as a
“catch-all,” can ensure that each access is covered by one module. By convention, the
OTHER entry is included at the bottom of the section for each module type.

Normally, the entry for the module_path is “root-relative.” If the file name you enter for
module_path does not begin with a slash (/), the path /usr/lib/security/$ISA is
prepended to the file name. A full path name must be used for modules located in
other directories. The values for the module_options can be found in the man pages for
the module. For example, the UNIX module is covered in the pam_unix(5) man page.

The use_first_pass and try_first_pass options, which are supported by the
pam_unix module, let users reuse the same password for authentication without
retyping it.

If login specifies authentication through both pam_local and pam_unix, then the
user is prompted to enter a password for each module. In situations where the
passwords are the same, the use_first_pass module option prompts for only one
password and uses that password to authenticate the user for both modules. If the
passwords are different, the authentication fails. In general, this option should be used
with an optional control flag, as shown below, to make sure that the user can still
log in.

Authentication management
#
login auth required /usr/lib/security/$ISA/pam_unix.so.1

login auth optional /usr/lib/security/$ISA/pam_local.so.1 use_first_pass

If the try_first_pass module option is used instead, the local module prompts for
a second password if the passwords do not match or if an error is made. If both
methods of authentication are necessary for a user to get access to all the needed tools,
using this option could cause some confusion since the user could get access with only
one type of authentication.

Using Authentication Services (Tasks) 49

50 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 4

Using Secure Shell (Tasks)

This chapter covers the following topics:

� “Introduction to Secure Shell” on page 51
� “Using Secure Shell (Task Map)” on page 54
� “How to Create a Public/Private Key Pair” on page 55
� “How to Log Into Another Host Using Secure Shell” on page 56
� “How to Log in with No Password Using ssh-agent” on page 56
� “How to Set ssh-agent to Run Automatically” on page 58
� “How to Use Secure Shell Port Forwarding” on page 58
� “How to Copy Files with Secure Shell” on page 60
� “How to Transfer Files Remotely Using sftp” on page 60
� “How to Connect to Hosts Outside a Firewall from the Command Line”

on page 62

Introduction to Secure Shell
Secure shell allows a user to securely access a remote host over an unsecured network.
Authentication is provided by password and/or public keys. All network traffic is
encrypted. Thus it prevents a would-be intruder from being able to read an
intercepted communication or from spoofing the system.

Secure shell provides commands for remote login and file transfer. Secure shell can
also be used as an on-demand virtual private network (VPN) to forward X Window
system traffic or individual port numbers between the local and remote machines over
the encrypted network link.

With secure shell, you can perform these actions:

� Log into another host securely over an unsecured network

51

� Copy files securely between the two hosts
� Run commands securely on the remote host

Solaris secure shell supports the two versions of the Secure Shell Protocol. Version 1 is
the original version of the protocol. Version 2 is more secure and it amends some of
the basic security design flaws of Version 1. As a result, Version 1 is deprecated and is
provided only to assist users migrating to Version 2. Users are strongly discouraged
from using Version 1.

Note – Hereafter in this text, v1 is used to represent Version 1 and v2 to represent
Version 2.

The requirements for secure shell authentication are:

� User authentication – A user can be authenticated through:

� Passwords – The user supplies the account password as in the login process.

� Public keys – The user can create a public/private key pair that is stored on the
local host and the remote hosts are provided with the public key, which is
required to complete the authentication.

whereby the source host maintains the private key and target hosts are
provided with the public key needed to complete authentication. This is a
stronger authentication mechanism, because the private key never travels over
the network. The public/private key pair is stored in the user’s home directory
under the .ssh subdirectory. The default names for the public and private keys
are shown in the following table.

TABLE 4–1 Naming Conventions for Identity Files

Private Key, Public Key Cipher and Protocol Version

identity, identity.pub RSA v1

id_rsa, id_rsa.pub RSA v2

id_dsa, id_dsa.pub DSA v2

� Host authentication – Host authentication requires the remote host to have access
to the local host’s public key. A copy of the local host’s public key is stored in
$HOME/.ssh/known_hosts on the remote host.

The following table shows the authentication methods, protocol version compatibility,
requirements, and relative security. Note that the default method is password-based
authentication.

52 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 4–2 Authentication Methods

Authentication
Method (Protocol
Version)

Local Requirements Remote Requirements Security
Level

password-based
(v1 or v2)

user account user account Medium

RSA/DSA public
key (v2)

user account

private key in $HOME/.ssh/id_rsa
or $HOME/.ssh/id_dsa

public key in
$HOME/.ssh/id_rsa.pub or
$HOME/.ssh/id_dsa.pub

user account

user’s public key (id_rsa.pub or
id_dsa.pub) in
$HOME/.ssh/authorized_keys

Strong

RSA public key
(v1)

user account

private key in
$HOME/.ssh/identity

public key in
$HOME/.ssh/identity.pub

user account

user’s public key (identity.pub) in
$HOME/.ssh/authorized_keys

Strong

.rhosts with
RSA (v1)

user account user account

local host name in
/etc/hosts.equiv,
/etc/shosts.equiv,
$HOME/.rhosts, or $HOME/.shosts

local host public key in
$HOME/.ssh/known_hosts or
/etc/ssh/ssh_known_hosts

Medium

.rhosts only (v1
or v2)

user account user account

local host name in
/etc/hosts.equiv,
/etc/shosts.equiv,
$HOME/.rhosts, or $HOME/.shosts

Weak

Using Secure Shell (Tasks) 53

Using Secure Shell (Task Map)
TABLE 4–3 Tasks for Using Secure Shell

Task Description For Instructions, Go To ...

Create a public/private key
pair

Using public/private key pairs
is the preferred method for
authenticating yourself and
encrypting your
communications.

“How to Create a Public/Private Key Pair”
on page 55

Logging in using secure shell Encrypted secure shell
communication is enabled by
logging in remotely through a
process similar to using rsh.

“How to Log Into Another Host Using Secure
Shell” on page 56

Passwordless login with
secure shell

You can log in using secure
shell without having to provide
a password, using the
ssh-agent. The ssh-agent can be
run manually or from a
start-up script.

“How to Log in with No Password Using
ssh-agent” on page 56

“How to Set ssh-agent to Run Automatically”
on page 58

Port forwarding in a secure
shell

You can specify a local or
remote port to be used in a
secure shell connection.

“How to Use Secure Shell Port Forwarding”
on page 58

Copying files using a secure
shell

You can copy remote files
securely.

“How to Copy Files with Secure Shell”
on page 60

Transferring files using a secure
shell

You can log into a remote host
with secure shell using transfer
commands similar to ftp.

“How to Transfer Files Remotely Using sftp”
on page 60

Connecting from a host inside
a firewall to a host on the
outside

Secure shell provides
commands compatible with
HTTP or SOCKS5 that can be
specified in a configuration file
or on the command line.

“How to Set Up Default Connections to Hosts
Outside a Firewall” on page 61

“How to Connect to Hosts Outside a Firewall
from the Command Line” on page 62

54 System Administration Guide: Security Services • December 2001 (Beta)

Using Secure Shell

� How to Create a Public/Private Key Pair
The standard procedure for creating a secure shell public/private key pair follows. For
information on additional options, see ssh-keygen(1).

1. Start the key generation program.

myLocalHost% ssh-keygen
Generating public/private rsa key pair.

Enter file in which to save the key(/home/johndoe/.ssh/id_rsa):

2. Enter the path to the file that will hold the key.

By default, the file name id_rsa, which represents an RSA v2 key, appears in
parentheses. This file can be selected by pressing Return, or an alternative filename
can be entered.

Enter file in which to save the key(/home/johndoe/.ssh/id_rsa): <Return>

The public key name is created automatically by appending the string .pub to the
private key name.

3. Enter a passphrase for using your key.

This passphrase is used for encrypting your private key. A good passphrase is 10–30
characters long, mixes alpha and numeric characters, and avoids simple English prose
and names. A null entry means no passphrase is used, but this is strongly discouraged
for user accounts. Note that the passphrase is not displayed when you type it in.

Enter passphrase(empty for no passphrase): <Type the passphrase>

4. Re-enter the passphrase to confirm it.

Enter same passphrase again: <Type the passphrase>
Your identification has been saved in /home/johndoe/.ssh/id_rsa.
Your public key has been saved in /home/johndoe/.ssh/id_rsa.pub.
The key fingerprint is:

0e:fb:3d:57:71:73:bf:58:b8:eb:f3:a3:aa:df:e0:d1 johndoe@myLocalHost

5. Check the results.

The key fingerprint (a colon-separated series of 2–digit hexadecimal values) is
displayed. Check that the path to the key is correct. In the example, the path is
/home/johndoe/.ssh/id_rsa.pub. At this point, you have created a
public/private key pair.

Using Secure Shell (Tasks) 55

6. Copy the public key to your home directory on the remote host and append it to
$HOME/.ssh/authorized_keys.

� How to Log Into Another Host Using Secure Shell
1. Use ssh, specifying the name of the remote host.

myLocalHost% ssh myRemoteHost

The first time you run ssh, a prompt comes up questioning the authenticity of the
remote host, as follows.

The authenticity of host ’myRemoteHost’ can’t be established.
RSA key fingerprint in md5 is: 04:9f:bd:fc:3d:3e:d2:e7:49:fd:6e:18:4f:9c:26
Are you sure you want to continue connecting(yes/no)?

This is normal and you should type yes and continue. If you have used ssh in the
past on this remote host and this warning message still appears, then there may be a
breach in your security.

2. Enter the secure shell passphrase and the account password when prompted.

Enter passphrase for key ’/home/johndoe/.ssh/id_rsa’: <Return>
johndoe@myRemoteHost’s password: <Return>
Last login: Fri Jul 20 14:24:10 2001 from myLocalHost
myRemoteHost%

Conduct any transactions on the remote host. Any commands you send and any
responses received will be encrypted.

Note – If you wish to subsequently change your pass-phrase, use ssh-keygen with
the -p option.

3. When you are through with your remote session, type exit or use your usual method
for exiting your shell.

myRemoteHost% exit
myRemoteHost% logout
Connection to myRemoteHost closed

myLocalHost%

� How to Log in with No Password Using ssh-agent
If you want to omit passphrase and password entry when you are using secure shell,
you can use the agent daemon. Use the ssh-agent command at the beginning of the
session. Then store your private key(s) with the agent using ssh-add. If you have
different accounts on different hosts, add those keys that you intend to use in the
session. You can start the agent manually when needed as described below, or you can

56 System Administration Guide: Security Services • December 2001 (Beta)

set the agent to run automatically at the start of every session as described in “How to
Set ssh-agent to Run Automatically” on page 58.

1. Start the agent daemon.

The ssh-agent starts the agent daemon and displays its process ID.

myLocalHost% eval ‘ssh-agent‘
Agent pid 9892

myLocalHost%

2. Add your private key to the agent daemon.

The ssh-add command adds your private key to the agent daemon so that
subsequent secure shell activity will not prompt for the passphrase.

myLocalHost% ssh-add
Enter passphrase for /home/johndoe/.ssh/id_rsa:
Identity added: /home/johndoe/.ssh/id_rsa(/home/johndoe/.ssh/id_rsa)

myLocalHost%

3. Start a secure shell session.

myLocalHost% ssh myRemoteHost

Example—Using ssh-add Options
You can use ssh-add to add other keys to the daemon as well, for example you may
concurrently have DSA v2, RSA v2, and RSA v1 keys. To list all keys stored in the
daemon, use the -l option. To delete a single key from the daemon, use the -d
option. To delete all keys, use the -D option.

myLocalHost% eval ‘ssh-agent‘
Agent pid 3347
myLocalHost% ssh-add
Enter passphrase for /home/johndoe/.ssh/id_rsa:
Identity added: /home/johndoe/.ssh/id_rsa(/home/johndoe/.ssh/id_rsa)
myLocalHost% ssh-add /home/johndoe/.ssh/id_dsa
Enter passphrase for /home/johndoe/.ssh/id_dsa: <type passphrase>
Identity added:
/home/johndoe/.ssh/id_dsa(/home/johndoe/.ssh/id_dsa)
myLocalHost% ssh-add -l
md5 1024 0e:fb:3d:53:71:77:bf:57:b8:eb:f7:a7:aa:df:e0:d1
/home/johndoe/.ssh/id_rsa(RSA)
md5 1024 c1:d3:21:5e:40:60:c5:73:d8:87:09:3a:fa:5f:32:53
/home/johndoe/.ssh/id_dsa(DSA)
myLocalHost% ssh-add -d
Identity removed:
/home/johndoe/.ssh/id_rsa(/home/johndoe/.ssh/id_rsa.pub)
/home/johndoe/.ssh/id_dsa(DSA)

Using Secure Shell (Tasks) 57

� How to Set ssh-agent to Run Automatically
If you want to avoid providing your passphrase and password whenever you use
secure shell, you can start an agent daemon (ssh-agent) using the .dtprofile
script.

1. To start the agent daemon automatically, add the following lines to the end of
$HOME/.dtprofile:

if ["$SSH_AUTH_SOCK" = "" -a -x /usr/bin/ssh-agent]; then
eval ‘/usr/bin/ssh-agent‘

fi

2. To terminate the secure shell agent daemon on exiting the CDE session, add the
following to $HOME/.dt/sessions/sessionexit:

if ["$SSH_AGENT_PID" != "" -a -x /usr/bin/ssh-agent]; then
/usr/bin/ssh-agent -k

fi

This ensures that no one can use the secure shell agent after the CDE session is
terminated.

3. Start a secure shell session.

myLocalHost% ssh myRemoteHost

There is no prompt for a passphrase.

� How to Use Secure Shell Port Forwarding
You can specify a local port to be forwarded to a remote host. Effectively, a socket is
allocated to listen to the port on the local side. The connection from this port is made
over a secure channel to the remote host. For example, you might specify port 143 to
obtain email remotely using IMAP4. Similarly, a port can be specified on the remote
side.

1. To set a local port to be forwarded, specify the local port to listen to and the remote
host and port to forward to.

myLocalHost% ssh -L localPort:remoteHost:remotePort

2. To set a remote port to receive a secure connection, specify the remote port to listen
to and the local host and port to forward to.

myLocalHost% ssh -R remotePort:localHost:localPort

EXAMPLE 4–1 Using Local Port Forwarding to Receive Mail

The following example demonstrates how local port forwarding can be used to receive
mail securely from a remote server.

58 System Administration Guide: Security Services • December 2001 (Beta)

EXAMPLE 4–1 Using Local Port Forwarding to Receive Mail (Continued)

myLocalHost% ssh -L 9143:myRemoteHost:143 myRemoteHost

This step has the effect of forwarding connections to port 9143 on myLocalHost to
port 143 (the IMAP v2 server port) on myRemoteHost. When the user launches a mail
application, he or she needs to specify the local port number. An example using
dtmail is shown in Figure 4–1. (Note that the term localhost in this case and in
Example 4–2 refers to the keyword designating user’s local host. localhost should not
be confused with myLocalHost, the hypothetical host name used to identify a local host
in the examples in this chapter.)

FIGURE 4–1 Specifying Port Forwarding for Email

EXAMPLE 4–2 Using Remote Port Forward to Communicate Outside of a Firewall

This example demonstrates how a user in an enterprise environment can forward
connections from a host on an external network to a host inside a corporate firewall.

myLocalHost% ssh -R 9022:myLocalHost:22 myOutsideHost

This step forwards connections to port 9022 on myOutsideHost to port 22 (the sshd
server) on the local host.

myOutsideHost% ssh -p 9022 localhost

myLocalHost%

This step demonstrates how after the remote forwarding connection has been
established, the user can use ssh to connect securely from the remote host.

Using Secure Shell (Tasks) 59

� How to Copy Files with Secure Shell
Use the scp command to copy encrypted files between hosts, either a local and remote
host or between two remote hosts. It operates similarly to rcp except that it prompts
for passwords. See scp(1) for more information.

1. Type scp, and specify the source file, user name at remote destination, and directory.

myLocalHost% scp myfile.1 johndoe@myRemoteHost:~

2. Enter the secure shell passphrase when prompted.

Enter passphrase for key ’/home/johndoe/.ssh/id_rsa’: <Return>
myfile.1 25% |******* | 640 KB 0:20 ETA

myfile.1

After you enter the pass phrase, the progress meter is displayed. See the second line
above. The progress meter displays the file name, the percentage of the file that has
been transferred at this point, a series of asterisks analogous to the percentage
transferred, the quantity of data transferred, and the estimated time of arrival (ETA) of
the complete file, that is the remaining amount of time.

� How to Transfer Files Remotely Using sftp
The sftp command works similarly ftp but uses a different set of commands. The
following table lists some representative commands.

TABLE 4–4 Interactive sftp Commands

Category Commands Description

Navigation cd path, Change remote directory to path.

lcd path Change local directory to path.

Ownership chgrp group file Change the group for file to group, a
numeric group GID.

chmod mode file Change the permissions of file.

File Copying get remote_file [local-path] Retrieve remote_file and store it on local
host.

put local_file
[remote_path]

Store a local file on the remote host.

rename old_filenew_file Rename a local file.

Directory listing ls [path] List the contents of the remote directory.

Directory creation mkdir path Create a remote directory.

60 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 4–4 Interactive sftp Commands (Continued)
Category Commands Description

Miscellaneous exit, quit Quit sftp.

� How to Set Up Default Connections to Hosts
Outside a Firewall
You can use secure shell to make a connection from a host inside a firewall to a host on
the other side of the firewall. This is done by specifying a proxy command for ssh
either in a configuration file or as an option on the command line (see“How to
Connect to Hosts Outside a Firewall from the Command Line” on page 62). In
general, your ssh interactions can be customized through a configuration file, either
your own personal file $HOME/.ssh/config or an administrative configuration file
in /etc/ssh/ssh_config. See ssh_config(4). There are two types of proxy
commands: for HTTP or for SOCKS5 connections.

1. Specify proxy commands and hosts in a configuration file.

Use the following syntax to add as many lines as you need:

[Host outside_host]
ProxyCommand proxy_command [-h proxy_server] \

[-p proxy_port] outside_host|%h outside_port|%p

Use the Host outside_host option to limit this proxy command specification to
instances when this host (or hosts if a wildcard is used) is specified on the command
line.

The designation proxy_command can be replaced by either
/usr/lib/ssh/ssh-http-proxy-connect for HTTP connections or
/usr/lib/ssh/ssh-socks5-proxy-connect for SOCKS5 connections.

The -h proxy_server and -p proxy_port options specify a proxy server and port. If
present, they override any environment variables specifying proxy servers and ports,
such as HTTPPROXY, HTTPPROXYPORT, http_proxy (for specifying a URL),
SOCKS5_SERVER, and SOCKS5_PORT. If the options are not used, then the relevant
environment variables must be set. (Seessh-sock5–proxy-connect(1) and
ssh-http–proxy-connect(1).

Use outside_host to designate a specific host to connect to or use %h to specify the host
on the command line. Use outside_port or %p to specify the port. Specifying %h and %p
without using the Host outside_host option has the effect of applying the proxy
command to the host argument whenever ssh is invoked.

2. Run secure shell, specifying the outside host.

For example, type:

myLocalHost% ssh myOutsideHost

Using Secure Shell (Tasks) 61

This will look for a proxy command specification for myOutsideHost in your
personal configuration file and if not found, in the system-wide configuration file,
ssh_config. The proxy command will be substituted for ssh.

How to Connect to Hosts Outside a Firewall from
the Command Line
The -o option for ssh lets you enter any line permitted in an ssh configuration file. In
this case, the proxy command specification described above is used.

� Run ssh and include a proxy command specification as a -o option.

For example, type

ssh -o’Proxycommand=/usr/lib/ssh/ssh-http-proxy-connect \

-h myProxyServer -p 8080 myOutsideHost 22’ myOutsideHost

This will substitute the HTTP proxy command for ssh, use port 8080 and
myProxyServer as the proxy server, and connect to port 22 on myOutsideHost.

62 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 5

Secure Shell Administration

This chapter describes how the secure shell works from the administrator’s point of
view and how it is configured.

� “A Typical Secure Shell Session” on page 63
� “Configuring the Secure Shell” on page 65
� “Maintaining Known Hosts on a Site-Wide Basis” on page 68
� “Secure Shell Files” on page 69

A Typical Secure Shell Session
The secure shell daemon (sshd) is normally started at boot from
/etc/init.d/sshd. It listens for connections from clients. A secure shell session
begins when the user runs ssh, scp, or sftp. A new sshd daemon is forked for each
incoming connection. The forked daemons handle key exchange, encryption,
authentication, command execution, and data exchange with the client. These session
characteristics are determined by client-side and server configuration files and
potentially command-line parameters. The client and server must authenticate
themselves to each other. After successful authentication, the user can execute
commands remotely and move data between hosts.

Session Characteristics
The server-side behavior of sshd is controlled by keyword settings in the
/etc/ssh/sshd_config file and potentially the command-line options when sshd
is started. For example, sshd_config controls which types of authentication are
permitted for accessing the server.

63

The behavior on the client side is controlled by the secure shell parameters in this
order of precedence:

� command line options
� user’s configuration file ($HOME/.ssh/config)
� system-wide configuration file (/etc/ssh/ssh_config)

For example, a user can override a system-wide configuration Cipher set to
blowfish by specifying -c 3des on the command line.

Authentication
The steps in the authentication process are as follows:

1. The user runs ssh, scp, or sftp.

2. The client and server agree on a shared session key.

In v1, the remote host sends its host (RSA) key and a server (RSA) key to the client.
(Note that the server key is typically generated every hour and stored in memory
only.) The client checks that the remote host key is stored in the
$HOME/.ssh/known_hosts file on the local host. The client then generates a
256–bit random number and encrypts it using the remote host’s host and server
keys. The encrypted random number is used as a session key to encrypt all further
communications in the session.

In v2, the remote host uses DSA in its host key and does not generate a server key.
Instead the shared session key is derived through a Diffie-Hellman agreement.

3. The local and remote hosts authenticate each other.

In v1, the client can use .rhosts, .rhosts with RSA, RSA challenge-response, or
password-based authentication. In v2, only .rhosts, DSA and password-based
authentication are permitted.

Command Execution and Data Forwarding
After authentication is complete, the user can use the secure shell, generally requesting
a shell or executing a command. Through the ssh options, the user can make requests,
such as allocating a pseudo-tty, forwarding X11 or TCP/IP connections, or enabling an
ssh-agent over a secure connection. The basic components of a user session are as
follows:

1. The user requests a shell or the execution of a command, which begins the session
mode.

In this mode, data is sent or received through the terminal on the client side and
the shell or command on the server side.

64 System Administration Guide: Security Services • December 2001 (Beta)

2. The user program terminates.

3. All X11 and TCP/IP forwarding is stopped. Any X11 and TCP/IP connections that
already exist remain open.

4. The server sends the command exit to the client and both sides exit.

Configuring the Secure Shell
The characteristics of a secure shell session are controlled by configuration files, which
can be overridden to a certain degree by parameters on the command line.

Secure Shell Client Configuration
In most cases, the client-side characteristics of a secure shell session are governed by
the global user configuration file, /etc/ssh/ssh_config, which is set up by the
administrator. The settings in the global user configuration file can be overridden by
the user’s configuration in $HOME/.ssh/config. In addition, the user can override
both configuration files on the command line.

These parameters represent client requests and are permitted or denied on the server
side by the /etc/ssh/sshd_config file (see ssh_config(4)). The configuration
file keywords and command parameters are introduced below and are described in
detail in the ssh(1), scp(1), sftp(1), and ssh_config(4) man pages. Note that in the
two user configuration files, the Host keyword indicates a host or wildcard expression
to which all following keywords up to the next Host keyword apply.

Host-Specific Parameters
If it is useful to have different secure shell characteristics for different local hosts, the
administrator can define separate sets of parameters in the /etc/ssh/ssh_config file to
be applied according to host or regular expression. This is done by grouping entries in
the file by Host specification. If the Host keyword is not used, the keywords in the
client configuration file apply to whichever local host a user is working on.

Client-Side Authentication
The authentication method is determined by setting one of the following keywords to
“yes”: DSAAuthentication, PasswordAuthentication,

Secure Shell Administration 65

RhostsAuthentication, or RhostsRSAAuthentication. The keyword UseRsh
specifies that rlogin and rsh be used, probably due to no secure shell support.

The Protocol keyword sets the secure shell protocol version to v1 or v2. One can
specify both versions separated by a comma, the idea being that the first is tried and
upon failure the second is used.

IdentityFile specifies an alternate file name to hold the user’s private key.

The keyword Cipher specifies the v1 encryption algorithm, which may be blowfish
or 3des. The keyword Ciphers specifies an order of preference for the v2 encryption
algorithms: 3des-cbc, blowfish-cbc, and aes128–cbc. The commands ssh and
scp have a -c option for specifying the encryption algorithm on the command line.

Known Host Configuration
The known host files (/etc/ssh/ssh_known_hosts and
$HOME/.ssh/known_hosts) contain the public keys for all hosts with which the
client can communicate using the secure shell. The GlobalKnownHostsFile
keyword specifies an alternate file instead of /etc/ssh/ssh_known_hosts.
UserKnownHostsFile specifies an alternate to $HOME/.ssh/known_hosts.

StrictHostKeyChecking requires new hosts to be added manually to the known
hosts file, and refuses any host whose public key has changed or whose public key is
not in the known hosts file. The keyword CheckHostIP enables the IP address for
hosts in the known host files to be checked, in case a key has been changed due to
DNS spoofing.

Client-Side X11 and Port Forwarding
The LocalForward keyword specifies a local TCP/IP port to be forwarded over a
secure channel to a specified port on a remote host. GatewayPorts enables remote
hosts to connect to local forwarded ports.

The command ssh enables port forwarding through these options:

� -L, which specifies the local port to be forwarded to the specified port on the
remote host

� -R, which specifies a remote port to be forwarded to the local host and specified
port

ForwardX11 redirects X11 connections to the remote host with the DISPLAY
environment variable set. XAuthLocation specifies the location of the xauth(1)
program.

66 System Administration Guide: Security Services • December 2001 (Beta)

Client-Side Connection and Other Parameters
The NumberOfPasswordPrompts keyword specifies how many times the user is
prompted for a password before the secure shell quits. ConnectionAttempts
specifies how many tries (at one per second) are made before the secure shell either
quits or falls back to rsh if FallBackToRsh is set.

Compression enables compression of transmitted data. CompressionLevel sets a
level of 1 to 9, trading off between speed and amount of compression.

User specifies an alternate user name. Hostname specifies an alternate name for a
remote host. ProxyCommand specifies an alternate command name for starting the
secure shell. Any command that can connect to your proxy server can be used. The
command should read from its standard input and write to its standard output.

Batchmode disables password prompts, which is useful for scripts and other batch
jobs.

KeepAlive enables messages to indicate network problems due to host crashes.
LogLevel sets the verbosity level for ssh messages.

EscapeChar defines a single character used as a prefix for displaying special
characters as plain text.

Secure Shell Server Configuration
The server-side characteristics of a secure shell session are governed by the
/etc/ssh/sshd_config file, which is set up by the administrator.

Server-Side Authentication
Permitted authentication methods are indicated by theses keywords:
DSAAuthentication, PasswordAuthentication, RhostsAuthentication,
RhostsRSAAuthentication, and RSAAuthentication.

HostKey and HostDSAKey identify files holding host public keys when the default
file name is not used. KeyRegenerationInterval defines how often the server key
is regenerated.

Protocol specifies version. Ciphers specifies encryption algorithms for v2.
ServerKeyBits defines number of bits in the server’s key.

Secure Shell Administration 67

Ports and Forwarding
AllowTCPForwarding specifies whether TCP forwarding is permitted.

GatewayPorts allows remote hosts to connect to ports forwarded for the client. Port
specifies the port number that sshd listens on. ListenAddress designates a specific
local address that sshd listens to. If there is no ListenAddress specification, sshd
listens to all addresses by default.

X11Forwarding allows X11 forwarding. X11DisplayOffset specifies the first
display number available for forwarding. This prevents sshd from interfering with
real X11 servers. XAuthLocation specifies the location of the xauth program.

Session Controls
KeepAlive displays messages regarding broken connections and host crashes.
LogLevel sets the verbosity level of messages from sshd. SyslogFacility
provides a facility code for messages logged from sshd.

Server Connection and Other Parameters
AllowGroups, AllowUsers, DenyGroups, and DenyUsers control which users can
or cannot use ssh.

LoginGraceTime, MaxStartups, PermitRootLogin, and
PermitEmptyPasswords set controls on users logging in. StrictModes causes
sshd to check file modes and ownership of the user’s files and home directory before
login. UseLogin specifies whether login is used for interactive login sessions.
Turning this option on should not be necessary and is not recommended for the
Solaris environment.

Subsystem configures a file transfer daemon for using sftp.

Maintaining Known Hosts on a
Site-Wide Basis
Each host that needs to talk to another host securely must have its public key stored in
the server host’s /etc/ssh/ssh_known_hosts file. Although it is most convenient
to update the /etc/ssh/ssh_known_hosts files by a script, this is heavily
discouraged because it opens a major security vulnerability.

68 System Administration Guide: Security Services • December 2001 (Beta)

Secure Shell Files
The important files used in the secure shell are shown in the following table with the
suggested UNIX permissions.

TABLE 5–1 Secure Shell Files

File Name Description Suggested Permissions and
Owner

/etc/ssh/sshd_config Contains configuration data for sshd, the
secure shell daemon.

-rw-r--r-- root

/etc/ssh/ssh_host_key Contains host private key. -rw------- root

/etc/ssh_host_key.pub Contains host public key. Used to copy
host key to local known_hosts file.

-rw-r--r-- root

/var/run/sshd.pid Contains the process ID of the secure shell
daemon (sshd) listening for connections (if
multiple daemons, contains the last one
started).

rw-r--r-- root

$HOME/.ssh/authorized_keys Lists the RSA keys that can be used with
v1 to log into the user’s account or the
DSA and RSA keys that can be used with
v2.

-rw-rw-r-- johndoe

/etc/ssh/ssh_known_hosts,
$HOME/.ssh/known_hosts

Contains host public keys for all hosts
with which the client may communicate
securely. The global files should be
prepared by the administrator (optional).
The per-user file is maintained
automatically. Whenever the user connects
with an unknown host, the remote host
key is added to the per-user file.

/etc/ssh/ssh_known_hosts

-rw-r--r-- root

$HOME/.ssh/known_hosts

-rw-r--r-- johndoe

/etc/nologin If this file exists, sshd refuses to let
anyone except root log in. The contents are
displayed to users attempting to log in.

-rw-r--r-- root

$HOME/.rhosts Contains host-user name pairs specifying
hosts to which the user can log in without
a password. The file is also used by
rlogind and rshd.

-rw-r—r-- johndoe

$HOME/.shosts Contains host-user name pairs specifying
hosts to which the user can log in with no
password using the secure shell.

-rw-r—r-- johndoe

Secure Shell Administration 69

TABLE 5–1 Secure Shell Files (Continued)
File Name Description Suggested Permissions and

Owner

/etc/hosts.equiv Contains hosts used in .rhosts
authentication.

-rw-r--r-- root

/etc/ssh/shosts.equiv Contains hosts used in .rhosts or secure
shell authentication.

-rw-r--r-- root

$HOME/.ssh/environment Used for initialization to make
assignments at login.

-rw—–-- johndoe

$HOME/.ssh/rc Runs initialization routines before user’s
home directory becomes available at login.

-rw—–-- johndoe

/etc/ssh/sshrc Runs host-specific initialization routines
specified by administrator for a user’s
home directory.

-rw-r--r-- root

TABLE 5–2 Secure Shell Commands

Command Description

ssh(1) A program for logging into a remote machine and for executing
commands on a remote machine. It is intended to replace rlogin and
rsh, and provide secure encrypted communications between two
untrusted hosts over an insecure network. X11 connections and arbitrary
TCP/IP ports can also be forwarded over the secure channel.

sshd(1m) The daemon program for secure shell. It listens for connections from
clients and provides secure encrypted communications between two
untrusted hosts over an insecure network.

ssh-keygen(1) Generates and manages authentication keys for ssh.

ssh-agent(1) A program to hold private keys used for public key authentication.
ssh-agent is started at the beginning of an X-session or a login session,
and all other windows or programs are started as clients to the
ssh-agent program. Through the use of environment variables, the
agent can be located and automatically used for authentication when
logging into other machines using ssh.

ssh-add(1) Adds RSA or DSA identities (keys) to the authentication agent,
ssh-agent.

scp(1) Copies files between hosts on a network securely, using ssh for data
transfer. Unlike rcp, scp asks for passwords or passphrases (if they are
needed for authentication).

sftp(1) An interactive file transfer program, similar to ftp, that performs all
operations over an encrypted ssh transport. sftp connects and logs
into the specified host name and then enters an interactive command
mode.

70 System Administration Guide: Security Services • December 2001 (Beta)

Secure Shell Administration 71

72 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 6

Introduction to SEAM

This chapter provides an introduction to the SEAM product.

� “What Is SEAM?” on page 73
� “How SEAM Works” on page 74
� “Security Services” on page 80
� “SEAM Releases” on page 80

What Is SEAM?
SEAM (Sun Enterprise Authentication Mechanism) is a client/server architecture that
offers strong user authentication, as well as data integrity and privacy, for providing
secure transactions over networks. Authentication guarantees that the identities of both
the sender and recipient of a network transaction are true; SEAM can also verify the
validity of data being passed back and forth (integrity) and encrypt it during
transmission (privacy). Using SEAM, you can log on to other machines, execute
commands, exchange data, and transfer files securely. Additionally, SEAM provides
authorization services, allowing administrators to restrict access to services and
machines; moreover, as a SEAM user you can regulate other people’s access to your
account.

SEAM is a single-sign-on system, meaning that you only need to authenticate yourself
to SEAM once per session, and all subsequent transactions during the session are
automatically secured. After SEAM has authenticated you, you do not need to
authenticate yourself every time you use a SEAM-based command such as kinit or
klist, or access data on an NFS file system. This means you do not have to send your
password over the network, where it can be intercepted, each time you use these
services.

73

SEAM is based on the Kerberos V5 network authentication protocol developed at the
Massachusetts Institute of Technology (MIT). People who have used Kerberos V5
should therefore find SEAM very familiar. Since Kerberos V5 is a de facto industry
standard for network security, SEAM promotes interoperability with other systems. In
other words, because SEAM works with systems using Kerberos V5, it allows for
secure transactions even over heterogeneous networks. Moreover, SEAM provides
authentication and security both between domains and within a single domain.

Note – Because SEAM is based on, and designed to interoperate with, Kerberos V5,
this manual often uses the terms “Kerberos” and “SEAM” more or less
interchangeably — for example, “Kerberos realm” or “SEAM-based utility.”
(Moreover, “Kerberos” and “Kerberos V5” are used interchangeably, as well.) The
manual draws distinctions when necessary.

SEAM allows for flexibility in running Solaris applications. You can configure SEAM
to allow both SEAM-based and non-SEAM-based requests for network services such
as the NFS service. That means current Solaris applications still work even if they are
running on systems on which SEAM is not installed. Of course, you can also configure
SEAM to allow only SEAM-based network requests.

Additionally, applications do not have to remain committed to SEAM if other security
mechanisms are developed. Because SEAM is designed to integrate modularly into the
Generic Security Service API, applications that make use of the GSS-API can utilize
whichever security mechanism best suits their needs.

How SEAM Works
The following is a generalized overview of the SEAM authentication system. For a
more detailed description, see “How the Authentication System Works” on page 196.

From the user’s standpoint, SEAM is mostly invisible after the SEAM session has been
started. Initializing a SEAM session is often no more than logging in and providing a
Kerberos password.

The SEAM system revolves around the concept of a ticket. A ticket is a set of electronic
information that serves as identification for a user or a service such as the NFS service.
Just as your driver’s license identifies you and indicates what driving permissions you
have, so a ticket identifies you and your network access privileges. When you perform
a SEAM-based transaction — for example, if you rlogin in to another machine —
you transparently send a request for a ticket to a Key Distribution Center, or KDC,
which accesses a database to authenticate your identity. The KDC returns a ticket

74 System Administration Guide: Security Services • December 2001 (Beta)

granting you permission to access the other machine. “Transparently” means that you
do not need to explicitly request a ticket.

Tickets have certain attributes associated with them. For example, a ticket can be
forwardable (meaning that it can be used on another machine without a new
authentication process), or postdated (not valid until a specified time). How tickets are
used — for example, which users are allowed to obtain which types of ticket — is set
by policies determined when SEAM is installed or administered.

Note – You will frequently see the terms credential and ticket. In the greater Kerberos
world, they are often used interchangeably. Technically, however, a credential is a
ticket plus the session key for that session. This difference is explained in more detail in
“Gaining Access to a Service Using SEAM” on page 196.

The following sections briefly explain the SEAM authentication process.

Initial Authentication: the Ticket-Granting Ticket
Kerberos authentication has two phases: an initial authentication that allows for all
subsequent authentications, and the subsequent authentications themselves.

Figure 6–1 shows how the initial authentication takes place:

Introduction to SEAM 75

1. At login (or with kinit)
Client requests a TGT
allowing it to obtain
tickets for services.

2. KDC checks
database,
sends TGT.

3. Client uses password
to decrypt TGT, thus
proving identity; can
now use the TGT to
obtain other tickets.

Client

KDC

TGT

TGT = Ticket-granting ticket
KDC = Key Distribution Center

FIGURE 6–1 Initial Authentication for SEAM Session

1. A client (a user, or a service such as NFS) begins a SEAM session by requesting a
ticket-granting ticket (TGT) from the Key Distribution Center. This is often done
automatically at login.

A ticket-granting ticket is needed to obtain other tickets for specific services. One
analogy is to think of the ticket-granting ticket as similar to a passport. Like a
passport, the ticket-granting ticket identifies you and allows you to obtain
numerous “visas” — where the “visas” (tickets) are not for foreign countries but
for remote machines or network services. Like passports and visas, the
ticket-granting ticket and the other various tickets have limited lifetimes. The
difference is that “Kerberized” commands notice that you have a passport and
obtain the visas for you — you don’t have to perform the transactions yourself.

2. The KDC creates a ticket–granting ticket and sends it back, in encrypted form, to
the client. The client decrypts the ticket-granting ticket using the client’s password.

3. Now in possession of a valid ticket-granting ticket, the client can request tickets for
all sorts of network operations for as long as the ticket-granting ticket lasts. This is
usually a few hours. Each time the client performs a unique network operation, it
requests a ticket for that operation from the KDC.

76 System Administration Guide: Security Services • December 2001 (Beta)

Subsequent Authentications
After the client has received the initial authentication, each individual authentication
follows the pattern shown in Figure 6–2:

1. Client requests ticket for
server; sends TGT to
KDC as proof of identity.

2. KDC sends client
ticket for server.

3. Client sends
ticket to server.

4. Server allows
access for client.

Client

KDCTGT

TGT = Ticket-granting ticket
KDC = Key Distribution Center

Server

FIGURE 6–2 Obtaining Access to a Service

1. The client requests a ticket for a particular service from the KDC, sending the KDC
its ticket-granting ticket as proof of identity.

2. The KDC sends the ticket for the specific service to the client.

For example, suppose user joe wants to access a file system using NFS that has
been shared with krb5 authentication required. Since he is already authenticated
(that is, he already has a ticket-granting ticket), as he attempts to access the files,
the NFS client system will automatically and transparently obtain a ticket from the
KDC for the NFS service.

3. The client sends the ticket to the server.

When using the NFS service, the NFS client will automatically and transparently
send the ticket for the NFS service to the NFS server.

4. The server allows the client access.

Introduction to SEAM 77

Looking at these steps, you might have noticed that the server doesn’t appear to ever
communicate with the KDC. It does, though; it registers itself with the KDC, just as
the first client does. For simplicity’s sake we have left that part out.

Principals
A client in SEAM is identified by its principal. A principal is a unique identity to which
the KDC can assign tickets. A principal can be a user, such as joe, or a service, such as
nfs.

By convention, a principal name is divided into three parts: the primary, the instance,
and the realm. A typical SEAM principal would be, for example,
joe/admin@ENG.EXAMPLE.COM, where:

� joe is the primary. This can be a username, as shown here, or a service, such as
nfs. It can also be the word host, signifying that this is a service principal set up
to provide various network services .

� admin is the instance. An instance is optional in the case of user principals, but it is
required for service principals. For example: if the user joe sometimes acts as a
system administrator, he can use joe/admin to distinguish himself from his usual
user identity. Likewise, if joe has accounts on two different hosts, he can use two
principal names with different instances (for example,
joe/denver.example.com and joe/boston.example.com). Notice that
SEAM treats joe and joe/admin as two completely different principals.

In the case of a service principal, the instance is the fully qualified hostname.
bigmachine.eng.example.com is an example of such an instance, so that the
primary/instance might be, for example,
host/bigmachine.eng.example.com.

� ENG.EXAMPLE.COM is the SEAM realm. Realms are discussed in “Realms”
on page 78.

The following are all valid principal names:

� joe
� joe/admin
� joe/admin@ENG.EXAMPLE.COM
� nfs/host.eng.example.com@ENG.EXAMPLE.COM
� host/eng.example.com@ENG.EXAMPLE.COM

Realms
A realm is a logical network, like a domain, which defines a group of systems under
the same master KDC (see below). Figure 6–3 shows how realms can relate to one
another. Some realms are hierarchical (one being a superset of the other). Otherwise

78 System Administration Guide: Security Services • December 2001 (Beta)

the realms are non-hierarchical and the mapping between the two realms must be
defined. A feature of SEAM is that it permits authentication across realms; each realm
only needs to have a principal entry for the other realm in its KDC.

Hierarchical

Non-hierarchical
ENG.EXAMPLE.COM

EXAMPLE.COM

SEAMCO.COM

FIGURE 6–3 Realms

Realms and Servers
Each realm must include a server that maintains the master copy of the principal
database. This is called the master KDC server. Additionally, each realm should contain
at least one slave KDC server, which contains duplicate copies of the principal database.
Both the master and the slave KDC servers create tickets used to establish
authentication.

Realms can also include NFS servers, which provide NFS services, using Kerberos
authentication. If you have installed SEAM 1.0 or 1.0.1, the realm may include a SEAM
network application server, which provides access to Kerberized applications (such as
ftp, telnet, and rsh).

Figure 6–4 shows what a hypothetical realm might contain.

Introduction to SEAM 79

EXAMPLE.COM

Master KDC

Clients

Slave KDCs

Application servers

FIGURE 6–4 A Typical Realm

Security Services
In addition to providing secure authentication of users, SEAM provides two security
services:

� Integrity. Just as authentication ensures that clients on a network are who they
claim to be, integrity ensures that the data they send is valid and has not been
tampered with during transit. This is done through cryptographic checksumming
of the data. Integrity also includes user authentication.

� Privacy. Privacy takes security a step further. It not only includes verifying the
integrity of transmitted data, but it encrypts the data before transmission,
protecting it from eavesdroppers. It authenticates users, as well.

Note – Because of U.S. export restrictions, the privacy service might not be
available to all SEAM users.

SEAM Releases
Parts of this product have been included in four releases. The table below describes
which components are included in each release. The specific components of all of the
releases are described in the following sections.

80 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 6–1 SEAM Release Contents

Release Name Contents

SEAM 1.0 in Solaris Easy Access Server (SEAS)
3.0

Full release of SEAM for the Solaris 2.6 and 7
releases

SEAM in Solaris 8 release SEAM client software only

SEAM 1.0.1 in the Solaris 8 Admin Pack Full release of SEAM for the Solaris 8 release

SEAM in Solaris 9 release Full release of SEAM without the remote
applications

SEAM 1.0 Components
Like the MIT distribution of Kerberos V5, SEAM includes:

� Key Distribution Center (KDC) (master):

� Kerberos database administration daemon — kadmind
� Kerberos ticket processing daemon — krb5kdc

� Slave KDCs

� Database administration programs — kadmin and kadmin.local

� Database propagation software — kprop

� User programs for obtaining, viewing, and destroying tickets — kinit, klist,
kdestroy — and for changing your SEAM password — kpasswd

� Applications — ftp, rcp, rlogin, rsh, and telnet — and daemons for these
applications — ftpd, rlogind, rshd and telnetd

� Administration utilities — ktutil, kdb5_util

� Several libraries

In addition, the SEAM product includes the following:

� SEAM Administration Tool (gkadmin) — Allows you to administer the KDC. This
Java based GUI allows an administrator to perform the tasks usually performed
through the kadmin command.

� The Pluggable Authentication Module (PAM) — Allows applications to use various
authentication mechanisms; PAM can be used to make login and logouts
transparent to the user.

� A utility (gsscred) and a daemon (gssd) — These programs help map UNIX
UIDs to principal names; needed because SEAM NFS servers use UNIX IDs to
identify users and not principal names, which are stored in a different format
altogether.

Introduction to SEAM 81

� GSS_API framework — The Generic Security Service Application Programming
Interface (GSS-API) allows applications to use multiple security mechanisms
without having to recompile the application every time a new mechanism is
added. Because GSS-API is machine-independent, it is appropriate for applications
on the Internet. GSS-API provides applications with the ability to include the
integrity and privacy security services, as well as authentication.

� The RPCSEC_GSS Application Programming Interface (API) — Allows NFS
services to use Kerberos authentication. RPCSEC_GSS is a new security flavor that
provides security services that are independent of the mechanisms being used;
RPCSEC_GSS sits “on top” of the GSS-API layer. Any pluggable GSS_API-based
security mechanism can be used by applications using RPCSEC_GSS.

� A preconfiguration procedure — Allows you to set the parameters for installing
and configuring SEAM, making SEAM installation automatic; especially useful for
multiple installations.

� Kernel modifications — Allows for faster performance.

SEAM Components in the Solaris 9 Release
The Solaris 9 release includes all of the parts of the SEAM 1.0 release except for the
applications and the preconfiguration procedure.

SEAM Components in the Solaris 8 Release
The Solaris 8 release included only the client-side portions of SEAM, so many of these
components are not included. This enables systems running the Solaris 8 release to
become SEAM clients without having to install SEAM separately. To use this
functionality you must install a KDC using either SEAS 3.0 or Solaris 8 Admin Pack,
the MIT distribution, or Windows2000. The client-side components are not useful
without a configured KDC to distribute tickets. The following components were
included in this release:

� User programs for obtaining, viewing, and destroying tickets — kinit, klist,
kdestroy — and for changing your SEAM password — kpasswd

� Key table administration utility — ktutil

� Additions to the Pluggable Authentication Module (PAM) — Allows applications
to use various authentication mechanisms; PAM can be used to make login and
logouts transparent to the user.

� GSS_API plug–ins — Provides Kerberos protocol and cryptographic support

� NFS client and server support

82 System Administration Guide: Security Services • December 2001 (Beta)

SEAM 1.0.1 Components
The SEAM 1.0.1 release includes all of the portions of the SEAM 1.0 release that are
not already included in the Solaris 8 release. This includes:

� Key Distribution Center (KDC) (master):

� Kerberos database administration daemon — kadmind
� Kerberos ticket processing daemon — krb5kdc

� Slave KDCs

� Database administration programs — kadmin and kadmin.local

� Database propagation software — kprop

� Applications — ftp, rcp, rlogin, rsh, and telnet — and daemons for these
applications — ftpd, rlogind, rshd and telnetd

� Administration utility — kdb5_util

� SEAM Administration Tool (gkadmin) — Allows you to administer the KDC. This
Java-based GUI allows an administrator to perform the tasks usually performed
through the kadmin command.

� A preconfiguration procedure — Allows you to set the parameters for installing
and configuring SEAM, making SEAM installation automatic; especially useful for
multiple installations.

� Several libraries

Introduction to SEAM 83

84 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 7

Planning for SEAM

This chapter should be studied by individuals involved in the installation and
maintenance of SEAM. The chapter includes a discussion of several installation and
configuration considerations that you must resolve before installing or configuring
SEAM.

This is a list of the issues that should be resolved by a System Administrator or other
knowledgeable support staff:

� “Realms” on page 85
� “Mapping Hostnames Onto Realms” on page 87
� “Client and Service Principal Names” on page 87
� “Slave KDCs” on page 88
� “Database Propagation” on page 88
� “Clock Synchronization” on page 88

SEAM Configuration Decisions
Before installing SEAM, you must resolve several configuration issues. Although
changing the configuration after the initial install is not impossible, it becomes more
difficult with each new client added to the system. In addition, some changes require a
full re-installation, so it is better to consider long-term goals when planning.

Realms
A realm is logical network, like a domain, which defines a group of systems under the
same master KDC. As with establishing a DNS domain name, issues such as the realm

85

name, the number and size of each realm, and the relationship of a realm to other
realms should be resolved before configuringing SEAM.

Realm Names
Realm names can be any ASCII string. Usually it is the same as your DNS domain
name, in uppercase. This helps differentiate problems with SEAM from problems with
the DNS namespace, while using a name that is familiar. If you do not use DNS or
choose to use a different string, then you can use any string, although using realm
names that follow the standard internet naming structure is wise.

Number of Realms
The number of realms that your installation requires depends on several factors:

� The number of clients to be supported. Too many clients in one realm makes
administration more difficult and eventually requires splitting the realm. The
primary factors that determine the number of clients that can be supported are: the
amount of SEAM traffic that each client generates, the bandwidth of the physical
network and the speed of the hosts. Since each installation will have different
limitations, there is no rule for determining the maximum number of clients.

� How far apart the clients are. It might make sense to set up several small realms if
the clients are in a different geographic region.

� The number of hosts that are available to be installed as KDCs. Each realm should
have at least two KDC servers (master and slave).

Realm Hierarchy
When configuring multiple realms, you need to decide how to tie the realms together.
You can establish a hierarchical relation between the realms that provides automatic
paths to the related domains, but requires that all realms in the hierarchical chain are
configured properly. The automatic paths can ease the administration burden;
however, if there are many levels of domains, you might not want to use the default
path because it requires too many transactions.

You can also choose to establish the connection directly. A direct connection is most
useful when too many levels exist between two hierarchical domains or when there is
no hierarchal relationship. The connection must be defined in
/etc/krb5/krb5.conf on all hosts using the connection, so some additional work
required. See “Realms” on page 78 for an introduction and “Configuring Cross-Realm
Authentication” on page 100 for the configuration procedures for multiple realms.

86 System Administration Guide: Security Services • December 2001 (Beta)

Mapping Hostnames Onto Realms
Mapping hostnames onto realm names is defined in the domain_realm section of the
krb5.conf file. These mappings can be defined for a whole domain and for
individual hosts, depending on the requirements. See the krb5.conf(4) man page
for more information.

Client and Service Principal Names
When using SEAM, it is strongly recommended that DNS services are already
configured and running on all hosts. If DNS is used, it must be enabled on all systems
or on none of them. If DNS is available, then the principal should contain the Fully
Qualified Domain Name (FQDN) of each host. For example, if the host name is
boston, the DNS domain name is example.com, and the realm name is
EXAMPLE.COM, then the principal name for the host should be
host/boston.example.com@EXAMPLE.COM. The examples in this book use the
FQDN for each host.

For the principal names which include the FQDN of an host, it is important to match
the string describing the DNS domain name in /etc/resolv.conf. SEAM requires
that the DNS domain name be in lower case letters when entering the FQDN for a
principal. The DNS domain name may include upper and lower case letters, but only
use lower case letters when creating a host principal. In the example above, it doesn’t
matter if the DNS domain name is example.com or Example.COM or any other
variations. The principal name for the host would still be
host/boston.example.com@EXAMPLE.COM.

SEAM can run without DNS services, but some key functionality, like the ability to
communicate to other realms, will not work. If DNS is not configured, then a simple
host name can be used as the instance name. In this case the principal would be
host/boston@EXAMPLE.COM. If DNS is enabled later, all host principals must be
deleted and replaced in the KDC database.

Ports for the KDC and Admin Services
By default, port 88 and port 750 are used for the KDC and port 749 is used for the
KDC administration daemon. Different port numbers can be used, but changing them
requires that the /etc/services and /etc/krb5/krb5.conf files be changed on
every client. In addition the /etc/krb5/kdc.conf file on each KDC must be
updated.

Planning for SEAM 87

Slave KDCs
Slave KDCs generate credentials for clients just like the master KDC. The slave KDCs
provide backup in case the master is unavailable. Each realm should have at least one
slave KDC. Additional slave KDCs might required, depending on these factors:

� The number of physical segments in the realm. Normally, the network should be
set up so that each segment can function, at least minimally, without the rest of the
realm. To do this requires a KDC to be accessible from each segment. The KDC in
this instance could be either a master or a slave.

� The number of clients in the realm. Adding more slave KDC servers can reduce the
load on the current servers.

It is possible to add too many slave KDCs. Remember that the KDC database must be
propagated to each server, so the more KDC servers installed, the longer it can take to
get the data updated throughout the realm. Also, since each slave retains a copy of the
KDC database, more slaves increase the risk of a security compromise.

In addition, one or more of the slave KDCs can be configured to be swapped easily
with the master KDC. The advantage to following this procedure on at least one of the
slave KDCs is that if the master KDC fails for any reason, you will have a system
preconfigured that will be easy to swap as the master. See “Swapping Master and
Slave KDCs” on page 112 for instructions on how to configure a swappable slave
KDC.

Database Propagation
The database stored on the master KDC must be regularly propagated to the slave
KDCs. One of the first issues to be resolved is how often to update the slave KDCs.
The desire to have up-to-date information available to all of the clients needs to be
weighed against the amount of time it takes to complete the update. See
“Administering the Kerberos Database” on page 116 for more information about
database propagation.

In large installations, with many KDCs in one realm, it is possible for one or more of
the slaves to propagate the data so that the process is done in parallel. This reduces the
amount of time that the update takes, but it also increases the level of complexity in
administering the realm.

Clock Synchronization
All hosts participating in the Kerberos authentication system must have their internal
clocks synchronized within a specified maximum amount of time (known as clock

88 System Administration Guide: Security Services • December 2001 (Beta)

skew), which provides another Kerberos security check. If the clock skew is exceeded
between any of the participating hosts, requests are rejected.

One way to synchronize all of the clocks is to use the Network Time Protocol (NTP)
software (see “Synchronizing Clocks between KDCs and SEAM Clients” on page 110
for more information). Other ways of synchronizing the clocks are available, so using
NTP is not required. Some form of synchronization should be used to prevent access
failures due to clock skew.

Planning for SEAM 89

90 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 8

Configuring SEAM

This chapter provides configuration procedures for KDC servers, network application
servers, NFS servers, and SEAM clients. Many of these procedures require root access,
so they should be used by System Administrators or advanced users. Cross-realm
configuration procedures and other topics related to the KDC servers are also covered.

� “Configuring KDC Servers” on page 92
� “Configuring Cross-Realm Authentication” on page 100
� “Configuring SEAM NFS Servers” on page 102
� “Configuring SEAM Clients” on page 107
� “Synchronizing Clocks between KDCs and SEAM Clients” on page 110
� “Swapping Master and Slave KDCs” on page 112
� “Administering the Kerberos Database” on page 116
� “Increasing Security” on page 123

SEAM Configuration Task Map
Parts of the configuration process depend on other parts and must be done in a
specific order. These procedures often establish services that are required to use
SEAM. Other procedures are not dependent, and can be done when appropriate. The
table below shows a suggested order for a SEAM installation.

TABLE 8–1 First Steps: SEAM Configuration Order

Task Description For Instructions, Go To ...

1. Plan for your SEAM
Installation

Consider configuration issues and make
decisions about them before starting the
software configuration process.

“SEAM Configuration Decisions”
on page 85

91

TABLE 8–1 First Steps: SEAM Configuration Order (Continued)
Task Description For Instructions, Go To ...

2. (Optional) Install NTP In order for SEAM to work properly, the clocks
on all systems in the realm must be kept in
sync.

“Synchronizing Clocks between
KDCs and SEAM Clients”
on page 110

3. Configure the master KDC
server

Steps to configure and build the master KDC
server and database for a realm.

“How to Configure a Master
KDC” on page 93

4. (Optional) Configure a
slave KDC server

Steps to configure and build a slave KDC
server for a realm.

“How to Configure a Slave
KDC” on page 97

5. (Optional) Increase security
on the KDC servers

Steps to prevent security breaches on the KDC
servers.

“How to Restrict Access for KDC
servers” on page 123

6. (Optional) Configure
swappable KDC servers

Follow the steps in this procedure to make the
task of swapping the master and a slave KDC
easier.

“How to Configure a Swappable
Slave KDC” on page 112

Once the required steps have been completed, the following procedures may be used
when required.

TABLE 8–2 Next Steps: Additional SEAM Tasks

Task Description For Instructions, Go To ...

Configure cross-realm
authentication

Steps to enable communications from one
realm to another.

“Configuring Cross-Realm
Authentication” on page 100

Configure SEAM clients Steps to enable a client to use SEAM services. “Configuring SEAM Clients”
on page 107

Configure SEAM NFS server Steps to enable a server to share a file system
requiring Kerberos authentication.

“Configuring SEAM NFS
Servers” on page 102

Configuring KDC Servers
After installing the SEAM software, you must configure the KDC servers. Configuring
a master KDC and at least one slave KDC provides the service that issues credentials.
These credentials are the basis for SEAM, so the KDCs must be installed before
attempting other tasks.

The most significant difference between a master and a slave KDC is that only the
master can handle database administration requests. For instance, changing a
password or adding a new principal must be done on the master KDC. These changes

92 System Administration Guide: Security Services • December 2001 (Beta)

can then be propagated to the slave KDCs. Both the slave and master KDCs generate
credentials; this provides redundancy in case the master KDC is not able to respond.

� How to Configure a Master KDC
In this procedure the following configuration parameters are used:

� realm name = EXAMPLE.COM

� DNS domain name = example.com

� master KDC = kdc1.example.com

� slave KDC = kdc2.example.com

� admin principle = kws/admin

� online help URL =
http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

Note – Adjust the URL to point to the “SEAM Administration Tool” section, as
described in the SEAM Installation and Release Notes.

1. Prerequisites for configuring a master KDC.

This procedure requires that the master KDC software is installed. In addition, DNS
must be running. See “Swapping Master and Slave KDCs” on page 112 for specific
naming instructions if this master is to be swappable.

2. Become superuser on the master KDC.

3. Edit the Kerberos configuration file (krb5.conf).

You need to change the realm names and the names of the servers. See the
krb5.conf(4) man page for a full description of this file.

kdc1 # cat /etc/krb5/krb5.conf
[libdefaults]

default_realm = EXAMPLE.COM

[realms]
EXAMPLE.COM = {
kdc = kdc1.example.com
kdc = kdc2.example.com
admin_server = kdc1.example.com

}

[domain_realm]
.example.com = EXAMPLE.COM

#
if the domain name and realm name are equivalent,
this entry is not needed

Configuring SEAM 93

#
[logging]

default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log

[appdefaults]
gkadmin = {

help_url = http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

}

In this example, the lines for domain_realm, kdc, admin_server, and all
domain_realm entries were changed. In addition, the line defining the help_url
was edited.

4. Edit the KDC configuration file (kdc.conf).

You need to change the realm name. See the kdc.conf(4) man page for a full
description of this file.

kdc1 # cat /etc/krb5/kdc.conf
[kdcdefaults]

kdc_ports = 88,750

[realms]
EXAMPLE.COM= {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal
admin_keytab = /etc/krb5/kadm5.keytab
acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749
max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s

}

In this example, the realm name definition in the realms section was changed.

5. Create the KDC database using kdb5_util.

The kdb5_util command creates the KDC database and also, when used with the -s
option, creates a stash file that is used to authenticate the KDC to itself before the
kadmind and krb5kdc daemons are started.

kdc1 # /usr/sbin/kdb5_util create -r EXAMPLE.COM -s
Initializing database ’/var/krb5/principal’ for realm ’EXAMPLE.COM’
master key name ’K/M@EXAMPLE.COM’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key: <type the key>
Re-enter KDC database master key to verify: <type it again>

The -r option followed by the realm name is not required if the realm name is
equivalent to the servers name space domain name.

94 System Administration Guide: Security Services • December 2001 (Beta)

6. Edit the Kerberos access control list file (kadm5.acl).

Once populated, /etc/krb5/kadm5.acl should contain all of the principal names
that are allowed to administer the KDC. The first entry added might look like the
following:

kws/admin@EXAMPLE.COM *

This entry gives the kws/admin principal in the EXAMPLE.COM realm the ability to
modify principals or policies in the KDC. The default installation includes an “*” to
match all admin principals. This could be a security risk, so it is more secure to
include a list of all of the admin principals.

7. Start kadmin.local.

The next sub-steps create principals used by SEAM.

kdc1 # /usr/sbin/kadmin.local

kadmin.local:

a. Add administration principals to the database using kadmin.local.

