
Solaris Modular Debugger Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-1583–10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface

1. Modular Debugger Overview 15

Introduction 15

MDB Features 16

Future Enhancements 17

2. Debugger Concepts 19

Architecture 19

Building Blocks 20

Modularity 21

3. Language Syntax 23

Syntax 23

Commands 24

Comments 25

Arithmetic Expansion 26

Quoting 27

Shell Escapes 28

Variables 28

Symbol Name Resolution 29

dcmd and Walker Name Resolution 30

3

dcmd Pipelines 31

Formatting dcmds 31

4. Built-in Commands 35

Built-in dcmds 35

5. Kernel Debugging Modules 45

Generic Kernel Debugging Support (genunix) 45

Kernel Memory Allocator 45

File Systems 49

Virtual Memory 50

CPUs and the Dispatcher 51

Device Drivers and DDI Framework 52

STREAMS 53

Files, Processes, and Threads 55

Synchronization Primitives 57

Cyclics 58

Interprocess Communication Debugging Support (ipc) 59

dcmds 59

Walkers 59

Loopback File System Debugging Support (lofs) 60

dcmds 60

Walkers 60

Internet Protocol Module Debugging Support (ip) 61

dcmds 61

Walkers 61

Kernel Runtime Link Editor Debugging Support (krtld) 61

dcmds 61

Walkers 62

IA: Platform Debugging Support (unix) 62

4 Solaris Modular Debugger Guide ♦ February 2000

dcmds 62

Walkers 62

SPARC: sun4d Platform Debugging Support (unix) 63

dcmds 63

Walkers 63

SPARC: sun4m Platform Debugging Support (unix) 63

dcmds 63

Walkers 64

SPARC: sun4u Platform Debugging Support (unix) 64

dcmds 64

Walkers 65

6. Debugging With the Kernel Memory Allocator 67

Getting Started: Creating a Sample Crash Dump 67

Setting kmem_flags 68

Forcing a Crash Dump 68

Starting MDB 69

Allocator Basics 69

Buffer States 69

Transactions 70

Sleeping and Non-Sleeping Allocations 70

Kernel Memory Caches 70

Kernel Memory Caches 71

Detecting Memory Corruption 74

Freed Buffer Checking: 0xdeadbeef 74

Redzone: 0xfeedface 75

Uninitialized Data: 0xbaddcafe 77

Associating Panic Messages With Failures 78

Memory Allocation Logging 78

Contents 5

Buftag Data Integrity 78

The bufctl Pointer 79

Advanced Memory Analysis 80

Finding Memory Leaks 80

Finding References to Data 81

Finding Corrupt Buffers With ::kmem_verify 82

Allocator Logging Facility 83

7. Module Programming API 87

Debugger Module Linkage 87

_mdb_init() 87

_mdb_fini() 88

Dcmd Definitions 88

Walker Definitions 90

API Functions 94

mdb_pwalk() 94

mdb_walk() 94

mdb_pwalk_dcmd() 94

mdb_walk_dcmd() 95

mdb_call_dcmd() 95

mdb_layered_walk() 95

mdb_add_walker() 96

mdb_remove_walker() 96

mdb_vread() and mdb_vwrite() 97

mdb_pread() and mdb_pwrite() 97

mdb_readstr() 97

mdb_writestr() 97

mdb_readsym() 98

mdb_writesym() 98

6 Solaris Modular Debugger Guide ♦ February 2000

mdb_readvar() and mdb_writevar() 98

mdb_lookup_by_name() and mdb_lookup_by_obj() 99

mdb_lookup_by_addr() 100

mdb_getopts() 100

mdb_strtoull() 102

mdb_alloc() , mdb_zalloc() and mdb_free() 102

mdb_printf() 103

mdb_snprintf() 108

mdb_warn() 108

mdb_flush() 109

mdb_one_bit() 109

mdb_inval_bits() 110

mdb_inc_indent() and mdb_dec_indent() 110

mdb_eval() 110

mdb_set_dot() and mdb_get_dot() 111

mdb_get_pipe() 111

mdb_set_pipe() 111

mdb_get_xdata() 112

Additional Functions 112

A. Options 113

Summary of Command-line Options 113

B. Transition From crash 119

Command-line Options 119

Input in MDB 119

Functions 120

Contents 7

8 Solaris Modular Debugger Guide ♦ February 2000

Preface

The Modular Debugger (MDB) is a new general purpose debugging tool for the
SolarisTM Operating Environment. Its primary feature is its extensibility. The Solaris
Modular Debugger Guide describes how to use MDB to debug complex software
systems, with a particular emphasis on the facilities available for debugging the
Solaris kernel and associated device drivers and modules. It also includes a complete
reference for and discussion of the MDB language syntax, debugger features, and
MDB Module Programming API.

Who Should Use This Book
If you were a detective and were investigating at the scene of a crime, you might
interview the witnesses and ask them to describe what happened and who they saw.
However, if there were no witnesses or these descriptions proved insufficient, you
might consider collecting fingerprints and forensic evidence that could be could be
examined for DNA to help solve the case. Often, software program failures divide
into analagous categories: problems that can be solved with source-level debugging
tools, and problems that require low-level debugging facilities, examination of core
files, and knowledge of assembly language to diagnose and correct. MDB is a
debugger designed to facilitate analysis of this second class of problems.

It might not be necessary to use MDB in every case, just as a detective doesn’t need a
microscope and DNA evidence to solve every crime. However, when programming a
complex low-level software system such as an operating system, these situations can
occur frequently. As a result, MDB is designed as a debugging framework that
allows you to construct your own custom analysis tools to aid in the diagnosis of
these problems. MDB also provides a powerful set of built-in commands that allow
you to analyze the state of your program at the assembly language level.

9

If you are not familiar with assembly language programming and debugging,
“Related Books and Papers” on page provides references to materials that you might
find useful.

You should also disassemble various functions of interest in the programs you will
be debugging in order to familiarize yourself with the relationship between your
program’s source code and the corresponding assembly language code. If you are
planning to use MDB for debugging Solaris kernel software, you should read
carefully Chapter 5 and Chapter 6. These chapters provide more detailed information
on the MDB commands and facilities provided for debugging Solaris kernel software.

How This Book Is Organized
Chapter 1 provides an overview of the debugger. This chapter is intended for all
users..

Chapter 2 describes the MDB architecture and explains the terminology for the
debugger concepts used throughout this book. This chapter is intended for all users.

Chapter 3 describes the syntax, operators and evaluation rules for the MDB
language. This chapter is intended for all users.

Chapter 4 describes the set of built-in debugger commands that are always available.
This chapter is intended for all users.

Chapter 5 describes the set of loadable debugger commands that are provided for
debugging the Solaris kernel. This chapter is intended for users who intend to
examine Solaris kernel crash dumps and for kernel software developers.

Chapter 6 describes the debugging features of the Solaris kernel memory allocator
and the MDB commands provided to take advantage of these features. This chapter
is intended for advanced programmers and kernel software developers.

Chapter 7 describes the facilities for writing loadable debugger modules. This
chapter is intended for advanced programmers and software developers who intend
to develop custom debugging support for MDB.

Appendix A provides a reference for MDB command-line options.

Appendix B provides a reference for crash(1M) commands and their MDB
equivalents.

10 Solaris Modular Debugger Guide ♦ February 2000

Related Books and Papers
These books and papers are recommended and related to the tasks that you need to
perform:

� Vahalia, Uresh. UNIX Internals: The New Frontiers. Prentice Hall, 1996. ISBN
0-13-101908-2

� The SPARC Architecture Manual, Version 9. Prentice Hall, 1998. ISBN
0–13–099227–5

� The SPARC Architecture Manual, Version 8. Prentice Hall, 1994. ISBN
0-13-825001-4

� Pentium Pro Family Developer’s Manual, Volumes 1-3. Intel Corporation, 1996.
ISBN 1-55512-259-0 (Volume 1) , ISBN 1-55512-260-4 (Volume 2) , ISBN
1-55512-261-2 (Volume 3)

� Bonwick, Jeff. The Slab Allocator: An Object-Caching Kernel Memory Allocator.
Proceedings of the Summer 1994 Usenix Conference, 1994. ISBN 9–99–452010–5

� SPARC Assembly Language Reference Manual. Sun Microsystems, 1998.

� x86 Assembly Language Reference Manual. Sun Microsystems, 1998.

� Writing Device Drivers. Sun Microsystems, 2000.

� STREAMS Programming Guide. Sun Microsystems, 2000.

� Solaris 64-bit Developer’s Guide. Sun Microsystems, 2000.

� Linker and Libraries Guide. Sun Microsystems, 2000.

Note - In this document, the term “IA” refers to the Intel 32–bit processor
architecture, which includes the Pentium, Pentium Pro, Pentium II, Pentium II Xeon,
Celeron, Pentium III, and Pentium III Xeon processors, and compatible
microprocessor chips made by AMD and Cyrix.

Note - The Solaris operating environment runs on two types of hardware, or
platforms—SPARCTM and IA. The Solaris operating environment also runs on both
64–bit and 32–bit address spaces. The information in this document pertains to both
platforms and address spaces unless called out in a special chapter, section, note,
bullet, figure, table, example, or code example.

Preface 11

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun MicrosystemsTM , Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

12 Solaris Modular Debugger Guide ♦ February 2000

TABLE P–1 Typographic Conventions (continued)

Typeface or
Symbol Meaning Example

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

MDB prompt >

Preface 13

14 Solaris Modular Debugger Guide ♦ February 2000

CHAPTER 1

Modular Debugger Overview

The Modular Debugger (MDB) is a new general purpose debugging tool for Solaris
whose primary feature is its extensibility. This book describes how to use MDB to
debug complex software systems, with a particular emphasis on the facilities
available for debugging the Solaris kernel and associated device drivers and
modules. The book also includes a complete reference for and discussion of the MDB
language syntax, debugger features, and MDB Module Programming API.

Introduction
Debugging is the process of analyzing the execution and state of a software program
in order to remove defects. Traditional debugging tools provide facilities for
execution control so that programmers can re-execute programs in a controlled
environment and display the current state of program data or evaluate expressions in
the source language used to develop the program. Unfortunately, these techniques
are often inappropriate for debugging complex software systems such as:

� An operating system, where bugs might not be reproducible and program state is
massive and distributed

� Programs that are highly optimized or have had their debug information removed

� Programs that are themselves low-level debugging tools

� Customer situations where the developer can only access post-mortem information

MDB is a tool that provides a completely customizable environment for debugging
these programs and scenarios, including a dynamic module facility that
programmers can use to implement their own debugging commands to perform
program-specific analysis. Each MDB module can be used to examine the program in

15

several different contexts, including live and post-mortem. The Solaris Operating
Environment includes a set of MDB modules designed to aid programmers in
debugging the Solaris kernel and related device drivers and kernel modules.
Third-party developers might find it useful to develop and deliver their own
debugging modules for supervisor or user software.

MDB Features
MDB provides an extensive collection of features for analyzing the Solaris kernel and
other target programs. You can:

� Perform post-mortem analysis of Solaris kernel crash dumps and user process core
dumps: MDB includes a collection of debugger modules that facilitate
sophisticated analysis of kernel and process state, in addition to standard data
display and formatting capabilities. The debugger modules allow you to formulate
complex queries to:

� Locate all the memory allocated by a particular thread
� Print a visual picture of a kernel STREAM
� Determine what type of structure a particular address refers to
� Locate leaked memory blocks in the kernel
� Analyze memory to locate stack traces

� Use a first-class programming API to implement your own debugger commands
and analysis tools without having to recompile or modify the debugger itself: In
MDB, debugging support is implemented as a set of loadable modules (shared
libraries that the debugger can dlopen (3DL)), each of which provides a set of
commands that extends the capabilities of the debugger itself. The debugger in
turn provides an API of core services, such as the ability to read and write
memory and access symbol table information. MDB provides a framework for
developers to implement debugging support for their own drivers and modules;
these modules can then be made available for everyone to use.

� Learn to use MDB if you are already familiar with the legacy debugging tools
adb(1) and crash(1M) : MDB provides backward compatibility with these
existing debugging solutions. The MDB language itself is designed as a superset of
the adb language; all existing adb macros and commands work within MDB so
developers who use adb can immediately use MDB without knowing any
MDB-specific commands. MDB also provides commands that surpass the
functionality available from the crash utility.

� Benefit from enhanced usability features. MDB provides a host of usability
features, including:

� Command-line editing

16 Solaris Modular Debugger Guide ♦ February 2000

� Command history
� Built-in output pager
� Syntax error checking and handling
� Online help
� Interactive session logging

Future Enhancements
MDB provides a stable foundation for developing advanced post-mortem analysis
tools. In the future, the Solaris operating environment will include additional MDB
modules that provide even more sophisticated functionality for debugging the kernel
and other software programs. You can use MDB to debug existing software
programs, and develop your own modules to improve your ability to debug your
own Solaris drivers and applications.

Modular Debugger Overview 17

18 Solaris Modular Debugger Guide ♦ February 2000

CHAPTER 2

Debugger Concepts

This section discusses the significant aspects of MDB’s design, and the benefits
derived from this architecture.

Architecture

adb
macros

MDB Module API

Debugger Engine

disassembler libkvm target /proc target

MDB Language

user unix
module

nfs
module

Figure 2–1 MDB architecture

19

Building Blocks
The target is the program being inspected by the debugger. MDB currently provides
support for the following types of targets:

� User processes

� User process core files

� Live operating system (through /dev/kmem and /dev/ksyms)

� Operating system crash dumps

� User process images recorded inside an operating system crash dump

� ELF object files

Each target exports a standard set of properties, including one or more address
spaces, one or more symbol tables, a set of load objects, and a set of threads. Figure
2–1 shows an overview of the MDB architecture, including two of the built-in targets
and a pair of sample modules.

A debugger command, or dcmd (pronounced dee-command) in MDB terminology, is a
routine in the debugger that can access any of the properties of the current target.
MDB parses commands from standard input, then executes the corresponding
dcmds. Each dcmd can also accept a list of string or numerical arguments, as shown
in “Syntax” on page 23. MDB contains a set of built-in dcmds described in Chapter 4,
that are always available. The programmer can also extend the capabilities of MDB
itself by writing dcmds using a programming API provided with MDB.

A walker is a set of routines that describe how to walk, or iterate, through the
elements of a particular program data structure. A walker encapsulates the data
structure’s implementation from dcmds and from MDB itself. You can use walkers
interactively, or use them as a primitive to build other dcmds or walkers. As with
dcmds, the programmer can extend MDB by implementing additional walkers as
part of a debugger module.

A debugger module, or dmod (pronounced dee-mod), is a dynamically loaded library
containing a set of dcmds and walkers. During initialization, MDB attempts to load
dmods corresponding to the load objects present in the target. You can subsequently
load or unload dmods at any time while running MDB. MDB provides a set of
standard dmods for debugging the Solaris kernel.

A macro file is a text file containing a set of commands to execute. Macro files are
typically used to automate the process of displaying a simple data structure. MDB
provides complete backward compatibility for the execution of macro files written
for adb. The set of macro files provided with the Solaris installation can therefore be
used with either tool.

20 Solaris Modular Debugger Guide ♦ February 2000

Modularity
The benefit of MDB’s modular architecture extends beyond the ability to load a
shared library containing additional debugger commands. The MDB architecture
defines clear interface boundaries between each of the layers shown in Figure 2–1.
Macro files execute commands written in the MDB or adb language. Dcmds and
walkers in debugger modules are written using the MDB Module API, and this
forms the basis of an application binary interface that allows the debugger and its
modules to evolve independently.

The MDB name space of walkers and dcmds also defines a second set of layers
between debugging code that maximizes code sharing and limits the amount of code
that must be modified as the target program itself evolves. For example, one of the
primary data structures in the Solaris kernel is the list of proc_t structures
representing active processes in the system. The ::ps dcmd must iterate over this
list in order to produce its output. However, the code to iterate over the list is not in
the ::ps dcmd, it is encapsulated in the genunix module’s proc walker.

MDB provides both ::ps and ::ptree dcmds, but neither has any knowledge of
how proc_t structures are accessed in the kernel. Instead, they invoke the proc
walker programmatically and format the set of returned structures appropriately. If
the data structure used for proc_t structures ever changed, MDB could provide a
new proc walker and none of the dependent dcmds would need to change. The
proc walker can also be accessed interactively using the ::walk dcmd in order to
create novel commands as you work during a debugging session.

In addition to facilitating layering and code sharing, the MDB Module API provides
dcmds and walkers with a single stable interface for accessing various properties of
the underlying target. The same API functions are used to access information from
user process or kernel targets, simplifying the task of developing new debugging
facilities.

In addition, a custom MDB module can be used to perform debugging tasks in a
variety of contexts. For example, you might want to develop an MDB module for a
user program you are developing. Once you have done so, you can use this module
when MDB examines a live process executing your program, a core dump of your
program, or even a kernel crash dump taken on a system where your program was
executing.

The Module API provides facilities for accessing the following target properties:

Address Spaces The module API provides facilities for reading and
writing data from the target’s virtual address space.
Functions for reading and writing using physical
addresses are also provided for kernel debugging
modules.

Debugger Concepts 21

Symbol Tables The module API provides access to the static and
dynamic symbol tables of the target’s primary executable
file, its runtime link-editor, and a set of load objects
(shared libraries in a user process or loadable modules in
the Solaris kernel).

External Data The module API provides a facility for retrieving a
collection of named external data buffers associated with
the target. For example, MDB provides programmatic
access to the proc(4) structures associated with a user
process or user core file target.

In addition, you can use built-in MDB dcmds to access information about target
memory mappings, load objects, register values, and control the execution of user
process targets.

22 Solaris Modular Debugger Guide ♦ February 2000

CHAPTER 3

Language Syntax

This chapter describes the MDB language syntax, operators, and rules for command
and symbol name resolution.

Syntax
The debugger processes commands from standard input. If standard input is a
terminal, MDB provides terminal editing capabilities. MDB can also process
commands from macro files and from dcmd pipelines, described below. The language
syntax is designed around the concept of computing the value of an expression
(typically a memory address in the target), and applying a dcmd to that address. The
current address location is referred to as dot, and “ . “ is used to reference its value.

A metacharacter is one of the following characters:

[]| ! / \ ? = > $: ; NEWLINE SPACE TAB

A blank is a TAB or a SPACE. A word is a sequence of characters separated by one or
more non-quoted metacharacters. Some of the metacharacters function only as
delimiters in certain contexts, as described below. An identifier is a sequence of
letters, digits, underscores, periods, or back quotes beginning with a letter,
underscore, or period. Identifiers are used as the names of symbols, variables,
dcmds, and walkers. Commands are delimited by a NEWLINEor semicolon (;).

A dcmd is denoted by one of the following words or metacharacters:

/ \ ? = > $character :character ::identifier

dcmds named by metacharacters or prefixed by a single $ or : are provided as
built-in operators, and implement complete compatibility with the command set of
the legacy adb (1) utility. After a dcmd has been parsed, the / , \ , ?, =, >, $, and :

23

characters are no longer recognized as metacharacters until the termination of the
argument list.

A simple-command is a dcmd followed by a sequence or zero or more blank-separated
words. The words are passed as arguments to the invoked dcmd, except as specified
under “Arithmetic Expansion” on page 26 and “Quoting” on page 27. Each dcmd
returns an exit status that indicates it was either successful, failed, or was invoked
with invalid arguments.

A pipeline is a sequence of one or more simple commands separated by |. Unlike the
shell, dcmds in MDB pipelines are not executed as separate processes. After the
pipeline has been parsed, each dcmd is invoked in order from left to right. Each
dcmd’s output is processed and stored as described in “dcmd Pipelines” on page 31.
After the left-hand dcmd is complete, its processed output is used as input for the
next dcmd in the pipeline. If any dcmd does not return a successful exit status, the
pipeline is aborted.

An expression is a sequence of words that is evaluated to compute a 64-bit unsigned
integer value. The words are evaluated using the rules described in “Arithmetic
Expansion” on page 26.

Commands
A command is one of the following:

pipeline [! word ...] [;]

A simple-command or pipeline can be optionally suffixed with the ! character,
indicating that the debugger should open a pipe (2) and send the standard output of
the last dcmd in the MDB pipeline to an external process created by executing
$SHELL −c followed by the string formed by concatenating the words after the !
character. For more details, refer to “Shell Escapes” on page 28.

expression pipeline [! word ...] [;]

A simple-command or pipeline can be prefixed with an expression. Before execution
of the pipeline, the value of dot (the variable denoted by “ . “) is set to the value of
the expression.

expression , expression pipeline [! word ...] [;]

A simple-command or pipeline can be prefixed with two expressions. The first is
evaluated to determine the new value of dot, and the second is evaluated to
determine a repeat count for the first dcmd in the pipeline. This dcmd will be

24 Solaris Modular Debugger Guide ♦ February 2000

executed count times before the next dcmd in the pipeline is executed. The repeat
count applies only to the first dcmd in the pipeline.

