
Common Desktop Environment:
Application Builder User’s Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303–4900
U.S.A.

Part Number 806-2911–10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 11

1. Getting Started 15

Application Builder Primary Window 15

Starting and Exiting App Builder 16

H To Open App Builder from an Icon 16

H To Start App Builder from the Command Line 17

H To Exit App Builder 17

Overview of the App Builder Process 17

Object Types 18

Rules for Dropping Objects 19

2. Managing Projects and Modules 21

Creating, Opening, and Saving Projects 21

H To Create a New Project 21

H To Open an Existing Project 22

H To Save a Project 23

H To Save a Version of a Project 24

H To Rename a Project 24

H To Save a Project to a File (Encapsulate Project) 25

H To Close a Project 26

3

Creating, Importing, Exporting, and Saving Modules 26

H To Create a New Module 26

H To Import a Module into a Project 27

H To Save a Module 28

H To Rename a Module 28

H To Export a Module 29

H To Save a Module in UIL Format 29

Showing, Hiding, and Removing Modules 30

H To Show a Hidden Module 31

H To Hide a Shown Module 31

H To Remove a Module from a Project 31

3. Laying Out a User Interface 33

Dragging and Dropping Palette Objects 33

H To Create a Main Window, Custom Dialog, or File Selection Dialog 34

H To Create a Window With a Spanning Control Pane 34

Selecting Interface Objects 35

H To Select Window or Pane Objects in the Interface or the Browser 35

H To Select Control Objects in the Interface or the Browser 36

Editing Objects in the Interface or in the Browser 37

H To Cut or Copy Objects 37

H To Paste Objects 37

H To Delete Objects 38

Aligning and Distributing Objects in an Interface 38

H To Align Control Objects in an Interface 39

H To Distribute Control Objects Evenly 39

4. Editing Properties of Interface Objects 41

Property Editor Procedures 41

H To Open a Property Editor 41

4 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

H To Edit Properties of an Object 42

H To Display a Fixed Property Editor 43

H To Select Colors From the Color Chooser 43

Example: Editing Main Window Properties 44

H To Edit Properties of a Main Window 44

5. Creating and Editing Panes, Menus, and Messages 47

Creating and Editing Pane Entities 47

Child Panes 48

H To Create a Child Pane 48

Layered Panes 48

H To Create a Layered Pane 48

H To View Layered Panes 49

Paned Windows 49

H To Create a Paned Window 50

H To Add a Pane to a Paned Window 51

H To Unmake a Paned Window 51

Creating and Editing Menus 52

Menu Property Editor 52

H To Create a Menu 54

H To Edit a Menu 55

H To Attach an Existing Menu to an Object 56

H To Create and Attach a Menu 57

H To Attach an Existing Submenu to a Menu Item 58

H To Create and Attach a Submenu 59

H To Create and Attach a Help Menu 60

Creating and Editing Messages 61

Message Editor 61

H To Create a Message Dialog Box 63

Contents 5

H To Edit a Message 65

H To Connect a Non-Modal Message to a Function 65

Example: Writing Code for Messages 66

H To Write Code for Modal Messages 67

H To Write Code for Non-Modal Messages 68

6. Adding Functionality to the Interface 71

Creating Help and Help Connections 71

About App Builder Help 72

H To Create Help 72

H To Connect a Help Menu to On Item Help 73

H To Connect a Help Menu to a Help Volume 74

Making Connections Between Objects 75

H To Make a Connection between Two Objects 75

Connecting Menu Items to Actions 77

H To Connect a Menu Item to a Predefined Action 77

H To Connect a Menu Item to a Call Function 78

H To Connect a Menu Item to an Execute Code Action 79

Editing Existing Connections 80

H To Edit an Existing Connection 80

Establishing Drag and Drop Behavior 81

H To Establish Drag and Drop Behavior 82

Establishing Application Framework Behavior 84

H To Establish Application Framework Behavior 88

7. Grouping and Attaching Objects 91

Grouping Objects 91

H To Create a Group 92

H To Edit Group Properties 92

H To Ungroup Objects in an Interface 93

6 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

H To Create a Border Around an Object 94

Attaching Objects 94

Attachments Editor 95

H To Attach Objects in an Interface 100

Attachment Example: Custom Dialog 101

8. Testing Menus, Help, and Connections 103

Test Procedures 103

H To Test a Project or Selected Modules 103

H To Test Help Volume Access 104

H To Test On Item Help 104

H To Test Menus in a Module 105

H To Test Connections in a Project 106

9. Generating Code and Building an Application 109

Making and Running an Application 109

H To Make and Run in One Step 110

H To Generate Code, Make, and Run Separately 110

H To Set Code Generator Options 111

H To Set Environment Options 112

H To Generate Code From the Command Line 112

Adding User Code to Generated Code 113

A. App Builder Windows and Dialog Boxes 115

App Builder Primary Window 116

Windows Palette 117

Panes Palette 119

Controls Palette 122

Object Information Area 124

Project Organizer 125

Module Browser 126

Contents 7

Code Generator Window 128

Code Generator Options Dialog Box 129

Code Generator Environment Options Dialog Box 131

B. Revolving Property Editor 133

Property Editor: Universal Properties 134

Property Editor: Common Properties 135

Property Editor: Common Buttons 137

Individual Property Editors 139

Button Property Editor 139

Choice Property Editor 140

Combo Box Property Editor 140

Control Pane Property Editor 141

Custom Dialog Property Editor 141

Draw Area Pane Property Editor 142

File Selection Dialog Property Editor 142

Group Property Editor 143

Label Property Editor 144

List Property Editor 145

Main Window Property Editor 145

Menu Property Editor 146

Menubar Property Editor 148

Paned Window Property Editor 149

Scale Property Editor 149

Separator Property Editor 150

Spin Box Property Editor 151

Term Pane Property Editor 152

Text Field Property Editor 152

Text Pane Property Editor 152

8 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Index 155

Contents 9

10 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Preface

This manual introduces the Application Builder (referred to throughout this
document as App Builder) and shows you how best to use it. See “Overview of the
App Builder Process” on page 17 for a summary description.

Who Should Use This Book
This user’s guide is for anyone who wants to build or prototype a user interface with
App Builder. Because you can easily create and modify user interfaces without
writing any code using App Builder, it is a powerful tool for programmers and
non-programmers—including user interface designers and project managers.

How This Book Is Organized
Chapter 1 includes an annotated picture of the App Builder primary window, an
overview of the process of building an application, and instructions for starting App
Builder.

Chapter 2 explains how to create, open, save, and close projects and modules, and
how to hide and show modules.

Chapter 3 explains how to drag and drop objects from the object palettes, how to
edit interface objects, and how to align and distribute control objects in the interface.

Chapter 4 explains how to edit object properties in the Revolving Property Editor.

11

Chapter 5 explains how to create and edit pane objects, menus, and message dialog
boxes.

Chapter 6 explains how to create on-item help, how to create functional connections
between objects, and how to establish drag and drop and application framework
behavior.

Chapter 7 explains how to group control objects and how to attach objects to each
other for dynamic resize behavior.

Chapter 8 explains how to change to test mode for testing certain App Builder
functions.

Chapter 9 describes the Code Generator and explains how to generate code, make
your application, and run it.

Appendix A describes the primary window, including its object palettes, and other
App Builder windows, including the Project Organizer, the Module Browser, and the
Code Generator.

Appendix B describes the Revolving Property Editor in general and each of the
individual property editors specifically.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

12 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

Preface 13

14 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 1

Getting Started

App Builder is a development tool that makes designing, creating, and prototyping a
user interface easier. App Builder gives you the freedom to create and try user
interfaces without writing any code. Because you can create and modify an interface
easily, you’ll find that you can spend more time designing and testing, the surest
route to better user interfaces.

� “Application Builder Primary Window” on page 15

� “Starting and Exiting App Builder” on page 16

� “Overview of the App Builder Process” on page 17

� “Object Types” on page 18

� “Rules for Dropping Objects” on page 19

Application Builder Primary Window
The Application Builder primary window, shown below, is the starting point for
creating a user interface. See “App Builder Primary Window” on page 116 ,” for a
detailed description of the primary window.

15

Figure 1–1 Application Builder primary window

The basic method for creating an App Builder user interface is to drag and drop
objects from the App Builder primary window onto the workspace or onto other
App Builder objects. See Chapter 3,” for details.

Starting and Exiting App Builder
To Open App Builder from an Icon

♦ If App Builder has previously been open and the App Builder icon is on the
workspace, double-click the icon to open App Builder.

16 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

♦ If App Builder is installed on the Front Panel, click the App Builder icon in the
Personal Applications subpanel to open App Builder.

To install App Builder on the Front Panel, see “To Put an Application Icon in the
Front Panel” in the Application Manager help volume for instructions.

To Start App Builder from the Command Line
The command to run App Builder is dtbuilder . Do the following to start App
Builder from the command line:

♦ Type dtbuilder

If dtbuilder is in your path, App Builder will start. If it is not in your path, you
will need to type the full path name (which, by default, is
/usr/dt/bin/dtbuilder) or change to the folder where dtbuilder is located
before typing dtbuilder .

To Exit App Builder
♦ Choose Exit from the File menu of the App Builder primary window to quit

App Builder.

If you have not saved all changes, a message dialog box will be displayed, giving
you the opportunity to discard the changes and continue the exit process or to
cancel the exit process and continue running App Builder. Click Discard Changes
if you do not want to save them. Click Cancel if you do not want to discard your
changes; you could then save your changes and exit.

Overview of the App Builder Process
The basic process of building and maintaining a user interface with App Builder is
simple and straightforward. There are many variations on this formula, but the
process is similar for any application.

1. Start App Builder. See “Starting and Exiting App Builder” on page 16.

2. Open a new project and a new module. See “Creating, Opening, and Saving
Projects” on page 21.

Getting Started 17

3. Drag and drop windows (main windows and custom dialogs) to the workspace,
creating a new module for each window, in most cases. See “Dragging and
Dropping Palette Objects” on page 33.

4. Drag and drop panes onto main windows or custom dialogs. See “Dragging
and Dropping Palette Objects” on page 33.

5. Drag and drop controls (buttons, choice objects, text fields, for example) onto
control panes. See “Dragging and Dropping Palette Objects” on page 33.

6. Create pane objects, menus, and message dialogs. See Chapter 5.

7. Create help dialogs. See “Creating Help and Help Connections” on page 71.

8. Edit the properties of interface objects. See Chapter 4.

9. Make functional connections between objects in the user interface. See Chapter
6.

10. Go into test mode to test menus, help, and connections. See Chapter 8.

11. Display the Code Generator to generate code and make the user interface. See
Chapter 9.

12. Add user code to the code generated by App Builder. See “Adding User Code
to Generated Code” on page 113.

13. Debug the code, make and run the application.

14. Repeat the process to modify and maintain the user interface.

Object Types
There are three basic types of objects on the primary window: windows, panes, and
controls. See “App Builder Primary Window” on page 116 ,” for descriptions of each
of the objects.

The windows in App Builder are:

� Main window

� Custom dialog

18 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

� File selection dialog

The panes in App Builder are:

� Control pane

� Text pane

� Draw area pane

� Term pane

The controls in App Builder are:

� Button

� Check box (Choice object)

� Combo box

� Gauge

� Label

� List (scrolling list)

� Menu bar*

� Menu button

� Option menu (Choice object)

� Radio box (Choice object)

� Scale

� Separator

� Spin box

� Text Field

Note - *The menu bar is not a control, but it is on the Controls palette. It can only be
dropped on a main window.

Rules for Dropping Objects
The rules for dragging and dropping the three types of App Builder objects are
explained below. An error message will be displayed if you attempt to drop an object
on an illegal target.

Windows (main window, custom dialog, file selection dialog) can be dropped
anywhere on the workspace except for the App Builder primary window.

Panes (control pane, text pane, draw area pane, term pane) can be dropped on a main
window, a custom dialog, or on another pane. See “Creating and Editing Pane
Entities” on page 47 for more information.

Getting Started 19

Controls (buttons, menus, boxes, for example) can be dropped on a control pane or a
group.

Note - As noted above, a menu bar is on the Controls palette, but it is not really a
control. It can only be dropped on a main window. A menu bar can be dropped
anywhere on a main window; it will always appear at the top of the window.

20 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 2

Managing Projects and Modules

When you use App Builder to create a graphical user interface, you are working on a
project, which is comprised of one or more modules. App Builder, which was built
with itself, was a single project comprising over 30 modules.

� “Creating, Opening, and Saving Projects” on page 21

� “Creating, Importing, Exporting, and Saving Modules” on page 26

� “Showing, Hiding, and Removing Modules” on page 30

Creating, Opening, and Saving Projects
A project file is started when you choose New Project from the File menu of the App
Builder primary window or New from the Project menu of the Project Organizer, or
when you drag and drop a window onto the workspace in a new session of App
Builder. See “Project Organizer” on page 125 for a description of the Project
Organizer. See “Dragging and Dropping Palette Objects” on page 33 for a discussion
of drag and drop procedures.

A project file is saved when you choose Save Project from the File menu of the App
Builder primary window or when you select Save from the Project menu of the
Project Organizer. A project file has a .bip (builder interface project) suffix.

To Create a New Project
1. Choose New Project from the File menu of the App Builder primary window

or New from the Project menu of the Project Organizer.

The Project Name dialog box will be displayed. By default, an unnamed project is
called Untitled .

21

If you have made changes to the current project since you last saved it, a message
dialog box will be displayed first, giving you the option to discard the changes
and create the new project or to cancel the New Project operation.

Click Discard Changes to throw out the changes and close the current project.

Click Cancel if you want to save the current project. Save the current project
before creating the new project.

2. Type a name (all lowercase) for the project and click Apply.

The name of the project (with .bip added as a suffix) will be displayed in the
title bar at the top of the App Builder primary window. Every module you create
or import will be part of the current project until you open another project.

Note - Project names should be all lowercase so that there is no conflict between the
name of the project resource file and the project executable file. The name of the
resource file created when you generate code is the same as the name of the project,
minus the .bip suffix, but it is given an initial capital letter.

To Open an Existing Project
1. Choose Open Project from the File menu of the App Builder primary window

or Open from the Project menu of the Project Organizer.

The Open Project dialog box will be displayed.

If you have made changes to the current project since you last saved it, a message
dialog box will be displayed first, giving you the option to discard the changes
and open the other project or to cancel the Open Project operation.

Click Discard Changes to throw out the changes and close the current project.

Click Cancel if you want to save the current project. Save the current project
before opening the other project.

2. Change folders, if necessary.

You have to press Return or click Update before the folder change is registered.

22 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

3. Double-click the appropriate project file (.bip suffix) in the Files list

Or, select the file and click Open.

The name of the project will be displayed in the title bar of the App Builder
primary window and the selected project will be displayed in the Project
Organizer.

4. In the module array of the Project Organizer, select the modules you want to
display and choose Show from the Module menu to display the module
interfaces.

See “To Show a Hidden Module” on page 31 for detailed instructions.

To Save a Project
A project is only saved when you explicitly choose to save it, so be sure to save often
and regularly.

1. Choose Save Project from the File menu of the App Builder primary window
or Save from the Project menu of the Project Organizer.

If you have saved the project before, the project will be saved without comment.

If this is the first time you have saved the project, the Save Project dialog box will
be displayed.

2. Change to the appropriate folder.

You will normally want a separate folder for each project you work on. You are
apt to have Makefile problems otherwise.

3. Type a file name in the Enter file name field.

You do not have to append .bip to the project name; this is done automatically
when you save a project.

4. Click Save.

Managing Projects and Modules 23

The project will be saved.

To Save a Version of a Project
Do the following to save a version of the current project in a different folder. You
might want to do this so that you can compare two versions of a project or put the
two versions out for review. If you have made unsaved changes to the current
project those changes will be saved in the new project only.

1. Choose Save Project As from the File menu of the App Builder primary
window or Save As from the Project menu of the Project Organizer.

The Save Project dialog box will be displayed, with the current project name in
the Enter file name field.

2. Change to another folder.

3. Type a name in the Enter file name field.

4. Click Save.

The project—the project file (.bip suffix) and all of the module files (.bil
suffixes)—has been copied to another folder. The original project and module files
are not affected. The new project will now be the current project; its name will be
displayed in the title bar of the App Builder primary window.

To Rename a Project
Do the following to give the current project a different name. The modules that
comprise the current project will become part of a new project with a new name and
the current project will no longer exist. See “To Save a Version of a Project” on page 24
above if you want to save a version of the the current project.

1. Choose Save Project As from the File menu of the App Builder primary
window or Save As from the Project menu of the Project Organizer.

The Save Project dialog box will be displayed, with the current project name in
the Enter file name field.

2. Modify the name or type in a new name in the Enter file name field.

3. Click Save.

A message dialog box will be displayed for each module in the project, telling
you that the module exists and giving you the option to overwrite it or cancel the
operation.

24 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

4. Click Overwrite for each module if you want to rename the project and save
the module.

Click Cancel if you do not want to rename the project and overwrite the current
module.

If you click Overwrite for each of the modules the project will be renamed; the
new project name will be displayed in the title bar of the App Builder primary
window. The old project file (.bip suffix) will still be in the folder, but it will not
be the active project file. If you generate code for the project and run make in the
folder, the new project name will be used.

To Save a Project to a File (Encapsulate Project)
A project is comprised of one or more modules. Normally a project file is saved in a
file with a .bip suffix, and each module file is saved in a separate file with a .bil
suffix. To save a project as a single file (for convenience in mailing the project to
someone, for instance):

1. Open the project, as described in “To Open an Existing Project” on page 22 .

2. Choose Save Project As from the File menu of the App Builder primary
window or Save As from the Project menu of the Project Organizer.

3. Change to the appropriate folder, if necessary.

4. Select Save As Encapsulated Project.

The name of the current project will be displayed in the Enter file name field,
with a .bix (builder interface exchange) suffix.

5. Click Save or press Return.

Note - When a project is saved as an encapsulated file, the .bip file is not
affected. When an encapsulated project is opened in App Builder, it is opened just
like any other project. When you attempt to save a project that was opened from
an encapsulated file, a message dialog box will be displayed, explaining that the
project will be saved as individual files. Choose Save Project As if you want to
save it as an encapsulated project again.

Managing Projects and Modules 25

To Close a Project
♦ Choose Close Project from the File menu of the App Builder primary window

or Close from the Project menu of the Project Organizer.

If you have made changes since saving the project a message dialog box will be
displayed, giving you the chance to discard the changes or to cancel the close
operation.

Creating, Importing, Exporting, and
Saving Modules
A module is a logical unit of a project. Each window and dialog in App Builder is a
module of the App Builder project, for instance. A module is created when you
choose New Module from the File menu of the App Builder primary window or
New from the Module menu of the Project Organizer.

You do not have to create a new module for each window, but in most cases you will
want to: this will make maintaining modules simpler and will allow you to use a
module for various applications.

All module files in a project are saved when the project is saved. You can explicitly
save a particular module by choosing Save from the Module menu of the Project
Organizer. A saved module file has a .bil (builder interface language) suffix.

To Create a New Module
Do the following to create a new module, which will become part of the current
project.

1. Choose New Module from the File menu of the App Builder primary window
or New from the Module menu of the Project Organizer.

The Module Name dialog box will be displayed, with Untitled selected as the
default name:

26 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Note - If you drag and drop a window on the workspace after creating a new
project, the Module Name dialog box will be displayed, just as if you had chosen
New Module from the File menu.

2. In the dialog box, type in the name you want to give the new module.

3. Click Apply or press Return.

The name of the new module will appear in the Editing Module field at the
bottom of the App Builder primary window. Any windows you drag from the
Windows palette and drop on the workspace will be part of the new module.

To Import a Module into a Project
To import an existing module into the current project:

1. Choose Import Module from the File menu of the App Builder primary
window or Import from the Module menu of the Project Organizer.