You can add as many admin principals as you need. You must add at least one
admin principal to complete the KDC configuration process. For this example, a
kws/admin principal is added. You can substitute an appropriate principal name
instead of “kws.”

kadmin.local: addprinc kws/admin
Enter password for principal kws/admin@EXAMPLE.COM: <type the password>
Re-enter password for principal kws/admin@EXAMPLE.COM: <type it again>
Principal "kws/admin@EXAMPLE.COM" created.

kadmin.local:

b. Create a keytab file for kadmin using kadmin.local.

This command sequence creates a special keytab file with principal entries for
kadmin and changepw. These principals are needed for the kadmind service.

kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kadmin/kdc1.example.com
Entry for principal kadmin/kdc1.example.com with kvno 3, encryption type DES-CBC-CRC

added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab changepw/kdc1.example.com
Entry for principal changepw/kdc1.example.com with kvno 3, encryption type DES-CBC-CRC

added to keytab WRFILE:/etc/krb5/kadm5.keytab.

kadmin.local:

c. Quit kadmin.local

You have added all of the required principals for the next steps.

kadmin.local: quit

8. Start the Kerberos daemons.

kdc1 # /etc/init.d/kdc start

kdc1 # /etc/init.d/kdc.master start

Configuring SEAM 95

9. Start kadmin.

At this point, you can add principals using the SEAM Administration Tool. The
command line example is shown for simplicity. You must log on with one of the
admin principal names that you created earlier in this procedure.

kdc1 # /usr/sbin/kadmin -p kws/admin
Enter password: <Enter kws/admin password>
kadmin:

a. Create the master KDC host principal using kadmin.

The host principal is used by Kerberized applications (such as klist and kprop) .

kadmin: addprinc -randkey host/kdc1.example.com
Principal "host/kdc1.example.com@EXAMPLE.COM" created.

kadmin:

b. Optional: Create the master KDC root principal using kadmin.

This principal is used for authenticated NFS-mounting, and so might not be
necessary on a master KDC.

kadmin: addprinc root/kdc1.example.com
Enter password for principal root/kdc1.example.com@EXAMPLE.COM: <type the password>
Re-enter password for principal root/kdc1.example.com@EXAMPLE.COM: <type it again>
Principal "root/kdc1.example.com@EXAMPLE.COM" created.

kadmin:

c. Add the master KDCs host principal to the master KDCs keytab file.

Adding the host principal to the keytab file allows for this principal to be used
automatically.

kadmin: ktadd host/kdc1.example.com
kadmin: Entry for principal host/kdc1.example.com with
kvno 3, encryption type DES-CBC-CRC added to keytab
WRFILE:/etc/krb5/krb5.keytab

kadmin: quit

d. Quit kadmin

kadmin: quit

10. Add an entry for each KDC into the propagation configuration file (kpropd.acl).

See the kprop(1M) man page for a full description of this file.

kdc1 # cat /etc/krb5/kpropd.acl
host/kdc1.example.com@EXAMPLE.COM

host/kdc2.example.com@EXAMPLE.COM

11. Optional: Synchronize the master KDCs clock using NTP or another clock
synchronization mechanism.

It is not necessary to install and use NTP, but every clock must be within default time
defined in the libdefaults section of the krb5.conf file in order for authentication

96 System Administration Guide: Security Services • December 2001 (Beta)

to succeed. See “Synchronizing Clocks between KDCs and SEAM Clients” on page 110
for information about NTP.

� How to Configure a Slave KDC
In this procedure, a new slave KDC named kdc3 is configured.This procedure uses
the following configuration parameters:

� realm name = EXAMPLE.COM

� DNS domain name = example.com

� master kdc = kdc1.example.com

� slave kdc = kdc2.example.com and kdc3.example.com

� admin principle = kws/admin

� online help URL =
http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

Note – Adjust the URL to point to the “SEAM Administration Tool” section, as
described in the SEAM Installation and Release Notes.

1. Prerequisites for configuring a slave KDC.

This procedure requires that the master KDC has been configured and that the SEAM
slave KDC software has been installed on kdc3. See “Swapping Master and Slave
KDCs” on page 112 for specific instructions if this slave is to be swappable.

2. On the master KDC: Become superuser.

3. On the master KDC: Start kadmin.

You must log on with one of the admin principal names that you created when
configuring the master KDC.

kdc1 # /usr/sbin/kadmin -p kws/admin
Enter password: <Enter kws/admin password>
kadmin:

a. On the master KDC: Add slave host principals to the database, if not already
done, using kadmin.

In order for the slave to function, it must have a host principal.

kadmin: addprinc -randkey host/kdc3.example.com
Principal "host/kdc3@EXAMPLE.COM" created.

kadmin:

Configuring SEAM 97

b. Optional: On the master KDC, create the slave KDC root principal using
kadmin.

This principal is only needed if the slave will be NFS-mounting an authenticated
file system.

kadmin: addprinc root/kdc3.example.com
Enter password for principal root/kdc3.example.com@EXAMPLE.COM: <type the password>
Re-enter password for principal root/kdc3.example.com@EXAMPLE.COM: <type it again>
Principal "root/kdc3.example.com@EXAMPLE.COM" created.

kadmin:

c. Quit kadmin

kadmin: quit

4. On the master KDC: Edit the Kerberos configuration file (krb5.conf).

You need to add an entry for each slave. See the krb5.conf(4) man page for a full
description of this file.

kdc1 # cat /etc/krb5/krb5.conf
[libdefaults]

default_realm = EXAMPLE.COM

[realms]
EXAMPLE.COM = {
kdc = kdc1.example.com
kdc = kdc2.example.com
kdc = kdc3.example.com
admin_server = kdc1.example.com

}

[domain_realm]
.example.com = EXAMPLE.COM

#
if the domain name and realm name are equivalent,
this entry is not needed
#
[logging]

default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log

[appdefaults]
gkadmin = {

help_url = http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

5. On the master KDC: Add an entry for each slave KDC into the database
propagation configuration file (kpropd.acl).

See the kprop(1M) man page for a full description of this file.

kdc1 # cat /etc/krb5/kpropd.acl
host/kdc1.example.com@EXAMPLE.COM
host/kdc2.example.com@EXAMPLE.COM

host/kdc3.example.com@EXAMPLE.COM

98 System Administration Guide: Security Services • December 2001 (Beta)

6. On all Slaves: Copy the KDC administration files from the master KDC server.

This step needs to be followed on all slave KDCs, since the master KDC server has
updated information that each KDC server needs. You can use ftp or a similar
transfer mechanism to grab copies of the following files from the master:

� /etc/krb5/krb5.conf
� /etc/krb5/kdc.conf
� /etc/krb5/kpropd.acl

7. On the new slave: Add the slave’s host principal to the slave’s keytab file using
kadmin.

You must log on with one of the admin principal names that you created when
configuring the master KDC. This entry will allow kprop and other Kerberized
applications to function.

kdc3 # /usr/sbin/kadmin -p kws/admin
Enter password: <Enter kws/admin password>
kadmin: ktadd host/kdc3.example.com
kadmin: Entry for principal host/kdc3.example.com with
kvno 3, encryption type DES-CBC-CRC added to keytab
WRFILE:/etc/krb5/krb5.keytab

kadmin: quit

8. On the master KDC: Add slave KDC names to the cron job, which automatically
runs the backups, by running crontab -e.

Add the name of each slave KDC server at the end of the kprop_script line.

10 3 * * * /usr/lib/krb5/kprop_script kdc2.example.com kdc3.example.com

You might also want to change the time of the backups. This configuration starts the
backup process every day at 3:10 AM.

9. On the master KDC: Back up and propagate the database using kprop_script.

If a backup copy of the database is already available, it is not necessary to complete
another backup. See “How to Manually Propagate the Kerberos Database to the Slave
KDCs” on page 120 for further instructions.

kdc1 # /usr/lib/krb5/kprop_script kdc3.example.com

Database propagation to kdc3.example.com: SUCCEEDED

10. On the new slave: Create a stash file using kdb5_util.

kdc3 # /usr/sbin/kdb5_util stash
kdb5_util: Cannot find/read stored master key while reading master key
kdb5_util: Warning: proceeding without master key

Enter KDC database master key: <type the key>

11. On the new slave: Start the KDC daemon (krb5kdc).

kdc3 # /etc/init.d/kdc start

Configuring SEAM 99

12. Optional: On the new slave, synchronize the master KDCs clock using NTP or
another clock synchronization mechanism.

It is not necessary to install and use NTP, but every clock must be within the default
time defined in the libdefaults section of the krb5.conf file in order for
authentication to succeed. See “Synchronizing Clocks between KDCs and SEAM
Clients” on page 110 for information about NTP.

Configuring Cross-Realm Authentication
You have several ways of linking realms together so that users in one realm can be
authenticated in another. Normally this is accomplished by establishing a secret key to
be shared between the two realms. The relationship of the realms can be either
hierarchal or directional (see “Realm Hierarchy” on page 86).

� How to Establish Hierarchical Cross-Realm
Authentication
For this example, we will use two realms, ENG.EAST.EXAMPLE.COM and
EAST.EXAMPLE.COM. Cross-realm authentication will be established in both
directions. This procedure must be completed on the master KDC in both realms.

1. Prerequisites for establishing hierarchical cross-realm authentication.

This procedure requires that the master KDC for each realm has been configured. To
fully test the process, several clients or slave KDCs must be installed.

2. Become root on the first master KDC.

3. Create ticket-granting ticket service principals for the two realms using kadmin.

You must log on with one of the admin principal names that was created when
configuring the master KDC.

/usr/sbin/kadmin -p kws/admin
Enter password: <Enter kws/admin password>
kadmin: addprinc krbtgt/ENG.EAST.EXAMPLE.COM@EAST.EXAMPLE.COM
Enter password for principal krgtgt/ENG.EAST.EXAMPLE.COM@EAST.EXAMPLE.COM: <type the

password>
kadmin: addprinc krbtgt/EAST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM
Enter password for principal krgtgt/EAST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM: <type the

password>
kadmin: quit

100 System Administration Guide: Security Services • December 2001 (Beta)

Note – The password entered for each service principal must be identical in both
KDCs; which means that the password for
krbtgt/ENG.EAST.EXAMPLE.COM@EAST.EXAMPLE.COM must be the same in both
realms.

4. Add entries to the Kerberos configuration file to define domain names for every
realm (krb5.conf).

cat /etc/krb5/krb5.conf
[libdefaults]
.
.
[domain_realm]

.eng.east.example.com = ENG.EAST.EXAMPLE.COM

.east.example.com = EAST.EXAMPLE.COM

In this example, domain names for the ENG.EAST.EXAMPLE.COM and
EAST.EXAMPLE.COM realms are defined. It is important to include the subdomain
first, since the file is searched top down.

5. Copy the Kerberos configuration file to all clients in this realm.

In order for the cross-realm authentication to work, all systems (including slave KDCs
and other servers) must have the new version of the Kerberos configuration file
(/etc/krb5/krb5.conf) installed.

6. Repeat these steps in the second realm.

� How to Establish Direct Cross-Realm
Authentication
This example uses two realms: ENG.EAST.EXAMPLE.COM and
SALES.WEST.EXAMPLE.COM. Cross-realm authentication will be established in both
directions. This procedure must be completed on the master KDC in both realms.

1. Prerequisites for establishing direct cross-realm authentication.

This procedure requires that the master KDC for each realm has been configured. To
fully test the process, several clients or slave KDCs must be installed.

2. Become superuser on one of the master KDC servers.

3. Create ticket-granting ticket service principals for the two realms using kadmin.

You must log on with one of the admin principal names that was created when
configuring the master KDC.

/usr/sbin/kadmin -p kws/admin
Enter password: <Enter kws/admin password>

Configuring SEAM 101

kadmin: addprinc krbtgt/ENG.EAST.EXAMPLE.COM@SALES.WEST.EXAMPLE.COM
Enter password for principal
krgtgt/ENG.EAST.EXAMPLE.COM@SALES.WEST.EXAMPLE.COM: <type the password>

kadmin: addprinc krbtgt/SALES.WEST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM
Enter password for principal
krgtgt/SALES.WEST.EXAMPLE.COM@ENG.EAST.EXAMPLE.COM: <type the password>

kadmin: quit

Note – The password entered for each service principal must be identical in both
KDCs; which means that the password for
krbtgt/ENG.EAST.EXAMPLE.COM@SALES.WEST.EXAMPLE.COM must be the same
in both realms.

4. Add entries in the Kerberos configuration file to define the direct path to the remote
realm (kdc.conf).

This example is for the clients in the ENG.EAST.EXAMPLE.COM realm. You would
swap the realm names to get the appropriate definitions in the
SALES.WEST.EXAMPLE.COM realm.

cat /etc/krb5/krb5.conf
[libdefaults]
.
.
[capaths]

ENG.EAST.EXAMPLE.COM = {
SALES.WEST.EXAMPLE.COM = .

}

SALES.WEST.EXAMPLE.COM = {
ENG.EAST.EXAMPLE.COM = .

}

5. Copy the Kerberos configuration file to all clients in the current realm.

In order for the cross-realm authentication to work, all systems (including slave KDCs
and other servers) must have the new version of the Kerberos configuration file
(krb5.conf) installed.

6. Repeat these steps for the second realm.

Configuring SEAM NFS Servers
NFS services use UNIX UIDs to identify a user and cannot directly use principals. To
translate the principal to a UID, a credential table that maps user principals to UNIX
UIDs must be created. The procedures below focus on the tasks necessary to configure

102 System Administration Guide: Security Services • December 2001 (Beta)

a SEAM NFS server, to administer the credential table, and to initiate Kerberos
security modes for NFS-mounted file systems. The following table describes the tasks
covered in this section.

TABLE 8–3 Configuring SEAM NFS Server Task Map

Task Description For Instructions, Go To ...

Configure a SEAM NFS
server

Steps to enable a server to share a file system
requiring Kerberos authentication.

“How to Configure SEAM NFS
Servers” on page 103

Create a credential table Steps to generate a credential table. “How to Create a Credential
Table” on page 104

How to change the credential
table that maps user
principles to UNIX UIDs.

Steps to update information in the credential
table.

“How to Add a Single Entry to
the Credential Table”
on page 105

Share a file system with
Kerberos authentication

Steps to share a file system with security
modes so that Kerberos authentication is
required.

“How to Set Up a Secure NFS
Environment With Multiple
Kerberos Security Modes”
on page 105

� How to Configure SEAM NFS Servers
This procedure requires that the master KDC has been configured. To fully test the
process you need several clients. The following configuration parameters are used:

realm name = EXAMPLE.COM
DNS domain name = example.com
NFS server = denver.example.com
admin principle = kws/admin

1. Prerequisites for configuring a SEAM NFS server.

The SEAM client software must be installed.

2. Optional: Install NTP client or other clock synchronization mechanism.

See “Synchronizing Clocks between KDCs and SEAM Clients” on page 110 for
information about NTP.

3. Start kadmin.

Using the SEAM Administration Tool to add a principal is explained in “How to
Create a New Principal” on page 151. The example below shows how to add the
required principals using the command line. You must log on with one of the admin
principal names that you created when configuring the master KDC.

denver # /usr/sbin/kadmin -p kws/admin
Enter password: <Enter kws/admin password>
kadmin:

Configuring SEAM 103

a. Create the server’s NFS service principal.

kadmin: addprinc -randkey nfs/denver.example.com
Principal "nfs/denver.example.com" created.

kadmin:

b. Optional: Create a root principal for the NFS server.

kadmin: addprinc root/denver.example.com
Enter password for principal root/denver.example.com@EXAMPLE.COM: <type the password>
Re-enter password for principal root/denver.example.com@EXAMPLE.COM: <type it again>
Principal "root/denver.example.com@EXAMPLE.COM" created.

kadmin:

c. Add the server’s NFS service principal to the server’s keytab.

kadmin: ktadd nfs/denver.example.com
kadmin: Entry for principal nfs/denver.example.com with
kvno 3, encryption type DES-CBC-CRC added to keytab
WRFILE:/etc/krb5/krb5.keytab

kadmin: quit

d. Quit kadmin

kadmin: quit

4. Create the gsscred table.

See “How to Create a Credential Table” on page 104 for more information.

5. Share the NFS file system using Kerberos security modes.

See “How to Set Up a Secure NFS Environment With Multiple Kerberos Security
Modes” on page 105 for more information.

6. On each client: authenticate both the user and root principals.

See “Setting Up Root Authentication to Mount NFS File Systems” on page 110 for
more information.

� How to Create a Credential Table
The gsscred credential table is used by an NFS server to map SEAM principals to a
UID. In order for NFS clients to be able to mount file systems from an NFS server
using Kerberos authentication, this table must be created or made available.

1. Edit /etc/gss/gsscread.conf and change the mechanism.

Change the mechanism to files.

2. Create the credential table using gsscred.

The command gathers information from all of the sources listed with the passwd
entry in /etc/nsswitch.conf. You might need to temporarily remove the files

104 System Administration Guide: Security Services • December 2001 (Beta)

entry, if you do not want the local password entries included in the credential table.
See the gsscred(1M) man page for more information.

gsscred -m kerberos_v5 -a

� How to Add a Single Entry to the Credential Table
This procedure requires that the gsscred table has already been installed on the NFS
server.

1. Become superuser on a NFS server.

2. Add an entry to the table using gsscred.

gsscred -m mech [-n name [-u uid]] -a

mech The security mechanism to be used.

name The principal name for the user, as defined in
the KDC.

uid The UID for the user, as defined in the
password database.

-a Adds the UID to principal name mapping.

Example—Changing a Single Entry to the Credential Table
The following example adds an entry for the user named sandy, which is mapped to
UID 3736. The UID is pulled from the password file if it is not included on the
command line.

gsscred -m kerberos_v5 -n sandy -u 3736 -a

� How to Set Up a Secure NFS Environment With
Multiple Kerberos Security Modes

1. Become superuser on the NFS server.

Configuring SEAM 105

2. Edit the /etc/dfs/dfstab file and add the sec= option with the required security
modes to the appropriate entries.

share -F nfs -o sec=mode filesystem

mode The security modes to be used when sharing.
When using multiple security modes, the first
mode in the list is used as the default by
autofs.

filesystem The path to the file system to be shared.

All clients attempting to access files from the named file system require Kerberos
authentication. To complete accessing files, both the user principal and the root
principal on the NFS client should be authenticated.

3. Check to be sure the NFS service is running on the server.

If this is the first share command or set of share commands that you have initiated, it
is likely that the NFS daemons are not running. The following set of commands kill
the daemons and restart them.

/etc/init.d/nfs.server stop

/etc/init.d/nfs.server start

4. Optional: If autofs is being used, edit the auto_master data to select a security
mode other than the default.

You need not follow this procedure if you are not using autofs to access the file system
or if the default selection for the security mode is acceptable.

/home auto_home -nosuid,sec=krb5

5. Optional: Manually issue the mount command to access the file system using a
non-default mode.

Alternatively, you could use the mount command to specify the security mode, but
this does not take advantage of the automounter:

mount -F nfs -o sec=krb5p /export/home

Example—Sharing a File System With One Kerberos
Security Mode
This example will require Kerberos authentication before files can be accessed.

share -F nfs -o sec=krb5 /export/home

106 System Administration Guide: Security Services • December 2001 (Beta)

Example—Sharing a File System With Multiple Kerberos
Security Modes
In this example, all three Kerberos security modes have been selected. If no security
mode is specified when a mount request is made, the first mode listed is used on all
NFS V3 clients (in this case, krb5). Additional information can be found in “SEAM
Commands” on page 189.

share -F nfs -o sec=krb5:krb5i:krb5p /export/home

Configuring SEAM Clients
SEAM clients include any host, not a KDC server, on the network that needs to use
SEAM services. This section provides a procedure for installing a SEAM client, as well
as specific information about using root authentication to mount NFS file systems.

� How to Configure a SEAM Client
The following configuration parameters are used:

realm name = EXAMPLE.COM

DNS domain name = example.com

master KDC = kdc1.example.com

slave KDC = kdc2.example.com

client = client.example.com

admin principal = kws/admin

user principal = mre

online help URL =
http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

Note – Adjust the URL to point to the “SEAM Administration Tool” section, as
described in the SEAM Installation and Release Notes.

1. Prerequisites for configuring a SEAM client.

The SEAM client software must be installed.

Configuring SEAM 107

2. Edit the Kerberos configuration file (krb5.conf).

To change the file from the SEAM default version, you need to change the realm
names and the names of the servers, as well as identifying the path to the help files for
gkadmin.

kdc1 # cat /etc/krb5/krb5.conf
[libdefaults]

default_realm = EXAMPLE.COM

[realms]
EXAMPLE.COM = {
kdc = kdc1.example.com
kdc = kdc2.example.com
admin_server = kdc1.example.com

}

[domain_realm]
.example.com = EXAMPLE.COM

#
if the domain name and realm name are equivalent,
this entry is not needed
#
[logging]

default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log

[appdefaults]
gkadmin = {

help_url = http://denver:8888/ab2/coll.384.1/SEAM/@AB2PageView/6956

3. Optional: Synchronize with the master KDC’s clock using NTP or another clock
synchronization mechanism.

See “Synchronizing Clocks between KDCs and SEAM Clients” on page 110 for
information about NTP.

4. Optional: Create a user principal if one does not already exist.

You only need to create a user principal, if the user associated with this host does not
have a principal assigned already. See “How to Create a New Principal” on page 151
for instructions using the SEAM Administration Tool. A command line example is
shown below.

client1 # /usr/sbin/kadmin -p kws/admin
Enter password: <Enter kws/admin password>
kadmin: addprinc mre
Enter password for principal mre@EXAMPLE.COM: <type the password>
Re-enter password for principal mre@EXAMPLE.COM: <type it again>
kadmin:

5. Create a root principal.

kadmin: addprinc root/client1.example.com
Enter password for principal root/client1.example.com@EXAMPLE.COM: <type the password>

108 System Administration Guide: Security Services • December 2001 (Beta)

Re-enter password for principal root/client1.example.com@EXAMPLE.COM: <type it again>
kadmin: quit

6. (Optional) If you want a user on the SEAM client to automatically mount
Kerberized NFS file systems using Kerberos authentication, you must authenticate
the root user.

This process is done most securely by using the kinit command; however, users will
need to use kinit as root every time they need to mount a file system secured by
Kerberos. You can choose to use a keytab file instead. See “Setting Up Root
Authentication to Mount NFS File Systems” on page 110 for detailed information
about the keytab requirement.

client1 # /usr/bin/kinit root/client1.example.com

Password for root/client1.example.com@EXAMPLE.COM: <Enter password>

To use the keytab file option, add the root principal to the client’s keytab using
kadmin:

client1 # /usr/sbin/kadmin -p kws/admin
Enter password: <Enter kws/admin password>
kadmin: ktadd root/client1.example.com
kadmin: Entry for principal root/client.example.com with
kvno 3, encryption type DES-CBC-CRC added to keytab
WRFILE:/etc/krb5/krb5.keytab

kadmin: quit

7. If you want the client to warn users about Kerberos ticket expiration, create an entry
in the /etc/krb5/warn.conf file.

See warn.conf(4) for more information.

Example-Setting Up a SEAM Client Using a Non-SEAM
KDC
It is possible to set up a SEAM Client to work with a non-SEAM KDC. In this case, a
line must be included in /etc/krb5/krb5.conf in the realms section to change the
protocol used when communicating with the Kerberos password-changing server. The
format of this line is shown below.

[realms]
EXAMPLE.COM = {
kdc = kdc1.example.com
kdc = kdc2.example.com
admin_server = kdc1.example.com
kpasswd_protocol = SET_CHANGE

}

Configuring SEAM 109

Setting Up Root Authentication to Mount NFS File
Systems
If users want to access a non-Kerberized NFS file system, either the NFS file system
can be mounted as root, or the file system can be accessed automatically through the
automounter whenever they access it (without requiring root permissions).

Mounting a Kerberized NFS file system is very much the same, but it does incur an
additional obstacle. To mount a Kerberized NFS file system, users must use the kinit
command as root to obtain credentials for the client’s root principal, because a
client’s root principal is typically not in the client’s keytab. This is true even when the
automounter is set up. Not only is this an extra step, but it forces all users to know
their system’s root password and the root principal’s password.

To bypass this, you can add a client’s root principal to the client’s keytab, which will
automatically provide credentials for root. Although this enables users to mount NFS
file systems without running the kinit command and enhances ease-of-use, it is a
security risk. For example, if someone gains access to a system with the root
principal in its keytab, the person has the capability of obtaining credentials for root.
So make sure you take the appropriate security precautions. See “Administering
Keytabs” on page 172 for more information.

Synchronizing Clocks between KDCs
and SEAM Clients
All hosts participating in the Kerberos authentication system must have their internal
clocks synchronized within a specified maximum amount of time (known as clock
skew), which provides another Kerberos security check. If the clock skew is exceeded
between any of the participating hosts, client requests will be rejected.

The clock skew also determines how long application servers must keep track of all
Kerberos protocol messages, in order to recognize and reject replayed requests. So, the
longer the clock skew value, the more information that application servers have to
collect.

The default value for the maximum clock skew is 300 seconds (five minutes), which
you can change in the libdefaults section of the krb5.conf file.

110 System Administration Guide: Security Services • December 2001 (Beta)

Note – For security reasons, do not increase the clock skew beyond 300 seconds.

Since it is important to maintain synchronized clocks between the KDCs and SEAM
clients, it is recommended that you use the Network Time Protocol (NTP) software to
do this. The Network Time Protocol (NTP) public domain software from the
University of Delaware is included in the Solaris software starting with the Solaris 2.6
release.

Note – Another way to synchronize clocks is to use the rdate command and cron
jobs, which can be a less involved process than using NTP. However, this section will
continue to focus on using NTP. And, if you use the network to synchronize the clocks,
the clock synchronization protocol must itself be secure.

NTP enables you to manage precise time and/or network clock synchronization in a
network environment. NTP is basically a server/client implementation. You pick one
system to be the master clock (NTP server), and then you set up all your other systems
to synchronize their clocks with the master clock (NTP clients). This is all done
through the xntpd daemon, which sets and maintains a UNIX system time-of-day in
agreement with Internet standard time servers. Figure 8–1 shows an example of the
using the server/client NTP implementation.

xntpd

07:02:59

NTP Client
(Master KDC)

xntpd

07:02:59

NTP Client
(Application Server)

xntpd

07:02:59

NTP Client
(Slave KDC)

xntpd

07:02:59

NTP Client
(Kerberos Client)

xntpd

07:02:59

NTP Server

FIGURE 8–1 Synchronizing Clocks Using NTP

To ensure that the KDCs and SEAM clients maintain synchronized clocks, implement
the following steps:

Configuring SEAM 111

1. Set up an NTP server on your network (this can be any system except the master
KDC). See “How to Set Up an NTP Server” in System Administration Guide: Resource
Management and Network ServicesXRE.

2. As you configure the KDCs and SEAM clients on the network, set them up to be
NTP clients of the NTP server. See “How to Set Up an NTP Client” in System
Administration Guide: Resource Management and Network Services.

Swapping Master and Slave KDCs
These procedures should be used to make the swapping of a master with a slave KDC
easier. This should only be done if the master KDC server fails for some reason or if
the master needs to be re-installed (new hardware for example).

� How to Configure a Swappable Slave KDC
This procedure should be done on the slave KDC server that you want to have
available to become the master.

1. Use alias names for master and swappable slave KDC servers during the
installation.

When defining the hostnames for the KDCs, make sure that each system has an alias
included in DNS and use the alias names when defining the hosts in
/etc/krb5/krb5.conf.

2. Disable hostname checking in the KDC startup script on both master and
swappable slave.

Using alias names for the master and swappable slave KDC servers means that the
check which verifies that the current nodename is in /etc/krb5/krb5.conf before
starting the KDC server fails. To use the alias names so that the swapping is easy to
do, you need to comment out two lines in /etc/init.d/kdc as shown below:

if [-f $KDC_CONF_DIR/kdc.conf]
then

node=‘uname -n‘
if grep -i "kdc.*=.*$node" /etc/krb5/krb5.conf > /dev/null 2>&1 ;

then
$BINDIR/krb5kdc

fi
fi

;;

112 System Administration Guide: Security Services • December 2001 (Beta)

3. Install master KDC software.

Installing the master KDC software provides the binaries and other files that will be
needed during a swap, which includes all of the files that a slave KDC server requires.
Do not reboot the system when the installation is complete.

4. Follow steps to install a slave KDC.

Prior to any swapping, this server should function just like any other slave KDC in the
realm. See “How to Configure a Slave KDC” on page 97 for instructions. Do not install
the slave software. All of the files that are required are installed when the master
software is installed.

5. Move master KDC commands.

To prevent the master KDC commands from being run from this slave, move kprop,
kadmind and kadmin.local to a reserved place.

kdc4 # mv /usr/lib/krb5/kprop /usr/lib/krb5/kprop.save
kdc4 # mv /usr/lib/krb5/kadmind /usr/lib/krb5/kadmind.save

kdc4 # mv /usr/sbin/kadmin.local /usr/sbin/kadmin.local.save

6. Disable kadmind startup in /etc/init.d/kdc.master.

To prevent the slave from handling requests to change the KDC database, comment
out the line that starts kadmind in the script:

kdc4 # cat /etc/init.d/kdc.master

.

.

case "$1" in
’start’)

if [-f $KDC_CONF_DIR/kdc.conf]
then

$BINDIR/kadmind
fi

;;

7. Comment out kprop line in the root crontab file.

This step prevents the slave from propagating its copy of the KDC database.

kdc4 # crontab -e
#ident "@(#)root 1.19 98/07/06 SMI" /* SVr4.0 1.1.3.1 */
#
The root crontab should be used to perform accounting data collection.
#
The rtc command is run to adjust the real time clock if and when
daylight savings time changes.
#
10 3 * * 0,4 /etc/cron.d/logchecker
10 3 * * 0 /usr/lib/newsyslog
15 3 * * 0 /usr/lib/fs/nfs/nfsfind

Configuring SEAM 113

1 2 * * * [-x /usr/sbin/rtc] && /usr/sbin/rtc -c > /dev/null 2>&1
30 3 * * * [-x /usr/lib/gss/gsscred_clean] && /usr/lib/gss/gsscred_clean

#10 3 * * * /usr/lib/krb5kprop_script kdc1.example.sun.com #SUNWkr5ma

� How to Swap a Master and Slave KDC
This procedure requires that the slave KDC server has been set up as a swappable
slave (see “How to Configure a Swappable Slave KDC” on page 112). In this
procedure the master server that is being swapped out is named kdc1 and the slave
that will become the new master is named kdc4.

1. On the old master: Kill the kadmind process.

Killing the kadmind process prevents any changes from being made to the KDC
database.

kdc1 # /etc/init.d/kdc.master stop

2. On the old master: Comment out kprop line in the root crontab file.

This step prevents the old master from propagating its copy of the KDC database.

kdc1 # crontab -e
#ident "@(#)root 1.19 98/07/06 SMI" /* SVr4.0 1.1.3.1 */
#
The root crontab should be used to perform accounting data collection.
#
The rtc command is run to adjust the real time clock if and when
daylight savings time changes.
#
10 3 * * 0,4 /etc/cron.d/logchecker
10 3 * * 0 /usr/lib/newsyslog
15 3 * * 0 /usr/lib/fs/nfs/nfsfind
1 2 * * * [-x /usr/sbin/rtc] && /usr/sbin/rtc -c > /dev/null 2>&1
30 3 * * * [-x /usr/lib/gss/gsscred_clean] && /usr/lib/gss/gsscred_clean

#10 3 * * * /usr/lib/krb5/kprop_script kdc2.example.sun.com #SUNWkr5ma

3. On the old master: Disable kadmind startup in /etc/init.d/kdc.master.

To prevent the master from restarting kadmind if the server is rebooted, comment out
the line that starts kadmind in the script:

kdc1 # cat /etc/init.d/kdc.master

.

.

case "$1" in
’start’)

if [-f $KDC_CONF_DIR/kdc.conf]
then

$BINDIR/kadmind

114 System Administration Guide: Security Services • December 2001 (Beta)

fi

;;

4. On the old master: Run kprop_script to back up and propagate the database.

kdc1 # /usr/lib/krb5/kprop_script kdc4.example.com

Database propagation to kdc4.example.com: SUCCEEDED

5. On the old master: Move master KDC commands.

To prevent the master KDC commands from being run, move kprop, kadmind and
kadmin.local to a reserved place.

kdc4 # mv /usr/lib/krb5/kprop /usr/lib/krb5/kprop.save
kdc4 # mv /usr/lib/krb5/kadmind /usr/lib/krb5/kadmind.save

kdc4 # mv /usr/sbin/kadmin.local /usr/sbin/kadmin.local.save

6. On the DNS server: Change alias names for the master.

To change the servers, edit the example.com zone file and change the entry for
masterkdc.

masterkdc IN CNAME kdc4

7. On the DNS server: Restart internet domain name server.

Run the following command on both servers to get the new alias information:

pkill -1 in.named

8. On the new master: Move master KDC commands.

kdc4 # mv /usr/lib/krb5/kprop.save /usr/lib/krb5/kprop
kdc4 # mv /usr/lib/krb5/kadmind.save /usr/lib/krb5/kadmind

kdc4 # mv /usr/sbin/kadmin.local.save /usr/sbin/kadmin.local

9. On the new master: Create a keytab file for kadmin using kadmin.local.

This command sequence creates a special keytab file with principal entries for admin
and changepw. These principals are needed for the kadmind service.

kdc4 # /usr/sbin/kadmin.local
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kadmin/kdc4.example.com
Entry for principal kadmin/kdc4.example.com with kvno 3, encryption type DES-CBC-CRC

added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab changepw/kdc4.example.com
Entry for principal changepw/kdc4.example.com with kvno 3, encryption type DES-CBC-CRC

added to keytab WRFILE:/etc/krb5/kadm5.keytab.

kadmin.local: quit

10. On the new master: Enable kadmind startup in /etc/init.d/kdc.master.

kdc4 # cat /etc/init.d/kdc.master

.

.

Configuring SEAM 115

case "$1" in
’start’)

if [-f $KDC_CONF_DIR/kdc.conf]
then

$BINDIR/kadmind
fi

;;

11. On the new master: Start kadmind.

kdc4 # /etc/init.d/kdc.master start

12. Enable the kprop line in the root crontab file.

kdc4 # crontab -e
#ident "@(#)root 1.19 98/07/06 SMI" /* SVr4.0 1.1.3.1 */
#
The root crontab should be used to perform accounting data collection.
#
The rtc command is run to adjust the real time clock if and when
daylight savings time changes.
#
10 3 * * 0,4 /etc/cron.d/logchecker
10 3 * * 0 /usr/lib/newsyslog
15 3 * * 0 /usr/lib/fs/nfs/nfsfind
1 2 * * * [-x /usr/sbin/rtc] && /usr/sbin/rtc -c > /dev/null 2>&1
30 3 * * * [-x /usr/lib/gss/gsscred_clean] && /usr/lib/gss/gsscred_clean

10 3 * * * /usr/lib/krb5/kprop_script kdc1.example.sun.com #SUNWkr5ma

Administering the Kerberos Database
The Kerberos database is the backbone of Kerberos and must be maintained properly.
This section provides some of the procedures on how to administer the Kerberos
database, such as backing up and restoring the database, setting up parallel
propagation, and administering the stash file. The steps to set up the database initially
can be found in “How to Configure a Master KDC” on page 93.

Backing Up and Propagating the Kerberos
Database
Propagating the Kerberos database from the master KDC to the slave KDCs is one of
the most important configuration tasks. If propagation doesn’t happen often enough,
the master KDC and slave KDCs will become out-of-sync, so if the master KDC goes

116 System Administration Guide: Security Services • December 2001 (Beta)

down, the slave KDCs will not have the most recent database information. Also, if a
slave KDC has been configured as a master for purposes of load balancing, the clients
using that slave as a master KDC will not have the latest information. Therefore, it is
important to make sure the propagation occurs often enough, based on how often you
change the Kerberos database.

When you configure the master KDC, you set up the kprop_script in a cron job to
automatically back up the Kerberos database to the /var/krb5/slave_datatrans
dump file and propagate it to the slave KDCs. But, as with any file, the Kerberos
database can become corrupted. If this happens on one of the slave KDCs, you might
never notice, since the next automatic propagation of the database installs a fresh copy.
However, if it happens to the master KDC, the corrupted database is propagated to all
of the slaves during the next propagation. And, the corrupted backup overwrites the
previous uncorrupted backup file on the master KDC.

Because there is no “safe” backup copy in this scenario, you should also set up a cron
job to periodically copy the slave_datatrans dump file to another location or to
create another separate backup copy by using the dump command of kdb5_util.
Then, if your database becomes corrupted, you can restore the most recent backup on
the master KDC by using the load command of kdb5_util.

Another important note is that, because the database dump file contains principal
keys, you need to protect the file from being accessed by unauthorized users (by
default, the database dump file has read/write permissions only as root). This
includes using only the kprop command to propagate the database dump file, which
encrypts the data being transferred. Also, kprop propagates the data only to the slave
KDCs, which minimizes the chance of accidentally sending the database dump to
unauthorized hosts.

Caution – If the Kerberos database is updated after it has been propagated and if the
database subsequently is corrupted before the next propagation, the slaves will not
contain the updates: the updates will be lost. Because of this scenario, if you add
significant updates to the database before a regularly scheduled propagation, you
should manually propagate the database to avoid data loss.

kpropd.acl File
The kpropd.acl file on a KDC provides a list of host principal names, one per line,
that specifies the systems from which the KDC can receive an updated database
through the propagation mechanism. If the master KDC is used to propagate all the
slave KDCs, the kpropd.acl file on each slave needs to contain only the host
principal name of the master.

However, the SEAM installation and subsequent configuration steps in this guide
instruct you to add the same kpropd.acl file to the master and slave KDCs. The file
contains all the KDC host principal names. This configuration allows you to propagate

Configuring SEAM 117

from any KDC, in case the propagating KDCs become temporarily unavailable. And,
keeping an identical copy on all KDCs makes it easy to maintain.

kprop_script Command
The kprop_script command uses the kprop command to propagate the Kerberos
database to other KDCs. (If the kprop_script is run on a slave KDC, it propagates
the slave’s copy of the Kerberos database to other KDCs.) The kprop_script accepts
a list of host names for arguments, separated by spaces, which denote the KDCs to
propagate.

When the kprop_script is run, it creates a backup of the Kerberos database to the
/var/krb5/slave_datatrans file and copies the file to the specified KDCs. The
Kerberos database is locked until the propagation is finished.

� How to Back Up the Kerberos Database
1. Become superuser on the master KDC.

2. Back up the Kerberos database by using the dump command of kdb5_util.

/usr/sbin/kdb5_util dump [-verbose] [-d dbname] [filename [principals...]]

-verbose Prints the name of each principal and policy
that is being backed up.

dbname The name of the database to back up. Note
that ".db" is appended to whatever database
name is specified, and an absolute path for the
file can be specified. If the -d option is not
specified, the default database name is
/var/krb5/principal, which actually
becomes /var/krb5/principal.db.

filename The file to back up the database. An absolute
path for the file can be specified. If you don’t
specify a file, the database is dumped to
standard output.

principal A list of one or more principals (separated by
a space) to back up. You must use
fully-qualified principal names. If you don’t
specify principals, the entire database is
backed up.

118 System Administration Guide: Security Services • December 2001 (Beta)

Example—Backing Up the Kerberos Database
The following example backs up the Kerberos database to a file called dumpfile.
Because the -verbose option is specified, each principal is printed as it is backed up.

kbd5_util dump -verbose dumpfile
kadmin/kdc1.eng.example.com@ENG.EXAMPLE.COM
krbtgt/eng.example.com@ENG.EXAMPLE.COM
kadmin/history@ENG.EXAMPLE.COM
pak/admin@ENG.EXAMPLE.COM
pak@ENG.EXAMPLE.COM
changepw/kdc1.eng.example.com@ENG.EXAMPLE.COM

#

The following example backs up the pak and pak/admin principals from the
Kerberos database.

kdb5_util dump -verbose dumpfile pak/admin@ENG.EXAMPLE.COM pak@ENG.EXAMPLE.COM
pak/admin@ENG.EXAMPLE.COM
pak@ENG.EXAMPLE.COM

#

� How to Restore the Kerberos Database
1. Become superuser on the master KDC.

2. Restore the Kerberos database by using the load command of kdb_util.

/usr/sbin/kdb5_util load [-verbose] [-d dbname] [-update] [filename]

-verbose Prints the name of each principal and policy
that is being restored.

dbname The name of the database to restore. Note that
".db" is appended to whatever database name
is specified, and an absolute path for the file
can be specified. If the -d option is not
specified, the default database name is
/var/krb5/principal, which actually
becomes /var/krb5/principal.db.

-update Updates the existing database; otherwise a
new database is created or the existing
database is overwritten.

filename The file from which to restore the database. An
absolute path for the file can be specified.

Configuring SEAM 119

Example—Restoring the Kerberos Database
The following example restores the database called database1.db into the current
directory from the dumpfile file. Since the -update option isn’t specified, a new
database is created by the restore.

kdb5_util load -d database1 dumpfile

� How to Manually Propagate the Kerberos Database
to the Slave KDCs
This procedure shows you how to propagate the Kerberos database using the kprop
command. You can use this if you need to sync a slave KDC with the master KDC
outside the periodic cron job. And, unlike the kprop_script, you can use kprop to
propagate just the current database backup without first making a new backup of the
database.

1. Become superuser on the master KDC.

2. (Optional) Back up the database by using the kdb5_util command.

/usr/sbin/kdb5_util dump /var/krb5/slave_datatrans

3. Propagate the database to a slave KDC by using the kprop command.

/usr/lib/krb5/kprop -f /var/krb5/slave_datatrans slave_KDC

If you want to back up the database and propagate it to a slave KDC outside the
periodic cron job, you can also use the kprop_script command as follows:

/usr/lib/krb5/kprop_script slave_KDC

Setting Up Parallel Propagation
In most cases, the master KDC is used exclusively to propagate its database to the
slave KDCs. However, if your site has a lot of slave KDCs, you might want to consider
load-sharing the propagation process, known as parallel propagation.

Parallel propagation allows specific slave KDCs to share the propagation duties with
the master KDC. This enables the propagation to be done faster and to lighten the
work for the master KDC.

For example, say your site has one master and six slaves (shown in Figure 8–2), where
slave-1 through slave-3 consist of one logical grouping and slave-4 through
slave-6 consist of the other. To set up parallel propagation, you could have the

120 System Administration Guide: Security Services • December 2001 (Beta)

master KDC propagate the database to slave-1 and slave-4, and those slaves
could in turn propagate the database to the slaves in their group.

master

slave-1

slave-3slave-2

Propagation
Slaves slave-4

slave-6slave-5

FIGURE 8–2 Example Parallel Propagation Configuration

� How to Set Up Parallel Propagation
This is not a detailed step-by-step procedure, but a high-level list of configuration
steps to enable parallel propagation.

1. On the master KDC, change the kprop_script entry in its cron job to include
arguments for only the slaves that will perform the succeeding propagation
(propagation slaves).

2. On each propagation slave, add a kprop_script entry to its cron job, which must
include arguments for the slaves to propagate. To successfully propagate in
parallel, the cron job should be set up to run after the propagation slave is itself
propagated with the new database.

Note – Determining how long it will take for a propagation slave to be propagated
depends on factors such as network bandwidth and the size of the database.

3. On each slave KDC, set up the appropriate permissions to be propagated. This is
done by adding the host principal name of its propagating KDC to its
kpropd.acl file.

Example — Setting Up Parallel Propagation
Using the example in Figure 8–2, the master KDC’s kprop_script entry would look
something like this:

0 3 * * * /usr/lib/krb5/kprop_script slave-1.example.com slave-4.example.com

slave-1’s kprop_script entry would look something like this (note that the
propagation on the slave starts an hour after it is propagated by the master):

Configuring SEAM 121

0 4 * * * /usr/lib/krb5/kprop_script slave-2.example.com slave-3.example.com

The kpropd.acl file on the propagation slaves would have to contain the following
entry:

host/master.example.com@EXAMPLE.COM

The kpropd.acl file on the slaves being propagated by slave-1 would have to
contain the following entry:

host/slave-1.example.com@EXAMPLE.COM

Administering the Stash File
The stash file contains the master key for the Kerberos database, which is
automatically created when you create a Kerberos database. If the stash file gets
corrupted, you can use the stash command of kdb5_util(1M) to replace the
corrupted file. The only time you should need to remove a stash file is after removing
the Kerberos database with the destroy command of kdb5_util. Because the stash
file isn’t automatically removed with the database, you have to remove it to finish the
cleanup.

� How to Remove a Stash File
1. Become superuser on the KDC that contains the stash file.

2. Remove the stash file.

rm stash_file

stash_file The path to the stash file. By default, the stash file is located at
/var/krb5/.k5.realm.

If you need to recreate the stash file, you can use the -f option of the kdb5_util
command.

122 System Administration Guide: Security Services • December 2001 (Beta)

Increasing Security
These procedures list steps that you can use to increase security on SEAM application
servers and on KDC servers.

� How to Restrict Access for KDC servers
Both master and slave KDC servers have copies of the KDC database stored locally.
Restricting access to these servers so that the databases are secure is important to the
overall security of the SEAM installation.

1. Disable remote services in /etc/inetd.conf.

To provide a secure KDC server, all non-essential network services should be disabled
by commenting out the entry that starts the service in /etc/inetd.conf. In most
circumstances the only services that would need to run would be time and
krdb5_kprop. In addition, any services that use loopback tli (ticlts, ticotsord,
and ticots) can be left enabled. After editing, the file should look something like (to
shorten the example many comments have been removed):

kdc1 # cat /etc/inetd.conf
#
#ident "@(#)inetd.conf 1.33 98/06/02 SMI" /* SVr4.0 1.5 */
.
.

#name dgram udp wait root /usr/sbin/in.tnamed in.tnamed
#
#shell stream tcp nowait root /usr/sbin/in.rshd in.rshd
#login stream tcp nowait root /usr/sbin/in.rlogind in.rlogind
#exec stream tcp nowait root /usr/sbin/in.rexecd in.rexecd
#comsat dgram udp wait root /usr/sbin/in.comsat in.comsat
#talk dgram udp wait root /usr/sbin/in.talkd in.talkd
#
#uucp stream tcp nowait root /usr/sbin/in.uucpd in.uucpd
#
#finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd
#
Time service is used for clock synchronization.
#
time stream tcp nowait root internal
time dgram udp wait root internal
#
.
.

#
100234/1 tli rpc/ticotsord wait root /usr/lib/gss/gssd gssd
#dtspc stream tcp nowait root /usr/dt/bin/dtspcd /usr/dt/bin/dtspcd

Configuring SEAM 123

#100068/2-5 dgram rpc/udp wait root /usr/dt/bin/rpc.cmsd rpc.cmsd
100134/1 tli rpc/ticotsord wait root /usr/lib/ktkt_warnd kwarnd

krb5_prop stream tcp nowait root /usr/lib/krb5/kpropd kpropd

Reboot the server after the changes are made.

2. Restrict access to the hardware supporting the KDC.

In order to restrict physical access, make sure that the server and its monitor are
located in a secure facility. Normal users should not be able to access this server in any
way.

3. Store KDC database backups on local disks or on the slaves.

Making tape backups of your KDC should only be done if the tapes are stored
securely. This is also true for copies of keytab files. It would be best to store these files
on a local file system that is not shared to other systems. The storage file system can be
on either the master KDC server or any of the slaves.

124 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 9

SEAM Error Messages and
Troubleshooting

This chapter provides resolutions for error messages that you might receive, as well as
some troubleshooting tips for various problems when using SEAM. This is a list of the
error message and troubleshooting information in this chapter.

� “SEAM Administration Tool Error Messages” on page 125
� “Common SEAM Error Messages (A-M)” on page 126
� “Common SEAM Error Messages (N-Z)” on page 132
� “Problems With the Format of the krb5.conf File” on page 135
� “Problems Propagating the Kerberos Database” on page 135
� “Problems Mounting a Kerberized NFS File System” on page 136
� “Problems Authenticating as Root” on page 137

SEAM Error Messages
This section provides information about SEAM error messages, including why each
error occurred and a way to fix it.

SEAM Administration Tool Error Messages

Unable to view the list of principals or policies; use the Name
field.

Cause: The admin principal that you logged on with does not have the list
privilege (l) in the Kerberos ACL file (kadm5.acl), so you cannot view the
principal or policy lists.

125

Solution: The admin principal that you logged on with does not have the list
privilege (l) in the Kerberos ACL file (kadm5.acl), so you cannot view the
principal or policy lists.

JNI: Java array creation failed

JNI: Java class lookup failed

JNI: Java field lookup failed

JNI: Java method lookup failed

JNI: Java object lookup failed

JNI: Java object field lookup failed

JNI: Java string access failed

JNI: Java string creation failed
Cause: There is a serious problem with the Java Native Interface used by the SEAM
Administration Tool (gkadmin).

Solution: Exit gkadmin and restart it; if the problem persists, please report a bug.

Common SEAM Error Messages (A-M)
This section provides an alphabetical list (A-M) of the more common error messages
for the SEAM commands, SEAM daemons, PAM framework, GSS interface, and the
Kerberos library.

major_error minor_error gssapi error importing name
Cause: An error occurred while importing a service name.

Solution: Make sure the service principal is in the host’s keytab file.

Bad krb5 admin server hostname while initializing kadmin
interface

Cause: An invalid host name is configured for the admin server (master KDC) in
the krb5.conf file.

Solution: Make sure the correct host name is specified in the krb5.conf file for
the admin server (master KDC).

Cannot contact any KDC for requested realm
Cause: No KDC responded in the requested realm.

Solution: Make sure at least one KDC (either the master or slave) is reachable or
that the krb5kdc daemon is running on the KDCs. Look in
/etc/krb5/krb5.conf for the list of configured KDCs (kdc = kdc_name).

126 System Administration Guide: Security Services • December 2001 (Beta)

Cannot determine realm for host
Cause: Kerberos cannot determine the realm name for the host.

Solution: Make sure there is a default realm name or the domain name mappings
are set up in the Kerberos configuration file (krb5.conf) .

Cannot find KDC for requested realm
Cause: No KDC was found in the requested realm.

Solution: Make sure the Kerberos configuration file (krb5.conf) specifies a KDC
in the realm section.

cannot initialize realm realm_name
Cause: The KDC may not have a stash file.

Solution: Make sure the KDC has a stash file. If not, create one using the
kdb5_util(1M) command and try running krb5kdc again
(/etc/init.d/kdc).

Cannot resolve KDC for requested realm
Cause: Kerberos cannot determine any KDC for the realm.

Solution: Make sure the Kerberos configuration file (krb5.conf) specifies a KDC
in the realm section.

Cannot reuse password
Cause: The password you entered has been used before by this principal.

Solution: Choose a password that has not been chosen before, at least not within
the number of passwords kept in the KDC database for each principal (this is
enforced by the principal’s policy).

Can’t get forwarded credentials
Cause: Credential forwarding could not be established.

Solution: Make sure the principal has forwardable credentials.

Can’t open/find Kerberos configuration file
Cause: The Kerberos configuration file (krb5.conf) was not available.

Solution: Make sure the krb5.conf file is available in the correct location and has
the correct permissions (it should be writable by root and readable by everyone
else).

Client/server realm mismatch in initial ticket request
Cause: A realm mismatch between the client and server occurred in the initial
ticket request.

SEAM Error Messages and Troubleshooting 127

Solution: Make sure the server you are communicating with is in the same realm
as the client or that the realm configurations are correct.

Client or server has a null key
Cause: The principal has a null key.

Solution: Modify the principal to have a non-null key by using the cpw command
of kadmin(1M).

Communication failure with server while initializing kadmin
interface

Cause: The host entered for the admin server (master KDC) did not have kadmind
running.

Solution: Make sure you specified the correct host name for the master KDC. If
you specified the correct host name, make sure that kadmind is running on the
master KDC you specified.

Credentials cache file permissions incorrect
Cause: You do not have the appropriate read or write permissions on the
credentials cache (/tmp/krb5cc_uid).

Solution: Make sure you have read and write permissions on the credentials cache.

Credentials cache I/O operation failed XXX
Cause: Kerberos had a problem writing to the system’s credentials cache
(/tmp/krb5cc_uid).

Solution: Make sure the credentials cache has not been removed and there is space
left on the device by using the df command.

Decrypt integrity check failed
Cause: You might have an invalid ticket.

Solution:

1. Make sure your credentials are valid. Destroy your tickets with kdestroy and
create new tickets with kinit.

2. Make sure the target host has a keytab with the correct version of the service
key. Use kadmin(1M) to view the key version number of the service principal
(for example, host/FQDN_hostname) in the Kerberos database and use klist
-k on the target host to make sure it has the same key version number.

df: cannot statvfs filesystem: Invalid argument
Cause: The df command cannot access the Kerberized NFS file system, which is
currently mounted, to generate its report, because you no longer have the
appropriate root credentials. Destroying your credentials for a mounted Kerberized
file system does not automatically unmount the file system.

128 System Administration Guide: Security Services • December 2001 (Beta)

Solution: You must create new root credentials to access the Kerberized file system.
If you no longer require access to the Kerberized file system, unmount the file
system.

failed to obtain credentials cache
Cause: During kadmin initialization, a failure occurred when kadmin tried to
obtain credentials for the admin principal.

Solution: Make sure you used the correct principal and/or password when
executing kadmin.

Field is too long for this implementation
Cause: The message size being sent by a Kerberized application was too long. The
maximum message size that can be handled by Kerberos is 65535 bytes. In
addition, there are limits on individual fields within a protocol message sent by
Kerberos.

Solution: Make sure that your Kerberized applications are sending valid message
sizes.

GSS-API (or Kerberos) error
Cause: This is a generic GSS-API or Kerberos error message and can be caused by
several different problems.

Solution: Look at the /etc/krb5/kdc.log file to find the more specific GSS-API
error message that was logged when this error occurred.

Hostname cannot be canonicalized
Cause: Kerberos cannot make the host name fully qualified.

Solution: Make sure the host name is in DNS and the host-name-to-address and
address-to-host-name mappings are consistent.

Illegal cross-realm ticket
Cause: The ticket sent did not have the correct cross-realms. The realms may not
have the correct trust relationships set up.

Solution: Make sure the realms you are using have the correct trust relationships.

Improper format of Kerberos configuration file
Cause: The Kerberos configuration file (krb5.conf) has invalid entries.

Solution: Make sure all the relations in the krb5.conf file are followed by the "="
sign and a value, and verify that the brackets are present in pairs for each
subsection.

Inappropriate type of checksum in message
Cause: The message contained an invalid checksum type.

SEAM Error Messages and Troubleshooting 129

Solution: Check which valid checksum types are specified in the krb5.conf and
kdc.conf files.

Incorrect net address
Cause: There was a mismatch in the network address. The network address in the
ticket being forwarded was different from the network address where the ticket
was processed. This may occur when forwarding tickets.

Solution: Make sure the network addresses are correct; destroy your tickets with
kdestroy, and create new tickets with kinit.

Invalid flag for file lock mode
Cause: An internal Kerberos error occurred.

Solution: Please report a bug.

Invalid message type specified for encoding
Cause: Kerberos could not recognize the message type sent by the Kerberized
application.

Solution: If you are using a Kerberized application developed by your site or a
vendor, make sure it is using Kerberos correctly.

Invalid number of character classes
Cause: The password you entered for the principal does not contain enough
password classes, as enforced by the principal’s policy.

Solution: Make sure you enter a password with the minimum number of password
classes that the policy requires.

KADM err: Memory allocation failure
Cause: There is not enough memory to run kadmin.

Solution: Free up memory and try running kadmin again.

KDC can’t fulfill requested option
Cause: The KDC did not allow the requested option. A possible problem may be
that postdating or forwardable options were being requested and the KDC did not
allow it. Another problem may be that you requested the renewal of a TGT but you
didn’t have a renewable TGT.

Solution: Determine if you are requesting an option that either the KDC does not
allow or if you are requesting something you don’t have.

KDC policy rejects request
Cause: The KDC policy did not allow the request. For example, the request to the
KDC did not have an IP address in its request, or forwarding was requested but
the KDC did not allow it.

130 System Administration Guide: Security Services • December 2001 (Beta)

Solution: Make sure you are using kinit with the correct options. If necessary,
modify the policy associated with the principal or change the principal’s attributes
to allow the request. You can modify the policy or principal by using kadmin(1M).

KDC reply did not match expectations
Cause: The KDC reply did not contain the expected principal name, or other values
in the response were incorrect.

Solution: Make sure the KDC you are communicating with complies with
RFC1510, the request you are sending is a Kerberos V5 request, or that the KDC is
available.

Key table entry not found
Cause: There is no entry for the service principal in the network application
server’s keytab.

Solution: Add the appropriate service principal to the server’s keytab so it can
provide the Kerberized service.

Key version number for principal in key table is incorrect
Cause: A principal’s key version is different in the keytab and in the Kerberos
database. Either a service’s key has been changed or you may be using an old
service ticket.

Solution: If a service’s key has been changed (for example, by using kadmin) , you
need to extract the new key and store it in the host’s keytab where the service is
running.

Alternately, you may be using an old service ticket that has an older key. You may
want to do a kdestroy and then a kinit again.

login: load_modules: can not open module
/usr/lib/security/pam_krb5.so.1

Cause: Either the Kerberos PAM module is missing or it is not a valid executable
binary.

Solution: Make sure the Kerberos PAM module is in /usr/lib/security and it
is a valid executable binary. Also, make sure /etc/pam.conf contains the correct
path to pam_krb5.so.1.

Looping detected inside krb5_get_in_tkt
Cause: Kerberos made several attempts to get the initial tickets but failed.

Solution: Make sure at least one KDC is responding to authentication requests.

Master key does not match database
Cause: The loaded database dump was not created from a database containing the
master key, which is located in /var/krb5/.k5.REALM.

SEAM Error Messages and Troubleshooting 131

Solution: Make sure the master key in the loaded database dump matches the
master key located in /var/krb5/.k5.REALM.

Matching credential not found
Cause: The matching credential for request was not found. Your request requires
credentials that are not available in the credentials cache.

Solution: Destroy your tickets with kdestroy and create new tickets with kinit.

Message out of order
Cause: Messages sent using sequential-order privacy arrived out of order. Some
messages may have been lost in transit.

Solution: You should re-initialize the Kerberos session.

Message stream modified
Cause: There was a mismatch between the computed checksum and message
checksum. The message may have been modified while in transit, which may
indicate a security leak.

Solution: Make sure that the messages are being sent across the network correctly.
Since this message may also indicate possible tampering of messages while they
are being sent, destroy your tickets using kdestroy and reinitialize the Kerberos
services you are using.

Common SEAM Error Messages (N-Z)
This section provides an alphabetical list (N-Z) of the more common error messages
for the SEAM commands, SEAM daemons, PAM framework, and the Kerberos library.

No credentials cache file found
Cause: Kerberos could not find the credentials cache (/tmp/krb5cc_uid).

Solution: Make sure the credential file exists and is readable. If it isn’t, try
performing a kinit again.

Operation requires "privilege" privilege
Cause: The admin principal being used does not have the appropriate privilege
configured in the kadm5.acl file.

Solution: Use a principal that has the appropriate privileges or configure the
principal being used to have the appropriate privileges by modifying the
kadm5.acl file. Usually, a principal with “/admin” as part of its name has the
appropriate privileges.

132 System Administration Guide: Security Services • December 2001 (Beta)

PAM-KRB5: Kerberos V5 authentication failed: password incorrect
Cause: Your UNIX password and Kerberos passwords are different. Most
non-Kerberized commands, such as login, are set up through PAM to
automatically authenticate with Kerberos by using the same password that you
specified for your UNIX password. If your passwords are different, the Kerberos
authentication fails.

Solution: You must enter your Kerberos password when prompted.

Password is in the password dictionary
Cause: The password that you entered is in a password dictionary that is being
used. It is not a good choice for a password.

Solution: Choose a password that has a mix of password classes.

Permission denied in replay cache code
Cause: The system’s replay cache could not be opened. The server may have been
first run under a user ID different than your current user ID.

Solution: Make sure the replay cache has the appropriate permissions. The replay
cache is stored on the host where the Kerberized server application is running
(/usr/tmp/rc_service_name). Instead of changing the permissions on the current
replay cache, you can also remove the replay cache before running the Kerberized
server under a different user ID.

Protocol version mismatch
Cause: Most likely a Kerberos V4 request was sent to the KDC. SEAM supports
only the Kerberos V5 protocol.

Solution: Make sure your applications are using the Kerberos V5 protocol.

Request is a replay
Cause: The request has already been sent to this server and processed. The tickets
may have been stolen and someone else is trying to reuse the tickets.

Solution: Wait for a few minutes and re-issue the request.

Requested principal and ticket don’t match
Cause: The service principal you are connecting to and the service ticket you have
do not match.