, expression pipeline [! word ...] [;]

If the initial expression is omitted, dot is not modified; however, the first dcmd in the
pipeline will be repeated according to the value of the expression.

expression [! word ...] [;]

A command can consist only of an arithmetic expression. The expression is evaluated
and the dot variable is set to its value, then the previous dcmd and arguments are
executed using the new value of dot.

expression , expression [! word ...] [;]

A command can consist only of a dot expression and repeat count expression. After
dot is set to the value of the first expression, the previous dcmd and arguments are
repeatedly executed the number of times specified by the value of the second
expression.

, expression [! word ...] [;]

If the initial expression is omitted, dot is not modified but the previous dcmd and
arguments are repeatedly executed the number of times specified by the value of the
count expression.

! word ... [;]

If the command begins with the ! character, no dcmds are executed and the
debugger executes $SHELL −c followed by the string formed by concatenating the
words after the ! character.

Comments
A word beginning with // causes that word and all the subsequent characters up to
a NEWLINEto be ignored.

Language Syntax 25

Arithmetic Expansion
Arithmetic expansion is performed when an MDB command is preceded by an
optional expression representing a start address, or a start address and a repeat
count. Arithmetic expansion can also be performed to compute a numerical
argument for a dcmd. An arithmetic expression can appear in an argument list
enclosed in square brackets preceded by a dollar sign ($[expression]), and will
be replaced by the value of the expression.

Expressions can contain any of the following special words:

integer The specified integer value. Integer values can be prefixed
with 0i or 0I to indicate binary values, 0o or 0O to
indicate octal values, 0t or 0T to indicate decimal values,
and 0x or 0X to indicate hexadecimal values (the default).

0[tT][0-9]+.[0-9]+ The specified decimal floating point value, converted to
its IEEE double-precision floating point representation

’cccccccc’ The integer value computed by converting each character
to a byte equal to its ASCII value. Up to eight characters
can be specified in a character constant. Characters are
packed into the integer in reverse order (right-to-left),
beginning at the least significant byte.

<identifier The value of the variable named by identifier

identifier The value of the symbol named by identifier

(expression) The value of expression

. The value of dot

& The most recent value of dot used to execute a dcmd

+ The value of dot incremented by the current increment

^ The value of dot decremented by the current increment

The increment is a global variable that stores the total bytes read by the last
formatting dcmd. For more information on the increment, refer to the discussion of
“Formatting dcmds” on page 31.

Unary operators are right associative and have higher precedence than binary
operators. The unary operators are:

26 Solaris Modular Debugger Guide ♦ February 2000

#expression Logical negation

~expression Bitwise complement

-expression Integer negation

%expression Value of a pointer-sized quantity at the object file location
corresponding to virtual address expression in the target’s
virtual address space

%/[csil]/expression Value of a char-, short-, int-, or long-sized quantity at the
object file location corresponding to virtual address
expression in the target’s virtual address space

%/[1248]/expression Value of a one-, two-, four-, or eight-byte quantity at the
object file location corresponding to virtual address
expression in the target’s virtual address space

*expression Value of a pointer-sized quantity at virtual address
expression in the target’s virtual address space

*/[csil]/expression Value of a char-, short-, int-, or long-sized quantity at
virtual address expression in the target’s virtual address
space

*/[1248]/expression Value of a one-, two-, four-, or eight-byte quantity at
virtual address expression in the target’s virtual address
space

Quoting
Each metacharacter described above (see Chapter 3) terminates a word unless quoted.
Characters can be quoted (forcing MDB to interpret each character as itself without
any special significance) by enclosing them in a pair of single (’) or double (")
quotation marks. A single quote cannot appear within single quotes. Inside double
quotes, MDB recognizes the C programming language character escape sequences.

Language Syntax 27

Shell Escapes
The ! character can be used to create a pipeline between an MDB command and the
user’s shell. If the $SHELL environment variable is set, MDB will fork and exec
this program for shell escapes; otherwise /bin/sh is used. The shell is invoked with
the −c option followed by a string formed by concatenating the words after the !
character.

The ! character takes precedence over all other metacharacters, except semicolon (;)
and NEWLINE. After a shell escape is detected, the remaining characters up to the
next semicolon or NEWLINEare passed “as is” to the shell. The output of shell
commands cannot be piped to MDB dcmds. Commands executed by a shell escape
have their output sent directly to the terminal, not to MDB.

Variables
A variable is a variable name, a corresponding integer value, and a set of attributes. A
variable name is a sequence of letters, digits, underscores, or periods. A variable can
be assigned a value using the > dcmd or ::typeset dcmd, and its attributes can be
manipulated using the ::typeset dcmd. Each variable’s value is represented as a
64-bit unsigned integer. A variable can have one or more of the following attributes:
read-only (cannot be modified by the user), persistent (cannot be unset by the user),
and tagged (user-defined indicator).

The following variables are defined as persistent:

0 Most recent value printed using the / , \ , ?, or = dcmd.

9 Most recent count used with the $< dcmd

b Virtual address of the base of the data section

d Size of the data section in bytes

e Virtual address of the entry point

m Initial bytes (magic number) of the target’s primary object file, or
zero if no object file has been read yet

t Size of the text section in bytes

28 Solaris Modular Debugger Guide ♦ February 2000

In addition, the MDB kernel and process targets export the current values of the
representative thread’s register set as named variables. The names of these variables
depend on the target’s platform and instruction set architecture.

Symbol Name Resolution
As explained in “Syntax” on page 23, a symbol identifier present in an expression
context evaluates to the value of this symbol. The value typically denotes the virtual
address of the storage associated with the symbol in the target’s virtual address
space. A target can support multiple symbol tables including, but not limited to,

� Primary executable symbol table

� Primary dynamic symbol table

� Runtime link-editor symbol table

� Standard and dynamic symbol tables for each of a number of load objects (such as
shared libraries in a user process, or kernel modules in the Solaris kernel)

The target typically searches the primary executable’s symbol tables first, then one or
more of the other symbol tables. Notice that ELF symbol tables contain only entries
for external, global, and static symbols; automatic symbols do not appear in the
symbol tables processed by mdb.

Additionally, mdb provides a private user-defined symbol table that is searched prior
to any of the target symbol tables. The private symbol table is initially empty, and
can be manipulated using the ::nmadd and ::nmdel dcmds.

The ::nm −P option can be used to display the contents of the private symbol table.
The private symbol table allows the user to create symbol definitions for program
functions or data that were either missing from the original program or stripped out.
These definitions are then used whenever MDB converts a symbolic name to an
address, or an address to the nearest symbol.

Because targets contain multiple symbol tables, and each symbol table can include
symbols from multiple object files, different symbols with the same name can exist.
MDB uses the backquote “ ‘ “ character as a symbol-name scoping operator to allow
the programmer to obtain the value of the desired symbol in this situation.

You can specify the scope used to resolve a symbol name as either: object‘ name, or
file‘ name, or object‘ file‘ name. The object identifier refers to the name of a load object.
The file identifier refers to the basename of a source file that has a symbol of type
STT_FILE in the specified object’s symbol table. The object identifier’s interpretation
depends on the target type.

Language Syntax 29

The MDB kernel target expects object to specify the base name of a loaded kernel
module. For example, the symbol name:

specfs‘_init

evaluates to the value of the _init symbol in the specfs kernel module.

The mdb process target expects object to specify the name of the executable or of a
loaded shared library. It can take any of the following forms:

� Exact match (that is, a full pathname): /usr/lib/libc.so.1

� Exact basename match: libc.so.1

� Initial basename match up to a ‘‘. ’’ suffix: libc.so or libc

� Literal string a.out which is accepted as an alias for the executable

In the case of a naming conflict between symbols and hexadecimal integer values,
MDB attempts to evaluate an ambiguous token as a symbol first, before evaluating it
as an integer value. For example, the token f can refer either to the decimal integer
value 15 specified in hexadecimal (the default base), or to a global variable named f
in the target’s symbol table. If a symbol with an ambiguous name is present, the
integer value can be specified by using an explicit 0x or 0X prefix.

dcmd and Walker Name Resolution
As described earlier, each MDB dmod provides a set of dcmds and walkers. dcmds
and walkers are tracked in two distinct, global namespaces. MDB also keeps track of
a dcmd and walker namespace associated with each dmod. Identically named dcmds
or walkers within a given dmod are not allowed: a dmod with this type of naming
conflict will fail to load.

Name conflicts between dcmds or walkers from different dmods are allowed in the
global namespace. In the case of a conflict, the first dcmd or walker with that
particular name to be loaded is given precedence in the global namespace. Alternate
definitions are kept in a list in load order.

The backquote character “ ‘ “ can be used in a dcmd or walker name as a scoping
operator to select an alternate definition. For example, if dmods m1and m2 each
provide a dcmd d, and m1 is loaded prior to m2, then:

::d Executes m1’s definition of d

::m1‘d Executes m1’s definition of d

::m2‘d Executes m2’ s definition of d

30 Solaris Modular Debugger Guide ♦ February 2000

If module m1 were now unloaded, the next dcmd on the global definition list (m2‘d)
would be promoted to global visibility. The current definition of a dcmd or walker
can be determined using the ::which dcmd, described below. The global definition
list can be displayed using the ::which −v option.

dcmd Pipelines
dcmds can be composed into a pipeline using the | operator. The purpose of a
pipeline is to pass a list of values, typically virtual addresses, from one dcmd or
walker to another. Pipeline stages might be used to map a pointer from one type of
data structure to a pointer to a corresponding data structure, to sort a list of
addresses, or to select the addresses of structures with certain properties.

MDB executes each dcmd in the pipeline in order from left to right. The left-most
dcmd is executed using the current value of dot, or using the value specified by an
explicit expression at the start of the command. When a | operator is encountered,
MDB creates a pipe (a shared buffer) between the output of the dcmd to its left and
the MDB parser, and an empty list of values.

As the dcmd executes, its standard output is placed in the pipe and then consumed
and evaluated by the parser, as if MDB were reading this data from standard input.
Each line must consist of an arithmetic expression terminated by a NEWLINEor
semicolon (;). The value of the expression is appended to the list of values
associated with the pipe. If a syntax error is detected, the pipeline is aborted.

When the dcmd to the left of a | operator completes, the list of values associated
with the pipe is then used to invoke the dcmd to the right of the | operator. For each
value in the list, dot is set to this value and the right-hand dcmd is executed. Only
the rightmost dcmd in the pipeline has its output printed to standard output. If any
dcmd in the pipeline produces output to standard error, these messages are printed
directly to standard error and are not processed as part of the pipeline.

Formatting dcmds
The / , \ , ?, and = metacharacters are used to denote the special output formatting
dcmds. Each of these dcmds accepts an argument list consisting of one or more
format characters, repeat counts, or quoted strings. A format character is one of the
ASCII characters shown in the table below.

Format characters are used to read and format data from the target. A repeat count is
a positive integer preceding the format character that is always interpreted in base 10
(decimal). A repeat count can also be specified as an expression enclosed in square

Language Syntax 31

brackets preceded by a dollar sign ($[]). A string argument must be enclosed in
double-quotes (" "). No blanks are necessary between format arguments.

The formatting dcmds are:

/ Display data from the target’s virtual address space starting at the
virtual address specified by dot.

\ Display data from the target’s physical address space starting at
the physical address specified by dot.

? Display data from the target’s primary object file starting at the
object file location corresponding to the virtual address specified
by dot.

= Display the value of dot itself in each of the specified data
formats. The = dcmd is therefore useful for converting between
bases and performing arithmetic.

In addition to dot, MDB keeps track of another global value called the increment. The
increment represents the distance between dot and the address following all the data
read by the last formatting dcmd.

For example, if a formatting dcmd is executed with dot equal to address A, and
displays a 4-byte integer, then after this dcmd completes, dot is still A, but the
increment is set to 4. The + character (described “Arithmetic Expansion” on page 26)
would now evaluate to the value A + 4, and could be used to reset dot to the
address of the next data object for a subsequent dcmd.

Most format characters increase the value of the increment by the number of bytes
corresponding to the size of the data format, shown in the table. The table of format
characters can be displayed from within MDB using the ::formats dcmd. The
format characters are:

+ Increment dot by the count (variable size)

- Decrement dot by the count (variable size)

B Hexadecimal int (1 byte)

C Character using C character notation (1 byte)

D Decimal signed int (4 bytes)

E Decimal unsigned long long (8 bytes)

F Double (8 bytes)

G Octal unsigned long long (8 bytes)

H Swap bytes and shorts (4 bytes)

I Address and disassembled instruction (variable size)

32 Solaris Modular Debugger Guide ♦ February 2000

J Hexadecimal long long (8 bytes)

K Hexadecimal uintptr_t (4 or 8 bytes)

O Octal unsigned int (4 bytes)

P Symbol (4 or 8 bytes)

Q Octal signed int (4 bytes)

S String using C string notation (variable size)

U Decimal unsigned int (4 bytes)

V Decimal unsigned int (1 byte)

W Default radix unsigned int (4 bytes)

X Hexadecimal int (4 bytes)

Y Decoded time32_t (4 bytes)

Z Hexadecimal long long (8 bytes)

^ Decrement dot by increment * count (variable size)

a Dot as symbol+offset

b Octal unsigned int (1 byte)

c Character (1 byte)

d Decimal signed short (2 bytes)

e Decimal signed long long (8 bytes)

f Float (4 bytes)

g Octal signed long long (8 bytes)

h Swap bytes (2 bytes)

i Disassembled instruction (variable size)

n Newline

o Octal unsigned short (2 bytes)

p Symbol (4 or 8 bytes)

q Octal signed short (2 bytes)

r Whitespace

s Raw string (variable size)

t Horizontal tab

u Decimal unsigned short (2 bytes)

v Decimal signed int (1 byte)

w Default radix unsigned short (2 bytes)

Language Syntax 33

x Hexadecimal short (2 bytes)

y Decoded time64_t (8 bytes)

The / , \ , and ? formatting dcmds can also be used to write to the target’s virtual
address space, physical address space, or object file by specifying one of the
following modifiers as the first format character, and then specifying a list of words
that are either immediate values or expressions enclosed in square brackets preceded
by a dollar sign ($[]).

The write modifiers are:

v, w Write the lowest 2 bytes of the value of each expression to the
target beginning at the location specified by dot

W Write the lowest 4 bytes of the value of each expression to the
target beginning at the location specified by dot

Z Write the complete 8 bytes of the value of each expression to the
target beginning at the location specified by dot

The / , \ , and ? formatting dcmds can also be used to search for a particular integer
value in the target’s virtual address space, physical address space, and object file,
respectively, by specifying one of the following modifiers as the first format
character, then specifying a value and optional mask. The value and mask are each
specified as either immediate values or expressions enclosed in square brackets
preceded by a dollar sign.

If only a value is specified, MDB reads integers of the appropriate size and stops at
the address containing the matching value. If a value V and mask Mare specified,
MDB reads integers of the appropriate size and stops at the address containing a
value X where (X & M) == V . At the completion of the dcmd, dot is updated to the
address containing the match. If no match is found, dot is left at the last address that
was read.

The search modifiers are:

l Search for the specified 2-byte value

L Search for the specified 4-byte value

M Search for the specified 8-byte value

For both user and kernel targets, an address space is typically composed of a set of
discontiguous segments. It is not legal to read from an address that does not have a
corresponding segment. If a search reaches a segment boundary without finding a
match, it aborts when the read past the end of the segment boundary fails.

34 Solaris Modular Debugger Guide ♦ February 2000

CHAPTER 4

Built-in Commands

MDB provides a set of built-in dcmds that are always defined. Some of these dcmds
are applicable only to certain targets: if a dcmd is not applicable to the current target,
it fails and prints a message indicating "command is not supported by current
target".

In many cases, MDB provides a mnemonic equivalent (::identifier) for the
legacy adb (1) dcmd names. For example, ::quit is provided as the equivalent of
$q . Programmers who are experienced with adb (1) or who appreciate brevity or
arcana might prefer the $ or : forms of the built-ins. Programmers who are new to
mdb might prefer the more verbose :: form. The builtiins are shown in alphabetical
order. If a $ or : form has a ::identifier equivalent, it is shown under the
::identifier form.

Built-in dcmds
> variable-name
>/modifier/ variable-name

Assign the value of dot to the specified named variable. Some variables are read-only
and cannot be modified. If the > is followed by a modifier character surrounded by
// , then the value is modified as part of the assignment. The modifier characters are:

c Unsigned char quantity (1-byte)

s Unsigned short quantity (2-byte)

i Unsigned int quantity (4-byte)

l Unsigned long quantity (4-byte in 32-bit, 8-byte in 64-bit)

35

Notice that these operators do not perform a cast; they instead fetch the specified
number of low-order bytes (on little-endian architectures) or high-order bytes
(big-endian architectures). These modifiers are provided for backward compatibility;
the MDB */modifier/ and %/modifier/ syntax should be used instead.

$< macro-name

Read and execute commands from the specified macro file. The file name can be
given as an absolute or relative path. If the file name is a simple name (that is, if it
does not contain a ’/ ’), MDB searches for it in the macro file include path. If another
macro file is currently being processed, this file is closed and replaced with the new
file.

$<< macro-name

Read and execute commands from the specified macro file (as with $<), but do not
close the current open macro file.

$?

Print the process-ID and current signal of the target if it is a user process or core file,
then print the general register set of the representative thread.

[address] $C [count]

Print a C stack backtrace, including stack frame pointer information. If the dcmd is
preceded by an explicit address, a backtrace beginning at this virtual memory address
is displayed. Otherwise, the stack of the representative thread is displayed. If an
optional count value is given as an argument, no more than count arguments are
displayed for each stack frame in the output.

For 64-bit systems (SPARC) - The biased frame pointer value (that is, the virtual
address plus 0x7ff) should be used as the address when requesting a stack trace.

[base] $d

Get or set the default output radix. If the dcmd is preceded by an explicit expression,
the default output radix is set to the given base; otherwise, the current radix is
printed in base 10 (decimal). The default radix is base 16 (hexadecimal).

$e

Print a list of all known external (global) symbols of type object or function, the value
of the symbol, and the first 4 (32-bit mdb) or 8 (64-bit mdb) bytes stored at this
location in the target’s virtual address space. The ::nm dcmd provides more flexible
options for displaying symbol tables.

36 Solaris Modular Debugger Guide ♦ February 2000

$P prompt-string

Set the prompt to the specified prompt-string. The default prompt is ’> ’. The prompt
can also be set using ::set −P or the −P command-line option.

distance $s

Get or set the symbol matching distance for address-to-symbol-name conversions. The
symbol matching distance modes are discussed along with the −s command-line
option in Appendix A. The symbol matching distance can also be modified using the
::set −s option. If no distance is specified, the current setting is displayed.

$v

Print a list of the named variables that have non-zero values. The ::vars dcmd
provides other options for listing variables.

width $w

Set the output page width to the specified value. Typically, this command is not
necessary, as mdb queries the terminal for its width and handles resize events.

$W

Reopen the target for writing, as if mdb had been executed with the −w option on the
command line. Write mode can also be enabled with the ::set −w option.

[pid] ::attach [core | pid]
[pid] :A [core | pid]

If the user process target is active, attach to and debug the specified process-ID or core
file. The core file path name should be specified as a string argument. The process-ID
can be specified as the string argument, or as the value of the expression preceding
the dcmd. Recall that the default base is hexadecimal, so decimal PIDs obtained using
pgrep (1) or ps (1) should be preceded with "0t " when specified as expressions.

::cat filename ...

Concatenate and display files. Each file name can be specified as a relative or
absolute path name. The file contents will print to standard output, but will not pass
through the output pager. This dcmd is intended to be used with the | operator; the
programmer can initiate a pipeline using a list of addresses stored in an external file.

Built-in Commands 37

address ::context
address $p

Context switch to the specified process. A context switch operation is valid only
when using the kernel target. The process context is specified using the address of its
proc structure in the kernel’s virtual address space. The special context address "0" is
used to denote the context of the kernel itself. MDB can perform only a context
switch when examining a crash dump if the dump contains all physical memory
pages (as opposed to just kernel pages). The kernel crash dump facility can be
configured to dump all pages using dumpadm(1M).

When the user requests a context switch from the kernel target, MDB constructs a
new target representing the specified user process. After the switch occurs, the new
target interposes its dcmds at the global level: thus the / dcmd can now format and
display data from the virtual address space of the user process, the ::mappings
dcmd can display the mappings in the address space of the user process, and so on.
The kernel target can be restored by executing 0::context .

::dcmds

List the available dcmds and print a brief description for each one.

[address] ::dis [−fw] [−n count] [address]

Disassemble starting at or around the address specified by the final argument, or the
current value of dot. If the address matches the start of a known function, the entire
function is disassembled; otherwise, a "window" of instructions before and after the
specified address is printed in order to provide context. By default, instructions are
read from the target’s virtual address space; if the −f option is present, instructions
are read from the target’s object file instead. The −w option can be used to force
"window"-mode, even if the address is the start of a known function. The size of the
window defaults to ten instructions; the number of instructions can be specified
explicitly using the −n option.

