»
2 Sun

microsystems

man pages section 1: User
Commands

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 816-0210-06
December 2001



Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A.  All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software-Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A.  Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d utilisation visuelle ou graphique pour l'industrie
de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

9] &

Adobe PostScript

1

011030@2471



Contents

Preface 19

Introduction 25
Intro(1) 26

User Commands 29
acctcom(1) 30
adb(1) 33
addbib(1) 34
alias(1) 36
allocate(1) 39
amt(1) 41
answerbook2(1) 42
appcert(l) 43
apptrace(l) 51
apropos(l) 56

ar(l) 58
arch(l) 62
as(l) 63
asa(l) 67
at(l) 69
atq(l) 75
atrm(1) 76

audioconvert(l) 77

audioplay(1) 81



audiorecord(1) 84
auths(1) 87
awk(l) 89
banner(1) 94
basename(1) 95
basename(1B) 97

be(l) 98
bdiff(1) 102
bfs(1) 103

biff(1B) 107
break(l) 108
cal(l) 110
calendar(l) 111
cancel(1) 113

cat(l) 115
cc(1B) 117
cd(l) 119

cdrw(l) 122
checknr(1) 128
chgrp(l) 129
chkey(1) 131
chmod(1) 133
chown(1l) 139
chown(1B) 141
ckdate(l) 142
ckgid(1) 145
ckint(1) 147
ckitem(1) 149
ckkeywd(1) 152
ckpath(l) 154
ckrange(l) 157
ckstr(1) 160
cksum(1) 163
cktime(1) 165
ckuid(1) 167
ckyorn(l) 169
clear(1) 171

4 man pages section 1: User Commands * December 2001 (Beta)



cmp(1) 172
col(l) 174
comm(1l) 176
command(1l) 178
compress(1) 181
coproc(1F) 184

cp(l) 188
cpio(1) 192
cpp(l) 200

cputrack(l) 206
crle(1) 210
crontab(1) 220
crypt(l) 224
csh(l) 225
csplit(1l) 251
ct(1C) 254
ctags(l) 256
cu(1C) 259
cut(l) 265
date(1) 268
de(1) 272
deallocate(1) 276
deroff(1) 278

df(1B) 279
dhcpinfo(1) 280
diff(1) 282

diff3(1) 286
diffmk(1) 288
dircmp(1) 289
dis(1) 290
dispgid(1) 292
dispuid(1) 293
dos2unix(1) 294
download(l) 296
dpost(1) 298
du(1) 301
du(1B) 304

Contents

5



dump(l) 306
dumpces(1) 309
echo(1) 310
echo(1B) 314
echo(1F) 315
ed(1) 316
edit(l) 328
egrep(l) 332
eject(l) 335
elfdump(l) 339
enable(1) 341

env(l) 343
eqn(l) 345
error(l) 350
ex(1) 354

exec(l) 363
exit(l) 365
expand(l) 367
exportfs(1B) 369
expr(l) 370
expr(1B) 373
exstr(1) 376
face(1) 380
factor(l1) 381
fastboot(1B) 382
fdformat(1) 383
fgrep(l) 388
file(1) 390
file(1B) 392
filesync(l) 394
find(1) 401
finger(1) 408
fmlcut(1F) 411
fmlexpr(1F) 413
fmlgrep(1F) 416
fmli(1) 418
fmt(1) 421

6 man pages section 1: User Commands * December 2001 (Beta)



fmtmsg(1) 422
fnattr(1) 427
fnbind(1) 430
fnlist(1) 432
fnlookup(1) 434
fnrename(1) 435
fnsearch(l) 436
fnunbind(1) 442
fold(1) 443
from(1B) 445
ftp(1) 446
ftpcount(l) 456
ftpwho(1) 457
gecore(l) 458
gencat(l) 459

geniconvtbl(l) 462
genlayouttbl(l) 465

genmsg(l) 480
getconf(l) 486
getfacl(l) 491
getfrm(1F) 495
getitems(1F) 496
getopt(1) 497
getoptcvt(l) 499
getopts(1) 502
gettext(l) 508
gettxt(1) 510
glob(1) 512
gprof(l) 513
graph(l) 518
grep(l) 520
groups(l) 525
groups(1B) 526
grpck(1B) 527
hash(1) 528
head(1) 530
history(1) 532

Contents

7



hostid(1) 541
hostname(1) 542
iconv(l) 543
indicator(1F) 545
indxbib(1) 546
install(1B) 547
ipcrm(1) 549
ipes(l) 550
isainfo(1) 554
isalist(1) 556
jobs(l) 557
join(l) 564
kbd(1) 567
kdestroy(1) 570
keylogin(1) 571
keylogout(1) 572
kill(1) 573
kinit(1) 577
klist(1) 581
kpasswd(1) 583
ksh(1) 584
ktutil(l) 634
last(1) 636
lastcomm(1) 638
1d(1) 640
1d(1B) 652
Idap(1) 653
Idapdelete(1) 657
Idaplist(1) 659
ldapmodify(1) 663
ldapmodrdn(l) 667
Idapsearch(l) 669
Idd(1) 673
Id.so.1(1) 677
let(1) 684
lex(1) 685
limit(1) 697

8 man pages section 1: User Commands * December 2001 (Beta)



line(1) 701
lint(1B) 702
list_devices(1) 704
listusers(1) 706
llc2_autoconfig(l) 707
llc2_config(1) 708
llc2_stats(1) 710
In(1) 718
In(1B) 721
loadkeys(1) 724
locale(1) 725
localedef(1) 728
logger(1) 732
logger(1B) 734
login(1) 736
logname(1) 742
logout(1) 743
look(1) 744
lookbib(1) 745
lorder(1) 746
Ip(1) 747
Ipc(1B) 753
Ipq(1B) 757
lpr(1B) 759
Iprm(1B) 763
lpstat(1) 765
Iptest(1B) 769

Is(1) 770
Is(1B) 776
ma(l) 779

mach(l) 784
machid(1) 785
mail(1B) 787
mailcompat(l) 788
mailp(1) 789
mailq(1) 791
mailstats(1) 793

Contents 9



mailx(1) 795
make(1S) 817
man(l) 852
mconnect(l) 858
mcs(l) 859
mdb(1) 861
mesg(l) 901
message(1F) 902
mixerctl(1) 904
mkdir(1) 906
mkmsgs(1) 908
mkstr(1B) 910
more(l) 912
mp(1) 918
mpss.so.1(1) 924
msgfmt(l) 927

mt(l) 933
mv(l) 936
nawk(l) 939
nca(l) 960

ncab2clf(1) 962
ncakmod(1) 964
netscape(l) 965
newform(1) 970
newgrp(l) 973
news(l) 975
newtask(l) 976
nice(l) 978

nis+(1) 980
niscat(l) 995
nischgrp(l) 998
nischmod(1) 1000
nischown(1) 1003
nischttl(1) 1005
nisdefaults(1) 1007
niserror(1) 1010
nisgrpadm(1) 1011

10 man pages section 1: User Commands * December 2001 (Beta)



nisin(1) 1015
nisls(1) 1017
nismatch(1) 1019
nismkdir(1) 1022
nisopaccess(1) 1025
nispasswd(1) 1028
nisrm(1) 1032
nisrmdir(1) 1033
nistbladm(1) 1035
nistest(1) 1041
nl(1) 1043
nm(1) 1046
nohup(1) 1051
nroff(1) 1054
od(1) 1057
on(l) 1063
optisa(l) 1065
pack(l) 1066
pagesize(1) 1069
passwd(l) 1070
paste(l) 1076
patch(1) 1079
pathchk(l) 1084
pathconv(1F) 1087
pax(1l) 1089
perl(1) 1098
pfexec(l) 1106
pg(1) 1107
pgrep(1) 1112
pkginfo(1) 1116
pkgmk(1) 1118
pkgparam(1) 1121
pkgproto(1) 1123
pkgtrans(1) 1125
plimit(1) 1127
plot(1B) 1129
postdaisy(1) 1131

Contents

1



postdmd(1) 1133
postio(1) 1135
postmd(l) 1138
postplot(1) 1141
postprint(l) 1143
postreverse(l) 1145
posttek(1) 1147
ppgsz(l) 1149
pr(l) 1151
praliases(l) 1155
prctl(l) 1156
preap(l) 1159
prex(l) 1161
print(1) 1172
printenv(1B) 1173
printf(1) 1174
priocentl(1) 1179
proc(1) 1190
prof(l) 1193
profiles(1) 1197
projects(1) 1199
ps(1) 1200
ps(1B) 1209
pvs(l) 1212
pwd(1) 1215
ranlib(1) 1216
rcp(1) 1217
rdist(1) 1219
read(l) 1224
readfile(1F) 1227
readonly(1) 1228
refer(1) 1229
regemp(1) 1231
regex(1F) 1233
reinit(1F) 1235
renice(1) 1236
reset(1F) 1239

12  man pages section 1: User Commands * December 2001 (Beta)



rlogin(1) 1240
rm(l) 1243
rmformat(1) 1247
roffbib(1) 1253
roles(1) 1255
rpcgen(l) 1257
rpm2cpio(1) 1262
rsh(1) 1263
run(1F) 1267
runat(l) 1269
rup(l) 1272
rup(1C) 1273
ruptime(1) 1274
rusage(1B) 1275
rusers(1) 1277
rwho(l) 1278
sag(l) 1279
sar(l) 1281
sces(l) 1286
sccs-admin(l) 1295
sccs-cde(1) 1299
sccs-comb(1) 1301
sces-delta(l) 1303
sccs-get(1) 1306
sccs-help(1) 1312
sces-prs(l) 1313
sces-prt(l) 1317
sccs-rmdel(1) 1320
sccs-sact(1) 1321
sces-scesdiff(1) 1322
sccs-unget(l) 1323
sces-val(l) 1324
scp(l) 1326
script(l) 1328
sdiff(1) 1329
sed(1) 1331
sed(1B) 1338

Contents 13



set(1) 1344
set(1F) 1349
setcolor(1F) 1351
setfacl(1) 1352
setpgrp(l) 1356
sftp(1) 1357
sh(1) 1360
shell(1F) 1378
shell_builtins(1) 1379
shift(1) 1383
shutdown(1B) 1384
size(l) 1385
sleep(1) 1387
smart2cfg(l) 1388
soelim(1) 1390
solregis(1) 1391
sort(l) 1394
sortbib(1) 1401
sotruss(1) 1403
spell(1) 1405
spline(1) 1408
split(1) 1409
srchixt(1) 1411
ssh(l) 1414
ssh-add(1) 1423
ssh-agent(1) 1425
ssh-http-proxy-connect(1) 1427
ssh-keygen(1) 1429
ssh-socks5-proxy-connect(1) 1432
strchg(l) 1434
strings(1) 1437
strip(1) 1439
stty(1) 1441
stty(1B) 1450
sum(l) 1457
sum(1B) 1458
suspend(l) 1459

14  man pages section 1: User Commands ¢ December 2001 (Beta)



symorder(1) 1460
sysV-make(1) 1461
tabs(1) 1468
tail(1) 1472
talk(l) 1475
tar(1) 1478
tbl(1) 1489
tcopy(l) 1491
tee(l) 1492
telnet(1) 1493
test(1) 1503
test(1B) 1511
test(1F) 1513
titp(1) 1515
time(1) 1518
times(1) 1521
timex(1) 1522
tip(1) 1524
tnfdump(l) 1533
tnfxtract(l) 1538
touch(1) 1540
touch(1B) 1543
tplot(1) 1544
tput(l) 1545
tr(1) 1549
tr(1B) 1554
trap(l) 1555
troff(1) 1557
true(l) 1560
truss(l) 1561
tset(1B) 1568
tsort(1) 1573
tty(1) 1575
type(l) 1576
typeset(l) 1577
ucblinks(1B) 1579
ul(l) 1580

Contents 15



umask(l) 1581
uname(l) 1584
unifdef(1) 1587
uniq(1) 1589
units(1) 1591
unix2dos(1) 1593
uptime(1) 1595
users(1B) 1596
uucp(1C) 1597
uuencode(1C) 1601
uuglist(1C) 1604
uustat(1C) 1605
uuto(1C) 1609
uux(1C) 1612
vacation(1) 1616

ve(l) 1619
vgrind(l) 1623
vi(l) 1627

vipw(1B) 1637
volcancel(1) 1638
volcheck(1) 1639
volmissing(1) 1641
volrmmount(l) 1642
vsig(1F) 1644

w(l) 1645
wait(l) 1647
we(l) 1650

what(1) 1652
whatis(1) 1653
whereis(1B) 1654
which(l) 1656
who(1) 1657
whoami(1B) 1660
whocalls(l) 1661
whois(1) 1662
write(1) 1663
xargs(l) 1666

16 man pages section 1: User Commands ¢ December 2001 (Beta)



xgettext(l) 1671
xstr(l) 1673
yacc(l) 1675
yes(l) 1679
ypcat(l) 1680
ypmatch(l) 1681
yppasswd(l) 1682
ypwhich(1) 1683

Index 1685

Contents

17



18 man pages section 1: User Commands ¢ December 2001 (Beta)



Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the
information it references:

m  Section 1 describes, in alphabetical order, commands available with the operating
system.

m  Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

®  Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

m  Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

m  Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

m  Section 5 contains miscellaneous documentation such as character-set tables.
®  Section 6 contains available games and demos.

m  Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

19



m  Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

m  Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

®  Section 9F describes the kernel functions available for use by device drivers.

m  Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename

Separator. Only one of the arguments
separated by this character can be
specified at a time.

{} Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

20 man pages section 1: User Commands * December 2001 (Beta)



PROTOCOL

DESCRIPTION

IOCTL

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

This section occurs only in subsection 3R to
indicate the protocol description file.

This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioct1(2) system call is called
ioctl and generates its own heading. ioct1 calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioct1 calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output — standard output,
standard error, or output files — generated by the
command.

If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or -1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do

not return values, so they are not discussed in
RETURN VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 21



22

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example$%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

This section lists references to other man pages,
in-house documentation, and outside publications.

man pages section 1: User Commands * December 2001 (Beta)



DIAGNOSTICS

WARNINGS

NOTES

BUGS

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 23



24 man pages section 1: User Commands * December 2001 (Beta)



Introduction

25



Intro(1)
NAME

DESCRIPTION

OTHER
SECTIONS

Manual Page
Command Syntax

Intro — introduction to commands and application programs

This section describes, in alphabetical order, commands available with this operating

system.

Pages of special interest are categorized as follows:

1B
1C
1F

1S

Commands found only in the SunOS/BSD Compatibility Package.
Commands for communicating with other systems.

Commands associated with Form and Menu Language Interpreter
(FMLI).

Commands specific to the SunOS system.

See these sections of the man pages section 1M: System Administration Commands for

more information.

®  Section 1M in this manual for system maintenance commands.

m  Section 4 of this manual for information on file formats.

m  Section 5 of this manual for descriptions of publicly available files and
miscellaneous information pages.

m  Section 6 in this manual for computer demonstrations.

For tutorial information about these commands and procedures, see:

m  Solaris Advanced User’s Guide

Unless otherwise noted, commands described in the SYNOPSIS section of a manual
page accept options and other arguments according to the following syntax and
should be interpreted as explained below.

name [-option...] [cmdarg...] where:

[]

name

{}

option

noargletter

argletter

Surround an option or cmdarg that is not required.
Indicates multiple occurrences of the option or cmdarg.
The name of an executable file.

The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

u

(Always preceded by a “-".) noargletter... or, argletter optargl, ...]

A single letter representing an option without an option-argument.
Note that more than one noargletter option can be grouped after
one “—” (Rule 5, below).

A single letter representing an option requiring an
option-argument.

26 man pages section 1: User Commands e Last Revised 1 Nov 1999



Command Syntax
Standard: Rules

ATTRIBUTES
SEE ALSO

DIAGNOSTICS

Intro(1)

optarg An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter must be
separated by commas, or separated by a tab or space character and
quoted (Rule 8, below).

cmdarg Path name (or other command argument) not beginning with “-”,
or “=” by itself indicating the standard input.

These command syntax rules are not followed by all current commands, but all new
commands will obey them. getopts(1) should be used by all shell procedures to
parse positional parameters and to check for legal options. It supports Rules 3-10
below. The enforcement of the other rules must be done by the command itself.

1. Command names (name above) must be between two and nine characters long.
Command names must include only lower-case letters and digits.
Option names (option above) must be one character long.

“u_n

All options must be preceded by

7

Options with no arguments may be grouped after a single

S

The first option-argument (optarg above) following an option must be preceded by
a tab or space character.

N

Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be separated by
commas or separated by tab or space character and quoted (—o xxx,z,yy or — o
"XXx z yy").

9. All options must precede operands (cmdarg above) on the command line.
10. “=—" may be used to indicate the end of the options.
11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their significance in
ways determined by the command with which they appear.

13. “~” preceded and followed by a space character should only be used to mean
standard input.

See attributes(5) for a discussion of the attributes listed in this section.
getopts(l), wait(l), exit(2), getopt(3C), wait(3UCB), attributes(5)

Upon termination, each command returns two bytes of status, one supplied by the
system and giving the cause for termination, and (in the case of “normal” termination)
one supplied by the program [see wait(3UCB) and exit(2)]. The former byte is 0 for
normal termination; the latter is customarily O for successful execution and non-zero
to indicate troubles such as erroneous parameters, or bad or inaccessible data. It is

called variously “exit code”, “exit status”, or “return code”, and is described only
where special conventions are involved.

Introduction 27



Intro(1)

WARNINGS | Some commands produce unexpected results when processing files containing null
characters. These commands often treat text input lines as strings and therefore
become confused upon encountering a null character (the string terminator) within a
line.

28 man pages section 1: User Commands e Last Revised 1 Nov 1999



User Commands

29



acctcom(1)

30

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

acctcom — search and print process accounting files

acctcom [-abfhikmgrtv] [-C sec] [-e time]l [-E time] [-g groupl
[-H factor] [-I chars] [-1 line]l [-n pattern] [-o output-file] [-O sec]
[-s time] [-S time] [-u user] [filename..]

The acctcom utility reads filenames, the standard input, or /var/adm/pacct, in the
form described by acct(3HEAD) and writes selected records to standard output. Each
record represents the execution of one process. The output shows the COMMAND NAME,
USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU (SEC), MEAN SIZE
(K), and optionally, F (the fork () /exec () flag: 1 for fork () without exec ()),
STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS
TRNSFD, and BLOCKS READ (total blocks read and written).

A‘#’ is prepended to the command name if the command was executed with
super-user privileges. If a process is not associated with a known terminal, a *?" is
printed in the TTYNAME field.

If no filename is specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using ‘&’ in the shell), /var/adm/pacct is read;
otherwise, the standard input is read.

If any filename arguments are given, they are read in their respective order. Each file is
normally read forward, that is, in chronological order by process completion time. The
file /var/adm/pacct is usually the current file to be examined; a busy system may
need several such files of which all but the current file are found in
/var/adm/pacctincr.

The following options are supported:

-a Show some average statistics about the processes selected. The
statistics will be printed after the output records.

-b Read backwards, showing latest commands first. This option has
no effect when standard input is read.

-f Print the fork () /exec () flag and system exit status columns in
the output. The numeric output for this option will be in octal.

-h Instead of mean memory size, show the fraction of total available
CPU time consumed by the process during its execution. This “hog
factor” is computed as (total CPU time)/(elapsed time).

-1 Print columns containing the I/O counts in the output.

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-q Do not print any output records, just print the average statistics as

with the -a option.

-r Show CPU factor (user-time/(system-time + user-time)).

man pages section 1: User Commands ¢ Last Revised 11 Jan 1996



FILES

ATTRIBUTES

acctcom(1)

-t Show separate system and user CPU times.

-v Exclude column headings from the output.

-C sec Show only processes with total CPU time (system-time +
user-time) exceeding sec seconds.

-e time Select processes existing at or before time.

-E time Select processes ending at or before time. Using the same time for
both -S and -E shows the processes that existed at time.

-g group Show only processes belonging to group. The group may be
designated by either the group ID or group name.

-H factor Show only processes that exceed factor, where factor is the “hog
factor” as explained in option -h above.

- I chars Show only processes transferring more characters than the cutoff
number given by chars.

-1 line Show only processes belonging to terminal /dev/term/line.

-n pattern Show only commands matching pattern that may be a regular
expression as in regcmp(3C), except + means one or more
occurrences.

-o output-file Copy selected process records in the input data format to
output-file; suppress printing to standard output.

-0 sec Show only processes with CPU system time exceeding sec seconds.

-s time Select processes existing at or after time, given in the format
hr [ :min [ :sec]].

-S time Select processes starting at or after time.

-u user Show only processes belonging to user. The user may be specified
by a user ID, a login name that is then converted to a user ID, ‘#’
(which designates only those processes executed with superuser
privileges), or “?” (which designates only those processes
associated with unknown user IDs).

/etc/group system group file

/etc/passwd system password file

/var/adm/pacctincr active processes accounting file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability

SUNWaccu

User Commands 31



acctcom(1)

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI enabled

SEE ALSO | ps(1), acct(IM), acctcms(IM), acctcon(IM), acctmerg(1M), acctpre(1M),
acctsh(1M), fwtmp(1M), runacct(1M), su(1IM), acct(2), regecmp(3C),
acct(BHEAD), utmp(4), attributes(b)

System Administration Guide: Basic Administration

NOTES | acctcom reports only on processes that have terminated; use ps(1) for active
processes.

32 man pages section 1: User Commands ¢ Last Revised 11 Jan 1996



NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

adb(1)
adb — general-purpose debugger
adb [-kw] [-I dir] [-P prompt] [-V mode] I[object [core]]

The adb utility is an interactive, general-purpose debugger. It can be used to examine
files and provides a controlled environment for the execution of programs.

The adb utility is now implemented as a link to the mdb(1) utility in Solaris 9. mdb(1)
is a low-level debugging utility that can be used to examine user processes as well as
the live operating system or operating system crash dumps. The new mdb(1) utility
provides complete backwards compatibility with the existing syntax and features of
adb, including support for processing adb macro files. The Solaris Modular Debugger
Guide and mdb(1) man page describes the features of mdb, including its adb
compatibility mode. This mode will be activated by default when the adb link is
executed.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmdb (32-bit)
SUNWmdbx (64-bit)

mdb(1), attributes(5)

Solaris Modular Debugger Guide

User Commands 33



addbib(1)
NAME | addbib — create or extend a bibliographic database
SYNOPSIS | addbib [-al [-p promptfile] database

DESCRIPTION | When addbib starts up, answering y to the initial Instructions? prompt yields
directions; typing n or RETURN) skips them. addbib then prompts for various
bibliographic fields, reads responses from the terminal, and sends output records to
database. A null response (just RETURN) means to leave out that field. A ‘~" (minus
sign) means to go back to the previous field. A trailing backslash allows a field to be
continued on the next line. The repeating Cont inue? prompt allows the user either to
resume by typing y or RETURN), to quit the current session by typing n or g, or to
edit database with any system editor (see vi(1l), ex(1), ed(1)).

OPTIONS | -a Suppress prompting for an abstract; asking for an abstract is the
default. Abstracts are ended with a CTRL-D.

-p promptfile Use a new prompting skeleton, defined in promptfile. This file
should contain prompt strings, a TAB, and the key-letters to be
written to the database.

Bibliography Key | The most common key-letters and their meanings are given below. addbib insulates
Letters | you from these key-letters, since it gives you prompts in English, but if you edit the
bibliography file later on, you will need to know this information.

A Author’s name

o°

o\°
o

Book containing article referenced

o©
(@]

City (place of publication)

oe
g

Date of publication

o°
=

Editor of book containing article referenced

o\°
e

Footnote number or label (supplied by refer)

Government order number

o©
@

oe
jas]

Header commentary, printed before reference

o°
—

Issuer (publisher)

o\
o

Journal containing article

$K Keywords to use in locating reference

$L Label field used by -k option of refer

$M Bell Labs Memorandum (undefined)

$N Number within volume

%0 Other commentary, printed at end of reference
%P Page number(s)

%$Q Corporate or Foreign Author (unreversed)

34 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



EXAMPLES

ATTRIBUTES

SEE ALSO

o° o oe o\° o\°
X < A n =

o\°

Y

EXAMPLE 1 Editing the bibliography file

, Z

Report, paper, or thesis (unpublished)

Series title

Title of article or book

Volume number

Abstract — used by roffbib, not by refer

Ignored by refer

addbib(1)

Except for A, each field should be given just once. Only relevant fields should be

supplied.

%A Mark Twain

ST Life on the Mississippi
%I Penguin Books

%C New York

%D 1978

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWdoc

ed(1), ex(1), indxbib(1), lookbib(l), refer(l), roffbib(1), sortbib(l), vi(1),

attributes(b)

User Commands

35



alias(1)
NAME

SYNOPSIS

csh

ksh

DESCRIPTION

[usr/bin/alias

[usr/bin/unalias

csh

ksh

alias, unalias — create or remove a pseudonym or shorthand for a command or series
of commands

/usr/bin/alias [alias-name [= string..]]
/usr/bin/unalias alias-name...
/usr/bin/unalias -a

alias [name [def]]

unalias patiern

alias [-tx] [name [= value]..]

unalias name...

The alias and unalias utilities create or remove a pseudonym or shorthand term
for a command or series of commands, with different functionality in the C-shell and
Korn shell environments.

The alias utility creates or redefines alias definitions or writes the values of existing
alias definitions to standard output. An alias definition provides a string value that
replaces a command name when it is encountered.

An alias definition affects the current shell execution environment and the execution
environments of the subshells of the current shell. When used as specified by this
document, the alias definition will not affect the parent process of the current shell nor
any utility environment invoked by the shell.

The unalias utility removes the definition for each alias name specified. The aliases
are removed from the current shell execution environment.

alias assigns def to the alias name. def is a list of words that may contain escaped
history-substitution metasyntax. name is not allowed to be alias or unalias. If def is
omitted, the alias name is displayed along with its current definition. If both name and
def are omitted, all aliases are displayed.

Because of implementation restrictions, an alias definition must have been entered on
a previous command line before it can be used.

unalias discards aliases that match (filename substitution) pattern. All aliases may be
removed by ‘unalias *'.

alias with no arguments prints the list of aliases in the form name=value on standard
output. An alias is defined for each name whose value is given. A trailing space in
value causes the next word to be checked for alias substitution. The -t flag is used to
set and list tracked aliases. The value of a tracked alias is the full pathname
corresponding to the given name. The value becomes undefined when the value of
PATH is reset but the aliases remained tracked. Without the -t flag, for each name in
the argument list for which no value is given, the name and value of the alias is
printed. The -x flag is used to set or print exported aliases. An exported alias is defined

36 man pages section 1: User Commands ¢ Last Revised 28 Sep 2001



OPTIONS

ksh

OPERANDS
alias

unalias

OUTPUT

EXAMPLES

alias(1)

for scripts invoked by name. The exit status is non-zero if a name is given, but no value,

and no alias has been defined for the name.

The aliases given by the list of names may be removed from the alias list with
unalias.

The following option is supported by unalias:

-a Removes all alias definitions from the current shell execution environment.

The following option is supported by alias:

-t Sets and lists tracked aliases.

The following operands are supported:

alias-name Write the alias definition to standard output.
alias-name The name of an alias to be removed.
alias-name=string Assign the value of string to the alias alias-name.

If no operands are given, all alias definitions will be written to standard output.

The format for displaying aliases (when no operands or only name operands are
specified) is:

"$s=%s\n" name, value

The value string will be written with appropriate quoting so that it is suitable for
reinput to the shell.

EXAMPLE 1 Modifying a command’s output

This example specifies that the output of the 1s utility is columnated and more
annotated:

example% alias ls="1ls —-CF"

EXAMPLE 2 Repeating previous entries in the command history file

This example creates a simple “redo” command to repeat previous entries in the
command history file:

example% alias r='fc —s’

EXAMPLE 3 Specifying a command’s output options

This example provides that the du utility summarize disk output in units of 1024
bytes:

example% alias du=du -k

User Commands

37



alias(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

alias

unalias

ATTRIBUTES

SEE ALSO

EXAMPLE 4 Dealing with an argument that is itself an alias name

This example sets up the nohup utility so that it can deal with an argument that is
itself an alias name:

example% alias nohup="nohup "

See environ(5) for descriptions of the following environment variables that affect the
execution of alias and unalias: LC CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 Successful completion.

>0 One of the alias-name operands specified did not have an alias definition, or
an error occurred.

>0 One of the alias-name operands specified did not represent a valid alias
definition, or an error occurred.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

csh(1), ksh(1l), shell builtins(l), attributes(5), environ(5)

38 man pages section 1: User Commands ¢ Last Revised 28 Sep 2001



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

DIAGNOSTICS

allocate(1)
allocate — device allocation
allocate [-s] [-U uname] device
allocate [-s] [-U unamel -g dev -type

allocate [-s] [-U uname] -F device

allocate manages the ownership of devices through its allocation mechanism. It
ensures that each device is used by only one qualified user at a time.

The device argument specifies the device to be manipulated. To preserve the integrity
of the device’s owner, the allocate operation is executed on all the device special files
associated with that device.

The argument dev—type, is the device type to be operated on. The argument dev—type,
can only be used with the -g option.

The default allocate operation, allocates the device special files associated with device
to the uid of the current process.

If the -F option is specified, the device cleaning program is executed when allocation
is performed. This cleaning program is found in /etc/security/1ib. The name of
this program is found in the device_allocate(4) entry for the device in the dev—exec
field.

Only authorized users may allocate a device. The required authorizations are specified
indevice allocate(4).

-g dev—type Allocate a non—allocated device with a device-type
matching dev—type .

-s Silent. Suppresses any diagnostic output.

-F device Reallocate the device allocated to another user. This

option is often used with -U to reallocate a specific
device to a specific user. Only a user with the
solaris.devices.revoke authorization is
permitted to use this option.

-U uname Use the user ID uname instead of the user ID of the
current process when performing the allocate
operation. Only a user with the
solaris.devices.revoke authorization is
permitted to use this option.

allocate returns an non-zero exit status in the event of an error.

User Commands 39



allocate(1)
FILES

ATTRIBUTES

SEE ALSO

NOTES

/etc/security/device allocate
/etc/security/device maps
/etc/security/dev/*

/etc/security/lib/*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

bsmconv(lM), device allocate(4), device maps(4), attributes(b)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

40 man pages section 1: User Commands e Last Revised 17 Jan 2001



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

ATTRIBUTES

SEE ALSO

amt(1)
amt — run abstract machine test

amt [-g]

The amt command is for use in a Common Criteria security certified system. The
command is used to verify that the low level functions necessary to enforce the object
reuse requirements of the Controlled Access Protection Profile are working correctly.
/usr/bin/amt is a shell script that executes tests specific to your system. For a 32-bit
system, the tests run as a 32-bit application. For a 64-bit system, the tests run twice;
once as a 32-bit application and once as a 64-bit application.

amt lists test results with a "pass" or "fail" for each test it performs, unless output is
suppressed with the -s option.

The following option is supported:

S Suppresses output.

The following error values are returned:

0 All tests passed.
>0 Count of the number of tests that failed.
<0 Incorrect command line argument.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWGsu (32-bit), SUNWcsxu (64-bit)
Interface Stability Evolving
attributes(d)

User Commands 41



answerbook2(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

NOTES

answerbook?2 — online documentation system

/usr/dt/bin/answerbook2 [-h]

The answerbook?2 utility brings up the default web browser and shows any online
documentation installed in the default AnswerBook2 server. If an AnswerBook2 server
has not been defined, answerbook2 checks if there is one running on the user’s
machine. If so, it displays that server’s information.

To define a default AnswerBook2 server, use the environment variable,
AB2 DEFAULTSERVER.

This functionality is also accessible through the AnswerBook2 option on the CDE front
panel Help menu.

The following option is supported:

-h Displays a usage statement.

At startup time, answerbook?2 starts up the default web browser (for example,
HotJava or Netscape) and displays the URL specified for the default AnswerBook2
server. If no default AnswerBook2 server is defined, it looks for
http://localhost:8888.

AB2 DEFAULTSERVER Fully-qualified URL that identifies the default
AnswerBook2 server to use. For example:
http://imaserver.eng.sun.com: 8888/

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWab2m

ab2admin(1M), ab2cd(1M), attributes(5)

Use the online Help system to find out more about the AnswerBook2 product, once
the web browser is opened and the AnswerBook2 library can be viewed.

42 man pages section 1: User Commands e Last Revised 24 Feb 1998



NAME
SYNOPSIS

DESCRIPTION

appcert(1)
appcert — examine application-level products for unstable use of Solaris interfaces

appcert [-h] [-nl] [-f infile] [-w working dir] [-B] [-L] [-S] {obj |
dir...}

The appcert utility examines an application’s conformance to the Solaris Application
Binary Interface (ABI). The Solaris ABI defines the runtime library interfaces in Solaris
that are safe and stable for application use. More specifically, appcert identifies any
dependencies on unstable runtime interfaces, as well as certain other risks that could
cause the product to fail to work on a subsequent release of Solaris.

appcert checks for:

®  Private symbol usage in Solaris libraries. These are private symbols, that is, functions
or data, that are not intended for developer consumption. They are interfaces that
Solaris libraries use to call one another. These symbols might change their semantic
behavior or even disappear altogether (so-called "demoted" symbols), so it is a
good practice to make sure your application does not depend upon any of them.

m  Static linking. In particular, this refers to static linking of archives 1ibc.a,
libsocket.a, and 1ibnsl. a, that is, instead of dynamically linking the
corresponding shared object . so’s. Because the semantics of private symbol calls
from one Solaris library to another can change from one release to another, it is not
a good practice to "hardwire" library code into your binary objects.

m  Unbound symbols. These are library symbols (that is, functions or data) that the
dynamic linker could not resolve when appcert was run. This might be an
environment problem (for example, LD_LIBRARY_ PATH) or a build problem (for
example, not specifying -1/ib and/or -z defs with compiling). They are flagged
to point these problems out and in case a more serious problem is indicated.

An entire product can be readily examined by appcert (that is, if the product is a
collection of many programs and supporting shared objects) by referring appcert to
the directories where the product is installed.

To perform its task, appcert constructs a profile of interface dependencies for each
object file within the product (whether an executable object or shared object), to
determine all the Solaris system interfaces that are depended upon. (Notice that
appcert uses the Solaris runtime linker to make this determination.) These
dependency profiles are then compared to a definition of the Solaris ABI to identify
any interfaces that are Private (unsafe and unstable for application-level use).

appcert generates a simple roll-up report that indicates which of the product’s
components, if any, had liabilities and what those liabilities were. The report aids
developers who are examining their product’s release-to-release stability.

Notice that appcert produces complete interface dependency information, both the
Public (safe and stable) Solaris interfaces and the Private (non-ABI) interfaces. This
information can also be examined for each product component, if you want.

User Commands 43



appcert(1)

44

IMPORTANT: appcert must run in the same environment in which the application
being checked runs. See NOTES.

OPTIONS | The following options are supported:

-B

- £ infile

-S

-w working_dir

If appcert is run in "batch" mode, the output report will contain
one line per binary, beginning with PASS if no problems were
detected for the binary, FAIL if any problems were found, or INC
if the binary could not be completely checked. Do not interpret
these labels too literally. For example, PASS just means that none
of the appcert warnings were triggered. These strings are flush
left and so can be selected via grep “FAIL ..., and so forth.

Specifies the file infile that contains a list of files (one per line) to
check. This list is appended to the list determined from the
command line operands (see OPERANDS below).

Prints out the usage information.

appcert examines your product for the presence of shared
objects. If it finds some, it appends the directories they reside in to
LD_LIBRARY_ PATH. Use this flag to prevent appcert from doing
this.

When searching directories for binaries to check, this option does
not follow symbolic links. See £ind(1).

Appends Solaris library directories (that is,
/usr/openwin/lib:/usr/dt/1lib) to LD _LIBRARY PATH.

Identifies the directory in which to run the library components and
create temporary files (default is /tmp).

OPERANDS | The following operands are supported:

{obj | dir} ...

A complete list of objects and/or directories that contain the
objects constituting the product to be checked. appcert
recursively searches directories looking for object files; non-object
files are ignored.

EXIT STATUS | The following exit values are returned:

0 appcert ran successfully and found no potential binary stability
problems.

1 appcert failed to run successfully.

2 Some of the objects checked have potential binary stability problems.

3 No binary objects were located that could be checked.

LIMITATIONS | If the object file to be examined depends on libraries, those dependencies must be

recorded in it (by using the compiler’s -1 switch).

man pages section 1: User Commands ¢ Last Revised 15 Dec 2000



OUTPUT FILES

appcert(1)

If the object file to be examined depends on other shared libraries, those libraries must
be accessible via LD_LIBRARY PATH or RPATH when appcert is run.

To check 64-bit applications, the machine must be running the 64-bit Solaris kernel.
See isalist(1). Also, the checks for static linking are currently not done on 64-bit
applications.

appcert cannot examine:

m  Object files that are completely or partially statically linked.

Completely statically linked objects are reported as unstable.

m  Executable files that do not have execute permission set.

These are skipped. Shared objects without execute permission are not skipped.

®  Object files that are setuid root.

Due to limitations in 1dd(1), these are skipped. Copy and/or change the
permissions to check them.

®m  Non-ELF file executables such as shell scripts.

®  Non-C language interfaces to Solaris; for example, C++ and Java.

The code itself need not be in C as long as the calls to Solaris libaries are in C.

appcert records its findings in the following files in the working directory

Index A mapping between checked binaries and the subdirectory in the
working directory in which the output specific to that binary can
be found.

Report A copy of the rollup report that was displayed on stdout when

appcert was run.

Skipped Alist of binaries that appcert was asked to check but had to skip,
along with a brief reason why each was skipped.

In addition, there is per-object information in the subdirectories under

check.demoted_symbols  Alist of symbols suspected to be demoted Solaris
symbols.

check.dynamic.private  Alist of private Solaris symbols to which the object
makes direct bindings.

User Commands 45



appcert(1)

Private Symbol
Use

Demoted Symbols

Unbound Symbols

check.dynamic.public A list of public Solaris symbols to which the object
makes direct bindings.

check.dynamic.unbound  Alist of symbols not bound by the dynamic linker
when 1dd -r was run. For convenience, 1dd output
lines containing "file not found" are also
included.

summary .dynamic A pretty-printed summary of dynamic bindings for
the objects examined, including tables of Public and
Private symbols used from each Solaris library.

Other files are temporary files used internally by appcert.

Private symbols are functions or data variables in a Solaris library that are not
intended for developer or external use. These symbols are interfaces that the Solaris
libraries use to call and communicate with one another. They are marked in pvs(1)
output with the symbol version name "SUNWprivate".

Private symbols can change their semantic behavior or even disappear altogether
("demoted" or "deprecated" symbols), so your application should not depend upon
any of them.

Demoted symbols are functions or data variables in a Solaris library that were once
private to that library and have been removed (or possibly scoped local to the library)
in a later Solaris release. If your application directly calls one of these demoted
symbols, it will fail to run (relocation error) on the release in which the symbol was
removed and releases thereafter.

In some rare cases, a demoted symbol will return in a later release, but nevertheless
there are still some releases on which the application will not run.

Sun Microsystems Inc. performed most of the library scoping in the transition from
Solaris 2.5.1 to 2.6. This action was done to increase binary stability. By making these
completely internal interfaces invisible (that is, they cannot be dynamically linked
against), a developer cannot accidentally or intentionally call these interfaces. For
more information, see the Linker and Libraries Guide, in particular the chapter on
versioning. This document may be found online at http://docs.sun. com.

Unbound symbols are library symbols (that is, functions or data) referenced by the
application that the dynamic linker could not resolve when appcert was run. Note:
appcert does not actually run your application, so some aspect of the environment
that affects dynamic linking might not be set properly.

Unbound symbols do not necessarily indicate a potential binary stability problem.
They only mean that when appcert was run, the runtime dynamic linker could not
resolve these symbols.

46 man pages section 1: User Commands e Last Revised 15 Dec 2000



No Bindings
Found

appcert(1)

Unbound symbols might be due to LD_LIBRARY PATH not being correctly set. Make
sure it is set, so that all of your binary objects can find all of the libraries they depend
on (either your product’s own libraries, Solaris libraries, or those of a third party).
Then re-run appcert.

You might find it useful to write a shell script that sets up the environment correctly
and then runs appcert on the binaries you want to check.

Another common cause for unbound symbols is when a shared object under test has
not recorded its dynamic dependencies, that is, at build time the -1 switch was not
supplied to the compiler and 1d(1). So the shared object requires that the executables
that link against it have the correct dependencies recorded.

Notice that such a shared object can either be linked in the standard way (that is,
specified at an executable’s build time) or dynamically opened (for example, an
executable calls dlopen(3DL) on the shared object sometimes when running). Either
case can give rise to unbound symbols when appcert is run. The former can usually
be resolved by setting LD_LIBRARY PATH appropriately before running appcert.
The latter (d1open) is usually difficult to resolve. Under some circumstances, you
might be able to set LD_PRELOAD appropriately to preload the needed libraries, but
this procedure does not always work.

How do you know if the environment has been set up correctly so that there will be no
unbound symbols? It must be set up so that running 1dd -r on the binary yields no
“file not found” or “symbol not found” errors. See 1d.so.1(1) and 1dd(1) for
more information on dynamic linking.

In any event, appcert flags unbound symbols as a warning in case they might
indicate a more serious problem. Unbound symbols can be an indicator of
dependencies on demoted symbols (symbols that have been removed from a library or
scoped local to it). Dependencies on demoted symbols will lead to serious binary
stability problems.

However, setting up the environment properly should remove most unbound
symbols. In general, it is good practice to record library dependencies at build time
whenever possible because it helps make the binary object better defined and
self-contained. Also recommended is using the -z defs flag when building shared
objects, to force the resolution of all symbols during compilation. See 1d(1) for more
information.

appcert runs /bin/1dd -r on each binary object to be tested. It sets the
environment variable LD DEBUG="“files,bindings”. (See 1dd(1l) and 1d.so0.1(1)
for more information). If that command fails for some reason, appcert will have no
dynamic symbol binding information and will find “no bindings”.

appcert can fail if any of the following is true:

®  The binary object does not have read permission.

®  The binary object is SUID or SGID and the user does not have sufficient privileges.

User Commands 47



appcert(1)

Obsolete Library

Use of
sys_errlist/sys_nerr

Use of Strong vs.
Weak Symbols

NOTES

m  The binary object is an executable without the execute permission bit set.

®  The binary object is a 64-bit application, but the kernel running on the current
machine supports only 32-bit applications.

®  The binary object is completely statically linked.

®  The binary object has no library dependency information recorded.

Other cases exist as well (for example, out of memory). In general, this flag means that
appcert could not completely examine the object due to permissions or environment.
Try to modify the permissions or environment so that the dynamic bindings can be
recorded.

An obsolete library is one whose use is deprecated and that might, in some future
release, be removed from Solaris altogether. appcert flags these because applications
depending on them might not run in future releases of Solaris. All interfaces,
including Private ones, in an obsolete library are frozen and will not change.

Direct use of the symbols sys errlist or sys nerr presents a risk in which
reference might be made past the end of the sys_errlist array. These symbols are
deprecated in 32-bit versions of Solaris and are absent altogether in 64-bit versions.
Use strerror(3C) instead.

The “strong” symbols (for example, socket) associated with “weak” symbols (for
example, socket ) are reserved as private (their behavior could change in the future).
Your application should only directly reference the weak symbol (usually the strong
symbols begin with “_").

Note: Under certain build environments, the strong/private symbol dependency gets
recorded into your binary instead of the weak/public one, even though the source
code doesn’t appear to reference the private symbol. Nevertheless, steps should be
taken to trace down why this is occurring and fix the dependency.

appcert needs to run in the same environment in which the application being
checked runs. Otherwise it might not be able to resolve references correctly to
interfaces in the Solaris libraries. Take the following steps:

1. Make sure that LD_LIBRARY_ PATH and any other aspects of the environment are
set to whatever settings are used when the application is run. Also make sure that
it contains the directories containing any non-Solaris shared objects that are part of
the product, so that they can be found when referenced.

2. Make sure that all the binaries to be checked:
®m  Are dynamically linked ELF objects

®m  Have execute permission set on executables (this is not necessary for shared
objects)

m  Are not SUID root (otherwise you will have to be root to check them; make
non-SUID copies and check those if necessary).

48 man pages section 1: User Commands e Last Revised 15 Dec 2000



BUGS

ATTRIBUTES

appcert(1)

You might find it useful to write a shell script that sets up the environment correctly
and then runs appcert.

Some potential problems that can be encountered are:

B appcert reports unbound symbols that appear to be part of Solaris libraries.

This is probably caused when the application uses d1open(3DL) to access a shared
object that does not have its Solaris dependencies recorded. appcert cannot
resolve symbol use in such cases, since the dynamic linker is never invoked on the
shared object, and there is no other dependency information that could be used to
resolve the Solaris symbol bindings. This can also occur with non-Solaris symbols.

To avoid this problem, make sure that when a shared object is built, its
dependencies on Solaris libraries are explicitly recorded by using the - 1lib option
on the compile line (see cc(1) and 1d(1)).

®  appcert reports that the application uses a Solaris private symbol that is not
referenced in the application’s source code.

This problem is most likely due to static linking of a Solaris library that references
that symbol. Since appcert uses the dynamic linker to resolve symbols, statically
linked libraries appear to appcert to be part of the application code (which, in a

sense, they are). This can also sometimes happen as a result of macro substitution

in a Solaris header file.

To avoid this problem, whenever possible do not statically link Solaris library
archives into your application.

B appcert does not recognize a library as part of Solaris.

Some obsolete Solaris libraries are so old that they were obsoleted before their
symbols could be versioned. Consequently, appcert cannot recognize them as
being part of Solaris.

The use of the terms “public” and “private” as equivalent to “stable” and
“unstable” is unfortunately somewhat confusing. In particular, experimental or
evolving interfaces are public in the sense that they are documented and their use is
encouraged. But they are unstable, because an application built with them might not
run on subsequent releases. Thus, they are classified as private for appcert’s
purposes until they are no longer evolving. Conversely, obsolete interfaces will
eventually disappear, and so are unstable, even though they have been public and
stable in the past and are still treated as public by appcert. Fortunately, these two
situations are rare.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWapct

Interface stability Stable

User Commands 49



appcert(1)

SEE ALSO | cc(1), £ind(1), isalist(1l), 1d4(1), 1dd(1), 1d.s0.1(1), pvs(l), dlopen(3DL),
strerror(3C), intro(4), attributes(b)

Linker and Libraries Guide

50 man pages section 1: User Commands e Last Revised 15 Dec 2000



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

apptrace(1)
apptrace — trace application function calls to Solaris shared libraries

apptrace [-f] [-F [!] tracefromlist] [-T [!] tracetolist] [-o outputfile] [
[-tv] [!] call ,..] command [command arguments]

The apptrace utility runs the executable program specified by command and traces
all calls that the program command makes to the Solaris shared libraries. Tracing means
that for each call the program makes, apptrace reports the name of the library
interface called, the values of the arguments passed, and the return value.

By default, apptrace traces calls directly from the executable object to any of the
shared objects it depends on. Indirect calls (that is, calls made between shared objects
that the executable depends upon) are not reported by default.

Calls from or to additional shared objects may be traced using the -F or -T options
(see below).

The default reporting format is a single line per call, with no formatted printing of
arguments passed by reference or of data structures.

Formatted printing providing additional argument details is obtained using the -v
option (see below).

By default, every interface provided by a shared object is traced if called. However, the
set of interfaces to be traced can be restricted, using the -t and/or -v options.

Since it is generally possible to trace calls between any of the dynamic objects linked at
runtime (the executable object and any of the shared objects depended upon), the
report of each traced call gives the name of the object from which the call was made.

apptrace traces all of the procedure calls that occur between dynamic objects via the
procedure linkage table, so only those procedure calls which are bound via the table
will be traced. See the Linker and Libraries Guide.

The following options are supported:

-f Follows all children created by fork(2). This option
will also cause the process id to be printed at the
beginning of each line.

-F [!]tracefromlist Traces calls from a comma-separated list of shared
objects. Only calls from these shared objects will be
traced. The default is to trace calls from the main
executable only. Only the basename of the shared object
is required. For example, libc will match /ust/lib/libc.so.1.
Additionally, shell style wildcard characters are
supported as described in fnmatch(5). A list preceded
by a “!”” defines a list of objects from which calls should

User Commands 51



apptrace(1)

-o outputfile

-t [!]eall, ...

-T [!]tracetolist

-v [Veall, ...

not be traced. If the tracing of calls from command is
required, then command must be a member of
tracefromlist.

apptrace output will be directed to the outputfile. By
default, apptrace output is placed on the stderr
stream of the process being traced.

Traces or excludes function calls. Those calls specified
in the comma-separated list call are traced. If the list
begins with a !, the specified function calls are excluded
from the trace output. The default is -t *. The use of
shell style wildcards is allowed.

Traces calls to a comma-separated list of shared objects.
The default is to trace calls to all shared objects. As
above, the basename is all that is required and
wildcarding is allowed. A list preceded by a “!”’
denotes a list of objects to which calls should not be
traced.

Provides verbose, formatted output of the arguments
and return values of the function calls specified (as
above in the -t option). Unlike truss(1), calls named
by the -v option do not have to be named by the -t
option. For example, apptrace -v open is equivalent
to truss -t open -v open.

EXAMPLES | EXAMPLE 1 Tracing the date command
% apptrace date
date — libc.so.l:atexit (func = O0xff3balc8) = 0x0
date — libc.so.l:atexit (func = 0x117e4) = 0x0
date — libc.so.l:setlocale(category = 0x6, locale = "") = "C"
date — libc.so.1l:textdomain (domainname =
"SUNW_OST_OSCMD") "SUNW_OST_OSCMD"
date — libc.so.l:getopt (argce = 0x1l, argv = 0xffbeed5c,
optstring = "a:u") = Oxffffffff errno = No error
date — libc.so.l:time(tloc = 0x2lecc) = 0x371397c3
date — libc.so.1:nl langinfo(item = 0x3a) = "%a %b %e %T %Z %Y"
date — libc.so.1l:1localtime(clock = 0x2lecc) = 0xff03c928
date — libc_psr.so.l:memcpy (Oxffbeeccc, 0xff03c928, 0x24)
date — libc.so.l:strftime(s = "Tue Apr 13 15:15:15 ",
maxsize = 0x400, format = "%a %b %e %T %Z %Y",
timeptr = Oxffbeeccc) = 0xlc
date — libc.so.l:puts(Tue Apr 13 15:15:15 EDT 1999
s = "Tue Apr 13 15:15:15 ") = 0x1d
date — libc.so.l:exit(status = 0)

id

52 man pages section 1: User Commands

% apptrace -v ‘*gid*’
— libc.so.l:getgid()

EXAMPLE 2 Tracing a specific set of interfaces with verbosity set

id -a

Oxa

Last Revised 12 Jul 2001



EXAMPLE 2 Tracing a specific set of interfaces with verbosity set

return = (gid_t) 10 (0xa)
id — libc.so.l:getegid() = 0xa
return = (gid_t) 10 (0xa)
id — libc.so.l:getgrgid(gid = 0xa) = 0x2238c
gid = (gid_t) 10 (0xa)
return = (struct group *) 0x2238c (struct group) ({
gr_name: (char *) 0x223a0 "staff"

gr passwd: (char *) 0x223a6 ""

gr_gid: (gid_t) 10 (O0xa)
gr mem: (char **) 0x2239c
}
id — libc.so.l:getgrgid(gid = 0Oxa) = 0x2238c
gid = (gid_t) 10 (0xa)
return = (struct group *) 0x2238c (struct group) ({
gr name: (char *) 0x223a0 "staff"

gr_passwd: (char *) 0x223a6 ""

gr gid: (gid_t) 10 (O0xa)
gr_mem: (char **) 0x2239c
}
id — libc.so.l:getgrgid(gid = 0x3) = 0x2238c
gid = (gid_t) 3 (0x3)
return = (struct group *) 0x2238c (struct group) ({
gr_name: (char *) 0x223b4 "sys"

gr passwd: (char *) 0x223b8 ""

gr_gid: (gid_t) 3 (0x3)
gr mem: (char **) 0x2239c
}
id — libc.so.l:getgrgid(gid = 0x29) = 0x2238c
gid = (gid t) 41 (0x29)
return = (struct group *) 0x2238c (struct group) ({
gr _name: (char *) 0x223a4 "opcom"
gr_passwd: (char *) 0x223aa ""
gr _gid: (gid_t) 41 (0x29)
gr_mem: (char **) 0x2239c
}
id — libc.so.l:getgrgid(gid = 0Oxe) = 0x2238c
gid = (gid_t) 14 (0xe)
return = (struct group *) 0x2238c (struct group) ({
gr_name: (char *) 0x223a0 "sysadmin"

gr passwd: (char *) 0x223a9 ""

gr_gid: (gid_t) 14 (Oxe)
gr_mem: (char **) 0x2239c
}
id — libc.so.l:getgrgid(gid = 0xd3) = 0x2238c
gid = (gid_t) 211 (0xd3)
return = (struct group *) 0x2238c (struct group) ({
gr name: (char *) 0x223a8 "test"

gr_passwd: (char *) 0x223ad ""
gr gid: (gid_t) 211 (0xd3)

apptrace(1)
(Continued)

User Commands 53



apptrace(1)

FILES

LIMITATIONS

ATTRIBUTES

EXAMPLE 2 Tracing a specific set of interfaces with verbosity set (Continued)

gr_mem: (char **) 0x2239c

}

uid=44013 (georgn) gid=10(staff) groups=10(staff),3(sys),
41 (opcom) , 14 (sysadmin) , 211 (test)

Basic runtime support for apptrace is provided by the link auditing feature of the
Solaris runtime linker (1d. so.1(1)) and the apptrace command’s use of this facility
relies on an auditing object (apptrace.so.1) keptin /usr/1ib/abi.

In order to perform formatted printing of arguments when tracing calls (as selected by
the -v option), apptrace needs to know the number and data types of the arguments
supplied to the called interface. Special runtime support shared objects are provided
which apptrace relies upon to perform formatted printing. A runtime support object
is provided for each Solaris shared library, which contains an "interceptor” function for
each interface within the shared library. These supporting shared objects are kept in
/usr/lib/abi. apptrace has a simple algorithm to map from the name of a library
interface to the name of an interceptor function in the library’s supporting
verbose-tracing shared object. If an interceptor is not found in the library’s supporting
tracing shared object, apptrace cannot determine either the number or data types of
the arguments for that interface. In this case, apptrace uses a default output format
for the call-tracing report (hex-formatted printing of the first three arguments).

In general, apptrace cannot trace calls to functions accepting variable argument lists.
There has been some clever coding in several specific cases to work around this
limitation, most notably in the printf and scanf families.

Functions that attempt to probe the stack or otherwise extract information about the
caller cannot be traced. Some examples are [gs]etcontext (), [sig]l longjmp (),
[sig]lsetjmp (), and vEork ().

Functions such as exit(2) that do not return may also produce strange output. Also,
functions that call other traced functions before returning will produce slightly
garbled output.

For security reasons, only root can apptrace setuid/setgid programs.

Tracing functions whose usage requires the inclusion of varargs.h, such as
vwprintw(3XCURSES) and vwscanw(3XCURSES), will not provide formatted
printing of arguments.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW.Gstl (32-bit)

54 man pages section 1: User Commands e Last Revised 12 Jul 2001



apptrace(1)

ATTRIBUTE TYPE ATTRIBUTE VALUE

SUNWUcstlx (64-bit)

SEE ALSO | 1d.so0.1(1), truss(l), vwprintw(3XCURSES), vwscanw(3XCURSES),
attributes(5), fnmatch(5)

Linker and Libraries Guide

User Commands 55



apropos(1)
NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

apropos — locate commands by keyword lookup

apropos keyword...

The apropos utility displays the man page name, section number, and a short
description for each man page whose NAME line contains keyword. This information is
contained in the /usr/share/man/windex database created by catman(1M). If
catman(1M) was not run, or was run with the -n option, apropos fails. Each word is
considered separately and the case of letters is ignored. Words which are part of other
words are considered; for example, when looking for ‘compile’, apropos finds all
instances of ‘compiler” also.

apropos is actually just the -k option to the man(1) command.

EXAMPLE 1 To find a man page whose NAME line contains a keyword
Try

example% apropos password

and

example% apropos editor

If the line starts ‘filename(section) . .. you can run

man -s section filename

to display the man page for filename.

EXAMPLE 2 To find the man page for the subroutine printf ()
Try

example% apropos format

and then

example% man -s 3s printf

to get the manual page on the subroutine printf ().

/usr/share/man/windex table of contents and keyword database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

CSI Enabled

56 man pages section 1: User Commands e Last Revised 20 Dec 1996



apropos(1)
SEE ALSO | man(1), whatis(1l), catman(1M), attributes(5)

DIAGNOSTICS | /usr/share/man/windex: No such file or directory
This database does not exist. catman(1M) must be run to create it.

User Commands 57



ar(1)

NAME | ar — maintain portable archive or library

SYNOPSIS | /usr/ces/bin/ar -d [-Vv] archive file..
/usr/ccs/bin/ar -m [-abiVv] [posname] archive file...
/usr/ccs/bin/ar -p [-sVv] archive [file..]
/usr/ccs/bin/ar -q [-cVv] archive file...
/usr/ccs/bin/ar -r [-abciuVv] [posname] archive file...
/usr/ccs/bin/ar -t [-sVv] archive [file..]
/usr/ccs/bin/ar -x [-CsTVv] archive [file..]
/usr/xpg4/bin/ar -d [-Vv] archive file...
/usr/xpg4/bin/ar -m [-abiVv] [posname]l archive file...
/usr/xpg4/bin/ar -p [-sVv] archive [file..]
/usr/xpg4/bin/ar -q [-cVv] archive file..
/usr/xpg4/bin/ar -r [-abciuVv] [posname] archive file...
/usr/xpg4/bin/ar -t [-sVv] archive [file..]
/usr/xpg4/bin/ar -x [-CsTVv] archive [file..]

DESCRIPTION | The ar utility maintains groups of files combined into a single archive file. Its main
use is to create and update library files. However, it can be used for any similar
purpose. The magic string and the file headers used by ar consist of printable ASCII
characters. If an archive is composed of printable files, the entire archive is printable.
When ar creates an archive, it creates headers in a format that is portable across all
machines. The portable archive format and structure are described in detail in
ar(3HEAD). The archive symbol table (described in ar(3HEAD)) is used by the link
editor 1d(1) to effect multiple passes over libraries of object files in an efficient manner.
An archive symbol table is only created and maintained by ar when there is at least
one object file in the archive. The archive symbol table is in a specially named file that
is always the first file in the archive. This file is never mentioned or accessible to the
user. Whenever the ar command is used to create or update the contents of such an
archive, the symbol table is rebuilt. The -s option described below will force the
symbol table to be rebuilt.

OPTIONS | The following options are supported:
-a Positions new files in archive after the file named by the posname operand.
-b Positions new files in archive before the file named by the posname operand.
-c Suppresses the diagnostic message that is written to standard error by
default when archive is created.

58 man pages section 1: User Commands e Last Revised 18 Mar 1997



ar(1)

Prevents extracted files from replacing like-named files in the file system.
This option is useful when -T is also used to prevent truncated file names
from replacing files with the same prefix.

Deletes one or more files from archive.

Positions new files in archive before the file named by the posname operand
(equivalent to -b).

Moves files. If -a, -b , or -1 with the posname operand are specified,
moves files to the new position; otherwise, moves files to the end of archive.

Prints the contents of files in archive to standard output. If no files are
specified, the contents of all files in archive will be written in the order of
the archive.

Quickly appends files to the end of archive. Positioning options -a, -b , and
-1 are invalid. The command does not check whether the added files are
already in archive. This option is useful to avoid quadratic behavior when
creating a large archive piece-by-piece.

Replaces or adds files in archive. If archive does not exist, a new archive file
will be created and a diagnostic message will be written to standard error
(unless the -c option is specified). If no files are specified and the archive
exists, the results are undefined. Files that replace existing files will not
change the order of the archive. If the -u option is used with the -r
option, then only those files with dates of modification later than the
archive files are replaced. If the -a , -b , or -i option is used, then the
posname argument must be present and specifies that new files are to be
placed after (-a) or before ( -b or -i ) posname; otherwise the new files
are placed at the end.

Forces the regeneration of the archive symbol table even if ar is not
invoked with a option which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(1)
command has been used on the archive.

Prints a table of contents of archive. The files specified by the file operands
will be included in the written list. If no file operands are specified, all files
in archive will be included in the order of the archive.

Allows file name truncation of extracted files whose archive names are
longer than the file system can support. By default, extracting a file with a
name that is too long is an error; a diagnostic message will be written and
the file will not be extracted.

Updates older files. When used with the -r option, files within archive will
be replaced only if the corresponding file has a modification time that is at
least as new as the modification time of the file within archive.

Prints its version number on standard error.

User Commands 59



ar(1)
lusr/bin/ar

lusr/xpg4/bin/ar

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

lusr/bin/ar

Gives verbose output. When used with the option characters -4, -r, or -x
, writes a detailed file-by-file description of the archive creation and the
constituent files, and maintenance activity. When used with -p, writes the
name of the file to the standard output before writing the file itself to the
standard output. When used with -t , includes a long listing of
information about the files within the archive. When used with -x , prints
the filename preceding each extraction. When writing to an archive, a
message is written to the standard error.

Same as /usr/bin/ar version, except when writing to an archive, no
message is written to the standard error.

Extracts the files named by the file operands from archive. The contents of
archive will not be changed. If no file operands are given, all files in archive
will be extracted. If the file name of a file extracted from archive is longer
than that supported in the directory to which it is being extracted, the
results are undefined. The modification time of each file extracted will be
set to the time file is extracted from archive.

The following operands are supported:

archive

file

posname

A path name of the archive file.

A path name. Only the last component will be used when
comparing against the names of files in the archive. If two or more
file operands have the same last path name component (
basename(1)), the results are unspecified. The implementation’s
archive format will not truncate valid file names of files added to
or replaced in the archive.

The name of a file in the archive file, used for relative positioning;
see options -mand -r .

See environ(b) for descriptions of the following environment variables that affect the
execution of ar: LC_CTYPE, LC_ MESSAGES, and NLSPATH.

The following exit values are returned:

0

>0

Successful completion.

An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhbDtool

60 man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



lusr/xpg4/bin/ar

SEE ALSO

NOTES

ar(1)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWxcu4

basename(l), cc(1B), cpio(l), 1d(1), lorder(1), strip(l), tar(l), ar(3BHEAD),
a.out(4), attributes(b), environ(b), XPG4(5)

If the same file is mentioned twice in an argument list, it may be put in the archive

twice.

By convention, archives are suffixed with the characters . a.

User Commands 61



arch(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

arch — display the architecture of the current host

arch [-k | archname]

arch displays the application architecture of the current host system. Due to extensive
historical use of this command without any options, all SunOS 5.x SPARC based
systems will return "sun4" as their application architecture. Use of this command is
discouraged; see NOTES section below.

Systems can be broadly classified by their architectures, which define what executables
will run on which machines. A distinction can be made between kernel architecture
and application architecture (or, commonly, just “architecture”). Machines that run
different kernels due to underlying hardware differences may be able to run the same
application programs.

-k Display the kernel architecture, such as sun4m, sun4c, and so forth. This
defines which specific SunOS kernel will run on the machine, and has
implications only for programs that depend on the kernel explicitly (for
example, ps(1)).

The following operand is supported:

archname Use archname to determine whether the application binaries for
this application architecture can run on the current host system.
The archname must be a valid application architecture, such as
sun4, 186pc, and so forth.

If application binaries for archname can run on the current host
system, TRUE (0) is returned; otherwise, FALSE (1) is returned.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

mach(1), ps(1), uname(l), attributes(5)

This command is provided for compatibility with previous releases and its use is
discouraged. Instead, the uname command is recommended. See uname(1) for usage
information.

62 man pages section 1: User Commands ¢ Last Revised 18 Jan 1996



NAME

Sparc

IA

DESCRIPTION

Common Options

as(1)
as — assembler

as [-bl [-K PIC] [-L] [-m] [-n] [-o outfile] [-P] [-Dname] [-Dname=def]
[-Ipath] [-Uname..] [-q] [-Qy | n] [-s] [-Sla|b|c|Il|A]|B
| C | L1l [-T] [-V] [-xarch=v7 | -xarch=v8 | -xarch=v8a |
-xarch=v8plus | -xarch=v8plusa | -xarch=v9 | -xarch=v9a ]
[-xF] filename...

as [-b] [-K PIC] [-L] [-m] [-n] [-o ouffile] [-P] [-Dname] [-Dname=def]
[-Ipath] [-Uname.] [-Qy | n] [-s] [-S[a|b|c |1 ]| A|B]|C|
L11 [-T1 [-VI filename...

The as command creates object files from assembly language source files.

The following flags are common to both SPARC and IA. They may be specified in any
order:

-b Generates extra symbol table information for the Sun
SourceBrowser.

-K PIC Generates position-independent code.

-L Saves all symbols, including temporary labels that are
normally discarded to save space, in the ELF symbol
table.

-m Runs the m4 (1) macro processor on the input to the
assembler.

-n Suppresses all the warnings while assembling.

-o outfile Puts the output of the assembly in outfile. By default,

the output file name is formed by removing the . s
suffix, if there is one, from the input file name and
appending a . o suffix.

-P Runs cpp(1), the C preprocessor, on the files being
assembled. The preprocessor is run separately on each
input file, not on their concatenation. The preprocessor
output is passed to the assembler.

-Dname

-Dname=def When the - P option is in effect, these options are
passed to the cpp(1) preprocessor without
interpretation by the as command; otherwise, they are
ignored.

- Ipath When the - P option is in effect, this option is passed to

the cpp(1) preprocessor without interpretation by the
as command; otherwise, it is ignored.

User Commands 63



as(1)

64

a
b
c

l

option.

-Uname When the -P option is in effect, this option is passed to
the cpp(1) preprocessor without interpretation by the
as command; otherwise, it is ignored.

-Qy I'n If y is specified, this option produces the "assembler
version" information in the comment section of the
output object file. If n is specified, the information is
suppressed.

-s Places all stabs in the . stabs section. By default, stabs
are placed in stabs . excl sections, which are stripped
out by the static linker, 1d(1), during final execution.
When the -s option is used, stabs remain in the final
executable because . stab sections are not stripped by
the static linker.

-SlalblcllIAIBICIL] Produces a disassembly of the emitted code to the
standard output. Adding each of the following
characters to the -S option produces:

disassembling with address
disassembling with “.bof”
disassembling with comments

disassembling with line numbers

Capital letters turn the switch off for the corresponding

-T This is a migration option for 4.x assembly files to be
assembled on 5.x systems. With this option, the symbol
names in 4.x assembly files will be interpreted as 5.x
symbol names.

-V Writes the version number of the assembler being run
on the standard error output.

-xF Generates additional information for performance
analysis of the executable using Sun WorkShop
analyzer. If the input file does not contain any stabs
(debugging directives), then the assembler will
generate some default stabs which are needed by the
Sun WorkShop analyzer. Also see the dbx manual page
available with Sun Workshop.

Options for | -g Performs a quick assembly. When the -q option is
SPARC only used, many error checks are not performed. Note: This

man pages section 1: User Commands ¢ Last Revised 12 Jan 2001

option disables many error checks. Use of this option to
assemble handwritten assembly language is not
recommended.



OPERANDS

-xarch=v7

-xarch=v8

-xarch=v8a

-xarch=v8plus

-xarch=v8plusa

-xarch=v9

-xarch=v9a

as(1)

This option instructs the assembler to accept
instructions defined in the SPARC version 7 (V7)
architecture. The resulting object code is in ELF format.

This option instructs the assembler to accept
instructions defined in the SPARC-V8 architecture, less
the quad-precision floating-point instructions. The
resulting object code is in ELF format.

This option instructs the assembler to accept
instructions defined in the SPARC-V8 architecture, less
the quad-precision floating-point instructions and less
the fsmuld instruction. The resulting object code is in
ELF format. This is the default choice of the
-xarch=options.

This option instructs the assembler to accept
instructions defined in the SPARC-V9 architecture, less
the quad-precision floating-point instructions. The
resulting object code is in ELF format. It will not
execute on a Solaris V8 system (a machine with a V8
processor). It will execute on a Solaris V8+ system. This
combination is a SPARC 64-bit processor and a 32-bit
0s.

This option instructs the assembler to accept
instructions defined in the SPARC-V9 architecture, less
the quad-precision floating-point instructions, plus the
instructions in the Visual Instruction Set (VIS). The
resulting object code is in V8+ ELF format. It will not
execute on a Solaris V8 system (a machine with a V8
processor). It will execute on a Solaris V8+ system

This option limits the instruction set to the SPARC-V9
architecture. The resulting .o object files are in 64-bit
ELF format and can only be linked with other object
files in the same format. The resulting executable can
only be run on a 64-bit SPARC processor running 64-bit
Solaris with the 64-bit kernel.

This option limits the instruction set to the SPARC-V9
architecture, adding the Visual Instruction Set (VIS)
and extensions specific to UltraSPARC processors. The
resulting .o object files are in 64-bit ELF format and can
only be linked with other object files in the same
format. The resulting executable can only be run on a
64-bit SPARC processor running 64-bit Solaris with the
64-bit kernel.

The following operand is supported:

User Commands 65



as(1)

ENVIRONMENT
VARIABLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

filename Assembly language source file

TMPDIR The as command normally creates temporary files in
the directory /tmp. Another directory may be specified
by setting the environment variable TMPDIR to the
chosen directory. (If TMPDIR is not a valid directory,
then as will use /tmp).

By default, as creates its temporary files in /tmp.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSsprot

cc(1B), cpp(1),14(1), m4(1), nm(1), strip(l), tmpnam(3C), a.out(4), attributes(5)
dbx manual page available with Sun Workshop

If the -m option, which invokes the m4(1) macro processor, is used, keywords for m4
cannot be used as symbols (variables, functions, labels) in the input file, since m4
cannot determine which keywords are assembler symbols and which keywords are
real m4 macros.

Whenever possible, access the assembler through a compilation system interface
program such as cc(1B).

All undefined symbols are treated as global.

66 man pages section 1: User Commands e Last Revised 12 Jan 2001



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

asa(1)
asa — convert FORTRAN carriage-control output to printable form

asa [-f] [file.]

The asa utility will write its input files to standard output, mapping carriage-control
characters from the text files to line-printer control sequences.

The first character of every line will be removed from the input, and the following
actions will be performed.

If the character removed is:

SPACE  The rest of the line will be output without change.

0 It is replaced by a newline control sequence followed by the rest of the
input line.

1 It is replaced by a newpage control sequence followed by the rest of the
input line.

+ It is replaced by a control sequence that causes printing to return to the first

column of the previous line, where the rest of the input line is printed.

For any other character in the first column of an input line, asa skips the character
and prints the rest of the line unchanged.

If asa is called without providing a filename, the standard input is used.
The following option is supported:
-f Start each file on a new page.

The following operand is supported:

file A pathname of a text file used for input. If no £ile operands are specified,

’

or‘ — ’1is specified, then the standard input will be used.

EXAMPLE 1 Examples of the asa command.

The command

a.out | asa | 1lp

converts output from a . out to conform with conventional printers and directs it
through a pipe to the printer.

The command

asa output
shows the contents of file output on a terminal as it would appear on a printer.

The following program is used in the next two examples:

User Commands 67



asa(1)

EXAMPLE 1 Examples of the asa command. (Continued)
write (*,’ (" Blank")’)

write(*,’ ("0Zero "))

write (*,’ ("+ Plus "))

write(*,’ ("10ne ")’)

end

Example 1. With actual files:

a.out > MyOutputFile
asa < MyOutputFile | 1p

Example 2. With only pipes:

a.out | asa | 1p

Both of the above examples produce two pages of output:
Page 1:

Blank

ZeroPlus

Page 2:

One
ENVIRONMENT | See environ(5) for descriptions of the following environment variables that affect the
VARIABLES | execution of asa: LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS | The following exit values are returned:
0 All input files were output successfully.

>0 An error occurred.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO | 1p(1), attributes(b), environ(b)

68 man pages section 1: User Commands e Last Revised 18 Apr 1995



NAME
SYNOPSIS

at

batch

OPTIONS

at(1)
at, batch — execute commands at a later time
at [-c | -k | -s] [-m] [-f file] [-p project] [-q queuename] -t time
at [-c | -k | -s] [-m] [-£ file] [-p project] [-q queuename] timespec...
at -1 [-p project] [-q queuename] [at_job_id. ..]
at -r at_job_id. ..

batch [-p project]

The at utility reads commands from standard input and groups them together as an
at-job, to be executed at a later time.

The at-job will be executed in a separate invocation of the shell, running in a separate
process group with no controlling terminal, except that the environment variables,
current working directory, file creation mask (see umask(1)), and system resource
limits (for sh and ksh only, see ulimit(1)) in effect when the at utility is executed
will be retained and used when the at-job is executed.

When the at-job is submitted, the at_job_id and scheduled time are written to standard
error. The at_job_id is an identifier that will be a string consisting solely of
alphanumeric characters and the period character. The at_job_id is assigned by the
system when the job is scheduled such that it uniquely identifies a particular job.

User notification and the processing of the job’s standard output and standard error
are described under the -m option.

Users are permitted to use at and batch (see below) if their name appears in the file
/usr/lib/cron/at .allow. If that file does not exist, the file

/usr/lib/cron/at .deny is checked to determine if the user should be denied
access to at. If neither file exists, only a user with the solaris.jobs.user
authorization is allowed to submit a job. If only at . deny exists and is empty, global
usage is permitted. The at .allow and at . deny files consist of one user name per
line.

The batch utility reads commands to be executed at a later time. It is the equivalent
of the command:

at -9 b -m now
where queue b is a special at queue, specifically for batch jobs. Batch jobs will be
submitted to the batch queue for immediate execution.

The following options are supported. If the -c, -k , or -s options are not specified,
the SHELL environment variable by default determines which shell to use.

-c C shell. csh(1) is used to execute the at-job.
-k Korn shell. ksh(1) is used to execute the at-job.
-s Bourne shell. sh(1) is used to execute the at-job.

User Commands 69



at(1)

70

OPERANDS

man pages section 1:

- £ file

-p project

-q queuenarme

-t at_job_id

-t time

Specifies the path of a file to be used as the source of the at-job,
instead of standard input.

(The letter ell.) Reports all jobs scheduled for the invoking user if
no at_job_id operands are specified. If at_job_ids are specified,
reports only information for these jobs.

Sends mail to the invoking user after the at-job has run,
announcing its completion. Standard output and standard error
produced by the at-job will be mailed to the user as well, unless
redirected elsewhere. Mail will be sent even if the job produces no
output.

If -m is not used, the job’s standard output and standard error will
be provided to the user by means of mail, unless they are
redirected elsewhere; if there is no such output to provide, the user
is not notified of the job’s completion.

Specifies under which project the at or batch job will be run.
When used with the -1 option, limits the search to that particular
project. Values for project will be interpreted first as a project name,
and then as a possible project ID, if entirely numeric. By default,
the user’s current project is used.

Specifies in which queue to schedule a job for submission. When
used with the -1 option, limits the search to that particular queue.
Values for queuename are limited to the lower case letters a through
z. By default, atjobs will be scheduled in queue a. In contrast,
queue b is reserved for batch jobs. Since queue c is reserved for
cron jobs, it can not be used with the -g option.

Removes the jobs with the specified at_job_id operands that were
previously scheduled by the at utility.

Submits the job to be run at the time specified by the time
option-argument, which must have the format as specified by the
touch(1) utility.

The following operands are supported:

at_job_id

timespec

The name reported by a previous invocation of the at utility at the
time the job was scheduled.

Submit the job to be run at the date and time specified. All of the
timespec operands are interpreted as if they were separated by
space characters and concatenated. The date and time are
interpreted as being in the timezone of the user (as determined by
the TZ variable), unless a timezone name appears as part of time
below.

User Commands ¢ Last Revised 10 Jan 2000



at(1)

In the "C" locale, the following describes the three parts of the time
specification string. All of the values from the LC_TIME categories
in the "C" locale are recognized in a case-insensitive manner.

time

date

The time can be specified as one, two or four
digits. One- and two-digit numbers are taken
to be hours, four-digit numbers to be hours
and minutes. The time can alternatively be
specified as two numbers separated by a colon,
meaning hour : minute. An AM/PM indication
(one of the values from the am_pm keywords in
the LC_TIME locale category) can follow the
time; otherwise, a 24-hour clock time is
understood. A timezone name of GMT, UCT, or
ZULU (case insensitive) can follow to specify
that the time is in Coordinated Universal Time.
Other timezones can be specified using the TZ
environment variable. The time field can also
be one of the following tokens in the "C" locale:

midnight Indicates the time 12:00 am (00:00).
noon Indicates the time 12:00 pm.

now Indicate the current day and time.
Invoking at now will submit an
at-job for potentially immediate
execution (that is, subject only to
unspecified scheduling delays).

An optional date can be specified as either a
month name (one of the values from the mon
or abmon keywords in the LC TIME locale
category) followed by a day number (and
possibly year number preceded by a comma)
or a day of the week (one of the values from
the day or abday keywords in the LC_TIME
locale category). Two special days are
recognized in the "C" locale:

today  Indicates the current day.

tomorrow Indicates the day following the
current day.

If no date is given, today is assumed if the
given time is greater than the current time, and
tomorrow is assumed if it is less. If the given
month is less than the current month (and no
year is given), next year is assumed.

User Commands 71



at(1)

72

USAGE

at

increment The optional increment is a number preceded
by a plus sign (+) and suffixed by one of the
following: minutes, hours, days, weeks,
months, or years. (The singular forms will be
also accepted.) The keyword next is
equivalent to an increment number of + 1. For
example, the following are equivalent
commands:

at 2pm + 1 week
at 2pm next week

The format of the at command line shown here is guaranteed only for the "C" locale.
Other locales are not supported for midnight, noon, now, mon, abmon, day, abday,
today, tomorrow, minutes, hours, days, weeks, months, years, and next.

Since the commands run in a separate shell invocation, running in a separate process
group with no controlling terminal, open file descriptors, traps and priority inherited
from the invoking environment are lost.

EXAMPLE 1 Typical sequence at a terminal

This sequence can be used at a terminal:

$ at —m 0730 tomorrow
sort < file >outfile
<EOT>

EXAMPLE 2 Redirecting output

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

$ at now + 1 hour <<!
diff filel file2 2>&l1 >outfile | mailx mygroup

EXAMPLE 3 Self-rescheduling a job

To have a job reschedule itself, at can be invoked from within the at-job. For example,
this "daily-processing” script named my . daily will run every day (although
crontab is a more appropriate vehicle for such work):

# my.daily runs every day
at now tomorrow < my.daily
daily-processing

man pages section 1: User Commands ¢ Last Revised 10 Jan 2000



batch

ENVIRONMENT
VARIABLES

at(1)

EXAMPLE 3 Self-rescheduling a job (Continued)

EXAMPLE 4 Various time and operand presentations

The spacing of the three portions of the "C" locale timespec is quite flexible as long as
there are no ambiguities. Examples of various times and operand presentations
include:

at 081l5am Jan 24
at 8 :15amjan24
at now "+ lday"
at 5 pm FRIday
at 17
utc+
30minutes’

EXAMPLE 5 Typical sequence at a terminal

This sequence can be used at a terminal:

S batch
sort <file soutfile
<EOT>

EXAMPLE 6 Redirecting output

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
command procedure (the sequence of output redirection specifications is significant):

$ batch <<!
diff filel file2 2>&l soutfile | mailx mygroup
!