Solution: Make sure DNS is functioning properly. If you are using another
vendor’s software, make sure it is using principal names correctly.

Requested protocol version not supported
Cause: Most likely a Kerberos V4 request was sent to the KDC. SEAM supports
only the Kerberos V5 protocol.

SEAM Error Messages and Troubleshooting 133

Solution: Make sure your applications are using the Kerberos V5 protocol.

Required parameters in krb5.conf missing while initializing
kadmin interface

Cause: There is a missing parameter (such as the admin_server parameter) in the
krb5.conf file.

Solution: Determine what the missing parameter is and add it to krb5.conf.

Server rejected authentication (during sendauth exchange)
Cause: The server you are trying to communicate with rejected the authentication.
Most often this error occurs when doing Kerberos database propagation. Some
common causes may be problems with the kpropd.acl file, DNS, or keytabs.

Solution: If you get this error when running applications other than kprop,
investigate whether the server’s keytab is correct.

The ticket isn’t for us

Ticket/authenticator don’t match
Cause: There was a mismatch between the ticket and authenticator. The principal
name in the request may not have matched the service principal’s name, because
the ticket was being sent with an FQDN name of the principal while the service
expected non-FQDN or vice versa.

Solution: If you get this error when running applications other than kprop,
investigate whether the server’s keytab is correct.

Ticket expired
Cause: Your ticket times have expired.

Solution: Destroy your tickets with kdestroy and create new tickets with kinit.

Ticket is ineligible for postdating
Cause: The principal does not allow its tickets to be postdated.

Solution: Modify the principal with kadmin(1M) to allow postdating.

Ticket not yet valid
Cause: The postdated ticket is not valid yet.

Solution: Create new tickets with the correct date or wait until the current tickets
are valid.

Truncated input file detected
Cause: The database dump file being used in the operation is not a complete dump
file.

Solution: Create the dump file again or use a different database dump file.

134 System Administration Guide: Security Services • December 2001 (Beta)

Wrong principal in request
Cause: There was an invalid principal name in the ticket. It may be a DNS or
FQDN problem.

Solution: Make sure the principal of the service matches the principal in the ticket.

SEAM Troubleshooting
This section provides troubleshooting information for the SEAM software.

Problems With the Format of the krb5.conf File
If the krb5.conf file is not formatted properly, the telnet command will fail.
However, the dtlogin and login commands will still succeed, even if the
krb5.conf file is specified as required for the commands. If this occurs, the following
error message is displayed:

Error initializing krb5: Improper format of Kerberos configuration

If there is a problem with the format of the krb5.conf file, you are vulnerable to
security breaches. You should fix the problem before allowing SEAM features to be
used.

Problems Propagating the Kerberos Database
If propagating the Kerberos database fails, try /usr/krb5/bin/rlogin -x between
the slave KDC and master KDC and vice versa.

SEAM Error Messages and Troubleshooting 135

Note – If the KDCs have been set up to restrict access, rlogin is disabled and cannot
be used to troubleshoot this problem. To enable rlogin on a KDC, you must
uncomment the eklogin entry in the /etc/inetd.conf file and restart inetd, as
follows:

ps -eaf | grep inetd displays the process ID of inetd
kill -1 pid_of_inetd

After you finish troubleshooting the problem, you need to change the inetd.conf
file back to its original state and restart inetd again.

If rlogin does not work, problems are likely to be the keytabs on the KDCs. If
rlogin does work, the problem is not in the keytab or the name service, since
rlogin and the propagation software use the same host/host_name principal. In this
case, make sure the kpropd.acl file is correct.

Problems Mounting a Kerberized NFS File System
� If mounting a Kerberized NFS file system fails, make sure the /var/tmp/rc_nfs

file exists on the NFS server. If it is not owned by root, remove it and try the mount
again.

� If you have a problem accessing a Kerberized NFS file system, make sure there is
an entry for gssd in the inetd.conf file on your system and the NFS server.

� If you see either the invalid argument or bad directory error message when
trying to access a Kerberized NFS file system, the problem may be that you are not
using a fully-qualified DNS name when trying to mount the NFS file system. The
host being mounted is not the same as the host name part of the service principal
in the server’s keytab.

This may also occur if your server has multiple ethernet interfaces and you have
set up DNS to use a “name per interface” scheme instead of a “multiple address
records per host” scheme. For SEAM, you should set up multiple address records
per host as follows1 :

my.host.name. A 1.2.3.4
A 1.2.4.4
A 1.2.5.4

my-en0.host.name. A 1.2.3.4
my-en1.host.name. A 1.2.4.4
my-en2.host.name. A 1.2.5.4

4.3.2.1 PTR my.host.name.

1 Ken Hornstein, “Kerberos FAQ,” [http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html], accessed 11 December
1998.

136 System Administration Guide: Security Services • December 2001 (Beta)

4.4.2.1 PTR my.host.name.

4.5.2.1 PTR my.host.name.

In this example, the setup allows one reference to the different interfaces and allows a
single service principal instead of three service principals in the server’s keytab.

Problems Authenticating as Root
If the authentication fails when you try to become superuser on your system and you
have already added the root principal to your host’s keytab, there are two potential
problems to check. First, make sure the root principal in the keytab has a
fully-qualified name as its instance. If it does, check the /etc/resolv.conf file to
make sure the system is correctly set up as a DNS client.

SEAM Error Messages and Troubleshooting 137

138 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 10

Administering Principals and Policies

This chapter provides procedures for managing principals and the policies associated
with them. It also shows how to manage a host’s keytab.

This chapter should be used by anyone who needs to administer principals and
policies. Before using this chapter, you should be familiar with principals and policies,
including any planning considerations. Refer to Chapter 6 and Chapter 7 respectively.

This is a list of step-by-step instructions in this chapter.

� “How to View the List of Principals” on page 147
� “How to View a Principal’s Attributes” on page 149
� “How to Create a New Principal” on page 151
� “How to Duplicate a Principal” on page 153
� “How to Modify a Principal” on page 153
� “How to Delete a Principal” on page 155
� “How to Set Up Defaults for Creating New Principals” on page 155
� “How to Modify the Kerberos Administration Privileges” on page 156
� “How to View the List of Policies” on page 159
� “How to View a Policy’s Attributes” on page 161
� “How to Create a New Policy” on page 163
� “How to Duplicate a Policy” on page 165
� “How to Modify a Policy” on page 165
� “How to Delete a Policy” on page 166
� “How to Add a Service Principal to a Keytab” on page 173
� “How to Remove a Service Principal From a Keytab” on page 174
� “How to Display the Keylist (Principals) in a Keytab” on page 175
� “How to Temporarily Disable Authentication for a Service on a Host” on page 176

139

Ways to Administer Principals and
Policies
The Kerberos database on the master KDC contains all of your realm’s Kerberos
principals, their passwords, policies, and other administrative information. To create
and delete principals, and modify their attributes, you can use the kadmin(1M) or
gkadmin(1M) commands.

The kadmin command provides an interactive command-line interface that enables
you to maintain Kerberos principals, policies, and keytabs. There are two versions of
the kadmin command: kadmin, which uses Kerberos authentication to operate
securely from anywhere on the network, and kadmin.local, which must be run
directly on the master KDC. Other than kadmin using Kerberos to authenticate the
user, the functionality of the two versions is identical. The local version is necessary to
enable you to set up enough of the database to be able to use the remote version.

Also, provided with the SEAM product is the SEAM Administration Tool, gkadmin,
which is an interactive graphical user interface (GUI) that essentially provides the
same functionality as the kadmin command. See “SEAM Administration Tool”
on page 140 for more information.

SEAM Administration Tool
The SEAM Administration Tool is an interactive graphical user interface (GUI) that
enables you to maintain Kerberos principals and policies. It provides much the same
functionality as the kadmin command; however, it does not support the management
of keytabs. You must use the kadmin command to administer keytabs, which is
described in “Administering Keytabs” on page 172.

Like the kadmin command, the SEAM Tool uses Kerberos authentication and
encrypted RPC to operate securely from anywhere on the network. The SEAM Tool
enables you to:

� Create new principals based on default values or existing principals
� Create new policies based on existing policies
� Add comments for principals
� Set up default values for creating new principals
� Log in as another principal without exiting the tool
� Print or save principal and policy lists
� View and search principal and policy lists

140 System Administration Guide: Security Services • December 2001 (Beta)

The SEAM Tool also provides context-sensitive and general online help.

The following task maps provide pointers to the various tasks you can do with the
SEAM Tool:

� “Administering Principals Task Map” on page 146
� “Administering Policies Task Map” on page 158

Also, go to “SEAM Tool Panel Descriptions” on page 167 for descriptions of all the
principal and policy attributes you can either specify or view in the SEAM Tool.

Command-Line Equivalents of the SEAM Tool
This section lists the kadmin commands that provide the same functionality as the
SEAM Tool and can be used without running an X Window system. Even though most
of the procedures in this chapter use the SEAM Tool, many of the procedures also
provide corresponding examples using the command-line equivalents.

TABLE 10–1 Command-Line Equivalents of the SEAM Tool

Procedure kadmin Command

Viewing the list of principals list_principals or get_principals

Viewing a principal’s attributes get_principal

Creating a new principal add_principal

Duplicating a principal No command-line equivalent

Modifying a principal modify_principal and
change_password

Deleting a principal delete_principal

Setting up defaults for creating new principals No command-line equivalent

Viewing the list of policies list_policies or get_policies

Viewing a policy’s attributes get_policy

Creating a new policy add_policy

Modifying a policy modify_policy

Duplicating a policy No command-line equivalent

Deleting a policy delete_policy

Administering Principals and Policies 141

Files Modified by the SEAM Tool
The only file that the SEAM Tool modifies is the $HOME/.gkadmin file. It contains the
default values for creating new principals and can be updated by choosing Properties
from the Edit menu.

Print and Online Help Features of the SEAM Tool
The SEAM Tool provides both print and online help features. From the Print menu,
you can send the following to a printer or a file:

� List of available principals on the specified master KDC
� List of available policies on the specified master KDC
� The currently selected or loaded principal
� The currently selected or loaded policy

From the Help menu, you can obtain context-sensitive help and general help. When
you choose Context-Sensitive Help from the Help menu, the Context-Sensitive Help
window is displayed and the tool is switched to help mode. In help mode, when you
click on any of the fields, labels, or buttons on the window, help on that item is
displayed in the Help window. To switch back to the tool’s normal mode, click
Dismiss in the Help window.

You can also choose Help Contents, which opens an HTML browser that provides
pointers to the general overview and task information that is provided in this chapter.

Working With Large Lists in the SEAM Tool
As your site starts accumulating a large number of principals and policies, the time it
takes the SEAM Tool to load and display the principal and policy lists will become
increasingly longer and will slow down your productivity with the tool. There are
several ways to work around this.

First, you can completely eliminate the time to load the lists by not having the SEAM
Tool load the lists. You can set this option by choosing Properties from the Edit menu
and unchecking the Show Lists field. Of course, when the tool doesn’t load the lists, it
can’t display the lists and you can no longer use the list panels to select principals or
policies. Instead, you must enter a principal or policy name in the new Name field that
is provided, then select the operation you want to perform on it. Basically, entering a
name becomes equivalent to selecting an item from the list.

Another way to work with large lists is to cache them. In fact, caching the lists for a
limited time is set as the default behavior for the SEAM Tool. The SEAM Tool must
still initially load the lists into the cache, but after that, the tool can use the cache

142 System Administration Guide: Security Services • December 2001 (Beta)

rather than retrieving the lists again. This eliminates the need to keep loading the lists
from the server, which is what takes so long.

You can set list caching by also choosing Properties from the Edit menu. There are two
cache settings. You can choose to cache the list forever, or you can specify a time limit
when the tool must reload the lists from the server into the cache.

Caching the lists still enables you to use the list panels to select principals and policies,
so it doesn’t affect how you use the SEAM Tool like the first option does. Also, even
though caching doesn’t enable you to see the changes of others, you are still able to
see the latest list information based on your changes, since your changes update the
lists both on the server and in the cache. And, if you want to update the cache to see
the changes of others and get the lastest copy of the lists, you can use the Refresh
menu whenever you want to refresh the cache from the server.

� How to Start the SEAM Tool
1. Start the SEAM Tool by using the gkadmin command.

$ /usr/sbin/gkadmin

The Login window is displayed.

2. If you don’t want to use the default values, specify new ones.

The Login window automatically fills in with default values. The default principal
name is determined by taking your current identity from the USER environment
variable and appending /admin to it (username/admin). The default Realm and
Master KDC fields are selected from the /etc/krb5/krb5.conf file. If you ever
want to go back to the default values, click Start Over.

Administering Principals and Policies 143

Note – The administration operations that the principal name can perform are
dictated by the Kerberos ACL file, /etc/krb5/kadm5.acl. See “Using the SEAM
Tool With Limited Kerberos Administration Privileges” on page 170 for information
about limited privileges.

3. Enter a password for the specified principal name.

144 System Administration Guide: Security Services • December 2001 (Beta)

4. Click OK.

The following window is displayed.

Administering Principals
This section provides the step-by-step instructions to administer principals using the
SEAM Tool. It also provides command-line equivalent examples, when available,

Administering Principals and Policies 145

using the kadmin command after each procedure.

Administering Principals Task Map
TABLE 10–2 Administering Principals Task Map

Task Description For Instructions, Go To ...

View the List of Principals View the list of principals by clicking the
Principals tab.

“How to View the List of
Principals” on page 147

View a Principal’s Attributes View a principal’s attributes by selecting the
Principal in the Principal List and clicking the
Modify button.

“How to View a Principal’s
Attributes” on page 149

Create a New Principal Create a new principal by clicking the Create
New button in the Principal List panel.

“How to Create a New Principal”
on page 151

Duplicate a Principal Duplicate a principal by selecting the principal
to duplicate in the Principal List and clicking
the Duplicate button.

“How to Duplicate a Principal”
on page 153

Modify a Principal Modify a principal by selecting the principal to
modify in the Principal List and clicking the
Modify button.

Note that you cannot modify a principal’s
name. To rename a principal, you must
duplicate the principal, specify a new name for
it, save it, and then delete the old principal.

“How to Modify a Principal”
on page 153

Delete a Principal Delete a principal by selecting the principal to
delete in the Principal List and clicking the
Delete button.

“How to Delete a Principal”
on page 155

Set Up Defaults for Creating
New Principals

Set up defaults for creating new principals by
choosing Properties from the Edit menu.

“How to Set Up Defaults for
Creating New Principals”
on page 155

Modify the Kerberos
Administration Privileges
(kadm5.acl File)

Command line only. The Kerberos
administration privileges determine what
operations a principal can perform on the
Kerberos database, such as add and modify.
You need to edit the /etc/krb5/kadm5.acl
file to modify the Kerberos administration
privileges for each principal.

“How to Modify the Kerberos
Administration Privileges”
on page 156

146 System Administration Guide: Security Services • December 2001 (Beta)

Automating the Creation of New Principals
Even though the SEAM Tool provides ease-of-use, it doesn’t provide a way to
automate the creation of new principals. Automation is especially useful if you need to
add ten or even 100 new principals in a short amount of time. However, by using the
kadmin.local command in a Bourne shell script, you can do just that.

The following shell script line is an example of how to do this:

sed -e ’s/^\(.*\)$/ank +needchange -pw \1 \1/’ < princnames |

time /usr/sbin/kadmin.local> /dev/null

This example has been split over two lines to make it more readable. The script reads
in a file called princnames that contains principal names and their passwords and
adds them to the Kerberos database. You would have to create the princnames file to
contain a principal name and its password on each line, separated by one or more
spaces. The +needchange option configures the principal so the user is prompted for
a new password when logging in with the principal for the first time, which helps
ensure that the passwords in the princnames file are not a security risk.

This is just one example. You can build more elaborate scripts, such as using the
information in the name service to obtain the list of user names for the principal
names. What you do and how you do it is up to your site needs and your scripting
expertise.

� How to View the List of Principals
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Principals tab.

The list of principals is displayed.

Administering Principals and Policies 147

3. To display a specific principal or sublist of principals, enter a filter string in the
Filter Pattern field and press return. If the filter succeeds, the list of principals
matching the filter is displayed.

The filter string must consist of one or more characters. Because the filter mechanism
is case sensitive, you need to use the appropriate uppercase and lowercase letters for
the filter. For example, if you enter the filter string ge, the filter mechanism will
display only the principals with the ge string in them (for example, george or edge).

If you want to display the entire list of principals, click Clear Filter.

148 System Administration Guide: Security Services • December 2001 (Beta)

Example—Viewing the List of Principals (Command Line)
The following example uses the list_principals command of kadmin to list all
the principals that match test*. Wildcards can be used with the list_principals
command.

kadmin: list_principals test*
test1@EXAMPLE.COM
test2@EXAMPLE.COM

kadmin: quit

� How to View a Principal’s Attributes
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Principals tab.

3. Select the principal in the list that you want to view and click Modify.

The Principal Basics panel containing some of the principal’s attributes is displayed.

4. Continue to click Next to look at all the principal’s attributes.

Three windows contain attribute information. Choose Context-Sensitive Help from the
Help menu to get information about the various attributes in each window. Or, go to
“SEAM Tool Panel Descriptions” on page 167 for all the principal attribute
descriptions.

5. When you are finished viewing, click Cancel.

Example—Viewing a Principal’s Attributes
The following example shows the first window when viewing the jdb/admin
principal.

Administering Principals and Policies 149

Example—Viewing a Principal’s Attributes (Command
Line)
The following example uses the get_principal command of kadmin to view the
attributes of the jdb/admin principal.

kadmin: getprinc jdb/admin
Principal: jdb/admin@EXAMPLE.COM
Expiration date: Fri Aug 25 17:19:05 PDT 2000
Last password change: [never]
Password expiration date: Wed Apr 14 11:53:10 PDT 1999

150 System Administration Guide: Security Services • December 2001 (Beta)

Maximum ticket life: 1 day 16:00:00
Maximum renewable life: 1 day 16:00:00
Last modified: Thu Jan 14 11:54:09 PST 1999 (admin/admin@EXAMPLE.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 1
Key: vno 1, DES cbc mode with CRC-32, no salt
Attributes: REQUIRES_HW_AUTH
Policy: [none]

kadmin: quit

� How to Create a New Principal
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

Note – If you are creating a new principal that may need a new policy, you should
create the new policy before creating the new principal. Go to “How to Create a New
Policy” on page 163.

2. Click the Principals tab.

3. Click New.

The Principal Basics panel containing some of the attributes for a principal is
displayed.

4. Specify a principal name and password.

Both the principal name and password are mandatory.

5. Specify values for the principal’s attributes and continue to click Next to specify
more attributes.

Three windows contain attribute information. Choose Context-Sensitive Help from the
Help menu to get information about the various attributes in each window. Or, go to
“SEAM Tool Panel Descriptions” on page 167 for all the principal attribute
descriptions.

6. Click Save to save the principal, or click Done on the last panel.

7. If needed, set up Kerberos administration privileges for the new principal in the
/etc/krb5/kadm5.acl file.

See “How to Modify the Kerberos Administration Privileges” on page 156 for more
details.

Administering Principals and Policies 151

Example—Creating a New Principal
The following example shows the Principal Basics panel when creating a new
principal called pak. So far, the policy has been set to testuser.

Example—Creating a New Principal (Command Line)
The following example uses the add_principal command of kadmin to create a
new principal called pak. The principal’s policy is set to testuser.

152 System Administration Guide: Security Services • December 2001 (Beta)

kadmin: add_principal -policy testuser pak
Enter password for principal "pak@EXAMPLE.COM": <type the password>
Re-enter password for principal "pak@EXAMPLE.COM": <type the password again>
Principal "pak@EXAMPLE.COM" created.

kadmin: quit

� How to Duplicate a Principal
This procedure explains how to use all or some of the attributes of an existing
principal to create a new principal. There is no command-line equivalent for this
procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Principals tab.

3. Select the principal in the list that you want to duplicate and click Duplicate.

The Principal Basics panel is displayed. All the attributes of the selected principal are
duplicated except for the Principal Name and Password fields, which are empty.

4. Specify a principal name and password.

Both the principal name and password are mandatory. If you want to make an exact
duplicate of the principal you selected, click Save and skip to the last step.

5. Specify different values for the principal’s attributes and continue to click Next to
specify more attributes.

Three windows contain attribute information. Choose Context-Sensitive Help from the
Help menu to get information about the various attributes in each window. Or, go to
“SEAM Tool Panel Descriptions” on page 167 for all the principal attribute
descriptions.

6. Click Save to save the principal, or click Done on the last panel.

7. If needed, set up Kerberos administration privileges for the principal in
/etc/krb5/kadm5.acl file.

See “How to Modify the Kerberos Administration Privileges” on page 156 for more
details.

� How to Modify a Principal
An example of the corresponding command-line equivalent follows this procedure.

Administering Principals and Policies 153

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Principals tab.

3. Select the principal in the list that you want to modify and click Modify.

The Principal Basics panel containing some of the attributes for the principal is
displayed.

4. Modify the principal’s attributes and continue to click Next to modify more
attributes.

Three windows contain attribute information. Choose Context-Sensitive Help from the
Help menu to get information about the various attributes in each window. Or, go to
“SEAM Tool Panel Descriptions” on page 167 for all the principal attribute
descriptions.

Note – You cannot modify a principal’s name. To rename a principal, you must
duplicate the principal, specify a new name for it, save it, and then delete the old
principal.

5. Click Save to save the principal, or click Done on the last panel.

6. Modify the Kerberos administration privileges for the principal in the
/etc/krb5/kadm5.acl file.

See “How to Modify the Kerberos Administration Privileges” on page 156 for more
details.

Example—Modifying a Principal’s Password (Command
Line)
The following example uses the change_password command of kadmin to modify
the password for the jdb principal. change_password does not let you change the
password to one that is in the principal’s password history.

kadmin: change_password jdb
Enter password for principal "jdb": <type the new password>
Re-enter password for principal "jdb": <type the password again>
Password for "jdb@EXAMPLE.COM" changed.

kadmin: quit

To modify other attributes for a principal, you must use the modify_principal
command of kadmin.

154 System Administration Guide: Security Services • December 2001 (Beta)

� How to Delete a Principal
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Principals tab.

3. Specify the principal in the list that you want to delete and click Delete.

After you confirm the deletion, the principal is deleted.

4. Remove the principal from the Kerberos ACLs file, /etc/krb5/kadm5.acl.

See “How to Modify the Kerberos Administration Privileges” on page 156 for more
details.

Example—Deleting a Principal (Command Line)
The following example uses the delete_principal command of kadmin to delete
the jdb principal.

kadmin: delete_principal pak
Are you sure you want to delete the principal "pak@EXAMPLE.COM"? (yes/no): yes
Principal "pak@EXAMPLE.COM" deleted.
Make sure that you have removed this principal from all ACLs before reusing.

kadmin: quit

� How to Set Up Defaults for Creating New
Principals
There is no command-line equivalent for this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Choose Properties from the Edit Menu.

The Properties window is displayed.

Administering Principals and Policies 155

3. Select the defaults you want when you create new principals.

Choose Context-Sensitive Help from the Help menu to get information about the
various attributes in each window.

4. Click Save.

� How to Modify the Kerberos Administration
Privileges
Even though your site probably has a lot of user principals, you usually want only a
few users to be able to administer the Kerberos database. Privileges to administer the
Kerberos database are determined by the Kerberos Access Control List (ACL) file,
kadm5.acl(4). The kadm5.acl file enables you to allow or disallow privileges for
individual principals, or you can use the ’*’ wildcard in the principal name to specify
privileges for groups of principals.

156 System Administration Guide: Security Services • December 2001 (Beta)

1. Become superuser on the master KDC.

2. Edit the /etc/krb5/kadm5.acl file.

An entry in the kadm5.acl file must have the following format:

principal privileges [principal_target]

principal The principal to which the privileges are granted. Any part of the
principal name can include the ’*’ wildcard, which is useful for
providing the same privileges for a group of principals. For
example, if you wanted to specify all principals with the admin
instance, you would use */admin@realm. Note that a common
use of an admin instance is to grant separate privileges (such as
administration access to the Kerberos database) to a separate
Kerberos principal. For example, the user jdb might have a
principal for his administrative use, called jdb/admin. This way,
jdb obtains jdb/admin tickets only when he actually needs to
use those privileges.

privileges Specifies what operations can or cannot be performed by the
principal. This is a string of one or more of the following list of
characters or their uppercase counterparts. If the character is
uppercase (or not specified), then the operation is disallowed. If
the character is lowercase, then the operation is permitted.

a [Dis]allows the addition of
principals or policies.

d [Dis]allows the deletion of
principals or policies.

m [Dis]allows the modification of
principals or polices.

c [Dis]allows the changing of
passwords for principals.

i [Dis]allows inquiries to the
database.

l [Dis]allows the listing of principals
or policies in the database.

x or * Allows all privileges (admcil).

principal_target When a principal is specified in this field, the privileges apply to
principal only when it operates on the principal_target. Any part of
the principal name can include the ’*’ wildcard, which is useful to
group principals.

Administering Principals and Policies 157

Example—Modifying the Kerberos Administration
Privileges
The following entry in the kadm5.acl file gives any principal in the EXAMPLE.COM
realm with the admin instance all the privileges on the database.

*/admin@EXAMPLE.COM *

The following entry in the kadm5.acl file gives the jdb@EXAMPLE.COM principal the
privilege to add, list, and inquire about any principal that has the root instance.

jdb@EXAMPLE.COM ali */root@EXAMPLE.COM

Administering Policies
This section provides step-by-step instructions to administer policies using the SEAM
Tool. It also provides command-line equivalent examples, when available, using the
kadmin command after each procedure.

Administering Policies Task Map
TABLE 10–3 Administering Policies Task Map

Task Description For Instructions, Go To ...

View the List of Policies View the list of policies by clicking the Policies
tab.

“How to View the List of
Policies” on page 159

View a Policy’s Attributes View a policy’s attributes by selecting the
Policy in the Policy List and clicking the
Modify button.

“How to View a Policy’s
Attributes” on page 161

Create a New Policy Create a new policy by clicking the Create
New button in the Policy List panel.

“How to Create a New Policy”
on page 163

Duplicate a Policy Duplicate a policy by selecting the policy to
duplicate in the Policy List and clicking the
Duplicate button.

“How to Duplicate a Policy”
on page 165

158 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 10–3 Administering Policies Task Map (Continued)
Task Description For Instructions, Go To ...

Modify a Policy Modify a policy by selecting the policy to
modify in the Policy List and clicking the
Modify button.

Note that you cannot modify a policy’s name.
To rename a policy, you must duplicate the
policy, specify a new name for it, save it, and
then delete the old policy.

“How to Modify a Policy”
on page 165

Delete a Policy Delete a policy by selecting the policy to delete
in the Policy List and clicking the Delete
button.

“How to Delete a Policy”
on page 166

� How to View the List of Policies
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Policies tab.

The list of policies is displayed.

Administering Principals and Policies 159

3. To display a specific principal or sublist of policies, enter a filter string in the Filter
Pattern field and press return. If the filter succeeds, the list of policies matching the
filter is displayed.

The filter string must consist of one or more characters. And, because the filter
mechanism is case sensitive, you need to use the appropriate uppercase and lowercase
letters for the filter. For example, if you enter the filter string ge, the filter mechanism
will display only the policies with the ge string in them (for example, george or
edge).

If you want to display the entire list of policies, click Clear Filter.

160 System Administration Guide: Security Services • December 2001 (Beta)

Example—Viewing the List of Policies (Command Line)
The following example uses the list_policies command of kadmin to list all the
policies that match *user*. Wildcards can be used with the list_policies
command.

kadmin: list_policies *user*
testuser
enguser

kadmin: quit

� How to View a Policy’s Attributes
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Policies tab.

3. Select the policy in the list that you want to view and click Modify.

The Policy Details panel is displayed.

4. When you are finished viewing, click Cancel.

Example—Viewing a Policy’s Attributes
The following example shows the Policy Details panel when viewing the test policy.

Administering Principals and Policies 161

Example—Viewing a Policy’s Attributes (Command Line)
The following example uses the get_policy command of kadmin to view the
attributes of the enguser policy.

kadmin: get_policy enguser
Policy: enguser
Maximum password life: 2592000
Minimum password life: 0
Minimum password length: 8
Minimum number of password character classes: 2
Number of old keys kept: 3

162 System Administration Guide: Security Services • December 2001 (Beta)

Reference count: 0

kadmin: quit

The reference count is the number of principals using that policy.

� How to Create a New Policy
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Policies tab.

3. Click New.

The Policy Details panel is displayed.

4. Specify a name for the policy in the Policy Name field.

The policy name is mandatory.

5. Specify values for the policy’s attributes.

Choose Context-Sensitive Help from the Help menu to get information about the
various attributes in each window. Or, go to Table 10–7 for all the policy attribute
descriptions.

6. Click Save to save the policy, or click Done.

Example—Creating a New Policy
The following example shows creating a new policy called build11. So far, the
Minimum Password Classes has been changed to 3.

Administering Principals and Policies 163

Example—Creating a New Policy (Command Line)
The following example uses the add_policy command of kadmin to create the
build11 policy that requires at least 3 character classes in a password.

$ kadmin
kadmin: add_policy -minclasses 3 build11

kadmin: quit

164 System Administration Guide: Security Services • December 2001 (Beta)

� How to Duplicate a Policy
This procedure explains how to use all or some of the attributes of an existing policy
to create a new policy. There is no command-line equivalent for this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Policies tab.

3. Select the policy in the list that you want to duplicate and click Duplicate.

The Policy Details panel is displayed. All the attributes of the selected policy are
duplicated except for the Policy Name field, which is empty.

4. Specify a name for the duplicated policy in the Policy Name field.

The policy name is mandatory. If you want to make an exact duplicate of the policy
you selected, click Save and skip to the last step.

5. Specify different values for the policy’s attributes.

Choose Context-Sensitive Help from the Help menu to get information about the
various attributes in each window. Or, go to Table 10–7 for all the policy attribute
descriptions.

6. Click Save to save the policy, or click Done.

� How to Modify a Policy
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Policies tab.

3. Select the policy in the list that you want to modify and click Modify.

The Policy Details panel is displayed.

4. Modify the policy’s attributes.

Choose Context-Sensitive Help from the Help menu to get information about the
various attributes in each window. Or, go to Table 10–7 for all the policy attribute
descriptions.

Administering Principals and Policies 165

Note – You cannot modify a policy’s name. To rename a policy, you must duplicate the
policy, specify a new name for it, save it, and then delete the old policy.

5. Click Save to save the policy, or click Done.

Example—Modifying a Policy (Command Line)
The following example uses the modify_policy command of kadmin to modify the
minimum length of a password to five characters for the build11 policy.

$ kadmin
kadmin: modify_policy -minlength 5 build11

kadmin: quit

� How to Delete a Policy
An example of the corresponding command-line equivalent follows this procedure.

1. If necessary, start the SEAM Tool.

See “How to Start the SEAM Tool” on page 143 for details.

2. Click the Policies tab.

Note – Before deleting a policy, you must cancel the policy from all principals
currently using it (you need to modify the principals’ Policy attribute). The policy
cannot be deleted if it is in use by any principal.

3. Specify the policy in the list that you want to delete and click Delete.

After you confirm the deletion, the policy is deleted.

Example—Deleting a Policy (Command Line)
The following example uses the delete_policy command of kadmin command to
delete the build11 policy.

kadmin: delete_policy build11
Are you sure you want to delete the policy "build11"? (yes/no): yes

kadmin: quit

166 System Administration Guide: Security Services • December 2001 (Beta)

Before deleting a policy, you must cancel the policy from all principals currently using
it (you need to use the modify_principal -policy command of kadmin on the
principals). The delete_policy command will fail if it is in use by a principal.

SEAM Tool Reference
This section provides reference information for the SEAM Tool.

SEAM Tool Panel Descriptions
This section provides descriptions for each of the principal and policy attributes that
you can either specify or view in the SEAM Tool. The attributes are organized by the
panel in which they are displayed.

TABLE 10–4 Principal Basic Panel Attributes

Attribute Description

Principal Name The name of the principal (the primary/instance part of a fully-qualified principal
name). A principal is a unique identity to which the KDC can assign tickets.

If you are modifying a principal, you cannot edit a principal’s name.

Password The password for the principal. You can use the Generate Random Password
button to create a random password for the principal.

Policy A menu of available policies for the principal.

Account Expires The date and time on which the principal’s account expires. When the account
expires, the principal can no longer get a ticket-granting ticket (TGT) and may not
be able to log in.

Last Principal Change The date on which information for the principal was last modified. (Read-only)

Last Changed By The name of the principal that last modified the account for this principal.
(Read-only)

Comments Comments related to the principal (for example, ’Temporary Account’)

TABLE 10–5 Principal Details Panel Attributes

Attribute Description

Last Success The date and time when the principal last logged in successfully. (Read-only)

Administering Principals and Policies 167

TABLE 10–5 Principal Details Panel Attributes (Continued)
Attribute Description

Last Failure The date and time when the last login failure for the principal occurred.
(Read-only)

Failure Count The number of times that there has been a login failure for the principal.
(Read-only)

Last Password Change The date and time when the principal’s password was last changed. (Read-only)

Password Expires The date and time when the principal’s current password will expire.

Key Version The key version number for the principal; this is normally changed only when a
password has been compromised.

Maximum Lifetime (seconds) The maximum length of time for which a ticket can be granted for the principal
(without renewal).

Maximum Renewal
(seconds)

The maximum length of time for which an existing ticket can be renewed for the
principal.

TABLE 10–6 Principal Flags Panel Attributes

Attribute (Radio Buttons) Description

Disable Account When checked, prevents the principal from logging in. This is an easy way to
freeze a principal account temporarily for any reason.

Require Password Change When checked, expires the principal’s current password, forcing the user to use
the kpasswd command to create a new password. This is useful if there is a
security breach and you need to make sure that old passwords are replaced.

Allow Postdated Tickets When checked, allows the principal to obtain postdated tickets.

For example, you may need to use postdated tickets for cron jobs that must run
after hours and can’t obtain tickets in advance because of short ticket lifetimes.

Allow Forwardable Tickets When checked, allows the principal to obtain forwardable tickets.

Forwardable tickets are tickets that are forwarded to the remote host to provide a
single-sign-on session. For example, if you are using forwardable tickets and you
authenticate yourself through ftp or rsh, other services, such as NFS services, are
available without your being prompted for another password.

Allow Renewable Tickets When checked, allows the principal to obtain renewable tickets.

A principal can automatically extend the expiration date or time of a ticket that is
renewable (rather than having to get a new ticket after the first one expires).
Currently, the NFS service is the only service that can renew tickets.

168 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 10–6 Principal Flags Panel Attributes (Continued)
Attribute (Radio Buttons) Description

Allow Proxiable Tickets When checked, allows the principal to obtain proxiable tickets.

A proxiable ticket is a ticket that can be used by a service on behalf of a client to
perform an operation for the client. With a proxiable ticket, a service can take on
the identity of a client and obtain a ticket for another service, but it cannot obtain a
ticket-granting ticket.

Allow Service Tickets When checked, allows service tickets to be issued for the principal.

You should not allow service tickets to be issued for the kadmin/hostname and
changepw/hostname principals. This ensures that these principals can only update
the KDC database.

Allow TGT-Based
Authentication

When checked, allows the service principal to provide services to another
principal. More specifically, it allows the KDC to issue a service ticket for the
service principal.

This attribute is valid only for service principals. When not checked, service tickets
cannot be issued for the service principal.

Allow Duplicate
Authentication

When checked, allows the user principal to obtain service tickets for other user
principals.

This attribute is valid only for user principals. When not checked, the user
principal can still obtain service tickets for service principals, but not for other user
principals.

Required Preauthentication When checked, the KDC will not send a requested ticket-granting ticket (TGT) to
the principal until it can authenticate (through software) that it is really the
principal requesting the TGT. This preauthentication is usually done through an
extra password, for example, from a DES card.

When not checked, the KDC does not need to preauthenticate the principal before
it sends a requested TGT to it.

Required Hardware
Authentication

When checked, the KDC will not send a requested ticket-granting ticket (TGT) to
the principal until it can authenticate (through hardware) that it is really the
principal requesting the TGT. Hardware preauthentication can be something like a
Java ring reader.

When not checked, the KDC does not need to preauthenticate the principal before
it sends a requested TGT to it.

TABLE 10–7 Policy Basics Panel Attributes

Attribute Description

Policy Name The name of the policy. A policy is a set of rules governing a principal’s password
and tickets.

If you are modifying a policy, you cannot edit a policy’s name.

Administering Principals and Policies 169

TABLE 10–7 Policy Basics Panel Attributes (Continued)
Attribute Description

Minimum Password Length The minimum length for the principal’s password.

Minimum Password Classes The minimum number of different character types required in the principal’s
password.

For example, a minimum classes value of 2 means that the password must have at
least two different character types, such as letters and numbers (hi2mom). A value
of 3 means that the password must have at least three different character types,
such as letters, numbers, and punctuation (hi2mom!). And so on.

A value of 1 basically sets no restriction on the number of password character
types.

Saved Password History The number of previous passwords that have been used by the principal and
cannot be reused.

Minimum Password Lifetime
(seconds)

The minimum time that the password must be used before it can be changed.

Maximum Password
Lifetime (seconds)

The maximum time that the password can be used before it must be changed.

Principals Using This Policy The number of principals to which this policy currently applies. (Read-only)

Using the SEAM Tool With Limited Kerberos
Administration Privileges
All the features of the SEAM Administration Tool are available if your admin
principal has all the privileges to administer the Kerberos database. But it is possible
to have limited privileges, such as being allowed to view only the list of principals or
to change a principal’s password. With limited Kerberos administration privileges,
you can still use the SEAM Administration Tool; however, various parts of the SEAM
Tool will change based on what Kerberos administration privileges you do not have.
Table 10–8 shows how the SEAM Tool changes based on your Kerberos administration
privileges.

The most visual change to the SEAM Tool is when you don’t have the list privilege.
Without the list privilege, the List panels do not display the list of principals and
polices for you to manipulate. Instead, you must use the Name field in the List panels
to specify a principal or policy you want to work on.

If you log on to the SEAM Tool and you don’t have sufficient privileges to perform
useful tasks with it, the following message will display and you will be sent back to
the Login window:

Insufficient privileges to use gkadmin: ADMCIL. Please try using another principal.

170 System Administration Guide: Security Services • December 2001 (Beta)

To change the privileges for a principal to administer the Kerberos database, go to
“How to Modify the Kerberos Administration Privileges” on page 156.

TABLE 10–8 Using SEAM Tool With Limited Kerberos Administration Privileges

If You Don’t Have This Privilege ... Then the SEAM Tool Changes as Follows ...

a (add) The Create New and Duplicate buttons are not
available in the Principal and Policy List
panels. Without the add privilege, you can’t
create new or duplicate principal or policies.

d (delete) The Delete button is not available in the
Principal and Policy List panels. Without the
delete privilege, you can’t delete principal or
policies.

m (modify) The Modify button is not available in the
Principal and Policy List panels. Without the
modify privilege, you can’t modify principal
or policies.

Also, with the Modify button unavailable, you
can’t modify a principal’s password, even if
you have the change password privilege.

c (change password) The Password field in the Principal Basics
panel is read-only and cannot be changed.
Without the change password privilege, you
can’t modify a principal’s password.

Note that even if you have the change
password privilege, you must also have the
modify privilege to change a principal’s
password.

i (inquiry to database) The Modify and Duplicate buttons are not
available in the Principal and Policy List
panels. Without the inquiry privilege, you
can’t modify or duplicate a principal or policy.

Also, with the Modify button unavailable, you
can’t modify a principal’s password, even if
you have the change password privilege.

l (list) The list of principals and policies in the List
panels are unavailable. Without the list
privilege, you must use the Name field in the
List panels to specify the principal or policy
you want to work on.

Administering Principals and Policies 171

Administering Keytabs
Every host providing a service must have a local file, called a keytab (short for key
table), containing the principal for the appropriate service, called a service key. A
service key is used by a service to authenticate itself to the KDC and is known only by
Kerberos and the service itself. For example, if you have a Kerberized NFS server, that
server must have a keytab that contains its nfs service principal.

To add a service key to a keytab, you add the appropriate service principal to a host’s
keytab by using the ktadd command of kadmin. And, because you are adding a
service principal to a keytab, the principal must already exist in the Kerberos database
so kadmin can verify its existence. On the master KDC, the keytab file is located at
/etc/krb5/kadm5.keytab, by default. On application servers providing
Kerberized services, the keytab file is located at /etc/krb5/krb5.keytab, by
default.

A keytab is analogous to a user’s password. Just as it is important for users to protect
their passwords, it is equally important for application servers to protect their keytabs.
You should always store keytabs on a local disk, and make them readable only by
root, and you should never send a keytab over an unsecured network.

There is also a special instance to add a root principal to a host’s keytab. Basically, if
you want a user on the SEAM client to mount Kerberized NFS file systems using
Kerberos authentication automatically, you must add the client’s root principal to the
client’s keytab. Otherwise, users must use the kinit command as root to obtain
credentials for the client’s root principal whenever they want to mount a Kerberized
NFS file system, even when using the automounter. See “Setting Up Root
Authentication to Mount NFS File Systems” on page 110 for detailed information.

Note – When setting up a master KDC, you need to add the kadmind and changepw
principals to the kadm5.keytab file, so the KDC can decrypt administrators’
Kerberos tickets to determine whether or not it should give them access to the
database.

Another command that you can use to administer keytabs with is the ktutil
command. ktutil is an interactive command-line interface utility that enables you to
manage a local host’s keytab without having Kerberos administration privileges,
because ktutil doesn’t interact with the Kerberos database like kadmin does. So,
after a principal is added to a keytab, you can use ktutil to view the keylist in a
keytab or to temporarily disable authentication for a service.

172 System Administration Guide: Security Services • December 2001 (Beta)

Administering Keytabs Task Map
TABLE 10–9 Administering Keytabs Task Map

Task Description For Instructions, Go To ...

Add a Service Principal to a
Keytab

Use the ktadd command of kadmin to add a
service principal to a keytab.

“How to Add a Service Principal
to a Keytab” on page 173

Remove a Service Principal
from a Keytab

Use the ktremove command of kadmin to
remove a service from a keytab.

“How to Remove a Service
Principal From a Keytab”
on page 174

Display the Keylist
(Principals) in a Keytab

Use the ktutil command to display the
keylist in a keytab.

“How to Display the Keylist
(Principals) in a Keytab”
on page 175

Temporarily Disable
Authentication for a Service
on a Host

This procedure is a quick way to temporarily
disable authentication for a service on a host
without having to have kadmin privileges.
Before using ktutil to delete the service
principal from the server’s keytab, copy the
original keytab to a temporary location. When
you want to enable the service again, copy the
original keytab back.

“How to Temporarily Disable
Authentication for a Service on a
Host” on page 176

� How to Add a Service Principal to a Keytab
1. Make sure the principal already exists in the Kerberos database.

See “How to View the List of Principals” on page 147 for more information.

2. Become superuser on the host that needs a principal added to its keytab.

3. Start the kadmin command.

/usr/sbin/kadmin

4. Add a principal to a keytab by using the ktadd command.

kadmin: ktadd [-k keytab] [-q] [principal | -glob principal_exp]

-k keytab Specifies the keytab file. By default,
/etc/krb5/krb5.keytab is used.

-q Displays less verbose information.

principal Principal to be added to the keytab. You can
add the following service principals: host,
root, nfs, and ftp.

Administering Principals and Policies 173

-glob principal_exp All principals matching the principal
expression are added to the keytab. The rules
for principal expression are the same as for the
list_principals command of kadmin.

5. Quit the kadmin command.

kadmin: quit

Example—Adding a Service Principal to a Keytab
The following example adds the kadmin/admin and kadmin/changepw principals
to a master KDC’s keytab. For this example, the keytab file must be the one specified
in the kdc.conf file.

kdc1 # /usr/sbin/kadmin.local
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kadmin/admin kadmin/changepw
Entry for principal kadmin/admin@EXAMPLE.COM with kvno 3, encryption type DES-CBC-CRC
added to keytab WRFILE:/etc/krb5/kadm5.keytab.

Entry for principal kadmin/changepw@EXAMPLE.COM with kvno 3, encryption type DES-CBC-CRC
added to keytab WRFILE:/etc/krb5/kadm5.keytab.

kadmin.local: quit

The following example adds denver’s host principal to denver’s keytab file, so
denver’s network services can be authenticated by the KDC.

denver # /usr/sbin/kadmin
kadmin: ktadd host/denver@example.com@EXAMPLE.COM
kadmin: Entry for principal host/denver@example.com@EXAMPLE.COM with kvno 2,
encryption type DES-CBC-CRC added to keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin: quit

� How to Remove a Service Principal From a Keytab
1. Become superuser on the host with a service principal that must be removed from

its keytab.

2. Start the kadmin command.

/usr/sbin/kadmin

3. Optional. To display the current list of principals (keys) in the keytab, use the
ktutil command.

See “How to Display the Keylist (Principals) in a Keytab” on page 175 for detailed
instructions.

174 System Administration Guide: Security Services • December 2001 (Beta)

4. Remove a principal from a keytab by using the ktremove command.

kadmin: ktremove [-k keytab] [-q] principal [kvno | all | old]

-k keytab Specifies the keytab file. By default,
/etc/krb5/krb5.keytab is used.

-q Displays less verbose information.

principal Principal to be removed from the keytab.

kvno Removes all entries for the specified principal whose kvno (key
version number) matches kvno.

all Removes all entries for the specified principal.

old Removes all entries for the specified principal except those
with the highest kvno.

5. Quit the kadmin command.

kadmin: quit

Example—Removing a Service Principal From a Keytab
The following example removes denver’s host principal from denver’s keytab file.

denver # /usr/sbin/kadmin
kadmin: ktremove host/denver.example.com@EXAMPLE.COM
kadmin: Entry for principal host/denver.example.com@EXAMPLE.COM with kvno 3
removed from keytab WRFILE:/etc/krb5/krb5.keytab.

kadmin: quit

� How to Display the Keylist (Principals) in a Keytab
1. Become superuser on the host with the keytab.

Note – Although you can create keytabs owned by other users, the default location for
the keytab requires root ownership.

2. Start the ktutil command.

/usr/bin/ktutil

3. Read the keytab into the keylist buffer by using the read_kt command.

ktutil: read_kt keytab

Administering Principals and Policies 175

4. Display the keylist buffer by using the list command.

ktutil: list

The current keylist buffer is displayed.

5. Quit the ktutil command.

ktutil: quit

Example—Displaying the Keylist (Principals) in a Keytab
The following example displays the keylist in the /etc/krb5/krb5.keytab file on
the denver host.

denver # /usr/bin/ktutil
ktutil: read_kt /etc/krb5/krb5.keytab
ktutil: list

slot KVNO Principal
---- ---- ---------------------------------------

1 5 host/denver@EXAMPLE.COM

ktutil: quit

� How to Temporarily Disable Authentication for a
Service on a Host
You may find instances when you need to temporarily disable the authentication
mechanism for a service, such as rlogin or ftp, on a network application server. For
example, you may want to stop users from logging into a system while performing
maintenance procedures. The ktutil command enables you to do this by removing
the service principal from the server’s keytab, without requiring kadmin privileges. To
enable authentication again, all you need to do is copy the original keytab that you
saved back to its original location.

Note – Most services are set up by default to require authentication to work. If this is
not the case, the service will still work even if you disable authentication for the
service.

1. Become superuser on the host with the keytab.

Note – Although you can create keytabs owned by other users, the default location for
the keytab requires root ownership.

2. Save the current keytab to a temporary file.

176 System Administration Guide: Security Services • December 2001 (Beta)

3. Start the ktutil command.

/usr/bin/ktutil

4. Read the keytab into the keylist buffer by using the read_kt command.

ktutil: read_kt keytab

5. Display the keylist buffer by using the list command.

ktutil: list

The current keylist buffer is displayed. Note the slot number for the service you want
to disable.

6. To temporarily disable a host’s service, remove the specific service principal from
the keylist buffer by using the delete_entry command.

ktutil: delete_entry slot_number

slot_number The slot number of the service principal to be
deleted, which is displayed by the list
command.

7. Write the keylist buffer to the keytab by using the write_kt command.

ktutil: write_kt keytab

8. Quit the ktutil command.

ktutil: quit

9. When you want to enable the service again, copy the temporary (original) keytab
back to its original location.

Example—Temporarily Disabling a Service on a Host
The following example temporarily disables the host service on the denver host. To
enable the host service back on denver, you would copy the krb5.keytab.temp
file to the /etc/krb5/krb5.keytab file.

denver # cp /etc/krb5/krb5.keytab /etc/krb5/krb5.keytab.temp
denver # /usr/bin/ktutil

ktutil:read_kt /etc/krb5/krb5.keytab
ktutil:list

slot KVNO Principal
---- ---- ---------------------------------------

1 8 root/denver@EXAMPLE.COM
2 5 host/denver@EXAMPLE.COM
ktutil:delete_entry 2
ktutil:list

Administering Principals and Policies 177

slot KVNO Principal
---- ---- --------------------------------------

1 8 root/denver@EXAMPLE.COM
ktutil:write_kt /etc/krb5/krb5.keytab

ktutil: quit

178 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 11

Using SEAM

This chapter is intended for anyone on a system that already has SEAM installed on it.
It explains how to use the “Kerberized” commands provided by SEAM: ftp, rcp,
rlogin, rsh, and telnet. You should already be familiar with these commands (in
their non-Kerberized versions) before reading about them here. You’ll find that the
Kerberized and non-Kerberized versions are substantially the same. In many cases, in
fact, you can use these commands without ever knowing or caring that they are
Kerberized. The differences lie in using features that take advantage of Kerberos (for
example, forwarding a ticket when you use rlogin).

Because this chapter is intended for the general reader, it includes information on
tickets: getting, viewing, and destroying them. It also includes information on
choosing or changing a Kerberos password.

For an overview of SEAM, see Chapter 6.

This is a list of topics covered in this chapter:

� “Do You Need to Worry About Tickets?” on page 180
� “How to Create a Ticket” on page 180
� “How to View Tickets” on page 181
� “How to Destroy Tickets” on page 182
� “Changing Your Password” on page 184
� “Advice on Choosing a Password” on page 183

Ticket Management
This section explains how to obtain, view, and destroy tickets. For an introduction to
tickets, see “How SEAM Works” on page 74.

179

Do You Need to Worry About Tickets?
With SEAM installed, Kerberos is built into the login command, and you will get
tickets automatically when you log in.

Most of the Kerberized commands also automatically destroy your tickets when they
exit. However, you might want to explicitly destroy your Kerberos tickets with
kdestroy when you are through with them, just to be sure. See “How to Destroy
Tickets” on page 182 for more information on kdestroy.

For information on ticket lifetimes, see “Ticket Lifetimes” on page 193.

� How to Create a Ticket
Normally a ticket is created automatically when you log in and you need not do
anything special to obtain one. However, you might need to create a ticket if your
ticket expires.

To create a ticket, use the kinit command.

% /usr/bin/kinit

kinit prompts you for your password. For the full syntax of the kinit command,
see the kinit(1) man page.

Example — Creating a Ticket
This example shows a user, jennifer, creating a ticket on her own system:

% kinit
Password for jennifer@ENG.EXAMPLE.COM: <enter password>

Here the user david creates a ticket good for three hours with the -l option:

% kinit -l 3h david@EXAMPLE.ORG
Password for david@EXAMPLE.ORG: <enter password>

This example shows david creating a forwardable ticket (with -f) for himself. With
this forwardable ticket, he can (for example) log in to a second system, and then
telnet to a third system.

% kinit -f david@EXAMPLE.ORG
Password for david@EXAMPLE.ORG: <enter password>

180 System Administration Guide: Security Services • December 2001 (Beta)

For more on how forwarding tickets works, see “Types of Tickets” on page 192.

� How to View Tickets
Not all tickets are alike. One ticket might be, for example, forwardable; another might
be postdated; while a third might be both. You can see which tickets you have, and
what their attributes are, by using the klist command with the -f option:

% /usr/bin/klist -f

The following symbols indicate the attributes associated with each ticket, as displayed
by klist:

F Forwardable

f Forwarded

P Proxiable

p Proxy

D Postdateable

d Postdated

R Renewable

I Initial

i Invalid

“Types of Tickets” on page 192 describes the various attributes a ticket can have.

Example — Viewing Tickets
This example shows that the user jennifer has an initial ticket, which is forwardable
(F) and postdated (d), but not yet validated (i):

% /usr/bin/klist -f
Ticket cache: /tmp/krb5cc_74287
Default principal: jenniferm@ENG.EXAMPLE.COM

Valid starting Expires Service principal
09 Mar 99 15:09:51 09 Mar 99 21:09:51 nfs/EXAMPLE.SUN.COM@EXAMPLE.SUN.COM

renew until 10 Mar 99 15:12:51, Flags: Fdi

Using SEAM 181

The example below shows that the user david has two tickets that were forwarded (f)
to his host from another host. The tickets are also (re)forwardable (F):

% klist -f
Ticket cache: /tmp/krb5cc_74287
Default principal: david@EXAMPLE.SUN.COM

Valid starting Expires Service principal
07 Mar 99 06:09:51 09 Mar 99 23:33:51 host/EXAMPLE.COM@EXAMPLE.COM

renew until 10 Mar 99 17:09:51, Flags: fF

Valid starting Expires Service principal
08 Mar 99 08:09:51 09 Mar 99 12:54:51 nfs/EXAMPLE.COM@EXAMPLE.COM

renew until 10 Mar 99 15:22:51, Flags: fF

� How to Destroy Tickets
Tickets are generally destroyed automatically when the commands that created them
exit; however, you might want to explicitly destroy your Kerberos tickets when you
are through with them, just to be sure. Tickets can be stolen, and if this happens, the
person who has them can use them until they expire (although stolen tickets must be
decrypted).

To destroy your tickets, use the kdestroy command.

% /usr/bin/kdestroy

kdestroy destroys all your tickets. You cannot use it to selectively destroy a
particular ticket.

If you are going to be away from your system and are concerned about an intruder
using your permissions, you should either use kdestroy or a screensaver that locks
the screen.

Note – One way to help ensure that tickets are always destroyed is to add the
kdestroy command to the .logout file in your home directory.

In cases where the PAM module has been configured (the default and usual case),
tickets are destroyed automatically upon logout, so adding a call to kdestroy to your
.login file is not necessary. However, if the PAM module has not been configured, or
if you don’t know whether it has or not, you might want to add kdestroy to your
.login file to be sure that tickets are destroyed when you exit your system.

182 System Administration Guide: Security Services • December 2001 (Beta)

Password Management
With SEAM installed, you now have two passwords: your regular Solaris password,
and a Kerberos password. You can make both passwords the same or they can be
different.

Non-Kerberized commands, such as login, are typically set up through PAM to
authenticate with both Kerberos and UNIX. If you have different passwords, you must
provide both passwords to log on with the appropriate authentication. However, if
both passwords are the same, the first password you enter for UNIX is also accepted
by Kerberos.

Unfortunately, using the same password for both can compromise security. That is, if
someone discovers your Kerberos password, then your UNIX password is no longer a
secret. However, using the same passwords for UNIX and Kerberos is still more secure
than a site without Kerberos, because passwords in a Kerberos environment are not
sent across the network. Usually, your site will have a policy to help you determine
your options.

Your Kerberos password is the only way Kerberos has of verifying your identity. If
someone discovers your Kerberos password, Kerberos security becomes meaningless,
for that person can masquerade as you — send email that comes from "you," read,
edit, or delete your files, or log into other hosts as you — and no one will be able to
tell the difference. For this reason, it is vital that you choose a good password and
keep it secret. You should never reveal your password to anyone else, not even your
system administrator. Additionally, you should change your password frequently,
particularly any time you believe someone might have discovered it.

Advice on Choosing a Password
Your password can include almost any character you can type (the main exceptions
being control keys and the Return key). A good password is one that you can
remember readily, but which no one else can easily guess. Examples of bad passwords
include:

� Words that can be found in a dictionary

� Any common or popular name

� The name of a famous person or character

� Your name or username in any form (for example: backward, repeated twice, and
so forth.)

� A spouse’s, child’s, or pet’s name

� Your birth date or a relative’s birth date

Using SEAM 183

� Social Security number, driver’s license number, passport number, or similar
identifying number

� Any sample password that appears in this or any other manual

A good password is at least eight characters long. Moreover, a password should
include a mix of characters, such as upper- and lower-case letters, numbers, and
punctuation marks. Examples of passwords that would be good if they didn’t appear
in this manual include:

� Acronyms, such as "I2LMHinSF" (recalled as "I too left my heart in San Francisco")

� Easy-to-pronounce nonsense words, like "WumpaBun" or "WangDangdoodle!"

� Deliberately misspelled phrases, such as "6o’cluck" or "RrriotGrrrlsRrrule!"

Caution – Don’t use these examples. Passwords that appear in manuals are the first
ones an intruder will try.

Changing Your Password
You can change your Kerberos password in two ways:

� With the usual UNIX passwd command. With SEAM installed, the Solaris passwd
command also automatically prompts for a new Kerberos password.

The advantage of using passwd instead of kpasswd is that you can set both
passwords (UNIX and Kerberos) at the same time. However, generally you do not
have to change both passwords with passwd; often you can change only your
UNIX password and leave the Kerberos password untouched, or vice-versa.

Note – The behavior of passwd depends on how the PAM module is configured.
You may be required to change both passwords in some configurations. For some
sites the UNIX password must be changed, while others require the Kerberos
password to change.

� With the kpasswd command. kpasswd is very similar to passwd. One difference
is that kpasswd changes only Kerberos passwords — you must use passwd if you
want to change your UNIX password.

Another difference is that kpasswd can change a password for a Kerberos
principal that is not a valid UNIX user. For example, david/admin is a Kerberos
principal, but not an actual UNIX user, so you must use kpasswd instead of
passwd.

After you change your password, it takes some time for the change to propagate
through a system (especially over a large network). Depending on how your system is

184 System Administration Guide: Security Services • December 2001 (Beta)

set up, this might be anywhere from a few minutes to an hour or more. If you need to
get new Kerberos tickets shortly after changing your password, try the new password
first. If the new password doesn’t work, try again using the old one.

Kerberos V5 allows system administrators to set criteria about allowable passwords
for each user. Such criteria is defined by the policy set for each user (or by a default
policy)— see “Administering Policies” on page 158 for more on policies. For example,
suppose that jennifer’s policy (call it jenpol) mandates that passwords be at least
eight letters long and include a mix of at least two kinds of characters. kpasswd will
therefore reject an attempt to use "sloth" as a password:

% kpasswd
kpasswd: Changing password for jennifer@ENG.EXAMPLE.COM.
Old password: <jennifer enters her existing password>
kpasswd: jennifer@ENG.EXAMPLE.COM’s password is controlled by
the policy jenpol
which requires a minimum of 8 characters from at least 2 classes
(the five classes are lowercase, uppercase, numbers, punctuation,
and all other characters).
New password: <jennifer enters ’sloth’>
New password (again): <jennifer re-enters ’sloth’>
kpasswd: New password is too short.

Please choose a password which is at least 4 characters long.

Here jennifer uses “slothrop49” as a password. ’slothrop49’ meets the criteria,
because it is over eight letters long and contains two different kinds of characters
(numbers and lowercase letters):

% kpasswd
kpasswd: Changing password for jennifer@ENG.EXAMPLE.COM.
Old password: <jennifer enters her existing password>
kpasswd: jennifer@ENG.EXAMPLE.COM’s password is controlled by
the policy jenpol
which requires a minimum of 8 characters from at least 2 classes
(the five classes are lowercase, uppercase, numbers, punctuation,
and all other characters).
New password: <jennifer enters ’slothrop49’>
New password (again): <jennifer re-enters ’slothrop49’>
Kerberos password changed.

Examples — Changing Your Password
The following example shows david changing both his UNIX and Kerberos
passwords with passwd.

% passwd
passwd: Changing password for david
Enter login (NIS+) password: <enter the current UNIX password>
New password: <enter the new UNIX password>
Re-enter password: <confirm the new UNIX password>
Old KRB5 password: <enter the current Kerberos password>

Using SEAM 185

New KRB5 password: <enter the new Kerberos password>
Re-enter new KRB5 password: <confirm the new Kerberos password>

In the above example passwd asks for both the UNIX and Kerberos password;
however, if try_first_pass is set in the PAM module, the Kerberos password is
automatically set to be the same as the UNIX password. (That is the default
configuration.) In that case, david must use kpasswd to set his Kerberos password to
something else, as shown next.

This example shows him changing only his Kerberos password with kpasswd:

% kpasswd
kpasswd: Changing password for david@ENG.EXAMPLE.COM.
Old password: <enter the current Kerberos password>
New password: <enter the new Kerberos password>
New password (again): <confirm the new Kerberos password>
Kerberos password changed.