::disasms

List the available disassembler modes. When a target is initialized, MDB attempts to
select the appropriate disassembler mode. The user can change the mode to any of
the modes listed using the ::dismode dcmd.

::dismode [mode]
$V [mode]

Get or set the disassembler mode. If no argument is specified, print the current
disassembler mode. If a mode argument is specified, switch the disassembler to the
specified mode. The list of available disassemblers can be displayed using the
::disasms dcmd.

38 Solaris Modular Debugger Guide ♦ February 2000

::dmods [−l] [module-name]

List the loaded debugger modules. If the −l option is specified, the list of the dcmds
and walkers associated with each dmod is printed below its name. The output can be
restricted to a particular dmod by specifying its name as an additional argument.

::dump

Print a hexadecimal and ASCII memory dump of the 16-byte aligned region of
virtual memory containing the address specified by dot. If a repeat count is specified
for ::dump , this is interpreted as a number of bytes to dump rather than a number
of iterations.

::echo [string | value ...]

Print the arguments separated by blanks and terminated by a NEWLINEto standard
output. Expressions enclosed in $[] will be evaluated to a value and printed in the
default base.

::eval command

Evaluate and execute the specified string as a command. If the command contains
metacharacters or white space, it should be enclosed in double or single quotes.

::files
$f

Print a list of the known source files (symbols of type STT_FILE present in the
various target symbol tables).

::fpregs
$x , $X, $y , $Y

Print the floating-point register set of the representative thread.

::formats

List the available output format characters for use with the / , \ , ?, and = formatting
dcmds. The formats and their use is described in “Formatting dcmds” on page 31.

::grep command

Evaluate the specified command string, then print the old value of dot if the new
value of dot is non-zero. If the command contains white space or metacharacters, it
must be quoted. The ::grep dcmd can be used in pipelines to filter a list of
addresses.

Built-in Commands 39

::help [dcmd-name]

With no arguments, the ::help dcmd prints a brief overview of the help facilities
available in mdb. If a dcmd-name is specified, MDB prints a usage summary for that
dcmd.

::load module-name

Load the specified dmod. The module name can be given as an absolute or relative
path. If module-name is a simple name (that is, does not contain a ’/ ’), MDB searches
for it in the module library path. Modules with conflicting names cannot be loaded;
the existing module must be unloaded first.

::log [−d | [−e] filename]
$> [filename]

Enable or disable the output log. MDB provides an interactive logging facility where
both the input commands and standard output can be logged to a file while still
interacting with the user. The −e option enables logging to the specified file, or
re-enables logging to the previous log file if no file name is given. The −d option
disables logging. If the $> dcmd is used, logging is enabled if a file name argument is
specified; otherwise, logging is disabled. If the specified log file already exists, MDB
appends any new log output to the file.

::map command

Map the value of dot to a corresponding value using the command specified as a
string argument, then print the new value of dot. If the command contains white
space or metacharacters, it must be quoted. The ::map dcmd can be used in
pipelines to transform the list of addresses into a new list of addresses.

[address] ::mappings [name]
[address] $m [name]

Print a list of each mapping in the target’s virtual address space, including the
address, size, and description of each mapping. If the dcmd is preceded by an
address, MDB shows only the mapping that contains the given address. If a string
name argument is given, MDB shows only the mapping that matched the description.

::nm [−DPdghnopuvx] [object]

Print the symbol tables associated with the current target. If an object name argument
is specified, only the symbol table for this load object is displayed. The ::nm dcmd
also recognizes the following options:

−D Print .dynsym (dynamic symbol table) instead of .symtab .

40 Solaris Modular Debugger Guide ♦ February 2000

−P Print the private symbol table instead of .symtab .

−d Print value and size fields in decimal.

−g Print only global symbols.

−h Suppress the header line.

−n Sort symbols by name.

−o Print value and size fields in octal.

−p Print symbols as a series of ::nmadd commands. This option can be used
with −P to produce a macro file that can be subsequently read into the
debugger with $<.

−u Print only undefined symbols.

−v Sort symbols by value.

−x Print value and size fields in hexadecimal.

value ::nmadd [−fo] [−e end] [−s size] name

Add the specified symbol name to the private symbol table. MDB provides a private,
configurable symbol table that can be used to interpose on the target’s symbol table,
as described in “Symbol Name Resolution” on page 29. The ::nmadd dcmd also
recognizes the following options:

−e Set the size of the symbol to end - value.

−f Set the type of the symbol to STT_FUNC.

−o Set the type of the symbol to STT_OBJECT.

−s Set the size of the symbol to size.

::nmdel name

Delete the specified symbol name from the private symbol table.

::objects

Print a map of the target’s virtual address space, showing only those mappings that
correspond to the primary mapping (usually the text section) of each of the known
load objects.

::quit
$q

Quit the debugger.

Built-in Commands 41

::regs
$r

Print the general-purpose register set of the representative thread.

::release
:R

Release the previously attached process or core file.

::set [−wF] [+/-o option] [− s distance] [−I path] [−L path] [−P prompt]

Get or set miscellaneous debugger properties. If no options are specified, the current
set of debugger properties is displayed. The ::set dcmd recognizes the following
options:

−F Forcibly take over the next user process that ::attach is applied to, as if
mdb had been executed with the −F option on the command line.

−I Set the default path for locating macro files. The path argument can contain
any of the special tokens described for the −I command-line option in
Appendix A.

−L Set the default path for locating debugger modules. The path argument can
contain any of the special tokens described for the −I command-line option
in Appendix A.

−o Enable the specified debugger option. If the +o form is used, the option is
disabled. The option strings are described along with the −o command-line
option in Appendix A.

−P Set the command prompt to the specified prompt string.

−s Set the symbol matching distance to the specified distance. Refer to the
description of the −s command-line option in Appendix A for more
information.

−w Re-open the target for writing, as if mdb had been executed with the −w
option on the command line.

[address] ::stack [count]
[address] $c [count]

Print a C stack back trace. If the dcmd is preceded by an explicit address, a back trace
beginning at this virtual memory address is displayed. Otherwise, the stack of the
representative thread is displayed. If an optional count value is given as an argument,
no more than count arguments are displayed for each stack frame in the output.

42 Solaris Modular Debugger Guide ♦ February 2000

For 64-bit systems (SPARC) - The biased frame pointer value (that is, the virtual
address plus 0x7ff) should be used as the address when requesting a stack trace.

::status

Print a summary of information related to the current target.

::typeset [+/-t] variable-name ...

Set attributes for named variables. If one or more variable names are specified, they
are defined and set to the value of dot. If the −t option is present, the user-defined
tag associated with each variable is set. If the +t option is present, the tag is cleared.
If no variable names are specified, the list of variables and their values is printed.

::unload module-name

Unload the specified dmod. The list of active dmods can be printed using the
::dmods dcmd. Built-in modules cannot be unloaded. Modules that are busy (that is,
provide dcmds that are currently executing) cannot be unloaded.

::unset variable-name ...

Unset (remove) the specified variable(s) from the list of defined variables. Some
variables are exported by MDB are marked as persistent, and cannot be unset by the
user.

::vars [−npt]

Print a listing of named variables. If the −n option is present, the output is restricted
to variables that currently have non-zero values. If the −p option is present, the
variables are printed in a form suitable for re-processing by the debugger using the
$< dcmd. This option can be used to record the variables to a macro file, then restore
these values later. If the −t option is present, only the tagged variables are printed.
Variables can be tagged using the −t option of the ::typeset dcmd.

::version

Print the debugger version number.

address ::vtop

Print the physical address mapping for the specified virtual address, if possible. The
::vtop dcmd is available only when examining a kernel target, or when examining a
user process inside a kernel crash dump (after a ::context dcmd has been issued).

Built-in Commands 43

[address] ::walk walker-name [variable-name]

Walk through the elements of a data structure using the specified walker. The
available walkers can be listed using the ::walkers dcmd. Some walkers operate on
a global data structure and do not require a starting address. For example, walk the
list of proc structures in the kernel.

Other walkers operate on a specific data structure whose address must be specified
explicitly. For example, given a pointer to an address space, walk the list of segments.

When used interactively, the ::walk dcmd will print the address of each element of
the data structure in the default base. The dcmd can also be used to provide a list of
addresses for a pipeline. The walker name can use the backquote “ ‘ “ scoping
operator described in “dcmd and Walker Name Resolution” on page 30. If the
optional variable-name is specified, the specified variable will be assigned the value
returned at each step of the walk when MDB invokes the next stage of the pipeline.

::walkers

List the available walkers and print a brief description for each one.

::whence [−v] name ...
::which [−v] name ...

Print the dmod that exports the specified dcmds and walkers. These dcmds can be
used to determine which dmod is currently providing the global definition of the
given dcmd or walker. Refer to “dcmd and Walker Name Resolution” on page 30 for
more information on global name resolution. The −v option causes the dcmd to print
the alternate definitions of each dcmd and walker in order of precedence.

::xdata

List the external data buffers exported by the current target. External data buffers
represent information associated with the target that cannot be accessed through
standard target facilities (that is, an address space, symbol table, or register set).
These buffers can be consumed by dcmds; for more information, refer to
“mdb_get_xdata() ” on page 112.

44 Solaris Modular Debugger Guide ♦ February 2000

CHAPTER 5

Kernel Debugging Modules

This chapter describes the debugger modules, dcmds, and walkers provided to
debug the Solaris kernel. Each kernel debugger module is named after the
corresponding Solaris kernel module, so that it will be loaded automatically by MDB.
The facilities described here reflect the current Solaris kernel implementation and are
subject to change in the future; writing shell scripts that depend on the output of
these commands is not recommended. In general, the kernel debugging facilities
described in this chapter are meaningful only in the context of the corresponding
kernel subsystem implementation. See “Related Books and Papers” on page for a list
of references that provide more information about the Solaris kernel implementation.

Note - This guide reflects the Solaris 8 operating environment implementation; these
modules, dcmds, and walkers may not be relevant, correct, or applicable to past or
future releases, since they reflect the current kernel implementation. They do not
define a permanent public interface of any kind. All of the information provided
about modules, dcmds, walkers, and their output formats and arguments is subject
to change in future releases of the Solaris operating environment.

Generic Kernel Debugging Support
(genunix)
Kernel Memory Allocator

This section discusses the dcmds and walkers used to debug problems identified by
the Solaris kernel memory allocator and to examine memory and memory usage. The
dcmds and walkers described here are discussed in more detail in Chapter 6.

45

Dcmds

thread ::allocdby

Given the address of a kernel thread, print a list of memory allocations it has
performed in reverse chronological order.

bufctl ::bufctl [−a address] [−c caller] [−e earliest] [−l latest] [−t thread]

Print a summary of the bufctl information for the specified bufctl address. If one or
more options are present, the bufctl information is printed only if it matches the
criteria defined by the option arguments; in this way, the dcmd can be used as a filter
for input from a pipeline. The −a option indicates that the bufctl’s corresponding
buffer address must equal the specified address. The −c option indicates that a
program counter value from the specified caller must be present in the bufctl’s saved
stack trace. The −e option indicates that the bufctl’s timestamp must be greater than
or equal to the specified earliest timestamp. The −l option indicates that the bufctl’s
timestamp must be less than or equal to the specified latest timestamp. The −t option
indicates that the bufctl’s thread pointer must be equal to the specified thread
address.

[address] ::findleaks [−v]

The ::findleaks dcmd provides powerful and efficient detection of memory leaks
in kernel crash dumps where the full set of kmem debug features has been enabled.
The first execution of ::findleaks processes the dump for memory leaks (this can
take a few minutes), then coalesces the leaks by the allocation stack trace. The
findleaks report shows a bufctl address and the topmost stack frame for each
memory leak that was identified.

If the −v option is specified, the dcmd prints more verbose messages as it executes. If
an explicit address is specified prior to the dcmd, the report is filtered and only leaks
whose allocation stack traces contain the specified function address are displayed.

thread ::freedby

Given the address of a kernel thread, print a list of memory frees it has performed, in
reverse chronological order.

value ::kgrep

Search the kernel address space for pointer-aligned addresses that contain the
specified pointer-sized value. The list of addresses that contain matching values is
then printed. Unlike MDB’s built-in search operators, ::kgrep searches every
segment of the kernel’s address space and searches across discontiguous segment
boundaries. On large kernels, ::kgrep can take a considerable amount of time to
execute.

46 Solaris Modular Debugger Guide ♦ February 2000

::kmalog [slab | fail]

Display events in a kernel memory allocator transaction log. Events are displayed in
time-reverse order, with the most recent event displayed first. For each event,
::kmalog displays the time relative to the most recent event in T-minus notation
(for example, T-0.000151879), the bufctl, the buffer address, the kmem cache name,
and the stack trace at the time of the event. Without arguments, ::kmalog displays
the kmem transaction log, which is present only if KMF_AUDITis set in kmem_flags .
::kmalog fail displays the allocation failure log, which is always present; this can
be useful in debugging drivers that don’t cope with allocation failure correctly.
::kmalog slab displays the slab create log, which is always present. ::kmalog
slab can be useful when searching for memory leaks.

::kmastat

Display the list of kernel memory allocator caches and virtual memory arenas, along
with corresponding statistics.

::kmausers [−ef] [cache ...]

Print information about the medium and large users of the kernel memory allocator
that have current memory allocations. The output consists of one entry for each
unique stack trace specifying the total amount of memory and number of allocations
that was made with that stack trace. This dcmd requires that the KMF_AUDITflag is
set in kmem_flags .

If one or more cache names (for example, kmem_alloc_256) are specified, the scan
of memory usage is restricted to those caches. By default all caches are included. If
the −e option is used, the small users of the allocator are included. The small users
are allocations that total less than 1024 bytes of memory or for which there are less
than 10 allocations with the same stack trace. If the −f option is used, the stack traces
are printed for each individual allocation.

[address] ::kmem_cache

Format and display the kmem_cache structure stored at the specified address, or the
complete set of active kmem_cache structures.

::kmem_log

Display the complete set of kmem transaction logs, sorted in reverse chronological
order. This dcmd uses a more concise tabular output format than ::kmalog .

[address] ::kmem_verify

Verify the integrity of the kmem_cache structure stored at the specified address, or
the complete set of active kmem_cache structures. If an explicit cache address is

Kernel Debugging Modules 47

specified, the dcmd displays more verbose information regarding errors; otherwise, a
summary report is displayed. The ::kmem_verify dcmd is discussed in more detail
in “Kernel Memory Caches” on page 71.

[address] ::vmem

Format and display the vmemstructure stored at the specified address, or the
complete set of active vmemstructures. This structure is defined in
<sys/vmem_impl.h> .

address ::vmem_seg

Format and display the vmem_seg structure stored at the specified address. This
structure is defined in <sys/vmem_impl.h> .

address ::whatis [−abv]

Report information about the specified address. In particular, ::whatis will attempt
to determine if the address is a pointer to a kmem-managed buffer or another type of
special memory region, such as a thread stack, and report its findings. If the −a
option is present, the dcmd reports all matches instead of just the first match to its
queries. If the −b option is present, the dcmd also attempts to determine if the
address is referred to by a known kmem bufctl . If the −v option is present, the
dcmd reports its progress as it searches various kernel data structures.

Walkers

allocdby Given the address of a kthread_t structure as a
starting point, iterate over the set of bufctl
structures corresponding to memory allocations
performed by this kernel thread.

bufctl Given the address of a kmem_cache_t structure
as a starting point, iterate over the set of
allocated bufctl s associated with this cache.

freectl Given the address of a kmem_cache_t structure
as a starting point, iterate over the set of free
bufctl s associated with this cache.

freedby Given the address of a kthread_t structure as a
starting point, iterate over the set of bufctl
structures corresponding to memory
deallocations performed by this kernel thread.

48 Solaris Modular Debugger Guide ♦ February 2000

freemem Given the address of a kmem_cache_t structure
as a starting point, iterate over the set of free
buffers associated with this cache.

kmem Given the address of a kmem_cache_t structure
as a starting point, iterate over the set of
allocated buffers associated with this cache.

kmem_cache Iterate over the active set of kmem_cache_t
structures. This structure is defined in
<sys/kmem_impl.h> .

kmem_cpu_cache Given the address of a kmem_cache_t structure
as a starting point, iterate over the per-CPU
kmem_cpu_cache_t structures associated with
this cache. This structure is defined in
<sys/kmem_impl.h> .

kmem_slab Given the address of a kmem_cache_t structure
as a starting point, iterate over the set of
associated kmem_slab_t structures. This
structure is defined in <sys/kmem_impl.h> .

kmem_log Iterate over the set of bufctl s stored in the
kmem allocator transaction log.

File Systems
The MDB file systems debugging support includes a built-in facility to convert vnode
pointers to the corresponding file system path name. This conversion is performed
using the Directory Name Lookup Cache (DNLC); because the cache does not hold
all active vnodes, some vnodes might not be able to be converted to path names and
"??" is displayed instead of a name.

dcmds

::fsinfo

Display a table of mounted file systems, including the vfs_t address, ops vector,
and mount point of each file system.

Kernel Debugging Modules 49

::lminfo

Display a table of vnodes with active network locks registered with the lock manager.
The pathname corresponding to each vnode is shown.

address ::vnode2path [−v]

Display the pathname corresponding to the given vnode address. If the −v option is
specified, the dcmd prints a more verbose display, including the vnode pointer of
each intermediate path component.

Walkers

buf Iterate over the set of active block I/O transfer
structures (buf_t structures). The buf structure
is defined in <sys/buf.h> and is described in
more detail in buf (9S).

Virtual Memory
This section describes the debugging support for the kernel virtual memory
subsystem.

dcmds

address ::addr2smap [offset]

Print the smap structure address that corresponds to the given address in the kernel’s
segmap address space segment.

as ::as2proc

Display the proc_t address for the process corresponding to the as_t address as.

seg ::seg

Format and display the specified address space segment (seg_t address).

vnode ::vnode2smap [offset]

Print the smap structure address that corresponds to the given vnode_t address and
offset.

50 Solaris Modular Debugger Guide ♦ February 2000

Walkers

anon Given the address of an anon_map structure as a
starting point, iterate over the set of related anon
structures. The anon map implementation is
defined in <vm/anon.h> .

seg Given the address of an as_t structure as a
starting point, iterate over the set of address
space segments (seg structures) associated with
the specified address space. The seg structure is
defined in <vm/seg.h> .

CPUs and the Dispatcher
Thsi section describes the facilities for examining the state of the cpu structures and
the kernel dispatcher.

dcmds

::callout

Display the callout table. The function, argument, and expiration time for each
callout is displayed.

::class

Display the scheduling class table.

[cpuid] ::cpuinfo [−v]

Display a table of the threads currently executing on each CPU. If an optional CPU
ID number is specified prior to the dcmd name, only the information for the specified
CPU is displayed. If the −v option is present, ::cpuinfo also displays the runnable
threads waiting to execute on each CPU as well as the active interrupt threads.

Walkers

cpu Iterate over the set of kernel CPU structures. The
cpu_t structure is defined in <sys/cpuvar.h> .

Kernel Debugging Modules 51

Device Drivers and DDI Framework
This section describes dcmds and walkers that are useful for kernel developers as
well as third-party device driver developers.

dcmds

::devbindings device-name

Display the list of all instances of the named driver. The output consists of an entry
for each instance, beginning with the pointer to the struct dev_info (viewable with
$<devinfo or ::devinfo), the driver name, the instance number, and the driver
and system properties associated with that instance.

address ::devinfo [−q]

Print the system and driver properties associated with a devinfo node. If the −q
option is specified, only a quick summary of the device node is shown.

[address] ::devnames [−v]

Display the kernel’s devnames table along with the dn_head pointer, which points
at the driver instance list. If the −v flag is specified, additional information stored at
each entry in the devnames table is displayed.

[devinfo] ::prtconf [−cpv]

Display the kernel device tree starting at the device node specified by devinfo. If
devinfo is not provided, the root of the device tree is assumed by default. If the −c
option is specified, only children of the given device node are displayed. If the −p
option is specified, only ancestors of the given device node are displayed. If −v is
specified, the properties associated with each node are displayed.

[major-num] ::major2name [major-num]

Display the driver name corresponding to the specified major number. The major
number can be specified as an expression preceding the dcmd or as a command-line
argument.

[address] ::modctl2devinfo

Print all of the device nodes that correspond to the specified modctl address.

::name2major driver-name

Given a device driver name, display its major number.

52 Solaris Modular Debugger Guide ♦ February 2000

[address] ::softstate [instance-number]

Given a softstate state pointer (see ddi_soft_state_init (9F)) and a device
instance number, display the soft state for that instance.