See environ(5) for descriptions of the following environment variables that affect the
execution of at and batch: LC CTYPE, LC_MESSAGES, NLSPATH, and LC_TIME.

SHELL Determine a name of a command interpreter to be used to invoke
the at-job. If the variable is unset or NULL, sh will be used. If it is
set to a value other than sh, the implementation will use that shell;
a warning diagnostic will be printed telling which shell will be
used.

TZ Determine the timezone. The job will be submitted for execution at
the time specified by timespec or -t time relative to the timezone
specified by the TZ variable. If timespec specifies a timezone, it will
override TZ. If timespec does not specify a timezone and TZ is unset
or NULL, an unspecified default timezone will be used.

DATEMSK If the environment variable DATEMSK is set, at will use its value as
the full path name of a template file containing format strings. The
strings consist of format specifiers and text characters that are used
to provide a richer set of allowable date formats in different

User Commands 73



at(1)

EXIT STATUS

FILES

ATTRIBUTES

at

batch

SEE ALSO

NOTES

languages by appropriate settings of the environment variable
LANG or LC_TIME. The list of allowable format specifiers is located
in the getdate(3C) manual page. The formats described in the
OPERANDS section for the time and date arguments, the special
names noon, midnight, now, next, today, tomorrow, and the
increment argument are not recognized when DATEMSK is set.

The following exit values are returned:

0 The at utility successfully submitted, removed or listed a job or jobs.

>0 An error occurred, and the job will not be scheduled.

/usr/lib/cron/at.allow names of users, one per line, who are
authorized access to the at and batch
utilities

/usr/lib/cron/at.deny names of users, one per line, who are

denied access to the at and batch utilities

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
CSI Not enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWesu
CSI Enabled

auths(1), crontab(l), csh(1), date(1), ksh(l), sh(l), touch(l), ulimit(1),
umask(l), cron(1M), getdate(3C), auth_attr(4), attributes(5), environ(b)

Regardless of queue used, cron(1M) has a limit of 100 jobs in execution at any time.

There can be delays in cron at job execution. In some cases, these delays can
compound to the point that cron job processing appears to be hung. All jobs will be
executed eventually. When the delays are excessive, the only workaround is to kill and
restart cron.

74 man pages section 1: User Commands ¢ Last Revised 10 Jan 2000



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

atq(1)
atq — display the jobs queued to run at specified times

atqg [-c] [-n] [username...]

The atq utility displays the at jobs queued up for the current user. at(1) is a utility
that allows users to execute commands at a later date. If invoked by a user with the
solaris.jobs.admin authorization, atq will display all jobs in the queue.

If no options are given, the jobs are displayed in chronological order of execution.

When an authorized user invokes at g without specifying username, the entire queue is
displayed; when a username is specified, only those jobs belonging to the named user
are displayed.

The following options are supported:

-c Displays the queued jobs in the order they were created (that is, the time
that the at command was given).

-n Displays only the total number of jobs currently in the queue.

/var/spool/cron/atjobs spool area for at jobs.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

at(l), atrm(l), auths(l), cron(1M), auth_attr(4), attributes(b)

User Commands 75



atrm(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

FILES

ATTRIBUTES

SEE ALSO

atrm — remove jobs spooled by at or batch

atrm [-afi] [ [job #] [user..]]

The atrm utility removes delayed-execution jobs that were created with the at(1)
command, but have not yet executed. The list of these jobs and associated job numbers
can be displayed by using ataq(l).

atrm removes each job-number you specify, and/or all jobs belonging to the user you
specify, provided that you own the indicated jobs.

You can only remove jobs belonging to other users if you have
solaris.jobs.admin privileges.

The following options are supported:

-a All. Removes all unexecuted jobs that were created by the current user. If
invoked by the privileged user, the entire queue will be flushed.

-f Force. All information regarding the removal of the specified jobs is
suppressed.

-1 Interactive. atrm asks if a job should be removed. If you respond with a vy,

the job will be removed.

/var/spool/cron/atjobs spool area for at jobs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

at(l), atq(l), auths(1), cron(1M), auth attr(4), attributes(5)

76 man pages section 1: User Commands e Last Revised 13 Aug 1999



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

audioconvert(1)
audioconvert — convert audio file formats

audioconvert [-pF] [-f outfmt] [-o outfile] [ [-i infmt] [file.]] ..

audioconvert converts audio data between a set of supported audio encodings and
file formats. It can be used to compress and decompress audio data, to add audio file
headers to raw audio data files, and to convert between standard data encodings, such
as -law and linear PCM.

If no filenames are present, audioconvert reads the data from the standard input
stream and writes an audio file to the standard output. Otherwise, input files are
processed in order, concatenated, and written to the output file.

Input files are expected to contain audio file headers that identify the audio data
format. If the audio data does not contain a recognizable header, the format must be
specified with the -1 option, using the rate, encoding, and channels keywords to
identify the input data format.

The output file format is derived by updating the format of the first input file with the
format options in the - £ specification. If -p is not specified, all subsequent input files
are converted to this resulting format and concatenated together. The output file will
contain an audio file header, unless format=raw is specified in the output format
options.

Input files may be converted in place by using the -p option. When -p is in effect, the
format of each input file is modified according to the - f option to determine the
output format. The existing files are then overwritten with the converted data.

The £ile(1l) command decodes and prints the audio data format of Sun audio files.

The following options are supported:

-p In Place: The input files are individually converted to the format
specified by the - £ option and rewritten. If a target file is a
symbolic link, the underlying file will be rewritten. The -o option
may not be specified with -p .

-F Force: This option forces audioconvert to ignore any file header
for input files whose format is specified by the -1i option. If -F is
not specified, audioconvert ignores the -1i option for input files
that contain valid audio file headers.

- £ outfmt Output Format: This option is used to specify the file format and
data encoding of the output file. Defaults for unspecified fields are
derived from the input file format. Valid keywords and values are
listed in the next section.

-o outfile Output File: All input files are concatenated, converted to the
output format, and written to the named output file. If -o and -p
are not specified, the concatenated output is written to the
standard output. The -p option may not be specified with -o .

User Commands 77



audioconvert(1)

78

-1 infmt Input Format: This option is used to specify the data encoding of
raw input files. Ordinarily, the input data format is derived from
the audio file header. This option is required when converting
audio data that is not preceded by a valid audio file header. If -1
is specified for an input file that contains an audio file header, the
input format string will be ignored, unless -F is present. The
format specification syntax is the same as the - £ output file
format.

Multiple input formats may be specified. An input format
describes all input files following that specification, until a new
input format is specified.

file File Specification: The named audio files are concatenated,
converted to the output format, and written out. If no file name is
present, or if the special file name '~ is specified, audio data is
read from the standard input.

-? Help: Prints a command line usage message.

Format | The syntax for the input and output format specification is:
Specification
keyword=value[ keyword=value . .. ]

with no intervening whitespace. Unambiguous values may be used without the
preceding keyword=.

rate The audio sampling rate is specified in samples per second. If a
number is followed by the letter k, it is multiplied by 1000 (for
example, 44.1k = 44100). Standard of the commonly used sample
rates are: 8k, 16k, 32k, 44.1k, and 48k.

channels The number of interleaved channels is specified as an integer. The
words mono and stereo may also be used to specify one and two
channel data, respectively.

encoding This option specifies the digital audio data representation.
Encodings determine precision implicitly (ulaw implies 8-bit
precision) or explicitly as part of the name (for example,
linear1e). Valid encoding values are:

ulaw CCITT G.711 -law encoding. This is an 8-bit
format primarily used for telephone quality
speech.

alaw CCITT G.711 A-law encoding. This is an 8-bit

format primarily used for telephone quality
speech in Europe.

linears,
linearls,

man pages section 1: User Commands ¢ Last Revised 16 Feb 2001



USAGE

EXAMPLES

audioconvert(1)

linear32 Linear Pulse Code Modulation (PCM)
encoding. The name identifies the number of
bits of precision. 1inear16 is typically used
for high quality audio data.

pcm Same as linearlé6.

g721 CCITT G.721 compression format. This
encoding uses Adaptive Delta Pulse Code
Modulation (ADPCM) with 4-bit precision. It is
primarily used for compressing -law voice data
(achieving a 2:1 compression ratio).

g723 CCITT G.723 compression format. This
encoding uses Adaptive Delta Pulse Code
Modulation (ADPCM) with 3-bit precision. It is
primarily used for compressing -law voice data
(achieving an 8:3 compression ratio). The audio
quality is similar to G.721, but may result in
lower quality when used for non-speech data.

The following encoding values are also accepted as shorthand to
set the sample rate, channels, and encoding;:

voice Equivalent to
encoding=ulaw, rate=8k, channels=mono.

cd Equivalent to
encoding=linearlé6,rate=44.1k,channels=stereo.
dat Equivalent to
encoding=1linearlé6, rate=48k,channels=stereo.
format This option specifies the audio file format. Valid formats are:
sun Sun compatible file format (the default).
raw Use this format when reading or writing raw audio

data (with no audio header), or in conjunction with an
offset to import a foreign audio file format.

offset (-1 only) Specifies a byte offset to locate the start of the audio data.
This option may be used to import audio data that contains an
unrecognized file header.

See largefile(5) for the description of the behavior of audioconvert when
encountering files greater than or equal to 2 Gbyte ( 2*' bytes).

EXAMPLE 1 Recording and compressing voice data before storing it
Record voice data and compress it before storing it to a file:

example% audiorecord | audioconvert -f g721 > mydata.au

User Commands 79



audioconvert(1)

80

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 2 Concatenating two audio files

Concatenate two Sun format audio files, regardless of their data format, and output an
8-bit ulaw, 16 kHz, mono file:

example% audioconvert -f ulaw,rate=16k,mono -o outfile.au infilel infile2

EXAMPLE 3 Converting a directory to Sun format

Convert a directory containing raw voice data files, in place, to Sun format (adds a file
header to each file):

example% audioconvert -p -i voice -f sun *.au

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Architecture SPARC, TA
Availability SUNWauda
Interface Stability Evolving

audioplay(l), audiorecord(l), £ile(l), attributes(5), largefile(5)

The algorithm used for converting multi-channel data to mono is implemented by
simply summing the channels together. If the input data is perfectly in phase (as
would be the case if a mono file is converted to stereo and back to mono), the resulting
data may contain some distortion.

man pages section 1: User Commands ¢ Last Revised 16 Feb 2001



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

audioplay(1)
audioplay — play audio files

audioplay [-iV] [-v wvol] [-b bal] [-p speaker | headphone | line]
[-d dev] [file...]

The audioplay utility copies the named audio files (or the standard input if no
filenames are present) to the audio device. If no input file is specified and standard
input is a tty, the port, volume, and balance settings specified on the command line
will be applied and the program will exit.

The input files must contain a valid audio file header. The encoding information in
this header is matched against the capabilities of the audio device and, if the data
formats are incompatible, an error message is printed and the file is skipped.
Compressed ADPCM (G.721) monaural audio data is automatically uncompressed
before playing.

Minor deviations in sampling frequency (that is, less than 1%) are ordinarily ignored.
This allows, for instance, data sampled at 8012 Hz to be played on an audio device
that only supports 8000 Hz. If the -V option is present, such deviations are flagged
with warning messages.

The following options are supported:

-1
Immediate: If the audio device is unavailable (that is, another process currently has
write access), audioplay ordinarily waits until it can obtain access to the device.
When the - i option is present, audioplay prints an error message and exits
immediately if the device is busy.

-V
Verbose: Prints messages on the standard error when waiting for access to the audio
device or when sample rate deviations are detected.

-v vol
Volume: The output volume is set to the specified value before playing begins, and
is reset to its previous level when audioplay exits. The vol argument is an integer
value between 0 and 100, inclusive. If this argument is not specified, the output
volume remains at the level most recently set by any process.

-b bal
Balance: The output balance is set to the specified value before playing begins, and
is reset to its previous level when audioplay exits. The bal argument is an integer
value between -100 and 100, inclusive. A value of -100 indicates left balance, 0
middle, and 100 right. If this argument is not specified, the output balance remains
at the level most recently set by any process.

-p speaker | headphone | line
Output Port: Selects the built-in speaker (the default), headphone jack, or 1ine
out as the destination of the audio output signal. If this argument is not specified,

User Commands 81



audioplay(1)

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

BUGS

the output port will remain unchanged. Please note: Not all audio adapters support
all of the output ports. If the named port does not exist, an appropriate substitute
will be used.

-d dev
Device: The dev argument specifies an alternate audio device to which output
should be directed. If the -d option is not specified, the AUDIODEV environment
variable is consulted (see below). Otherwise, /dev/audio is used as the default
audio device.

_\?

Help: Prints a command line usage message.

file File Specification: Audio files named on the command line are played
sequentially. If no filenames are present, the standard input stream (if it is
not a tty) is played (it, too, must contain an audio file header). The special
filename ‘~" may be used to read the standard input stream instead of a file.
If a relative path name is supplied, the AUDIOPATH environment variable is
consulted (see below).

See largefile(5) for the description of the behavior of audioplay when
encountering files greater than or equal to 2 Gbyte ( 2*' bytes).

AUDIODEV The full path name of the audio device to write to, if no -d
argument is supplied. If the AUDIODEV variable is not set,
/dev/audio is used.

AUDIOPATH A colon-separated list of directories in which to search for audio
files whose names are given by relative pathnames. The current
directory (".") may be specified explicitly in the search path. If the
AUDIOPATH variable is not set, only the current directory will be

searched.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Architecture SPARC, TA
Availability SUNWauda
Interface Stability Evolving

audioconvert(l), audiorecord(l), mixerctl(l), attributes(5), largefile(5),
usb_ac(7D), audio(7]I), mixer(7I)

audioplay currently supports a limited set of audio format conversions. If the audio
file is not in a format supported by the audio device, it must first be converted. For
example, to convert to voice format on the fly, use the command:

82 man pages section 1: User Commands ¢ Last Revised 16 Feb 2001




audioplay(1)

example% audioconvert -f voice myfile | audioplay

The format conversion will not always be able to keep up with the audio output. If
this is the case, you should convert to a temporary file before playing the data.

User Commands 83



audiorecord(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

84 man pages section 1:

audiorecord — record an audio file

audiorecord [-af] [-v vol]l [-b bal] [-m monvol] [-p mic | line |
internal-cd] [-c channels] [-s rate] [-e encoding] [-t time]
[-1i info] [-d dev] [file]

The audiorecord utility copies audio data from the audio device to a named audio
file (or the standard output if no filename is present). If no output file is specified and
standard output is a tty, the volume, balance, monitor volume, port, and audio format
settings specified on the command line will be applied and the program will exit.

By default, monaural audio data is recorded at 8 kHz and encoded in -law format. If
the audio device supports additional configurations, the -¢c, -s, and -e options may
be used to specify the data format. The output file is prefixed by an audio file header
that identifies the format of the data encoded in the file.

Recording begins immediately and continues until a SIGINT signal (for example,
Ctrl-C) is received. If the -t option is specified, audiorecord stops when the
specified quantity of data has been recorded.

If the audio device is unavailable (that is, another process currently has read access),
audiorecord prints an error message and exits immediately.

The following options are supported:

-a
Append: Appends the data on the end of the named audio file. The audio device
must support the audio data format of the existing file.

-f
Force: When the -a flag is specified, the sample rate of the audio device must match
the sample rate at which the original file was recorded. If the - £ flag is also
specified, sample rate differences are ignored, with a warning message printed on
the standard error.

-v vol
Volume: The recording gain is set to the specified value before recording begins, and
is reset to its previous level when audiorecord exits. The vol argument is an
integer value between 0 and 100, inclusive. If this argument is not specified, the
input volume will remain at the level most recently set by any process.

-b bal
Balance: The recording balance is set to the specified value before recording begins,
and is reset to its previous level when audiorecord exits. The bal argument is an
integer value between -100 and 100, inclusive. A value of -100 indicates left balance,
0 middle, and 100 right. If this argument is not specified, the input balance will
remain at the level most recently set by any process.

-m monvol
Monitor Volume: The input monitor volume is set to the specified value before
recording begins, and is reset to its previous level when audiorecord exits. The

User Commands ¢ Last Revised 16 Feb 2001



OPERANDS

USAGE

ENVIRONMENT
VARIABLES

audiorecord(1)

monval argument is an integer value between 0 and 100, inclusive. A non-zero value
allows a directly connected input source to be heard on the output speaker while
recording is in-progress. If this argument is not specified, the monitor volume will
remain at the level most recently set by any process.

-pmic | line | internal-cd
Input Port: Selects the mic, 1ine, or internal-cd input as the source of the audio
output signal. If this argument is not specified, the input port will remain
unchanged. Please note: Some systems will not support all possible input ports. If
the named port does not exist, this option is ignored.

-c channels
Channels: Specifies the number of audio channels (1 or 2). The value may be
specified as an integer or as the string mono or stereo. The default value is mono.

-s rate
Sample Rate: Specifies the sample rate, in samples per second. If a number is
followed by the letter k, it is multiplied by 1000 (for example, 44.1k = 44100). The
default sample rate is 8 kHz.

-e encoding
Encoding: Specifies the audio data encoding. This value may be one of ulaw, alaw,
or linear. The default encoding is ulaw.

-t time
Time: The time argument specifies the maximum length of time to record. Time can
be specified as a floating-point value, indicating the number of seconds, or in the
form: hh:mm:ss.dd, where the hour and minute specifications are optional.

-1 info
Information: The ‘information’ field of the output file header is set to the string

specified by the info argument. This option cannot be specified in conjunction with
the -a argument.

-d dev
Device: The dev argument specifies an alternate audio device from which input
should be taken. If the -d option is not specified, the AUDIODEV environment
variable is consulted (see below). Otherwise, /dev/audio is used as the default
audio device.

_\?

Help: Prints a command line usage message.

file File Specification: The named audio file is rewritten (or appended). If no
filename is present (and standard output is not a tty), or if the special
filename ‘~’ is specified, output is directed to the the standard output.

See largefile(5) for the description of the behavior of audiorecord when
encountering files greater than or equal to 2 Gbyte ( 2*' bytes).

AUDIODEV The full path name of the audio device to record from, if no -d
argument is supplied. If the AUDIODEV variable is not set,

User Commands 85



audiorecord(1)

86

/dev/audio is used.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Architecture SPARC, IA
Availability SUNWauda
Interface Stability Evolving

SEE ALSO | audioconvert(l), audioplay(l), mixerctl(l), attributes(b), largefile(5),
usb_ac(7D), audio(7]l), mixer(71)

man pages section 1: User Commands ¢ Last Revised 16 Feb 2001



NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

EXIT STATUS

FILES

ATTRIBUTES

auths(1)
auths — print authorizations granted to a user

auths [ user ..]
The auths command prints on standard output the authorizations that you or the
optionally-specified user or role have been granted. Authorizations are rights that are

checked by certain privileged programs to determine whether a user may execute
restricted functionality.

Each user may have zero or more authorizations. Authorizations are represented by
fully-qualified names, which identify the organization that created the authorization
and the functionality that it controls. Following the Java convention, the hierarchical
components of an authorization are separated by dots (.), starting with the reverse
order Internet domain name of the creating organization, and ending with the specific
function within a class of authorizations.

An asterisk (*) indicates all authorizations in a class.

A user’s authorizations are looked up in user_attr(4) and in the
/etc/security/policy.conf file (see policy.conf(4)). Authorizations may be
specified directly in user_attr(4) or indirectly through prof_attr(4).
Authorizations may also be assigned to every user in the system directly as default
authorizations or indirectly as default profiles in the /etc/security/policy.conf
file.

EXAMPLE 1 Sample output

The auths output has the following form:

example% auths tester0l tester02
tester0l : com.sun.system.date, com.sun.jobs.admin
tester02 : com.sun.system.*

example%

The following exit values are returned:
0 Successful completion.

1 An error occurred.
/etc/user attr
/etc/security/auth attr
/etc/security/policy.conft
/etc/security/prof attr

See attributes(5) for descriptions of the following attributes:

User Commands 87



auths(1)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO | profiles(l), roles(l), getauthattr(3SECDB), auth_attr(4), policy.conf(4),
prof attr(4), user attr(4), attributes(5)

88 man pages section 1: User Commands e Last Revised 11 Feb 2000



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

Input Lines

Pattern-action
Statements

awk(1)
awk — pattern scanning and processing language
/usr/bin/awk [-f progfile]l [-F cl [’ prog '1 [parameters] [filename..]

/usr/xpg4/bin/awk [-F ERE] [-v assignment..] 'program’ -f progfile..
[argument...]

The /usr/xpg4/bin/awk utility is described on the nawk(1l) manual page.

The /usr/bin/awk utility scans each input filename for lines that match any of a set
of patterns specified in prog. The prog string must be enclosed in single quotes ( *) to
protect it from the shell. For each pattern in prog there may be an associated action
performed when a line of a filename matches the pattern. The set of pattern-action
statements may appear literally as prog or in a file specified with the - £ progfile option.
Input files are read in order; if there are no files, the standard input is read. The file
name ' —' means the standard input.

The following options are supported:
- £ progfile awk uses the set of patterns it reads from progfile.

-Fc Uses the character c as the field separator (FS) character. See the
discussion of FS below.

Each input line is matched against the pattern portion of every pattern-action
statement; the associated action is performed for each matched pattern. Any filename of
the form var=value is treated as an assignment, not a filename, and is executed at the
time it would have been opened if it were a filename. Variables assigned in this manner
are not available inside a BEGIN rule, and are assigned after previously specified files
have been read.

An input line is normally made up of fields separated by white spaces. (This default
can be changed by using the FS built-in variable or the -Fc option.) The default is to
ignore leading blanks and to separate fields by blanks and/or tab characters.
However, if FS is assigned a value that does not include any of the white spaces, then
leading blanks are not ignored. The fields are denoted $1, $2, . . . ; $0 refers to the
entire line.

A pattern-action statement has the form:

pattern { action }

Either pattern or action may be omitted. If there is no action, the matching line is
printed. If there is no pattern, the action is performed on every input line.
Pattern-action statements are separated by newlines or semicolons.

Patterns are arbitrary Boolean combinations ( !, | |, &&, and parentheses) of relational
expressions and regular expressions. A relational expression is one of the following:

expression relop expression
expression matchop regular_expression

User Commands 89



awk(1)

Built-in Variables

where a relop is any of the six relational operators in C, and a matchop is either ~
(contains) or ! ~ (does not contain). An expression is an arithmetic expression, a
relational expression, the special expression

var in array

or a Boolean combination of these.

Regular expressions are as in egrep(1). In patterns they must be surrounded by
slashes. Isolated regular expressions in a pattern apply to the entire line. Regular
expressions may also occur in relational expressions. A pattern may consist of two
patterns separated by a comma; in this case, the action is performed for all lines
between the occurrence of the first pattern to the occurrence of the second pattern.

The special patterns BEGIN and END may be used to capture control before the first
input line has been read and after the last input line has been read respectively. These
keywords do not combine with any other patterns.

Built-in variables include:

FILENAME name of the current input file

FS input field separator regular expression (default blank and tab)
NF number of fields in the current record

NR ordinal number of the current record

OFMT output format for numbers (default % . 6g)

OFSs output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default new-line)

An action is a sequence of statements. A statement may be one of the following;:

if ( expression ) statement [ else statement ]
while ( expression ) statement

do statement while ( expression )

for ( expression ; expression ; expression ) statement
for ( wvar in array ) statement

break

continue

{ [ statement 1 . . . }

expression # commonly variable = expression

print [ expression-list 1 [ >expression ]

printf format [ ,expression-list 1 [ >expression ]

next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr

Statements are terminated by semicolons, newlines, or right braces. An empty
expression-list stands for the whole input line. Expressions take on string or numeric

90 man pages section 1: User Commands e Last Revised 7 Jul 2000



Built-in Functions

awk(1)

values as appropriate, and are built using the operators +, —, *, /, %, * and
concatenation (indicated by a blank). The operators ++, —, +=, —=, *=, /=, %=
>=, <, <=,==, l=,and ?: are also available in expressions. Variables may be scalars,
array elements (denoted x[i]), or fields. Variables are initialized to the null string or
zero. Array subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted (" "), with the usual C escapes
recognized within.

A
;s =2y

The print statement prints its arguments on the standard output, or on a file if
>expression is present, or on a pipe if ’ | cmd’ is present. The output resulted from the
print statement is terminated by the output record separator with each argument
separated by the current output field separator. The printf statement formats its
expression list according to the format (see print £(3C)).

The arithmetic functions are as follows:

cos(x) Return cosine of x, where x is in radians. (In
/usr/xpg4/bin/awk only. See nawk(1).)

sin(x) Return sine of x, where x is in radians. (In /usr/xpg4 /bin/awk
only. See nawk(1).)

exp(x) Return the exponential function of x.

log(x) Return the natural logarithm of x.

sgrt(x) Return the square root of x.

int(x) Truncate its argument to an integer. It will be truncated toward 0

when x > 0.

The string functions are as follows:

index (s, t)
Return the position in string s where string t first occurs, or 0 if it does not occur at
all.

int (s)
truncates s to an integer value. If s is not specified, $0 is used.

length(s)
Return the length of its argument taken as a string, or of the whole line if there is no
argument.

split (s, a,fs)
Split the string s into array elements a[1], a[2], ... a[n], and returns n. The
separation is done with the regular expression fs or with the field separator Fs if fs
is not given.

sprintf (fmt, expr, expr, ... )
Format the expressions according to the print £(3C) format given by fmt and
returns the resulting string.

User Commands 91



awk(1)

Large File
Behavior

EXAMPLES

substr (s, m, n)
returns the n-character substring of s that begins at position m.

The input/output function is as follows:

getline Set $0 to the next input record from the current input file.
getline returns 1 for successful input, 0 for end of file, and -1
for an error.

See largefile(5) for the description of the behavior of awk when encountering files
greater than or equal to 2 Gbyte ( 2! bytes).

EXAMPLE 1 Print lines longer than 72 characters:
length > 72

EXAMPLE 2 Print first two fields in opposite order:

{ print $2, %1 }

EXAMPLE 3 Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ", [ \tl*|[ \tl+" }
{ print $2, $1 }

EXAMPLE 4 Add up first column, print sum and average:
{ s += %1}

END { print "sum is", s, " average is", s/NR }

EXAMPLE 5 Printing fields in reverse order

{ for (i = NF; i > 0; —i) print $i }

EXAMPLE 6 Print all lines between start/stop pairs:

/start/, /stop/

EXAMPLE 7 Print all lines whose first field is different from the previous one:

$1 != prev { print; prev = $1 }

EXAMPLE 8 Print a file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }
EXAMPLE 9 Print a file and number its pages starting at 5:

Assuming this program is in a file named prog, the following command line prints
the file input numbering its pages starting at 5:

92 man pages section 1: User Commands e Last Revised 7 Jul 2000



ENVIRONMENT
VARIABLES

ATTRIBUTES

[usr/bin/awk

lusr/xpg4/bin/awk

SEE ALSO

NOTES

awk(1)

EXAMPLE 9 Print a file and number its pages starting at 5: (Continued)

awk £ prog n=5 input

See environ(5) for descriptions of the following environment variables that affect the
execution of awk: LC CTYPE and LC_MESSAGES.

LC NUMERIC

Determine the radix character used when interpreting numeric

input, performing conversions between numeric and string values
and formatting numeric output. Regardless of locale, the period
character (the decimal-point character of the POSIX locale) is the
decimal-point character recognized in processing awk programs
(including assignments in command-line arguments).

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWesu
CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWxcu4
CSI Enabled

egrep(1), grep(1), nawk(1), sed(1l), print£(3C), attributes(5), environ(5),

largefile(b), XPG4(5)

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression
to be treated as a number add 0 to it; to force it to be treated as a string concatenate the

null string (" ") to it.

User Commands 93



banner(1)
NAME | banner — make posters
SYNOPSIS | banner strings

DESCRIPTION | banner prints its arguments (each up to 10 characters long) in large letters on the
standard output.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

SEE ALSO | echo(l), attributes(b)

94 man pages section 1: User Commands e Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

[usr/bin

lusr/xpgd/bin

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

[usr/bin

basename(1)
basename, dirname — deliver portions of path names
/usr/bin/basename string [suffix]
/usr/xpg4/bin/basename string [suffix]

dirname string

The basename utility deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally used inside
substitution marks (* ‘) within shell procedures.

The suffix is a pattern defined on the expr(1) manual page.

The suffix is a string with no special significance attached to any of the characters it
contains.

The dirname utility delivers all but the last level of the path name in string.

EXAMPLE 1 Setting environment variables

The following example, invoked with the argument /home/sms/personal/mail
sets the environment variable NAME to the file named mail and the environment
variable MYMAILPATH to the string /home/sms/personal:

example% NAME=‘basename $HOME/personal/mail-*
example% MYMAILPATH=‘dirname $HOME/personal/mail‘

EXAMPLE 2 Compiling a file and moving the output

This shell procedure, invoked with the argument /usr/src/bin/cat.c, compiles
the named file and moves the output to cat in the current directory:

example% cc $1

example% mv a.out ‘basename $1 .c‘
See environ(5) for descriptions of the following environment variables that affect the
execution of basename and dirname: LC_CTYPE, LC MESSAGES, and NLSPATH.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

User Commands 95



basename(1)

96

lusr/xpg4/bin

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWxcu4

SEE ALSO | expr(l), attributes(b), environ(5), XPG4(5)

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997




NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

basename(1B)
basename — display portions of pathnames

/usr/ucb/basename string [suffix]
The basename utility deletes any prefix ending in /" and the suffix, if present in string.
It directs the result to the standard output, and is normally used inside substitution

marks (* ) within shell procedures. The suffix is a string with no special significance
attached to any of the characters it contains.

EXAMPLE 1 Using the basename command.

This shell procedure invoked with the argument /usr/src/bin/cat . c compiles the
named file and moves the output to cat in the current directory:

example% cc $1
example% mv a.out ‘basename $1 .c‘

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

sh(l), attributes(5)

User Commands 97



be(1)
NAME
SYNOPSIS

DESCRIPTION

USAGE

Comments

Names (Operands)

Other Operands

Operators

Statements

bc — arbitrary precision arithmetic language

be [-c] [-1] I[file.]

The bc utility implements an arbitrary precision calculator. It takes input from any
files given, then reads from the standard input. If the standard input and standard
output to be are attached to a terminal, the invocation of bc is interactive, causing
behavioral constraints described in the following sections. bc processes a language
that resembles C and is a preprocessor for the desk calculator program dc, which it
invokes automatically unless the -c option is specified. In this case the dc input is
sent to the standard output instead.

The syntax for bc programs is as follows:

L means a letter a—z,

E means an expression: a (mathematical or logical) value, an operand that
takes a value, or a combination of operands and operators that evaluates to
a value,

S means a statement.

Enclosed in /* and */.

Simple variables: L.

Array elements: L [ E ] (up to BC_DIM MAX dimensions).

The words ibase, obase (limited to BC_BASE MAX), and scale (limited to
BC_SCALE_MAX).

Arbitrarily long numbers with optional sign and decimal point. Strings of fewer than
BC_STRING_MAX characters, between double quotes ("). ( E )

sqrt ( E ) Square root

length ( E) Number of significant decimal digits.
scale ( E) Number of digits right of decimal point.
L(E,..,E)

+—-* /%"

(% is remainder; * is power)

++ —
(prefix and postfix; apply to names)

98 man pages section 1: User Commands e Last Revised 28 Mar 1995



Function
Definitions

Functions in -1
Math Library

OPTIONS

OPERANDS

be(1)

if (E) S

while (E) S
for (E;E;E)S
null statement

break

quit

.string

definelL (L,..., L) {
autoL,..., L
S;...8§

return ( E)

}

s (x) sine

c(x) cosine

e (x) exponential
1(x) log

a(x) arctangent

j(n,x)  Bessel function
All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an
assignment. Either semicolons or new-lines may separate statements. Assignment to
scale influences the number of digits to be retained on arithmetic operations in the
manner of dc. Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. auto variables are stacked
during function calls. When using arrays as function arguments or defining them as
automatic variables, empty square brackets must follow the array name.

The following operands are supported:

-c Compile only. The output is dc commands that are sent to the
standard output.

-1 Define the math functions and initialize scale to 20, instead of
the default zero.

The following operands are supported:

file A pathname of a text file containing bc program statements. After
all cases of file have been read, bc will read the standard input.

User Commands 99



be(1)
EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

EXAMPLE 1 Setting the precision of a variable

In the shell, the following assigns an approximation of the first ten digits of n to the
variable x:

x=$ (printf "%s\n" ’scale = 10; 104348/33215’ | bc)

EXAMPLE 2 Defining a computing function

Defines a function to compute an approximate value of the exponential function:

scale = 20
define e(x){
auto a, b, ¢, i, s

a=1
b =1
s =1
for(i=1; 1==1; i++){
a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c
}

EXAMPLE 3 Printing the approximate values of the function
Prints approximate values of the exponential function of the first ten integers:

for(i=1; i<=10; i++) e(i)

or

for (i = 1; i <= 10; ++i) { e(i) }

See environ(5) for descriptions of the following environment variables that affect the
execution of be: LC CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All input files were processed successfully.
unspecified An error occurred.

/usr/1lib/1lib.b mathematical library
/usr/include/limits.h to define BC_ parameters

See attributes(d) for descriptions of the following attributes:

100 man pages section 1: User Commands ¢ Last Revised 28 Mar 1995



SEE ALSO

NOTES

be(1)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWesu

dc(l), awk(1), attributes(5)

The bc command does not recognize the logical operators && and | |.

The for statement must have all three expressions (E’s).

User Commands

101



bdiff(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

bdiff — big diff
bdiff filenamel filename2 [n] [-s]

bdiff is used in a manner analogous to diff to find which lines in filenamel and
filename2 must be changed to bring the files into agreement. Its purpose is to allow
processing of files too large for diff. If filenamel (filename2) is —, the standard input is
read.

bdiff ignores lines common to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff on corresponding segments. If both
optional arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account
for the segmenting of the files (that is, to make it look as if the files had been processed
whole). Note: Because of the segmenting of the files, bdiff does not necessarily find a
smallest sufficient set of file differences.

n The number of line segments. The value of 7 is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value
for n. This is useful in those cases in which 3500-line segments are too large
for diff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note: However, this does not suppress possible diagnostic messages from
diff, which bdiff calls.

See largefile(5) for the description of the behavior of bdiff when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

diff(1), attributes(5), largefile(5)

Use help for explanations.

102 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



bfs(1)
NAME | bfs - big file scanner
SYNOPSIS | /usr/bin/bfs [-] filename

DESCRIPTION | The bfs command is (almost) like ed(1) except that it is read-only and processes
much larger files. Files can be up to 1024K bytes and 32K lines, with up to 512
characters, including new-line, per line (255 for 16-bit machines). bfs is usually more
efficient than ed(1) for scanning a file, since the file is not copied to a buffer. It is most
useful for identifying sections of a large file where csplit(1l) can be used to divide it
into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written
with the w (write) command. The optional — suppresses printing of sizes. Input is
prompted with * if P and a carriage return are typed, as in ed(1). Prompting can be
turned off again by inputting another P and carriage return. Note that messages are
given in response to errors if prompting is turned on.

All address expressions described under ed(1) are supported. In addition, regular
expressions may be surrounded with two symbols besides / and ?:

> indicates downward search without wrap-around, and

< indicates upward search without wrap-around.

There is a slight difference in mark names; that is, only the letters a through z may be
used, and all 26 marks are remembered.

bfs Commands | The e, g, v, k, p, g, w, =, !, and null commands operate as described under ed(1).
Commands such as —, +++—, +++=,—12, and +4p are accepted. Note that 1, 10p
and 1, 10 will both print the first ten lines. The £ command only prints the name of
the file being scanned; there is no remembered file name. The w command is
independent of output diversion, truncation, or crunching (see the xo, xt, and xc
commands, below). The following additional commands are available:

xf file
Further commands are taken from the named £ile. When an end-of-file is reached,
an interrupt signal is received or an error occurs, reading resumes with the file
containing the xf. The xf commands may be nested to a depth of 10.

xn
List the marks currently in use (marks are set by the k command).

xo [ file ]
Further output from the p and null commands is diverted to the named file,
which, if necessary, is created mode 666 (readable and writable by everyone), unless
your umask setting (see umask(1)) dictates otherwise. If £ile is missing, output is
diverted to the standard output. Note that each diversion causes truncation or
creation of the file.

User Commands 103



bfs(1)

104

: label
This positions a label in a command file. The label is terminated by new-line, and
blanks between the : (colon) and the start of the label are ignored. This command
may also be used to insert comments into a command file, since labels need not be
referenced.

(., . )xb/regular expression/label
Ajump (either upward or downward) is made to label if the command succeeds. It
fails under any of the following conditions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression does not match at least one line in the specified range,
including the first and last lines.

On success, . (dot) is set to the line matched and a jump is made to label. This
command is the only one that does not issue an error message on bad addresses, so
it may be used to test whether addresses are bad before other commands are
executed. Note that the command, xb/”*/ 1abel, is an unconditional jump.

The xb command is allowed only if it is read from someplace other than a terminal.
If it is read from a pipe, only a downward jump is possible.

xt number
Output from the p and null commands is truncated to, at most, number characters.
The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The commands xv5100
or xv5 100 both assign the value 100 to the variable 5. The command xvé61,100p
assigns the value 1, 100p to the variable 6. To reference a variable, put a % in front
of the variable name. For example, using the above assignments for variables 5 and

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line containing a
match. To escape the special meaning of %, a \ must precede it.

g/".*\%[cds]/p

could be used to match and list %c, %d, or %s formats (for example, "printf"-like
statements) of characters, decimal integers, or strings. Another feature of the xv

man pages section 1: User Commands ¢ Last Revised 20 May 1996



OPERANDS

bfs(1)

command is that the first line of output from a UNIX system command can be
stored into a variable. The only requirement is that the first character of value be an
1. For example:

.w junk

xv5!cat junk
'rm junk

lecho "%5"
Xv6lexpr %6 + 1

would put the current line into variable 35, print it, and increment the variable 36
by one. To escape the special meaning of ! as the first character of value, precede it
with a \.

xv7\ !date

stores the value ! date into variable 7.

xbz label

xbn label
These two commands will test the last saved return code from the execution of a
UNIX system command (! command) or nonzero value, respectively, to the specified
label. The two examples below both search for the next five lines containing the
string size:

Example 1:

xv55

: 1

/size/

xv5lexpr %5 — 1

1if 0%5 != 0 exit 2
xbn 1

Example 2:

xv45

: 1

/size/

xvélexpr %4 — 1
1if 0%4 = 0 exit 2
xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crunched; if switchis 0,
it is not. Without an argument, xc reverses switch. Initially, switch is set for no
crunching. Crunched output has strings of tabs and blanks reduced to one blank
and blank lines suppressed.

The following operand is supported:

filename Any file up to 1024K bytes and 32K lines, with up to 512
characters, including new-line, per line (255 for 16-bit machines).

User Commands 105



bfs(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

filename can be a section of a larger file which has been divided
into more manageable sections for editing by the use of
csplit(l).

The following exit values are returned:

0 Successful completion without any file or command errors.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

csplit(l), ed(l), umask(l), attributes(5)

Message is ? for errors in commands, if prompting is turned off. Self-explanatory error
messages are displayed when prompting is on.

106 man pages section 1: User Commands ¢ Last Revised 20 May 1996




biff(1B)
NAME | biff - give notice of incoming mail messages

SYNOPSIS | /usr/ucb/biff [y | n]

DESCRIPTION | biff turns mail notification on or off for the terminal session. With no arguments,
biff displays the current notification status for the terminal.

If notification is allowed, the terminal rings the bell and displays the header and the
first few lines of each arriving mail message. biff operates asynchronously. For
synchronized notices, use the MAIL variable of sh(l) or the mail variable of csh(1).

A 'biff y’ command can be included in your ~/.login or ~/.profile file for
execution when you log in.

OPTIONS | vy Allow mail notification for the terminal.
n Disable notification for the terminal.
FILES | ~/.login User’s login file
~/.profile User’s profile file

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

SEE ALSO | csh(1), mail(1), sh(l), attributes(5)

User Commands 107



break(1)
NAME

sh

csh

ksh

sh

csh

ksh

ATTRIBUTES

break, continue — shell built-in functions to escape from or advance within a
controlling while, for, foreach, or until loop

break [n]
continue [n]
break
continue
*break [n]
*continue [n]

break exits from the enclosing for or while loop, if any. If # is specified, break n
levels.

continue resumes the next iteration of the enclosing for or while loop. If n is
specified, resume at the n-th enclosing loop.

break resumes execution after the end of the nearest enclosing foreach or while
loop. The remaining commands on the current line are executed. This allows
multilevel breaks to be written as a list of break commands, all on one line.

continue continues execution of the next iteration of the nearest enclosing while or
foreach loop.

break exits from the enclosed for, while, until, or select loop, if any. If n is
specified then break n levels.

continue resumes the next iteration of the enclosed for, while, until, or select
loop. If n is specified then resume at the n-th enclosed loop.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

I/0 redirections are processed after variable assignments.
Errors cause a script that contains them to abort.

Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

See attributes(d) for descriptions of the following attributes:

108 man pages section 1: User Commands ¢ Last Revised 15 Apr 1994



SEE ALSO

break(1)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWcsu

csh(l), exit(1), ksh(l), sh( 1), attributes(5)

User Commands

109



cal(1)
NAME
SYNOPSIS

DESCRIPTION

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

cal — display a calendar

cal [ [month] year]

The cal utility writes a Gregorian calendar to standard output. If the year operand is
specified, a calendar for that year is written. If no operands are specified, a calendar
for the current month is written.

The following operands are supported:

month Specify the month to be displayed, represented as a decimal integer from 1
(January) to 12 (December). The default is the current month.

year Specify the year for which the calendar is displayed, represented as a
decimal integer from 1 to 9999. The default is the current year.

See environ(5) for descriptions of the following environment variables that affect the
execution of cal: LC TIME, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

calendar(l), attributes(5), environ(5)

An unusual calendar is printed for September 1752. That is the month 11 days were
skipped to make up for lack of leap year adjustments. To see this calendar, type:

cal 9 1752

The command cal 83 refers to the year 83, not 1983.

The year is always considered to start in January.

110 man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

calendar(1)
calendar — reminder service

calendar [-]

The calendar utility consults the file calendar in the current directory and writes
lines that contain today’s or tomorrow’s date anywhere in the line to standard output.
Most reasonable month-day dates such as Aug. 24, august 24, 8/24, and so forth,
are recognized, but not 24 August or 24 /8. On Fridays and weekends “tomorrow”
extends through Monday. calendar can be invoked regularly by using the
crontab(l) or at(l) commands.

When the optional argument - is present, calendar does its job for every user who
has a file calendar in his or her login directory and sends them any positive results
by mail(l). Normally this is done daily by facilities in the UNIX operating system
(seecron(1M)).

If the environment variable DATEMSK is set, calendar will use its value as the full
path name of a template file containing format strings. The strings consist of
conversion specifications and text characters and are used to provide a richer set of
allowable date formats in different languages by appropriate settings of the
environment variable LANG or LC_TIME; see environ(5). Seestrftime(3C) for the
list of allowable conversion specifications.

EXAMPLE 1 Possible contents of a template

The following example shows the possible contents of a template:

%$B %eth of the year %Y
%B represents the full month name, %e the day of month and %Y the year (4 digits).

If DATEMSK is set to this template, the following calendar file would be valid:

March 7th of the year 1989 <Reminders>

See environ(5) for descriptions of the following environment variables that affect the
execution of calendar: LC_CTYPE, LC_ TIME, LC_MESSAGES, NLSPATH, and TZ.

0 Successful completion.

>0 An error occurred.

/etc/passwd system password file

/tmp/cal* temporary files used by calendar

/usr/lib/calprog program used to determine dates for today and
tomorrow

See attributes(5) for descriptions of the following attributes:

User Commands 111



calendar(1)

112

SEE ALSO

NOTES

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

at(1), crontab(l), mail(l), cron(1M), ypbind(1M), strftime(3C),
attributes(5), environ(b)

Appropriate lines beginning with white space will not be printed.
Your calendar must be public information for you to get reminder service.
calendar’s extended idea of “tomorrow’” does not account for holidays.

The - argument works only on calendar files that are local to the machine; calendar
is intended not to work on calendar files that are mounted remotely with NFS. Thus,
‘calendar -’ should be run only on diskful machines where home directories exist;

running it on a diskless client has no effect.

calendar is no longer in the default root crontab. Because of the network burden
‘calendar -’ can induce, it is inadvisable in an environment running ypbind(1M)
with a large passwd.byname map. If, however, the usefulness of calendar outweighs
the network impact, the super-user may run ‘crontab -e’ to edit the root crontab.
Otherwise, individual users may wish to use ‘crontab -e’ to edit their own crontabs
to have cron invoke calendar without the - argument, piping output to mail
addressed to themselves.

man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

cancel(1)
cancel — cancel print request
cancel [request-ID..] [destination...]

cancel -u user.. [destination...]

The cancel utility cancels print requests. There are two forms of the cancel
command.

The first form of cancel has two optional arguments: print requests (request-ID) and
destinations (destination). Specifying request-ID with destination cancels request-ID on
destination. Specifying only the destination cancels the current print request on
destination. If destination is not specified, cancel cancels the requested print request on
all destinations.

The second form of cancel cancels a user’s print requests on specific destinations.

Users can only cancel print requests associated with their username. By default, users
can only cancel print requests on the host from which the print request was submitted.
If a super-user has set user-equivalence=true in /etc/printers.conf on the
print server, users can cancel print requests associated with their username on any
host. Super-users can cancel print requests on the host from which the print request
was submitted. Super-users can also cancel print requests from the print server.

The print client commands locate destination information using the “printers”
database in the name service switch. See nsswitch.conf(4), printers(4), and
printers.conf(4) for details.

The following options are supported:

-u user The name of the user for which print requests are to be cancelled.
Specify user as a username.

The following operands are supported:

destination The destination on which the print requests are to be canceled.
destination is the name of a printer or class of printers (see
lpadmin(1M)). If destination is not specified, cancel cancels the
requested print request on all destinations. Specify destination
using atomic, POSIX-style (server : destination), or Federated
Naming Service (FNS) (. . ./service/printer/. . .)
names. See NOTES for information regarding using POSIX-style
destination names with cancel. See printers.conf(4) for
information regarding the naming conventions for atomic and FNS
names, and standards(5) for information regarding POSIX.

request-1D The print request to be canceled. Specify request-ID using LP-style
request IDs (destination-number).

user The name of the user for which the print requests are to be
cancelled. Specify user as a username.

User Commands 113



cancel(1)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

The following exit values are returned:

0 Successful completion.

non-zero An error occurred.

/var/spool/print/* LP print queue.

$HOME/ .printers User-configurable printer database.
/etc/printers.conf System printer configuration database.
printers.conf.byname NIS version of /etc/printers.conf.
printers.org dir NIS+ version of /etc/printers. cont.

fns.ctx dir.domain FNS version of /etc/printers.conf.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

1p(1), 1pg(1B), 1pr(1B), 1prm(1B), 1pstat(l), lpadmin( 1IM), nsswitch.conf(4),
printers(4), printers.conf(4), attributes(5), standards(5)

POSIX-style destination names (server:destination) are treated as print requests if
destination has the same format as an LP-style request-ID. See standards(5).

114 man pages section 1: User Commands ¢ Last Revised 12 Apr 1999



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

cat(1)
cat — concatenate and display files

cat [-nbsuvet] [file..]

The cat utility reads each file in sequence and writes it on the standard output. Thus:

example% cat file
prints file on your terminal, and:

example% cat filel file2 >file3
concatenates filel and file2, and writes the results in file3. If no input file is given, cat
reads from the standard input file.

The following options are supported:

-n Precede each line output with its line number.

-b Number the lines, as -n, but omit the line numbers from blank lines.
-u The output is not buffered. (The default is buffered output.)

-s cat is silent about non-existent files.

-v Non-printing characters (with the exception of tabs, new-lines and

form-feeds) are printed visibly. ASCII control characters (octal 000 — 037)
are printed as “n, where  is the corresponding ASCII character in the
range octal 100 - 137 (@, A,B,C,. . ., X, Y, Z, [, \,],~, and _); the DEL
character (octal 0177) is printed *?. Other non-printable characters are
printed as M-x, where x is the ASCII character specified by the low-order
seven bits.

When used with the -v option, the following options may be used:
-e A s character will be printed at the end of each line (prior to the new-line).

-t Tabs will be printed as *I’s and formfeeds to be printed as “L’s.
The -e and -t options are ignored if the -v option is not specified.

The following operand is supported:

file A path name of an input file. If no file is specified, the standard
input is used. If fileis * — ’, cat will read from the standard input
at that point in the sequence. cat will not close and reopen
standard input when it is referenced in this way, but will accept
multiple occurrences of * — ’ as file.

See largefile(5) for the description of the behavior of cat when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).

EXAMPLE 1 Concatenating a file

The following command:

example% cat myfile

User Commands 115



cat(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 1 Concatenating a file (Continued)

writes the contents of the file myfile to standard output.

EXAMPLE 2 Concatenating two files into one

The following command:

example% cat docl doc2 > doc.all
concatenates the files doc1 and doc2 and writes the result to doc.all.

EXAMPLE 3 Concatenating two arbitrary pieces of input with a single invocation

The command:

example% cat start - middle - end > file

when standard input is a terminal, gets two arbitrary pieces of input from the terminal
with a single invocation of cat. Note, however, that if standard input is a regular file,
this would be equivalent to the command:

cat start - middle /dev/null end > file

because the entire contents of the file would be consumed by cat the first time * —
was used as a file operand and an end-of-file condition would be detected immediately
when * — ’ was referenced the second time.

’

See environ(5) for descriptions of the following environment variables that affect the
execution of cat: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 All input files were output successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

touch(l), environ(5), attributes(5), largefile(b)
Redirecting the output of cat onto one of the files being read will cause the loss of the
data originally in the file being read. For example,

example% cat filenamel filename2 >filenamel
causes the original data in filenamel to be lost.

116  man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

cc(1B)
cc — C compiler

/usr/ucb/cc [options]

/usr/ucb/cc is the interface to the BSD Compatibility Package C compiler. It is a
script that looks for the link /usr/ccs/bin/ucbcc to the C compiler. The
/usr/ccs/bin/ucbece link is available only with the SPROcc package, whose
default location is /opt /SUNWspro. The /usr/ucb/cc interface is identical to
/usr/ccs/bin/ucbec, except that BSD headers are used and BSD libraries are
linked before base libraries. The /opt/SUNWspro/man/manl/acc.1 man page is
available only with the SPROcc package.

The /usr/ucb/cc interface accepts the same options as /usr/ccs/bin/ucbcc,
with the following exceptions:

- Idir Search dir for included files whose names do not begin with a
slash ( /) prior to searching the usual directories. The directories
for multiple - I options are searched in the order specified. The
preprocessor first searches for #include files in the directory
containing sourcefile, and then in directories named with -I
options (if any), then /usr/ucbinclude, and finally, in
/usr/include.

-Ldir Add dir to the list of directories searched for libraries by
/usr/ccs/bin/ucbece. This option is passed to
/usr/ccs/bin/ld and /usr/1ib. Directories specified with this
option are searched before /usr/ucblib and /usr/lib.

-Y P, dir Change the default directory used for finding libraries.

The following exit values are returned:

0 Successful compilation or link edit.

>0 An error occurred.

/usr/ccs/bin/ld link editor

/usr/lib/1libc C library

/usr/ucbinclude BSD Compeatibility directory for header files
/usr/ucblib BSD Compeatibility directory for libraries
/usr/ucblib/libucb BSD Compeatibility C library
/usr/lib/libsocket library containing socket routines
/usr/1lib/libnsl library containing network functions
/usr/lib/libelf library containing routines to process ELF object files
/usr/lib/libaio library containing asynchronous 1/0O routines

See attributes(5) for descriptions of the following attributes:

User Commands 117



cc(1B)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

SEE ALSO | 1d4(1), a.out(4), attributes(b)

NOTES | The -Y P, dir option may have unexpected results and should not be used.

118 man pages section 1: User Commands ¢ Last Revised 24 Feb 1998



NAME
SYNOPSIS
sh

csh

ksh

lusr/bin/cd

sh

csh

cd(1)
cd, chdir, pushd, popd, dirs — change working directory
/usr/bin/cd I[directory]
cd [argument]
chdir [argument]
cd [dir]
chdir [dir]
pushd [+n | dir]
popd [+7]
dirs [-1]
cd [arg]

cd old new

The /usr/bin/cd utility changes the current directory in the context of the cd utility
only. This is in contrast to the version built into the shell, as described below.
/usr/bin/cd has no effect on the invoking process but can be used to determine
whether or not a given directory can be set as the current directory.

The Bourne shell built-in ¢d changes the current directory to argument. The shell
parameter HOME is the default argument. The shell parameter CDPATH defines the
search path for the directory containing argument. Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the current
directory). Note: The current directory is specified by a null path name, which can
appear immediately after the equal sign or between the colon delimiters anywhere
else in the path list. If argument begins with */’,*.”, or *. . ’, the search path is not
used. Otherwise, each directory in the path is searched for argument. cd must have
execute (search) permission in argument. Because a new process is created to execute
each command, cd would be ineffective if it were written as a normal command;
therefore, it is recognized by and is internal to the shell. (See pwd(1), sh(1), and
chdir(2)).

chdir is just another way to call cd.

If dir is not specified, the C shell built-in cd uses the value of shell parameter HOME as
the new working directory. If dir specifies a complete path starting with * /7, . ’, or
* . .7, dir becomes the new working directory. If neither case applies, cd tries to find
the designated directory relative to one of the paths specified by the CDPATH shell
variable. CDPATH has the same syntax as, and similar semantics to, the PATH shell
variable. cd must have execute (search) permission in dir. Because a new process is
created to execute each command, cd would be ineffective if it were written as a
normal command; therefore, it is recognized by and is internal to the C-shell. (See
pwd(1), sh(1), and chdir(2)).

User Commands 119



cd(1)

120

ksh

OPERANDS

OUTPUT

chdir changes the shell’s working directory to directory dir. If no argument is given,
change to the home directory of the user. If dir is a relative pathname not found in the
current directory, check for it in those directories listed in the cdpath variable. If dir is
the name of a shell variable whose value starts with a /, change to the directory
named by that value.

pushd will push a directory onto the directory stack. With no arguments, exchange
the top two elements.

+1 Rotate the n’th entry to the top of the stack and cd to it.

dir Push the current working directory onto the stack and change to dir.

popd pops the directory stack and cd to the new top directory. The elements of the
directory stack are numbered from 0 starting at the top.

+1 Discard the n’th entry in the stack.

dirs will print the directory stack, most recent to the left; the first directory shown is
the current directory. With the -1 argument, produce an unabbreviated printout; use
of the ~ notation is suppressed.

The Korn shell built-in cd command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is — the directory is changed to the previous
directory. The shell variable HOME is the default arg. The variable PWD is set to the
current directory. The shell variable CDPATH defines the search path for the directory
containing arg. Alternative directory names are separated by a colon (:). The default
path is <nulls (specifying the current directory). Note that the current directory is
specified by a null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg begins witha* /7, *
. /,or’ . .’ then the search path is not used. Otherwise, each directory in the path
is searched for arg.

The second form of cd substitutes the string new for the string old in the current
directory name, PWD and tries to change to this new directory.

The cd command may not be executed by rksh. Because a new process is created to
execute each command, cd would be ineffective if it were written as a normal
command; therefore, it is recognized by and is internal to the Korn shell. (See pwd(1),
sh(1), and chdir(2)).

The following operands are supported:

directory An absolute or relative pathname of the directory that becomes the
new working directory. The interpretation of a relative pathname
by cd depends on the CDPATH environment variable.

If a non-empty directory name from CDPATH is used, an absolute pathname of the new
working directory will be written to the standard output as follows:

"$s\n", <new directory>

man pages section 1: User Commands ¢ Last Revised 26 Mar 2001



ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

cd(1)

Otherwise, there will be no output.

See environ(5) for descriptions of the following environment variables that affect the
execution of cd: LC_CTYPE, LC_MESSAGES, and NLSPATH.

CDPATH

HOME

PWD

A colon-separated list of pathnames that refer to directories. If the
directory operand does not begin with a slash ( /) character, and
the first component is not dot or dot-dot, cd will search for
directory relative to each directory named in the CDPATH variable,
in the order listed. The new working directory will be set to the
first matching directory found. An empty string in place of a
directory pathname represents the current directory. If CDPATH is
not set, it will be treated as if it were an empty string.

The name of the home directory, used when no directory operand is
specified.

A pathname of the current working directory, set by cd after it has
changed to that directory.

The following exit values are returned by cd:

0

>0

The directory was successfully changed.

An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability

SUNWcsu

csh(1), ksh(1), pwd(1), sh(l), chdir(2), attributes(5), environ(5)

User Commands 121



cdrw(1)
NAME
SYNOPSIS

DESCRIPTION

Creating Data CDs

Creating Audio
CDs

cdrw — CD read and write
cdrw -i [-vSCO] [-d device]l [-p speed] [image-file]

cdrw -a [-vSCO] [-d device]l [-p speed] [-T audio-type] audio-filel
Laudio-file2...]

cdrw -x [-v] [-d device]l [-T audio-typel track-number out-file

cdrw -c [-vSC] [-d device]l [-p speed] [-m tmp-dir] [-s src-devicel
cdrw -b [-v] [-d devicelall | session

cdrw -M [-v] [-d device]

cdrw -1 [-v]

cdrw -h

The cdrw command provides the ability to create data and audio CDs. It also provides
the ability to extract audio tracks from an audio CD. Any MMC-compliant CD-R or
CD-RW drive can be used with cdrw.

cdrw will search for a CD writer device connected to the system, unless the user
specifies a device with the -d option. If it finds a single such writer device, it will use
that as the default CD writer device for the command.

When more than one CD writer is connected to the system, use the -d option to
indicate which device is desired. The device name can be specified in one of the
following ways: /dev/rdsk/cNtNdNsN, cNtNdNsN, cNtNdN, or a symbolic name
used by volume manager, such as cdrom or cdroml. The -1 option will provide a list
of CD writers.

For instructions on adding a USB-mass-storage-class-compliant CD-RW to your
system, see scsa2usb(7D).

When creating data CDs, cdrw uses the track-at-once mode of writing. With the -1
option, the user will specify a file that contains the data to write on CD medjia. In the
absence of such a file, cdrw will read data from standard input.

In either case, the data will typically first have been prepared by using the
mkisofs(1M) command to convert the file and file information into the High Sierra
format used on CDs. See the examples that include use of this command.

For creating an audio CD, using the -a option, single or multiple audio files can be
specified. All of the audio files should be in the supported audio formats. Currently
approved formats are:

sun Sun .au files with data in Red Book CDDA form
wav RIFF (.wav) files with data in Red Book CDDA form
cda .cda files having raw CD audio data (that is, 16 bit PCM stereo at 44.1 KHz

sample rate in little-endian byteorder)

122 man pages section 1: User Commands ¢ Last Revised 21 Aug 2001



Extracting Audio

Copying CDs

Erasing CD-RW
Media

Checking
device-list or
media-status

OPTIONS

cdrw(1)

aur .aur files having raw CD data in big-endian byteorder

If no audio format is specified, cdrw tries to understand the audio file format based on
the file extension. The case of the characters in the extension is ignored. If a format is
specified using the - T option, it will be assumed as the audio file type for all the files
specified. Also, -cdrw will close the session after writing the audio tracks. Therefore,
the tracks to be written should be specified in a single command line.

cdrw can also be used for extracting audio data from an audio CD with the -x option.
The CD should have tracks in Red Book CDDA form. By default, the output format is
based on the file extension. A user can specify a sun, wav, cda, or aur output format
using the -T option.

cdrw can be used to copy single session data CD-ROMs and Red Book audio CDs. For
copying a CD, cdrw looks for a specified source device. If no source device is specified
when using the -c option, the current CD writing device is assumed to be the source.
cdrw will extract the track or tracks into a temporary file and will look for a blank
writable CD-R/RW media in the current CD writing device. If no such media is found,
the user will be asked to insert a blank writable CD media in the current CD writing
device. If enough space is not available in the default temporary directory, an
alternative directory can be specified using the -m option.

Users have to erase the CD-RW media before it can be re-written. With the -b option,
the following flavors of erasing are currently supported:

session Erase the last session.

all Erase the entire media.

If the session erasing type is used, cdrw will erase the last session. If there is only
one session recorded on the CD-RW (for example, a data/audio CD-RW created by
this tool), then session erasing is useful as it will only erase the portion that is
recorded, leaving behind a blank disk. This is faster than erasing the entire media.

The all erasing type should be used if it is a multisession disk, or the last session is
not closed, or disk status is unknown, and the user wishes to erase the disk. With this
type of erase, cdrw will erase the entire disk.

The user can get a list of CD writing devices currently present in the system with the
-1 option. Also, for a particular media, the user can get the blanking status and table
of contents through the -M option. The -M option also prints information about the
last session start address and the next writable address. This information, along with
the -0 option, can be used to create multisession CDs. Please refer to mkisofs(1M)
for more information.

The following options are supported:

-a Creates an audio disk. At least one audio-file name must be specified. A CD
can not have more than 99 audio tracks, so no more than 99 audio files can

User Commands 123



cdrw(1)

be specified. Also, the maximum audio data that can be written to the
media by default is 74 minutes, unless -C is specified.

Blanks a CD-RW media. The type of erasing must be specified by the all
or session argument.

Copies a CD. If no other argument is specified, the default CD writing
device is assumed to be the source device as well. In this case, the copying
operation will read the source media into a temporary directory and will
prompt the user to place a blank media into the drive for copying to
proceed.

Uses media stated capacity. Without this option, cdrw will use a default
value for writable CD media, which is 74 minutes for an audio CD or
681984000 bytes for a data CD.

Specifies CD writing device.
Help. Prints usage message.

Specifies image file for creating data CDs. The file size should be less than
what can be written on a CD-R or CD-RW media, which is 681984000 bytes
by default or the media stated capacity if the - C option is used. Also, it is
better to have the file locally available instead of having it on an
NFS-mounted filesystem, because the CD writing process expects data to
be available continuously without interruptions.

Lists all the CD writers found in the system.

Uses an alternate temporary directory instead of system default temporary
directory for storing track data while copying a CD. An alternate
temporary directory might be required because the amount of data on a CD
can be huge (as much as 800 Mbytes for an 80 minute audio CD) and the
system default temporary directory might not have that much space.

Reports media status. cdrw will report if the media is blank or not, its table
of contents, the last session’s start address, and the next writable address if
the disk is open.

Keeps the disk open. cdrw will close the session, but it will keep the disk
open so that another session can be added later on to create a multisession
disk.

Sets the CD writing speed. For example, -p 4 will set the speed to 4X. If
this option is not specified, cdrw will use the default speed of the CD
writer. If this option is specified, cdrw will try to set the drive write speed
to this value, but there is no guarantee of the speed actually used by the
drive.

Specifies source device for copying CD.

124 man pages section 1: User Commands ¢ Last Revised 21 Aug 2001



EXAMPLES

cdrw(1)

-S Simulation mode. In this mode, cdrw will do everything with the drive

laser turned off, so nothing will be written to the media. This can be used

to verify if the system can provide data at a rate good enough for CD

writing.

-T Audio format to use extracting audio files or reading audio files for audio
CD creation. The audio-type can be sun, wav, cda, or aur.

-v Verbose mode.

-X Extracts audio data from an audio track.

EXAMPLE 1 Creating a data CD

example% cdrw -i /local/iso_image

EXAMPLE 2 Creating a CD from a directory
This example creates a CD from the directory tree /home/foo:

example% mkisofs -r /home/foo 2>/dev/null | cdrw -i -p 1

EXAMPLE 3 Extracting an audio track number
This example extracts audio track number 1 to /home/foo/songl.wav:

example% cdrw -x -T wav 1 /home/foo/songl.wav

EXAMPLE 4 Using wav files
This example creates an audio CD from wav files on disk:

example% cdrw -a songl.wav song2.wav song3.wav song4.wav

EXAMPLE 5 Erasing a CD-RW media
This example erases a CD-RW media in a CD-RW drive:

example% cdrw -b all

EXAMPLE 6 Creating a data CD with multiple drives
This example creates a data CD on a system with multiple CD-R/RW drives:

example% cdrw -d clt6d0s2 -i /home/foo/iso-image
EXAMPLE 7 Checking data delivery rate

This example checks if the system can provide data to a CD-RW drive at a rate
sufficient for the write operation:

User Commands

125



cdrw(1)

126

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 7 Checking data delivery rate (Continued)

example% cdrw -S -i /home/foo/iso-image

EXAMPLE 8 Running at a higher priority
This example runs cdrw at a higher priority (for root user only):

example# priocntl -e -p 60 cdrw -i /home/foo/iso-image

EXAMPLE 9 Creating a multi-session disk

Create the first session image using mkisofs(1M) and record it onto the disk without
closing the disk:

example% cdrw -O -i /home/foo/iso-image

Additional sessions can be added to an open disk by creating an image with
mkisofs(1M) using the session start and next writable address reported by cdrw.

example% cdrw -M

Track No. |Type |Start address
__________ o e
1 |Data | o

Leadout |Data | 166564

Last session start address: 162140
Next writable address: 173464

example% mkisofs -o /tmp/image2 -r -C 0,173464 -M \
/dev/rdsk/c0t2d0s2 /home/foo

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcdrw

audioconvert(l), mkisofs(IM), priocntl(l), attributes(b), rbac(b),
scsa2usb(7D), sd(7D)

The CD writing process requires data to be supplied at a constant rate to the drive. It
is advised to keep I/O activity to a minimum and shut down the related applications
while writing CDs.

When making copies or extracting audio tracks, it is better to use an MMC compliant
source CD-ROM drive. The CD writing device can be used for this purpose.

man pages section 1: User Commands ¢ Last Revised 21 Aug 2001



cdrw(1)

Before writing a CD, ensure that the media is blank by using the -M option and use the
- S simulation mode to test the system to make sure it can provide data at the
required rate. In case the system is not able to provide data at the required rate, try
simulation with a slower write speed set through the -p option. Users can also try to
run cdrw at a higher priority using the priocnt1(1) command.

The -p option is provided for users who are aware of the CD-R/RW drive and its
capabilities to operate at different write speeds. Some commercially available drives
handle the drive speed setting command differently, so use this option judiciously.

Most commercially available drives allow writing beyond 74 minutes as long as the
media has the capacity (such as 80-minute media). However, such capability of
writing beyond 74 minutes might not be supported by the drive in use. If the drive
being used supports such capability, then use the -C option to indicate that the tool
should rely on the capacity indicated by the media.

The cdrw command uses rbac(5) to control user access to the devices. By default,
cdrw is accessible to all users but can be restricted to individual users. Please refer to
"Administering CD-R/CD-RW devices" in the System Administration Guide: Basic
Administration for more information.

User Commands 127



checknr(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

BUGS

checknr — check nroff and troff input files; report possible errors

checknr [-fs] [-a . xI .yl . x2 .y2 ... .xn .yn] [-c . x1 . x2 . x3
.xn]  [filename...]

checknr checks a list of nrof£(1) or trof £(1) input files for certain kinds of errors
involving mismatched opening and closing delimiters and unknown commands. If no
files are specified, checknr checks the standard input. Delimiters checked are:

®  Font changes using \fx ... \fP.
m  Size changes using \sx ... \s0.

®  Macros that come in open . . . close forms, for example, the . TS and . TE macros
which must always come in pairs.

checknr knows about the ms(5) and me(5) macro packages.

checknr is intended to be used on documents that are prepared with checknr in
mind. It expects a certain document writing style for \ £ and \ s commands, in that
each \ £x must be terminated with \ £P and each \ sx must be terminated with \ s0.
While it will work to directly go into the next font or explicitly specify the original font
or point size, and many existing documents actually do this, such a practice will
produce complaints from checknr. Since it is probably better to use the \£P and \s0
forms anyway, you should think of this as a contribution to your document
preparation style.

-f Ignore \ £ font changes.
-s Ignore \s size changes.
-a .xl .yl... Add pairs of macros to the list. The pairs of macros are assumed to

be those (such as .DS and .DE) that should be checked for
balance. The -a option must be followed by groups of six
characters, each group defining a pair of macros. The six characters
are a period, the first macro name, another period, and the second
macro name. For example, to define a pair .BS and .ES, use
‘-a.BS.ES’

-c .x1... Define commands which checknr would otherwise complain
about as undefined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

eqn(l), nrof£(1), troff(l), attributes(5), me(5), ms(5)

There is no way to define a one-character macro name using the -a option.

128 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

chgrp(1)
chgrp — change file group ownership
chgrp [-fhR] group file...

The chgrp utility will set the group ID of the file named by each file operand to the
group ID specified by the group operand.

For each file operand, it will perform actions equivalent to the chown(2) function,
called with the following arguments:

m  The file operand will be used as the path argument.
®  The user ID of the file will be used as the owner argument.
m  The specified group ID will be used as the group argument.

Unless chgrp is invoked by a process with appropriate privileges, the set-user-ID and
set-group-ID bits of a regular file will be cleared upon successful completion; the
set-user-ID and set-group-ID bits of other file types may be cleared.

The operating system has a configuration option _POSIX CHOWN RESTRICTED, to
restrict ownership changes. When this option is in effect, the owner of the file may
change the group of the file only to a group to which the owner belongs. Only the
super-user can arbitrarily change owner IDs, whether or not this option is in effect. To
set this configuration option, include the following line in /etc/system:

set rstchown = 1

To disable this option, include the following line in /etc/system:

set rstchown = 0

_POSIX CHOWN RESTRICTED is enabled by default. See system(4) and
fpathconf(2).

-f Force. Do not report errors.

-h If the file is a symbolic link, change the group of the symbolic link. Without
this option, the group of the file referenced by the symbolic link is changed.

-R Recursive. chgrp descends through the directory, and any subdirectories,
setting the specified group ID as it proceeds. When a symbolic link is
encountered, the group of the target file is changed (unless the -h option is
specified), but no recursion takes place.

The following operands are supported:

group A group name from the group database or a numeric group ID. Either
specifies a group ID to be given to each file named by one of the file
operands. If a numeric group operand exists in the group database as a
group name, the group ID number associated with that group name is used
as the group ID.

file A path name of a file whose group ID is to be modified.

User Commands 129



chgrp(1)
USAGE

ENVIRONMENT

VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

See largefile(5) for the description of the behavior of chgrp when encountering
files greater than or equal to 2 Gbyte (2°! bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of chgrp: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 The utility executed successfully and all requested changes were made.
>0 An error occurred.
/etc/group group file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled (see NOTES)

chmod(1), chown(1), 1d(1M), chown(2), fpathconf(2), group(4), passwd(4),
system(4), attributes(5), environ(5), largefile(5)

chgrp is CSl-enabled except for the group name.

130 man pages section 1: User Commands ¢ Last Revised 20 Dec 1996




NAME
SYNOPSIS

DESCRIPTION

OPTIONS

chkey(1)
chkey — change user’s secure RPC key pair

chkey [-p] [-s nisplus | nis | f£iles] [-m <mechanism>]

chkey is used to change a user’s secure RPC public key and secret key pair. chkey
prompts for the old secure-rpc password and verifies that it is correct by decrypting
the secret key. If the user has not already used keylogin(l) to decrypt and store the
secret key with keyserv(1M), chkey registers the secret key with the local
keyserv( 1M) daemon. If the secure-rpc password does not match the login
password, chkey prompts for the login password. chkey uses the login password to
encrypt the user’s secret Diffie-Hellman (192 bit) cryptographic key. chkey can also
encrypt other Diffie-Hellman keys for authentication mechanisms configured using
nisauthconf(1M).

chkey ensures that the login password and the secure-rpc password(s) are kept the
same, thus enabling password shadowing. See shadow(4).

The key pair can be stored in the /etc/publickey file (see publickey(4)), the NIS
publickey map, or the NIS+ cred.org dir table. If a new secret key is generated,
it will be registered with the local keyserv(1M) daemon. However, only NIS+ can
store Diffie-Hellman keys other than 192-bits.

Keys for specific mechanisms can be changed or reencrypted using the -m option
followed by the authentication mechanism name. Multiple -m options can be used to
change one or more keys. However, only mechanisms configured using
nisauthconf(1M) can be changed with chkey.

If the source of the publickey is not specified with the -s option, chkey consults the
publickey entry in the name service switch configuration file. See
nsswitch.conf(4). If the publickey entry specifies one and only one source, then
chkey will change the key in the specified name service. However, if multiple name
services are listed, chkey can not decide which source to update and will display an
error message. The user should specify the source explicitly with the -s option.

Non root users are not allowed to change their key pair in the files database.

The following options are supported:

-p Re-encrypt the existing secret key with the user’s login
password.

-snisplus Update the NIS+ database.

-snis Update the NIS database.

-s files Update the files database.

-m <mechanism> Changes or re-encrypt the secret key for the specified
mechanism.

User Commands 131



chkey(1)

132

FILES | /etc/nsswitch.conf

/etc/publickey

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWcsu

SEE ALSO | keylogin(l), keylogout(l), keyserv(1M), newkey(1M), nisaddcred(1M),

man pages section 1: User Commands ¢ Last Revised 4 Feb 1998

nisauthconf(lIM), nsswitch.conf(4), publickey(4), shadow(4), attributes(5)




NAME
SYNOPSIS

DESCRIPTION

Absolute mode

chmod(1)

chmod — change the permissions mode of a file

chmod [-£fR] absolute-mode file...

chmod [-fR] symbolic-mode-list file...

The chmod utility changes or assigns the mode of a file. The mode of a file specifies its
permissions and other attributes. The mode may be absolute or symbolic.

An absolute mode specification has the following format:

chmod [options] absolute-mode file . . .where absolute-mode is specified using octal
numbers nnnn defined as follows:

n a number from 0 to 7. An absolute mode is constructed from the OR of any
of the following modes:

4000

20#0

1000
0400
0200
0100
0700
0040
0020
0010
0070
0004
0002
0001

0007

Set user ID on execution.

Set group ID on execution if #is 7, 5, 3, or 1.
Enable mandatory locking if #is 6, 4, 2, or 0.

For directories, files are created with BSD semantics for
propagation of the group ID. With this option, files and

subdirectories created in the directory inherit the group ID of

the directory, rather than of the current process. For directories,

the set-gid bit may only be set or cleared by using symbolic
mode.

Turn on sticky bit. See chmod(2).

Allow read by owner.

Allow write by owner.

Allow execute (search in directory) by owner.
Allow read, write, and execute (search) by owner.
Allow read by group.

Allow write by group.

Allow execute (search in directory) by group.
Allow read, write, and execute (search) by group.
Allow read by others.

Allow write by others.

Allow execute (search in directory) by others.

Allow read, write, and execute (search) by others.

User Commands

133



chmod(1)

134

Symbolic mode

For directories, the setgid bit cannot be set (or cleared) in absolute mode; it must be
set (or cleared) in symbolic mode using g+s (or g-s).

A symbolic mode specification has the following format:

chmod [options] symbolic-mode-list file . . .where symbolic-mode-list is a comma-separated
list (with no intervening whitespace) of symbolic mode expressions of the form:

[who] operator [permissions]

Operations are performed in the order given. Multiple permissions letters following a
single operator cause the corresponding operations to be performed simultaneously.

who

operator

zero or more of the characters u, g, o, and a specifying whose
permissions are to be changed or assigned:

u user’s permissions

g group’s permissions

o others” permissions

a all permissions (user, group, and other)

If who is omitted, it defaults to a, but the setting of the file mode
creation mask (see umask in sh(1l) or csh(1) for more information)
is taken into account. When who is omitted, chmod will not
override the restrictions of your user mask.

either +, —, or =, signifying how permissions are to be changed:

+ Add permissions.
If permissions is omitted, nothing is added.

If who is omitted, add the file mode bits represented by
permissions, except for the those with corresponding bits
in the file mode creation mask.

If who is present, add the file mode bits represented by
the permissions.

- Take away permissions.
If permissions is omitted, do nothing.

If who is omitted, clear the file mode bits represented
by permissions, except for those with corresponding bits
in the file mode creation mask.

If who is present, clear the file mode bits represented by
permissions.

man pages section 1: User Commands ¢ Last Revised 4 Dec 2000



permission

chmod(1)

= Assign permissions absolutely.

If who is omitted, clear all file mode bits; if who is
present, clear the file mode bits represented by who.

If permissions is omitted, do nothing else.

If who is omitted, add the file mode bits represented by
permissions, except for the those with corresponding bits
in the file mode creation mask.

If who is present, add the file mode bits represented by
permissions.

Unlike other symbolic operations, = has an absolute effect in that it
resets all other bits represented by who. Omitting permissions is
useful only with = to take away all permissions.

any compatible combination of the following letters:

1 mandatory locking
r read permission

s user or group set-ID
t sticky bit

w write permission

X execute permission

execute permission if the file is a directory or if there is
execute permission for one of the other user classes

u,9,0 indicate that permission is to be taken from the current
user, group or other mode respectively.

Permissions to a file may vary depending on your user
identification number (UID) or group identification number (GID).
Permissions are described in three sequences each having three
characters:

User Group Other

TWX TWX TWX

This example (user, group, and others all have permission to read,
write, and execute a given file) demonstrates two categories for
granting permissions: the access class and the permissions
themselves.

User Commands 135



chmod(1)

OPTIONS

OPERANDS

USAGE

EXAMPLES

The letter s is only meaningful with u or g, and t only works with
u.

Mandatory file and record locking (1) refers to a file’s ability to
have its reading or writing permissions locked while a program is
accessing that file.

In a directory which has the set-group-ID bit set (reflected as either
————— s---o0or -----1---in the output of ' 1s -1d"), files and
subdirectories are created with the group-ID of the parent
directory—not that of current process.

It is not possible to permit group execution and enable a file to be
locked on execution at the same time. In addition, it is not possible
to turn on the set-group-ID bit and enable a file to be locked on
execution at the same time. The following examples, therefore, are
invalid and elicit error messages:

chmod g+x,+1 file
chmod g+s, +1 file

Only the owner of a file or directory (or the super-user) may
change that file’s or directory’s mode. Only the super-user may set
the sticky bit on a non-directory file. If you are not super-user,
chmod will mask the sticky-bit but will not return an error. In
order to turn on a file’s set-group-ID bit, your own group ID must
correspond to the file’s and group execution must be set.

The following options are supported:
-f Force. chmod will not complain if it fails to change the mode of a file.

-R Recursively descends through directory arguments, setting the mode for
each file as described above. When symbolic links are encountered, the
mode of the target file is changed, but no recursion takes place.

The following operands are supported:

absolute-mode

symbolic-mode-list  Represents the change to be made to the file mode bits of each file
named by one of the file operands. See Absolute Mode and
Symbolic Mode above in the DESCRIPTION section for more
information.

file A path name of a file whose file mode bits are to be modified.