In this example, david changes the password for the Kerberos principal
david/admin (which is not a valid UNIX user). To do this he must use kpasswd.

% kpasswd david/admin
kpasswd: Changing password for david/admin.
Old password: <enter the current Kerberos password>
New password: <enter the new Kerberos password>
New password (again): <confirm the new Kerberos password>
Kerberos password changed.

186 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 12

SEAM Reference

This chapter lists many of the files, commands, and daemons that are part of the
SEAM product. In addition, this chapter provides detailed information about how the
Kerberos authentication system works.

This is a list of the reference information in this chapter.

� “SEAM Files” on page 187
� “SEAM Commands” on page 189
� “SEAM Daemons” on page 190
� “SEAM Terminology” on page 190
� “How the Authentication System Works” on page 196
� “Gaining Access to a Service Using SEAM” on page 196

SEAM Files
TABLE 12–1 SEAM Files

File Name Description

~/.gkadmin
Default values for creating new principals in
the SEAM Administration Tool

~/.k5login
List of principals to grant access to a Kerberos
account

/etc/init.d/kdc init script to start or stop krb5kdc

/etc/init.d/kdc.master init script to start or stop kadmind

187

TABLE 12–1 SEAM Files (Continued)
File Name Description

/etc/krb5/kadm5.acl Kerberos access control list file; includes
principal names of KDC administrators and
their Kerberos administration privileges

/etc/krb5/kadm5.keytab Keytab for kadmin service on master KDC

/etc/krb5/kdc.conf KDC configuration file

/etc/krb5/kpropd.acl Kerberos database propagation configuration
file

/etc/krb5/krb5.conf Kerberos realm configuration file

/etc/krb5/krb5.keytab Keytab for network application servers

/etc/krb5/warn.conf Kerberos warning configuration file

/etc/pam.conf PAM configuration file

/tmp/krb5cc_uid Default credentials cache (uid is the decimal
UID of the user)

/tmp/ovsec_adm.xxxxxx Temporary credentials cache for the lifetime of
the password changing operation (xxxxxx is a
random string)

/var/krb5/.k5.REALM KDC stash file; contains encrypted copy of the
KDC master key

/var/krb5/kadmin.log Log file for kadmind

/var/krb5/kdc.log Log file for the KDC

/var/krb5/principal.db Kerberos principal database

/var/krb5/principal.kadm5 Kerberos administrative database; contains
policy information

/var/krb5/principal.kadm5.lock Kerberos administrative database lock file

/var/krb5/principal.ok Kerberos principal database initialization file;
created when the Kerberos database is
initialized successfully

/var/krb5/slave_datatrans Backup file of the KDC that the
kprop_script uses for propagation

PAM Configuration File
The default PAM configuration file includes entries for the authentication service,
account management, session management, and password management modules.

188 System Administration Guide: Security Services • December 2001 (Beta)

For the authentication module, the new entries are for rlogin, login, and dtlogin.
An example of these entries is shown below. All of these services use the new PAM
library, /usr/lib/security/pam_krb5.so.1, to provide Kerberos authentication.

The first three entries employ the try_first_pass option, which requests
authentication using the user’s initial password. Using the initial password means that
the user is not prompted for another password even if multiple mechanisms are listed.

cat /etc/pam.conf
.
.
rlogin auth optional /usr/lib/security/pam_krb5.so.1 try_first_pass
login auth optional /usr/lib/security/pam_krb5.so.1 try_first_pass
dtlogin auth optional /usr/lib/security/pam_krb5.so.1 try_first_pass

other auth optional /usr/lib/security/pam_krb5.so.1 try_first_pass

For the account management, dtlogin has a new entry that uses the Kerberos library,
as shown below. An other entry is included to provide a default rule. Currently no
actions are taken by the other entry.

dtlogin account optional /usr/lib/security/pam_krb5.so.1

other account optional /usr/lib/security/pam_krb5.so.1

The last two entries in the /etc/pam.conf file are shown below. The other entry for
session management destroys user credentials. The new other entry for password
management selects the Kerberos library.

other session optional /usr/lib/security/pam_krb5.so.1

other password optional /usr/lib/security/pam_krb5.so.1 try_first_pass

SEAM Commands
This section lists some of the commands included in the SEAM product.

TABLE 12–2 SEAM Commands

File Name Description

/usr/lib/krb5/kprop Kerberos database propagation program

/usr/sbin/gkadmin Kerberos database administration GUI
program; used to manage principals and
policies

SEAM Reference 189

TABLE 12–2 SEAM Commands (Continued)
File Name Description

/usr/sbin/kadmin Remote Kerberos database administration
program (run with Kerberos authentication);
used to manage principals, policies, and
keytab files

/usr/sbin/kadmin.local Local Kerberos database administration
program (run without Kerberos authentication;
must be run on master KDC); used to manage
principals, policies, and keytab files

/usr/sbin/kdb5_util Creates Kerberos databases and stash files

SEAM Daemons
The daemons that are used by the SEAM product are listed in the following table.

TABLE 12–3 SEAM Daemons

File Name Description

/usr/lib/krb5/kadmind Kerberos database administration daemon

/usr/lib/krb5/kpropd Kerberos database propagation daemon

/usr/lib/krb5/krb5kdc Kerberos ticket processing daemon

SEAM Terminology
The following section presents terms and their definitions that are used throughout
the SEAM documentation. In order to follow many of the discussions, a
understanding of these terms is essential.

Kerberos-Specific Terminology
Understanding the terms presented in this section, is needed when studying the
sections about the administering the KDCs.

190 System Administration Guide: Security Services • December 2001 (Beta)

The Key Distribution Center or KDC is the portion of SEAM that is responsible for
issuing credentials. These credentials are created using information stored in the KDC
database. Each realm will need at least two KDCs, a master and at least one slave. All
KDCs generate credentials, but only the master handles any changes to the KDC
database.

A stash file contains a encrypted copy of the master key for the KDC. This key is used
when a server is rebooted to automatically authenticate the KDC before starting
kadmind and krb5kdc. Because this file includes the master key, the file and any
backups of the file should be kept secure. If the encryption is compromised, then the
key could be used to access or modify the KDC database.

Authentication-Specific Terminology
The terms discussed below are necessary for an understanding of the authentication
process. Programmers and system administrators should be familiar with these terms.

A client is the software running on a user’s workstation. The SEAM software running
on the client makes many requests during this process, and it is important to
differentiate the actions of this software from the user.

The terms server and service are often used interchangeably. To make things clearer,
the term server is used to define the physical system that SEAM software is running
on. The term service corresponds to a particular function that is being supported on a
server (for instance, nfs). Documentation often mentions servers as part of a service,
but using this definition clouds the meaning of the terms; therefore, servers refer to the
physical system and service refers to the software.

The SEAM product includes three types of keys. One of them is the private key. This
key is given to each user principal and is known only to the user of the principal and
to the KDC. For user principals, the key is based on the user’s password. For servers
and services, the key is known as a service key. This key serves the same purpose as the
private key, but is used by servers and services. The third type of key is a session key.
This is a key generated by the authentication service or the ticket-granting service. A
session key is generated to provide secure transactions between a client and a service.

A ticket is an information packet used to securely pass the identity of a user to a server
or service. A ticket is good for only a single client and a particular service on a specific
server. It contains the principal name of the service, the principal name of the user, the
IP address of the user’s host, a timestamp, and a value to define the lifetime of the
ticket. A ticket is created with a random session key to be used by the client and the
service. After a ticket has been created, it can be reused until the ticket expires.

A credential is a packet of information that includes a ticket and a matching session
key. Credentials are often encrypted using either a private key or a service key
depending on what will be decrypting the credential.

SEAM Reference 191

An authenticator is another type of information. When used with a ticket, an
authenticator can be used to authenticate a user principal. An authenticator includes
the principal name of the user, the IP address of the user’s host, and a timestamp.
Unlike a ticket, an authenticator can be used once only, usually when access to a
service is requested. An authenticator is encrypted using the session key for that client
and that server.

Types of Tickets
Tickets have properties that govern how they can be used. These properties are
assigned to the ticket when it is created, although you can modify a ticket’s properties
later. (For example, a ticket can change from forwardable to forwarded). You can view
ticket properties with the klist command (see “How to View Tickets” on page 181).

Tickets can be described by one or more of the following terms:

forwardable/forwarded A forwardable ticket can be sent from one host to another,
obviating the need for a client to reauthenticate itself. For
example, if the user david obtains a forwardable ticket
while on jennifer’s machine, he can log in to his own
machine without having to get a new ticket (and thus
authenticate himself again). (See “Example — Creating a
Ticket” on page 180 for an example of a forwardable
ticket.) Compare a forwardable ticket to a proxiable ticket,
below.

initial An initial ticket is one that is issued directly, not based on
a ticket-granting ticket. Some services, such as
applications that change passwords, can require tickets to
be marked initial in order to assure themselves that the
client can demonstrate a knowledge of its secret key —
because an initial ticket indicates that the client has
recently authenticated itself (instead of relying on a
ticket-granting ticket, which might have been around for a
long time).

invalid An invalid ticket is a postdated ticket that has not yet
become usable. (See postdated, below.) It will be rejected by
an application server until it becomes validated. To be
validated, it must be presented to the KDC by the client in
a TGS request, with the VALIDATE flag set, after its start
time has passed.

postdatable/postdated A postdated ticket is one that does not become valid until
some specified time after its creation. Such a ticket is
useful, for example, for batch jobs intended to be run late
at night, since the ticket, if stolen, cannot be used until the

192 System Administration Guide: Security Services • December 2001 (Beta)

batch job is to be run. When a postdated ticket is issued, it
is issued as invalid and remains that way until: its start
time has passed, and the client requests validation by the
KDC. (See invalid, above.) A postdated ticket is normally
valid until the expiration time of the ticket-granting ticket;
however, if it is marked renewable, its lifetime is normally
set to be equal to the duration of the full life of the
ticket-granting ticket. See renewable, below.

proxiable/proxy At times it can be necessary for a principal to allow a
service to perform an operation on its behalf. (An example
might be when a principal requests a service to run a
print job on a third host.) The service must be able to take
on the identity of the client, but need only do so for that
single operation. In that case, the server is said to be
acting as a proxy for the client. The principal name of the
proxy must be specified when the ticket is created.

A proxiable ticket is similar to a forwardable ticket, except
that it is valid only for a single service, whereas a
forwardable ticket grants the service the complete use of
the client’s identity. A forwardable ticket can therefore be
thought of as a sort of super-proxy.

renewable Because it is a security risk to have tickets with very long
lives, tickets can be designated as renewable. A renewable
ticket has two expiration times: the time at which the
current instance of the ticket expires, and the maximum
lifetime for any ticket. If a client wants to continue to use
a ticket, it renews it before the first expiration occurs. For
example, a ticket can be valid for one hour, with all tickets
having a maximum lifetime of ten hours. If the client
holding the ticket wants to keep it for more than an hour,
the client must renew it within that hour. When a ticket
reaches the maximum ticket lifetime (10 hours), it
automatically expires and cannot be renewed.

For information on how to view tickets to see what their attributes are, see “How to
View Tickets” on page 181.

Ticket Lifetimes
Any time a principal obtains a ticket, including a ticket–granting ticket, the ticket’s
lifetime is set as the smallest of the following lifetime values:

� The lifetime value specified by the -l option of kinit, if kinit is used to get the
ticket

SEAM Reference 193

� The maximum lifetime value (max_life) specified in the kdc.conf file

� The maximum lifetime value specified in the Kerberos database for the service
principal providing the ticket. (In the case of kinit, the service principal is
krbtgt/realm)

� The maximum lifetime value specified in the Kerberos database for the user
principal requesting the ticket.

Figure 12–1 shows how a TGT’s lifetime is determined and illustrates where the four
lifetime values come from. Even though Figure 12–1 shows how a TGT’s lifetime is
determined, basically the same thing happens when any principal obtains a ticket. The
only differences are that kinit doesn’t provide a lifetime value, and the service
principal providing the ticket provides a maximum lifetime value (instead of the
krbtgt/realm principal).

 Ticket lifetime = Minimum value of L1, L2, L3, and L4

krbgt/realm
Principal

KDC
(Kerberos
database)User

Principal

kdc.confkinit

L1 Maximum lifetime
specified in Kerberos
database for user
database for user
principal running kinit.

L3 Maximum lifetime
specified in Kerberos
database for service
principal providing
the TGT.

L4 Max_life specified
in KDC configuration
file (site default).

L2 Lifetime specified
with kinit command
(-l option).

TGT request

FIGURE 12–1 How a TGT’s Lifetime is Determined

The renewable ticket lifetime is also determined from the minimum of four values, but
renewable lifetime values are used instead:

� The renewable lifetime value specified by the -r option of kinit, if kinit is used
to obtain or renew the ticket

� The maximum renewable lifetime value (max_renewable_life) specified in the
kdc.conf file

� The maximum lifetime renewable value specified in the Kerberos database for the
service principal providing the ticket (In the case of kinit, the service principal is
krbtgt/realm)

194 System Administration Guide: Security Services • December 2001 (Beta)

� The maximum lifetime renewable value specified in the Kerberos database for the
user principal requesting the ticket

Principal Names
Each ticket is identified by a principal name. The principal name can identify a user or
a service. Here are examples of several of the principal names.

TABLE 12–4 Examples of Principal Names

Principal Name Description

root/boston.example.com@EXAMPLE.COM A principal associated with the root account on an
NFS client. This is called a root principal and is
needed for authenticated NFS-mounting to succeed.

host/boston.example.com@EXAMPLE.COM A principal used by the Kerberized applications
(klist and kprop for example) . This is called a host
or service principal.

username@EXAMPLE.COM A principal for a user

username/admin@EXAMPLE.COM An admin principal that can be used to administer the
KDC database

nfs/boston.example.com@EXAMPLE.COM A principal used by the NFS service. This can be used
instead of a host principal.

K/M@EXAMPLE.COM The master key name principal. There is one of these
associated with each master KDC.

kadmin/history@EXAMPLE.COM A principal which includes a key used to keep
password histories for other principals. There is one of
these for each master KDC.

kadmin/kdc1.example.com@EXAMPLE.COM A principal for the master KDC server that allows
access to the KDC using kadmind

changepw/kdc1.example.com@EXAMPLE.COM A principal for the master KDC server that allows
access to the KDC when changing passwords

krbtgt/EXAMPLE.COM@EXAMPLE.COM This principal is used when generating a ticket granting
ticket.

SEAM Reference 195

How the Authentication System Works
Applications allow you to log on to a remote system if you can provide a ticket that
proves your identity and a matching session key. The session key contains information
that is specific to the user and the service being accessed. A ticket and session key are
created by the KDC for all users when they first log in. The ticket and matching
session key form a credential. While using multiple networking services, a user can
gather many credentials. The user needs to have a credential for each service running
on a particular server. For instance, access to the ftp service on a server named
boston requires one credential, and access to the ftp service on another server
requires its own credential.

The process of creating and storing the credentials is transparent. Credentials are
created by the KDC that sends the credential to the requestor. When received, the
credential is stored in a credential cache.

Gaining Access to a Service Using SEAM
In order for a user to access a specific service on a specific server, the user must obtain
two things. The first is a credential for the ticket-granting service (known as the TGT).
Once the ticket-granting service has decrypted this credential, the service creates a
second credential for the server that the user is requesting access to. This second
credential can then be used to request access to the service on the server. After the
server has successfully decrypted the second credential, then the user is given access.
This process is described in more detail below.

Obtaining a Credential for the Ticket-Granting
Service
1. To start the authentication process, the client sends a request to the authentication

server for a specific user principal. This request is sent without encryption. There is
no secure information included in the request, so it is not necessary to use
encryption.

2. When the request is received by the authentication service, the principal name of
the user is looked up in the KDC database. If a principal matches, the
authentication service obtains the private key for that principal. The authentication
service then generates a session key to be used by the client and the ticket-granting

196 System Administration Guide: Security Services • December 2001 (Beta)

service (call it session key 1) and a ticket for the ticket-granting service (ticket 1).
This ticket is also known as the ticket-granting ticket (TGT). Both the session key
and the ticket are encrypted using the user’s private key and the information is
sent back to the client.

3. The client uses this information to decrypt session key 1 and ticket 1, using the
private key for the user principal. Since the private key should only be known by
the user and the KDC database, the information in the packet should be safe. The
client stores the information in the credentials cache.

Normally during this a user is prompted for her password. If the password she enters
is the same as the one used to build the private key stored in the KDC database, then
the client can successfully decrypt the information sent by the authentication service.
Now the client has a credential to be used with the ticket-granting service. The client is
ready to request a credential for a server.

1. Client requests
credential for server.

2. Authentication service
sends back credential,
which includes Session
Key 1 and TGT.

3. Client decrypts
credential with
entered password.

Client
1

KDC

TGT

Server

TGT = Ticket-granting ticket
KDC = Key Distribution Center

(Credential)

FIGURE 12–2 Obtaining a Credential for the Ticket-Granting Service

Obtaining a Credential for a Server
1. To request access to a specific server, a client must first have obtained a credential

for that server from the authentication service (see “Obtaining a Credential for the
Ticket-Granting Service” on page 196). The client then sends a request to the
ticket-granting service, which includes the service principal name, ticket 1, and an
authenticator encrypted with session key 1. Ticket 1 was originally encrypted by

SEAM Reference 197

the authentication service using the service key of the ticket-granting service.

2. Because the service key of the ticket-granting service is known to the
ticket-granting service, ticket 1 can be decrypted. The information included in
ticket 1 includes session key 1, so the ticket-granting service can decrypt the
authenticator. At this point, the user principal is authenticated with the
ticket-granting service.

3. Once the authentication is successful, the ticket-granting service generates a session
key for the user principal and the server (session key 2) and a ticket for the server
(ticket 2). Session key 2 and ticket 2 are then encrypted using session key 1. Since
session key 1 is known only to the client and the ticket-granting service, this
information is secure and can be safely set over the net.

4. When the client receives this information packet, it decrypts the information using
session key 1, which it had stored in the credential cache. The client has obtained a
credential to be used with the server. Now the client is ready to request access to a
particular service on that server.

1. Client sends TGT
and authenticator
encrypted with
session key 1
to KDC.

2. Ticket-granting
service decrypts
TGT and
authenticator.

3. Ticket-granting service
sends back a credential
which includes Session
Key 2 and Ticket 2.

4. Client decrypts
credential with
Session Key 1

Client
1 2

KDC

TGT

2

Server

FIGURE 12–3 Obtaining a Credential for a Server

Obtaining Access to a Specific Service
1. To request access to a specific service, the client must first have obtained a

credential for the ticket-granting service from the authentication server, and a
server credential from the ticket-granting service (see “Obtaining a Credential for
the Ticket-Granting Service” on page 196 and “Obtaining a Credential for a Server”
on page 197). The client can send a request to the server including ticket 2 and
another authenticator. The authenticator is encrypted using session key 2.

198 System Administration Guide: Security Services • December 2001 (Beta)

2. Ticket 2 was encrypted by the ticket-granting service with the service key for the
service. Since the service key is known by the service principal, the service can
decrypt ticket 2 and get session key 2. Session key 2 can then be used to decrypt
the authenticator. If the authenticator is successfully decrypted, the client is given
access to the service.

1. Client sends Ticket 2
and another authenticator
encrypted with Session Key 2.

2. Server decrypts Ticket 2
and authenticator; allows
Client access.

Client
2

KDC

2

Server

FIGURE 12–4 Obtaining Access to a Specific Service

Using the gsscred Table
The gsscred table is used by an NFS server when the server is trying to identify a
SEAM user. The NFS services use UNIX IDs to identify users and these IDs are not
part of a user principal or credential. The gsscred table provides a mapping from
UNIX UIDs (from the password file) to principal names. The table must be created and
administered after the KDC database is populated.

When a client request comes in, the NFS services try to map the principal name to a
UNIX ID. If the mapping fails, the gsscred table is consulted. With the
kerberos_v5 mechanism, a root/hostname principal is automatically mapped to
UID 0, and the gsscred table is not consulted. This means that there is no way to do
special remappings of root through the gsscred table.

SEAM Reference 199

200 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 13

Managing System Security Topics

This section provides instructions for managing system security in the Solaris
environment. This section contains these chapters.

Chapter 14 Provides overview information about file, system, and
network security.

Chapter 15 Provides step-by-step instructions to display file
information, change file ownership and permissions, and
set special permissions.

Chapter 16 Provides step-by-step instructions to check login status,
set up dial-up passwords, restrict root access, and
monitor root access and su attempts.

Chapter 17 Provides overview information for using role-based
access control.

Chapter 18 Provides step-by-step instructions for using role-based
access control.

Chapter 19 Provides reference information about role-based access
control.

Chapter 3 Provides step-by-step instructions for setting up login
authentication and Pluggable Authentication Module
(PAM).

Chapter 6 Provides overview information about SEAM.

Chapter 7 Provides a list o information or issues that need to be
resolved before installing SEAM.

Chapter 8 Provides step-by-step instructions for configuring SEAM.

Chapter 9 Provides a list of SEAM error messages, how to fix the
problem that generates the message and how to
troubleshoot some error conditions.

201

Chapter 10 Provides step-by-step instructions for administering
principles and policies in SEAM with gkadmin and at
the command line.

Chapter 11 Provides user instructions for SEAM.

Chapter 12 Provides additional information about SEAM.

Chapter 20 Provides overview information about Automated
Security Enhancement Tool (ASET) and step-by-step
instructions to run ASET interactively or periodically (by
using a cron job). It also includes information about
collecting client ASET reports on a server.

202 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 14

Managing System Security (Overview)

Keeping a system’s information secure is an important system administration
responsibility. This chapter provides overview information about managing system
security at the file, system, and network level.

This is a list of the overview information in this chapter.

� “Controlling Access to a Computer System” on page 204
� “File Security” on page 207
� “System Security” on page 208
� “Network Security” on page 212

Where to Find System Security Tasks
Use these references to find step-by-step instructions for setting up system security.

� Chapter 15
� Chapter 16
� Chapter 18
� Chapter 3
� Chapter 8
� Chapter 20
� Chapter 24

203

Controlling Access to a Computer
System
At the file level, the SunOS operating system provides some standard security features
that you can use to protect files, directories, and devices. At the system and network
levels, the security issues are mostly the same. In the workplace, a number of systems
connected to a server can be thought of as one large multifaceted system. The system
administrator is responsible for the security of this larger system or network. Not only
is it important to defend the network from outsiders trying to gain access to the
network, but it is also important to ensure the integrity of the data on the systems
within the network.

The first line of security defense is to control access to your system. You can control
and monitor system access by:

� Maintaining physical site security
� Maintaining login control
� Restricting access to data in files
� Maintaining network control
� Monitoring system usage
� Setting the path variable correctly
� Securing files
� Installing a firewall
� Reporting security problems

Maintaining Physical Site Security
To control access to your system, you must maintain the physical security of your
computer environment. For instance, if a system is logged in and left unattended,
anyone who can use that system can gain access to the operating system and the
network. You need to be aware of your computer’s surroundings and physically
protect it from unauthorized access.

Maintaining Login and Access Control
You also must restrict unauthorized logins to a system or the network, which you can
do through password and login control. All accounts on a system should have a
password. An account without a password makes your entire network accessible to
anyone who can guess a user name.

204 System Administration Guide: Security Services • December 2001 (Beta)

Solaris software restricts control of certain system devices to the user login account.
Only a process running as superuser or console user can access a system mouse,
keyboard, frame buffer, or audio device unless /etc/logindevperm is edited. See
logindevperm(4) for more information.

Restricting Access to Data in Files
After you have established login restrictions, you can control access to the data on
your system. You might want to allow some users to read some files, and give other
users permission to change or delete some files. You might have some data that you
do not want anyone else to see. Chapter 15 discusses how to set file permissions.

Maintaining Network Control
Computers are often part of a configuration of systems called a network. A network
allows connected systems to exchange information and access data and other
resources available from systems connected to the network. Networking has created a
powerful and sophisticated way of computing. However, networking has also
jeopardized computer security.

For instance, within a network of computers, individual systems are open to allow
sharing of information. Also, because many people have access to the network, there is
more chance for allowing unwanted access, especially through user error (for example,
through a poor use of passwords).

Monitoring System Usage
As system administrator, you need to monitor system activity, being aware of all
aspects of your systems, including the following:

� What is the normal load?
� Who has access to the system?
� When do individuals access the system?

With this kind of knowledge, you can use the available tools to audit system use and
monitor the activities of individual users. Monitoring is very useful when there is a
suspected breach in security.

Managing System Security (Overview) 205

Setting the Correct Path
It is important to set your path variable correctly; otherwise, you can accidentally run
a program introduced by someone else that harms your data or your system. This
kind of program, which creates a security hazard, is referred to as a “Trojan horse.”
For example, a substitute su program could be placed in a public directory where you,
as system administrator, might run it. Such a script would look just like the regular su
command; since it removes itself after execution, it is hard to tell that you have
actually run a Trojan horse.

The path variable is automatically set at login time through the startup files: .login,
.profile, and .cshrc. Setting up the user search path so that the current directory
(.) comes last prevents you or your users from running this type of Trojan horse. The
path variable for superuser should not include the current directory at all. The ASET
utility examines the startup files to ensure that the path variable is set up correctly and
that it does not contain a dot (.) entry.

Securing Files
Since the SunOS operating system is a multiuser system, file system security is the
most basic, and important, security risk on a system. You can use both the traditional
UNIX file protection or the more secure access control lists (ACLs) to protect your
files.

Also, many executable programs have to be run as root (that is, as superuser) to work
properly. These executables run with the user ID set to 0 (setuid=0). Anyone running
these programs runs them with the root ID, which creates a potential security problem
if the programs are not written with security in mind.

Except for the executables shipped with setuid to root, you should disallow the use
of setuid programs, or at least restrict and keep them to a minimum.

Installing a Firewall
Another way to protect your network is to use a firewall or secure gateway system. A
firewall is a dedicated system separating two networks, each of which approaches the
other as untrusted. You should consider this setup as mandatory between your
internal network and any external networks, such as the Internet, with which you
want internal network users to communicate.

A firewall can also be useful between some internal networks. For example, the
firewall or secure gateway computer will not send a packet between two networks
unless the gateway computer is the origin or the destination address of the packet. A
firewall should also be set up to forward packets for particular protocols only. For

206 System Administration Guide: Security Services • December 2001 (Beta)

example, you can allow packets for transferring mail, but not those for telnet or
rlogin. The ASET utility, when run at high security, disables the forwarding of
Internet Protocol (IP) packets.

Reporting Security Problems
If you experience a suspected security breach, you can contact the Computer
Emergency Response Team/Coordination Center (CERT/CC), which is a Defense
Advanced Research Projects Agency (DARPA) funded project located at the Software
Engineering Institute at Carnegie Mellon University. It can assist you with any
security problems you are having. It can also direct you to other Computer Emergency
Response Teams that might be more appropriate to your particular needs. You can call
CERT/CC at its 24-hour hotline: (412) 268-7090, or contact the team by email at
cert@cert.sei.cmu.edu.

File Security
The SunOS operating system is a multiuser system, which means that all the users
logged in to a system can read and use files belonging to one another, as long as they
have permission to do so. The table below describes file system administration
commands. See Chapter 15 for step-by-step instructions on securing files.

File Administration Commands
This table describes the file administration commands for monitoring and securing
files and directories.

TABLE 14–1 File Administration Commands

Command Description

ls(1) Lists the files in a directory and information about them.

chown(1) Changes the ownership of a file.

chgrp(1) Changes the group ownership of a file.

chmod(1) Changes permissions on a file. You can use either symbolic mode
(letters and symbols) or absolute mode (octal numbers) to change
permissions on a file.

Managing System Security (Overview) 207

File Encryption
Placing a sensitive file into an inaccessible directory (700 mode) and making the file
unreadable by others (600 mode) will keep it secure in most cases. However, someone
who guesses your password or the root password can read and write to that file. Also,
the sensitive file is preserved on backup tapes every time you back up the system files
to tape.

Fortunately, an additional layer of security is available to all SunOS system software
users in the United States—the optional file encryption kit. The encryption kit includes
the crypt(1) command which scrambles the data to disguise the text.

Access Control Lists (ACLs)
ACLs (ACLs, pronounced “ackkls”) can provide greater control over file permissions
when the traditional UNIX file protection in the SunOS operating system is not
enough. The traditional UNIX file protection provides read, write, and execute
permissions for the three user classes: owner, group, and other. An ACL provides
better file security by enabling you to define file permissions for the owner, owner’s
group, others, specific users and groups, and default permissions for each of those
categories. See “Using Access Control Lists (ACLs)” on page 232 for step–by–step
instructions on using ACLs.

The table below lists the commands for administering ACLs on files or directories.

TABLE 14–2 ACL Commands

Command Description

setfacl(1) Sets, adds, modifies, and deletes ACL entries

getfacl(1) Displays ACL entries

System Security
This section describes how to safeguard your system against unauthorized access,
such as how to prevent an intruder from logging in to your system, how to maintain
the password files, and how to prevent unauthorized superuser access to sensitive
system files and programs.

208 System Administration Guide: Security Services • December 2001 (Beta)

You can set up two security barriers on a system. The first security barrier is the login
program. To cross this barrier and gain access to a system, a user must supply a user
name and a corresponding password known by the local system or by the name
service (NIS or NIS+).

The second security barrier is ensuring that the system files and programs can be
changed or removed by superuser only. A would-be superuser must supply the root
user name and its correct password.

Login Access Restrictions
When a user logs in to a system, the login program consults the appropriate database
according to the information listed in the /etc/nsswitch.conf file. The entries in
this file can include files (designating the /etc files), nis (designating the NIS
database), and nisplus (designating the NIS+ database). See the System
Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP) or
nsswitch.conf(4) for a description of this file.

The login program verifies the user name and password entered. If the user name is
not in the password file or the password is not correct for the user name, the login
program denies access to the system. When the user supplies a name from the
password file and the correct password for the name, the system grants the user access
to the system.

Special Logins
There are two common ways to access a system—by using a conventional user login,
or by using the root login. In addition, a number of special system logins allow a user
to perform administrative commands without using the root account. The
administrator assigns passwords to these login accounts.

The table below lists the system login accounts and their uses. The system logins
perform special functions, and each has its own group identifier number (GID). Each
of these logins should have its own password, which should be distributed on a
need-to-know basis.

Managing System Security (Overview) 209

TABLE 14–3 System Logins

Login Account GID Use

root 0 Has almost no restrictions and overrides all other logins,
protections, and permissions. The root account has access
to the entire system. The password for the root login
should be very carefully protected. Owns most of the
Solaris commands.

daemon 1 Controls background processing.

bin 2 Owns some of the Solaris commands.

sys 3 Owns many system files.

adm 4 Owns certain administrative files.

lp 71 Owns the object and spooled data files for the printer.

uucp 5 Owns the object and spooled data files for UUCP, the
UNIX-to-UNIX copy program.

nuucp 9 Is used by remote systems to log in to the system and start
file transfers.

You should also set the security of the eeprom command to require a password. See
eeprom(1M) for more information.

Managing Password Information
When logging in to a system, users must enter both a user name and a password.
Although logins are publicly known, passwords must be kept secret, known only to
users. You should ask your users to choose their passwords carefully, and they should
change them often.

Passwords are initially created when you set up a user account. To maintain security
on user accounts, you can set up password aging to force users to routinely change
their passwords, and you can also disable a user account by locking the password. See
“Managing User Accounts and Groups (Overview)” in System Administration Guide:
Basic Administration and passwd(1) for detailed information about setting up and
maintaining passwords.

NIS+ Password File
If your network uses NIS+, the password information is kept in the NIS+ database.
Information in the NIS+ database can be protected by restricting access to authorized
users. You can use the passwd command to change a user’s NIS+ password.

210 System Administration Guide: Security Services • December 2001 (Beta)

NIS Password File
If your network uses NIS, the password information is kept in the NIS password map.
NIS does not support password aging. You can use the passwd command to change a
user’s NIS password.

/etc Files
If your network uses /etc files, the password information is kept in the system’s
/etc/passwd and /etc/shadow files. The user name and other information are kept
in the password file /etc/passwd, while the encrypted password itself is kept in a
separate shadow file, /etc/shadow. This is a security measure that prevents a user
from gaining access to the encrypted passwords. While the /etc/passwd file is
available to anyone who can log in to a machine, only superuser can read the
/etc/shadow file. You can use the passwd command to change a user’s password on
a local system.

Using the Restricted Shell
The standard shell allows a user to open files, execute commands, and so on. The
restricted shell can be used to limit the ability of a user to change directories and
execute commands. The restricted shell (rsh) is located in the /usr/lib directory.
(Note that this is not the remote shell, which is /usr/sbin/rsh.) The restricted shell
differs from the normal shell in these ways:

� The user is limited to the home directory (can’t use cd to change directories).

� The user can use only commands in the PATH set by the system administrator
(can’t change the PATH variable).

� The user can access only files in the home directory and its subdirectories (can’t
name commands or files using a complete path name).

� The user cannot redirect output with > or >>.

The restricted shell allows the system administrator to limit a user’s ability to stray
into the system files, and is intended mainly to set up a user who needs to perform
specific tasks. The rsh is not completely secure, however, and is only intended to keep
unskilled users from getting into (or causing) trouble.

See rsh(1M) for information about the restricted shell.

Managing System Security (Overview) 211

Tracking Superuser (Root) Login
Your system requires a root password for superuser mode. In the default
configuration, a user cannot remotely log in to a system as root. When logging in
remotely, a user must log in as himself and then use the su command to become root.
This enables you to track who is using superuser privileges on your system.

Monitoring Who is Becoming Superuser or Other Users
You have to use the su command to change to another user, for example, if you want
to become superuser. For security reasons, you can monitor who has been using the
su command, especially those users who are trying to gain superuser access.

See “How to Monitor Who Is Using the su Command” on page 250 for detailed
instructions.

Network Security
The more available access is across a network, the more advantageous it is for
networked systems. However, free access and sharing of data and resources create
security problems. Network security is usually based on limiting or blocking
operations from remote systems. The figure below describes the security restrictions
you can impose on remote operations.

212 System Administration Guide: Security Services • December 2001 (Beta)

Authorization

Authentication

Firewall

The firewall restricts the
types of remote operations
that the systems at a particular
site can perform with systems
outside the firewall.

Remote systems use
authentication to restrict
access to specific users.

Remote systems use
authorization to restrict
authenticated users from
performing operations
on their file systems.

Can I log in?

Depends . . .
who are you?

Can I copy
that file?

Sure,
go ahead.

Local system Remote system

Local file
system

Remote
file system

FIGURE 14–1 Security Restrictions for Remote Operations

Firewall Systems
You can set up a firewall system to protect the resources in your network from outside
access. A firewall system is a secure host that acts as a barrier between your internal
network and outside networks.

The firewall has two functions. It acts as a gateway which passes data between the
networks, and it acts as a barrier which blocks the free passage of data to and from the
network. The firewall requires a user on the internal network to log in to the firewall
system to access hosts on remote networks. Similarly, a user on an outside network
must log in to the firewall system before being granted access to a host on the internal
network.

In addition, all electronic mail sent from the internal network is sent to the firewall
system for transfer to a host on an external network. The firewall system receives all
incoming electronic mail, and distributes it to the hosts on the internal network.

Managing System Security (Overview) 213

Caution – A firewall prevents unauthorized users from accessing hosts on your
network. You should maintain strict and rigidly enforced security on the firewall, but
security on other hosts on the network can be more relaxed. However, an intruder
who can break into your firewall system can then gain access to all the other hosts on
the internal network.

A firewall system should not have any trusted hosts. (A trusted host is one from which
a user can log in without being required to type in a password.) It should not share
any of its file systems, or mount any file systems from other servers.

ASET can be used to make a system into a firewall, and to enforce high security on a
firewall system, as described in Chapter 20.

Packet Smashing
Most local area networks transmit data between computers in blocks called packets.
Through a procedure called packet smashing, unauthorized users can harm or destroy
data. Packet smashing involves capturing packets before they reach their destination,
injecting arbitrary data into the contents, then sending the packets back on their
original course. On a local area network, packet smashing is impossible because
packets reach all systems, including the server, at the same time. Packet smashing is
possible on a gateway, however, so make sure all gateways on the network are
protected.

The most dangerous attacks are those that affect the integrity of the data. Such attacks
involve changing the contents of the packets or impersonating a user. Attacks that
involve eavesdropping—recording conversations and replaying them later without
impersonating a user—do not compromise data integrity. These attacks do affect
privacy, however. You can protect the privacy of sensitive information by encrypting
data that goes over the network.

Authentication and Authorization
Authentication is a way to restrict access to specific users when accessing a remote
system, which can be set up at both the system or network level. Once a user gains
access to a remote system, authorization is a way to restrict operations that the user can
perform on the remote system. The table below lists the types of authentications and
authorizations that can help protect your systems on the network against
unauthorized use.

214 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 14–4 Types of Authentication and Authorization

Type Description Where to Find Information

NIS+ The NIS+ name service can provide both
authentication and authorization at the network
level.

System Administration Guide:
Naming and Directory
Services (DNS, NIS, and
LDAP)

Remote Login Programs The remote login programs (rlogin, rcp, ftp)
enable users to log in to a remote system over the
network and use its resources. If you are a
“trusted host,” authentication is automatic;
otherwise, you are asked to authenticate
yourself.

“Accessing Remote Systems
(Tasks)” in System
Administration Guide:
Resource Management and
Network Services

Secure RPC Secure RPC improves the security of network
environments by authenticating users who make
requests on remote systems. You can use either
the UNIX, DES, or Kerberos authentication
system for Secure RPC.

“Overview of Secure RPC”
on page 29

Secure RPC can also be used to provide
additional security to the NFS environment,
called Secure NFS.

“NFS Services and Secure
RPC” on page 30

DES Encryption The Data Encryption Standard (DES) encryption
functions use a 56-bit key to encrypt a secret key.

“DES Encryption”
on page 30

Diffie-Hellman Authentication This authentication method is based on the
ability of the sending system to use the common
key to encrypt the current time, which the
receiving system can decrypt and check against
its current time.

“Diffie-Hellman
Authentication” on page 31

Kerberos Kerberos uses DES encryption to authenticate a
user when logging in to the system.

Chapter 3

Sharing Files
A network file server can control which files are available for sharing. It can also
control which clients have access to the files, and what type of access is permitted to
those clients. In general, the file server can grant read/write or read-only access either
to all clients or to specific clients. Access control is specified when resources are made
available with the share command.

A server can use the /etc/dfs/dfstab file to list the file systems it makes available
to clients on the network. See “Automatic File-System Sharing” in System
Administration Guide: Resource Management and Network Services for more information
about sharing file systems.

Managing System Security (Overview) 215

Restricting Superuser (Root) Access
In general, superuser is not allowed root access to file systems shared across the
network. Unless the server specifically grants superuser privileges, a user who is
logged in as superuser on a client cannot gain root access to files that are remotely
mounted on the client. The NFS system implements this by changing the user ID of
the requester to the user ID of the user name, nobody; this is generally 60001. The
access rights of user nobody are the same as those given to the public (or a user
without credentials) for a particular file. For example, if the public has only execute
permission for a file, then user nobody can only execute that file.

An NFS server can grant superuser privileges on a shared file system on a per-host
basis, using the root=hostname option to the share command.

Using Privileged Ports
If you do not want to run Secure RPC, a possible substitute is the Solaris “privileged
port” mechanism. A privileged port is built up by the superuser with a port number of
less than 1024. After a client system has authenticated the client’s credential, it builds a
connection to the server via the privileged port. The server then verifies the client
credential by examining the connection’s port number.

Non-Solaris clients, however, might not be able to communicate via the privileged
port. If they cannot, you will see error messages such as these:

“Weak Authentication

NFS request from unprivileged port”

Using Automated Security Enhancement Tool
(ASET)
The ASET security package provides automated administration tools that enable you
to control and monitor your system’s security. You specify a security level—low,
medium, or high—at which ASET will run. At each higher level, ASET’s file-control
functions increase to reduce file access and tighten your system security.

See Chapter 20 for more information.

216 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 15

Securing Files (Tasks)

This chapter describes the procedures for securing files. This is a list of the
step-by-step instructions in this chapter.

� “How to Display File Information” on page 221
� “How to Change the Owner of a File” on page 223
� “How to Change Group Ownership of a File” on page 224
� “How to Change Permissions in Absolute Mode” on page 227
� “How to Change Special Permissions in Absolute Mode” on page 228
� “How to Change Permissions in Symbolic Mode” on page 229
� “How to Find Files With setuid Permissions” on page 230
� “How to Disable Programs From Using Executable Stacks” on page 232
� “How to Set an ACL on a File” on page 235
� “How to Copy an ACL” on page 237
� “How to Check If a File Has an ACL” on page 237
� “How to Modify ACL Entries on a File” on page 238
� “How to Delete ACL Entries From a File” on page 238
� “How to Display ACL Entries for a File” on page 239

File Security Features
This section describes the features that constitute a file’s security.

User Classes
For each file, there are three classes of users that specify the levels of security:

217

� The file or directory owner—usually the user who created the file. The owner of a
file can decide who has the right to read it, to write to it (make changes to it), or, if
it is a command, to execute it.

� Members of a group.

� All others who are not the file or group owner.

Only the owner of the file or root can assign or modify file permissions.

File Permissions
The table below lists and describes the permissions you can give to each user class for
a file.

TABLE 15–1 File Permissions

Symbol Permission Means Designated Users ...

r Read Can open and read the contents of a file

w Write Can write to the file (modify its contents), add to it, or
delete it

x Execute Can execute the file (if it is a program or shell script),
or run it with one of the exec(1) system calls

- Denied Cannot read, write, or execute the file

These file permissions apply to special files such as devices, sockets, and named pipes
(FIFOs), as they do to regular files.

For a symbolic link, the permissions that apply are those of the file the link points to.

Directory Permissions
The table below lists and describes the permissions you can give to each user class for
a directory.

TABLE 15–2 Directory Permissions

Symbol Permission Means Designated Users Can ...

r Read List files in the directory.

w Write Add or remove files or links in the directory.

218 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 15–2 Directory Permissions (Continued)
Symbol Permission Means Designated Users Can ...

x Execute Open or execute files in the directory. Also can make
the directory and the directories beneath it current.

You can protect the files in a directory (and in its subdirectories) by disallowing access
to that directory. Note, however, that superuser has access to all files and directories
on the system.

Special File Permissions (setuid, setgid and
Sticky Bit)
Three special types of permissions are available for executable files and public
directories. When these permissions are set, any user who runs that executable file
assumes the user ID of the owner (or group) of the executable file.

You must be extremely careful when setting special permissions, because special
permissions constitute a security risk. For example, a user can gain superuser
permission by executing a program that sets the user ID to root. Also, all users can set
special permissions for files they own, which constitutes another security concern.

You should monitor your system for any unauthorized use of the setuid and
setgid permissions to gain superuser privileges. See “How to Find Files With
setuid Permissions” on page 230 to search for the file systems and print out a list of
all programs using these permissions. A suspicious listing would be one that grants
ownership of such a program to a user rather than to root or bin.

setuid Permission
When set-user identification (setuid) permission is set on an executable file, a
process that runs this file is granted access based on the owner of the file (usually
root), rather than the user who is running the executable file. This allows a user to
access files and directories that are normally only available to the owner. For example,
the setuid permission on the passwd command makes it possible for a user to
change passwords, assuming the permissions of the root ID:

-r-sr-sr-x 3 root sys 104580 Sep 16 12:02 /usr/bin/passwd

This presents a security risk, because some determined users can find a way to
maintain the permissions granted to them by the setuid process even after the
process has finished executing.

Securing Files (Tasks) 219

Note – Using setuid permissions with the reserved UIDs (0-100) from a program
might not set the effective UID correctly. Use a shell script instead or avoid using the
reserved UIDs with setuid permissions.

setgid Permission
The set-group identification (setgid) permission is similar to setuid, except that the
process’s effective group ID (GID) is changed to the group owner of the file, and a user
is granted access based on permissions granted to that group. The /usr/bin/mail
program has setgid permissions:

-r-x--s--x 1 root mail 63628 Sep 16 12:01 /usr/bin/mail

When setgid permission is applied to a directory, files created in this directory
belong to the group to which the directory belongs, not the group to which the
creating process belongs. Any user who has write and execute permissions in the
directory can create a file there—however, the file belongs to the group owning the
directory, not to the user’s group ownership.

You should monitor your system for any unauthorized use of the setuid and
setgid permissions to gain superuser privileges. See “How to Find Files With
setuid Permissions” on page 230 to search for the file systems and print out a list of
all programs using these permissions. A suspicious listing would be one that grants
ownership of such a program to a user rather than to root or bin.

Sticky Bit
The sticky bit is a permission bit that protects the files within a directory. If the
directory has the sticky bit set, a file can be deleted only by the owner of the file, the
owner of the directory, or by root. This prevents a user from deleting other users’ files
from public directories such as /tmp:

drwxrwxrwt 7 root sys 400 Sep 3 13:37 tmp

Be sure to set the sticky bit manually when you set up a public directory on a TMPFS
file system.

Default umask
When you create a file or directory, it has a default set of permissions. These default
permissions are determined by the value of umask(1) in the system file
/etc/profile, or in your .cshrc or .login file. By default, the system sets the

220 System Administration Guide: Security Services • December 2001 (Beta)

permissions on a text file to 666, granting read and write permission to user, group,
and others, and to 777 on a directory or executable file.

The value assigned by umask is subtracted from the default. This has the effect of
denying permissions in the same way that chmod grants them. For example, while the
command chmod 022 grants write permission to group and others, umask 022
denies write permission for group and others.

The table below shows some typical umask settings, and the effect on an executable
file.

TABLE 15–3 umask Settings for Different Security Levels

Level of Security umask Disallows

Permissive (744) 022 w for group and others

Moderate (740) 027 w for group, rwx for others

Moderate (741) 026 w for group, rw for others

Severe (700) 077 rwx for group and others

Displaying File Information
This section describes how to display file information.

� How to Display File Information
Display information about all the files in a directory by using the ls command.

$ ls -la

-l Displays the long format.

-a Displays all files, including hidden files that begin with a dot (.).

Each line in the display has the following information about a file:

� Type of file

A file can be one of seven types. The table below lists the possible file types.

Securing Files (Tasks) 221

TABLE 15–4 File Types

Symbol Type

- Text or program

D Door

d Directory

b Block special file

c Character special file

p Named pipe (FIFO)

l Symbolic link

s Socket

� Permissions; see Table 15–1 and Table 15–2 for descriptions

� Number of hard links

� Owner of the file

� Group of the file

� Size of the file, in bytes

� Date the file was created or last date it was changed

� Name of the file

Example—Displaying File Information
The following example displays the partial list of the files in the /sbin directory.

$ cd /sbin
$ ls -la
total 13456
drwxr-xr-x 2 root sys 512 Sep 1 14:11 .
drwxr-xr-x 29 root root 1024 Sep 1 15:40 ..
-r-xr-xr-x 1 root bin 218188 Aug 18 15:17 autopush
lrwxrwxrwx 1 root root 21 Sep 1 14:11 bpgetfile -> ...
-r-xr-xr-x 1 root bin 505556 Aug 20 13:24 dhcpagent
-r-xr-xr-x 1 root bin 456064 Aug 20 13:25 dhcpinfo
-r-xr-xr-x 1 root bin 272360 Aug 18 15:19 fdisk
-r-xr-xr-x 1 root bin 824728 Aug 20 13:29 hostconfig
-r-xr-xr-x 1 root bin 603528 Aug 20 13:21 ifconfig
-r-xr-xr-x 1 root sys 556008 Aug 20 13:21 init
-r-xr-xr-x 2 root root 274020 Aug 18 15:28 jsh
-r-xr-xr-x 1 root bin 238736 Aug 21 19:46 mount
-r-xr-xr-x 1 root sys 7696 Aug 18 15:20 mountall

.

.

222 System Administration Guide: Security Services • December 2001 (Beta)

.

Changing File Ownership
This section describes how to change the ownership of a file.

� How to Change the Owner of a File
1. Become superuser.

By default, the owner cannot use the chown command to change the owner of a file or
directory. However, you can enable the owner to use chown by adding the following
line to the system’s /etc/system file and rebooting the system.

set rstchown = 0

See chown(1) for more details. Also, be aware that there can be other restrictions on
changing ownership on NFS-mounted file systems.

2. Change the owner of a file by using the chown command.

chown newowner filename

newowner Specifies the user name or UID of the new owner of the file or directory.

filename Specifies the file or directory.

3. Verify the owner of the file is changed.

ls -l filename

Example—Changing the Owner of a File
The following example sets the ownership on myfile to the user rimmer.

chown rimmer myfile
ls -l myfile

-rw-r--r-- 1 rimmer scifi 112640 May 24 10:49 myfile

Securing Files (Tasks) 223

� How to Change Group Ownership of a File
1. Become superuser.

By default, the owner can only use the chgrp command to change the group of a file
to a group in which the owner belongs. For example, if the owner of a file only
belongs to the staff and sysadm groups, the owner can only change the group of a
file to staff or sysadm group.

However, you can enable the owner to change the group of a file to a group in which
the owner doesn’t belong by adding the following line to the system’s /etc/system
file and rebooting the system.

set rstchown = 0

See chgrp(1) for more details. Also, be aware that there can be other restrictions on
changing groups on NFS-mounted file systems.

2. Change the group owner of a file by using the chgrp command.

$ chgrp group filename

group Specifies the group name or GID of the new group of the file or
directory.

filename Specifies the file or directory.

See “Managing User Accounts and Groups (Overview)” in System Administration
Guide: Basic Administration for information on setting up groups.

3. Verify the group owner of the file is changed.

$ ls -l filename

Example—Changing Group Ownership of a File
The following example sets the group ownership on myfile to the group scifi.

$ chgrp scifi myfile
$ ls -l myfile

-rwxrw-- 1 rimmer scifi 12985 Nov 12 16:28 myfile

224 System Administration Guide: Security Services • December 2001 (Beta)

Changing File Permissions
The chmod command enables you to change the permissions on a file. You must be
superuser or the owner of a file or directory to change its permissions.

You can use the chmod command to set permissions in either of two modes:

� Absolute Mode - Use numbers to represent file permissions (the method most
commonly used to set permissions). When you change permissions by using the
absolute mode, represent permissions for each triplet by an octal mode number.

� Symbolic Mode - Use combinations of letters and symbols to add or remove
permissions.

The table below lists the octal values for setting file permissions in absolute mode. You
use these numbers in sets of three to set permissions for owner, group, and other (in
that order). For example, the value 644 sets read/write permissions for owner, and
read-only permissions for group and other.

TABLE 15–5 Setting File Permissions in Absolute Mode

Octal Value File Permissions Set Permissions Description

0 --- No permissions

1 --x Execute permission only

2 -w- Write permission only

3 -wx Write and execute permissions

4 r-- Read permission only

5 r-x Read and execute permissions

6 rw- Read and write permissions

7 rwx Read, write, and execute permissions

You can set special permissions on a file in absolute or symbolic modes. However, you
cannot set or remove setuid permissions on a directory by using absolute mode, you
must use symbolic mode. In absolute mode, you set special permissions by adding a
new octal value to the left of the permission triplet. The table below lists the octal
values to set special permissions on a file.

Securing Files (Tasks) 225

TABLE 15–6 Setting Special Permissions in Absolute Mode

Octal Value Special Permissions Set

1 Sticky bit

2 setguid

4 setuid

The table below lists the symbols for setting file permissions in symbolic mode.
Symbols can specify whose permissions are to be set or changed, the operation to be
performed, and the permissions being assigned or changed.

TABLE 15–7 Setting File Permissions in Symbolic Mode

Symbol Function Description

u Who User (owner)

g Who Group

o Who Others

a Who All

= Operation Assign

+ Operation Add

- Operation Remove

r Permission Read

w Permission Write

x Permission Execute

l Permission Mandatory locking, setgid bit is on, group execution bit
is off

s Permission setuid or setgid bit is on

S Permission suid bit is on, user execution bit is off

t Permission Sticky bit is on, execution bit for others is on

T Permission Sticky bit is on, execution bit for others is off

The who operator permission designations in the function column specifies the symbols
that change the permissions on the file or directory.

who Specifies whose permissions are changed.

226 System Administration Guide: Security Services • December 2001 (Beta)

operator Specifies the operation to perform.

permissions Specifies what permissions are changed.

� How to Change Permissions in Absolute Mode
1. If you are not the owner of the file or directory, become superuser.

Only the current owner or superuser can use the chmod command to change file
permissions on a file or directory.

2. Change permissions in absolute mode by using the chmod command.

$ chmod nnn filename

nnn Specifies the octal values that represent the permissions for the
file owner, file group, and others, in that order. See Table 15–5 for
the list of valid octal values.

filename Specifies the file or directory.

Note – If you use chmod to change the file group permissions on a file with ACL
entries, both the file group permissions and the ACL mask are changed to the new
permissions. Be aware that the new ACL mask permissions can change the effective
permissions for additional users and groups who have ACL entries on the file. Use the
getfacl(1) command to make sure the appropriate permissions are set for all ACL
entries.

3. Verify the permissions of the file have changed.

$ ls -l filename

Example—Changing Permissions in Absolute Mode
The following example shows changing the permissions of a public directory from 744
(read/write/execute, read-only, and read-only) to 755 (read/write/execute,
read/execute, and read/execute).

$ ls -ld public_dir
drwxr--r-- 1 ignatz staff 6023 Aug 5 12:06 public_dir
$ chmod 755 public_dir
$ ls -ld public_dir

drwxr-xr-x 1 ignatz staff 6023 Aug 5 12:06 public_dir

Securing Files (Tasks) 227

The following example shows changing the permissions of an executable shell script
from read/write to read/write/execute.

$ ls -l my_script
-rw------- 1 ignatz staff 6023 Aug 5 12:06 my_script
$ chmod 700 my_script
$ ls -l my_script

-rwx------ 1 ignatz staff 6023 Aug 5 12:06 my_script

� How to Change Special Permissions in Absolute
Mode

1. If you are not the owner of the file or directory, become superuser.

Only the current owner or superuser can use the chmod command to change the
special permissions on a file or directory.

2. Change special permissions in absolute mode by using the chmod command.

$ chmod nnnn filename

nnnn Specifies the octal values that change the permissions on the file or
directory. The first octal value on the left sets the special permissions
on the file. See Table 15–6 for the list of valid octal values for the
special permissions.

filename Specifies the file or directory.

Note – If you use chmod to change the file group permissions on a file with ACL
entries, both the file group permissions and the ACL mask are changed to the new
permissions. Be aware that the new ACL mask permissions can change the effective
permissions for additional users and groups who have ACL entries on the file. Use the
getfacl(1) command to make sure the appropriate permissions are set for all ACL
entries.

3. Verify the permissions of the file have changed.

$ ls -l filename

Examples—Setting Special Permissions in Absolute Mode
The following example sets setuid permission on the dbprog file.

228 System Administration Guide: Security Services • December 2001 (Beta)

$ chmod 4555 dbprog
$ ls -l dbprog

-r-sr-xr-x 1 db staff 12095 May 6 09:29 dbprog

The following example sets setgid permission on the dbprog2 file.

$ chmod 2551 dbprog2
$ ls -l dbprog2

-r-xr-s--x 1 db staff 24576 May 6 09:30 dbprog2

The following example sets sticky bit permission on the pubdir directory.

$ chmod 1777 public_dir
$ ls -ld public_dir

drwxrwxrwt 2 ignatz staff 512 May 15 15:27 public_dir

� How to Change Permissions in Symbolic Mode
1. If you are not the owner of the file or directory, become superuser.

Only the current owner or superuser can use the chmod command to change file
permissions on a file or directory.

2. Change permissions in symbolic mode by using the chmod command.

$ chmod who operator permission filename

who operator permission who specifies whose permissions are changed, operator specifies
the operation to perform, and permission specifies what
permissions are changed. See Table 15–7 for the list of valid
symbols.

filename Specifies the file or directory.

3. Verify the permissions of the file have changed.

$ ls -l filename

Examples—Changing Permissions in Symbolic Mode
The following example takes away read permission from others.

$ chmod o-r filea

The following example adds read and execute permissions for user, group, and
others.

$ chmod a+rx fileb

Securing Files (Tasks) 229

The following example assigns read, write, and execute permissions to group.

$ chmod g=rwx filec

Searching for Special Permissions
You should monitor your system for any unauthorized use of the setuid and
setgid permissions to gain superuser privileges. A suspicious listing would be one
that grants ownership of such a program to a user rather than to root or bin.

� How to Find Files With setuid Permissions
1. Become superuser.

2. Find files with setuid permissions set by using the find command.

find directory -user root -perm -4000 -exec ls -ldb {} \; >/tmp/filename

find directory Checks all mounted paths starting at the specified directory,
which can be root (/), sys, bin, or mail.

-user root Displays files only owned by root.

-perm -4000 Displays files only with permissions set to 4000.

-exec ls -ldb Displays the output of the find command in ls -ldb
format.

>/tmp/filename Writes results to this file.

3. Display the results in /tmp/filename.

If you need background information about setuid permissions, see “setuid
Permission” on page 219.

Example—Finding Files With setuid Permissions
find / -user root -perm -4000 -exec ls -ldb {} \; > /tmp/ckprm
cat /tmp/ckprm
-r-sr-xr-x 1 root bin 38836 Aug 10 16:16 /usr/bin/at
-r-sr-xr-x 1 root bin 19812 Aug 10 16:16 /usr/bin/crontab
---s--x--x 1 root sys 46040 Aug 10 15:18 /usr/bin/ct
-r-sr-xr-x 1 root sys 12092 Aug 11 01:29 /usr/lib/mv_dir

230 System Administration Guide: Security Services • December 2001 (Beta)

-r-sr-sr-x 1 root bin 33208 Aug 10 15:55 /usr/lib/lpadmin
-r-sr-sr-x 1 root bin 38696 Aug 10 15:55 /usr/lib/lpsched
---s--x--- 1 root rar 45376 Aug 18 15:11 /usr/rar/bin/sh
-r-sr-xr-x 1 root bin 12524 Aug 11 01:27 /usr/bin/df
-rwsr-xr-x 1 root sys 21780 Aug 11 01:27 /usr/bin/newgrp
-r-sr-sr-x 1 root sys 23000 Aug 11 01:27 /usr/bin/passwd
-r-sr-xr-x 1 root sys 23824 Aug 11 01:27 /usr/bin/su

#

An unauthorized user (rar) has made a personal copy of /usr/bin/sh, and has set
the permissions as setuid to root. This means that rar can execute
/usr/rar/bin/sh and become the privileged user. If you want to save this output
for future reference, move the file out of the /tmp directory.

Executable Stacks and Security
A number of security bugs are related to default executable stacks when their
permissions are set to read, write, and execute. While stacks with execute permissions
set are mandated by the SPARC ABI and Intel ABI, most programs can function
correctly without using executable stacks.

The noexec_user_stack variable (available starting in the Solaris 2.6 release)
enables you to specify whether stack mappings are executable or not. By default, the
variable is set to zero, except on 64–bit applications, which provides ABI-compliant
behavior. If the variable is set to non-zero, the system marks the stack of every process
in the system as readable and writable, but not executable.

Once this variable is set, programs that attempt to execute code on their stack are sent
a SIGSEGV signal, which usually results in the program terminating with a core
dump. Such programs also generate a warning message that includes the name of the
offending program, the process ID, and real UID of the user who ran the program. For
example:

a.out[347] attempt to execute code on stack by uid 555

The message is logged by the syslogd(1M) daemon when the syslog kern facility
is set to notice level. This logging is set by default in the syslog.conf(4) file,
which means the message is sent to both the console and to the /var/adm/messages
file.

This message is useful for observing potential security problems, as well as to identify
valid programs that depend upon executable stacks which have been prevented from
correct operation by setting this variable. If the administrator does not want any
messages logged, then the noexec_user_stack_log variable can be set to zero to

Securing Files (Tasks) 231

disable it in the /etc/system file, though the SIGSEGV signal can continue to cause
the executing program to core dump.

You can use mprotect(2) if you want programs to explicitly mark their stack as
executable.

Because of hardware limitations, the capability of catching and reporting executable
stack problems is only available on sun4m, sun4d and sun4u platforms.

� How to Disable Programs From Using Executable
Stacks

1. Become superuser.

2. Edit the /etc/system file and add the following line.

set noexec_user_stack=1

3. Reboot the system.

init 6

� How to Disable Executable Stack Message Logging
1. Become superuser.

2. Edit the /etc/system file and add the following line.

set noexec_user_stack_log=0

3. Reboot the system.

init 6

Using Access Control Lists (ACLs)
Traditional UNIX file protection provides read, write, and execute permissions for the
three user classes: file owner, file group, and other. An ACL provides better file
security by enabling you to define file permissions for the file owner, file group, other,
specific users and groups, and default permissions for each of those categories.