Walkers

devinfo First, iterate over the parents of the given devinfo
and return them in order of seniority from most
to least senior. Second, return the given devinfo
itself. Third, iterate over the children of the given
devinfo in order of seniority from most to least
senior. The dev_info struct is defined in
<sys/ddi_impldefs.h> .

devinfo_children First, return the given devinfo, then iterate over
the children of the given devinfo in order of
seniority from most to least senior. The
dev_info struct is defined in
<sys/ddi_impldefs.h> .

devinfo_parents Iterate over the parents of the given devinfo in
order of seniority from most to least senior, and
then return the given devinfo. The dev_info
struct is defined in <sys/ddi_impldefs.h> .

devi_next Iterate over the siblings of the given devinfo. The
dev_info struct is defined in
<sys/ddi_impldefs.h> .

devnames Iterate over the entries in the devnames array.
This structure is defined in <sys/autoconf.h> .

STREAMS
This section describes dcmds and walkers that are useful for kernel developers as
well as developers of third-party STREAMS modules and drivers.

Kernel Debugging Modules 53

dcmds

address ::queue [−v] [−f flag] [−F flag] [−mmodname]

Filter and display the specified queue_t data structure. With no options, various
properties of the queue_t are shown. If the −v option is present, the queue flags are
decoded in greater detail. If the −f , −F, or −moptions are present, the queue is
displayed only if it matches the criteria defined by the arguments to these options; in
this way, the dcmd can be used as a filter for input from a pipeline. The −f option
indicates that the specified flag (one of the Q flag names from <sys/stream.h>)
must be present in the queue flags. The −F option indicates that the specified flag
must be absent from the queue flags. The −moption indicates that the module name
associated with the queue must match the specified modname.

address ::q2syncq

Given the address of a queue_t , print the address of the corresponding syncq_t
data structure.

address ::q2otherq

Given the address of a queue_t , print the address of the peer read or write queue
structure.

address ::q2rdq

Given the address of a queue_t , print the address of the corresponding read queue.

address ::q2wrq

Given the address of a queue_t , print the address of the corresponding write queue.

[address] ::stream

Display a visual picture of a kernel STREAM data structure, given the address of the
stdata_t structure representing the STREAM head. The read and write queue
pointers, byte count, and flags for each module are shown, and in some cases
additional information for the specific queue is shown in the margin.

address ::syncq [−v] [−f flag] [−F flag] [−t type] [−T type]

Filter and display the specified syncq_t data structure. With no options, various
properties of the syncq_t are shown. If the −v option is present, the syncq flags are
decoded in greater detail. If the −f , −F, −t , or −T options are present, the syncq is
displayed only if it matches the criteria defined by the arguments to these options; in
this way, the dcmd can be used as a filter for input from a pipeline. The −f option

54 Solaris Modular Debugger Guide ♦ February 2000

indicates that the specified flag (one of the SQ_flag names from <sys/strsubr.h>)
must be present in the syncq flags. The −F option indicates that the specified flag
must be absent from the syncq flags. The −t option indicates that the specified type
(one of the SQ_CI or SQ_COtype names from <sys/strsubr.h>) must be present
in the syncq type bits. The −T option indicates that the specified type must be absent
from the syncq type bits.

address ::syncq2q

Given the address of a syncq_t , print the address of the corresponding queue_t
data structure.

Walkers

qlink Given the address of a queue_t structure, walk
the list of related queues using the q_link
pointer. This structure is defined in
<sys/stream.h> .

qnext Given the address of a queue_t structure, walk
the list of related queues using the q_next
pointer. This structure is defined in
<sys/stream.h> .

readq Given the address of an stdata_t structure,
walk the list of read-side queue structures.

writeq Given the address of an stdata_t structure,
walk the list of write-side queue structures.

Files, Processes, and Threads
This section describes dcmds and walkers used to format and examine various
fundamental file, process, and thread structures in the Solaris kernel.

dcmds

process ::fd fd-num

Print the file_t address corresponding to the file descriptor fd-num associated with
the specified process. The process is specified using the virtual address of its proc_t
structure.

Kernel Debugging Modules 55

thread ::findstack [command]

Print the stack trace associated with the given kernel thread, identified by the virtual
address of its kthread_t structure. The dcmd employs several different algorithms
to locate the appropriate stack backtrace. If an optional command string is specified,
the dot variable is reset to the frame pointer address of the topmost stack frame, and
the specified command is evaluated as if it had been typed at the command line. The
default command string is “<.$C0 ”; that is, print a stack trace including frame
pointers but no arguments.

pid ::pid2proc

Print the proc_t address corresponding to the specified PID. Recall that MDB’s
default base is hexadecimal, so decimal PIDs obtained using pgrep (1) or ps (1)
should be prefixed with 0t .

process ::pmap

Print the memory map of the process indicated by the given process address. The
dcmd displays output using a format similar to pmap(1).

[process] ::ps [−flt]

Print a summary of the information related to the specified process, or all active
system processes, similar to ps (1). If the −f option is specified, the full command
name and initial arguments are printed. If the −l option is specified, the LWPs
associated with each process are printed. If the −t option is specified, the kernel
threads associated with each process LWP are printed.

::ptree

Print a process tree, with child processes indented from their respective parent
processes. The dcmd displays output using a format similar to ptree (1).

vnode ::whereopen

Given a vnode_t address, print the proc_t addresses of all processes that have this
vnode currently open in their file table.

Walkers

file Given the address of a proc_t structure as a
starting point, iterate over the set of open files
(file_t structures) associated with the specified

56 Solaris Modular Debugger Guide ♦ February 2000

process. The file_t structure is defined in
<sys/file.h> .

proc Iterate over the active process (proc_t)
structures. This structure is defined in
<sys/proc.h> .

thread Iterate over a set of kernel thread (kthread_t)
structures. If the global walk is invoked, all
kernel threads are returned by the walker. If a
local walk is invoked using a proc_t address as
the starting point, the set of threads associated
with the specified process is returned. The
kthread_t structure is defined in
<sys/thread.h> .

Synchronization Primitives
This section describes dcmds and walkers used to examine particular kernel
synchronization primitives. The semantics of each primitive are discussed in the
corresponding man pages section 9F: DDI and DKI Kernel Functions.

dcmds

rwlock ::rwlock

Given the address of a readers-writers lock (see rwlock (9F)), display the current
state of the lock and the list of waiting threads.

[address] ::wchaninfo [−v]

Given the address of a condition variable (see condvar (9F)) or semaphore (see
semaphore (9F)), display the current number of waiters on this object. If no explicit
address is specified, display all such objects that have waiting threads. If the −v
option is specified, display the list of threads that are blocked on each object.

Walkers

blocked Given the address of a synchronization object
(such as a mutex (9F) or rwlock (9F)), iterate
over the list of blocked kernel threads.

Kernel Debugging Modules 57

wchan Given the address of a condition variable (see
condvar (9F)) or semaphore (see
semaphore (9F)), iterate over the list of blocked
kernel threads.

Cyclics
The cyclic subsystem is a low-level kernel subsystem that provides high resolution,
per-CPU interval timer facilities to other kernel services and programming interfaces.

dcmds

::cycinfo [−vV]

Display the cyclic subsystem per-CPU state for each CPU. If the −v option is present,
a more verbose display is shown. If the −V option is present, an even more verbose
display than −v is shown.

address ::cyclic

Format and display the cyclic_t at the specified address.

::cyccover

Display cyclic subsystem code coverage information. This information is available
only in a DEBUG kernel.

::cyctrace

Display cyclic subsystem trace information. This information is available only in a
DEBUG kernel.

Walkers

cyccpu Iterate over the per-CPU cyc_cpu_t structures.
This structure is defined in
<sys/cyclic_impl.h> .

cyctrace Iterate over the cyclic trace buffer structures. This
information is only available in a DEBUG kernel.

58 Solaris Modular Debugger Guide ♦ February 2000

Interprocess Communication Debugging
Support (ipc)
The ipc module provides debugging support for the implementation of the message
queue, semaphore, and shared memory interprocess communication primitives.

dcmds

::ipcs [−l]

Display a listing of system-wide IPC identifiers, corresponding to known message
queues, semaphores, and shared memory segments. If the −l option is specified, a
longer listing of information is shown.

[address] ::msqid_ds [−l]

Print the specified msqid_ds structure or a table of the active msqid_ds structures
(message queue identifiers). If the −l option is specified, a longer listing of
information is displayed.

[address] ::semid_ds [−l]

Print the specified semid_ds structure or a table of the active semid_ds structures
(semaphore identifiers). If the −l option is specified, a longer listing of information is
displayed.

[address] ::shmid_ds [−l]

Print the specified shmid_ds structure or a table of the active shmid_ds structures
(shared memory segment identifiers). If the −l option is specified, a longer listing of
information is displayed.

Walkers

msg Walk the active msqid_ds structures
corresponding to message queue identifiers. This
structure is defined in <sys/msg.h> .

Kernel Debugging Modules 59

sem Walk the active semid_ds structures
corresponding to semaphore identifiers. This
structure is defined in <sys/sem.h> .

shm Walk the active shmid_ds structures
corresponding to shared memory segment
identifiers. This structure is defined in
<sys/shm.h> .

Loopback File System Debugging
Support (lofs)
The lofs module provides debugging support for the lofs (7FS) file system.

dcmds

[address] ::lnode

Print the specified lnode_t , or a table of the active lnode_t structures in the kernel.

address ::lnode2dev

Print the dev_t (vfs_dev) for the underlying loopback mounted filesystem
corresponding to the given lnode_t address.

address ::lnode2rdev

Print the dev_t (li_rdev) for the underlying loopback mounted file system
corresponding to the given lnode_t address.

Walkers

lnode Walk the active lnode_t structures in the kernel.
This structure is defined in
<sys/fs/lofs_node.h> .

60 Solaris Modular Debugger Guide ♦ February 2000

Internet Protocol Module Debugging
Support (ip)
The ip module provides debugging support for the ip (7P) driver

dcmds

[address] ::ire [−q]

Print the specified ire_t , or a table of the active ire_t structures in the kernel. If
the −q flag is specified, the send and receive queue pointers are printed instead of the
source and destination addresses.

Walkers

ire Walk the active ire (Internet Route Entry)
structures in the kernel. This structure is defined
in <inet/ip.h> .

Kernel Runtime Link Editor Debugging
Support (krtld)
This section describes the debugging support for the kernel runtime link editor,
which is responsible for loading kernel modules and drivers.

dcmds

[address] ::modctl

Print the specified modctl , or a table of the active modctl structures in the kernel.

Kernel Debugging Modules 61

address ::modhdrs

Given the address of a modctl structure, print the module’s ELF executable header
and section headers.

::modinfo

Print information about the active kernel modules, similar to the output of the
/usr/sbin/modinfo command.

Walkers

modctl Walk the list of active modctl structures in the
kernel. This structure is defined in
<sys/modctl.h> .

IA: Platform Debugging Support (unix)
These dcmds and walkers are specific to IA.

dcmds

[cpuid | address] ::ttrace [−x]

Display trap trace records in reverse chronological order. The trap trace facility is
available only in DEBUG kernels. If an explicit dot value is specified, this is
interpreted as either a CPU ID number or a trap trace record address, depending on
the precise value. If a CPU ID is specified, the output is restricted to the buffer from
that CPU. If a record address is specified, only that record is formatted. If the −x
option is specified, the complete raw record is displayed.

Walkers

ttrace Walk the list of trap trace record addresses in
reverse chronological order. The trap trace facility
is available only in DEBUG kernels.

62 Solaris Modular Debugger Guide ♦ February 2000

SPARC: sun4d Platform Debugging
Support (unix)
These dcmds and walkers are specific to the SPARC sun4d platform.

dcmds
[cpuid | address] ::ttrace [−x]

Display trap trace records in reverse chronological order. The trap trace facility is
available only in DEBUG kernels. If an explicit dot value is specified, this is
interpreted as either a CPU ID number or a trap trace record address, depending on
the precise value. If a CPU ID is specified, the output is restricted to the buffer from
that CPU. If a record address is specified, only that record is formatted. If the −x
option is specified, the complete raw record is displayed.

Walkers
ttrace Walk the list of trap trace record addresses in

reverse chronological order. The trap trace facility
is available only in DEBUG kernels.

SPARC: sun4m Platform Debugging
Support (unix)
These dcmds and walkers are specific to the SPARC sun4m platform.

dcmds
[cpuid | address] ::ttrace [−x]

Display trap trace records in reverse chronological order. The trap trace facility is
available only in DEBUG kernels. If an explicit dot value is specified, this is

Kernel Debugging Modules 63

interpreted as either a CPU ID number or a trap trace record address, depending on
the precise value. If a CPU ID is specified, the output is restricted to the buffer from
that CPU. If a record address is specified, only that record is formatted. If the −x
option is specified, the complete raw record is displayed.

Walkers

ttrace Walk the list of trap trace record addresses in
reverse chronological order. The trap trace facility
is only available in DEBUG kernels.

SPARC: sun4u Platform Debugging
Support (unix)
These dcmds and walkers are specific to the SPARC sun4u platform.

dcmds

[address] ::softint

Display the soft interrupt vector structure at the specified address, or display all the
active soft interrupt vectors. The pending count, PIL, argument, and handler function
for each structure is displayed.

::ttctl

Display trap trace control records. The trap trace facility is available only in DEBUG
kernels.

[cpuid] ::ttrace [−x]

Display trap trace records in reverse chronological order. The trap trace facility is
available only in DEBUG kernels. If an explicit dot value is specified, this is
interpreted as a CPU ID number, and the output is restricted to the buffer from that
CPU. If the −x option is specified, the complete raw record is displayed.

64 Solaris Modular Debugger Guide ♦ February 2000

[address] ::xc_mbox

Display the cross-call mailbox at the specified address, or format all the cross-call
mailboxes that have pending requests.

::xctrace

Format and display trace trace records in reverse chronological order that are related
to CPU cross-call activity. The trap trace facility is available only in DEBUG kernels.

Walkers
softint Iterate over the soft interrupt vector table entries.

ttrace Iterate over the trap trace record addresses in
reverse chronological order. The trap trace facility
is only available in DEBUG kernels.

xc_mbox Iterate over the mailboxes used for CPU
handshake and cross-call (x-call) requests.

Kernel Debugging Modules 65

66 Solaris Modular Debugger Guide ♦ February 2000

CHAPTER 6

Debugging With the Kernel Memory
Allocator

The Solaris kernel memory (kmem) allocator provides a powerful set of debugging
features that can facilitate analysis of a kernel crash dump. This chapter discusses
these debugging features, and the MDB dcmds and walkers designed specifically for
the allocator. Bonwick (see “Related Books and Papers” on page) provides an
overview of the principles of the allocator itself. Refer to the header file
<sys/kmem_impl.h> for the definitions of allocator data structures. The kmem
debugging features can be enabled on a production system to enhance problem
analysis, or on development systems to aid in debugging kernel software and device
drivers.

Note - This guide reflects Solaris 8 implementation; this information might not be
relevant, correct, or applicable to past or future releases, since it reflects the current
kernel implementation. It does not define a public interface of any kind. All of the
information provided about the kernel memory allocator is subject to change in
future Solaris releases.

Getting Started: Creating a Sample
Crash Dump
This section shows you how to obtain a sample crash dump, and how to invoke
MDB in order to examine it.

67

Setting kmem_flags

The kernel memory allocator contains many advanced debugging features, but these
are not enabled by default because they can cause performance degradation. In order
to follow the examples in this guide, you should turn on these features. You should
enable these features only on a test system, as they can cause performance
degradation or expose latent problems.

The allocator’s debugging functionality is controlled by the kmem_flags tunable. To
get started, make sure kmem_flags is set properly:

mdb -k
> kmem_flags/X
kmem_flags:
kmem_flags: f

If kmem_flags is not set to ’f ’, you should add the line:

set kmem_flags=0xf

to /etc/system and reboot the system. When the system reboots, confirm that
kmem_flags is set to ’f ’. Remember to remove your /etc/system modifications
before returning this system to production use.

Forcing a Crash Dump
The next step is to make sure crash dumps are properly configured. First, confirm
that dumpadmis configured to save kernel crash dumps and that savecore is
enabled. See dumpadm(1M) for more information on crash dump parameters.

dumpadm
Dump content: kernel pages

Dump device: /dev/dsk/c0t0d0s1 (swap)
Savecore directory: /var/crash/testsystem

Savecore enabled: yes

Next, reboot the system using the ’-d’ flag to reboot (1M), which forces the kernel
to panic and save a crash dump.

reboot -d
Sep 28 17:51:18 testsystem reboot: rebooted by root

panic[cpu0]/thread=70aacde0: forced crash dump initiated at user request

401fbb10 genunix:uadmin+55c (1, 1, 0, 6d700000, 5, 0)
%l0-7: 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

...

When the system reboots, make sure the crash dump succeeded:

68 Solaris Modular Debugger Guide ♦ February 2000

$ cd /var/crash/testsystem
$ ls
bounds unix.0 unix.1 vmcore.0 vmcore.1

If the dump is missing from your dump directory, it could be that the partition is out
of space. You can free up space and run savecore (1M) manually as root to
subsequently save the dump. If your dump directory contains multiple crash dumps,
the one you just created will be the unix.[n] and vmcore.[n] pair with the most
recent modification time.

Starting MDB
Now, run mdb on the crash dump you created, and check its status:

$ mdb unix.1 vmcore.1
Loading modules: [unix krtld genunix ip nfs ipc]
> ::status
debugging crash dump vmcore.1 (32-bit) from testsystem
operating system: 5.8 Generic (sun4u)
panic message: forced crash dump initiated at user request

In the examples presented in this guide, a crash dump from a 32-bit kernel is used.
All of the techniques presented here are applicable to a 64-bit kernel, and care has
been taken to distinguish pointers (sized differently on 32- and 64-bit systems) from
fixed-sized quantities, which are invariant with respect to the kernel data model.

A Sun Ultra-1 workstation was used to generate the example presented. Your results
can vary depending on the architecture and model of system you use.

Allocator Basics
The kernel memory allocator’s job is to parcel out regions of virtual memory to other
kernel subsystems (these are commonly called clients). This section explains the
basics of the allocator’s operation and introduces some terms used later in this guide.

Buffer States
The functional domain of the kernel memory allocator is the set of buffers of virtual
memory that make up the kernel heap. These buffers are grouped together into sets
of uniform size and purpose, known as caches. Each cache contains a set of buffers.
Some of these buffers are currently free, which means that they have not yet been
allocated to any client of the allocator. The remaining buffers are allocated, which
means that a pointer to that buffer has been provided to a client of the allocator. If no

Debugging With the Kernel Memory Allocator 69

client of the allocator holds a pointer to an allocated buffer, this buffer is said to be
leaked, because it cannot be freed. Leaked buffers indicate incorrect code that is
wasting kernel resources.

Transactions
A kmem transaction is a transition on a buffer between the allocated and free states.
The allocator can verify that the state of a buffer is valid as part of each transaction.
Additionally, the allocator has facilities for logging transactions for post-mortem
examination.

Sleeping and Non-Sleeping Allocations
Unlike the Standard C Library’s malloc (3C) function, the kernel memory allocator
can block (or sleep), waiting until enough virtual memory is available to satisfy the
client’s request. This is controlled by the ’flag’ parameter to kmem_alloc (9F). A call
to kmem_alloc (9F), which has the KM_SLEEPflag set, can never fail; it will block
forever waiting for resources to become available.

Kernel Memory Caches
The kernel memory allocator divides the memory it manages into a set of caches. All
allocations are supplied from these caches, which are represented by the
kmem_cache_t data structure. Each cache has a fixed buffer size, which represents
the maximum allocation size satisfied by that cache. Each cache has a string name
indicating the type of data it manages.

Some kernel memory caches are special purpose and are initialized to allocate only a
particular kind of data structure. An example of this is the "thread_cache," which
allocates only structures of type kthread_t . Memory from these caches is allocated
to clients by the kmem_cache_alloc() function and freed by the
kmem_cache_free() function.

Note - kmem_cache_alloc() and kmem_cache_free() are not public DDI
interfaces. Do NOT write code that relies on them, because they are subject to change
or removal in future releases of Solaris.

Caches whose name begins with "kmem_alloc_ " implement the kernel’s general
memory allocation scheme. These caches provide memory to clients of
kmem_alloc (9F) and kmem_zalloc (9F). Each of these caches satisfies requests
whose size is between the buffer size of that cache and the buffer size of the next
largest cache. For example, the kernel has kmem_alloc_8 and kmem_alloc_16

70 Solaris Modular Debugger Guide ♦ February 2000

caches. In this case, the kmem_alloc_16 cache handles all client requests for 9-16
bytes of memory. Remember that the size of each buffer in the kmem_alloc_16
cache is 16 bytes, regardless of the size of the client request. In a 14 byte request, two
bytes of the resulting buffer are unused, since the request is satisfied from the
kmem_alloc_16 cache.

The last set of caches are those used internally by the kernel memory allocator for its
own bookkeeping. These include those caches whose names start with
"kmem_magazine_ " or "kmem_va_", the kmem_slab_cache , the
kmem_bufctl_cache and others.

Kernel Memory Caches
This section explains how to find and examine kernel memory caches. You can learn
about the various kmem caches on the system by issuing the ::kmastat command.