See largefile(5) for the description of the behavior of chmod when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

EXAMPLE 1 Denying execute permission to everyone

example% chmod a-x file

136 man pages section 1: User Commands ¢ Last Revised 4 Dec 2000



ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

chmod(1)

EXAMPLE 2 Allowing only read permission to everyone

example% chmod 444 file

EXAMPLE 3 Making a file readable and writable by the group and others

example% chmod go+rw file
example% chmod 066 file

EXAMPLE 4 Causing a file to be locked during access

example% chmod +1 file

EXAMPLE 5 Allowing everyone to read, write, and execute the file and turn on the set
group-ID

example% chmod a=rwx,g+s file
example% chmod 2777 file

See environ(5) for descriptions of the following environment variables that affect the
execution of chmod: LC_CTYPE, LC MESSAGES, and NLSPATH.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

getfacl(l), 1s(1), setfacl(l), chmod(2), attributes(b), environ(b),
largefile(b)

Absolute changes do not work for the set-group-ID bit of a directory. You must use
g+sorg-s.

chmod permits you to produce useless modes so long as they are not illegal (for
instance, making a text file executable). chmod does not check the file type to see if
mandatory locking is meaningful.

If the filesystem is mounted with the nosuid option, setuid execution is not allowed.

If you use chmod to change the file group owner permissions on a file with ACL
entries, both the file group owner permissions and the ACL mask are changed to the

User Commands 137



chmod(1)

new permissions. Be aware that the new ACL mask permissions may change the
effective permissions for additional users and groups who have ACL entries on the
file. Use the getfac1(l) command to make sure the appropriate permissions are set
for all ACL entries.

138 man pages section 1: User Commands ¢ Last Revised 4 Dec 2000



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

chown(1)
chown — change file ownership

chown [-fhR] owner [: groupl file..

The chown utility will set the user ID of the file named by each f£ile to the user ID
specified by owner, and, optionally, will set the group ID to that specified by group.

If chown is invoked by other than the super-user, the set-user-ID bit is cleared.
Only the owner of a file (or the super-user) may change the owner of that file.

The operating system has a configuration option {_POSIX_ CHOWN_RESTRICTED}, to
restrict ownership changes. When this option is in effect the owner of the file is
prevented from changing the owner ID of the file. Only the super-user can arbitrarily
change owner IDs whether or not this option is in effect. To set this configuration
option, include the following line in /etc/system:

set rstchown =1

To disable this option, include the following line in /etc/system:

set rstchown = 0

{_POSIX_ CHOWN RESTRICTED} is enabled by default. See system(4) and
fpathconf(2).

The following options are supported:

-f Do not report errors.

-h If the file is a symbolic link, change the owner of the symbolic link. Without
this option, the owner of the file referenced by the symbolic link is
changed.

-R Recursive. chown descends through the directory, and any subdirectories,

setting the ownership ID as it proceeds. When a symbolic link is
encountered, the owner of the target file is changed (unless the -h option is
specified), but no recursion takes place.

The following operands are supported:

owner[: group] A user ID and optional group ID to be assigned to
file. The owner portion of this operand must be a user
name from the user database or a numeric user ID.
Either specifies a user ID to be given to each file named
by file. If a numeric owner exists in the user database as
a user name, the user ID number associated with that
user name will be used as the user ID. Similarly, if the
group portion of this operand is present, it must be a
group name from the group database or a numeric
group ID. Either specifies a group ID to be given to
each file. If a numeric group operand exists in the

User Commands 139



chown(1)

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

group database as a group name, the group ID number
associated with that group name will be used as the
group ID.

file A path name of a file whose user ID is to be modified.

See largefile(5) for the description of the behavior of chown when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

EXAMPLE 1 Changing ownership of all files in the hierarchy

To change ownership of all files in the hierarchy, including symbolic links, but not the
targets of the links:

example% chown —R -h owner[:group] file...

See environ(5) for descriptions of the following environment variables that affect the
execution of chown: LC CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 The utility executed successfully and all requested changes were made.
>0 An error occurred.
/etc/passwd system password file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CsI Enabled (see NOTES)

chgrp(l), chmod(1), chown(2), fpathconf(2), passwd(4), system(4),
attributes(5), environ(5), largefile(b)

chown is CSI-enabled except for the owner and group names.

140 man pages section 1: User Commands ¢ Last Revised 1 Jun1998




NAME
SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

FILES

ATTRIBUTES

SEE ALSO

chown(1B)
chown — change owner

/usr/ucb/chown [-fR] owner [.groupl filename..

chown changes the owner of the filenames to owner. The owner may be either a decimal
user ID (UID) or a login name found in the password file. An optional group may also
be specified. The group may be either a decimal group ID (GID) or a group name
found in the GID file.

Only the super-user can change owner, in order to simplify accounting procedures.
-f Do not report errors.

-R Recursively descend into directories setting the ownership of all files in
each directory encountered. When symbolic links are encountered, their
ownership is changed, but they are not traversed.

See largefile(5) for the description of the behavior of chown when encountering
files greater than or equal to 2 Gbyte ( 2*! bytes).

/etc/passwd password file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

chgrp(1), chown(2), group(4), passwd(4), attributes(b), largefile(5)

User Commands 141



ckdate(1)

142

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ckdate, errdate, helpdate, valdate — prompts for and validates a date

ckdate [-Q] [-W width]l [-f format] [-d default] [-h help] [-e error]
[-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/errdate [-W width] [-e error] [-£f format]
/usr/sadm/bin/helpdate [-W width] [-h help] [-£ format]

/usr/sadm/bin/valdate [-f format] input

The ckdate utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a date, text for help and error
messages, and a default value (which will be returned if the user responds with a
RETURN). The user response must match the defined format for a date.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckdate command. They are errdate
(which formats and displays an error message), helpdate (which formats and
displays a help message), and valdate (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt. When format is defined in the errdate and helpdate
modules, the messages will describe the expected format.

The following options are supported:

-d default Defines the default value as default. The default does not have to
meet the format criteria.

-e error Defines the error message as error.

- £ format Specifies the format against which the input will be verified.

Possible formats and their definitions are:

o
o

= abbreviated month name (jan, feb, mar)

o\°

full month name %d = day of month (01 - 31)

b
B
D date as %m/%d /%y (the default format)

o\©

oe
0]
1l

day of month (1 - 31; single digits are preceded by a
blank)

o\°
=g
Il

abbreviated month name, identical to $b%

oP
3
I

month number (01 - 12)

man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

ckdate(1)

Sy = year within century (for instance, 89)
$Y = year as CCYY (for instance, 1989)

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be

sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against format criteria.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.
3 User termination (quit).

4 Garbled format argument.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(b)

The default prompt for ckdate is:

Enter the date [?,q]:

The default error message is:

ERROR - Please enter a date. Format is <formats>.

The default help message is:

Please enter a date. Format is <formats.

User Commands 143



ckdate(1)

When the quit option is chosen (and allowed), g is returned along with the return code
3. The valdate module will not produce any output. It returns zero for success and
non-zero for failure.

144  man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ckgid(1)
ckgid, errgid, helpgid, valgid — prompts for and validates a group id

ckgid [-Q] [-W width] [-m] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

/usr/sadm/bin/errgid [-W width] [-e error]
/usr/sadm/bin/helpgid [-W width] [-m] [-h help]

/usr/sadm/bin/valgid input

ckgid prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be an existing group ID, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckgid command. They are errgid
(which formats and displays an error message), helpgid (which formats and displays
a help message), and valgid (which validates a response). These modules should be
used in conjunction with FML objects. In this instance, the FML object defines the
prompt.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-m Displays a list of all groups when help is requested or when the
user makes an error.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be

sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

User Commands 145



ckgid(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

-W width Specifies that prompt, help and error messages will be formatted

to a line length of width.

The following operand is supported:

input Input to be verified against /etc/group.

The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on -W option, or usage error.
3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(b)

The default prompt for ckgid is:

Enter the name of an existing group [?,q]:

The default error message is:

ERROR: Please enter one of the following group names: [List]
If the -m option of ckgid is used, a list of valid groups is displayed here.

The default help message is:

ERROR: Please enter one of the following group names: [List]

If the -m option of ckgid is used, a list of valid groups is displayed here.

When the quit option is chosen (and allowed), g is returned along with the return code
3. The valgid module will not produce any output. It returns 0 for success and

non-zero for failure.

146  man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ckint(1)
ckint, errint, helpint, valint — display a prompt; verify and return an integer value

ckint [-Q] [-W width] [-b basel [-d default] [-h help] [-e error]
[-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/errint [-W width] [-b base]l [-e error]
/usr/sadm/bin/helpint [-W width] [-b base] [-h help]
/usr/sadm/bin/valint [-b basel input

The ckint utility prompts a user, then validates the response. It defines, among other
things, a prompt message whose response should be an integer, text for help and error
messages, and a default value (which will be returned if the user responds with a
carriage return).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Three visual tool modules are linked to the ckint command. They are errint
(which formats and displays an error message), helpint (which formats and displays
a help message), and valint (which validates a response). These modules should be
used in conjunction with FML objects. In this instance, the FML object defines the
prompt. When base is defined in the errint and helpint modules, the messages
will include the expected base of the input.

The following options are supported:

-b base Defines the base for input. Must be 2 to 36, default is 10.

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be

sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

User Commands 147



ckint(1)

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

OPERANDS | The following operand is supported:

input Input to be verified against base criterion.

EXIT STATUS | The following exit values are returned:

0 Successful execution.
1 EOF on input, or negative width on -W option, or usage error.
3 User termination (quit).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO | attributes(b)

NOTES | The default base 10 prompt for ckint is:
Enter an integer [?,ql:
The default base 10 error message is:
ERROR - Please enter an integer.
The default base 10 help message is:

Please enter an integer.

The messages are changed from "integer" to "base base integer" if the base is set to a
number other than 10.

When the quit option is chosen (and allowed), g is returned along with the return code
3. The valint module will not produce any output. It returns 0 for success and
non-zero for failure.

148 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ckitem(1)
ckitem, erritem, helpitem — build a menu; prompt for and return a menu item

ckitem [-Q] [-W width] [-uno] [-f filename] [-1 label]l [ [-1i invis] [,..]1]
[-m max] [-d default] [-h help] [-e error] [-p prompt] [-k pid
[-s signal]l] I[choice [...]]

/usr/sadm/bin/erritem [-W width] [-e error] [choice [..]]

/usr/sadm/bin/helpitem [-W width] [-h help] [choice [..]]

The ckitem utility builds a menu and prompts the user to choose one item from a
menu of items. It then verifies the response. Options for this command define, among
other things, a prompt message whose response will be a menu item, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return).

By default, the menu is formatted so that each item is prepended by a number and is
printed in columns across the terminal. Column length is determined by the longest
choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

Two visual tool modules are linked to the ckitem command. They are erritem
(which formats and displays an error message) and helpitem (which formats and
displays a help message). These modules should be used in conjunction with FML
objects. In this instance, the FML object defines the prompt. When choice is defined in
these modules, the messages will describe the available menu choice (or choices).

The following options are supported:

-d default Define the default value as default. The default is not validated and
so does not have to meet any criteria.

-e error Define the error message as error.

- £ filename Define a file, filename, which contains a list of menu items to be

displayed. (The format of this file is: token<tab>description.
Lines beginning with a pound sign (#) are designated as comments
and ignored.)

-h help Define the help messages as help.

-1 invis Define invisible menu choices (those which will not be printed in
the menu). (For example, “all” used as an invisible choice would
mean it is a legal option but does not appear in the menu. Any

User Commands 149



ckitem(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

-k pid

-1 label

-m max

-0
-p prompt
-Q

-s signal

-W width

number of invisible choices may be defined.) Invisible choices
should be made known to a user either in the prompt or in a help
message.

Specify that the process ID pid is to be sent a signal if the user
chooses to abort.

Define a label, label, to print above the menu.

Define the maximum number of menu choices that the user can
choose. The default is 1.

Specify that menu items should not be displayed in alphabetical
order.

Specify that only one menu token will be returned.
Define the prompt message as prompt.
Specify that quit will not be allowed as a valid response.

Specify that process ID pid defined with the -k option is to be sent
signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

Specify that menu items should be displayed as an unnumbered
list.

Specify that prompt, help and error messages will be formatted to
a line length of width.

The following operand is supported:

choice

Define menu items. Items should be separated by white space or
newline.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or inability to open file on
-f option, Or usage error.

3 User termination (quit).

4 No choices from which to choose.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability

SUNWcsu

attributes(5)

150 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992




NOTES

ckitem(1)

The user may input the number of the menu item if choices are numbered or as much
of the string required for a unique identification of the item. Long menus are paged
with 10 items per page.

When menu entries are defined both in a file (by using the - f option) and also on the
command line, they are usually combined alphabetically. However, if the -n option is
used to suppress alphabetical ordering, then the entries defined in the file are shown
first, followed by the options defined on the command line.

The default prompt for ckitemis:

Enter selection [?,?7?,q]:

One question mark will give a help message and then redisplay the prompt. Two
question marks will give a help message and then redisplay the menu label, the menu
and the prompt.

The default error message if you typed a number is:

ERROR: Bad numeric choice specification

The default error message if you typed a string is:

ERROR: Entry does not match available menu selection. Enter the number
of the menu item you wish to select, the token which is associated
with the menu item, or a partial string which uniquely identifies the
token for the menu item. Enter ?? to reprint the menu.

The default help message is:

Enter the number of the menu item you wish to select, the token
which is associated with the menu item, or a partial string which
uniquely identifies the token for the menu item. Enter ? to
reprint the menu.

When the quit option is chosen (and allowed), g is returned along with the return code
3.

User Commands 151



ckkeywd(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

ckkeywd — prompts for and validates a keyword

ckkeywd [-Q] [-W width]l [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signall]l keyword [...]

ckkeywd prompts a user and validates the response. It defines, among other things, a
prompt message whose response should be one of a list of keywords, text for help and
error messages, and a default value (which will be returned if the user responds with a
carriage return). The answer returned from this command must match one of the
defined list of keywords.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) will be displayed.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be

sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

keyword Defines the keyword, or list of keywords, against which the
answer will be verified.

The following exit values are returned:
0 Successful execution.

1 EOF on input, or negative width on -W option, or no keywords from which
to choose, or usage error.

152  man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



ATTRIBUTES

SEE ALSO

NOTES

ckkeywd(1)
3 User termination (quit).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

The default prompt for ckkeywd is:

Enter appropriate value [keyword, [ . . . 1,?,q9l:

The default error message is:

ERROR: Please enter one of the following keywords: keyword, [ . . . 1,gq
The default help message is:

keyword, [ . . . 1,9

When the quit option is chosen (and allowed), g is returned along with the return code
3.

User Commands 153



ckpath(1)

154

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ckpath, errpath, helppath, valpath — display a prompt; verify and return a pathname

ckpath [-Q] [-W width] [-a | 1] [-b | ¢ | £ | y] [-n [o | z]]
[-rtwx] [-d default] [-h help] [-e error] [-p prompt] [-k pid
[-s signal] ]

/usr/sadm/bin/errpath [-W width] [-a | 1] [-b | ¢ | £ | ¥] [-n [o |
z]1] [-rtwx] [-e error]

/usr/sadm/bin/helppath [-W width] [-a | 1] [-b | ¢ | £ | y] [-n [o |
z]] [-rtwx] [-h help]

/usr/sadm/bin/valpath [-a | 1] [-b | ¢ | £ | y] [-n [o | z]]
[-rtwx] input

The ckpath utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a pathname, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).

The pathname must obey the criteria specified by the first group of options. If no
criteria is defined, the pathname must be for a normal file that does not yet exist. If
neither -a (absolute) or -1 (relative) is given, then either is assumed to be valid.

All messages are limited in length to 79 characters and are formatted automatically.
Tabs and newlines are removed after a single white space character in a message
definition, but spaces are not removed. When a tilde is placed at the beginning or end
of a message definition, the default text is inserted at that point, allowing both custom
text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckpath command. They are errpath
(which formats and displays an error message on the standard output), helppath
(which formats and displays a help message on the standard output), and valpath
(which validates a response). These modules should be used in conjunction with
Framed Access Command Environment (FACE) objects. In this instance, the FACE
object defines the prompt.

The following options are supported:

-a Pathname must be an absolute path.

-b Pathname must be a block special file.

-c Pathname must be a character special file.

-d default Defines the default value as default. The default is not validated

and so does not have to meet any criteria.

-e error Defines the error message as error.

man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



OPERANDS

EXAMPLES

-f
-h help
-k pid

-p prompt
-Q
-r

- s signal

ckpath(1)
Pathname must be a regular file.
Defines the help message as help.

Specifies that process ID pid is to be sent a signal if the user
chooses to quit.

Pathname must be a relative path.

Pathname must not exist (must be new).

Pathname must exist (must be old).

Defines the prompt message as prompt.

Specifies that quit is not allowed as a valid response.
Pathname must be readable.

Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

Pathname must be creatable (touchable). Pathname will be created
if it does not already exist.

Pathname must be writable.

Specify that prompt, help and error messages be formatted to a
line length of width.

Pathname must be executable.
Pathname must be a directory.

Pathname must have a file having a size greater than zero bytes.

The following operand is supported:

input

Input to be verified against validation options.

The text of the default messages for ckpath depends upon the criteria options that

have been used.

EXAMPLE 1 Default prompt

An example default prompt for ckpath (using the -a option) is:

example% ckpath -a

Enter an absolute pathname [?,q]

EXAMPLE 2 Default error message

An example default error message (using the -a option) is:

example% /usr/sadm/bin/errpath -a
ERROR: A pathname is a filename, optionally preceded by parent directories.

User Commands 155



ckpath(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

EXAMPLE 2 Default error message (Continued)

The pathname you enter: - must begin with a slash (/)

EXAMPLE 3 Default help message

An example default help message (using the -a option) is:

example% /usr/sadm/bin/helppath -a
A pathname is a filename, optionally preceded by parent directories.

The pathname you enter: - must begin with a slash (/)

EXAMPLE 4 The quit option

When the quit option is chosen (and allowed), g is returned along with the return code
3. Quit input gets a trailing newline.

EXAMPLE 5 Using the valpath module

The valpath module will produce a usage message on stderr. It returns 0 for success
and non-zero for failure.

example% /usr/sadm/bin/valpath
usage: valpath [-[a|l] [b|c|f|y] [n]|[o]|z]]lrtwx] input

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.
2 Mutually exclusive options.

3 User termination (quit).

4 Mutually exclusive options.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

face(l), signal(3BHEAD), attributes(b)

156 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ckrange(1)
ckrange, errange, helprange, valrange — prompts for and validates an integer

ckrange [-Q] [-W width] [-1 lower] [-u upper] [-b basel [-d default]
[-h help] [-e error] [-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/errange [-W width] [-e error] [-1 lower] [-u upper]
[-b base]

/usr/sadm/bin/helprange [-W width] [-h help]l [-1 lower] [-u upper]
[-b base]

/usr/sadm/bin/valrange [-1 lower] [-u upper] [-b base]l input

The ckrange utility prompts a user for an integer between a specified range and
determines whether this response is valid. It defines, among other things, a prompt
message whose response should be an integer in the range specified, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).

This command also defines a range for valid input. If either the lower or upper limit is
left undefined, then the range is bounded on only one end.

All messages are limited in length to 79 characters and are formatted automatically.
Tabs and newlines are removed after a single whitespace character in a message
definition, but spaces are not removed. When a tilde is placed at the beginning or end
of a message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckrange command. They are errange
(which formats and displays an error message on the standard output), helprange
(which formats and displays a help message on the standard output), and valrange
(which validates a response). These modules should be used in conjunction with
Framed Access Command Environment (FACE) objects. In this instance, the FACE
object defines the prompt.

"non

Note: Negative "input” arguments confuse getopt in valrange. By inserting a
before the argument, getopt processing will stop. See getopt(1l) and intro(1l) about
getopt parameter handling. getopt is used to parse positional parameters and to
check for legal options.

The following options are supported:

-b base Defines the base for input. Must be 2 to 36, default is 10. Base
conversion uses strtol(3C). Output is always base 10.

-d default Defines the default value as default. default is converted using
strtol(3C) in the desired base. Any characters invalid in the
specified base will terminate the strtol conversion without error.

User Commands 157



ckrange(1)

158

OPERANDS

EXAMPLES

-e error Defines the error message as error.
-h help Defines the help message as help.
-k pid Specifies that process ID pid is to be sent a signal if the user

chooses to quit.

-1 lower Defines the lower limit of the range as lower. Default is the
machine’s largest negative long.

-p prompt Defines the prompt message as prompt.
-Q Specifies that quit will not be allowed as a valid response.
-s signal Specifies that the process ID pid defined with the -k option is to be

sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-u upper Defines the upper limit of the range as upper. Default is the
machine’s largest positive long.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against upper and lower limits and base.

EXAMPLE 1 Default base 10 prompt

The default base 10 prompt for ckrange is:

example% ckrange
Enter an integer between lower_bound and

upper_bound [lower_bound—upper_bound, ? , q] :

EXAMPLE 2 Default base 10 error message

The default base 10 error message is:

example% /usr/sadm/bin/errange
ERROR: Please enter an integer between lower_bound \
and upper_bound .

EXAMPLE 3 Default base 10 help message

The default base 10 help message is:

example% /usr/sadm/bin/helprange
Please enter an integer between lower_bound and upper_bound.

man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



ckrange(1)
EXAMPLE 4 Changing messages for a base other than 10

The messages are changed from “integer”” to “base base integer”” if the base is set to a
number other than 10. For example,

example% /usr/sadm/bin/helprange -b 36

EXAMPLE 5 Using the quit option

When the quit option is chosen (and allowed), g is returned along with the return code
3. Quit input gets a trailing newline.

EXAMPLE 6 Using the valrange module

The valrange module will produce a usage message on stderr. It returns 0 for
success and non-zero for failure.

example% /usr/sadm/bin/valrange

usage: valrange [-1 lower] [-u upper] [-b base] input

EXIT STATUS | The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.
2 Usage error.

3 User termination (quit).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO | intro(l), face(l), getopt(l), strtol(3C), attributes(5), signal(3HEAD)

User Commands 159



ckstr(1)

160

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ckstr, errstr, helpstr, valstr — display a prompt; verify and return a string answer

ckstr [-Q] [-W width]l [ [-r regexp]l [...11 [-1 length]l [-d default]
[-h help] [-e error] [-p prompt] [-k pid [- s signall]

/usr/sadm/bin/errstr [-W width] [-e error] [-1 lengthl [ [-r regexp]
[...11]

/usr/sadm/bin/helpstr [-W width]l [-h help] [-1 lengthl [ [-r regexp]
[...1]

/usr/sadm/bin/valstr [-1 lengthl [ [-r regexpl [...11 input

The ckstr utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a string, text for help and error
messages, and a default value (which are returned if the user responds with a
RETURN).

The answer returned from this command must match the defined regular expression
and be no longer than the length specified. If no regular expression is given, valid
input must be a string with a length less than or equal to the length defined with no
internal, leading or trailing white space. If no length is defined, the length is not
checked.

All messages are limited in length to 79 characters and are formatted automatically.
Tabs and newlines are removed after a single white space character in a message
definition, but spaces are not removed. When a tilde is placed at the beginning or end
of a message definition, the default text will be inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under EXAMPLES) is displayed.

Three visual tool modules are linked to the ckstr command. They are errstr
(which formats and displays an error message on the standard output), helpstr
(which formats and displays a help message on the standard output), and valstr
(which validates a response). These modules should be used in conjunction with
Framed Access Command Environment (FACE) objects. In this instance, the FACE
object defines the prompt.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help message as help.

-k pid Specifies that process ID pid is to be sent a signal if the user

chooses to quit.

-1 length Specifies the maximum length of the input.

man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



OPERANDS

EXAMPLES

ckstr(1)

-p prompt Defines the prompt message as prompt.
-Q Specifies that quit will not be allowed as a valid response.
- I regexp Specifies a regular expression, regexp, against which the input

should be validated. May include white space. If multiple
expressions are defined, the answer need match only one of them.

- signal Specifies that the process ID pid defined with the -k option is to be
sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against format length and/or regular
expression criteria.

EXAMPLE 1 Default prompt

The default prompt for ckstr is:

example% ckstr
Enter an appropriate value [?,q]:

EXAMPLE 2 Default error message

The default error message is dependent upon the type of validation involved. The user
will be told either that the length or the pattern matching failed. The default error
message is:

example% /usr/sadm/bin/errstr
ERROR: Please enter a string which contains no embedded,

leading or trailing spaces or tabs.

EXAMPLE 3 Default help message

The default help message is also dependent upon the type of validation involved. If a
regular expression has been defined, the message is:

example% /usr/sadm/bin/helpstr -r regexp
Please enter a string which matches the following pattern:
regexp

Other messages define the length requirement and the definition of a string.
EXAMPLE 4 Using the quit option
When the quit option is chosen (and allowed), g is returned along with the return code

3. Quit input gets a trailing newline.

User Commands 161



ckstr(1)
EXAMPLE 5 Using the valstr module

The valstr module will produce a usage message on stderr. It returns 0 for success
and non-zero for failure.

example% /usr/sadm/bin/valstr

usage: valstr [-1 length] [[ -r regexpl [ . . . 1] input

EXIT STATUS | The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.
2 Invalid regular expression.

3 User termination (quit).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO | face(l), signal(BHEAD), attributes(5)

162 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPERANDS

USAGE

cksum(1)
cksum — write file checksums and sizes

cksum [file...]

The cksum command calculates and writes to standard output a cyclic redundancy
check (CRC) for each input file, and also writes to standard output the number of
octets in each file.

For each file processed successfully, cksum will write in the following format:

"$u %d $s\n" <checksum>, <# of octets>, <path name>

If no file operand was specified, the path name and its leading space will be omitted.

The CRC used is based on the polynomial used for CRC error checking in the
referenced Ethernet standard.

The encoding for the CRC checksum is defined by the generating polynomial:
G =xP+x+ 2P + 22+ 2+ x?+ M + 20+ 8+ + 2+ + P+ x + 1

Mathematically, the CRC value corresponding to a given file is defined by the
following procedure:

1. The n bits to be evaluated are considered to be the coefficients of a mod 2
polynomial M(x) of degree n—1. These n bits are the bits from the file, with the most
significant bit being the most significant bit of the first octet of the file and the last
bit being the least significant bit of the last octet, padded with zero bits (if
necessary) to achieve an integral number of octets, followed by one or more octets
representing the length of the file as a binary value, least significant octet first. The
smallest number of octets capable of representing this integer is used.

2. M(x) is multiplied by x *? (that is, shifted left 32 bits) and divided by G(x) using
mod 2 division, producing a remainder R(x) of degree < 31.

3. The coefficients of R(x) are considered to be a 32-bit sequence.

4. The bit sequence is complemented and the result is the CRC.

The following operand is supported:

file A path name of a file to be checked. If no file operands are specified, the
standard input is used.

The cksum command is typically used to quickly compare a suspect file against a
trusted version of the same, such as to ensure that files transmitted over noisy media
arrive intact. However, this comparison cannot be considered cryptographically
secure. The chances of a damaged file producing the same CRC as the original are
astronomically small; deliberate deception is difficult, but probably not impossible.

Although input files to cksum can be any type, the results need not be what would be
expected on character special device files. Since this document does not specify the

User Commands 163



cksum(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

block size used when doing input, checksums of character special files need not
process all of the data in those files.

The algorithm is expressed in terms of a bitstream divided into octets. If a file is
transmitted between two systems and undergoes any data transformation (such as
moving 8-bit characters into 9-bit bytes or changing “Little Endian” byte ordering to
“Big Endian”), identical CRC values cannot be expected. Implementations performing
such transformations may extend cksum to handle such situations.

See largefile(5) for the description of the behavior of cksum when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

See environ(b) for descriptions of the following environment variables that affect the
execution of cksum: LC_CTYPE, LC_ MESSAGES, and NLSPATH.

The following exit values are returned:
0 All files were processed successfully.

>0 An error occurred.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

sum(1), attributes(5), environ(b), largefile(5)

164 man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

cktime(1)
cktime, errtime, helptime, valtime — display a prompt; verify and return a time of day

cktime [-Q] [-W width] [-f format] [-d default] [-h help] [-e error]
[-p prompt] [-k pid [-s signal]]

/usr/sadm/bin/errtime [-W width] [-e error] [-£f format]
/usr/sadm/bin/helptime [-W width] [-h help] [-f format]

/usr/sadm/bin/valtime [-f format] input

The cktime utility prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a time, text for help and error
messages, and a default value (which is returned if the user responds with a
RETURN). The user response must match the defined format for the time of day.

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including NEWLINE) is stripped. The -w
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the cktime command. They are errtime
(which formats and displays an error message), helptime (which formats and
displays a help message), and valtime (which validates a response). These modules
should be used in conjunction with FML objects. In this instance, the FML object
defines the prompt. When format is defined in the errtime and helptime
modules, the messages will describe the expected format.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

- £ format Specifies the format against which the input will be verified.

Possible formats and their definitions are:

$H
%I
M
%p
%r
%R
%S
5T

hour (00 - 23)

hour (00 - 12)

minute (00 - 59)

ante meridian or post meridian
time as %$I:%M:%S %p

time as %H:%M (the default format)
seconds (00 - 59)

time as %H:%M:%S

-h help Defines the help messages as help.

User Commands 165



cktime(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be

sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against format criteria.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error .
3 User termination (quit) .

4 Garbled format argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(b)

The default prompt for cktime is:
Enter a time of day [?,q]:

The default error message is:

ERROR: Please enter the time of day. Format is <formats>.

The default help message is:
Please enter the time of day. Format is <formats.
When the quit option is chosen (and allowed), g is returned along with the return code

3. The valtime module will not produce any output. It returns 0 for success and
non-zero for failure.

166 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ckuid(1)
ckuid, erruid, helpuid, valuid — prompts for and validates a user ID

ckuid [-Q] [-W width] [-m] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]l]

/usr/sadm/bin/erruid [-W width] [-e error]
/usr/sadm/bin/helpuid [-W width] [-m] [-h help]
/usr/sadm/bin/valuid input

The ckuid utility prompts a user and validates the response. It defines, among other

things, a prompt message whose response should be an existing user ID, text for help
and error messages, and a default value (which are returned if the user responds with
a RETURN).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including NEWLINE) is stripped. The -w
option cancels the automatic formatting. When a tilde is placed at the beginning or
end of a message definition, the default text is inserted at that point, allowing both
custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the ckuid command. They are erruid
(which formats and displays an error message), helpuid (which formats and displays
a help message), and valuid (which validates a response). These modules should be
used in conjunction with FML objects. In this instance, the FML object defines the
prompt.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-m Displays a list of all logins when help is requested or when the
user makes an error.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be

sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

User Commands 167



ckuid(1)

OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

input Input to be verified against /etc/passwd.

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.
2 Usage error.

3 User termination (quit).

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(b)

The default prompt for ckuid is:

Enter the login name of an existing user [?,q]:

The default error message is:

ERROR - Please enter the login name of an existing user.

If the -m option is used, the default error message is:

ERROR: Please enter one of the following login names: <List>

The default help message is:

Please enter the login name of an existing user.

If the -m option is used, the default help message is:
Please enter one of the following login names: <List>
When the quit option is chosen (and allowed), g is returned along with the return code

3. The valuid module will not produce any output. It returns 0 for success and
non-zero for failure.

168 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ckyorn(1)
ckyorn, erryorn, helpyorn, valyorn — prompts for and validates yes/no

ckyorn [-Q] [-W width] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]]

/usr/sadm/bin/erryorn [-W width] [-e error]
/usr/sadm/bin/helpyorn [-W width] [-h help]

/usr/sadm/bin/valyorn input

ckyorn prompts a user and validates the response. It defines, among other things, a
prompt message for a yes or no answet, text for help and error messages, and a
default value (which is returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped. The -W option
cancels the automatic formatting. When a tilde is placed at the beginning or end of a
message definition, the default text is inserted at that point, allowing both custom text
and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined
under NOTES) is displayed.

Three visual tool modules are linked to the ckyorn command. They are erryorn
(which formats and displays an error message), helpyorn (which formats and
displays a help message), and valyorn (which validates a response). These modules
should be used in conjunction with FACE objects. In this instance, the FACE object
defines the prompt.

The following options are supported:

-d default Defines the default value as default. The default is not validated
and so does not have to meet any criteria.

-e error Defines the error message as error.

-h help Defines the help messages as help.

-k pid Specifies that process ID pid is to be sent a signal if the user
chooses to abort.

-p prompt Defines the prompt message as prompt.

-Q Specifies that quit will not be allowed as a valid response.

-s signal Specifies that the process ID pid defined with the -k option is to be

sent signal signal when quit is chosen. If no signal is specified,
SIGTERM is used.

-W width Specifies that prompt, help and error messages will be formatted
to a line length of width.

The following operand is supported:

User Commands 169



ckyorn(1)

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

input Input to be verified as y, yes, or n, no (in any combination of
upper- and lower-case letters).

The following exit values are returned:

0 Successful execution.

1 EOF on input, or negative width on -W option, or usage error.
2 Usage error.

3 User termination (quit).

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(b)

The default prompt for ckyorn is:
Yes or No [y,n,?,ql:

The default error message is:
ERROR - Please enter yes or no.

The default help message is:

To respond in the affirmative, enter y, yes, Y, or YES.
To respond in the negative, enter n, no, N, or NO.

When the quit option is chosen (and allowed), g is returned along with the return code
3. The valyorn module will not produce any output. It returns 0 for success and
non-zero for failure.

170  man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

clear — clear the terminal screen

clear

clear(1)

clear clears your screen if this is possible. It looks in the environment for the
terminal type and then in the terminfo database to figure out how to clear the screen.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWcsu

attributes(b)

User Commands 171



cmp(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

172

cmp — compare two files

cmp [-1] [-s] filel file2 [skipl]l [skip2]

The cmp utility compares two files. cmp will write no output if the files are the same.

Under default options, if they differ, it writes to standard output the byte and line

numbers at which the first difference occurred. Bytes and lines are numbered

beginning with 1. If one file is an initial subsequence of the other, that fact is noted.

skipl and skip2 are initial byte offsets into filel and file2 respectively, and may be either

octal or decimal; a leading 0 denotes octal.

-1 Write the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Write nothing for differing files; return exit statuses only.

The following operands are supported:

filel A path name of the first file to be compared. If filel is —, the standard input
will be used.

file2 A path name of the second file to be compared. If file2 is —, the standard
input will be used.

If both filel and file2 refer to standard input or refer to the same FIFO special, block

special or character special file, an error results.

See largefile(5) for the description of the behavior of cmp when encountering files

greater than or equal to 2 Gbyte (2°! bytes).

EXAMPLE 1 Byte for byte comparison of files.

The following example:

example% cmp filel file2 0 1024

does a byte for byte comparison of filel and file2. It skips the first 1024 bytes in file2

before starting the comparison.

See environ(5) for descriptions of the following environment variables that affect the

execution of cmp: LC CTYPE, LC MESSAGES, and NLSPATH.

The following error values are returned:
0 The files are identical.

1 The files are different; this includes the case where one file is identical to
the first part of the other.

>1 An error occurred.

See attributes(5) for descriptions of the following attributes:

man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



SEE ALSO

cmp(1)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability
CsI

SUNWcsu
enabled

comm(1), dif£(1), attributes(5), environ(5), largefile(5)

User Commands 173



col(1)

174

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

col — reverse line-feeds filter

col [-bfpx]

The col utility reads from the standard input and writes to the standard output. It
performs the line overlays implied by reverse line-feeds, and by forward and reverse
half-line-feeds. Unless -x is used, all blank characters in the input will be converted to
tab characters wherever possible. col is particularly useful for filtering multi-column
output made with the . rt command of nrof£(1) and output resulting from use of the
tb1(1) preprocessor.

The ASCII control characters SO and SI are assumed by col to start and end text in an
alternative character set. The character set to which each input character belongs is
remembered, and on output SI and SO characters are generated as appropriate to
ensure that each character is written in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
carriage-return and newline characters, SI, SO, VT, reverse line-feed, forward
half-line-feed and reverse half-line-feed. The VT character is an alternative form of full
reverse line-feed, included for compatibility with some earlier programs of this type.
The only other characters to be copied to the output are those that are printable.

The ASCII codes for the control functions and line-motion sequences mentioned above
are as given in the table below. ESC stands for the ASCII escape character, with the
octal code 033; ESC— means a sequence of two characters, ESC followed by the
character x.

reverse line-feed ESC-7

reverse half-line-feed ESC-8

forward half-line-feed ESC-9

vertical-tab (VT) 013

start-of-text (SO) 016

end-of-text (SI) 017

-b Assume that the output device in use is not capable of backspacing. In this

case, if two or more characters are to appear in the same place, only the last
one read will be output.

-f Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be
suppressed by the - £ (fine) option; in this case, the output from col may
contain forward half-line-feeds (ESC-9), but will still never contain either
kind of reverse line motion.

man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

col(1)

-p Normally, col will ignore any escape sequences unknown to it that are
found in its input; the -p option may be used to cause col to output these
sequences as regular characters, subject to overprinting from reverse line
motions. The use of this option is highly discouraged unless the user is
fully aware of the textual position of the escape sequences.

-x Prevent col from converting blank characters to tab characters on output
wherever possible. Tab stops are considered to be at each column position n
such that # modulo 8 equals 1.

See environ(5) for descriptions of the following environment variables that affect the
execution of col: LC CTYPE, LC MESSAGES, and NLSPATH.

The following error values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled

nroff(1), tbl(1), ascii(5), attributes(b), environ(5)

The input format accepted by col matches the output produced by nrof f with either
the -T37 or -Tlp options. Use -T37 (and the - £ option of col) if the ultimate
disposition of the output of col will be a device that can interpret half-line motions,
and - T1lp otherwise.

col cannot back up more than 128 lines or handle more than 800 characters per line.

Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any superscripts.

User Commands 175



comm(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

176

comm — select or reject lines common to two files

comm [-123] filel file2

The comm utility will read filel and file2, which should be ordered in the current
collating sequence, and produce three text columns as output: lines only in filel; lines
only in file2; and lines in both files.

If the input files were ordered according to the collating sequence of the current locale,
the lines written will be in the collating sequence of the original lines. If not, the
results are unspecified.

The following options are supported:
-1 Suppress the output column of lines unique to filel.
-2 Suppress the output column of lines unique to file2.

-3 Suppress the output column of lines duplicated in filel and file2.

The following operands are supported:

filel

A path name of the first file to be compared. If filel is —, the standard input
is used.

file2 A path name of the second file to be compared. If file2 is —, the standard

input is used.

See largefile(5) for the description of the behavior of comm when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).
EXAMPLE 1 Printing a list of utilities specified by files.

If filel, file2, and file3 each contained a sorted list of utilities:

example% comm -23 filel file2

would print a list of utilities in filel not specified by either of the other files;

| comm -23 - file3

example% comm -12 filel file2 | comm -12 - file3
would print a list of utilities specified by all three files; and

example% comm -12 file2 file3 | comm -23 -filel

would print a list of utilities specified by both file2 and file3, but not specified in filel.
See environ(5) for descriptions of the following environment variables that affect the
execution of comm: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 All input files were successfully output as specified.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

man pages section 1: User Commands ¢ Last Revised 21 Feb 1996



SEE ALSO

comm(1)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability
CsI

SUNWesu
enabled

cmp(1), diff(1), sort(l), unig(l), attributes(b), environ(b), largefile(5)

User Commands 177



command(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

command — execute a simple command

command [-p] command_name [argument...]

command [-v | -V]command_name

The command utility causes the shell to treat the arguments as a simple command,
suppressing the shell function lookup.

If the command_name is the same as the name of one of the special built-in utilities, the
special properties will not occur. In every other respect, if command_name is not the
name of a function, the effect of command will be the same as omitting command.

The command utility also provides information concerning how a command name will
be interpreted by the shell; see -v and -V .

The following options are supported:

-p Perform the command search using a default value for PATH that is
guaranteed to find all of the standard utilities.

-v Write a string to standard output that indicates the path or command that
will be used by the shell, in the current shell execution environment to
invoke command_name.

Utilities, regular built-in utilities, command_names including a slash
character, and any implementation-provided functions that are found
using the PATH variable will be written as absolute path names.

Shell functions, special built-in utilities, regular built-in utilities not
associated with a PATH search, and shell reserved words will be written
as just their names.

An alias will be written as a command line that represents its alias
definition.

Otherwise, no output will be written and the exit status will reflect that
the name was not found.

-V Write a string to standard output that indicates how the name given in the
command_name operand will be interpreted by the shell, in the current shell
execution environment. Although the format of this string is unspecified, it
will indicate in which of the following categories command_name falls and
include the information stated:

Utilities, regular built-in utilities, and any implementation-provided
functions that are found using the PATH variable will be identified as
such and include the absolute path name in the string.

Other shell functions will be identified as functions.

Aliases will be identified as aliases and their definitions will be
included in the string.

Special built-in utilities will be identified as special built-in utilities.
Regular built-in utilities not associated with a PATH search will be
identified as regular built-in utilities.

178 man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

command(1)

m  Shell reserved words will be identified as reserved words.

The following operands are supported:
argument One of the strings treated as an argument to command_name.

command_name The name of a utility or a special built-in utility.

EXAMPLE 1 Make a version of cd that always prints out the new working directory exactly
once:

cd() |
command cd "$@" >/dev/null
pwd

EXAMPLE 2 Start off a “secure shell script” in which the script avoids being spoofed by its
parent:

IFS='

# The preceding value should be <space><tab><newlines.
# Set IFS to its default value.

\unalias -a

# Unset all possible aliases.

# Note that unalias is escaped to prevent an alias
# being used for unalias.

unset -f command

# Ensure command is not a user function.

PATH="$ (command -p getconf _CS_PATH) : SPATH"

# Put on a reliable PATH prefix.

#

At this point, given correct permissions on the directories called by PATH, the script
has the ability to ensure that any utility it calls is the intended one. It is being very
cautious because it assumes that implementation extensions may be present that
would allow user functions to exist when it is invoked; this capability is not specified
by this document, but it is not prohibited as an extension. For example, the ENV
variable precedes the invocation of the script with a user startup script. Such a script
could define functions to spoof the application.

See environ(5) for descriptions of the following environment variables that affect the
execution of command: LC_CTYPE, LC_MESSAGES, and NLSPATH.

PATH Determine the search path used during the command search, except as
described under the -p option.

When the -v or -V options are specified, the following exit values are returned:
0 Successful completion.

>0 The command_name could not be found or an error occurred.

Otherwise, the following exit values are returned:

User Commands 179



command(1)

180

the arguments to command.

command_name could not be found.

126 The utility specified by command_name was found but could not be
invoked.
127 An error occurred in the command utility or the utility specified by

Otherwise, the exit status of command will be that of the simple command specified by

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWcsu

SEE ALSO | sh(l), type(l), attributes(b)

man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



NAME
SYNOPSIS

compress

uncompress

zcat

OPTIONS

compress(1)
compress, uncompress, zcat — compress, uncompress files or display expanded files
compress [-fv] [-b bits] [file..]
compress [-cfv] [-b bits] [file]
uncompress [-cfv] [file..]

zcat [file..]

The compress utility will attempt to reduce the size of the named files by using
adaptive Lempel-Ziv coding. Except when the output is to the standard output, each
file will be replaced by one with the extension . z, while keeping the same ownership
modes, change times and modification times. If appending the . Z to the file pathname
would make the pathname exceed 1023 bytes, the command will fail. If no files are
specified, the standard input will be compressed to the standard output.

The amount of compression obtained depends on the size of the input, the number of
bits per code, and the distribution of common substrings. Typically, text such as source
code or English is reduced by 50-60%. Compression is generally much better than that
achieved by Huffman coding (as used in pack(1)), and takes less time to compute. The
bits parameter specified during compression is encoded within the compressed file,
along with a magic number to ensure that neither decompression of random data nor
recompression of compressed data is subsequently allowed.

The uncompress utility will restore files to their original state after they have been
compressed using the compress utility. If no files are specified, the standard input
will be uncompressed to the standard output.

This utility supports the uncompressing of any files produced by compress. For files
produced by compress on other systems, uncompress supports 9- to 16-bit
compression (see -b).

The zcat utility will write to standard output the uncompressed form of files that
have been compressed using compress. It is the equivalent of uncompress -c.
Input files are not affected.

The following options are supported:

-c Writes to the standard output; no files are changed and no . Z files are
created. The behavior of zcat is identical to that of ‘uncompress -c’.

-f When compressing, forces compression of file, even if it does not actually
reduce the size of the file, or if the corresponding file . Z file already exists. If
the - £ option is not given, and the process is not running in the
background, prompts to verify whether an existing file . z file should be
overwritten. When uncompressing, does not prompt for overwriting files.
If the - £ option is not given, and the process is not running in the
background, prompts to verify whether an existing file should be

User Commands 181



compress(1)

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO
DIAGNOSTICS

overwritten. If the standard input is not a terminal and - £ is not given,
writes a diagnostic message to standard error and exits with a status
greater than 0.

-v Verbose. Writes to standard error messages concerning the percentage
reduction or expansion of each file.

-Db bits Sets the upper limit (in bits) for common substring codes. bits must be
between 9 and 16 (16 is the default). Lowering the number of bits will
result in larger, less compressed files.

The following operand is supported:

file A path name of a file to be compressed by compress, uncompressed by
uncompress, or whose uncompressed form is written to standard out by
zcat. If file is —, or if no file is specified, the standard input will be used.

See largefile(5) for the description of the behavior of compress, uncompress,
and zcat when encountering files greater than or equal to 2 Gbyte ( 2°! bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of compress, uncompress, and zcat: LC_CTYPE, LC_MESSAGES, and
NLSPATH.

The following error values are returned:

0 Successful completion.
1 An error occurred.
2 One or more files were not compressed because they would have increased

in size (and the - f option was not specified).

>2 An error occurred.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CsI Enabled

1n(1), pack(l), attributes(5), environ(5), largefile(b)

Usage: compress [-fve] [ -b maxbits] [file. . . ]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow -b, or invalid maxbits, not a numeric value.

182 man pages section 1: User Commands ¢ Last Revised 9 Sep 1999



compress(1)

file: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xxbits, can only handle yybits
file was compressed by a program that could deal with more bits than the
compress code on this machine. Recompress the file with smaller bits.

file: already has . Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try again.

file: already exists; do you wish to overwrite (y or n)?
Respond y if you want the output file to be replaced; n if not.

uncompress: corrupt input

A SIGSEGV violation was detected, which usually means that the input file is
corrupted.

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)

- —not a regular file: unchanged
When the input file is not a regular file, (such as a directory), it is left unaltered.

— — has xx other links: unchanged
The input file has links; it is left unchanged. See 1n(1) for more information.

— — file unchanged
No savings are achieved by compression. The input remains uncompressed.

filename too long to tack on .Z
The path name is too long to append the . Z suffix.

NOTES | Although compressed files are compatible between machines with large memory, -b

12 should be used for file transfer to architectures with a small process data space
(64KB or less).

compress should be more flexible about the existence of the . Z suffix.

User Commands 183



coproc(1F)

184

NAME
SYNOPSIS

DESCRIPTION

coproc, cocreate, cosend, cocheck, coreceive, codestroy — communicate with a process

cocreate [-r rpathl [-w wpath] [-1 id] [-R refname]l [-s send_string]
[-e expect_string] command

cosend [-n] proc_id string
cocheck proc_id
coreceive proc_id

codestroy [-R refnamel proc_id [string]

These co-processing functions provide a flexible means of interaction between FMLI
and an independent process; especially, they enable FMLI to be responsive to
asynchronous activity.

The cocreate function starts command as a co-process and initializes communications
by setting up pipes between FMLI and the standard input and standard output of
command. The argument command must be an executable and its arguments (if any).
This means that command expects strings on its input (supplied by cosend) and sends
information on its output that can be handled in various ways by FMLI.

The cosend function sends string to the co-process identified by proc_id via the pipe
set up by cocreate (optionally wpath), where proc_id can be either the command or id
specified in cocreate. By default, cosend blocks, waiting for a response from the
co-process. Also by default, FMLI does not send a send_string and does not expect an
expect_string (except a newline). That is, it reads only one line of output from the
co-process. If -e expect_string was not defined when the pipe was created, then the
output of the co-process is any single string followed by a newline: any other lines of
output remain on the pipe. If the -e option was specified when the pipe was created,
cosend reads lines from the pipe until it reads a line starting with expect_string. All
lines except the line starting with expect_string become the output of cosend.

The cocheck function determines if input is available from the process identified by
proc_id, where proc_id can be either the command or id specified in cocreate. It
returns a Boolean value, which makes cocheck useful in i f statements and in other
backquoted expressions in Boolean descriptors. cocheck receives no input from the
co-process; it simply indicates if input is available from the co-process. You must use
coreceive to actually accept the input. The cocheck function can be called from a
reread descriptor to force a frame to update when new data is available. This is
useful when the default value of a field in a form includes coreceive.

The coreceive function is used to read input from the co-process identified by
proc_id, where proc_id can be either the command or id specified in cocreate. It should
only be used when it has been determined, using cocheck, that input is actually
available. If the -e option was used when the co-process was created, coreceive will
continue to return lines of input until expect_string is read. At this point, coreceive
will terminate. The output of coreceive is all the lines that were read excluding the
line starting with expect_string . If the -e option was not used in the cocreate, each

man pages section 1: User Commands ¢ Last Revised 5 Jul 1990



OPTIONS

coproc(1F)

invocation of coreceive will return exactly one line from the co-process. If no input
is available when coreceive is invoked, it will simply terminate without producing
output.

The codestroy function terminates the read /write pipes to proc-id, where proc_id can
be either the command or id specified in cocreate. It generates a SIGPIPE signal to
the (child) co-process. This kills the co-process, unless the co-process ignores the
SIGPIPE signal. If the co-process ignores the SIGPIPE, it will not die, even after the
FMLI process terminates (the parent process id of the co-process will be 1).

The optional argument string is sent to the co-process before the co-process dies. If
string is not supplied, a NULL string is passed, followed by the normal send_string
(newline by default). That is, codestroy will call cosend proc_id string: this implies
that codestroy will write any output generated by the co-process to stdout. For
example, if an interactive co-process is written to expect a "quit" string when the
communication is over, the close descriptor could be defined; close="codestroy
ID ‘quit’ | message' and any output generated by the co-process when the
string quit is sent to it via codestroy (using cosend) would be redirected to the
message line.

The codestroy function should usually be given the -R option, since you may have
more than one process with the same name, and you do not want to kill the wrong
one. codestroy keeps track of the number of refnames you have assigned to a process
with cocreate, and when the last instance is killed, it kills the process (id) for you.
codestroy is typically called as part of a close descriptor because close is
evaluated when a frame is closed. This is important because the co-process will
continue to run if codestroy is not issued.

When writing programs to use as co-processes, the following tips may be useful. If the
co-process program is written in C language, be sure to flush output after writing to
the pipe. (Currently, awk(1) and sed(1) cannot be used in a co-process program
because they do not flush after lines of output.) Shell scripts are well-mannered, but
slow. C language is recommended. If possible, use the default send_string, rpath and
wpath. In most cases, expect_string will have to be specified. This, of course, depends
on the co-process.

In the case where asynchronous communication from a co-process is desired, a
co-process program should use vsig to force strings into the pipe and then signal
FMLI that output from the co-process is available. This causes the reread descriptor
of all frames to be evaluated immediately.

cocreate options are:

-x rpath If -r is specified, rpath is the pathname from which
FMLI reads information. This option is usually used to
set up communication with processes that naturally
write to a certain path. If -r is not specified, cocreate
will choose a unique path in /var/tmp.

User Commands 185



coproc(1F)

-w wpath

-iid

-R refname

-s send_string

-e expect_string

cosend options are:

If -w is specified, wpath is the pathname to which
cosend writes information. This option is usually used
so that one process can talk to many different FMLI
processes through the same pipe. If -w is not specified,
cocreate will choose a unique path in /var/tmp.

If -1 is specified, id is an alternative name for the
co-processinitialized by this cocreate. If -1 is not
specified, id defaults to command. The argument id can
later be used with the other co-processing functions
rather than command. This option is typically used,
since it facilitates the creation of two or more
co-processes generated from the same command. (For
example, cocreate -1 ID1 program args and
cocreate -i ID2 program different args).

If -R is specified, refname is a local name for the
co-process. Since the cocreate function can be issued
more than once, a refname is useful when the same
co-process is referenced a second or subsequent time.
With the -R option, if the co-process already exists a
new one will not be created: the same pipes will be
shared. Then, refname can be used as an argument to
the -R option to codestroy when you want to end a
particular connection to a co-process and leave other
connections undisturbed. (The co-process is only killed
after codestroy -R has been called as many times as
cocreate -R was called.)

The -s option specifies send_string as a string that will
be appended to all output sent to the co-process using
cosend. This option allows a co-process to know when
input from FMLI has completed. The default
send_string is a newline if - s is not specified.

The -e option specifies expect_string as a string that
identifies the end of all output returned by the
co-process. (Note: expect_string need only be the initial
part of a line, and there must be a newline at the end of
the co-process output.) This option allows FMLI to
know when output from the co-process has completed.
The default expect_string is a newline if -e is not
specified.

-n If the -n option is specified, cosend will not wait for a response from the
co-process. It simply returns, providing no output. If the -n option is not
used, a co-process that does not answer will cause FMLI to permanently
hang, waiting for input from the co-process.

186 man pages section 1: User Commands ¢ Last Revised 5 Jul 1990



EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 1 Sample commands

init=‘cocreate -i BIGPROCESS initialize‘

close=‘codestroy BIGPROCESS"‘

reread="'cocheck BIGPROCESS"

name=‘cosend

-n  BIGPROCESS

name="Receive field"

inactive=TRUE
value=‘coreceive BIGPROCESS"‘

fieldl:®

coproc(1F)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWcsu

awk(1), cat(l), sed(l), vsig(1F), attributes(5)

If cosend is used without the -n option, a co-process that does not answer will cause
FMLI to permanently hang.

The use of non-alphabetic characters in input and output strings to a co-process
should be avoided because they may not get transferred correctly.

User Commands 187



cp(1)

188

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

cp — copy files

/usr/bin/cp [-fipe] source_file target_file
/usr/bin/cp [-fipe] source_file... target

/usr/bin/ecp -r | -R [-fipe] source_dir.. target
/usr/xpg4/bin/cp [-fip@] source_file target_file
/usr/xpg4/bin/cp [-fipel source_file.. target
/usr/xpg4/bin/cp -r | -R [-fipe] source_dir... target

In the first synopsis form, neither source_file nor target_file are directory files, nor can
they have the same name. The cp utility will copy the contents of source_file to the
destination path named by farget_file. If target_file exists, cp will overwrite its contents,
but the mode (and ACL if applicable), owner, and group associated with it are not
changed. The last modification time of target_file and the last access time of source_file
are set to the time the copy was made. If target_file does not exist, cp creates a new file
named target_file that has the same mode as source_file except that the sticky bit is not
set unless the user is super-user. In this case, the owner and group of target_file are
those of the user, unless the setgid bit is set on the directory containing the newly
created file. If the directory’s setgid bit is set, the newly created file will have the
group of the containing directory rather than of the creating user. If target_file is a link
to another file, cp will overwrite the link destination with the contents of source_file;
the link(s) from target_file will remain.

In the second synopsis form, one or more source_files are copied to the directory
specified by target. For each source_file specified, a new file with the same mode (and
ACL if applicable), is created in target; the owner and group are those of the user
making the copy. It is an error if any source_file is a file of type directory, if target either
does not exist or is not a directory.

In the third synopsis form, one or more directories specified by source_dir are copied to
the directory specified by target. Either -r or -R must be specified. For each source_dir,
cp will copy all files and subdirectories.

The following options are supported for both /usr/bin/cp and
/usr/xpg4/bin/cp:

-f Unlink. If a file descriptor for a destination file cannot be obtained, attempt
to unlink the destination file and proceed.

-1 Interactive. cp will prompt for confirmation whenever the copy would
overwrite an existing target. A y answer means that the copy should
proceed. Any other answer prevents cp from overwriting target.

-r Recursive. cp will copy the directory and all its files, including any
subdirectories and their files to target.

-R Same as -r, except pipes are replicated, not read from.

man pages section 1: User Commands ¢ Last Revised 6 Jun 2001



lusr/bin/cp

lusr/xpg4/bin/cp

OPERANDS

USAGE

-@

cp(1)

Preserves extended attributes. cp will attempt to copy all of the source
file’s extended attributes along with the file data to the destination file.

The following option is supported for /usr/bin/cp only:

-b

Preserve. cp duplicates not only the contents of source_file, but also
preserves the owner and group id, permission modes, modification and
access time, ACLs, and extended attributes, if applicable. Notice that the
command may fail if ACLs are copied to a file system without appropriate
support. The command will not fail if unable to preserve extended
attributes, modification and access time, or permission modes. If unable to
preserve owner and group id, cp will not fail, and it will clear S ISUID
and S_ISGID bits in the target. cp will print a diagnostic message to
stderr and return a non-zero exit status if unable to clear these bits.

In order to preserve the owner and group id, permission modes, and
modification and access times, users must have the appropriate file access
permissions. This includes being superuser or the same owner id as the
destination file.

The following option is supported for /usr/xpg4/bin/cp only:

-b

Preserve. cp duplicates not only the contents of source_file, but also
preserves the owner and group id, permission modes, modification and
access time, ACLs, and extended attributes, if applicable. Notice that the
command may fail if ACLs or extended attributes are copied to a file
system without appropriate support. If unable to duplicate the
modification and access time or the permission modes, cp will print a
diagnostic message to stderr and return a non-zero exit status. If unable
to preserve owner and group id, cp will not fail, and it will clear S ISUID
and S_ISGIDbits in the target. cp will print a diagnostic message to
stderr and return a non-zero exit status if unable to clear these bits.

In order to preserve the owner and group id, permission modes, and
modification and access times, users must have the appropriate file access
permissions. This includes being superuser or the same owner id as the
destination file.

The following operands are supported:

source_file

source_dir

target_file

target

A pathname of a regular file to be copied.
A pathname of a directory to be copied.

A pathname of an existing or non-existing file, used for the output
when a single file is copied.

A pathname of a directory to contain the copied files.

See largefile(5) for the description of the behavior of cp when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).

User Commands 189



cp(1)
EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

lusr/bin/cp

lusr/xpg4/bin/cp

EXAMPLE 1 Copying a file

example% cp goodies goodies.old

example% ls goodies*
goodies goodies.old

EXAMPLE 2 Copying a list of files to a destination directory

example% cp ~/src/*  /tmp

EXAMPLE 3 Copying a directory, first to a new, and then to an existing destination directory

example% 1ls ~/bkup
/usr/example/fred/bkup not found

example% cp -r ~/src ~/bkup

example% 1ls -R ~/bkup
x.c y.c z.sh

example% cp -r ~/src ~/bkup
example% 1ls -R ~/bkup
src x.c y.c z.sh

src:

X.C y.Cc z.8

See environ(5) for descriptions of the following environment variables that affect the
execution of cp: LC COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 All files were copied successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
CsI Enabled
Interface Stability Stable

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWxcu4

190 man pages section 1: User Commands ¢ Last Revised 6 Jun 2001



SEE ALSO

NOTES

cp(1)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

CSI

Enabled

Interface Stability

Standard

chmod(1), chown(1), setfacl(l), utime(2), attributes(5), environ(5), £sattr(b),

largefile(5), XPG4(5)

The permission modes of the source file are preserved in the copy.

A - - permits the user to mark the end of any command line options explicitly, thus

allowing cp to recognize filename arguments that begin with a -.

User Commands

191



cpio(1)
NAME
SYNOPSIS

DESCRIPTION

Copy In Mode

Copy Out Mode

Pass Mode

OPTIONS

cpio — copy file archives in and out

cpio -1 [-bBcdfkmPrsStuvVé@] [-C bufsize] [-E file] [-H header]
[-I file [-M messagel] [-R id] [pattern..]

cpio -o [-aABcLPvVe] [-C bufsize]l [-H header] [-O file [-M message] ]

cpio -p [-adlLmPuvVe] [-R id] directory

The cpio command copies files into and out of a cpio archive. The cpio archive may
span multiple volumes. The -1, -0, and -p options select the action to be performed.
The following list describes each of the actions. These actions are mutually exclusive.

cpio -1 (copy in) extracts files from the standard input, which is assumed to be the
product of a previous cpio -o command. Only files with names that match one of the
patterns are selected. See sh(1) and OPERANDS for more information about pattern.
Extracted files are conditionally copied into the current directory tree, based on the
options described below. The permissions of the files will be those of the previous
cpio -o command. The owner and group will be the same as the current user, unless
the current user is the super-user. If this is the case, owner and group will be the same
as those resulting from the previous cpio -o command. Notice that if cpio -1 tries
to create a file that already exists and the existing file is the same age or younger
(newer), cpio will output a warning message and not replace the file. The -u option
can be used to unconditionally overwrite the existing file.

cpio -o (copy out) reads a list of file path names from the standard input and copies
those files to the standard output, together with path name and status information in
the form of a cpio archive. Output is padded to an 8192-byte boundary by default or
to the user-specified block size (with the -B or -C options) or to some
device-dependent block size where necessary (as with the CTC tape).

cpio -p (pass) reads a list of file path names from the standard input and
conditionally copies those files into the destination directory tree, based on the options
described below.

Note: cpio assumes four-byte words.

If, when writing to a character device (-0) or reading from a character device ( -1 ),
cpio reaches the end of a medium (such as the end of a diskette), and the -0 and -I
options are not used, cpio prints the following message:

To continue, type device/file name when ready.

To continue, you must replace the medium and type the character special device name
(/dev/rdiskette for example) and press RETURN. You may want to continue by
directing cpio to use a different device. For example, if you have two floppy drives
you may want to switch between them so cpio can proceed while you are changing
the floppies. Press RETURN to cause the cpio process to exit.

The following options are supported:

192  man pages section 1: User Commands e Last Revised 22 Oct 2001



-b

cpio(1)

(copy in) Reads an archive from the standard input and
conditionally extracts the files contained in it and places them into
the current directory tree.

(copy out) Reads a list of file path names from the standard input
and copies those files to the standard output in the form of a cpio
archive.

(pass) Reads a list of file path names from the standard input and
conditionally copies those files into the destination directory tree.

The following options can be appended in any sequence to the -1, -o, or -p options:

-a

-C bufsize

-d
-E file

-f

-H header

Resets access times of input files after they have been copied,
making cpio’s access invisible. Access times are not reset for
linked files when cpio -pla is specified.

Appends files to an archive. The -A option requires the -0 option.
Valid only with archives that are files, or that are on floppy
diskettes or hard disk partitions. The effect on files that are linked
in the existing portion of the archive is unpredictable.

Reverses the order of the bytes within each word. Use only with
the -i option.

Blocks input/output 5120 bytes to the record. The default buffer
size is 8192 bytes when this and the -C options are not used. -B
does not apply to the -p (pass) option.

Reads or writes header information in ASCII character form for
portability. There are no UID or GID restrictions associated with
this header format. Use this option between SVR4-based machines,
or the -H odc option between unknown machines. The -c option
implies the use of expanded device numbers, which are only
supported on SVR4-based systems. When transferring files
between SunOS 4 or Interactive UNIX and the Solaris 2.6
Operating environment or compatible versions, use -H odc.

Blocks input/output bufsize bytes to the record, where bufsize is
replaced by a positive integer. The default buffer size is 8192 bytes
when this and -B options are not used. -C does not apply to the
-p (pass) option.

Creates directories as needed.

Specifies an input file (file) that contains a list of filenames to be
extracted from the archive (one filename per line).

Copies in all files except those in patterns. See OPERANDS for a
description of pattern.

Reads or writes header information in header format. Always use
this option or the -c option when the origin and the destination

User Commands 193



cpio(1)

-1 file

machines are different types. This option is mutually exclusive
with options -c and -6 .

Valid values for header are:

bar bar head and format. Used only with the -1
option ( read only).

crc | CRC ASCII header with expanded device numbers
and an additional per-file checksum. There are
no UID or GID restrictions associated with this
header format.

odc ASCII header with small device numbers. This
is the IEEE/P1003 Data Interchange Standard
cpio header and format. It has the widest range
of portability of any of the header formats. It is
the official format for transferring files between
POSIX-conforming systems (see
standards(5)). Use this format to
communicate with SunOS 4 and Interactive
UNIX. This header format allows UIDs and
GIDs up to 262143 to be stored in the header.

tar | TAR tar header and format. This is an older tar
header format that allows UIDs and GIDs up
to 2097151 to be stored in the header. It is
provided for the reading of legacy archives
only, that is, in conjunction with option -1i.

Specifying this archive format with option -o
has the same effect as specifying the "ustar"
format: the output archive is in ustar format,
and must be read using -H ustar.

ustar | USTAR  IEEE/P1003 Data Interchange Standard tar
header and format. This header format allows
UIDs and GIDs up to 2097151 to be stored in
the header.

Files with UIDs and GIDs greater than the limit stated above will
be archived with the UID and GID of 60001. To transfer a large
file (8 Gb — 1 byte), the header format can be tar | TAR,

ustar |USTAR, or odc only.

Reads the contents of file as an input archive, instead of the
standard input. If file is a character special device, and the current
medium has been completely read, replace the medium and press
RETURN to continue to the next medium. This option is used only
with the -1 option.

194 man pages section 1: User Commands e Last Revised 22 Oct 2001



-M message

-0 file

cpio(1)

Attempts to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is
corrupted or out of sequence, this option lets you read only those
files with good headers. For cpio archives that contain other cpio
archives, if an error is encountered, cpio may terminate
prematurely. cpio will find the next good header, which may be
one for a smaller archive, and terminate when the smaller
archive’s trailer is encountered. Use only with the -1 option.

In pass mode, makes hard links between the source and
destination whenever possible. If the - L option is also specified,
the hard link will be to the file referred to by the symbolic link.
Otherwise, the hard link will be to the symbolic link itself. Use
only with the -p option.

Follows symbolic links. If a symbolic link to a directory is
encountered, archives the directory referred to by the link, using
the name of the link. Otherwise, archives the file referred to by the
link, using the name of the link.

Retains previous file modification time. This option is ineffective
on directories that are being copied.

Defines a message to use when switching media. When you use the
-0 or -I options and specify a character special device, you can
use this option to define the message that is printed when you
reach the end of the medium. One %d can be placed in message to
print the sequence number of the next medium needed to
continue.

Directs the output of cpio to file, instead of the standard output. If
file is a character special device and the current medium is full,
replace the medium and type a carriage return to continue to the
next medium. Use only with the -o option.

Preserves ACLs. If the option is used for output, existing ACLs are
written along with other attributes, except for extended attributes,
to the standard output. ACLs are created as special files with a
special file type. If the option is used for input, existing ACLs are
extracted along with other attributes from standard input. The
option recognizes the special file type. Notice that errors will occur
if a cpio archive with ACLs is extracted by previous versions of
cpio. This option should not be used with the -c option, as ACL
support may not be present on all systems, and hence is not
portable. Use ASCII headers for portability.

Interactively renames files. If the user types a carriage return

alone, the file is skipped. If the user types a “.”’, the original
pathname will be retained. Not available with cpio -p.

User Commands 195



cpio(1)

196

OPERANDS

-Rid

Reassigns ownership and group information for each file to user
ID. (ID must be a valid login ID from /etc/passwd.) This option
is valid only for the super-user.

Swaps bytes within each half word.
Swaps halfwords within each word.

Prints a table of contents of the input. If any file in the table of
contents has extended attributes, these are also listed. No files are
created. -t and -V are mutually exclusive.

Copies unconditionally. Normally, an older file will not replace a
newer file with the same name.

Verbose. Prints a list of file and extended attribute names. When
used with the -t option, the table of contents looks like the output
of an 1s -1 command (see 1s(1)).

Special verbose. Prints a dot for each file read or written. Useful to
assure the user that cpio is working without printing out all file
names.

Processes a UNIX System Sixth Edition archive format file. Use
only with the -1 option. This option is mutually exclusive with -c
and -H .

Includes extended attributes in archive. By default, cpio does not
place extended attributes in the archive. With this flag, cpio will
look for extended attributes on the files to be placed in the archive
and add them, as regular files, to the archive. The extended
attribute files go in the archive as special files with special file
types. When the -@ flag is used with -1 or -p, it instructs cpio
to restore extended attribute data along with the normal file data.
Extended attribute files can only be extracted from an archive as
part of a normal file extract. Attempts to explicitly extract attribute
records are ignored.

The following operands are supported:

directory

pattern

A path name of an existing directory to be used as the target of
cpio -p.

Expressions making use of a pattern-matching notation similar to
that used by the shell (see sh(1)) for filename pattern matching,
and similar to regular expressions. The following metacharacters
are defined:

* Matches any string, including the empty string.

? Matches any single character.

man pages section 1: User Commands e Last Revised 22 Oct 2001



USAGE

EXAMPLES

cpio(1)

[ . . . Matches any one of the enclosed characters. A pair of
characters separated by ‘—" matches any symbol
between the pair (inclusive), as defined by the system
default collating sequence. If the first character
following the opening * [’ isa ‘!, the results are
unspecified.

! The ! (exclamation point) means not. For example, the
labe* pattern would exclude all files that begin with
abc.

In pattern, metacharacters ?, *, and [ ...] match the slash (/)
character, and backslash (\) is an escape character. Multiple cases
of pattern can be specified and if no pattern is specified, the default
for pattern is * (that is, select all files).

Each pattern must be enclosed in double quotes. Otherwise, the
name of a file in the current directory might be used.

See largefile(5) for the description of the behavior of cpio when encountering files
greater than or equal to 2 Gbyte ( 2*' bytes).

The following examples show three uses of cpio.

EXAMPLE 1 Using standard input

example% ls | cpio -oc > ../newfile

When standard input is directed through a pipe to cpio -o, as in the example above,
it groups the files so they can be directed (>) to a single file (. . /newfile). The -c
option insures that the file will be portable to other machines (as would the -H
option). Instead of 1s(1), you could use £ind(1), echo(1), cat(1), and so on, to pipe a
list of names to cpio. You could direct the output to a device instead of a file.

EXAMPLE 2 Extracting files into directories

example% cat newfile | cpio -icd "memo/al" "memo/b*"

In this example, cpio -1 uses the output file of cpio -o (directed through a pipe
with cat), extracts those files that match the patterns (memo/al, memo/b*), creates
directories below the current directory as needed (-d option), and places the files in
the appropriate directories. The -c option is used if the input file was created with a

portable header. If no patterns were given, all files from newfile would be placed in
the directory.

EXAMPLE 3 Copying or linking files to another directory

example% find . -depth -print | cpio -pdlmv newdir

User Commands 197



cpio(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 3 Copying or linking files to another directory (Continued)

In this example, cpio -p takes the file names piped to it and copies or links ( -1
option) those files to another directory, newdir. The -d option says to create
directories as needed. The -m option says to retain the modification time. (It is
important to use the -depth option of £ind(1) to generate path names for cpio. This
eliminates problems that cpio could have trying to create files under read-only
directories.) The destination directory, newdir, must exist.

Notice that when you use cpio in conjunction with f£ind, if you use the -L option
with cpio, you must use the -follow option with £ind and vice versa. Otherwise,
there will be undesirable results.

For multi-reel archives, dismount the old volume, mount the new one, and continue to
the next tape by typing the name of the next device (probably the same as the first
reel). To stop, type a RETURN and cpio will end.

See environ(5) for descriptions of the following environment variables that affect the
execution of cpio: LC_COLLATE, LC_CTYPE, LC MESSAGES, LC_TIME, TZ, and
NLSPATH.

TMPDIR cpio creates its temporary file in /var/tmp by default.
Otherwise, it uses the directory specified by TMPDIR.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
csI Enabled
Interface Stability Stable

ar(l), cat(l), echo(1), £ind(1), 1s(1), setfacl(l), sh( 1), tar(l), vold(1M),
archives(4), attributes(5), environ(5), fsattr(b), largefile(5),
standards(d)

The maximum path name length allowed in a cpio archive is determined by the
header type involved. The following table shows the proper value for each supported
archive header type.

198 man pages section 1: User Commands e Last Revised 22 Oct 2001



cpio(1)

Header type Command line options Maximum path name length
BINARY “-0o” 256

POSIX “-oH odc” 256

ASCIL “-oc” 1023

CRC “-oH crc” 1023

USTAR “-oH ustar” 255

When the command line options “-o -H tar” are specified, the archive created is of
type USTAR. This means that it is an error to read this same archive using the
command line options “-i -H tar”. The archive should be read using the command
line options “ -i -H ustar”. The options " -i -H tar" refer to an older tar archive
format.

An error message is output for files whose UID or GID are too large to fit in the
selected header format. Use -H crc or -c to create archives that allow all UID or GID
values.

Only the super-user can copy special files.
Blocks are reported in 512-byte quantities.

If a file has 000 permissions, contains more than 0 characters of data, and the user is
not root, the file will not be saved or restored.

The inode number stored in the header (/usr/include/archives.h)is an
unsigned short, which is 2 bytes. This limits the range of inode numbers from 0 to
65535. Files which are hard linked must fall in this inode range. This could be a
problem when moving cpio archives between different vendors’ machines.

When the Volume Management daemon is running, accesses to floppy devices
through the conventional device names (for example, /dev/rdiskette) may not
succeed. See vold(1M) for further details.

You must use the same blocking factor when you retrieve or copy files from the tape to
the hard disk as you did when you copied files from the hard disk to the tape.
Therefore, you must specify the -B or -C option.

During -p and -o processing, cpio buffers the file list presented on stdin in a
temporary file.

User Commands 199



cpp(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

cpp — the C language preprocessor

/usr/lib/cpp [-BCHMpPRT] [-undef] [-Dname] [-Dname = def]
[-Idirectory]l [-Uname] [-Ydirectory]l I[input-file [output-file]]

cpp is the C language preprocessor. It is invoked as the first pass of any C compilation
started with the cc(1B) command; however, cpp can also be used as a first-pass
preprocessor for other Sun compilers.

Although cpp can be used as a macro processor, this is not normally recommended, as
its output is geared toward that which would be acceptable as input to a compiler’s
second pass. Thus, the preferred way to invoke cpp is through the cc(1B) command,
or some other compilation command. For general-purpose macro-processing, see
m4(1).

cpp optionally accepts two filenames as arguments. input-file and output-file are,
respectively, the input and output files for the preprocessor. They default to the
standard input and the standard output.

The following options are supported:

-B Support the C++ comment indicator */ /’. With this indicator
everything on the line after the / / is treated as a comment.

-C Pass all comments (except those that appear on cpp directive lines)
through the preprocessor. By default, cpp strips out C-style
comments.

-H Print the pathnames of included files, one per line on the standard
erTor.

-M Generate a list of makefile dependencies and write them to the

standard output. This list indicates that the object file which would
be generated from the input file depends on the input file as well
as the include files referenced.

-p Use only the first eight characters to distinguish preprocessor
symbols, and issue a warning if extra tokens appear at the end of a
line containing a directive.

-P Preprocess the input without producing the line control
information used by the next pass of the C compiler.

-R Allow recursive macros.

-T Use only the first eight characters for distinguishing different

preprocessor names. This option is included for backward
compatibility with systems which always use only the first eight
characters.

-undef Remove initial definitions for all predefined symbols.

200 man pages section 1: User Commands ¢ Last Revised 1 Nov 1999



Directives

-Dname

-Dname=def

- Idirectory

-Uname

-Ydirectory

cpp(1)

Define name as 1 (one). This is the same as if a -Dname=1 option
appeared on the cpp command line, or as if a

#define name 1

line appeared in the source file that cpp is processing.

Define name as if by a #def ine directive. This is the same as if a

#define name def

line appeared in the source file that cpp is processing. The -D
option has lower precedence than the -U option. That is, if the
same name is used in both a -U option and a -D option, the name
will be undefined regardless of the order of the options.

Insert directory into the search path for #include files with names
not beginning with */’. directory is inserted ahead of the standard
list of “include’” directories. Thus, #include files with names
enclosed in double-quotes (") are searched for first in the directory
of the file with the #include line, then in directories named with
- I options, and lastly, in directories from the standard list. For
#include files with names enclosed in angle-brackets (< > ), the
directory of the file with the #include line is not searched. See
Details below for exact details of this search order.

Remove any initial definition of name, where name is a symbol that
is predefined by a particular preprocessor. Here is a partial list of
symbols that may be predefined, depending upon the architecture
of the system:

Operating System: ibm, gcos, os, tss and unix

Hardware: interdata, pdpll, u370, ul3b,
u3b2,u3b5,u3bl5,u3b20d, vax,
ns32000, 1APX286, 1386, sparc,

and sun
UNIX system variant: RES, and RT
The 1int command: lint

The symbols sun, sparc and unix are defined for all Sun
systems.

Use directory directory in place of the standard list of directories
when searching for #include files.

All cpp directives start with a hash symbol (#) as the first character on a line. White
space (SPACE or TAB characters) can appear after the initial # for proper indentation.

User Commands 201



cpp(1)

#define name token-string

Replace subsequent instances of name with token-string.

#define name (argument [, arqument] ... ) token-string

There can be no space between name and the * (". Replace subsequent instances of
name, followed by a parenthesized list of arguments, with token-string, where each
occurrence of an argument in the token-string is replaced by the corresponding token
in the comma-separated list. When a macro with arguments is expanded, the
arguments are placed into the expanded token-string unchanged. After the entire
token-string has been expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

#undef name

Remove any definition for the symbol name. No additional tokens are permitted on
the directive line after name.

#include "filename "
#include <filename>

Read in the contents of filename at this location. This data is processed by cpp as if it
were part of the current file. When the <filename> notation is used, filename is only
searched for in the standard “include” directories. See the -I and -Y options above
for more detail. No additional tokens are permitted on the directive line after the
final ‘" or “>".

#1line integer-constant "filename"

Generate line control information for the next pass of the C compiler.
integer-constant is interpreted as the line number of the next line and filename is
interpreted as the file from where it comes. If "filename" is not given, the current
filename is unchanged. No additional tokens are permitted on the directive line
after the optional filename.

#1f constant-expression

Subsequent lines up to the matching #else, #elif, or #endif directive, appear in
the output only if constant-expression yields a nonzero value. All binary
non-assignment C operators, including ‘&&’, | |/, and ‘,’, are legal in
constant-expression. The ‘2 :” operator, and the unary ‘~’, “!’, and ‘~’ operators, are
also legal in constant-expression.

The precedence of these operators is the same as that for C. In addition, the unary
operator defined, can be used in constant-expression in these two forms: ‘defined
(name ) ' or ‘defined name’. This allows the effect of #ifdef and #ifndef
directives (described below) in the #1if directive. Only these operators, integer
constants, and names that are known by cpp should be used within
constant-expression. In particular, the size of operator is not available.

#ifdef name

Subsequent lines up to the matching #else, #elif, or #endif appear in the
output only if name has been defined, either with a #define directive or a -D
option, and in the absence of an intervening #undef directive. Additional tokens
after name on the directive line will be silently ignored.

202 man pages section 1: User Commands ¢ Last Revised 1 Nov 1999



Macros

cpp(1)

#ifndef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the
output only if name has not been defined, or if its definition has been removed with
an #undef directive. No additional tokens are permitted on the directive line after
name.