232 System Administration Guide: Security Services • December 2001 (Beta)

For example, if you wanted everyone in a group to be able to read a file, you would
simply give group read permissions on that file. Now, assume you wanted only one
person in the group to be able to write to that file. Standard UNIX doesn’t provide that
level of file security. However, this dilemma is perfect for ACLs.

ACL entries are the way to define an ACL on a file, and they are set through the
setfacl(1) command. ACL entries consist of the following fields separated by colons:

entry_type:[uid|gid]:perms

entry_type Type of ACL entry on which to set file permissions. For example,
entry_type can be user (the owner of a file) or mask (the ACL
mask).

uid User name or identification number.

gid Group name or identification number.

perms Represents the permissions that are set on entry_type. perms can be
indicated by the symbolic characters rwx or a number (the same
permissions numbers used with the chmod command).

The following example shows an ACL entry that sets read/write permissions for the
user nathan.

user:nathan:rw-

Caution – UFS file system attributes such as ACLs are supported in UFS file systems
only. This means that if you restore or copy files with ACL entries into the /tmp
directory, which is usually mounted as a TMPFS file system, the ACL entries will be
lost. Use the /var/tmp directory for temporary storage of UFS files.

ACL Entries for Files
The table below lists the valid ACL entries. The first three ACL entries provide the
basic UNIX file protection.

TABLE 15–8 ACL Entries for Files

ACL Entry Description

u[ser]::perms File owner permissions.

g[roup]::perms File group permissions.

o[ther]:perms Permissions for users other than the file owner
or members of file group.

Securing Files (Tasks) 233

TABLE 15–8 ACL Entries for Files (Continued)
ACL Entry Description

m[ask]:perms The ACL mask. The mask entry indicates the
maximum permissions allowed for users
(other than the owner) and for groups. The
mask is a quick way to change permissions on
all the users and groups.

For example, the mask:r-- mask entry
indicates that users and groups cannot have
more than read permissions, even though they
might have write/execute permissions.

u[ser]:uid:perms Permissions for a specific user. For uid, you
can specify either a user name or a numeric
UID.

g[roup]:gid:perms Permissions for a specific group. For gid, you
can specify either a group name or a numeric
GID.

ACL Entries for Directories
In addition to the ACL entries described in Table 15–8, you can set default ACL entries
on a directory. Files or directories created in a directory that has default ACL entries
will have the same ACL entries as the default ACL entries. The table below lists the
default ACL entries for directories.

When you set default ACL entries for specific users and groups on a directory for the
first time, you must also set default ACL entries for the file owner, file group, others,
and the ACL mask (these are required and are the first four default ACL entries in the
table below).

TABLE 15–9 Default ACL Entries for Directories

Default ACL Entry Description

d[efault]:u[ser]::perms Default file owner permissions.

d[efault]:g[roup]::perms Default file group permissions.

d[efault]:o[ther]:perms Default permissions for users other than the
file owner or members of the file group.

d[efault]:m[ask]:perms Default ACL mask.

d[efault]:u[ser]:uid:perms Default permissions for a specific user. For uid,
you can specify either a user name or a
numeric UID.

234 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 15–9 Default ACL Entries for Directories (Continued)
Default ACL Entry Description

d[efault]:g[roup]:gid:perms Default permissions for a specific group. For
gid, you can specify either a group name or a
numeric GID.

� How to Set an ACL on a File
1. Set an ACL on a file by using the setfacl command.

$ setfacl -s user::perms,group::perms,other:perms,mask:perms,acl_entry_list filename ...

-s Sets an ACL on the file. If a file already has an ACL, it is
replaced. This option requires at least the file owner, file group,
and other entries.

user::perms Specifies the file owner permissions.

group::perms Specifies the file group permissions.

other:perms Specifies the permissions for users other than the file owner or
members of the file group.

mask:perms Specifies the permissions for the ACL mask. The mask
indicates the maximum permissions allowed for users (other
than the owner) and for groups.

acl_entry_list Specifies the list of one or more ACL entries to set for specific
users and groups on the file or directory. You can also set
default ACL entries on a directory. Table 15–8 and Table 15–9
show the valid ACL entries.

filename Specifies one or more files or directories on which to set the
ACL.

2. To verify that an ACL was set on the file, see “How to Check If a File Has an ACL”
on page 237. To verify which ACL entries were set on the file, use the getfacl
command.

$ getfacl filename

Securing Files (Tasks) 235

Caution – If an ACL already exists on the file, the -s option will replace the entire
ACL with the new ACL.

Examples—Setting an ACL on a File
The following example sets the file owner permissions to read/write, file group
permissions to read only, and other permissions to none on the ch1.doc file. In
addition, the user george is given read/write permissions on the file, and the ACL
mask permissions are set to read/write, which means no user or group can have
execute permissions.

$ setfacl -s user::rw-,group::r--,other:---,mask:rw-,user:george:rw- ch1.doc
$ ls -l
total 124
-rw-r-----+ 1 nathan sysadmin 34816 Nov 11 14:16 ch1.doc
-rw-r--r-- 1 nathan sysadmin 20167 Nov 11 14:16 ch2.doc
-rw-r--r-- 1 nathan sysadmin 8192 Nov 11 14:16 notes
$ getfacl ch1.doc
file: ch1.doc
owner: nathan
group: sysadmin
user::rw-
user:george:rw- #effective:rw-
group::r-- #effective:r--
mask:rw-
other:---

The following example sets the file owner permissions to read/write/execute, file
group permissions to read only, other permissions to none, and the ACL mask
permissions to read on the ch2.doc file. In addition, the user george is given
read/write permissions; however, due to the ACL mask, the effective permissions for
george are read only.

$ setfacl -s u::7,g::4,o:0,m:4,u:george:7 ch2.doc
$ getfacl ch2.doc
file: ch2.doc
owner: nathan
group: sysadmin
user::rwx
user:george:rwx #effective:r--
group::r-- #effective:r--
mask:r--

other:---

236 System Administration Guide: Security Services • December 2001 (Beta)

� How to Copy an ACL
Copy a file’s ACL to another file by redirecting the getfacl output.

$ getfacl filename1 | setfacl -f - filename2

filename1 Specifies the file from which to copy the ACL.

filename2 Specifies the file on which to set the copied ACL.

Example—Copying an ACL
The following example copies the ACL on ch2.doc to ch3.doc.

$ getfacl ch2.doc | setfacl -f - ch3.doc

� How to Check If a File Has an ACL
Check if a file has an ACL by using the ls command.

$ ls -l filename

filename Specifies the file or directory.

A plus sign (+) to the right of the mode field indicates the file has an ACL.

Note – Unless you have added ACL entries for additional users or groups on a file, a
file is considered to be a “trivial” ACL and the + will not display.

Example—Checking If a File Has an ACL
The following example shows that ch1.doc has an ACL, because the listing has. a ‘+’
to the right of the mode field.

$ ls -l ch1.doc

-rwxr-----+ 1 nathan sysadmin 167 Nov 11 11:13 ch1.doc

Securing Files (Tasks) 237

� How to Modify ACL Entries on a File
1. Modify ACL entries on a file by using the setfacl command.

$ setfacl -m acl_entry_list filename1 [filename2 ...]

-m Modifies the existing ACL entry.

acl_entry_list Specifies the list of one or more ACL entries to modify on the file
or directory. You can also modify default ACL entries on a
directory. Table 15–8 and Table 15–9 show the valid ACL entries.

filename ... Specifies one or more files or directories.

2. To verify that the ACL entries were modified on the file, use the getfacl
command.

$ getfacl filename

Examples—Modifying ACL Entries on a File
The following example modifies the permissions for the user george to read/write.

$ setfacl -m user:george:6 ch3.doc
$ getfacl ch3.doc
file: ch3.doc
owner: nathan
group: staff
user::rw-
user::george:rw- #effective:r--
group::r- #effective:r--
mask:r--

other:r-

The following example modifies the default permissions for the group staff to read
and the default ACL mask permissions to read/write on the book directory.

$ setfacl -m default:group:staff:4,default:mask:6 book

� How to Delete ACL Entries From a File
1. Delete ACL entries from a file by using the setfacl command.

$ setfacl -d acl_entry_list filename1 ...

-d Deletes the specified ACL entries.

238 System Administration Guide: Security Services • December 2001 (Beta)

acl_entry_list Specifies the list of ACL entries (without specifying the permissions) to
delete from the file or directory. You can only delete ACL entries and
default ACL entries for specific users and groups. Table 15–8 and Table
15–9 show the valid ACL entries.

filename ... Specifies one or more files or directories.

Alternately, you can use the setfacl -s command to delete all the ACL entries on a
file and replace them with the new ACL entries specified.

2. To verify that the ACL entries were deleted from the file, use the getfacl
command.

$ getfacl filename

Example—Deleting ACL Entries on a File
The following example deletes the user george from the ch4.doc file.

$ setfacl -d user:george ch4.doc

� How to Display ACL Entries for a File
Display ACL entries for a file by using the getfacl command.

$ getfacl [-a | -d] filename1 ...

-a Displays the file name, file owner, file group, and ACL entries for the
specified file or directory.

-d Displays the file name, file owner, file group, and default ACL entries for
the specified directory.

filename ... Specifies one or more files or directories.

If you specify multiple file names on the command line, the ACL entries are separated
by a blank line.

Examples—Displaying ACL Entries for a File
The following example shows all the ACL entries for the ch1.doc file. The
#effective: note beside the user and group entries indicates what the permissions
are after being modified by the ACL mask.

Securing Files (Tasks) 239

$ getfacl ch1.doc

file: ch1.doc
owner: nathan
group: sysadmin
user::rw-
user:george:r-- #effective:r--
group::rw- #effective:rw-
mask:rw-

other:---

The following example shows the default ACL entries for the book directory.

$ getfacl -d book

file: book
owner: nathan
group: sysadmin
user::rwx
user:george:r-x #effective:r-x
group::rwx #effective:rwx
mask:rwx
other:---
default:user::rw-
default:user:george:r--
default:group::rw-
default:mask:rw-

default:other:---

240 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 16

Securing Systems (Tasks)

This chapter describes the procedures for securing systems. This is a list of the
step-by-step instructions in this chapter.

� “How to Display a User’s Login Status” on page 241
� “How to Display Users Without Passwords” on page 243
� “How to Temporarily Disable User Logins” on page 244
� “How to Save Failed Login Attempts” on page 244
� “How to Create a Dial-up Password” on page 247
� “How to Temporarily Disable Dial-up Logins” on page 248
� “How to Restrict Superuser (root) Login to the Console” on page 249
� “How to Monitor Who Is Using the su Command” on page 250
� “How to Display Superuser (root) Access Attempts to the Console” on page 250
� “How to Disable or Enable a System’s Abort Sequence” on page 251

For overview information about securing systems, see “System Security” on page 208.

Displaying Security Information
This section describes how to display user login information.

� How to Display a User’s Login Status
1. Become superuser.

241

2. Display a user’s login status by using the logins command.

logins -x -l username

-x Displays an extended set of login status information.

-l username Displays login status for the specified user. username is a user’s
login name. Multiple login names must be specified in a
comma-separated list.

The logins(1M) command uses the local /etc/passwd file and the NIS or NIS+
password databases to obtain a user’s login status.

Example—Displaying a User’s Login Status
The following example displays login status for the user rimmer.

logins -x -l rimmer
rimmer 500 staff 10 Arnold J. Rimmer

/export/home/rimmer
/bin/sh

PS 010170 10 7 -1

rimmer Identifies the user’s login name.

500 Identifies the UID (user ID).

staff Identifies the user’s primary group.

10 Identifies the GID (group ID).

Arnold J. Rimmer Identifies the comment.

/export/home/rimmer Identifies the user’s home directory.

/bin/sh Identifies the login shell.

PS 010170 10 7 -1 Specifies the password aging information:
� Last date password was changed
� Number of days required between changes
� Number of days allowed before a change is required
� Warning period

242 System Administration Guide: Security Services • December 2001 (Beta)

� How to Display Users Without Passwords
You should make sure that all users have a valid password.

1. Become superuser.

2. Display users who have no passwords by using the logins command.

logins -p

-p Displays a list of users with no passwords.

The logins command uses the local /etc/passwd file and the NIS or NIS+
password databases to obtain a user’s login status.

Example—Displaying Users Without Passwords
The following example displays that the user pmorph does not have a password.

logins -p
pmorph 501 other 1 Polly Morph

#

Temporarily Disabling User Logins
You can temporarily disable user logins by:

� Creating the /etc/nologin file.

� Bringing the system to run level 0 (single-user mode). See “Shutting Down a
System (Tasks)” in System Administration Guide: Basic Administration for information
on bringing the system to single-user mode.

Creating the /etc/nologin File
Create this file to disallow user logins and notify users when a system will be
unavailable for an extended period of time due to a system shutdown or routine
maintenance.

If a user attempts to log in to a system where this file exists, the contents of the
nologin(4) file is displayed, and the user login is terminated. Superuser logins are
not affected.

Securing Systems (Tasks) 243

� How to Temporarily Disable User Logins
1. Become superuser.

2. Create the /etc/nologin file using an editor.

vi /etc/nologin

3. Include a message regarding system availability.

4. Close and save the file.

Example—Disabling User Logins
This example shows how to notify users of system unavailability.

vi /etc/nologin
(Add system message here)

cat /etc/nologin
No logins permitted.

The system will be unavailable until 12 noon.

Saving Failed Login Attempts
You can save failed login attempts by creating the /var/adm/loginlog file with
read and write permission for root only. After you create the loginlog file, all failed
login activity will be written to this file automatically after five failed attempts. See
“How to Save Failed Login Attempts” on page 244 for detailed instructions.

The loginlog file contains one entry for each failed attempt. Each entry contains the
user’s login name, tty device, and time of the failed attempt. If a person makes fewer
than five unsuccessful attempts, none of the attempts are logged.

The loginlog file may grow quickly. To use the information in this file and to
prevent the file from getting too large, you must check and clear its contents
occasionally. If this file shows a lot of activity, it may suggest an attempt to break into
the computer system. For more information about this file, see loginlog(4).

� How to Save Failed Login Attempts
1. Become superuser.

244 System Administration Guide: Security Services • December 2001 (Beta)

2. Create the loginlog file in the /var/adm directory.

touch /var/adm/loginlog

3. Set read and write permissions for root on the loginlog file.

chmod 600 /var/adm/loginlog

4. Change group membership to sys on the loginlog file.

chgrp sys /var/adm/loginlog

5. Make sure the log works by attempting to log into the system five times with the
wrong password after the loginlog file is created. Then display the
/var/adm/loginlog file.

more /var/adm/loginlog
rimmer:/dev/pts/4:Mon Jul 12 13:52:15 1999
rimmer:/dev/pts/4:Mon Jul 12 13:52:23 1999
rimmer:/dev/pts/4:Mon Jul 12 13:52:31 1999
rimmer:/dev/pts/4:Mon Jul 12 13:52:39 1999

#

Password Protection Using Dial-up Passwords
You can add a layer of security to your password mechanism by requiring a dial-up
password for users who access a system through a modem or dial-up port. A dial-up
password is an additional password that a user must enter before being granted access
to the system.

Only superuser can create or change a dial-up password. To ensure the integrity of the
system, the password should be changed about once a month. The most effective use
of this mechanism is to require a dial-up password to gain access to a gateway system.

Two files are involved in creating a dial-up password, /etc/dialups and
/etc/d_passwd. The first contains a list of ports that require a dial-up password, and
the second contains a list of shell programs that require an encrypted password as the
additional dial-up password.

The dialups(4) file is a list of terminal devices, for example:

/dev/term/a

/dev/term/b

The d_passwd(4) file has two fields. The first is the login shell that will require a
password, and the second is the encrypted password. The /etc/dialups and
/etc/d_passwd files work like this:

When a user attempts to log in on any of the ports listed in /etc/dialups, the login
program looks at the user’s login entry stored in /etc/passwd, and compares the

Securing Systems (Tasks) 245

login shell to the entries in /etc/d_passwd. These entries determine whether the
user will be required to supply the dial-up password.

/usr/lib/uucp/uucico:encrypted_password:
/usr/bin/csh:encrypted_password:
/usr/bin/ksh:encrypted_password:
/usr/bin/sh:encrypted_password:

The basic dial-up password sequence is shown in the figure below.

The login port is in
/etc/dialups

Check login shell
field of /etc/passwd
and look for match in
/etc/d_passwd

Matching entry for
/usr/bin/ksh found;

prompt for password
found in /etc/d_passwd

User mrdh
logs in on

/dev/term/b
/etc/dialups

/dev/term/a
/dev/term/b
/dev/term/c

/etc/d_passwd

/usr/bin/csh:<encrypted_password>:
/usr/bin/ksh:<encrypted_password>:
/usr/bin/sh:<encrypted_password>:

mrdh:x:205:1000:mark:/usr/mrdh:/usr/bin/ksh:

/etc/passwd

FIGURE 16–1 Basic Dial-up Password Sequence

The /etc/d_passwd File
Because most users will be running a shell when they log in, all shell programs should
have entries in /etc/d_passwd. Such programs include uucico, sh, ksh, and csh.
If some users run something else as their login shell, include that login shell in the file,
too.

If the user’s login program (as specified in /etc/passwd) is not found in
/etc/d_passwd, or if the login shell field in /etc/passwd is null, the password
entry for /usr/bin/sh is used.

� If the user’s login shell in /etc/passwd matches an entry in /etc/d_passwd, the
user must supply a dial-up password.

� If the user’s login shell in /etc/passwd is not found in /etc/d_passwd, the user
must supply the default password. The default password is the entry for
/usr/bin/sh.

246 System Administration Guide: Security Services • December 2001 (Beta)

� If the login shell field in /etc/passwd is empty, the user must supply the default
password (the entry for /usr/bin/sh).

� If /etc/d_passwd has no entry for /usr/bin/sh, then those users whose login
shell field in /etc/passwd is empty or does not match any entry in
/etc/d_passwd will not be prompted for a dial-up password.

� Dial-up logins are disabled if /etc/d_passwd has only the following entry:
/usr/bin/sh:*:

� How to Create a Dial-up Password

Caution – When you first establish a dial-up password, be sure to remain logged in on
at least one terminal while testing the password on a different terminal. If you make a
mistake while installing the extra password and log off to test the new password, you
might not be able to log back on. If you are still logged in on another terminal, you can
go back and fix your mistake.

1. Become superuser.

2. Create an /etc/dialups file containing a list of terminal devices, including all the
ports that will require dial-up password protection.

The /etc/dialups file should look like this:

/dev/term/a

/dev/term/b

/dev/term/c

3. Create an /etc/d_passwd file containing the login programs that will require a
dial-up password, and the encrypted dial-up password.

Include shell programs that a user could be running at login, for example, uucico,
sh, ksh, and csh. The /etc/d_passwd file should look like this:

/usr/lib/uucp/uucico:encrypted_password:

/usr/bin/csh:encrypted_password:

/usr/bin/ksh:encrypted_password:

/usr/bin/sh:encrypted_password:

Securing Systems (Tasks) 247

4. Set ownership to root on the two files.

chown root /etc/dialups /etc/d_passwd

5. Set group ownership to root on the two files.

chgrp root /etc/dialups /etc/d_passwd

6. Set read and write permissions for root on the two files.

chmod 600 /etc/dialups /etc/d_passwd

7. Create the encrypted passwords.

a. Create a temporary user.

useradd user-name

b. Create a password for the temporary user.

passwd user-name

c. Capture the encrypted password.

grep user-name /etc/shadow > user-name.temp

d. Edit the user-name.temp file.

Delete all fields except the encrypted password (the second field).

For example, in the following line, the encrypted password is U9gp9SyA/JlSk.

temp:U9gp9SyA/JlSk:7967:::::7988:

e. Delete the temporary user.

userdel user-name

8. Copy the encrypted password from user-name.temp file into the /etc/d_passwd
file.

You can create a different password for each login shell, or use the same one for each.

� How to Temporarily Disable Dial-up Logins
1. Become superuser.

2. Put the following entry by itself into the /etc/d_passwd file:

/usr/bin/sh:*:

248 System Administration Guide: Security Services • December 2001 (Beta)

Restricting Superuser (root) Access on the Console
The superuser account is used by the operating system to accomplish basic functions,
and has wide-ranging control over the entire operating system. It has access to and
can execute essential system programs. For this reason, there are almost no security
restraints for any program that is run by superuser.

You can protect the superuser account on a system by restricting access to a specific
device through the /etc/default/login file. For example, if superuser access is
restricted to the console, you can log in to a system as superuser only from the
console. If anybody remotely logs in to the system to perform an administrative
function, they must first log in with their user login and then use the su(1M)
command to become superuser. See the section below for detailed instructions.

Note – Restricting superuser login to the console is set up by default when you install
a system.

� How to Restrict Superuser (root) Login to the
Console

1. Become superuser.

2. Edit the /etc/default/login file.

3. Uncomment the following line.

CONSOLE=/dev/console

Any users who try to remotely log in to this system must first log in with their user
login, and then use the su command to become superuser.

4. Attempt to log in remotely as superuser to this system, and verify that the operation
fails.

Monitoring Who Is Using the su Command
You can start monitoring su attempts through the /etc/default/su file. Through
this file, you can enable the /var/adm/sulog file to monitor each time the su
command is used to change to another user. See “How to Monitor Who Is Using the
su Command” on page 250 for step-by-step instructions.

The sulog file lists all uses of the su command, not only those used to switch user to
superuser. The entries show the date and time the command was entered, whether or

Securing Systems (Tasks) 249

not it was successful (+ or -), the port from which the command was issued, and
finally, the name of the user and the switched identity.

Through the /etc/default/su file, you can also set up the system to display on the
console each time an attempt is made to use the su command to gain superuser access
from a remote system. This is a good way to immediately detect someone trying to
gain superuser access on the system you are currently working on. See the section
below for detailed instructions.

� How to Monitor Who Is Using the su Command
1. Become superuser.

2. Edit the /etc/default/su file.

3. Uncomment the following line.

SULOG=/var/adm/sulog

4. After modifying the /etc/default/su file, use the su command several times and
display the /var/adm/sulog file. You should see an entry for each time you used
the su command.

more /var/adm/sulog
SU 12/20 16:26 + pts/0 nathan-root
SU 12/21 10:59 + pts/0 nathan-root
SU 01/12 11:11 + pts/0 root-joebob
SU 01/12 14:56 + pts/0 pmorph-root

SU 01/12 14:57 + pts/0 pmorph-root

� How to Display Superuser (root) Access Attempts
to the Console

1. Become superuser.

2. Edit the /etc/default/su file.

3. Uncomment the following line.

CONSOLE=/dev/console

Use the su command to become root, and verify that a message is printed on the
system console.

250 System Administration Guide: Security Services • December 2001 (Beta)

Modifying a System’s Abort Sequence
Use the following procedure to disable or enable a system’s abort sequence. The
default system behavior is that a system’s abort sequence is enabled.

Some server systems have a key switch that if set in the secure position, overrides the
software keyboard abort settings, so any changes you make with the following
procedure may not be implemented.

� How to Disable or Enable a System’s Abort
Sequence

1. Become superuser.

2. Select one of the following to disable or enable a system’s abort sequence:

a. Remove the pound sign (#) from the following line in the /etc/default/kbd
file to disable a system’s abort sequence:

#KEYBOARD_ABORT=disable

b. Add the pound sign (#) to the following line in the /etc/default/kbd file to
enable a system’s abort sequence:

KEYBOARD_ABORT=disable

3. Update the keyboard defaults.

kbd -i

Securing Systems (Tasks) 251

252 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 17

Role-Based Access Control (Overview)

This chapter describes role-based access control (RBAC), a security feature for
controlling access to tasks that would normally be restricted to superuser. The topics
in this chapter are:

� “RBAC: Replacing the Superuser Model” on page 253
� “Solaris RBAC Elements” on page 254
� “Privileged Applications” on page 256
� “Roles” on page 257
� “Authorizations” on page 258
� “Rights Profiles” on page 258
� “Management Scope” on page 259

For information on RBAC tasks, see Chapter 18. For detailed information on the RBAC
elements and tools, see Chapter 19.

RBAC: Replacing the Superuser Model
In conventional UNIX systems, root (also referred to as superuser) is all-powerful,
with the ability to read and write to any file, run all programs, and send kill signals to
any process. Effectively, anyone who can become superuser can modify a site’s
firewall, alter the audit trail, read payroll and other confidential records, and shut
down the entire network.

Role-based access control (RBAC) is an alternative to the all-or-nothing superuser
model. RBAC uses the security principle of least privilege, which is that no user
should be given more privilege than necessary for performing his or her job. RBAC
allows an organization to separate superuser’s capabilities and assign them to special
user accounts that are called roles. Roles can be assigned to specific individuals
according to their job needs.

253

The flexibility in setting up roles enables a variety of security policies. Three
recommended roles that can be easily configured are available:

� Primary Administrator – A powerful role equivalent to root

� System Administrator – A less strong role for administration that is not related to
security

� Operator – A junior administrator role for operations such as backups and restores
and printer management

There is no requirement that these specific roles be implemented. Roles are a function
of an organization’s security needs. Roles can be set up for special-purpose
administrators in such areas as security, networking, or firewall administration.
Another strategy is to create a single strong administrator role along with an advanced
user role for those users who are permitted to fix portions of their own systems.

Solaris RBAC Elements
In the RBAC model in the Solaris operating environment, users log in as themselves
and assume roles that enable them to run restricted administration tools and utilities.
The RBAC model introduces these elements to the Solaris operating environment:

� Privileged Application — An application that can override system controls and
checks for specific UIDs, GIDs, or authorizations (see “Privileged Applications”
on page 256).

� Role — A special identity for running privileged applications that can be assumed
by assigned users only.

� Authorization — A permission that can be assigned to a role or user (or embedded
in a rights profile) for performing a class of actions that are otherwise prohibited by
security policy.

� Rights Profile - A collection of overrides that can be assigned to a role or user. A
rights profile can consist of authorizations, commands with set UIDs or GIDs
(referred to as security attributes), and other rights profiles.

The following figure shows how the RBAC elements work together.

254 System Administration Guide: Security Services • December 2001 (Beta)

Authorizations

Roles Users

Rights
profile

Security
attributes

Commands

FIGURE 17–1 Solaris RBAC Element Relationships

In RBAC, users are assigned to roles. Roles get their capabilities from rights profiles
and authorizations. Authorizations are generally assigned to the rights profiles with
which they are logically associated but can be assigned directly to roles.

Note – Rights profiles and authorizations can also be assigned directly to users. This
practice is discouraged because it enables users to make mistakes through inadvertent
use of their privileges.

Commands with security attributes, that is, real or effective UIDs or GIDs, can be
assigned to rights profiles.

The following figure uses the Operator role and the Printer Management rights
profiles as examples to demonstrate RBAC relationships.

Role-Based Access Control (Overview) 255

Commands with Security Attributes

/usr/sbin/accept: euid=0

/usr/ucb/lpq: euid=lp

. . .

Rights Profiles

Operator
Printer management
Media backup

. . .

Roles

Operator

Authorizations

solaris.admin.printer.read

solaris.admin.printer.modify

solaris.admin.printer.delete

Users

johnDoe

FIGURE 17–2 How Solaris RBAC Elements Relate

The Operator role is for maintaining printers and performing media backup. The user
johnDoe is assigned to the Operator role and can assume it by supplying the
Operator password.

The Operator rights profile has been assigned to the Operator role. The Operator
profile has two supplementary profiles assigned to it, Printer Management and Media
Backup, which reflect the Operator role’s chief tasks.

The Printer Management rights profile is for managing printers, print daemons, and
spoolers. Three authorizations are assigned to the Printer Management rights profile:
solaris.admin.printer.read, solaris.admin.printer.delete, and
solaris.admin.printer.modify for manipulating information in the printer
queue. The Printer Management profile also has a number of commands with security
attributes assigned to it, such as /usr/sbin/accept with euid=0 and
/usr/ucb/lpq with euid=lp.

Privileged Applications
Applications that can override system controls are considered to be privileged
applications.

256 System Administration Guide: Security Services • December 2001 (Beta)

Applications Checking UIDs and GIDs
Privileged applications that check for root or some other special UID or GID have
long existed in UNIX. The RBAC rights profile mechanism enables you to set the UID
or GID for specific commands. Instead of setting the ID on a command that anyone
can access, you can isolate the command with the set ID to a rights profile. A user or
role with that rights profile can then run the program without having to become root.

IDs can be specified as real or effective. Assigning effective IDs is preferred over
assigning real IDs. Effective IDs are equivalent to the setuid functionality in the file
permission bits and identify the user’s ID for auditing. However, because some shell
scripts and programs require a real UID of root, real IDs can be set as well. For
example, the pkgadd command requires a real rather than an effective UID.

Applications Checking Authorizations
RBAC additionally provides commands that check authorizations. By definition, root
has all authorizations and thus can run any application. Currently, the applications
that check for authorizations include the following:

� The entire Solaris Management Console suite of tools

� The batch job-related commands (at(1), atq(1), batch(1), and crontab(1))

� Device–oriented commands allocate(1), deallocate(1), list_devices(1),
and cdrw(1).

Profile Shell
Authorized users can obtain privileged applications from the Solaris Management
Console launcher or on the command line from a profile shell. A profile shell is a special
kind of shell that enables access to the privileged applications that are assigned to the
profile. Profile shells are launched when the user runs su to assume a role. The profile
shells are pfsh, pfcsh, and pfksh, and they correspond to Bourne shell (sh(1)), C
shell (csh(1)), and Korn shell (ksh(1)) respectively.

Roles
A role is a special type of user account from which you can run privileged applications.
Roles are created in the same general manner as user accounts, with a home directory,
groups, password, and so on. The capabilities of a role are a function of the rights

Role-Based Access Control (Overview) 257

profiles and authorizations that are assigned to it. Roles do not have inheritance.
When a user assumes a role, the role’s attributes replace all user attributes. Role
information is stored in the passwd(4), shadow(4), user_attr(4), and
audit_user(4) databases. For detailed information on setting up roles, see
“Configuring Suggested Roles” on page 287, “Creating Roles” on page 274, and
“Changing Role Properties” on page 277.

All users who can assume the same role have the same role home directory, operate in
the same environment, and have access to the same files. Users can assume roles from
the command line by running su and supplying the role name and password. A user
can also assume a role when opening a Solaris Management Console tool. Users
cannot log in directly to a role. For this reason, it is useful to make root a role to
prevent anonymous login. See “Making Root a Role” on page 270. Users must log in to
their user account first. A user cannot assume a role directly from another role. A
user’s real UID can always be audited.

No predefined roles are shipped with the Solaris 9 software. As stated earlier in this
chapter, three roles that can be easily configured are available.

Authorizations
An authorization is a discrete right that can be granted to a role or user.
RBAC-compliant applications can check a user’s authorizations prior to granting
access to the application or specific operations within it. This check replaces the check
in conventional UNIX applications for UID=0. For more information on
authorizations, see “Authorizations” on page 292, “auth_attr Database” on page 297,
and “Commands Requiring Authorizations” on page 303.

Rights Profiles
A rights profile is a collection of system overrides that can be assigned to a role or user.
A rights profile can contain commands with set effective or real UIDs or GIDs,
authorizations, and other rights profiles. Rights profile information is split between
theprof_attr(4) and exec_attr(4) databases. For more information on rights
profiles, see “Contents of Rights Profiles” on page 288, “prof_attr Database”
on page 299, and “exec_attr Database” on page 300.

258 System Administration Guide: Security Services • December 2001 (Beta)

Management Scope
Management scope is an important concept for understanding RBAC. The scope in
which a role can operate might apply to an individual host or to all hosts that are
served by a name service such as NIS, NIS+, or LDAP. The precedence of local
configuration files versus distributed databases is specified in the file
/etc/nsswitch.conf. A lookup stops at the first match. For example, if a profile
exists in two scopes, only the entries in the first scope are used.

Role-Based Access Control (Overview) 259

260 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 18

Role-Based Access Control (Tasks)

This chapter covers tasks that you can use to manage RBAC elements. To find the
tasks for the initial setup of RBAC, see “Configuring RBAC (Task Map)” on page 262.
For general management of the RBAC elements, see “Managing RBAC Information
(Task Map)” on page 271.

The topics that are covered in this chapter include the following:

� “Planning for RBAC” on page 262
� “First-Time Use of the User Tool Collection” on page 264
� “Initial User Setup” on page 266
� “Initial Role Setup” on page 268
� “Making Root a Role” on page 270
� “Using Privileged Applications” on page 272
� “Creating Roles” on page 274
� “Changing Role Properties” on page 277
� “Creating or Changing a Rights Profile” on page 279
� “Modifying a User’s RBAC Properties” on page 283
� “Securing Legacy Applications” on page 285

The preferred approach for performing RBAC-related tasks is through the Solaris
Management Console tool suite. The console tools for managing the RBAC elements
are all contained in the User tool collection.

You can also operate on local files with the Solaris Management Console
command-line interfaces and other command-line interfaces. The Solaris Management
Console commands require authentication to connect to the server and as a result are
not practical in scripts. The other commands require superuser or a role, and cannot be
applied to databases in a name service.

261

Configuring RBAC (Task Map)

Task Description For Instructions, Go To ...

1. Plan for RBAC Learn the principles behind RBAC,
examine your site’s security needs,
and plan how to integrate RBAC
into your operation.

“How to Plan Your RBAC
Implementation” on page 262

2. Start the User tools from the
Solaris Management Console
launcher

All RBAC tasks can be performed by
the User tools.

“How to Run the User Tool
Collection” on page 264

3. Install initial users if needed One or more existing users must be
available for assignment to the first
role.

“How to Create Initial Users Using
the User Accounts Tool” on page 266

4. Install the first role The first role, typically Primary
Administrator, needs to be installed
by root user.

“How to Run the User Tool
Collection” on page 264

5. Make root a role (optional) To eliminate anonymous root login,
root can be made a role.

“How to Make Root a Role”
on page 270

Planning for RBAC
RBAC can be an integral part of how an organization manages its information
resources. Planning requires a thorough knowledge of the RBAC capabilities as well as
the security requirements of the organization.

� How to Plan Your RBAC Implementation
1. Learn the basic RBAC concepts.

Read Chapter 17. Using RBAC to administer a system is very different from
conventional UNIX. You should be familiar with the RBAC concepts before you start
your implementation. For greater detail, see Chapter 19.

262 System Administration Guide: Security Services • December 2001 (Beta)

2. Examine your security policy.

Your organization’s security policy should detail the potential threats to your system,
measure the risk of each threat, and have a strategy to counter these threats. Isolating
security-relevant tasks through RBAC can be a part of the strategy. Although you can
install the suggested roles and their configurations as is, you might need to customize
your RBAC configuration to coordinate with your security policy.

3. Decide how much RBAC your organization needs.

Depending on your security needs, you can use varying degrees of RBAC, as follows:

� No RBAC — You can perform all tasks as root user. In this instance, you log in as
yourself and when you select a console tool, you type root as the user.

� Root as a Role — This technique eliminates anonymous root logins by preventing
all users from logging in as root. Instead they must log in as normal users prior to
assuming the root role. See “Making Root a Role” on page 270.

� Single Role Only — This approach adds the Primary Administrator role only and
is similar to the superuser model.

� Suggested Roles — Three suggested roles that can be easily configured are
available: Primary Administrator, System Administrator, and Operator. These roles
are suitable for organizations with administrators at different levels of
responsibility whose job capabilities fit the suggested roles.

� Custom Roles — You can create your own roles to meet the security requirements
of your organization. The new roles can be based on existing or customized rights
profiles.

4. Decide which suggested roles are appropriate for your organization.

Review the capabilities of the suggested roles and default rights profiles. Three rights
profiles are available for configuring the suggested roles:

� Primary Administrator rights profile — for creating a role that can perform all
administrative tasks, granting rights to others, and editing rights that are
associated with administrative roles. A user in this role can assign the Primary
Administrator role and the ability to grant rights to other users.

� System Administrator rights profile — for creating a role that can perform most
nonsecurity administrative tasks. For example, the System Administrator can add
new user accounts but cannot set passwords and cannot grant rights to other users.

� Operator rights profile — for creating a role that can perform simple
administrative tasks, such as backup and restore and printer maintenance.

These rights profiles enable administrators to configure the suggested roles by using a
single rights profile instead of having to mix and match rights profiles. To further
examine these and other rights profiles, use the Rights tool to display the contents.
You can also refer to “Contents of Rights Profiles” on page 288 for a summary of some
major rights profiles. With the console tools, you can customize the roles and rights
profiles that are provided to meet the needs of your organization.

Role-Based Access Control (Tasks) 263

5. Decide if any additional roles or rights profiles are appropriate for your
organization.

Look for other applications or families of applications at your site that might benefit
from restricted access. Applications that affect security, that can cause denial-of-service
problems, or that require special administrator training are good candidates for RBAC.

a. Determine which commands are needed for the new task.

b. Decide which rights profile is appropriate for this task.

Check if an existing rights profile can handle this task or if a separate rights profile
needs to be created.

c. Determine which role is appropriate for this rights profile.

Decide if the rights profile for this task should be assigned to an existing role or if a
new role should be created. If you use an existing role, check that the other rights
profiles are appropriate for users who are assigned to this role.

6. Decide which users should be assigned to the available roles.

According to the principle of least privilege, you should assign users to roles
appropriate to their level of trust. Keeping users away from tasks they do not need to
use reduces potential problems.

First-Time Use of the User Tool
Collection
To install the initial users to be assigned roles, you first log in as yourself. When you
authenticate yourself to the Solaris Management Console interface, specify root user.

� How to Run the User Tool Collection
1. Log in as a normal user and start the console.

%whoami
johnDoe

% /usr/sadm/bin/smc&

264 System Administration Guide: Security Services • December 2001 (Beta)

2. Navigate to the User tool collection and click the icon, as follows:

a. Find the icon that is labeled This Computer under Management Tools in the
navigation pane and click the turner icon to its left.

The turner icon is shaped like a lever. When the lever is horizontal, the contents of
the folder are hidden. When the lever is vertical the contents are displayed.
Clicking the turner icon toggles the folder between the hidden and displayed
states.

b. Click the turner icon next to the System Configuration folder to display its
contents.

c. Click the User icon to open the User tool collection.

The user login dialog box is displayed.

3. Type root and the root password in the user login dialog box and click OK.

Generally you should type your user name here and then assume a role, but the first
time you need to be root user because no roles exist yet. This step opens the Tool
collection (see the following figure).

FIGURE 18–1 The User Tool Collection

Role-Based Access Control (Tasks) 265

Initial User Setup
If all users who are assigned to roles are already installed on this system, you can skip
this task and go to “Initial Role Setup” on page 268.

� How to Create Initial Users Using the User
Accounts Tool

1. Click the User Accounts Tool icon in either the navigation pane or the view pane of
the User Tool Collection.

The User Accounts tool is started and the Action menu now provides options for this
tool.

2. Select Add User->With Wizard from the Action menu.

This step starts the Add User wizard, a series of dialog boxes that request information
necessary for configuring a user. Use the Next and Back buttons to navigate between
dialog boxes. Note that the Next button does not become active until all required
fields have been filled in. The last dialog box is for reviewing the entered data, at
which point you can go back to change entries or click Finish to save the new role. The
first dialog box "Step 1: Enter a user name" is shown in the following figure.

266 System Administration Guide: Security Services • December 2001 (Beta)

FIGURE 18–2 Add User Wizard

3. Type the name of the first user and the other identification information.

4. In the Step 2: Enter a User Identification Number dialog box, type the user’s UID.

This should match the existing UID for the user.

5. In the Step 3: Enter the User’s Password dialog box, indicate whether you or the
user is to set the password.

If you are setting up this account for yourself, click the second option, and type and
confirm your password.

6. In the Step 4: Select the User’s Primary Group dialog box, select the appropriate
group.

7. In the Step 5: Create the User’s Home Directory dialog box, specify the path for the
home directory.

8. In the Step 6: Specify the Mail Server dialog box, check out the default mail server
and mailbox.

You can change these settings later in the User Properties dialog box.

Role-Based Access Control (Tasks) 267

9. Check the information in the Review dialog box. Click Finish to save or Back to
reenter information.

If you discover missing or incorrect information, click the Back button successively to
display the dialog box where the incorrect information is displayed. Then click Next
repeatedly to return to the Review dialog box.

Initial Role Setup
The first role to be created is the one responsible for managing users and roles,
typically the Primary Administrator. You should install the users and the roles first on
your local host. After you have set up a toolbox for the name service scope, you need
to create the same users and roles in the name service. See “Using the Solaris
Mangement Console Tools in a Name Service Environment (Task Map)” in System
Administration Guide: Basic Administration. After the first role is established and
assigned to you, you can then run the console tools by assuming a role instead of
becoming root.

� How to Create the First Role (Primary
Administrator) Using the Administrative Roles
Tool
To install the first role, you should log in as yourself. When you authenticate yourself
to the Solaris Management Console interface, specify root user. You should install the
role first on your local host. After the first role is established and assigned to you, you
will be able to run the console tools assuming a role instead of as root user.

1. Type root and the root password in the user login dialog box and click OK.

2. Click the Administrative Roles icon in either the navigation pane and the view
pane of the User Tool Collection.

The Administrative Roles tool is started and the Action menu now provides options
for this tool.

3. Select Add Administrative Role from the Action menu.

This step starts the Add Administrative Role wizard, a series of dialog boxes that
request information necessary for configuring a role. Use the Next and Back buttons to
navigate between dialog boxes. Note that the Next button does not become active
until all required fields have been filled in. The last dialog box is for reviewing the
entered data, at which point you can go back to change entries or click Finish to save

268 System Administration Guide: Security Services • December 2001 (Beta)

the new role. The first dialog box Step 1: Enter a Role Name follows.

FIGURE 18–3 Add Administrative Role Wizard

4. Type primaryadmin or whatever role name you are using and the other
identification information.

If you select mailing list, you can create an alias of users who can assume this role.

5. In the Step 2: Enter a Role Password dialog box, type the password for the new role
in the Role Password field and again in the Confirm Password field.

Confirmation helps prevent a misspelled password from being saved.

6. In the Step 3: Enter Role Rights dialog box, select the Primary Administrator rights
profile.

Double-click the Primary Administrator rights profile in the Available Rights column
(on the left). The rights profiles in the Granted Rights column (on the right) are the
ones that are assigned to this role. In this instance, only the Primary Administrator
rights profile is needed.

7. In the Step 4: Select a Home Directory dialog box, specify the server and path for
the home directory.

8. In the Step 5: Assign Users to This Role dialog box, type the login names for any
users to be assigned to the Primary Administrator role.

Any users you add must be defined in the same scope in which you are working. If
you selected the email alias in the Step 1: Enter a Role Name dialog box, these users
will receive email that is addressed to the Primary Administrator role.

Role-Based Access Control (Tasks) 269

9. Check the information in the Review dialog box. Click Finish to save or Back to
reenter information.

If you discover missing or incorrect information, click the Back button successively to
display the dialog box where the incorrect information is displayed. Then click Next
repeatedly to return to the Review dialog box.

Making Root a Role
This procedure shows how to change root from a user to a role within a local scope.
Changing root to a role prevents users from logging in to that server directly as
root. Users must first log in as themselves so their UIDs are available for auditing.

Caution – If you make root a role without assigning it to a valid user or without a
currently existing role equivalent to root, no one can become root.

� How to Make Root a Role
1. Log in to the target server.

2. Become superuser.

3. Edit the /etc/user_attr file.

Here is an excerpt from a typical user_attr file.

root::::type=normal;auths=solaris.*,solaris.grant;profiles=All

johnDoe::::type=normal

4. Check that your name is in the file.

5. Add root to the roles that are assigned to your record.

Assign the root role to any applicable users. If you intend to use primaryadmin as
your most powerful role, you do not have to assign root to any users.

johnDoe::::type=normal;roles=root

6. Go to the root record in the file and change type=normal to type=root.

root::::type=role;auths=solaris.*,solaris.grant;profiles=All

7. Save the file.

270 System Administration Guide: Security Services • December 2001 (Beta)

Managing RBAC Information (Task
Map)
The following table shows where to obtain information for performing specific RBAC
tasks.

Task Description For Instructions, Go To ...

Using privileged applications To run applications that can affect
security or system operations
requires becoming superuser or
assuming a role.

“How to Assume a Role at the
Command Line” on page 272

“How to Assume a Role in the
Console Tools” on page 273

Creating roles To add new roles, that is, special
identities for running privileged
applications.

“How to Create a Role Using the
Administrative Roles Tool”
on page 274

“How to Create a Role From the
Command Line” on page 275

Changing role properties To change the properties of a role,
that is, the assigned users, rights
profiles, and authorizations that are
assigned to a role.

“How to Change a Role Using the
Administrative Roles Tool”
on page 277

“How to Change a Role From the
Command Line” on page 278

Creating or changing rights profiles To add or change a rights profile,
including the assignment of
authorizations, commands with
security attributes, and
supplementary rights profiles.

“How to Create or Change a Rights
Profile Using the Rights Tool”
on page 279

“How to Change Rights Profiles
From the Command Line”
on page 283

Changing a user’s RBAC properties To change the roles, rights profiles,
or authorizations that are assigned
to a user.

“How to Modify a User’s RBAC
Properties Using the User Accounts
Tool” on page 284

“How to Modify a User’s RBAC
Properties From the Command
Line” on page 284

Role-Based Access Control (Tasks) 271

Task Description For Instructions, Go To ...

Securing legacy applications Legacy applications can be run with
a set ID. Scripts can contain
commands with set IDs. Legacy
applications can check for
authorizations, if appropriate.

“How to Add Security Attributes to
a Legacy Application” on page 285

“How to Add Security Attributes to
Commands in a Script” on page 285

“How to Check for Authorizations
in a Script or Program” on page 285

These procedures are for managing the elements that are used in role-based access
control (RBAC). For user management procedures, refer to “Setting Up User Accounts
and Groups (Tasks)” in System Administration Guide: Basic Administration.

Using Privileged Applications
To run privileged applications, you must first become superuser or assume a role.
Although running privileged applications as a normal user is possible, it is
discouraged to avoid errors that are caused by users inadvertently exercising
privilege.

� How to Assume a Role at the Command Line
1. Use the su(1M) command as follows:

%su my-role
Password: my-role-password
#

Typing su by itself lets you become superuser. Typing su with a role name lets you
assume that role (if it has been assigned to you). You must supply the appropriate
password. Assuming a role switches the command line to the profile shell for that role.
The profile shell has been modified to run commands with the security attributes that
are assigned in the role’s rights profiles.

2. Type the command in the shell.

The command is executed with any assigned security attributes and setuid or
setgid permissions.

272 System Administration Guide: Security Services • December 2001 (Beta)

� How to Assume a Role in the Console Tools
1. Start the Solaris Management Console launcher.

Use one of the following methods:

� Type smc at the command line.

� Click the Solaris Management Console icon in the Tools subpanel.

� Double-click the Solaris Management Console icon in the Application Manager.

All Solaris Management Console tools have extensive context-sensitive help that
document each field. In addition, you can access various help topics that from the
Help menu. Note that it does not matter whether you are logged in as root or as a
normal user when you start the console.

2. Select the toolbox for your task.

Navigate to the toolbox that contains the tool or collection in the appropriate scope
and click the icon. The scopes are files (local), NIS, NIS+, and LDAP. If the appropriate
toolbox is not displayed in the navigation pane, choose Open Toolbox from the
Console menu and load the relevant toolbox.

3. Select the tool.

Navigate to the tool or collection to be used and click the icon. The tools for managing
the RBAC elements are all part of the User tool collection.

4. Authenticate yourself in the Login: User Name dialog box.

Your choices are the following:

� Type your user name and password to assume a role or to operate as a normal
user.

� Type root and the root password to operate as superuser.

Note that if you have not yet set up any roles or if the roles that are set up cannot
perform the appropriate tasks, you need to log in as root. If you authenticate yourself
as root (or as a user with no roles assigned), the tools are loaded into the console and
you can proceed to step 6.

5. Authenticate yourself in the Login: Role dialog box.

The Role option menu in the dialog box displays the roles that are assigned to you.
Choose a role and type the role password. If you are to operate as a normal user, type
your user name and password.

6. Navigate to the tool to be run and click the icon.

Role-Based Access Control (Tasks) 273

Creating Roles
To create a role, you must either assume a role that has the Primary Administrator
rights profile assigned to it or run as root user. See “Roles” on page 257 and
“Configuring Suggested Roles” on page 287 to learn more about roles.

� How to Create a Role Using the Administrative
Roles Tool

1. Start the Administrative Roles tool.

To run the Administrative Roles tool, start the Solaris Management Console launcher
as described in “How to Assume a Role in the Console Tools” on page 273, open the
User tool collection, and click the Administrative Roles icon.

2. Start the Add Administrative Role wizard.

Select Add Administrative Role from the Action menu to start the Add Administrative
Role wizard series for configuring roles.

3. Fill in the fields in the series of dialog boxes and click Finish when done.

Use the Next and Back buttons to navigate between dialog boxes. Note that the Next
button does not become active until all required fields have been filled in. The last
dialog box is for reviewing the entered data, at which point you can go back to change
entries or click Finish to save the new role. The dialog boxes are summarized in the
following table.

Dialog Box Fields Field Description

Step 1. Enter a role name. Role Name The short name of the role.

Full Name Long version of the name.

Description Description of the role.

Role ID Number UID for the role, automatically
incremented.

Role Shell The profile shells available to
roles: Administrator’s C,
Administrator’s Bourne, or
Administrator’s Korn shell.

Create a role mailing list Makes a mailing list for users
who are assigned to this role.

274 System Administration Guide: Security Services • December 2001 (Beta)

Dialog Box Fields Field Description

Step 2. Enter a role password Role Password ********

Confirm Password ********

Step 3. Select role rights. Available Rights / Granted
Rights

Assigns or removes a role’s
rights profiles.

Note that the system does not
prevent you from typing
multiple occurrences of the
same command. The
attributes that are assigned to
the first occurrence of a
command in a rights profile
have precedence and all
subsequent occurrences are
ignored. Use the Up and
Down arrows to change the
order.

Step 4. Select a home
directory.

Server Server for the home directory.

Path Home directory path.

Step 5. Assign users to this
role.

Add Users who can assume this
role. Must be in the same
scope.

Delete For deleting users who are
assigned to this role.

� How to Create a Role From the Command Line
1. Become superuser or assume a role capable of creating other roles.

2. Select a method for creating a role:

� For roles in the local scope, use the roleadd command to specify a new local role
and its attributes.

� Alternatively, for roles in the local scope, edit the user_attr file to add a user with
type=role.

This method is recommended for emergencies only, as it is easy to make mistakes
while typing.

� For roles in a name service, use the smrole command to specify the new role and
its attributes.

Role-Based Access Control (Tasks) 275

This command requires authentication by superuser or a role capable of creating
other roles. You can apply the smrole(1M) to all name services. This command
runs as a client of the Solaris Management Console server.

EXAMPLE 18–1 Creating a Custom Operator Role Using smrole(1M)

The following sequence demonstrates how a role is created with the smrole
command. In this instance, a new version of the operator role is created that has the
standard Operator rights profile assigned and additionally the Media Restore rights
profile.

% su primaryadmin
/usr/sadm/bin/smrole add -H myHost -- -c "Custom Operator" -n oper2 -a johnDoe \
-d /export/home/oper2 -F "Backup/Restore Operator" -p "Operator" -p "Media Restore"
Authenticating as user: primaryadmin

Type /? for help, pressing <enter> accepts the default denoted by []
Please enter a string value for: password :: <enter primaryadmin password>

Loading Tool: com.sun.admin.usermgr.cli.role.UserMgrRoleCli from myHost
Login to myHost as user primaryadmin was successful.
Download of com.sun.admin.usermgr.cli.role.UserMgrRoleCli from myHost was successful.

Type /? for help, pressing <enter> accepts the default denoted by []

Please enter a string value for: password :: <enter oper2 password>

To view the newly created role (and any other roles), use smrole with list
subcommand, as follows:

/usr/sadm/bin/smrole list --
Authenticating as user: primaryadmin

Type /? for help, pressing <enter> accepts the default denoted by []
Please enter a string value for: password :: <enter primaryadmin password>

Loading Tool: com.sun.admin.usermgr.cli.role.UserMgrRoleCli from myHost
Login to myHost as user primaryadmin was successful.
Download of com.sun.admin.usermgr.cli.role.UserMgrRoleCli from myHost was successful.
root 0 Super-User
primaryadmin 100 Most powerful role
sysadmin 101 Performs non-security admin tasks

oper2 102 Backup/Restore Operator

276 System Administration Guide: Security Services • December 2001 (Beta)

Changing Role Properties
To change a role, you must either assume a role that has the Primary Administrator
rights profile that is assigned to it, or run the User tool collection as root user if roles
have not yet been set up.

� How to Change a Role Using the Administrative
Roles Tool

1. Start the Administrative Roles tool.

To run the Administrative Roles tool, you need to start the Solaris Management
Console launcher as described in “How to Assume a Role in the Console Tools”
on page 273, open the User tool collection, and click the Administrative Roles icon.

The icons for the existing roles are displayed in the view pane after the Administrative
Roles tool starts.

2. Click the role to be changed and select the appropriate item from the Action menu,
as follows:

� To change users who are assigned to a role, select Assign Administrative Role.

The Assign Administrative Role dialog box is displayed. The Assign
Administrative Role dialog box is a modified version of the Role Properties dialog
box that has a Users tab only. Use the Add field to assign a user in the current
scope to this role. Use the Delete field to remove a user’s role assignment. Click OK
to save.

� To change rights that are assigned to a role, select Assign Rights to Role.

The Assign Rights to Role dialog box is displayed. The Assign Rights to Role dialog
box is a modified version of the Role Properties dialog box that has a Rights tab
only. Use the Available Rights and Granted Rights columns to add or remove rights
profiles for the selected role. Click OK to save.

� To change any of the role’s properties, select Properties (or simply double-click
the role icon).

The Role Properties dialog box is displayed, which provides access to all role
properties (see the following figure and table). Use the tabs to navigate to any
information to be changed, make your changes, and click OK to save.

Role-Based Access Control (Tasks) 277

FIGURE 18–4 Role Properties Dialog Box

TABLE 18–1 Role Properties Summary

Tab Tab Description

General Specifies the role identification information and the default login shell.

Password Specifies the role password.

Users Specifies users who are assigned to the role.

Group Sets the role’s primary and secondary groups for the purpose of
accessing and creating files and directories.

Home Directory Specifies the role’s home directory, home directory server,
automounting, and directory access.

Rights Allows rights profiles to be assigned to the role. The precedence of the
assigned rights profiles can be changed.

� How to Change a Role From the Command Line
1. Become superuser or assume a role capable of changing other roles.

2. Use the command appropriate for the task:

� Use the rolemod command to modify the attributes of a role that are defined
locally.

� Use the roledel command to delete a role that is defined locally.

278 System Administration Guide: Security Services • December 2001 (Beta)

� Edit the user_attr file to change the authorizations or rights profiles that are
assigned to a local role.

This method is recommended for emergencies only, as it is easy to make a mistake
while typing.

� Use the smrole command to modify the attributes of a role in a name service.

This command requires authentication as superuser or as a role capable of
changing other roles. The smrole command runs as a client of the Solaris
Management Console server.

Creating or Changing a Rights Profile
To create or change a rights profile, you must either assume a role that has the Primary
Administrator rights profile assigned to it, or run the User tool collection as root user
if roles have not yet been set up. See “Roles” on page 257 and “Configuring Suggested
Roles” on page 287 to learn more about rights profiles.

� How to Create or Change a Rights Profile Using
the Rights Tool

1. Start the Rights tool.

To run the Rights tool, you need to start the Solaris Management Console launcher as
described in “How to Assume a Role in the Console Tools” on page 273, open the User
tool collection, and click the Rights icon.

The icons for the existing rights profiles are displayed in the view pane after the
Rights tool starts.

2. Take the appropriate action for creating or changing a rights profile:

� To create a new rights profile, select Add Right from the Action menu.

� To change an existing rights profile, click the rights profile icon and select
Properties from the Action menu (or simply double-click the rights profile icon).

Both actions display a version of the Rights Properties dialog box. The Add Right
version (which follows) has a writable Name field. The standard Rights Properties
dialog box has a read-only Name field because the name of rights profile cannot be
changed after it has been defined.

Role-Based Access Control (Tasks) 279

FIGURE 18–5 Add Right Dialog Box

3. Type the new information and click OK to save the rights profile.

The tabs and fields in the Right Properties dialog box are listed in the following table.

Tab Field Field Description

General Name Name of the new rights
profile.

Description Description of the new rights
profile.

Help File Name Name of the HTML help file
for the new rights profile.

Commands Add Directory Opens a dialog box for adding
directories not already in the
Commands Denied or
Commands Permitted
columns.

Commands Denied /
Commands Permitted

Assigns or removes a rights
profile’s commands.

280 System Administration Guide: Security Services • December 2001 (Beta)

Tab Field Field Description

Set Security Attributes Opens a dialog box for
assigning or removing a
command’s security
attributes, that is, real or
effective UIDs or GIDs (see
Figure 18–6).

Note – Assigning effective IDs
is preferred over assigning
real IDs. Use real IDs only
where required by the
command, such as
pkgadd(1M).

Find (command) Searches the two command
lists for the particular string.

Authorizations Authorizations Excluded /
Authorizations Included

Assigns or removes a rights
profile’s authorizations.

Supplementary Rights Rights Excluded / Rights
Included

Assigns or removes a rights
profile’s supplementary rights
profiles.

Role-Based Access Control (Tasks) 281

FIGURE 18–6 Adding Security Attributes to Commands

EXAMPLE 18–2 Creating a New Rights Profile With the Rights Tool

The data in the following table show how a rights profile that is called “Restart” could
be created. The example rights profile, Restart, has the commands in the subdirectory
/etc/init.d assigned to it. These commands have an effective UID of 0. This rights
profile would be useful for administrators who are permitted to stop and start the
daemons in /etc/init.d.

Tab Field Example

General Name Restart

Description For starting and stopping
daemons in /etc/init.d.

Help File Name Restart.html

282 System Administration Guide: Security Services • December 2001 (Beta)

EXAMPLE 18–2 Creating a New Rights Profile With the Rights Tool (Continued)

Tab Field Example

Commands Add Directory Click Add Directory, type
/etc/init.d in the dialog
box, and click OK.

Commands Denied /
Commands Permitted

Select /etc/init.d and
click Add to move the
command to the Commands
Permitted column.

Set Security Attributes Select /etc/init.d, click Set
Security Attributes, and set
Effective UID = root (see
Figure 18–6).

Find (command)

Authorizations Authorizations Excluded /
Authorizations Included

Supplementary Rights Rights Excluded / Rights
Included

� How to Change Rights Profiles From the
Command Line

1. Become superuser or assume a role with the PrimaryAdmin rights profile.

2. Use the subcommand ofsmprofile(1M) appropriate for the task.

This command requires authentication. You can apply the command to all name
services. smprofile runs as a client of the Solaris Management Console server.

� To add a new profile, use smprofile with the add subcommand.

� To change an existing profile, use smprofile with the modify subcommand.

Modifying a User’s RBAC Properties
To modify a user’s properties, you must either be running the User tool collection as
root user or assume a role that has the Primary Administrator rights profile assigned
to it.

Role-Based Access Control (Tasks) 283

� How to Modify a User’s RBAC Properties Using
the User Accounts Tool

1. Start the User Accounts tool.

To run the User Accounts tool, you need to start the Solaris Management Console
launcher as described in “How to Assume a Role in the Console Tools” on page 273,
open the User tool collection, and click the User Accounts icon.

The icons for the existing user accounts are displayed in the view pane after the User
Accounts tool starts.

2. Click the user account icon to be changed and select Properties from the Action
menu (or simply double-click the user account icon).

3. Click the appropriate tab in the dialog box for the property to be changed, as
follows:

� To change the roles that are assigned to the user, click the Roles tab and move
the role assignment to be changed to the appropriate column: Available Roles or
Assigned Roles.

� To change the rights profiles assigned to the user, click the Rights tab and move
it to the appropriate column: Available Rights or Assigned Rights.

Note that it is not good practice to assign rights profiles directly to users. The
preferred approach is to force users to assume roles in order to perform privilege
applications. This strategy avoids the possibility of normal users abusing
privileges.

� How to Modify a User’s RBAC Properties From the
Command Line

1. Become superuser or assume a role that can modify user files.

2. Use the appropriate command:

� To change the authorizations, roles, or rights profiles that are assigned to a user
who is defined in the local scope, use the usermod command.

� Alternatively, to change the authorizations, roles, or rights profiles that are
assigned to a user who is defined in the local scope, edit the user_attr file.

This method is recommended for emergencies only, as it is easy to make a mistake
while typing.