> ::kmastat
cache buf buf buf memory alloc alloc
name size in use total in use succeed fail
------------------------- ------ ------ ------ --------- --------- -----
kmem_magazine_1 8 24 1020 8192 24 0
kmem_magazine_3 16 141 510 8192 141 0
kmem_magazine_7 32 96 255 8192 96 0
...
kmem_alloc_8 8 3614 3751 90112 9834113 0
kmem_alloc_16 16 2781 3072 98304 8278603 0
kmem_alloc_24 24 517 612 24576 680537 0
kmem_alloc_32 32 398 510 24576 903214 0
kmem_alloc_40 40 482 584 32768 672089 0
...
thread_cache 368 107 126 49152 669881 0
lwp_cache 576 107 117 73728 182 0
turnstile_cache 36 149 292 16384 670506 0
cred_cache 96 6 73 8192 2677787 0
...

If you run ::kmastat you get a feel for what a "normal" system looks like. This will
help you to spot excessively large caches on systems that are leaking memory. The
results of ::kmastat will vary depending on the system you are running on, how
many processes are running, and so forth.

Another way to list the various kmem caches is with the ::kmem_cache command:

> ::kmem_cache
ADDR NAME FLAG CFLAG BUFSIZE BUFTOTL
70036028 kmem_magazine_1 0020 0e0000 8 1020
700362a8 kmem_magazine_3 0020 0e0000 16 510
70036528 kmem_magazine_7 0020 0e0000 32 255
...
70039428 kmem_alloc_8 020f 000000 8 3751
700396a8 kmem_alloc_16 020f 000000 16 3072

Debugging With the Kernel Memory Allocator 71

70039928 kmem_alloc_24 020f 000000 24 612
70039ba8 kmem_alloc_32 020f 000000 32 510
7003a028 kmem_alloc_40 020f 000000 40 584
...

This command is useful because it maps cache names to addresses, and provides the
debugging flags for each cache in the FLAG column. It is important to understand
that the allocator’s selection of debugging features is derived on a per-cache basis
from this set of flags. These are set in conjunction with the global kmem_flags
variable at cache creation time. Setting kmem_flags while the system is running has
no effect on the debugging behavior, except for subsequently created caches (which
is rare after boot-up).

Next, walk the list of kmem caches directly using MDB’s kmem_cache walker:

> ::walk kmem_cache
70036028
700362a8
70036528
700367a8
...

This produces a list of pointers that correspond to each kmem cache in the kernel. To
find out about a specific cache, apply the kmem_cache macro:

> 0x70039928$<kmem_cache
0x70039928: lock
0x70039928: owner/waiters

0
0x70039930: flags freelist offset

20f 707c86a0 24
0x7003993c: global_alloc global_free alloc_fail

523 0 0
0x70039948: hash_shift hash_mask hash_table

5 1ff 70444858
0x70039954: nullslab
0x70039954: cache base next

70039928 0 702d5de0
0x70039960: prev head tail

707c86a0 0 0
0x7003996c: refcnt chunks

-1 0
0x70039974: constructor destructor reclaim

0 0 0
0x70039980: private arena cflags

0 104444f8 0
0x70039994: bufsize align chunksize

24 8 40
0x700399a0: slabsize color maxcolor

8192 24 32
0x700399ac: slab_create slab_destroy buftotal

3 0 612
0x700399b8: bufmax rescale lookup_depth

612 1 0
0x700399c4: kstat next prev

702c8608 70039ba8 700396a8
0x700399d0: name kmem_alloc_24

72 Solaris Modular Debugger Guide ♦ February 2000

0x700399f0: bufctl_cache magazine_cache magazine_size
70037ba8 700367a8 15

...

Important fields for debugging include ’bufsize’, ’flags’ and ’name’. The name of the
kmem_cache (in this case "kmem_alloc_24 ") indicates its purpose in the system.
Bufsize indicates the size of each buffer in this cache; in this case, the cache is used
for allocations of size 24 and smaller. ’flags’ indicates what debugging features are
turned on for this cache. You can find the debugging flags listed in
<sys/kmem_impl.h> . In this case ’flags’ is 0x20f , which is
KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS | KMF_HASH.
This document explains each of the debugging features in subsequent sections.

When you are interested in looking at buffers in a particular cache, you can walk the
allocated and freed buffers in that cache directly:

> 0x70039928::walk kmem
704ba010
702ba008
704ba038
702ba030
...

> 0x70039928::walk freemem
70a9ae50
70a9ae28
704bb730
704bb2f8
...

MDB provides a shortcut to supplying the cache address to the kmem walker: a
specific walker is provided for each kmem cache, and its name is the same as the
name of the cache. For example:

> ::walk kmem_alloc_24
704ba010
702ba008
704ba038
702ba030
...

> ::walk thread_cache
70b38080
70aac060
705c4020
70aac1e0
...

Now you know how to iterate over the kernel memory allocator’s internal data
structures and examine the most important members of the kmem_cache data
structure.

Debugging With the Kernel Memory Allocator 73

Detecting Memory Corruption
One of the primary debugging facilities of the allocator is that it includes algorithms
to recognize data corruption quickly. When corruption is detected, the allocator
immediately panics the system.

This section describes how the allocator recognizes data corruption; you must
understand this to be able to debug these problems. Memory abuse typically falls
into one of the following categories:

� Writing past the end of a buffer

� Accessing uninitialized data

� Continuing to use a freed buffer

� Corrupting kernel memory

Keep these problems in mind as you read the next three sections. They will help you
to understand the allocator’s design, and enable you to diagnose problems more
efficiently.

Freed Buffer Checking: 0xdeadbeef
When the KMF_DEADBEEF (0x2) bit is set in the flags field of a kmem_cache, the
allocator tries to make memory corruption easy to detect by writing a special pattern
into all freed buffers. This pattern is 0xdeadbeef . Since a typical region of memory
contains both allocated and freed memory, sections of each kind of block will be
interspersed; here is an example from the "kmem_alloc_24 " cache:

0x70a9add8: deadbeef deadbeef
0x70a9ade0: deadbeef deadbeef
0x70a9ade8: deadbeef deadbeef
0x70a9adf0: feedface feedface
0x70a9adf8: 70ae3260 8440c68e
0x70a9ae00: 5 4ef83
0x70a9ae08: 0 0
0x70a9ae10: 1 bbddcafe
0x70a9ae18: feedface 4fffed
0x70a9ae20: 70ae3200 d1befaed
0x70a9ae28: deadbeef deadbeef
0x70a9ae30: deadbeef deadbeef
0x70a9ae38: deadbeef deadbeef
0x70a9ae40: feedface feedface
0x70a9ae48: 70ae31a0 8440c54e

The buffer beginning at 0x70a9add8 is filled with the 0xdeadbeef pattern, which
is an immediate indication that the buffer is currently free. At 0x70a9ae28 another
free buffer begins; at 0x70a9ae00 an allocated buffer is located between them.

74 Solaris Modular Debugger Guide ♦ February 2000

Note - You might have observed that there are some holes on this picture, and that 3
24–byte regions should occupy only 72 bytes of memory, instead of the 120 bytes
shown here. This discrepancy is explained in the next section “Redzone:
0xfeedface ” on page 75.

Redzone: 0xfeedface
The pattern 0xfeedface appears frequently in the buffer above. This pattern is
known as the "redzone" indicator. It enables the allocator (and a programmer
debugging a problem) to determine if the boundaries of a buffer have been violated
by “buggy” code. Following the redzone is some additional information. The
contents of that data depends upon other factors (see “Memory Allocation Logging”
on page 78). The redzone and its suffix are collectively called the buftag region.
Figure 6–1 summarizes this information.

buffer

cache_bufsize bytes 64 bits 2 pointers

user data REDZONE debugging data

buftag

Figure 6–1 The Redzone

The buftag is appended to each buffer in a cache when any of the KMF_AUDIT,
KMF_DEADBEEF, KMF_REDZONE, or KMF_CONTENTSflags are set in that buffer’s
cache. The contents of the buftag depend on whether KMF_AUDITis set.

Decomposing the memory region presented above into distinct buffers is now simple:

0x70a9add8: deadbeef deadbeef \
0x70a9ade0: deadbeef deadbeef +- User Data (free)
0x70a9ade8: deadbeef deadbeef /
0x70a9adf0: feedface feedface -- REDZONE
0x70a9adf8: 70ae3260 8440c68e -- Debugging Data

0x70a9ae00: 5 4ef83 \
0x70a9ae08: 0 0 +- User Data (allocated)
0x70a9ae10: 1 bbddcafe /
0x70a9ae18: feedface 4fffed -- REDZONE
0x70a9ae20: 70ae3200 d1befaed -- Debugging Data

0x70a9ae28: deadbeef deadbeef \
0x70a9ae30: deadbeef deadbeef +- User Data (free)
0x70a9ae38: deadbeef deadbeef /
0x70a9ae40: feedface feedface -- REDZONE
0x70a9ae48: 70ae31a0 8440c54e -- Debugging Data

In the free buffers at 0x70a9add8 and 0x70a9ae28 , the redzone is filled with
0xfeedfacefeedface . This a convenient way of determining that a buffer is free.

Debugging With the Kernel Memory Allocator 75

In the allocated buffer beginning at 0x70a9ae00 , the situation is different. The first
half of the redzone is used to indicate the end of the buffer (at 0x70a9ae18) , and
the second half tracks the redzone byte. Recall from “Allocator Basics” on page 69
that there are two allocation types:

1) The client requested memory using kmem_cache_alloc() , in which case the
size of the requested buffer is equal to the bufsize of the cache.

2) The client requested memory using kmem_alloc (9F), in which case the size of
the requested buffer is less than or equal to the bufsize of the cache. For example, a
request for 20 bytes will be fulfilled from the kmem_alloc_24 cache. The allocator
enforces the buffer boundary by placing the redzone byte immediately following the
client data:

0x70a9ae00: 5 4ef83 \
0x70a9ae08: 0 0 +- User Data (allocated)
0x70a9ae10: 1 bbddcafe /
0x70a9ae18: feedface 4fffed -- REDZONE
0x70a9ae20: 70ae3200 d1befaed -- Debugging Data

0xfeedface at 0x70a9ae18 is followed by a 32-bit word containing what seems to
be a random value. This number is actually an encoded representation of the size of
the buffer. To decode this number and find the size of the allocated buffer, use the
formula:

size = redzone_value / (UINT_MAX / KMEM_MAXBUF)

The value of KMEM_MAXBUFis 16384 , and the value of UINT_MAX is 4294967295 .
So, in this example,

size = 0x4fffed / (4294967295 / 16384) = 20 bytes.

This indicates that the buffer requested was of size 20 bytes. The allocator performs
this decoding operation and finds that the redzone byte should be at offset 20. The
redzone byte is the hex pattern 0xbb , which is present at
0x729084e4 (0x729084d0 + 0t20) as expected.

Valid User Data
0x729084d0: 5
0x729084d8: 0

0x729084e0: 1

0x729084e8: feedface
0x729084f0: 70ae3200

redzone byte,
uninitialized data
REDZONE
Debugging data

4ef83
0

bbddcafe

4fffed
d1befaed

Figure 6–2 Sample kmem_alloc(9F) Buffer

Figure 6–3 shows the general form of this memory layout..

76 Solaris Modular Debugger Guide ♦ February 2000

user
data

unallocatedbb
RED

ZONE
encoded

index
debugging

data

(decode index)
Figure 6–3 Redzone Byte

If the allocation size is the same as the bufsize of the cache, the redzone byte
overwrites the first byte of the redzone itself, as shown in Figure 6–4.

user data RED
ZONE

encoded
index

debugging databb

Figure 6–4 Redzone Byte at the Beginning of the Redzone

This overwriting results in the first 32-bit word of the redzone being 0xbbedface ,
or 0xfeedfabb depending on the endianness of the hardware on which the system
is running.

Note - Why is the allocation size encoded this way? To encode the size, the allocator
uses the formula ((UINT_MAX / KMEM_MAXBUF) * size + 1). When the size
decode occurs, the integer division discards the remainder of ’+1’. However, the
addition of 1 is valuable because the allocator can check whether the size is valid by
testing whether (size % (UINT_MAX / KMEM_MAXBUF) == 1). In this way, the
allocator defends against corruption of the redzone byte index.

Uninitialized Data: 0xbaddcafe
You might be wondering what the suspicious 0xbbddcafe at address 0x729084d4
was before the redzone byte got placed over the first byte in the word. It was
0xbaddcaf e. When the KMF_DEADBEEFflag is set in the cache, allocated but
uninitialized memory is filled with the 0xbaddcafe pattern. When the allocator
performs an allocation, it loops across the words of the buffer and verifies that each
word contains 0xdeadbeef , then fills that word with 0xbaddcafe .

A system can panic with a message such as:

panic[cpu1]/thread=e1979420: BAD TRAP: type=e (Page Fault)
rp=ef641e88 addr=baddcafe occurred in module "unix" due to an
illegal access to a user address

In this case, the address that caused the fault was 0xbaddcafe : the panicking thread
has accessed some data that was never initialized.

Debugging With the Kernel Memory Allocator 77

Associating Panic Messages With Failures
The kernel memory allocator emits panic messages corresponding to the failure
modes described earlier. For example, a system can panic with a message such as:

kernel memory allocator: buffer modified after being freed
modification occurred at offset 0x30

The allocator was able to detect this case because it tried to validate that the buffer in
question was filled with 0xdeadbeef . At offset 0x30, this condition was not met.
Since this condition indicates memory corruption, the allocator panicked the system.

Another example failure message is:

kernel memory allocator: redzone violation: write past end of buffer

The allocator was able to detect this case because it tried to validate that the redzone
byte (0xbb) was in the location it determined from the redzone size encoding. It
failed to find the signature byte in the correct location. Since this indicates memory
corruption, the allocator panicked the system. Other allocator panic messages are
discussed later.

Memory Allocation Logging
This section explains the logging features of the kernel memory allocator and how
you can employ them to debug system crashes.

Buftag Data Integrity
As explained earlier, the second half of each buftag contains extra information about
the corresponding buffer. Some of this data is debugging information, and some is
data private to the allocator. While this auxiliary data can take several different
forms, it is collectively known as "Buffer Control" or bufctl data.

However, the allocator needs to know whether a buffer’s bufctl pointer is valid, since
this pointer might also have been corrupted by malfunctioning code. The allocator
confirms the integrity of its auxiliary pointer by storing the pointer and an encoded
version of that pointer, and then cross-checking the two versions.

As shown in Figure 6–5, these pointers are the bcp (buffer control pointer) and bxstat
(buffer control XOR status). The allocator arranges bcp and bxstat so that the
expression bcp XOR bxstat equals a well-known value.

78 Solaris Modular Debugger Guide ♦ February 2000

REDZONE bcp pointer bxstat pointer

debugging data

Figure 6–5 Extra Debugging Data in the Buftag

In the event that one or both of these pointers becomes corrupted, the allocator can
easily detect such corruption and panic the system. When a buffer is allocated,
bcp XOR bxstat = 0xa110c8ed ("allocated"). When a buffer is free,
bcp XOR bxstat = 0xf4eef4ee ("freefree").

Note - You might find it helpful to re-examine the example provided in “Freed
Buffer Checking: 0xdeadbeef ” on page 74, in order to confirm that the buftag
pointers shown there are consistent.

In the event that the allocator finds a corrupt buftag, it panics the system and
produces a message similar to the following:

kernel memory allocator: boundary tag corrupted
bcp ^ bxstat = 0xffeef4ee, should be f4eef4ee

Remember, if bcp is corrupt, it is still possible to retrieve its value by taking the
value of bxstat XOR 0xf4eef4ee or bxstat XOR 0xa110c8ed , depending on
whether the buffer is allocated or free.

The bufctl Pointer
The buffer control (bufctl) pointer contained in the buftag region can have different
meanings, depending on the cache’s kmem_flags . The behavior toggled by the
KMF_AUDITflag is of particular interest: when the KMF_AUDIT flag is not set, the
kernel memory allocator allocates a kmem_bufctl_t structure for each buffer. This
structure contains some minimal accounting information about each buffer. When the
KMF_AUDITflag is set, the allocator instead allocates a kmem_bufctl_audit_t , an
extended version of the kmem_bufctl_t .

This section presumes the KMF_AUDITflag is set. For caches that do not have this bit
set, the amount of available debugging information is reduced.

The kmem_bufctl_audit_t (bufctl_audit for short) contains additional
information about the last transaction that occurred on this buffer. The following
example shows how to apply the bufctl_audit macro to examine an audit record.
The buffer shown is the example buffer used in “Detecting Memory Corruption” on
page 74:

> 0x70a9ae00,5/KKn
0x70a9ae00: 5 4ef83

0 0
1 bbddcafe
feedface 4fffed
70ae3200 d1befaed

Debugging With the Kernel Memory Allocator 79

Using the techniques presented above, it is easy to see that 0x70ae3200 points to
the bufctl_audit record: it is the first pointer following the redzone. To examine
the bufctl_audit record it points to, apply the bufctl_audit macro:

> 0x70ae3200$<bufctl_audit
0x70ae3200: next addr slab

70378000 70a9ae00 707c86a0
0x70ae320c: cache timestamp thread

70039928 e1bd0e26afe 70aac4e0
0x70ae321c: lastlog contents stackdepth

7011c7c0 7018a0b0 4
0x70ae3228:

kmem_zalloc+0x30
pid_assign+8
getproc+0x68
cfork+0x60

The ’addr’ field is the address of the buffer corresponding to this bufctl_audit record.
This is the original address: 0x70a9ae00 . The ’cache’ field points at the
kmem_cache that allocated this buffer. You can use the ::kmem_cache dcmd to
examine it as follows:

> 0x70039928::kmem_cache
ADDR NAME FLAG CFLAG BUFSIZE BUFTOTL
70039928 kmem_alloc_24 020f 000000 24 612

The ’timestamp’ field represents the time this transaction occurred. This time is
expressed in the same manner as gethrtime (3C).

’thread’ is a pointer to the thread that performed the last transaction on this buffer.
The ’lastlog’ and ’contents’ pointers point to locations in the allocator’s transaction
logs. These logs are discussed in detail in “Allocator Logging Facility” on page 83.

Typically, the most useful piece of information provided by bufctl_audit is the
stack trace recorded at the point at which the transaction took place. In this case, the
transaction was an allocation called as part of executing fork (2).

Advanced Memory Analysis
This section describes facilities for performing advanced memory analysis, including
locating memory leaks and sources of data corruption.

Finding Memory Leaks
The ::findleaks dcmd provides powerful and efficient detection of memory leaks
in kernel crash dumps where the full set of kmem debug features has been enabled.
The first execution of ::findleaks processes the dump for memory leaks (this can

80 Solaris Modular Debugger Guide ♦ February 2000

take a few minutes), and then coalesces the leaks by the allocation stack trace. The
findleaks report shows a bufctl address and the topmost stack frame for each
memory leak that was identified:

> ::findleaks
CACHE LEAKED BUFCTL CALLER
70039ba8 1 703746c0 pm_autoconfig+0x708
70039ba8 1 703748a0 pm_autoconfig+0x708
7003a028 1 70d3b1a0 sigaddq+0x108
7003c7a8 1 70515200 pm_ioctl+0x187c
--

Total 4 buffers, 376 bytes

Using the bufctl pointers, you can obtain the complete stack backtrace of the
allocation by applying the bufctl_audit macro:

> 70d3b1a0$<bufctl_audit
0x70d3b1a0: next addr slab

70a049c0 70d03b28 70bb7480
0x70d3b1ac: cache timestamp thread

7003a028 13f7cf63b3 70b38380
0x70d3b1bc: lastlog contents stackdepth

700d6e60 0 5
0x70d3b1c8:

kmem_alloc+0x30
sigaddq+0x108
sigsendproc+0x210
sigqkill+0x90
kill+0x28

The programmer can usually use the bufctl_audit information and the allocation
stack trace to quickly track down the code path that leaks the given buffer.

Finding References to Data
When trying to diagnose a memory corruption problem, you should know what
other kernel entities hold a copy of a particular pointer. This is important because it
can reveal which thread accessed a data structure after it was freed. It can also make
it easier to understand what kernel entities are sharing knowledge of a particular
(valid) data item. The ::whatis and ::kgrep dcmds can be used to answer these
questions. You can apply ::whatis to a value of interest:

> 0x705d8640::whatis
705d8640 is 705d8000+640, allocated from kmem_va_8192
705d8640 is 705d8640+0, allocated from streams_mblk

In this case, 0x705d8640 is revealed to be a pointer to a STREAMS mblk structure.
Notice that this allocation also appears in the kmem_va_8192 cache—a kmem cache
that is fronting the kmem_va virtual memory arena. The complete list of kmem
caches and vmem arenas is displayed by the ::kmastat dcmd. You can use
::kgrep to locate other kernel addresses that contain a pointer to this mblk. This
illustrates the hierarchical nature of memory allocations in the system; in general,

Debugging With the Kernel Memory Allocator 81

you can determine the type of object referred to by the given address from the name
of the most specific kmem cache.