#elif constant-expression
Any number of #elif directives may appear between an #if, #ifdef, or
#ifndef directive and a matching #else or #endif directive. The lines following
the #elif directive appear in the output only if all of the following conditions
hold:

m  The constant-expression in the preceding #if directive evaluated to zero, the
name in the preceding #ifdef is not defined, or the name in the preceding
#ifndef directive was defined.

®  The constant-expression in all intervening #elif directives evaluated to zero.

®  The current constant-expression evaluates to non-zero.

If the constant-expression evaluates to non-zero, subsequent #elif and #else
directives are ignored up to the matching #endif. Any constant-expression allowed
in an #if directive is allowed in an #elif directive.

#else
This inverts the sense of the conditional directive otherwise in effect. If the
preceding conditional would indicate that lines are to be included, then lines
between the #else and the matching #endif are ignored. If the preceding
conditional indicates that lines would be ignored, subsequent lines are included in
the output. Conditional directives and corresponding #else directives can be
nested.

#endif
End a section of lines begun by one of the conditional directives #if, #ifdef, or
#ifndef. Each such directive must have a matching #endif.

Formal parameters for macros are recognized in #define directive bodies, even when
they occur inside character constants and quoted strings. For instance, the output
from:

#define abc(a)| ‘|a]

abc (xyz)

is:

# 1 mn

| xyz |

The second line is a NEWLINE. The last seven characters are “| ‘|xyz |”

(vertical-bar, backquote, vertical-bar, x, y, z, vertical-bar). Macro names are not
recognized within character constants or quoted strings during the regular scan. Thus:

User Commands 203



cpp(1)

204

Output

Directory Search
Order

Special Names

#define abc xyz
printf ("abc") ;

does not expand abc in the second line, since it is inside a quoted string that is not
part of a #define macro definition.

Macros are not expanded while processing a #define or #undef. Thus:

#define abc zingo
#define xyz abc
#undef abc

XYyZ

produces abc. The token appearing immediately after an #ifdef or #ifndef is not
expanded.

Macros are not expanded during the scan which determines the actual parameters to
another macro call. Thus:

#define reverse(first,second)second first
#define greeting hello

reverse (greeting,

#define greeting goodbye

)

produces “ #define hello goodbye hello”.
Output consists of a copy of the input file, with modifications, plus lines of the form:

#lineno " filename " "level "

indicating the original source line number and filename of the following output line
and whether this is the first such line after an include file has been entered (level=1),
the first such line after an include file has been exited (leve/=2), or any other such line
(level is empty).

#include files are searched for in the following order:

1. The directory of the file that contains the #include request (that is, #include is
relative to the file being scanned when the request is made).

The directories specified by -I options, in left-to-right order.

The standard directory(s) (/usr/include on UNIX systems).
Two special names are understood by cpp. Thename _ _LINE_ _ is defined as
the current line number (a decimal integer) as known by cpp, and ~ FILE is

defined as the current filename (a C string) as known by cpp. They can be used B
anywhere (including in macros) just as any other defined name.

man pages section 1: User Commands ¢ Last Revised 1 Nov 1999



Newline Characters

Comments

EXIT STATUS

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

NOTES

cpp(1)

A NEWLINE character terminates a character constant or quoted string. An escaped
NEWLINE (that is, a backslash immediately followed by a NEWLINE) may be used in
the body of a #define statement to continue the definition onto the next line. The
escaped NEWLINE is not included in the macro value.

Comments are removed (unless the -C option is used on the command line).
Comments are also ignored, except that a comment terminates a token.

The following exit values are returned:
0 Successful completion.

non-zero An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSsprot

cc(1B), m4(1), attributes(5)

The error messages produced by cpp are intended to be self-explanatory. The line
number and filename where the error occurred are printed along with the diagnostic.

When NEWLINE characters were found in argument lists for macros to be expanded,
some previous versions of cpp put out the NEWLINE characters as they were found
and expanded. The current version of cpp replaces them with SPACE characters.

Because the standard directory for included files may be different in different
environments, this form of #include directive:

#include <file.h>

should be used, rather than one with an absolute path, like:

#include "/usr/include/file.h"

cpp warns about the use of the absolute pathname.

While the compiler allows 8-bit strings and comments, 8-bits are not allowed
anywhere else.

User Commands 205



cputrack(1)
NAME | cputrack — monitor process and LWP behavior using CPU performance counters

SYNOPSIS | cputrack -c eventspec [-c eventspec].. [-efntvD] [-N count] [-o pathname]
[-T interval] command [args]

cputrack -c eventspec [-c eventspec].. -p pid [-efntvD] [-N count]
[-o pathname]l [-T interval]

cputrack -h

DESCRIPTION | The cputrack utility allows CPU performance counters to be used to monitor the
behavior of a process or family of processes running on the system. If interval is
specified with the - T option, cputrack samples activity every interval seconds,
repeating forever. If a count is specified with the -N option, the statistics are repeated
count times for each process tracked. If neither are specified, an interval of one second
is used. If command and optional args are specified, cputrack runs the command with
the arguments given while monitoring the specified CPU performance events.
Alternatively, the process ID of an existing process can be specified using the -p
option.

Because cputrack is an unprivileged program, it is subject to the same restrictions
that apply to truss(1). For example, setuid(2) executables cannot be tracked.

OPTIONS | The following options are supported:

- ¢ eventspec Specifies a set of events for the CPU performance counters to
monitor. The list of available events and the syntax of the event
specifications for the system can be determined using the -h
option. The semantics of these event specifications can be
determined by reading the CPU manufacturers documentation for
the events. See cpc_strtoevent(3CPC) for a description of the

syntax.

Multiple - c options may be specified, in which case cputrack
cycles between the different event settings on each sample.

-D Enables debug mode.

-e Follows all exec(2), or execve(2) system calls. Without this
option, cputrack terminates when the process image is overlaid
with a new executable.

-f Follows all children created by fork(2), fork1(2), or viork(2)
system calls.

-h Prints an extended help message on how to use the utility and
how to program the processor-dependent counters.

-n Onmits all header output (useful if cputrack is the beginning of a
pipeline).

-N count Specifies the maximum number of CPU performance counter

samples to take before exiting.

206 man pages section 1: User Commands * Last Revised 8 Jun 2001



USAGE

cputrack(1)

-o outfile Specifies file to be used for the cputrack output.

-p pid Interprets the argument as the process ID of an existing process to
which process counter context should be attached and monitored.

-t Prints an additional column of processor cycle counts, if available
on the current architecture.

- T interval Specifies the interval between CPU performance counter samples
in seconds.

-v Enables more verbose output.

The operating system enforces certain restrictions on the tracing of processes. In
particular, a command whose object file cannot be read by a user cannot be tracked by
that user; set-uid and set-gid commands can only be tracked by a privileged user.
Unless it is run by a privileged user, cputrack loses control of any process that
performs an exec () of a set-id or unreadable object file. Such processes continue
normally, though independently of cputrack, from the point of the exec ().

The system may run out of per-user process slots when the - £ option is used, since
cputrack runs one controlling process for each process being tracked.

The times printed by cputrack correspond to the wallclock time when the hardware
counters were actually sampled, instead of when the program told the kernel to
sample them. The time is derived from the same timebase as gethrtime(3C).

The cputrack utility attaches performance counter context to each process that it
examines. The presence of this context allows the performance counters to be
multiplexed between different processes on the system, but it cannot be used at the
same time as the cpustat(1M) utility.

Once an instance of the cpustat utility is running, further attempts to run cputrack
will fail until all instances of cpustat terminate.

Sometimes cputrack provides sufficient flexibility and prints sufficient statistics to
make adding the event selection code to an application unnecessary. However, more
control is occasionally desired. Because the same performance counter context is used
by both the application itself and by the agent LWP injected into the application by
cputrack, it is possible for an application to interact with the counter context to
achieve some interesting capabilities. See cpc_count usr events(3CPC).

The processor cycle counts enabled by the -t option always apply to both user and
system modes, regardless of the settings applied to the performance counter registers.

The output of cputrack is designed to be readily parseable by nawk(1) and perl(1),
thereby allowing performance tools to be composed by embedding cputrack in
scripts. Alternatively, tools may be constructed directly using the same APIs that
cputrack is built upon, using the facilities of 1ibcpc(3LIB) and 1ibpctx(3LIB). See
cpc(3CPC).

User Commands 207



cputrack(1)

Although cputrack uses performance counter context to maintain separate
performance counter values for each LWP, some of the events that can be counted will
inevitably be impacted by other activities occurring on the system, particularly for
limited resources that are shared between processes (for example, cache miss rates).
For such events, it may also be interesting to observe overall system behavior with
cpustat(1M).

For the -T interval option, if interval is specified as zero, no periodic sampling is
performed. The performance counters are only sampled when the process creates or
destroys an LWP, or it invokes fork(2), exec(2), or exit(2).

SPARC | EXAMPLE 1 Using performance counters to count clock cycles

In this example, the utility is being used on a machine containing an UltraSPARC 1
processor. The counters are set to count processor clock cycles and instructions
dispatched in user mode while running the sleep(1) command.

example% cputrack -c pic0=Cycle cnt,picl=Instr cnt sleep 10

time lwp event picoO picl
2.040 1 tick 377820 202593
4.028 1 tick 0 0
6.028 1 tick 0 0
8.028 1 tick 0 0
10.028 1 tick 6930 954
10.036 1 exit 410623 212137

EXAMPLE 2 Counting external cache references and hits

This example shows more verbose output while following the fork () and exec () of
a simple shell script on an UltraSPARC machine. The counters are measuring the
number of external cache references and external cache hits. Notice that the explicit
pic0 and picl names can be omitted where there are no ambiguities.

example% cputrack -fev -c EC_ref,EC hit /bin/ulimit -c

time pid lwp event picoO picl

0.032 101200 1 init_lwp 0 0

0.106 101200 1 fork # 101201
0.115 101201 1 init_lwp 0 0

0.179 101201 1 fini lwp 5934 5031

0.179 101201 1 exec 5934 5031

0.399 101201 1 exec # 'basename /bin/ulimit’
0.413 101201 1 init_lwp 0 0

0.435 101201 1 fini lwp 19780 17234

0.435 101201 1 exit 19780 17234 unlimited
0.454 101200 1 fini lwp 63025 54583

0.454 101200 1 exit 63025 54583

IA | EXAMPLE 3 Counting instructions

This example shows how many instructions were executed in the application and in
the kernel to print the date on a Pentium machine:

208 man pages section 1: User Commands * Last Revised 8 Jun 2001



cputrack(1)

EXAMPLE 3 Counting instructions (Continued)

example% cputrack -c inst retired,inst retired,nouserl,sysl date

time lwp event picoO picl
Fri Aug 20 20:03:08 PDT 1999
0.072 1 exit 246725 339666

WARNINGS | By running any instance of the cpustat(1M) utility, all existing performance counter
context is forcibly invalidated across the machine. This may in turn cause all
invocations of the cputrack command to exit prematurely with unspecified errors.

If cputrack is invoked on a system that has CPU performance counters, but on
which the packages containing the kernel support for those counters is not installed,
the following message appears:

cputrack: CPU performance counters are inaccessible on this machine

This error message implies that cpc_access () has failed and is documented in
cpc_access(3CPC). Review this documentation for more information about the
problem and possible solutions.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcpcu (32-bit)
SUNWcpcux (64-bit)

Interface Stability Evolving

SEE ALSO | nawk(1), perl(l), proc(l), truss(l), prstat(1M), cpustat(1M), exec(2), exit(2),
fork(2), setuid(2), viork(2), gethrtime(3C), cpc(3CPC), cpc_access(3CPC),
cpc_count_usr_events(3CPC), cpc_strtoevent(3CPC), 1ibepc(3LIB),
libpctx(3LIB), proc(4), attributes(5)

Sun Microelectronics UltraSPARC I&I1I User’s Manual, January 1997, STP1031,
http:/ /www.sun.com/sparc

Intel Architecture Software Developer’s Manual, Volume 3: System Programmers Guide,
243192, http:/ /developer.intel.com

User Commands 209



crle(1)
NAME | crle - configure runtime linking environment

SYNOPSIS | crle [-64] [-a namel [-c confl [-e env] [-E env] [-f flags] [-1i name]
[-I name]l [-g name]l [-G name]l [-1 dir]l [-o dir] [-s dir] [-t [ ELF
| a0UT]] [-ul [-v]

DESCRIPTION | The crle utility provides for the creation and display of a runtime linking
configuration file. Without any arguments, or with just the -c option, crle displays
the contents of a configuration file, any system defaults and the command-line
required to regenerate the configuration file. When used with any other options, a new
configuration file is created or updated. The configuration file is read and interpreted
by the runtime linker, 1d. so. 1(1), during process start-up.

The default configuration file is /var/1d/1d.config for 32-bit objects and
/var/1d/64/1d.config for 64-bit objects. Note: It is recommended that any new
configuration file is first created in a temporary location. The environment variable
LD _CONFIG can be set to this new configuration file to cause its use by the runtime
linker instead of any default. After verification, the new configuration file can be
moved to the default location if desired. Setting the environment variable
LD_NOCONFIG to any value results in the runtime linker ignoring any configuration
files, and may prove useful during experimentation.

The configuration file may contain the following information:

Default Search Paths The runtime linker uses a prescribed search path for
locating the dynamic dependencies of an object. This
search path starts with the components of any
LD_LIBRARY_ PATH definition, followed by the
components of an object’s runpath and finally any
defaults specific to the object’s type. This last
component of the search path can be expressed within
the configuration file. Note: Typical use of this facility
should augment any system defaults; see the -1
option.

Trusted Directories When processing a secure application the runtime
linker restricts the use of LD_LIBRARY PATH and the
directories from which preload and audit libraries may
be used to known trusted directories. These trusted
directories can be expressed within the configuration
file. Note: Typical use of this facility should augment
any system defaults; see the -s option.

Directory Cache The location of shared objects within defined
directories can be maintained as a cache within the
configuration file. This directory cache can reduce the
overhead of searching for application dependencies.

Alternative Objects In conjunction with the directory cache, shared objects
may have alternative objects specified for use at

210 man pages section 1: User Commands * Last Revised 10 Oct 2001



OPTIONS

crle(1)

runtime. These alternate objects may be supplied by
the user, or can be created by crle as copies of shared
objects fixed to known memory locations. These fixed
alternative objects can require less processing at
runtime than their original shared object counterpart.

Environment Variables Any environment variable interpreted by the runtime
linker can be specified within the configuration file.

Defining alternative default search paths, or additional trusted directories can be
useful for administrators who wish to install third party software in a central location,
or otherwise alter the search path of applications that may not have been coded with
suitable runpaths.

Defining user supplied alternative objects provides a means of replacing dependencies
other than via symbolic links or requiring LD LIBRARY PATH settings.

Defining runtime linker environment variables provides a means of centralizing their
definition for all applications.

The directory cache and crle generated alternate objects can provide a means of
reducing the runtime start-up overhead of applications that require many
dependencies, or whose dependencies are expensive to relocate (this may be the case
when shared objects contain position-dependent code).

When alternate objects generated by crle are specified within a configuration file,
1d.so.1(1) performs some minimal consistency verification of the alternative objects
against their originating objects. This verification is intended to avert application
failure should an applications configuration information become out-of-sync with the
underlying system components. When this situation arises the flexibility offered by
dynamic linking system components may be compromised, and diagnosing the
application failure may be difficult. Note: No verification of directory cache
information is performed. Any changes to the directory structure will not be seen by a
process until the cache is rebuilt.

System shared objects are often well tuned and may have no benefit being cached. The
directory cache and alternative object features are typically applicable to user
applications and shared objects.

crle creates alternate objects for the shared objects discovered when using the -I and
-G options by calls to d1dump(3DL). The alternate object is created in the directory
specified by the preceding -o option, or defaults to the directory in which the
configuration file is created. The flags used for the d1dump () are specified using the

- £ option, or default to RTLD REL_ RELATIVE.

The following options are supported:

-64 Specifies to process 64-bit objects, the default is 32-bit.

User Commands 211



crle(1)

212

-a name

-c conf

-e eno

-E env

This option adds an alternative to name to the
configuration file. The actual alternative file must be
supplied by the user. Multiple occurrences of this
option are permitted. If name is a directory each shared
object within the directory is added to the cache. If
name does not exist, it is marked in the cache as a
nonexistent file.

Specifies to use the configuration file name conf. If this
option is not supplied the default configuration file is
used.

This option specifies a replaceable environment variable,
env. Only environment variables applicable to the
runtime linker are meaningful. Multiple occurrences of
this option are permitted. This option is similar to the
-E option, but differs in how configuration file
definitions and process environment definitions of the
same name are resolved at runtime.

A definition established in a configuration file can be
overridden by a process environment definition, or be
suppressed by a null-value process environment
definition.

In other words, these configuration file definitions can
be replaced or removed by the process environment at
runtime.

This option specifies a permanent environment variable,
env. Only environment variables applicable to the
runtime linker are meaningful. Multiple occurrences of
this option are permitted. This option is similar to the
-e option, but differs in how configuration file
definitions and process environment definitions of the
same name are resolved at runtime.

Environment variable definitions meaningful to the
runtime linker fall into one of two categories, that is,
singular definitions such as LD_NOLAZYLOAD=1 and
LD DEBUG OUTPUT=file, or list definitions which can
take one or more values such as

LD _LIBRARY PATH=path, and LD DEBUG=files details.

A singular definition established in a configuration file
will take precedence over a process environment
definition. A list definition established in a
configuration file will be appended to a process
environment definition. Any definition established in a

man pages section 1: User Commands e Last Revised 10 Oct 2001



- £ flags

-1 name

-1 name

-g name

-G name

crle(1)

configuration file can not be suppressed by a null-value
process environment definition.

In other words, these configuration file definitions can
not be replaced or removed by the process environment
at runtime.

This option provides the symbolic flags argument to the
dldump(3DL) calls used to generate alternate objects.
Any of the RTLD_REL flags defined in
/usr/include/dlfcn.h can be used. Multiple flags
can be or’ed together using the "|" character, and in
this case the string should be quoted to avoid
expansion by the shell. If no flags values are provided
the default flag is RTLD_REL_RELATIVE.

This option adds an individual name to the
configuration cache. Multiple occurrences of this option
are permitted. name may be a shared object or a
directory. If name is a directory each shared object
within the directory is added to the cache. Note: If name
does not exist, it is marked in the cache as a
nonexistent directory.

This option is the same as -1i and in addition any
shared objects have alternatives created via
dldump(3DL). If the - £ flag contains RTLD_REL_EXEC
then name may be a dynamic executable, for which an
alternative is created. Only one dynamic executable can
be specified in this manner as the cache created is
specific to this application.

This option adds the group name to the configuration
cache. Each object is expanded to determine its
dependencies. Multiple occurrences of this option are
permitted. name may be a dynamic executable, shared
object or a directory. The name itself, if it is a shared
object, and its dependencies are added to the cache. If
name is a directory each shared object within the
directory, and its dependencies, are added to the cache.

This option is the same as -g and in addition any
shared objects have alternatives created via
dldump(3DL). If name is a dynamic executable, and the
- f flag contains RTLD_REL_EXEC, then an alternative
for the dynamic executable is also created. Only one
dynamic executable can be specified in this manner as
the cache created is specific to this application.

User Commands 213



crle(1)

-1 dir

-o dir

-s dir

This option specifies a new default search directory dir
for ELF or AOUT objects. Multiple occurrences of this
option are permitted. The type of object applicable to
the search is specified by the preceding -t option, or
defaults to ELF.

The system default search path for ELF objects is
/usr/11ib for 32-bit objects, and /usr/1ib/64 for
64-bit objects. The system default search paths for AOUT
objects is /usr/41ib, /usr/lib and
/usr/local/lib.

Use of this option replaces the system default search
path, and thus it is normally required that a -1 option
be used to specify the original system default in
relation to any new paths being applied. However, if
the -u option is in effect, and a configuration file does
not exist, the system defaults are added to the new
configuration file before the new paths specified with
the -1 option.

This option specifies the directory dir in which any
alternate objects must exist (in the case of using the -a
option), or will be created (in the case of alternatives
created by crle). Without this option, alternate objects
will exist in the directory in which the configuration
file is created. Multiple occurrences of this option are
permitted, the directory dir being used to locate
alternatives for any following command-line options.
Alternative objects are not permitted to override their
associated originals.

This option specifies a new trusted directory dir for
secure ELF or AOUT objects. See SECURITY in
1d.so.1(1) for a definition of secure objects.

Multiple occurrences of this option are permitted. The
type of object applicable to the search is specified by
the preceding -t option, or defaults to ELF.

The system default trusted directory for secure ELF
objects is /usr/1ib/secure for 32-bit objects and
/usr/1lib/secure/64 for 64-bit objects. The system
default trusted directories for secure AOUT objects are
/usr/41lib, /usr/1lib, /usr/ucblib, and
/usr/local/lib.

Use of this option replaces the system default trusted
directories, and thus it is normally required thata -s

214 man pages section 1: User Commands ¢ Last Revised 10 Oct 2001



EXAMPLES

crle(1)

option be used to specify the original system default in
relation to any new directories being applied. However,
if the -u option is in effect, and a configuration file
does not exist, the system defaults are added to the new
configuration file before the new directories specified
with the -s option.

-t ELF | AOUT This option toggles the object type applicable to any -1

or -s options that follow. The default object type is
ELF.

This option requests that a configuration file be
updated, possibly with the addition of new
information. Without other options any existing
configuration file is inspected and its contents
recomputed. Additional arguments allow information
to be appended to the recomputed contents. See
NOTES.

If a configuration file does not exist it will be created as
directed by the other arguments. In the case of the -1
and -s options any system defaults will first be
applied to the configuration file before the directories
specified with these options.

Verbose mode. When creating a configuration file, a
trace of the files being processed is written to the
standard out. When printing the contents of a
configuration file, more extensive directory and file
information is provided.

By default the runtime linker attempts to read the configuration file
/var/1d/1d.config for each 32-bit application it processes or
/var/1d/64/1d.config for each 64-bit application. When processing an alternative
application, the runtime linker will use a SORIGIN/1d.config.app-name
configuration file if present (see NOTES). Applications may reference an alternative
configuration file either by setting the LD_CONFIG environment variable (see
1d.so0.1(1)), or by recording a configuration file name in the application at the time it
is built using the link-editors -c option (see 1d(1)).

EXAMPLE 1 Update (and display) of a new default search path for ELF objects

example% crle -u -1 /local/lib
example% crle

Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib:/local/lib
Trusted Directories (ELF): /usr/lib/secure (system default)

Command line:

crle

-1 /usr/lib:/local/lib

User Commands 215



crle(1)

EXAMPLE 1 Update (and display) of a new default search path for ELF objects
(Continued)

example% crle -u -1 /usr/local/lib
example% crle

Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib:/local/lib:/usr/local/lib
Trusted Directories (ELF) : /usr/lib/secure (system default)

Command line:
crle -1 /usr/lib:/local/lib:/usr/local/lib

In this example, the default configuration file initially did not exist, and thus the new
search path /local/1ib is appended to the system default. The next update appends
the search path /usr/local/1lib to those already established in the configuration
file.

EXAMPLE 2 Creation (and display) of a new default search path and new trusted directory
for ELF objects

example% crle -1 /local/lib -1 /usr/lib -s /local/lib
example% crle

Configuration file [2]: /var/ld/ld.config
Default Library Path (ELF): /local/lib:/usr/lib
Trusted Directories (ELF) : /local/lib

Command line:
crle -1 /local/lib:/usr/lib -s /local/lib

With this configuration, third party applications may be installed in /local/bin and
their associated dependencies in /local/1ib. The default search path allows the
applications to locate their dependencies without the need to set LD_LIBRARY PATH.
Note: The system default trusted directory has been replaced with this example.

EXAMPLE 3 Creation of a directory cache for ELF objects

example% crle -i /usr/dt/lib -i /usr/openwin/lib -i /usr/lib \
-c config
example% 1dd -s ./main

find object=1libc.so.l; required by ./main
search path=/usr/dt/lib:/usr/openwin/lib (RPATH ./main)
trying path=/usr/dt/lib/libc.so.1
trying path=/usr/openwin/lib/libc.so.1
search path=/usr/lib (default)
trying path=/usr/lib/libc.so.1
libc.so.1l => /usr/lib/libc.so.1

example$ LD CONFIG=config 1ldd -s ./main

find object=1libc.so.l; required by ./main

216 man pages section 1: User Commands * Last Revised 10 Oct 2001



crle(1)

EXAMPLE 3 Creation of a directory cache for ELF objects (Continued)

search path=/usr/dt/lib:/usr/openwin/lib (RPATH ./main)
search path=/usr/lib (default)
trying path=/usr/lib/libc.so.1l

libc.so.1l => /usr/lib/libc.so.1

With this configuration, the cache reflects that the system library 1ibc. so. 1 does not
exist in the directories /usr/dt/1lib or /usr/openwin/1ib. Therefore, the search
for this system file ignores these directories even though the application’s runpath
indicates they should be searched.

EXAMPLE 4 Creation of an alternative object cache for an ELF executable

example% crle -c¢ /local/$HOST/.xterm/ld.config \
-f RTLD_REL ALL -G /usr/openwin/bin/xterm
example% 1ln -8 /local/$HOST/.xterm/xterm /local/$HOST/xterm
example% 1dd /usr/local/$HOST/xterm
libXaw.so0.5 => /local/S$HOST/.xterm/libWaw.so.5 (alternate)
libXmu.so.4 => /local/$HOST/.xterm/libXmu.so.4 (alternate)

libc.so.1l => /local/$HOST/.xterm/libc.so.1 (alternate)

With this configuration, a new xterm and its dependencies are created. These new
objects are fully relocated to themselves and result in faster start-up than the
originating objects. Note: The execution of this application uses its own specific
configuration file. This model is generally more flexible than using the environment
variable LD _CONFIG, as the configuration file will not be erroneously used by other
applications such as 1dd(1) or truss(1).

EXAMPLE 5 Creating an alternative object cache to replace an ELF shared object

example% 1dd /usr/bin/vi
libcurses.so.l => /usr/lib/libcurses.so.1l

example% crle -a /usr/lib/libcurses.so.l -o /usr/ucblib
example% crle
Configuration file [3]: /var/ld/ld.config
Default Library Path (ELF): /usr/lib (system default)
Trusted Directories (ELF) : /usr/lib/secure (system default)
Directory: /usr/lib

libcurses.so.l (alternate: /usr/ucblib/libcurses.so.l)

example% 1dd /usr/bin/vi
libcurses.so.l => /usr/ucblib/libcurses.so.l (alternate)

User Commands 217



crle(1)

218

EXIT STATUS

NOTES

EXAMPLE 5 Creating an alternative object cache to replace an ELF shared object
(Continued)

With this configuration, any dependency that would normally resolve to
/usr/lib/libcurses.so. 1 will instead resolve to
/usr/ucblib/libcurses.so. 1.

EXAMPLE 6 Setting replaceable and permanent environment variables

example% crle -e LD_LIBRARY PATH=/local/lib \
-E LD _PRELOAD=preload.so.l
example% crle
Environment Variables:
LD _LIBRARY PATH=/local/lib (replaceable)
LD_PRELOAD=preload.so.l (permanent)

example$ LD DEBUG=files LD PRELOAD=preload.so.2 ./main

18764: file=preload.so.2; preloaded

18764: file=/local/lib/preload.so.2 [ ELF ]; generating link map
18764: file=preload.so.l; preloaded

18764: file=/local/lib/preload.so.l [ ELF ]; generating link map

With this configuration file, a replaceable search path has been specified together with
a permanent preload object which becomes appended to the process environment
definition.

The creation or display of a configuration file results in a 0 being returned; otherwise
any error condition is accompanied with a diagnostic message and a non-zero value
being returned.

Tagging an alternative application to use an application specific configuration file can
only be achieved if the original application contains one of the .dynamic tags
DT_FLAGS_1 or DT_FEATURE_1. Without these entries any application specific
configuration file must be specified using the LD_CONFIG environment variable. Care
should be exercised with this latter method as this environment variable will be visible
to any forked applications.

The use of the -u option requires at least version 2 of crle. This version level is
evident from displaying the contents of a configuration file:

example% crle

Configuration file [2]: /var/ld/ld.config

man pages section 1: User Commands e Last Revised 10 Oct 2001



FILES

ATTRIBUTES

SEE ALSO

crle(1)

With a version 2 configuration file, crle is capable of constructing the command-line
arguments required to regenerate the configuration file and to provide full update
capabilities. Although the update of a version 1 configuration file is possible, the
contents of the configuration file may be insufficient for crle to compute the entire

update requirements.

/var/1d/1ld.config
/var/1d/64/1d.config
/var/tmp
/usr/lib/lddstub
/usr/lib/64/1ddstub
/usr/lib/libecrle.so.1

/usr/lib/64/1libecrle.so.1

Default configuration file for 32-bit
applications.

Default configuration file for 64-bit
applications.

Default location for temporary
configuration file (see tempnam(3C)).

Stub application employed to d1dump(3DL)
32-bit objects.

Stub application employed to d1dump(3DL)
64-bit objects.

Audit library employed to d1dump(3DL)
32-bit objects.

Audit library employed to d1dump(3DL)
64-bit objects.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWtoo

14(1), 1d.so0.1(1), d1dump(3DL), tempnam(3C), attributes(5)

User Commands 219



crontab(1)
NAME
SYNOPSIS

DESCRIPTION

crontab Access
Control

crontab Entry
Format

crontab — user crontab file
crontab [filename)]

crontab [-elr] username

The crontab utility manages a user’s access with cron (see cron(1M)) by copying,
creating, listing, and removing crontab files. If invoked without options, crontab
copies the specified file, or the standard input if no file is specified, into a directory
that holds all users’ crontabs.

Users: Access to crontab is allowed:

m  if the user’s name appears in /etc/cron.d/cron.allow.

m if /etc/cron.d/cron.allow does not exist and the user’s name is not in
/etc/cron.d/cron.deny.

Users: Access to crontab is denied:

m if /etc/cron.d/cron.allow exists and the user’s name is not in it.

m if /etc/cron.d/cron.allow does not exist and user’s name is in
/etc/cron.d/cron.deny.

m  if neither file exists, only a user with the solaris. jobs.user authorization is
allowed to submit a job.

Notice that the rules for allow and deny apply to root only if the allow/deny files
exist.

The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces or
tabs. The first five are integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0-6 with 0=Sunday) .

Each of these patterns may be either an asterisk (meaning all legal values) or a list of
elements separated by commas. An element is either a number or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification of
days may be made by two fields (day of the month and day of the week). Both are
adhered to if specified as a list of elements. See EXAMPLES.

The sixth field of a line in a crontab file is a string that is executed by the shell at the
specified times. A percent character in this field (unless escaped by \ ) is translated to
a NEWLINE character.

220 man pages section 1: User Commands ¢ Last Revised 23 May 2001



OPTIONS

EXAMPLES

crontab(1)

Only the firstline (uptoa * % * or end of line) of the command field is executed by
the shell. Other lines are made available to the command as standard input. Any line
beginning witha * # ' is a comment and will be ignored. The file should not contain
blank lines.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file. cron
supplies a default environment for every shell, defining HOME, LOGNAME,

SHELL (=/bin/sh), TZ, and PATH. The default PATH for user cron jobs is
/usr/bin; while root cron jobs default to /usr/sbin: /usr/bin. The default
PATH can be set in /etc/default/cron; see cron(1M).

If you do not redirect the standard output and standard error of your commands, any
generated output or errors will be mailed to you.

The following options are supported:

-e Edits a copy of the current user’s crontab file, or creates an empty file to
edit if crontab does not exist. When editing is complete, the file is
installed as the user’s crontab file. If a username is given, the specified user’s
crontab file is edited, rather than the current user’s crontab file; this may
only be done by a user with the solaris.jobs.admin authorization. The
environment variable EDITOR determines which editor is invoked with the
-e option. The default editor is ed(1). Notice that all crontab jobs should be
submitted using crontab; you should not add jobs by just editing the
crontab file because cron will not be aware of changes made this way.

If all lines in the crontab file are deleted, the old crontab file will be
restored. The correct way to delete all lines is to remove the crontab file via
the -r option.

-1 Lists the crontab file for the invoking user. Only a user with the
solaris.jobs.admin authorization can specify a username following the
-r or -1 options to remove or list the crontab file of the specified user.

-r Removes a user’s crontab from the crontab directory.

EXAMPLE 1 Cleaning up core files
This example cleans up core files every weekday morning at 3:15 am:

15 3 * * 1-5 find $HOME -name core 2>/dev/null | xargs rm -f

EXAMPLE 2 Mailing a birthday greeting

0 12 14 2 * mailx john%Happy Birthday!%Time for lunch.

EXAMPLE 3 Specifying days of the month and week

This example

User Commands 221



crontab(1)

EXAMPLE 3 Specifying days of the month and week (Continued)

001,15 * 1

would run a command on the first and fifteenth of each month, as well as on every
Monday.

To specify days by only one field, the other field should be set to *. For example:

00 **1
would run a command only on Mondays.

ENVIRONMENT | See environ(5) for descriptions of the following environment variables that affect the
VARIABLES | execution of crontab: LC_TYPE, LC_MESSAGES, and NLSPATH.

EDITOR Determine the editor to be invoked when the -e option is
specified. The default editor is ed(1). If both the EDITOR and
VISUAL environment variables are set, the value of the VISUAL
variable is selected as the editor.

EXIT STATUS | The following exit values are returned:

0 Successful completion.
>0 An error occurred.

FILES | /etc/cron.d main cron directory
/etc/cron.d/cron.allow list of allowed users
/etc/default/cron contains cron default settings
/etc/cron.d/cron.deny list of denied users
/var/cron/log accounting information
/var/spool/cron/crontabs spool area for crontab

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO | atg(l), atrm(1l), auths(l), ed(1), sh(l), cron(1M), su(1M), auth_attr(4),
attributes(5), environ(5)

NOTES | If you inadvertently enter the crontab command with no argument(s), do not
attempt to get out with Control-d. This removes all entries in your crontab file.
Instead, exit with Control-c.

222 man pages section 1: User Commands ¢ Last Revised 23 May 2001



crontab(1)

If an authorized user modifies another user’s crontab file, resulting behavior may be
unpredictable. Instead, the super-user should first su(1M) to the other user’s login
before making any changes to the crontab file.

When updating cron, check first for existing crontab entries that may be scheduled
close to the time of the update. Such entries may be lost if the update process
completes after the scheduled event. This can happen because, when cron is notified
by crontab to update the internal view of a user’s crontab file, it first removes the
user’s existing internal crontab and any internal scheduled events. Then it reads the
new crontab file and rebuilds the internal crontab and events. This last step takes time,
especially with a large crontab file, and may complete after an existing crontab entry is
scheduled to run if it is scheduled too close to the update. To be safe, start a new job at
least 60 seconds after the current date and time.

User Commands 223



crypt(1)

224

NAME
SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

crypt — encode or decode a file

crypt [password]

The crypt utility encrypts and decrypts the contents of a file. crypt reads from the
standard input and writes on the standard output. The password is a key that selects a
particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. crypt encrypts and
decrypts with the same key:

example% crypt key<clear.file> encrypted.file
example% crypt key<encrypted.file | pr

will print the contents of clear. file.

Files encrypted by crypt are compatible with those treated by the editors ed(1),
ex(1), and vi(1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental method
must be hard to solve; direct search of the key space must be infeasible; “sneak paths”
by which keys or cleartext can become visible must be minimized.

crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are widely
known, thus crypt provides minimal security.

The transformation of a key into the internal settings of the machine is deliberately
designed to be expensive, that is, to take a substantial fraction of a second to compute.
However, if keys are restricted to (say) three lower-case letters, then encrypted files
can be read by expending only a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users
executing ps(1) or a derivative command. To minimize this possibility, crypt takes
care to destroy any record of the key immediately upon entry. No doubt the choice of
keys and key security are the most vulnerable aspect of crypt.

/dev/tty for typed key

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

des(1), ed(1), ex(1), makekey(1), ps(1), vi(1), attributes (5)

man pages section 1: User Commands ¢ Last Revised 14 May 1997



NAME
SYNOPSIS

DESCRIPTION

Initialization and
Termination

Interactive
Operation

Noninteractive
Operation

OPTIONS

csh(1)
csh — shell command interpreter with a C-like syntax

csh [-bcefinstvVxX] [argqument..]

csh, the C shell, is a command interpreter with a syntax reminiscent of the C
language. It provides a number of convenient features for interactive use that are not
available with the Bourne shell, including filename completion, command aliasing,
history substitution, job control, and a number of built-in commands. As with the
Bourne shell, the C shell provides variable, command and filename substitution.

When first started, the C shell normally performs commands from the . cshrc file in
your home directory, provided that it is readable and you either own it or your real
group ID matches its group ID. If the shell is invoked with a name that starts with '/,
as when started by 1ogin(1), the shell runs as a 1ogin shell.

If the shell is a login shell, this is the sequence of invocations: First, commands in
/etc/.login are executed. Next, commands from the . cshrc file your home
directory are executed. Then the shell executes commands from the . login file in
your home directory; the same permission checks as those for . cshrc are applied to
this file. Typically, the . login file contains commands to specify the terminal type
and environment. (For an explanation of file interpreters, see below "Command
Execution" and exec(2).)

As a login shell terminates, it performs commands from the . logout file in your
home directory; the same permission checks as those for . cshrc are applied to this
file.

After startup processing is complete, an interactive C shell begins reading commands
from the terminal, prompting with hostname% (or hostname# for the privileged
user). The shell then repeatedly performs the following actions: a line of command
input is read and broken into words. This sequence of words is placed on the history
list and then parsed, as described under USAGE, below. Finally, the shell executes
each command in the current line.

When running noninteractively, the shell does not prompt for input from the terminal.
A noninteractive C shell can execute a command supplied as an argument on its
command line, or interpret commands from a file, also known as a script.

The following options are supported:

-b Force a “break” from option processing. Subsequent command line
arguments are not interpreted as C shell options. This allows the passing of
options to a script without confusion. The shell does not run set-user-ID or
set-group-ID scripts unless this option is present.

-c Execute the first argument (which must be present). Remaining arguments
are placed in argv, the argument-list variable, and passed directly to csh.

-e Exit if a command terminates abnormally or yields a nonzero exit status.

User Commands 225



csh(1)

Filename
Completion

Lexical Structure

Fast start. Read neither the . cshrc file, nor the . login file (if a login
shell) upon startup.

Forced interactive. Prompt for command line input, even if the standard
input does not appear to be a terminal (character-special device).

Parse (interpret), but do not execute commands. This option can be used to
check C shell scripts for syntax errors.

Take commands from the standard input.

Read and execute a single command line. A “\” (backslash) can be used to
escape each newline for continuation of the command line onto subsequent
input lines.

Verbose. Set the verbose predefined variable; command input is echoed
after history substitution (but before other substitutions) and before
execution.

Set verbose before reading . cshrc.

Echo. Set the echo variable; echo commands after all substitutions and just
before execution.

Set echo before reading . cshre.

Except with the options -¢, -i, -s, or -t , the first nonoption argument is taken to
be the name of a command or script. It is passed as argument zero, and subsequent
arguments are added to the argument list for that command or script.

When enabled by setting the variable filec, an interactive C shell can complete a
partially typed filename or user name. When an unambiguous partial filename is
followed by an ESC character on the terminal input line, the shell fills in the remaining
characters of a matching filename from the working directory.

If a partial filename is followed by the EOF character (usually typed as CTRL-d), the
shell lists all filenames that match. It then prompts once again, supplying the
incomplete command line typed in so far.

When the last (partial) word begins with a tilde (~), the shell attempts completion with
a user name, rather than a file in the working directory.

The terminal bell signals errors or multiple matches; this can be inhibited by setting
the variable nobeep. You can exclude files with certain suffixes by listing those
suffixes in the variable fignore. If, however, the only possible completion includes a
suffix in the list, it is not ignored. £ignore does not affect the listing of filenames by
the EOF character.

The shell splits input lines into words at space and tab characters, except as noted
below. The characters &, |, ;, <, >, (,and ) form separate words; if paired, the pairs
form single words. These shell metacharacters can be made part of other words, and

226 man pages section 1: User Commands ¢ Last Revised 23 May 1997



Command Line
Parsing

History
Substitution

Event Designators

csh(1)

their special meaning can be suppressed by preceding them with a “\” (backslash). A
newline preceded by a \ is equivalent to a space character.

In addition, a string enclosed in matched pairs of single-quotes ( * ), double-quotes
("), or backquotes ( * ), forms a partial word; metacharacters in such a string,
including any space or tab characters, do not form separate words. Within pairs of
backquote (“ ) or double-quote ( " ) characters, a newline preceded by a "\’
(backslash) gives a true newline character. Additional functions of each type of quote
are described, below, under Variable Substitution, Command Substitution,
and Filename Substitution.

When the shell’s input is not a terminal, the character # introduces a comment that
continues to the end of the input line. Its special meaning is suppressed when
preceded by a \ or enclosed in matching quotes.

A simple command is composed of a sequence of words. The first word (that is not part
of an I/O redirection) specifies the command to be executed. A simple command, or a
set of simple commands separated by | or | & characters, forms a pipeline. With |, the
standard output of the preceding command is redirected to the standard input of the
command that follows. With | &, both the standard error and the standard output are
redirected through the pipeline.

Pipelines can be separated by semicolons ( ; ), in which case they are executed
sequentially. Pipelines that are separated by && or | | form conditional sequences in
which the execution of pipelines on the right depends upon the success or failure,
respectively, of the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses ‘()" to form a simple
command that can be a component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously or “in the background” by
appending an ‘&’; rather than waiting for the sequence to finish before issuing a
prompt, the shell displays the job number (see Job Control, below) and associated
process IDs and prompts immediately.

History substitution allows you to use words from previous command lines in the
command line you are typing. This simplifies spelling corrections and the repetition of
complicated commands or arguments. Command lines are saved in the history list, the
size of which is controlled by the history variable. The most recent command is
retained in any case. A history substitution begins with a ! (although you can change
this with the histchars variable) and may occur anywhere on the command line;
history substitutions do not nest. The ! can be escaped with \ to suppress its special
meaning.

Input lines containing history substitutions are echoed on the terminal after being
expanded, but before any other substitutions take place or the command gets
executed.

An event designator is a reference to a command line entry in the history list.

User Commands 227



csh(1)

Word Designators

228

'n
I-n

Istr
1 2str?

1 ?str? additional

V {command} additional

A . A A
previous_word " replacement

command. Word designators include:

man pages section 1: User Commands ¢ Last Revised 23 May 1997

Start a history substitution, except when
followed by a space character, tab, newline,
=or (.

Refer to the previous command. By itself,
this substitution repeats the previous
command.

Refer to command line n.
Refer to the current command line minus n.

Refer to the most recent command starting
with str.

Refer to the most recent command
containing str.

Refer to the most recent command
containing str and append additional to that
referenced command.

Refer to the most recent command
beginning with command and append
additional to that referenced command.

Repeat the previous command line
replacing the string previous_word with the
string replacement. This is equivalent to the
history substitution:

! : s /previous_word / replacement /.
To re-execute a specific previous command

AND make such a substitution, say,
re-executing command #6,

! : 6s/previous_word / replacement /.

A’:” (colon) separates the event specification from the word designator. It can be
omitted if the word designator begins with a *, $, *, — or %. If the word is to be
selected from the previous command, the second ! character can be omitted from the
event specification. For instance, ! ! : 1 and ! : 1 both refer to the first word of the
previous command, while ! ! $ and ! $ both refer to the last word in the previous

# The entire command line typed so far.
0 The first input word (command).
n The n’th argument.



Modifiers

Quick Substitution

Aliases

csh(1)

The first argument, that is, 1.

$ The last argument.

% The word matched by (the most recent) ?s search.

x-y A range of words; —y abbreviates 0—.

* All the arguments, or a null value if there is just one word in the event.
x* Abbreviates x—S$.

x— Like x* but omitting word s.

After the optional word designator, you can add one of the following modifiers,
preceded by a :.

h Remove a trailing pathname component, leaving the head.
r Remove a trailing suffix of the form . xxx’, leaving the basename.
e Remove all but the suffix, leaving the Extension.

s/l/r/ Substitute r for 1.

t Remove all leading pathname components, leaving the tail.

& Repeat the previous substitution.

g Apply the change to the first occurrence of a match in each word, by
prefixing the above (for example, g&).

p Print the new command but do not execute it.

q Quote the substituted words, escaping further substitutions.

x Like g, but break into words at each space character, tab or newline.

Unless preceded by a g, the modification is applied only to the first string that
matches /; an error results if no string matches.

The left-hand side of substitutions are not regular expressions, but character strings.
Any character can be used as the delimiter in place of /. A backslash quotes the
delimiter character. The character &, in the right hand side, is replaced by the text from
the left-hand-side. The & can be quoted with a backslash. A null / uses the previous
string either from a / or from a contextual scan string s from ! ?s. You can omit the
rightmost delimiter if a newline immediately follows 7; the rightmost ? in a context
scan can similarly be omitted.

Without an event specification, a history reference refers either to the previous
command, or to a previous history reference on the command line (if any).

At This is equivalent to the history substitution: ! :s/1/r/.

The C shell maintains a list of aliases that you can create, display, and modify using
the alias and unalias commands. The shell checks the first word in each command

User Commands 229



csh(1)

230

I/0 Redirection

to see if it matches the name of an existing alias. If it does, the command is
reprocessed with the alias definition replacing its name; the history substitution
mechanism is made available as though that command were the previous input line.
This allows history substitutions, escaped with a backslash in the definition, to be
replaced with actual command line arguments when the alias is used. If no history
substitution is called for, the arguments remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another alias.
Nested aliases are expanded before any history substitutions is applied. This is useful
in pipelines such as

alias 1lm ‘1ls -1 \!* | more’
which when called, pipes the output of 1s(1) through more(1).

Except for the first word, the name of the alias may not appear in its definition, nor in
any alias referred to by its definition. Such loops are detected, and cause an error
message.

The following metacharacters indicate that the subsequent word is the name of a file
to which the command’s standard input, standard output, or standard error is
redirected; this word is variable, command, and filename expanded separately from
the rest of the command.

<

Redirect the standard input.

< < word
Read the standard input, up to a line that is identical with word, and place the
resulting lines in a temporary file. Unless word is escaped or quoted, variable and
command substitutions are performed on these lines. Then, the pipeline is invoked
with the temporary file as its standard input. word is not subjected to variable,
filename, or command substitution, and each line is compared to it before any
substitutions are performed by the shell.

> > >& >&!
Redirect the standard output to a file. If the file does not exist, it is created. If it does
exist, it is overwritten; its previous contents are lost.

When set, the variable noclobber prevents destruction of existing files. It also
prevents redirection to terminals and /dev/null, unless one of the ! forms is
used. The & forms redirect both standard output and the standard error (diagnostic
output) to the file.

> > > >& > > > >&!
Append the standard output. Like >, but places output at the end of the file rather
than overwriting it. If noclobber is set, it is an error for the file not to exist, unless
one of the ! forms is used. The & forms append both the standard error and
standard output to the file.

man pages section 1: User Commands ¢ Last Revised 23 May 1997



Variable
Substitution

csh(1)

The C shell maintains a set of variables, each of which is composed of a name and a
value. A variable name consists of up to 20 letters and digits, and starts with a letter
(the underscore is considered a letter). A variable’s value is a space-separated list of
zero or more words.

To refer to a variable’s value, precede its name with a “$’. Certain references (described
below) can be used to select specific words from the value, or to display other
information about the variable. Braces can be used to insulate the reference from other
characters in an input-line word.

Variable substitution takes place after the input line is analyzed, aliases are resolved,
and I/O redirections are applied. Exceptions to this are variable references in I/O
redirections (substituted at the time the redirection is made), and backquoted strings
(see Command Substitution).

Variable substitution can be suppressed by preceding the $ with a \, except within
double-quotes where it always occurs. Variable substitution is suppressed inside of
single-quotes. A s is escaped if followed by a space character, tab or newline.

Variables can be created, displayed, or destroyed using the set and unset
commands. Some variables are maintained or used by the shell. For instance, the argv
variable contains an image of the shell’s argument list. Of the variables used by the
shell, a number are toggles; the shell does not care what their value is, only whether
they are set or not.

Numerical values can be operated on as numbers (as with the @ built-in command).
With numeric operations, an empty value is considered to be zero; the second and
subsequent words of multiword values are ignored. For instance, when the verbose
variable is set to any value (including an empty value), command input is echoed on
the terminal.

Command and filename substitution is subsequently applied to the words that result
from the variable substitution, except when suppressed by double-quotes, when
noglob is set (suppressing filename substitution), or when the reference is quoted
with the : g modifier. Within double-quotes, a reference is expanded to form (a portion
of) a quoted string; multiword values are expanded to a string with embedded space
characters. When the : g modifier is applied to the reference, it is expanded to a list of
space-separated words, each of which is quoted to prevent subsequent command or
filename substitutions.

Except as noted below, it is an error to refer to a variable that is not set.

Svar

${var} These are replaced by words from the value of var, each separated
by a space character. If var is an environment variable, its value is
returned (but “:” modifiers and the other forms given below are
not available).

User Commands 231



csh(1)

Command and
Filename
Substitutions

Command
Substitution

Svar [index]

$ {var [index] } These select only the indicated words from the value of var.
Variable substitution is applied to index , which may consist of (or
result in) a either single number, two numbers separated by a ‘—~,
or an asterisk. Words are indexed starting from 1; a “*” selects all
words. If the first number of a range is omitted (as with
$argv[-2]), it defaults to 1. If the last number of a range is
omitted (as with $argv [1-1), it defaults to $#var (the word
count). It is not an error for a range to be empty if the second
argument is omitted (or within range).

SHname

${#name} These give the number of words in the variable.

$0 This substitutes the name of the file from which command input is
being read except for setuid shell scripts. An error occurs if the
name is not known.

sn

${n} Equivalent to $argv [n].

S* Equivalent to $argv [*].

The modifiers :e, :h, :q, :r, : t,and :x can be applied (see History
Substitution), ascan :gh, :gt,and :gr.If { } (braces) are used, then the
modifiers must appear within the braces. The current implementation allows only one
such modifier per expansion.

The following references may not be modified with : modifiers.

?
2 {Z?}er} Substitutes the string 1 if var is set or 0 if it is not set.
$?20 Substitutes 1 if the current input filename is known or 0 if it is not.
$s Substitutes the process number of the (parent) shell.
$< Substitutes a line from the standard input, with no further

interpretation thereafter. It can be used to read from the keyboard
in a C shell script.

Command and filename substitutions are applied selectively to the arguments of
built-in commands. Portions of expressions that are not evaluated are not expanded.
For non-built-in commands, filename expansion of the command name is done
separately from that of the argument list; expansion occurs in a subshell, after I/O
redirection is performed.

A command enclosed by backquotes ( ... ) is performed by a subshell. Its standard
output is broken into separate words at each space character, tab and newline; null
words are discarded. This text replaces the backquoted string on the current command
line. Within double-quotes, only newline characters force new words; space and tab

232 man pages section 1: User Commands ¢ Last Revised 23 May 1997



Filename
Substitution

Expressions and
Operators

csh(1)

characters are preserved. However, a final newline is ignored. It is therefore possible
for a command substitution to yield a partial word.

Unquoted words containing any of the characters *, ?, [ or {, or that begin with ~, are
expanded (also known as globbing) to an alphabetically sorted list of filenames, as
follows:

* Match any (zero or more) characters.
? Match any single character.
[...] Match any single character in the enclosed list(s) or range(s). A list

is a string of characters. A range is two characters separated by a
dash (-), and includes all the characters in between in the ASCII
collating sequence (see ascii(5)).

{str, str, ...} Expand to each string (or filename-matching pattern) in the
comma-separated list. Unlike the pattern-matching expressions
above, the expansion of this construct is not sorted. For instance,
{b,a} expands to ‘b’ ‘a’, (not ‘a’ ‘b’). As special cases, the
characters { and }, along with the string { }, are passed
undisturbed.

~[user] Your home directory, as indicated by the value of the variable
home, or that of user, as indicated by the password entry for user.

Only the patterns *, ? and [...] imply pattern matching; an error results if no
filename matches a pattern that contains them. The “.” (dot character), when it is the
first character in a filename or pathname component, must be matched explicitly. The
/ (slash) must also be matched explicitly.

A number of C shell built-in commands accept expressions, in which the operators are
similar to those of C and have the same precedence. These expressions typically
appear in the @, exit, if, set and while commands, and are often used to regulate
the flow of control for executing commands. Components of an expression are
separated by white space.

Null or missing values are considered 0. The result of all expressions is a string, which
may represent decimal numbers.

The following C shell operators are grouped in order of precedence:
(... grouping

>~ one’s complement

! logical negation

* /% multiplication, division, remainder (these are right
associative, which can lead to unexpected results;
group combinations explicitly with parentheses.)

+ = addition, subtraction (also right associative)

User Commands 233



csh(1)

&&

bitwise shift left, bitwise shift right

less than, greater than, less than or equal to, greater
than or equal to

equal to, not equal to, filename-substitution pattern
match (described below), filename-substitution pattern
mismatch

bitwise AND

bitwise XOR (exclusive or)
bitwise inclusive OR
logical AND

logical OR

The operators: ==, ! =, =~, and ! ~ compare their arguments as strings; other operators
use numbers. The operators =~ and ! ~ each check whether or not a string to the left
matches a filename substitution pattern on the right. This reduces the need for
switch statements when pattern-matching between strings is all that is required.

Also available are file inquiries:

-t filename

-w filename

-x filename

-e filename
-o filename
-z filename
- £ filename

-d filename

Return true, or 1 if the user has read access. Otherwise it returns
false, or 0.

True if the user has write access.

True if the user has execute permission (or search permission on a
directory).

True if filename exists.

True if the user owns filename.

True if filename is of zero length (empty).
True if filename is a plain file.

True if filename is a directory.

If filename does not exist or is inaccessible, then all inquiries return false.

An inquiry as to the success of a command is also available:

{ command }

If command runs successfully, the expression evaluates to true, 1.
Otherwise, it evaluates to false, 0. (Note: Conversely, command
itself typically returns 0 when it runs successfully, or some other
value if it encounters a problem. If you want to get at the status
directly, use the value of the status variable rather than this
expression).

234 man pages section 1: User Commands ¢ Last Revised 23 May 1997



Control Flow

Command
Execution

Signal Handling

csh(1)

The shell contains a number of commands to regulate the flow of control in scripts and
within limits, from the terminal. These commands operate by forcing the shell either to
reread input (to loop), or to skip input under certain conditions (to branch).

Each occurrence of a foreach, switch, while, if...then and else built-in
command must appear as the first word on its own input line.

If the shell’s input is not seekable and a loop is being read, that input is buffered. The
shell performs seeks within the internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto commands will succeed on
nonseekable inputs.)

If the command is a C shell built-in command, the shell executes it directly. Otherwise,
the shell searches for a file by that name with execute access. If the command name
contains a /, the shell takes it as a pathname, and searches for it. If the command
name does not contain a /, the shell attempts to resolve it to a pathname, searching
each directory in the path variable for the command. To speed the search, the shell
uses its hash table (see the rehash built-in command) to eliminate directories that
have no applicable files. This hashing can be disabled with the -c or -t , options, or
the unhash built-in command.

As a special case, if there is no / in the name of the script and there is an alias for the
word shell, the expansion of the shell alias is prepended (without modification) to
the command line. The system attempts to execute the first word of this special
(late-occurring) alias, which should be a full pathname. Remaining words of the alias’s
definition, along with the text of the input line, are treated as arguments.

When a pathname is found that has proper execute permissions, the shell forks a new
process and passes it, along with its arguments, to the kernel using the execve()
system call (see exec(2)). The kernel then attempts to overlay the new process with
the desired program. If the file is an executable binary (in a . out(4) format) the kernel
succeeds and begins executing the new process. If the file is a text file and the first line
begins with # !, the next word is taken to be the pathname of a shell (or command) to
interpret that script. Subsequent words on the first line are taken as options for that
shell. The kernel invokes (overlays) the indicated shell, using the name of the script as
an argument.

If neither of the above conditions holds, the kernel cannot overlay the file and the
execve( ) call fails (see exec(2)); the C shell then attempts to execute the file by
spawning a new shell, as follows:

m If the first character of the file is a #, a C shell is invoked.
m  Otherwise, a Bourne shell is invoked.

The shell normally ignores QUIT signals. Background jobs are immune to signals
generated from the keyboard, including hangups (HUP). Other signals have the values
that the C shell inherited from its environment. The shell’s handling of interrupt and
terminate signals within scripts can be controlled by the onintr built-in command.

User Commands 235



csh(1)

Job Control

Status Reporting

Built-In
Commands

Login shells catch the TERM signal; otherwise, this signal is passed on to child
processes. In no case are interrupts allowed when a login shell is reading the . logout
file.

The shell associates a numbered job with each command sequence to keep track of
those commands that are running in the background or have been stopped with TSTP
signals (typically CTRL-z). When a command or command sequence (semicolon
separated list) is started in the background using the & metacharacter, the shell
displays a line with the job number in brackets and a list of associated process
numbers:

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most recently
stopped (or put into the background if none are stopped) is referred to as the current
job and is indicated with a “+’. The previous job is indicated with a ‘—’; when the
current job is terminated or moved to the foreground, this job takes its place (becomes
the new current job).

To manipulate jobs, refer to the bg, £g, kill, stop, and % built-in commands.

A reference to a job begins with a ‘%’. By itself, the percent-sign refers to the current
job.

o\°
o\°
+

o\°
o\

The current job.

o\°
|

The previous job.

Refer to job j as in: ‘kill -9 %j’. j can be a job number, or a string
that uniquely specifies the command line by which it was started;
‘fg $vi’ might bring a stopped vi job to the foreground, for
instance.

o\
<

% ?string Specify the job for which the command line uniquely contains
string.

A'job running in the background stops when it attempts to read from the terminal.
Background jobs can normally produce output, but this can be suppressed using the
‘stty tostop’ command.

While running interactively, the shell tracks the status of each job and reports
whenever the job finishes or becomes blocked. It normally displays a message to this
effect as it issues a prompt, in order to avoid disturbing the appearance of your input.
When set, the notify variable indicates that the shell is to report status changes
immediately. By default, the notify command marks the current process; after
starting a background job, type notify to mark it.

Built-in commands are executed within the C shell. If a built-in command occurs as
any component of a pipeline except the last, it is executed in a subshell.

236 man pages section 1: User Commands ¢ Last Revised 23 May 1997



csh(1)

Null command. This command is interpreted, but performs no action.

alias [ name [ def]]
Assign def to the alias name. def is a list of words that may contain escaped
history-substitution metasyntax. name is not allowed to be alias or unalias. If
def is omitted, the current definition for the alias name is displayed. If both name and
def are omitted, all aliases are displayed with their definitions.

bg [ %job . .. ]
Run the current or specified jobs in the background.

break
Resume execution after the end of the nearest enclosing foreach or while loop.
The remaining commands on the current line are executed. This allows multilevel
breaks to be written as a list of break commands, all on one line.

breaksw
Break from a switch, resuming after the endsw.

case label :
A label in a switch statement.

cd [dir ]

chdir [dir ]
Change the shell’s working directory to directory dir. If no argument is given,
change to the home directory of the user. If dir is a relative pathname not found in
the current directory, check for it in those directories listed in the cdpath variable.
If dir is the name of a shell variable whose value starts with a /, change to the
directory named by that value.

continue
Continue execution of the next iteration of the nearest enclosing while or foreach
loop.

default:
Labels the default case in a switch statement. The default should come after all
case labels. Any remaining commands on the command line are first executed.

dirs[-1]
Print the directory stack, most recent to the left; the first directory shown is the
current directory. With the -1 argument, produce an unabbreviated printout; use of
the ~ notation is suppressed.

echo [-n] list
The words in list are written to the shell’s standard output, separated by space
characters. The output is terminated with a newline unless the -n option is used.
csh will, by default, invoke its built-in echo, if echo is called without the full
pathname of a Unix command, regardless of the configuration of your PATH (see
echo(1)).

User Commands 237



csh(1)

238

eval argument
Reads the arguments as input to the shell and executes the resulting command(s).
This is usually used to execute commands generated as the result of command or
variable substitution. See t set(1B) for an example of how to use eval.

exec command
Execute command in place of the current shell, which terminates.

exit [ (expr)]
The calling shell or shell script exits, either with the value of the status variable or
with the value specified by the expression expr.

fg [%job ]
Bring the current or specified job into the foreground.

foreach var (wordlist)

end
The variable var is successively set to each member of wordlist. The sequence of
commands between this command and the matching end is executed for each new
value of var. Both foreach and end must appear alone on separate lines.

The built-in command cont inue may be used to terminate the execution of the
current iteration of the loop and the built-in command break may be used to
terminate execution of the foreach command. When this command is read from
the terminal, the loop is read once prompting with ? before any statements in the
loop are executed.

glob wordlist
Perform filename expansion on wordlist. Like echo, but no \ escapes are
recognized. Words are delimited by NULL characters in the output.

goto label
The specified label is a filename and a command expanded to yield a label. The shell
rewinds its input as much as possible and searches for a line of the form label :
possibly preceded by space or tab characters. Execution continues after the
indicated line. It is an error to jump to a label that occurs between a while or for
built-in command and its corresponding end.

hashstat
Print a statistics line indicating how effective the internal hash table for the path
variable has been at locating commands (and avoiding execs). An exec is
attempted for each component of the path where the hash function indicates a
possible hit and in each component that does not begin with a /’. These statistics
only reflect the effectiveness of the path variable, not the cdpath variable.

history[-hr][n]
Display the history list; if # is given, display only the n most recent events.

-r Reverse the order of printout to be most recent first rather than oldest
first.

man pages section 1: User Commands ¢ Last Revised 23 May 1997



csh(1)

-h Display the history list without leading numbers. This is used to
produce files suitable for sourcing using the -h option to source.

if (expr )command
If the specified expression evaluates to true, the single command with arguments is
executed. Variable substitution on command happens early, at the same time it does
for the rest of the 1 £ command. command must be a simple command, not a
pipeline, a command list, or a parenthesized command list. Note: I/O redirection
occurs even if expr is false, when command is not executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If expr is true, commands up to the first else are executed. Otherwise, if expr2 is
true, the commands between the else if and the second else are executed.
Otherwise, commands between the else and the endif are executed. Any number
of else if pairs are allowed, but only one else. Only one endif is needed, but it

is required. The words else and endif must be the first nonwhite characters on a
line. The if must appear alone on its input line or after an else.

jobs [-1]
List the active jobs under job control.

-1 List process IDs, in addition to the normal information.

kill [ -sig ] [ pid 1 [ %job ]

kill -1
Send the TERM (terminate) signal, by default, or the signal specified, to the specified
process ID, the job indicated, or the current job. Signals are either given by number
or by name. There is no default. Typing kill does not send a signal to the current
job. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or
process is sent a CONT (continue) signal as well.

-1 List the signal names that can be sent.

limit [-h] [resource [max-use] ]
Limit the consumption by the current process or any process it spawns, each not to
exceed max-use on the specified resource. If max-use is omitted, print the current
limit; if resource is omitted, display all limits. (Run the sysdef(1M) command to
obtain the maximum possible limits for your system. The values reported are in
hexadecimal, but can be translated into decimal numbers using the bc(1)
command).

-h Use hard limits instead of the current limits. Hard limits impose a
ceiling on the values of the current limits. Only the privileged user may
raise the hard limits.

User Commands 239



csh(1)

240

resource is one of:

cputime Maximum CPU seconds per process.

filesize Largest single file allowed; limited to the size of the
filesystem. (see d£(1M)).

datasize (heapsize) Maximum data size (including stack) for the process.
This is the size of your virtual memory See swap(1M).

stacksize Maximum stack size for the process. See swap(1M).

coredumpsize Maximum size of a core dump (file). This limited to the

size of the filesystem.
descriptors Maximum number of file descriptors. Run sysdef ().

memorysize Maximum size of virtual memory.

max-use is a number, with an optional scaling factor, as follows:

nh Hours (for cputime).

nk n kilobytes. This is the default for all but cput ime.
nm n megabytes or minutes (for cputime).

mm :ss Minutes and seconds (for cputime).

Example of limit: to limit the size of a core file dump to 0 Megabytes, type the
following;:

limit coredumpsize OM

login [username | -p |
Terminate a login shell and invoke 1ogin(l). The . logout file is not processed. If
username is omitted, 1login prompts for the name of a user.

-p Preserve the current environment (variables).

logout
Terminate a login shell.

nice [+n | -n][command ]
Increment the process priority value for the shell or for command by n. The higher
the priority value, the lower the priority of a process, and the slower it runs. When
given, command is always run in a subshell, and the restrictions placed on
commands in simple i f commands apply. If command is omitted, nice increments
the value for the current shell. If no increment is specified, nice sets the process
priority value to 4. The range of process priority values is from —20 to 20. Values of
n outside this range set the value to the lower, or to the higher boundary,
respectively.

+n Increment the process priority value by 7.

man pages section 1: User Commands ¢ Last Revised 23 May 1997



csh(1)
-n Decrement by 7. This argument can be used only by the privileged user.

nohup [command ]
Run command with HUPs ignored. With no arguments, ignore HUPs throughout the
remainder of a script. When given, command is always run in a subshell, and the
restrictions placed on commands in simple if statements apply. All processes
detached with & are effectively nohup’d.

notify [%job]. ..
Notify the user asynchronously when the status of the current job or specified jobs
changes.

onintr [ label]
Control the action of the shell on interrupts. With no arguments, onintr restores
the default action of the shell on interrupts. (The shell terminates shell scripts and
returns to the terminal command input level). With the — argument, the shell
ignores all interrupts. With a label argument, the shell executes a goto label when
an interrupt is received or a child process terminates because it was interrupted.

popd [+7]
Pop the directory stack and cd to the new top directory. The elements of the
directory stack are numbered from 0 starting at the top.

+n Discard the n’th entry in the stack.

pushd [+n |dir]
Push a directory onto the directory stack. With no arguments, exchange the top two
elements.

+n Rotate the n’th entry to the top of the stack and cd to it.
dir Push the current working directory onto the stack and change to dir.
rehash

Recompute the internal hash table of the contents of directories listed in the path
variable to account for new commands added. Recompute the internal hash table of
the contents of directories listed in the cdpath variable to account for new directories
added.

repeat count command
Repeat command count times. command is subject to the same restrictions as with the
one-line if statement.

set [var [= value ] ]

set var [n] = word
With no arguments, set displays the values of all shell variables. Multiword values
are displayed as a parenthesized list. With the var argument alone, set assigns an
empty (null) value to the variable var. With arguments of the form var = value set
assigns value to var, where value is one of:

word A single word (or quoted string).

(wordlist) A space-separated list of words enclosed in parentheses.

User Commands 241



csh(1)

Values are command and filename expanded before being assigned. The form set
var [n] = word replaces the n’th word in a multiword value with word.

setenv [VAR [word ] ]
With no arguments, setenv displays all environment variables. With the VAR
argument, setenv sets the environment variable VAR to have an empty (null)
value. (By convention, environment variables are normally given upper-case
names.) With both VAR and word arguments, setenv sets the environment variable
NAME to the value word, which must be either a single word or a quoted string. The
most commonly used environment variables, USER, TERM, and PATH, are
automatically imported to and exported from the csh variables user, term, and
path; there is no need to use setenv for these. In addition, the shell sets the PWD
environment variable from the csh variable cwd whenever the latter changes.

The environment variables LC CTYPE, LC MESSAGES, LC_ TIME, LC_ COLLATE,
LC_NUMERIC, and LC_MONETARY take immediate effect when changed within the
C shell.

If any of the LC_ * variables (LC_CTYPE, LC_MESSAGES, LC_TIME, LC_COLLATE,
LC_NUMERIC, and LC_MONETARY) (see environ(5)) are not set in the environment,
the operational behavior of csh for each corresponding locale category is
determined by the value of the LANG environment variable. If LC_ALL is set, its
contents are used to override both the LANG and the other LC_* variables. If none
of the above variables is set in the environment, the "C" (U.S. style) locale
determines how csh behaves.

LC_CTYPE Determines how csh handles characters. When LC_CTYPE is
set to a valid value, csh can display and handle text and
filenames containing valid characters for that locale.

LC_MESSAGES Determines how diagnostic and informative messages are
presented. This includes the language and style of the messages
and the correct form of affirmative and negative responses. In
the "C" locale, the messages are presented in the default form
found in the program itself (in most cases, U.S./English).

LC_NUMERIC Determines the value of the radix character (decimal point (".")
in the "C" locale) and thousand separator (empty string (") in
the "C" locale).

shift [variable |
The components of argv, or variable, if supplied, are shifted to the left, discarding
the first component. It is an error for the variable not to be set or to have a null
value.

source [-h] name
Reads commands from name. source commands may be nested, but if they are
nested too deeply the shell may run out of file descriptors. An error in a sourced file
at any level terminates all nested source commands.

242 man pages section 1: User Commands * Last Revised 23 May 1997



csh(1)

-h Place commands from the file name on the history list without executing
them.

stop %jobid . ..
Stop the current or specified background job.

stoppid . ..
Stop the specified process, pid. (see ps(1)).

suspend
Stop the shell in its tracks, much as if it had been sent a stop signal with *z. This is
most often used to stop shells started by su.

switch (string)
case label :

breaksw
default:

breaksw

endsw
Each Iabel is successively matched, against the specified string, which is first
command and filename expanded. The file metacharacters *, ? and [...] may be
used in the case labels, which are variable expanded. If none of the labels match
before a “default” label is found, execution begins after the default label. Each case
statement and the default statement must appear at the beginning of a line. The
command breaksw continues execution after the endsw. Otherwise control falls
through subsequent case and default statements as with C. If no label matches
and there is no default, execution continues after the endsw.

time [command ]
With no argument, print a summary of time used by this C shell and its children.
With an optional command, execute command and print a summary of the time it
uses. As of this writing, the t ime built-in command does NOT compute the last 6
fields of output, rendering the output to erroneously report the value "0" for these
fields.

example %time 1ls -R
9.0u 11.0s 3:32 10% 0+0k 0+0io Opf+O0w

(See below the "Environment Variables and Predefined Shell Variables" sub-section
on the time variable.)

umask [value ]
Display the file creation mask. With value, set the file creation mask. With value
given in octal, the user can turn-off any bits, but cannot turn-on bits to allow new
permissions. Common values include 077, restricting all permissions from everyone
else; 002, giving complete access to the group, and read (and directory search)
access to others; or 022, giving read (and directory search) but not write permission
to the group and others.

User Commands 243



csh(1)

unalias pattern
Discard aliases that match (filename substitution) pattern. All aliases are removed
by ‘unalias *’.

unhash
Disable the internal hash tables for the path and cdpath variables.

unlimit [-h] [resource |
Remove a limitation on resource. If no resource is specified, then all resource
limitations are removed. See the description of the 1imit command for the list of
resource names.

-h Remove corresponding hard limits. Only the privileged user may do
this.

unset pattern
Remove variables whose names match (filename substitution) pattern. All variables
are removed by ‘unset *’; this has noticeably distasteful side effects.

unsetenv variable
Remove variable from the environment. As with unset, pattern matching is not
performed.

wait
Wait for background jobs to finish (or for an interrupt) before prompting.

while (expr)

end
While expr is true (evaluates to nonzero), repeat commands between the while and
the matching end statement. break and continue may be used to terminate or
continue the loop prematurely. The while and end must appear alone on their
input lines. If the shell’s input is a terminal, it prompts for commands with a

question-mark until the end command is entered and then performs the commands
in the loop.

% [job ] [&]
Bring the current or indicated job to the foreground. With the ampersand, continue
running job in the background.

@ [var =expr]

@ [var [n] =expr]
With no arguments, display the values for all shell variables. With arguments, set
the variable var, or the n’th word in the value of var, to the value that expr evaluates
to. (If [n] is supplied, both var and its n’th component must already exist.)

If the expression contains the characters >, <, &, or |, then at least this part of expr
must be placed within parentheses.

The operators *=, +=, and so forth, are available as in C. The space separating the
name from the assignment operator is optional. Spaces are, however, mandatory in
separating components of expr that would otherwise be single words.

244 man pages section 1: User Commands ¢ Last Revised 23 May 1997



Environment
Variables and
Predefined Shell
Variables

csh(1)

Special postfix operators, + + and — —, increment or decrement name, respectively.

Unlike the Bourne shell, the C shell maintains a distinction between environment
variables, which are automatically exported to processes it invokes, and shell
variables, which are not. Both types of variables are treated similarly under variable
substitution. The shell sets the variables argv, cwd, home, path, prompt, shell, and
status upon initialization. The shell copies the environment variable USER into the
shell variable user, TERM into term, and HOME into home, and copies each back into
the respective environment variable whenever the shell variables are reset. PATH and
path are similarly handled. You need only set path once in the . cshrc or .login
file. The environment variable PWD is set from cwd whenever the latter changes. The
following shell variables have predefined meanings:

argv

cdpath

cwd
echo

fignore

filec

hardpaths

histchars

history

home

Argument list. Contains the list of command line arguments
supplied to the current invocation of the shell. This variable
determines the value of the positional parameters $1, $2, and so
on.

Contains a list of directories to be searched by the cd, chdir, and
popd commands, if the directory argument each accepts is not a
subdirectory of the current directory.

The full pathname of the current directory.
Echo commands (after substitutions) just before execution.

A list of filename suffixes to ignore when attempting filename
completion. Typically the single word “. o".

Enable filename completion, in which case the CTRL-d character
EOT and the ESC character have special significance when typed
in at the end of a terminal input line:

EOT Print a list of all filenames that start with the preceding
string.
ESC Replace the preceding string with the longest

unambiguous extension.

If set, pathnames in the directory stack are resolved to contain no
symbolic-link components.

A two-character string. The first character replaces ! as the
history-substitution character. The second replaces the carat (*) for
quick substitutions.

The number of lines saved in the history list. A very large number
may use up all of the C shell’s memory. If not set, the C shell saves
only the most recent command.

The user’s home directory. The filename expansion of ~ refers to
the value of this variable.

User Commands 245



csh(1)

ignoreeof

mail

nobeep

noclobber

noglob

nonomatch

notify

path

prompt

If set, the shell ignores EOF from terminals. This protects against
accidentally killing a C shell by typing a CTRL-d.

Alist of files where the C shell checks for mail. If the first word of
the value is a number, it specifies a mail checking interval in
seconds (default 5 minutes).

Suppress the bell during command completion when asking the C
shell to extend an ambiguous filename.

Restrict output redirection so that existing files are not destroyed
by accident. > redirections can only be made to new files. >>
redirections can only be made to existing files.

Inhibit filename substitution. This is most useful in shell scripts
once filenames (if any) are obtained and no further expansion is
desired.

Returns the filename substitution pattern, rather than an error, if
the pattern is not matched. Malformed patterns still result in
errors.

If set, the shell notifies you immediately as jobs are completed,
rather than waiting until just before issuing a prompt.

The list of directories in which to search for commands. path is
initialized from the environment variable PATH, which the C shell
updates whenever path changes. A null word (”) specifies the
current directory. The default is typically (/usr/bin .).One
may override this initial search path upon csh start-up by setting
itin .cshrc or . login (for login shells only). If path becomes
unset, only full pathnames will execute. An interactive C shell will
normally hash the contents of the directories listed after reading
.cshrc, and whenever path is reset. If new commands are
added, use the rehash command to update the table.

The string an interactive C shell prompts with. Noninteractive
shells leave the prompt variable unset. Aliases and other
commands in the . cshrec file that are only useful interactively, can
be placed after the following test: ‘1f ($?prompt == 0) exit/,
to reduce startup time for noninteractive shells. A ! in the prompt
string is replaced by the current event number. The default prompt
is hostname% for mere mortals, or hostname# for the privileged user.

The setting of $prompt has three meanings:

$prompt not set non-interactive shell, test $?prompt.
$prompt set but =="" .cshre called by the which(1)
command.

nn

Sprompt set and != normal interactive shell.

246 man pages section 1: User Commands ¢ Last Revised 23 May 1997



savehist

shell

status

time

verbose

csh(1)

The number of lines from the history list that are saved in
~/ history when the user logs out. Large values for savehist
slow down the C shell during startup.

The file in which the C shell resides. This is used in forking shells
to interpret files that have execute bits set, but that are not
executable by the system.

The status returned by the most recent command. If that command
terminated abnormally, 0200 is added to the status. Built-in
commands that fail return exit status 1; all other built-in
commands set status to 0.

Control automatic timing of commands. Can be supplied with one
or two values. The first is the reporting threshold in CPU seconds.
The second is a string of tags and text indicating which resources
to report on. A tag is a percent sign (%) followed by a single
upper-case letter (unrecognized tags print as text):

o\°

D Average amount of unshared data space used in
Kilobytes.

o\°
=1

Elapsed (wallclock) time for the command.

o°
e

Page faults.

o\°
—

Number of block input operations.

%K Average amount of unshared stack space used in
Kilobytes.

%M Maximum real memory used during execution of the
process.

%0 Number of block output operations.

%P Total CPU time — U (user) plus S (system) — as a
percentage of E (elapsed) time.

%S Number of seconds of CPU time consumed by the
kernel on behalf of the user’s process.

$U Number of seconds of CPU time devoted to the user’s
process.

W Number of swaps.

%X Average amount of shared memory used in Kilobytes.

The default summary display outputs from the %U, %S, %E, $P, %X,
%D, %I, %0, %F, and %W tags, in that order.

Display each command after history substitution takes place.

User Commands 247



csh(1)

Large File
Behavior

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

See largefile(5) for the description of the behavior of csh when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).

~/ .cshrc Read at beginning of execution by each shell.

~/.login Read by login shells after . cshrc at login.

~/ .logout Read by login shells at logout.

~/ .history Saved history for use at next login.

/usr/bin/sh The Bourne shell, for shell scripts not starting with a
m

/tmp/sh* Temporary file for ‘<<’.

/etc/passwd Source of home directories for ‘~name’.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI Enabled

be(l), echo(l), login(l), 1s(1), more(l), ps(1), sh(1), shell builtins(l),
tset(1B), which(1l), dE(1M), swap(1M), sysdef(1M), access(2), exec(2), fork(2),
pipe(2), a.out(4), environ(4), ascii(5), attributes(5), environ(b),
largefile(5), termio(7I)

You have stopped jobs.
You attempted to exit the C shell with stopped jobs under job control. An
immediate second attempt to exit will succeed, terminating the stopped jobs.

The use of setuid shell scripts is strongly discouraged.

Words can be no longer than 1024 bytes. The system limits argument lists to 1,048,576
bytes. However, the maximum number of arguments to a command for which
filename expansion applies is 1706. Command substitutions may expand to no more
characters than are allowed in the argument list. To detect looping, the shell restricts
the number of alias substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in if
this is different from the current directory; this can be misleading (that is, wrong) as
the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the form
a ; b ; care also not handled gracefully when stopping is attempted. If you suspend

248 man pages section 1: User Commands ¢ Last Revised 23 May 1997



csh(1)

b, the shell never executes c. This is especially noticeable if the expansion results from
an alias. It can be avoided by placing the sequence in parentheses to force it into a
subshell.

Control over terminal output after processes are started is primitive; use the Sun
Window system if you need better output control.