� To change the authorizations, roles, or rights profiles that are assigned to a user
who is defined in a name service, use the smuser command.

This command requires authentication as superuser or as a role capable of
changing user files. You can apply smuser to all name services. smuser runs as a

284 System Administration Guide: Security Services • December 2001 (Beta)

client of the Solaris Management Console server.

Securing Legacy Applications
This section discusses how to make legacy applications more secure. To add legacy
applications, see “Adding Tools to the Solaris Management Console” in System
Administration Guide: Basic Administration.

� How to Add Security Attributes to a Legacy
Application
You add security attributes to a legacy application in the same way as you would for
any command. You need to add the command (or its directory) to the Commands
Denied column in the Commands tab of the Rights property dialog box. Then move
the command to the Commands Permitted column.

� How to Add Security Attributes to Commands in a
Script
If a command in a script needs set ID to run, simply add the security attributes to that
command in the same rights profile. See “How to Create or Change a Rights Profile
Using the Rights Tool” on page 279.

� How to Check for Authorizations in a Script or
Program
To have a script for authorizations, you need to add a test that is based on the
auths(1)command (see the auths(1) man page). For example, the following line
would test if the user has the authorization entered as the $1 argument:

if [‘/usr/bin/auths|/usr/xpg4/bin/grep $1‘]; then
echo Auth granted

else
echo Auth denied

fi

Role-Based Access Control (Tasks) 285

To be more complete, the test should include logic that checks for other authorizations
that use wildcards. For example, to test if the user has the
solaris.admin.usermgr.write authorization, you need to check for the strings:
solaris.admin.usermgr.write, solaris.admin.usermgr.*,
solaris.admin.*, and solaris.*.

If you are writing a program, use the getauthattr(3SECDB) function to test for the
authorization.

286 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 19

Role-Based Access Control (Reference)

This chapter provides additional information that supplements Chapter 17.

The topics in the reference section are:

� “Configuring Suggested Roles” on page 287
� “Contents of Rights Profiles” on page 288
� “Authorizations” on page 292
� “Overview of Databases Supporting RBAC” on page 293
� “user_attr Database” on page 296
� “auth_attr Database” on page 297
� “prof_attr Database” on page 299
� “exec_attr Database” on page 300
� “Command-Line Applications for Managing RBAC” on page 301
� “Commands Requiring Authorizations” on page 303

For information on RBAC tasks, see Chapter 18.

RBAC Elements: Reference Information

Configuring Suggested Roles
No predefined roles are shipped with the Solaris 9 software. Management at a
customer site must decide what types of roles should be set up. However, the three
recommended roles can be readily configured by assigning the appropriate predefined
rights profile to the corresponding roles:

287

� Primary Administrator rights profile — For creating a role that can perform all
administrative tasks, granting rights to others, and editing rights that are
associated with administrative roles. Can assign the Primary Administrator role
and the ability to grant rights to other users.

� System Administrator rights profile — For creating a role that can perform most
non-security administrative tasks. For example, the System Administrator can add
new user accounts but cannot set passwords and cannot grant rights to other users.

� Operator rights profile — For creating a role that can perform simple
administrative tasks, such as backup and restore and printer maintenance.

These rights profiles enable administrators to configure the suggested roles by using a
single rights profile instead of having to mix and match rights profiles.

Those sites that customize roles should closely check the order of the rights profiles
that are assigned to the role. The system does not prevent someone from typing
multiple occurrences of the same command. The attributes that are assigned to the
first occurrence of a command in a rights profile take precedence and all subsequent
occurrences are ignored.

Note – You can also set up root as a role through a manual process. This approach
prevents users from logging in directly as root, forcing them to log in as themselves
first. See “Making Root a Role” on page 270.

Contents of Rights Profiles
This section describes some typical rights profiles to demonstrate the following:

� The All rights profile provides a role access to commands without security
attributes.

� The Primary Administrator rights profile is designed specifically for the Primary
Administrator role. The Primary Administrator rights profile demonstrates the use
of wildcards.

� The System Administrator rights profile is designed specifically for the System
Administrator role. The System Administrator rights profile uses discrete
supplementary profiles to create a powerful role.

� The Operator rights profile is designed specifically for the Operator role. The
Operator rights profile uses a few discrete supplementary profiles to create a
simple role.

� The Basic Solaris User rights profile shows how the policy.conf file can be used
to assign users tasks that are not related to security.

� The Printer Management rights profile is an example of a profile that is dedicated
to a single area of administration.

288 System Administration Guide: Security Services • December 2001 (Beta)

The contents of these rights profiles are displayed in tables in this section. The tables
label the purpose, authorizations, commands, supplementary rights profiles, and help
files that are assigned. Help files are in HTML and can be readily customized if
required. These files reside in the /usr/lib/help/auths/locale/Cdirectory. The
Solaris Management Console Rights tool provides another way of inspecting the
contents of rights profiles.

All Rights Profile
The All rights profile uses the wildcard to include all commands but with no security
attributes. This profile is intended to provide a role access to all commands that are
not explicitly assigned in other rights profiles. Without the All rights profile or some
other rights profiles that use wildcards, a role has access to explicitly assigned
commands only, which is not very practical.

Because commands in rights profiles are interpreted in the order in which they occur,
any wildcard settings should be positioned last so that explicit attribute assignments
are not inadvertently overridden. The All profile, if used, should be the final profile
that is assigned.

TABLE 19–1 All Rights Profile Contents

Purpose Contents

Execute any command as the user or role Commands: *

Help File: RtAll.html

Primary Administrator Rights Profile
The Primary Administrator rights profile is intended to be assigned to the most
powerful role on the system, effectively providing that role with superuser
capabilities. The solaris.* authorization effectively assigns all of the authorizations
that are provided by the Solaris software. The solaris.grant authorization lets a
role assign any authorization to any rights profile, role, or user. The command
assignment *:uid=0;gid=0 provides the ability to run any command with UID=0
and GID=0. The help file RtPriAdmin.html is identified so that a site can modify it
if necessary. Help files are stored in the /usr/lib/help/auths/locale/Cdirectory.
Note also that if the Primary Administrator rights profile is not consistent with a site’s
security policy, it can be modified or not assigned at all. However, the security
capabilities in the Primary Administrator rights profile would need to be handled in
one or more other rights profiles.

Role-Based Access Control (Reference) 289

TABLE 19–2 Primary Administrator Rights Profile Contents

Purpose Contents

Can perform all administrative tasks Commands: *

Authorizations: solaris.*,
solaris.grant

Help File: RtPriAdmin.html

System Administrator Rights Profile
The System Administrator rights profile is intended for the System Administrator role.
Because the System Administrator does not have the broad powers of the Primary
Administrator, no wildcards are used. Instead, discrete administrative rights profiles
that do not deal with security are assigned. The commands that are assigned to the
supplementary rights profiles are not shown in this example.

Notice that the All rights profile is assigned at the end of the list of supplementary
rights profiles that are assigned to the System Administrator.

TABLE 19–3 System Administrator Rights Profile Contents

Purpose Contents

Can perform most nonsecurity administrative
tasks

Supplementary rights profiles: Audit Review,
Printer Management, Cron Management,
Device Management, File System
Management, Mail Management, Maintenance
and Repair, Media Backup, Media Restore,
Name Service Management, Network
Management, Object Access Management,
Process Management, Software Installation,
User Management, All

Help File: RtSysAdmin.html

Operator Rights Profile
The Operator rights profile is a less powerful administrative rights profile that
provides the ability to do backups and printer maintenance. The ability to restore files
has more security consequences and the default is not to assign it to this rights profile.

290 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 19–4 Operator Rights Profile Contents

Purpose Contents

Can perform simple administrative tasks Supplementary rights profiles: Printer
Management, Media Backup, All

Help File: RtOperator.html

Basic Solaris User Rights Profile for User
The Basic Solaris User rights profile is assigned by default to all users automatically
through the policy.conf file. This profile provides basic authorizations useful in
normal operation. Note that the convenience offered by the Basic Solaris User rights
profile must be balanced against the site security requirements. Those sites that need
stricter security may prefer to remove this profile from the policy.conf file.

TABLE 19–5 Basic Solaris User Rights Profile Contents

Purpose Contents

Provides automatically assigned rights to all
users

Authorizations: solaris.profmgr.read,
solaris.admin.usermgr.read,
solaris.admin.logsvc.read,
solaris.admin.fsmgr.read,
solaris.admin.serialmgr.read,
solaris.admin.diskmgr.read,
solaris.admin.procmgr.user,
solaris.compsys.read,
solaris.admin.printer.read,
solaris.admin.prodreg.read,
solaris.admin.dcmgr.read

Supplementary rights profiles: All

Help File: RtDefault.html

Printer Management Rights Profile
Printer Management is a typical rights profile that is intended for a specific task area.
Both authorizations and commands are assigned to the Printer Management rights
profile. The following table shows a partial list of commands.

Role-Based Access Control (Reference) 291

TABLE 19–6 Printer Management Rights Profile Contents

Purpose Contents

Manage printers, daemons, and spooling Authorizations:
solaris.admin.printer.delete,
solaris.admin.printer.modify,
solaris.admin.printer.read

Commands: /usr/sbin/accept:euid=lp,
/usr/ucb/lpq:euid=0,
/etc/init.d/lp:euid=0,
/usr/bin/lpstat:euid=0,
/usr/lib/lp/lpsched:uid=0,
/usr/sbin/lpfilter:euid=lp, ...

Help File: RtPrntMngmnt.html

Authorizations
An authorization is a discrete right that can be granted to a role or user. Authorizations
are checked by RBAC-compliant applications before a user gets access to the
application or specific operations within it. This check is used in place of the tests in
conventional UNIX applications for UID=0.

Authorization Naming Convention
An authorization has a name that is used internally and in files (for example,
solaris.admin.usermgr.pswd), and a short description, which appears in the
graphical interfaces (for example, Change Passwords). By convention, authorization
names consist of the reverse order of the Internet name of the supplier, the subject
area, any subareas, and the function, which are all separated by dots. An example
would be com.xyzcorp.device.access. The exceptions to this convention are
authorizations from Sun Microsystems, Inc., which use the prefix solaris instead of
an Internet name. This convention enables administrators to apply authorizations in a
hierarchical fashion by using a wildcard (*) to represent any strings to the right of a
dot.

Example of Authorization Granularity
As an example of how authorizations are used, consider the following. A user in the
Operator role might be limited to the solaris.admin.usermgr.read
authorization, which provides read but not write access to users’ configuration files.
The System Administrator role naturally has the solaris.admin.usermgr.read
and also solaris.admin.usermgr.write authorization for making changes to

292 System Administration Guide: Security Services • December 2001 (Beta)

users’ files, but without the solaris.admin.usermgr.pswd authorization, the
System Administrator cannot change passwords. The Primary Administrator has all
three of these authorizations. The solaris.admin.usermgr.pswd authorization is
required to make password changes in the Solaris Management Console User Tool.
This authorization is also required for using the password modification options in the
smuser, smmultiuser, and smrole commands.

Delegating Authorizations
An authorization that ends with the suffix grant permits a user or role to delegate to
other users any assigned authorizations that begin with the same prefix. For example,
a role with the authorizations solaris.admin.usermgr.grant and
solaris.admin.usermgr.read can delegate the
solaris.admin.usermgr.read authorization to another user. A role with the
solaris.admin.usermgr.grant and solaris.admin.usermgr.* can delegate
any of the authorizations with the solaris.admin.usermgr prefix to other users.

Databases Supporting RBAC

Overview of Databases Supporting RBAC
Data for the RBAC elements is stored in these four databases:

� user_attr (extended user attributes database) — Associates users and roles with
authorizations and rights

� auth_attr (authorization attributes database) — Defines authorizations and their
attributes, and identifies the associated help file

� prof_attr (rights profile attributes database) — Defines rights profiles, lists the
rights profile’s assigned authorizations, and identifies the associated help file

� exec_attr (execution attributes database) — Identifies the commands with
security attributes that are assigned to specific rights profiles

Role-Based Access Control (Reference) 293

Note – The commands can also indicate a security policy. Currently, the only security
policy available for the Solaris operating environment is suser (short for superuser).
The suser policy is the default and it accommodates both the ID attributes and
authorizations. The Trusted Solaris environment, which can interoperate with the
Solaris environment, uses a policy called tsol. Additional policies might be available
in future releases.

The policy.conf database is also important to the RBAC implementation.
policy.conf can contain authorizations and rights profiles to be applied to all users
by default.

The following figure illustrates how the RBAC databases work together.

294 System Administration Guide: Security Services • December 2001 (Beta)

User/Role

user_attr

User name

Authorizations

Rights profiles

Type (normal or role)

Roles (for type=normal)

prof_attr

Rights profile name

Description

Help file name

Authorizations

Supplementary
rights profiles

policy.conf

Authorizations granted

Rights profiles granted

auth_attr

Authorization name

Display name

Long description

Help file name

exec_attr

Rights profile name

Policy (suser only)

Command ID

Security attributes

FIGURE 19–1 RBAC Database Relations

The user_attr database stores the basic definitions for both users and roles (they are
differentiated by the type field). user_attr contains the attributes that are shown in
the figure, which includes a comma-separated list of rights profile names. The
definitions of the rights profiles are split between two databases. The prof_attr
database contains rights profile identification information, authorizations that are
assigned to the profile, and supplementary profiles. The exec_attr database
identifies the policy and contains commands with their associated security attributes.
The auth_attr database supplies authorization information to the SMC tools. The
policy.conf database supplies default authorizations and rights profiles to be
applied to all users.

Role-Based Access Control (Reference) 295

Each of these databases uses a key=value syntax for storing attributes. This approach
accommodates future expansion of the databases and enables a system to continue if it
encounters a key that is unknown to its policy.

The scope of the RBAC databases can apply to individual hosts or to all hosts that are
served by a name service such as NIS, NIS+, or LDAP. The precedence of local
configuration files versus distributed databases for the user_attr database is set by
the precedence that is specified for the passwd entry in the file
/etc/nsswitch.conf. The precedence for prof_attr and auth_attr are
individually set in /etc/nsswitch.conf. The exec_attr file uses the same
precedence as prof_attr. For example, if a command with security attributes is
assigned to a profile that exists in two scopes, only the entry in the first scope is used.

The databases can reside on a local system or can be administered by the NIS, NIS+, or
LDAP name service.

The databases can be edited manually or manipulated by the commands that are
described in “Command-Line Applications for Managing RBAC” on page 301.

user_attr Database
The user_attr database contains user and role information that supplements the
passwd and shadow databases. user_attr contains extended user attributes such as
authorizations, rights profiles, and assigned roles. The fields in the user_attr
database are separated by colons, as follows:

user:qualifier:res1:res2:attr

The fields are described in the following table.

Field Name Description

user The name of the user or role as specified in the passwd(4)database.

qualifier Reserved for future use.

res1 Reserved for future use.

res2 Reserved for future use.

296 System Administration Guide: Security Services • December 2001 (Beta)

Field Name Description

attr An optional list of semicolon-separated (;) key-value pairs that describe the
security attributes to be applied when the user runs commands. The four
valid keys are auths, profiles, roles, and type.
� type can be set to normal, if this account is for a normal user, or to role,

if this account is for a role.
� auths specifies a comma-separated list of authorization names that are

chosen from names that are defined in the auth_attr(4) database.
Authorization names can include the asterisk (*) character as a wildcard.
For example, solaris.device.* means all of the Solaris device
authorizations.

� profiles specifies an ordered, comma-separated list of rights profile
names from the prof_attr(4)file. The order of rights profiles works
similarly to UNIX search paths. The first rights profile in the list that
contains the command to be executed defines which (if any) attributes
are to be applied to the command.

� roles can be assigned to the user through a comma-separated list of
role names. Note that roles are defined in the same user_attr
database. Roles are indicated by setting the type value to role. Roles
cannot be assigned to other roles.

The following example demonstrates how the operator role is defined in a typical
user_attr database and how it is assigned to user johnDoe. Roles and users are
differentiated by the type keyword.

%grep operator /etc/user_attr
johnDoe::::type=normal;roles=sysadmin,operator

operator::::profiles=Operator;type=role

auth_attr Database
All authorizations are stored in the auth_attr database. Authorizations can be
assigned directly to users (or roles) in the user_attr database. Authorizations can
also be assigned to rights profiles, which are assigned to users.

The fields in the auth_attr database are separated by colons, as follows:

authname:res1:res2:short_desc:long_desc:attr

The fields are described in the following table.

Role-Based Access Control (Reference) 297

Field Name Description

authname A unique character string that is used to identify the authorization in the
format prefix.[suffix]. Authorizations for the Solaris operating environment
use solaris as a prefix. All other authorizations should use a prefix that
begins with the reverse-order Internet domain name of the organization that
creates the authorization (for example, com.xyzcompany). The suffix
indicates what is being authorized, typically the functional area and
operation.

When the authname consists of a prefix and functional area and ends with
a period, the authname serves as a heading to be used by applications in
their GUIs, rather than as an actual authorization. The authname
solaris.printmgr. is an example of a heading.

When authname ends with the word “grant,” the authname serves as a
grant authorization and lets the user delegate authorizations with the same
prefix and functional area to other users. The authname
solaris.printmgr.grant is an example of a grant authorization.
solaris.printmgr.grant gives the user the right to delegate such
authorizations as solaris.printmgr.admin and
solaris.printmgr.nobanner to other users.

res1 Reserved for future use.

res2 Reserved for future use.

short_desc A terse name for the authorization suitable for display in user interfaces,
such as in a scrolling list in a GUI.

long_desc A long description. This field identifies the purpose of the authorization, the
applications in which it is used, and the type of user who may be interested
in using it. The long description can be displayed in the help text of an
application.

attr An optional list of semicolon-separated (;) key-value pairs that describe the
attributes of an authorization. Zero or more keys can be specified.

The keyword help identifies a help file in HTML. Help files can be accessed
from the index.html file in the
/usr/lib/help/auths/locale/Cdirectory.

An auth_attr database with some typical values is shown in the following example.

% grep printer /etc/security/auth_attr
solaris.admin.printer.modify:::Update Printer Information::help=AuthPrinterModify.html
solaris.admin.printer.delete:::Delete Printer Information::help=AuthPrinterDelete.html
solaris.admin.printer.:::Printer Information::help=AuthPrinterHeader.html

solaris.admin.printer.read:::View Printer Information::help=AuthPrinterRead.html

Note that solaris.admin.printer. is defined to be a heading, because it ends in a
dot (.). Headings are used by the graphical user interface to organize families of
authorizations.

298 System Administration Guide: Security Services • December 2001 (Beta)

prof_attr Database
The name, description, help file location, and authorizations that are assigned to rights
profiles are stored in the prof_attr database. The commands and security attributes
that are assigned to rights profiles are stored in the exec_attr database (see
“exec_attr Database” on page 300). The fields in the prof_attr database are
separated by colons:

profname:res1:res2:desc:attr

The fields are described in the following table.

Field Name Description

profname The name of the profile. Profile names are case-sensitive. This name is also
used by the user_attr file to indicate rights profiles that are assigned to roles
and users.

res1 Reserved for future use.

res2 Reserved for future use.

desc A long description. This field should explain the purpose of the profile,
including what type of user would be interested in using it. The long
description should be suitable for display in the help text of an application.

attr An optional list of key-value pairs that are separated by semicolons (;) that
describe the security attributes to apply to the object on execution. Zero or
more keys can be specified. The two valid keys are help and auths.

The keyword help identifies a help file in HTML. Help files can be accessed
from the index.html file in the /usr/lib/help/auths/locale/C
directory.

auths specifies a comma-separated list of authorization names that are
chosen from those names that are defined in the auth_attr(4) database.
Authorization names can be specified with the asterisk (*) character as a
wildcard.

A typical prof_attr database follows this paragraph. Notice the definition of the
Printer Management rights profile. Note also that the Printer Management rights
profile is a supplementary rights profile that is assigned to the Operator rights profile.

% grep ’Printer Management’ /etc/security/prof_attr
Printer Management:::Manage printers, daemons, spooling:help=RtPrntAdmin.html; \
auths=solaris.admin.printer.read,solaris.admin.printer.modify,solaris.admin.printer.delete \
Operator:::Can perform simple administrative tasks:profiles=Printer Management,\
Media Backup,All;help=RtOperator.html

...

Role-Based Access Control (Reference) 299

exec_attr Database
An execution attribute is a command that is associated with a set UID or GID and that
is assigned to a rights profile. The command with its security attributes can be run by
users or roles to whom the profile is assigned.

The definitions of the execution attributes are stored in the exec_attr database.

The fields in the exec_attr database are separated by colons:

name:policy:type:res1:res2:id:attr

The fields are described in the following table.

Field Name Description

name The name of the profile. Profile names are case-sensitive. The name refers to
a rights profile in the prof_attr database.

policy The security policy that is associated with this entry. Currently, suser (the
superuser policy model) is the only valid policy entry.

type The type of entity that is specified. Currently, the only valid type is cmd
(command).

res1 Reserved for future use.

res2 Reserved for future use.

id A string that identifies the entity. Commands should have the full path or a
path with a wildcard. To specify arguments, write a script with the
arguments and point the id to the script.

attr An optional list of semicolon (;) separated key-value pairs that describe the
security attributes to apply to the entity on execution. Zero or more keys can
be specified. The list of valid key words depends on the policy that is
enforced. The four valid keys are euid, uid, egid, and gid.

euid and uid contain a single user name or a numeric user ID. Commands
that are designated with euid run with the effective UID indicated, which is
similar to setting the setuid bit on an executable file. Commands that are
designated with uid run with both the real and effective UIDs.

egid and gid contain a single group name or numeric group ID.
Commands that are designated with egid run with the effective GID
indicated, which is similar to setting the setgid bit on an executable file.
Commands that are designated with gid run with both the real and
effective GIDs.

Some typical values from an exec_attr database are shown in the following
example.

300 System Administration Guide: Security Services • December 2001 (Beta)

% grep ’Printer Management’ /etc/security/exec_attr
Printer Management:suser:cmd:::/usr/sbin/accept:euid=lp
Printer Management:suser:cmd:::/usr/ucb/lpq:euid=0
Printer Management:suser:cmd:::/etc/init.d/lp:euid=0
.
.

.

policy.conf File
The policy.conf file provides a way of granting specific rights profiles and
authorizations to all users. The two types of entries in the file consist of key-value
pairs. They are the following:

� AUTHS_GRANTED=authorizations
� PROFS_GRANTED=right profiles

authorizations refers to one or more authorizations and right profiles refers to one or
more rights profiles. Some typical values from a policy.conf database are shown in
the following example.

grep AUTHS /etc/security/policy
AUTHS_GRANTED=solaris.device.cdrw

grep PROFS /etc/security/policy

PROFS_GRANTED=Basic Solaris User

RBAC Commands

Command-Line Applications for Managing RBAC
In addition to editing the databases directly, the following tools are available for
managing with role-based access control.

TABLE 19–7 RBAC Administration Commands

Command Description

auths(1) Displays authorizations for a user.

makedbm(1M) Makes a dbm file.

Role-Based Access Control (Reference) 301

TABLE 19–7 RBAC Administration Commands (Continued)
Command Description

nscd(1M) Name service cache daemon, useful for caching the
user_attr, prof_attr, and exec_attr databases.

pam_roles(5) Role account management module for PAM. Checks for the
authorization to assume role.

pfexec(1) Used by profile shells to execute commands with attributes
that are specified in the exec_attr database.

policy.conf(4) Configuration file for security policy. Lists granted
authorizations.

profiles(1) Displays profiles for a specified user.

roles(1) Displays roles that are granted to a user.

roleadd(1M) Adds a role account on the system.

roledel(1M) Deletes a role’s account from the system.

rolemod(1M) Modifies a role’s account information on the system.

smattrpop(1M) Merges source security attribute database into target
database. For use in situations where local databases need
to be merged into a naming service and in upgrades where
conversion scripts are not supplied.

smexec(1M) Manages entries in the exec_attr database. Requires
authentication.

smmultiuser(1M) Manages bulk operations on user accounts. Requires
authentication.

smuser(1M) Manages user entries. Requires authentication.

smprofile(1M) Manages profiles in the prof_attr and exec_attr
databases. Requires authentication.

smrole(1M) Manages roles and users in role accounts. Requires
authentication.

useradd(1M) Adds a user account on the system. The -P option assigns
a role to a user’s account.

userdel(1M) Deletes a user’s login from the system.

usermod(1M) Modifies a user’s account information on the system.

302 System Administration Guide: Security Services • December 2001 (Beta)

Commands Requiring Authorizations
The following table provides examples of how authorizations are used to limit
command options in the Solaris environment. See also “Authorizations” on page 292.

TABLE 19–8 Commands and Associated Authorizations

Commands Authorization Requirements

at(1) solaris.jobs.user required for all options (when
neither at.allow nor at.deny files exist)

atq(1) solaris.jobs.admin required for all options

crontab(1) solaris.jobs.user required for the option to submit a
job (when neither crontab.allow nor crontab.deny
files exist) solaris.jobs.admin required for the options
to list or modify other users’ crontab files

allocate(1) (with BSM enabled
only)

solaris.device.allocate (or other authorization as
specified in device_allocate(4)) required to allocate
device. solaris.device.revoke (or other authorization
as specified in device_allocate file) required to allocate
device to another user (-F option)

deallocate(1) (with BSM
enabled only)

solaris.device.allocate (or other authorization as
specified in device_allocate(4)) required to deallocate
another user’s device. solaris.device.revoke (or
other authorization as specified in device_allocate file)
required to force deallocation of the specified device (-F
option) or all devices (-I option)

list_devices(1) (with BSM
enabled only)

solaris.device.revoke required to list another user’s
devices (-U option)

Role-Based Access Control (Reference) 303

304 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 20

Using Automated Security
Enhancement Tool (Tasks)

This chapter describes how to use the Automated Security Enhancement Tool (ASET)
to monitor or restrict access to system files and directories.

This is a list of step-by-step instructions in this chapter.

� “How to Run ASET Interactively” on page 324
� “How to Run ASET Periodically” on page 325
� “How to Stop Running ASET Periodically” on page 325
� “How to Collect ASET Reports on a Server” on page 326

Automated Security Enhancement Tool
(ASET)
The Solaris 9 release includes the Automated Security Enhancement Tool (ASET).
ASET helps you monitor and control system security by automatically performing
tasks that you would otherwise do manually.

The ASET security package provides automated administration tools that enable you
to control and monitor your system’s security. You specify a security level—low,
medium, or high—at which ASET will run. At each higher level, ASET’s file-control
functions increase to reduce file access and tighten your system security.

There are seven tasks involved with ASET, each performing specific checks and
adjustments to system files. The ASET tasks tighten file permissions, check the
contents of critical system files for security weaknesses, and monitor crucial areas.
ASET can safeguard a network by applying the basic requirements of a firewall system
to a system that serves as a gateway system. (See “Firewall Setup” on page 309.)

305

ASET uses master files for configuration. Master files, reports, and other ASET files are
in the /usr/aset directory. These files can be changed to suit the particular
requirements of your site.

Each task generates a report noting detected security weaknesses and changes the task
has made to the system files. When run at the highest security level, ASET will
attempt to modify all system security weaknesses. If it cannot correct a potential
security problem, ASET reports the existence of the problem.

You can initiate an ASET session by using the /usr/aset command interactively, or
you can also set up ASET to run periodically by putting an entry into the crontab
file.

ASET tasks are disk-intensive and can interfere with regular activities. To minimize
the impact on system performance, schedule ASET to run when system activity level is
lowest, for example, once every 24 or 48 hours at midnight.

ASET Security Levels
ASET can be set to operate at one of three security levels: low, medium, or high. At
each higher level, ASET’s file-control functions increase to reduce file access and
heighten system security. These functions range from monitoring system security
without limiting users’ file access, to increasingly tightening access permissions until
the system is fully secured.

The three levels are outlined in the table below.

Security Level This Level ...

Low Security Ensures that attributes of system files are set to standard
release values. ASET performs several checks and reports
potential security weaknesses. At this level, ASET takes no
action and does not affect system services.

Medium Security Provides adequate security control for most environments.
ASET modifies some of the settings of system files and
parameters, restricting system access to reduce the risks
from security attacks. ASET reports security weaknesses
and any modifications it makes to restrict access. At this
level, ASET does not affect system services.

High Security Renders a highly secure system. ASET adjusts many
system files and parameter settings to minimum access
permissions. Most system applications and commands
continue to function normally, but at this level, security
considerations take precedence over other system behavior.

306 System Administration Guide: Security Services • December 2001 (Beta)

Note – ASET does not change the permissions of a file to make it less secure, unless
you downgrade the security level or intentionally revert the system to the settings that
existed prior to running ASET.

ASET Tasks
This section discusses what ASET does. You should understand each ASET task—what
its objectives are, what operations it performs, and what system components it
affects—to interpret and use the reports effectively.

ASET report files contain messages that describe as specifically as possible any
problems discovered by each ASET task. These messages can help you diagnose and
correct these problems. However, successful use of ASET assumes that you possess a
general understanding of system administration and system components. If you are a
new administrator, you can refer to other SunOS 5.8 system administration
documentation and related manual pages to prepare yourself for ASET administration.

The taskstat utility identifies the tasks that have been completed and the ones that
are still running. Each completed task produces a report file. For a complete
description of the taskstat utility, refer to taskstat(1M).

System Files Permissions Verification
This task sets the permissions on system files to the security level you designate. It is
run when the system is installed. If you decide later to alter the previously established
levels, run this task again. At low security, the permissions are set to values that are
appropriate for an open information-sharing environment. At medium security, the
permissions are tightened to produce adequate security for most environments. At
high security, they are tightened to severely restrict access.

Any modifications that this task makes to system files permissions or parameter
settings are reported in the tune.rpt file. “Tune Files” on page 322 shows an
example of the files that ASET consults when setting permissions.

System Files Checks
This task examines system files and compares each one with a description of that file
listed in a master file. The master file is created the first time ASET runs this task. The
master file contains the system file settings enforced by checklist for the specified
security level.

Using Automated Security Enhancement Tool (Tasks) 307

A list of directories whose files are to be checked is defined for each security level. You
can use the default list, or you can modify it, specifying different directories for each
level.

For each file, the following criteria are checked:

� Owner and group
� Permission bits
� Size and checksum
� Number of links
� Last modification time

Any discrepancies found are reported in the cklist.rpt file. This file contains the
results of comparing system file size, permission, and checksum values to the master
file.

User/Group Checks
This task checks the consistency and integrity of user accounts and groups as defined
in the passwd and group files. It checks the local, and NIS or NIS+ password files.
NIS+ password file problems are reported but not corrected. This task checks for the
following violations:

� Duplicate names or IDs
� Entries in incorrect format
� Accounts without a password
� Invalid login directories
� The nobody account
� Null group password
� A plus sign (+) in the /etc/passwd file on an NIS (or NIS+) server

Discrepancies are reported in the usrgrp.rpt file.

System Configuration Files Check
During this task, ASET checks various system tables, most of which are in the /etc
directory. These files are:

� /etc/default/login
� /etc/hosts.equiv
� /etc/inetd.conf
� /etc/aliases
� /var/adm/utmpx
� /.rhosts
� /etc/vfstab
� /etc/dfs/dfstab

308 System Administration Guide: Security Services • December 2001 (Beta)

� /etc/ftpusers

ASET performs various checks and modifications on these files, and reports all
problems in the sysconf.rpt file.

Environment Check
This task checks how the PATH and UMASK environment variables are set for root, and
other users, in the /.profile, /.login, and /.cshrc files.

The results of checking the environment for security are reported in the env.rpt file.

eeprom Check
This task checks the value of the eeprom security parameter to ensure that it is set to
the appropriate security level. You can set the eeprom security parameter to none,
command, or full.

ASET does not change this setting, but reports its recommendations in the
eeprom.rpt file.

Firewall Setup
This task ensures that the system can be safely used as a network relay. It protects an
internal network from external public networks by setting up a dedicated system as a
firewall, which is described in “Firewall Systems” on page 213. The firewall system
separates two networks, each of which approaches the other as untrusted. The firewall
setup task disables the forwarding of Internet Protocol (IP) packets and hides routing
information from the external network.

The firewall task runs at all security levels, but takes action only at the highest level. If
you want to run ASET at high security, but find that your system does not require
firewall protection, you can eliminate the firewall task by editing the asetenv file.

Any changes made are reported in the firewall.rpt file.

ASET Execution Log
ASET generates an execution log whether it runs interactively or in the background.
By default, ASET generates the log file on standard output. The execution log confirms
that ASET ran at the designated time, and also contains any execution error messages.

Using Automated Security Enhancement Tool (Tasks) 309

The aset -n command directs the log to be delivered by electronic mail to a
designated user. For a complete list of ASET options, refer to aset(1M).

Example of an ASET Execution Log File
ASET running at security level low

Machine=example; Current time = 0325_08:00

aset: Using /usr/aset as working directory

Executing task list...
firewall
env
sysconfig
usrgrp
tune
cklist
eeprom

All tasks executed. Some background tasks may still be running.

Run /usr/aset/util/taskstat to check their status:
$/usr/aset/util/taskstat aset_dir

Where aset_dir is ASET’s operating directory, currently=/usr/aset

When the tasks complete, the reports can be found in:
/usr/aset/reports/latest/*.rpt

You can view them by:

more /usr/aset/reports/latest/*.rpt

The log first shows the system and time that ASET was run. Then it lists each task as it
is started.

ASET invokes a background process for each of these tasks, which are described in
“ASET Tasks” on page 307. The task is listed in the execution log when it starts; this
does not indicate that it has been completed. To check the status of the background
tasks, use the taskstat utility.

ASET Reports
All report files generated from ASET tasks are in subdirectories under the
/usr/aset/reports directory. This section describes the structure of the
/usr/aset/reports directory, and provides guidelines on managing the report
files.

ASET places the report files in subdirectories that are named to reflect the time and
date when the reports are generated. This enables you to keep an orderly trail of

310 System Administration Guide: Security Services • December 2001 (Beta)

records documenting the system status as it varies between ASET executions. You can
monitor and compare these reports to determine the soundness of your system’s
security.

The figure below shows an example of the reports directory structure.

/usr/aset

reports

0125_01:00

util

latest

masters

0124_01:00

firewall.rpt sysconf.rpt usrgrp.rpt env.rpt

tune.rpt eeprom.rpt cklist.rpt

FIGURE 20–1 ASET reports Directory Structure

Two report subdirectories are shown in this example:

� 0124_01:00
� 0125_01:00

The subdirectory names indicate the date and time the reports were generated. Each
report subdirectory name has the following format:

monthdate_hour:minute

where month, date, hour, and minute are all two-digit numbers. For example,
0125_01:00 represents January 25, at 1 a.m.

Using Automated Security Enhancement Tool (Tasks) 311

Each of the two report subdirectories contains a collection of reports generated from
one execution of ASET.

The latest directory is a symbolic link that always points to the subdirectory that
contains the latest reports. Therefore, to look at the latest reports that ASET has
generated, you can go to the /usr/aset/reports/latest directory. There is a
report file in this directory for each task that ASET performed during its most recent
execution.

Format of ASET Report Files
Each report file is named after the task that generates it. See the table below for a list
of tasks and their reports.

TABLE 20–1 ASET Tasks and Resulting Reports

Tasks Report

System file permissions tuning (tune) tune.rpt

System files checklist (cklist) cklist.rpt

User/group checks (usrgrp) usrgrp.rpt

System configuration files check (sysconf) sysconf.rpt

Environment check (env) env.rpt

eeprom check (eeprom) eeprom.rpt

Firewall setup (firewall) firewall.rpt

Within each report file, messages are bracketed by a beginning and an ending banner
line. Sometimes a task terminates prematurely; for example, when a component of
ASET is accidentally removed or damaged. In most cases, the report file will contain a
message near the end that indicates the reason for the premature exit.

The following is a sample report file, usrgrp.rpt.

*** Begin User and Group Checking ***

Checking /etc/passwd ...
Warning! Password file, line 10, no passwd
:sync::1:1::/:/bin/sync
..end user check; starting group check ...
Checking /etc/group...

*** End User And group Checking ***

312 System Administration Guide: Security Services • December 2001 (Beta)

Examining ASET Report Files
After initially running or reconfiguring ASET, you should examine the report files
closely. (Reconfiguration includes modifying the asetenv file or the master files in
the masters subdirectory, or changing the security level at which ASET operates.)
The reports record any errors introduced when you reconfigured. By watching the
reports closely, you can react to, and solve, problems as they arise.

Comparing ASET Report Files
After you monitor the report files for a period during which there are no configuration
changes or system updates, you might find that the content of the reports begin to
stabilize and that it contains little, if any, unexpected information. You can use the
diff utility to compare reports.

ASET Master Files
ASET’s master files, tune.high, tune.low, tune.med, and uid_aliases, are
located in the /usr/aset/masters directory. ASET uses the master files to define
security levels.

Tune Files
The tune.low, tune.med, and tune.high master files define the available ASET
security levels. They specify the attributes of system files at each level and are used for
comparison and reference purposes.

The uid_aliases File
The uid_aliases file contains a list of multiple user accounts sharing the same ID.
Normally, ASET warns about such multiple user accounts because this practice lessens
accountability. You can allow for exceptions to this rule by listing the exceptions in the
uid_aliases file. ASET does not report entries in the passwd file with duplicate
user IDs if these entries are specified in the uid_aliases file.

Avoid having multiple user accounts (password entries) share the same user ID. You
should consider other methods of achieving your objective. For example, if you intend
for several users to share a set of permissions, you could create a group account.
Sharing user IDs should be your last resort, used only when absolutely necessary and
when other methods will not accomplish your objectives.

Using Automated Security Enhancement Tool (Tasks) 313

You can use the UID_ALIASES environment variable to specify an alternate aliases
file. The default is /usr/aset/masters/uid_aliases.

The Checklist Files
The master files used by the systems files checklist are generated when you first
execute ASET, or when you run ASET after you change the security level.

The files checked by this task are defined by the following environment variables:

� CKLISTPATH_LOW
� CKLISTPATH_MED
� CKLISTPATH_HIGH

ASET Environment File (asetenv)
The environment file, asetenv, contains a list of variables that affect ASET tasks.
These variables can be changed to modify ASET operation.

Configuring ASET
This section discusses how ASET is configured and the environment under which it
operates.

ASET requires minimum administration and configuration, and in most cases, you can
run it with the default values. You can, however, fine-tune some of the parameters that
affect the operation and behavior of ASET to maximize its benefit. Before changing the
default values, you should understand how ASET works, and how it affects the
components of your system.

ASET relies on four configuration files to control behavior of its tasks:

� /usr/aset/asetenv
� /usr/aset/masters/tune.low
� /usr/aset/masters/tune.med
� /usr/aset/masters/tune.high

Modifying the Environment File (asetenv)
The /usr/aset/asetenv file has two main sections:

� A user-configurable parameters section
� An internal environment variables section

314 System Administration Guide: Security Services • December 2001 (Beta)

You can alter the user-configurable parameters section. However, the settings in the
internal environment variables section are for internal use only and should not be
modified.

You can edit the entries in the user-configurable parameters section to:

� Choose which tasks to run
� Specify directories for checklist task
� Schedule ASET execution
� Specify an aliases file
� Extend checks to NIS+ tables

Choose Which Tasks to Run: TASKS
Each of the tasks ASET performs monitors a particular area of system security. In most
system environments, all the tasks are necessary to provide balanced security
coverage. However, you might decide to eliminate one or more of the tasks.

For example, the firewall task runs at all security levels, but takes action only at the
high security level. You might want to run ASET at the high-security level, but do not
require firewall protection.

It’s possible to set up ASET to run at the high level without the firewall feature by
editing the TASKS list of environment variables in the asetenv file. By default, the
TASKS list contains all of the ASET tasks. (An example is shown below.) To delete a
task, remove the task setting from the file. In this case, you would delete the
firewall environment variable from the list. The next time ASET runs, the excluded
task will not be performed.

TASKS=”env sysconfig usrgrp tune cklist eeprom firewall”

Specify Directories for Checklist Task: CKLISTPATH
The system files check checks attributes of files in selected system directories. You
define which directories to check by using these checklist path environment variables:

� CKLISTPATH_LOW
� CKLISTPATH_MED
� CKLISTPATH_HIGH

The CKLISTPATH_LOW variable defines the directories to be checked at the low
security level. CKLISTPATH_MED and CKLISTPATH_HIGH environment variables
function similarly for the medium and high security levels.

The directory list defined by a variable at a lower security level should be a subset of
the directory list defined at the next higher level. For example, all directories specified

Using Automated Security Enhancement Tool (Tasks) 315

for CKLISTPATH_LOW should be included in CKLISTPATH_MED, and all the
directories specified for CKLISTPATH_MED should be included in CKLISTPATH_HIGH.

Checks performed on these directories are not recursive; ASET only checks those
directories explicitly listed in the variable. It does not check their subdirectories.

You can edit these variable definitions to add or delete directories that you want ASET
to check. Note that these checklists are useful only for system files that do not
normally change from day to day. A user’s home directory, for example, is generally
too dynamic to be a candidate for a checklist.

Schedule ASET Execution: PERIODIC_SCHEDULE
When you start ASET, you can start it interactively, or use the -p option to request that
the ASET tasks run at a scheduled time and period. You can run ASET periodically, at
a time when system demand is light. For example, ASET consults
PERIODIC_SCHEDULE to determine how frequently to execute the ASET tasks, and at
what time to run them. For detailed instructions about setting up ASET to run
periodically, see “How to Run ASET Periodically” on page 325.

The format of PERIODIC_SCHEDULE follows the format of crontab entries. See
crontab(1) for complete information.

Specify an Aliases File: UID_ALIASES
The UID_ALIASES variable specifies an aliases file that lists shared user IDs. The
default is /usr/aset/masters/uid_aliases.

Extend Checks to NIS+ Tables: YPCHECK
The YPCHECK environment variable specifies whether ASET should also check system
configuration file tables. YPCHECK is a Boolean variable; you can specify only true or
false for it. The default value is false, disabling NIS+ table checking.

To understand how this variable works, consider its effect on the passwd file. When
this variable is set to false, ASET checks the local passwd file. When it is set to true,
the task also checks the NIS+ passwd file for the domain of the system.

316 System Administration Guide: Security Services • December 2001 (Beta)

Note – Although ASET automatically repairs the local tables, it only reports potential
problems in the NIS+ tables; it does not change them.

Modifying the Tune Files
ASET uses the three master tune files, tune.low, tune.med, and tune.high, are
used by ASET to ease or tighten access to critical system files. These master files are
located in the /usr/aset/masters directory, and they can be modified to suit your
environment. For additional information, see “Tune Files” on page 322.

The tune.low file sets permissions to values appropriate for default system settings.
The tune.med file further restricts these permissions and includes entries not present
in tune.low. The tune.high file restricts permissions even further.

Note – Modify settings in the tune file by adding or deleting file entries. Setting a
permission to a less restrictive value than the current setting has no effect; the ASET
tasks do not relax permissions unless you downgrade your system security to a lower
level.

Restoring System Files Modified by ASET
When ASET is executed for the first time, it saves and archives the original system
files. The aset.restore utility reinstates these files. It also deschedules ASET, if it is
currently scheduled for periodic execution. The aset.restore utility is located in
/usr/aset, the ASET operating directory.

Changes made to system files are lost when you run aset.restore.

You should use aset.restore:

� When you want to remove ASET changes and restore the original system. If you
want to deactivate ASET permanently, you can remove it from cron scheduling if
the aset command had been added to root’s crontab previously. For directions
on how to use cron to remove automatic execution, see “How to Stop Running
ASET Periodically” on page 325.

� After a brief period of experimenting with ASET, to restore the original system
state.

� When some major system functionality is not working properly and you suspect
that ASET is causing the problem.

Using Automated Security Enhancement Tool (Tasks) 317

Network Operation Using the NFS System
Generally, ASET is used in standalone mode, even on a system that is part of a
network. As system administrator for your standalone system, you are responsible for
the security of your system and for running and managing ASET to protect your
system.

You can also use ASET in the NFS distributed environment. As a network
administrator, you are responsible for installing, running, and managing various
administrative tasks for all of your clients. To facilitate ASET management across
several client systems, you can make configuration changes that are applied globally
to all clients, eliminating the need for you to log in to each system to repeat the
process.

When deciding how to set up ASET on your networked systems, you should consider
how much you want users to control security on their own systems, and how much
you want to centralize responsibility for security control.

Providing a Global Configuration for Each Security Level
A case might arise where you want to set up more than one network configuration.
For example, you might want to set up one configuration for clients that are
designated with low security level, another configuration for those with medium level,
and yet another one with high level.

If you need to create a separate ASET network configuration for each security level,
you can create three ASET configurations on the server—one for each level. You would
export each configuration to the clients with the appropriate security level. Some
ASET components that are common to all three configurations could be shared using
links.

Collecting ASET Reports
Not only can you centralize the ASET components on a server to be accessed by clients
with or without superuser privilege, but you can also set up a central directory on a
server to collect all reports produced by tasks running on various clients. For
instructions on setting up a collection mechanism, see “How to Collect ASET Reports
on a Server” on page 326.

Setting up the collection of reports on a server allows you to review reports for all
clients from one location. You can use this method whether a client has superuser
privilege or not. Alternatively, you can leave the reports directory on the local system
when you want users to monitor their own ASET reports.

318 System Administration Guide: Security Services • December 2001 (Beta)

ASET Environment Variables
The table below lists the ASET environment variables and the values that they specify.

TABLE 20–2 ASET Environment Variables and Their Meanings

Environment Variable Specifies ...

ASETDIR (See below) ASET working directory

ASETSECLEVEL (See below) Security level

PERIODIC_SCHEDULE Periodic schedule

TASKS Tasks to run

UID_ALIASES Aliases file

YPCHECK Extends check to NIS and NIS+

CKLISTPATH_LOW Directory lists for low security

CKLISTPATH_MED Directory list for medium security

CKLISTPATH_HIGH Directory list for high security

The environment variables listed below are found in the /usr/aset/asetenv file.
The ASETDIR and ASETSECLEVEL variables are optional and can be set only through
the shell by using the aset command. The other environment variables can be set by
editing the file. The variables are described below.

ASETDIR Variable
ASETDIR specifies an ASET working directory.

From the C shell, type:

% setenv ASETDIR pathname

From the Bourne shell or the Korn shell, type:

$ ASETDIR=pathname
$ export ASETDIR

Set pathname to the full path name of the ASET working directory.

ASETSECLEVEL Variable
The ASETSECLEVEL variable specifies a security level at which ASET tasks are
executed.

Using Automated Security Enhancement Tool (Tasks) 319

From the C shell, type:

% setenv ASETSECLEVEL level

From the Bourne shell or the Korn shell, type:

$ ASETSECLEVEL=level
export ASETSECLEVEL

In the above commands, level can be set to one of the following:

low Low security level

med Medium security level

high High security level

PERIODIC_SCHEDULE Variable
The value of PERIODIC_SCHEDULE follows the same format as the crontab file.
Specify the variable value as a string of five fields enclosed in double quotation marks,
each field separated by a space:

"minutes hours day-of-month month day-of-week"

TABLE 20–3 Periodic_Schedule Variable Values

Variable Value

minutes hours Specifies start time in number of minutes (0-59) after the hour
and the hour (0-23)

day-of-month Specifies the day of the month when ASET should be run, using
values from 1 through 31

month Specifies the month of the year when ASET should be run, using
values from 1 through 12

day-of-week Specifies the day of the week when ASET should be run, using
values from 0 through 6; Sunday is day 0 in this scheme

The following rules apply:

� You can specify a list of values, each delimited by a comma, for any field.

� You can specify a value as a number, or you can specify it as a range; that is, a pair
of numbers joined by a hyphen. A range states that the ASET tasks should be
executed for every time included in the range.

� You can specify an asterisk (*) as the value of any field. An asterisk specifies all
possible values of the field, inclusive.

320 System Administration Guide: Security Services • December 2001 (Beta)

The default entry for PERIODIC_SCHEDULE variable causes ASET to execute at 12:00
midnight every day:

PERIODIC_SCHEDULE=”0 0 * * *”

TASKS Variable
The TASKS variable lists the tasks that ASET performs. The default is to list all seven
tasks:

TASKS=”env sysconfig usrgrp tune cklist eeprom firewall”

UID_ALIASES Variable
The UID_ALIASES variable specifies an aliases file. If present, ASET consults this file
for a list of permitted multiple aliases. The format is UID_ALIASES=pathname.
pathname is the full path name of the aliases file.

The default is:

UID_ALIASES=${ASETDIR}/masters/uid_aliases

YPCHECK Variable
The YPCHECK variable extends the task of checking system tables to include NIS or
NIS+ tables. It is a Boolean variable, which can be set to either true or false.

The default is false, confining checking to local system tables:

YPCHECK=false

CKLISTPATH_level Variable
The three checklist path variables list the directories to be checked by the checklist
task. The following definitions of the variables are set by default; they illustrate the
relationship between the variables at different levels:

CKLISTPATH_LOW=${ASETDIR}/tasks:${ASETDIR}/util:${ASETDIR}/masters:
/etc
CKLISTPATH_MED=${CKLISTPATH_LOW}:/usr/bin:/usr/ucb

CKLISTPATH_HIGH=${CKLISTPATH_MED}:/usr/lib:/sbin:/usr/sbin:/usr/ucblib

The values for the checklist path environment variables are similar to those of the shell
path variables, in that they are lists of directory names separated by colons (:). You
use an equal sign (=) to connect the variable name to its value.

Using Automated Security Enhancement Tool (Tasks) 321

ASET File Examples
This section has examples of some of the ASET files, including the tune files and the
aliases file.

Tune Files
ASET maintains three tune files. The entry format in all three tune files are described
in the table below.

TABLE 20–4 Tune File Entry Format

Entry Description

pathname The full path name of the file

mode A five-digit number that represents the permission setting

owner The owner of the file

group The group owner of the file

type The type of the file

The following rules apply:

� You can use regular shell wildcard characters, such as an asterisk (*) and a
question mark (?), in the path name for multiple references. See sh(1) for more
information.

� mode represents the least restrictive value. If the current setting is already more
restrictive than the specified value, ASET does not loosen the permission settings.
For example, if the specified value is 00777, the permission will remain unchanged,
because 00777 is always less restrictive than whatever the current setting is.

This is how ASET handles mode setting, unless the security level is being
downgraded or you are removing ASET. When you decrease the security level
from what it was for the previous execution, or when you want to restore the
system files to the state they were in before ASET was first executed, ASET
recognizes what you are doing and decreases the protection level.

� You must use names for owner and group instead of numeric IDs.

� You can use a question mark (?) in place of owner, group, and type to prevent ASET
from changing the existing values of these parameters.

� type can be symlink (symbolic link), directory, or file (everything else).

� Higher security level tune files reset file permissions to be at least as restrictive as
they are at lower levels. Also, at higher levels, additional files are added to the list.

322 System Administration Guide: Security Services • December 2001 (Beta)

� A file can match more than one tune file entry. For example, etc/passwd matches
etc/pass* and /etc/* entries.

� Where two entries have different permissions, the file permission is set to the most
restrictive value. In the following example, the permission of /etc/passwd will
be set to 00755, which is the more restrictive of 00755 and 00770.

/etc/pass* 00755 ? ? file

/etc/* 00770 ? ? file

� If two entries have different owner or group designations, the last entry takes
precedence. The following example shows the first few lines of the tune.low file.

/ 02755 root root directory
/bin 00777 root bin symlink
/sbin 02775 root sys directory
/usr/sbin 02775 root bin directory
/etc 02755 root sys directory

/etc/chroot 00777 bin bin symlink

Aliases File
An aliases file contains a list of aliases that share the same user ID.

Each entry is in this form:

uid=alias1=alias2=alias3=...

uid Shared user ID.

aliasn User account sharing the user ID.

For example, the following entry lists the user ID 0 being shared by sysadm and
root:

0=root=sysadm

Running ASET
This section describes how to run ASET either interactively or periodically.

Using Automated Security Enhancement Tool (Tasks) 323

� How to Run ASET Interactively
1. Become superuser.

2. Run ASET interactively by using the aset command.

/usr/aset/aset -l level -d pathname

level Specifies the level of security. Valid values are low, medium, or
high. The default setting is low. See “ASET Security Levels”
on page 306 for detailed information about security levels.

pathname Specifies the working directory for ASET. The default is
/usr/aset.

3. Verify ASET is running by viewing the ASET execution log that is displayed on the
screen.

The execution log message identifies which tasks are being run.

Example—Running ASET Interactively
The following example runs ASET at low security with the default working directory.

/usr/aset/aset -l low
======= ASET Execution Log =======

ASET running at security level low

Machine = jupiter; Current time = 0111_09:26

aset: Using /usr/aset as working directory

Executing task list ...
firewall
env
sysconf
usrgrp
tune
cklist
eeprom

All tasks executed. Some background tasks may still be running.

Run /usr/aset/util/taskstat to check their status:
/usr/aset/util/taskstat [aset_dir]

where aset_dir is ASET’s operating
directory,currently=/usr/aset.

324 System Administration Guide: Security Services • December 2001 (Beta)

When the tasks complete, the reports can be found in:
/usr/aset/reports/latest/*.rpt

You can view them by:

more /usr/aset/reports/latest/*.rpt

� How to Run ASET Periodically
1. Become superuser.

2. If necessary, set up the time when you want ASET to run periodically.

You should have ASET run when system demand is light. The PERIODIC_SCHEDULE
environment variable in the /usr/aset/asetenv file is used to set up the time for
ASET to run periodically. By default, the time is set for midnight every 24 hours.

If you want to set up a different time, edit the PERIODIC_SCHEDULE variable in the
/usr/aset/asetenv file. See “PERIODIC_SCHEDULE Variable” on page 320 for
detailed information about setting the PERIODIC_SCHEDULE variable.

3. Add an entry to the crontab file using the aset command.

/usr/aset/aset -p

-p Inserts a line in the crontab file that starts ASET running at the
time determined by the PERIODIC_SCHEDULE environment
variable in the /usr/aset/asetenv file.

4. Display the crontab entry to verify when ASET will run.

crontab -l root

� How to Stop Running ASET Periodically
1. Become superuser.

2. Edit the crontab file.

crontab -e root

3. Delete the ASET entry.

4. Save the changes and exit.

5. Display the crontab entry to verify the ASET entry is deleted.

crontab -l root

Using Automated Security Enhancement Tool (Tasks) 325

� How to Collect ASET Reports on a Server
1. Become superuser.

2. Set up a directory on the server:

a. Change to the /usr/aset directory.

mars# cd /usr/aset

b. Create a rptdir directory.

mars# mkdir rptdir

c. Change to the rptdir directory and create a client_rpt directory.

mars# cd rptdir
mars# mkdir client_rpt

d. This creates a subdirectory (client_rpt) for a client. Repeat this step for each client
whose reports you need to collect.

The following example creates the directory all_reports, and the subdirectories
pluto_rpt and neptune_rpt.

mars# cd /usr/aset
mars# mkdir all_reports
mars# cd all_reports
mars# mkdir pluto_rpt

mars# mkdir neptune_rpt

3. Add the client_rpt directories to the /etc/dfs/dfstab file.

The directories should have read/write options.

For example, the following entries in dfstab are shared with read/write permissions.

share -F nfs -o rw=pluto /usr/aset/all_reports/pluto_rpt

share -F nfs -o rw=neptune /usr/aset/all_reports/neptune_rpt

4. Make the resources in the dfstab file available to the clients.

shareall

5. On each client, mount the client subdirectory from the server at the mount point,
/usr/aset/masters/reports.

mount server:/usr/aset/client_rpt /usr/aset/masters/reports

6. Edit the /etc/vfstab file to mount the directory automatically at boot time.

The following sample entry in /etc/vfstab on neptune lists the directory to be
mounted from mars, /usr/aset/all_reports/neptune_rpt, and the mount
point on neptune, /usr/aset/reports. At boot time, the directories listed in
vfstab are automatically mounted.

326 System Administration Guide: Security Services • December 2001 (Beta)

mars:/usr/aset/all_reports/neptune.rpt /usr/aset/reports nfs - yes

hard

Troubleshooting ASET Problems
This section documents the error messages generated by ASET.

ASET Error Messages

ASET failed: no mail program found.
Cause: ASET is directed to send the execution log to a user, but no mail program
can be found.

Solution: Install a mail program.

Usage: aset [-n user[@host]] in /bin/mail or /usr/ucb/mail.

Cannot decide current and previous security levels.
Cause: ASET cannot determine what the security levels are for the current and
previous invocations.

Solution: Ensure the current security level is set either through the command line
option or the ASETSECLEVELenvironment variable. Also, ensure that the last line
of ASETDIR/archives/asetseclevel.arch correctly reflects the previous
security level. If these values are not set or are incorrect, specify them correctly.

ASET working directory undefined.

To specify, set ASETDIR environment variable or use command line

option -d.

ASET startup unsuccessful.
Cause: The ASET working (operating) directory is not defined, or defined
incorrectly.

Solution: Use the ASETDIR environment variable or the -d command line option
to specify it correctly, and restart ASET.

Using Automated Security Enhancement Tool (Tasks) 327

ASET working directory $ASETDIR missing.

ASET startup unsuccessful.
Cause: The ASET working (operating) directory is not defined, or it is defined
incorrectly. This might be because the ASETDIR variable or the -d command line
option refers to a nonexistent directory.

Solution: Ensure that the correct directory—that is, the directory containing the
ASET directory hierarchy—is referred to correctly.

Cannot expand $ASETDIR to full pathname.
Cause: ASET cannot expand the directory name given by the ASETDIR variable or
the -d command line option to a full path name.

Solution: Ensure that the directory name is given correctly, and that it refers to an
existing directory to which the user has access.

aset: invalid/undefined security level.

To specify, set ASETSECLEVEL environment variable or use command

line option -l, with argument= low/med/high.
Cause: The security level is not defined or it is defined incorrectly. Only the values
low, med, or high are acceptable.

Solution: Use the ASETSECLEVEL variable or the -l command line option to
specify one of the three values.

ASET environment file asetenv not found in $ASETDIR.

ASET startup unsuccessful.
Cause: ASET cannot locate an asetenv file in its working directory.

Solution: Ensure there is an asetenv file in ASET’s working directory. See
asetenv(4) for the details about this file.

filename doesn’t exist or is not readable.
Cause: The file referred to by filename doesn’t exist or is not readable. This can
specifically occur when using the -u option where you can specify a file that
contains a list of users whom you want to check.

Solution: Ensure the argument to the -u option exists and is readable.

ASET task list TASKLIST undefined.
Cause: The ASET task list, which should be defined in the asetenv file, is not
defined. This can mean that your asetenv file is bad.

Solution: Examine your asetenv file. Ensure the task list is defined in the User
Configurable section. Also check other parts of the file to ensure the file is intact.
See asetenv(4) for the content of a good asetenv file.

328 System Administration Guide: Security Services • December 2001 (Beta)

ASET task list $TASKLIST missing.

ASET startup unsuccessful.
Cause: The ASET task list, which should be defined in the asetenv file, is not
defined. This can mean that your asetenv file is bad.

Solution: Examine your asetenv file. Ensure the task list is defined in the User
Configurable section. Also check other parts of the file to ensure the file is intact.
See asetenv(4)for the content of a good asetenv file.

Schedule undefined for periodic invocation.

No tasks executed or scheduled. Check asetenv file.
Cause: ASET scheduling is requested using the -p option, but the variable
PERIODIC_SCHEDULE is undefined in the asetenv file.

Solution: Check the User Configurable section of the asetenv file to ensure
the variable is defined and is in proper format.

Warning! Duplicate ASET execution scheduled.

Check crontab file.
Cause: ASET is scheduled more than once. In other words, scheduling is requested
while a schedule is already in effect. This is not necessarily an error if more than
one schedule is indeed desired, just a warning that normally this is unnecessary
since you should use the crontab(1) scheduling format if you want more than one
schedule.

Solution: Verify, through the command, that the correct schedule is in effect. Ensure
that no unnecessary crontab entries for ASET are in place.

Using Automated Security Enhancement Tool (Tasks) 329

330 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 21

Auditing Topics

Chapter 22 Provides overview information about auditing.

Chapter 23 Provides information to help with auditing planning
issues.

Chapter 24 Provides step-by-step instructions to configure and
manage auditing.

Chapter 25 Provides information about the files associated with
auditing and the structure of the audit tokens.

331

332 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 22

Auditing Overview

Starting with the Solaris 2.3 release, the Basic Security Module (BSM) has been
included in the full release and is part of the release media. You do not need to install
BSM separately because it is included in the installation process. You can disable and
enable BSM separately, however. All of the BSM software is included in the initial
system installation.