The Import File dialog box will be displayed.

2. Change to the folder where the module (.bil suffix) file is saved.

3. Change the Import Format type, if necessary.

By default, BIL format is selected. If the file you are importing is a UIL file, click
the UIL button. The file will be converted to BIL format when it is imported.

4. Change Import By method, if necessary.

By default, Import By Copy is selected. If you want to import the module by
reference rather than making a copy of it, click the Reference button.

Note - Import By Reference, which causes module files to be shared, can be
dangerous, since the actual module file may be changed or deleted inadvertantly.

5. Double-click on the module to be imported in the Files list.

Or, select the file and click Import.

The module will be added to the current project the next time you save the project.

Managing Projects and Modules 27

To Save a Module
All modules in a project are saved when you save the project. If you want to save
individual modules, you can do so in the Project Organizer.

1. Display the Project Organizer by choosing Project Organizer from the File
menu of the App Builder primary window.

2. In the module array of the Project Organizer select the module you want to
save.

3. Choose Save from the Module menu.

If you have saved the module previously during this App Builder session, the
module will be saved without comment.

If this is the first time you have saved the module, the Save BIL File dialog box
will be displayed, with the name of the selected module (with a .bil suffix) in
the Enter file name field.

4. Change to the folder where you want to save the module, if necessary.

5. Click Save or press Return.

To Rename a Module
Use Save As from the Module menu of the Project Organizer to rename a module.
When you save the current project, the new module name will replace the old name
in the project (.bip) file. The original module will still be in the project folder, but it
will not be part of the project. To save a module without affecting the project, see “To
Export a Module” on page 29.

1. Display the Project Organizer by choosing Project Organizer from the File
menu of the App Builder primary window.

28 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

2. Select the module you want to rename.

3. Choose Save As from the Module menu.

The Save BIL File dialog box will be displayed, with the name of the selected
module (with a .bil suffix) in the Enter file name field.

4. Type a file name in the Enter file name field.

5. Click Save or press Return.

The new module name will replace the old name in the project (.bip) file the
next time you save the project.

To Export a Module
Do the following to save a copy of a module in the current project. The current
project is not affected when you export a module. A new module is created, which is
not part of the current project; the original module remains as part of the project.

1. From the File menu of the App Builder primary window choose Export Module
and select one of the currently open modules from the submenu displayed.

Or, in the Project Organizer select the module to be exported in the module array
and choose Export from the Module menu.

The Export File dialog box will be displayed, with the selected module name in
the Enter file name field.

2. Type a new file name in the Enter file name field

Or, change to the folder where you want to save the module and type a file name
in the Enter file name field.

If you want to save a version of the module in the current folder, do not change
folders. Simply give the module a different name.

3. Click Export or press Return.

A copy of the selected module has been created.

To Save a Module in UIL Format
To save a module in UIL (user interface language) format instead of BIL (builder
interface language) format:

1. Choose Export Module from the File menu of the App Builder primary window
and select the module you want to export from the submenu that is displayed.

Managing Projects and Modules 29

Or, in the Project Organizer select the module to be exported and choose Export
from the Module menu.

The Export File dialog box will be displayed, with the selected module name in
the Enter file name field.

2. Change to the folder where you want to save the module, if necessary.

3. Select Save As UIL (above the Enter file name field).

The file name suffix will change from .bil to .uil .

4. Type a file name in the Enter file name field, if necessary.

If the name in the Enter file name field is OK, leave it as it is.

5. Click Export or press Return.

The file will be saved with a .uil suffix.

Showing, Hiding, and Removing
Modules
For a small project you may always want to show all modules. For a large project
with many modules you may want to show only one or two modules at a time. Use
the Project Organizer to show and hide modules, and to remove modules from
projects. The Project Organizer displays icons for all of the modules that comprise a
project. In the Project Organizer you can display or hide the interfaces for selected
modules and you can remove modules from a project.

30 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

To Show a Hidden Module
1. Display the Project Organizer by choosing Project Organizer from the File

menu of the App Builder primary window.

2. Double-click the module icons in the module array of the Project Organizer
that you want to show.

Or, select the module icons and choose Show from the Module menu.

The user interfaces for the selected modules will be displayed.

Note - If a module you want to show is in a different project, you will first have
to open the other project. See “To Open an Existing Project” on page 22 for
instructions.

To Hide a Shown Module
To hide a module that is displayed (to clean up the workspace so that you can more
easily work on another module, for instance):

1. Display the Project Organizer by choosing Project Organizer from the File
menu of the App Builder primary window.

2. Select the modules in the module array that you want to hide.

Select one module by clicking mouse button 1 on it. To add to the selection click
mouse button 2 on other modules. To select a number of adjacent modules
drag-select with mouse button 1 or mouse button 2, starting above and to the left
of the first module to be selected.

3. Choose Hide from the Module menu.

The user interfaces for the selected modules will be hidden.

To Remove a Module from a Project
When you remove a module from the current project, the module file will still exist
in the project folder, but it will no longer be part of the project. The module file
name will be removed from the project file (.bip suffix) the next time the project is
saved. With the appropriate project open, do the following to remove one or more
modules from the project.

1. Display the Project Organizer by choosing Project Organizer from the File
menu of the App Builder primary window.

Managing Projects and Modules 31

2. Select the modules in the module array that you want to remove.

3. Choose Remove from the Module menu of the Project Organizer.

32 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 3

Laying Out a User Interface

The basic App Builder process for laying out an interface is to drag objects from the
App Builder primary window and drop them on the workspace or on other App
Builder objects.

See Appendix A for a full description of the primary window and its elements, and
for a description of the Module Browser.

� “Dragging and Dropping Palette Objects” on page 33

� “To Create a Main Window, Custom Dialog, or File Selection Dialog” on page 34

� “To Create a Window With a Spanning Control Pane” on page 34

� “Selecting Interface Objects” on page 35

� “Editing Objects in the Interface or in the Browser” on page 37

� “To Cut or Copy Objects” on page 37

� “To Paste Objects” on page 37

� “Aligning and Distributing Objects in an Interface” on page 38

Dragging and Dropping Palette Objects
The rules for dropping palette objects are simple; they are enforced by error
messages when they are violated.

� Windows (main window, custom dialog, file selection dialog) are dropped on the
workspace.

� Panes (control, draw area, text, and term) are dropped on windows or on other
panes.

33

� Controls (buttons, boxes, choice objects, and others) are dropped on a control
pane. The menu bar, which is on the Controls palette, is not strictly a control; it is
dropped on a main window only.

To Create a Main Window, Custom Dialog, or File
Selection Dialog
1. Drag a main window, custom dialog, or a file selection dialog box from the

Windows palette and drop it on the workspace.

If you haven’t previously named the module, the Module Name dialog box will
be displayed. Move the cursor to the Module Name dialog box, type a name, and
click Apply.

The module name will be displayed in the status area at the bottom of the
window.

2. Edit the properties of the window object, if necessary.

This can be done now or later. See “To Edit Properties of an Object” on page 42
for general instructions. See “Example: Editing Main Window Properties” on page
44 for specific instructions for a main window or a primary main window.

To Create a Window With a Spanning Control
Pane
Often you will want a control pane to fill the entire blank pane area of a main
window or custom dialog. You can then drop controls or other panes on the control
pane to create a complex window such as the App Builder primary window. Do the
following once you have dropped a main window or custom dialog on the
workspace.

1. Drag a control pane from the Panes palette and drop it on the top-left corner of
the main window or custom dialog.

34 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

2. Drag the bottom-right corner of the control pane (an arrow pointing towards a
corner will be displayed) beyond the bottom-right corner of the window and
release mouse button 1.

The control pane will be attached to the four sides of the window. If you resize
the window, the control pane will be resized with it.

See “To Attach Objects in an Interface” on page 100 for details about attachments.

Selecting Interface Objects
For many actions, including editing, moving, aligning, and grouping, you need to
select one or more objects in an interface. You can only multiply-select
siblings—objects that are children of the same parent. (All windows in a project are
siblings, for instance, as are panes in a window and control objects in a single control
pane. Panes that are dropped on a control pane and created as children of the control
pane function like control objects in the control pane.)

You can select objects in the interface or in the Module Browser. See “Module
Browser” on page 126 for a description of the Browser. See “Editing Objects in the
Interface or in the Browser” on page 37 for information about cutting, copying, and
pasting interface objects.

Only control objects can be grouped or aligned (using the Align and Distribute
functions).

To Select Window or Pane Objects in the Interface
or the Browser
Selecting an object in the Module Browser also selects it in the interface, and vice
versa.

Laying Out a User Interface 35

� Select a single window (main window, custom dialog, or file selection dialog box)
by clicking mouse button 1 on the object in the Browser or in the interface (click in
the status area at the bottom of the window object).

� Select an additional window by clicking mouse button 2 on the window in the
browser or in the interface.

� Select a single pane by clicking mouse button 1 on the pane in the Browser or in
the interface.

� Select additional panes in the same window by clicking mouse button 2 on the
pane in the Browser or in the interface.

To Select Control Objects in the Interface or the
Browser
Selecting an object in the Module Browser also selects it in the interface, and vice
versa.

� Select one object by clicking it in the interface or in the Module Browser.

� Select a number of adjacent objects by positioning the mouse cursor above and to
the left of the objects, pressing mouse button 1, and dragging the mouse to
encompass other objects down and to the right of the first object.

� Add or subtract an object to the current selection by clicking mouse button 2 on
the object.

If an object is selected, clicking mouse button 2 on it deselects it.

� To add a number of adjacent objects to those that are selected, position the mouse
cursor above and to the left of the objects to be added, press mouse button 2, and
drag the mouse to encompass other objects down and to the right of the first
object.

� To deselect all but one object, click mouse button 1 on an object.

Only that object will be selected.

Note - When you have selected a number of objects in the interface, all the objects
will move if you press mouse button 1 on one of the objects and move the mouse. A
rectangular border will be drawn around the objects as you move the mouse.

36 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Editing Objects in the Interface or in the
Browser
Once you have created an interface by dragging and dropping objects on the
workspace or on other App Builder objects, you may want to edit the interface in
various ways. You can cut, copy, paste, and delete objects, and you can undo the last
editing function performed—and you can perform these functions in the interface or
in the Module Browser, or between the interface and the Browser. See “Module
Browser” on page 126 for a description of the Browser.

You can copy or cut any object you can select—from a single control to a complex
window with multiple panes and many controls—and you can paste that object in
any open module.

Note - Objects selected in the interface are also selected in the Browser, and vice
versa. See “To Select Control Objects in the Interface or the Browser” on page 36 for
instructions for selecting objects. When you edit objects in the Module Browser, be
sure to check to see what is happening in the interface—especially if you are cutting
and pasting.

To Cut or Copy Objects
1. Select the objects you want to edit in the interface or the Browser.

2. Choose Cut or Copy from an Edit or pop-up menu.

Choose Cut or Copy from the Edit menu in the App Builder primary window,
from the Edit menu in the Module Browser, or from the pop-up menu in either
the primary window or the Browser (displayed by pressing mouse button 3 in the
interface or the Browser).

The chosen function (cut or copy) will be performed. If you choose Cut, the
selected objects will be deleted from the interface and placed in the App Builder
edit buffer. If you choose Copy, the selected objects will be placed in the edit
buffer.

Choose Undo before performing any other function to cancel the cut or copy
operation.

To Paste Objects
Once you have placed objects in the edit buffer by cutting or copying, you can paste
the objects in the interface with the Paste function.

Laying Out a User Interface 37

1. Select the paste location.

Window: Windows can be pasted if any App Builder object is selected. Pane: Panes
can be pasted if an App Builder window or control pane is selected. Control:
Controls can be pasted if an App Builder control pane or control object is selected.
If a control object is selected, the controls will be pasted in the parent control pane.

2. Choose Paste from the Edit menu in the App Builder primary window, from
the Edit menu in the Module Browser, or from the pop-up menu in either the
primary window or the Browser (displayed by pressing mouse button 3 in the
interface or the Browser).

The objects will be added to the current module and will be displayed
appropriately in the interface.

Note - Pasted objects may obscure other objects; you may have to do some moving
and aligning after the paste. See “Aligning and Distributing Objects in an Interface”
on page 38 for instructions.

Choose Undo before performing any other function to cancel the paste operation.

To Delete Objects
1. Select the objects you want to delete in the interface or the Browser.

2. Choose Delete from the Edit menu in the App Builder primary window, from
the Edit menu in the Module Browser, or from the pop-up menu in either the
primary window or the Browser (displayed by pressing mouse button 3 in the
interface or the Browser).

The objects will be deleted from the interface.

Choose Undo before performing any other function to cancel the delete operation.

Aligning and Distributing Objects in an
Interface
This section describes “static” alignment and distribution of objects: the objects are
aligned or distributed one time only. See Chapter 7, for instructions to find out how
to group and attach objects for “dynamic” alignment.

38 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

To Align Control Objects in an Interface
1. Select two or more objects.

See “To Select Control Objects in the Interface or the Browser” on page 36 for
instructions.

2. Choose Align from the Layout menu of the primary window or the interface
pop-up menu (displayed by pressing mouse button 3) and select one of the
alignment icons from the submenu.

The selected objects will be aligned according to the alignment choice. Choices are
described below. Vertical alignment icons are on the left and are described first.

� Left-edge: Aligns selected objects vertically along their left edges.

� Vertical-center: Aligns selected objects vertically on their horizontal centers.

� Right-edge: Aligns selected objects vertically along their right edges.

� Colon: Aligns selected objects vertically along their colons or labels.

� Top-edge: Aligns selected objects horizontally along their top edges.

� Horizontal-center: Aligns selected objects horizontally on their vertical centers.

� Bottom-edge: Aligns selected objects horizontally along their bottom edges.

� Grid: Does no alignment at this time.

Note - If you select objects that are arranged horizontally and choose a vertical
alignment (or vice versa), the objects will end up on top of one another. You can
unstack the objects by choosing Distribute from the pop-up menu immediately
after the align function (the objects will still be selected). See “To Distribute
Control Objects Evenly” on page 39 for instructions.

To Distribute Control Objects Evenly
1. Select one or more objects.

See “To Select Control Objects in the Interface or the Browser” on page 36 for
instructions. Select one object to center it between the edges of its parent.

Laying Out a User Interface 39

2. Choose Distribute from the Layout menu of the primary window or the
interface pop-up menu (displayed by pressing mouse button 3) and select one
of the distribute icons from the submenu.

The selected objects will be distributed or centered according to your choice.

Objects will be spaced 10 pixels apart horizontally or vertically if you choose one
of the distribute choices. If you choose one of the centering choices, the object or
objects will be centered within the boundaries of the parent control pane.

� Horizontal-space: Distributes selected objects horizontally 10 pixels apart. The
left-most object is the anchored object, which does not move.

� Vertical-space: Distributes selected objects vertically 10 pixels apart. The
top-most object is the anchored object, which does not move.

� Horizontal-center: Centers selected objects horizontally between the left and
right edges of the parent object, maintaining the distance between selected
objects.

� Vertical-center: Centers selected objects vertically between the top and bottom
edges of the parent object, maintaining the distance between selected objects.

40 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 4

Editing Properties of Interface Objects

All objects dragged from the App Builder palettes have properties that can be edited.
These properties include object name, color, and a variety of other characteristics,
depending on the object type. Once you have dropped an object or have created an
object in the interface, you will want to customize the object by editing it in the
Revolving Property Editor. See Appendix B, for an illustration of a property editor
and descriptions of each of the elements in all of the property editors.

� “To Open a Property Editor” on page 41

� “To Edit Properties of an Object” on page 42

� “To Display a Fixed Property Editor” on page 43

� “Example: Editing Main Window Properties” on page 44

Property Editor Procedures
The following procedures explain how to open and manipulate the Property Editor.

To Open a Property Editor

� Double-click an object in the interface or in the Module Browser to open the
Revolving Property Editor with the clicked-on object selected.

� Or, select an object in the interface or in the Module Browser and choose Props
(Revolving or Fixed) from the pop-up menu (displayed by pressing mouse button
3 in the interface or the Browser) to open the property editor with the object
selected.

� Or, choose Properties from the Editors menu in the App Builder primary window.

41

The Revolving Property Editor will be displayed, with the object most recently
selected in the interface or the Module Browser selected in the Revolving Property
Editor.

To Edit Properties of an Object
Once you have displayed the property editor, do the following to edit the properties
of an object:

1. Choose the object type that you want to edit from the Object Type menu at the
top of the Revolving Property Editor, if necessary.

If you double-clicked an object to display the Revolving Property Editor or if the
object was selected when you chose Props from one of the pop-up menus, the
object type and the specific object will already be selected.

If a tear-off (Fixed) editor is displayed, there is no Object Type menu.

2. Select the object that you want to edit in the Objects scrolling list, if necessary.

The object may already be selected.

3. Modify any of the properties, as appropriate.

See Appendix B for descriptions of each of the elements of the property editors.

Note - List item editing: once you have the appropriate number of items in the
list, the easiest way to perform item editing in those property editors that have an
item list* is to select the first item in the list, thus selecting it in the label text
field. Type a new name for the item and click Return. The new name will be
displayed in the item list and the next item in the list will be selected. Continue
down the list with this select, type, Return sequence until all items are completed.
*Property editors with item lists include the choice objects (Radio Box, Check Box,
Option Menu), Combo Box, List, Menu, Menubar, and Spin Box.

4. Click the Apply button to apply the changes and leave the property editor
displayed.

Click the OK button to apply the changes and close the property editor.

Click Reset to reset all changed elements to their values at the last Apply.

Click Cancel to reset all elements to their values at the last Apply and close the
property editor.

See “Example: Editing Main Window Properties” on page 44 for specific instructions
for editing the properties of a main window.

42 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

To Display a Fixed Property Editor
The Revolving Property Editor is a single dialog box that displays one of 20 property
editors, depending on the item you choose from the Object Type option menu. To
display a separate, fixed property editor of a specific object type:

1. Select the object you want to edit in the interface or in the Module Browser.
See “Module Browser” on page 126 for a description of the Browser.

2. Choose Props from the pop-up menu (displayed by pressing mouse button 3 in
the interface or in the Module Browser) and select Fixed from the Props
submenu.

A fixed version of the property editor for the selected object type will be
displayed.

Or

1. Choose the object type you want to edit in the Object Type menu of the
Revolving Property Editor.

2. Click the Tear-off button at the top-right of the Revolving Property Editor.

A fixed version of the property editor for the selected object type will be
displayed.

To Select Colors From the Color Chooser
Most property editors have background and foreground color properties. If you
know the name of the color you want to use, type it in the text field next to
Color:Background or Color:Foreground. To select a color from the Color Chooser
palette:

1. Click the Background or Foreground menu button and choose Color Chooser.

The Color Chooser, with an array of color choices available, will be displayed.

Editing Properties of Interface Objects 43

2. Click the desired color in the palette.

The name of the selected color will be displayed after Color Name.

3. Click OK to select the color and dismiss the Color Chooser.

The selected color will be displayed in the rectangle next to the Background or
Foreground menu and the name of the color will be displayed in the text field
next to the colored rectangle.

4. Repeat the process for Background or Foreground, if desired.

5. Click Apply in the property editor to apply the changes.

The background or foreground of the object in the interface will display the
selected color.

Example: Editing Main Window
Properties
Use the procedure for editing a main window below as an example for editing other
object types.

Your application might have multiple main windows, but only one primary main
window, which is the starting point for the application. By default, the first main
window created in the current project is designated as the primary main window.
This designation can be changed in the Application Framework Editor, described in
“To Establish Application Framework Behavior” on page 88.

To Edit Properties of a Main Window
Once you have dropped a main window on the workspace do the following to edit
its properties. See Appendix B for descriptions of each of the elements of the
property editor.

1. Double-click the main window to display the Revolving Property Editor.

Or, Choose Properties from the Editors menu of the App Builder primary
window, choose Main Window from the Object Type menu, and select the main
window in the Objects list.