Commands within loops, prompted for by ?, are not placed in the history list.

Control structures should be parsed rather than being recognized as built-in
commands. This would allow control commands to be placed anywhere, to be
combined with |, and to be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitutions.
There are two problems with : modifier usage on variable substitutions: not all of the
modifiers are available, and only one modifier per substitution is allowed.

The g (global) flag in history substitutions applies only to the first match in each word,
rather than all matches in all words. The common text editors consistently do the latter
when given the g flag in a substitution command.

Quoting conventions are confusing. Overriding the escape character to force variable
substitutions within double quotes is counterintuitive and inconsistent with the
Bourne shell.

Symbolic links can fool the shell. Setting the hardpaths variable alleviates this.

It is up to the user to manually remove all duplicate pathnames accrued from using
built-in commands as

set path = pathnamesOr

setenv PATH = pathnamesmore than once. These often occur because a shell script or a
.cshrc file does something like

‘set path=(/usr/local /usr/hosts $path)’to ensure that the named directories are in
the pathname list.

The only way to direct the standard output and standard error separately is by
invoking a subshell, as follows:

command > outfile ) >& errorfile

Although robust enough for general use, adventures into the esoteric periphery of the
C shell may reveal unexpected quirks.

If you start csh as a login shell and you do not have a . login in your home
directory, then the csh reads in the /etc/.login.

User Commands 249



csh(1)

When the shell executes a shell script that attempts to execute a non-existent
command interpreter, the shell returns an erroneous diagnostic message that the shell
script file does not exist.

BUGS | As of this writing, the t ime built-in command does NOT compute the last 6 fields of
output, rendering the output to erroneously report the value "0" for these fields:

example %time 1ls -R
9.0u 11.0s 3:32 10% 0+0k 0+0io Opf+0w

250 man pages section 1: User Commands ¢ Last Revised 23 May 1997



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

csplit(1)

csplit — split files based on context

csplit [-ks]

[-£ prefix] [-n number] file argl.. argn

The csplit utility reads the file named by the file operand, writes all or part of that
file into other files as directed by the arg operands, and writes the sizes of the files.

The following options are supported:

- £ prefix

-k

-n number

-S

Name the created files prefix00, prefix01, ..., prefixn. The default
is xx00 ... xxn. If the prefix argument would create a file name
exceeding 14 bytes, an error will result; csplit will exit with a
diagnostic message and no files will be created.

Leave previously created files intact. By default, csplit will
remove created files if an error occurs.

Use number decimal digits to form filenames for the file pieces. The
default is 2.

Suppress the output of file size messages.

The following operands are supported:

file

The path name of a text file to be split. If file is -, the standard
input will be used.

The operands argl ... argn can be a combination of the following;:

/rexp/[offset]

YorexpYoloffset]

line_no

{numy}

Create a file using the content of the lines from the current line up
to, but not including, the line that results from the evaluation of
the regular expression with offset, if any, applied. The regular
expression rexp must follow the rules for basic regular expressions.
The optional offset must be a positive or negative integer value
representing a number of lines. The integer value must be
preceded by + or —. If the selection of lines from an offset
expression of this type would create a file with zero lines, or one
with greater than the number of lines left in the input file, the
results are unspecified. After the section is created, the current line
will be set to the line that results from the evaluation of the regular
expression with any offset applied. The pattern match of rexp
always is applied from the current line to the end of the file.

This operand is the same as /rexp/[offset], except that no file will
be created for the selected section of the input file.

Create a file from the current line up to (but not including) the line
number line_no. Lines in the file will be numbered starting at one.
The current line becomes line_no.

Repeat operand. This operand can follow any of the operands
described previously. If it follows a rexp type operand, that
operand will be applied num more times. If it follows a line_no

User Commands 251



csplit(1)

USAGE

EXAMPLES

ENVIRONMENT

252

VARIABLES

EXIT STATUS

ATTRIBUTES

operand, the file will be split every line_no lines, num times, from
that point.

An error will be reported if an operand does not reference a line between the current
position and the end of the file.

See largefile(5) for the description of the behavior of csplit when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

EXAMPLE 1 Splitting and combining files

This example creates four files, cobo100 ... cobol03.

example% csplit -f cobol filename ’/procedure division/’ /par5./ /parl6./

After editing the “split” files, they can be recombined as follows:

example% cat cobol0[0-3] > filename

Note: This example overwrites the original file.

EXAMPLE 2 Splitting a file into equal parts

This example splits the file at every 100 lines, up to 10,000 lines. The -k option causes
the created files to be retained if there are less than 10,000 lines; however, an error
message would still be printed.

example% csplit -k filename 100 {99}

EXAMPLE 3 Creating a file for separate C routines

If prog. c follows the normal C coding convention (the last line of a routine consists
only of a } in the first character position), this example creates a file for each separate
C routine (up to 21) in prog.c.

example% csplit -k prog.c ‘%main(%’ ’/"}/+1’ {20}

See environ(b) for descriptions of the following environment variables that affect the
execution of csplit: LC COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

man pages section 1: User Commands ¢ Last Revised 20 Dec 1996



SEE ALSO

DIAGNOSTICS

csplit(1)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability
CsI

SUNWesu
Enabled

sed(l), split(1l), attributes(b), environ(b), largefile(5)

The diagnostic messages are self-explanatory, except for the following:

arg — out of range

User Commands

The given argument did not reference a line between
the current position and the end of the file.

253



ct(10)

254

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ct — spawn login to a remote terminal

ct [options] telno...

The ct utility dials the telephone number of a modem that is attached to a terminal
and spawns a login process to that terminal. The telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate places.
(The set of legal characters for telno is 0 through 9, -, =, *, and #. The maximum length
telno is 31 characters). If more than one telephone number is specified, ct will try each
in succession until one answers; this is useful for specifying alternate dialing paths.

ct will try each line listed in the file /etc/uucp/Devices until it finds an available
line with appropriate attributes, or runs out of entries.

After the user on the destination terminal logs out, there are two things that could
occur depending on what type of port monitor is monitoring the port. In the case of no
port monitor, ct prompts: Reconnect? If the response begins with the letter n, the
line will be dropped; otherwise, t tymon will be started again and the 1login: prompt
will be printed. In the second case, where a port monitor is monitoring the port, the
port monitor reissues the login: prompt.

The user should log out properly before disconnecting.

The following options are supported:

-h Normally, ct will hang up the current line so that it can be used to
answer the incoming call. The -h option will prevent this action.
The -h option will also wait for the termination of the specified
ct process before returning control to the user’s terminal.

- sspeed The data rate may be set with the -s option. speed is expressed in
baud rates. The default baud rate is 1200.

-v If the -v (verbose) option is used, ct will send a running narrative
to the standard error output stream.

-wn If there are no free lines ct will ask if it should wait, and for how
many minutes, before it gives up. ct will continue to try to open
the dialers at one-minute intervals until the specified limit is
exceeded. This dialogue may be overridden by specifying the -wn
option. # is the maximum number of minutes that ct is to wait for
a line.

-xn This option is used for debugging; it produces a detailed output of
the program execution on stderr. 7 is a single number between 0
and 9. As 1 increases to 9, more detailed debugging information is
given.

man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



FILES

ATTRIBUTES

SEE ALSO

NOTES

/etc/uucp/Devices

/var/adm/ctlog

ct(1C)

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWbnuu

cu(1C), Llogin(l), uucp(1C), ttymon(1M), attributes(5)

The ct program will not work with a DATAKIT Multiplex interface.

For a shared port, one used for both dial-in and dial-out, the ttymon program
running on the line must have the -r and -b options specified (see ttymon(1M)).

User Commands 255



ctags(1)

256

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ctags — create a tags file for use with ex and vi
/usr/bin/ctags [-aBFtuvwx] [-f fagsfile] file...

/usr/xpg4/bin/ctags [-aBFuvwx] [-f tagsfile] file..

The ctags utility makes a tags file for ex(1) from the specified C, C++, Pascal,
FORTRAN, yacc(1), and 1ex(1) sources. A tags file gives the locations of specified
objects (in this case functions and typedefs) in a group of files. Each line of the tags file
contains the object name, the file in which it is defined, and an address specification
for the object definition. Functions are searched with a pattern, typedefs with a line
number. Specifiers are given in separate fields on the line, separated by SPACE or TAB
characters. Using the tags file, ex can quickly find these objects’ definitions.

Normally, ctags places the tag descriptions in a file called tags; this may be
overridden with the - £ option.

Files with names ending in . c or .h are assumed to be either C or C++ source files
and are searched for C/C++ routine and macro definitions. Files with names ending in
.cq, .C,or . cxx, are assumed to be C++ source files. Files with names ending in .y
are assumed to be yacc source files. Files with names ending in . 1 are assumed to be
lex files. Others are first examined to see if they contain any Pascal or FORTRAN
routine definitions; if not, they are processed again looking for C definitions.

The tag main is treated specially in C or C++ programs. The tag formed is created by
prepending M to file, with a trailing .c, .cc .C, or . cxx removed, if any, and leading
path name components also removed. This makes use of ctags practical in directories
with more than one program.

The precedence of the options that pertain to printing is -x, -v , then the remaining
options. The following options are supported:

-a Appends output to an existing tags file.

-B Uses backward searching patterns (?. .. ?).

- £ tagsfile Places the tag descriptions in a file called tagsfile instead of tags.

-F Uses forward searching patterns (/. .. /) (default).

-t Creates tags for typedefs. /usr/xpg4/bin/ctags creates tags
for typedefs by default.

-u Updates the specified files in tags, that is, all references to them are

deleted, and the new values are appended to the file. Beware: this
option is implemented in a way that is rather slow; it is usually
faster to simply rebuild the tags file.

-V Produces on the standard output an index listing the function
name, file name, and page number (assuming 64 line pages). Since
the output will be sorted into lexicographic order, it may be
desired to run the output through sort -£.

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



OPERANDS

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

ctags(1)
-w Suppresses warning diagnostics.

-x Produces a list of object names, the line number and file name on
which each is defined, as well as the text of that line and prints this
on the standard output. This is a simple index which can be
printed out as an off-line readable function index.

The following file operands are supported:

file.c Files with basenames ending with the . ¢ suffix are treated as
C-language source code.

jle.h Files with basenames ending with the .h suffix are treated as
g
C-language source code.

file . £ Files with basenames ending with the . £ suffix are treated as
FORTRAN:-language source code.

The -v option is mainly used with vgrind which will be part of the optional BSD
Compatibility Package.

EXAMPLE 1 Producing entries in alphabetical order

Using ctags with the -v option produces entries in an order which may not always
be appropriate for vgrind. To produce results in alphabetical order, you may want to
run the output through sort -f.

example% ctags -v filename.c filename.h | sort -f > index

example% vgrind -x index

EXAMPLE 2 Building a tags file

To build a tags file for C sources in a directory hierarchy rooted at sourcedir, first create
an empty tags file, and then run £ind(1)

example% cd sourcedir ; rm -f tags ; touch tags
example% find . \( -name SCCS -prune -name \\
’*.c’ -o -name ’'*.h’ \) -exec ctags -u {} \;
Notice that spaces must be entered exactly as shown.
See environ(b) for descriptions of the following environment variables that affect the

execution of ctags: LC COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.
>0 An error occurred.
tags output tags file

See attributes(d) for descriptions of the following attributes:

User Commands 257



ctags(1)
lusr/bin/ctags

lusr/xpg4/bin/ctags

SEE ALSO

NOTES

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

ex(1), lex(1), vgrind(l), vi(1), yacc(l), attributes(5), environ(b), XPG4(5)

Recognition of functions, subroutines, and procedures for FORTRAN and
Pascal is done in a very simpleminded way. No attempt is made to deal with block
structure; if you have two Pascal procedures in different blocks with the same name,
you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is a
hack.

The ctags utility does not know about #ifdefs.

The ctags utility should know about Pascal types. Relies on the input being well
formed to detect typedefs. Use of -tx shows only the last line of typedefs.

258 man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

cu — call another UNIX system

cu [-c device | -1 linel [-s speed] [-b bits] [-h] [-n] [-t] [-d]l [-o |

-e]

[-C] [-H] telno | systemname [local-cmd]

The command cu calls up another UNIX system, a terminal, or possibly a non-UNIX
system. It manages an interactive conversation with possible transfers of files. It is
convenient to think of cu as operating in two phases. The first phase is the connection
phase in which the connection is established. cu then enters the conversation phase.
The -d option is the only one that applies to both phases.

cu accepts many options. The -¢, -1, and -s options play a part in selecting the
medium. The remaining options are used in configuring the line.

-b bits

-c device

-1 line

Forces bits to be the number of bits processed on the line. bits is
either 7 or 8. This allows connection between systems with
different character sizes. By default, the character size of the line is
set to the same value as the current local terminal, but the
character size setting is affected by LC_CTYPE also.

Forces cu to use only entries in the "Type" field (the first field in
the /etc/uucp/Devices file) that match the user specified
device, usually the name of a local area network.

Runs the local-cmd specified at the end of the command line
instead of entering interactive mode. The stdin and stdout of
the command that is run refer to the remote connection.

Prints diagnostic traces.

Sets an EVEN data parity. This option designates that EVEN parity
is to be generated for data sent to the remote system.

Sets communication mode to half-duplex. This option emulates
local echo in order to support calls to other computer systems that
expect terminals to be set to half-duplex mode.

Ignores one hangup. This allows the user to remain in cu while the
remote machine disconnects and places a call back to the local
machine. This option should be used when connecting to systems
with callback or dialback modems. Once the callback occurs
subsequent hangups will cause cu to terminate. This option can be
specified more than once. For more information about dialback
configuration, see remote(4) and System Administration Guide: IP
Services

Specifies a device name to use as the communication line. This can
be used to override the search that would otherwise take place for
the first available line having the right speed. When the -1 option
is used without the - s option, the speed of a line is taken from the
/etc/uucp/Devices file record in which line matches the second
field (the Line field). When the -1 and - s options are both used

User Commands 259



cu(10)

OPERANDS

Connection Phase

together, cu will search the /etc/uucp/Devices file to check if
the requested speed for the requested line is available. If so, the
connection will be made at the requested speed, otherwise, an
error message will be printed and the call will not be made. In the
general case where a specified device is a directly connected
asynchronous line (for instance, /dev/term/a), a telephone
number (telno) is not required. The specified device need not be in
the /dev directory. If the specified device is associated with an
auto dialer, a telephone number must be provided.

-L Goes through the login chat sequence specified in the
/etc/uucp/Systems file. For more information about the chat
sequence, see System Administration Guide: IP Services

-n Requests user prompt for telephone number. For added security,
this option will prompt the user to provide the telephone number
to be dialed, rather than taking it from the command line.

-0 Sets an ODD data parity. This option designates that ODD parity is
to be generated for data sent to the remote system.

-s speed Specifies the transmission speed (300, 1200, 2400, 4800, 9600,
19200, 38400). The default value is "Any" speed which will
depend on the order of the lines in the /etc/uucp/Devices file.

-t Dials a terminal which has been set to auto answer. Appropriate
mapping of carriage-return to carriage-return-line-feed pairs is set.

The following operands are supported:

telno When using an automatic dialler, specifies the telephone number
with equal signs for secondary dial tone or minus signs placed
appropriately for delays of 4 seconds.

systemname Specifies a uucp system name, which can be used rather than a
telephone number; in this case, cu will obtain an appropriate
direct line or telephone number from a system file.

cu uses the same mechanism that uucp(1C) does to establish a connection. This means
that it will use the uucp control files /etc/uucp/Devices and
/etc/uucp/Systems. This gives cu the ability to choose from several different
media to establish the connection. The possible media include telephone lines, direct
connections, and local area networks (LAN). The /etc/uucp/Devices file contains a
list of media that are available on your system. The /etc/uucp/Systems file
contains information for connecting to remote systems, but it is not generally readable.

Note: cu determines which /etc/uucp/Systems and /etc/uucp/Devices files to
use based upon the name used to invoke cu. In the simple case, this name will be
"cu", but you could also have created a link to cu with another name, such as
"pppcu’, in which case cu would then look for a "service=pppcu" entry in the
/etc/uucp/Sysfiles file to determine which /etc/uucp/Systemns file to use.

260 man pages section 1: User Commands * Last Revised 11 May 2001



Conversation
Phase

Commands

cu(1C)

The telno or systemname parameter from the command line is used to tell cu what
system you wish to connect to. This parameter can be blank, a telephone number, a
system name, or a LAN specific address.

telephone number A telephone number is a string consisting of the tone
dial characters (the digits 0 through 9, *, and #) plus
the special characters = and —. The equal sign
designates a secondary dial tone and the minus sign
creates a 4 second delay.

system name A system name is the name of any computer that uucp
can call; the uuname(1C) command prints a list of these
names.

LAN address The documentation for your LAN will show the form

of the LAN specific address.

If cu’s default behavior is invoked (not using the -c or -1 options), cu will use the
telno or systemname parameter to determine which medium to use. If a telephone
number is specified, cu will assume that you wish to use a telephone line and it will
select an automatic call unit (ACU). Otherwise, cu will assume that it is a system
name. cu will follow the uucp calling mechanism and use the /etc/uucp/Systems
and /etc/uucp/Devices files to obtain the best available connection. Since cu will
choose a speed that is appropriate for the medium that it selects, you may not use the
- s option when this parameter is a system name.

The -c and -1 options modify this default behavior. -c is most often used to select a
LAN by specifying a Type field from the /etc/uucp/Devices file. You must include
either a telno or systemname value when using the -c option. If the connection to
systemname fails, a connection will be attempted using systemname as a LAN specific
address. The -1 option is used to specify a device associated with a direct connection.
If the connection is truly a direct connection to the remote machine, then there is no
need to specify a systemname. This is the only case where a telno or systemname
parameter is unnecessary. On the other hand, there may be cases in which the
specified device connects to a dialer, so it is valid to specify a telephone number. The
-c and -1 options should not be specified on the same command line.

After making the connection, cu runs as two processes. The transmit process reads
data from the standard input and, except for lines beginning with ~, passes it to the
remote system. The receive process accepts data from the remote system and, except for
lines beginning with ~, passes it to the standard output. Normally, an automatic
DC3/DC1 protocol is used to control input from the remote so the buffer is not
overrun. Lines beginning with ~ have special meanings.

The transmit process interprets the following user initiated commands:
~. Terminates the conversation.
~1 Escapes to an interactive shell on the local system.

~lemd. .. Runs cmd on the local system (via sh -c).

User Commands 261



cu(10)

~%take from [ to]

~%put from [to]

~~ line

~%break

~%debug

~%ifc

~%ofc

~%divert

~%old

~%nostop

Runs cmd locally and send its output to the remote
system.

Changes the directory on the local system. Note: ~ ! cd
will cause the command to be run by a sub-shell,
probably not what was intended.

Copies file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is used
in both places.

Copies file from (on local system) to file to on remote
system. If to is omitted, the from argument is used in
both places.

Sends the line ~ line to the remote system.

Transmits a BREAK to the remote system (which can
also be specified as ~%b).

Toggles the -d debugging option on or off (which can
also be specified as ~%d).

Prints the values of the termio structure variables for
the user’s terminal (useful for debugging).

Prints the values of the termio structure variables for
the remote communication line (useful for debugging).

Toggles between DC3/DC1 input control protocol and
no input control. This is useful when the remote system
does not respond properly to the DC3 and DC1
characters (can also be specified as =%¥nostop).

Toggles the output flow control setting. When enabled,
outgoing data may be flow controlled by the remote
host (can also be specified as =¥noostop).

Allows/disallows unsolicited diversions. That is,
diversions not specified by ~%take.

Allows/disallows old style syntax for received
diversions.

Same as ~%ifc.

The receive process normally copies data from the remote system to the standard
output of the local system. It may also direct the output to local files.

The use of ~%put requires stty(l) and cat(1l) on the remote side. It also requires that
the current erase and kill characters on the remote system be identical to these current
control characters on the local system. Backslashes are inserted at appropriate places.

262 man pages section 1: User Commands * Last Revised 11 May 2001



EXAMPLES

ENVIRONMENT
VARIABLES

cu(1C)

The use of ~%take requires the existence of echo(1) and cat(1) on the remote system,
and that the remote system must be using the Bourne shell, sh. Also, tabs mode (see
stty(1)) should be set on the remote system if tabs are to be copied without
expansion to spaces.

When cu is used on system X to connect to system Y and subsequently used on
system Y to connect to system Z, commands on system Y can be executed by using
~ ~. Executing a tilde command reminds the user of the local system uname. For
example, uname can be executed on Z, X, and Y as follows:

uname
Z
~ [X] luname
X
~~[Y] luname
Y

In general, ~ causes the command to be executed on the original machine. ~ ~ causes
the command to be executed on the next machine in the chain.

EXAMPLE 1 Dialling a system

To dial a system whose telephone number is 9 1 201 555 1234 using 1200 baud
(where dialtone is expected after the 9):

example% cu -s 1200 9=12015551234
If the speed is not specified, "Any" is the default value.

EXAMPLE 2 Logging in to a system on a direct line

To login to a system connected by a direct line:

example% cu -1 /dev/term/b
or

example% cu -1 term/b

EXAMPLE 3 Dialling a system with specific line and speed

To dial a system with a specific line and speed:

example% cu -s 1200 -1 term/b

EXAMPLE 4 Using a system name

To use a system name:

example% cu systemname

See environ(5) for descriptions of the following environment variables that affect the
execution of cu: LC_CTYPE, LC_MESSAGES, and NLSPATH.

User Commands 263



cu(1C)
EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

The following exit values are returned:

0 Successful completion.

>0 An error occurred.
/etc/uucp/Devices device file
/etc/uucp/Sysfiles system file
/etc/uucp/Systems system file
/var/spool/locks/* lock file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbnuu

cat(1), echo(1), stty(1), tip(1), uname(1), ct(1C), uuname(1C), uucp(1C),
remote(4), attributes(5), environ(b)

System Administration Guide: IP Services

The cu utility takes the default action upon receipt of signals, with the exception of:

SIGHUP Close the connection and terminate.

SIGINT Forward to the remote system.

SIGQUIT Forward to the remote system.

SIGUSR1 Terminate the cu process without the normal connection closing
sequence.

The cu command does not do any integrity checking on data it transfers. Data fields
with special cu characters may not be transmitted properly. Depending on the
interconnection hardware, it may be necessary to use a ~. to terminate the conversion,
even if stty 0 has been used. Non-printing characters are not dependably
transmitted using either the ~%put or ~%take commands. ~%put and ~%take cannot
be used over multiple links. Files must be moved one link at a time.

There is an artificial slowing of transmission by cu during the ~%put operation so that
loss of data is unlikely. Files transferred using ~%take or ~%put must contain a
trailing newline, otherwise, the operation will hang. Entering a Control-D command
usually clears the hang condition.

264 man pages section 1: User Commands * Last Revised 11 May 2001



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

cut(1)
cut — cut out selected fields of each line of a file
cut -b list [-n] [file..]
cut -c list [file...]
cut -f list [-d delim] [-s] [file..]

Use the cut utility to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as specified by
list can be fixed length, that is, character positions as on a punched card (-c option) or
the length can vary from line to line and be marked with a field delimiter character
like TAB (- £ option). cut can be used as a filter.

Either the -b, -c, or - £ option must be specified.

Use grep(1) to make horizontal “cuts” (by context) through a file, or paste(1) to put
files together column-wise (that is, horizontally). To reorder columns in a table, use
cut and paste.

The following options are supported:

list A comma-separated or blank-character-separated list of integer
field numbers (in increasing order), with optional — to indicate
ranges (for instance, 1, 4, 7; 1-3, 8, =5, 10 (short for 1-5, 10); or
3— (short for third through last field)).

-Db list The list following -b specifies byte positions (for instance, -b1
-72 would pass the first 72 bytes of each line). When -b and -n
are used together, list is adjusted so that no multi-byte character is
split.

-c list The list following - c specifies character positions (for instance,
-cl -72 would pass the first 72 characters of each line).

-d delim The character following -d is the field delimiter ( - £ option only).
Default is tab. Space or other characters with special meaning to
the shell must be quoted. delim can be a multi-byte character.

- £ list The list following - f is a list of fields assumed to be separated in
the file by a delimiter character (see -d ); for instance, -£1 , 7
copies the first and seventh field only. Lines with no field
delimiters will be passed through intact (useful for table
subheadings), unless -s is specified.

-n Do not split characters. When -b list and -n are used together, list
is adjusted so that no multi-byte character is split.

-s Suppresses lines with no delimiter characters in case of - £ option.
Unless specified, lines with no delimiters will be passed through
untouched.

The following operands are supported:

User Commands 265



cut(1)

USAGE

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO
DIAGNOSTICS

file A path name of an input file. If no file operands are specified, or if
a file operand is —, the standard input will be used.

See largefile(5) for the description of the behavior of cut when encountering files
greater than or equal to 2 Gbyte (2°' bytes).

EXAMPLE 1 Mapping user IDs

A mapping of user IDs to names follows:

example% cut -d: -f1,5 /etc/passwd

EXAMPLE 2 Setting current login name

To set name to current login name:

example$ name="who am i | cut -f1 -4 ’ ’~
See environ(b) for descriptions of the following environment variables that affect the
execution of cut: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 All input files were output successfully.

>0 An error occurred.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI Enabled

grep(l), paste(l), attributes(b), environ(b), largefile(5)
cut: -n may only be used with -b
cut: -d may only be used with -£
cut: -s may only be used with -£f

cut: cannot open <file>
Either file cannot be read or does not exist. If multiple files are present, processing
continues.

cut: no delimiter specified
Missing delim on -d option.

266 man pages section 1: User Commands ¢ Last Revised 29 Apr 1999



cut:

cut:

invalid delimiter

no list specified

Missing list on -b, -c , or - £ option.

cut:

cut:

cut:

cut:

cut:

cut:

cut:

invalid range specifier

too many ranges specified

range must be increasing
invalid character in range
internal error processing input
invalid multibyte character

unable to allocate enough memory

User Commands

cut(1)

267



date(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

date — write the date and time

/usr/bin/date [-ul [+ format]

/usr/bin/date [-a [-] sss.fff]

/usr/bin/date [-u] [ [mmdd] HHMM | mmddHHMM I[cc] yyl [.SS]
/usr/xpg4/bin/date [-ul [+ format]

/usr/xpg4/bin/date [-a [-] sss.fff]

/usr/xpg4/bin/date [-u]l [ [mmdd] HHMM | mmddHHMM I[cc] yyl [.SS]

The date utility writes the date and time to standard output or attempts to set the
system date and time. By default, the current date and time will be written.

Specifications of native language translations of month and weekday names are
supported. The month and weekday names used for a language are based on the
locale specified by the environment variable LC_TIME; see environ(5).

The following is the default form for the "C" locale:

%a %b %e %T %Z %Yfor example,

Fri Dec 23 10:10:42 EST 1988

The following options are supported:

-a[ - Isssfff  Slowly adjust the time by sss.fff seconds (fff represents fractions of a
second). This adjustment can be positive or negative. The system’s
clock will be sped up or slowed down until it has drifted by the
number of seconds specified. Only the super-user may adjust the
time.

-u Display (or set) the date in Greenwich Mean Time
(GMT—universal time), bypassing the normal conversion to (or
from) local time.

The following operands are supported:

+format If the argument begins with +, the output of date is the result of
passing format and the current time to strftime (). date uses
the conversion specifications listed on the st rft ime(3C) manual
page, with the conversion specification for $C determined by
whether /usr/bin/date or /usr/xpg4/bin/date is used:

/usr/bin/date Locale’s date and time
representation. This is the default
output for date.

/usr/xpg4/bin/date Century (a year divided by 100 and
truncated to an integer) as a

268 man pages section 1: User Commands ¢ Last Revised 12 Dec 2000



EXAMPLES

date(1)
decimal number [00-99].

The string is always terminated with a NEWLINE. An argument
containing blanks must be quoted; see the EXAMPLES section.

mm Month number

dd Day number in the month

HH Hour number (24 hour system)

MM Minute number

SS Second number

cc Century (a year divided by 100 and truncated to an integer) as a

decimal number [00-99]. For example, cc is 19 for the year 1988
and 20 for the year 2007.

vy Last two digits of the year number. If century (cc) is not specified,
then values in the range 69-99 shall refer to years 1969 to 1999
inclusive, and values in the range 00-68 shall refer to years 2000
to 2068, inclusive.

The month, day, year number, and century may be omitted; the current values are
applied as defaults. For example, the following entry:

example% date 10080045

sets the date to Oct 8, 12:45 a.m. The current year is the default because no year is
supplied. The system operates in GMT. date takes care of the conversion to and from
local standard and daylight time. Only the super-user may change the date. After
successfully setting the date and time, date displays the new date according to the
default format. The date command uses TZ to determine the correct time zone
information; see environ(5).

EXAMPLE 1 Generating output

The command

example% date ’+DATE: %m/%d/%y%nTIME:%H:%M:%S’

generates as output

DATE: 08/01/76

TIME: 14:45:05

EXAMPLE 2 Setting the current time

The command

example# date 1234.56

User Commands 269



date(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

lusr/bin/date

lusr/xpg4/bin/date

SEE ALSO
DIAGNOSTICS

NOTES

270 man pages section 1: User Commands ¢ Last Revised 12 Dec 2000

EXAMPLE 2 Setting the current time (Continued)

sets the current time to 12:34:56.

EXAMPLE 3 Setting another time and date in Greenwich Mean Time
The command

example# date -u 010100302000

sets the date to January 1st, 12:30 am, 2000, which will be displayed as

Thu Jan 01 00:30:00 GMT 2000

See environ(5) for descriptions of the following environment variables that affect the
execution of date: LC_CTYPE, LC TIME, LC_MESSAGES, and NLSPATH.

TZ Determine the timezone in which the time and date are written, unless the
-u option is specified. If the TZ variable is not set and the -u is not
specified, the system default timezone is used.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWesu
CsI enabled
ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWxcu4
CSsI enabled

strftime(3C), attributes(5), environ(5), XPG4(5)

no permission

bad conversion

You are not the super-user and you tried to change the

The date set is syntactically incorrect.

If you attempt to set the current date to one of the dates that the standard and
alternate time zones change (for example, the date that daylight time is starting or




date(1)

ending), and you attempt to set the time to a time in the interval between the end of
standard time and the beginning of the alternate time (or the end of the alternate time
and the beginning of standard time), the results are unpredictable.

Using the date command from within windowing environments to change the date
can lead to unpredictable results and is unsafe. It may also be unsafe in the multi-user
mode, that is, outside of a windowing system, if the date is changed rapidly back and
forth. The recommended method of changing the date is ‘date -a’.

User Commands 271



de(1)
NAME | dc - desk calculator
SYNOPSIS | dc [filename]

DESCRIPTION | dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of fractional
digits to be maintained. The overall structure of dc is a stacking (reverse Polish)
calculator. If an argument is given, input is taken from that file until its end, then from
the standard input.

bc is a preprocessor for dc that provides infix notation and a C-like syntax that
implements functions. bc also provides reasonable control structures for programs.
See be(1).

USAGE | The following constructions are recognized:

number The value of the number is pushed on the
stack. A number is an unbroken string of
the digits 0-9. It may be preceded by an
underscore (_) to input a negative number.
Numbers may contain decimal points.

+—/ *% The top two values on the stack are added
(+), subtracted (-), multiplied (*), divided
(/), remaindered (%), or exponentiated (™).
The two entries are popped off the stack;
the result is pushed on the stack in their
place. Any fractional part of an exponent is
ignored.

sX The top of the stack is popped and stored
into a register named x, where x may be any
character. If the s is capitalized, x is treated
as a stack and the value is pushed on it.

1x The value in register x is pushed on the
stack. The register x is not altered. All
registers start with zero value. If the 1 is
capitalized, register x is treated as a stack
and its top value is popped onto the main

stack.
d The top value on the stack is duplicated.
p The top value on the stack is printed. The

top value remains unchanged.

p Interprets the top of the stack as an ASCII
string, removes it, and prints it.

£ All values on the stack are printed.

272  man pages section 1: User Commands ¢ Last Revised 28 Mar 1995



<X >X =X

de(1)

Exits the program. If executing a string, the
recursion level is popped by two.

Exits the program. The top value on the
stack is popped and the string execution
level is popped by that value.

Treats the top element of the stack as a
character string and executes it as a string
of dc commands.

Replaces the number on the top of the stack
with its scale factor.

Puts the bracketed ASCII string onto the top
of the stack.

The top two elements of the stack are
popped and compared. Register x is
evaluated if they obey the stated relation.

Replaces the top element on the stack by its
square root. Any existing fractional part of
the argument is taken into account, but
otherwise the scale factor is ignored.

Interprets the rest of the line as a shell
command.

All values on the stack are popped.

The top value on the stack is popped and
used as the number radix for further input.

Pushes the input base on the top of the
stack.

The top value on the stack is popped and
used as the number radix for further
output.

Pushes the output base on the top of the
stack.

The top of the stack is popped, and that
value is used as a non-negative scale factor:
the appropriate number of places are
printed on output, and maintained during
multiplication, division, and
exponentiation. The interaction of scale
factor, input base, and output base will be
reasonable if all are changed together.

User Commands 273



de(1)

EXAMPLES

ATTRIBUTES

SEE ALSO
DIAGNOSTICS

K Pushes the current scale factor on the top of
the stack.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack

with its length.

? A line of input is taken from the input
source (usually the terminal) and executed.

Y Displays dc debugging information.

P are used by be(1) for array operations.

EXAMPLE 1 Printing the first ten values of n!

This example prints the first ten values of n!:

[lal+dsa*plalO>y] sy
Osal
lyx

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

be(l), attributes(5)

X is unimplemented X is an octal number.

out of space The free list is exhausted (too many digits).

out of stack space Too many pushes onto the stack (stack
overflow).

empty stack Too many pops from the stack (stack
underflow).

nesting depth Too many levels of nested execution.

divide by 0 Division by zero.

sgrt of neg number Square root of a negative number is not

defined (no imaginary numbers).

exp not an integer dc only processes integer exponentiation.
exp too big The largest exponent allowed is 999.
input base is too large The input base x: 2<= x <= 16.

274 man pages section 1: User Commands ¢ Last Revised 28 Mar 1995



input base is too small

output base is too large

invalid scale factor

scale factor is too large

symbol table overflow
invalid index

index is too large

dc(1)
The input base x: 2<= x <= 16.

The output base must be no larger than
BC_BASE MAX.

Scale factor cannot be less than 1.

A scale factor cannot be larger than
BC_SCALE MAX.

Too many variables have been specified.
Index cannot be less than 1.

An index cannot be larger than
BC DIM MAX.

User Commands 275



deallocate(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

DIAGNOSTICS
FILES

ATTRIBUTES

SEE ALSO

deallocate — device deallocation
deallocate [-s] device
deallocate [-s] [-F] device

deallocate [-s] -I

deallocate deallocates a device allocated to the evoking user. device can be a device
defined in device allocate(4) or one of the device special files associated with the
device. It resets the ownership and the permission on all device special files associated
with device, disabling the user’s access to that device. This option can be used by an
authorized user to remove access to the device by another user. The required
authorization is solaris.device.allocate.

When deallocation or forced deallocation is performed, the appropriate device
cleaning program is executed, based on the contents of device_allocate(4). These
cleaning programs are normally stored in /etc/security/lib.

device Deallocate the device associated with the device special file
specified by device .

-s Silent. Suppress any diagnostic output.

-F device Force deallocation of the device associated with the file specified

by device. Only a user with the solaris.devices.revoke
authorization is permitted to use this option.

-1 Force deallocation of all allocatable devices. Only a user with the
solaris.devices.revoke authorization is permitted to use
this option. This option should only be used at system
initialization.

deallocate returns a non zero exit status in the event of an error.

/etc/security/device allocate

/etc/security/device maps

/etc/security/dev/*

/etc/security/lib/*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

allocate(l), bsmconv(lM), device allocate(4), device maps(4),
attributes(5)

276  man pages section 1: User Commands ¢ Last Revised 17 Jan 2001



deallocate(1)

NOTES | The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

User Commands 277



deroff(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

NOTES

deroff — remove nroff/troff, tbl, and eqn constructs

deroff [-m [m | s | 111 [-w]l [-1i] [filename..]

deroff reads each of the filenames in sequence and removes all trof £(1) requests,
macro calls, backslash constructs, egqn(1) constructs (between .EQ and . EN lines, and
between delimiters), and tb1(1) descriptions, perhaps replacing them with white
space (blanks and blank lines), and writes the remainder of the file on the standard
output. derof £ follows chains of included files (. so and .nx troff commands); if a
file has already been included, a . so naming that file is ignored and a .nx naming
that file terminates execution. If no input file is given, derof f reads the standard
input.

-m The -m option may be followed by an m, s, or 1. The -mm option causes the
macros to be interpreted so that only running text is output (that is, no text
from macro lines.) The -ml option forces the -mm option and also causes
deletion of lists associated with the mm macros.

-w If the -w option is given, the output is a word list, one “word” per line,
with all other characters deleted. Otherwise, the output follows the
original, with the deletions mentioned above. In text, a “word”” is any
string that contains at least two letters and is composed of letters, digits,
ampersands (&), and apostrophes (’); in a macro call, however, a “word”” is
a string that begins with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than letters, digits,
apostrophes, and ampersands. Trailing apostrophes and ampersands are
removed from “words.”

-1 The - i option causes deroff to ignore . so and .nx commands.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

eqgn(l), nrof£(1), tbl(1), trof£(1l), attributes(5)

deroff is not a complete trof £ interpreter, so it can be confused by subtle
constructs. Most such errors result in too much rather than too little output.

The -m1 option does not handle nested lists correctly.

278 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

df(1B)
df — display status of disk space on file systems
/usr/ucb/df [-al [-1i] [-t typel [filesystem...] [filename...]
The df utility displays the amount of disk space occupied by currently mounted file

systems, the amount of used and available space, and how much of the file system’s
total capacity has been used.

If arguments to df are path names, df produces a report on the file system containing
the named file. Thus ‘df .’ shows the amount of space on the file system containing
the current directory.

The following options are supported:

-a Report on all filesystems including the uninteresting ones which
have zero total blocks (that is, auto-mounter).

-1 Report the number of used and free inodes. Print * * ” if no
information is available.

-t type Report on filesystems of a given type (for example, nfs or ufs).

EXAMPLE 1 Output sample

A sample of output for df looks like:

example% df

Filesystem kbytes wused avail capacity Mounted on
sparky:/ 7445 4714 1986 70% /
sparky:/usr 42277 35291 2758 93% /usr

Note that used+avail is less than the amount of space in the file system (kbytes);
this is because the system reserves a fraction of the space in the file system to allow its
file system allocation routines to work well. The amount reserved is typically about
10%; this may be adjusted using tunefs (see tunefs(1M)). When all the space on a
file system except for this reserve is in use, only the super-user can allocate new files
and data blocks to existing files. When a file system is overallocated in this way, df
may report that the file system is more than 100% utilized.

/etc/mnttab list of file systems currently mounted

/etc/vEstab list of default parameters for each file system

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

du(1M), quot(1M), tunefs(1M), mnttab(4), attributes(5)

User Commands 279



dhcpinfo(1)
NAME
SYNOPSIS

DESCRIPTION

Output Format

OPTIONS

dhcpinfo — display values of parameters received through DHCP
dhcpinfo [ -c 1 [-i interface]l [-n limit 1 code

dhcpinfo [ -c 1 [-1i interface]l [-n limit 1 identifier

The dhcpinfo utility prints the DHCP-supplied value(s) of the parameter requested
on the command line. The parameter may be identified either by its numeric code in
the DHCP specification, or by its mnemonic identifier, as listed in dhcp_inittab(4).
This command is intended to be used in command substitutions in the shell scripts
invoked by init(1M) at system boot. It first contacts the DHCP client daemon
dhcpagent(1M) to verify that DHCP has successfully completed on the requested
interface. If DHCP has successfully completed on the requested interface, dhcpinfo
retrieves the values for the requested parameter. Parameter values echoed by
dhcpinfo should not be used without checking its exit status. See EXIT STATUS.

See dhcp inittab(4) for the list of mnemonic identifier codes for all DHCP
parameters. See RFC 2132, DHCP Options and BOOTP Vendor Extensions for more
detail.

The output from dhcpinfo consists of one or more lines of ASCII text; the format of
the output depends upon the requested parameter. The number of values returned per
line and the total number of lines output for a given parameter are determined by the
parameter’s granularity and maximum values, respectively, as defined by

dhcp inittab(4).

The format of each individual value is determined by the data type of the option, as
determined by dhcp inittab(4). The possible data types and their formats are listed
below:

Data Type Format dhep_inittab(4) type

Unsigned Number One or more decimal digits UNUMBERS, UNUMBER16,
UNUMBER32, UNUMBER64

Signed Number One or more decimal digits, SNUMBERS, SNUMBER16,
optionally preceded by a minus SNUMBER32, SNUMBER64
sign

IP Address Dotted-decimal notation Ip

Octet The string "0x" followed by a OCTET

two-digit hexadecimal value

String Zero or more ASCII characters ASCII

The following options are supported:

-c Displays the output in a canonical format. This format is identical
to the OCTET format with a granularity of 1.

280 man pages section 1: User Commands ¢ Last Revised 29 Jul 1999



OPERANDS

EXIT STATUS

ATTRIBUTES

SEE ALSO

dhcpinfo(1)

-1 interface Specifies the interface to retrieve values for DHCP parameters
from. If this option is not specified, the primary interface is used.

-n limit Limits the list of values displayed to limitf lines.

The following operands are supported:

code Numeric code for the requested DHCP parameter, as defined by
the DHCP specification. Vendor options are specified by adding
256 to the actual vendor code.

identifier Mnemonic symbol for the requested DHCP parameter, as listed in
dhep inittab(4).

The following exit values are returned:

0 Successful operation.

2 The operation was not successful. The DHCP client daemon may not be
running, the interface might have failed to configure, or no satisfactory
DHCP responses were received.

3 Bad arguments.
4 The operation timed out.
6 Some system error (should never occur).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWecsr

Interface Stability Evolving

dhcpagent(1M), ifconfig(1M), init(1M),dhcp inittab(4),attributes(5)

Alexander, S., and R. Droms, RFC 2132, DHCP Options and BOOTP Vendor Extensions,
Silicon Graphics, Inc., Bucknell University, March 1997.

User Commands 281



diff(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

diff — compare two files

diff [-bitw] [-¢ | -e | -£ | -h | -n | -ulfilel file2

diff [-bitw] [-C number | -U number]filel file2

diff [-bitw] [-D string] filel file2

diff [-bitw] [-c¢ | -e | -£ | -h | -n] [-1]1 [-xr] [-s] [-S name]
directoryl directory?2

The diff utility will compare the contents of filel and file2 and write to standard
output a list of changes necessary to convert filel into file2. This list should be minimal.
Except in rare circumstances, diff finds a smallest sufficient set of file differences. No
output will be produced if the files are identical.

The normal output contains lines of these forms:

nl a n3n4
nln2 d n3
nln2 c n3n4

where n1 and n2 represent lines filel and n3 and n4 represent lines in file2 These lines
resemble ed(1) commands to convert filel to file2. By exchanging a for d and reading
backward, file2 can be converted to filel. As in ed, identical pairs, where n1=n2 or
n3=n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged
by * </, then all the lines that are affected in the second file flagged by * > ".

The following options are supported:

-b Ignores trailing blanks (spaces and tabs) and treats other strings of
blanks as equivalent.

-1 Ignores the case of letters. For example, ‘A" will compare equal to
‘a’.

-t Expands TAB characters in output lines. Normal or -c output

adds character(s) to the front of each line that may adversely affect
the indentation of the original source lines and make the output
lines difficult to interpret. This option will preserve the original
source’s indentation.

-w Ignores all blanks (SPACE and TAB characters) and treats all other
strings of blanks as equivalent. For example, ‘if ( a = = b )’
will compare equal to ‘if (a= =b)’.

The following options are mutually exclusive:

-c Produces a listing of differences with three lines of context. With
this option, output format is modified slightly. That is, output
begins with identification of the files involved and their creation

282 man pages section 1: User Commands ¢ Last Revised 27 Sep 2001



-C number

-D string

-f

-U number

diff(1)

dates, then each change is separated by a line with a dozen *’s.
The lines removed from filel are marked with '—’. The lines added
to file2 are marked ’ + . Lines that are changed from one file to the
other are marked in both files with " ! .

Produces a listing of differences identical to that produced by -c
with number lines of context.

Creates a merged version of filel and file2 with C preprocessor
controls included so that a compilation of the result without
defining string is equivalent to compiling filel, while defining
string will yield file2.

Produces a script of only a, ¢, and d commands for the editor ed,
which will recreate file2 from filel. In connection with the -e
option, the following shell program may help maintain multiple
versions of a file. Only an ancestral file ($1) and a chain of
version-to-version ed scripts ($2,$3,...) made by diff need be on
hand. A “latest version” appears on the standard output.

(shift; cat $*; echo "1,3p’) | ed — $1
Produces a similar script, not useful with ed, in the opposite order.

Does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited
length. Options -¢, -C, -D, -e, -f , and -n are unavailable
with -h . diff does not descend into directories with this option.

Produces a script similar to -e, but in the opposite order and with
a count of changed lines on each insert or delete command.

Produces a listing of differences with three lines of context. The
output is similar to that of the -c option, except that the context is
“unified”. Removed and changed lines in filel are marked by a ’-’
while lines added or changed in file2 are marked by a "+’. Both
versions of changed lines appear in the output, while added,
removed, and context lines appear only once. The identification of
filel and file2 is different, with “—=" and “+++” being printed
where “***” and “—" would appear with the -c option. Each
change is separated by a line of the form

@@ -nl,n2 +n3,n4 ee

Produces a listing of differences identical to that produced by -u
with number lines of context.

The following options are used for comparing directories:

User Commands 283



diff(1)

ENVIRONMENT

284

OPERANDS

USAGE

EXAMPLES

VARIABLES

-1 Produces output in long format. Before the diff, each text file is
piped through pr(1) to paginate it. Other differences are
remembered and summarized after all text file differences are

reported.
-r Applies diff recursively to common subdirectories encountered.
-s Reports files that are the identical. These identical files would not

otherwise be mentioned.

-S name Starts a directory diff in the middle, beginning with the file name.

The following operands are supported:

filel

file2 A path name of a file or directory to be compared. If either filel or
file2 is —, the standard input will be used in its place.

directoryl

directory?2 A path name of a directory to be compared.

If only one of filel and file2 is a directory, diff will be applied to the non-directory file
and the file contained in the directory file with a filename that is the same as the last
component of the non-directory file.

See largefile(5) for the description of the behavior of diff when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).

EXAMPLE 1 Typical output of the diff command

In the following command, dir1 is a directory containing a directory named x, dir2
is a directory containing a directory named x, dirl/x and dir2/x both contain files
named date.out, and dir2/x contains a file named y:

example% diff -r dirl dir2
Common subdirectories: dirl/x and dir2/x

Only in dir2/x: y
diff -r dirl/x/date.out dir2/x/date.out
lcl

< Mon Jul 2 13:12:16 PDT 1990

> Tue Jun 19 21:41:39 PDT 1990

See environ(5) for descriptions of the following environment variables that affect the
execution of diff: LC_CTYPE, LC_MESSAGES, LC_TIME, and NLSPATH.

man pages section 1: User Commands ¢ Last Revised 27 Sep 2001



EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

NOTES

diff(1)

TZ Determines the locale for affecting the timezone used for calculating file
timestamps written with the -C and -c options.

The following exit values are returned:

0 No differences were found.

1 Differences were found.

>1 An error occurred.

/tmp/d????? temporary file used for comparison
/usr/lib/diffh executable file for -h option

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu
CSI Enabled

bdif£(1), cmp(l), comm(1l), dircmp(l), ed(1l), pr(1), sdif£(1), attributes(5),
environ(5), largefile(5)

Editing scripts produced under the -e or -f options are naive about creating lines
consisting of a single period (.).

Missing NEWLINE at end of file indicates that the last line of the file in question did
not have a NEWLINE. If the lines are different, they will be flagged and output,
although the output will seem to indicate they are the same.

User Commands 285



diff3(1)

286

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

diff3 — 3-way differential file comparison

diff3 [-exEX3] filenamel filename2 filename3

diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

=== all three files differ
====1 filenamel is different
====2 filename? is different

—===3 filename3 is different

The type of change suffered in converting a given range of a given file to some other is
indicated in one of these ways:

f:nla Text is to be appended after line number n1 in file f, where f=1, 2,
or 3.

f:nl, n2c Text is to be changed in the range line n1 to line n2. If n1 = n2, the
range may be abbreviated to n1.

The original contents of the range follows immediately after a c indication. When the
contents of two files are identical, the contents of the lower-numbered file is
suppressed.

The following command will apply the resulting script to filenamel.

(cat script; echo “1,$%p”) | ed — filenamel

-e Produce a script for the ed(1) editor that will incorporate into filenamel all
changes between filename2 and filename3 (that is, the changes that normally
would be flagged ==== and ====3).

-x Produce a script to incorporate only changes flagged ====.

-3 Produce a script to incorporate only changes flagged ====3.

-E Produce a script that will incorporate all changes between filename2 and
filename3, but treat overlapping changes (that is, changes that would be
flagged with ==== in the normal listing) differently. The overlapping lines

from both files will be inserted by the edit script, bracketed by <<<<<< and
>>>>>> lines.

-X Produce a script that will incorporate only changes flagged ====, but treat
these changes in the manner of the -E option.

See largefile(5) for the description of the behavior of diff3 when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



FILES

ATTRIBUTES

SEE ALSO

NOTES

/tmp/d3*
/usr/lib/diff3prog

diff3(1)

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWesu
CSI enabled
diff(1), attributes(5), largefile(5)

Text lines that consist of a single ' . " will defeat -e.

Files longer than 64 Kbytes will not work.

User Commands

287



diffmk(1)
NAME
SYNOPSIS

DESCRIPTION

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

BUGS

diffmk — mark differences between versions of a troff input file

diffmk oldfile newfile markedfile

diffmk compares two versions of a file and creates a third version that includes
“change mark” (. mc) commands for nrof£(1) and trof £(1). oldfile and newfile are the
old and new versions of the file. diffmk generates markedfile, which, contains the text
from newfile with trof£(1) “change mark” requests (. mc) inserted where newfile
differs from oldfile. When markedfile is formatted, changed or inserted text is shown by
| at the right margin of each line. The position of deleted text is shown by a single *.

See largefile(5) for the description of the behavior of diffmk when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

EXAMPLE 1 An example of the diffmk command.

diffmk can also be used in conjunction with the proper troff requests to produce
program listings with marked changes. In the following command line:

example% diffmk old.c new.c marked.c ; nroff regs marked.c | pr

the file regs contains the following troff requests:

.pl
11 77
.nf
.eo
.nh

which eliminate page breaks, adjust the line length, set no-fill mode, ignore escape
characters, and turn off hyphenation, respectively.

If the characters | and * are inappropriate, you might run markedfile through sed(1) to
globally change them.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

diff(1), nrof£(1), sed(l), troff(l), attributes(5), lLargefile(5)

Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output, that
is, replacing . sp by .sp 2 will produce a “change mark” on the preceding or
following line of output.

288 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

dircmp — directory comparison

dircmp [-ds] [-w n]

dircmp(1)

The dircmp command examines dir]l and dir2 and generates various tabulated

information about the contents of the directories. Listings of files that are unique to

each directory are generated for all the options. If no option is entered, a list is output
indicating whether the file names common to both directories have the same contents.

The following options are supported:

-d Compares the contents of files with the same name in both directories and

output a list telling what must be changed in the two files to bring them

into agreement. The list format is described in di££(1).

-s Suppresses messages about identical files.
-wn Changes the width of the output line to n characters. The default width is
72.

The following operands are supported:

dirl

dir2 A path name of a directory to be compared.

See largefile(5) for the description of the behavior of dircmp when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of di rcmp: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.
>0 An error occurred. (Differences in directory contents are not considered
errors.)

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWesu

cmp(1l), dif£(1), attributes(b), environ(b), largefile(5)

User Commands

289



dis(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

dis — object code disassembler

/usr/ccs/bin/dis [-C] [-o] [-V] [-L]l [-d sec] [-D sec] [-F function]
[-1 string]l [-t sec] file..

The dis command produces an assembly language listing of file, which may be an
object file or an archive of object files. The listing includes assembly statements and an
octal or hexadecimal representation of the binary that produced those statements.
However, the 1A64 listing is limited to assembly statements only.

The following options are interpreted by the disassembler and may be specified in any
order.

-C Displays demangled C++ symbol names in the disassembly.

-d sec Disassembles the named section as data, printing the offset of the
data from the beginning of the section.

-D sec Disassembles the named section as data, printing the actual
address of the data.

-F function Disassembles only the named function in each object file specified
on the command line. The -F option may be specified multiple
times on the command line.

-1 string Disassembles the archive file specified by string. For example, one
would issue the command dis -1 x -1 z to disassemble 1ibx.a
and 1ibz.a, which are assumed to be in LIBDIR.

-L Invokes a lookup of C-language source labels in the symbol table
for subsequent writing to standard output.

-0 Prints numbers in octal. The default is hexadecimal.

-t sec Disassembles the named section as text.

-V Prints, on standard error, the version number of the disassembler

being executed.

If the -d, -D, or -t options are specified, only those named sections from each
user-supplied file will be disassembled. Otherwise, all sections containing text will be
disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5],
indicates that the break-pointable line number starts with the following instruction.
These line numbers will be printed only if the file was compiled with additional
debugging information, for example, the -g option of cc(1B). An expression such as
<4 0> in the operand field or in the symbolic disassembly, following a relative
displacement for control transfer instructions, is the computed address within the
section to which control will be transferred. A function name will appear in the first
column, followed by () if the object file contains a symbol table.

The following operand is supported:

290 man pages section 1: User Commands ¢ Last Revised 28 Jun 1999



dis(1)

file A path name of an object file or an archive (see ar(1)) of object
files.

ENVIRONMENT | See environ(5) for descriptions of the following environment variables that affect the
VARIABLES | execution of dis: .C_CTYPE, LC_MESSAGES, and NLSPATH.

LIBDIR If this environment variable contains a value, use this as the path
to search for the library. If the variable contains a null value, or is
not set, it defaults to searching for the library under /usr/1lib.

EXIT STATUS | The following exit values are returned:

0 Successful completion.
>0 An error occurred.
FILES | /usr/1lib default LIBDIR

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

SEE ALSO | ar(1), as(1), cc(1B), 1d(1), a.out(4), attributes(5), environ(b)

DIAGNOSTICS | The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

User Commands 291



dispgid(1)
NAME
SYNOPSIS

DESCRIPTION

EXIT STATUS

ATTRIBUTES

SEE ALSO

dispgid — displays a list of all valid group names
dispgid
dispgid displays a list of all group names on the system (one group per line).

The following exit values are returned:
0 Successful execution.

1 Cannot read the group file.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

attributes(5)

292 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992




NAME
SYNOPSIS

DESCRIPTION

EXIT STATUS

ATTRIBUTES

SEE ALSO

dispuid - displays a list of all valid user names

dispuid

dispuid(1)

dispuid displays a list of all user names on the system (one line per name).

The following exit values are returned:
0 Successful execution.

1 Cannot read the password file.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWcsu

attributes(b)

User Commands

293



dos2unix(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ATTRIBUTES

dos2unix — convert text file from DOS format to ISO format

dos2unix [-ascii] [-iso] [-7] [-437 | -850 | -860 | -863 |
-865] originalfile convertedfile

The dos2unix utility converts characters in the DOS extended character set to the
corresponding ISO standard characters.

This command can be invoked from either DOS or SunOS. However, the filenames
must conform to the conventions of the environment in which the command is
invoked.

If the original file and the converted file are the same, dos2unix will rewrite the
original file after converting it.

The following options are supported:

-ascii Removes extra carriage returns and converts end of file characters
in DOS format text files to conform to SunOS requirements.

-iso This is the default. It converts characters in the DOS extended
character set to the corresponding ISO standard characters.

-7 Converts 8 bit DOS graphics characters to 7 bit space characters so
that SunOS can read the file.

On non-i386 systems, dos2unix will attempt to obtain the keyboard type to
determine which code page to use. Otherwise, the default is US. The user may
override the code page with one of the following options:

-437 Use US code page

-850 Use multilingual code page
-860 Use Portuguese code page

-863 Use French Canadian code page
-865 Use Danish code page

The following operands are required:

originalfile The original file in DOS format that is being converted to ISO
format.
convertedfile The new file in ISO format that has been converted from the

original DOS file format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

294 man pages section 1: User Commands ¢ Last Revised 14 Sep 2000



SEE ALSO
DIAGNOSTICS

dos2unix(1)
unix2dos(l), 1s(1), attributes(5)

File filename not found, or no read permission
The input file you specified does not exist, or you do not have read permission.
Check with the SunOS command, 1s -1 (see 1s(1)).

Bad output filename filename, or no write permission
The output file you specified is either invalid, or you do not have write permission
for that file or the directory that contains it. Check also that the drive or diskette is
not write-protected.

Error while writing to temporary file
An error occurred while converting your file, possibly because there is not enough
space on the current drive. Check the amount of space on the current drive using
the DIR command. Also be certain that the default diskette or drive is
write-enabled (not write-protected). Notice that when this error occurs, the original
file remains intact.

Translated temporary file name = filename.

Could not rename temporary file to filename.
The program could not perform the final step in converting your file. Your
converted file is stored under the name indicated on the second line of this
message.

User Commands 295



download(1)

296

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

download — host resident PostScript font downloader
download [-f] [-p printer] [-m name] [-H directory] [file..]

/usr/lib/lp/postscript/download

download prepends host resident fonts to files and writes the results on the standard
output. If no files are specified, or if — is one of the input files, the standard input is
read. download assumes the input files make up a single PostScript job and that
requested fonts can be included at the start of each input file.

Requested fonts are named in a comment (marked with $$DocumentFonts:) in the
input files. Available fonts are the ones listed in the map table selected using the -m
option.

The map table consists of fontname—file pairs. The fontname is the full name of the
PostScript font, exactly as it would appear in a $$DocumentFonts: comment. The
file is the pathname of the host resident font. A file that begins with a / is used as is.
Otherwise the pathname is relative to the host font directory. Comments are
introduced by % (as in PostScript) and extend to the end of the line.

The only candidates for downloading are fonts listed in the map table that point
download to readable files. A font is downloaded once, at most. Requests for unlisted
fonts or inaccessible files are ignored. All requests are ignored if the map table can not
be read.

-f Force a complete scan of each input £ile. In the absence of an
explicit comment pointing download to the end of the file, the
default scan stops immediately after the PostScript header

comments.

-p printer Check the list of printer-resident fonts in
/etc/lp/printers/printer/residentfonts before
downloading.

-m name Use name as the font map table. A name that begins with / is the

full pathname of the map table and is used as is. Otherwise name is
appended to the pathname of the host font directory.

-H directory Use dir as the host font directory. The default is
/usr/lib/lp/postscript.
EXAMPLE 1 Examples of the download command.

The following map table could be used to control the downloading of the Bookman
font family:

o o°

The first string is the full PostScript font name. The second string
is the file name - relative to the host font directory unless it begins
with a /.

o o°

o\°

man pages section 1: User Commands ¢ Last Revised 9 Sep 1996



EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

download(1)

EXAMPLE 1 Examples of the download command. (Continued)
Bookman-Light bookman/light
Bookman-LightItalic bookman/lightitalic
Bookman-Demi bookman/demi
Bookman-DemilItalic bookman/demiitalic

Using the file myprinter/map (in the default host font directory) as the map table,
you could download fonts by issuing the following command:

example% download -m myprinter/map file

The following exit values are returned:
0 Successful completion.

non-zero An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

dpost(l), postdaisy(l), postdmd(l), postio(l), postmd(l), postprint(l),
posttek(l), attributes(b)

The download program should be part of a more general program.

download does not look for $%PageFonts: comments and there is no way to force
multiple downloads of a particular font.

Using full pathnames in either map tables or the names of map tables is not
recommended.

User Commands 297



dpost(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

dpost — troff postprocessor for PostScript printers

dpost [-c num] [-e num] [-m num] [-n num] [-o list] [-w num]
[-x num] [-y num] [-F dir] [-H dir] [-L file] [-0] [-T namel [file..]

/usr/lib/lp/postscript/dpost

dpost translates files created by trof £(1) into PostScript and writes the results on the
standard output. If no files are specified, or if — is one of the input files, the standard
input is read.

The files should be prepared by trof £. The default font files in
/usr/lib/font/devpost produce the best and most efficient output. They assume
a resolution of 720 dpi, and can be used to format files by adding the -Tpost option
to the troff call. Older versions of the eqn and pic preprocessors need to know the
resolution that trof £ will be using to format the files. If those are the versions
installed on your system, use the -r720 option with egn and -T720 with pic.

dpost makes no assumptions about resolutions. The first x res command sets the
resolution used to translate the input files, the DESC . out file, usually
/usr/lib/font/devpost/DESC.out, defines the resolution used in the binary font
files, and the PostScript prologue is responsible for setting up an appropriate user
coordinate system.

-c num Print num copies of each page. By default only one copy is printed.

-e num Sets the text encoding level to num. The recognized choices are 0, 1,
and 2. The size of the output file and print time should decrease as
num increases. Level 2 encoding will typically be about 20 percent
faster than level 0, which is the default and produces output
essentially identical to previous versions of dpost.

-m num Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin, which is located near the upper left
corner of each page. The default magnification is 1. 0.

-n num Print num logical pages on each piece of paper, where num can be
any positive integer. By default, num is set to 1.

-o list Print those pages for which numbers are given in the
comma-separated list. The list contains single numbers N and
ranges N1-N2. A missing N1 means the lowest numbered page, a
missing N2 means the highest. The page range is an expression of
logical pages rather than physical sheets of paper. For example, if
you are printing two logical pages to a sheet, and you specified a
range of 4, then two sheets of paper would print, containing four
page layouts. If you specified a page range of 3 -4, when
requesting two logical pages to a sheet; then only page 3 and page
4 layouts would print, and they would appear on one physical
sheet of paper.

298 man pages section 1: User Commands ¢ Last Revised 9 Sep 1996



EXAMPLES

EXIT STATUS

-p mode

-wW num

-X num

-y num

-F dir

-H dir

-Lfile

-T name

dpost(1)

Print files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is portrait.

Set the line width used to implement trof f graphics commands
to num points, where a point is approximately 1/72 of an inch. By
default, num is set to 0. 3 points.

Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed near the upper left
corner of the page, with positive x to the right and positive y down
the page. Positive num moves everything right. The default offset
is 0 inches.

Translate the origin num inches along the positive y axis. Positive
num moves text up the page. The default offset is 0.

Use dir as the font directory. The default dir is /usr/1ib/font,
and dpost reads binary font files from directory
/usr/lib/font/devpost.

Use dir as the host resident font directory. Files in this directory
should be complete PostScript font descriptions, and must be
assigned a name that corresponds to the appropriate two-character
troff font name. Each font file is copied to the output file only
when needed and at most once during each job. There is no
default directory.

Use £ile as the PostScript prologue which, by default, is
/usr/1lib/lp/postscript/dpost.ps.

Disables PostScript picture inclusion. A recommended option
when dpost is run by a spooler in a networked environment.

Use font files for device name as the best description of available
PostScript fonts. By default, name is set to post and dpost reads
binary files from /usr/lib/font/devpost.

EXAMPLE 1 Examples of the dpost command.

If the old versions of egn and pic are installed on your system, you can obtain the
best possible looking output by issuing a command line such as the following:

example% pic -T720 file | tbl | egn -r720 | troff -mm -Tpost | dpost
Otherwise,
example% pic file | tbl | egn | troff -mm -Tpost | dpost

should give the best results.

The following exit values are returned:

0

Successful completion.

User Commands 299



dpost(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

non-zero An error occurred.
/usr/lib/font/devpost/*.out
/usr/1lib/font/devpost/charlib/*
/usr/1lib/lp/postscript/color.ps
/usr/lib/lp/postscript/draw.ps
/usr/lib/lp/postscript/forms.ps
/usr/1lib/lp/postscript/ps.requests
/usr/lib/macros/pictures

/usr/lib/macros/color

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpsf

download(l), postdaisy(l), postdmd(l), postio(l), postmd(l), postprint(l),
postreverse(l), posttek(l), troff(l), attributes(5)

Output files often do not conform to Adobe’s file structuring conventions. Piping the
output of dpost through postreverse(l) should produce a minimally conforming
PostScript file.

Although dpost can handle files formatted for any device, emulation is expensive
and can easily double the print time and the size of the output file. No attempt has
been made to implement the character sets or fonts available on all devices supported
by troff. Missing characters will be replaced by white space, and unrecognized fonts
will usually default to one of the Times fonts (that is, R, I, B, or BI).

An x res command must precede the first x init command, and all the input files
should have been prepared for the same output device.

Use of the - T option is not encouraged. Its only purpose is to enable the use of other
PostScript font and device description files, that perhaps use different resolutions,
character sets, or fonts.

Although level 0 encoding is the only scheme that has been thoroughly tested, level 2
is fast and may be worth a try.

300 man pages section 1: User Commands ¢ Last Revised 9 Sep 1996



NAME
SYNOPSIS

DESCRIPTION

lusr/xpg4/bin/du

OPTIONS

lusr/bin/du

du(1)
du - summarize disk usage
/usr/bin/du [-adLr] [-k | -h | -H] [-o | -s] [file ...]
/usr/xpg4/bin/du [-a | -s] [-k | -h | -H] [-rx] [file ...]

The du utility writes to standard output the size of the file space allocated to, and the
size of the file space allocated to each subdirectory of, the file hierarchy rooted in each
of the specified files. The size of the file space allocated to a file of type directory is
defined as the sum total of space allocated to all files in the file hierarchy rooted in the
directory plus the space allocated to the directory itself. This sum will include the
space allocated to any extended attributes encountered.

Files with multiple links will be counted and written for only one entry. The directory
entry that is selected in the report is unspecified. By default, file sizes are written in
512-byte units, rounded up to the next 512-byte unit.

When du cannot obtain file attributes or read directories (see stat(2)), it will report an
error condition and the final exit status will be affected.

The following options are supported for /usr/bin/du and /usr/xpg4/bin/du:

-a In addition to the default output, report the size of each file not of type
directory in the file hierarchy rooted in the specified file. Regardless of the
presence of the -a option, non-directories given as file operands will
always be listed.

-h All sizes are scaled to a human readable format, for example, 14K, 234M,
2.7G, or 3.0T. Scaling is done by repetitively dividing by 1024.

-H This is the same as the -h option, but scaling is done by dividing by 1000
instead of 1024.

-k Write the files sizes in units of 1024 bytes, rather than the default 512-byte
units.

-s Instead of the default output, report only the total sum for each of the

specified files.

The following options are supported for /usr/bin/du only:

-d Do not cross filesystem boundaries. For example, du -d / reports usage
only on the root partition.

-L Process symbolic links by using the file or directory which the symbolic
link references, rather than the link itself.

-0 Do not add child directories’ usage to a parent’s total. Without this option,
the usage listed for a particular directory is the space taken by the files in
that directory, as well as the files in all directories beneath it. This option
does nothing if - s is used.

User Commands 301



du(1)

lusr/xpg4/bin/du

OPERANDS

OUTPUT
USAGE
ENVIRONMENT

VARIABLES

EXIT STATUS

ATTRIBUTES

lusr/bin/du

lusr/xpg4/bin/du

SEE ALSO

302 man pages section 1: User Commands ¢ Last Revised 30 Jul 2001

-r Generate messages about directories that cannot be read, files that cannot
be opened, and so forth, rather than being silent (the default).

The following options are supported for /usr/xpg4/bin/du only:

-r By default, generate messages about directories that cannot be read, files
that cannot be opened, and so forth.

-x When evaluating file sizes, evaluate only those files that have the same
device as the file specified by the file operand.

The following operand is supported:

file The path name of a file whose size is to be written. If no file is specified, the
current directory is used.

The output from du consists of the amount of the space allocated to a file and the
name of the file.

See largefile(5) for the description of the behavior of du when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of du: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
CsI enabled
Interface Stability Stable

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWxcu4
csI enabled
Interface Stability Standard

1s(1), stat(2), attributes(5), environ(b), £sattr(5), largefile(5), XPG4(5)




du(1)
System Administration Guide: Basic Administration

NOTES | A file with two or more links is counted only once. If, however, there are links between
files in different directories where the directories are on separate branches of the file
system hierarchy, du will count the excess files more than once.

Files containing holes will result in an incorrect block count.

User Commands 303



du(1B)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

du - display the number of disk blocks used per directory or file
/usr/ucb/du [-adkLr] [-o | -s] [filename]

The du utility gives the number of kilobytes contained in all files and, recursively,
directories within each specified directory or file filename. If filename is missing, *.” (the
current directory) is used.

A file that has multiple links to it is only counted once.

The following options are supported:

-a Generates an entry for each file.

-d Does not cross file system boundaries. For example, du -d / reports usage
only on the root partition.

-k Writes the files sizes in units of 1024 bytes, rather than the default 512-byte
units.

-L Processes symbolic links by using the file or directory that the symbolic

link references, rather than the link itself.

e Does not add child directories’ usage to a parent’s total. Without this
option, the usage listed for a particular directory is the space taken by the
files in that directory, as well as the files in all directories beneath it. This
option does nothing if the -s option is used.

-r Generates messages about directories that cannot be read, files that cannot
be opened, and so forth, rather than being silent (the default).

-s Only displays the grand total for each of the specified filenames.

Entries are generated only for each directory in the absence of options.

EXAMPLE 1 Showing usage of all subdirectories in a directory

This example uses du in a directory. The pwd(1) command was used to identify the
directory, then du was used to show the usage of all the subdirectories in that
directory. The grand total for the directory is the last entry in the display:

example% pwd

/usr/ralph/misc

example% du

5 ./jokes

33 ./squash

44 ./tech.papers/lpr.document
217 ./tech.papers/new.manager
401 ./tech.papers

144 . /memos

80 ./letters

388 . /window

93 . /messages

15 . /useful .news

1211

304 man pages section 1: User Commands ¢ Last Revised 5 Jun 2001



ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

NOTES

du(1B)

If any of the LC_ * variables, that is, LC_CTYPE, LC_MESSAGES, LC_TIME,

LC COLLATE, LC NUMERIC, and LC_MONETARY (see environ(b)), are not set in the
environment, the operational behavior of du for each corresponding locale category is
determined by the value of the LANG environment variable. If LC_ALL is set, its
contents are used to override both the LANG and the other LC_* variables. If none of
the above variables is set in the environment, the "C" (U.S. style) locale determines
how du behaves.

LC CTYPE Determines how du handles characters. When
LC_CTYPE is set to a valid value, du can display and
handle text and filenames containing valid characters
for that locale. du can display and handle Extended
Unix Code (EUC) characters where any individual
character can be 1, 2, or 3 bytes wide. du can also
handle EUC characters of 1, 2, or more column widths.
In the "C" locale, only characters from ISO 8859-1 are
valid.

LC_MESSAGES Determines how diagnostic and informative messages
are presented. This includes the language and style of
the messages, and the correct form of affirmative and
negative responses. In the "C" locale, the messages are
presented in the default form found in the program
itself (in most cases, U.S. English).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

pwd(1), d£(1IM), du(1), quot(1M), attributes(5), environ(5)
Filename arguments that are not directory names are ignored, unless you use -a.

If there are too many distinct linked files, du will count the excess files more than
once.

User Commands 305



dump(1)
NAME | dump — dump selected parts of an object file
SYNOPSIS | dump [-aCcfghLorstV] [-T index [, indexn]] filename...
dump [-afhorstL [v]] filename..
dump [-hsr [-d number [, numbern]]] filename...

dump [-hsrt [-n namel] filename...
DESCRIPTION | The dump utility dumps selected parts of each of its object file arguments.

The dump utility is best suited for use in shell scripts, whereas the el fdump(1)
command is recommended for more human-readable output.

OPTIONS | This utility will accept both object files and archives of object files. It processes each
file argument according to one or more of the following options:

-a Dumps the archive header of each member of an
archive.

-c Dumps the string table(s).

-C Dumps decoded C++ symbol table names.

-f Dumps each file header.

-g Dumps the global symbols in the symbol table of an
archive.

-h Dumps the section headers.

-L Dumps dynamic linking information and static shared
library information, if available.

-o Dumps each program execution header.

-r Dumps relocation information.

-s Dumps section contents in hexadecimal.

-t Dumps symbol table entries.

-T index

-T index1,index2 Dumps only the indexed symbol table entry defined by

index or a range of entries defined by index1, index2.

-V Prints version information.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

-d number

-d numberl,number2 Dumps the section number indicated by number or the
range of sections starting at numberl and ending at
number2. This modifier can be used with -h, -s , and

306 man pages section 1: User Commands ¢ Last Revised 2 Mar 1999



-n name

dump(1)

-r . When -d is used with -h or -s , the argument is
treated as the number of a section or range of sections.
When -d is used with -r, the argument is treated as
the number of the section or range of sections to which
the relocation applies. For example, to print out all
relocation entries associated with the . text section,
specify the number of the section as the argument to
-d. If . text is section number 2 in the file, dump -r
-d 2 will print all associated entries. To print out a
specific relocation section, use dump -s -n name for
raw data output, or dump -sv -n name for interpreted
output.

Dumps information pertaining only to the named
entity. This modifier can be used with -h, -s, -r,
and -t . When -n is used with -h or -s, the
argument will be treated as the name of a section.
When -n is used with -t or -r , the argument will be
treated as the name of a symbol. For example, dump -t
-n . text will dump the symbol table entry associated
with the symbol whose name is . text, where dump -h
-n . text will dump the section header information
for the . text section.

Suppresses printing of the headings.

Dumps information in symbolic representation rather
than numeric. This modifier can be used with

-a (date, user id, group id)

-f (class, data, type, machine, version, flags)

-h (type, flags)

-L (value)

-o (type, flags)

-r (name, type)

-s (interpret section contents wherever
possible)

-t (type, bind)

When -v is used with -s , all sections that can be
interpreted, such as the string table or symbol table,
will be interpreted. For example, dump -sv -n .symtab
filename. . . will produce the same formatted output as
dump -tv filename. . ., but dump -s -n .symtab
filename. . . will print raw data in hexadecimal. Without

User Commands 307



dump(1)

308

additional modifiers, dump -sv filename. . . will dump
all sections in the files, interpreting all those that it can
and dumping the rest (such as . text or .data) as raw
data.

The dump utility attempts to format the information it dumps in a meaningful way,
printing certain information in character, hexadecimal, octal, or decimal representation
as appropriate.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWDbDtool

SEE ALSO | elfdump(l), nm(1), ar(3HEAD), a.out(4), attributes(b)

man pages section 1: User Commands ¢ Last Revised 2 Mar 1999



dumpcs(1)
NAME | dumpcs — show codeset table for the current locale
SYNOPSIS | dumpecs [-0123vw]

DESCRIPTION | dumpcs shows a list of printable characters for the user’s current locale, along with
their hexadecimal code values. The display device is assumed to be capable of
displaying characters for a given locale. With no option, dumpcs displays the entire
list of printable characters for the current locale.

With one or more numeric options specified, it shows EUC codeset(s) for the current
locale according to the numbers specified, and in order of codeset number. Each
non-printable character is represented by an asterisk “*” and enough ASCII space
character(s) to fill that codeset’s column width.

OPTIONS | -0 Show ASCII (or EUC primary) codeset.

-1 Show EUC codeset 1, if used for the current locale.

-2 Show EUC codeset 2, if used for the current locale.

-3 Show EUC codeset 3, if used for the current locale.

-v “Verbose”. Normally, ranges of non-printable characters are collapsed into
a single line. This option produces one line for each non-printable
character.

-w Replace code values with corresponding wide character values (process
codes).

ENVIRONMENT | The environment variables L& CTYPE and LANG control the character classification

VARIABLES | throughout dumpcs. On entry to dumpcs, these environment variables are checked in
that order. This implies that a new setting for LANG does not override the setting of
LC_CTYPE. When none of the values is valid, the character classification defaults to
the POSIX.1 “C” locale.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO | localedef(1), attributes(b)

NOTES | dumpcs can only handle EUC locales.

User Commands 309



echo(1)
NAME
SYNOPSIS

DESCRIPTION

OPERANDS

USAGE

echo — echo arguments

/usr/bin/echo [string..]

The echo utility writes its arguments, separated by BLANKSs and terminated by a
NEWLINE, to the standard output. If there are no arguments, only the NEWLINE
character will be written.

echo is useful for producing diagnostics in command files, for sending known data
into a pipe, and for displaying the contents of environment variables.

The C shell, the Korn shell, and the Bourne shell all have echo built-in commands,
which, by default, will be invoked if the user calls echo without a full pathname. See
shell builtins(1). sh’s echo, ksh’s echo, and /usr/bin/echo understand the
back-slashed escape characters, except that sh’s echo does not understand \a as the
alert character. In addition, ksh’s echo, does not have an -n option. sh’s echo and
/usr/bin/echo only have an -n option if the SYSV3 environment variable is set (see
ENVIRONMENT VARIABLES below). If it is, none of the backslashed characters
mentioned above are available. csh’s echo and /usr/ucb/echo, on the other hand,
have an -n option, but do not understand the back-slashed escape characters.

The following operand is supported:

string A string to be written to standard output. If any operand is “-n”, it will be
treated as a string, not an option. The following character sequences will be
recognized within any of the arguments:

\a Alert character.

\b Backspace.

\¢ Print line without new-line. All characters following the \c in
the argument are ignored.

\f Form-feed.

\n New-line.

\r Carriage return.

\t Tab.

\v Vertical tab.

AN\ Backslash.

\on Where # is the 8-bit character whose ASCII code is the 1-, 2- or

3-digit octal number representing that character.
Portable applications should not use -n (as the first argument) or escape sequences.

The print£(1) utility can be used portably to emulate any of the traditional behaviors
of the echo utility as follows:

310 man pages section 1: User Commands ¢ Last Revised 20 Jan 2000



EXAMPLES

echo(1)

m  The Solaris 2.6 operating environment or compatible version’s /usr/bin/echo is
equivalent to:

printf "%b\n" "gx"

m The /usr/ucb/echo is equivalent to:
if [ "X$1" = "X-n" ]
then
shift
printf "gg" "gxv
else
printf "$s\n" "gxn

fi

New applications are encouraged to use printf instead of echo.

EXAMPLE 1 Finding how far below root your current directory is located

You can use echo to determine how many subdirectories below the root directory (/)
is your current directory, as follows:

®  Echo your current-working-directory’s full pathname.

®  Pipe the output through tr to translate the path’s embedded slash-characters into
space-characters.

®  Pipe that output through we -w for a count of the names in your path.

example% /usr/bin/echo $PWD | tr '/’ ' ' | we -w

See tr(1) and we(l) for their functionality.

Below are the different flavors for echoing a string without a NEWLINE:

EXAMPLE 2 /usr/bin/echo

example% /usr/bin/echo "$USER’s current directory is $PWD\c"

EXAMPLE 3 sh/ksh shells

example$ echo "$USER’s current directory is $PWD\c"

EXAMPLE 4 csh shell

example% echo -n "$USER’s current directory is $PWD"

User Commands 311



echo(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 5 /usr/ucb/echo

example% /usr/ucb/echo -n "$USER’s current directory is $PWD"

SYSV3 This environment variable is used to provide compatibility with
INTERACTIVE UNIX System and SCO UNIX installation scripts.
It is intended for compatibility only and should not be used in
new scripts.