This chapter introduces the concepts behind auditing and explains generally how
auditing works, and contains the following information:

� “What Is Auditing?” on page 333
� “How Does Auditing Work?” on page 337
� “How is Auditing Related to Security?” on page 338
� “How Can I Configure Auditing?” on page 338
� “Why is /etc/security Important?” on page 340
� “Audit Utilities” on page 341

What Is Auditing?
Successful auditing depends on two other security features: identification and
authentication. At login, after a user supplies a user name and password, a unique
audit ID is associated with the user’s process. The audit ID is inherited by every
process started during the login session. Even if a user changes identity (see the
su(1M) man page), all actions performed are tracked with the same audit ID.

Auditing makes it possible to:

� Monitor security-relevant events that take place on the host

� Record the events in a network-wide audit trail

� Detect misuse or unauthorized activity (by analyzing the audit trail)

333

� Review patterns of access, and see the access histories of individuals and objects

� Discover attempts to bypass the protection mechanisms

� Discover extended use of privilege that occurs when a user changes identity

� Supply additional assurance that attempts to bypass protection mechanisms are
recorded and discovered

During system configuration, the system administrator selects which activities to
monitor. The administrator can also fine-tune the degree of auditing that is done for
individual users.

After audit data is collected, audit-reduction and interpretation tools allow the
examination of interesting parts of the audit trail. For example, you can choose to look
at audit records for individual users or groups, look at all records for a certain type of
event on a specific day, or select records that were generated at a certain time of day.

Auditing Terminology
The following terms are used to describe the auditing service. Some of the definitions
of these terms include pointers to more complete descriptions of the term

TABLE 22–1 Terms Used in Auditing

Term Meaning

Audit class A grouping of audit events. Audit classes
provide a way to manage a group of events.
See “Audit Classes” on page 336 for more
information.

Audit client A host that is configured to run auditing.

Audit directory A repository of audit files. See “Audit
Directory” on page 337 for a description of the
types of audit directories.

Audit event A security related action that is audited. See
“Audit Events” on page 335 for discussion of
the types of audit events.

Audit flag A variable used to determine which classes of
events to audit and when to audit them.

334 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 22–1 Terms Used in Auditing (Continued)
Term Meaning

Audit policy A set of auditing options the system
administrator can enable or disable for a
particular configuration. These options
include whether to record or not record certain
kinds of audit data or to suspend auditable
actions when the queue is full.

Audit record The binary data that describes a single audit
event. An audit record is composed of audit
tokens.

Audit server A host that is set up to store audit records for
selected clients.

Audit token A set of binary data that describes a single set
of event information about a process, a path or
other objects. See “Audit Token Structure”
on page 393 for a description of all of the audit
tokens.

Audit trail A collection of one or more audit files which
may reside in separate audit file partitions.

Device allocation The process of deciding where audit files will
be stored and in what order.

Audit Events
Security-relevant actions can be audited. The system actions that are auditable are
defined as audit events. Audit events are defined in the
/etc/security/audit_event file. Each auditable event is defined in the file by a
symbolic name, an event number, a set of preselection classes, and a short description
(see the audit_event(4) man page).

There are several categories of audit events. The primary distinction is between events
that are generated by the kernel, kernel-level events, and events that are generated by
applications, called user-level events. Whether the event is generated by the kernel or
by a user-level application determines the number range of the event number that the
event is identified by.

TABLE 22–2 Audit Event Categories

Number Range Type of Event

1–2047 Kernel-level audit events

2048–65535 User-level audit events

Auditing Overview 335

TABLE 22–2 Audit Event Categories (Continued)
Number Range Type of Event

2048–32767 Reserved for SunOS user-level programs

32768–65536 Available for third-party applications

Most events are attributable to an individual user, but not all. These events are known
as nonattributable events, Events are nonattributable if they occur at the
kernel-interrupt level or before a user is identified and authenticated. Nonattributable
events are auditable as well.

Kernel-Level Audit Events
Events generated by the kernel (system calls) have event numbers between 1 and 2047.
The event names for kernel events begin with AUE_, followed by an uppercase
mnemonic for the event. For example, the event number for the creat() system call
is 4 and the event name is AUE_CREAT.

User-Level Audit Events
Events generated by application software outside the kernel range from 2048 to 65535.
The event names begin with AUE_, followed by a lowercase mnemonic for the event.
Check the file, /etc/security/audit_event, for exact numbers of individual
events. Table 22–2 shows general categories of user-related events.

Nonattributable Audit Events
Events that are not attributable to a user, such as AUE_ENTERPROM.

Audit Classes
Each audit event is also defined as belonging to an audit class or classes. By assigning
events to classes, an administrator can more easily deal with large numbers of events.
When naming a class, you simultaneously addresses all of the events in that class. The
mapping of audit events to classes is configurable and the classes themselves are
configurable. These configuration changes can be made in the audit_event file.

Whether or not an auditable event is recorded in the audit trail depends on whether
the administrator preselects a class for auditing that includes the specific event. Out of
32 possible audit classes, 18 are defined. The 18 classes include the two global classes:
all and no.

336 System Administration Guide: Security Services • December 2001 (Beta)

Audit Directory
An audit directory holds a collection of audit files. Many audit directories are used in
a typical installation. There are several types of audit directories.

� A primary audit directory is the directory where the audit files for a system are
placed under normal conditions.

� A secondary audit directory is where the audit files for a system are placed if the
primary directory is full or not available.

� A directory of last resort is a local audit directory which is used if both the primary
and all secondary audit directories are not available.

How Does Auditing Work?
Auditing is the generation of audit records due to the occurrence of specified events.
Most commonly, events that generate audit records include the following:

� System startup and shutdown
� Login and logout
� Process or thread creation or destruction
� Opening, closing, creating, destroying, or renaming of objects
� Use of privilege, identification, and authentication actions
� Discretionary Access Control (DAC) changes by process or user
� Installation-specific administrative actions

Events that are relevant to security and which cause audit records to be generated are
called auditable events. These events are grouped into audit classes, which are
administrator-defined. Machine and user audit preselection mechanisms determine
whether an actual audit record will be generated when an auditable event occurs.

Audit records come from three sources:

� They can be generated by an application.
� They can be the result of an asynchronous event.
� They can be generated as the result of a process system call.

Once the relevant information has been selected, it is formatted into an audit record,
which is then placed in a kernel buffer known as the audit queue. From this temporary
location, audit records are concatenated in audit files. Just where the audit files are
located is determined by pointers in the audit_control file, and can include
multiple partitions on the same machine, partitions on different machines, or even
machines on different but linked networks. The collection of audit files that are linked
together by pointers is considered an audit trail.

Auditing Overview 337

Audit records accumulate in audit files chronologically. Contained in each audit record
is information identifying the event, what caused it, time of the event, and other
relevant information.

How is Auditing Related to Security?
Securing a computer system, especially one deployed on a network, involves
mechanisms that control activities before system or user processes begin, that monitor
activities as they occur, and that report activities after they have happened. While
setting up auditing requires that parameters be set before users log in or machine
processes begin, most auditing activities involve monitoring current events and
reporting those that meet the specified parameters. Just how auditing does this
monitoring and reporting is discussed in detail in Chapter 23 and Chapter 24.

Auditing cannot prevent hackers from unauthorized entry. However auditing can
report, for example, that a specific user performed specific actions at a specific time
and date, and can identify the user by entry path and user name. Information such as
this can be reported immediately to a system administrator’s terminal and to a stored
file for later analysis.

Thus auditing provides data that helps system administrators determine both how
system security was compromised and what loopholes need to be changed to ensure
the desired level of security.

How Can I Configure Auditing?
There are a large number of parameters that can be enabled or disabled, or set to
specific limits. Actions outside these limits trigger audit records if you have set up
auditing to do so. This section presents a general discussion of how you set these
parameters and which sections of other chapters contain more detailed information.

Audit Events, Classes, and Policies
Some actions, such as logging in, using FTP, executing a program remotely, setting or
changing a password, or becoming root automatically become auditable events and
thus trigger audit records. Many other actions, though, will only trigger audit records
if the relevant parameters have been set.

338 System Administration Guide: Security Services • December 2001 (Beta)

The set of default auditable events that is loaded when a system boots is defined in a
table in /etc/security/audit_event. Each of these events can also be assigned to
one or more classes by the system administrator, to make it easier to maintain different
configurations for different users or groups of users. For more information about
planning how to set up classes, see Chapter 23. For information about how to set up
audit events for different users, see Chapter 24.

Audit policies are another way to specify what is audited. Generally they control how
much audit information is collected and what to do if an audit file is full. Audit
policies are discussed in Chapter 23 and specific procedures for changing audit
policies are discussed in Chapter 24.

Audit Flags
Audit flags are options that determine whether auditing is turned on or off for specific
classes if a system or application action failed or succeeded. Generally audit flags
make it easier to refine auditing so that only useful information is collected. Using
audit flags is discussed in more detail in Chapter 24.

Audit File Storage Issues
Beginning system administrators tend to start out wanting to collect as much
information as possible about user and system actions. However when it becomes
obvious that they also must have file space to store this information, and that audit
files can quickly grow to fill any available space, it makes sense to be more selective
about what kinds of activities are audited.

One audit directory, called the directory of last resort, is the only one that must be stored
on the machine being audited. The primary audit directory and any secondary
directories may be anywhere on the network of which the machine being audited is a
part. The primary audit directory is the file location where audit files are first written,
until that directory reaches a percentage of capacity that the system administrator
defines. Then audit files are written to any secondary directories, in the order
specified. When those directories fill to the designated capacity, audit files are written
to the directory of last resort and warnings are sent to the administrator’s terminal.

For more information about how to plan for use of disk space for audit files, see
Chapter 23. For specific procedures to manage audit directories, see Chapter 24.

Auditing Overview 339

Stored Audit Files vs. Printed Audit Files
Audit files are stored in binary format to minimize use of disk space. To make it easier
for people to analyze the audit files, BSM includes several utility programs that let you
sort the audit records by machine, pathname, completion status, mode, date and time,
audit class, user, group, and other parameters. See Chapter 24 and the
auditreduce(1M) man page. Once sorted the way you want, you can then use
praudit to translate the binary data into a format more easily read. This data can
then be displayed on a terminal or printed.

Why is /etc/security Important?
The directory /etc/security is the default location where the system first looks for
security configuration data when it is booted. Because the system looks here first, a
number of the audit configuration files are stored here. These include the following
files:

� audit_class, which defines the audit classes for this system,

� audit_control, which defines the location of the audit directories, the audit
flags that apply to events for all users of this system, the minimum free-space
percentage level for all audit file systems, and the audit flags that specify which
audit classes to use when an action can not be attributed to a specific user.

� audit_event, which defines the default event-to-class mappings,

� audit_startup, which is a shell script used to start the audit daemon,

� audit_user, which defines those flags that differ from the default flags for
specific users,

� audit_warn, a script which contains commands that tell the system what to do
whenever the audit daemon encounters an unusual situation when writing audit
records, and

� policy_conf, which contains the default audit policies.

The /etc/security directory also contains the audit directory, which in turn
contains the per-machine audit_data file, which must be available for successful
startup of the audit daemon at boot time.

340 System Administration Guide: Security Services • December 2001 (Beta)

Audit Utilities
The audit utility praudit and its options lets you look at the contents of any audit
file. You can also use the utility auditreduce, either alone or in combination with
praudit, to sort and extract audit records based on characteristics such as user name,
date and time, and machine.

The auditconfig utility lets you configure the auditing subsystem and modify audit
parameters to meet individual site requirements. Audit statistics, useful in tuning the
audit subsystem, may be displayed with the auditstat command.

Auditing Overview 341

342 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 23

Audit Planning

This chapter describes how to set up auditing for your Solaris 8 installation. In
particular, it covers things you need to consider before you install your Solaris 8
software, which automatically implements the auditing features.

This chapter covers the following:

� “How Does Auditing Work?” on page 343
� “Deciding What to Audit” on page 345
� “Determining Where to Store Audit Files” on page 356
� “Device Allocation” on page 360
� “Setting Up an Archive Policy” on page 363
� “Warnings” on page 364
� “When Should I Change Audit Parameters?” on page 366
� “Using the Audit Data” on page 367
� “Using the Results from Audit Trail Analysis” on page 370

How Does Auditing Work?
Auditing is controlled by the following configuration files:

� The /etc/system file

� The audit_class, audit_control, audit_event, and audit_user files and
the audit_warn shell script in the /etc/security directory

� The audit_startup shell script

Auditing generates audit log files . While the audit configuration files are located in
/etc/security on each machine that is audited, location of the audit log files is
controlled by the contents of the audit_control file. The audit_control file lists,
in order, the path names to the various audit directories, the types of audit flags in

343

effect, the amount of space in each directory that can be filled before a warning is
issued, and which nonattributable events are selected.

With the Basic Security Module (BSM), there are three types of directories containing
audit logs: the primary audit directory, optionally one or more secondary audit
directories, and the audit directory of last resort. The primary audit directory is where
audit log files are written when the system comes up after booting up. Secondary
directories are where audit log files are written when the primary audit directory
reaches the limits you specify in the audit_control file. The audit directory of last
resort is where audit log files are stored if the network goes down. (You must have an
audit partition defined on the local machine or one of two things will happen: either
all jobs will stop running or all audit records will be discarded, depending on how
you configured auditing.)

The directory of last resort must be located on the machine being audited, but the
primary and any secondary directories can be located anywhere on the network,
including other partitions on the same machine. However pointers to them must be
included in the audit_control file.

What is an Audit Trail?
The audit trail is a generic term describing where the audit records are stored, and
consisting of a number of audit files. Each audit file is a self-contained collection of
records. The file’s name identifies the time span during which the records were
generated and the machine that generated them. Each audit record contains a number
of audit tokens, in a specific order, that indicates what happened and which user was
involved.

Audit File Names
The format of the name of a completed audit file is shown below::

start-time,finish-time.machine

Here is an example of a closed audit filename:

20000515000001,20000515225243.grumpy

In this example, the file was started at one second after midnight GMT on May 15,
2000, was terminated the same day at 10:52:43 PM, and reflects data collected from a
machine named grumpy.

Audit files can be open or closed. Open audit files are the result of either of these
situations:

1. auditd is still adding data to the file, or

344 System Administration Guide: Security Services • December 2001 (Beta)

2. a system failure resulted in the file being left open.

An audit file is considered closed if there is a finish-time() in the name. They are
considered open if there is no finish-time() or if the value not_terminated is found
in the file name.

When a machine is writing to a remotely mounted audit file and the file server crashes
or becomes inaccessible, the not_terminated ending time stamp remains in the current
file’s name and the audit daemon opens a new audit file.

Deciding What to Audit
Most system administrators find it efficient to set up system defaults for auditing by
setting flags in the audit_control file. These flags are discussed in “Deciding What
to Audit” on page 345 in this chapter and in the audit_control(4) man page. These
defaults apply to all users and are modified by values set in the audit_user file for
individual users. For additional information, see “The audit_user File” on page 386
and theaudit_user(4) man page.

Some audit characteristics are set up automatically. The following applications begin
auditable sessions and automatically initialize the user’s audit characteristics:

� in.ftpd
� login
� dtlogin
� in.rshd
� cron
� rpc.rexd
� in.rexecd

The initial value for the audit ID is the user ID at the time of login. This is carried
across all actions by the user between login and logout, including changing to another
username (such as su). Thus the system administrator can trace all actions by a
specific user regardless of the user’s attempts to hide or change identities.

Actions that can be audited are defined as audit events. These are listed in the
/etc/security/audit_event file and are grouped into classes called audit classes
to aid in administration. Both audit events and audit classes are configurable. In
addition, the audit_control file for each host contains the default audit values
which apply to anyone logging in to that host. Further, some features are set
automatically whenever a new user logs in. You can change these features for each
user by editing the appropriate audit_user file.

Audit Planning 345

Auditing features are set by audit flags, which are discussed in “Audit Flags”
on page 355 in this chapter. Specifying what to audit is a process of choosing which
flags to add and which flags to disable.

To prevent security breaches, set up the system defaults for auditing before enabling
any users. This sets at least a base level of auditing. Once you have set up an account
for a user and unlocked it, you should immediately configure the security attributes
and individualize the auditing values for this user.

What Files Can I Change?
While some values in files used for audit configuration are set to defaults when the
system first boots, all of the audit files in /etc/security (audit_class,
audit_control, audit_event, audit_user, and audit_warn) can be adjusted
by the administrator. Further, the default values can also be changed. In addition,
there are values that can be set that govern machine-level and user-level
characteristics.

Default Values
You can change default values in the following files (located in /etc/security):

File Contents

audit_class Specifies class definitions in the form
mask:name:description, where each class is
represented as a bit in the mask. See
audit_class(4)).

audit_control Contains audit control information used to
determine where to store audit log files, how
much free space to allow, and what audit flags
are in effect. See audit_control(4).

audit_event Contains audit event definitions and specifies
the event-to-class mapping. See
audit_event(4).

audit_startup Script used to initialize the audit subsystem
before the audit deamon is started. Initially it
consists of a series of auditconfig
commands to set the system default policy
and download the initial event–to-class
mapping. See theaudit_startup(1M) man
page for more information.

346 System Administration Guide: Security Services • December 2001 (Beta)

File Contents

audit_user Database that stores per-user auditing
preselection data. For more information see
audit_user(4).

audit_warn A script that processes warning or error
messages from the audit daemon. The system
administrator can specify a list of mail
recipients to be notified when an audit_warn
situation arises. Users that make up the
audit_warn alias are typically the audit and
root users. See audit_startup(1M).

policy.conf Specifies the default set of authorizations
granted to all users. See policy.conf(4).

Machine-Level Audit Values
Each machine has an associated set of audit characteristics which is used to control the
generation of audit records due to nonattributable events. This lets the system handle
preselection of asynchronous/nonattributable events and event ownership in the same
way that it handles user events. However, unlike a normal user, a machine does not
log in; its audit characteristics (preselection mask) are established during system boot
by the system initialization script which is pointed to by the audit script in
/etc/init.d. The machine audit characteristics can be adjusted by the system
administrator, using the auditconfig utility. Note that the asynchronous events
identify themselves as being generated by the machine and thus provide a form of
identification.

Presently there are only three nonattributable events defined. They are:

1. system boot (always generated)
2. entering the PROM/kernel debugger (normally not generated), and
3. exiting the PROM/kernel debugger (normally not generated).

An evaluated system (one that has been certified as having met the configuration
specified in “Common Criteria”) requires that the PROM be put into
“security-mode=full” state. This prevents the user from entering the PROM/kernel
debugger. It also limits the disk that may be booted to one specified by the PROM
parameters. These are described in the man page for eeprom(1M).

User-Level Audit Features
User-level audit characteristics are used to identify a user and control generation of
audit records. These audit characteristics are set at initial login and consist of the
following:

Audit Planning 347

� Process preselection mask
� Audit ID
� Audit Session ID
� Terminal ID (port ID, machine ID)

A user’s audit characteristics are defined on a per process basis. This means that each
process can have a distinct and different set of values assigned to it. On the other
hand, all threads within a process share the same audit characteristics. Whenever a
thread operation results in an auditable event, the process audit characteristics are
used to determine if an audit record is to be generated and to identify the originator of
the record. The values for these audit characteristics are set when the process is
created, and are taken from the parent process. They remain unchanged during the life
of the process, except when changed by an audit-related system call. These system
calls require super user privileges, which prevents a normal user from modifying or
accessing the values of individual audit characteristics. Audit characteristic
propagation is discussed in subsequent sections of this chapter.

Process Preselection Mask
When a user logs in, the login command combines the machine-wide audit flags
from the audit_control file with the user-specific audit flags (if any) from the
audit_user file. The result is the process preselection mask for the user’s processes.
This process preselection mask consists of two 32–bit integers specifying whether
events in each audit event class are to generate audit records.

Audit flags from the flags: line in the audit_control file are first combined with
the flags from the always-audit field in the user’s entry in the audit_user file. Then
the flags from the never-audit field in the user’s entry in the audit_user file are
subtracted from the set of flags. If both masks are empty, no audit records are
generated.

The process preselection mask does not change regardless of changes of user ID,
programming forks, or execution of other programs. Even if the user changes ID
through the use of su the original mask is ORed with the new mask, and the new user
ID is then audited for both events related to the original user and events related to the
new user.

Audit ID
Each time a user logs in the resulting process acquires a unique user ID, also called the
audit ID. (This is in addition to the standard UNIX real user ID, which is assigned at
login, and effective user ID, which is what you would be using if you changed your ID,
such as changing to Superuser.) This audit ID is inherited by all child processes started
by that user’s initial process. Unlike the real user ID and the effective user ID, from

348 System Administration Guide: Security Services • December 2001 (Beta)

login to logout the audit ID remains the same for that user. This lets a system
administrator trace actions back through a series of processes to identify the user who
originally logged in.

Audit Session ID
The audit session ID is assigned at login and is inherited by all descendant processes.
Unlike the audit ID, the audit session ID tracks the actions during a particular session.
The audit session ID uses the terminal ID (that indicates which port was used at login
time), combined with other data to help a system administrator distinguish multiple
logins from the same user on the same port.

Terminal ID
The terminal ID consists of the host IP address and a unique number that identifies the
terminal I/O port through which the user originally logged in. Most of the time the
login is through the console, which is usually identified as device 0. For instance, the
terminal ID for a local host with the IP address of 179.179.179.178 could be 16777. If
the initial login is a remote login from another system, the TCP/UDP pair is used as
the terminal I/O port and the machine ID is the IP address of the remote machine.

Determining Which Systems to Audit
Deciding what to audit is usually governed by the kind of risk model your site is
using.

If, for instance, you are running a certified installation (such as Common Criteria), you
must audit each machine within your “trusted computing base.” The documentation
for Common Criteria state what must be audited. You will also be interested in failure
to authenticate at login time and failure to access data, as well as who was logged in
for what time. You will also be interested in auditing any administrative actions.

On the other hard, if you are a bank you will have a risk model that determines on
which systems you are willing to pay the performance and data storage costs costs to
collect audit data. Many banks have already determined what is worth auditing, a set
of criteria that is usually found in their risk assessment procedures.

If you are connected to the Internet, you should be interested in intrusion detection.
There are two main types of intrusion detection you will want to check:

� Through some means, you have determined that an unauthorized user has
connected to your machine. In this case, you will want to audit logins and logouts,
file access, and any exec actions to see what this user is doing.

Audit Planning 349

� Using the sort capabilities of auditreduce, you process the audit logs looking for
patterns associated with a breakin. Some special intrusion detection programs can
also be used to determine which events to generate, which may also help in
detecting an intruder.

Rarely will you want to have auditing running constantly for all users. More likely
you will want to focus just on root.

Determining Which Audit Policies to Use
Audit policies refer to the auditing options that are enabled or disabled for a particular
configuration. You can inspect or change the current audit policy with the auditon
system call at the program level, or by typing auditconfig from the command line.

Generally, the default audit policies are set up to minimize the amount of audit
information and thus minimize the amount of audit storage resources required. You
can determine if the extra information is worth the extra overhead in audit trail size
and system resources to generate the audit records.

The following policies may be enabled or disabled:

Policy name Default setting What it does Why should I change it?

Audit_cnt Block when an audit
record can not be put
onto the audit trail.

Blocks a user or
application when
audit records can not
be added to the audit
trail. When this policy
is active, the event is
allowed to complete
without an audit
record being
generated. A count of
audit records that
have been dropped is
maintained.

In the default (no)
case, when you run
out of room to record
audit records, all
processes stop and
wait for space to be
freed. This option
makes sense in an
environment where
security is paramount.
In the "yes" case,
processes keep
running resulting in
audit records being
lost. This makes sense
when system
availability is more
important than
security.

350 System Administration Guide: Security Services • December 2001 (Beta)

Policy name Default setting What it does Why should I change it?

Audit_halt Halt the machine if a
nonattributable audit
record can not be
added to the audit
trail.

Drop the audit record
and keep a count of
the ones dropped.

Since there is no
process context for
these events, there is
no way to suspend
processing until space
becomes available for
more audit records.
When this policy is
active, the machine
halts if a
nonattributable audit
record can not be
added to the audit
trail.

Audit_argv Add the arguments of
an executed program
script to the “exec”
audit record. When
this policy is active,
the arguments
supplied to the exec
system call are
included in the audit
record.

Do not include
program arguments.

If turned on, when
you use the execv
command, the
resulting audit records
contain much more
data than if this is off.
If you are auditing
only a few users, it
may be reasonable to
turn this on.

Audit_arge Add the environment
variables for the
executed program to
the”exec” audit
record. When this
policy is active the
environment variables
are included with the
audit record.

Do not include the
environment variables
in the audit record.

If turned on, when
you use the execv
command, the
resulting audit records
contain much more
data than if this is off.
If you are auditing
only a few users, it
may be reasonable to
turn this on.

Audit Planning 351

Policy name Default setting What it does Why should I change it?

Audit_seq Add a sequence token
to the audit record.
This is a
monotonically
increasing number.

Do not add a
sequence number to
the audit record.

There is a trade off
between more data,
but with a sequence
number for each
record, and a smaller
data set. If this is "yes"
then each audit record
gets a sequence
number in the audit
log. In the case of file
corruption (for
example, a partially
written audit record)
you may be able to
spot bad records
faster if the sequence
numbers are out of
order or missing..

Audit_group Add the groups list
from the process
credential to the audit
record. When this
policy is active, the
groups list is included
with the audit record
as a special token.

Do not include this
information.

If turned on, when
you use the execv
command, the
resulting audit records
contain much more
data than if this is off.
If you are auditing
only a few users, it
may be reasonable to
turn this on.

Audit_trail Add a trailer token at
the end of an audit
record to delimit it.
When this policy is
active, a trailer token
is added to the end of
each audit record.

Do not include a
trailer token.

There is a trade off
between more data
and a more robust
data set. If this is "yes"
then each audit
record’s end is clearly
marked in the audit
log. In the case of file
corruption (for
example, a partially
written audit record)
auditreduce will
cause a resync faster
on good records.

352 System Administration Guide: Security Services • December 2001 (Beta)

Policy name Default setting What it does Why should I change it?

Audit_path Allow multiple paths
per audit record.
When this policy is
active, each file name
or path used during a
system call causes a
path token to be
added to the audit
record.

Allow one path per
audit record.

If turned on, when
you use the execv
command, the
resulting audit records
contain much more
data than if this is off.
If you are auditing
only a few users, it
may be reasonable to
turn this on.

Determining Audit Events and Classes
Certain actions that occur are sufficiently important that they are considered auditable
actions. These actions are called auditable events. When an audit event occurs, an audit
record will be generated if the event is selected by the selection mechanism.

The audit events recognized are defined in an administrative database located in
/etc/security/audit_event. This file lists both the audit events generated
within the kernel and the audit events generated by the applications. Each entry in the
file represents a particular audit event and contains four pieces of information:

� the unique audit event number of the event,

� the event name,

� a description of the event which is used when displaying the audit event, and

� the list of classes to which the event has been assigned.

The assignment of events to classes is done by the system administrator (see
Chapter 24) and may be modified by the system administrator to fit the particular
requirements of the site.

event no. event name event description class flags
...
7:AUE_EXEC:exec(2):pc,ex
8:AUE_CHDIR:chdir(2):fc
9:AUE_MKNOD:mknod(2):ad
...
6259:AUE_su:su:lo
6260:AUE_halt_solaris:halt:ad
6162:AUE_reboot_solaris:reboot:ad
...

In this example, the first entry listed is the entry for the exec system call. The event
ID which identifies the audit record is 7. The event name of the audit event is
AUE_EXEC. When the audit record is displayed by praudit, the string exec2 is

Audit Planning 353

displayed instead of a 7, meaning that an audit event has been generated by this event
if a user is being audited for either the pc (process) or ex (execution) audit classes.

Audit events are grouped into classes in order to simplify the administration of
preselection (see “Process Preselection Mask” on page 348). Each audit event is
assigned to one or more audit classes, which form the basis for selective auditing. To
support site specific needs, these groupings may be configured by the system
administrator and new classes defined. The system call auditon and the
auditconfig utility lets the system administrator inspect and override the default
settings. The resulting audit_event table is downloaded into the kernel at boot time.

Modification of class information takes effect immediately for all events generated in
the kernel. For auditing performed at the user level, a change in the configuration of
the event-to-class mapping affects all processes created after the modification
occurred.

An audit class is implemented as a bit in a vector. The current implementation of
Solaris supports 32 distinct classes (the size of an integer) plus the designations all and
none. This lets the user of logical instructions perform masking operations and quickly
determine if an audit class is present.

Class descriptors are defined in the file /etc/security/audit_class. This file
maps the relationship between a mask name and the associated mask value used for
preselection. Each entry in this file represents an event class and contains three pieces
of information:

� the event mask specifying a bit in a mask,

� the name of the event class which is used in the audit_event file, and

� a description of the class.

The mapping between class and bit is determined by the system administrator.

class mask class name class description

...
0x00000020:fd:file delete
0x00000040:cl:file close
0x00000080:pd:process
0x00000100:nt:network

In this example, the first entry specifies the fd audit class. The mask used for
preselection operations is defined as 0x00000020. The identifier for the audit class is
fd, which is used to specify the class in the audit_event file. (This class is for
specifying audit events involving file delete operations.)

354 System Administration Guide: Security Services • December 2001 (Beta)

Note – The interpretation of the meaning of the audit classes is purely arbitrary and
depends on the events that are assigned to a particular class. In the example above, the
events involving a “deletion” of a file system object have been assigned to the fd class,
but the same action could be called by another name in another class. This is an
important concept to keep in mind when assigning and defining a site-specific audit
class.

Site-Specific Event-to-Class Mapping
The /etc/security/audit_event file contains a list of all defined audit event
types. For each event, it defines its class, an arbitrary grouping of similar events. The
class of events can be changed to suit your particular needs and new classes may be
defined. Any class referenced by an entry in audit_event must be defined in
audit_class.

In the example below, the final value (fc) is the class for the audit event AUE_CREAT.
The fc value may be changed to any other class defined in audit_class or may be
modified to be a list of classes separated by commas (fc,fa):

4:AUE_CREAT:creat(2):fc

You can change the event-to-class mapping by editing the
/etc/security/audit_event file to reflect how each event is related to a class.
You will need to reboot the system or run audit_config with the -conf option to
change the runtime kernel event-to-class mappings.

Audit Flags
Audit flags indicate classes of events to audit. Machine-wide defaults for auditing a
specified for all users on each machine by flags in the audit_control file, which is
described in “The audit_control File” on page 383 in Chapter 25.

The system administrator can modify what is audited for individual users by putting
audit flags in a user’s entry in the audit_user file. The audit flags are also used as
arguments to auditconfig (see the auditconfig(1M) man page).

Table 25–1 in Chapter 25 shows the short and long names for each audit class and
gives a description of what each does.

Depending on the prefixes, a class of events can be audited whether it succeeds or
fails, or only if it succeeds or only if it fails. The format of the audit flag is shown
below.

prefixflag

Audit Planning 355

Table 23–1 shows prefixes that specify whether the audit class is audited for success or
failure or both.

TABLE 23–1 Prefixes Used with Audit Flags

Prefix Definition

none Audit for both success and failure.

+ Audit for success only.

− Audit for failure only.

For example, the audit flag lo means “all successful attempts to log in and log out and
all failed attempts to log in.” (You cannot fail an attempt to logout.) For another
example, the −all flag refers to all failed attempts of any kind, and the -+all flag
refers to all successful attempts of any kind.

Note – The −all flag can generate large amounts of data and fill up audit file systems
quickly, so use it only if you have extraordinary reasons to audit everything.

Determining Where to Store Audit Files
There are two types of audit files: audit configuration files and audit log files.

The /etc/security directory contains subdirectories with all of the audit
configuration files. It also contains several other files related to audit control.

The /etc/security directory must be part of the root file system, because it
contains the per-machine audit_data file, which must be available for successful
startup of the audit daemon at boot time.

By default, the audit post-selection tools look in directories under
/etc/security/audit. Hence the path name of the mount point for the first audit
file system on an audit server is of the form: /etc/security/audit/server-name,
where server-name is the name of the audit server. If more than one audit partition is
on an audit server, the name of the second mount point is:
/etc/security/audit/server-name.1, the third is
/etc/security/audit/server-name.2, and so forth.

Audit log files, however, are usually located in different directories or partitions. While
each machine being audited must have at least one audit log file located locally, other
audit log files may be located anywhere that the machine can read and write, such as

356 System Administration Guide: Security Services • December 2001 (Beta)

dedicated audit partitions on other machines or disks. These directories must be close
to the root directory on their respective machines, such as /var/audit or
/var/audit.1.

Ensure that each audit log directory contains nothing except audit files.

The /etc/security directory on each auditable machine must contain at least one
of the audit directories, referred to as the directory of last resort. This is because, if the
network goes down, you need to have an audit directory defined on the local machine.
Otherwise either all jobs will stop running or all audit records will be discarded,
depending on how you configured auditing.

Other audit directories may be located on this machine or elsewhere on the network,
depending on your site’s configuration and preferences. These directories of audit log
files are generally known as the primary directory and any secondary directories. These
are explained in more detail later in this chapter.

The audit log directories can be located anywhere on the network that is visible to the
audit configuration directory. Pointers to these directories are contained in the
audit_control file, and you can have as many audit log directories as you have
available space. However the last pointer in the audit_control file must point to
the directory of last resort.

Many system administrators find it useful to create partitions that are exclusively used
for keeping audit logs, thus simplifying tracking a user’s behavior from audit file to
audit file. Further, using a dedicated partition for audit logs means that there is no
danger of application data accidentally overwriting an audit log, or with auditing
operations interfering with the operation of other applications.

If you have a distributed network, you may also want to use several disks or
partitions to store audit logs. This lets you have some assurance of backup if one of
the disks or partitions gets corrupted.

Primary and Secondary Audit Directories
The primary audit directory is the first directory where a machine places its audit log
files. Each host must have a primary audit directory and may have a number of
secondary directories. However, the primary and secondary directories may be
NFS-mounted, that is, not local to the host.

A secondary audit directory is where a machine places audit files if the primary
directory is full or inaccessible because of network failure, an NFS server crash, or for
some other reason. There can be one or many secondary directories for a particular
host.

A host’s primary and secondary directories are not necessarily located on the host.
Indeed, many installations place their audit directories on machines other than those

Audit Planning 357

hosts that handle user applications, on the theory that if the host running applications
goes down, at least the audit records will be safe.

A directory of last resort is the directory used if the other directories are full or
inaccessible. It must be located on the machine being audited, and its use triggers a
warning to the console.

Setting Up or Modifying Audit Directories
In order for a directory to be used to store audit log files, it must be accessible to the
audit daemon. This means that the following conditions must be met:

� It must have a pointer in the appropriate audit_control file.

� The directory must be mounted. (For NFS-mounted directories, set the option noac
to obtain the correct behavior when an audit partition fills; otherwise audit records
may be lost when moving to a new partition.)

� The network connection (if remote) must permit successful access.

� The permissions on the directory must allow access.

� It must have sufficient free space remaining.

The first condition is covered by the dir: entries in the audit_control file. The
second, third, and fourth conditions are outside the scope of auditing, but are concerns
of the system administrator.

The fifth is handled by the minfree value in the audit_control file (see “The
audit_control File” on page 383. The default value of 20 means that whenever a
file system becomes more than 80 percent full, an email notice is sent to the
audit_warn alias. When the current directory has insufficient space left for more audit
files, the next directory listed is used. When no directories on the list have sufficient
free space left, the audit daemon starts over from the beginning of the list and picks
the first accessible directory that has any space available, until the hard limit is
reached. In the default configuration, if no directories are available, the daemon stops
processing audit records and they accumulate within the kernel until all processes
generating audit records are suspended.

See “Device Allocation” on page 360 later in this chapter.

Determining Audit Space Usage
Storage costs are the most significant auditing cost, and are directly related to the
amount of data you collect. The amount of audit data depends on the following:

� Number of users
� Number of machines

358 System Administration Guide: Security Services • December 2001 (Beta)

� Amount of use
� Degree of security required

Because the factors vary from one situation to the next, no formula can determine in
advance the amount of disk space to set aside for audit data storage.

Full auditing (with the all flag) can fill up a disk quickly. Even a simple task like
compiling a program of modest size (for example, 5 files, 5000 lines total) in less than a
minute could generate thousands of audit records, occupying many megabytes of disk
space. Therefore it is very important to use the preselection features to reduce the
volume of records generated. For example, just omitting the fr class can reduce the
audit volume by more than two-thirds. Efficient auditing file management is also
important after the audit records are created, to reduce the amount of storage
required.

“Using the Audit Data” on page 367 gives some tips about reducing the costs of
storage by selectively auditing in order to reduce the amount of audit data collected,
while still meeting your site’s security needs. Also discussed in those sections are how
to set up audit file storage and archiving procedures to reduce storage requirements.

Before configuring auditing, be sure you understand the audit flags and the types of
events they flag. As you set up your auditing configuration, remember that each new
type of audit file will take up storage space and analysis time.

Unless the process audit preselection mask is modified dynamically, the audit
characteristics in place when a user logs are inherited by all processes during the login
session. Unless the databases are modified, the process preselection mask applies it in
all subsequent login sessions.

Each process has two sets of one-bit flags for audit classes. One set controls whether
the process is audited when an event in the class is successfully requested; the other
set controls whether an event is requested but fails for any reason. Processes are
commonly more heavily audited for failures than for successes, since the failures tend
to indicate attempts at browsing and other attempts to violate system security. The
process preselection mask thus should be carefully watched to see whether the data it
is generating is truly useful.

Dynamic controls refer to controls put in place by the administrator while processes
are running. These persist only while the affected processes and any of their children
exist, but will not continue in effect at the next login. Dynamic controls apply to one
machine at a time, since the audit command only applies to the current machine
where you are logged in. However, if you make dynamic changes on one machine,
you should make them on all machines at the same time.

Audit Planning 359

Device Allocation
How you implement auditing depends to a large extent on how you allocate devices
available to you on the network. This section takes you through the elements of device
allocation as regards auditing.

Managing Device Allocation
The components of the allocation mechanism that you must understand in order to
manage device allocation are:

� How the allocation mechanism works.

� The allocate, deallocate, dminfo, and list_devices commands.

� The /etc/security/device_allocate file (see the device_allocate(4)man
page).

� The /etc/security/device_maps file (see the device_allocate(4) man
page).

� The lock files that must exist for each allocatable device in /etc/security/dev.

� The changed attributes of the files that are associated with each allocatable device.

� Device-clean scripts for each allocatable device.

The device_allocate file, the device_maps file, and the lock files are specific to
each machine. The configuration files are not administered as NIS databases because
tape drives, diskette drives, and the printers are all connected to specific machines.

How the Allocate Mechanism Works
The allocate command first checks for the presence of a lock file under the device
name for the specified device in the /etc/security/dev directory. If the file is
owned by allocate, then the system changes ownership of the lock file to the name
of the user entering the allocate command.

The system then checks for an entry for the device in the device_allocate file, and
checks whether the entry shows the device as allocatable.

The first listing in the screen example below shows that a lock file exists with owner
bin, group bin, and mode 600 for the st0 device in /etc/security/dev. The
second part of the listing shows that the associated device-special files are set up
properly, with owner bin, group bin, and mode 000:

360 System Administration Guide: Security Services • December 2001 (Beta)

peaches % ls -lg /etc/security/dev/st0
-rw------- l bin bin 0 Dec 6 14:21 /etc/security/dev/st0
peaches % ls -lg /devices/sbus@1,f800000/exp@0,80000
c-------- l bin bin 18, 4 May 12 13:11 st@4,0:
c-------- l bin bin 18, 20 May 12 13:11 st@4,0:b
c-------- l bin bin 18, 28 May 12 13:11 st@4,0:bn
c-------- l bin bin 18, 12 May 12 13:11 st@4,0:c
.
.
.
c-------- l bin bin 18, 0 May 12 13:11 st@4,0:u
c-------- l bin bin 18, 16 May 12 13:11 st@4,0:ub
c-------- l bin bin 18, 24 May 12 13:11 st@4,0:ubn
c-------- l bin bin 18, 8 May 12 13:11 st@4,0:un

In the screen below, user vanessa allocates device st0:

peaches % whoami
vanessa
peaches % allocate st0

When user vanessa enters the allocate command to allocate the tape st0, the
system first checks for the existence of an /etc/security/dev/st0 file. If no lock
file exists or if the lock file is owned by a user other than allocate, then vanessa
cannot allocate the device.

In the example below, the default device_allocate entry for the st0 device
specifies that the device is allocatable. Because the allocate command finds that all
the above conditions are met, the device is allocated to vanessa.

The system then changes the ownership and permissions of the device-special files
associated with the device in the /dev directory. To allocate the st0 device to
vanessa, the mode on its associated device-special files is changed to 600, and the
owner is changed to vanessa.

The system then also changes the ownership of the lock file associated with the device
in the /etc/security/dev directory. To allocate the st0 device to vanessa, the
owner of /etc/security/dev/st0 is changed to vanessa.

After the user vanessa executes the allocate command using the device name
st0, the following example shows that the owner of /etc/security/dev is now
changed to vanessa, the owner of the associated device-special file is now vanessa
as well, and vanessa now has permission to read and write the files.

peaches % whoami
vanessa
peaches % allocate st0
peaches % ls -lg /etc/security/dev/st0
-rw------- l vanessa staff 0 Dec 6 15:21 /etc/security/dev/st0
peaches % ls -la /devices/sbus@1,f8000000/esp@0,800000
.
.
.

Audit Planning 361

crw------ l vanessa 18, 4 May 12 13:11 st@4,0:
crw------ l vanessa 18, 12 May 12 13:11 st@4,0:b
crw------ l vanessa 18, 12 May 12 13:11 st@4,0:bn
crw------ l vanessa 18, 12 May 12 13:11 st@4,0:c
.
.
.
crw------ l vanessa 18, 4 May 12 13:11 st@4,0:u
crw------ l vanessa 18, 12 May 12 13:11 st@4,0:ub
crw------ l vanessa 18, 12 May 12 13:11 st@4,0:ubn
crw------ l vanessa 18, 12 May 12 13:11 st@4,0:un

Risks Associated with Device Use
Solaris’ device allocation mechanism is designed to correct security lapses when
multiple users have the right to access the same storage device. For instance, consider
how cartridge devices are typically used.

Often several users share a single tape drive, which can be located in an office or lab
away from where an individual user’s own machine is located. Once a user loads a
tape into the tape drive, some length of time can elapse before the user can return to
the machine to invoke the command that reads or writes data to or from the tape.
Then another time lapse can occur before the user is able to take the tape out of the
drive. Because tape drives are typically accessible by all users, during the time when
the tape is unattended some unauthorized user can access or overwrite data on the
tape.

Solaris’ device allocation mechanism makes it possible to assign certain devices to one
user at a time, so that the device can only be accessed by that user while it is assigned
to that user’s name. The device allocation mechanism ensures the following for tape
devices and provides related security services for other allocatable devices:

� Prevents simultaneous access to a device

� Prevents a user from reading a tape just written to by another user, before the first
user has removed the tape from the tape drive.

� Prevents a user from gleaning any information from the device’s or the driver’s
internal storage after another user is finished with the device.

Using Device Allocation
The commands explained in this section generally describe how to manage devices
and how to add devices. For specific procedures, see Chapter 24. You must enter the
device allocation and device deallocation commands from the command line in a
Command Tool or Shell Tool window:

362 System Administration Guide: Security Services • December 2001 (Beta)

� allocate assigns a device to a user. You can specify the device in either of two
ways:

device-name allocates the device that matches the device name.

−g device-type allocates the device that matches the device group type.

� deallocate releases a previously allocated device.

� list_devices lets you see a list of all allocatable devices, devices currently
allocated, and allocatable devices not currently allocated. This command requires
one of these three options:

-l lists all allocatable devices or information about the device.

-n lists all devices not currently allocation or information about the device.

-u lists devices currently allocated or information about the device.

Setting Up an Archive Policy
In the Solaris environment, an archive is a file or set of files that is stored for historical
purposes. Most often, auditing archives are copies of audit log files that are no longer
current. The primary and secondary audit log file directories you specify in the
audit_config file are good for storing current audit log files, but can fill up quickly.
To reuse that directory space, you should create and use an archive policy that
periodically copies the audit log files to tape or some other medium, and then move
that medium to offline storage once it is full. The archive medium should be labeled
and kept for six months to allow for research, then discarded or reused.

What you include in your archive policy depends on the degree of security needed.
Trusted Computer Solaris installations (usually government-related sites) are required
to track use of identification and authorization mechanisms, a user’s use of objects
such as file open and program initiation, file deletion, and actions taken by computer
operators, system administrators, and system security officers, among other data and
have specific requirements regarding archiving. Banking installations may need
different auditing and archive policies. Small enterprises without many security risks
may need much less audit data.

However a good archive policy gives you historical data that can help you identify the
source of problems. A good archive policy includes the following:

� A plan that is shared by all system administrators using the same network.

� Regular moving of audit logs from current directories to archive directories. This is
usually implemented by a cron job.

� Periodic checking of the archive files for any suspicious entries.

Audit Planning 363

� Storage of the offline archives in an off-site location, such as another office or
storage area, that most users can’t access, but which system administrators and
security personnel can use if necessary.

Warnings
One of the space management elements you can change is the level of warning
messages you get and where they go. This section briefly explains the warning levels,
the script that is used to implement them, and how you determine who gets the
warning messages.

Determining the Warning Levels
There are several kinds of warnings issued when space becomes a problem. The
audit_control file contains the parameters that determine when warnings about
low available space are sent and to whom they are sent.

A typical audit_control file might look like this:

dir:/var/audit
flags: lo,ad,-all
minfree:25
naflags:l0

The audit threshold line (minfree:) defines the minimum free-space percentage level
for all audit file systems. The minfree percentage must be greater than or equal to 0.
While the default is 20 percent, in the example above, the minfree value is 25
percent.

The minfree value (here 20 percent) specifies that the warning script is to be run
when the file systems are 80 percent filled, and the audit data for the current machine
will be stored in the next available audit directory, if any. The warning script is located
in audit_warn (see the audit_warn(1M) man page).

The minfree value is only one type of space warning you may see. It is considered a
“soft” warning, since the message associated with it is only advising that you’re
getting close to partition limits, not that you’ve exceeded any of them. You may also
see other types of warnings.

364 System Administration Guide: Security Services • December 2001 (Beta)

The audit_warn Script
Whenever the audit daemon encounters an unusual condition while writing audit
records, it invokes the audit_warn script (see the audit_warn(1M) man page).
Located in the /etc/security directory, this script can be customized to handle
situations automatically or to warn of conditions that may require manual
intervention. When invoked, audit_warn writes a message to the console and sends
a message to the audit_warn alias.

When any of the following conditions are detected by the audit daemon, by default it
invokes audit_warn:

� An audit directory has reached or exceeded the free space allowed by minfree. This
is considered the “soft” limit.

The audit_warn script is invoked with the string soft and the name of the
directory whose available space has reached or exceeded the minimum level. The
audit daemon automatically switches to the next suitable directory and writes the
audit files there until this new directory reaches its minfree limit. The audit daemon
then writes audit records in the next directory in the order listed in
audit_control until it reaches the minfree limit.

� All the audit directories are more full than the minfree threshold.

In this case, the audit_warn script is invoked with the string allsoft as an
argument. The audit daemon writes a message to the console and sends email to
the audit_warn alias.

When all audit directories listed in audit_control are at their minfree limits, the
audit daemon switches back to the first one and writes audit records until the
directory fills completely.

� All the audit directories are completely full. This is known as the “hard” limit. The
audit daemon invokes the audit_warn script with the string allhard as an
argument.

In the default configuration, the audit daemon writes a message to the console and
sends mail to the audit_warn alias. Processes generating audit records are
suspended. The audit daemon goes into a loop, waiting for space to become
available, and resumes processing audit records when that happens. While audit
records are not being processed, no auditable activities take place — every process
that attempts to generate an audit record is suspended.

This is one reason why you will want to set up a separate audit administrator
account that can operate without any auditing enabled. As an administrator, you
can then operate the system without your activities being suspended.

� An internal error occurs because another audit daemon process is already running
(string ebusy), a temporary file cannot be used (string tmpfile) or a signal was
received during auditing shutdown string postsigterm). Mail containing the
string is sent to the audit_warn alias and a message is sent to the console.

Audit Planning 365

� A problem is discovered with the audit_control file’s contents. By default, mail
is sent to the audit_warn alias and a message is sent to the console.

During a system panic or crash, the in-core image of the operating system is written to
disk. Audit_warn does not cover these situations. However you can use
savecore(1M) and savecore(1M) to recover the audit data which may be buffered
at the time of system failure but not yet written to the audit file.

When Should I Change Audit
Parameters?
Most organizations use the following techniques to help them manage auditing
efficiently:

� Perform random auditing only on a certain percentage of users at any one time.

� Monitor audit data in real time for unusual behaviors. You can set up procedures
to monitor the audit trail as it is generated for certain activities and to trigger
higher levels of auditing of particular users or machines when suspicious events
occur.

� Reduce the storage requirements for audit files by combining, reducing, and
compressing them and by developing procedures to store them offline. See
“Controlling the Cost of Auditing” on page 367 later in this section.

In addition to supplying the per-user audit control information in the static databases,
you can dynamically adjust the state of auditing while a user’s processes are active on
a single machine.

The auditconfig command provides a command line interface to get and set audit
configuration parameters. To change the audit flags for a specific user to a supplied
value, use the auditconfig command with the -setpmask, -setsmask , or
-setumask options. The command changes the process audit flags for one process,
one audit session ID, or one audit user ID respectively. See the auditconfig(1M)
man page.

366 System Administration Guide: Security Services • December 2001 (Beta)

Using the Audit Data
It is unfortunately very easy to inadvertently create auditing parameters in such a way
that your time as administrator is largely spent setting up and inspecting audit logs.
To avoid this, it pays to set up auditing policies such that you are most likely to
capture unusual behavior while keeping storage requirements for audit logs to
reasonable levels. This section discusses techniques for efficiently performing auditing.

Controlling the Cost of Auditing
Auditing consumes system resources. The more audit files you request, the more
impact auditing has on overall system performance. Auditing affects your system in
three basic ways:

� Increased processing time
� Increased item spent on analysis of data
� Increased storage space for audit date.

Processing Time
The cost of increased processing time is the least significant cost of auditing, primarily
because auditing generally occurs in periods when computational-intensive tasks,
such as image processing and complex calculations, are not being run. Servers will
tend to spend a greater percentage of their time processing auditing tasks than
single-user workstations.

Data Analysis
The cost of data analysis is roughly proportional to the amount of audit data collected.
This includes the time it takes to merge and review audit records and the time it takes
to archive them and keep them in a safe place.

The fewer records you generate, the less time it takes to analyze them. However, the
fewer records you generate, the more likely you are to miss something potentially
dangerous.

Audit Planning 367

Audit Data Storage Space
Audit log files can quickly use up allocated space unless carefully monitored. Once
you have decided that the audit files you are collecting contain information that you
really need, you need to consider how to most efficiently reuse the directory space
allocated for new audit logs.

To keep audit files to a manageable size, you can set up a cron job that periodically
switches audit files (see the cron(1M) man page.) You can specify intervals from once
per hour to twice per day, depending on the amount of audit data being collected. The
data can be filtered to remove unnecessary information and then compressed.

In addition to the space necessary for the primary and secondary audit directories and
the audit directory of last resort, you should have a place set aside to archive the
filtered and compressed audit files. Most installations store these archives on tape or
some other removable medium so that the archive files can be physically moved to a
separate location, but retrieved if necessary. The script in the cron job can also write
the archive files to the appropriate device, delete the existing closed files from the
audit directory space, and adjust the pointer so that it reflects the newly available
space.

Determining When to Merge Audit Records
The auditreduce command merges audit records from one or more input audit files.
Normally you enter this command from the directory where you keep the audit log
files.

Without options, auditreduce merges the entire audit trail (all of the audit files in all
of the subdirectories pointed to by the dir: entries in the audit_control file) and
sends the merged file to standard output.

Note that this output is not human readable. To get human-readable output, you must
use praudit to process the file.

Among other things, you can use the auditreduce options to:

� Show output containing audit records generated only by certain audit flags.

� Show audit records generated by one particular user.

� Collect audit records generated on specific dates.

For a full description of the auditreduce command and its options, see the
auditreduce(1M) man page.

368 System Administration Guide: Security Services • December 2001 (Beta)

Changing Audit Trail File Locations
An audit trail consists of a group of audit files. Where these audit files are located is
dictated by the directory definition lines (starting dir:in the audit_control file on
each machine.

For example, the contents of a standalone server’s audit_control file might look
like this:

flags:lo,ad,-all,^fc
naflags:lo,nt
minfree:20
#
Primary and secondary audit directories
#
dir:/var/audit/file1
dir:/var/audit/file2
#
Audit directory used when others are full
#

dir:/var/audit/filelast

Since this server has no connections to a network, all audit files must be stored on
itself — a somewhat risky situation since if the disk crashes, there is no way to tell
what happened.

The contents of server grape’s audit_control file might point to dedicated audit
partitions and directories on other servers, such as strawberry and banana, as
shown in this example:

flags:lo,ad,-all,^fc
naflags:lo,nt
minfree:20
#
Primary and secondary audit directories
#
dir:/etc/security/audit/strawberry1
dir:/etc/security/audit/strawberry2
dir:/etc/security/audit/banana
#
Audit directory used when others are full
#

dir:/var/audit/

Note that the audit file of last resort for grape is located on a separate directory on
itself.

You can change the directories where you want to store audit files any time you want.
You will need to change only the dir: entries in the audit_control files in the
servers affected. However, you must reboot the server where auditing is taking place
once you have changed its audit_control file.

Audit Planning 369

Preventing Audit Trail Overflow
If the audit file systems fill up, the audit_warn script sends a message to the console
that the hard limit has been exceeded on all audit file systems, and also sends mail to
the alias. By default, the audit daemon remains in a loop sleeping and checking for
space until some space is freed. All auditable actions are suspended.

A site’s security requirements can be such that the loss of some audit data is preferable
to having system activities suspended due to audit trail overflow. In that case, you can
create the audit_warn script to automatically delete or move audit files or to set the
auditconfig policy to drop records.

Using the Results from Audit Trail
Analysis
This section briefly explains how the system creates an audit trail and how to use the
data thus created.

How the Audit Trail is Created
The audit trail is created by the audit daemon auditd (see the auditd(1M) man page)
on each machine when the machine is brought up. Once auditd starts at boot time, it
collects the audit trail data and writes the audit records into audit files (also called audit
log files). See “Audit Record Structure” on page 393 or the audit(1M) man page for a
description of the file format.

The audit daemon runs as root. All files it creates are owned by root. It runs
continuously, looking for a place to put audit records, even when it has no classes to
audit or when the rest of the machine’s activities are suspended because the kernel’s
audit buffers are full.

Only one audit daemon can run at a time. If there is an attempt to start a second one,
an error message is generated and the new one exits. If there is a problem with the
audit daemon, use audit -tto terminate auditd gracefully, then restart it by
entering audit -s.

auditd runs the audit_warn script whenever the daemon switches audit directories
or encounters difficulty (such as a lack of storage). As released, the audit_warn
script sends mail to an audit_warn alias and sends a message to the console. Your
site should customize the audit_warn script to suit your needs.

370 System Administration Guide: Security Services • December 2001 (Beta)

When auditd starts on each machine, it creates the file
/etc/security/audit_data. This file consists of a single entry with two fields
separated by a colon (see the audit_data(4) man page). The first field is the audit
daemon’s process ID and the second field is the path name of the audit file to which
the audit daemon is currently writing audit records. If you want to see what this file
looks like, you can use the cat command as follows:

cat /etc/security/audit_data
116:/etc/security/audit/grumpy.1/files/
1910320100002.not_terminated.dopey

The not_terminated appendage means that the file is not finished, and that the system is
continuing to write audit records there.

The Audit Daemon’s Role
The audit daemon performs several functions:

� It opens and closes the audit log files in the directories specified in the
audit_control file, in the order in which the directories are specified.

� It reads audit data from the kernel and writes it to an audit file.

� It executes the audit_warn script when the audit directories reach limits specified
in the audit_control file. By default, the script sends warnings to the
audit_warn alias and to the console.

� It switches to an alternate location for audit log files when it encounters an I/O
error or file system full condition. When it creates a file, it inserts an initial audit
token that names the previous active audit file of the audit trail (NULL if this is the
beginning of an audit trail). When it switches to a new file to continue writing, it
terminates the previous file with an audit token that contains the new file name.
Upon termination, it closes the active audit file and indicates in the final record that
this is the last record of the last file of a sequence of files. These pointers let you
follow a chain of events as you move backward and forward in the audit trail.

� Under the default system configuration, when all audit directories are full,
processes that generate audit records are suspended. In addition, auditd writes a
message to the console and to the audit_warn alias. (The auditing policy can be
reconfigured with auditconfig.) At this point, only the system administrator can
log in to write audit files to tape, delete audit files from the system, or do other
cleanup.

The audit daemon starts whenever the machine is brought up in multiuser mode or
when the audit −s command instructs the audit daemon to reread the
audit_control file after it has been edited. The audit daemon then determines the
amount of free space necessary and uses the list of directories in the audit_control
file to determine where to put the audit files.

Audit Planning 371

The audit daemon maintains a pointer into this list of directories. Every time the audit
daemon needs to create an audit file, it writes the file into the first available directory
in the list, starting at the audit daemon’s current pointer. The pointer can be reset to
the beginning of the list if you enter the audit -s command. If you use the audit
-ncommand to instruct the daemon to switch to a new audit file, the new file is
created in the same directory as the current file.

372 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 24

Managing Auditing (Tasks)

This chapter presents step-by-step procedures designed to help the system
administrator set up and manage a Solaris environment that includes auditing.

If you are trying to solve a specific problem, you may want to skip directly to one or
more of these sections.

Configuring Audit Files
Before enabling auditing on your network, you may want to edit the audit
configuration files.

� How to Change Audit Flags
Audit flags are defined in /etc/security/audit_control. The flags control
which classes of audit classes are audited and when the classes are audited.

1. Become superuser or assume an equivalent role.

2. Optional: Save a backup copy of the audit_control file.

cp /etc/security/audit_control /etc/security/audit_control.save

373

3. Add new entries to the audit_control file.

Each entry has the format:

title:string

title Defines the type of flag

string Lists specific data associated with the flag

Example — Changing Audit Trail File Locations
Follow the previous procedure. In Step 3 change the lines that start with the dir title to
change the locations. In this example two entries are added.

grep dir /etc/security/audit_control
dir:/etc/security/audit/host.1/files
dir:/etc/security/audit/host.2/files

dir:/var/audit

Example — Changing the Soft Limit for Warnings
Follow the previous procedure. In Step 3 add a line like the following to set the soft
limit so that a warning is set when only 10% of the file system is free.

minfree:10

� How to Change User’s Audit Characteristics
Definitions for each user may be stored in /etc/security/audit_user.

1. Become superuser or assume an equivalent role.

2. Optional: Save a backup copy of the audit_control file.

cp /etc/security/audit_user /etc/security/audit_user.save

3. Add new entries to the audit_user file.

Each entry has the format:

username:always:never

username Name of the user to be audited.

374 System Administration Guide: Security Services • December 2001 (Beta)

always List of audit classes which should always be
audited

never List of audit classes which should never be
audited

Multiple flags may be entered by separating the audit classes with commas.

� How to Create Audit Classes
Audit classes are defined in /etc/security/audit_class.

1. Become superuser or assume an equivalent role.

2. Optional: Save a backup copy of the audit_control file.

cp /etc/security/audit_class /etc/security/audit_class.save

3. Add new entries to the audit_class file.

Each entry has the format:

0xnumber:name:description

number Unique audit class mask

name Two letter name of the audit class

description Descriptive name of the audit class

Example — Setting a New Audit Class for Device
Allocation
In step 3, add an entry like the following:

0x00010000:de:device allocation

� How to Create Audit Events
Audit event definitions are stored in /etc/security/audit_event.

1. Become superuser or assume an equivalent role.

Managing Auditing (Tasks) 375

2. Optional: Save a backup copy of the audit_event file.

cp /etc/security/audit_event /etc/security/audit_event.save

3. Add new entries to the audit_event file.

Each entry has the format:

number:name:description:classes

number Unique audit event number — must start after
32768

name Unique audit event name

description audit event description — often includes the
name of the man page

classes event classes that this event should be
included in

Configuring an Audit Server

� How to Create Partitions for Auditing
1. Determine the amount of space that is required.

Assign at least 200 MB of space per host. However, the disk space requirements are
based on how much auditing you perform and may be far greater than this figure.
Remember to include space for a directory of last resort if the server is going to be
audited.

2. Create dedicated audit partitions as needed.

This step is most easily done during server installation. It is also possible to create the
partitions on disks that have not been mounted on the server yet. See “Creating a UFS
File System” in System Administration Guide: Basic Administration for full instructions
on how to create the partitions.

newfs /dev/rdsk/cwtxdysz

/dev/rdsk/cwtxdysz Raw device name for the partition

If the server is to be audited, create an audit directory of last resort.