The main window will be selected in the Revolving Property Editor.

2. Change the Object Name, if necessary.

44 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

3. Change the Window Title to something appropriate.

This is the label that appears in the title bar of the main window.

4. Type the names of an Icon File, an Icon Mask File, and an Icon Label, if you
want an icon to represent the window when it is minimized.

The Icon File and Icon Mask File must be xpm or xbm graphics files.

5. Change the User Resize Mode, if appropriate.

This determines if a user can resize the window in the compiled application.

6. Select Menubar, Toolbar, and Footer, as appropriate, to add these functional
areas to the window.

If you select Menubar, you will want to create menus after you finish editing main
window properties. See “Creating and Editing Menus” on page 52 for instructions.

Note - Selecting Menubar is the same as dragging a menu bar from the Controls
palette and dropping it on a main window.

If you select Toolbar or Footer, you will want to edit the properties of the control
panes that comprise these objects after you finish editing main window
properties. You can drop controls on the control panes, make connections to
programmatic actions, and do other things that can be done to any control pane.

7. Change the Size Policy and Size, as appropriate.

Note - For all main windows and custom dialogs you will probably want to
leave the Size Policy as Fixed while you are creating the application, and change
it to Fit Contents as you finish the application, for internationalization and other
purposes. When Size Policy is Fit Contents, the window will change size to
accommodate changes in the size of objects as the text in the objects changes—or
if the font size changes, for example.

8. Set Initial State to Iconic if you want the application to appear as an icon when
it is started.

9. If you want the main window to be invisible when the application is started,
deselect the visible setting for Initial State.

If the Visible check box is checked, click it to deselect it.

10. Set Background and Foreground colors, if appropriate.

Editing Properties of Interface Objects 45

Type in a color name if you know it or press mouse button 1 on the Background or
Foreground menu button and choose Color Chooser to display the Color Chooser.
Select a color and click OK. Background sets the color of the blank pane area of
the window. Foreground does nothing that is visible in the completed interface.

11. Click Help Text to add on item help, if appropriate.

See “To Create Help” on page 72 for instructions.

12. Click OK to apply the changes and dismiss the Revolving Property Editor.

Unless you are creating a primary main window, you are finished with this task.

13. If you are creating a primary main window, choose Application Framework
Editor from the Editors menu.

14. Type a Vendor Name and Version number in the Application section of the
Application Framework Editor, if appropriate.

See “To Establish Application Framework Behavior” on page 88 for details about
the editor.

15. Click OK in the Application Framework Editor to apply the changes and close
the editor.

46 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 5

Creating and Editing Panes, Menus, and
Messages

Most App Builder objects are dragged from the windows, panes, or controls palettes.
Some objects (layered panes, paned windows, menus, and messages) are created
objects. This chapter explains how to create, use, and edit these objects.

� “Creating and Editing Pane Entities” on page 47

� “Layered Panes” on page 48

� “Paned Windows” on page 49

� “Creating and Editing Menus” on page 52

� “Menu Property Editor” on page 52

� “Creating and Editing Messages” on page 61

� “Message Editor” on page 61

� “Example: Writing Code for Messages” on page 66

Creating and Editing Pane Entities
There are four types of pane objects on the Panes palette of the App Builder primary
window: control pane, text pane, draw area pane, and term pane. In addition, there
are three types of created pane entities: child panes, layered panes, and paned
windows.

47

Child Panes
A child pane is a text pane, term pane, or draw area pane that has been dropped on a
control pane and made a “child” of the control pane. In App Builder, for example, the
Label field in the Label Property Editor is a text pane that is a child of a control pane.

To Create a Child Pane
1. Drop a text pane, draw area pane, or term pane on a control pane in the

interface.

A message dialog box will be displayed, asking if you want to create the dropped
pane as a child of the control pane or as a layered pane.

Click Cancel if you do not want to create a child pane or a layered pane.

2. Click Child.

The pane will be instantiated at the drop location, just as if it were a control
object. The pane will be a sibling of the control objects on the control pane. You
will be able to select the pane and move it around on the control pane just like
any other control object.

Layered Panes
A layered pane is a “stack” of two or more panes, one on top of the other. In App
Builder, for example, the Revolving Property Editor, which is used to display the
properties of each of the interface objects, is a layered pane.

To Create a Layered Pane
1. Drop a pane on another pane in the interface.

A message dialog box will be displayed, giving you the option to create a layered
pane.

If you have dropped a text pane, draw area pane, or term pane on a control pane,
you will also have the option to create the object as a child of the control pane.

Click Cancel if you do not want to create a child pane or a layered pane.

2. Click Layer.

The pane will be instantiated as a layered pane on top of the pane it was dropped
on. Because it is the same size as the original pane, it will obscure the original
pane completely. If you resize one of the layers of a layered pane, all panes are
resized. See “To View Layered Panes” on page 49 for instructions for viewing the
layers of a layered pane.

Once you have completed the interface you may want to change the Size Policy
of any panes in a layered pane to Fit Contents (the default value is Fixed, which

48 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

should be retained until the interface is complete). Each of the panes might be a
different size.

Note - There is no direct way to unmake a layered pane, but you can accomplish
the task by selecting one of the layers and choosing Cut from the Edit menu of
the App Builder primary window or from one of the pop-up menus (displayed
by pressing mouse button 3 in the interface or in the Module Browser).

If you want to save the layer you cut, select an empty window and choose Paste
from the Edit menu. Repeat the Cut and Paste process until there are no more
layers (this is easiest to see in the Browser). If you don’t want to save the layers,
choose Delete instead of Cut.

To View Layered Panes
Only one layer of a layered pane is visible. To view other layered panes:

1. Select the visible pane of the layered panes in the interface or in the Module
Browser.

Note - Selecting a layered pane in the Browser does not pop the selected pane to
the top of the stack of panes in the interface.

2. Choose NextLayer from the View menu of the primary window or from the
interface pop-up menu (displayed by pressing mouse button 3).

The layer immediately beneath the current pane will be displayed. Repeat this
step to view other layers.

Paned Windows
A paned window is a combination of two or more panes (control, text, draw area, or
term panes, in any combination) into one virtual window with multiple panes, one
above the other, separated by a movable sash. While the paned window maintains a
constant height, the individual panes become smaller or larger as you move the sash
between them.

Creating and Editing Panes, Menus, and Messages 49

A paned window’s initial size and position are determined by the position and size
of its panes: the left margin of the paned window is determined by the left (West)
edge of the pane that is furthest to the left. The width of the paned window is
determined by the width of its widest pane.

You can set limits on the minimum and maximum heights of any of the panes by
setting Pane Height in the Paned Window property editor. See Appendix B for more
details.

Once you have created a paned window you can resize the panes by pressing mouse
button 1 or mouse button 2 on the sash and moving it up or down.

To Create a Paned Window
1. Drag a pane from the Panes palette and drop it on a main window or a custom

dialog.

If you want the paned window to span the top of the parent window, drop the
pane on the top-left corner of the parent. The pane will be attached to the
window at its left and top margins with an offset of 0.

2. Resize the pane, if necessary.

If you want the paned window to span its parent window, drag the right edge of
the pane beyond the right edge of the window. The pane will be attached to this
edge, also.

3. Drag one or more additional panes to the main window or dialog and drop
them on an unoccupied portion of the window.

4. Select all panes that you want to be part of the paned window.

Use mouse button 1 to select one pane and mouse button 2 to select additional
panes.

5. Choose Make Paned Window from the Layout menu or from the interface or
Module Browser pop-up menu (displayed by pressing mouse button 3).

The paned window will be created.

50 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Note - If one of the panes is attached to the right (East) edge of its parent and
one or more of the other panes are not attached to the right edge of the parent,
the right edge of the panes not attached to the right edge will be attached to the
right edge. A message dialog box will be displayed, explaining that the children
of the paned window have different East attachments and that the East
attachment has been set to that of the rightmost pane. You can adjust the right
attachment in the Attachments Editor. Click OK.

To Add a Pane to a Paned Window
1. Drop a pane on the paned window.

A message dialog box will be displayed, giving you the option to include the new
pane as a child of the control pane (if you drop a text pane, draw area pane, or a
term pane on a control pane), create as a layered pane, or to add it to the paned
window.

2. Click Pane to add the pane to the paned window.

The new pane will be added to the bottom of the paned window.

To Unmake a Paned Window
1. Select the paned window.

Select a paned window by clicking at its edge. Be sure you select the paned
window and not one of its panes. You will know you have selected the paned
window if a dark box is drawn around the paned window.

Or, open the Module Browser and select the paned window there. This is the
easiest, surest way to select a paned window.

2. Choose Unmake Paned Window from the Layout menu or from the pop-up
menu in the interface or the Module Browser (displayed by pressing mouse
button 3).

The panes that made up the paned window will become separate panes again.

Creating and Editing Panes, Menus, and Messages 51

Creating and Editing Menus
A menu is a list of items with meaningful labels. Each item is connected to a function
which is performed when the menu is displayed and the item is selected. This
section explains how to create and edit menus, how to attach menus to objects, and
how to connect menu items to programmatic functions.

Menus can be attached to menu buttons, menubar items, lists, and any of the four
types of panes. A menu is automatically attached to an option menu, so there is no
need to attach a menu to it.

Menu Property Editor
The Menu Property Editor is used to create menus. A menu, unlike most of the
objects edited in the Revolving Property Editor, is a created object and is not
available from the object palettes.

Only properties unique to a menu object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, and Color. See “Property Editor: Common Properties” on page 135 for
descriptions of Items, Label, and Item State (Active).

Add New Menu Adds a new menu to the list of menus.

Edit Performs edit functions (Cut, Copy, Paste, Delete)
on the selected item in the list of menu objects.
Cut and Copy place the selected item in a buffer,
ready for Paste. Delete removes the item, but
does not place it in a buffer.

Tearoff Specifies whether tearoff is Enabled or Disabled.
If tearoff is enabled the selected menu will be
"postable." That is, the menu will be displayed
until you explicitly dismiss it if you click on the
Tearoff indicator (a dotted line).

Item Label Type Specifies the type of label (String, Graphic, or
Separator) for the item selected in the Items list.
If Graphic is chosen, Label becomes Graphic
Filename. If Separator is chosen, Label or Graphic
Filename becomes inactive and Line Style
becomes active. A Separator menu item is used to
create a visual division in a menu, such as that

52 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

seen in the Editors menu of the App Builder
primary window.

Item Mnemonic Specifies one of the letters in the selected item as
a keyboard shortcut for choosing the item when
the menu is posted. The letter specified will be
underlined. Pressing the mnemonic letter when
the menu is posted causes that item to be chosen.
Note that case is significant and that a particular
letter can be used as a mnemonic only once
within a menu.

Accelerator Specifies a keyboard shortcut for choosing the
selected item. An accelerator is comprised of a
prefix (Ctrl, Alt, Meta, or Shift), <Key> , and a
letter (uppercase or lowercase). To make
Control-x an accelerator, for instance, type the
following:

Ctrl<Key>x

When you display the menu in test mode or in
the compiled application, Ctrl+x will be included
to the right of the menu item label. If you press
the Control key and type x with focus in the
window that contains the menu, the action
specified in the menu item will be performed.

You can combine the Shift key with one of the
other keys to form a compound prefix, if you
wish. To make Shift Control-x an accelerator, type
the following:

Shift Ctrl<Key>x

Line Style Specifies the type of line style for the selected
separator item; active only when Item Label Type
is Separator. Choices are None, Etched In, Etched
Out, Etched In Dash, Etched Out Dash, Single
Line, Double Line, Single Dashed Line, and
Double Dashed Line. A separator of the chosen
line style will be displayed in the menu instead
of a graphic or text label.

Item SubMenu A menu button and a text field for attaching,
de-attaching, creating, or editing a submenu for
the selected item in the Items list. If a submenu is

Creating and Editing Panes, Menus, and Messages 53

attached to the selected item, the name of the
submenu will be displayed in the text field. Not
valid for separator item type.

To Create a Menu
This description assumes you are creating a menu and attaching it to an interface
object as two separate procedures. To combine these procedures, see “To Create and
Attach a Menu” on page 57.

Note - Menus are available within modules only. Be sure the menu created is in the
same module as the object you wish to attach the menu to. Menus are created in the
current module, which is determined by what is selected in the interface. The Editing
Module field in the object information area of the App Builder primary window
indicates the current module.

1. Display the Menu Property Editor by choosing Menus from the Editors menu
in the App Builder primary window.

Or, display the Revolving Property Editor and choose Menu as the Object Type.

Choosing Menus from the Editors menu in the primary window is the same as
clicking the Tear-off button in the Revolving Property Editor when the Object
Type is Menu.

See “Menu Property Editor” on page 52 for a description of the editor.

If no menus exist in the current project, the Menu Objects list will be blank and
only the Add New Menu and Edit buttons will be active.

If any menus exist in the current project, they will be listed in the Menu Objects
list. One of the menus will be selected in the list and the menu’s properties will
be displayed for editing.

2. Click Add New Menu.

A menu will be created with a default Object Name (“menu,” “menu2,” and so
on, depending on how many menus there are in the current module), and with
two items in the Items list (“Item1” and “Item2”). The menu will be added to the
end of the Menu Objects list, with the name of the current module preceding the
menu name. The menu will have default values for Object Name, Tearoff, Items,
Item Label Type, Label, and Item State.

If you know you are going to need a number of menus, you could create them all
at the same time by clicking Add New Menu the appropriate number of times.
You can also create menus that will be used as submenus, to be attached to menu
items, at this time.

3. Edit the menu, as described in “To Edit a Menu” on page 55.

You can edit the menu immediately after creating it or you can edit it later.

54 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

After you have created and edited a menu you will want to attach it to an interface
object and make the menu functional by creating connections between menu items
and specific actions. See “To Attach an Existing Menu to an Object” on page 56 and
“Connecting Menu Items to Actions” on page 77 for instructions. See “To Attach an
Existing Submenu to a Menu Item” on page 58 if you want to attach a submenu to a
menu item.

To Edit a Menu
After creating a menu you will need to edit the menu: add menu items, give the
menu items meaningful names, add submenus, and so on.

1. Display the Menu Property Editor by choosing Menus from the Editors menu
in the App Builder primary window.

Or, display the Revolving Property Editor and choose Menu as the Object Type.

See “Menu Property Editor” on page 52 for a description of the editor.

2. Change Object Name, if necessary.

The automatically-generated Object names, which are unique within modules, do
not usually need to be changed.

3. Click Enabled to enable the Tearoff function, if necessary.

This will make the menu “postable,” meaning that if you click on the Tearoff
indicator (a dotted line) the menu will not be dismissed as soon as you select a
menu item. The menu will remain posted until you dismiss it.

4. Add menu items to the Items list, if necessary.

Click Add Item to add an item after the selected item; choose from the Edit menu
button to perform other edit functions.

5. Change Item Label Type for menu items in the Items list, if necessary.

Choices are String (text), Graphic, or Separator. Label becomes Graphic Filename
if Graphic is chosen; Line Style becomes active if Separator is chosen.

6. Type a different Label or Graphic Filename for the selected item, if necessary.

Note - The easiest way to edit labels for menu items is to select the first one in
the Items list, thus selecting it in the Label field. Type a new name and click
Return. The new name will be displayed in the Items list and the next item in the
list will be selected. Continue down the list with this select, type, Return process
until all labels are completed.

If Graphic Item Label Type was chosen, the Graphic Filename must be an xpm or
xbm graphic file.

Creating and Editing Panes, Menus, and Messages 55

7. Type an Item Mnemonic, if necessary.

Type one of the letters in the item label. That letter will be underlined in the
menu item label. If the menu is posted, pressing that key will cause the action
connected with the menu item to be performed.

Note - The same mnemonic letter, regardless of case, cannot be used more than
once in a menu.

8. Type an Accelerator, if necessary.

An accelerator is comprised of a prefix (Ctrl, Alt, Meta, or Shift), <Key> , and a
letter (uppercase or lowercase). See “Menu Property Editor” on page 52 for more
information.

9. Choose a Line Style, if Item Label Type is Separator.

See “Menu Property Editor” on page 52 for the list of choices.

10. Attach an Item Submenu, if appropriate.

See “To Attach an Existing Submenu to a Menu Item” on page 58 for instructions.

11. Change Item State, if necessary.

By default the item state is Active. If you want the menu item to be inactive
when the application is started, click the Active check box to deselect it.

12. Select Background and Foreground Colors, if necessary.

Type in a color or choose Color Chooser from the menu and select a color from
the Color Chooser. See “To Select Colors From the Color Chooser” on page 43 for
details.

13. Click Connections to add programmatic connections to menu items, as
necessary.

See “Connecting Menu Items to Actions” on page 77 for instructions.

14. Click Apply or OK to apply the changes.

If you click Apply the property editor will remain displayed.

To Attach an Existing Menu to an Object
The following instructions assume you have created one or more menus as described
in “To Create a Menu” on page 54 and that you are ready to attach a menu to an
object in the interface. Menus can be attached to menu buttons, menubar items, lists,

56 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

and any of the four types of panes. A menu is automatically attached to an option
menu, so there is no need to attach a menu to it.

1. Display the Revolving Property Editor with the object to which you wish to
attach a menu selected in the editor.

Double-click the object in the interface or the Module Browser or choose the
appropriate Object Type in the Revolving Property Editor and select the desired
object in the Objects list.

2. Select a menu to attach to the selected object.

Click mouse button 2 or press mouse button 1 or 3 on the Popup Menu or
Pulldown Menu menu button. Choose the appropriate menu from the Menus
submenu.

The name of the selected menu will be displayed in the text field of the Popup
Menu or Pulldown Menu.

3. Click OK or Apply.

The menu will be attached to the selected object. See “Making Connections
Between Objects” on page 75 for instructions for making the menu functional.

Note - If you attach a menu to one of the pane objects or to a list, the menu will
be a pop-up menu, displayed in test mode or in the compiled application by
pressing mouse button 3 with the cursor on the pane or the list.

To Create and Attach a Menu
One method of creating and attaching a menu to an object is described in “To Create
a Menu” on page 54 and “To Attach an Existing Menu to an Object” on page 56.
With the method described here you create and attach the menu at one time. Use
whichever method is most convenient.

1. Display the Revolving Property Editor with the object to which you wish to
attach a menu selected in the editor.

Creating and Editing Panes, Menus, and Messages 57

Double-click the object in the interface or the Module Browser or choose the
appropriate Object Type in the Revolving Property Editor and select the desired
object in the Objects list.

2. Choose Create New Menu from the Pulldown Menu or Popup Menu button
available for some objects.

Pulldown menus are available for menu buttons and menu bars. Popup menus
are available for all pane objects and for lists. An Item SubMenu is available for
menus themselves.

The Menu Property Editor will be displayed, with a newly-created menu selected
in the Menu Objects list. The menu will have default values for Object Name,
Tearoff, Items, Item Label Type, Label, and Item State.

The Object Name will be of the form “object_type_menu,” “object_type_menu2,”
and so on, depending on what type of object was selected in the property editor
when Create New Menu was chosen and how many menus have been created for
the current module. The menu will be added to the end of the Menu Objects list,
with the name of the current module preceding the menu name.

3. Edit the menu and click OK to apply the changes and dismiss the Menu
Property Editor.

See “To Edit a Menu” on page 55 for instructions. You can edit the menu later if
you like.

4. Click Apply or OK in the Revolving Property Editor to attach the menu to the
selected object.

See “Making Connections Between Objects” on page 75 for instructions for
making the menu functional.

To Attach an Existing Submenu to a Menu Item
The following instructions assume you have created two or more menus as described
in “To Create a Menu” on page 54 and that you are ready to attach one of them as a
submenu for a menu item.

1. Display the Menu Property Editor or the Revolving Property Editor with Menu
chosen as the Object Type.

2. In the Menu Objects or Objects list select the menu that contains the menu
item to which you want to attach a submenu.