> 0x705d8640::kgrep
400a3720
70580d24
7069d7f0
706a37ec
706add34

and investigate them by applying ::whatis again:

> 400a3720::whatis
400a3720 is in thread 7095b240’s stack

> 706add34::whatis
706add34 is 706ac000+1d34, allocated from kmem_va_8192
706add34 is 706add20+14, allocated from streams_dblk_120

Here one pointer is located on the stack of a known kernel thread, and another is the
mblk pointer inside of the corresponding STREAMS dblk structure.

Finding Corrupt Buffers With ::kmem_verify
MDB’s ::kmem_verify dcmd implements most of the same checks that the kmem
allocator does at runtime. ::kmem_verify can be invoked in order to scan every
kmem cache with appropriate kmem_flags , or to examine a particular cache.

Here is an example of using ::kmem_verify to isolate a problem:

> ::kmem_verify
Cache Name Addr Cache Integrity
kmem_alloc_8 70039428 clean
kmem_alloc_16 700396a8 clean
kmem_alloc_24 70039928 1 corrupt buffer
kmem_alloc_32 70039ba8 clean
kmem_alloc_40 7003a028 clean
kmem_alloc_48 7003a2a8 clean
...

It is easy to see here that the kmem_alloc_24 cache contains what ::kmem_verify
believes to be a problem. With an explicit cache argument, the ::kmem_verify
dcmd provides more detailed information about the problem:

> 70039928::kmem_verify
Summary for cache ’kmem_alloc_24’

buffer 702babc0 (free) seems corrupted, at 702babc0

The next step is to examine the buffer which ::kmem_verify believes to be corrupt:

> 0x702babc0,5/KKn
0x702babc0: 0 deadbeef

deadbeef deadbeef
deadbeef deadbeef

82 Solaris Modular Debugger Guide ♦ February 2000

feedface feedface
703785a0 84d9714e

The reason that ::kmem_verify flagged this buffer is now clear: The first word in
the buffer (at 0x702babc0) should probably be filled with the 0xdeadbeef pattern,
not with a 0. At this point, examining the bufctl_audit for this buffer might yield
clues about what code recently wrote to the buffer, indicating where and when it was
freed.

Another useful technique in this situation is to use ::kgrep to search the address
space for references to address 0x702babc0 , in order to discover what threads or
data structures are still holding references to this freed data.

Allocator Logging Facility
When KMF_AUDITis set for a cache, the kernel memory allocator maintains a log
that records the recent history of its activity. This transaction log records
bufctl_audit records. If the KMF_AUDITand the KMF_CONTENTSflags are both
set, the allocator generates a contents log that records portions of the actual contents
of allocated and freed buffers. The structure and use of the contents log is outside
the scope of this document. The transaction log is discussed in this section.

MDB provides several facilities for displaying the transaction log. The simplest is
::walk kmem_log , which prints out the transaction in the log as a series of
bufctl_audit_t pointers:

> ::walk kmem_log
70128340
701282e0
70128280
70128220
701281c0
...
> 70128340$<bufctl_audit
0x70128340: next addr slab

70ac1d40 70bc4ea8 70bb7c00
0x7012834c: cache timestamp thread

70039428 e1bd7abe721 70aacde0
0x7012835c: lastlog contents stackdepth

701282e0 7018f340 4
0x70128368:

kmem_cache_free+0x24
nfs3_sync+0x3c
vfs_sync+0x84
syssync+4

A more elegant way to view the entire transaction log is by using the ::kmem_log
command:

> ::kmem_log
CPU ADDR BUFADDR TIMESTAMP THREAD

0 70128340 70bc4ea8 e1bd7abe721 70aacde0

Debugging With the Kernel Memory Allocator 83

0 701282e0 70bc4ea8 e1bd7aa86fa 70aacde0
0 70128280 70bc4ea8 e1bd7aa27dd 70aacde0
0 70128220 70bc4ea8 e1bd7a98a6e 70aacde0
0 701281c0 70d03738 e1bd7a8e3e0 70aacde0
...
0 70127140 70cf78a0 e1bd78035ad 70aacde0
0 701270e0 709cf6c0 e1bd6d2573a 40033e60
0 70127080 70cedf20 e1bd6d1e984 40033e60
0 70127020 70b09578 e1bd5fc1791 40033e60
0 70126fc0 70cf78a0 e1bd5fb6b5a 40033e60
0 70126f60 705ed388 e1bd5fb080d 40033e60
0 70126f00 705ed388 e1bd551ff73 70aacde0
...

The output of ::kmem_log is sorted in descending order by timestamp. The ADDR
column is the bufctl_audit structure corresponding to that transaction; BUFADDR
points to the actual buffer.

These figures represent transactions on buffers (both allocations and frees). When a
particular buffer is corrupted, it can be helpful to locate that buffer in the transaction
log, then determine in which other transactions the transacting thread was involved.
This can help to assemble a picture of the sequence of events that occurred prior to
and after the allocation (or free) of a buffer.

You can employ the ::bufctl command to filter the output of walking the
transaction log. The ::bufctl -a command filters the buffers in the transaction log
by buffer address. This example filters on buffer 0x70b09578 :

> ::walk kmem_log | ::bufctl -a 0x70b09578
ADDR BUFADDR TIMESTAMP THREAD CALLER
70127020 70b09578 e1bd5fc1791 40033e60 biodone+0x108
70126e40 70b09578 e1bd55062da 70aacde0 pageio_setup+0x268
70126de0 70b09578 e1bd52b2317 40033e60 biodone+0x108
70126c00 70b09578 e1bd497ee8e 70aacde0 pageio_setup+0x268
70120480 70b09578 e1bd21c5e2a 70aacde0 elfexec+0x9f0
70120060 70b09578 e1bd20f5ab5 70aacde0 getelfhead+0x100
7011ef20 70b09578 e1bd1e9a1dd 70aacde0 ufs_getpage_miss+0x354
7011d720 70b09578 e1bd1170dc4 70aacde0 pageio_setup+0x268
70117d80 70b09578 e1bcff6ff27 70bc2480 elfexec+0x9f0
70117960 70b09578 e1bcfea4a9f 70bc2480 getelfhead+0x100
...

This example illustrates that a particular buffer can be used in numerous transactions.

Note - Remember that the kmem transaction log is an incomplete record of the
transactions made by the kernel memory allocator. Older entries in the log are
evicted as needed in order to keep the size of the log constant.

The ::allocdby and ::freedby dcmds provide a convenient way to summarize
transactions associated with a particular thread. Here is an example of listing the
recent allocations performed by thread 0x70aacde0 :

> 0x70aacde0::allocdby
BUFCTL TIMESTAMP CALLER

84 Solaris Modular Debugger Guide ♦ February 2000

70d4d8c0 e1edb14511a allocb+0x88
70d4e8a0 e1edb142472 dblk_constructor+0xc
70d4a240 e1edb13dd4f allocb+0x88
70d4e840 e1edb13aeec dblk_constructor+0xc
70d4d860 e1ed8344071 allocb+0x88
70d4e7e0 e1ed8342536 dblk_constructor+0xc
70d4a1e0 e1ed82b3a3c allocb+0x88
70a53f80 e1ed82b0b91 dblk_constructor+0xc
70d4d800 e1e9b663b92 allocb+0x88

By examining bufctl_audit records, you can understand the recent activites of a
particular thread.

Debugging With the Kernel Memory Allocator 85

86 Solaris Modular Debugger Guide ♦ February 2000

CHAPTER 7

Module Programming API

This chapter describes the structures and functions contained in the MDB debugger
module API. The header file <sys/mdb_modapi.h> contains prototypes for these
functions, and the SUNWmdbdem package provides source code for an example
module in the directory /usr/demo/mdb .

Debugger Module Linkage
_mdb_init()
const mdb_modinfo_t *_mdb_init(void);

Each debugger module is required to provide, for linkage and identification
purposes, a function named _mdb_init() . This function returns a pointer to a
persistent (that is, not declared as an automatic variable) mdb_modinfo_t structure,
as defined in </sys/mdb_modapi.h> :

typedef struct mdb_modinfo {
ushort_t mi_dvers; /* Debugger API version number */
const mdb_dcmd_t *mi_dcmds; /* NULL-terminated list of dcmds */
const mdb_walker_t *mi_walkers; /* NULL-terminated list of walks */

} mdb_modinfo_t;

The mi_dvers member is used to identify the API version number, and should always
be set to MDB_API_VERSION. The current version number is therefore compiled into
each debugger module, allowing the debugger to identify and verify the application
binary interface used by the module. The debugger does not load modules that are
compiled for an API version that is more recent than the debugger itself.

87

The mi_dcmds and mi_walkers members, if not NULL, point to arrays of dcmd and
walker definition structures, respectively. Each array must be terminated by a NULL
element. These dcmds and walkers are installed and registered with the debugger as
part of the module loading process. The debugger will refuse to load the module if
one or more dcmds or walkers are defined improperly or if they have conflicting or
invalid names. Dcmd and walker names are prohibited from containing characters
that have special meaning to the debugger, such as quotation marks and parentheses.

The module can also execute code in _mdb_init() using the module API to
determine if it is appropriate to load. For example, a module can only be appropriate
for a particular target if certain symbols are present. If these symbols are not found,
the module can return NULL from the _mdb_init() function. In this case, the
debugger will refuse to load the module and an appropriate error message is printed.

_mdb_fini()
void _mdb_fini(void);

If the module performs certain tasks prior to unloading, such as freeing persistent
memory previously allocated with mdb_alloc() , it can declare a function named
_mdb_fini() for this purpose. This function is not required by the debugger. If
declared, it is called once prior to unloading the module. Modules are unloaded
when the user requests that the debugger terminate or when the user explicitly
unloads a module using the ::unload built-in dcmd.

Dcmd Definitions
int dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv);

A dcmd is implemented with a function similar to the dcmd() declaration. This
function receives four arguments and returns an integer status. The function
arguments are:

addr Current address, also called dot. At the start of the dcmd, this
address corresponds to the value of the dot “ . “ variable in the
debugger.

flags Integer containing the logical OR of one or more of the following
flags:

DCMD_ADDRSPEC An explicit address was specified to
the left of ::dcmd .

88 Solaris Modular Debugger Guide ♦ February 2000

DCMD_LOOP The dcmd was invoked in a loop
using the ,count syntax, or the
dcmd was invoked in a loop by a
pipeline.

DCMD_LOOPFIRST This invocation of the dcmd function
corresponds to the first loop or
pipeline invocation.

DCMD_PIPE The dcmd was invoked with input
from a pipeline.

DCMD_PIPE_OUT The dcmd was invoked with output
set to a pipeline.

As a convenience, the DCMD_HDRSPEC()macro is provided to
allow a dcmd to test its flags to determine if it should print a
header line (that is, it was not invoked as part of a loop, or it was
invoked as the first iteration of a loop or pipeline).

argc Number of arguments in the argv array.

argv Array of arguments specified to the right of ::dcmd on the
command line. These arguments can be either strings or integer
values.

The dcmd function is expected to return one of the following integer values, defined
in <sys/mdb_modapi.h> .

DCMD_OK The dcmd completed successfully.

DCMD_ERR The dcmd failed for some reason.

DCMD_USAGE The dcmd failed because invalid arguments were
specified. When this value is returned, the dcmd usage
message (described below) prints automatically.

DCMD_NEXT The next dcmd definition (if one is present) is
automatically invoked with the same arguments.

DCMD_ABORT The dcmd failed, and the current loop or pipeline should
be aborted. This is like DCMD_ERR, but indicates that no
further progress is possible in the current loop or pipe.

Each dcmd consists of a function defined according to the example dcmd()
prototype, and a corresponding mdb_dcmd_t structure, as defined in
<sys/mdb_modapi.h> . This structure consists of the following fields:

Module Programming API 89

const char *dc_name The string name of the dcmd, without the
leading ":: ". The name cannot contain any of the
MDB meta-characters, such as $ or ‘ .

const char *dc_usage An optional usage string for the dcmd, to be
printed when the dcmd returns DCMD_USAGE.
For example, if the dcmd accepts options −a and
−b, dc_usage might be specified as "[−ab] ". If
the dcmd accepts no arguments, dc_usage can
be set to NULL. If the usage string begins with
": ", this is shorthand for indicating that the dcmd
requires an explicit address (that is, it requires
DCMD_ADDRSPECto be set in its flags parameter).
If the usage string begins with "?", this indicates
that the dcmd optionally accepts an address.
These hints modify the usage message
accordingly.

const char *dc_descr A mandatory description string, briefly
explaining the purpose of the dcmd. This string
should consist of only a single line of text.

mdb_dcmd_f *dc_funcp A pointer to the function that will be called to
execute the dcmd.

void (*dc_help)(void) An optional function pointer to a help function
for the dcmd. If this pointer is not NULL, this
function will be called when the user executes
::help dcmd. This function can use
mdb_printf() to display further information or
examples.

Walker Definitions
int walk_init(mdb_walk_state_t *wsp);
int walk_step(mdb_walk_state_t *wsp);
void walk_fini(mdb_walk_state_t *wsp);

A walker is composed of three functions, init , step , and fini , which are defined
according to the example prototypes above. A walker is invoked by the debugger
when one of the walk functions (such as mdb_walk()) is called, or when the user
executes the ::walk built-in dcmd. When the walk begins, MDB calls the walker’s
init function, passing it the address of a new mdb_walk_state_t structure, as
defined in <sys/modapi.h> :

90 Solaris Modular Debugger Guide ♦ February 2000

typedef struct mdb_walk_state {
mdb_walk_cb_t walk_callback; /* Callback to issue */
void *walk_cbdata; /* Callback private data */
uintptr_t walk_addr; /* Current address */
void *walk_data; /* Walk private data */
void *walk_arg; /* Walk private argument */
void *walk_layer; /* Data from underlying layer */

} mdb_walk_state_t;

A separate mdb_walk_state_t is created for each walk, so that multiple instances
of the same walker can be active simultaneously. The state structure contains the
callback the walker should invoke at each step (walk_callback), and the private data
for the callback (walk_cbdata), as specified to mdb_walk() , for example. The
walk_cbdata pointer is opaque to the walker: it must not modify or dereference this
value, nor can it assume it is a pointer to valid memory.

The starting address for the walk is stored in walk_addr. This is either NULL if
mdb_walk() was called, or the address parameter specified to mdb_pwalk() . If the
::walk built-in was used, walk_addr will be non-NULL if an explicit address was
specified on the left-hand side of ::walk . A walk with a starting address of NULL is
referred to as global. A walk with an explicit non-NULL starting address is referred
to as local.

The walk_data and walk_arg fields are provided for use as private storage for the
walker. Complex walkers might need to allocate an auxiliary state structure and set
walk_data to point to this structure. Each time a walk is initiated, walk_arg is
initialized to the value of the walk_init_arg member of the corresponding
walker’s mdb_walker_t structure.

In some cases, it is useful to have several walkers share the same init, step, and fini
routines. For example, the MDB genunix module provides walkers for each kernel
memory cache. These share the same init, step, and fini functions, and use the
walk_init_arg member of the mdb_walker_t to specify the address of the
appropriate cache as the walk_arg.

If the walker calls mdb_layered_walk() to instantiate an underlying layer, then
the underlying layer will reset walk_addr and walk_layer prior to each call to the
walker’s step function. The underlying layer sets walk_addr to the target virtual
address of the underlying object, and set walk_layer to point to the walker’s local
copy of the underlying object. For more information on layered walks, refer to the
discussion of mdb_layered_walk() below.

The walker init and step functions are expected to return one of the following status
values:

WALK_NEXT Proceed to the next step. When the walk init function
returns WALK_NEXT, MDB invokes the walk step function.
When the walk step function returns WALK_NEXT, this
indicates that MDB should call the step function again.

Module Programming API 91

WALK_DONE The walk has completed successfully. WALK_DONEcan be
returned by either the step function to indicate that the
walk is complete, or by the init function to indicate that
no steps are needed (for example, if the given data
structure is empty).

WALK_ERR The walk has terminated due to an error. If WALK_ERRis
returned by the init function, mdb_walk() (or any of its
counterparts) returns –1 to indicate that the walker failed
to initialize. If WALK_ERRis returned by the step function,
the walk terminates but mdb_walk() returns success.

The walk_callback is also expected to return one of the values above. Therefore, the
walk step function’s job is to determine the address of the next object, read in a local
copy of this object, call the walk_callback function, then return its status. The step
function can also return WALK_DONEor WALK_ERRwithout invoking the callback if
the walk is complete or if an error occurred.

The walker itself is defined using the mdb_walker_t structure, defined in :

typedef struct mdb_walker {
const char *walk_name; /* Walk type name */
const char *walk_descr; /* Walk description */
int (*walk_init)(mdb_walk_state_t *); /* Walk constructor */
int (*walk_step)(mdb_walk_state_t *); /* Walk iterator */
void (*walk_fini)(mdb_walk_state_t *); /* Walk destructor */
void *walk_init_arg; /* Constructor argument */

} mdb_walker_t;

The walk_name and walk_descr fields should be initialized to point to strings
containing the name and a brief description of the walker, respectively. A walker is
required to have a non-NULL name and description, and the name cannot contain
any of the MDB meta-characters. The description string is printed by the ::walkers
and ::dmods built-in dcmds.

The walk_init , walk_step , and walk_fini members refer to the walk functions
themselves, as described earlier. The walk_init and walk_fini members can be
set to NULL to indicate that no special initialization or cleanup actions need to be
taken.

The walk_step member cannot be set to NULL. The walk_init_arg member is
used to initialize the walk_arg member of each new mdb_walk_state_t created
for the given walker, as described earlier. See Figure 7–1 for the steps of a typical
walker.

92 Solaris Modular Debugger Guide ♦ February 2000

Kernel Address Space

Debugger Address Space

1

WSP

mdb_lookup_by_name()

proc_t *practive

proc_t P1

proc_t

proc_t *p_next ... NULL

mdb_walk_state_t

walk_addr

walk_data

mdb_vread()

callback

proc_t P2

proc_t *p_next

2

4

3

Figure 7–1 Sample Walker

The walker is designed to iterate over the list of proc_t structures in the kernel. The
head of the list is stored in the global practive variable, and each element’s
p_next pointer points to the next proc_t in the list. The list is terminated with a
NULL pointer. In the walker’s init routine, the practive symbol is located using
mdb_lookup_by_name() step (1), and its value is copied into the
mdb_walk_state_t pointed to by wsp.

In the walker’s step function, the next proc_t structure in the list is copied into the
debugger’s address space using mdb_vread() step (2), the callback function is
invoked with a pointer to this local copy, step (3), and then the mdb_walk_state_t
is updated with the address of the proc_t structure for the next iteration. This
update corresponds to following the pointer, step (4) to the next element in the list.

These steps demonstrate the structure of a typical walker: the init routine locates the
global information for a particular data structure, the step function reads in a local
copy of the next data item and passes it to the callback function, and the address of

Module Programming API 93

the next element is read. Finally, when the walk terminates, the fini function frees
any private storage.

API Functions
mdb_pwalk()
int mdb_pwalk(const char *name, mdb_walk_cb_t func, void *data, uintptr_t addr);

Initiate a local walk starting at addr using the walker specified by name, and invoke
the callback function func at each step. If addr is NULL, a global walk is performed
(that is, the mdb_pwalk() invocation is equivalent to the identical call to
mdb_walk() without the trailing addr parameter). This function returns 0 for
success, or -1 for error. The mdb_pwalk() function fails if the walker itself returns a
fatal error, or if the specified walker name is not known to the debugger. The walker
name may be scoped using the backquote (‘) operator if there are naming conflicts.
The data parameter is an opaque argument that has meaning only to the caller; it is
passed back to func at each step of the walk.

mdb_walk()
int mdb_walk(const char *name, mdb_walk_cb_t func, void *data);

Initiate a global walk starting at addr using the walker specified by name, and invoke
the callback function func at each step. This function returns 0 for success, or -1 for
error. The mdb_walk() function fails if the walker itself returns a fatal error, or if
the specified walker name is not known to the debugger. The walker name can be
scoped using the backquote (‘) operator if there are naming conflicts. The data
parameter is an opaque argument that has meaning only to the caller; it is passed
back to func at each step of the walk.

mdb_pwalk_dcmd()
int mdb_pwalk_dcmd(const char *wname, const char *dcname, int argc,

const mdb_arg_t *argv, uintptr_t addr);

Initiate a local walk starting at addr using the walker specified by wname, and invoke
the dcmd specified by dcname with the specified argc and argv at each step. This
function returns 0 for success, or -1 for error. The function fails if the walker itself
returns a fatal error, if the specified walker name or dcmd name is not known to the
debugger, or if the dcmd itself returns DCMD_ABORTor DCMD_USAGEto the walker.