See environ(5) for descriptions of the following environment variables that affect the
execution of echo: LC CTYPE, LC MESSAGES, and NLSPATH.

The following error values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

echo(1B), print£(1), shell builtins(l), tr(l), we(l), ascii(b), attributes(b),
environ(5)

When representing an 8-bit character by using the escape convention \ 07, the n must
always be preceded by the digit zero (0).

For example, typing: echo ' WARNING:\ 07’ will print the phrase WARNING: and
sound the “bell” on your terminal. The use of single (or double) quotes (or two
backslashes) is required to protect the “ \” that precedes the “07”.

Following the \ 0, up to three digits are used in constructing the octal output character.
If, following the \ 01, you want to echo additional digits that are not part of the octal
representation, you must use the full 3-digit n. For example, if you want to echo “ESC
7” you must use the three digits “033” rather than just the two digits “33” after the

\ o.

2 digits Incorrect: echo"0337 | od -xc
produces: df0a (hex)
337 (ascii)

3 digits Correct: echo "00337" | od -xc

312 man pages section 1: User Commands ¢ Last Revised 20 Jan 2000




echo(1)

produces: 1b37 0a00 (hex)
0337 (ascii)

For the octal equivalents of each character, see ascii(5).

User Commands 313



echo(1B)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

NOTES

echo — echo arguments to standard output

/usr/ucb/echo [-n] [arqument]

echo writes its arguments, separated by BLANKs and terminated by a NEWLINE, to the
standard output.

echo is useful for producing diagnostics in command files and for sending known
data into a pipe, and for displaying the contents of environment variables.

For example, you can use echo to determine how many subdirectories below the root
directory (/) is your current directory, as follows:

m  echo your current-working-directory’s full pathname

®  pipe the output through tr to translate the path’s embedded slash-characters into
space-characters
m  pipe that output through wc -w for a count of the names in your path.

example% /usr/bin/echo "echo $PWD | tr '/’ ' ’ | we -w"

See tr(1) and we(l) for their functionality.

The shells csh(1), ksh(l), and sh(l1), each have an echo built-in command, which, by
default, will have precedence, and will be invoked if the user calls echo without a full
pathname. /usr/ucb/echo and csh’s echo () have an -n option, but do not
understand back-slashed escape characters. sh’s echo (), ksh’s echo (), and
/usr/bin/echo, on the other hand, understand the black-slashed escape characters,
and ksh’s echo () also understands \a as the audible bell character; however, these
commands do not have an -n option.

-n Do not add the NEWLINE to the output.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

csh(1), echo(1), ksh(1), sh(1), txr(1), we(l), attributes(b)

The -n option is a transition aid for BSD applications, and may not be supported in
future releases.

314 man pages section 1: User Commands ¢ Last Revised 3 Aug 1994



NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

echo(1F)
echo — put string on virtual output
echo [string..]
The echo function directs each string it is passed to the standard output. If no

argument is given, echo looks to the standard input for input. It is often used in
conditional execution or for passing a string to another command.

EXAMPLE 1 A sample of the echo command.

Set the done descriptor to help if a test fails:

done=‘if [ -s SF1 1;
then echo close;
else echo help;
fir

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

echo(1l), attributes(b)

User Commands 315



ed(1)

316

NAME
SYNOPSIS

DESCRIPTION

lusr/bin/ed

lusr/xpgd/bin/ed

ed, red — text editor

/usr/bin/ed [-s | -1 [-p string]l [-x] [-C]1 [file]
/usr/xpg4/bin/ed [-s | -1 [-p string]l [-x] [-Cl [file]
/usr/bin/red [-s | -1 [-p string] [-x] [-C] I[file]

The ed utility is the standard text editor. If £ile is specified, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed’s buffer
so that it can be edited.

The ed utility operates on a copy of the file it is editing; changes made to the copy
have no effect on the file until a w (write) command is given. The copy of the text being
edited resides in a temporary file called the buffer. There is only one buffer.

The red utility is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via !shell command. Attempts
to bypass these restrictions result in an error message (restricted shell).

Both ed and red support the £spec(4) formatting capability. The default terminal
mode is either stty -tabs or stty tab3, where tab stops are set at eight columns
(see stty(1)). If, however, the first line of £ile contains a format specification, that
specification will override the default mode. For example, if the first line of file
contains

<:t5,10,15 s72:>

tab stops would be set at 5, 10, and 15, and a maximum line length of 72 would be
imposed.

Commands to ed have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every command
that requires addresses has default addresses, so that the addresses can very often be
omitted.

In general, only one command may appear on a line. Certain commands allow the
input of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Leave input mode by typing a period (.) at
the beginning of a line, followed immediately by a carriage return.

If ed executes commands with arguments, it uses the default shell /usr/bin/sh (see
sh(1)).

If ed executes commands with arguments, it uses /usr/xpg4/bin/sh, which is
equivalent to /usr/bin/ksh (see ksh(1)).

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



Regular
Expressions

ed Commands

ed(1)

The ed utility supports a limited form of regular expression notation. Regular
expressions are used in addresses to specify lines and in some commands (for
example, s) to specify portions of a line that are to be substituted. To understand
addressing in ed, it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; the exact
effect on the current line is discussed under the description of each command.

Internationalized Basic Regular Expressions are used for all system-supplied locales.
See regex(5).

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one or
two addresses assume default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires, the last one(s) are
used.

Typically, addresses are separated from each other by a comma ( , ). They may also be
separated by a semicolon ( ; ). In the latter case, the first address is calculated, the
current line ( . ) is set to that value, and then the second address is calculated. This
feature can be used to determine the starting line for forward and backward searches
(see Rules 5 and 6, above). The second address of any two-address sequence must
correspond to a line in the buffer that follows the line corresponding to the first
address.

In the following list of ed commands, the parentheses shown prior to the command
are not part of the address; rather, they show the default address(es) for the command.

Each address component can be preceded by zero or more blank characters. The
command letter can be preceded by zero or more blank characters. If a suffix letter (1,
n, or p) is given, it must immediately follow the command.

The e, E, £, r, and w commands take an optional £ile parameter, separated from the
command letter by one or more blank characters.

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed will warn the user if an attempt is made to destroy the editor buffer via the
e or g commands. The ed utility will write the string:

n?\ nn

(followed by an explanatory message if help mode has been enabled via the H
command) to standard output and will continue in command mode with the current
line number unchanged. If the e or g command is repeated with no intervening
command, it will take effect.

If an end-of-file is detected on standard input when a command is expected, the ed
utility acts as if a g command had been entered.

User Commands 317



ed(1)

318

It is generally illegal for more than one command to appear on a line. However, any
command (except e, £, r, or w) may be suffixed by 1, n, or p in which case the current
line is either listed, numbered or written, respectively, as discussed below under the 1,
n, and p commands.

(. )a
<text>

The append command accepts zero or more lines of text and appends it after the
addressed line in the buffer. The current line (.) is left at the last inserted line, or, if
there were none, at the addressed line. Address 0 is legal for this command: it
causes the “appended” text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal is 256 per line
(including the new-line character).

(. )c
<text>

The change command deletes the addressed lines from the buffer, then accepts zero
or more lines of text that replaces these lines in the buffer. The current line (. ) is left
at the last line input, or, if there were none, at the first line that was not deleted; if
the lines deleted were originally at the end of the bulffer, the current line number
will be set to the address of the new last line; if no lines remain in the buffer, the
current line number will be set to 0.

Same as the X command, described later, except that ed assumes all text read in for
the e and r commands is encrypted unless a null key is typed in.

(., .)d
The delete command deletes the addressed lines from the buffer. The line after the
last line deleted becomes the current line; if the lines deleted were originally at the
end of the buffer, the new last line becomes the current line. If no lines remain in the
buffer, the current line number will be set to 0.

e file
The edit command deletes the entire contents of the buffer and then reads the
contents of £ile into the buffer. The current line (.) is set to the last line of the
buffer. If £ile is not given, the currently remembered file name, if any, is used (see
the £ command). The number of bytes read will be written to standard output,
unless the - s option was specified, in the following format:

"$d\ n" <number of bytes read>

file is remembered for possible use as a default file name in subsequent e, E, r,
and w commands. If file is replaced by !, the rest of the line is taken to be a shell (
sh(1)) command whose output is to be read. Such a shell command is not
remembered as the current file name. See also DIAGNOSTICS below. All marks will

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



ed(1)

be discarded upon the completion of a successful e command. If the buffer has
changed since the last time the entire buffer was written, the user will be warned, as
described previously.

E file
The Edit command is like e, except that the editor does not check to see if any
changes have been made to the buffer since the last w command.

f file
If file is given, the £ command will change the currently remembered path name
to £ile; whether the name is changed or not, it then will write the (possibly new)
currently remembered path name to the standard output in the following format:

"$s\ n"pathname

The current line number is unchanged.

(1, $ )g/RE/command list
In the global command, the first step is to mark every line that matches the given
RE. Then, for every such line, the given command list is executed with the current
line (.) initially set to that line. When the g command completes, the current line
number will have the value assigned by the last command in the command list. If
there were no matching lines, the current line number will not be changed. A single
command or the first of a list of commands appears on the same line as the global
command. All lines of a multi-line list except the last line must be ended with a
backslash (\ ); a, i, and ¢ commands and associated input are permitted. The .
terminating input mode may be omitted if it would be the last line of the command
list. An empty command list is equivalent to the p command. The g, G, v, V, and !
commands are nof permitted in the command list. See also the NOTES and the last
paragraph before FILES below. Any character other than space or newline can be
used instead of a slash to delimit the RE. Within the RE, the RE delimiter itself can
be used as a literal character if it is preceded by a backslash.

(1, % )G/RE/
In the interactive Global command, the first step is to mark every line that matches
the given RE. Then, for every such line, that line is written to standard output, the
current line (.) is changed to that line, and any one command (other than one of the
a, ¢, 1,9, G, v, and V commands) may be input and is executed. After the execution
of that command, the next marked line is written, and so on; a new-line acts as a
null command; an & causes the re-execution of the most recent non-null command
executed within the current invocation of G. Note: The commands input as part of
the execution of the G command may address and affect any lines in the buffer. The
final value of the current line number will be the value set by the last command
successfully executed. (Note that the last command successfully executed will be
the G command itself if a command fails or the null command is specified.) If there
were no matching lines, the current line number will not be changed. The G
command can be terminated by a SIGINT signal. The G command can be
terminated by an interrupt signal (ASCII DEL or BREAK). Any character other than

User Commands 319



ed(1)

320

space or newline can be used instead of a slash to delimit the RE. Within the RE, the
RE delimiter itself can be used as a literal character if it is preceded by a backslash.

The help command gives a short error message that explains the reason for the
most recent ? diagnostic. The current line number is unchanged.

The Help command causes ed to enter a mode in which error messages are written
for all subsequent ? diagnostics. It will also explain the previous ? if there was one.
The H command alternately turns this mode on and off; it is initially off. The current
line number is unchanged.

(. )i
<text>

The insert command accepts zero or more lines of text and inserts it before the
addressed line in the buffer. The current line (.) is left at the last inserted line, or, if
there were none, at the addressed line. This command differs from the a command
only in the placement of the input text. Address 0 is not legal for this command.
The maximum number of characters that may be entered from a terminal is 256 per
line (including the new-line character).

(., .+1)7]
The join command joins contiguous lines by removing the appropriate new-line
characters. If exactly one address is given, this command does nothing. If lines are
joined, the current line number will be set to the address of the joined line;
otherwise, the current line number is unchanged.

(. )kx
The mark command marks the addressed line with name x, which must be an
ASCII lower-case letter (a-z). The address “x then addresses this line; the current
line (.) is unchanged.

(., .1
The 1 command writes to standard output the addressed lines in a visually
unambiguous form. The characters (\\ ,\ a,\ b,\ £\ r,\ t,\v)will be
written as the corresponding escape sequence; the \ n in that table is not
applicable. Non-printable characters not in the table will be written as one
three-digit octal number (with a preceding backslash character) for each byte in the
character (most significant byte first).

Long lines will be folded, with the point of folding indicated by writing
backslash/newline character; the length at which folding occurs is unspecified, but
should be appropriate for the output device. The end of each line will be marked
with a $. An 1 command can be appended to any other command other than e, E,
f,q,Q, r, w, or !. The current line number will be set to the address of the last line
written.

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



ed(1)

, .o )ma
The move command repositions the addressed line(s) after the line addressed by a.
Address 0 is legal for a4 and causes the addressed line(s) to be moved to the
beginning of the file. It is an error if address a falls within the range of moved lines;
the current line (. ) is left at the last line moved.

, . )n
The number command writes the addressed lines, preceding each line by its line
number and a tab character; the current line (.) is left at the last line written. The n
command may be appended to any command other than e, E, £, g, Q, r, w, or !.

, - )P
The print command writes the addressed lines to standard output; the current line
(.) is left at the last line written. The p command may be appended to any
command other than e, E, £, g, Q, r, w, or !. For example, dp deletes the current
line and writes the new current line.

The P command causes ed to prompt with an asterisk (*) (or string, if -p is
specified) for all subsequent commands. The P command alternatively turns this
mode on and off; it is initially on if the -p option is specified, otherwise off. The
current line is unchanged.

The quit command causes ed to exit. If the buffer has changed since the last time
the entire buffer was written, the user will be warned; see DIAGNOSTICS.

The editor exits without checking if changes have been made in the buffer since the
last w command.

$ )rfile

The read command reads the contents of £ile into the buffer. If f£ile is not given,
the currently remembered file name, if any, is used (see the e and £ commands).
The currently remembered file name is not changed unless £ile is the very first file
name mentioned since ed was invoked. Address 0 is legal for r and causes the file
to be read in at the beginning of the buffer. If the read is successful and the -s
option was not specified, the number of characters read is written to standard
output in the following format:

$d\ n, <number of bytes read>

The current line (.) is set to the last line read. If £ile is replaced by !, the rest of
the line is taken to be a shell command (see sh(1)) whose output is to be read. For
example, $r !1s appends the current directory to the end of the file being edited.
Such a shell command is not remembered as the current file name.

, . )s/RE/replacement/
, . )s/RE/replacement /count, count=[1-512]
, . )s/RE/replacement/g

User Commands 321



ed(1)

322

, . )s/RE/replacement/1

, . )s/RE/replacement/n

, . )s/RE/replacement/p
The substitute command searches each addressed line for an occurrence of the
specified RE. Zero or more substitution commands can be specified. In each line in
which a match is found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator g appears after the command. If the
global indicator does not appear, only the first occurrence of the matched string is
replaced. If a number count appears after the command, only the count-th
occurrence of the matched string on each addressed line is replaced. It is an error if
the substitution fails on all addressed lines. Any character other than space or
new-line may be used instead of the slash (/) to delimit the RE and the replacement;
the current line (.) is left at the last line on which a substitution occurred. Within
the RE, the RE delimiter itself can be used as a literal character if it is preceded by a
backslash. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string matching
the RE on the current line. The special meaning of & in this context may be
suppressed by preceding it by \ . As a more general feature, the characters \#,
where 7 is a digit, are replaced by the text matched by the n-th regular
subexpression of the specified RE enclosed between \ ( and \ ). When nested
parenthesized subexpressions are present, 1 is determined by counting occurrences
of \ ( starting from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute command is used as
the replacement in the current substitute command; if there was no previous
substitute command, the use of % in this manner is an error. The % loses its special
meaning when it is in a replacement string of more than one character or is
preceded by a \ . For each backslash (\) encountered in scanning replacement from
beginning to end, the following character loses its special meaning (if any). It is
unspecified what special meaning is given to any character other than &, \, %, or
digits.

A line may be split by substituting a new-line character into it. The new-line in the
replacement must be escaped by preceding it by \ . Such substitution cannot be done
as part of a g or v command list. The current line number will be set to the address
of the last line on which a substitution is performed. If no substitution is
performed, the current line number is unchanged. If a line is split, a substitution is
considered to have been performed on each of the new lines for the purpose of
determining the new current line number. A substitution is considered to have been
performed even if the replacement string is identical to the string that it replaces.

The substitute command supports the following indicators:

count Substitute for the countth occurrence only of the RE found on each
addressed line. count must be between 1-512.

g Globally substitute for all non-overlapping instances of the RE rather
than just the first one. If both g and count are specified, the results are
unspecified.

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



ed(1)

1 Write to standard output the final line in which a substitution was made.
The line will be written in the format specified for the 1 command.

n Write to standard output the final line in which a substitution was made.
The line will be written in the format specified for the n command.

P Write to standard output the final line in which a substitution was made.
The line will be written in the format specified for the p command.

, . )ta
This command acts just like the m command, except that a copy of the addressed
lines is placed after address a (which may be 0); the current line (.) is left at the last
line copied.

The undo command nullifies the effect of the most recent command that modified
anything in the buffer, namely the most recenta, ¢, d,g,1,j,m r, s, t,u,v,G,o0orVv
command. All changes made to the buffer by a g, G, v, or V global command will be
undone as a single change; if no changes were made by the global command (such
as with g/ RE /p), the u command will have no effect. The current line number
will be set to the value it had immediately before the command being undone
started.

1 , $ )v/RE/command list
This command is the same as the global command g, except that the lines marked
during the first step are those that do not match the RE.

1., $ )V/RE/
This command is the same as the interactive global command G, except that the
lines that are marked during the first step are those that do not match the RE.

1, s )wfile

The write command writes the addressed lines into £ile. If £ile does not exist, it
is created with mode 666 (readable and writable by everyone), unless your file
creation mask dictates otherwise; see the description of the umask special
command on sh(1). The currently remembered file name is not changed unless
file is the very first file name mentioned since ed was invoked. If no file name is
given, the currently remembered file name, if any, is used (see the e and £
commands); the current line (.) is unchanged. If the command is successful, the
number of characters written is printed, unless the -s option is specified in the
following format:

"$d\ n", <number of bytes written>
If file is replaced by !, the rest of the line is taken to be a shell (see sh(1))
command whose standard input is the addressed lines. Such a shell command is not

remembered as the current path name. This usage of the write command with ! is
to be considered as a “last w command that wrote the entire buffer”.

User Commands 323



ed(1)

324

(1, s wWfie
This command is the same as the write command above, except that it appends the
addressed lines to the end of £ile if it exists. If £ile does not exist, it is created as
described above for the w command.

An educated guess is made to determine whether text read for the e and r
commands is encrypted. A null key turns off encryption. Subsequent e, r, and w
commands will use this key to encrypt or decrypt the text. An explicitly empty key
turns off encryption. Also, see the -x option of ed.

(s )=
The line number of the addressed line will be written to standard output in the
following format:

"$d\ n"<line number>

The current line number is unchanged by this command.

Ishell command
The remainder of the line after the ! is sent to the UNIX system shell (see sh(1)) to
be interpreted as a command. Within the text of that command, the unescaped
character % is replaced with the remembered file name; if a ! appears as the first
character of the shell command, it is replaced with the text of the previous shell
command. Thus, ! ! will repeat the last shell command. If any replacements of % or
! are performed, the modified line will be written to the standard output before
command is executed. The ! command will write:

n !\ n"

to standard output upon completion, unless the -s option is specified. The current
line number is unchanged.

( .+1 )<new-line>
An address alone on a line causes the addressed line to be written. A new-line alone
is equivalent to . +1p; it is useful for stepping forward through the buffer. The
current line number will be set to the address of the written line.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed writes a "?\ n" and returns to
its command level.

The ed utility will take the standard action for all signals with the following

exceptions:

SIGINT The ed utility will interrupt its current activity, write the string
"?\ n"to standard output, and return to command mode.

SIGHUP If the buffer is not empty and has changed since the last write, the

ed utility will attempt to write a copy of the buffer in a file. First,
the file named ed. hup in the current directory will be used; if that

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



ed(1)

fails, the file named ed . hup in the directory named by the HOME
environment variable will be used. In any case, the ed utility will
exit without returning to command mode.

Some size limitations are in effect: 512 characters in a line, 256 characters in a global
command list, and 255 characters in the path name of a file (counting slashes). The
limit on the number of lines depends on the amount of user memory; each line takes 1
word.

When reading a file, ed discards ASCII and NUL characters.

If a file is not terminated by a new-line character, ed adds one and puts out a message
explaining what it did.

If the closing delimiter of an RE or of a replacement string (for example, /) would be
the last character before a new-line, that delimiter may be omitted, in which case the
addressed line is written. The foll owing pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p
g/sl g/sl/p
?sl ?sl?

If an invalid command is entered, ed will write the string:

u?\ n"

(followed by an explanatory message if help mode has been enabled by the H
command) to standard output and will continue in command mode with the current
line number unchanged.

OPTIONS | -c Encryption option; the same as the -x option, except that ed
simulates a C command. The C command is like the X command,
except that all text read in is assumed to have been encrypted.

-p string Allows the user to specify a prompt string. By default, there is no
prompt string.

-s | -; Suppresses the writing of character counts by e, r, and w
commands, of diagnostics from e and g commands, and of the !
prompt after a !shell command.

-x Encryption option; when used, ed simulates an X command and
prompts the user for a key. The X command makes an educated
guess to determine whether text read in is encrypted or not. The
temporary buffer file is encrypted also, using a transformed
version of the key typed in for the -x option. See NOTES.

OPERANDS | The following operand is supported:

User Commands 325



ed(1)

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

lusr/bin/red

lusr/xpgd/bin/ed

SEE ALSO

DIAGNOSTICS

326 man pages section 1: User Commands ¢ Last Revised 18 Mar 1997

file If file is specified, ed simulates an e command on the file named by the
path name file before accepting commands from the standard input.

See largefile(5) for the description of the behavior of ed and red when
encountering files greater than or equal to 2 Gbyte ( 2*' bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of ed: HOME, LC_CTYPE, LC_ COLLATE, LC MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion without any file or command errors.
>0 An error occurred.
STMPDIR If this environment variable is not NULL, its value is used in place

of /var/tmp as the directory name for the temporary work file.

/var/tmp If /var/tmp exists, it is used as the directory name for the
temporary work file.

/ tmp If the environment variable TMPDIR does not exist or is NULL, and
if /var/tmp does not exist, then /tmp is used as the directory
name for the temporary work file.

ed.hup Work is saved here if the terminal is hung up.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
CSsI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWxcu4
CSI Enabled

bfs(1), edit(1), ex(1), grep(l), ksh(l), sed(l), sh(1), stty(1), umask(1), vi(1),
fspec(4), attributes(b), environ(5), largefile(5), regex(5), XPG4(5)

? for command errors.
?file for an inaccessible file. (use the help and Help commands for detailed
explanations).

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed warns the user if an attempt is made to destroy ed’s buffer via the e or g



NOTES

ed(1)

commands. It writes ? and allows one to continue editing. A second e or g command
at this point will take effect. The -s command-line option inhibits this feature.

The - option, although it continues to be supported, has been replaced in the
documentation by the -s option that follows the Command Syntax Standard (see
intro(1)).

A | command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be used if
the editor is invoked from a restricted shell (see sh(1)).

The sequence \ n in an RE does not match a new-line character.

If the editor input is coming from a command file (for example, ed file <
ed_cmd_file), the editor exits at the first failure.

User Commands 327



edit(1)

328

NAME
SYNOPSIS

DESCRIPTION

edit — text editor (variant of ex for casual users)

/usr/bin/edit [-| -s] [-1]1 [-L] [-R] [-r [filenamel]l [-t tag]l [-v]
[-V] [-x] [-wnl [-C] [+command | -c command] filename...

/usr/xpg4/bin/edit [-| -s] [-1] [-L] [-R] [-r [filenamel]l [-t tag]
[-v] [-V] [-x] [-wn] [-C] [+command | -c command] filename...

The edit utility is a variant of the text editor ex recommended for new or casual
users who wish to use a command-oriented editor. It operates precisely as ex with the
following options automatically set:

novice ON
report ON
showmode ON
magic OFF

The following brief introduction should help you get started with edit. If you are
using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command edit name to the
shell. edit makes a copy of the file that you can then edit, and tells you how many
lines and characters are in the file. To create a new file, you also begin with the
command edit with a filename: edit name; the editor will tell you itis a [New
File].

The edit command prompt is the colon (:), which you should see after starting the
editor. If you are editing an existing file, then you will have some lines in edit’s
buffer (its name for the copy of the file you are editing). When you start editing, edit
makes the last line of the file the current line. Most commands to edit use the current
line if you do not tell them which line to use. Thus if you say print (which can be
abbreviated p) and type carriage return (as you should after all edit commands), the
current line will be printed. If you delete (d) the current line, edit will print the
new current line, which is usually the next line in the file. If you delete the last line,
then the new last line becomes the current one.

If you start with an empty file or wish to add some new lines, then the append (a)
command can be used. After you execute this command (typing a carriage return after
the word append), edit will read lines from your terminal until you type a line
consisting of just a dot (.); it places these lines after the current line. The last line you
type then becomes the current line. The insert (i) command is like append, but
places the lines you type before, rather than after, the current line.

The edit utility numbers the lines in the buffer, with the first line having number 1. If
you execute the command 1, then edit will type the first line of the buffer. If you then
execute the command d, edit will delete the first line, line 2 will become line 1, and
edit will print the current line (the new line 1) so you can see where you are. In
general, the current line will always be the last line affected by a command.

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



edit(1)

You can make a change to some text within the current line by using the substitute
(s) command: s/old /new/ where old is the string of characters you want to replace
and new is the string of characters you want to replace old with.

The filename (f) command will tell you how many lines there are in the buffer you
are editing and will say [Modified] if you have changed the buffer. After modifying
a file, you can save the contents of the file by executing a write (w) command. You
can leave the editor by issuing a quit (g) command. If you run edit on a file, but do
not change it, it is not necessary (but does no harm) to write the file back. If you try
to quit from edit after modifying the buffer without writing it out, you will receive
the message No write since last change (:quit! overrides), and edit
will wait for another command. If you do not want to write the buffer out, issue the
quit command followed by an exclamation point (q!). The buffer is then irretrievably
discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the file, you
can make any changes you want. You should learn at least a few more things,
however, if you will use edit more than a few times.

The change (c) command changes the current line to a sequence of lines you supply
(as in append, you type lines up to a line consisting of only a dot (.). You can tell
change to change more than one line by giving the line numbers of the lines you
want to change, that is, 3, 5c. You can print lines this way too: 1, 23p prints the first
23 lines of the file.

The undo (u) command reverses the effect of the last command you executed that
changed the buffer. Thus if you execute a substitute command that does not do
what you want, type u and the old contents of the line will be restored. You can also
undo an undo command. edit will give you a warning message when a command
affects more than one line of the buffer. Note that commands such as write and quit
cannot be undone.

To look at the next line in the buffer, type carriage return. To look at a number of lines,
type D (while holding down the control key, press d) rather than carriage return. This
will show you a half-screen of lines on a CRT or 12 lines on a hardcopy terminal. You
can look at nearby text by executing the z command. The current line will appear in
the middle of the text displayed, and the last line displayed will become the current
line; you can get back to the line where you were before you executed the z command
by typing ‘ . The z command has other options: z— prints a screen of text (or 24 lines)
ending where you are; z+ prints the next screenful. If you want less than a screenful of
lines, type z . 11 to display five lines before and five lines after the current line.
(Typing z .n, when # is an odd number, displays a total of n lines, centered about the
current line; when 7 is an even number, it displays n-1 lines, so that the lines
displayed are centered around the current line.) You can give counts after other
commands; for example, you can delete 5 lines starting with the current line with the
command d5.

User Commands 329



edit(1)

OPTIONS

To find things in the file, you can use line numbers if you happen to know them; since
the line numbers change when you insert and delete lines this is somewhat unreliable.
You can search backwards and forwards in the file for strings by giving commands of
the form /text/ to search forward for fext or ?text? to search backward for text. If a
search reaches the end of the file without finding fext, it wraps around and continues
to search back to the line where you are. A useful feature here is a search of the form
/text/ which searches for fext at the beginning of a line. Similarly /text$/ searches
for text at the end of a line. You can leave off the trailing / or ? in these commands.

The current line has the symbolic name dot (.); this is most useful in a range of lines
as in ., $p which prints the current line plus the rest of the lines in the file. To move to
the last line in the file, you can refer to it by its symbolic name $. Thus the command
$d deletes the last line in the file, no matter what the current line is. Arithmetic with
line references is also possible. Thus the line $-5 is the fifth before the last and . +20 is
20 lines after the current line.

You can find out the current line by typing * .= . This is useful if you wish to move
or copy a section of text within a file or between files. Find the first and last line
numbers you wish to copy or move. To move lines 10 through 20, type 10, 20d a to
delete these lines from the file and place them in a buffer named a. edit has 26 such
buffers named a through z. To put the contents of buffer a after the current line, type
put a. If you want to move or copy these lines to another file, execute an edit (e)
command after copying the lines; following the e command with the name of the
other file you wish to edit, that is, edit chapter2. To copy lines without deleting
them, use yank (y) in place of d. If the text you wish to move or copy is all within one
file, it is not necessary to use named buffers. For example, to move lines 10 through 20
to the end of the file, type 10, 20m $.

These options can be turned on or off using the set command in ex(1).

-1 -s Suppress all interactive user feedback. This is useful
when processing editor scripts.

-1 Set up for editing LISP programs.

-L List the name of all files saved as the result of an editor

or system crash.

-R Readonly mode; the readonly flag is set, preventing
accidental overwriting of the file.

-t filename Edit filename after an editor or system crash. (Recovers
the version of filename that was in the buffer when the
crash occurred.)

-t tag Edit the file containing the tag and position the editor
at its definition.

-v Start up in display editing state using vi. You can
achieve the same effect by simply typing the vi
command itself.

330 man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



ATTRIBUTES

lusr/bin/edit

lusr/xpgd/bin/edit

SEE ALSO

NOTES

-wn

+command | -c command

edit(1)

Verbose. When ex commands are read by means of
standard input, the input will be echoed to standard
error. This may be useful when processing ex
commands within shell scripts.

Encryption option; when used, edit simulates the X
command of ex and prompts the user for a key. This
key is used to encrypt and decrypt text using the
algorithm of the crypt command. The X command
makes an educated guess to determine whether text
read in is encrypted or not. The temporary buffer file is
encrypted also, using a transformed version of the key
typed in for the -x option.

Set the default window size to n. This is useful when
using the editor over a slow speed line.

Encryption option; same as the -x option, except that
vi simulates the C command of ex. The C command is
like the X command of ex, except that all text read in is
assumed to have been encrypted.

Begin editing by executing the specified editor
command (usually a search or positioning command).

The filename argument indicates one or more files to be edited.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWxcu4
CSI Enabled

ed(1), ex(1), vi(1l), attributes(5), XPG4(5)

The encryption options are provided with the Security Administration Utilities
package, which is available only in the United States.

The /usr/xpg4/bin/edit utility is identical to /usr/bin/edit.

User Commands 331



egrep(1)
NAME
SYNOPSIS

DESCRIPTION

lusr/bin/egrep

lusr/xpg4/bin/egrep

OPTIONS

egrep — search a file for a pattern using full regular expressions
/usr/bin/egrep [-bchilnsv] [-e pattern_list] [-£ file] [strings] [file...]
/usr/xpg4/bin/egrep [-bchilnsvx] [-e pattern_list] [-f file] [strings]

[file...]

The egrep (expression grep) utility searches files for a pattern of characters and prints
all lines that contain that pattern. egrep uses full regular expressions (expressions
that have string values that use the full set of alphanumeric and special characters) to
match the patterns. It uses a fast deterministic algorithm that sometimes needs
exponential space.

If no files are specified, egrep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there
is more than one input file.

The /usr/bin/egrep utility accepts full regular expressions as described on the
regexp(5) manual page, except for \ (and \), \ (and \), \{ and \ }, \< and \ >, and
\n, and with the addition of:

1. A full regular expression followed by + that matches one or more occurrences of
the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1 occurrences of the full
regular expression.

3. Full regular expressions separated by | or by a NEWLINE that match strings that
are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for grouping.
Be careful using the characters $, *, [, *, |, (, ), and \ in full reqular expression,

because they are also meaningful to the shell. It is safest to enclose the entire full
regular expression in single quotes g

The order of precedence of operatorsis [ 1,then * ? +, then concatenation, then |
and NEWLINE.

The /usr/xpg4/bin/egrep utility uses the regular expressions described in the
EXTENDED REGULAR EXPRESSIONS section of the regex(5) manual page.

The following options are supported for both /usr/bin/egrep and
/usr/xpgd/bin/egrep:

-b Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is
0).
-c Print only a count of the lines that contain the pattern.
-e pattern_list Search for a pattern_list (full regular expression that begins with a —).
-£ file Take the list of full reqular expressions from file.

332 man pages section 1: User Commands ¢ Last Revised 12 May 1997



lusr/xpgd/bin/egrep

OPERANDS

/usr/bin/egrep
lusr/xpg4/bin/egrep

USAGE
ENVIRONMENT

VARIABLES

EXIT STATUS

ATTRIBUTES

lusr/bin/egrep

egrep(1)
Suppress printing of filenames when searching multiple files.
Ignore upper/lower case distinction during comparisons.

Print the names of files with matching lines once, separated by
NEWLINES. Does not repeat the names of files when the pattern is
found more than once.

Precede each line by its line number in the file (first line is 1).

Work silently, that is, display nothing except error messages. This
is useful for checking the error status.

Print all lines except those that contain the pattern.

The following option is supported for /usr/xpg4/bin/egrep only:

-x Consider only input lines that use all characters in the line to match an
entire fixed string or regular expression to be matching lines.

The following operands are supported:

file

pattern

pattern

A path name of a file to be searched for the patterns. If no file
operands are specified, the standard input will be used.

Specify a pattern to be used during the search for input.

Specify one or more patterns to be used during the search for
input. This operand is treated as if it were specified as
-epattern_list.

See largefile(5) for the description of the behavior of egrep when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of egrep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 If any matches are found.
1 If no matches are found.
2 For syntax errors or inaccessible files (even if matches were found).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability

SUNWcsu

CSI

enabled

User Commands 333



egrep(1)
lusr/xpg4/bin/egrep

SEE ALSO

NOTES

lusr/xpg4/bin/egrep

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4

CSI enabled

fgrep(l), grep(1), sed(l), sh(l), attributes(5), environ(5), largefile(b),
regex(b), regexp(5), XPG4(5)

Ideally there should be only one grep command, but there is not a single algorithm
that spans a wide enough range of space-time tradeoffs.

Lines are limited only by the size of the available virtual memory.

The /usr/xpg4/bin/egrep utility is identical to /usr/xpg4 /bin/grep -E (see
grep(1)). Portable applications should use /usr/xpg4/bin/grep -E.

334 man pages section 1: User Commands ¢ Last Revised 12 May 1997




NAME
SYNOPSIS

DESCRIPTION

With Volume
Management

Without Volume
Management

eject(1)
eject — eject media such as CD-ROM and floppy from drive

eject [-dfnpqg] [device | nickname]

The eject utility is used for those removable media devices that do not have a
manual eject button, or for those that do, but are managed by Volume Management
(see vold(1M)). The device may be specified by its name or by a nickname; if Volume
Management is running and no device is specified, the default device is used.

Only devices that support eject under program control respond to this command.
eject responds differently, depending on whether or not Volume Management is
running.

When eject is used on media that can only be ejected manually, it will do everything
except remove the media, including unmounting the file system if it is mounted. In
this case, eject displays a message that the media can now be manually ejected. If a
window system is running, the message is displayed as a pop-up window, unless the
-p option is supplied. If no window system is running or the -p option is supplied, a
message is displayed both to stderr and to the system console that the media can
now be physically removed.

Volume Management has the concept of a default device, which eject uses if no
pathname or nickname is specified. Use the -d option to check what default device
will be used.

When Volume Management is not running and a pathname is specified, eject sends
the eject command to that pathname. If a nickname is supplied instead of a pathname,
eject will recognize the following list:

Nickname Path
fd /dev /rdiskette
fdo /dev /rdiskette
fd1 /dev /rdiskettel
diskette /dev /rdiskette
disketteO /dev /rdiskette0
diskettel /dev /rdiskettel
rdiskette /dev /rdiskette
rdiskette0 /dev /rdiskette0
rdiskettel /dev /rdiskettel
floppy /dev /rdiskette
floppy0 /dev /rdisketteQ

User Commands 335



eject(1)

336

OPTIONS

OPERANDS

EXAMPLES

Nickname Path

floppy1 /dev/rdiskettel

The list above can be reproduced with the -n option.

Do not physically eject media from a device which contains mounted file systems.
eject automatically searches for any mounted file systems which reside on the
device and attempts to umount them prior to ejecting the media (see mount(1M)). If
the unmount operation fails, eject prints a warning message and exits. The - £
option may be used to specify an eject even if the device contains mounted partitions;
this option works only if Volume Management is not running.

eject can also display its default device and a list of nicknames.

If you have inserted a floppy diskette, you must use volcheck(1) before ejecting the
media to inform Volume Management of the floppy’s presence.

The following options are supported:

-d Displays the name of the default device to be ejected.

-f Forces the device to eject even if it is busy, if Volume Management is not
running.

-n Displays the nickname to device name translation table.

-p Does not try to call the eject_popup program.

-q Queries to see if the media is present.

The following operands are supported:

device Specifies which device to eject, by the name it appears in the
directory /dev.

nickname Specifies which device to eject, by its nickname as known to this
command.

EXAMPLE 1 Ejecting a CD while Volume Management is running

To eject a CD from its drive, while Volume Management is running (assuming only
one CD-ROM drive):

example> eject cdrom0

EXAMPLE 2 Ejecting a CD-ROM without running Volume Management

To eject a CD-ROM drive with pathname /dev/dsk/c0t3d0s2, without Volume
Management running:

example> eject /dev/dsk/c0t3d0s2

man pages section 1: User Commands ¢ Last Revised 20 Sep 1996



EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

BUGS

eject(1)
EXAMPLE 3 Ejecting a floppy disk
To eject a floppy disk (whether or not Volume Management is running):

example> eject floppyO

The following exit codes are returned:

0 The operation was successful or, with the - g option, the media is in the
drive.

1 The operation was unsuccessful or, with the -g option, the media is not in
the drive.

2 Invalid options were specified.

3 An ioctl () request failed.

4 Manually ejectable media is now okay to remove.

/dev/disketteO default diskette file

/dev/sr0 default CD-ROM file (deprecated)

/dev/dsk/c0t6d0s2 default CD-ROM file

/usr/lib/vold/eject popup popup used for manually ejected media

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

volcancel(l), volcheck(l), volmissing(l), mount(1M), rmmount(1M), vold(1M),
ioctl(2), rmmount .conf(4), vold.conf(4), attributes(5), volfs(7FS)

A short help message is printed if an unknown option is specified. A diagnostic is
printed if the device name cannot be opened or does not support eject.

Device Busy An attempt was made to eject a device that has a mounted file
system. A warning message is printed when doing a forced eject of
a mounted device.

There should be a way to change the default on a per-user basis.

If Volume Management is not running, it is possible to eject a volume that is currently
mounted (see mount(1M)). For example, if you have a CD-ROM drive at
/dev/dsk/c0t3d0s2 mounted on /mnt, the following command (without Volume
Management running) will work:

example> eject /dev/dsk/c0t3d0s0

User Commands 337



eject(1)
since both slices s0 and s2 reference the whole CD-ROM drive.

338 man pages section 1: User Commands ¢ Last Revised 20 Sep 1996



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

elfdump(1)
elfdump — dump selected parts of an object file

elfdump [-Ccdeihikmnprsvyl [-N name]l [-w file]l filename...

The elfdump utility symbolically dumps selected parts of the specified object file(s).
The options allow specific portions of the file to be displayed.

The elfdump utility is similar in function to the dump(1) utility, which offers an older
and less user-friendly interface than elfdump, although dump may be more
appropriate for certain uses such as in shell scripts.

Archive files, produced by ar(1), can also be inspected with elfdump. In this case
each object within the archive is processed using the options supplied.

For a complete description of the displayed information, refer to the Linker and
Libraries Guide.

The following options are supported:

-c Dumps section header information.

-C Demangles C++ symbol names.

-d Dumps the contents of the . dynamic section.

-e Dumps the elf header.

-G Dumps the contents of the . got section.

-h Dumps the contents of the .hash section.

-1 Dumps the contents of the . interp section.

-k Calculates the elf checksum (see gelf checksum(3ELF)).

-m Dumps the contents of the . SUNW_move section.

-n Dumps the contents of the .note section.

-N name Qualifies an option with a specific name. For example, in a file that
contains more than one symbol table, the . dynsym table can be
displayed using:

% elfdump -s -N .dynsym filename

-p Dumps the program headers.

-r Dumps the contents of the relocation sections (that is, . rel[a]).

-s Dumps the contents of the symbol table sections (that is, . dynsym

and/or . symtab) and, in the case of archives, dumps the archive
symbol table. Individual sections can be specified with the -N
option, or an archive symbol table can be specified using the
special section name -N ARSYM.

User Commands 339



elfdump(1)

OPERANDS

FILES

ATTRIBUTES

SEE ALSO

-w file

Y

In addition to the standard symbol table information, the version
definition index of the symbol is also provided under the ver
heading.

Dumps the contents of the version sections (that is,
. SUNW_version).

Writes the contents of a section specified with the -N option to the
named file. This is useful for extracting an individual section’s
data for additional processing. For example, extracting the . text
section of a file can be carried out with:

% elfdump -w text.out -N .text filename

Dumps the contents of the . SUNW_syminfo section.

The following operand is supported:

filename

liblddbg.so

The name of the specified object file.
linker debugging library

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability

SUNWDbtool

ar(1l), dump(l), nm(1), pvs(l), el£(3ELF), attributes(5)

Linker and Libraries Guide

340 man pages section 1: User Commands ¢ Last Revised 19 Sep 2001




NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

enable(1)
enable, disable — enable/disable LP printers
/usr/bin/enable printer...

/usr/bin/disable [-c | -W] [-r [reason]] printer..

The enable command activates printers, enabling them to print requests submitted
by the 1p command. enable must be run on the printer server.

The disable command deactivates printers, disabling them from printing requests
submitted by the 1p command. By default, any requests that are currently printing on
printer will be reprinted in their entirety either on printer or another member of the
same class of printers. The disable command must be run on the print server.

Use 1pstat -p to check the status of printers.

enable and disable only effect queueing on the print server’s spooling system.
Executing these commands from a client system will have no effect on the server.

The following options are supported for use with disable:

-c Cancels any requests that are currently printing on printer. This
option cannot be used with the -W option. If the printer is remote,
the -c option will be silently ignored.

-W Waits until the request currently being printed is finished before
disabling printer. This option cannot be used with the -c option. If
the printer is remote, the -W option will be silently ignored.

-1 [reason] Assigns a reason for the disabling of the printer(s). This reason
applies to all printers specified. This reason is reported by 1pstat
-p. Enclose reason in quotes if it contains blanks. The default
reason is "unknown reason" for the existing printer, and "new
printer" for a printer added to the system but not yet enabled.

The following operand is supported for both enable and disable:

printer The name of the printer to be enabled or disabled. Specify printer
using atomic name. See printers.conf(4) for information
regarding the naming conventions for atomic names.

The following exit values are returned:

0 Successful completion.
non-zero An error occurred.
/var/spool/lp/* LP print queue.

See attributes(d) for descriptions of the following attributes:

User Commands 341



enable(1)

342

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWpcu

CSI

enabled

SEE ALSO | 1p(1), lpstat(l), printers.conf(4), attributes(5)

man pages section 1: User Commands ¢ Last Revised 9 Sep 1996




NAME
SYNOPSIS

DESCRIPTION

/usr/bin

/usr/xpg4/bin

OPTIONS

OPERANDS

EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

env(1)
env — set environment for command invocation
/usr/bin/env [-i | -1 [name=value..] [utility [arg.. 1]

/usr/xpg4/bin/env [-1i | -1 [name=value..] [utility [arg.. 1]

The env utility obtains the current environment, modifies it according to its
arguments, then invokes the utility named by the utility operand with the modified
environment.

Optional arguments are passed to utility. If no utility operand is specified, the resulting
environment is written to the standard output, with one name=value pair per line.

If env executes commands with arguments, it uses the default shell /usr/bin/sh
(see sh(1)).

If env executes commands with arguments, it uses /usr/xpg4 /bin/sh, which is
equivalent to /usr/bin/ksh (see ksh(1)).

The following options are supported:

-1l - Ignores the environment that would otherwise be inherited from
the current shell. Restricts the environment for utility to that
specified by the arguments.

The following operands are supported:

name=value Arguments of the form name=value modify the execution
environment, and are placed into the inherited environment before
utility is invoked.

utility The name of the utility to be invoked. If utility names any of the
special shell built-in utilities, the results are undefined.

arg A string to pass as an argument for the invoked utility.

EXAMPLE 1 Invoking utilities with new PATH values
The following utility:
example% env -i PATH=/mybin mygrep xyz myfile

invokes the utility mygrep with a new PATH value as the only entry in its
environment. In this case, PATH is used to locate mygrep, which then must reside in
/mybin.

See environ(5) for descriptions of the following environment variables that affect the
execution of env: LC CTYPE, LC MESSAGES, and NLSPATH.

If utility is invoked, the exit status of env is the exit status of utility; otherwise, the env
utility is with one of the following values:

User Commands 343



env(1)

ATTRIBUTES

[usr/bin

lusr/xpg4/bin

SEE ALSO

0 Successful completion.

1-125 An error occurred.

126 utility was found but could not be invoked.
127 utility could not be found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
CSI enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWxcu4
CSI enabled

ksh(l), sh(l), exec(2), profile(4), attributes(5), environ(b), XPG4(5)

344 man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

eqn(l)
eqn, neqn, checkeq — typeset mathematics test
eqn [-d xyl [-f n] [-p n] [-s n] [file.]
neqn [file..]
checkeq [file..]

eqn and negn are language processors to assist in describing equations. eqn is a
preprocessor for trof £(1) and is intended for devices that can print trof £’s output.
negqn is a preprocessor for nrof £(1) and is intended for use with terminals. Usage is
almost always:

example% eqn file ... | troff

example% neqn file ... | nroff

If no files are specified, eqn and negn read from the standard input. A line beginning
with . EQ marks the start of an equation. The end of an equation is marked by a line
beginning with . EN. Neither of these lines is altered, so they may be defined in macro
packages to get centering, numbering, and so on. It is also possible to set two
characters as “delimiters”’; subsequent text between delimiters is also treated as eqn
input.

checkegq reports missing or unbalanced delimiters and .EQ/ . EN pairs.

The following options are supported:

-dxy Sets equation delimiters set to characters x and y with the command-line
argument. The more common way to do this is with delim xy between
.EQ and . EN. The left and right delimiters may be identical. Delimiters are
turned off by delim off appearing in the text. All text that is neither
between delimiters nor between .EQ and .EN is passed through
untouched.

-fn Changes font to n globally in the document. The font can also be changed
globally in the body of the document by using the gfont n directive,
where 7 is the font specification.

-pn Reduces subscripts and superscripts by # point sizes from the previous
size. In the absence of the -p option, subscripts and superscripts are
reduced by 3 point sizes from the previous size.

-sn Changes point size to n globally in the document. The point size can also
be changed globally in the body of the document by using the gsize n
directive, where n is the point size.

The following operands are supported:

file The nroff or troff file processed by eqgn or negn.

User Commands 345



eqn(l)
EQN LANGUAGE

The nroff version of this description depicts the output of negn to the terminal screen
exactly as neqgn is able to display it. To see an accurate depiction of the output, view

the printed version of this page.

Tokens within eqn are separated by braces, double quotes, tildes, circumflexes,
SPACE, TAB, or NEWLINE characters. Braces { } are used for grouping. Generally
speaking, anywhere a single character like x could appear, a complicated construction
enclosed in braces may be used instead. A tilde (~) represents a full SPACE in the

output; a circumflex (*) half as much.

Subscripts and superscripts:
These are produced with the keywords sub and sup.

x sub i makes x;
a sub i sup 2 produces a;
. x2 2
e sup {x sup 2 + y sup 2} gives eX +y
Fractions:

Fractions are made with over.

a over b

yields
a
b

Square Roots:
These are made with sqgrt

1 over sgrt {ax sup 2 +bx+c}
results in

1
Nax2+bx +c

Limits:

The keywords from and to introduce lower and upper limits on arbitrary things:

346 man pages section 1: User Commands ¢ Last Revised 1 Feb 1996



eqn(l)
lim from {n— inf } sum from 0 to n x sub 1
makes

n
lim Zxr-
n—ses’ g

Brackets and Braces:

Left and right brackets, braces, etc., of the right height are made with 1eft and
right.

left [ x sup 2 + y sup 2 over alpha right ] ~=~1
produces

2
{xz+y} =1
o

The right clause is optional. Legal characters after 1eft and right are braces,
brackets, bars, ¢ and £ for ceiling and floor, and " " for nothing at all (useful for
a right-side-only bracket).

Vertical piles:
Vertical piles of things are made with pile, 1pile, cpile, and rpile.

pile {a above b above c}
produces

a
b
c

There can be an arbitrary number of elements in a pile. 1pile left-justifies, pile
and cpile center, with different vertical spacing, and rpile right justifies.

Matrices:
Matrices are made with matrix.

User Commands 347



eqn(l)

matrix { lcol { x sub i above y sub 2 } ccol { 1 above 2 } }
produces
X; 1
Y2 2

In addition, there is rcol for a right-justified column.

Diacritical marks:

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and
under.

x dot = f£(t) bar
is

x=f(t)

y dotdot bar ~=~ n under
is
y=n

X vec ~=~ y dyad

1S

V-7

Sizes and Fonts:
Sizes and font can be changed with size n or size +#, roman, italic, bold, and
font n. Size and fonts can be changed globally in a document by gsize n and
gfont n, or by the command-line arguments -sn and -£n.

Successive display arguments:
Successive display arguments can be lined up. Place mark before the desired lineup
point in the first equation; place 1ineup at the place that is to line up vertically in
subsequent equations.

Shorthands:
Shorthands may be defined or existing keywords redefined with define:

348 man pages section 1: User Commands ¢ Last Revised 1 Feb 1996



eqn(l)
define thing % replacement %
Defines a new token called thing which will be replaced by replacement whenever

it appears thereafter. The % may be any character that does not occur in
replacement.

Keywords and Shorthands:
Keywords like sum int inf and shorthands like >= — and ! = are recognized.

Greek letters:
Greek letters are spelled out in the desired case, as in alpha or GAMMA.

Mathematical words:
Mathematical words like sin, cos, and 1og are made Roman automatically.

trof£(1) four-character escapes like \(bu (®) can be used anywhere. Strings enclosed
in double quotes "..." are passed through untouched; this permits keywords to be
entered as text, and can be used to communicate with trof £ when all else fails.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO | nroff(l), tb1l(l), troff(l), attributes(5), ms(5)

BUGS | To embolden characters such as digits and parentheses, it is necessary to quote them,
as in ‘bold "12.3"".

User Commands 349



error(1)

350

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

error — insert compiler error messages at right source lines

error [-n] [-gl [-s] [-v] [-t suffixlist] [-I ignorefile] [filename]

error analyzes error messages produced by a number of compilers and language
processors. It replaces the painful, traditional methods of scribbling abbreviations of
errors on paper, and permits error messages and source code to be viewed
simultaneously.

error looks at error messages, either from the specified file filename or from the
standard input, and:

®  Determines which language processor produced each error message.
m  Determines the file name and line number of the erroneous line.

® Inserts the error message into the source file immediately preceding the erroneous
line.

Error messages that can’t be categorized by language processor or content are not
inserted into any file, but are sent to the standard output. error touches source files
only after all input has been read.

error is intended to be run with its standard input connected with a pipe to the error
message source. Some language processors put error messages on their standard error
file; others put their messages on the standard output. Hence, both error sources
should be piped together into error. For example, when using the csh syntax, the
following command analyzes all the error messages produced by whatever programs
make(1S) runs when making lint:

example% make -s lint | & error -q -v

error knows about the error messages produced by: as(1), cpp(1), 1d(1), cc(1B),
make(1S) and other compilers. For all languages except Pascal, error messages are
restricted to one line. Some error messages refer to more than one line in more than
one file, in which case error duplicates the error message and inserts it in all the
appropriate places.

-n Do not touch any files; all error messages are sent to the standard
output.
-q error asks whether the file should be touched. A “y’ or ‘n’ to the

question is necessary to continue. Absence of the -g option implies
that all referenced files (except those referring to discarded error
messages) are to be touched.

-s Print out statistics regarding the error categorization.

-v After all files have been touched, overlay the visual editor vi with
it set up to edit all files touched, and positioned in the first
touched file at the first error. If vi(1) can’t be found, try ex(1) or
ed(1) from standard places.

man pages section 1: User Commands ¢ Last Revised 5 Mar 1992



EXAMPLES

USAGE

-t suffixlist

error(1)

Take the following argument as a suffix list. Files whose suffices do
not appear in the suffix list are not touched. The suffix list is dot
separated, and ‘*" wildcards work. Thus the suffix list:

.c.y.f*.h

allows error to touch files ending with “.¢’, “.y’,“. £* and " . h".

error catches interrupt and terminate signals, and terminates in an orderly fashion.

EXAMPLE 1 Examples of the error command.

In the following C shell (/usr/bin/csh) example, error takes its input from the

FORTRAN compiler:

example% £77 -c any.f |& error options

Here is the same example using the Korn shell (/usr/bin/ksh):

example% £77 -c any.f 2>&1 | error options

error does one of six things with error messages.

synchronize

discard

nullify

Some language processors produce short errors
describing which file they are processing. error uses
these to determine the file name for languages that do
not include the file name in each error message. These
synchronization messages are consumed entirely by
error.

Error messages from 1int that refer to one of the two
lint libraries, /usr/1lib/1lint/11ib-1c and
/usr/lib/lint/11lib-port are discarded, to
prevent accidentally touching these libraries. Again,
these error messages are consumed entirely by error.

Error messages from 1int can be nullified if they refer
to a specific function, which is known to generate
diagnostics which are not interesting. Nullified error
messages are not inserted into the source file, but are
written to the standard output. The names of functions
to ignore are taken from either the file named
.errorrc in the user’s home directory, or from the file
named by the -I option. If the file does not exist, no
error messages are nullified. If the file does exist, there
must be one function name per line.

User Commands 351



error(1)

FILES

ATTRIBUTES

SEE ALSO

BUGS

not file specific Error messages that can’t be intuited are grouped
together, and written to the standard output before any
files are touched. They are not inserted into any source
file.

file specific Error messages that refer to a specific file but to no
specific line are written to the standard output when
that file is touched.

true errors Error messages that can be intuited are candidates for
insertion into the file to which they refer.

Only true error messages are inserted into source files. Other error messages are
consumed entirely by error or are written to the standard output. error inserts the
error messages into the source file on the line preceding the line number in the error
message. Each error message is turned into a one line comment for the language, and
is internally flagged with the string ### at the beginning of the error, and $%% at the
end of the error. This makes pattern searching for errors easier with an editor, and
allows the messages to be easily removed. In addition, each error message contains the
source line number for the line the message refers to. A reasonably formatted source
program can be recompiled with the error messages still in it, without having the error
messages themselves cause future errors. For poorly formatted source programs in
free format languages, such as C or Pascal, it is possible to insert a comment into
another comment, which can wreak havoc with a future compilation. To avoid this,
format the source program so there are no language statements on the same line as the
end of a comment.

~/ .errorrc function names to ignore for 1int error messages

/dev/tty user’s teletype

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbtool

as(l), cc(1B), cpp(1), csh(l), ed(1), ex(1), make(1S), 1d(1), vi(l), attributes(b)
Opens the tty-device directly for user input.
Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s error message format may cause error to not
understand the error message.

error, since it is purely mechanical, will not filter out subsequent errors caused by
“floodgating” initiated by one syntactically trivial error. Humans are still much better
at discarding these related errors.

352 man pages section 1: User Commands * Last Revised 5 Mar 1992



error(1)

Pascal error messages belong after the lines affected, error puts them before. The
alignment of the ‘|’ marking the point of error is also disturbed by error.

error was designed for work on CRT ’s at reasonably high speed. It is less pleasant
on slow speed terminals, and was not designed for use on hardcopy terminals.

User Commands 353



ex(1)

354

NAME
SYNOPSIS

DESCRIPTION

ex — text editor

/usr/bin/ex [-| -s] [-1] [-L] [-Rl [-r [filel] [-t tag]l [-v] [-VI]

[-x] [-wn] [-Cl [+command | -c command]file..
/usr/xpg4/bin/ex [-| -s] [-1] [-L] [-R] [-r [file]] [-t tag] [-v]
[-V] [-x] [-wn] [-C] [+command | -c command] file..

The ex utility is the root of a family of editors: ex and vi. ex is a superset of ed(1),
with the most notable extension being a display editing facility. Display based editing
is the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case
see vi(1), which is a command which focuses on the display-editing portion of ex.

If you have used ed you will find that, in addition to having all of the ed commands
available, ex has a number of additional features useful on CRT terminals. Intelligent
terminals and high speed terminals are very pleasant to use with vi. Generally, the ex
editor uses far more of the capabilities of terminals than ed does, and uses the
terminal capability data base (see terminfo(4)) and the type of the terminal you are
using from the environment variable TERM to determine how to drive your terminal
efficiently. The editor makes use of features such as insert and delete character and line
in its visual command (which can be abbreviated vi) and which is the central mode
of editing when using the vi command.

The ex utility contains a number of features for easily viewing the text of the file. The
z command gives easy access to windows of text. Typing “D (CTRL-D) causes the
editor to scroll a half-window of text and is more useful for quickly stepping through
a file than just typing return. Of course, the screen-oriented visual mode gives
constant access to editing context.

The ex utility gives you help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. ex gives you a lot of
feedback, normally printing changed lines, and indicates when more than a few lines
are affected by a command so that it is easy to detect when a command has affected
more lines than it should have.

The editor also normally prevents overwriting existing files, unless you edited them,
so that you do not accidentally overwrite a file other than the one you are editing. If
the system (or editor) crashes, or you accidentally hang up the telephone, you can use
the editor recover command (or -r file option) to retrieve your work. This will get
you back to within a few lines of where you left off.

The ex utility has several features for dealing with more than one file at a time. You
can give it a list of files on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of file names, or a
pattern as used by the shell to specify a new set of files to be dealt with. In general, file
names in the editor may be formed with full shell metasyntax. The metacharacter “%’
is also available in forming file names and is replaced by the name of the current file.

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



OPTIONS

ex(1)

The editor has a group of buffers whose names are the ASCII lower-case letters (a-z).
You can place text in these named buffers where it is available to be inserted elsewhere
in the file. The contents of these buffers remain available when you begin editing a
new file using the edit (e) command.

There is a command & in ex which repeats the last substitute command. In
addition, there is a confirmed substitute command. You give a range of substitutions
to be done and the editor interactively asks whether each substitution is desired.

It is possible to ignore the case of letters in searches and substitutions. ex also allows
regular expressions which match words to be constructed. This is convenient, for
example, in searching for the word “edit” if your document also contains the word
“editor.”

ex has a set of options which you can set to tailor it to your liking. One option which
is very useful is the autoindent option that allows the editor to supply leading
white space to align text automatically. You can then use “D as a backtab and space or
tab to move forward to align new code easily.

Miscellaneous useful features include an intelligent join (j) command that supplies
white space between joined lines automatically, commands < and > which shift groups
of lines, and the ability to filter portions of the buffer through commands such as
sort.

The following options are supported:

-1 -s Suppress all interactive user feedback. This is useful
when processing editor scripts.

-1 Set up for editing LISP programs.

-L List the name of all files saved as the result of an editor

or system crash.

-R Readonly mode; the readonly flag is set, preventing
accidental overwriting of the file.

-t file Edit file after an editor or system crash. (Recovers the
version of file that was in the buffer when the crash
occurred.)

-t tag Edit the file containing the tag and position the editor

at its definition.

-v Start up in display editing state using vi. You can
achieve the same effect by simply typing the vi
command itself.

-V Verbose. When ex commands are read by means of
standard input, the input will be echoed to standard
error. This may be useful when processing ex
commands within shell scripts.

User Commands 355



ex(1)

lusr/xpg4/bin/ex

OPERANDS

ex States

ex Command
Names and
Abbreviations

-wn

+command | -c command

Encryption option. Simulates the X command and
prompts the user for a key. This key is used to encrypt
and decrypt text using the algorithm of the crypt
command. The X command makes an educated guess
to determine whether text read in is encrypted or not.
The temporary buffer file is encrypted also, using a
transformed version of the key typed in for the -x
option.

Set the default window size to n. This is useful when
using the editor over a slow speed line.

Encryption option. Same as the -x option, except
simulates the C command. The C command is like the X
command, except that all text read in is assumed to
have been encrypted.

Begin editing by executing the specified editor
command (usually a search or positioning command).

If both the -t tag and the -c command options are given, the -t tag will be processed
first. That is, the file containing the tag is selected by -t and then the command is
executed.

The following operand is supported:

file A path name of a file to be edited.

Command Normal and initial state. Input prompted for by “:”. Your line kill
character cancels a partial command.

Insert Entered by a, i, or c. Arbitrary text may be entered. Insert state
normally is terminated by a line having only "." on it, or,
abnormally, with an interrupt.

Visual Entered by typing vi; terminated by typing Q or A\ (CTRL-\).
Command Abbrev-iation ~ Command Abbrev-iation =~ Command Abbrev- iation
Name Name Name
abbrev ab map set se
append a mark ma shell sh
args ar move m source SO
change c next n substitute s
copy co number nu unabbrev unab
delete d preserve pre undo u
edit e print P unmap unm

356 man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



ex Command
Arguments

ex(1)

Command
Name

file
global
insert
join

list

Abbrev- iation

]
1

Command
Name

put
quit
read
recover

rewind

Abbrev- iation

pu

g

r

rec

rew

Command
Name

version
visual
write
Xit

yank

Abbrev- iation

ve

vi

w

X

va

For all of the ex commands listed below, if both a count and a range are specified for a
command that uses them, the number of lines affected will be taken from the count
value rather than the range. The starting line for the command is taken to be the first

line addressed by the range.

Abbreviate
Append
Arguments

Change

Change Directory

Copy
Delete

Edit
File
Global

Insert
Join
List
Map
Mark
Move
Next

Number

Open

Preserve

ab[brev] word rhs

[line] a[ppend][!]

ar[gs]

[range] c[hange][!] [count]

chd[ir][!] [directory]; cd[!] [directory]

[range] co[py] line [flags]; [range] t line [flags]
[range] d[elete] [buffer] [count] [flags]
e[dit][!] [+line][file]; ex[!] [+line] [file]

flile] [file]

[range] g[lobal] /pattern/ [commands]; [range] v

/pattern/ [commands]

[line] i[nsert][!]

[range] j[oin][!] [count] [flags]

[range] 1[ist] [count] [flags]

mapl!] [x rhs]

[line] ma[rk] x; [line] k x

[range] m[ove] line

nf[ext][!] [file ...]

[range] nu[mber] [count] [flags]; [range] # [count]

[flags]

[line] o[pen] /pattern/ [flags]

pre[serve]

User Commands

357



ex(1)

358

ex Commands

Print
Put
Quit
Read
Recover

Rewind

Shell

Source

Substitute

Suspend

Tag
Unabbreviate
Undo
Unmap
Visual

Write

Write and Exit
Yank

Adjust Window
Escape

Shift Left

Shift Right

Resubstitute

Scroll

Write Line Number

Execute

C  forced encryption

X heuristic encryption

[range] p[rint] [count] [flags]
[line] pult] [buffer]

qluitl[1]

[line] r[ead][!] [file]
rec[over] file

rew[ind][!] Set se[t] [option[=[value]]...] [nooption...]
[option?...] [all]

shlell]
so[urce] file

[range] s[ubstitute] [/ pattern/repl/[options] [count]
[flags]]

su[spend][!]; st[op][']

ta[g][!] tagstring

una[bbrev] word

u[ndo]

unm/ap][!] x

[line] vi[sual] [type] [count] [flags]

[range} wirite][!] [>>] [file]; [range} w]rite] [!] [file];
[range} wq[!] [>>] [file]

[range] x[it][!] [file]

[range] ya[nk] [buffer] [count]
[line] z [type] [count] [flags]

! command [range]! command
[range] < [count] [flags]
[range] > [count] [flags]

[range] & [options] [count] [flags]; [range] s[ubstitute]
[options] [count] [flags]; [range] ~ [options] [count]
[flags]

EOF
[line] = [flags]
@ buffer; * buffer

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



ex Command
Addresses

Initializing
options

Most useful
options and their
abbreviations

& resubst

CR print next

> rshift
< Ishift
AD  scroll
z window

! shell escape

n line n
current

$ last

+ next

- previous

+n n forward

% 1%

/pat  next with pat

?pat  previous with pat

x—n n before x

Xy x through n

r

EXINIT
SHOME/ . exrc
./ .exrc
set x

set nox

set x=val

set

set all

set x?

autoindent ai

x marked with x

previous context

place set’s here in environment variable
editor initialization file

editor initialization file

enable option x

disable option x

give value val to option x

show changed options

show all options

show value of option x

supply indent

User Commands

ex(1)

359



ex(1)

Scanning pattern

360

autowrite
directory

exrc

ignorecase
list
magic

modelines

number
paragraphs
redraw

report

scroll
sections
shiftwidth
showmatch
showmode
slowopen

term

window
wrapmargin

wrapscan

formation

aw

ex

ic

nu

para

sect

Sw

sm

smd

slow

wm

ws

beginning of line

$ end of line
any character

\<  beginning of word

\> end of word

write before changing files
pathname of directory for temporary work files

allow vi/ex to read the .exrc in the current directory. This
option is set in the EXINIT shell variable or in the . exrc file
in the $HOMEdirectory.

ignore case of letters in scanning
print “I for tab, $ at end
treat . [ * special in patterns

first five lines and last five lines executed as vi/ex
commands if they are of the form ex: command: or
vi:command:

number lines
macro names that start paragraphs
simulate smart terminal

informs you if the number of lines modified by the last
command is greater than the value of the report variable

command mode lines

macro names that start sections
for < >, and input *D

to) and } as typed

show insert mode in vi

stop updates during insert

specifies to vi the type of terminal being used (the default is
the value of the environment variable TERM)

visual mode lines
automatic line splitting

search around end (or beginning) of buffer

man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

lusr/bin/ex

[str] any character in str

[“str] any character not in str

[xy]l any character between x and y

ex(1)

* any number of preceding characters

See environ(b) for descriptions of the following environment variables that affect the
execution of ex: HOME, PATH, SHELL, TERM, LC_COLLATE, LC_CTYPE, LC_MESSAGES,

and NLSPATH.

COLUMNS Override the system-selected horizontal screen size.

EXINIT Determine a list of ex commands that are executed on editor
start-up, before reading the first file. The list can contain multiple
commands by separating them using a vertical-line (|) character.

LINES Override the system-selected vertical screen size, used as the
number of lines in a screenful and the vertical screen size in visual

mode.

The following exit values are returned:

0 Successful completion.
>0 An error occurred.
/var/tmp/Exnnnnn
/var/tmp/Rxnnnnn
/usr/lib/expreserve
/usr/lib/exrecover
/usr/lib/exstrings
/usr/share/lib/terminfo/*

/var/preserve/login

SHOME/ . exrc

./ .exrc

editor temporary

named buffer temporary

preserve command

recover command

erTor messages

describes capabilities of terminals

preservation directory (where login is the
user’s login)

editor startup file

editor startup file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability
CsI

SUNWcsu
enabled

User Commands 361



ex(1)
lusr/xpg4/bin/ex

SEE ALSO

AUTHOR

NOTES

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxcu4
CsI enabled

ed(1), edit(1), grep(1), sed(1), sort(l), vi(1l), curses (3CURSES), term(4),
terminfo(4), attributes(5), environ(5), standards(5)

Solaris Advanced User’s Guide

The vi and ex utilities are based on software developed by The University of
California, Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

Several options, although they continue to be supported, have been replaced in the
documentation by options that follow the Command Syntax Standard (see intro(1)).
The — option has been replaced by -s, a -r option that is not followed with an
option-argument has been replaced by -1, and +command has been replaced by -c
command.

The message file too large to recover with -r option, which is seen when
a file is loaded, indicates that the file can be edited and saved successfully, but if the
editing session is lost, recovery of the file with the - r option will not be possible.

The z command prints the number of logical rather than physical lines. More than a
screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line - s option is used.

The editing environment defaults to certain configuration options. When an editing
session is initiated, ex attempts to read the EXINIT environment variable. If it exists,
the editor uses the values defined in EXINIT, otherwise the values set in

SHOME/ . exrc are used. If SHOME/ . exrc does not exist, the default values are used.

To use a copy of . exrc located in the current directory other than SHOME, set the exrc
option in EXINIT or $HOME/ . exrc. Options set in EXINIT can be turned off in a
local . exrc only if exrc is set in EXINIT or $SHOME/ . exrc.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting
the editor.

Null characters are discarded in input files and cannot appear in resultant files.

The standard Solaris version of ex will be replaced by the POSIX.2-conforming
version (see standards(5)) in the future. Scripts which use the ex family of
addressing and features should use the /usr/xpg4 /bin version of these utilities.

362 man pages section 1: User Commands ¢ Last Revised 18 Mar 1997



NAME

sh

csh

ksh

sh

csh

ksh

exec(1)
exec, eval, source — shell built-in functions to execute other commands
exec [argument..]
eval [argument...]
exec command
eval argument...
source [-h] name
*exec [arg..]

*eval [arg..]

The exec command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear and, if no other
arguments are given, cause the shell input/output to be modified.

The arguments to the eval built-in are read as input to the shell and the resulting
command(s) executed.

exec executes command in place of the current shell, which terminates.

eval reads its arguments as input to the shell and executes the resulting command(s).
This is usually used to execute commands generated as the result of command or
variable substitution.

source reads commands from name. source commands may be nested, but if they
are nested too deeply the shell may run out of file descriptors. An error in a sourced
file at any level terminates all nested source commands.

-h Place commands from the file name on the history list without executing
them.

With the exec built-in, if arg is given, the command specified by the arguments is
executed in place of this shell without creating a new process. Input/output
arguments may appear and affect the current process. If no arguments are given the
effect of this command is to modify file descriptors as prescribed by the input/output
redirection list. In this case, any file descriptor numbers greater than 2 that are opened
with this mechanism are closed when invoking another program.

The arguments to eval are read as input to the shell and the resulting command(s)
executed.

On this man page, ksh(1) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. 1/0 redirections are processed after variable assignments.

User Commands 363



exec(1)

364

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and
file name generation are not performed.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO | csh(1), ksh(1), sh(1), attributes(5)

man pages section 1: User Commands ¢ Last Revised 15 Apr 1994



NAME

sh

csh

ksh

sh

csh

ksh

exit(1)

exit, return, goto — shell built-in functions to enable the execution of the shell to
advance beyond its sequence of steps

exit [n]
return [n]
exit [( expr )]
goto label
*exit [n]

*return [n]

exit will cause the calling shell or shell script to exit with the exit status specified by
n. If n is omitted the exit status is that of the last command executed (an EOF will also
cause the shell to exit.)

return causes a function to exit with the return value specified by n. If n is omitted,
the return status is that of the last command executed.

exit will cause the calling shell or shell script to exit, either with the value of the
status variable or with the value specified by the expression expr.

The goto built-in uses a specified label as a search string amongst commands. The
shell rewinds its input as much as possible and searches for a line of the form label :
possibly preceded by space or tab characters. Execution continues after the indicated
line. It is an error to jump to a label that occurs between a while or for built-in
command and its corresponding end.

exit will cause the calling shell or shell script to exit with the exit status specified by
n. The value will be the least significant 8 bits of the specified status. If n is omitted
then the exit status is that of the last command executed. When exit occurs when
executing a trap, the last command refers to the command that executed before the
trap was invoked. An end-of-file will also cause the shell to exit except for a shell
which has the ignoreeof option (See set below) turned on.

return causes a shell function or ‘. script to return to the invoking script with the
return status specified by n. The value will be the least significant 8 bits of the
specified status. If n is omitted then the return status is that of the last command
executed. If return is invoked while not in a function ora ’ .’ script, then it is the
same as an exit.

On this man page, ksh(1l) commands that are preceded by one or two * (asterisks) are
treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the
command completes.

2. 1/0 redirections are processed after variable assignments.

3. Errors cause a script that contains them to abort.

User Commands 365



exit(1)

366

file name generation are not performed.

4. Words, following a command preceded by ** that are in the format of a variable
assignment, are expanded with the same rules as a variable assignment. This
means that tilde substitution is performed after the = sign and word splitting and

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO | break(l), csh(l), ksh(1), sh(1), attributes(5)

man pages section 1: User Commands ¢ Last Revised 15 Apr 1994




NAME
SYNOPSIS

DESCRIPTION

OPTIONS

expand(1)
expand, unexpand — expand TAB characters to SPACE characters, and vice versa
expand [-t fablist] [file..]
expand [-fabstop] [-tabl, tab2,. . ., tabn] [file..]
unexpand [-al] [-t tablist] [file..]

expand copies £iles (or the standard input) to the standard output, with TAB
characters expanded to SPACE characters. BACKSPACE characters are preserved into
the output and decrement the column count for TAB calculations. expand is useful for
pre-processing character files (before sorting, looking at specific columns, and so forth)
that contain TAB characters.

unexpand copies £iles (or the standard input) to the standard output, putting TAB
characters back into the data. By default, only leading SPACE and TAB characters are
converted to strings of tabs, but this can be overridden by the -a option (see the
OPTIONS section below).

The following options are supported for expand:

-t tablist Specify the tab stops. The argument tablist must consist
of a single positive decimal integer or multiple positive
decimal integers, separated by blank characters or
commas, in ascending order. If a single number is
given, tabs will be set tablist column positions apart
instead of the default 8. If multiple numbers are given,
the tabs will be set at those specific column positions.

Each tab-stop position N must be an integer value
greater than zero, and the list must be in strictly
ascending order. This is taken to mean that, from the
start of a line of output, tabbing to position N causes
the next character output to be in the (N+1)th column
position on that line.

In the event of expand having to process a tab
character at a position beyond the last of those
specified in a multiple tab-stop list, the tab character is
replaced by a single space character in the output.

-tabstop Specify as a single argument, sets TAB characters
tabstop SPACE characters apart instead of the default 8.

-tabl, tab2,. . ., tabn Set TAB characters at the columns specified by
-tabl, tab2,. . ., tabn

The following options are supported for unexpand:

-a Insert TAB characters when replacing a run of two or more SPACE
characters would produce a smaller output file.

User Commands 367



expand(1)

OPERANDS

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

-t tablist

Specify the tab stops. The option-argument tablist must be a single
argument consisting of a single positive decimal integer or
multiple positive decimal integers, separated by blank characters
or commas, in ascending order. If a single number is given, tabs
will be set tablist column positions apart instead of the default 8. If
multiple numbers are given, the tabs will be set at those specific
column positions. Each tab-stop position N must be an integer
value greater than zero, and the list must be in strictly ascending
order. This is taken to mean that, from the start of a line of output,
tabbing to position N will cause the next character output to be in
the (N+1)th column position on that line. When the -t option is
not specified, the default is the equivalent of specifying -t 8
(except for the interaction with -a, described below).

No space-to-tab character conversions occur for characters at
positions beyond the last of those specified in a multiple tab-stop
list.

When -t is specified, the presence or absence of the -a option is
ignored; conversion will not be limited to the processing of leading
blank characters.

The following ooperand is supported for expand and unexpand:

file

The path name of a text file to be used as input.

See environ(b) for descriptions of the following environment variables that affect the
execution of expand and unexpand: LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0

>0

Successful completion

An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability
CsI

SUNWesu
enabled

tabs(1), attributes(5), environ(5)

368 man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



exportfs(1B)
NAME | exportfs — translates exportfs options to share/unshare commands

SYNOPSIS | /usr/sbin/exportfs [-aiuv] [-o options] [pathname]

DESCRIPTION | exportfs translates SunOS 4.x exportfs options to the corresponding
share/unshare options and invokes share/unshare with the translated options.

With no options or arguments, export fs invokes share to print out the list of all
currently shared NFS filesystems.

exportfs is the BSD/Compatibility Package command of share(1M) and
unshare(lM). Use share(1M)/ unshare(1M) whenever possible.

OPTIONS | -a Invokes shareall(1lM), or if -u is specified, invokes
unshareall(1M).
-1 Ignore options in /etc/dfs/dfstab.
-u Invokes unshare(1M) on pathname.
-v Verbose.
-0 options Specify a comma-separated list of optional characteristics for the

filesystems being exported. exportfs translates options to
share-equivalent options. (see share(1M) for information about
individual options).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnfssu

SEE ALSO | share(1M), shareall(1M), unshare(1M), unshareall(1M), attributes(b)

User Commands 369



expr(1)
NAME
SYNOPSIS

DESCRIPTION

OPERANDS

expr — evaluate arguments as an expression
/usr/bin/expr arqument...

/usr/xpg4/bin/expr argument...

The expr utility evaluates the expression and writes the result to standard output.
The character 0 is written to indicate a zero value and nothing is written to indicate a
null string.

The argument operand is evaluated as an expression. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped (see sh(1)).
Strings containing blanks or other special characters should be quoted. The length of
the expression is limited to LINE_MAX (2048 characters).

The operators and keywords are listed below. The list is in order of increasing
precedence, with equal precedence operators grouped within { } symbols. All of the
operators are left-associative.

expr \ | expr
Returns the evaluation of the first expr if it is neither NULL nor 0; otherwise, returns
the evaluation of the second expr if it is not NULL; otherwise, 0.

expr \ & expr
Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

expr{ =, \>, \>=, \<, \<=, ! =} expr
Returns the result of an integer comparison if both arguments are integers,
otherwise returns the result of a string comparison using the locale-specific
coalition sequence. The result of each comparison will be 1 if the specified
relationship is TRUE, 0 if the relationship is FALSE.

expr { +, — | expr
Addition or subtraction of integer-valued arguments.

expr {\*, /, %} expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : (colon) compares the first argument with the second
argument, which must be an internationalized basic regular expression (BRE); see
regex(5) and NOTES. Normally, the /usr/bin/expr matching operator returns
the number of bytes matched and the /usr/xpg4/bin/expr matching operator
returns the number of characters matched (0 on failure). If the second argument
contains at least one BRE sub-expression [\ (... \ )], the matching operator returns
the string corresponding to \1.

integer
An argument consisting only of an (optional) unary minus followed by digits.

370 man pages section 1: User Commands ¢ Last Revised 6 Jun 2000



Compatibility
Operators (IA
only)

EXAMPLES

lusr/bin/expr

expr(1)

string
A string argument that cannot be identified as an integer argument or as one of the
expression operator symbols.

The following operators are included for compatibility with INTERACTIVE UNIX
System only and are not intended to be used by non- INTERACTIVE UNIX System
scripts:

index string character-list
Report the first position in which any one of the bytes in character-list matches a
byte in string.

length string
Return the length (that is, the number of bytes) of string.

substr string integer-1 integer-2
Extract the substring of string starting at position integer-1 and of length integer-2
bytes. If integer-1 has a value greater than the number of bytes in string, expr
returns a null string. If you try to extract more bytes than there are in string, expr
returns all the remaining bytes from string. Results are unspecified if either integer-1
or integer-2 is a negative value.