3. In the Items list select the menu item to which you want to attach a submenu.

4. Select a menu to attach to the selected menu item.

58 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Click mouse button 2 or press mouse button 1 or 3 on the Item SubMenu menu
button. Choose the appropriate menu from the Menus submenu.

The name of the selected menu will be displayed in the text field of the Item
SubMenu.

5. Click OK or Apply.

The submenu will be attached to the selected menu item. See “Making
Connections Between Objects” on page 75 for instructions for making the
submenu functional.

To Create and Attach a Submenu
The following instructions assume you have created one or more menus and that
you want to create and attach a submenu to one of the items in one of the menus.
With this method you create the submenu and attach it as part of a single procedure.
Another method for accomplishing this task is to create the menu as described in “To
Create a Menu” on page 54 and to attach it to a menu item as described in “To
Attach an Existing Submenu to a Menu Item” on page 58 . Use whichever method is
most convenient.

Note - When you create and attach a submenu you will be using two editors—one
to create the menu and the other to attach the submenu to the menu item. If you
start this procedure in the Menu Property Editor, you will be attaching the submenu
in the Menu Property Editor but creating it in the Revolving Property Editor. If you
start the procedure in the Revolving Property Editor, you will be attaching the menu
there but creating it in the Menu Property Editor. The example below assumes you
are starting the procedure in the Menu Property Editor.

1. Display the Menu Property Editor by choosing Menus from the Editors menu
of the App Builder primary window.

2. In the Objects list select the menu that contains the menu item to which you
want to attach a submenu.

Creating and Editing Panes, Menus, and Messages 59

3. In the Items list select the menu item to which you want to attach a submenu.

4. Choose Create New Menu from the Item SubMenu menu.

The Revolving Property Editor will be displayed, with the new menu selected in
the Objects list.

5. Edit the menu and click OK to apply the editing changes you made and to
dismiss the Revolving Property Editor

See “To Edit a Menu” on page 55 for instructions. You can edit the menu later if
you like.

6. Click Apply in the Menu Property Editor to attach the submenu to the menu
item selected in Step 2. See “Connecting Menu Items to Actions” on page 77
for instructions for making the submenu functional.

To Create and Attach a Help Menu
A help menu at the right end of the menu bar in the application primary main
window is a common feature of applications. Do the following to create a help menu
and attach it to the Help item of a menu bar. These instructions assume you have
included a menu bar in the primary main window and that Help is one of the menu
bar items.

1. Display the Revolving Property Editor with Menubar selected in the editor.

Double-click the appropriate menu bar in the interface or the Module Browser or
choose Menubar from the Object Type menu in the Revolving Property Editor
and select the desired menu bar in the Objects list. This will normally be the
menu bar in the primary main window.

2. Select Help in the Items list.

This is the Help item on the menu bar.

3. Click mouse button 2 or press mouse button 1 or 3 on the Pulldown Menu
menu button. Choose Create New Menu from the Menus submenu.

The name of the new menu will be displayed in the text field of the Pulldown
Menu and the Menu Property Editor will be displayed with the new menu loaded.

4. Edit the menu.

a. If you want a Help menu that looks like the App Builder Help menu, for
instance, add four items to the two default items in the Items list. Select
each item in turn and type appropriate labels (Overview, Tasks, Reference,
On Item, Using Help, and About [application_name], for instance).

60 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

b. Add item mnemonics and accelerators, if appropriate.
See “Menu Property Editor” on page 52 for details.

c. Make other changes to the menu, if appropriate.

5. Click OK or Apply in the Menu Property Editor.

The menu is complete. The Menu Property Editor will be dismissed if you click
OK.

6. Click OK or Apply in the Revolving Property Editor.

The Help menu has been attached to the Help item in the menu bar. The
Revolving Property Editor will be dismissed if you click OK.

Creating and Editing Messages
This section describes the Message Editor and explains how to create and edit
message dialog boxes.

Message Editor
The Message Editor is used to create various types of messages to be displayed at
appropriate times in the compiled application. It is shown in Figure 5–1 and then
described. See “To Create a Message Dialog Box” on page 63 and “To Edit a
Message” on page 65 for instructions on its use.

Creating and Editing Panes, Menus, and Messages 61

Type menu

Message text pane

Module menu

Button check boxes

Figure 5–1 Message Editor

Messages Lists all messages for the current project. The
module name precedes the message name in the
list.

Module menu Specifies the module for which you wish to add a
new message. The module name precedes the
message name in the Messages list.

Add Message Adds a new message to the Messages list and to
the current project. The message is for the
module selected in the module option menu.

Delete Message Deletes the selected message.

Name Specifies the instance name of the current
message object. Messages are given names such
as “message,” “message2,” “message3,” by
default.

Dialog Title Specifies the title that will appear at the top of
the message dialog box.

Type Specifies the type of message to be created. The
choices are Error, Information, Working,

62 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Question, and Warning. The message type
appears above the message text pane. The
appropriate message icon appears in the message
dialog box in the compiled applications.

Message text pane A text pane for entering the text of the message.
Press Return when you want the text to start a
new line. The label above the text pane varies,
depending on what type of message you have
chosen.

Button check boxes Specifes which buttons will be included at the
bottom of the message dialog box. Each message
type has a different set of buttons specified by
default; these default choices can be changed.
Actions associated with the Action1, Action2,
Action3, and Cancel buttons are set in the
Connections Editor. See “To Create a Message
Dialog Box” on page 63 for detailed instructions.

Default Button menu Specifies the default button for the selected
message dialog.

Connections Displays the Connections Editor for specifying
what functions to call for each of the Action
buttons and the Cancel button.

Help Text Displays the Help Editor, in which you write
help text to be displayed when the Help button is
clicked in the message dialog box.

Show Dialog A push button for displaying the selected
message in a message dialog box that looks like
the actual dialog box in the compiled application.
Click one of the buttons other than Help to
dismiss the dialog box.

See “Property Editor: Common Buttons” on page 137 for descriptions of the buttons
at the bottom of the editor.

To Create a Message Dialog Box
See “Message Editor” on page 61 for descriptions of each of the fields in the editor.
See “To Connect a Non-Modal Message to a Function” on page 65 for a discussion of
how to connect messages to the functions that cause them to be displayed, with
examples.

Creating and Editing Panes, Menus, and Messages 63

1. Choose Messages from the Editors menu of the App Builder primary window
to display the Message Editor.

2. Choose the module to which you want to add a message in the option menu
below the Messages list.

3. Click Add Message.

A unique name (“message,” “message2,” and so on, depending on how many
messages are in the current module) will be displayed in the Name field. The
module name and the message name will be added to the Messages list.

4. Modify the Name if you wish.

This is the name used to identify the message internally—in the Connections
Editor, for instance. This name is not displayed in the compiled message dialog
box.

5. Type a title for the message dialog in the Dialog Title field.

This will appear in the title bar of the compiled message dialog box.

6. Choose a message type from the Type menu.

The icon for the message type will be displayed in the Type menu and the
message type (Error, Information, Working, Question, or Warning) will be
displayed above the message text pane (to the right of the Type menu).

7. Type the message text in the message text pane, pressing Return when you
want a new line to start in the compiled message.

8. Specify which buttons will appear in the message dialog box by clicking the
check boxes below the message text pane and typing the labels you want on
the Action1, Action2, and Action3 buttons.

Each of the message types includes a default set of buttons that you can modify:

� Error: Action2 (Retry), Cancel, Help.

� Information: Action1 (OK), Help.

� Working: Action1 (Close), Action2 (Stop), Help.

� Question: Action1 (Yes), Action2 (No), Help.

� Warning: Action2 (Continue), Cancel, Help.

9. Choose a default button from the Default Button menu.

This is the button that will have an extra border when the message dialog box is
displayed. This is the button that will be activated if Return is pressed. Each of
the message types has a default Default Button that you can modify:

� Error: Action2

� Information: Action1

64 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

� Working: Action1

� Question: Action1

� Warning: Action2

10. Click the Help Text button and create help text, as appropriate.

See “To Create Help” on page 72 for instructions.

11. Click OK or Apply to apply the changes.

The Message Editor will be dismissed if you click OK.

To Edit a Message
1. Choose Messages from the Editors menu of the App Builder primary window

to display the Message Editor.

2. Select the message you want to edit in the Messages list.

3. Edit the message, as appropriate.

� To delete a message, click Delete Message.

� To modify the dialog box title, click in the Dialog Title text field and type the
new label.

� To change the message type, choose a different Type icon.

� To modify the message text, click in the message text pane and type the
appropriate changes.

� To change the available buttons, select the check boxes and type new button
labels, if appropriate.

� To change the default button, choose another from the Default Button menu.

� To modify help text, click Help Text, make the changes in the Help Editor, and
click OK in the Help Editor.

4. Click OK or Apply to apply the changes.

The Message Editor will be dismissed if you click OK.

To Connect a Non-Modal Message to a Function
See “Example: Writing Code for Messages” on page 66 for a discussion of how to
connect a message to the function that causes it to be displayed, with examples. In
particular, read that section to see how to attach a modal (blocking) message to a
function.

Creating and Editing Panes, Menus, and Messages 65

1. Display the Connections Editor by clicking Connections in the Message Editor
or by choosing Connections from the Editors menu of the App Builder primary
window.

If you select a message in the Message Editor and click Connections, the selected
message will be selected in the Source list of the Connections Editor. You can skip
the next two steps.

2. Display messages in the Source list by choosing Message from the Source
menu.

3. Select a message in the Source list.

4. Choose Call Function as the Action Type.

This activates the When menu on the Source side of the Connections Editor.

5. Choose a When item (Action1, Action2, Action3, or Cancel Activated,
depending on which buttons were checked in the Message Editor).

6. Type the name of the Function to be called when the selected button is selected.

When code is generated, this function is created in <module_name>_stubs.c . You
will have to substitute appropriate code before running make.

7. Click Connect to create the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

8. Repeat the previous three steps for each button except Help.

9. Click Cancel to dismiss the Connections Editor.

Example: Writing Code for Messages
Once you have created a message as described in “To Create a Message Dialog Box”
on page 63, you must determine when and how it should be displayed. Usually
messages are displayed after a certain piece of logic has been executed. For example,
if a user types digits in a text field that is designed to accept a name, you will want
to post an error message informing the user that digits are not valid.

Message boxes in Motif can be displayed in one of two ways: modally or non-modally
(equivalently, blocking or non-blocking). The App Builder code generator (dtcodegen)
supplies two routines, corresponding to the two modes of display. They are found in
dtb_utils.c and are named:

� dtb_show_modal_message()

66 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

� dtb_show_message()

If you want to display a particular message modally, use
dtb_show_modal_message() . If you want to display a particular message
non-modally, use dtb_show_message() .

One of the key differences in the way these two types of of messages are handled is
in how the application determines which button was pressed by the user in the
message dialog box. For non-modal messages callbacks are added to each button via
the Connections Editor. When the user clicks a button the corresponding callback is
called. Since modal dialogs are blocking, the button callbacks are not called. Instead,
the value is returned by dtb_show_modal_message() , which indicates which
button is pressed by the user.

To Write Code for Modal Messages
If a message is to be displayed modally, use dtb_show_modal_message() . This
routine returns a value which indicates which message box button the user has
pressed. The value is an enum that is defined in dtb_utils.h :

/*
* Returns answer value for modal MessageBox
*/

typedef enum {
DTB_ANSWER_NONE,
DTB_ANSWER_ACTION1,
DTB_ANSWER_ACTION2,
DTB_ANSWER_ACTION3,
DTB_ANSWER_CANCEL,
DTB_ANSWER_HELP

} DTB_MODAL_ANSWER;

You can then examine the return value (for example via a switch statement) and
execute the appropriate piece of code.

Here’s an example of displaying a message modally. Say that you have created a
simple application, named foo . The project is named foo.bip and consists of one
module, foo.bil . The module foo.bil consists of a main window, control pane,
and two text fields, one for the user to enter a person’s first name and the other to
enter the last name. If the user types digits, an error message will be posted,
informing the user that digits are not allowed, and giving the user a couple of
options. The user can start over, which means the text entered will be erased, or the
user can continue, which means that the text entered will be left intact, giving the
user discretion as to how to modify the text.

A call-function connection is made for both text fields, which will be called each time
the user types something. The function for the first text field will check if the
character typed is a digit. If so, it will post the error message modally:

void
verify_first_nameCB(

Creating and Editing Panes, Menus, and Messages 67

Widget widget,
XtPointer clientData,
XtPointer callData

)
{

/*** DTB_USER_CODE_START vvv Add C variables and code below vvv ***/
char *text = (char *)NULL;
int textlen = 0;
DTB_MODAL_ANSWER answer = DTB_ANSWER_NONE;
DtbFooMainwindowInfo instance = (DtbFooMainwindowInfo) clientData;
/*** DTB_USER_CODE_END ^^^ Add C variables and code above ^^^ ***/

/*** DTB_USER_CODE_START vvv Add C code below vvv ***/
text = XmTextFieldGetString(widget);
if ((text != NULL) && (*text != NULL))
{

textlen = strlen(text);
if (isdigit(text[textlen-1]))
{

dtb_foo_message_initialize(&dtb_foo_message);
answer dtb_show_modal_message(instance->textfield,

&dtb_foo_message, NULL, NULL, NULL);
switch (answer)
{

case DTB_ANSWER_ACTION1: /* Start Over */
XmTextFieldSetString(widget, "");
break;

case DTB_ANSWER_ACTION2: /* Continue */
break;

}
}

}

/*** DTB_USER_CODE_END ^^^ Add C code above ^^^ ***/
}

To Write Code for Non-Modal Messages
If you want to post a non-modal message, use dtb_show_message() . Since this
function is not modal and does not return a return value, callbacks for the message
box buttons should be specified via the Connections Editor, as described in “To
Connect a Non-Modal Message to a Function” on page 65 . The buttons that are
specified for the message box are displayed as When items for the message object in
the Connections Editor.

Using the same example as above, make the last name text field display the error
message non-modally if the user types a digit. As previously mentioned, first you’ll
need to make a couple of call-function connections for the two buttons in the
message box, labelled "Start Over" and "Continue." When code is generated, add
code to those routines to do the right thing. The start over routine will clear out the
text field and the continue routine will do nothing, in this case.

void

68 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

verify_last_nameCB(
Widget widget,

XtPointer clientData,
XtPointer callData

)
{

/*** DTB_USER_CODE_START vvv Add C variables and code below vvv ***/
char *text = (char *)NULL;
int textlen = 0;
DtbFooMainwindowInfo instance = (DtbFooMainwindowInfo) clientData;

/*** DTB_USER_CODE_END ^^^ Add C variables and code above ^^^ ***/

/*** DTB_USER_CODE_START vvv Add C code below vvv ***/

text = XmTextFieldGetString(widget);
if ((text != NULL) && (*text != NULL))
{

textlen = strlen(text);
if (isdigit(text[textlen-1]))
{

dtb_foo_message_initialize(&dtb_foo_message);
dtb_show_message(instance->textfield,

&dtb_foo_message, NULL, NULL);
}

}
/*** DTB_USER_CODE_END ^^^ Add C code above ^^^ ***/

}
void start_overCB(

Widget widget,
XtPointer clientData,
XtPointer callData

)
{

/*** DTB_USER_CODE_START vvv Add C variables and code below vvv ***/

DtbFooMainwindowInfo instance = (DtbFooMainwindowInfo) clientData;

/*** DTB_USER_CODE_END ^^^ Add C variables and code above ^^^ ***/

/*** DTB_USER_CODE_START vvv Add C code below vvv ***/

XmTextFieldSetString(dtb_foo_mainwindow.textfield2, "");

/*** DTB_USER_CODE_END ^^^ Add C code above ^^^ ***/

}

void continueCB(
Widget widget,
XtPointer clientData,
XtPointer callData

)
{

/*** DTB_USER_CODE_START vvv Add C variables and code below vvv ***/
/*** DTB_USER_CODE_END ^^^ Add C variables and code above ^^^ ***/

/*** DTB_USER_CODE_START vvv Add C code below vvv ***/
/*** DTB_USER_CODE_END ^^^ Add C code above ^^^ ***/

Creating and Editing Panes, Menus, and Messages 69

}

The two routines above, start_overCB() and continueCB() , are added as
callbacks for the two buttons via the call to dtb_show_message() . Here is the code
fragment that adds the callback (from dtb_utils.c):

/* Add Callbacks if necessary */

if (mbr->action1_callback != (XtCallbackProc) NULL)
XtAddCallback(msg_dlg, XmNokCallback, mbr->action1_callback, NULL);

if (mbr->cancel_callback != (XtCallbackProc) NULL)

XtAddCallback(msg_dlg, XmNcancelCallback, mbr->cancel_callback, NULL);

if (mbr->action2_callback != (XtCallbackProc) NULL)
{

action_btn = dtb_MessageBoxGetActionButton(msg_dlg, DTB_ACTION2_BUTTON);
if (action_btn != NULL)

XtAddCallback(action_btn, XmNactivateCallback,
mbr->action2_callback, NULL);

}
if (mbr->action3_callback != (XtCallbackProc) NULL)
{

action_btn = dtb_MessageBoxGetActionButton(msg_dlg, DTB_ACTION3_BUTTON);
if (action_btn != NULL)

XtAddCallback(action_btn, XmNactivateCallback, mbr->action3_callback, NULL);
}

The structure mbr contains all the necessary information for the message. The
structure is filled in with the values specified in the Message Editor when the
message object was created via the dtb_&_&_initialize() routine—in this
example, dtb_foo_message_initialize() .

70 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 6

Adding Functionality to the Interface

Once you have laid out an interface you may want to add help to interface elements,
make programmatic connections between objects, specify drag and drop behavior,
and specify application framework behavior (including internationalization, resource
file creation, session management, and ToolTalk message handling).

� “Creating Help and Help Connections” on page 71

� “Making Connections Between Objects” on page 75

� “Connecting Menu Items to Actions” on page 77

� “Editing Existing Connections” on page 80

� “Establishing Drag and Drop Behavior” on page 81

� “Establishing Application Framework Behavior” on page 84

Creating Help and Help Connections
Two kinds of help—object help and a help volume—can be accessed from an App
Builder application. Object help is created in App Builder, as explained in “To Create
Help” on page 72. A help volume is created separately from App Builder, and is
accessed in your compiled application from the Help menu or by clicking More in a
help dialog box. See the Help System Author’s and Programmer’s Guide, which is
included in the desktop Help Developer’s Kit, for instructions for creating a help
volume.

71

About App Builder Help
With App Builder you can create help for any object in the interface—a control, a
pane, or a window. Help is created in the Help Editor, as described in “To Create
Help” on page 72. In test mode or in the compiled application, help is displayed in
the following ways:

� Press F1 with the cursor over an interface window.

If help exists for the object with input focus, it is displayed. If there is no help for
the object with input focus but help exists for a parent window, help for that
window will be displayed.

� Click the Help button in a window or dialog box.

� Choose On Item from the Help menu and click on an object in the interface.

See “To Test On Item Help” on page 104 for instructions for testing On Item help. If
help is not available for a particular child object (a control or a pane) but is available
for the parent of the child object (a pane or a window), help for the parent object is
displayed.

To Create Help
1. Display the Revolving Property Editor.

2. Choose the Object Type for which you want to write help.

3. Select the object for which you want to write help.

4. Click Help Text to display the Help Editor with the appropriate object selected.

5. Type help text in the Help Text pane.

72 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Press Return when you want a new line to start in the compiled help dialog box.

6. Type a Volume Name if appropriate.

This is the name of a help volume.

7. Type a Location ID, if appropriate.

This is the helptag location ID that will provide more information about the
selected object.

Note - You must create help for an object if you want access to a help volume
from a help dialog box. If you create help for an object and include a Volume
Name and Location ID, the More button will be active in the help dialog box.