94 Solaris Modular Debugger Guide ♦ February 2000

The walker name and dcmd name can each be scoped using the backquote (‘)
operator if there are naming conflicts. When invoked from mdb_pwalk_dcmd() , the
dcmd will have the DCMD_LOOPand DCMD_ADDRSPECbits set in its flags parameter,
and the first call will have DCMD_LOOPFIRSTset.

mdb_walk_dcmd()
int mdb_walk_dcmd(const char *wname, const char *dcname, int argc,

const mdb_arg_t *argv);

Initiate a global walk using the walker specified by wname, and invoke the dcmd
specified by dcname with the specified argc and argv at each step. This function
returns 0 for success, or -1 for error. The function fails if the walker itself returns a
fatal error, if the specified walker name or dcmd name is not known to the debugger,
or if the dcmd itself returns DCMD_ABORTor DCMD_USAGEto the walker. The walker
name and dcmd name can each be scoped using the backquote (‘) operator if there
are naming conflicts. When invoked from mdb_walk_dcmd() , the dcmd will have
the DCMD_LOOPand DCMD_ADDRSPECbits set in its flags parameter, and the first call
will have DCMD_LOOPFIRSTset.

mdb_call_dcmd()
int mdb_call_dcmd(const char *name, uintptr_t addr, uint_t flags,

int argc, const mdb_arg_t *argv);

Invoke the specified dcmd name with the given parameters. The dot variable is reset
to addr, and addr, flags, argc, and argv are passed to the dcmd. The function returns 0
for success, or -1 for error. The function fails if the dcmd returns DCMD_ERR,
DCMD_ABORT, or DCMD_USAGE, or if the specified dcmd name is not known to the
debugger. The dcmd name can be scoped using the backquote (‘) operator if there
are naming conflicts.

mdb_layered_walk()
int mdb_layered_walk(const char *name, mdb_walk_state_t *wsp);

Layer the walk denoted by wsp on top of a walk initiated using the specified walker
name. The name can be scoped using the backquote (‘) operator if there are naming
conflicts. Layered walks can be used, for example, to facilitate constructing walkers
for data structures that are embedded in other data structures.

For example, suppose that each CPU structure in the kernel contains a pointer to an
embedded structure. To write a walker for the embedded structure type, you could
replicate the code to iterate over CPU structures and derefence the appropriate

Module Programming API 95

member of each CPU structure, or you could layer the embedded structure’s walker
on top of the existing CPU walker.

The mdb_layered_walk() function is used from within a walker’s init routine to
add a new layer to the current walk. The underlying layer is initialized as part of the
call to mdb_layered_walk() . The calling walk routine passes in a pointer to its
current walk state; this state is used to construct the layered walk. Each layered walk
is cleaned up after the caller’s walk fini function is called. If more than one layer is
added to a walk, the caller’s walk step function will step through each element
returned by the first layer, then the second layer, and so forth.

The mdb_layered_walk() function returns 0 for success, or -1 for error. The
function fails if the specified walker name is not known to the debugger, if the wsp
pointer is not a valid, active walk state pointer, if the layered walker itself fails to
initialize, or if the caller attempts to layer the walker on top of itself.

mdb_add_walker()
int mdb_add_walker(const mdb_walker_t *w);

Register a new walker with the debugger. The walker is added to the module’s
namespace, and to the debugger’s global namespace according to the name
resolution rules described in “dcmd and Walker Name Resolution” on page 30. This
function returns 0 for success, or -1 for error if the given walker name is already
registered by this module, or if the walker structure w is improperly constructed. The
information in the mdb_walker_t w is copied to internal debugger structures, so the
caller can reuse or free this structure after the call to mdb_add_walker() .

mdb_remove_walker()
int mdb_remove_walker(const char *name);

Remove the walker with the specified name. This function returns 0 for success, or -1
for error. The walker is removed from the current module’s namespace. The function
fails if the walker name is unknown, or is registered only in another module’s
namespace. The mdb_remove_walker() function can be used to remove walkers
that were added dynamically using mdb_add_walker() , or walkers that were
added statically as part of the module’s linkage structure. The scoping operator
cannot be used in the walker name; it is not legal for the caller of
mdb_remove_walker() to attempt to remove a walker exported by a different
module.

96 Solaris Modular Debugger Guide ♦ February 2000

mdb_vread() and mdb_vwrite()
ssize_t mdb_vread(void *buf, size_t nbytes, uintptr_t addr);
ssize_t mdb_vwrite(const void *buf, size_t nbytes, uintptr_t addr);

These functions provide the ability to read and write data from a given target virtual
address, specified by the addr parameter. The mdb_vread() function returns nbytes
for success, or -1 for error; if a read is truncated because only a portion of the data
can be read from the specified address, -1 is returned. The mdb_vwrite() function
returns the number of bytes actually written upon success; -1 is returned upon error.

mdb_pread() and mdb_pwrite()
ssize_t mdb_pread(void *buf, size_t nbytes, uint64_t addr);
ssize_t mdb_pwrite(const void *buf, size_t nbytes, uint64_t addr);

These functions provide the ability to read and write data from a given target
physical address, specified by the addr parameter. The mdb_pread() function
returns nbytes for success, or -1 for error; if a read is truncated because only a portion
of the data can be read from the specified address, -1 is returned. The
mdb_pwrite() function returns the number of bytes actually written upon success;
-1 is returned upon error.

mdb_readstr()
ssize_t mdb_readstr(char *s, size_t nbytes, uintptr_t addr);

The mdb_readstr() function reads a null-terminated C string beginning at the
target virtual address addr into the buffer addressed by s. The size of the buffer is
specified by nbytes. If the string is longer than can fit in the buffer, the string is
truncated to the buffer size and a null byte is stored at s[nbytes - 1] . The length
of the string stored in s (not including the terminating null byte) is returned upon
success; otherwise -1 is returned to indicate an error.

mdb_writestr()
ssize_t mdb_writestr(const char *s, uintptr_t addr);

The mdb_writestr() function writes a null-terminated C string from s (including
the trailing null byte) to the target’s virtual address space at the address specified by
addr. The number of bytes written (not including the terminating null byte) is
returned upon success; otherwise, -1 is returned to indicate an error.

Module Programming API 97

mdb_readsym()
ssize_t mdb_readsym(void *buf, size_t nbytes, const char *name);

mdb_readsym() is similar to mdb_vread() , except that the virtual address at
which reading begins is obtained from the value of the symbol specified by name. If
no symbol by that name is found or a read error occurs, -1 is returned; otherwise
nbytes is returned for success.

The caller can first look up the symbol separately if it is necessary to distinguish
between symbol lookup failure and read failure. The primary executable’s symbol
table is used for the symbol lookup; if the symbol resides in another symbol table,
you must first apply mdb_lookup_by_obj() , then mdb_vread() .

mdb_writesym()
ssize_t mdb_writesym(const void *buf, size_t nbytes, const char *name);

mdb_writesym() is identical to mdb_vwrite() , except that the virtual address at
which writing begins is obtained from the value of the symbol specified by name. If
no symbol by that name is found, -1 is returned. Otherwise, the number of bytes
successfully written is returned on success, and -1 is returned on error. The primary
executable’s symbol table is used for the symbol lookup; if the symbol resides in
another symbol table, you must first apply mdb_lookup_by_obj() , then
mdb_vwrite() .

mdb_readvar() and mdb_writevar()
ssize_t mdb_readvar(void *buf, const char *name);
ssize_t mdb_writevar(const void *buf, const char *name);

mdb_readvar() is similar to mdb_vread() , except that the virtual address at
which reading begins and the number of bytes to read are obtained from the value
and size of the symbol specified by name. If no symbol by that name is found, -1 is
returned. The symbol size (the number of bytes read) is returned on success; -1 is
returned on error. This is useful for reading well-known variables whose sizes are
fixed. For example:

int hz; /* system clock rate */
mdb_readvar(&hz, "hz");

The caller can first look up the symbol separately if it is necessary to distinguish
between symbol lookup failure and read failure. The caller must also carefully check
the definition of the symbol of interest in order to make sure that the local
declaration is the exact same type as the target’s definition. For example, if the caller
declares an int , and the symbol of interest is actually a long , and the debugger is

98 Solaris Modular Debugger Guide ♦ February 2000

examining a 64-bit kernel target, mdb_readvar() copies back 8 bytes to the caller’s
buffer, corrupting the 4 bytes following the storage for the int .

mdb_writevar() is identical to mdb_vwrite() , except that the virtual address at
which writing begins and the number of bytes to write are obtained from the value
and size of the symbol specified by name. If no symbol by that name is found, -1 is
returned. Otherwise, the number of bytes successfully written is returned on success,
and -1 is returned on error.

For both functions, the primary executable’s symbol table is used for the symbol
lookup; if the symbol resides in another symbol table, you must first apply
mdb_lookup_by_obj() , then mdb_vread() or mdb_vwrite() .

mdb_lookup_by_name() and
mdb_lookup_by_obj()
int mdb_lookup_by_name(const char *name, GElf_Sym *sym);
int mdb_lookup_by_obj(const char *object, const char *name, GElf_Sym *sym);

Look up the specified symbol name and copy the ELF symbol information into the
GElf_Sym pointed to by sym. If the symbol is found, the function returns 0;
otherwise, -1 is returned. The name parameter specifies the symbol name. The object
parameter tells the debugger where to look for the symbol. For the
mdb_lookup_by_name() function, the object file defaults to MDB_OBJ_EXEC. For
mdb_lookup_by_obj() , the object name should be one of the following:

MDB_OBJ_EXEC Look in the executable’s symbol table (.symtab section).
For kernel crash dumps, this corresponds to the symbol
table from the unix.X file or from /dev/ksyms .

MDB_OBJ_RTLD Look in the runtime link-editor’s symbol table. For kernel
crash dumps, this corresponds to the symbol table for the
krtld module.

MDB_OBJ_EVERY Look in all known symbol tables. For kernel crash dumps,
this includes the .symtab and .dynsym sections from
the unix.X file or /dev/ksyms , as well as per-module
symbol tables if these have been processed.

object If the name of a particular load object is explicitly
specified, the search is restricted to the symbol table of
this object. The object can be named according to the
naming convention for load objects described in “Symbol
Name Resolution” on page 29.

Module Programming API 99

mdb_lookup_by_addr()
int mdb_lookup_by_addr(uintptr_t addr, uint_t flag, char *buf,

size_t len, GElf_Sym *sym);

Locate the symbol corresponding to the specified address and copy the ELF symbol
information into the GElf_Sym pointed to by sym and the symbol name into the
character array addressed by buf. If a corresponding symbol is found, the function
returns 0; otherwise -1 is returned.

The flag parameter specifies the lookup mode and should be one of the following:

MDB_SYM_FUZZY Allow fuzzy matching to take place, based on the current
symbol distance setting. The symbol distance can be
controlled using the ::set −s built-in. If an explicit
symbol distance has been set (absolute mode), the address
can match a symbol if the distance from the symbol’s
value to the address does not exceed the absolute symbol
distance. If smart mode is enabled (symbol distance = 0),
then the address can match the symbol if it is in the range
[symbol value, symbol value + symbol size).

MDB_SYM_EXACT Disallow fuzzy matching. The symbol can match only the
address if the symbol value exactly equals the specified
address.

If a symbol match occurs, the name of the symbol is copied into the buf supplied by
the caller. The len parameter specifies the length of this buffer in bytes. The caller’s
buf should be at least of size MDB_SYM_NAMLENbytes. The debugger copies the name
to this buffer and appends a trailing null byte. If the name length exceeds the length
of the buffer, the name is truncated but always includes a trailing null byte.

mdb_getopts()
int mdb_getopts(int argc, const mdb_arg_t *argv, ...);

Parse and process options and option arguments from the specified argument array
(argv). The argc parameter denotes the length of the argument array. This function
processes each argument in order, and stops and returns the array index of the first
argument that could not be processed. If all arguments are processed successfully,
argc is returned.

Following the argc and argv parameters, the mdb_getopts() function accepts a
variable list of arguments describing the options that are expected to appear in the
argv array. Each option is described by an option letter (char argument), an option
type (uint_t argument), and one or two additional arguments, as shown in the

100 Solaris Modular Debugger Guide ♦ February 2000

table below. The list of option arguments is terminated with a NULL argument. The
type should be one of one of the following:

MDB_OPT_SETBITS The option will ORthe specified bits into a flag word. The
option is described by these parameters:

char c, uint_t type, uint_t bits, uint_t *p

If type is MDB_OPT_SETBITSand option c is detected in
the argv list, the debugger will ORbits into the integer
referenced by pointer p.

MDB_OPT_CLRBITS The option clears the specified bits from a flag word. The
option is described by these parameters:

char c, uint_t type, uint_t bits, uint_t *p

If type is MDB_OPT_SETBITSand option c is detected in
the argv list, the debugger clears bits from the integer
referenced by pointer p.

MDB_OPT_STR The option accepts a string argument. The option is
described by these parameters:

char c, uint_t type, const char **p

If type is MDB_OPT_STRand option c is detected in the
argv list, the debugger stores a pointer to the string
argument following c in the pointer referenced by p.

MDB_OPT_UINTPTR The option accepts a uintptr_t argument. The option is
described by these parameters:

char c, uint_t type, uintptr_t *p

If type is MDB_OPT_UINTPTRand option c is detected in
the argv list, the debugger stores the integer argument
following c in the uintptr_t referenced by p.

MDB_OPT_UINT64 The option accepts a uint64_t argument. The option is
described by these parameters:

char c, uint_t type, uint64_t *p

If type is MDB_OPT_UINT64and option c is detected in
the argv list, the debugger stores the integer argument
following c in the uint64_t referenced by p.

Module Programming API 101

For example, the following source code:

int
dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
{

uint_t opt_v = FALSE;
const char *opt_s = NULL;

if (mdb_getopts(argc, argv,
’v’, MDB_OPT_SETBITS, TRUE, &opt_v,
’s’, MDB_OPT_STR, &opt_s, NULL) != argc)

return (DCMD_USAGE);

/* ... */
}

demonstrates how mdb_getopts() might be used in a dcmd to accept a boolean
option "−v" that sets the opt_v variable to TRUE, and an option "−s" that accepts a
string argument that is stored in the opt_s variable. The mdb_getopts() function
also automatically issues warning messages if it detects an invalid option letter or
missing option argument before returning to the caller. The storage for argument
strings and the argv array is automatically garbage-collected by the debugger upon
completion of the dcmd.

mdb_strtoull()
u_longlong_t mdb_strtoull(const char *s);

Convert the specified string s to an unsigned long long representation. This
function is intended for use in processing and converting string arguments in
situations where mdb_getopts() is not appropriate. If the string argument cannot
be converted to a valid integer representation, the function fails by printing an
appropriate error message and aborting the dcmd. Therefore, error checking code is
not required. The string can be prefixed with any of the valid base specifiers (0i, 0I,
0o, 0O, 0t, 0T, 0x, or 0X); otherwise, it is interpreted using the default base. The
function will fail and abort the dcmd if any of the characters in s are not appropriate
for the base, or if integer overflow occurs.

mdb_alloc() , mdb_zalloc() and mdb_free()
void *mdb_alloc(size_t size, uint_t flags);
void *mdb_zalloc(size_t size, uint_t flags);
void mdb_free(void *buf, size_t size);

mdb_alloc() allocates size bytes of debugger memory and returns a pointer to the
allocated memory. The allocated memory is at least double-word aligned, so it can

102 Solaris Modular Debugger Guide ♦ February 2000

hold any C data structure. No greater alignment can be assumed. The flags parameter
should be the bitwise ORof one or more of the following values:

UM_NOSLEEP If sufficient memory to fulfill the request is not
immediately available, return NULL to indicate failure.
The caller must check for NULL and handle this case
appropriately.

UM_SLEEP If sufficient memory to fulfill the request is not
immediately available, sleep until such time as the
request can be fulfilled. As a result, UM_SLEEPallocations
are guaranteed to succeed. The caller need not check for a
NULL return value.

UM_GC Garbage-collect allocation automatically at the end of this
debugger command. The caller should not subsequently
call mdb_free() on this block, as the debugger will take
care of de-allocation automatically. All memory allocation
from within a dcmd must use UM_GCso that if the dcmd
is interrupted by the user, the debugger can
garbage-collect the memory.

mdb_zalloc() is like mdb_alloc() , but the allocated memory is filled with zeroes
before returning it to the caller. No guarantees are made about the initial contents of
memory returned by mdb_alloc() . mdb_free() is used to free previously
allocated memory (unless it was allocated UM_GC). The buffer address and size must
exactly match the original allocation. It is not legal to free only a portion of an
allocation with mdb_free() . It is not legal to free an allocation more than once. An
allocation of zero bytes always returns NULL; freeing a NULL pointer with size zero
always succeeds.

mdb_printf()
void mdb_printf(const char *format, ...);

Print formatted output using the specified format string and arguments. Module
writers should use mdb_printf() for all output, except for warning and error
messages. This function automatically triggers the built-in output pager when
appropriate. The mdb_printf() function is similar to printf (3C), with certain
exceptions: the %C, %S, and %wsspecifiers for wide character strings are not
supported, the %f floating-point format is not supported, the %e, %E, %g, and %G
specifiers for alternative double formats produce only a single style of output, and
precision specifications of the form %.n are not supported. The list of specifiers that
are supported follows:

Module Programming API 103

Flag Specifiers

%# If the # sign is found in the format string, this selects the alternate
form of the given format. Not all formats have an alternate form;
the alternate form is different depending on the format. Refer to
the format descriptions below for details on the alternate format.

%+ When printing signed values, always display the sign (prefix with
either ’+’ or ’-’). Without %+, positive values have no sign prefix,
and negative values have a ’-’ prefix prepended to them.

%- Left-justify the output within the specified field width. If the
width of the output is less than the specified field width, the
output will be padded with blanks on the right-hand side.
Without %-, values are right-justified by default.

%0 Zero-fill the output field if the output is right-justified and the
width of the output is less than the specified field width. Without
%0, right-justified values are prepended with blanks in order to fill
the field.

Field Width Specifiers

%n Field width is set to the specified decimal value.

%? Field width is set to the maximum width of a hexadecimal pointer
value. This is 8 in an ILP32 environment, and 16 in an LP64
environment.

%* Field width is set to the value specified at the current position in
the argument list. This value is assumed to be an int . Note that
in the 64-bit compilation environment, it may be necessary to cast
long values to int .

Integer Specifiers

%h Integer value to be printed is a short .

%l Integer value to be printed is a long .

%ll Integer value to be printed is a long long .

104 Solaris Modular Debugger Guide ♦ February 2000

Terminal Attribute Specifiers
If standard output for the debugger is a terminal, and terminal attributes can be
obtained by the terminfo database, the following terminal escape constructs can be
used:

%<n> Enable the terminal attribute corresponding to n. Only a single
attribute can be enabled with each instance of %<>.

%</n> Disable the terminal attribute corresponding to n. Note that in the
case of reverse video, dim text, and bold text, the terminal codes
to disable these attributes might be identical. Therefore, it might
not be possible to disable these attributes independently of one
another.

If no terminal information is available, each terminal attribute construct is ignored by
mdb_printf() . For more information on terminal attributes, see terminfo (4). The
available terminfo attributes are:

a Alternate character set

b Bold text

d Dim text

r Reverse video

s Best standout capability

u Underlining

Format Specifiers

%% The ’%’ symbol is printed.

%a Prints an address in symbolic form. The minimum size of the
value associated with %ais a uintptr_t ; specifying %la is not
necessary. If address-to-symbol conversion is on, the debugger
will attempt to convert the address to a symbol name followed by
an offset in the current output radix and print this string;
otherwise, the value is printed in the default output radix. If %#a
is used, the alternate format adds a ’: ’ suffix to the output.

%A This format is identical to %a, except when an address cannot be
converted to a symbol name plus an offset, nothing is printed. If

Module Programming API 105

%#Ais used, the alternate format prints a ’?’ when address
conversion fails.

%b Decode and print a bit field in symbolic form. This specifier
expects two consecutive arguments: the bit field value (int for
%b, long for %lb , and so forth), and a pointer to an array of
mdb_bitmask_t structures:

typedef struct mdb_bitmask {
const char *bm_name; /* String name to print */
u_longlong_t bm_mask; /* Mask for bits */
u_longlong_t bm_bits; /* Result for value & mask */

} mdb_bitmask_t;

The array should be terminated by a structure whose bm_name
field is set to NULL. When %bis used, the debugger reads the
value argument, then iterates through each mdb_bitmask
structure checking to see if:

(value & bitmask->bm_mask) == bitmask->bm_bits

If this expression is true, the bm_namestring is printed. Each
string printed is separated by a comma. The following example
shows how %bcan be used to decode the t_flag field in a
kthread_t :

const mdb_bitmask_t t_flag_bits[] = {
{ "T_INTR_THREAD", T_INTR_THREAD, T_INTR_THREAD },
{ "T_WAKEABLE", T_WAKEABLE, T_WAKEABLE },
{ "T_TOMASK", T_TOMASK, T_TOMASK },
{ "T_TALLOCSTK", T_TALLOCSTK, T_TALLOCSTK },

...
{ NULL, 0, 0 }

};

void
thr_dump(kthread_t *t)
{

mdb_printf("t_flag = <%hb>\n", t->t_flag, t_flag_bits);

...
}

If t_flag was set to 0x000a, the function would print:

t_flag = <T_WAKEABLE,T_TALLOCSTK>

%c Print the specified integer as an ASCII character.