EXAMPLE 1 Adding an integer to a shell variable

Add 1 to the shell variable a:

example$ a=‘expr $a + 1°

EXAMPLE 2 Returning a path name segment

The following example emulates basename(1), returning the last segment of the path
name $a. For $a equal to either /usr/abc/file orjust £ile, the example returns
file. (Watch out for / alone as an argument: expr takes it as the division operator;
see NOTES below.)

example$ expr $a : ‘.*/\(.*\)’ \| $a

EXAMPLE 3 Using // characters to simplify the expression

Here is a better version of the previous example. The addition of the // characters
eliminates any ambiguity about the division operator and simplifies the whole
expression.

exampleS$ expr //$a : ".*/\(.*\)’

EXAMPLE 4 Returning the number of bytes in a variable

example$ expr "$VAR" : ‘. .*’

User Commands 371



expr(1)

EXAMPLE 4 Returning the number of bytes in a variable (Continued)

lusr/xpg4/bin/expr | EXAMPLE 5 Returning the number of characters in a variable

example$ expr "$VAR" : ' *’

ENVIRONMENT | See environ(5) for descriptions of the following environment variables that affect the
VARIABLES | execution of expr: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXIT STATUS | As a side effect of expression evaluation, expr returns the following exit values:

0 If the expression is neither NULL nor 0.
1 If the expression is either NULL or 0.

2 For invalid expressions.

>2 An error occurred.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

CSI enabled

SEE ALSO | basename(1), ed(1), sh(l), Intro(3), attributes(5), environ(5), regex(b),

XPG4(5)
DIAGNOSTICS | syntax error Operator and operand errors.
non-numeric argument  Arithmetic is attempted on such a string.

NOTES | After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:

example$ expr $a = ‘=’

looks like:

example$ expr = = =
as the arguments are passed to expr (and they are all taken as the = operator). The
following works:

example$ expr X$a = X=

Regular | Unlike some previous versions, expr uses Internationalized Basic Regular Expressions
Expressions | for all system-provided locales. Internationalized Regular Expressions are explained
on the regex(5) manual page.

372 man pages section 1: User Commands ¢ Last Revised 6 Jun 2000



NAME
SYNOPSIS

DESCRIPTION

expr(1B)
expr — evaluate arguments as a logical, arithmetic, or string expression

/usr/ucb/expr arqument...

The expr utility evaluates expressions as specified by its arguments. After evaluation,
the result is written on the standard output. Each token of the expression is a separate
argument, so terms of the expression must be separated by blanks. Characters special
to the shell must be escaped. Note: 0 is returned to indicate a zero value, rather than
the null string. Strings containing blanks or other special characters should be quoted.
Integer-valued arguments may be preceded by a unary minus sign. Internally, integers
are treated as 32-bit, two’s-complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are
preceded by “\’. The list is in order of increasing precedence, with equal precedence
operators grouped within { } symbols.

expr \ | expr
Returns the evaluation of the first expr if it is neither NULL nor 0; otherwise, returns
the evaluation of the second expr if it is not NULL; otherwise, 0.

expr \& expr
Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

Expr { = \I \ ’ \</ \<=, I= } Expr
Returns the result of an integer comparison if both arguments are integers,
otherwise returns the result of a lexical comparison.

expr { +, — } expr
Addition or subtraction of integer-valued arguments.

expr { \, /, % | expr
Multiplication, division, or remainder of the integer-valued arguments.

string : reqular-expression

match string reqular-expression
The two forms of the matching operator above are synonymous. The matching
operators : and match compare the first argument with the second argument
which must be a regular expression. Regular expression syntax is the same as that
of regexp(5), except that all patterns are “anchored” (treated as if they begin with
*) and therefore “ is not a special character, in that context. Normally, the matching
operator returns the number of characters matched (0 on failure). Alternatively, the
\ . . . \ pattern symbols can be used to return a portion of the first argument.

substr string integer-1 integer-2
Extracts the substring of string starting at position integer-1 and of length integer-2
characters. If integer-1 has a value greater than the length of string, expr returns a
null string. If you try to extract more characters than there are in string, expr
returns all the remaining characters from string. Beware of using negative values for
either integer-1 or integer-2 as expr tends to run forever in these cases.

User Commands 373



expr(1B)

index string character-list
Reports the first position in string at which any one of the characters in character-list
matches a character in string.

length string
Returns the length (that is, the number of characters) of string.

( expr )

Parentheses may be used for grouping.
EXAMPLES | EXAMPLE 1 Adding an integer to a shell variable
Add 1 to the shell variable a.

a='expr $a + 1’

EXAMPLE 2 Returning a path name segment

Return the last segment of a path name (that is, the filename part). Watch out for /
alone as an argument: expr will take it as the division operator (see BUGS below).

# 'For $a equal to either "/usr/abc/file" or just "file"’
expr $a : ‘.*/\ \ Sa

EXAMPLE 3 Using // characters to simplify the expression

The addition of the // characters eliminates any ambiguity about the division
operator and simplifies the whole expression.

# A better representation of example 2.

expr //%$a : '.*/\

EXAMPLE 4 Returning the value of a variable
Returns the number of characters in $VAR.

expr $VAR : LA

EXIT STATUS | expr returns the following exit codes:

0 If the expression is neither NULL nor 0.
1 If the expression is NULL or 0.
2 For invalid expressions.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

374 man pages section 1: User Commands ¢ Last Revised 6 Jun 2000



SEE ALSO
DIAGNOSTICS

BUGS

expr(1B)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

sh(l), test(1l), attributes(5), regexp(b)

syntax error for operator/operand errors
non-numeric argument  if arithmetic is attempted on such a string
division by zero if an attempt to divide by zero is made

After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:

expr $a = ’'='
looks like:
expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator). The
following works:

expr X$a = X=

Note: the match, substr, length, and index operators cannot themselves be used
as ordinary strings. That is, the expression:

example% expr index expurgatorious length
syntax error
example%

generates the ‘syntax error’ message as shown instead of the value 1 as you might
expect.

User Commands 375



exstr(1)

376

NAME
SYNOPSIS

DESCRIPTION

OPTIONS

exstr — extract strings from source files
exstr filename...
exstr -e filename...

exstr -r [-d] filename..

The exstr utility is used to extract strings from C-language source files and replace
them by calls to the message retrieval function (see get txt(3C)). This utility will
extract all character strings surrounded by double quotes, not just strings used as
arguments to the print f command or the printf routine. In the first form, exstr
finds all strings in the source files and writes them on the standard output. Each string
is preceded by the source file name and a colon (:).

The first step is to use exstr -e to extract a list of strings and save it in a file. Next,
examine this list and determine which strings can be translated and subsequently
retrieved by the message retrieval function. Then, modify this file by deleting lines
that can’t be translated and, for lines that can be translated, by adding the message file
names and the message numbers as the fourth (msgfile) and fifth (msgnum) entries on a
line. The message files named must have been created by mkmsgs(1) and exist in
/usr/lib/locale/locale/LC MESSAGES . (The directory locale corresponds to
the language in which the text strings are written; see set locale(3C)). The message
numbers used must correspond to the sequence numbers of strings in the message
files.

Now use this modified file as input to exstr -r to produce a new version of the
original C-language source file in which the strings have been replaced by calls to the
message retrieval function gettxt(). The msgfile and msgnum fields are used to
construct the first argument to gettxt(). The second argument to gettxt() is printed
if the message retrieval fails at run-time. This argument is the null string, unless the
-d option is used.

This utility cannot replace strings in all instances. For example, a static initialized
character string cannot be replaced by a function call. A second example is that a
string could be in a form of an escape sequence which could not be translated. In
order not to break existing code, the files created by invoking exstr -e must be
examined and lines containing strings not replaceable by function calls must be
deleted. In some cases the code may require modifications so that strings can be
extracted and replaced by calls to the message retrieval function.

The following options are supported:

-e Extract a list of strings from the named C-language source files, with
positional information. This list is produced on standard output in the
following format:

file:line:position:msgfile:msgnum:string

file the name of a C-language source file

man pages section 1: User Commands ¢ Last Revised 5 Jul 1990



EXAMPLES

exstr(1)

line line number in the file
position character position in the line
msgfile null

msgnum null

string the extracted text string

Normally you would redirect this output into a file. Then you would edit
this file to add the values you want to use for msgfile and msgnum:

msgfile the file that contains the text strings that will replace
string. A file with this name must be created and
installed in the appropriate place by the mkmsgs(1)
utility.

msgnum the sequence number of the string in msgfile.
The next step is to use exstr -r to replace strings in file.

-r Replace strings in a C-language source file with function calls to the
message retrieval function gettxt().

-d This option is used together with the -r option. If the message retrieval
fails when gettxt() is invoked at run-time, then the extracted string is
printed. You would use the capability provided by exstr on an
application program that needs to run in an international environment and
have messages print in more than one language. exstr replaces text
strings with function calls that point at strings in a message data base. The
data base used depends on the run-time value of the LC_MESSAGES
environment variable (see environ(b)).

EXAMPLE 1 The following examples show uses of exstr.

Assume that the file example. ¢ contains two strings:

main ()

{
printf ("This is an example\n");

printf ("Hello world!\n") ;

}

The exstr utility, invoked with the argument example. ¢ extracts strings from the
named file and prints them on the standard output.

example% exstr example.c
produces the following output:

User Commands 377



exstr(1)

EXAMPLE 1 The following examples show uses of exstr. (Continued)

example.c:This is an example\n
example.c:Hello world!\n
The exstr utility, invoked with the with -e option and the argument example.c,

and redirecting output to the file example . stringsout

example% exstr -e example.c > example.stringsout
produces the following output in the file example . stringsout

example.c:3:8:::This is an example\n

example.c:4:8:::Hello world!\n

You must edit example . stringsout to add the values you want to use for the
msgfile and msgnum fields before these strings can be replaced by calls to the retrieval
function. If UX is the name of the message file, and the numbers 1 and 2 represent the
sequence number of the strings in the file, here is what example . stringsout looks
like after you add this information:

example.c:3:8:UX:1:This is an example\n

example.c:4:8:UX:2:Hello world!\n

The exstr utility can now be invoked with the -r option to replace the strings in the
source file by calls to the message retrieval function gettxt().

example% exstr -r example.c <example.stringsout >intlexample.c
produces the following output:

extern char *gettxt();
main ()
{
printf (gettxt ("UX:1", ""));

printf (gettxt ("UX:2", ""));

The following example

example% exstr -rd example.c <example.stringsout >intlexample.c
uses the extracted strings as a second argument to gettxt ():

extern char *gettxt () ;
main ()
{
printf (gettxt ("UX:1", "This is an example\n"));

printf (gettxt ("UX:2", "Hello world!\n"));

378 man pages section 1: User Commands ¢ Last Revised 5 Jul 1990



FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

EXAMPLE 1 The following examples show uses of exstr.

/usr/lib/locale/locale/L.C_MESSAGES/*

files created by mkmsgs(1)

exstr(1)
(Continued)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWtoo

gettxt(l), mkmsgs(l), printf(1), srchtxt(1), gettxt(3C), print£(3C),
setlocale(3C), attributes(b), environ(5)

The error messages produced by exstr are intended to be self-explanatory. They
indicate errors in the command line or format errors encountered within the input file.

User Commands 379



face(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

face — executable for the Framed Access Command Environment Interface

face [-1i inif_file] [-c command_file] [-a alias_file] [filename...]

The Framed Access Command Environment Interface (FACE) presents your files and
file folders on the screen through a system of menus and forms if you are properly set
up as a FACE user.

filename must follow the naming convention Menu . xxx for a menu, Form. xxx for a
form, and Text . xxx for a text file, where xxx is any string that conforms to the UNIX
system file naming conventions. The Form and Menu Language Interpreter (FMLI)
descriptor 1ifetime will be ignored for all frames opened by argument to face.
These frames have a lifetime of immortal by default. If filename is not specified on the
command line, the FACE Menu will be opened along with those objects specified by
the LOGINWIN environment variables. These variables are found in the user’s
.environ file.

The following options are supported:

-a alias_file Alias file

-c command_file Command file

-1 init_file Initial file

The following operand is supported:

filename The full pathname of the file describing the object to be opened

initially.

The face command will return a non-zero exit value if the user is not properly set up
as a FACE user.

SHOME /pref/.environ

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfac

env(l), attributes(b)

380 man pages section 1: User Commands ¢ Last Revised 5 Jul 1990




NAME
SYNOPSIS

DESCRIPTION

OPERANDS
EXIT STATUS

DIAGNOSTICS

ATTRIBUTES

SEE ALSO

factor(1)
factor — obtain the prime factors of a number

factor [integer]

factor writes to standard input all prime factors for any positive integer less than or
equal to 10'*. The prime factors are written the proper number of times.

If factor is used without an argument, it waits for an integer to be entered. After
entry of the integer, it factors it, writes its prime factors the proper number of times,
and then waits for another integer. factor exits if a 0 or any non-numeric character is
entered.

If factor is invoked with an argument (integer), it writes the integer, factors it and
writes all the prime factors as described above, and then exits. If the argument is 0 or
non-numeric, factor writes a 0 and then exits.

The maximum time to factor an integer is proportional to sqrt(n), where # is the
integer which is entered. factor will take this time when 7 is prime or the square of a
prime.

integer Any positive integer less than or equal to 10'*.
0 Successful completion.
1 An error occurred.

factor prints the error message Ouch! for input out of range or for garbage input.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

attributes(b)

User Commands 381



fastboot(1B)
NAME | fastboot, fasthalt — reboot/halt the system without checking the disks
SYNOPSIS | /usr/ucb/fastboot [boot-options]
/usr/ucb/fasthalt [halt-options]

DESCRIPTION | fastboot and fasthalt are shell scripts that invoke reboot and halt with the
proper arguments.

These commands are provided for compatibility only.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

SEE ALSO | f£sck(1M), halt(1M), init(1M), reboot(1M), init.d(4), attributes(b)

382 man pages section 1: User Commands ¢ Last Revised 28 Feb 1994



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

fdformat(1)
fdformat — format floppy diskette or PCMCIA memory card

fdformat [-dDeEfH1LmMUgvx] [-b label]l [-B filenamel [-t dostype]
[devname]

The fdformat utility has been superseded by rmformat (1), which provides most but
not all of fdformat’s functionality.

fdformat is used to format diskettes and PCMCIA memory cards. All new blank
diskettes or PCMCIA memory cards must be formatted before they can be used.

fdformat formats and verifies the media and indicates whether any bad sectors were
encountered. All existing data on the diskette or PCMCIA memory card, if any, is
destroyed by formatting. If no device name is given, fdformat uses the diskette as a
default.

By default, fdformat uses the configured capacity of the drive to format the diskette.
A 3.5 inch high-density drive uses diskettes with a formatted capacity of 1.44MB. A
5.25 inch high-density drive uses diskettes with a formatted capacity of 1.2MB. In
either case, a density option does not have to be specified to fdformat. However, a
density option must be specified when using a diskette with a lower capacity than the
drive’s default. Use the -H option to format high-density diskettes (1 . 44MB capacity)
in an extra-high-density (ED) drive. Use the -D option, the -1 option, or the -L
option to format double- density (or low-density) diskettes (72 0KB capacity) in an HD
or ED drive. To format medium-density diskettes (1 .2MB capacity), use the -M option
with -t nec (this is the same as using the -m option with -t nec).

Extended density uses double-sided, extended-density or extra-high-density (DS/ED)
diskettes. Medium and high densities use the same media: double-sided, high-density
(DS/HD) diskettes. Double (low) density uses double-sided, double-density (DS/DD)
diskettes. Substituting diskettes of one density for diskettes of either a higher or lower
density generally does not work. Data integrity cannot be assured whenever a diskette
is formatted to a capacity not matching its density.

A PCMCIA memory card with densities from 512KB to 64MB may be formatted.

fdformat writes new identification and data fields for each sector on all tracks unless
the -x option is specified. For diskettes, each sector is verified if the -v option is
specified.

After formatting and verifying, fdformat writes an operating-system label on block
0. Use the -t dos option (same as the -d option) to put an MS-DOS file system on the
diskette or PCMCIA memory card after the format is done. Use the -t nec option with
the -M option (same as the -m option) to put an NEC-DOS file system on a diskette.
Otherwise, fdformat writes a Sun0OS label in block 0.

The following options are supported:

User Commands 383



fdformat(1)

384

-b label

-B filename

-q
-t dos

-t nec

Labels the media with volume label. A SunOS volume label is
restricted to 8 characters. A DOS volume label is restricted to 11
upper-case characters.

Installs special boot loader in filename on an MS-DOS diskette.
This option is only meaningful when the -d option (or -t dos) is
also specified.

Formats a 720KB (3.5 inch) or 360KB (5.25 inch) double-density
diskette (same as the -1 or -L options). This is the default for
double-density type drives. It is needed if the drive is a high- or
extended-density type.

Ejects the diskette when done. This feature is not available on all
systems.

Formats a 2. 88MB (3.5 inch) extended-density diskette. This is the
default for extended-density type drives.

Forces formatting, that is, this option does not ask for confirmation
before starting format.

Formats a 1.44MB (3.5 inch) or 1.2MB (5.25 inch) high-density
diskette. This is the default for high-density type drives; it is
needed if the drive is the extended-density type.

Writes a 1. 2MB (3.5 inch) medium-density format on a
high-density diskette (use only with the -t nec option). This is the
same as using -m.

This feature is not available on all systems.

Quiet; does not print status messages.

Installs an MS-DOS file system and boot sector formatting. This is
equivalent to the DOS format command or the -d option.

Installs an NEC-DOS file system and boot sector on the disk after
formatting. This should be used only with the -M option. This
feature is not available on all systems.

Performs umount on any file systems and then formats. See
mount (1M).

Verifies each block of the diskette after the format.

Skips the format and only writes a SunOS label or an MS-DOS file
system.

OPERANDS | The following operands are supported:

devname

Replaces devname with rdiskette0 (systems without Volume
Management) or £1loppy0 (systems with Volume Management) to
use the first drive or rdiskettel (systems without Volume

man pages section 1: User Commands ¢ Last Revised 16 Mar 2000



FILES

fdformat(1)

Management) or £loppy1 (systems with Volume Management) to
use the second drive. If devname is omitted, the first drive, if one
exists, is used. For PCMCIA memory cards, replace devname with
the device name for the PCMCIA memory card which resides in
/dev/rdsk/cNtNdNsN or /dev/dsk/cNtNdNsN. If devname is
omitted, the default diskette drive, if one exists, is used.

If devname is omitted, the default diskette drive, if one exists, will
be used. N represents a decimal number and can be specified as
follows:

cN  Controller N
tN  Technology type N:

0x1 ROM
0x2 OTPROM
0x3 EPROM
0x4 EEPROM
0x5 FLASH
0x6 SRAM
0x7 DRAM

dN  Technology region in type N.
sN  Slice N.

The following options are provided for compatibility with
previous versions of £dformat. Their use is discouraged.

-d Formats an MS-DOS floppy diskette or PCMCIA
memory card (same as -t dos). This is equivalent to
the MS-DOS FORMAT command.

-1 Formats a 720KB (3.5 inch) or 360KB (5.25 inch)
double-density diskette (same as -D or -L ). This is the
default for double-density type drives; it is needed if
the drive is the high- or extended-density type.

-L Formats a 720KB (3.5 inch) or 360KB (5.25 inch)
double-density diskette (same as -1 or -D ). This is the
default for double-density type drives.

-m Writes a 1.2 MB (3.5 inch) medium- density format on
a high-density diskette (use only with the- t nec
option). This is the same as using -M. This feature is not
available on all systems.

/vol/dev/diskette0 Directory providing block device access for the media
in floppy drive 0.
/vol/dev/diskette0 Directory providing character device access for the

media in floppy drive 0.

User Commands 385



fdformat(1)

ATTRIBUTES

SEE ALSO

IA Only

NOTES

/vol/dev/aliases/floppy0  Symbolic link to the character device for the media in
floppy drive 0.

/dev/rdiskette Directory providing character device access for the
media in the primary floppy drive, usually drive 0.

/vol/dev/dsk/cNtNdNsN  Directory providing block device access for the PCMCIA
memory card. See OPERANDS for a description of N.

/vol/dev/rdsk/cNtNdNsN  Directory providing character device access for the
PCMCIA memory card. See OPERANDS for a
description of N.

/vol/dev/aliases/pcmemS  Symbolic link to the character device for the PCMCIA
memory card in socket S where S represents a PCMCIA
socket number.

/dev/rdsk/cNtNdNsN Directory providing character device access for the
PCMCIA memory card. See OPERANDS for a
description of N.

/dev/dsk/cNtNdNsN Directory providing block device access for the PCMCIA

memory card. See OPERANDS for a description of N.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

cpio(1), eject(l), rmformat(l), tar(l), volcancel(l), volcheck(l),
volmissing(l), volrmmount(1l), mount(1M), newfs(1M), prtvtoc(1M), vold(1M),
rmmount . conf(4), vold.conf(4), attributes(5), pcfs(7FS), volfs(7FS)

£4(7D)

A diskette or PCMCIA memory card containing a ufs file system created on a SPARC
based system (by using fdformat and newfs(1M)), is not identical to a diskette or
PCMCIA memory card containing a ufs file system created on an IA based system. Do
not interchange ufs diskettes or memory cards between these platforms. Use cpio(1)
or tar(l) to transfer files on diskettes or memory cards between them. A diskette or
PCMCIA memory card formatted using the -t dos option (or -d) for MS-DOS does
not have the necessary system files, and is therefore not bootable. Trying to boot from
it on a PC produces the following message:

Non-System disk or disk error.
Replace and strike any key when ready

386 man pages section 1: User Commands ¢ Last Revised 16 Mar 2000



fdformat(1)

BUGS | Currently, bad sector mapping is not supported on floppy diskettes or PCMCIA
memory cards. Therefore, a diskette or memory card is unusable if fdformat finds an
error (bad sector).

User Commands 387



fgrep(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

fgrep — search a file for a fixed-character string

/usr/bin/fgrep [-bchilnsvx] [-e pattern_list] [-£ pattern-file]l [pattern]
[file...]

/usr/xpg4/bin/fgrep [-bchilnsvx] [-e pattern_list] [-f pattern-file]
[pattern] [file...]

The fgrep (fast grep) utility searches files for a character string and prints all lines
that contain that string. £grep is different from grep(1) and egrep(1) because it
searches for a string, instead of searching for a pattern that matches an expression. It
uses a fast and compact algorithm.

A

The characters $, *, [, *, |, (, ), and \ are interpreted literally by £grep, that is,
fgrep does not recognize full regular expressions as does egrep. Since these
characters have special meaning to the shell, it is safest to enclose the entire string in
single quotes -

If no files are specified, £grep assumes standard input. Normally, each line found is
copied to the standard output. The file name is printed before each line found if there
is more than one input file.

The following options are supported:

-b Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is
0).

-c Print only a count of the lines that contain the pattern.

-e pattern_list Search for a string in pattern-list (useful when the string begins with
a-).

- £ pattern-file Take the list of patterns from pattern-file.

-h Suppress printing of files when searching multiple files.

-1 Ignore upper/lower case distinction during comparisons.

-1 Print the names of files with matching lines once, separated by

new-lines. Does not repeat the names of files when the pattern is
found more than once.

-n Precede each line by its line number in the file (first line is 1).

-s Work silently, that is, display nothing except error messages. This
is useful for checking the error status.

-v Print all lines except those that contain the pattern.

-x Print only lines matched entirely.

The following operands are supported:

388 man pages section 1: User Commands ¢ Last Revised 12 May 1997



lusr/bin/fgrep
lusr/xpg4/bin/fgrep

USAGE

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

/usr/bin/fgrep

lusr/xpg4/bin/fgrep

SEE ALSO

NOTES

lusr/xpgd/bin/fgrep

fgrep(1)

file A path name of a file to be searched for the patterns. If no file
operands are specified, the standard input will be used.

pattern Specify a pattern to be used during the search for input.

pattern Specify one or more patterns to be used during the search for
input. This operand is treated as if it were specified as
-epattern_list.

See largefile(5) for the description of the behavior of £grep when encountering
files greater than or equal to 2 Gbyte ( 2*' bytes).

See environ(5) for descriptions of the following environment variables that affect the
execution of fgrep: LC_COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 if any matches are found
1 if no matches are found
2 for syntax errors or inaccessible files (even if matches were found).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
CSI Enabled

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWxcu4
CSI Enabled

ed(1), egrep(l), grep(l), sed(1), sh(l), attributes(5), environ(b), largefile(b),

XPG4(5)

Ideally there should be only one grep command, but there is not a single algorithm

that spans a wide enough range of space-time tradeoffs.

Lines are limited only by the size of the available virtual memory.

The /usr/xpg4/bin/fgrep utility is identical to /usr/xpg4 /bin/grep -F (see

grep(l)). Portable applications should use /usr/xpg4/bin/grep -F.

User Commands




file(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

USAGE

EXAMPLES

file — determine file type

file [-h] [-m mfile] [-£ ffile] file..

file [-h] [-m mfile] -£ ffile

file -c [-m mfile]

The file utility performs a series of tests on each file supplied by file and, optionally,
on each file listed in ffile in an attempt to classify it. If the file is not a regular file, its file
type is identified. The file types directory, FIFO, block special, and character special

are identified as such. If the file is a regular file and the file is zero-length, it is
identified as an empty file.

If file appears to be a text file, file examines the first 512 bytes and tries to determine
its programming language. If file is an executable a . out, £ile prints the version
stamp, provided it is greater than 0. If file is a symbolic link, by default the link is
followed and file tests the file to which the symbolic link refers.

By default, £ile will try to use the localized magic file
/usr/lib/locale/locale/L.C_MESSAGES/magic, if it exists, to identify files that
have a magic number. For example, in the Japanese locale, £ile will try to use
/usr/lib/locale/ja/LC_MESSAGES/magic. If a localized magic file does not
exist, file will utilize /etc/magic. A magic number is a numeric or string constant
that indicates the file type. See magic(4) for an explanation of the format of
/etc/magic.

If file does not exist, cannot be read, or its file status could not be determined, it is not
considered an error that affects the exit status. The output will indicate that the file
was processed, but that its type could not be determined.

The following options are supported:

-c Check the magic file for format errors. For reasons of efficiency,
this validation is normally not carried out.

-h Do not follow symbolic links.
-£ ffile ffile contains a list of the files to be examined.

-m mifile Use mfile as an alternate magic file, instead of /etc/magic.

The following operands are supported:

file A path name of a file to be tested.

See largefile(5) for the description of the behavior of £ile when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).

EXAMPLE 1 Binary executable files

Determine if an argument is a binary executable file:

390 man pages section 1: User Commands ¢ Last Revised 1 Apr 1996



ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

file(1)

EXAMPLE 1 Binary executable files (Continued)

file "$1" | grep -Fq executable &&
printf "%s is executable.\n" "$1"

See environ(5) for descriptions of the following environment variables that affect the
execution of file: LC CTYPE, LC MESSAGES, and NLSPATH.

The following exit values are returned:

0 Successful completion.
>0 An error occurred.
/etc/magic file’s magic number file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

CSI enabled

1s(1), magic(4), attributes(b), environ(5), largefile(5)

If the -h option is specified and file is a symbolic link, £ile prints the error message:

symbolic link to file

User Commands 391



file(1B)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ENVIRONMENT
VARIABLES

FILES

file — determine the type of a file by examining its contents

/usr/ucb/file [-f fiile] [-cL] [-m mfile] filename...

file performs a series of tests on each filename in an attempt to determine what it
contains. If the contents of a file appear to be ASCII text, £ile examines the first 512
bytes and tries to guess its language.

file uses the file /etc/magic to identify files that have some sort of magic number,
that is, any file containing a numeric or string constant that indicates its type.

-c Check for format errors in the magic number file. For reasons of
efficiency, this validation is not normally carried out. No file
type-checking is done under -c.

- £ ffile Get a list of filenames to identify from ffile.

-L If a file is a symbolic link, test the file the link references rather
than the link itself.

-m mfile Use mfile as the name of an alternate magic number file.

EXAMPLE 1 Using £ile on all the files in a specific user’s directory.

This example illustrates the use of £ile on all the files in a specific user’s directory:

example% pwd
/usr/blort/misc

example% /usr/ucb/file *

code: mc68020 demand paged executable
code.c: ¢ program text

counts: ascii text

doc: roff,nroff, or egn input text
empty.file: empty

libz: archive random library

memos : directory

project: symboliclink to /usr/project
script: executable shell script
titles: ascii text

s5.stuff: cpio archive

example%

The environment variables LC CTYPE, LANG, and LC_default control the character
classification throughout file. On entry to £ile, these environment variables are
checked in the following order: LC_ CTYPE, LANG, and LC_default. When a valid
value is found, remaining environment variables for character classification are
ignored. For example, a new setting for LANG does not override the current valid
character classification rules of LC_CTYPE. When none of the values is valid, the shell
character classification defaults to the POSIX.1 “C” locale.

/etc/magic

392 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



ATTRIBUTES

SEE ALSO

BUGS

file(1B)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWSscpu

magic(4), attributes(b)

file often makes mistakes. In particular, it often suggests that command files are C
programs.

file does not recognize Pascal or LISP.

User Commands 393



filesync(1)

394

NAME
SYNOPSIS

DESCRIPTION

Reconciling and
Synchronizing
Files

filesync — synchronize ordinary, directory or special files

filesync [-aehmngvy] [-o src | dst] [-f src | dst | old | new]
[-r directory...]

filesync [-aehmnqvyl -s source-dir -d dest-dir filename...

The filesync utility synchronizes files between multiple computer systems, typically
a server and a portable computer. £ilesync synchronizes ordinary, directory or
special files. Although intended for use on nomadic systems, filesync is useful for
backup and file replication on more permanently connected systems.

If files are synchronized between systems, the corresponding files on each of the
systems are identical. Changing a file on one or both of the systems causes the files to
become different (not synchronized). In order to make the files identical again, the
differences between the files must be reconciled. See Reconciling and
Synchronizing Files for specific details about how filesync reconciles and
synchronizes files.

There are two forms of the £ilesync command. The first form of £ilesync is
invoked without file arguments. This form of filesync reconciles differences
between the files and systems specified in the SHOME/ . packingrules file.
$HOME/ .packingrules is a packing rules list for filesync and cachefspack,
and contains a list of files to be kept synchronized. See packingrules(4) and
cachefspack(lM).

The second form of filesync copies specific files from a directory on the source
system to a directory on the destination system. In addition, this form of £ilesync
adds the file or files specified as arguments (filename) to SHOME/ . packingrules. See
-s and -d for information about specifying directories on source and destination
systems. See OPERANDS for details about specifying file (filename) arguments.

Multiple filesync commands are cumulative (that is, the specified files are added to
the already existing packing rules file list). See Multiple filesync Commands.

filesync synchronizes files between computer systems by performing the following
two tasks:

1. filesync examines the directories and files specified in the packing rules file on
both systems, and determines whether or not they are identical. Any file that
differs requires reconciliation.

filesync also maintains a baseline summary in the SHOME/ . filesync-base
file for all of the files that are being monitored. This file lists the names, types, and
sizes of all files as of the last reconciliation.

2. Based on the information contained in the baseline file and the specified options
(see Resolving filesync Conflicts), filesync determines which of the
various copies is the correct one, and makes the corresponding changes to the other
system. Once this has been done, the two copies are, again, identical
(synchronized).

man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



Resolving filesync
Conflicts

Packing Rules File

Baseline File

Multiple filesync
Commands

filesync(1)

If a source file has changed and the destination file has not, the changes on the
source system are propagated to the destination system. If a destination file has
changed and the corresponding source file has not, the changes on the destination
file are propagated to the source system. If both systems have changed (and the
files are not still identical) a warning message will be printed out, asking the user
to resolve the conflict manually. See Resolving filesync Conflicts.

In cases where files on both sides have changed, filesync attempts to determine
which version should be chosen. If filesync cannot automatically determine which
version should be selected, it prints out a warning message and leaves the two
incompatible versions of the file unreconciled.

In these cases, you must either resolve the differences manually, or tell filesync how
to choose which file should win. Use the -o and - £ options to tell £ilesync how to
resolve conflicts (see OPTIONS).

Alternatively, for each conflicting file, you can examine the two versions, determine
which one should be kept, and manually bring the two versions into agreement (by
copying, deleting, or changing the ownership or protection to be correct). You can then
re-run filesync to see whether or not any other conflicts remain.

The packing rules file $SHOME/ . packingrules contains a list of files to be kept
synchronized. The syntax of this file is described in packingrules(4).

The $HOME/ .packingrules file is automatically created if users invoke filesync
with filename arguments. By using filesync options, users can augment the packing
rules in $SHOME/ . packingrules.

Many users choose to create the packing rules file manually and edit it by hand. Users
can edit $HOME/ . packingrules (using any editor) to permanently change the
$HOME/ .packingrules file, or to gain access to more powerful options that are not
available from the command line (such as IGNORE commands). It is much easier to
enter complex wildcard expressions by editing the $HOME/ . packingrules file.

SHOME/ . filesync-base is the filesync baseline summary file. filesync uses
the information in $HOME/ . filesync-base to identify the differences between files
during the reconciliation and synchronization process. Users do not create or edit the
baseline file. It is created automatically by £ilesync and records the last known state
of agreement between all of the files being maintained.

Over a period of time, the set of files you want to keep synchronized can change. It is
common, for instance, to want to keep files pertaining to only a few active projects on
your notebook. If you continue to keep files associated with every project you have
ever worked on synchronized, your notebook’s disk will fill up with old files. Each
filesync command will waste a lot of time updating files you no longer care about.

User Commands 395



filesync(1)

Nomadic
Machines

OPTIONS

If you delete the files from your notebook, filesync will want to perform the
corresponding deletes on the server, which would not be what you wanted. Rather,
you would like a way to tell £ilesync to stop synchronizing some of the files. There
are two ways to do this:

1. Edit SHOME/ . packingrules. Delete the rules for the files that you want to delete.

2. Delete $HOME/ .packingrules. Use the filesync command to specify the files
that you want synchronized.

Either way works, and you can choose the one that seems easiest to you. For minor
changes, it is probably easier to just edit SHOME/ . packingrules. For major changes
it is probably easier to start from scratch.

Once filesync is no longer synchronizing a set of files, you can delete them from
your notebook without having any effect on the server.

When using filesync to keep files synchronized between nomadic machines and a
server, store the packing rules and baseline files on the nomadic machines, not the
server. If, when logged into your notebook, the HOME environment variable does not
normally point to a directory on your notebook, you can use the FILESYNC
environment variable to specify an alternate location for the packing rules and
baseline files.

Each nomadic machine should carry its own packing rules and baseline file. Incorrect
file synchronization can result if a server carries a baseline file and multiple nomadic
machines attempt to reconcile against the server’s baseline file. In this case, a nomadic
machine could be using a baseline file that does not accurately describe the state of its
files. This might result in incorrect reconciliations.

To safeguard against the dangers associated with a single baseline file being shared by
more than two machines, filesync adds a default rule to each new packing rules
file. This default rule prevents the packing rules and baseline files from being copied.

The following options are supported:

-a
Force the checking of Access Control Lists (ACLs ) and attempt to make them agree
for all new and changed files. If it is not possible to set the ACL for a particular file,
filesync stops ACL synchronization for that file.

Some file systems do not support ACLs . It is not possible to synchronize ACLs
between file systems that support ACLs and those that do not; attempting to do so
will result in numerous error messages.

-d dest-dir
Specify the directory on the destination system into which filename is to be copied.
Use with the - s source-dir option and the filename operand. See -s and OPERANDS.

396 man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



filesync(1)

Flag all differences. It may not be possible to resolve all conflicts involving modes
and ownership (unless £ilesync is being run with root privileges). If you cannot
change the ownership or protections on a file, £ilesync will normally ignore
conflicts in ownership and protection. If you specify the -e (everything must agree)
flag, however, filesync will flag these differences.

-f src | dst | old | new
The - £ option tells £ilesync how to resolve conflicting changes. If a file has been
changed on both systems, and an - f option has been specified, filesync will
retain the changes made on the favored system and discard the changes made on
the unfavored system.

Specify - £ src to favor the source-system file. Specify - f dst to favor the
destination-system file. Specify - £ o1d to favor the older version of the file. Specify
- f new to favor the newer version of the file.

It is possible to specify the -f and -o options in combination if they both specify
the same preference (src and dst). If -£ and -o conflict, the - f option is
ignored. See the -o option description.

Halt on error. Normally, if £ilesync encounters a read or write error while
copying files, it notes the error and the program continues, in an attempt to
reconcile other files. If the -h option is specified, f£ilesync will immediately halt
when one of these errors occurs and will not try to process any more files.

Ensure that both copies of the file have the same modification time. The
modification time for newly copied files is set to the time of reconciliation by
default. File changes are ordered by increasing modification times so that the
propagated files have the same relative modification time ordering as the original
changes. Users should be warned that there is usually some time skew between any
two systems, and transferring modification times from one system to another can
occasionally produce strange results.

There are instances in which using filesync to update some (but not all) files in a
directory will confuse the make program. If, for instance, filesync is keeping . c
files synchronized, but ignoring . o files, a changed . c file may show up with a
modification time prior to a . o file that was built from a prior version of the . c file.

Do not really make the changes. If the -n option is specified, filesync determines
what changes have been made to files, and what reconciliations are required and
displays this information on the standard output. No changes are made to files,
including the packing rules file.

Specifying both the -n and -o options causes £ilesync to analyze the prevailing
system and report the changes that have been made on that system. Using -n and
-o in combination is useful if your machine is disconnected (and you cannot access

User Commands 397



filesync(1)

the server) but you want to know what changes have been made on the local
machine. See the -o option description.

-0 src | dst
The -o option forces a one-way reconciliation, favoring either the source system
(src) or destination system (dst).

Specify -o src to propagate changes only from the source system to the
destination system. Changes made on the destination system are ignored.
filesync aborts if it cannot access a source or destination directory.

Specify -o dst to propagate changes only from the destination system to the
source system. Changes made on the source system are ignored. £ilesync aborts
if it cannot access a source or destination directory.

Specifying -n with the -o option causes filesync to analyze the prevailing
system and reports on what changes have been made on that system. Using -n and
-0 in combination is useful if a machine is disconnected (and there is no access to
the server), but you want to know what changes have been made on the local
machine. See the -n option description.

It is possible to specify the -o and - £ options in combination if they both specify
the same preference (src or dst). If -o and -f options conflict, the - £ option will
be ignored. See the - f option description.

Suppress the standard filesync messages that describe each reconciliation action
as it is performed.

The standard filesync message describes each reconciliation action in the form of
a UNIX shell command (for example, mv, 1n, c¢p, rm, chmod, chown, chgrp,
setfacl, and so forth).

-t directory
Limit the reconciliation to directory. Specify multiple directories with multiple -r
specifications.

-s source-dir
Specify the directory on the source system from which the filename to be copied is
located. Use with the -d dest-dir option and the filename operand. See the -d option
description and OPERANDS.

-V
Display additional information about each file comparison as it is made on the
standard output.

4
Bypass safety check prompts. Nomadic machines occasionally move between
domains, and many of the files on which filesync operates are expected to be
accessed by NFS. There is a danger that someday filesync will be asked to
reconcile local changes against the wrong file system or server. This could result in

398 man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



OPERANDS

filesync(1)

a large number of inappropriate copies and deletions. To prevent such a mishap,
filesync performs a few safety checks prior to reconciliation. If large numbers of
files are likely to be deleted, or if high level directories have changed their I-node
numbers, £ilesync prompts for a confirmation before reconciliation. If you know
that this is likely, and do not want to be prompted, use the -y (yes) option to
automatically confirm these prompts.

The following operands are supported:

filename

The name of the ordinary file, directory, symbolic link, or special
file in the specified source directory (source-dir) to be synchronized.
Specify multiple files by separating each filename by spaces. Use
the filename operand with the -s and -d options. See OPTIONS.

If filename is an ordinary file, that ordinary file will be replicated
(with the same filename) in the specified destination directory
(dest-dir).

If filename is a directory, that directory and all of the files and
subdirectories under it will be replicated (recursively) in the
specified destination directory (dest-dir).

If filename is a symbolic link, a copy of that symbolic link will be
replicated in the specified destination directory (dest-dir).

If filename is a special file, a special file with the same major or
minor device numbers will be replicated in the specified
destination directory. (dest-dir). Only super-users can use
filesync to create special files.

Files created in the destination directory (dest-dir) will have the
same owner, group and other permissions as the files in the source
directory.

If filename contains escaped shell wildcard characters, the wildcard
characters are stored in SHOME/ . packingrules and evaluated
each time filesync is run.

For example, the following would make sure that the two specified
files, currently in SRHOME, were replicated in SHOME:

filesync -s $RHOME -d $HOME a.c b.c

The following example would ensure that all of the * . c files in
$RHOME were replicated in SHOME, even if those files were not
created until later.

filesync -s $RHOME -d $HOME ’'*.c’

If any of the destination files already exist, filesync ensures that
they are identical and issues warnings if they are not.

User Commands 399



filesync(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

Once files have been copied, the distinction between the source
and destination is a relatively arbitrary one (except for its use in
the -o and - £ switches).

FILESYNC Specifies the default location of the filesync packing
rules and baseline files. The default value for this
variable is $SHOME. The suffixes .packingrules and
.filesync-base will be appended to form the
names of the packing rules and baseline files.

LC_MESSAGES Determines how diagnostic and informative messages
are presented. In the "C" locale, the messages are
presented in the default form found in the program
itself (in most cases, U.S. English).

Normally, if all files are already up-to-date, or if all files were successfully reconciled,
filesync will exit with a status of 0. However, if either the -n option was specified
or any errors occurred, the exit status will be the logical OR of the following;:

0 No contflicts, all files up to date.

1 Some resolvable conflicts.

2 Some conflicts requiring manual resolution.

4 Some specified files did not exist.

8 Insufficient permission for some files.

16 Errors accessing packing rules or baseline file.

32 Invalid arguments.

64 Unable to access either or both of the specified src or dst directories.
128 Miscellaneous other failures.

SHOME/ .packingrules list of files to be kept synchronized
$HOME/ .filesync-base baseline summary file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmdc

cachefspack(lM), packingrules(4), attributes(b)

400 man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



NAME
SYNOPSIS

DESCRIPTION

OPERANDS

Expressions

find — find files

find(1)

/usr/bin/find path... expression

/usr/xpg4/bin/£ind path... expression

The f£ind utility recursively descends the directory hierarchy for each path seeking
files that match a Boolean expression written in the primaries given below.

find will be able to descend to arbitrary depths in a file hierarchy and will not fail
due to path length limitations (unless a path operand specified by the application
exceeds PATH_MAX requirements).

The following operands are supported:

path

expression

A path name of a starting point in the directory hierarchy.

The first argument that starts witha —, orisa ! ora (, and all
subsequent arguments will be interpreted as an expression made up
of the following primaries and operators. In the descriptions,
wherever 7 is used as a primary argument, it will be interpreted as
a decimal integer optionally preceded by a plus (+) or minus (-)
sign, as follows:

+n more than n
n exactly n
-n less than n

Valid expressions are:

-atimen

-cpio device

-ctimen

-depth

-exec command

True if the file was accessed n days ago. The access time of
directories in path is changed by find itself.

Always true. Writes the current file on device in cpio format
(5120-byte records).

True if the file’s status was changed n days ago.

Always true. Causes descent of the directory hierarchy to be done
so that all entries in a directory are acted on before the directory
itself. This can be useful when £ind is used with cpio(1) to
transfer files that are contained in directories without write
permission.

True if the executed command returns a zero value as exit status.
The end of command must be punctuated by an escaped semicolon
(7). A command argument { } is replaced by the current path
name. If the last argument to -exec is { } and you specify +
rather than the semicolon (;), the command will be invoked fewer
times, with { } replaced by groups of pathnames.

User Commands 401



find(1)
-follow

-fstype type

-group gname

-inumn
-linksn

-local

-1s

-mount

-mtime n

-name pattern

Always true. Causes symbolic links to be followed. When
following symbolic links, £ind keeps track of the directories
visited so that it can detect infinite loops. For example, such a loop
would occur if a symbolic link pointed to an ancestor. This
expression should not be used with the -type 1 expression.

True if the filesystem to which the file belongs is of type type.

True if the file belongs to the group gname. If gname is numeric and
does not appear in the /etc/group file, or in the NIS/NIS+
tables, it is taken as a group ID.

True if the file has inode number n.
True if the file has 7 links.

True if the file system type is not a remote file system type as
defined in the /etc/dfs/fstypes file. nfs is used as the default
remote filesystem type if the /etc/dfs/fstypes file is not
present. Note that -1ocal will descend the hierarchy of non-local
directories. See EXAMPLES for an example of how to search for
local files without descending.

Always true. Prints current path name together with its associated
statistics. These include (respectively):

inode number

size in kilobytes (1024 bytes)
protection mode

number of hard links

user

group

size in bytes

modification time.

If the file is a special file, the size field will instead contain the
major and minor device numbers.

If the file is a symbolic link, the pathname of the linked-to file is
printed preceded by ‘—’. The format is identical to that of 1s
-gilds (see 1s(1B)). Note: Formatting is done internally, without
executing the 1s program.

Always true. Restricts the search to the file system containing the
directory specified. Does not list mount points to other file
systems.

True if the file’s data was modified n days ago.

True if pattern matches the current file name. Normal shell file
name generation characters (see sh(1)) may be used. A backslash

402 man pages section 1: User Commands * Last Revised 6 Jun 2001



-ncpio device

-newer file

-nogroup

-nouser

-ok command

-perm [ - |mode

find(1)

( \ )is used as an escape character within the pattern. The
pattern should be escaped or quoted when find is invoked from
the shell.

Unless the character ’.” is explicitly specified in the beginning of
pattern, a current file name beginning with *.” will not match
pattern when using /usr/bin/find. /usr/xpg4/bin/find
does not make this distinction; wildcard file name generation
characters can match file names beginning with ".".

Always true. Writes the current file on device in cpio -c format
(5120 byte records).

True if the current file has been modified more recently than the
argument file.

True if the file belongs to a group not in the /etc/group file, or in
the NIS/NIS+ tables.

True if the file belongs to a user not in the /etc/passwd file, or in
the NIS/NIS+ tables.

Like -exec, except that the generated command line is printed
with a question mark first, and is executed only if the user
responds by typing y.

The mode argument is used to represent file mode bits. It will be
identical in format to the symbolic mode operand,
symbolic_mode_list, described in chmod(1), and will be interpreted
as follows. To start, a template will be assumed with all file mode
bits cleared. An op symbol of:

+ Will set the appropriate mode bits in the template
- Will clear the appropriate bits

= Will set the appropriate mode bits, without regard to
the contents of the file mode creation mask of the
process

The op symbol of — cannot be the first character of mode, to avoid
ambiguity with the optional leading hyphen. Since the initial mode
is all bits off, there are no symbolic modes that need to use — as the
first character.

If the hyphen is omitted, the primary will evaluate as true when
the file permission bits exactly match the value of the resulting
template.

Otherwise, if mode is prefixed by a hyphen, the primary will
evaluate as true if at least all the bits in the resulting template are
set in the file permission bits.

User Commands 403



find(1)

Complex
Expressions

-perm [ - Jonum True if the file permission flags exactly match the octal number

-print

-prune

-size n[c]

-typec

-user uname

-xdev

-xattr

onum (see chmod(1)). If onum is prefixed by a minus sign (-), only
the bits that are set in onum are compared with the file permission
flags, and the expression evaluates true if they match.

Always true. Causes the current path name to be printed.

Always yields true. Does not examine any directories or files in the
directory structure below the pattern just matched. (See
EXAMPLES). If -depth is specified, -prune will have no effect.

True if the file is n blocks long (512 bytes per block). If # is
followed by a ¢, the size is in bytes.

True if the type of the file is ¢, wherecis b, ¢, d, D, £, 1, p, or s for
block special file, character special file, directory, door, plain file,
symbolic link, fifo (named pipe), or socket, respectively.

True if the file belongs to the user uname. If uname is numeric and
does not appear as a login name in the /etc/passwd file, or in
the NIS/NIS+ tables, it is taken as a user ID.

Same as the -mount primary.

True if the file has extended attributes.

The primaries may be combined using the following operators (in order of decreasing

precedence):

1) ( expression )

2) | expression

3) expression [-al expression

4) expression -o expression

True if the parenthesized expression is true
(parentheses are special to the shell and
must be escaped).

The negation of a primary (! is the unary
not operator).

Concatenation of primaries (the and
operation is implied by the juxtaposition of
two primaries).

Alternation of primaries (-o is the or
operator).

Note: When you use f£ind in conjunction with cpio, if you use the -1 option with
cpio then you must use the - follow expression with £ind and vice versa.
Otherwise there will be undesirable results.

If no expression is present, -print will be used as the expression. Otherwise, if the
given expression does not contain any of the primaries -exec, -ok or -print , the
given expression will be effectively replaced by:

( given_expression ) -print

404 man pages section 1: User Commands ¢ Last Revised 6 Jun 2001



USAGE

EXAMPLES

find(1)

The -user, -group , and -newer primaries each will evaluate their respective
arguments only once. Invocation of command specified by -exec or -ok does not
affect subsequent primaries on the same file.

See largefile(5) for the description of the behavior of f£ind when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).

EXAMPLE 1 Writing out the hierarchy directory
The following commands are equivalent:

example% find .example% find . -print

They both write out the entire directory hierarchy from the current directory.

EXAMPLE 2 Removing files

Remove all files in your home directory named a.out or * .o that have not been
accessed for a week:

example% find $HOME \( -name a.out -o -name ’*.o’ \) \

-atime +7 -exec rm {} \;

EXAMPLE 3 Printing all file names but skipping SCCS directories

Recursively print all file names in the current directory and below, but skipping SCCS
directories:

example% find . -name SCCS -prune -o -print

EXAMPLE 4 Printing all file names and the SCCS directory name

Recursively print all file names in the current directory and below, skipping the
contents of SCCS directories, but printing out the SCCS directory name:

example% find . -print -name SCCS -prune

EXAMPLE 5 Testing for the newer file

The following command is basically equivalent to the -nt extension to test(1):

exampleS$ if [ -n "$(find
filel -prune -newer file2)" ]; then

printf %s\\n "filel is newer than file2"
EXAMPLE 6 Selecting a file using 24-hour mode

The descriptions of -atime, -ctime , and -mtime use the terminology n “24-hour
periods”. For example, a file accessed at 23:59 will be selected by:

User Commands 405



find(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

EXAMPLE 6 Selecting a file using 24-hour mode (Continued)

example% find . -atime -1 print

at 00:01 the next day (less than 24 hours later, not more than one day ago). The
midnight boundary between days has no effect on the 24-hour calculation.

EXAMPLE 7 Printing files matching a user’s permission mode

Recursively print all file names whose permission mode exactly matches read, write,
and execute access for user, and read and execute access for group and other:

example% find . -perm u=rwx,g=rx,o=rx

The above could alternatively be specified as follows:

example% find . -perm a=rwx,g-w,o0-w

EXAMPLE 8 Printing files with write access for other

Recursively print all file names whose permission includes, but is not limited to, write
access for other:

example% find . -perm -o+w

EXAMPLE 9 Printing local files without descending non-local directories

example% find . ! -local -prune -o -print

EXAMPLE 10 Printing the files in the name space possessing extended attributes

example% find . -xattr

See environ(5) for descriptions of the following environment variables that affect the
execution of £ind: LC COLLATE, LC_CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:

0 All path operands were traversed successfully.

>0 An error occurred.

/etc/passwd password file

/etc/group group file

/etc/dfs/fstypes file that registers distributed file system packages

See attributes(5) for descriptions of the following attributes:

406 man pages section 1: User Commands ¢ Last Revised 6 Jun 2001



SEE ALSO

WARNINGS

NOTES

find(1)

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWcsu
CSI Enabled
Interface Stability Stable

chmod(1), cpio(l), 1s(1B), sh(l), test(l), stat(2), umask(2), attributes(5),
environ(5), fsattr(5), largefile(5)

The following options are obsolete and will not be supported in future releases:

-cpio device Always true. Writes the current file on device in cpio format
(5120-byte records).
-ncpio device Always true. Writes the current file on device in cpio -c format

(5120-byte records).

When using £ind to determine files modified within a range of time, use the -mt ime
argument before the -print argument. Otherwise, £ ind will give all files.

Some files that may be under the Solaris root file system are actually mount points for
virtual file systems, such as mnt £s or namefs. When comparing against a ufs file
system, they will not be selected if -mount or -xdev is specified in the find
expression.

User Commands 407



finger(1)

408

NAME
SYNOPSIS

DESCRIPTION

finger — display information about local and remote users
finger [-bfhilmpgsw] [username...]
finger [-1] [username@hostname 1 [@hostname 2 .. .@hostname n...] ]

finger [-1] [@hostname 1 [@hostname 2 .. .@hostname n...] ]

By default, the £inger command displays in multi-column format the following
information about each logged-in user:

®  user name

m  user’s full name

®  terminal name (prepended with a ** ’ (asterisk) if write-permission is denied)
m  idle time

®  Jogin time

®  host name, if logged in remotely

Idle time is in minutes if it is a single integer, in hours and minutes if a “: * (colon) is
present, or in days and hours if a ‘d’ is present.

When one or more username arguments are given, more detailed information is given
for each username specified, whether they are logged in or not. username must be that
of a local user, and may be a first or last name, or an account name. Information is
presented in multi-line format as follows:

m  the user name and the user’s full name
®  the user’s home directory and login shell

m  time the user logged in if currently logged in, or the time the user last logged in;
and the terminal or host from which the user logged in

m ]ast time the user received mail, and the last time the user read mail
m the first line of the SHOME/ . project file, if it exists
m  the contents of the $SHOME/ . plan file, if it exists

Note: when the comment (GECOS) field in /etc/passwd includes a comma, finger
does not display the information following the comma.

If the arguments username@hostnamel[@hostname2 . . .@hostnamen] or
@hostnamel[@hostname? . . .@hostnamen] are used, the request is sent first to
hostnamen and forwarded through each hostnamen-1 to hostnamel. The program
uses the finger user information protocol (see RFC 1288) to query that
remote host for information about the named user (if username is specified), or about
each logged-in user. The information displayed is server dependent.

As required by RFC 1288, finger passes only printable, 7-bit ASCII data. This
behavior may be modified by a system administrator by using the PASS option in
/etc/default/finger. Specifying PASS=1ow allows all characters less than

man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



OPTIONS

FILES

ATTRIBUTES

SEE ALSO

finger(1)

decimal 32 ASCII. Specifying PASS=high allows all characters greater than decimal
126 ASCII. PASS=1ow, high or PASS=high, low allows both characters less than 32
and greater than 126 to pass through.

The following options are supported, except that the username@hostname form
supports only the -1 option:

-b Suppresses printing the user’s home directory and shell in a long format
printout.

-f Suppresses printing the header that is normally printed in a non-long
format printout.

-h Suppresses printing of the . project file in a long format printout.

-1 Forces “idle” output format, which is similar to short format except that
only the login name, terminal, login time, and idle time are printed.

-1 Forces long output format.

-m Matches arguments only on user name (not first or last name).

-p Suppresses printing of the . plan file in a long format printout.

-q Forces quick output format, which is similar to short format except that
only the login name, terminal, and login time are printed.

-8 Forces short output format.

-w Suppresses printing the full name in a short format printout.

SHOME/ .plan user’s plan

SHOME/ .project user’s projects

/etc/default/finger finger options file

/etc/passwd password file

/var/adm/lastlog time of last login

/var/adm/utmpx accounting

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWrcmds

passwd(l), who(1), whois(l), passwd(4), attributes(5)

Zimmerman, D., The Finger User Information Protocol, REC 1288, Center for Discrete
Mathematics and Theoretical Computer Science (DIMACS), Rutgers University,
December 1991.

User Commands

409



finger(1)

NOTES | The finger user information protocol limits the options that may be used
with the remote form of this command.

410 man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

fmlcut(1F)
fmlcut — cut out selected fields of each line of a file
fmlcut -clist [filename..]

fmlcut -flist [-dchar] [-s] [filename..]

The fmlcut function cuts out columns from a table or fields from each line in filename;
in database parlance, it implements the projection of a relation. fmlcut can be used as
a filter; if filename is not specified or is —, the standard input is read. list specifies the
fields to be selected. Fields can be fixed length (character positions) or variable length
(separated by a field delimiter character), depending on whether -c or -f is specified.

Note: Either the -c or the - £ option must be specified.

list A comma-separated list of integer field numbers (in increasing order), with
optional - to indicate ranges. For example: 1,4,7; 1-3,8; =5, 10 (short
for 1-5, 10); or 3— (short for third through last field).

-clist If -c is specified, list specifies character positions (for instance, —c1-72
would pass the first 72 characters of each line). Note: No space intervenes
between -c and list.

- £list If - £ is specified, list is a list of fields assumed to be separated in the file by
the default delimiter character, TAB, or by char if the -d option is specified.
For example, —£1, 7 copies the first and seventh field only. Lines with no
delimiter characters are passed through intact (useful for table
subheadings), unless -s is specified. Note: No space intervenes between - £
and list. The following options can be used if you have specified - £.

-dchar If -d is specified, char is the field delimiter. Space or other
characters with special meaning to FMLI must be quoted. Note:
No space intervenes between -d and char . The default field
delimiter is TAB.

-s Suppresses lines with no delimiter characters. If - s is not
specified, lines with no delimiters will be passed through
untouched.

EXAMPLE 1 Getting login IDs and names

The following example gets the login IDs and names.

example% fmlcut -d: -f1,5 /etc/passwd

EXAMPLE 2 Getting the current login name

The next example gets the current login name.

example% ‘who am i | fmlcut -f1 -4 " ™

See attributes(5) for descriptions of the following attributes:

User Commands 411



fmlcut(1F)

SEE ALSO

DIAGNOSTICS

412

NOTES

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

fmlgrep(lF), attributes(b)

fmlcut returns the following exit values:
0 when the selected field is successfully cut out

2 on syntax errors

The following error messages may be displayed on the FMLI message line:

ERROR: line too long
A line has more than 1023 characters or fields, or there is no new-line character.

ERROR: bad list for ¢ / f option
Missing -c or - £ option or incorrectly specified list. No error occurs if a line has
fewer fields than the list calls for.

ERROR: no fields
The [ist is empty.

ERROR: no delimiter
Missing char on -d option.

fmlcut cannot correctly process lines longer than 1023 characters, or lines with no
newline character.

man pages section 1: User Commands ¢ Last Revised 5 Jul 1990




NAME
SYNOPSIS

DESCRIPTION

Expressions

EXAMPLES

fmlexpr(1F)
fmlexpr — evaluate arguments as an expression

fmlexpr arguments

The fmlexpr function evaluates its arguments as an expression. After evaluation, the
result is written on the standard output. Terms of the expression must be separated by
blanks. Characters special to FMLI must be escaped. Note that 30 is returned to
indicate a zero value, rather than the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued arguments may be preceded by a
unary minus sign. Internally, integers are treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are
preceded by \. The list is in order of increasing precedence, with equal precedence
operators grouped within { } symbols.

expr \ | expr
Returns the first expr if it is neither NULL nor 0, otherwise returns the second
expr.

expr \ & expr
Returns the first expr if neither expr is NULL or 0, otherwise returns 0.

expr { =, \>, \>=,\<, \<=, =] expr
Returns the result of an integer comparison if both arguments are integers,
otherwise returns the result of a lexical comparison.

expr{ +, —} expr
Addition or subtraction of integer-valued arguments.

expr { *, /, %} expr
Multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : (colon) compares the first argument with the second
argument which must be a regular expression. Regular expression syntax is the
same as that of ed(1), except that all patterns are "anchored" (that is, begin with *)
and, therefore, * is not a special character, in that context. Normally, the matching
operator returns the number of bytes matched (0 on failure). Alternatively, the
(. . . ) pattern symbols can be used to return a portion of the first argument.

EXAMPLE 1 Incrementing a variable

Add 1 to the variable a:

example% fmlexpr $a + 1 | set -1 a

EXAMPLE 2 Setting a variable equal to a filename

For $a equal to either /usr/abc/file orjust file:

example% fmlexpr $a : 2/NC*\) \| sa

User Commands 413



fmlexpr(1F)

EXIT STATUS

ATTRIBUTES

SEE ALSO
DIAGNOSTICS

NOTES

EXAMPLE 2 Setting a variable equal to a filename (Continued)

returns the last segment of a path name (that is, £ile). Watch out for / alone as an
argument: fmlexpr will take it as the division operator (see NOTES below).

EXAMPLE 3 A better representation of Example 2
example% fmlexpr //$a : .*/\(.*\)

The addition of the // characters eliminates any ambiguity about the division
operator (because it makes it impossible for the left-hand expression to be interpreted
as the division operator), and simplifies the whole expression.

EXAMPLE 4 Counting characters in a variable

Return the number of characters in $VAR:

example% fmlexpr $VAR : .*

As a side effect of expression evaluation, fmlexpr returns the following exit values:

0 if the expression is neither NULL nor 0 (that is, TRUE)
1 if the expression is NULL or 0 (that is, FALSE)
2 for invalid expressions (that is, FALSE).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

ed(1), expr(1), set(1F), sh(l), attributes(b)
syntax error for operator/operand errors

non-numeric argument  if arithmetic is attempted on such a string

In the case of syntax errors and non-numeric arguments, an error message will be
printed at the current cursor position. Use refresh to redraw the screen.

After argument processing by FMLI, fmlexpr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:

example% fmlexpr $a = =

looks like:

example% fmlexpr = = =

414 man pages section 1: User Commands ¢ Last Revised 5 Jul 1990



fmlexpr(1F)

as the arguments are passed to fmlexpr (and they will all be taken as the = operator).
The following works, and returns TRUE:

example% fmlexpr X$a = X=

User Commands 415



fmlgrep(1F)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

ATTRIBUTES

fmlgrep — search a file for a pattern

fmlgrep [-b] [-c]l [-1i] [-1]1 [-nl [-s] [-v] limited_reqular_expression
[filename...]

fmlgrep searches filename for a pattern and prints all lines that contain that pattern.
fmlgrep uses limited regular expressions (expressions that have string values that
use a subset of the possible alphanumeric and special characters) like those described
on the regexp(5) manual page to match the patterns. It uses a compact
non-deterministic algorithm.

Be careful when using FMLI special characters (for instance, $, *, ’, ") in
limited_regular_expression. It is safest to enclose the entire limited_regular_expression in
single quotes * ... ‘.

If filename is not specified, fmlgrep assumes standard input. Normally, each line
matched is copied to standard output. The file name is printed before each line
matched if there is more than one input file.

The following options are supported:

-b Precede each line by the block number on which it was found. This can be
useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.

-1 Ignore upper/lower case distinction during comparisons.

-1 Print only the names of files with matching lines, separated by new-lines.
Does not repeat the names of files when the pattern is found more than
once.

-n Precede each line by its line number in the file (first line is 1).

-s Suppress error messages about nonexistent or unreadable files.

-v Print all lines except those that contain the pattern.

The following exit values are returned:

0 if the pattern is found (that is, TRUE)
1 if the pattern is not found (that is, FALSE)
2 if an invalid expression was used or filename is inaccessible

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

416 man pages section 1: User Commands ¢ Last Revised 28 Mar 1995



fmlgrep(1F)
SEE ALSO | egrep(l), fgrep(1), fmlcut(1F), grep(l), attributes(5), regexp(5)

NOTES | Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined
in /usr/include/stdio.h.

If there is a line with embedded nulls, fml1grep will only match up to the first null; if
it matches, it will print the entire line.

User Commands 417



fmli(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

fmli — invoke FMLI

fmli [-a alias_file] [-c command_file] [-1i initialization_file] filename...

The fmli command invokes the Form and Menu Language Interpreter and opens the
frame(s) specified by the filename argument. The filename argument is the pathname of
the initial frame definition file(s), and must follow the naming convention Menu. xxx,
Form.xxx, or Text .xxx for a menu, form or text frame respectively, where xxx is any
string that conforms to UNIX system file naming conventions. The FMLI descriptor
lifetime will be ignored for all frames opened by argument to fmli. These frames
have a lifetime of immortal by default.

The following options are supported:

-a alias_file If -a is specified, alias_file is the name of a file which
contains lines of the form alias=pathname. Thereafter,
$alias can be used in definition files to simplify
references to objects or devices with lengthy
pathnames, or to define a search path (similar to $PATH
in the UNIX system shell).

-c command_file If -c is specified, command_file is the name of a file in
which default FMLI commands can be disabled, and
new application-specific commands can be defined.
The contents of command_file are reflected in the FMLI
Command Menu.

-1 initialization_file If -1 is specified, initialization_file is the name of a file
in which the following characteristics of the application
as a whole can be specified:

- A transient introductory frame
displaying product information

- A banner, its position, and other
elements of the banner line

- Color attributes for all elements of
the screen

- Screen Labeled Keys (SLKs) and
their layout on the screen.

EXAMPLE 1 Examples of the fmli command.
To invoke fmli:

example% fmli Menu.start

where Menu. start is an example of filename named according to the file name
conventions for menu definition files explained above.

To invoke £fmli and name an initialization file:

418 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



Variables

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

fmli(1)

EXAMPLE 1 Examples of the fmli command. (Continued)

example% fmli -i init.myapp Menu.start

where init.myapp is an example of initialization_file.

LOADPFK Leaving this environment variable unset tells FMLI, for certain
terminals like the AT&T 5620 and 630, to download its equivalent
character sequences for using function keys into the terminal’s
programmable function keys, wiping out any settings the user
may already have set in the function keys. Setting LOADPFK=NO in
the environment will prevent this downloading.

COLUMNS Can be used to override the width of the logical screen defined for
the terminal set in TERM. For terminals with a 132-column mode,
for example, invoking FMLI with the line

COLUMNS=132 fmli frame-file

will allow this wider screen width to be used.

LINES Can be used to override the length of the logical screen defined for
the terminal set in TERM.

/usr/bin/fmli

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

vsig(1F), attributes(5)

If filename is not supplied to the £m1i command, fm11i returns the message:
Initial object must be specified.

If filename does not exist or is not readable, fm11 returns an error message and exits.
The example command line above returns the following message and exits:

Can’t open object "Menu.start"

If filename exists, but does not start with one of the three correct object names (Menu.,
Form., or Text .) or if it is named correctly but does not contain the proper data,

User Commands 419



fmli(1)
fmli starts to build the screen by putting out the screen labels for function keys, after
which it flashes the message:

I do not recognize that kind of object

and then exits.

420 man pages section 1: User Commands ¢ Last Revised 14 Sep 1992



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

ENVIRONMENT
VARIABLES

ATTRIBUTES

SEE ALSO

NOTES

fmt(1)
fmt — simple text formatters

fmt [-cs] [-w width | -width] [inputfile..]

fmt is a simple text formatter that fills and joins lines to produce output lines of (up
to) the number of characters specified in the -w width option. The default width is 72.
fmt concatenates the inputfiles listed as arguments. If none are given, fmt formats text
from the standard input.

Blank lines are preserved in the output, as is the spacing between words. £mt does not
fill nor split lines beginning with a “.” (dot), for compatibility with nrof £(1). Nor does
it fill or split a set of contiguous non-blank lines which is determined to be a mail
header, the first line of which must begin with “From”.

Indentation is preserved in the output, and input lines with differing indentation are
not joined (unless -c is used).

fmt can also be used as an in-line text filter for vi(1). The vi command:

!} Emt

reformats the text between the cursor location and the end of the paragraph.

-c Crown margin mode. Preserve the indentation of the
first two lines within a paragraph, and align the left
margin of each subsequent line with that of the second
line. This is useful for tagged paragraphs.

-s Split lines only. Do not join short lines to form longer
ones. This prevents sample lines of code, and other
such formatted text, from being unduly combined.

-w width | -width Fill output lines to up to width columns.
inputfile Input file.

See environ(b) for a description of the LC_CTYPE environment variable that affects
the execution of fmt.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

nroff(1l), vi(l), attributes(5), environ(b)

The -width option is acceptable for BSD compatibility, but it may go away in future
releases.

User Commands 421



fmtmsg(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

fmtmsg — display a message on stderr or system console

fmtmsg [-c class] [-u subclass] [-1 label]l [-s severity]l [-t tag]l [-a action]
text

Based on a message’s classification component, fmtmsg either writes a formatted
message to stderr or writes a formatted message to the console.

A formatted message consists of up to five standard components (see environment
variable MSGVERB in the ENVIRONMENT VARIABLES section of this page). The
classification and subclass components are not displayed as part of the standard
message, but rather define the source of the message and direct the display of the
formatted message.

The following options are supported:

-c class Describes the source of the message. Valid keywords are:
hard The source of the condition is hardware.
soft The source of the condition is software.
firm The source of the condition is firmware.

-u subclass A list of keywords (separated by commas) that further defines the
message and directs the display of the message. Valid keywords
are:
appl The condition originated in an application.

This keyword should not be used in
combination with either util or opsys.

util The condition originated in a utility. This
keyword should not be used in combination
with either appl or opsys.

opsys The message originated in the kernel. This
keyword should not be used in combination
with either appl or util.

recov The application will recover from the
condition. This keyword should not be used in
combination with nrecov.

nrecov The application will not recover from the
condition. This keyword should not be used in
combination with recov.

print Print the message to the standard error stream
stderr.
console Write the message to the system console.

print, console, or both may be used.

422 man pages section 1: User Commands ¢ Last Revised 20 Jul 1994



EXAMPLES

fmtmsg(1)

-1 label Identifies the source of the message.
- s severity Indicates the seriousness of the error. The keywords and
definitions of the standard levels of severity are:
halt The application has encountered a severe fault
and is halting.
error The application has detected a fault.
warn The application has detected a condition that is
out of the ordinary and might be a problem.
info The application is providing information about
a condition that is not in error.
-t tag The string containing an identifier for the message.
-a action A text string describing the first step in the error recovery process.

This string must be written so that the entire action argument is
interpreted as a single argument. fmtmsg precedes each action

string with the TO FIX: prefix.

text A text string describing the condition. Must be written so that the

entire fext argument is interpreted as a single argument.

EXAMPLE 1 Standard message format

The following example of fmtmsg produces a complete message in the standard
message format and displays it to the standard error stream.

example% fmtmsg -c soft -u recov,print,appl -1 UX:cat \
-8 error -t UX:cat:001 -a "refer to manual" "invalid syntax"

produces:

UX:cat: ERROR: invalid syntax
TO FIX: refer to manual UX:cat:138

EXAMPLE 2 Using MSGVERB
When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and Example 1 is used, £fmtmsg produces:

ERROR: invalid syntax
TO FIX: refer to manual

User Commands

423



fmtmsg(1)

ENVIRONMENT

424

VARIABLES

EXAMPLE 2 Using MSGVERB  (Continued)

EXAMPLE 3 Using SEV_LEVEL
When the environment variable SEV_LEVEL is set as follows:

SEV_LEVEL=note, 5, NOTE

the following fmtmsg command:

example% fmtmsg -c soft -u print -1 UX:cat -s note \
-a "refer to manual" "invalid syntax"

produces:

NOTE: invalid syntax
TO FIX: refer to manual

and displays the message on stderr.

The environment variables MSGVERB and SEV_LEVEL control the behavior of fmtmsg.
MSGVERSB is set by the administrator in the /etc/profile for the system. Users can
override the value of MSGVERB set by the system by resetting MSGVERB in their own
.profile files or by changing the value in their current shell session. SEV_LEVEL
can be used in shell scripts.

MSGVERB tells fmtmsg which message components to select when writing messages
to stderr. The value of MSGVERB is a colon-separated list of optional keywords.
MSGVERB can be set as follows:

MSGVERB-= [keyword [ : keyword [:...111
export MSGVERB

Valid keywords are: 1abel, severity, text, action, and tag. If MSGVERB contains
a keyword for a component and the component’s value is not the component’s null
value, fmtmsg includes that component in the message when writing the message to
stderr. If MSGVERB does not include a keyword for a message component, that
component is not included in the display of the message. The keywords may appear in
any order. If MSGVERB is not defined, if its value is the null string, if its value is not of
the correct format, or if it contains keywords other than the valid ones listed above,
fmtmsg selects all components.

MSGVERB affects only which message components are selected for display. All message
components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by
fmtmsg. The standard severity levels shown below cannot be modified. Additional
severity levels can be defined, redefined, and removed.

0 (no severity is used)

man pages section 1: User Commands ¢ Last Revised 20 Jul 1994



EXIT STATUS

ATTRIBUTES

fmtmsg(1)

1 HALT

2 ERROR

3 WARNING
4 INFO

SEV_LEVEL is set as follows:

description is a comma-separated list containing three fields:

SEV_LEVEL= [description [ :description [z ...111
export SEV_LEVEL

description=severity_keyword, level, printstring

severity_keyword is a character string used as the keyword with the -s severity option
to fmtmsg.

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3, or 4,
which are reserved for the standard severity levels). If the keyword severity_keyword is
used, level is the severity value passed on to £mtmsg(3C).

printstring is the character string used by fmtmsg in the standard message format
whenever the severity value level is used.

If SEV_LEVEL is not defined, or if its value is null, no severity levels other than the
defaults are available. If a description in the colon separated list is not a comma
separated list containing three fields, or if the second field of a comma separated list
does not evaluate to a positive integer, that description in the colon separated list is
ignored.

The following exit values are returned:
0 All the requested functions were executed successfully.

1 The command contains a syntax error, an invalid option, or an invalid
argument to an option.

2 The function executed with partial success, however the message was not
displayed on stderr.

4 The function executed with partial success; however, the message was not
displayed on the system console.

32 No requested functions were executed successfully.

See attributes(5) for descriptions of the following attributes:

User Commands 425



fmtmsg(1)

426

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWcsu

SEE ALSO | addseverity(3C), fmtmsg(3C), attributes(5)

man pages section 1: User Commands ¢ Last Revised 20 Jul 1994




NAME
SYNOPSIS

DESCRIPTION

OPTIONS

fnattr(1)
fnattr — update and examine attributes associated with an FNS named object
fnattr [-AL] composite_name [ [-O | -Ulidentifier..]

fnattr [-L] composite_name [ {-a [-s] [-O | -Ulidentifier [value..]} | {-4d
[ [-O | -Ulidentifier [value..11} | {-m [-O | -Ulidentifier old_value
new_value}...]

The fnattr command is for updating and examining attributes associated with an
FNS named object. There are four uses for this command: add an attribute or value,
delete an attribute or value, modify an attribute’s value, and list the contents of an
attribute.

The options for adding, modifying, and deleting attributes and their values can be
combined in the same command line. The modifications will be executed in the order
that they are specified.

Any unsuccessful modification will abort all subsequent modifications specified in the
command line; any modifications already carried out will remain. The unsuccessful
modifications are displayed as output of fnattr.

-a Add an attribute or add a value to an attribute associated with object
named by composite_name. identifier is the identifier of the attribute to
manipulate; its format is FN_ID_STRING unless the -0 or -U option is
given. value . . . represents the attribute values to add. The attribute syntax
used for storing value is fn_attr syntax ascii.

-A Consult the authoritative source to get attribute information.

-d Delete attributes associated with object named by composite_name. 1f
identifier is not specified, all attributes associated with the named object are
deleted. If identifier is specified without accompanying values (value . . .),
the entire attribute identified by identifier is removed. If individual attribute
values (value . . . ) are specified, then only these are removed from the
attribute. Removal of the last value of an attribute entails removal of the
attribute as well. The format of identifier is FN_ID STRING unless the -0 or
-U option is given.

-L If the composite name is bound to an XFN link, manipulate the attributes
associated with the object pointed to by the link. If -L is not used, the
attributes associated with the XFN link are manipulated.

-m Modify the values of the attribute identified by identifier associated with the
object named by composite_name. old_value is replaced by new_value in the
specified attribute. Other attributes and values associated with
composite_name are not affected. The format of identifier is FN_ID_STRING
unless the -0 or -U option is given.

-0 The format of identifier is FN_ID ISO OID STRING, an ASN.1
dot-separated integer list string.

User Commands 427



fnattr(1)

OPERANDS

Adding

Deleting

Modifying

-s Add in supersede mode. If an attribute with the same identifier as identifier
already exists, remove all its values, and replace with value. If this option is
omitted, the resulting values for the specified attribute is a union of the
existing values and value.

-U The format of identifier is FN_ID DCE_UUID, a DCE UUID in string form.

The following operand is supported:

composite_name An FNS named object.

The -a option is used for adding attributes and values. This following command
replaces the value of the shoesize attribute of user/jane with the value 7.5:

eg% fnattr user/jane -as shoesize 7.5

The following command adds the value Chameleo to the project attribute of
user/jane:

eg% fnattr user/jsmith -a project Chameleo

The -d option is used for deleting attributes and values. The following command
deletes all the attributes associated with user/jane:

eg% fnattr user/jane -d

The following command deletes the attribute shoesize associated with user/jane:

eg% fnattr user/jane -d shoesize

The following command deletes the attribute value o1d_project from the
projects attribute associated with user/jane:

eg% fnattr user/jane -d projects old project

The -m option is for modifying an attribute value. The following command replaces
the value Chameleo by Dungeon in the projects attribute associated with
user/jsmith:

eg% fnattr user/jsmith -m projects Chameleo Dungeon

The following command is an example of unsuccessful modification attempts. The
user executing this command does not have permission to update user/jane’s
attributes but is allowed to add new attributes. Executing the command will add the
attribute hatsize but will not delete shoesize or modify dresssize because -d
shoesize will fail and cause the command to stop:

428 man pages section 1: User Commands ¢ Last Revised 24 Dec 1996



Listing

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

fnattr(1)

eg% fnattr user/jane -a hatsize medium -d shoesize -m dresssize 5
6

No options are required to list attributes and their values. The following command
lists all the attributes associated with user/jane:

eg% fnattr user/jane

The following command lists the values of the project attribute of user/jane:
eg% fnattr user/jane project

The following command lists the values of the project and shoesize attributes of
user/jane:

eg% fnattr user/jane project shoesize

0 Operation was successful.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWi{ns

fnlookup(l), attributes(5), £ns(5)

Built-in attributes, such as onc_unix_ passwd for users, cannot be updated using the
fnattr command. Their contents are affected by updates to the underlying naming
service, such as NIS+ or NIS.

User Commands 429



fnbind(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

fnbind — Bind a reference to an FNS name
fnbind [-s] [-v] [-L] name new_name

fnbind -r [-s] [-v] new_name [-O | -Ulref_type { [-O | -Uladdr_type [-c
| -x]addr_contents}..

The fnbind utility binds the reference named by name to the name new_name. The
second synopsis of fnbind (uses the -r option) allows the binding of new_name to the
reference constructed using arguments supplied in the command line.

The following options are supported:

-s Bind to new_name even if it is already bound. If this option is omitted,
fnbind fails if new_name is already bound.