8. Click OK or Apply to apply the changes.

If you want to add help to other objects, choose the appropriate Object Type in
the menu, select the appropriate object, and repeat the previous two steps.

The Help Editor will be dismissed if you click OK.

To Connect a Help Menu to On Item Help
One of the standard items in a Help menu is On Item Help, which is used to display
help for a specific object in an interface. The instructions below assume you have
included a menu bar in a main window and that you have attached a Help menu to
the Help item in the menu bar. See “To Create and Attach a Help Menu” on page 60
for instructions.

1. Choose Menus from the Editors menu in the App Builder primary window.

The Menu Property Editor is displayed.

2. Select the Help menu in the Objects list.

3. Select one of the items in the Items list as the On Item Help item.

4. Type On Item or other appropriate text in the Label text field.

5. Include an item mnemonic, if appropriate.

An item mnemonic specifies one of the letters in the selected item as a keyboard
shortcut for activating the menu item when the menu is posted. The letter
specified will be underlined in the menu item. Case is significant for mnemonics.

6. Include an item accelerator, if appropriate.

Adding Functionality to the Interface 73

An item accelerator specifies a keyboard shortcut for choosing the selected item.
An accelerator is comprised of a prefix (Ctrl, Alt, Meta, or Shift), <Key> , and a
letter (upper- or lowercase). To make Control-x an accelerator, for instance, type
Ctrl<Key>x .

7. Click Apply.

The changes to the Help menu will be applied.

8. Click Connections to display the Connections Editor.

The Connections button is at the bottom of the Menu Property Editor.

9. Choose Menu Item in the Source menu.

10. Select the On Item Help item in the Source list.

11. Choose Activate On Item Help from the Action Type menu.

12. Click Connect.

When you choose the On Item Help item in the Help menu in test mode or in the
compiled application, the cursor will become an arrow with a question mark. Move
the cursor over an object and click mouse button 1 to display On Item help for the
selected object (or for one of its parent objects if no help is available for the object
itself). See “To Test On Item Help” on page 104 for more information.

To Connect a Help Menu to a Help Volume
After creating a help menu and attaching it to the Help item in a menu bar as
explained in “To Create and Attach a Help Menu” on page 60 , do the following to
connect menu items to specific locations in a help volume. See “To Connect a Help
Menu to On Item Help” on page 73 for instructions for connecting the On Item help
item in the Help menu to the On Item help function.

1. Display the Connections Editor.

Click Connections in the Revolving Property Editor or in the Menu Property
Editor or choose Connections from the Editors menu.

2. Choose Menu Item from the Source option menu.

3. Select one of the Help menu items from the Source scrolling list.

4. Choose Access Help Volume from the Action Type option menu.

5. Type the name of the help volume in the Volume text field.

74 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

6. Type the appropriate location ID in the Location text field.

7. Click Connect to make the connection.

Making Connections Between Objects
In its simplest form a connection is a programmatic relationship between a source
object and a target object: when I click on Button A I want Dialog Box B to be
displayed. This type of connection is described below in “To Make a Connection
between Two Objects” on page 75.

Different types of connections from menu items are described in “To Connect a
Menu Item to a Predefined Action” on page 77, “To Connect a Menu Item to a Call
Function” on page 78, and “To Connect a Menu Item to an Execute Code Action” on
page 79.

Other types of connections (to On Item Help and to a help volume) were discussed
in “To Connect a Help Menu to On Item Help” on page 73 and in “To Connect a
Help Menu to a Help Volume” on page 74. In “To Connect a Non-Modal Message to
a Function” on page 65, a message dialog box is connected to the function which
causes the dialog box to be displayed.

To Make a Connection between Two Objects
1. Select the source and target objects.

By “drag-linking”: While holding down the Control key, position the mouse
cursor over the intended source object, press mouse button 1, drag the cursor to
the intended target object, and release the mouse button.

This can be done in the interface or in the Module Browser (or between the
interface and the Module Browser). See “Module Browser” on page 126 for a
description of the Browser.

A line with a “plug” at its end will extend from the source as you move the
mouse. The target object will be highlighted with a dark box. When you release
the mouse button on the target object, the Connections Editor will be displayed,
with the source and target objects selected.

� Through the Connections Editor: Display the Connections Editor by choosing
Connections in the Editors menu. Choose the object type you want as the
source object in the Source menu, and select the object you want as the source
in the Source list. Then choose the object type you want as the target object in
the Target menu, and select the object you want as the target in the Target list.

Adding Functionality to the Interface 75

Note - If you select an object in the Revolving Property Editor and click the
Connections button, the Connections Editor will be displayed with the selected
object selected in the Source list.

2. Choose an action in the When menu.

This is the action on the source object that will cause an action to be performed
on the target object. Choices vary, depending on the source object type.

3. Choose an action to be performed on the target in the Action Type menu.

Different target action types require different subsequent action by you:

� Predefined: Choose an action from a second option menu.

� Call Function: Type the name of a function in the Function text field. You will
also have to write code for the call function, as described in “Adding User
Code to Generated Code” on page 113.

� Execute Code: Type the code to be performed in the Execute Code Editor and
click OK in the editor.

4. Click Connect to make the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

5. Click Cancel to dismiss the Connections Editor.

76 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Connecting Menu Items to Actions
Once you have created a menu and attached it to an object as described in “To
Create a Menu” on page 54 and “To Attach an Existing Menu to an Object” on page
56, you need to connect a meaningful action to each item in each menu. Choices for
target actions are Predefined, Call Function, Execute Code, Activate On-Item Help,
and Access Help Volume.

Connecting menu items to the first three types of actions are described below. See
“To Connect a Help Menu to On Item Help” on page 73 and “To Connect a Help
Menu to a Help Volume” on page 74 for instructions for making help connections.

To Connect a Menu Item to a Predefined Action
Only Predefined target actions are described in this section. See “To Connect a Menu
Item to a Call Function” on page 78 and “To Connect a Menu Item to an Execute
Code Action” on page 79 for information about those connections.

1. Display the Connections Editor.

Click Connections at the bottom of the Revolving Property Editor or choose
Connections from the Editors menu of the App Builder primary window.

2. Choose Menu Item from the Source menu.

All of the menu items in the current project will be listed.

3. Select a menu item from the list below the Source menu.

This is the item from which the connection will be made.

4. Choose Predefined as the target action type from the Action Type menu.

The Target menu will be activated.

5. Choose the appropriate type of object from the Target menu.

This is the type of object that will be acted on when the When action is
performed on the source menu item.

6. Select an object in the list of Target items.

This is the specific object that will be acted on when the When action is
performed on the source menu item.

7. Choose a When action for the Source menu item.

Choices are Activated, Created, and Destroyed.

8. Choose a target action from the option menu to the right of Action Type.

Adding Functionality to the Interface 77

The choices vary depending on the target type.

9. Click Connect to make the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

10. Click Cancel to dismiss the Connections Editor.

The designated target action will be performed in the compiled application when the
When action is performed on the menu item.

Depending on the source When and target action, you may be able to test the
connection in Test mode. See “To Test Menus in a Module” on page 105 for
instructions.

To Connect a Menu Item to a Call Function
Only the Call Function target action is described in this section. See “To Connect a
Menu Item to a Predefined Action” on page 77 and “To Connect a Menu Item to an
Execute Code Action” on page 79 for information about those connections.

1. Display the Connections Editor.

Click Connections at the bottom of the Revolving Property Editor or choose
Connections from the Editors menu of the App Builder primary window.

2. Choose Menu Item from the Source menu.

All of the menu items in the current project will be listed.

3. Select a menu item from the list below the Source menu.

This is the item from which the connection will be made.

4. Choose Call Function as the target action type from the Action Type menu.

The Function text field will be activated.

5. Type the name of the function to be called in the Call Function text field.

This is the function that will be called when the When action is performed on the
source menu item. See “Adding User Code to Generated Code” on page 113 for
information about incorporating user code into the generated code.

6. Choose a When action for the Source menu item.

Choices are Activated, Created, and Destroyed.

7. Click Connect to make the connection.

78 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

The connection will be displayed in the View list at the bottom of the
Connections Editor.

8. Click Cancel to dismiss the Connections Editor.

To Connect a Menu Item to an Execute Code
Action
Only the Execute Code target action is described in this section. See “To Connect a
Menu Item to a Predefined Action” on page 77 and “To Connect a Menu Item to a
Call Function” on page 78 for information about those connections.

1. Display the Connections Editor.

Click Connections at the bottom of the Revolving Property Editor or choose
Connections from the Editors menu of the App Builder primary window.

2. Choose Menu Item from the Source menu.

All of the menu items in the current project will be listed.

3. Select a menu item from the list below the Source menu.

This is the item from which the connection will be made.

4. Choose a When action for the Source menu item.

Choices are Activated, Created, and Destroyed.

5. Choose Execute Code as the target action type from the Action Type menu.

The Execute Code Editor will be displayed.

6. Type the code to be executed in the Execute Code Editor.

The Execute Code Editor will be displayed. Type the code in the editor. See
“Adding User Code to Generated Code” on page 113 for information about
incorporating user code into the generated code.

7. Click OK in the Execute Code Editor to apply the changes and dismiss the
editor.

8. Click Connect in the Connections Editor to make the connection.

The connection will be displayed in the View list at the bottom of the
Connections Editor.

9. Click Cancel to dismiss the Connections Editor.

Adding Functionality to the Interface 79

The code will be executed in the compiled application when the When action is
performed on the menu item.

Editing Existing Connections
Once you have created a connection you can modify the connection, delete it, or
create a new connection by selecting an existing connection, modifying it, and saving
it as a new connection.

To Edit an Existing Connection
1. Choose Connections from the Editors menu in the App Builder primary

window.

The Connections Editor will be displayed.

2. Choose the source object type whose connection you want to view from the
View menu at the bottom of the Connections Editor.

If you want to edit a connection with a button as a source object, for instance,
choose Button from the View menu. All connections in the current project with
button as source object will be displayed in the View list.

If you want to view all connections for a particular source object, choose Source
Object in the View menu and select the object in the Source menu. All
connections for the selected object will be displayed.

3. Select the connection you want to edit in the View list.

The source and target objects will be selected in the Source and Target lists at the
top of the editor. Their When and Action Type choices will be displayed.

4. Edit the connection.

� To delete the selected connection, click Delete.

� To modify the selected connection, make changes to any of the choices (source
object, When action, target object, Action Type) and click Change.

� To add a connection similar to the selected connection, modify any of the
choices and click Connect. A new connection will be created.

5. Click Cancel to dismiss the Connections Editor.

80 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Establishing Drag and Drop Behavior
Use the Drag and Drop Editor to establish drag and drop behavior for interface
objects. See “To Establish Drag and Drop Behavior” on page 82 for instructions.

Object Type An option menu for choosing the type of object
(Control Pane, Custom Dialog, Draw Area Pane,
Label, or Main Window) for which you wish to
establish drag and drop behavior.

Objects A scrolling list for selecting a specific object for
which you wish to establish drag and drop
behavior.

Drag Operations Check boxes for specifying which types of
operations (Copy, Move, Link) will be legal for
the selected object.

Cursor Filename A text field for typing the name of the graphics
file that contains the graphical representation of
the cursor that will be displayed as a drag from
the selected object is being performed.

Adding Functionality to the Interface 81

Cursor Mask Filename A text field for typing the name of the graphics
file that contains the bitmap which determines
the shape of the visible representation of the
cursor beneath the cursor mask. The cursor mask
acts like a stencil, allowing only the pixels in the
cursor that correspond to pixels in the mask to be
visible.

Data Types Check boxes for specifying Text, Filename, and
User Defined as legal data types for drag
operations.

Drag Connection A push button to display the Connections Editor
for creating the Call Function connection that
makes the dragged-from operation functional.

Drop Operations Check boxes for specifying which types of
operations (Copy, Move, Link) will be legal for
the selected object.

Data Types Check boxes for specifying Text, Filename, User
Defined, and Any Other Type as legal data types
for drop operations.

Drop on Children A check box for specifying whether a child of the
selected object will be a legal drop site; this is
relevant only if the child object is specified as a
legal drop site.

Drop Connection A push button to display the Connections Editor
for creating the Call Function connection that
makes the dropped-on operation functional.

To Establish Drag and Drop Behavior
1. Choose Drag and Drop from the Editors menu of the App Builder primary

window.

The Drag and Drop Editor is displayed.

2. Choose an Object Type.

3. Select an object in the Objects list.

4. Select the Drag Operations you want to be legal for the selected object.

82 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

5. To display a special cursor when a drag operation is being performed from the
selected object, type the names of graphics files in the Cursor Filename and
Cursor Mask Filename fields.

6. Select the Data Types that will be legal for drag operations.

7. Click Drag Connection.

The Connections Editor is displayed.

8. Choose Dragged From as the When action in the Connections Editor.

9. Choose Call Function as the Action Type in the Connections Editor.

10. Type a name for the called function in the Function text field in the
Connections Editor.

This is the name of the function that will be called when a drag operation is
performed. You will have to edit the stubs.c file to make the called function do
something useful. See “Adding User Code to Generated Code” on page 113 for
information.

11. Click Connect in the Connections Editor.

12. Click Cancel to dismiss the Connections Editor.

13. Select which Drop Operations will be legal.

14. Select the Data Types that will be legal for drop operations.

15. Check Drop on Children if you want a drop operation on a child of the
selected object to be legal.

This is relevant only if the selected object has a child which is designated as a
legal drop site.

16. Click Drop Connection to display the Connections Editor.

17. Choose Dropped On as the When action in the Connections Editor.

18. Choose Call Function as the Action Type in the Connections Editor.

19. Type a name for the called function in the Function text field in the
Connections Editor.

This is the name of the function that will be called when a drop operation is
performed. You will have to edit the stubs.c file to make the called function do

Adding Functionality to the Interface 83

something useful. See “Adding User Code to Generated Code” on page 113 for
information.

20. Click Connect in the Connections Editor.

21. Click Cancel to dismiss the Connections Editor.

22. Click OK or Apply in the Drag and Drop Editor to apply the changes.

The Drag and Drop Editor will be dismissed if you click OK.

Establishing Application Framework
Behavior
Use the Application Framework Editor to specify basic functionality in the
application for internationalization, resource file attributes, session management, and
ToolTalk message handling. See “To Establish Application Framework Behavior” on
page 88 for instructions.

84 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Application Vendor Name A text field for typing an optional string, which
will be stored in the source code. Used in the call
to initialize ToolTalk (if ToolTalkTM is enabled).

Application Version A text field for typing an optional string, which
will be stored in the source code. Used in the call
to initialize ToolTalk.

Application Primary An option menu for specifying the primary main
window of the application being developed. An
application may have more than one main
window, but only one primary window. This
window is typically the window which is first
displayed when the application is opened. By
default the first main window dropped on the
workspace in a new project is the primary
window.

Internationalization Enabled A check box for specifying whether
internationalization is enabled; if checked, turns
on XPG4-compliant internationalization in the

Adding Functionality to the Interface 85

generated code for the project. In the
[module]_ui.c file, all labels and strings for
objects are generated, enclosed by the
catgets (3C) call, which is used to fetch the
appropriate localized version of the string at
runtime. If internationalization is turned on,
dtcodegen will also automatically generate and
maintain the message catalog ([project].msg)
which maps to the generated catgets (3C) calls.

Generated Code Check boxes for specifying which categories of
object attributes (which map to Xt Resources)
should be written into a Resource file instead of
placing them directly in the [module]_ui.c
file—which is the default. Any attribute
(resource) which is specified in a Resource
file—and not directly in the code—can be
modified without recompiling the application.
The Attribute categories are as follows:

Colors: Background, Foreground

Label Strings: Label String, Title

Initial Values: Initial Value

Geometry: X, Y, Width, Height, all attachment
attributes

Other Strings

Other

Session Management Method An option menu for specifying the method of
session management (None, Command Line,
Session File, or Both), and two push buttons
(Session Save Connection, Session Restore
Connection) for displaying the Connections
Editor and making appropriate connections.

ToolTalk Desktop An option menu for specifying what level of the
ToolTalk Desktop Message Alliance protocol the
application will participate in, and a push button
(Advanced ToolTalk Connections) for displaying
the Connections Editor. The ToolTalk desktop
protocol is a set of predefined ToolTalk messages
which communicate desktop-type events or

86 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

requests to a running application. App Builder
support for ToolTalk is provided at three levels:
None, Basic, or Advanced, as described below.

None. There is no participation in the ToolTalk
Desktop Protocol; no ToolTalk code is generated.

Basic. The ToolTalk library responds to Desktop
messages in categories 1-3 in a predefined and
standard way. Code is generated in main()
which initializes ToolTalk and calls the function
which tells ToolTalk to handles these messages.
At this level, you do not need to write any
special application code.

Advanced. The ToolTalk library responds to
messages in categories 1 and 2, but the
application is notified (via callback) when
messages in categories 3 & 4 are received.

If you choose Advanced, you must use the
Connections Editor to identify which messages
the application wishes to handle. If you click the
Advanced ToolTalk Connections button, the
Connections Editor will be displayed with
Application as the Source object type. The When
option menu lists four ToolTalk choices: ToolTalk
Do Command, ToolTalk Get Status, ToolTalk
Pause/Resume, and ToolTalk Quit. The only
valid action type for a ToolTalk connection is Call
Function; your callback function will be called
when the ToolTalk message is received.

At this level code is generated in
[project].c:main() which initializes ToolTalk
and sets up the Desktop Protocol so that the
callbacks defined in the Connections Editor will
be called when the corresponding message is
received. Each user-defined callback contains
descriptive comments describing what the
application is expected to do in response to the
message. These callbacks are also generated in
[project].c .

Adding Functionality to the Interface 87

To Establish Application Framework Behavior
1. Choose Application Framework from the Editors menu in the App Builder

primary window to display the editor.

2. Type a Vendor Name and Version number in the text fields in the Application
section, if appropriate.

These are used in the call to initialize ToolTalk, if ToolTalk is enabled.

3. Choose a different primary main window, if appropriate.

4. Set Internationalization to Enabled, if appropriate.

Internationalization generates labels and strings for objects with a call that fetches
the appropriate localized version of the string at run time. It also generates and
maintains a similar message catalog.

5. Select the attributes you want to be written to the Resource file in the
Generated Code section.

The categories you select are written to a resource file instead of directly to the
module file; these attributes, therefore, can be modified without recompiling the
application.

6. Choose a Method (None, Command Line, Session File, or Both) in the Session
Management section, as appropriate.

7. Select Session Save Connection and/or Session Restore Connection, as
appropriate, to make connections in the Connections Editor.

8. Choose a Desktop Message Handling level (None, Basic, or Advanced) in the
ToolTalk section, as appropriate.

See “Establishing Application Framework Behavior” on page 84 for more about
ToolTalk message handling.

9. If you did not choose Advanced in the previous step, click OK to apply the
changes made and dismiss the Application Framework Editor.

10. Click Advanced ToolTalk Connections if you chose Advanced in the previous
step.

11. Choose the appropriate ToolTalk function from the When menu in the
Connections Editor.

12. Choose Call Function as the Action Type.

88 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

13. Type in the name of the appropriate call function.

This is the name of the function that will be called when a ToolTalk operation is
performed. You will have to edit the stubs.c file to make the called function do
something useful. See “Adding User Code to Generated Code” on page 113 for
information.

14. Click Connect to make the connection.

15. Click Cancel to dismiss the Connections Editor.

16. Click OK in the Application Framework Editor to apply the changes and
dismiss the editor.

Adding Functionality to the Interface 89

90 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 7

Grouping and Attaching Objects

In order to ensure that interface objects maintain consistent spacing and size
relationships, regardless of text changes (including internationalization changes) and
resizing of windows, you may need to group control objects and to attach objects to
each other.

This chapter discusses how to group and attach objects for dynamic layout behavior.