%d Print the specified integer as a signed decimal value. Same as %i .

%e Print the specified double in the floating-point format
[+/-]d.ddddddde[+/-]dd , where there is one digit before the

106 Solaris Modular Debugger Guide ♦ February 2000

radix character, seven digits of precision, and at least two digits
following the exponent.

%E Print the specified double using the same rules as %e, except that
the exponent character will be ’E’ instead of ’e’.

%g Print the specified double in the same floating-point format as %e,
but with sixteen digits of precision. If %llg is specified, the
argument is expected to be of type long double (quad-precision
floating-point value).

%G Print the specified double using the same rules as %g, except that
the exponent character will be ’E’ instead of ’e’.

%i Print the specified integer as a signed decimal value. Same as %d.

%I Print the specified 32-bit unsigned integer as an Internet IPv4
address in dotted-decimal format (for example, the hexadecimal
value 0xffffffff would print as 255.255.255.255).

%m Print a margin of whitespace. If no field is specified, the default
output margin width is used; otherwise, the field width
determines the number of characters of white space that are
printed.

%o Print the specified integer as an unsigned octal value. If %#o is
used, the alternate format prefixes the output with ’0’.

%p Print the specified pointer (void *) as a hexadecimal value.

%q Print the specifierd integer as a signed octal value. If %#o is used,
the alternate format prefixes the output with ’0’.

%r Print the specified integer as an unsigned value in the current
output radix. The user can change the output radix using the $d
dcmd. If %#r is specified, the alternate format prefixes the value
with the appropriate base prefix: ’0i ’ for binary, ’0o ’ for octal, ’0t ’
for decimal, or ’0x ’ for hexadecimal.

%R Print the specified integer as a signed value in the current output
radix. If %#Ris specified, the alternate format prefixes the value
with the appropriate base prefix.

%s Print the specified string (char *). If the string pointer is NULL,
the string ’<NULL>’ is printed.

Module Programming API 107

%t Advance one or more tab stops. If no width is specified, output
advances to the next tab stop; otherwise the field width
determines how many tab stops are advanced.

%T Advance the output column to the next multiple of the field
width. If no field width is specified, no action is taken. If the
current output column is not a multiple of the field width, white
space is added to advance the output column.

%u Print the specified integer as an unsigned decimal value.

%x Print the specified integer as a hexadecimal value. The characters
a-f are used as the digits for the values 10-15. If %#Xis specified,
the alternate format prefixes the value with ’0x ’.

%X Print the specified integer as a hexadecimal value. The characters
A-F are used as the digits for the values 10-15. If %#x is specified,
the alternate format prefixes the value with ’0X’.

%Y The specified time_t is printed as the string
’year month day HH:MM:SS ’.

mdb_snprintf()
size_t mdb_snprintf(char *buf, size_t len, const char *format, ...);

Construct a formatted string based on the specified format string and arguments,
and store the resulting string into the specified buf. The mdb_snprintf() function
accepts the same format specifiers and arguments as the mdb_printf() function.
The len parameter specifies the size of buf in bytes. No more than len - 1 formatted
bytes is placed in buf; mdb_snprintf() always terminates buf with a null byte. The
function returns the number of bytes required for the complete formatted string, not
including the terminating null byte. If the buf parameter is NULL and len is set to
zero, the function will not store any characters to buf and returns the number of
bytes required for the complete formatted string; this technique can be used to
determine the appropriate size of a buffer for dynamic memory allocation.

mdb_warn()
void mdb_warn(const char *format, ...);

Print an error or warning message to standard error. The mdb_warn() function
accepts a format string and variable argument list that can contain any of the
specifiers documented for mdb_printf() . However, the output of mdb_warn() is

108 Solaris Modular Debugger Guide ♦ February 2000

sent to standard error, which is not buffered and is not sent through the output
pager or processed as part of a dcmd pipeline. All error messages are automatically
prefixed with the string "mdb: ".

In addition, if the format parameter does not contain a newline (\n) character, the
format string is implicitly suffixed with the string ": %s\n ", where %s is replaced by
the error message string corresponding to the last error recorded by a module API
function. For example, the following source code:

if (mdb_lookup_by_name("no_such_symbol", &sym) == -1)
mdb_warn("lookup_by_name failed");

produces this output:

mdb: lookup_by_name failed: unknown symbol name

mdb_flush()
void mdb_flush(void);

Flush all currently buffered output. Normally, mdb’s standard output is line-buffered;
output generated using mdb_printf() is not flushed to the terminal (or other
standard output destination) until a newline is encountered, or at the end of the
current dcmd. However, in some situations you might want to explicitly flush
standard output prior to printing a newline; mdb_flush() can be used for this
purpose.

mdb_one_bit()
const char *mdb_one_bit(int width, int bit, int on);

The mdb_one_bit() function can be used to print a graphical representation of a
bit field in which a single bit of interest is turned on or off. This function is useful for
creating verbose displays of bit fields similar to the output from snoop(1M) -v . For
example, the follow source code:

#define FLAG_BUSY 0x1

uint_t flags;

/* ... */

mdb_printf("%s = BUSY\n", mdb_one_bit(8, 0, flags & FLAG_BUSY));

produces this output:

.... ...1 = BUSY

Each bit in the bit field is printed as a period (.), with each 4-bit sequence separated
by a white space. The bit of interest is printed as 1 or 0, depending on the setting of

Module Programming API 109

the on parameter. The total width of the bit field in bits is specified by the width
parameter, and the bit position of the bit of interest is specified by the bit parameter.
Bits are numbered starting from zero. The function returns a pointer to an
appropriately sized, null-terminated string containing the formatted bit
representation. The string is automatically garbage-collected upon completion of the
current dcmd.

mdb_inval_bits()
const char *mdb_inval_bits(int width, int start, int stop);

The mdb_inval_bits() function is used, along with mdb_one_bit() , to print a
graphical representation of a bit field. This function marks a sequence of bits as
invalid or reserved by displaying an ’x ’ at the appropriate bit location. Each bit in
the bit field is represented as a period (.), except for those bits in the range of bit
positions specified by the start and stop parameters. Bits are numbered starting from
zero. For example, the following source code:

mdb_printf("%s = reserved\n", mdb_inval_bits(8, 7, 7));

produces this output:

x... = reserved

The function returns a pointer to an appropriately sized, null-terminated string
containing the formatted bit representation. The string is automatically
garbage-collected upon completion of the current dcmd.

mdb_inc_indent() and mdb_dec_indent()
ulong_t mdb_inc_indent(ulong_t n);
ulong_t mdb_dec_indent(ulong_t n);

These functions increment and decrement the numbers of columns that MDB will
auto-indent with white space before printing a line of output. The size of the delta is
specified by n, a number of columns. Each function returns the previous absolute
value of the indent. Attempts to decrement the indent below zero have no effect.
Following a call to either function, subsequent calls to mdb_printf() are indented
appropriately. If the dcmd completes or is forcibly terminated by the user, the indent
is restored automatically to its default setting by the debugger.

mdb_eval()
int mdb_eval(const char *s);

110 Solaris Modular Debugger Guide ♦ February 2000

Evaluate and execute the specified command string s, as if it had been read from
standard input by the debugger. This function returns 0 for success, or -1 for error.
mdb_eval() fails if the command string contains a syntax error, or if the command
string executed by mdb_eval() is forcibly aborted by the user using the pager or by
issuing an interrupt.

mdb_set_dot() and mdb_get_dot()
void mdb_set_dot(uintmax_t dot);
uintmax_t mdb_get_dot(void);

Set or get the current value of dot (the “. ” variable). Module developers might want
to reposition dot so that, for example, it remains referring to the address following
the last address read by the dcmd.

mdb_get_pipe()
void mdb_get_pipe(mdb_pipe_t *p);

Retrieve the contents of the pipeline input buffer for the current dcmd. The
mdb_get_pipe() function is intended to be used by dcmds that want to consume
the complete set of pipe input and execute only once, instead of being invoked
repeatedly by the debugger for each pipe input element. Once mdb_get_pipe() is
invoked, the dcmd will not be invoked again by the debugger as part of the current
command. This can be used, for example, to construct a dcmd that sorts a set of
input values.

The pipe contents are placed in an array that is garbage-collected upon termination
of the dcmd, and the array pointer is stored in p->pipe_data . The length of the
array is placed in p->pipe_len . If the dcmd was not executed on the right-hand
side of a pipeline (that is, the DCMD_PIPEflag was not set in its flags parameter),
p->pipe_data is set to NULL and p->pipe_len is set to zero.

mdb_set_pipe()
void mdb_set_pipe(const mdb_pipe_t *p);

Set the pipeline output buffer to the contents described by the pipe structure p. The
pipe values are placed in the array p->pipe_data , and the length of the array is
stored in p->pipe_len . The debugger makes its own copy of this information, so
the caller must remember to free p->pipe_data if necessary. If the pipeline output
buffer was previously non-empty, its contents are replaced by the new array. If the

Module Programming API 111

dcmd was not executed on the left side of a pipeline (that is, the DCMD_PIPE_OUT
flag was not set in its flags parameter), this function has no effect.

mdb_get_xdata()
ssize_t mdb_get_xdata(const char *name, void *buf, size_t nbytes);

Read the contents of the target external data buffer specified by name into the buffer
specified by buf. The size of buf is specified by the nbytes parameter; no more than
nbytes will be copied to the caller’s buffer. The total number of bytes read will be
returned upon success; -1 will be returned upon error. If the caller wants to
determine the size of a particular named buffer, buf should be specified as NULL and
nbytes should be specified as zero. In this case, mdb_get_xdata() will return the
total size of the buffer in bytes but no data will be read. External data buffers
provide module writers access to target data that is not otherwise accessible through
the module API. The set of named buffers exported by the current target can be
viewed using the ::xdata built-in dcmd.

Additional Functions
Additionally, module writers can use the following string (3C) and bstring (3C)
functions. They are guaranteed to have the same semantics as the functions
described in the corresponding Solaris man page.

strcat() strcpy() strncpy()
strchr() strrchr() strcmp()
strncmp() strcasecmp() strncasecmp()
strlen() bcmp() bcopy()
bzero() bsearch() qsort()

112 Solaris Modular Debugger Guide ♦ February 2000

APPENDIX A

Options

This appendix provides a reference for MDB command-line options.

Summary of Command-line Options
The following options are supported:

−A Disables automatic loading of mdb modules. By default,
mdb attempts to load debugger modules corresponding to
the active shared libraries in a user process or core file, or
to the loaded kernel modules in the live operating system
or an operating system crash dump.

−F Forcibly takes over the specified user process, if necessary.
By default, mdb refuses to attach to a user process that is
already under the control of another debugging tool, such
as truss (1). With the −F option, mdb attaches to these
processes anyway. This can produce unexpected
interactions between mdb and the other tools attempting
to control the process.

−I Sets default path for locating macro files. Macro files are
read using the $< or $<< dcmds. The path is a sequence
of directory names delimited by colon (:) characters. The
−I include path and −L library path (see below) can
also contain any of the following tokens:

113

%i Expands to the current instruction set architecture
(ISA) name (’sparc’, ’sparcv9’, or ’i386’)

%o Expands to the old value of the path being
modified. This is useful for appending or
prepending directories to an existing path.

%p Expands to the current platform string (either
uname −i or the platform string stored in the
process core file or crash dump)

%r Expands to the path name of the root directory.
An alternate root directory can be specified using
the −R option. If no −R option is present, the root
directory is derived dynamically from the path to
the mdb executable itself. For example, if
/bin/mdb is executed, the root directory is / . If
/net/hostname/bin/mdb were executed, the
root directory would be derived as
/net/hostname .

%t Expands to the name of the current target. This is
either the literal string ’proc ’ (a user process or
user process core file), or ’kvm’ (a kernel crash
dump or the live operating system).

The default include path for 32-bit mdb is:

%r/usr/platform/%p/lib/adb:%r/usr/lib/adb

The default include path for 64-bit mdb is:

%r/usr/platform/%p/lib/adb/%i:%r/usr/lib/adb/%i

−k Forces kernel debugging mode. By default, mdb attempts
to infer whether the object and core file operands refer to
a user executable and core dump, or to a pair of operating
system crash dump files. The −k option forces mdb to
assume these files are operating system crash dump files.
If no object or core operand is specified, but the −k option
is specified, mdb defaults to an object file of /dev/ksyms
and a core file of /dev/kmem . Access to /dev/kmem is
restricted to group sys.

−L Sets default path for locating debugger modules. Modules
are loaded automatically on startup or by using the

114 Solaris Modular Debugger Guide ♦ February 2000

::load dcmd. The path is a sequence of directory names
delimited by colon (:) characters. The −L library path can
also contain any of the tokens shown for −I above.

−m Disables demand-loading of kernel module symbols. By
default, mdb processes the list of loaded kernel modules
and performs demand loading of per-module symbol
tables. If the −moption is specified, mdb does not attempt
to process the kernel module list or provide per-module
symbol tables. As a result, mdb modules corresponding to
active kernel modules are not loaded on startup.

−M Preloads all kernel module symbols. By default, mdb
performs demand-loading for kernel module symbols: the
complete symbol table for a module is read when an
address is that module’s text or data section is referenced.
With the −Moption, mdb loads the complete symbol table
of all kernel modules during startup.

−o option Enables the specified debugger option. If the +o form of
the option is used, the specified option is disabled. Unless
noted below, each option is off by default. mdb recognizes
the following option arguments:

adb Enable stricter adb (1) compatibility.
The prompt is set to the empty string
and many mdb features, such as the
output pager, are disabled.

follow_child The debugger follows the child process
if a fork (2) system call occurs. By
default, the debugger remains attached
to the original target process (the
parent).

ignoreeof The debugger does not exit when an
EOFsequence (^D) is entered at the
terminal. The ::quit dcmd must be
used to quit.

pager The output pager is enabled (default).

repeatlast If a NEWLINEis entered as the complete
command at the terminal, mdb repeats
the previous command with the current
value of dot. This option is implied by
−o adb .

Options 115

−p pid Attach to and stop the specified process id. mdb uses the
/proc/ pid/object/a.out file as the executable file
path name.

−P Sets the command prompt. The default prompt is ’> ’.

−R Sets root directory for path name expansion. By default,
the root directory is derived from the path name of the
mdb executable itself. The root directory is substituted in
place of the %r token during path name expansion.

−s distance Sets the symbol matching distance for
address-to-symbol-name conversions to the specified
distance. By default, mdb sets the distance to zero, which
enables a smart-matching mode. Each ELF symbol table
entry includes a value V and size S, representing the size
of the function or data object in bytes. In smart mode,
mdb matches an address A with the given symbol if A is
in the range [V, V + S). If any non-zero distance is
specified, the same algorithm is used, but S in the given
expression is always the specified absolute distance and
the symbol size is ignored.

−S Suppresses processing of the user’s ~/.mdbrc file. By
default, mdb reads and processes the macro file .mdbrc if
one is present in the user’s home directory, as defined by
$HOME. If the −S option is present, this file is not read.

−u Forces user debugging mode. By default, mdb attempts to
infer whether the object and core file operands refer to a
user executable and core dump, or to a pair of operating
system crash dump files. The −u option forces mdb to
assume these files are not operating system crash dump
files.

−V Sets disassembler version. By default, mdb attempts to
infer the appropriate disassembler version for the debug
target. The disassembler can be set explicitly using the −V
option. The ::disasms dcmd lists the available
disassembler versions.

−w Opens the specified object and core files for writing.

−y Sends explicit terminal initialization sequences for tty
mode. Some terminals, such as cmdtool (1), require
explicit initialization sequences to switch into a tty mode.

116 Solaris Modular Debugger Guide ♦ February 2000

Without this initialization sequence, terminal features
such as standout mode might not be available to mdb.

Options 117

118 Solaris Modular Debugger Guide ♦ February 2000

APPENDIX B

Transition From crash

The transition from using the legacy crash (1M) utility to using mdb(1) is relatively
simple: MDB provides most of the “canned” crash commands. The additional
extensibility and interactive features of MDB allow the programmer to explore
aspects of the system not examined by the current set of commands.

This appendix briefly discusses several features of crash (1M) and provides pointers
to equivalent MDB functionality.

Command-line Options
The crash −d, −n, and −w command-line options are not supported by mdb. The
crash dump file and name list (symbol table file) are specified as arguments to mdb
in the order of name list, crash dump file. To examine the live kernel, the mdb −k
option should be specified with no additional arguments. Users who want to redirect
the output of mdb to a file or other output destination, should either employ the
appropriate shell redirection operator following the mdb invocation on the command
line, or use the ::log built-in dcmd.

Input in MDB
In general, input in MDB is similar to crash , except that function names (in MDB,
dcmd names) are prefixed with ":: ". Some MDB dcmds accept a leading expression
argument that precedes the dcmd name. Like crash , string options can follow the
dcmd name. If a ! character follows a function invocation, MDB will also create a

119

pipeline to the specified shell pipeline. All immediate values specified in MDB are
interpreted in hexadecimal by default. The radix specifiers for immediate values are
different in crash and MDB as shown in Table B–1:

TABLE B–1 Radix Specifiers

crash mdb Radix

0x 0x hexadecimal (base 16)

0d 0t decimal (base 10)

0b 0i binary (base 2)

Many crash commands accepted slot numbers or slot ranges as input arguments.
The Solaris operating environment is no longer structured in terms of slots, so MDB
dcmds do not provide support for slot-number processing.

Functions

crash function mdb dcmd comments

? ::dcmds List available functions.

!command !command Escape to the shell and execute commmand.

base = In mdb, the = format character can be used to convert the
left-hand expression value to any of the known formats.
Formats for octal, decimal, and hexadecimal are provided.

callout ::callout Print the callout table.

class ::class Print scheduling classes.

cpu ::cpuinfo Print information about the threads dispatched on the
system CPUs. If the contents of a particular CPU
structure are needed, the user should apply the $<cpu
macro to the CPU address in mdb.

120 Solaris Modular Debugger Guide ♦ February 2000

crash function mdb dcmd comments

help ::help Print a description of the named dcmd, or general help
information.

kfp ::regs The mdb ::regs dcmd displays the complete kernel
register set, including the current stack frame pointer. The
$C dcmd can be used to display a stack backtrace
including frame pointers.

kmalog ::kmalog Display events in kernel memory allocator transaction log.

kmastat ::kmastat Print kernel memeory allocator transaction log.

kmausers ::kmausers Print information about the medium and large users of
the kernel memory allocator that have current memory
allocations.

mount ::fsinfo Print information about mounted file systems.

nm ::nm Print symbol type and value information.

od ::dump Print a formatted memory dump of a given region. In
mdb, ::dump displays a mixed ASCII and hexadecimal
display of the region.

proc ::ps Print a table of the active processes.

quit ::quit Quit the debugger.

rd ::dump Print a formatted memory dump of a given region. In
mdb, ::dump displays a mixed ASCII and hexadecimal
display of the region.

redirect ::log In mdb, output for input and output can be globally
redirected to a log file using ::log.

search ::kgrep In mdb, the ::kgrep dcmd can be used to search the
kernel’s address space for a particular value. The pattern
match built-in dcmds can also be used to search the
physical, virtual, or object files address spaces for
patterns.

stack ::stack The current stack trace can be obtained using ::stack. The
stack trace of a particular kernel thread can be
determined using the ::findstack dcmd. A memory dump
of the current stack can be obtained using the / or
::dump dcmds and the current stack pointer. The
$<stackregs macro can be applied to a stack pointer to
obtain the per-frame saved register values.

Transition From crash 121

crash function mdb dcmd comments

status ::status Display status information about the system or dump
being examined by the debugger.

stream ::stream The mdb ::stream dcmd can be used to format and
display the structure of a particular kernel STREAM. If
the list of active STREAM strucures is needed, the user
should execute ::walk stream_head_cache in mdb and
pipe the resulting addresses to an appropriate formatting
dcmd or macro.

strstat ::kmastat The ::kmastat dcmd displays a superset of the
information reported by the strstat() function.

trace ::stack The current stack trace can be obtained using ::stack. The
stack trace of a particular kernel thread can be
determined using the ::findstack dcmd. A memory dump
of the current stack can be obtained using the / or
::dump dcmds and the current stack pointer. The
$<stackregs macro can be applied to a stack pointer to
obtain the per-frame saved register values.

var $<v Print the tunable system parameters in the global var
structure.

vfs ::fsinfo Print information about mounted file systems.

vtop ::vtop Print the physical address translation of the given virtual
address.

122 Solaris Modular Debugger Guide ♦ February 2000