-v Display the reference being bound to new_narme.
-L Create an XFN link using name and bind it to new_name.
-r Create a reference using ref_type as the reference’s type, and one or more

pairs of addr_type and addr_contents as the reference’s list of addresses, and
bind this reference to new_name. Unless the -0 or -U options are used,
FN ID STRING is used as the identifier format for ref_type and addr_type.
Unless the -c or -x options are used, addr_contents is stored as an
XDR-encoded string.

-c Store addr_contents in the given form; do not use XDR-encoding.

-x addr_contents specifies a hexadecimal string. Convert it to its hexidecimal
representation and store it; do not use XDR-encoding.

-0 The identifier formatis FN_ID ISO OID STRING, an ASN.1
dot-separated integer list string.

-U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

EXAMPLE 1 Binding a service to a printer
The command

example% fnbind -s thisorgunit/service/printer thisorgunit/service/pr

binds the name thisorgunit/service/pr to the reference named by
thisorgunit/service/printer. Any reference bound to
thisorgunit/service/pr is overwritten.

EXAMPLE 2 Binding to an XFN link

The command

example% fnbind -L thisorgunit/service/printer thisorgunit/service/pr

430 man pages section 1: User Commands ¢ Last Revised 4 Nov 1994



ATTRIBUTES

SEE ALSO

fnbind(1)
EXAMPLE 2 Binding to an XFN link (Continued)

binds the name thisorgunit/service/pr to the XEN link constructed using the
name thisorgunit/service/printer.

EXAMPLE 3 Binding to an address type

The command

example% fnbind -r thisorgunit/service/calendar SUNW cal \
SUNW cal deskset onc staff@exodus

binds the name thisorgunit/service/calendar to the reference with reference
type SUNW_cal and address type SUNW_cal_deskset_onc, and address contents of
staff@exodus.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnlookup(l), fnrename(l), fnunbind(l), FN_identifier t(3XFN), xdr(3NSL),
attributes (5), £ns(5), xfn_ links(3XFN)

User Commands 431



fnlist(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

EXAMPLES

fnlist — display the names and references bound in an FNS context

fnlist [-Alv] [composite_name]
fnlist displays the names and references bound in the context of composite_name.
If composite_name is not provided, the default initial context is displayed.

The following options are supported:
-A Consult the authoritative source for information.

-1 Display the references as well as the names bound in the context of
composite_name. Without this option, only the names are displayed.

-v Display the references in detail. For onc_fn_* references, this option is
useful to derive the name of the NIS+ table that stores the reference for
every name bound in the context of composite_name.

The following operand is supported:

composite_name An FNS named object. Composite names, like UNIX
file names, depend on the subcontexts created.
Examples of commands with valid composite_name
operands are:

eg% fnlist thisorgunit
eg% fnlist thisorgunit/service
eg% fnlist thisorgunit/service/printer

When ENS is deployed, the composite name is specific
to the deployed site.

EXAMPLE 1 Examples of the fnlist command.

In the following example, the command with no operand provides the listing with
reference and address types for the initial context:

eg% fnlist -1
In the following examples, where a user context is given (that is, composite_name =
user/), FNS must first be deployed via fncreate(1M), using one of the naming

services NIS, NIS+, or £iles. If FNS is not deployed, there are no user contexts and
the commands will fail with the "Name not found" error message.

The following command shows the names bound in the context of usexr/:

eg% fnlist user/

The following command displays the names and references bound in the context of
user/:

eg% fnlist -1 user/

432 man pages section 1: User Commands ¢ Last Revised 7 May 1997



fnlist(1)

EXAMPLE 1 Examples of the fnlist command. (Continued)
EXIT STATUS | 0 Operation was successful.
1 Operation failed.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW fns

SEE ALSO | fnbind(1), £nlookup(l), fnunbind(l), fncreate(1M), fndestroy(1M),
attributes(5), fns(5), fns_references(5)

User Commands 433



fnlookup(1)
NAME
SYNOPSIS

DESCRIPTION
OPTIONS

OPERANDS

EXAMPLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

fnlookup — display the reference bound to an FNS name

fnlookup [-ALv] composite_name

fnlookup displays the binding of composite_name.

-A Consult the authoritative source for information.

-L If the composite name is bound to an XEN link, display the reference that
the link is bound to. Without the -L option, fnlookup displays the XFN
link.

-v Display the binding in detail. For onc_fn_* references, this option is

useful to derive the name of the NIS+ table that stores the reference for
composite_name and a string representation of the reference, if applicable.

The following operand is supported:

composite_name An FNS named object.

EXAMPLE 1 Examples of the fnlookup command.
In the following example, the command

eg% fnlookup user/jsmith/service/calendar

shows the reference to which the name user/jsmith/service/calendar, that
refers to the calendar of user jsmith, is bound.

In the next example, the command

eg% fnlookup user/jsmith/service

shows the reference to which the name user/jsmith/service, that refers to the
service context of user jsmith, is bound. If this is bound to an XFN link, then

eg% fnlookup -L user/jsmith/service

displays the reference to which this link is bound.

0 Operation was successful.

1 Operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnbind(1l), £nlist(1l), fnunbind(l), fncreate(1M), fndestroy(1M),

xfn 1inks(3XFN), attributes(5), £ns(5), fns_references(d)

434 man pages section 1: User Commands ¢ Last Revised 21 Jul 1996




NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

ATTRIBUTES

SEE ALSO

fnrename(1)
fnrename — rename the binding of an FNS name

fnrename [-s] [-v] context_name old_atomic_name new_atomic_name

fnrename renames the binding of old_atomic_name to new_atomic_name in the context
of context_name. Both old_atomic_name and new_atomic_name must be atomic names, to
be resolved in the context named by context_name.

-s Overwrite any reference already bound to new_atomic_name. If this option
is omitted, fnrename fails if new_atomic_name is already bound.

-v Display the binding being renamed.

EXAMPLE 1 An example of the fnrename command.
For example, the command

eg% fnrename user/jsmith/service/ clendar calendar

binds calendar to the reference bound to clendar in the context named by
user/jsmith/service/ and unbinds clendar.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnbind(l), £nlist(1), fnunbind(l), fncreate(lM), £ndestroy(1M),
xfn_ 1inks(3XFN), attributes(5), £ns(5), fns_references(b)

User Commands 435



fnsearch(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

fnsearch — search for FNS objects with specified attributes

fnsearch [-AlLv] [-n max] [-s scope]l composite_name [-a ident].. [-O |
-Ul filter_expr [filter_arg] ...

The fnsearch command operation displays the names and, optionally, the attributes
and references of objects bound at or below composite_name whose attributes satisfy a
given filter expression. The filter expression is given in terms of logical expressions
involving the identifiers and values of the attributes and references of objects
examined during the search.

For general information about ENS, see £ns(5).

The following options are supported:

-a ident Display the given attribute of each object that satisfies the filter
expression. If the -a option is not used, all attributes are
displayed. An empty ident (" " from the shell) indicates that no
attributes are to be displayed. Multiple -a options may be given.
The syntax of ident is described fully under Displaying
Selected Attributes below.

-A Consult the authoritative source(s) for information.

-1 Display the reference of each object that satisfies the filter
expression.

-L Follow XEN links during the search.

-n max Restrict the maximum number of objects displayed to the given
number (a positive integer). There is no limit by default.

-5 scope Set the scope of the search. scope is one of:

e object Only the object
composite_name is
searched.

e context Objects bound directly
to composite_name are
searched.

e subtree Objects bound to
composite_name or any of
its subcontexts are
searched.

e constrained subtree Like subtree, but the

search may be restricted

to a set of subcontexts

defined in a
context-implementation-defined
manner

436 man pages section 1: User Commands ¢ Last Revised 21 Jul 1996



OPERANDS

Simple Filter
Expressions

Logical Operators

Relational
Operators

fnsearch(1)

scope may be abbreviated to any unambiguous prefix, such as o or
cont. If this option is not given, the default behavior is -s
context.

-v Display in detail the reference of each object that satisfies the filter
expression. This option takes precedence over - 1.

The following operand is supported:
composite_name An FNS named object.
The simplest form of filter expression is one that tests for the existence of an attribute.

This expression is formed simply by giving the attribute’s name. To search for objects
having an attribute named for_sale, for example:

% fnsearch composite_name for_sale

Another simple filter expression is one that tests the value of a particular attribute. To
find objects whose ages are less than 17:

% fnsearch composite_name "age < 17"

String values are indicated by enclosing the string in single quotes. To find all red
objects:

% fnsearch composite_name "color == ’‘red’"

Note that the double quotes ( " ) in this example are not part of the filter expression.
Instead, they prevent the shell from interpreting the white-space and single quotes
that are part of the expression.

Simple filter expressions may be composed using the logical operators and, or, and
not. For example:

o

% fnsearch composite_name "age >= 35 and us_citizen"

Parentheses may be used to group expressions:

% fnsearchcomposite_name "not (make == ‘olds’ and year == 1973)"

The precedence of operators is, in order of increasing precedence:

or
and
not
relational operators (see Relational Operators below)

The logical operators and and or are left-associative.

The following are the relational operators that may be used to compare an attribute to
a supplied value:

== True if at least one value of the attribute is equal to the supplied value.

I= True if none of the attribute’s values are equal to the supplied value.

User Commands 437



fnsearch(1)

Displaying
Selected Attributes

Filter Arguments

< True if at least one value of the attribute is less than the supplied value.

<= True if at least one value of the attribute is less than or equal to the
supplied value.

> True if at least one value of the attribute is greater than the supplied value.

>= True if at least one value of the attribute is greater than or equal to the
supplied value.

~= True if at least one value of the attribute matches the supplied value
according to some context-specific approximate matching criterion. This
criterion must subsume strict equality.

Comparisons and ordering are specific to the syntax or rules of the attribute being
tested.

By default, the fnsearch command displays the names and all of the attributes of
each object matching the search criteria. The list of attributes displayed may be
restricted by using the -a command line option. In the following example, only the
color and shape attributes of small objects are displayed:

% fnsearchcomposite_nume -a color -a shape "size == ‘small’"

The format of an attribute identifier is taken to be FN__ID STRING (an ASCII string)
by default. To name an attribute identifier that is an OSI OID or a DCE UUID, the
attribute name is prefixed by -0 or -U, respectively:

-0 The identifier format is FN_ID ISO OID STRING, an ASN.1l
dot-separated integer list string.

-U The identifier format is FN ID DCE UUID, a DCE UUID in string form.

For example:

% fnsearch composite_name -a -O 2.5.4.0 "shoe size < 9"

and

% fnsearchcomposite_name -a -U 0006a446-5e97-105£-9828-8190285baa77 \
"bowling avg > 200"

Some parts of a filter expression may be replaced by a substitution token: a percent
sign (%) followed by a single character. The value of this portion of the expression is
then given in a filter argument that follows the filter expression, in much the same
way as is done in print £(1). The available substitution tokens are:

%a attribute

%s string

$i identifier

Sv attribute value (the only syntax currently supported is

fn attr syntax ascii)

438 man pages section 1: User Commands ¢ Last Revised 21 Jul 1996



Wildcarded Strings

fnsearch(1)
For example, the command:

% fnsearch composite_name "color == ‘red’"

could equivalently be written:

% fnsearch composite_name "%a == ‘red’" color
or:
% fnsearch composite_name "%a == %s" color red

The use of substitution tokens is helpful when writing shell scripts in which the values
of the filter arguments are generated at run-time.

By default, the format of the identifier of an attribute such as the color attribute
above is taken to be FN_ID_STRING (an ASCII string). Substitution tokens enable the
use of OSI OIDs and DCE UUIDs instead. The filter argument is prefixed by -0 or -U
, with the same meaning as in the -a command line option described above:

-0 The identifier format is FN_ID ISO_OID STRING, an ASN.1
dot-separated integer list string.

-U The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

For example:

% fnsearch composite_name "%a -0 2.5.4.0

and

o

% fnsearch composite_name "%a" =='red’" \
-U 0006a446-5e97-105£-9828-8190285baa77

A wildcarded string consists of a sequence of alternating wildcard specifiers and
strings. The wildcard specifiers is denoted by the asterisk (*) and means zero or more
occurrences of any character.

Wildcarded strings are used to specify substring matches. The following are some
examples of wildcarded strings and their meanings.

* any string

" tom’ the string "tom"

"harv'’* any string starting with "harv"

*7ing’ any string ending with "ing"

"a’*'b’ any string starting with "a" and ending with "b"
"jo’*’ph’*'ne’*’er’ any string starting with "jo" and containing the

substring "ph", and which contains the substring "ne"
in the portion of the string following "ph", and which
ends with "er"

User Commands 439



fnsearch(1)

$s* any string starting with the string supplied as a filter
argument
‘bix’ *%s any string starting with "bix" and ending with the

string supplied as a filter argument

Extended | Extended operators are predicates (functions that return TRUE or FALSE) that may be
Operations | freely mixed with other operators in a filter expression.

An extended operation is specified by giving the operation name as a quoted string,
followed by an argument in parentheses. The following three extended operations are
currently defined:

‘name’ (WildcardedString) TRUE if the name of the object matches the
supplied wildcarded string.

"reftype’ (Identifier) TRUE if the reference type of the object is
equal to the supplied identifier.

*addrtype’ (Identifier) TRUE if any of the address types in the
reference of the object are equal to the
supplied identifier.

The following example shows a search for objects whose names start with bill and
having IQ attributes over 80:

% fnsearch composite_name "’'name’ (‘bill’*) and IQ > 80"

Grammar of Filter | The complete grammar of filter expressions is given below. It is based on the grammar
Expressions | defined by the XFN specification (see FN_search filter t(3XFN)).

String literals in this grammar are enclosed in double quotes; the quotes are not
themselves part of the expression. Braces are used for grouping; brackets indicate
optional elements. An unquoted asterisk (*) signifies zero or more occurrences of the
preceding element; a plus sign (+) signifies one or more occurrences.

FilterExpr : : = [Expr]
Expr . : =

Expr "or" Expr| Expr "and" Expr | "not" Expr | " (" Expr")"
| Attribute [RelOp Value]

| Ext
RelOp : : = B I L T B B B B
Attribute : : =

Char* | "%a"
Value : : =

Integer | WildcardedString| "sv"

440 man pages section 1: User Commands ¢ Last Revised 21 Jul 1996



fnsearch(1)

WildcardedString : : =
wxn | String | {String "*"}+ [String]
| {H*H String}+ [”*ll
(that is, an alternating sequence of String and "*")
String : : =
"yn Chm’* nyn
| H%SH
Ext : : =
""name’ (" WildcardedString")"
| ""reftype’ (" Identifier")"
| "raddrtype’ (" Identifier ")"
Identifier : : =
nyn Char* nyn
| ”%i”
Char : : =
an element of the Portable Character Set (ASCII)
| a character in the repertoire
of a string representation
EXIT STATUS | 0 Operation was successful.
1 Operation failed.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

SEE ALSO | printf(l), FN_search control t(3XFN), FN_search filter_ t(3XEN),
fn attr ext search(3XFN), fn_attr search(3XEN), attributes(5), £ns(5)

NOTES | If the filter expression is empty, it evaluates to TRUE (all objects satisfy it).

If the identifier in any subexpression of the filter expression does not exist as an
attribute of an object, then the innermost logical expression containing that identifier
evaluates to FALSE.

User Commands 441




fnunbind(1)
NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

fnunbind — unbind the reference from an FNS name

fnunbind composite_name
fnunbind unbinds the reference of composite_name.
For example,

eg% fnunbind user/jsmith/fs/

unbinds the reference to which the name user/jsmith/fs/ was bound.

Note that an fnunbind on a name of a context will fail because such a context cannot
be unbound without destroying it first with the command fndestroy.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWfns

fnbind(1l), fnlist(1), £nlookup(l), fnrename(l), fncreate(1M),
fndestroy(1M), attributes(5), £ns(5)

442 man pages section 1: User Commands ¢ Last Revised 6 Mar 1996



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

fold(1)
fold - filter for folding lines
fold [-bs] [-w width | -width] [file..]

The fold utility is a filter that will fold lines from its input files, breaking the lines to
have a maximum of width column positions (or bytes, if the -b option is specified).
Lines will be broken by the insertion of a NEWLINE character such that each output
line (referred to later in this section as a segment) is the maximum width possible that
does not exceed the specified number of column positions (or bytes). A line will not be
broken in the middle of a character. The behavior is undefined if width is less than the
number of columns any single character in the input would occupy.

If the CARRIAGE-RETURN, BACKSPACE, or TAB characters are encountered in the
input, and the -b option is not specified, they will be treated specially:

BACKSPACE The current count of line width will be decremented by
one, although the count never will become negative.
fold will not insert a NEWLINE character
immediately before or after any BACKSPACE
character.

CARRIAGE-RETURN The current count of line width will be set to 0. fold
will not insert a NEWLINE character immediately
before or after any CARRIAGE-RETURN character.

TAB Each TAB character encountered will advance the
column position pointer to the next tab stop. Tab stops
will be at each column position # such that 7 modulo 8
equals 1.

The following options are supported:
-b Count width in bytes rather than column positions.

-s If a segment of a line contains a blank character within the first
width column positions (or bytes), break the line after the last such
blank character meeting the width constraints. If there is no blank
character meeting the requirements, the - s option will have no
effect for that output segment of the input line.

-w width | -width ~ Specify the maximum line length, in column positions (or bytes if
-Db is specified). If width is not a positive decimal number, an error
is returned. The default value is 80.

The following operand is supported:

file A path name of a text file to be folded. If no £ile operands are specified,
the standard input will be used.

User Commands 443



fold(1)
EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 1 Submitting a file of possibly long lines to the line printer.

An example invocation that submits a file of possibly long lines to the line printer
(under the assumption that the user knows the line width of the printer to be assigned
by 1p(1)):

example% fold -w 132 bigfile | 1p
See environ(5) for descriptions of the following environment variables that affect the
execution of fold: LC CTYPE, LC_MESSAGES, and NLSPATH.

The following exit values are returned:
0 All input files were processed successfully.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu
CSI enabled

cut(1), pr(1), attributes(5), environ(5)

fold and cut(1l) can be used to create text files out of files with arbitrary line lengths.
fold should be used when the contents of long lines need to be kept contiguous. cut
should be used when the number of lines (or records) needs to remain constant.

foldis frequently used to send text files to line printers that truncate, rather than
fold, lines wider than the printer is able to print (usually 80 or 132 column positions).

fold may not work correctly if underlining is present.

444 man pages section 1: User Commands ¢ Last Revised 1 Feb 1995



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

FILES

ATTRIBUTES

SEE ALSO

from(1B)

from — display the sender and date of newly-arrived mail messages

/usr/ucb/from [-s sender]

The from utility prints out the mail header lines in your mailbox file to show you who
your mail is from. If username is specified, then username’s mailbox is examined instead

of your own.

- sender Only display headers for mail sent by sender.

See largefile(5) for the description of the behavior of £rom when encountering files

greater than or equal to 2 Gbyte ( 2°! bytes).

/var/spool/mail/*

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWSscpu

biff(1B), mail(1B), attributes(b), largefile(b)

User Commands

445



ftp(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

ftp — file transfer program

ftp [-dgintv] [-T timeout] [hostname]

The ftp command is the user interface to the Internet standard File Transfer Protocol
(FTP). £tp transfers files to and from a remote network site.

The client host with which ftp is to communicate may be specified on the command
line. If this is done, ftp immediately attempts to establish a connection to an FTP
server on that host; otherwise, £tp enters its command interpreter and awaits
instructions from the user. When ftp is awaiting commands from the user, it displays
the prompt ftp>.

The following options may be specified at the command line, or to the command
interpreter:

-d Enables debugging.

-g Disables filename “globbing.”

-1 Turns off interactive prompting during multiple file transfers.
-n Does not attempt “auto-login” upon initial connection. If

auto-login is not disabled, £tp checks the .netrc file in the user’s
home directory for an entry describing an account on the remote
machine. If no entry exists, £tp will prompt for the login name of
the account on the remote machine (the default is the login name
on the local machine), and, if necessary, prompts for a password
and an account with which to login.

-t Enables packet tracing (unimplemented).

-T timeout Enables global connection timer, specified in seconds (decimal).
The timer is reset when anything is sent to the server on the
control connection, and disabled while the client is prompting for
user input. On the data connection, timeouts rely on TCP and may
only timeout on network outages between the client and server. It
may not timeout, for instance, if the server is waiting for an NFS
server.

-v Shows all responses from the remote server, as well as report on
data transfer statistics. This is turned on by default if ftp is
running interactively with its input coming from the user’s
terminal.

The following commands can be specified to the command interpreter:
!

[ command ] Runs command as a shell command on the local machine. If no command
is given, invoke an interactive shell.

446 man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



ftp(1)

$ macro-name [ args |
Execute the macro macro-name that was defined with the macdef command.
Arguments are passed to the macro unglobbed.

account [ passwd |
Supplies a supplemental password required by a remote system for access to
resources once a login has been successfully completed. If no argument is included,
the user will be prompted for an account password in a non-echoing input mode.

append local-file [ remote-file ]
Appends a local file to a file on the remote machine. If remote-file is not specified,
the local file name is used, subject to alteration by any ntrans or nmap settings.
File transfer uses the current settings for “representation type”, “file structure”, and
“transfer mode”.

ascii
Sets the “representation type” to “network ASCII”. This is the default type.

bell
Sounds a bell after each file transfer command is completed.

binary
Sets the “representation type” to “image”.

bye
Terminates the FTP session with the remote server and exit ftp. An EOF will also
terminate the session and exit.

case
Toggles remote computer file name case mapping during mget commands. When
case is on (default is off), remote computer file names with all letters in upper case
are written in the local directory with the letters mapped to lower case.

cd remote-directory
Changes the working directory on the remote machine to remote-directory.

cdup
Changes the remote machine working directory to the parent of the current remote
machine working directory.

close
Terminates the FTP session with the remote server, and return to the command
interpreter. Any defined macros are erased.

cr
Toggles RETURN stripping during “network ASCII” type file retrieval. Records are
denoted by a RETURN/LINEFEED sequence during “network ASCII” type file
transfer. When cr is on (the default), RETURN characters are stripped from this
sequence to conform with the UNIX system single LINEFEED record delimiter.
Records on non-UNIX-system remote hosts may contain single LINEFEED
characters; when an “network ASCII” type transfer is made, these LINEFEED
characters may be distinguished from a record delimiter only when cr is off.

User Commands 447



ftp(1)

448

delete remote-file
Deletes the file remote-file on the remote machine.

debug
Toggles debugging mode. When debugging is on, £tp prints each command sent to
the remote machine, preceded by the string ->.

dir [ remote-directory ] [ local-file ]
Prints a listing of the directory contents in the directory, remote-directory, and,
optionally, placing the output in local-file. If no directory is specified, the current
working directory on the remote machine is used. If no local file is specified, or
localfile is —, output is sent to the terminal.

disconnect
A synonym for close.

form [ format-name |
Sets the carriage control format subtype of the “representation type” to format-name.
The only valid format-name is non-print, which corresponds to the default
“non-print” subtype.

get remote-file [ local-file ]
Retrieves the remote-file and store it on the local machine. If the local file name is not
specified, it is given the same name it has on the remote machine, subject to
alteration by the current case, ntrans, and nmap settings. The current settings for
“representation type”, “file structure”, and “transfer mode” are used while
transferring the file.

glob
Toggles filename expansion, or “globbing”, for mdelete, mget and mput. If
globbing is turned off, filenames are taken literally.

Globbing for mput is done as in sh(1). For mdelete and mget, each remote file
name is expanded separately on the remote machine, and the lists are not merged.

Expansion of a directory name is likely to be radically different from expansion of
the name of an ordinary file: the exact result depends on the remote operating
system and FTP server, and can be previewed by doing m1s remote-files —.

mget and mput are not meant to transfer entire directory subtrees of files. You can
do this by transferring a tar(1) archive of the subtree (using a “representation
type” of “image” as set by the binary command).

hash
Toggles hash-sign (#) printing for each data block transferred. The size of a data
block is 8192 bytes.

help [ command ]
Prints an informative message about the meaning of command. If no argument is
given, ftp prints a list of the known commands.

man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



ftp(1)

lcd [ directory ]
Changes the working directory on the local machine. If no directory is specified, the
user’s home directory is used.

1s[ remote-directory | -al ][ local-file ]
Prints an abbreviated listing of the contents of a directory on the remote machine. If
remote-directory is left unspecified, the current working directory is used.

The -a option lists all entries, including those that begin with a dot (.), which are
normally not listed. The -1 option lists files in long format, giving mode, number
of links, owner, group, size in bytes, and time of last modification for each file. If
the file is a special file, the size field instead contains the major and minor device
numbers rather than a size. If the file is a symbolic link, the filename is printed
followed by “—” and the pathname of the referenced file.

If no local file is specified, or if local-file is —, the output is sent to the terminal.

macdef macro-name
Defines a macro. Subsequent lines are stored as the macro macro-name; a null line
(consecutive NEWLINE characters in a file or RETURN characters from the terminal)
terminates macro input mode. There is a limit of 16 macros and 4096 total
characters in all defined macros. Macros remain defined until a close command is
executed.

The macro processor interprets $ and \ as special characters. A $ followed by a
number (or numbers) is replaced by the corresponding argument on the macro
invocation command line. A $ followed by an i signals that macro processor that
the executing macro is to be looped. On the first pass, $1 is replaced by the first
argument on the macro invocation command line; on the second pass, it is replaced
by the second argument, and so on. A \ followed by any character is replaced by
that character. Use the \ to prevent special treatment of the $.

mdelete remote-files
Deletes the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting is
on, ftp will prompt the user to verify that the last argument is indeed the target
local file for receiving mdir output.

mget remote-files
Expands the remote-files on the remote machine and do a get for each file name
thus produced. See glob for details on the filename expansion. Resulting file
names will then be processed according to case, ntrans, and nmap settings. Files
are transferred into the local working directory, which can be changed with 1cd
directory; new local directories can be created with ! mkdir directory.

mkdir directory-name
Makes a directory on the remote machine.

User Commands 449



ftp(1)

450

mls remote-files local-file
Like 1s(1), except multiple remote files may be specified. If interactive prompting is
on, £tp will prompt the user to verify that the last argument is indeed the target
local file for receiving m1ls output.

mode [ mode-name ]
Sets the “transfer mode” to mode-name. The only valid mode-name is st ream, which
corresponds to the default “stream” mode. This implementation only supports
stream, and requires that it be specified.

mput local-files
Expands wild cards in the list of local files given as arguments and do a put for
each file in the resulting list. See glob for details of filename expansion. Resulting
file names will then be processed according to ntrans and nmap settings.

nmap [ inpattern outpattern |
Sets or unsets the filename mapping mechanism. If no arguments are specified, the
filename mapping mechanism is unset. If arguments are specified, remote filenames
are mapped during mput commands and put commands issued without a
specified remote target filename. If arguments are specified, local filenames are
mapped during mget commands and get commands issued without a specified
local target filename.

This command is useful when connecting to a non-UNIX-system remote host with
different file naming conventions or practices. The mapping follows the pattern set
by inpattern and outpattern. inpattern is a template for incoming filenames (which
may have already been processed according to the ntrans and case settings).
Variable templating is accomplished by including the sequences $1, $2, ..., $9in
inpattern. Use \ to prevent this special treatment of the $ character. All other
characters are treated literally, and are used to determine the nmap inpattern
variable values.

For example, given inpattern $1.$2 and the remote file name mydata.data, $1
would have the value mydata, and $2 would have the value data.

The outpattern determines the resulting mapped filename. The sequences $1, $2,

., $9 are replaced by any value resulting from the inpattern template. The
sequence $0 is replaced by the original filename. Additionally, the sequence
[ seql, seq2 ] is replaced by seql if seql is not a null string; otherwise it is replaced by
seq2.

For example, the command nmap $1.$2.$3 [$1,$2].[$2,file] would yield
the output filename myfile.data for input filenames myfile.data and
myfile.data.old, myfile.file for the input filename myfile, and
myfile.myfile for the input filename .myfile. SPACE characters may be
included in outpattern, as in the example nmap $1 | sed "s/ *$//" > $1. Use
the \ character to prevent special treatment of the $, [, 1, and ,, characters.

man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



ftp(1)

ntrans [ inchars [ outchars | |
Sets or unsets the filename character translation mechanism. If no arguments are
specified, the filename character translation mechanism is unset. If arguments are
specified, characters in remote filenames are translated during mput commands
and put commands issued without a specified remote target filename, and
characters in local filenames are translated during mget commands and get
commands issued without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote host with
different file naming conventions or practices. Characters in a filename matching a
character in inchars are replaced with the corresponding character in outchars. If the
character’s position in inchars is longer than the length of oufchars, the character is
deleted from the file name.

Only 16 characters can be translated when using the ntrans command under ftp.
Use case (described above) if needing to convert the entire alphabet.

open host [ port |
Establishes a connection to the specified host FTP server. An optional port number
may be supplied, in which case, £tp will attempt to contact an FTP server at that
port. If the auto-login option is on (default setting), ftp will also attempt to
automatically log the user in to the FTP server.

prompt
Toggles interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. By default,
prompting is turned on. If prompting is turned off, any mget or mput will transfer
all files, and any mdelete will delete all files.

proxy ftp-command
Executes an FTP command on a secondary control connection. This command
allows simultaneous connection to two remote FTP servers for transferring files
between the two servers. The first proxy command should be an open, to establish
the secondary control connection. Enter the command proxy ? to see other FTP
commands executable on the secondary connection.

The following commands behave differently when prefaced by proxy: open will
not define new macros during the auto-login process, close will not erase existing
macro definitions, get and mget transfer files from the host on the primary control
connection to the host on the secondary control connection, and put, mputd, and
append transfer files from the host on the secondary control connection to the host
on the primary control connection.

Third party file transfers depend upon support of the PASV command by the server
on the secondary control connection.

put local-file[ remote-file ]
Stores a local file on the remote machine. If remote-file is left unspecified, the local
file name is used after processing according to any ntrans or nmap settings in

User Commands 451



ftp(1)

naming the remote file. File transfer uses the current settings for “representation
type”, “file structure”, and “transfer mode”.

pwd
Prints the name of the current working directory on the remote machine.

quit
A synonym for bye.

quoteargl arg? ...
Sends the arguments specified, verbatim, to the remote FTP server. A single FTP
reply code is expected in return. (The remotehelp command displays a list of
valid arguments.)

quote should be used only by experienced users who are familiar with the FTP
protocol.

recv remote-file[ local-file]
A synonym for get.

remotehelp [ command-name |
Requests help from the remote FIP server. If a command-name is specified it is
supplied to the server as well.

rename from fto
Renames the file from on the remote machine to have the name to.

reset
Clear reply queue. This command re-synchronizes command/reply sequencing
with the remote FTP server. Resynchronization may be necessary following a
violation of the FTP protocol by the remote server.

rmdir directory-name
Deletes a directory on the remote machine.

runique
Toggles storing of files on the local system with unique filenames. If a file already
exists with a name equal to the target local filename for a get or mget command, a
.1 is appended to the name. If the resulting name matches another existing file, a
.2 is appended to the original name. If this process continues up to . 99, an error
message is printed, and the transfer does not take place. The generated unique
filename will be reported. runique will not affect local files generated from a shell
command. The default value is off.

send local-file [ remote-file ]
A synonym for put.

sendport
Toggles the use of PORT commands. By default, £tp will attempt to use a PORT
command when establishing a connection for each data transfer. The use of PORT
commands can prevent delays when performing multiple file transfers. If the PORT
command fails, £tp will use the default data port. When the use of PORT

452 man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



ftp(1)

commands is disabled, no attempt will be made to use PORT commands for each
data transfer. This is useful when connected to certain FTP implementations that
ignore PORT commands but incorrectly indicate they have been accepted.

status
Show the current status of ftp.

struct [ struct-name |
Sets the file structure to struct-name. The only valid struct-name is £ile, which
corresponds to the default “file” structure. The implementation only supports
file, and requires that it be specified.

sunique
Toggles storing of files on remote machine under unique file names. The remote
FTP server must support the STOU command for successful completion. The remote
server will report the unique name. Default value is off.

tenex
Sets the “representation type” to that needed to talk to TENEX machines.

trace
Toggles packet tracing (unimplemented).

type [ type-name ]
Sets the “representation type” to type-name. The valid type-names are ascii for
“network ASCII”, binary or image for “image”, and tenex for “local byte size”
with a byte size of 8 (used to talk to TENEX machines). If no type is specified, the
current type is printed. The default type is “network ASCII”.

user user-name [ password | [ account ]
Identify yourself to the remote FTP server. If the password is not specified and the
server requires it, ftp will prompt the user for it (after disabling local echo). If an
account field is not specified, and the FTP server requires it, the user will be
prompted for it. If an account field is specified, an account command will be
relayed to the remote server after the login sequence is completed if the remote
server did not require it for logging in. Unless ftp is invoked with “auto-login”
disabled, this process is done automatically on initial connection to the FTP server.

verbose
Toggles verbose mode. In verbose mode, all responses from the FTP server are
displayed to the user. In addition, if verbose mode is on, when a file transfer
completes, statistics regarding the efficiency of the transfer are reported. By default,
verbose mode is on if £tp’s commands are coming from a terminal, and off
otherwise.

? [ command |
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (")
marks.

User Commands 453



ftp(1)

ABORTING A
FILE TRANSFER

FILE NAMING
CONVENTIONS

FILE TRANSFER
PARAMETERS

If any command argument which is not indicated as being optional is not specified,
ftp will prompt for that argument.

To abort a file transfer, use the terminal interrupt key. Sending transfers will be
immediately halted. Receiving transfers will be halted by sending an FIP protocol
ABOR command to the remote server, and discarding any further data received. The
speed at which this is accomplished depends upon the remote server’s support for
ABOR processing. If the remote server does not support the ABOR command, an ftp>
prompt will not appear until the remote server has completed sending the requested
file.

The terminal interrupt key sequence will be ignored when ftp has completed any
local processing and is awaiting a reply from the remote server. A long delay in this
mode may result from the ABOR processing described above, or from unexpected
behavior by the remote server, including violations of the ftp protocol. If the delay
results from unexpected remote server behavior, the local £tp program must be killed
by hand.

Local files specified as arguments to £tp commands are processed according to the
following rules.

1) If the file name — is specified, the standard input (for reading) or standard
output (for writing) is used.

2) If the first character of the file name is |, the remainder of the argument is
interpreted as a shell command. £tp then forks a shell, using popen(3C)
with the argument supplied, and reads (writes) from the standard output
(standard input) of that shell. If the shell command includes SPACE
characters, the argument must be quoted; for example " | 1s -1t". A
particularly useful example of this mechanism is: "dir | more".

3) Failing the above checks, if globbing is enabled, local file names are
expanded according to the rules used in the sh(1); see the glob command.
If the £tp command expects a single local file (for example, put), only the
first filename generated by the globbing operation is used.

4) For mget commands and get commands with unspecified local file names,
the local filename is the remote filename, which may be altered by a case,
ntrans, or nmap setting. The resulting filename may then be altered if
runigque is on.

5) For mput commands and put commands with unspecified remote file
names, the remote filename is the local filename, which may be altered by a
ntrans or nmap setting. The resulting filename may then be altered by the
remote server if sunique is on.

The FTP specification specifies many parameters which may affect a file transfer.

The “representation type” may be one of “network ASCII”, “EBCDIC”, “image”, or
“local byte size” with a specified byte size (for PDP-10’s and PDP-20’s mostly). The

454 man pages section 1: User Commands ¢ Last Revised 6 Nov 2000



USAGE

FILES

ATTRIBUTES

SEE ALSO

NOTES

ftp(1)

“network ASCII” and “EBCDIC” types have a further subtype which specifies
whether vertical format control (NEWLINE characters, form feeds, etc.) are to be passed
through (“non-print”), provided in TELNET format (“TELNET format controls”), or
provided in ASA (FORTRAN) (“carriage control (ASA)”) format. £tp supports the
“network ASCII” (subtype “non-print” only) and “image” types, plus “local byte size”
with a byte size of 8 for communicating with TENEX machines.

The “file structure” may be one of £ile (no record structure), record, or page. £tp
supports only the default value, which is file.

The “transfer mode” may be one of stream, block, or compressed. £tp supports
only the default value, which is st ream.

See largefile(5) for the description of the behavior of £tp when encountering files
greater than or equal to 2 Gbyte ( 2°! bytes).

The f£tp command is [Pv6—enabled. See ip6(7P).
~/ .netrc

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWDbip

CSI enabled

1s(1), rep(1), sh(1), tar(l), in. £tpd(1M), popen(3C), ftpusers(4), netrc(4),
attributes(b), largefile(5), ip6(7P)

Failure to log in may arise from an explicit denial by the remote FTP server because
the account is listed in /etc/ftpusers. See in. ftpd(1M) and ftpusers(4).

Correct execution of many commands depends upon proper behavior by the remote
server.

An error in the treatment of carriage returns in the 4.2 BSD code handling transfers
with a “representation type” of “network ASCII” has been corrected. This correction
may result in incorrect transfers of binary files to and from 4.2 BSD servers using a
“representation type” of “network ASCII”. Avoid this problem by using the “image”

type.

User Commands 455



ftpcount(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

ftpcount — show current number of users in each FIP Server class

ftpcount [-V]

Use the ftpcount command to show the current number of users logged in and the
login limit for each FIP Server class defined in the ftpaccess(4) file.

The ftpcount command supports the following options:

-V Display program copyright and version information, then terminate.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.
/var/run/ftp.pids-classnames

/etc/ftpd/ftpaccess

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpu

ftpwho(l), in. ftpd(1M), ftpaccess(4), attributes(5)

456 man pages section 1: User Commands ¢ Last Revised 15 Oct 2001




NAME
SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

ftpwho(1)
ftpwho — show current process information for each FTP Server user

ftpwho [-V]

Use the ftpwho command to show the current process information for each user
logged in to the FTP Server. This information is in addition to information displayed
by the ftpcount(l) command.

The ftpwho command supports the following options:

-V Display the program copyright and version information, then terminate.

The following exit values are returned:

0 Successful completion.
>0 An error occurred.
/etc/ftpd/ftpaccess

/var/run/ftp.pids-classname

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpu

ftpcount(l), ps(l), in. £tpd(1M), ftpaccess(4), attributes(b)

User Commands 457



gcore(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS
EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

gcore — get core images of running processes

gcore [-o filename] process-id...

The gcore utility creates a core image of each specified process. By default, the name
of the core image file for the process whose process ID is process-id will be
core . process-id .

-o filename Substitutes filename in place of core as the first part of the name of
the core image files.

process-id process ID

0 On success.

non-zero On failure, such as non-existent process ID.

core . process-id core images

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtoo (32-bit)

SUNW?1toox (64-bit)

kill(1l), core(4), proc(4), attributes(5)

458 man pages section 1: User Commands ¢ Last Revised 14 Jul 1998




NAME
SYNOPSIS

DESCRIPTION

Message Text
Source File Format

gencat(1)
gencat — generate a formatted message catalog

gencat catfile msgfile...

The gencat command merges the message text source file(s) msgfile into a formatted
message database catfile. The database catfile is created if it does not already exist. If
catfile does exist, its messages are included in the new catfile. If set and message
numbers collide, the new message-text defined in msgfile replaces the old message text
currently contained in catfile. The message text source file (or set of files) input to
gencat can contain either set and message numbers or simply message numbers, in
which case the set NI SETD (see nl_types(3HEAD)) is assumed.

The format of a message text source file is defined as follows. Note that the fields of a
message text source line are separated by a single ASCII space or tab character. Any
other ASCII spaces or tabs are considered as part of the subsequent field.

$set n comment Where 1 specifies the set identifier of the following
messages until the next $set, sdelset, or end-of-file
appears. n must be a number in the range
(1-{NL_SETMAX]}). Set identifiers within a single source
file need not be contiguous. Any string following the
set identifier is treated as a comment. If no $set
directive is specified in a message text source file, all
messages are located in the default message set
NI_SETD.

Sdelset n comment Deletes message set 1 from an existing message
catalog. Any string following the set number is treated
as a comment. (Note: if 7 is not a valid set it is ignored.)

Scomment A line beginning with a dollar symbol $ followed by an
ASCII space or tab character is treated as a comment.

m message-text The m denotes the message identifier, a number in the
range (1-{NL_MSGMAX}). The message-text is stored in
the message catalog with the set identifier specified by
the last $set directive, and with message identifier m.
If the message-text is empty, and an ASCII space or tab
field separator is present, an empty string is stored in
the message catalog. If a message source line has a
message number, but neither a field separator nor
message-text, the existing message with that number (if
any) is deleted from the catalog. Message identifiers
need not be contiguous. The length of message-text must
be in the range (0—{NL TEXTMAX}).

$quote ¢ This line specifies an optional quote character ¢, which
can be used to surround message-text so that trailing
spaces or null (empty) messages are visible in a
message source line. By default, or if an empty $quote

User Commands 459



gencat(1)

460

directive is supplied, no quoting of message-text will be
recognized.

Empty lines in a message text source file are ignored.

Text strings can contain the special characters and escape sequences defined in the
following table:

Description Symbol Sequence
newline NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r

form feed FF \f
backslash \ AN\

bit pattern ddd \ddd

The escape sequence \ddd consists of backslash followed by 1, 2 or 3 octal digits,
which are taken to specify the value of the desired character. If the character following
a backslash is not one of those specified, the backslash is ignored.

Backslash followed by an ASCII newline character is also used to continue a string on
the following line. Thus, the following two lines describe a single message string;:

1 This line continues \
to the next line

which is equivalent to:

1 This line continues to the next line

OPERANDS | The following operands are supported:

catfile A path name of the formatted message catalogue. If — is specified,
standard output is used.

msgfile A path name of a message text source file. If — is specified for an
instance of msgfile, standard input is used. The format of message
text source files is defined in Message Text Source File
Format.

man pages section 1: User Commands ¢ Last Revised 1 Feb 1995




ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

gencat(1)

See environ(5) for descriptions of the following environment variables that affect the
execution of gencat: LC_ CTYPE, LC MESSAGES, and NLSPATH.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIloc
CSI enabled

mkmsgs(1), catgets(3C), catopen(3C), gettxt(3C), environ(b), attributes(b),
nl types(3HEAD)

User Commands 461



geniconvtbl(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

OUTPUT

geniconvtbl — generate iconv code conversion tables

geniconvtbl [-fng] [-p preprocessor] [-W arg]l [-Dname] [-Dname=def]
[-Idirectoryl [-Uname] [infile..]

The geniconvtbl utility accepts code conversion rules defined in flat text file(s) and
writes code conversion binary table file(s) that can be used to support user-defined
iconv code conversions (see iconv(1l) and iconv(3C) for more detail on the iconv
code conversion).

The following options are supported:

-f Overwrites output file if the output file exists.

-n Does not generate an output file. This is useful to check
the contents of the input file.

-p preprocessor Uses specified preprocessor instead of the default
preprocessor, /usr/1ib/cpp.

-q Quiet option. It suppresses warning and error
messages.

-Warg Passes the argument arg to the preprocessor. If this

option is specified more than once, all arguments are
passed to the preprocessor.

-Dname

-Dname=def

- Idirectory

-Uname geniconvtbl recognizes these options and passes
them and their arguments to the preprocessor.

The following operand is supported:

infile A path name of an input file. If no input file is
specified, geniconvtbl reads from the standard input
stream. The user can specify more than one input file if
necessary.

If input is from the standard input stream, geniconvtbl writes output to the
standard output stream. If one or more input files are specified, geniconvtbl reads
from each input file and writes to a corresponding output file. Each of the output file
names will be the same as the corresponding input file with . bt appended.

The generated output files must be moved to the following directory prior to using the
code conversions at iconv(1l) and iconv(3C):

/usr/lib/iconv/geniconvtbl/binarytables/The output file name should
start with one or more printable ASCII characters as the "fromcode” name followed
by a percentage character (%), followed by one or more printable ASCII characters as
the "tocode’ name, followed by the suffix . bt’. The 'fromcode’ and "tocode’

462 man pages section 1: User Commands ¢ Last Revised 29 Oct 1999



EXAMPLES

ENVIRONMENT
VARIABLES

EXIT STATUS

geniconvtbl(1)

names are used to identify the iconv code conversion at iconv(l) and
iconv_open(3C)). The properly named output file should be placed in the directory,
/usr/lib/iconv/geniconvtbl /binarytables/.

EXAMPLE 1 Generating an iconv code conversion binary table

The following example generates a code conversion binary table with output file name
convertA2B.bt:

example% geniconvtbl convertA2B

EXAMPLE 2 Generating multiple iconv code conversion binary tables

The following example generates two code conversion binary tables with output files
testl.bt and test2.bt:

example% geniconvtbl testl test2

EXAMPLE 3 USil’lg another preprocessor

The following example generates a code conversion binary table once the specified
preprocessor has processed the input file:

example% geniconvtbl -p /opt/SUNWspro/bin/cc -W -E convertB2A

EXAMPLE 4 Placing a binary table

To use the binary table created in the first example above as the engine of the
conversion ‘fromcode” ABC to ‘tocode’ DEF, become super-user and then rename it and
place it like this:

example# mv convertA2B.bt
/usr/lib/icnv/geniconvtbl/binarytables/ABC%DEF.bt

See environ(b) for descriptions of the following environment variables that affect the
execution of geniconvtbl: LANG and LC_CTYPE.

The following exit values are returned:

0 No errors occurred and the output files were successfully created.

1 Command line options are not correctly used or an unknown command
line option was specified.

2 Invalid input or output file was specified.

3 Conversion rules in input files are not correctly defined.

4 Conversion rule limit of input files has been reached. See NOTES section of
geniconvtbl(4).

5 No more system resource error.

User Commands 463



geniconvtbl(1)

FILES

ATTRIBUTES

SEE ALSO

NOTES

6 Internal error.

/usr/lib/iconv/geniconvtbl /binarytables/*.bt
conversion binary tables

/usr/lib/iconv/geniconvtbl/srcs/*
conversion source files for user reference

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

cpp(1), iconv(l), iconv(3C), iconv_close(3C), iconv_open(3C),
geniconvtbl(4), attributes(b), environ(b), iconv(5)

Solaris Internationalization Guide for Developers

The generated and correctly placed output files,
/usr/lib/iconv/geniconvtbl/binarytables/*.bt, are used in both 32-bit
and 64-bit environments.

464 man pages section 1: User Commands ¢ Last Revised 29 Oct 1999



NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

OUTPUT AND
SYMBOLIC
LINKS

INPUT FILE
FORMAT

The Lexical
Conventions

genlayouttbl(1)
genlayouttbl — generate layout table for complex text layout

genlayouttbl [-o ouffile] [infile]

The genlayouttbl utility accepts a locale’s layout definition in a flat text file and
writes a binary layout table file that can be used in the complex text layout of the
locale.

The following option is supported:

-o outfile Writes output binary layout table to the outfile.

The following operand is supported:
infile A path name of an input file. If no input file is specified,
genlayouttbl reads from the standard input stream.

If no outfile is specified, genlayouttbl writes output to the standard output stream.

The generated output file must be moved to the following directory prior to the use at
the system and the file name should be layout .dat:

/usr/lib/locale/locale/L.O LTYPE/layout.dat

The locale should also have a symbolic link,
/usr/lib/locale/locale/LO_LTYPE/locale.layout.so. 1, to the 32-bit Universal
Multiscript Layout Engine (UMLE),
/usr/lib/locale/common/LO_LTYPE/umle.layout.so.1l.

For proper 64-bit platform operations, the locale should also have a symbolic link, as
for instance, in 64-bit SPARC platform,
/usr/lib/locale/locale/LO_LTYPE/sparcv9/locale. layout .so.1, to the 64-bit
UMLE, /usr/lib/locale/common/LO_LTYPE/sparcv9/umle.layout.so.1l.

The locale is the locale that you want to provide and to use the layout functionality you
defined.

Alayout definition file to genlayouttbl contains three different sections of
definitions:

®  Layout attribute definition
®  Bidirectional data and character type data definition
®  Shaping data definition

For appropriate complex text layout support, all three sections need to be defined in
the layout definition file.

The following lexical conventions are used in the layout definition:

User Commands 465



genlayouttbl(1)

Layout Attribute
Definition

NAME A string of characters that consists of printable ASCII
characters. It includes DECIMAL and HEXADECIMAL
also. Examples: test, al src,b32,123.

HEXADECIMAL_BYTE Two-digit hexadecimal number. The number starts with a
hexadecimal digit followed by another hexadecimal digit.
Examples: e0, E1, a7, fe.

HEXADECIMAL A hexadecimal number. The hexadecimal representation
consists of an escape character, "0 followed by the
constant 'x’ or X’ and one or more hexadecimal digits.
Examples: 0x0, 0x1, Ox1la, 0xA, 0x1b3.

DECIMAL A decimal number, represented by one or more decimal
digits. Examples: 0, 123, 2165.

Each comment must start with “#’. The comment ends at the end of the line.
The following keywords are reserved:

active_directional, active_shape_editing, AL,

ALGORITHM_BASIC, ALGORITHM_IMPLICIT, AN, BN, check_mode,
context, CONTEXT_LTR, CONTEXT_RTL, CS, EN, END, ES, ET, FALSE,
FILE_CODE_REPRESENTATION, implicit_algorithm, keep, L,
LAYOUT_ATTRIBUTES, LAYOUT_BIDI_CHAR_TYPE_DATA,
LAYOUT_SHAPE_DATA, LRE, LRO, MODE_EDIT, MODE_STREAM, NSM,
national_numerals, numerals, NUMERALS_CONTEXTUAL,
NUMERALS_NATIONAL, NUMERALS_NOMINAL, ON, orientation,
ORIENTATION_CONTEXTUAL, ORIENTATION_LTR, ORIENTATION_RTL,
ORIENTATION_TTBLR, ORIENTATION_TTBRL, PDF,
PROCESS_CODE_REPRESENTATION, PS, R, repeat*, repeat+, RLE, RLO, S,
shape_charset, shape_charset_size, shape_context_size, swapping,
SWAPPING_NO, swapping_pairs, SWAPPING_YES, TEXT_EXPLICIT,
TEXT_IMPLICIT, TEXT_NOMINAL, TEXT_SHAPED, text_shaping, TEXT_VISUAL,
TRUE, type_of_text, WS

Additionally, the following symbols are also reserved as tokens:
( ) [ ] , : ; - = -> +
The layout attribute definition section defines the layout attributes and their

associated values.

The definition starts with a keyword, LAYOUT ATTRIBUTES, and ends with END
LAYOUT ATTRIBUTES:

LAYOUT_ ATTRIBUTES

# Layout attributes here.

466 man pages section 1: User Commands ¢ Last Revised 5 Nov 1999



genlayouttbl(1)

END LAYOUT ATTRIBUTES

There are a total of eight layout attribute value trios that can be defined in this section:

orientation
context
type of text
implicit algorithm
swapping

numerals

text shaping

shape context size

Additionally, there are five layout attribute value pairs that also can be defined in this
section:

B active directional

B active shape editing
® shape charset

® shape charset size

® check _mode

Each attribute value trio will have an attribute name, an attribute value for the input
buffer, and an attribute value for the output buffer, as in the following example:
# Orientation layout attribute value trio. The input and output

# attribute values are separated by a colon and the left one
# is the input attribute value:

orientation ORIENTATION_LTR:ORIENTATION_LTR

Each attribute value pair will have an attribute name and an associated attribute
value, as in the following example:

# Shape charset attribute value pair:
shape_charset I508859-6

The orientation value trio defines the global directional text orientation. The
possible values are:

ORIENTATION LTR Left-to-right horizontal rows that progress
from top to bottom.

ORIENTATION_RTL Right-to-left horizontal rows that progress
from top to bottom.

ORIENTATION TTBRL Top-to-bottom vertical columns that
progress from right to left.

User Commands 467



genlayouttbl(1)

ORIENTATION_TTBLR Top-to-bottom vertical columns that

progress from left to right.

ORIENTATION CONTEXTUAL The global orientation is set according to the

direction of the first significant (strong)
character. If there are no strong characters in
the text and the attribute is set to this value,
the global orientation of the text is set
according to the value of the attribute
context. This value is meaningful only for
bidirectional text.

If no value or value trio is defined, the default is ORIENTATION LTR.

The context value trio is meaningful only if the attribute orientation is set to
ORIENTATION CONTEXTUAL. It defines what orientation is assumed when no strong
character appears in the text. The possible values are:

CONTEXT_LTR  In the absence of characters with strong directionality in the text,
orientation is assumed to be left-to-right rows progressing from top
to bottom.

CONTEXT_RTL  In the absence of characters with strong directionality in the text,
orientation is assumed to be right-to-left rows progressing from top
to bottom.

If no value or value trio is specified, the default is CONTEXT LTR.

The type of text value trio specifies the ordering of the directional text. The

possible values are:

TEXT_ VISUAL

TEXT IMPLICIT

TEXT EXPLICIT

Code elements are provided in visually ordered segments,
which can be rendered without any segment inversion.

Code elements are provided in logically ordered segments.
Logically ordered means that the order in which the characters
are provided is the same as the order in which the characters are
pronounced when reading the presented text or the order in
which characters would be entered from a keyboard.

Code elements are provided in logically ordered segments with
a set of embedded controls. Some examples of such embedded
controls from ISO/IEC 10646-1 are:

LEFT-TO-RIGHT EMBEDDING (LRE)
RIGHT-TO-LEFT EMBEDDING (RLE)
RIGHT-TO-LEFT OVERRIDE (RLO)
LEFT-TO-RIGHT OVERRIDE (LRO)
POP DIRECTIONAL FORMAT (PDF)

468 man pages section 1: User Commands ¢ Last Revised 5 Nov 1999



genlayouttbl(1)

If no value or value trio is specified, the default is TEXT IMPLICIT.

The implicit_algorithm value trio specifies the type of bidirectional implicit
algorithm used in reordering and shaping of directional or context-dependent text.
The possible values are:

ALGORITHM IMPLICIT  Directional code elements will be reordered using an
implementation-defined implicit algorithm.

ALGORITHM BASIC Directional code elements will be reordered using a basic
implicit algorithm defined in the Unicode standard.

Even though we allow two different values for the implicit_algorithm, since the
Solaris implementation-defined implicit algorithm is based on the Unicode standard,
there is no difference in behavior whether you choose ALGORITHM_IMPLICIT or
ALGORITHM BASIC for this attribute.

The default value is ALGORITHM IMPLICIT.

The swapping value trio specifies whether symmetric swapping is applied to the text.
The possible values are:

SWAPPING_YES  The text conforms to symmetric swapping.

SWAPPING_ NO The text does not conform to symmetric swapping.
If no value or value trio is specified, the default is SWAPPING NO.

The numerals value trio specifies the shaping of numerals. The possible values are:

NUMERALS_NOMINAL Nominal shaping of numerals using the Arabic numbers
of the portable character set (in Solaris, ASCII digits).

NUMERALS_NATIONAL National shaping of numerals based on the script of the
locale. For instance, Thai digits in the Thai locale.

NUMERALS_CONTEXTUAL  Contextual shaping of numerals depending on the
context script of surrounding text, such as Hindi
numbers in Arabic text and Arabic numbers otherwise.

If no value or value trio is specified, the default is NUMERALS NOMINAL.

The text_shaping value trio specifies the shaping; that is, choosing (or composing)
the correct shape of the input or output text. The possible values are:

TEXT_ SHAPED The text has presentation form shapes.

TEXT NOMINAL  The text is in basic form.

If no value or value trio is specified, the default is TEXT NOMINAL for input and
TEXT_SHAPED for output.

User Commands 469



genlayouttbl(1)

The shape context_size value trio specifies the size of the context (surrounding
code elements) that must be accounted for when performing active shape editing. If
not defined, the default value 0 is used for the number of surrounding code elements
at both front and rear:

# The shape_context_size for both front and rear surrounding code
# elements are all zero:

shape_context_size 0:0

The front and rear attribute values are separated by a colon, with the front value to the
left of the colon.

The active_directional value pair specifies whether the current locale requires
(bi-)directional processing. The possible values are:

TRUE Requires (bi-)directional processing.

FALSE  Does not require (bi-)directional processing.

The active shape editing value pair specifies whether the current locale requires
context-dependent shaping for presentation. The possible values are:

TRUE Requires context-dependent shaping.

FALSE  Does not require context-dependent shaping.

The shape_charset value pair specifies the current locale’s shape charset on which
the complex text layout is based. There are two different kinds of shape charset values
that can be specified:

® A single shape charset
®  Multiple shape charsets

For a single shape charset, it can be defined by using NAME as defined in the Lexical
Convention section above. For multiple shape charsets, however, it should follow
the syntax given below in extended BNF form:

multiple shape charset
: charset list

charset_list : charset

- | charset list ’;’ charset
charset : charset_name ’'=’ charset_id
charset name : NAME
charset_id : HEXADECIMAL BYTE

470 man pages section 1: User Commands ¢ Last Revised 5 Nov 1999



Bidirectional Data
And Character
Type Data
Definition

genlayouttbl(1)

For instance, the following is a valid multiple shape charsets value for the
shape charset attribute:

# Multi-shape charsets:
shape charset tis620.2533=e4;1s08859-8=e5;1508859-6=e6

The shape charset must be specified.

The shape_charset_size value pair specifies the encoding size of the current
shape_charset. The valid value is a positive integer from 1 to 4. If the multiple
shape charsets value is defined for the shape_charset attribute, the

shape charset size must be 4.

The shape charset size must be specified.

The check_mode value pair specifies the level of checking of the elements in the
input buffer for shaping and reordering purposes. The possible values are:

MODE_STREAM  The string in the input buffer is expected to have valid
combinations of characters or character elements.

MODE_EDIT The shaping of input text may vary depending on locale-specific
validation or assumption.

When no value or value pair is not specified, the default value is MODE_STREAM.

This section defines the bidirectional and other character types that will be used in the
Unicode Bidirectional Algorithm and the shaping algorithm part of the UMLE.

The definition starts with a keyword LAYOUT BIDI CHAR TYPE DATA and ends
with END LAYOUT_BIDI_CHAR_TYPE DATA:

LAYOUT BIDI_CHAR TYPE DATA

# Layout bidi definitions here.

END LAYOUT BIDI CHAR TYPE DATA

The bidirectional data and character type data definition should be defined for the two
different kinds of text shape forms, TEXT SHAPED and TEXT NOMINAL, depending on
the text shaping attribute value and also for the two different kinds of text
representations, file code representation and process code representation (that is, wide
character representation):

LAYOUT BIDI_CHAR_TYPE DATA

FILE_CODE_REPRESENTATION
TEXT_SHAPED

# TEXT_SHAPED bidi and character type data

User Commands 471



genlayouttbl(1)

# definition in file code representation here.

END TEXT_SHAPED
TEXT_ NOMINAL

# TEXT_NOMINAL bidi and character type data
# definition in file code representation here.

END TEXT_NOMINAL
END FILE CODE_REPRESENTATION

PROCESS_CODE_REPRESENTATION
TEXT_SHAPED

# TEXT_SHAPED bidi and character type data
# definition in process code representation here.

END TEXT SHAPED
TEXT_NOMINAL

# TEXT_NOMINAL bidi and character type data
# definition in process code representation here.

END TEXT_NOMINAL
END PROCESS_CODE_REPRESENTATION

END LAYOUT BIDI CHAR TYPE DATA

Each bidi and character type data definition can have the following definitions:

®  Bidirectional data type definition
® swapping_ pairs character type definition
® national_numerals character type definition

There are nineteen different bidirectional data types that can be defined, as in the
following table:

Keyword Category Description
L Strong Left-to-right
LRE Strong Left-to-right embedding

472 man pages section 1: User Commands ¢ Last Revised 5 Nov 1999



Keyword
LRO
R
AL
RLE
RLO
PDF
EN
ES
ET
AN
CS
PS

WS
ON
NSM
BN

Category
Strong
Strong
Strong
Strong
Strong
Weak
Weak
Weak
Weak
Weak
Weak
Separator
Separator
Neutral
Neutral
Weak
Weak

genlayouttbl(1)

Description

Left-to-right override
Right-to-left

Right-to-left

Right-to-left embedding
Right-to-left override

Pop directional format
European number
European number separator
European number terminator
Arabic number

Common number separator
Paragraph separator
Segment separator

White space

Other neutrals

Non-spacing mark

Boundary neutral

If not defined in this section, the characters belong to the other neutrals type, ON.

Each keyword list above will be accompanied by one or more HEXADECIMAL ranges of
characters that belong to the bidirectional character type. The syntax is as follows:

bidi_char_type

bidi_keyword

: bidi_keyword ’:

. oL

"LRE’
’'LRO’
IR

N
"RLE’
'RLO’
' PDF’
TEN’
RS’
IRETY
AN
eIl

' range_list

User Commands 473



genlayouttbl(1)

1 pg’
rgr

WS’
ON’
'NSM’
BN’

range_list : range
| range list ’,’ range

range : HEXADECIMAL
HEXADECIMAL ' ...’ HEXADECIMAL

For example:
# Bidi character type definitions:

L: 0x26, 0x41...0x5a, 0xc380...0xc396, 0xe285a0...0xe28682
WS: 0x20, 0xc2a0, 0xe28080...0xe28086

The swapping pairs specifies the list of swappable characters if SWAPPING_YES is
specified as a value at the swapping value trio. The syntax of the swapping_ pairsis
as follows:

swapping_pair list : swapping keyword ’:’ swap pair_list
swapping keyword : 'swapping pairs’
swap pair list : swap_pair

| swap_pair list ’,’ swap pair
swap_pair : ' (’ HEXADECIMAL ’,’ HEXADECIMAL ')’

For example:

# Swapping pair definitions:

swapping_pairs: (0x28, 0x29), (0x7b, 0x7d)

The national numerals specifies the list of national digits that can be converted as
the numerals value trio specifies. The syntax of the national_numerals is as
follows:

numerals_ list : numerals keyword ’:’
numerals_list ’;’ contextual_range_list
i

numerals keyword : 'national numerals’

474 man pages section 1: User Commands ¢ Last Revised 5 Nov 1999



numerals_list

zero

one

two

three

four

five

seven

eight

nine

contextual_range_list

contextual range

For instance:

# National numerals definition.
# replace Arabic number 0 to 9 is 0,

genlayouttbl(1)

l(l
four ’,’
eight ’,’

three 7 ,’
seven ' ,’

zero ',’ one ’,’
five ’,"

1y

two ',

six ' ,’

nine

HEXADECIMAL

HEXADECIMAL

HEXADECIMAL

HEXADECIMAL

HEXADECIMAL

HEXADECIMAL

HEXADECIMAL

HEXADECIMAL

HEXADECIMAL

HEXADECIMAL

contextual_range

contextual_ range_ list ’,’ contextual_ range

HEXADECIMAL

HEXADECIMAL ‘...’ HEXADECIMAL

The national number that will
0x41, 0x42, and so on.

# The contextual surrounding characters are 0x20 to 0x40 and

# 0x50 to O0x7f:

national numerals:
(0x0, 0x41, 0x42,
; 0x20...0x40,

0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49)

0x50...0x7f

User Commands 475



genlayouttbl(1)

476

Shaping Data
Definition

Unless NUMERALS CONTEXTUAL is the value of the numerals attribute, the contextual
range list definition is meaningless.

The shaping data definition section defines the context-dependent shaping rules that
will be used in the shaping algorithm of the UMLE.

The definition starts with a keyword, LAYOUT SHAPE_DATA, and ends with END
LAYOUT SHAPE DATA:

LAYOUT_SHAPE_DATA

# Layout shaping data definitions here.

END LAYOUT SHAPE_ DATA

The shaping data definition should be defined for the two different kinds of text shape
forms, TEXT SHAPED and TEXT NOMINAL, depending on the text_shaping
attribute value and also for the two different kinds of text representations, file code
representation and process code representation (that is, wide character representation:

LAYOUT_SHAPE_DATA

FILE_CODE_REPRESENTATION
TEXT_SHAPED

# TEXT_SHAPED shaping data definition in file code
# representation here.

END TEXT_SHAPED
TEXT_ NOMINAL

# TEXT_NOMINAL shaping data definition in file code
# representation here.

END TEXT_NOMINAL
END FILE_CODE_REPRESENTATION

PROCESS_CODE_REPRESENTATION
TEXT_SHAPED

# TEXT_SHAPED shaping data definition in process code
# representation here.

END TEXT_ SHAPED

man pages section 1: User Commands ¢ Last Revised 5 Nov 1999



TEXT_ NOMINAL

genlayouttbl(1)

# TEXT_NOMINAL shaping data definition in process
# code representation here.

END TEXT NOMINAL
END PROCESS_CODE_REPRESENTATION

END LAYOUT SHAPE DATA

Each shaping data definition consists of one or more of the shaping sequence

definitions. Each shaping sequence definition is a representation of a series of state
transitions triggered by an input character and the current state at each transition.

The syntax of the shaping sequence definition is as follows:

shaping sequence

initial_state

input

next_state_list

next_state

out_buffer

out_char list

in2out

i2o0_list

out2in

initial state '+’ input ’'->’ next state list

oK

HEXADECIMAL

next_state

next state list ’+’ input ’'->’ next state

' (’ next_state_list '+’ input ')’ ’‘repeat+’

' (’ next state list '+’ input ')’ ’‘repeat*’

' (* out_buffer ’,’ in2out ’,’ out2in ’,’
property ‘)’

' [" out_char list ']’

HEXADECIMAL
’ (' HEXADECIMAL ')’ ’'repeat+’
out_char list ’;’ HEXADECIMAL

‘[ i20 list 17

DECIMAL
(’ DECIMAL ')’ 'repeat+’
i2071ist ’;’ DECIMAL

‘[ o2i list 17

User Commands

477



genlayouttbl(1)

478

EXIT STATUS

o2i_list : DECIMAL
| (' DECIMAL ')’ ‘repeat+’
| o2i_list ’;’ DECIMAL

property : ' [" prop_list ']’

prop_list : HEXADECIMAL
‘ ’ (’ HEXADECIMAL ')’ ‘repeat+’
| prop list ’;’ HEXADECIMAL

For example, the following shaping sequences can be defined:

# A simple shaping sequence:

() + 0x21 ->
( [0x0021], [0], [0;0], [0x80] ) + 0x22 ->
( [0x0021;0x0022], [0;1], [0;0;1;1], [0x80;0x80] ) + 0xc2al0 ->
( [0x0021;0x0022;0xe030], [0;1;2], [0;0;1;1;2;2],

[0x80;0x80;0x80] )

# A repeating shaping sequence:

() + 0x21 ->
(
( [0ox0021], [0], [0;0], [0x80] ) + 0x22 ->
( [0x0021;0x0022], [0;1], [0;0;1;1], [0Ox80;0x80] ) + Oxc2a2
) repeat+

The first example shows a shaping sequence such that if 0x21, 0x22, and 0xc2a0 are
the input buffer contents, it will be converted into an output buffer containing
0x0021, 0x0022, and 0xe030; an input to the output buffer containing 0, 1, and 2;
an output to the input buffer containing 0, 0, 1, 1, 2, and 2; and a property buffer
containing 0x80, 0x80, and 0x80.

The second example shows a repeating shaping sequence where, if the first input code
element is 0x21, then the second and third input code elements are 0x22 and
0xc2a2, respectively.

The following exit values are returned:
0 No errors occurred and the output file was successfully created.

1 Command line options are not correctly used or unknown command line
option specified.

2 Invalid input or output file specified.

3 The layout definitions not correctly defined.
4 No more system resource error.

6 Internal error.

man pages section 1: User Commands ¢ Last Revised 5 Nov 1999



FILES

ATTRIBUTES

SEE ALSO

genlayouttbl(1)

/usr/lib/locale/common/LO_LTYPE/umle.layout.so.1l
The Universal Multiscript Layout Engine for 32-bit platforms.

/usr/lib/locale/common/LO_LTYPE/sparcv9/umle.layout.so.1l
The Universal Multiscript Layout Engine for 64-bit SPARC platform.

/usr/lib/locale/common/LO LTYPE/ia64/umle.layout.so.1l
The Universal Multiscript Layout Engine for 64-bit Intel platform.

/usr/lib/locale/locale/1L.O_LTYPE/layout.dat
The binary layout table file for the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWglt

m_create layout(B3LAYOUT), m_destroy layout(3LAYOUT),
m_getvalues layout(3LAYOUT), m_setvalues layout(3LAYOUT),
m_transform_layout(3LAYOUT), m _wtransform layout(3LAYOUT),
attributes(5), environ(5)

International Language Environments Guide

Unicode Technical Report #9: The Bidirectional Algorithm from
http:/ /www.unicode.org/unicode/reports/

User Commands 479



genmsg(1)
NAME
SYNOPSIS

DESCRIPTION

Invocation

Auto Message
Numbering

Comment
Extraction

Testing

genmsg — generate a message source file by extracting messages from source files

genmsg [-abdfrntx] [-c message-tag]l [-g project-file]l [-1 project-file]
[-m prefix] [-M suffix] [-o message-file] [-p preprocessor] [-s set-tags] file...

The genmsg utility extracts message strings with calls to catgets(3C) from source
files and writes them in a format suitable for input to gencat(1).

genmsg reads one or more input files and, by default, generates a message source file
whose name is composed of the first input file name with .msg. If the -o option is
specified, genmsg uses the option argument for its output file.

Command Output File
genmsg prog.c prog.c.msg
gensmg main.c util.c tool.c main.c.msg
genmsg -0 prog.msg mail.c util.c prog.msg

genmsg also allows you to invoke a preprocessor to solve the dependencies of macros
and define statements for the catgets(3C) calls.

genmsg replaces message numbers with the calculated numbers based upon the
project file if the message numbers are -1, and it generates copies of the input files
with the new message numbers and a copy of the project file with the new maximum
message numbers.

A project file is a database that stores a list of set numbers with their maximum
message numbers. Each line in a project file is composed of a set number and its
maximum message number:

Set_number Maximum_message_number

In a project file, a line beginning with a number sign (#) or an ASCII space is
considered as a comment and ignored.

genmsg also has the reverse operation to replace all message numbers with -1.

genmsg allows you to comment about messages and set numbers to inform the
translator how the messages should be translated. It extracts the comment, which is
surrounded with the comment indicators and has the specified tag inside the
comment, from the input file and writes it with a dollar ($) prefix in the output file.
genmsg supports the C and C++ comment indicators, "/*’, "*/’,and "/ /’.

genmsg generates two kinds of messages for testing, prefixed messages and long
messages. Prefixed messages allow you to check that your program is retrieving the
messages from the message catalog. Long messages allow you to check the appearance
of your window program’s initial size and position.

480 man pages section 1: User Commands ¢ Last Revised 20 Dec 1996



OPTIONS

genmsg(1)

The following options are supported:

-a

- c message-tag

-g project-file

-1 project-file

-m prefix

-M suffix

- o message-file

-p preprocessor

Append the output into the message file message-file
that is specified by the -o option. If two different
messages that have the same set and message number
are found, the message in the specified message file is
kept and the other message in the input file is
discarded.

Place the extracted comment after the corresponding
message in the output file. This option changes the
placement behavior of the -s or -c option.

Extract message comments having message-tag inside
them from the input files and write them with a ’$’
prefix as a comment in the output file.

Include an original text of a message as a comment to
be preserved along with its translations. With this
option, the translator can see the original messages
even after they are replaced with their translations.

Overwrite the input files and the project file when used
with the -1 or -r option. With the -r option, genmsg
overwrites only the input files.

Generate project-file that has a list of set numbers and
their maximum message numbers in the input files.

Replace message numbers with the calculated numbers
based upon project-file if the message numbers are -1 in
the input files, and then generate copies of the input
files with the new message numbers and a copy of
project-file with the new maximum message numbers. If
project-file is not found, genmsg uses the maximum
message number in the input file as a base number and
generates project-file.

Fill in the message with prefix. This option is useful for
testing.

Fill in the message with suffix. This option is useful for
testing.

Add comment lines to the output file indicating the file
name and line number in the input files where each
extracted string is encountered.

Write the output to message-file.

Invoke preprocessor to preprocess macros and define
statements for the catgets(3C) calls. genmsg first
invokes the option argument as a preprocesser and

User Commands 481



genmsg(1)

482

OPERANDS

EXAMPLES

then starts the normal process against the output from
the preprocessor. genmsg initiates this process for all
the input files.

-r Replace message numbers with - 1. This is the reverse
operation of the -1 option.

- s set-tag Extract set number comments having set-tag inside
them from the input files and write them with a ’$’
prefix as a comment in the output file. If multiple
comments are specified for one set number, the first
one is extracted and the rest of them are discarded.

-t Generate a message that is three times as long as the
original message. This option is useful for testing.

-X Suppress warning messages about message and set
number range checks and conflicts.

file An input source file.

EXAMPLE 1 Assigning message numbers and generating new files

Suppose that you have the following source and project files:

example% cat test.cprintf (catgets(catfd, 1, -1, "line too long)) ;
printf (catgets(catfd, 2, -1, "invalid code)) ;example% cat projl 10
2 20

The command

example$ genmsg -1 proj test.c

would assign the calculated message numbers based upon proj and generate the
following files:

test.c.msg message file
proj .new updated project file
test.c.new new source file

example% cat test.c.msgSquote "

Sset 1

11 "line too long

Sset 2

21 "invalid codeexample% cat proj.newl 11

2 2lexample% cat test.c.newprintf (catgets(catfd, 1, 11, "line too long)) ;
printf (catgets(catfd, 2, 21, "invalid code)) ;

EXAMPLE 2 Extracting comments into a file

The command

man pages section 1: User Commands ¢ Last Revised 20 Dec 1996



genmsg(1)

EXAMPLE 2 Extracting comments into a file (Continued)

example% genmsg -s SET -c MSG test.cexample$% cat test.c/* SET: tar messages */

/* MSG: don’t translate "tar". */

catgets(catfd, 1, 1, "tar: tape write error");

// MSG: don’t translate "tar" and "-I".

catgets(catfd, 1, 2, "tar: missing argument for -I flag");

would extract the comments and write them in the following output file:

example% cat test.c.msg$ /* SET: tar messages */

Sset 1

$ /* MSG: don’t translate "tar". */

1 "tar: tape write error"

$ // MSG: don’t translate "tar" and "-I".

2 "tar: missing argument for -I flag"

EXAMPLE 3 Generating test messages
The command

example% genmsg -m PRE: -M :FIX test.c

would generate the following messages for testing:

example% cat test.c.msgl "PRE:OK:FIX"
2 "PRE:Cancel :FIX"

EXAMPLE 4 Parsing a macro and writing the extracted messages

Given the following input:

example% example.c
#include <nl_types.h>

#define MSG1 "messagel"

#define MSG2 "message2"

#define MSG3 "message3"

#define MSG(n) catgets(catd, 1, n, MSG ## n)
void

main (int argc, char **argv)

{

nl_catd catd = catopen(argv[0], NL_CAT_LOCALE) ;
(void) printf("$s0, MSG(1));

( ) printf ("%$s0, MSG(2));

(void) printf("$s0, MSG(3));

( ) catclose(catd) ;

}

The following command:

example% genmsg -p "cc -E " -0 example.msg example.c

would parse the MSG macros and write the extracted messages in example .msg.

User Commands

483



genmsg(1)

ENVIRONMENT
VARIABLES

EXIT STATUS

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 5 Assigning calculated message numbers

Suppose that you have the following header, source, and project files:

example% . ./inc/msg.h

#define WARN_SET 1

#define ERR_SET 2

#define WARN MSG(id, msg) catgets(catd, WARN SET, (id), (msg))
#define ERR_MSG(id, msg) catgets(catd, ERR_SET, (id), (msg))

example% example.c

#include "msg.h"

printf ("$s, WARN_MSG(-1, "Warning error"));
printf ("%s, ERR_MSG(-1, "Fatal error"));
example % proj

1 10

2 10

The command

example% genmsg -f -p "cc -E -I ../inec" -1 proj \
-0 example.msg example.c

would assign each of the -1 message numbers a calculated number based upon proj
and would overwrite the results to example.c and proj. Also, this command writes
the extracted messages in example.msg.

See environ(b) for descriptions of the following environment variables that affect the
execution of genmsg: LC_MESSAGES and NLSPATH.

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIoc

gencat(1), catgets(3C), catopen(3C), attributes(b), environ(b)

genmsg does not handle pointers or valuables in the catgets(3C) call. For example:

const int set num = 1;

extern int msg_num(const char *);

const char *msg = "Hello";

catgets(catd, set_num, msg num(msg), msg);

When the auto message numbering is turned on with a preprocessor, if there are
multiple -1’ s in the catgets(3C) line, genmsg replaces all of the -1’ s in the line
with a calculated number. For example, given the input:

484 man pages section 1: User Commands ¢ Last Revised 20 Dec 1996



genmsg(1)

#define MSG(id, msg) catgets(catd, 1, (id), (msg))
if (ret == -1) printf("%s, MSG(-1, "Failed"));

the command
genmsg -1 proj -p "cc -E "

would produce:

#define MSG(id, msg) catgets(catd, 1, (id)

, (msg))
if (ret == 1) printf("%s, MSG(1l, "Failed"));

The workaround would be to split it into two lines as follows:

if (ret == -1)
printf ("%$s, MSG(-1, "Failed"));

User Commands 485



getconf(1)
NAME
SYNOPSIS

DESCRIPTION

OPTIONS

OPERANDS

getconf — get configuration values
getconf [-v specification] system_var
getconf [-v specification] path_var pathname

getconf -a

In the first synopsis form, the get conf utility will write to the standard output the
value of the variable specified by system_var, in accordance with specification if the -v
option is used.

In the second synopsis form, getconf will write to the standard output the value of
the variable specified by path_var for the path specified by pathname, in accordance
with specification if the -v option is used.

In the third synopsis form, config will write to the standard output the names of the
current system configuration variables.

The value of each configuration variable will be determined as if it were obtained by
calling the function from which it is defined to be available. The value will reflect
conditions in the current operating environment.

The following options are supported:

-a Writes the names of the current system configuration
variables to the standard output.

-v specification Gives the specification which governs the selection of
values for configuration variables.

The following operands are supported:

path_var A name of a configuration variable whose value is available from
the pathconf(2) function. All of the values in the following table
are supported:

LINK_MAX NAME_MAX POSIX_CHOWN_RESTRICTED
MAX_CANON PATH_MAX POSIX_NO_TRUNC
MAX_INPUT PIPE_BUF POSIX_VDISABLE

pathname A path name for which the variable specified by path_var is to be

determined.

system_var A name of a configuration variable whose value is available from

contstr(3C) or sysconf(3C). All of the values in the following
table are supported:

486 man pages section 1: User Commands ¢ Last Revised 30 Jan 1998



ARG_MAX
BC_DIM MAX
BC_STRING MAX
CHARCLASS_NAME_MAX
CHAR_MIN

CLK_TCK

CS_PATH

INT_MAX
LFS64_CFLAGS
LFS64_LIBS

LFS_CFLAGS

LFS_LIBS

LINE_MAX

LONG_MAX
MB_LEN_MAX
NL_ARGMAX
NL_MSGMAX
NL_SETMAX

NZERO
POSIX2_BC_BASE_MAX
POSIX2_BC_SCALE_MAX
POSIX2_C_BIND
POSIX2_CHAR_TERM
POSIX2_C_VERSION
POSIX2_FORT_DEV
POSIX2_LINE_MAX
POSIX2_RE_DUP_MAX
POSIX2_UPE
_POSIX_ARG_MAX
_POSIX_JOB_CONTROL

getconf(1)

BC_BASE MAX
BC_SCALE_MAX

C