� “Grouping Objects” on page 91

� “To Create a Group” on page 92

� “To Edit Group Properties” on page 92

� “To Ungroup Objects in an Interface” on page 93

� “To Create a Border Around an Object” on page 94

� “Attaching Objects” on page 94

� “Attachments Editor” on page 95

� “To Attach Objects in an Interface” on page 100

� “Attachment Example: Custom Dialog” on page 101

Grouping Objects
A group is a collection of objects that can be treated as a unit. Once the objects in a
group are positioned as desired, the group can be moved, maintaining the relative
positioning of the individual objects. Because groups use dynamic layout for
positioning objects, spacing and alignment in the group are maintained if any of the
objects in the group change size.

91

See “Group Property Editor” on page 143 for a description of the editor and each of
its elements.

To Create a Group
1. Select the control objects you want to be part of the group.

You can select the objects either in the interface or the Module Browser, and you
can select the objects in whatever manner is most convenient. See “To Select
Control Objects in the Interface or the Browser” on page 36 for instructions.

2. Choose Group from the Layout menu or the pop-up menu (displayed by
pressing mouse button 3 with the cursor in the window interface or in the
Module Browser).

A rectangular box will be drawn around the group in the interface, indicating
that the group is selected. Note that Ungroup is active in the Layout and pop-up
menus; this is only true when a group is selected.

A new object will be displayed and selected in the Module Browser—an object
called "group" (or "group2," and so on, if other groups exist in the module). The
group object is the parent of the objects that comprise the group. Group members
cannot be moved independently. Any attempt to move an object in a group will
cause the entire group to move.

To Edit Group Properties
Group properties, including horizontal or vertical alignment and spacing between
objects, are set in the Group Property Editor.

1. Double-click the group in the interface or in the Module Browser.

The group will be selected in the Revolving Property Editor. In the interface you
will have to click in the space between group members to select the group.

Alternatively, you can display the Group Property Editor by choosing Groups
from the Editors menu of the primary window. Choosing Groups from the
Editors menu is the same as clicking Tear-off in the Revolving Property Editor
with Group chosen as Object Type.

2. Select the group to be edited from the Group Objects list, if necessary.

3. Type a new name for the group, if necessary.

4. Choose a border frame style if you want the group to have a border in the
completed interface (no border is the default).

Border frame style choices are shadow out, shadow in, etched out, etched in, and
none.

92 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

5. Select a Layout Type.

Choices are as-is, vertical, horizontal, and row-column.

Depending on what you select, either the Vert Alignment or Horiz Alignment
option menu, or both, will be active. If you select rows-columns, the Rows and
Columns radio buttons will be active, also.

6. Designate the number of Rows or Columns (if row-column layout was selected).

The number of columns will be determined automatically if you designate the
number of rows, and the number of rows will be determined automatically if you
designate the number of columns.

7. Choose a vertical alignment (if either vertical alignment or row-column layout
type was chosen).

The choices are align on left edge of objects (the default), align on colons/labels,
align on middle of objects, or align on right edge of objects.

8. Designate vertical spacing (if either vertical alignment or row-column layout
type was chosen).

The absolute values are in pixels; 10 is the default.

9. Choose a horizontal alignment (if either horizontal alignment or row-column
layout type was chosen).

The choices are align on top edge of objects (the default), align on middle of
objects, or align on bottom edge of objects.

10. Designate horizontal spacing (if either horizontal alignment or row-column
layout type was chosen).

The absolute values are in pixels; 10 is the default.

11. Deselect Visible if you do not want the objects in the group to be visible when
the application is opened.

12. Deselect Active if you do not want the objects in the group to be active when
the application is opened.

13. Click OK or Apply to apply the changes.

The Revolving Property Editor or Group Property Editor will be dismissed if you
click OK.

To Ungroup Objects in an Interface
1. Select the group in the Module Browser or in the interface.

Grouping and Attaching Objects 93

In the interface, click between objects in a group to select the group. You will
know the group is selected if a box appears around two or more objects.

If you can’t select a group in the interface or if you want to be sure to select the
right group in an interface with many groups, open the Module Browser. Groups
are shown in the Module Browser by name of group; if you select the group in
the Module Browser, it is also selected in the interface.

2. Choose Ungroup from the Layout menu or the interface pop-up menu
(displayed by pressing mouse button 3 in an interface window).

The objects are no longer part of the group. You can now select any of the objects
and move it independently of the other objects.

To Create a Border Around an Object
The group function can be used to create a border around an individual object, such
as a label.

1. Select the object in the interface.

2. Choose Group from the Layout menu or the interface pop-up menu.

The object will be part of a group.

3. Display the Group Property Editor.

4. Select the group you want to put a border around.

If you double-click the group in the Module Browser, the Group Property Editor
will be displayed, with the group selected.

5. Choose the Border Frame style you want to add to the object.

6. Click OK to apply the change and dismiss the Group Property Editor.

Attaching Objects
Attachments (and groups, which are based on attachments) establish dynamic layout
behavior for objects in the interface. Dynamic layout behavior ensures that objects
will maintain consistent relationships during resize activities. Attachments enable an
internationalized application to work well in a number of locales.

94 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

All child objects are attached by their top and left edges to the top and left edge of
their parent object, by default. Thus a control pane dropped on a main window is
attached by its left and top edges to the left and top edges of the main window.
Similarly, a button dropped on the control pane is attached to the control pane.

If the parent object is resized in an upward or leftward direction, the child object
moves with the parent, maintaining the distance from the top and left edge of the
parent.

If a pane object is dropped on the top or left edge of its parent it will be attached to
that edge with an offset of 0. If it is dropped some distance to the right and below
the left and top edges of its parent, it will have positive offsets.

If a pane object is resized from its right and bottom edges so that it spans its parent
object, it will be attached to the right and bottom edges of its parent.

Attachments Editor
Used to attach objects to each other for layout purposes, the Attachments Editor is
described below.

Object Type An option menu for choosing the type of object
for which you want to make attachments. Some
object types (custom dialog, file selection dialog,
main window) do not have parents and are not
included in the menu.

Grouping and Attaching Objects 95

Objects A scrolling list for selecting the object for which
you want to make attachments.

Parent A text field that indicates the parent of the
selected object.

Children A scrolling list that lists the children of the Parent
object.

Parent attachments/Attachments Radio buttons for displaying the attachments of
the parent of the selected object or the
attachments of the children of the selected object.

Some objects (draw area pane, term pane, text
pane) cannot have children and may be children
of a main window or custom dialog; thus, neither
Parent attachments nor Attachments in child will
be active. If the pane is a child of another pane,
though, or if it is part of a layered pane, Parent
attachments will be active.

Attach To Option menus for choosing the type of
attachment for the selected object and what to
attach the object to. Also includes text fields for
specifying the Offset (in pixels) from the selected
object and its parent or sibling (a sibling is
another object with the same parent) or for
specifying the Percentage offset of the selected
object from its parent.

The option menu below "Attach To:" is for
choosing which sibling to attach to and is active
only for sibling attachments (two small squares).
The Offset text field is active for absolute (pixel)
attachments only; the Percentage text field is
active for percentage attachments only.

The selected object is shown in the center of its
four possible attachments. The attachments,
starting at the top and going clockwise, are top
edge of selected object, right edge of selected
object, bottom edge of selected object, and left
edge of selected object.

Top- and left-edge attachments are illustrated and
described below; by default an object is attached
at its top and left edges to the top and left edges
of its parent. The selected object (the object at the

96 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

center of the four Attach To boxes) is the
controlling object: if you move this controlling
object, the pixel or percentage offset is changed;
click Reset to see current values after moving an
attached object.

If an attached parent object is resized, its child
objects will retain their pixel or percentage offsets
from the edges of their parent. The offsets will
change if a child object is moved.

Sibling icons (two small squares) are inactive if
the selected object has no siblings.

An ascending line from the top edge of
a small square to the top edge of its surrounding
box represents an absolute (pixel offset)
attachment of the top edge of the selected object
to the top edge of its parent.

A descending line from the top edge of
a small square to the bottom edge of its
surrounding box represents an absolute (pixel
offset) attachment of the top edge of the selected
object to the bottom edge of its parent. This value
will be negative, since y values are positive as
they ascend and negative as they descend.

Two vertically-aligned squares
connected by a vertical line represent an absolute
(pixel offset) attachment of the top edge of the
selected object to the bottom edge of its sibling.
The offset will change if the selected object is
moved. This value will be negative if the top
edge of the selected object is above the bottom
edge of its sibling.

Grouping and Attaching Objects 97

Two horizontally-aligned squares
connected by a horizontal line to the centers of
their top edges represent an absolute (pixel offset)
attachment of the vertical center of the selected
object to the vertical center of its sibling. The
offset will change if the selected object is moved.
This value will be negative if the center of the
selected object is above the center of its sibling.

A square with a two-headed arrow
and a percentage sign above it represents a
percentage offset attachment of the top edge of
the selected object to the top edge of its parent.
The offset will change if the selected object is
moved.

A square with a percentage sign above
it and a two-headed arrow between the center
line of the square and the top of the surrounding
box represents a percentage offset attachment of
the center of the selected object to the top edge of
its parent. The offset will change if the selected
object is moved.

A circle with a diagonal line through
it represents no attachment from the edge (top,
left, bottom, or right) to another object. By
default a dropped object has no right or bottom
edge attachments.

98 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Note - Descriptions of the attachments to the
bottom edge of the selected object are correlatives
of the descriptions of the top-edge attachments
above. Substitute "bottom" for "top" and "top" for
"bottom" for bottom-edge attachments. Normally
you will want top- and left-edge attachments
only.

A horizontal line from the left edge of
the surrounding box to the left edge of a small
square represents an absolute (pixel offset)
attachment of the left edge of the selected object
to the left edge of its parent. The offset will
change if the selected object is moved.

A horizontal line from the right edge
of the surrounding box to the left edge of a small
square represents an absolute (pixel offset)
attachment of the left edge of the selected object
to the right edge of its parent. The offset will
change if the selected object is moved. This value
will be negative, since x values are positive to the
left and negative to the right.

Two horizontally-aligned squares
connected by a horizontal line represent an
absolute (pixel offset) attachment of the left edge
of the selected object to the right edge of its
sibling. The offset will change if the selected
object is moved. This value will be negative if the
left edge of the selected object is left of the right
edge of its sibling.

Grouping and Attaching Objects 99

Two vertically-aligned squares
connected by a vertical line to the centers of their
left edges represent an absolute (pixel offset)
attachment of the horizontal center of the
selected object to the horizontal center of its
sibling. The offset will change if the selected
object is moved. This icon is inactive if the
selected object has no siblings. This value will be
negative if the center of the selected object is left
of the center of its sibling.

A square with a two-headed arrow
and a percentage sign above it represents a
percentage offset attachment of the left edge of
the selected object to the left edge of its parent.
The offset will change if the selected object is
moved.

A square with a percentage sign to its
left and a two-headed arrow between the center
line of the square and the left of the surrounding
box represents a percentage offset attachment of
the center of the selected object to the left edge of
its parent. The offset will change if the selected
object is moved.

Note - Descriptions of the attachments to the
right edge of the selected object are correlatives
of the descriptions of the left-edge attachments
above. Substitute "right" for "left" and "left" for
"right" for right-edge attachments. Normally you
will want top- and left-edge attachments only.

To Attach Objects in an Interface
See “Attachments Editor” on page 95 for an illustration of the editor and
descriptions of its elements.

100 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

1. Choose Attachments from the Editors menu in the App Builder primary
window to display the Attachments Editor.

The Attachments Editor can also be displayed by clicking the Attachments button
in a property editor or by choosing Attachments from the interface or Module
Browser pop-up menu.

2. Choose the object type you want to attach to its parent or siblings.

3. Select the object that you want to attach.

4. Select an attachment type.

If you choose an icon with one small square you are making an attachment from
a child object to its parent. If you choose an icon with two small squares you are
making a sibling attachment. See “Attachments Editor” on page 95 for
descriptions of the types of attachments.

When you make an attachment, the selected object—the object in the center of the
four Attach To boxes—is the controlling object. That is, this object can be moved
without affecting its parent or sibling. The offset value or percentage value will
change to reflect the changed relationship between the two objects.

On the other hand, if you move the other object—the object to which the selected
object is attached—the selected object will move so as to maintain its relationship
with the other object.

You may have to click Reset after moving an object in the interface before the
change is noted in the Attachments Editor.

5. Click OK or Apply to apply the changes.

If you click OK, the Attachments Editor will be dismissed.

Attachment Example: Custom Dialog
Drag and drop an App Builder custom dialog object to see an example of
attachments. Each of the buttons at the bottom of the custom dialog are attached to
the top and sides of their enclosing dialog panel. They are attached five pixels from
the top of the panel and varying percentages from the left edge of the panel (Button1
left edge 10%, right edge 30%; Button2 40% and 60%; Button3 70% and 90%).

The left edge of Button1 will always be 10% from the edge of the panel and the right
edge of Button1 will always be 30% from the edge of the panel. Button1 will
therefore always be as wide as 20% of the total width of the panel. Button2’s edges

Grouping and Attaching Objects 101

are 40% and 60% from the left edge of the panel; Button3’s edges are 70% and 90%
from the left edge of the panel.

The three buttons will grow and shrink as the panel grows and shrinks, and the
distance between them will always be 10% of the total width of the panel.

102 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 8

Testing Menus, Help, and Connections

Many functions of your interface can be tested without generating code and making
the application. In both Test Shown Modules and Test Project mode, all build
windows except the App Builder primary window are closed, and the App Builder
primary window is inactive except for the Build button and the Help menu.

If your project is small, you will probably want to test the entire project. If it is large,
you may want to test only selected modules, thus saving the time it takes to load a
large project. In Test Project mode the entire project is available. Windows that are
designated as not visible at startup (as are custom dialogs by default, for instance)
will not be visible.

See “To Show a Hidden Module” on page 31 for instructions if you are going to use
Test Shown Modules.

� “To Test a Project or Selected Modules” on page 103

� “To Test Help Volume Access” on page 104

� “To Test On Item Help” on page 104

� “To Test Menus in a Module” on page 105

� “To Test Connections in a Project” on page 106

Test Procedures
To Test a Project or Selected Modules
1. Click Test Project or Test Shown Modules in the App Builder primary window.

Depending on which button you selected, all modules in the current project or
only shown modules will be tested.

103

2. Test help, if appropriate.

See “To Test On Item Help” on page 104 for instructions.

3. Test menu displays, if appropriate.

See “To Test Menus in a Module” on page 105 for instructions.

4. Test connections, if appropriate.

See “To Test Connections in a Project” on page 106 for instructions.

5. Click Build to return to build mode.

To Test Help Volume Access
These instructions assume you have created a help menu and attached it to a Help
menu on the menu bar of a main window, as described in “Creating Help and Help
Connections” on page 71.

1. Display the modules to be tested, if necessary.

If you are not going to test the entire project, you will need to show the modules
to be tested. See “To Show a Hidden Module” on page 31 for instructions.

2. Click Test Shown Modules or Test Project, as appropriate.

Click Test Project to test the entire project. Click Test Shown Modules to test
selected modules.

3. Test help volume access by choosing one of the help volume chapters
(Overview, Tasks, Reference, for example) from the Help menu.

A help volume window with the appropriate help text will be displayed, if the
help viewer (dthelpview) is accessible and the proper connection has been
made to the compiled help volume. See “Creating Help and Help Connections”
on page 71 for instructions for creating help and making connections to it.
Dismiss the help window when you are finished with it.

4. Click Build to return to build mode.

To Test On Item Help
These instructions assume you have created a help menu and attached it to a Help
item on the menu bar of a main window, as described in “Creating Help and Help
Connections” on page 71.

104 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

1. Display the modules to be tested, if necessary.

If you are not going to test the entire project, you will need to show the modules
to be tested. See “To Show a Hidden Module” on page 31 for instructions.

2. Click Test Shown Modules or Test Project, as appropriate.

Click Test Project to test the entire project. Click Test Shown Modules to test
selected modules.

3. Test help volume access by choosing one of the help volume chapters
(Overview, Tasks, Reference, for example) from the Help menu.

A help volume window with the appropriate help text will be displayed, if the
help viewer (dthelpview) is accessible and the proper connection has been
made to the compiled help volume. See “Creating Help and Help Connections”
on page 71 for instructions for creating help and making connections to it.
Dismiss the help window when you are finished with it.

4. Test On Item help by choosing On Item from the Help menu.

The cursor will turn into an arrow and a question mark.

5. Move the cursor over an interface object and click.

If the object (or one of its parent objects) has help text, it will be displayed in a
quick help window.

6. Click the More button in the quick-help window, if it is active.

The help volume will be displayed, at the location specified in the Location ID for
the selected object in the Help Editor. Dismiss the help window when you are
finished with it.

7. Click the Close button in the quick help window to dismiss it.

8. Click Build to return to build mode.

To Test Menus in a Module
In Test Shown Modules mode, all windows in the currently-shown modules will be
displayed, including those whose initial state is not set Visible. See “To Test a Project
or Selected Modules” on page 103 if you want to test the entire project, with
not-Visible windows hidden.

1. Display the module to be tested, if necessary.

See “To Show a Hidden Module” on page 31 for instructions.

Testing Menus, Help, and Connections 105

2. Click Test Shown Modules.

3. Click or press on the items in a menu bar, if appropriate.

The menus will be displayed. If you select a menu item that is connected to
certain predefined functions (Show or Hide a dialog, Access Help Volume,
Activate On Item Help, for example), the function will be performed.

4. Click each button menu, as appropriate.

The menus will be displayed. If you select a menu item that is connected to
certain predefined functions (Show or Hide a dialog, Access Help Volume,
Activate On Item Help, for example), the function will be performed.

5. Press mouse button 3 on a pane or list item to display a pop-up menu, if
appropriate.

The menus will be displayed. If you select a menu item that is connected to
certain predefined functions (Show or Hide a dialog, Access Help Volume,
Activate On Item Help, for example), the function will be performed.

6. Click Build to return to build mode.

To Test Connections in a Project
1. Display the modules to be tested, if necessary.

See “To Show a Hidden Module” on page 31 for instructions.

2. Click Test Project.

All build windows except the App Builder primary window will be closed, and
the primary window will be inactive except for the Build button and the Help
menu. Only windows in the project with an initial state set to Visible will be
displayed.

3. Click a button or choose a menu item that has a testable connection.

The following connections should work in test mode as they will work in the
compiled application:

� Show

� Hide

� Set Value

� Set Text

� Access Help Volume

� Activate On Item Help

� Enable

106 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

� Disable

If you connect a button to a custom dialog, for instance, specifying the button as
the source object, Activated as the When action, the custom dialog as the target
object, and Show as the Action Type, the custom dialog will be displayed when
you click the button.

Connections to Call Function and Execute Code will be noted by messages to
standard out.

Connections to Application Framework, ToolTalk, and message dialogs are not
supported in test mode.

Testing Menus, Help, and Connections 107

108 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

CHAPTER 9

Generating Code and Building an
Application

This chapter describes the Code Generator and its use to generate code, add user
code to generated code, make the application, and run the compiled application. See
“Code Generator Window” on page 128 for an illustration of the Code Generator
window and descriptions of its elements.

� “Making and Running an Application” on page 109

� “To Set Code Generator Options” on page 111

� “To Set Environment Options” on page 112

� “To Generate Code From the Command Line” on page 112

� “Adding User Code to Generated Code” on page 113

Making and Running an Application
Two scenarios are described below. In the first scenario, you build and run an
application in one step. In the second scenario, you generate code, compile the code,
and run the application in separate steps.

In either case, if you have made changes to the project that have not been saved, a
message dialog box will be displayed, telling you that you have unsaved edits and
giving you the choice of cancelling the generate code process or saving the project. If
you choose to save the project, you will have to specify where to save the project if it
has not been saved before.

109

To Make and Run in One Step
1. Choose Code Generator from the File menu of the App Builder primary

window.