376 System Administration Guide: Security Services • December 2001 (Beta)

3. Create mount points for each new partition.

mkdir /var/audit/servername.n

servername.n Use the servername and a number to identify each partition

4. Add entries to automatically mount the new partitions.

Add a line to /etc/vfstab like:

/dev/dsk/cwtxdysz /dev/rdsk/cwtxdysz /var/audit/servername.n ufs 2 yes

5. (Optional) Reduce the minimum free space threshold on each partition.

tunefs -m 0 /var/audit/servername.n

servername.n Use the servername and a number to identify each
partition

6. Mount the new audit partitions

mount /var/audit/servername.n

7. Create audit directories on the new partitions.

mkdir /var/audit/servername.n/files

8. Correct the permissions on the mount points and new directories.

chmod -R 750 /var/audit/servername.n/files

Example — Creating New Audit Partitions
In this example, a new file system is created on two new disks.

newfs /dev/rdsk/c0t2d0
newfs /dev/rdsk/c0t2d1
mkdir /var/audit/egret
mkdir /var/audit/egret.1
grep egret /etc/vfstab
/dev/dsk/c0t2d0s1 /dev/rdsk/c0t2d0s1 /var/audit/egret ufs 2 yes -
/dev/dsk/c0t2d1s1 /dev/rdsk/c0t2d1s1 /var/audit/egret.1 ufs 2 yes -
tunefs -m 0 /var/audit/egret
tunefs -m 0 /var/audit/egret.1
mount /var/audit/egret
mount /var/audit/egret.1
mkdir /var/audit/egret/files
mkdir /var/audit/egret.1/files

chmod -R 750 /var/audit/egret/files /var/audit/egret/files.1

Managing Auditing (Tasks) 377

Setting Up Auditing
The procedures shown in this section help you implement auditing.

� How to Enable Auditing
1. Become superuser.

2. Bring the system into single-user mode.

See the telinit(1M) man page for more information.

/etc/telinit 1

3. Run the script to configure the system to run auditing.

Go to the /etc/security directory and execute the bsmconv script there. The script
sets up a standard Solaris machine to run BSM after a reboot. See the bsmconv(1M)
man page.

cd /etc/security

./bsmconv

4. Bring the system into multi-user mode.

The startup file in /etc/security/audit_startup causes the audit daemon to
run automatically when the system enters multiuser mode.

/etc/telinit 6

Note – The bsmconv script adds a line to the /etc/system file which disallows
aborting the system with the Stop-A keyboard sequence. If you want to retain the
ability to abort the system with the Stop-A keyboard sequence, you must comment out
the line in the /etc/system file that reads set abort_enable =0.

� How to Disable Auditing
If at some point BSM is no longer required, you can disable it by running bsmunconv
(see the bsmconv(1M) man page).

1. Become superuser.

2. Bring the system into single-user mode.

See the telinit(1M) man page for more information.

378 System Administration Guide: Security Services • December 2001 (Beta)

/etc/telinit 1

3. Run the script to disable auditing.

Change to the /etc/security directory and execute the bsmunconv script there.

cd /etc/security
./bsmunconv

4. Bring the system into multi-user mode.

/etc/telinit 6

Note – The bsmunconv script removes the line in the /etc/system file which allows
aborting the system with the Stop-A keyboard sequence. If you want to continue to
disable the ability to abort the system with the Stop-A keyboard sequence after
running the bsmunconv script, you must reenter into the /etc/system file the line
that reads

set abort_enable = 0

Managing Auditing (Tasks) 379

380 System Administration Guide: Security Services • December 2001 (Beta)

CHAPTER 25

Audit Reference

This chapter describes the important components of auditing: the audit files, audit
records and tokens, and utilities for auditing. The auditing mechanism lets an
administrator detect potential security breaches.

Auditing can reveal suspicious or abnormal patterns of system usage and provides a
means to trace suspect actions back to a particular user. Auditing can also serve as a
deterrent: if users know that their activities are likely to be audited, they might be less
likely to attempt malicious activities.

This chapter covers the following topics:

� “Audit Files” on page 381
� “Audit Programs” on page 389
� “Using crontab and atjob” on page 391
� “Audit Record Structure” on page 393
� “Audit Token Structure” on page 393
� “Utilities Summary” on page 412

Audit Files
Auditing is controlled by the following configuration files:

� The /etc/system file

� The audit_class, audit_control, audit_event, and audit_user files and
the audit_warn shell script in the /etc/security directory

� The audit_startup shell script

381

The /etc/system File
The /etc/system file contains commands which are read by the kernel during
initialization and are used to customize the operation of the system. The file is
modified by the auditconv and auditunconv shell scripts, which are used to
activate and deactivate auditing. The auditconv adds the following lines to the
/etc/system file:

set c2audit:audit_load=1

set abort_enable=0

The first command causes the c2audit loadable kernel module to be loaded when
the system is booted. The second command disables the use of Stop-A which gives
access to the debugger. The auditunconv command removes these lines, resulting in
auditing being disabled when the system is rebooted.

The audit_class File
The audit_class file contains definitions of the existing audit classes. (Audit classes
are groups of audit events.) Each class has an associated audit flag, the short name
that stands for the class. The root user can define new audit classes, rename existing
classes, or otherwise edit existing classes using vi, ed, or some other editor. See the
audit_class(4) man page for details about modifying the audit_class file. The
predefined classes in the default audit_class file are shown below:

TABLE 25–1 Audit Classes

Flag (short name) Long name Description

ad administrative Administrative actions.

all all Not specifically a class; sets all flags.

ap application Application-defined event

cl file_close Close system call.

ex exec Program execution.

fa file_attr_acc Access of object attributes: stat, pathconf, and
so forth

fc file_creation Creation of object

fd file_deletion Deletion of object.

fm file_attr_mod Change of object attributes: chown, flock, and
so forth.

fr file_read Read of data, open for reading, and so forth.

382 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 25–1 Audit Classes (Continued)
Flag (short name) Long name Description

fw file_write Write of data, open for writing, and so forth.

io ioctl ioctl system call.

ip ipc System V IPC operations.

lo login_logout Login and logout events

na non-attrib Non-attributable events

no no_class Not specifically a class; is a null value for
turning off event preselection.

nt network Network events: bind, connect, accept, and so
forth.

ot other None of the above.

pc process Process operations: fork, exec, exit, and so
forth.

To define a new class, use the editor of your choice to create a new class, such as the
one in this example:

0x00008000:ts:test

Changes will take effect only for new user level audit record generation. The kernel
events, which are loaded at boot time, will have to be reinitialized. Since there are now
daemons that have been modified to generate audit records, they may or may not use
the new values, depending on how they have been implemented. Most likely, the
daemons will need to be restarted.

Note – The system should be rebooted if the audit class mappings are altered, to
ensure that all daemons and the kernel are initialized with current class settings.

The audit_control File
The audit daemon reads the audit_control file on each machine (see the
audit_control(4) man page.

The audit_control file is located in the /etc/security directory for each
machine. A separate audit_control file is maintained for each machine in a
distributed system because machines can mount their audit file systems from different
locations or in a different order. For example, the primary audit file system for
Machine A might be the secondary audit file system for Machine B.

Audit Reference 383

A typical audit_control file might look like this:

dir:/var/audit
flags: lo,ad,-all
minfree:20
naflags:l0

The audit_control file contains four kinds of information:

� The directory definition lines (dir:) define which audit files and directories the
machine will use to store its audit trail files. There can be one or more directory
definition lines, and their order is significant because auditd opens audit files in
these directories in the order specified (see the audit(1M) man page). The first
audit directory specified is the primary audit directory for the machine, the second
is the secondary audit directory (where the audit daemon puts audit trail files
when the first one fills), and so forth. In the example above, the machine is being
directed to store its audit trail files on the same machine, in the directory
/var/audit.

� The audit flags line (flags:) contains the audit flags that define what classes of
events are audited for all users on the machine. The audit flags specified here are
referred to as the machine-wide audit flags or the machine-wide audit preselection
mask. Audit flags are separated by commas, with no spaces. In the example above,
auditing is done for logins and logouts, for administrative actions, and for all failed
actions by any user.

� The audit threshold line (minfree:) defines the minimum free-space percentage
level for all audit file systems. The minfree percentage must be greater than or
equal to 0. The default is 20 percent. In the example above, the minfreevalue is 20
percent.

� The nonattributable flags line (naflags:) contains the audit flags that define what
classes of events are audited when an action cannot be attributed to a specific user.
The flags are separated by commas, with no spaces. In the example above, the only
nonattributable flag is lo.

The administrator creates the audit_control file during the configuration process
for each machine. Once created, the administrator can edit it. After a change, the
administrator runs audit -s to instruct the audit daemon to reread the
audit_control file.

Note – Note: The audit -s command does not change the preselection mask for
existing processes. Use auditconfig, setaudit (see the getuid(2) man page) or
auditon for existing processes.

Sample audit_control file
Following is a sample audit_control file for the machine dopey. dopey uses two
audit file directories on the audit server grumpy, and a third audit directory mounted

384 System Administration Guide: Security Services • December 2001 (Beta)

from the second audit server sleepy, which is used only when the audit directories
on grumpy fill up or become unavailable. The minfree value of 20 percent specifies
that the warning script is run when the file systems are 80 percent filled; then the audit
data for the current machine is stored in the next available audit directory, if any (see
the audit_warn(1M) man page). The flags line specifies that all logins and
administrative operations are to be audited (regardless of whether they succeed) and
that failures of all types, except failures to create a file system object, are to be audited.

flags:lo,ad,-all,^-fc
naflags:lo,nt
minfree:20
dir:/etc/security/audit/grumpy/files
dir:/etc/security/audit/grumpy.1/files
#
Audit filesystem used when grumpy fills up
#
dir:/var/audit/sleepy

The audit_data File
When auditd starts on each machine, it creates the file
/etc/security/audit_data. This file consists of a single entry with two fields
separated by a colon (see the audit_data(4) man page). The first field is the audit
daemon’s process ID, and the second field is the path name of the audit file to which
the audit daemon is currently writing audit records. This file is not to be edited by
users.

A typical audit_data file entry might look like this:

cat /etc/security/audit_data
116:/etc/security/audit/grump.l/files/
20000522060002.not_terminated.sleepy

The audit_event File
The audit_event file, located in the /etc/security directory, contains the default
event-to-class mappings (see the audit_event(4) man page). You can edit this file to
change the class mappings, but if you do you must reboot the system or run
auditconfig -conf to change the runtime kernel event-to-class mappings.

The audit_startup File
Auditing is enabled by starting the audit daemon (see the auditd(1M) man page).
Normally this is done automatically, but you can manually start the audit daemon by

Audit Reference 385

executing /usr/sbin/audit as root. In either case, the startup processes call the
audit_startup shell script.

The audit_startup shell script resides in /etc/security and contains the
commands to download the correct preselection masks for audit events into the
kernel. It also sets up the initial audit policies. You can modify the file to perform some
site-specific audit processing and set audit policies at system boot.

The audit_user File
You can set flags in the audit_user file to modify the defaults from the
audit_control file for a particular user. For more information, see the
audit_user(4) man page. The audit_user file has an entry for each user. This
entry has three fields:

� username,
� the always-audit field, and
� the never-audit field.

Flags in the always_audit field specify the set of event classes that are to always be
audited, and flags in the never-audit field specify the set of event classes that are to
never be audited.

Auditing is processed in sequence, so auditing is enabled by flags in the always -audit
field and disabled by flags in the never-audit field.

Using the never-audit field is not the same as removing classes from the always- audit
set. Suppose you have a user named fred for whom you want to audit everything
except successful reads of file system objects. This is a good way to audit almost
everything for a user while generating only about 75% of the audit data that would be
produced if all data reads were also audited.)You also want to apply the system
defaults to this user. Here are two possible audit_userentries:

fred:all,^+fr:

This example says “always audit everything except successful file-reads.” In effect, this
example applies any earlier default, as well as what is specified in this user’s
audit_user entry.

fred:all:+fr

This example says “always audit everything, but never audit successful file reads.”
However the all also overrides the system defaults.

386 System Administration Guide: Security Services • December 2001 (Beta)

The audit_warn File
The audit_warn script contains commands that tell the system what to do whenever
the audit daemon encounters an unusual condition while writing audit records. See
the auditd(1M) man page for more information. The administrator sets up the
audit_warn script after enabling auditing.

By default, when invoked audit_warn writes a message to the console and sends a
message to the audit_warn alias. However you can customize the script to warn of
conditions requiring manual intervention or to handle certain situations automatically,
for example.

The following exception conditions are supported by audit_warn:

Exception What it does

allhard [-count] Without -count, all of the audit partitions are completely filled.
The audit daemon will remain in a loop, sleeping and checking
for space, until some space becomes free.

With -count, the hard limit for all audit partitions has been
exceeded -count times. Do not set count=1 or you may saturate
the file system containing the mail spool directory.

allsoft All of the audit partitions have filled to the soft limit. The audit
daemon will now completely fill each of the audit partitions.

auditoff Some entity other than the audit daemon has changed the system
audit state. The audit daemon will exit.

ebusy The audit daemon is already running and someone has
attempted to start another daemon executing. The Solaris 8
auditing system only allows one audit daemon to be started.

getacdir Could not obtain the location of the audit partitions. Audit
daemon will exit.

hard One of the audit partitions has completely filled.

nostart Auditing could not be started.

postsigterm The audit daemon received a signal during shutdown. Some
audit records may be lost.

postsigterm The audit daemon received a signal during shutdown. Some
audit records may be lost.

soft One audit file system has filled to the soft limit (minfree()
percentage specified inaudit_control) and the audit daemon
is switching to the next audit partition.

tmpfile The audit daemon could not open temporary files and will exit.

Audit Reference 387

The device_maps File
The device_maps file defines device-special file mappings for each device, which in
many cases is not intuitive. For more information see the device_maps(4) man page.
It allows various programs to discover which device-special files go with which
devices.

A rudimentary device_maps file is created by the auditconv command when
auditing is enabled. However the system administrator updates the file when setting
up device allocation, and is expected to augment and customize the file for the site.

In this file each device is represented by a one-line entry of the form:

device-name:device-type:device-list

Lines in the file can end with a \ to continue an entry on the next line. You can also
include comments by preceding text with a # and ending it with a newline that is not
preceded by a \. Leading and trailing blanks are also allowed.

The terms are described in the table below:

Term What it means

device-name The device name, such as st0, fd0, or audio.
This name must correspond to the name of the
lockfile used in the /etc/security dev
directory.

device-type The generic device type, such asst, fd, or
audio. The device-type logically groups
related devices.

device-list The list of device-special files associated with
the physical device. This list must contain all
of the special files that allow access to a
particular device. If the list is incomplete, a
malevolent user could still obtain or modify
private information.

You can use the dminfo command to read the device_maps file and determine the
device name, device type, and device-special files when setting up an allocatable
device.

In the example below, either the real device files located under /devices or the
symbolic links in /dev (provided for binary compatibility) are valid entries in the
device-list field. The screen below shows an example of entries for SCSI tape st0 and
diskette fd0 in a device_maps file.

fd0:\
fd:\

388 System Administration Guide: Security Services • December 2001 (Beta)

/dev/fd0 /dev/fd0a /dev/fd0b /dev/rfd0 /dev/rfd0a /dev/rfd0b:\

.

st0:\
st:\
/dev/rst0 /dev/rst8 /dev/rst16 /dev/nrst0 /dev/nrst8 /dev/nrst16:\

Audit Programs
The following section describes the programs that are associated with auditing.

The audit Program
The audit program and associated audit command control the actions of the audit
daemon. The audit program lets you switch audit files, reset the daemon, activate or
deactivate auditing, and adjust the preselection mask of auditing on a single machine.
See the audit(1M) man page for a discussion of the available options.

The auditd Daemon
auditd is the audit daemon. It performs the following functions:

� It invokes a special system call, auditsvc(2), by which audit records are written
directly to the audit trail instead of being passed through auditd in a series of
read/write operations. Except when handling errors, all the data it manipulates is
in kernel memory and not subject to swapping or paging.

It opens and closes the audit log files in the directories specified in the
audit_control file, in the order specified.

It reads audit data from the kernel and writes it to an audit file.

It executes the audit_warn script when the audit directories fill to limits specified
in the audit_control file. The script sends warnings as directed, by default to
the console and to the audit_warn alias.

Audit Reference 389

The auditconfig Program
The auditconfig program provides a command line interface to get and set audit
configuration parameters. See the auditconfig(1M) man pages for detailed
explanations about the options available with auditconfig. You can also use
auditconfig with the -setpolicy flag to change the default audit policies. The
-lspolicy argument shows the audit policies you can change.

The auditreduce Program
Audit analysis is performed with the aid of the auditreduce program.
auditreduce does not actually display audit data, but assembles audit files together
into one file, sorted by time stamp, and performs some post-selection tasks. Options
available with the auditreduce command let you select audit records by time, type
of record, selection class, originating user, etc. See the auditreduce(1M) man page
for a list of selection criteria than can be used to choose audit records from the audit
trail.

When multiple machines are running BSM and are administered as part of a
distributed system, each machine performs auditable events and each machine writes
the resulting audit records to its own machine-specific audit file. However if users are
allowed to work on multiple machines, you would have to inspect each machine’s
records to find out about the activities of a particular user.

The auditreduce program makes the job of maintaining the system-wide audit trail
practical. It (or a shell script you write to provide a higher-level interface) lets you
read the logical combination of all audit files in the system as a single audit trail,
without regard to where the records were generated or where they are stored. It
operates on the audit records produced by the audit daemon. Records from one or
more audit files are selected and merged into a single, chronologically ordered output
file. It then selects messages from the input files as requested, as the records are read,
before the files are merged and written to disk.

Without options, auditreduce merges the entire audit trail (consisting of all the
audit files in all of the subdirectories in the audit root directory
/etc/security/audit) and sends these records to standard output. You can make
the records human-readable with the praudit command.

You can direct auditreduce to treat only certain files by specifying them as
command arguments:

auditreduce /var/auditbongos/files/1993*.1993*.bongos

390 System Administration Guide: Security Services • December 2001 (Beta)

The praudit Program
The praudit program displays audit records in a readable format. It has several
options to control the output format and the degree of binary information displayed in
audit records (for example, user IDs can be translated into names).

auditreduce and praudit are designed to be used together. The output of
auditreduce either is sent to a file, which is then viewed with praudit, or is piped
directly to praudit.

auditreduce | praudit | more

The praudit program inserts control characters, such as ^J for newline, when printing
text tokens which can make the outlook look strange. For instance you may see a line
like this one:

text,Enter your name on the next line^JName:

See the praudit(1M) man page for more details.

Using crontab and atjob
Audit characteristics for a user are passed down to all descendants of the login
process. However in the case of at(1) and crontab(1) jobs, the process performing
the action on behalf of the requestor is not in any way related to the user. With Solaris
8 release, the cron utilities pass the user’s audit characteristics in an out-of-band
manner. Associated with each at job entry and with the individual’s crontab entry is
another file containing the audit characteristics that are used by cron when servicing
the request.

The cron daemon recognizes the ancillary file with each atjob entry and each
crontab entry. This file is read when the cron daemon processes the request, and the
audit information is saved for future use. The internal queue within cron includes the
audit characteristics from the ancillary file. For example:

root is the crontab for root in /usr/spool/cron/crontabs/

root.au is the ancillary audit data file (also in /usr/spool/cron/crontabs/)

When the cron entry is executed, the audit information is used to set the user’s audit
characteristics of the agent process. Thus when the actual service is performed, the
audit characteristics will be those of the requestor. Since the preselection mask may
have been modified for the user between the time the request is made and the time it

Audit Reference 391

is executed, the mask is adjusted by combining the user’s preselection mask at the
time the service is performed with the one saved when the request was made.

The atjob occurs only once and the cron daemon removes the request file when it is
serviced. It likewise removes the ancillary audit file at that time. In the case of a
crontab service, the ancillary file is left unchanged since the services are performed
periodically.

The ancillary audit file contains the user audit characteristics from the requestor. The
data is in ASCII format and contains the following:

audit ID recorded as an unsigned integer.

preselection mask recorded as two unsigned integers: audit on
success and audit on failure.

terminal ID recorded as two unsigned integers: one for
port and one for the host name.

session ID recorded as an unsigned integer.

The at command lets the user perform a command at a later time. This command is
contained within a control file located in /usr/lib/spool/cron/atjobs. The
information within the file contains both the command to be executed and the
environment at the time of the request. An ancillary file containing the audit
characteristics of the user making the request is created with the same prefix as the
atjob file but with an .au postfix. For example:

836327447.a is the atjob request.

836827447.a.au is the ancillary audit data file

The atrm command is used to remove a pending at request. It removes the ancillary
audit file when it removes the atjob file.

When the user edits a crontab file, the ancillary audit file is updated. The old audit
values are replaced by the audit values of the person editing the crontab file. When
the crontab entry is read by cron, the new audit characteristics take effect. Note
that all periodic services contained with the crontab are affected.

392 System Administration Guide: Security Services • December 2001 (Beta)

Audit Record Structure
Each auditable event in the system generates a particular type of audit record,
containing tokens which describe the event. “Audit Token Structure” on page 393
gives a detailed description of each audit token.

Each audit record begins with a header token, contains a subject token, and optionally
ends with a trailer token. Within the record may be other tokens describing the event.
For user-level and kernel events, these tokens describe the process that performed the
event, the objects on which it was performed, and the objects’ tokens, such as the
owner or mode.

The audit record’s event type is contained in the header token, and it gives specific
meaning to the content and position of the other tokens in the record.

An audit record does not describe the audit event class to which the event belongs;
that mapping is determined by a separate table, stored in
/etc/security/audit_event.

Audit records are stored and manipulated in binary form. However, the byte order
and size of data is predetermined to simplify compatibility between different
machines.

In order to read the audit records, they must be processed by the praudit command.
By default, praudit displays each token’s type, followed by a comma, followed by
the data from the token. The token type is displayed by default as a name, such as
header, or in -r format as a decimal number.

Audit Token Structure
Logically, each token has a token type identifier followed by data specific to the token.
Each token type has its own format and structure. The current tokens are shown in
Table 25–2. The token scheme can be extended.

TABLE 25–2 Basic Security Module Audit Tokens

Token Name Description

“acl token” on page 395 Access Control List information

“arbitrary Token” on page 395 Data with format and type information

Audit Reference 393

TABLE 25–2 Basic Security Module Audit Tokens (Continued)
Token Name Description

“arg Token” on page 396 System call argument value

“attr Token” on page 397 Vnode tokens

“exec_args Token” on page 397 Exec system call arguments

“exec_env Token” on page 398 Exec system call environment variables

“exit Token” on page 399 Program exit information

“file Token” on page 399 Audit file information

“groups Token (Obsolete)” on page 400 Process groups information (obsolete)

“header Token” on page 401 Indicates start of record

“in_addr Token” on page 401 Internet address

“ip Token” on page 402 IP header information

“ipc Token” on page 402 System V IPC information

“ipc_perm Token” on page 403 System V IPC object tokens

“iport Token” on page 404 Internet port address

“newgroups Token” on page 404 Process groups information

“opaque Token” on page 405 Unstructured data (unspecified format)

“path Token” on page 405 Path information (path)

“process Token” on page 406 Process token information

“return Token” on page 407 Status of system call

“seq Token” on page 408 Sequence number token

“socket Token” on page 408 Socket type and addresses

“subject Token” on page 409
Subject token information (same structure as
process token)

“text Token” on page 410 ASCII string

“trailer Token” on page 411 Indicates end of record

An audit record always contains a header token. The header token indicates where
the audit record begins in the audit trail. Every audit record contains a subject
token, except for audit records from some nonattributable events. In the case of
attributable events, these two tokens refer to the values of the process that caused the
event. In the case of asynchronous events, the process tokens refer to the system.

394 System Administration Guide: Security Services • December 2001 (Beta)

acl token
The acl token records information about ACLs. It consists of four fixed fields. The
fixed fields are:

� a token ID that identifies this token as an acl token,
� a field that specifies the ACL type,
� an ACL ID field,
� a field that lists the permissions associated with this ACL.

The praudit command displays the acl token as follows:

acl,tpanero,staff,0755

The acl token appears as follows:

Token ID ACL type ACL ID ACL permissions

FIGURE 25–1 acl Token Format

arbitrary Token
The arbitrary token encapsulates data for the audit trail. It consists of four fixed
fields and an array of data. The fixed fields are:

� a token ID that identifies this token as an arbitrary token,

� a suggested format field (for example, hexadecimal),

� a size field that specifies the size of data encapsulated (for example, short), and

� a count field that gives the number of following items.

The remainder of the token is composed of one or more items of the specified type.
The praudit command displays the arbitrary token as follows:

arbitrary,decimal,int,1

42

The arbitrary token appears as follows:

Token ID Print format Item size Number items Item 1 0 0 0 Item n

FIGURE 25–2 arbitrary Token Format

The print format field can take the values shown in Table 25–3.

Audit Reference 395

TABLE 25–3 arbitrary Token Print Format Field Values

Value Action

AUP_BINARY Print date in binary

AUP_OCTAL Print date in octal

AUP_DECIMAL Print date in decimal

AUP_HEX Print date in hex

AUP_STRING Print date as a string

The item size field can take the values shown in Table 25–4.

TABLE 25–4 arbitrary Token Item Size Field Values

Value Action

AUR_BYTE Data is in units of bytes (1 byte)

AUR_SHORT Data is in units of shorts (2 bytes)

AUR_LONG Data is in units of longs (4 bytes)

arg Token
The arg token contains system call argument information: the argument number of
the system call, the augment value, and an optional descriptive text string. This token
allows a 32-bit integer system-call argument in an audit record. The arg token has 5
fields:

� a token ID that identifies this token as an arg token,

� an argument ID that tells which system call argument the token refers to,

� the argument value,

� the length of a descriptive text string, and

� the text string.

The praudit command displays the arg token as follows:

argument,1,0x00000000,addr

396 System Administration Guide: Security Services • December 2001 (Beta)

Figure 25–3 shows the token form.

Token ID Argument # Argument value Text length Text

FIGURE 25–3 arg Token Format

attr Token
The attr token contains information from the file vnode. This token has 7 fields:

� a token ID that identifies this as an attr token,
� the file access mode and type,
� the owner user ID,
� the owner group ID,
� the file system ID,
� the inode ID, and
� the device ID the file might represent.

See the statvfs(2) man page for further information about the file system ID and the
device ID.

This token usually accompanies a path token and is produced during path searches.
In the event of a path-search error, this token is not included as part of the audit record
since there is no vnode available to obtain the necessary file information. An attr
token is displayed by praudit as follows:

attribute,100555,root,staff,1805,13871,-4288

Figure 25–4 shows the attr token format.

Token ID File mode Owner UID Owner GID File system ID File inode ID Device ID

FIGURE 25–4 attr Token Format

exec_args Token
The exec_args token records the arguments to an exec system call. The exec_args
record has two fixed fields:

� a token ID field that identifies this as an exec_args token

� a count that represents the number of arguments passed to the exec cal

The remainder of the token is composed of zero or more null-terminated strings. An
exec_args token is displayed by praudit as follows:

Audit Reference 397

vi,/etc/security/audit_user

Figure 25–5 shows an exec_args token.

Token ID Count env_args

FIGURE 25–5 exec_args Token Format

Note – The exec_args token is output only when the audit policy argv is active.

exec_env Token
The exec_env token records the current environment variables to an exec system
call. The exec_env record has two fixed fields:

� a token ID field that identifies this as an exec_env token

� a count that represents the number of arguments passed to the exec call.

The remainder of the token is composed of zero or more null-terminated strings. An
exec_env token is displayed by praudit as follows:

exec_env,25,
GROUP=staff,HOME=/export/home/matrix,HOST=mestrix,HOSTTYPE=sun4,HZ=100,
LC_COLLATE=en_US.ISO8859-1,LC_CTYPE=en_US.ISO8859-1,LC_MESSAGES=C,
LC_MONETARY=en_US.ISO8859-1,LC_NUMERIC=en_US.ISO8859-1,
LC_TIME=en_US.ISO8859-1,LOGNAME=matrix,MACHTYPE=sparc,
MAIL=/var/mail/matrix,OSTYPE=solaris,PATH=/usr/sbin:/usr/bin,PS1=#,
PWD=/var/audit,REMOTEHOST=209.198.087.208,SHELL=/usr/bin/csh,SHLVL=1,

TERM=dtterm,TZ=US/Pacific,USER=matrix,VENDOR=sun

398 System Administration Guide: Security Services • December 2001 (Beta)

Figure 25–6 shows an exec_env token.

Token ID Count env_args

FIGURE 25–6 exec_env Token Format

Note – The exec_env token is output only when the audit policy arge is active.

exit Token
The exit token records the exit status of a program. The exit token contains:

� a token ID,

� a program exit status as passed to the exit() system call, and

� a return value that describes the exit status or indicates a system error number.

The praudit command displays the exit token as follows:

exit,Error 0,0

Figure 25–7 shows an exit token.

Token ID Status Return value

FIGURE 25–7 exit Token Format

file Token
The file token is a special token generated by the audit daemon to mark the
beginning of a new audit trail file and the end of an old file as it is deactivated. The
audit daemon builds a special audit record containing this token to “link” together
successive audit files into one audit trail. The file token has four fields:

� a token ID that identifies this token as a file token,

� a time and date stamp that identifies the time the file was created or closed,

� a byte count of the file name including a null terminator, and

� a field holding the file null-terminated name.

The praudit command displays the file token as follows:

Audit Reference 399

file,Tue Sep 1 13:32:42 1992, + 79249 msec,

/baudit/localhost/files/19920901202558.19920901203241.quisp

Figure 25–8 shows a file token.

Previous/next file nameToken ID Date & time Name length

FIGURE 25–8 file Token Format

groups Token (Obsolete)
This token has been replaced by the newgroups token, which provides the same type
of information but requires less space. A description of the groups token is provided
here for completeness, but the application designer should use the newgroups token.
Notice that praudit does not distinguish between the two tokens, as both token IDs
are labelled groups when ASCII style output is displayed.

The groups token records the groups entries from the process’s credential. The
groups token has two fixed fields:

� Token ID
� Array of groups entries of size NGROUPS_MAX (16)

The remainder of the token consists of zero or more group entries. The praudit
command displays the file token as follows:

group, staff, admin, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1

Figure 25–9 shows a groups token.

GroupsToken ID

FIGURE 25–9 groups Token Format

Note – The groups token is output only when the audit policy group is active.

The praudit command displays the group token as follows:

group,staff,wheel,daemon,kmem,bin,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1

400 System Administration Guide: Security Services • December 2001 (Beta)

header Token
The header token is special in that it marks the beginning of an audit record and
combines with the trailer token to bracket all the other tokens in the record. The
header token has six fields:

� a token ID field that identifies this as a header token,

� a byte count of the total length of the audit record, including both header and
trailer,

� a version number that identifies the version of the audit record structure,

� the audit event ID that identifies the type of audit event the record represents,

� and the time and date the record was created.

On 64–bit systems, the header token will be displayed with a 64-bit time stamp, in
place of the 32-bit time stamp.

When displayed by praudit in default format, a header token looks like the
following example from ioctl:

header,240,1,ioctl(2),es,Tue Sept 1 16:11:44 1992, + 270000 msec

Figure 25–10 shows a header token.

Token ID Byte count Version # Event ID ID modifier Date and time

FIGURE 25–10 header Token Format

The event modifier field has the following flags defined:

0x4000 PAD_NOTATTR nonattributable event

0x8000 PAD_FAILURE fail audit event

in_addr Token
The in_addr token contains an Internet address. This 4-byte value is an Internet
Protocol address. The token has two fields:

� a token ID that identifies this token as an ip address token, and
� an Internet address.

The praudit command displays the ip address token as follows:

ip address,129.150.113.7

Audit Reference 401

For the Solaris 8 release, the Internet Address can be displayed as a IPv4 address using
4 bytes, or as an IPv6 address using 16 bytes to describe the type, and 16 bytes to
describe the address. Figure 25–11 shows an in_addr token.

Token ID Internet address

FIGURE 25–11 in_addr Token Format

ip Token
The ip token contains a copy of an Internet Protocol header but does not include any
IP options. The IP options can be added by including more of the IP header in the
token. The token has two fields:

� a token ID that identifies this as an ip token, and
� a copy of the IP header (all 20 bytes).

The praudit command displays the ip token as follows:

ip address,0.0.0.0

The IP header structure is defined in /usr/include/netinet/ip.h. Figure 25–12
shows an ip token.

Token ID IP header

FIGURE 25–12 ip Token Format

ipc Token
The ipc token contains the System V IPC message/semaphore/shared-memory
handle used by the caller to identify a particular IPC object. This token has three fields:

� a token ID that identifies this as an IPC token,
� a type field that specifies the type of the IPC object, and
� the handle that identifies the IPC object.

The praudit command displays the IPC token as follows:

IPC,msg,3

402 System Administration Guide: Security Services • December 2001 (Beta)

Note – The IPC object identifiers violate the context-free nature of the Solaris CMW
audit tokens. No global “name” uniquely identifies IPC objects; instead, they are
identified by their handles, which are valid only during the time the IPC objects are
active. The identification should not be a problem since the System V IPC mechanisms
are seldom used and they all share the same audit class.

The IPC object type field can have the values shown in Table 25–5. The values are
defined in /usr/include/bsm/audit.h.

TABLE 25–5 IPC Object Type Field

Name Value Description

AU_IPC_MSG 1 IPC message object

AU_IPC_SEM 2 IPC semaphore object

AU_IPC_SHM 3 IPC shared memory object

Figure 25–13 shows an ipc token.

Token ID IPC object type IPC object ID

FIGURE 25–13 ipc Token Format

ipc_perm Token
The ipc_perm token contains a copy of the System V IPC access information. This
token is added to audit records generated by shared memory, semaphore, and
message IPC events. The token has eight fields:

� a token ID that identifies this token as an IPC_perm token,
� the user ID of the IPC owner,
� the group ID of the IPC owner,
� the user ID of the IPC creator,
� the group ID of the IPC creator,
� the access modes of the IPC,
� the sequence number of the IPC, and
� the IPC key value.

The praudit command displays the IPC_perm token as follows:

IPC perm,root,wheel,root,wheel,0,0,0x00000000

Audit Reference 403

The values are taken from the ipc_perm structure associated with the IPC object.
Figure 25–14 shows an ipc_perm token format.

Token ID Owner uid Owner gid Creator uid Creator gid IPC mode Sequence ID IPC key

FIGURE 25–14 ipc_perm Token Format

iport Token
The iport token contains the TCP (or UDP) port address. The token has two fields:

� a token ID that identifies this as an ip port token, and
� the TCP/UDP port address.

The praudit command displays the ip port token as follows:

ip port,0xf6d6

Figure 25–15 shows an iport token.

Token ID Port ID

FIGURE 25–15 iport Token Format

newgroups Token
This token is the replacement for the groups token. Notice that praudit does not
distinguish between the two tokens, as both token IDs are labelled groups when
ASCII output is displayed.

The newgroups token records the groups entries from the process’s credential. The
newgroups token has two fixed fields:

� a token ID field that identifies this as a newgroups token, and

� a count that represents the number of groups contained in this audit record.

The remainder of the token is composed of zero or more group entries. The praudit
command displays the ip port token as follows:

group, staff, admin

Figure 25–16 shows a newgroups token.

404 System Administration Guide: Security Services • December 2001 (Beta)

Count GroupsToken ID

FIGURE 25–16 newgroups Token Format

Note – The newgroups token is output only when the audit policy group is active.

opaque Token
The opaque token contains unformatted data as a sequence of bytes. The token has
three fields:

� a token ID that identifies this as an opaque token,
� a byte count of the amount of data, and
� an array of byte data.

The praudit command displays the opaque token as follows:

opaque,12,0x4f5041515545204441544100

Figure 25–17 shows an opaque token.

Token ID Data length Data bytes

FIGURE 25–17 opaque Token Format

path Token
The path token contains access path information for an object. The token contains the
following fields:

� a token ID,
� a byte count of the path length (does not show), and
� the absolute path to the object based on the real root of the system.

The praudit command displays the path token as follows:

path,/etc/security/audit_user

Figure 25–18 shows a path token.

Audit Reference 405

Token ID Object path

Path length Path

FIGURE 25–18 path Token Format

process Token
The process token contains information describing a user associated with a process,
such as the recipient of a signal. The token has 9 fields:

� a token ID that identifies this token as a process token,
� the invariant audit ID,
� the effective user ID,
� the effective group ID,
� the real user ID,
� the real group ID,
� the process ID,
� the audit session ID, and
� a terminal ID consisting of a device ID and a machine ID.

The praudit command displays the process token as follows:

process,root,root,wheel,root,wheel,0,0,0,0.0.0.0

Figure 25–19 shows a process token.

Process ID

Token ID Audit ID User ID Group ID Real user ID Real group ID Process ID

Session ID Terminal ID

Device ID Machine ID

FIGURE 25–19 process Token Format

The audit ID, user ID, group ID, process ID, and session ID are long instead of short.

406 System Administration Guide: Security Services • December 2001 (Beta)

Note – The process token fields for the session ID, the real user ID, or the real group
ID might be unavailable. The entry is then set to -1.

Any token containing a terminal ID has several variations. praudit hides these
variations on output of the terminal ID so that they all appears to be the same. This
field is handled the same way for any token that contains it. The terminal ID is either
an IP address and port number or a device ID, such as the serial port connected to a
modem, in which case it is zero. The terminal ID is in one of several formats:

For device numbers:

� 32 bit applications: 4 byte device number, 4 bytes unused
� 64 bit applications: 8 byte device number, 4 bytes unused

For port numbers in the Solaris 7 or earlier releases::

� 32 bit applications: 4 byte port number, 4 byte IP address
� 64 bit applications: 8 byte port number, 4 byte IP address

For port numbers in the Solaris 8 or 9 releases:

� 32 bit with IPV4: 4 byte port number, 4 byte IP type, 4 byte IP address

� 32 bit with IPV6: 4 byte port number, 4 byte IP type, 16 byte IP address

� 64 bit with IPV4: 8 byte port number, 4 byte IP type, 4 byte IP address

� 64 bit with IPV6: 8 byte port number, 4 byte IP type, 16 byte IP address

return Token
The return token contains the return status of the system call (u_error) and the
process return value (u_rval1). The token has three fields:

� a token ID that identifies this token as a return token,
� the error status of the system call, and
� the system call return value.

This token is always returned as part of kernel-generated audit records for system
calls. The token indicates exit status and other return values in application auditing.

The praudit command displays the return token as follows:

return,success,0

Figure 25–20 shows a return token.

Audit Reference 407

Token ID Process error Process value

FIGURE 25–20 return Token Format

seq Token
The seq token (sequence token) is an optional token that contains an increasing
sequence number. This token is for debugging. The token is added to each audit
record when the AUDIT_SEQ policy is active. The seq token has 2 fields:

� a token ID that identifies this token as a seq token, and
� a 32-bit unsigned long field that contains the sequence number.

The sequence number is incremented every time an audit record is generated and put
onto the audit trail. The praudit command displays the seq token as follows:

sequence,1292

Figure 25–21 shows a seq token.

Token ID Sequence number

FIGURE 25–21 seq Token Format

socket Token
The socket token contains information describing an Internet socket. The socket
token has 6 fields:

� a token ID that identifies this token as a socket token,

� a socket type field that indicates the type of socket referenced (TCP/UDP/UNIX),

� the local port address,

� the local Internet address,

� the remote port address, and

� the remote Internet address.

The prauditcommand displays the socket token as follows:

socket,0x0000,0x0000,0.0.0.0,0x0000,0.0.0.0

408 System Administration Guide: Security Services • December 2001 (Beta)

For the Solaris 8 release, the Internet Address can be displayed as a IPv4 address using
4 bytes, or as an IPv6 address using 16 bytes to describe the type, and 16 bytes to
describe the addresses. Figure 25–22 shows a socket token.

Remote Internet addressToken ID Type Remote port

FIGURE 25–22 socket Token Format

subject Token
The subject token describes a user that performs or attempt to perform an
operation. The structure is the same as the process token. The token has 9 fields:

� an ID that identifies this as a subject token,
� the invariant audit ID,
� the effective user ID,
� the effective group ID,
� the real user ID,
� the real group ID,
� the process ID,
� the audit session ID, and
� a terminal ID consisting of a device ID and a machine ID.

This token is always returned as part of kernel-generated audit records for system
calls. The praudit command displays the subject token as follows:

subject,cjc,cjc,staff,cjc,staff,424,223,0 0 quisp

The audit ID, user ID, group ID, process ID, and session ID are long instead of short.

Note – The subject token fields for the session ID, the real user ID, or the real group
ID might be unavailable. The entry is then set to -1.

Any token containing a terminal ID has several variations. praudit hides these
variations on output of the terminal ID so that they all appears to be the same. This
field is handled the same way for any token that contains it. The terminal ID is either
an IP address and port number or a device ID, such as the serial port connected to a
modem, in which case it is zero. The terminal ID is in one of several formats:

For device numbers:

� 32 bit applications: 4 byte device number, 4 bytes unused
� 64 bit applications: 8 byte device number, 4 bytes unused

For port numbers in the Solaris 7 or earlier releases::

Audit Reference 409

� 32 bit applications: 4 byte port number, 4 byte IP address
� 64 bit applications: 8 byte port number, 4 byte IP address

For port numbers in the Solaris 8 or 9 releases:

� 32 bit with IPV4: 4 byte port number, 4 byte IP type, 4 byte IP address

� 32 bit with IPV6: 4 byte port number, 4 byte IP type, 16 byte IP address

� 64 bit with IPV4: 8 byte port number, 4 byte IP type, 4 byte IP address

� 64 bit with IPV6: 8 byte port number, 4 byte IP type, 16 byte IP address

Figure 25–23 shows the token.

Process ID

Token ID Audit ID User ID Group ID Real user ID Real group ID Process ID

Session ID Terminal ID

Device ID Machine ID

FIGURE 25–23 subject Token Format

text Token
The text token contains a text string. The token has three fields:

� a token ID that identifies this token as a text token,
� the length of the text string, and
� the text string itself.

The prauditcommand displays the text token as follows:

text,aw_test_token

410 System Administration Guide: Security Services • December 2001 (Beta)

Figure 25–24shows a text token.

Token ID Text length Text string

FIGURE 25–24 text Token Format

trailer Token
The two tokens, header and trailer, are special in that they distinguish the
endpoints of an audit record and bracket all the other tokens. A header token begins
an audit record. A trailer token ends an audit record. It is an optional token that is
added as the last token of each record only when the AUDIT_TRAIL audit policy has
been set.

The trailer token is special in that it marks the termination of an audit record.
Together with the header token, the trailer token delimits an audit record. The
trailer token supports backward seeks of the audit trail. The trailer token has
three fields: a token ID that identifies this token as a trailer token, a pad number to
aid in marking the end of the record, and the total number of characters in the audit
record, including both the header and trailer tokens.

The praudit command displays the trailer token as follows:

trailer,136

Figure 25–25 shows a trailer token.

Token ID Pad number Byte count

FIGURE 25–25 trailer Token Format

The audit trail analysis software ensures that each record contains both header and
trailer. In the case of a write error, as when a file system becomes full, an audit
record can be incomplete and truncated. auditsvc, the system call responsible for
writing data to the audit trail, attempts to put out complete audit records. See the
auditsvc(2) man page. When file system space runs out, the call terminates without
releasing the current audit record. When the call resumes, it can then repeat the
truncated record.

Audit Reference 411

Utilities Summary
BSM brings a number of additional utilities to the Solaris Operating Environment. The
utilities are listed here in four sections, each of which has a table below. Each table
gives utility names and a short description of the task performed by each utility. The
sections are identified by the man page suffix.

TABLE 25–6 Maintenance Commands

Command Task

allocate(1M) Allocate a device

audit(1M) Control the audit daemon

audit_startup(1M) Initialize the audit subsystem

audit_warn(1M) Run the audit daemon warning script

auditconfig(1M) Configure auditing

auditd(1M) Control audit trail files

auditreduce(1M) Merge and select audit records from audit trail files

auditstat(1M) Display kernel audit statistics

bsmconv(1M) Enable a Solaris system to use the Basic Security Module

bsmunconv(1M)
Disable the Basic Security Module and return to the Solaris
operating environment (see the bsmconv(1M) man page)

deallocate(1M) Deallocate a device

dminfo(1M) Report information about a device entry in a device maps file

list_devices(1M) List allocatable devices

praudit(1M) Print contents of an audit trail file

TABLE 25–7 System Calls

System Call Task

audit(2) Write a record to the audit log

auditon(2) Manipulate auditing

auditsvc(2) Write audit log to specified file descriptor

getaudit(2) Get process audit information

412 System Administration Guide: Security Services • December 2001 (Beta)

TABLE 25–7 System Calls (Continued)
System Call Task

getauid(2) Get user audit identity

setaudit(2) Get process audit information (see getaudit(2))

setauid(2) Get user audit identity (see getaudit(2))

TABLE 25–8 Library Functions

Library Call Task

au_open(3BSM), au_close(3), au_write(3) Construct and write audit records

au_preselect(3BSM) Preselect an audit event

au_to_arg(3), au_to_attr(3), au_to_data(3),
au_to_groups(3), au_to_in_addr(3), au_to_ipc(3),
au_to_ipc_perm(3), au_to_iport(3), au_to_me(3),
au_to_opaque(3), au_to_path(3), au_to_process(3),
au_to_return(3), au_to_socket(3), au_to_text(3)

(see au_to(3BSM) for all of these functions)

Create audit record tokens

au_user_mask(3BSM) Get user’s binary preselection mask

getacinfo(3BSM), getacdir(3BSM),
getacflg(3BSM), getacmin(3BSM), ,
getacinfo(3BSM), setac(3BSM), endac(3BSM)

Get audit control file information

getauclassent(3BSM), getauclassnam(3BSM),
endauclass(3BSM), getauclassnam_r(3BSM),
getauclassent_r(3BSM)

Get audit_class entry

getauditflags(3BSM),
getauditflagsbin(3BSM),
getauditflagschart(3BSM)

Convert audit flag specifications

getauevent(3BSM), getauevnam(3BSM),
getauevnum(3BSM), getauevnonam(3BSM),
setauevent(3BSM), endauevent(3BSM),
getauevent_r(3BSM),getauevnam_r(3BSM),
getauevnum_r(3BSM)

Get audit_user entry

getauusernam(3BSM), getauuserent(3BSM),
setauuser(3BSM), endauuser(3BSM)

Get audit_user entry

getfauditflags(3BSM) Generate the process audit state

Audit Reference 413

TABLE 25–9 Headers, Tables, and Macros

Files Task

audit.log(4) Gives format for an audit trail file

audit_class(4) Gives audit class definitions

audit_control(4) Controls information for system audit daemon

audit_data(4) Holds current information on the audit daemon

audit_event(4) Holds audit event definition and class mapping

audit_user(4) Holds per-user auditing data file

device_allocate(4) Contains physical device information

device_maps(4) Contains physical device information

414 System Administration Guide: Security Services • December 2001 (Beta)

Glossary

admin principal A user principal with a name of the form username/admin (as in
joe/admin). An admin principal can have more privileges (for
example, to change policies) than a regular user principal. See also
principal name, user principal.

application server See network application server.

authentication The process of verifying the claimed identity of a principal.

authenticator Authenticators are passed by clients when requesting tickets (from a
KDC) and services (from a server). They contain information,
generated using a session key known only by the client and server,
that can be shown to be of recent origin, thus indicating the transaction
is secure. When used with a ticket, an authenticator can be used to
authenticate a user principal. An authenticator includes the principal
name of the user, the IP address of the user’s host, and a timestamp.
Unlike a ticket, an authenticator can be used only once, usually when
access to a service is requested. An authenticator is encrypted using
the session key for that client and that server.

authorization The process of determining whether a principal can use a service,
which objects the principal is allowed to access, and the type of access
allowed for each.

1. The process of determining whether a principal can use a service,
which objects the principal is allowed to access, and the type of
access allowed for each.

2. In RBAC, a permission that can be assigned to a role or user (or
embedded in a rights profile) for performing a class of actions
otherwise prohibited by security policy.

jcs

client

� Narrowly, a process that makes use of a network service on behalf
of a user; for example, an application that uses rlogin. In some

415

cases, a server can itself be a client of some other server or service.

� More broadly, a host that a) receives a Kerberos credential and b)
makes use of a service provided by a server.

Informally, a principal that makes use of a service.

client principal (RPCSEC_GSS API) A client (a user or an application) that uses
RPCSEC_GSS-secured network services. Client principal names are
stored in the form of rpc_gss_principal_t structures.

clock skew The maximum amount of time that the internal system clocks on all
hosts participating in the Kerberos authentication system can differ. If
the clock skew is exceeded between any of the participating hosts,
requests will be rejected. Clock skew can be specified in the
krb5.conf file.

confidentiality See privacy.

credential An information package that includes a ticket and a matching session
key. Used to authenticate the identity of a principal. See also ticket,
session key.

credential cache A storage space (usually a file) containing credentials received from
the KDC.

flavor Historically, security flavor and authentication flavor meant the same
thing, as a flavor indicated a type of authentication (AUTH_UNIX,
AUTH_DES, AUTH_KERB). RPCSEC_GSS is also a security flavor,
even though it provides integrity and privacy services in addition to
authentication.

forwardable ticket A ticket that can be used by a client to request a ticket on a remote host
without the client having to go through the full authentication process
on that host. For example, if the user david obtains a forwardable
ticket while on jennifer’s machine, he can log in to his own machine
without having to get a new ticket (and thus authenticate himself
again). See also proxiable ticket.

FQDN Fully Qualified Domain Name. For example, denver.mtn.acme.com
(as opposed to simply denver).

GSS-API The Generic Security Service Application Programming Interface. A
network layer providing support for various modular security services
(including SEAM). GSS-API provides for security authentication,
integrity, and privacy services. See also authentication, integrity,
privacy.

host A machine accessible over a network.

host principal A particular instance of a service principal in which the principal
(signified by the primary name host) is set up to provide a range of
network services, such as ftp, rcp, or rlogin.

416 System Administration Guide: Security Services • December 2001 (Beta)

host/boston.eng.acme.com@ENG.ACME.COM is an example of a
host principal. See also server principal.

initial ticket A ticket that is issued directly (that is, not based on an existing
ticket-granting ticket). Some services, such as applications that change
passwords, might require tickets to be marked initial so as to assure
themselves that the client can demonstrate a knowledge of its secret
key — because an initial ticket indicates that the client has recently
authenticated itself (instead of relying on a ticket-granting ticket,
which might have been around for a long time).

instance The second part of a principal name, an instance qualifies the
principal’s primary. In the case of a service principal, the instance is
required and is the host’s fully qualified domain name, as in
host/boston.eng.acme.com. For user principals, an instance is
optional; note, however, that joe and joe/admin are unique
principals. See also principal name, service principal, user principal.

integrity A security service that, in addition to user authentication, provides for
the validity of transmitted data through cryptographic checksumming.
See also authentication, privacy.

invalid ticket A postdated ticket that has not yet become usable. It will be rejected by
an application server until it becomes validated. To be validated, it
must be presented to the KDC by the client in a TGS request, with the
VALIDATE flag set, after its start time has passed. See also postdated
ticket.

KDC (Key Distribution Center) A machine that has three Kerberos V5
components:

� Principal and key database
� Authentication service
� Ticket-granting service

Each realm has a master KDC and should have one or more slave
KDCs.

Kerberos An authentication service, the protocol used by that service, or the
code used to implement that service.

SEAM is an authentication implementation closely based on Kerberos
V5.

While technically different, “SEAM” and “Kerberos” are often used
interchangeably in SEAM documentation; the same is true for
“Kerberos” and “Kerberos V5.”

Kerberos (also spelled Cerberus) was a fierce, three-headed mastiff
who guarded the gates of Hades in Greek mythology.

Glossary 417

key

1. An entry (principal name) in a keytab. (See keytab.)

2. An encryption key, of which there are three types:

a. A private key. An encryption key shared by a principal and the
KDC, distributed outside the bounds of the system. See also
private key.

b. A service key. This key serves the same purpose as the private
key, but is used by servers and services. See also service key.

c. A session key. A temporary encryption key used between two
principals, with a lifetime limited to the duration of a single
login session. See also session key.

keytab A key table file containing one or more keys (principals). A host or
service uses a keytab file in the much the same way that a user uses a
password.

kvno Key Version Number. A sequence number tracking a particular key in
order of generation. The highest kvno is the latest and current key.

management scope The scope in which a role is permitted to operate, that is, an individual
host or all hosts served by a specified name service such as NIS, NIS+,
or LDAP. Scopes are applied to Solaris Management Console
toolboxes.

master KDC The main KDC in each realm, including a Kerberos administration
server, kadmind, and an authentication and ticket-granting daemon,
krb5kdc. Each realm must have at least one master KDC, and can
have many duplicate, or slave, KDCs that provide authentication
services to clients.

mechanism A software package that specifies cryptographic techniques to achieve
data authentication or confidentiality. Examples: Kerberos V5,
Diffie-Hellman public key.

network application
server

A server providing an network application, such as ftp. A realm can
contain several network application servers.

NTP (Network Time Protocol) Software from the University of Delaware
that enables you to manage precise time and/or network clock
synchronization in a network environment. You can use NTP to
maintain clock skew in a Kerberos environment.

PAM (Pluggable Authentication Module) A framework that allows for
multiple authentication mechanisms to be used without having to
recompile the services using them. PAM enables SEAM session
initialization at login.

418 System Administration Guide: Security Services • December 2001 (Beta)

policy A set of rules, initiated when SEAM is installed or administered,
governing ticket usage. Policies can regulate principals’ accesses, or
ticket parameters, such as lifespan.

postdated ticket A postdated ticket is one that does not become valid until some
specified time after its creation. Such a ticket is useful, for example, for
batch jobs intended to be run late at night, since the ticket, if stolen,
cannot be used until the batch job is to be run. When a postdated ticket
is issued, it is issued as invalid and remains that way until a) its start
time has passed, and b) the client requests validation by the KDC. A
postdated ticket is normally valid until the expiration time of the
ticket-granting ticket; however, if it is marked renewable, its lifetime is
normally set to be equal to the duration of the full life of the
ticket-granting ticket. See also invalid ticket, renewable ticket.

primary The first part of a principal name. See also instance, principal name,
realm.

principal

1. A uniquely named client/user or server/service instance that
participates in a network communication; Kerberos transactions
involve interactions between principals (service principals and user
principals) or between principals and KDCs. Put another way, a
principal is a unique entity to which Kerberos can assign tickets.
See also principal name, service principal, user principal.

2. (RPCSEC_GSS API) See client principal, server principal.

principal name

1. The name of a principal, having the format of
primary/instance@REALM. See also instance, primary, realm.

2. (RPCSEC_GSS API) See client principal, server principal.

privacy A security service, in which transmitted data is encrypted before being
sent. Privacy also includes data integrity and user authentication. See
also authentication, integrity, service.

private key A key is given to each user principal and known only to the user of the
principal and to the KDC. For user principals, the key is based on the
user’s password. See also key.

private-key encryption In private-key encryption, the sender and receiver use the same key for
encryption. See also public-key encryption.

privileged application An application that can override system controls and checks for
specific UIDs, GIDs, or authorizations.

profile shell A shell used in RBAC that enables a role (or user) to run any
privileged applications assigned to the role’s rights profiles from the

Glossary 419

command line. The profile shells are pfsh, pfcsh, and pfksh, and
they correspond to Bourne shell (sh), C shell (csh), and Korn shell
(ksh) respectively.

proxiable ticket A ticket that can be used by a service on behalf of a client to perform
an operation for the client. (Thus the service is said to act as the client’s
proxy.) With the ticket, the service can take on the identity of the client.
The service can use this to obtain a service ticket to another service,
but it cannot obtain a ticket-granting ticket. The difference between a
proxiable ticket and a forwardable ticket is that a proxiable ticket is
only valid for a single operation. See also forwardable ticket.

public-key encryption An encryption scheme in which each user has two keys, one public
and one private. In public-key encryption, the sender uses the
receiver’s public key to encrypt the message, and the receiver uses a
private key to decrypt it. SEAM is a private-key system. See also
private-key encryption.

QOP (Quality of Protection) A parameter used to select the cryptographic
algorithms to be used in conjunction with the integrity or privacy
service.

RBAC (Role-Based Access Control) An alternative to the all-or-nothing
superuser model. RBAC lets an organization separate superuser’s
capabilities and assign them to special user accounts called roles. Roles
can be assigned to specific individuals according to their job needs.

realm

1. The logical network served by a single SEAM database and a set of
Key Distribution Centers (KDCs).

2. The third part of a principal name. For the principal name
joe/admin@ENG.ACME.COM, the realm is ENG.ACME.COM. See
also principal name.

relation A configuration variable or relationship defined in the kdc.conf or
krb5.conf files.

renewable ticket Because it is a security risk to have tickets with very long lives, tickets
can be designated as renewable. A renewable ticket has two expiration
times: the time at which the current instance of the ticket expires, and
maximum lifetime for any ticket. If a client wants to continue to use a
ticket, it renews it before the first expiration occurs. For example, a
ticket can be valid for one hour, with all tickets having a maximum
lifetime of ten hours. If the client holding the ticket wants to keep it for
more than an hour, it must renew it. When a ticket reaches the
maximum ticket lifetime, it automatically expires and cannot be
renewed.

rights profile (Also referred to as right or profile) A collection of overrides used in
RBAC that can be assigned to a role or user. A rights profile can consist

420 System Administration Guide: Security Services • December 2001 (Beta)

of authorizations, commands with set UIDs or GIDs (referred to as
security attributes) and other rights profiles.

role A special identity for running privileged applications that can be
assumed by assigned users only.

SEAM (Sun Enterprise Authentication Mechanism) A system for
authenticating users over a network, based on the Kerberos V5
technology developed at the Massachusetts Institute of Technology.

“SEAM” and “Kerberos” are often used interchangeably in the SEAM
documentation.

secret key See private key.

secure shell A special protocol for secure remote login and other secure network
services over an insecure network.

security flavor See flavor.

security mechanism See mechanism.

security service See service.

server A particular principal that provides a resource to network clients. For
example, if you rlogin to the machine boston.eng.acme.com,
then that machine is the server providing the rlogin service. See also
service principal.

server principal (RPCSEC_GSS API) A principal providing a service. It is stored as an
ASCII string of the form service@host. See also client principal.

service

1. A resource provided to network clients; often provided by more
than one server. For example, if you rlogin to the machine
boston.eng.acme.com, then that machine is the server
providing the rlogin service.

2. A security service — either integrity or privacy, providing a level of
protection beyond authentication. See also integrity and privacy.

service key An encryption key shared by a service principal and the KDC,
distributed outside the bounds of the system. See also key.

service principal A principal that provides a Kerberos authentication for a service or
services. For service principals, the primary name is a name of a
service, such as ftp, and its instance is the fully qualified hostname of
the system that provides the service. See also host principal, user
principal.

Glossary 421

session key A key generated by the authentication service or the ticket-granting
service. A session key is generated to provide secure transactions
between a client and a service. Its lifetime is limited to a single login
session. See also key.

slave KDC A copy of a master KDC, capable of performing most of the functions
of the master. Each realm usually has several slave KDCs (and only
one master KDC). See also KDC, master KDC.

stash file A stash file contains an encrypted copy of the master key for the KDC.
This key is used when a server is rebooted to automatically
authenticate the KDC before starting kadmind and krb5kdc
processes. Because this file includes the master key, the file and any
backups of the file should be kept secure. If the encryption is
compromised, then the key could be used to access or modify the KDC
database.

ticket An information packet used to securely pass the identity of a user to a
server or service. A ticket is good for only a single client and a
particular service on a specific server. It contains the principal name of
the service, the principal name of the user, the IP address of the user’s
host, a timestamp, and a value to define the lifetime of the ticket. A
ticket is created with a random session key to be used by the client and
the service. Once a ticket has been created, it can be reused until the
ticket expires. A ticket only serves to authenticate a client when
presented along with a fresh authenticator. See also authenticator,
credential, service, session key.

ticket file See credential cache.

TGS (Ticket-Granting Service) That portion of the KDC that is responsible
for issuing tickets.

TGT (Ticket-Granting Ticket) A ticket issued by the KDC that enables a
client to request tickets for other services.

user principal A principal attributed to a particular user, whose primary name is a
user name and its optional instance is a name used to described the
intended use of the corresponding credentials (for example, joe or
joe/admin). Also known as a user instance. See also service principal.

VPN (Virtual Private Network) A network that provides secure
communication by using encryption and tunneling to connect users
over a public network.

422 System Administration Guide: Security Services • December 2001 (Beta)