The Code Generator is displayed.

2. Click Make & Run to generate code, build the application, and run it.

If you have saved the project and all goes well, a number of messages will be
displayed in the output pane at the top of the Code Generator. The final message
will be "Running: ./[projectname]" and the application will run.

At the least, the application primary window will be displayed. Any windows
whose visibility is not set to yes at application startup will be hidden. Depending
on what functionality you included that does not require user code, the
application might do a variety of things. Menus can be displayed, some
connections can be tested, On Item help can be displayed, and so on.

Note - Ultimately, you must write some code to complete the application. For
example, any Call Function callbacks specified in the Connections Editor will
have to be substituted for. See “Adding User Code to Generated Code” on page
113 for more information.

To Generate Code, Make, and Run Separately
1. Click Generate Code to generate code for the current project.

As the code generator runs, messages are displayed in the output pane at the top
of the Code Generator window. The final message should be "Completed
successfully." A number of files will be created, including Makefiles, project files,
module files, and two dtb_utils files. You can look at the files in the term pane
at the bottom of the Code Generator window.

2. Click Make to build the application.

More messages will be displayed in the Output Pane as the application is
compiled. The final message again should be "Completed successfully." A few
more files will be created, including object files and the executable application
file, which has the name you gave the project.

3. Click Run to run the application.

The application will be started—as if you had typed the name of the executable at
the command line.

4. Click Abort to quit the application.

110 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

This will terminate the application, closing all windows. You can also click Abort
to terminate code generation or make operations started in the Code Generator
window.

To Set Code Generator Options
To change the options that determine what code is generated and other Code
Generator functions:

1. Choose Code Generator from the File menu of the App Builder primary
window to display the Code Generator window.

2. Choose Generator from the Options menu to display the Code Generator
Options dialog box.

3. Select one of the Generate Code For options (Entire Project, Main Only,
Specific Modules Only, Specific Modules and Main).

If you select Specific Modules or Specific Modules and Main, the list of modules is
active. Select the names of the modules you want to generate code for in the list.

4. Click Don’t Merge if you do not want your hand-edited code merged with the
generated code.

Note - Do not select Don’t Merge unless you are sure you want to destroy the
user code.

5. Choose a different message reporting option if you wish.

Choices are Report Normal Messages, Be Silent, and Be Verbose.

6. Type Make Arguments, if appropriate.

These arguments will be included when you click Make or Make & Run.

7. Type Run Time Arguments, if appropriate.

These arguments will be included when you click Run or Make & Run.

8. Click Reset to Defaults to set all fields to their default values.

Default values are Generate Code For Entire Project, Merge user code with
generated code, and Report Normal Messages.

9. Click OK or Apply to make the changes.

The Options dialog box will be dismissed if you click OK.

Generating Code and Building an Application 111

To Set Environment Options
1. Choose Code Generator from the File menu of the App Builder primary

window to display the Code Generator window.

2. Choose Environment from the Options menu to display the Environment
Options dialog box.

3. Type a variable in the Variable Name text field.

You might want to change PATH, for instance.

4. Click Get to display the current value for the variable in Variable Name.

The value of the variable will be displayed in the Value pane.

5. Make a change to Value and click Set to change the value of the variable.

This change is made for this App Builder session only.

6. Click Reset to reset Value to its value outside this session of App Builder.

7. Click Cancel to dismiss the dialog box.

To Generate Code From the Command Line
To generate App Builder code from the command line, run dtcodegen . Usage is
described below.

Usage: dtcodegen [options] [project-file] [module-file [module-file] ...]

Code is generated for each module specified on the command line, or for all modules
in the project, if no modules are specified. If no project file is specified, a project file
containing the specified module(s) is searched for in the current directory.

Files with extension .bip are assumend to be BIL project files, files with .bix
extension are assumed to be encapsulated BIL files, and files with a .bil extension
are assumed to be BIL module files.

Options (* = default, + = default with no project file)

-help (-h) Print out this help message

-main Write file containing main()

112 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

-changed Only generate files that have changed

* -merge Merge generated _stubs.c files with previous
version

-nomerge Don’t merge existing and new stubs file

* -project (-p) Specify a project to generate code for

-noproject (-np) Use default project settings, ignore project file

+ -showall Application shows (maps) all windows at startup

* -noshowall Application shows (maps) only initially-visible
windows

-silent (-s) Silent mode, no messages written

-verbose (-v) Verbose mode, detailed progress messages

Adding User Code to Generated Code
When you generate code for the interface you have developed by clicking Generate
Code in the Code Generator window or running dtcodegen from the command line,
a number of files are generated in the project folder. If your project is called “test”
and it has one module, called “mod1,” for instance, the following files will be created:

� Makefile (plus Makefiles for other platforms)

� dtb_utils.c

� dtb_utils.h

� mod1.bil (module file)

� mod1_stubs.c

� mod1_ui.c

� mod1_ui.h

� test.bip (project file)

� test.c

� test.h

� Test (resource file)

Generating Code and Building an Application 113

If you have made Call Function or Execute Code connections in the Connections
Editor, those connections will show up in the generated code. All of the areas of the
generated code that my be modified by you are marked with comments of the form:

/* DTB_USER_CODE_START */

/* DTB_USER_CODE_END */

The area between the START and END comments are considered a “user segment.”
Any text (even non-C code) may be added within a user segment, and the code
generator will preserve this code in all future versions of the code. Each user
segment begins with a comment that suggests what type of code should be added in
that segment, or what state the application is in when that segment is executed.
These suggestions are purely informational, and may be ignored.

Neither App Builder nor the code generator verify that the code added by you is
legal C code. It is your responsibility to ensure that any file you modify can be
processed satisfactorily by your compiler.

If you wish to destroy all of the hand-edited code, you must either explicitly select
Don’t Merge from the Options dialog of the Code Generator Window, or run
dtcodegen with the -nomerge option. This should be done only with great
caution, as large amounts of work may be lost.

Under no circumstances should the generated comments be modified. If they are
modified, code generation will fail, and the resulting file will very likely be
uncompilable. A backup file, with the extension .BAK , is preserved in the current
directory to help recover from such mistakes.

The user code segments appear in strategic places in the code, to allow you a great
deal of freedom in customizing the generated application. All code related to
main() and application-wide data and structures are defined in <projectname>.h
and <projectname>.c . In these files, fields may be added to the Xt resource data
structure for the application, new developer-defined data types and variables may be
added, and the application’s startup procedures may be amended.

Each <modulename>_stubs.c file contains user segments for modifying the effects
of generated connections. Your code may be added both before and after the
automatically-generated code is executed.

In addition, each file contains a user segment at the top of each file that can be used
to add a custom header or copyright notice.

114 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

APPENDIX A

App Builder Windows and Dialog Boxes

This appendix describes the major windows and dialog boxes in App Builder,
including illustrations of the windows and dialog boxes and descriptions of the
window and dialog box elements.

� “App Builder Primary Window” on page 116

� “Windows Palette” on page 117

� “Panes Palette” on page 119

� “Controls Palette” on page 122

� “Project Organizer” on page 125

� “Module Browser” on page 126

� “Code Generator Window” on page 128

115

App Builder Primary Window

Controls palette

Mode bar

Windows palette

Title bar

Object
information area

Panes palette

The App Builder primary window is the starting point for building a graphical user
interface. The interface is created by dragging objects from the App Builder object
palettes (Windows, Panes, and Controls) to the workspace, editing the properties of
the resultant interface objects, and adjusting the layout of the interface. See
“Overview of the App Builder Process” on page 17 in Chapter 1, for a summary of
the steps involved in creating an interface.

Title bar Includes the name of the application,
“Application Builder,” the window manager
menu, a minimize button, a maximize button, the
name of the current project (if one is open), and a
"(Save Needed)" indication if the current project
has changed since being saved.

Mode bar Includes Build, Test Shown Modules, and Test
Project radio buttons for specifying build and test
modes.

Build is for designing and building an interface.

Test Shown Modules is for testing help, menus,
and connections in current, shown modules. All
window objects will be shown, including those
for which the initial state is not set to Visible.

116 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Test Project is for testing help, menus, and
connections in the current project. Objects for
which the initial state is not set to Visible will not
be shown.

Windows palette Includes the three App Builder window objects:
main window, custom dialog, and file selection
dialog. Window objects are dropped on the
workspace. See “Windows Palette” on page 117
below for details.

Panes palette Includes the four App Builder pane objects:
control pane, text pane, draw area pane, and
term pane. Pane objects are dropped on main
windows, custom dialogs, or other panes. See
“Panes Palette” on page 119 for details.

Controls palette Includes 14 App Builder control objects: button,
menu button, combo box, option menu, menu
bar, radio box, check box, gauge, scale, separator,
text field, label, list, and spin box. Control objects
are dropped on control panes. See “Controls
Palette” on page 122 for details.

Object information area Provides information about the object beneath
the cursor. See “Object Information Area” on
page 124 for details.

Windows Palette
The Windows palette contains three objects: main window, custom dialog, and file
selection dialog.

App Builder Windows and Dialog Boxes 117

Main Window

A main window is the basic App Builder object. It is created by dropping a main
window icon on the workspace. The starting point for a user interface is built in a
main window. A main window has a minimize button and therefore can be iconified.

The status region includes the name of the module the window is part of and
indicates when the window object is selected. It does not appear in the compiled
application.

Examples of main windows used in building App Builder itself are the App Builder
primary window, the Project Organizer, the Module Browser, and the Code Generator.

Custom Dialog

A custom dialog is a window for displaying information or providing a pop-up for a
specific task within an interface. It is created by dropping a custom dialog icon on
the workspace. A custom dialog might be "connected" to a button or a menu in a
main window, causing the pop-up dialog to be displayed when the button is clicked
or a menu item is chosen. A custom dialog cannot be closed to an icon.

The status region includes the name of the module the dialog is part of and indicates
when the dialog object is selected. It does not appear in the compiled application.

118 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Examples of custom dialogs used in building App Builder include the File Selection
Dialog, the Project Name and Module Name dialog boxes, all of the editors, and the
message dialog boxes.

File Selection Dialog

A file selection dialog is a specialized pop-up dialog for specifying a file in an Open or
Save operation. It is created by dropping a file selection dialog icon on the workspace.

The status region includes the name of the module the dialog is part of and indicates
when the dialog object is selected. It does not appear in the compiled application.

Panes Palette
The Panes palette contains four objects: control pane, text pane, draw area pane, and
term pane. All panes can be dropped on a main window, a custom dialog, or another
pane. If a pane is dropped on a pane, the dropped pane will become a child of the
first pane or a layered pane will be created. See “To Create a Layered Pane” on page
48 ”in Chapter 5 ,” for more information.

App Builder Windows and Dialog Boxes 119

Control Pane

A control pane is the drop site for App Builder controls. It is created by dropping a
control pane icon on a main window, a custom dialog, or another pane. In the figure
above, a control pane has been dropped on the top-left corner of a main window, in
anticipation of resizing it to fill the entire canvas.

Examples of control panes used in building App Builder include the pane on which
the three panes palettes reside on the App Builder primary window and the pane
beneath the controls on each of the property editors.

Text Pane

A text pane is a multi-line text-entry area in the completed application. It is created
by dropping a text pane icon on a main window, custom dialog, or another pane.

Examples of the use of text panes in building App Builder include the Initial Value
field in the Text Pane property editor and the Help Text field in the Help Editor.

120 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Draw Area Pane

A draw area pane is used as a drawing or display area in the completed application. It
is created by dropping a draw area pane icon on a main window, custom dialog, or
another pane.

Note the horizontal and vertical scroll bars, which enable you to view objects outside
the current view area.

Examples of the use of draw area panes in building App Builder include the panes
displaying modules and module objects in the Module Browser, and the pane
displaying modules in the Project Organizer.

Term Pane

A term pane is a terminal emulation object which accepts user input and echoes
standard output. It is created by dropping a term pane icon on a main window,
custom dialog, or another pane.

App Builder Windows and Dialog Boxes 121

Controls Palette
The Controls palette contains 14 objects, including buttons, lists, text fields, and a
menu bar. To find out how to edit the properties of these objects, see Chapter 4. To
find out how to create menus and submenus and attach them to objects, see
“Creating and Editing Menus” on page 52 in Chapter 5.

Button A control which, when clicked, performs a
specified action. A button can be a push button, a
drawn button, or a menu button, settable in the
Button property editor. A drawn button, like a
push button, performs a specific function when
clicked; the label on a drawn button, however,
can change dynamically, depending on the status
of the application.

Menu Button A specialized button, ready for attachment of a
menu. Note that there is no menu button
property editor; edit the properties of a menu
button in the Button Property Editor.

Combo Box A combination text field and option menu object.
As with an option menu, you can select an item
from a pop-down menu, but you can also edit
any of the items in the list—if you have checked
"Editable" in the property editor, and if you write
code to make it work.

Option Menu One of the three "choice" objects (option menu,
radio box, check box). When you click on an
option menu, a menu is displayed, providing a
choice of items to choose from. The chosen item
remains in the option menu box and becomes the
active choice. Examples of option menus in App
Builder are Object Type in the property editors
and Source and Target in the Connections Editor.
An option menu is an exclusive-choice object.

Radio Box One of the three "choice" objects (option menu,
radio box, check box). A radio box is comprised
of a label and two or more round buttons
representing application functions, only one of
which can be selected (hence the term "radio
button," named for the type of buttons on an
automobile radio). A radio box is an
exclusive-choice object.

122 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Check Box One of the three "choice" objects (option menu,
radio box, check box). A check box is comprised
of a label and one or more check boxes, each with
its own label. Each check box has a "binary" (on
or off) state, and each is independent of the other.
A check box is a nonexclusive-choice object.

Gauge One of two "scale" objects (gauge, scale). A gauge
is used to indicate a value.

Scale One of two "scale" objects (gauge, scale). A scale,
like a gauge, indicates a value, but a user can
modify the value of a scale by moving the slider.

Separator A horizontal or vertical line used to indicate
separate functions in an application window.

Menu Bar A horizontal bar of menu buttons arrayed across
the top of a main window. The buttons are
cascade buttons, for attaching menus. The default
menu bar includes File, Edit, and Help topics.
You can change, delete, or add to this group of
topics. Note that the menu bar is not strictly a
control object: it is a control pane with three
buttons.

Text Field A single-line text-entry area with a label (in
contrast to a text pane, which is a is a multi-line
text-entry area).

Label A text string or graphic icon which can be
attached to an object for identification purposes.

Scrolling List An object for listing selectable options. A
scrolling list is comprised of a variable-length list
with scroll bars and an optional label. A list can
allow single or multiple selections, and it can
include a pop-up menu.

Spin Box An object for selecting from a number of choices,
only one of which is visible at any one time. A
spin box is comprised of a text field, a label, and
a set of arrows for sequencing through the
choices.

App Builder Windows and Dialog Boxes 123

Object Information Area
The object information area provides information about the object directly beneath
the cursor—either on one of the primary window palettes or in the user interface. It
includes the following information fields:

Object Type The type of object beneath the cursor (main
window, control pane, text field, for example).
This field is active in the App Builder primary
window, so you can use it to identify object types
in the object palettes.

Object Name The name of the interface object beneath the
cursor. This name, in combination with the
module name, uniquely identifies App Builder
objects. Palette objects do not have names, so the
field will be blank if the cursor is over the App
Builder primary window. Note that all palette
objects are given unique names when they are
instantiated in the interface; you can change the
name in the property editor for the object.

Position The (x,y) pixel coordinates of the top-left corner
of the object beneath the cursor, measured in the
coordinate system of the object that contains it. If
the object is a window object (main window,
custom dialog, or file selection dialog), the
position will be relative to the top-left corner of
the monitor screen.

If the object is a pane that was dropped on the
top-left corner of a window, its position will be
0,0, since 0,0 are the coordinates of the top-left
corner of the parent window. A pane that is
dropped on another pane and made a layered
pane also has coordinates of 0,0.

If the object is a control or a pane that has been
made a child of a control pane, its coordinates are
measured from the top-left corner of the parent
object to the top-left corner of the child object.

Size The size, in pixels, of the object beneath the
cursor, in the form "width X, height Y."

Cursor Position The (x,y) pixel coordinate location of the cursor,
measured in the coordinate system of the object
that contains it. Every object, including controls,

124 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

has its own coordinate system. Some compound
objects, comprised of more than one widget, have
multiple coordinate systems; a custom dialog, for
instance, includes a control pane, a tool bar, and
buttons, each with its own coordinate system.

Editing Module The name of the module currently being edited.
Any window dragged from the Windows palette
becomes part of that module. If more than one
module is shown on the workspace, you can
change the current module by selecting an object
in another module.

Project Organizer
The Project Organizer is used to open, save, or close a project, and to save, show,
hide, import, export, or remove modules.

Location A control pane with Project Path and Module
Path fields; indicates the full-path location of the
current project and the relative path to modules.
The module will normally be in the same folder
as the project, and its path will be noted as "."
("dot," signifying the current folder).

Module Array A draw area pane that depicts each of the
modules in the current project as a single icon
with the module name beneath the App Builder
icon.

App Builder Windows and Dialog Boxes 125

Module Browser
The Module Browser (also called the browser) provides a hierarchical, tree view of a
module. Use it to view modules, edit the interface, group or ungroup objects, create
connections, and display object property editors for editing. About the only things
you can’t do in the Browser that you can do in the interface is move or align objects.

To display the Browser, choose Module Browser from the View menu in the App
Builder primary window and select a module in the pull-right menu displayed or
select an object in the interface and Choose Browse from the pop-up menu
(displayed by pressing mouse button 3 in the interface).

Edit menu Includes the same functions as the Edit menu in
the App Builder primary window: Undo, Cut,
Copy, Paste, and Delete. If you select an object or
objects in the Browser and choose a menu item,
the objects selected will be selected in the
interface and the function chosen will be
performed in the interface.

126 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

View menu Horizontal displays child objects to the right of
their parent object. Toggles with Vertical, which
displays child objects below their parent object.
Vertical is the default view.

Hide Object Glyph hides the icons/glyphs that
represent the objects in the interface. Toggles
with Show Object Glyph, which is the default.

Show Object Type displays the object types of
objects in the interface. Toggles with Hide Object
Type, which is the default.

Collapse "undisplays" the children of selected
parent objects. This enables you to see more of
the interface in a smaller space.

Expand displays the children of selected collapsed
parent objects.

Expand All expands all collapsed parent objects.

Module displays the module chosen from the
submenu.

Find displays a Find Object dialog box, for
finding objects by object name; if the object is
found, the object is selected and the canvas
scrolls to show the object.

Tearoff Browser displays a new browser, enabling
you to view more than one module.

Module name Indicates the module being viewed. Can be
changed through the View menu.

Top-level view Shows all direct children of the
module—windows, menus, and messages. A
detailed view of each of the objects selected here
is shown in the detailed tree view.

Detailed tree view Shows a detailed view of the top-level objects
selected. All children of the selected top-level
objects are shown.

App Builder Windows and Dialog Boxes 127

Note - When you group objects or edit the interface in the Browser, be sure to check
the interface to see that you haven’t obscured any objects. In particular, if you group
objects, the rectangular group created may hide an object behind it.

Code Generator Window
The Code Generator window is used to generate code for the created interface and to
make and run the completed application. Display the window by choosing Code
Generator from the File menu of the App Builder primary window.

Path Indicates the path to the current project, which is
included in the title bar at the top of the window.

Output Pane Refers to the text pane below this label. The
results when you click on the buttons below the
pane are displayed in this text pane. (The
functions of the buttons also appear as menu
items in the File menu.)

128 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Generate Code Generates code for the current project. The output
for this action is displayed in the output pane.

Make "Makes" the application for the current project.
The output for this action is displayed in the
Output Pane.

Run Runs the compiled application after generating
code and making the application. The output for
this action is displayed in the Output Pane. The
primary window for the compiled application
will be displayed.

Make & Run Combines the functions of the first three buttons
(Generate Code, Make, Run). The output for this
action is displayed in the Output Pane. The
primary window for the compiled application
will be displayed.

Abort Aborts the currently running function. If the
compiled application is being run, clicking Abort
quits the application.

Term Pane Performs any terminal emulation functions.

Code Generator Options Dialog Box
The Code Generator Options dialog box, accessible from the Options menu in the
Code Generator window, is used to set options that determine what will happen
when various Code Generator functions are performed.

App Builder Windows and Dialog Boxes 129

Project The name of the current project.

Generate Code For Specifies whether code will be generated for
Entire Project, Main Only, Specific Modules Only,
or Specific Modules and Main. If one of the latter
two choices is specified, the modules in the
scrolling list are active.

Don’t Merge Specifies whether user-written code will be
merged into the generated code; if you check
Don’t Merge, any user-written code will be
discarded when code is generated.

Report Normal Messages Determines whether Normal Messages will be
displayed in the output pane when code is
generated, whether no messages will be
generated (Be Silent), or whether all messages
will be displayed (Be Verbose).

Make Arguments Specifies what arguments will be appended to
the Make command when it is run in the Code
Generator.

130 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Run Time Arguments Specifies what arguments will be appended to
the Run command when it is run in the Code
Generator.

Reset to Defaults Resets all Code Generator Options settings to
their default values.

Code Generator Environment Options Dialog Box
The Code Generator Environment Options dialog box, accessible from the Options
menu in the Code Generator window, is used for specifying a Variable Name and a
Value for the variable, which value will be used for functions performed in the Code
Generator window.

Variable Name Specifies the name of an environment variable.

Value Specifies a value for the variable specified in
Variable Name. This value is only set for the
Code Generator window and has no effect on the
value of the variable outside of the Code
Generator.

Get Gets the current Code Generator value of
Variable Name and displaying it in the Value text
field.

Set Sets Variable Name to the value in Value. This
value is set for Code Generator window
functions only.

Reset Resets Value for Variable Name to its value as set
outside of the Code Generator.

App Builder Windows and Dialog Boxes 131

Cancel Cancels any changes made to Value and closes
the Environment Options dialog box.

132 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

APPENDIX B

Revolving Property Editor

Used to edit the properties (the look or functionality) of interface objects, the
Revolving Property Editor customizes your application interface. This appendix
describes the properties common to all property editors, and the properties and the
buttons common to a number of property editors. It also describes the individual
property editors for each object.

� “Property Editor: Universal Properties” on page 134

� “Property Editor: Common Properties” on page 135

� “Property Editor: Common Buttons” on page 137

� “Individual Property Editors” on page 139

The property editor for a separator, which includes the properties common to almost
all property editors, is shown below, with common elements noted.

133

Object Type menu

Standard dialog box
buttons

Tear-off button

Initial State settings

Object list

Object name

Color (Background)

Color (Foreground

Buttons that display the
Attachments, Help, and
Connections editors,
respectively

Property Editor: Universal Properties
The property editor for each of the App Builder objects is unique, but there are a
number of properties common to almost all of them.

Object Type Not a property. Object Type is an option menu
for choosing the type of property editor to be
displayed. Properties change depending on
which object type is chosen.

Objects Not a property. Objects lists the objects of the
selected object type in the current project. The list
displays the full, unique name for each object,
which is comprised of the name of the module in
which the object exists, two colons, and the
Object Name.

Object Name Displays the default name or the name given by
you to the object selected in the Objects list.

134 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Initial State, Visible Specifies whether the selected object is visible
when the application starts up; all objects except
a custom dialog are visible by default.

Initial State, Active A check box for specifying whether the object
selected is "active" when the application starts up.
An inactive object is not functional: it is dimmed
and no functions can be activated from the object.

Color: Background Specifies the background color of the selected
object. You can either type in a known color
name or choose Color Chooser from the menu
and select a color from the palette displayed.

Color: Foreground Specifies the foreground color of the selected
object. You can either type in a known color
name or choose Color Chooser from the menu
and select a color from the palette displayed.

Property Editor: Common Properties
The following properties are common to three or more property editors.

Border Frame Determines the type of border, if any, around
certain objects. Choices are None, Shadow Out,
Shadow In, Etched Out, and Etched In.

Geometry Indicates the X and Y location of the selected
object, and the W(idth) and H(eight) of the object.
X and Y values specify the position of the
selected object in relation to its parent. The values
are in pixels and are measured from the top-left
corner of the parent object to the top-left corner
of the child object. W and H values are in pixels.

Graphic Filename Indicates the name of the pixmap (.pm) or
bitmap (.bm) file that contains the graphic to be
used as the label for the selected object or item.
This property is available only if Label Type or
Item Label Type is "Graphic."

Revolving Property Editor 135

Item Label Type Specifies the type of label (String or Graphic) for
the selected item in the Items list. If Graphic is
chosen, "Label" becomes "Graphic Filename."

Item State, Active Specifies whether the selected item will be active
when the compiled application is opened.

Items Lists the labels that represent the items in the list.
When an item is selected in the Items list, its
label is displayed in the Label or Graphic
Filename field.

Label (Object/Item) Specifies the label for the selected object or item.
"Label" becomes "Graphic Filename" if Graphic
Label Type is chosen. Label is inactive in the
Button property editor if Arrow Label Type is
chosen.

Label Type Specifies the type of label (String, Graphic, or
Arrow) for the selected object. If Graphic is
chosen, "Label" becomes "Graphic Filename." If
you choose Arrow, the label in the Button
property editor becomes an arrow and the Arrow
Direction property becomes active.

Menu Title Specifies the (optional) title of the pop-up menu,
if any.

Popup, Pulldown Menu A menu button and a text field for creating,
attaching, de-attaching, or editing a pop-up or
pull-down menu for the selected object. When
the Menus button is clicked, a menu with four
choices (None, Create New Menu, Menus, Edit
Current) is displayed. Menus and Edit Current
are inactive if no menus exist in the current
project. If a menu is already attached to the
selected object, the menu name will be displayed
in the text field.

Position (Label) Specifies the position (Left or Above) of the label
in relation to the selected object. This Position
option menu is next to the Label Type option
menu.

Position [XY] Indicates the X and Y location of the selected
object in relation to its parent. The values are in
pixels and are measured from the top-left corner

136 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

of the parent object to the top-left corner of the
child object.

Scrollbars Specifies when scroll bars should be attached to
the selected pane. The choices are Never and
Always for a term pane or a text pane, and
Never, When Needed, and Always for a draw
area pane.

Size Specifies the absolute W(idth) and H(eight) of the
window or pane. These values change if you
resize the window or pane manually in the
interface. For a term pane or a text pane, there is
an option menu for choosing Characters or Pixels
as the unit value.

Size Policy Specifies whether the selected object should
retain a fixed size or if it should become bigger
or smaller depending on the contents of the
object. The choices are Size of Label and Fixed for
buttons and labels, Fit Contents and Fixed for
main windows and custom dialogs.

Note - List item editing: once you have the appropriate number of items in the list,
the easiest way to perform item editing in those property editors that have an item
list* is to select the first item in the list, thus selecting it in the label text field. Type a
new name for the item and click Return. The new name will be displayed in the item
list and the next item in the list will be selected. Continue down the list with this
select, type, Return sequence until all items are completed. * Property editors with
item lists include the choice objects (Radio Box, Check Box, Option Menu), Combo
Box, List, Menu, Menubar, and Spin Box.

Property Editor: Common Buttons
The following functional push buttons or menu buttons are common to many
property editors. The buttons at the bottom of the property editors (OK, Apply,
Reset, Cancel, and Help) are common to other editors and dialog boxes.

Tear-off Displays a property editor of the selected type;
use this when you want to edit a specific object
type while viewing other types of objects in the
Revolving Property Editor.

Revolving Property Editor 137

Add Item Adds an item after the selected item in the Items
list. Added items are given default names starting
with "Item1" and incrementing, as needed. By
default, items are added after the selected item.

Edit Performs edit functions (Add After, Add Before,
Change, Cut, Copy, Paste, Delete) in a list. Add
After and Add Before add an item to the list
either after or before the selected item. Change
applies the change that you have made. Cut,
Copy, Paste and Delete act on the selected item,
in the normal way: Cut and Copy place the
selected item in a buffer, ready for Paste. Delete
removes the item, but does not place it in a
buffer.

Attachments Displays the Attachments Editor; there is no
Attachments button on the Main Window,
Menubar, Custom Dialog, or Paned Window
property editors.

Help Text Displays the Help Editor.

Connections Displays the Connections Editor.

OK Applies the changes made to the selected object
and dismisses the editor; changes to properties
are marked with change bars at the left side of
the editor.

Apply Applies the changes made to the selected object,
but does not dismiss the editor.

Reset Resets all changes made since the last Apply.

Cancel Resets all changes made since the last Apply and
dismisses the editor.

Help Displays help for the editor. See “Creating Help
and Help Connections” on page 71 for
information about App Builder help.

138 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Individual Property Editors
An individual property editor is displayed by:

� Double-clicking an object in the interface or the Module Browser.

� Or, selecting an object of the desired type and choosing Properties from the
Editors menu on the App Builder primary window.

� Or, choosing Props from the interface or Browser pop-up menu.

� Or, choosing the desired object type from the Object Type options menu at the top
of the Revolving Property Editor.

The individual property editors are described in the following sections.

Button Property Editor
Only properties unique to a button object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, Initial State, and Color. See “Property Editor: Common Properties” on page
135 for descriptions of Label Type, Label, Pulldown Menu, Size Policy, and Geometry.

Button Type Specifies what kind of button (Push, Drawn,
Menu) the selected button should be. Push
button is the default. Selecting Menu transforms
the push button into a menu button, as if you
had dragged and dropped a menu button from
the controls palette. The Pulldown Menu
property becomes active if you select Menu. See
“Controls Palette” on page 122 in Appendix A,
for descriptions of button types.

Label Alignment Specifies the alignment (Left, Right, Centered) of
the button label within the button border frame.
Label Alignment is relevant only if Fixed is
selected as Size Policy. This menu is inactive if
Arrow Label Type is chosen.

Arrow Direction Specifies which direction (Up, Down, Left, Right)
the arrow should point if Arrow Label Type is
chosen.

Revolving Property Editor 139

Choice Property Editor
Only properties unique to a choice object (Radio Box, Check Box, Option Menu) are
described here. See “Property Editor: Universal Properties” on page 134 for
descriptions of Object Type, Objects, Object Name, Initial State, and Color. See
“Property Editor: Common Properties” on page 135 for descriptions of Label Type,
Label Position, Label (Object), Items, Item Label Type, Label (Item), Item State
(Active), and Position [XY].

Choice Type Specifies which type of choice object (Radio Box,
Check Box, or Option Menu) the selected object
should be. The object changes form depending on
which you choose. Note that there is a control
object for each of the choice types in the Controls
palette. See “Controls Palette” on page 122 in
Appendix A for descriptions of choice types.

Rows/Columns Specifies whether the radio box or check box
should be laid out in rows or columns, and how
many rows or columns there should be. Not
relevant for an option menu.

Item State, Selected Specifies whether the selected item will be
selected when the compiled application is
opened. Only one item can be selected. For a
check box or a radio box object, the selected item
will be marked as selected; for an option menu,
the label for the selected object will be displayed
in the option menu when the application is
opened.

Combo Box Property Editor
Only properties unique to a combo box are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, Initial State, and Color. See “Property Editor: Common Properties” on page
135 for descriptions of Label Type, Label Position, Label, Items, Item Label, and
Position [XY].

Combo Box Type Specifies whether the text field for the selected
combo box will be Static or Editable in the
compiled application. If Editable is selected, code
must be written to implement the edit
functionality.

140 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Selected Specifies which item will be selected when the
compiled application is opened.

Width Specifies whether the combo box shrinks or
grows to accommodate the Longest Item in the
list, or if the W(idth) of the box is Fixed. If Fixed
is selected, the W(idth) value can be edited.

Control Pane Property Editor
There are no properties unique to a control pane. See “Property Editor: Universal
Properties” on page 134 for descriptions of Object Type, Objects, Object Name, Initial
State, and Color. See “Property Editor: Common Properties” on page 135 for
descriptions of Border Frame, Size Policy, Geometry, Popup Menu, and Menu Title.

Custom Dialog Property Editor
Only properties unique to a custom dialog object are described here. See “Property
Editor: Universal Properties” on page 134 for descriptions of Object Type, Objects,
Object Name, Initial State, and Color. See “Property Editor: Common Properties” on
page 135 for descriptions of Size Policy and Size.

Dialog Title The title that appears at the top of the custom
dialog.

Window Parent An option menu for specifying a parent main
window for the selected custom dialog. Choices
are None and any main window in the project. If
a main window is specified as a window parent,
the custom dialog will be iconified and
de-iconified with the main window. Note that
this functionality does not work in test mode, but
it does in the compiled application.

User Resize Mode Specifies whether the window is Fixed or
Adjustable (whether it can be resized in the
compiled application).

Dialog Areas Specifies whether a custom dialog includes a
Button Panel (three buttons, by default) and a
Footer area.

Default Button Specifies one of the dialog buttons as the selected
button, by default. The function represented by

Revolving Property Editor 141

the selected button will be performed if you
press Return while the mouse cursor is in the
custom dialog in the compiled application.

Help Button Specifies one of the dialog buttons as the help
button. See “Creating Help and Help
Connections” on page 71, for a description of the
Help Editor and instructions for creating help.

Draw Area Pane Property Editor
Only the one property unique to a draw area pane object is described here. See
“Property Editor: Universal Properties” on page 134 for descriptions of Object Type,
Objects, Object Name, Initial State, and Color. See “Property Editor: Common
Properties” on page 135 for descriptions of Scrollbars, Border Frame, Geometry,
Popup Menu, and Menu Title.

Total Canvas Size Specifies the W(idth) and H(eight) of the draw
area canvas. Note that only a portion of the
canvas will be visible if the draw area pane’s size
is smaller than the canvas size (400 by 400 pixels,
by default). You can use the scroll bars to view
other parts of the canvas.

File Selection Dialog Property Editor
Only properties unique to a file selection dialog object are described here. See
“Property Editor: Universal Properties” on page 134 for descriptions of Object Type,
Objects, Object Name, Initial State, and Color.

Window Parent Specifies the main window parent of the file
selection dialog. When displayed, the file
selection dialog will appear over its main
window. By default, the Primary Main Window
is the parent of all file selection dialogs.

Dialog Title Specifies the title that appears in the title bar at
the top of the file selection dialog.

Initial Directory Specifies the folder (directory) set as the starting
value in the Path field of the file selection dialog.

142 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Search Pattern Type Specifies whether files, directories (folders), or
both will be listed in the Files list of the file
selection dialog.

Search Pattern Specifies the value of the Filter field in the file
selection dialog. The Filter value limits the files
that will be listed in the Files field. The default
value is * (asterisk), which means all files in the
current folder will be listed. The Filter value for
the Import Module file selection dialog in App
Builder is *.bil , which means that only files
that end in .bil will be listed.

OK Button Label Specifies the label that will appear on the button
in the left-most position at the bottom of the file
selection dialog, normally labelled "OK." Clicking
this button completes the file selection process
and dismisses the file selection dialog. This
button is labelled "Import" for the Import Module
file selection dialog in App Builder.

Popdown Behavior Specifies whether the file selection dialog will be
automatically dismissed (the default) when the
OK button is clicked.

Group Property Editor
Used to modify the layout and framing of groups, the Group Property Editor can be
displayed by choosing Groups from the Editors menu of the App Builder primary
window or by choosing Group from the Revolving Property Editor Object Type
option menu. A group, unlike most of the objects edited in the Revolving Property
Editor, is a created object and is not available from an object palette. See “Grouping
Objects” on page 91, for instructions.

Only properties unique to a group object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Initial
State, and Color. See “Property Editor: Common Properties” on page 135 for
descriptions of Border Frame and Position.

Note that choosing Groups from the Editors menu in the App Builder primary
window is the same as clicking the Tear-off button in the Revolving Property Editor
when the Object Type is Group.

Group Name Displays the default name or the name given by
you to the group selected in the Objects list.

Revolving Property Editor 143

Layout Type Specifies As-Is, Vertical, Horizontal, or Row/
Column layout of the objects in the selected
group.

Rows Columns Specifies whether the primary layout will be by
rows (vertical layout) or columns (horizontal
layout), and how many rows or columns to
display. Active only if Layout Type is Row/
Column.

Vert Alignment Specifies left-edge, colon/label, center-line, or
right-edge alignment of the objects in the selected
group. Active only if Layout Type is Vertical or
Row/Column.

Spacing Specifies the number of pixels separating the
objects in the selected group. Vert Alignment
Spacing is active only if Layout Type is Vertical
or Row/Column. Horiz Alignment Spacing is
active only if Layout Type is Horizontal or Row/
Column.

Horiz Alignment Specifies top-edge, center-line, or bottom-edge
alignment of the objects in the selected group.
Active only if Layout Type is Horizontal or Row/
Column.

Label Property Editor
Only the property unique to a label object is described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, Initial State, and Color. See “Property Editor: Common Properties” on page
135 for descriptions of Label Type, Label, Size Policy, and Geometry.

Note that no border appears around a label in the compiled application. See “To
Create a Border Around an Object” on page 94 in Chapter 7, if you want a border
around a label.

Label Alignment Specifies the alignment (Left, Right, Centered) of
the label within its margins. Label Alignment is
relevant only if Fixed is selected as Size Policy.

144 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

List Property Editor
Only properties unique to a list object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, Initial State, and Color. See “Property Editor: Common Properties” on page
135 for descriptions of Label Type, Position (Label), Label, Items, Item Label, Position
[XY], Popup Menu, and Menu Title.

Selection Mode Specifies how objects can be selected in a
scrolling list. Choices are Single Select, Browse
Select, Multiple Select, and Browse Multiple
Select.

In Single Select mode, only one item can be
selected, by clicking mouse button 1.

In Browse Select mode, one item can be selected,
but you can press mouse button 1 and drag
through the list until the item you want is
selected.

In Multiple Select mode, you can make multiple,
discontiguous selections with mouse button 1.

In Browse Multiple Select mode, you can drag the
cursor over items to make multiple, contiguous
selections, and you can make a multiple,
contiguous selection between a selected item and
the cursor location with Shift-mouse button 1.

Selected Specifies whether an item will be selected at
application startup.

Width Specifies whether the list object shrinks or grows
to accommodate the Longest Item in the list, or if
the W(idth) of the box is Fixed. If Fixed is
selected, the W(idth) value can be edited.

Height Specifies the number of text Lines in the list or its
Pixels height.

Main Window Property Editor
Only properties unique to a main window object are described here. See “Property
Editor: Universal Properties” on page 134 for descriptions of Object Type, Objects,

Revolving Property Editor 145

Object Name, Initial State (Visible), and Color. See “Property Editor: Common
Properties” on page 135 for descriptions of Size Policy and Size.

Window Title Specifies the title that appears at the top of the
main window.

Icon File Specifies the name of the graphics file that
contains the graphical representation of the
application icon—the object that is displayed
when the application is "iconified" by clicking on
the minimize button in the title bar.

Icon Mask File Specifies the name of the graphics file that
contains the bitmap that determines the shape of
the visible representation of the icon beneath the
icon mask. The icon mask acts like a stencil,
allowing only the pixels in the icon that
correspond to pixels in the mask to be visible.

Icon Label Specifies the text label that appears beneath the
application icon.

User Resize Mode Specifies whether the window size is Fixed or
Adjustable (whether it can be resized in the
compiled application).

Window Areas Specifies whether the main window will have a
menu bar, a tool bar, or a footer.

Note that a tool bar or a footer will show up as a
control pane object in the Revolving Property
Editor. You will probably want to add controls,
such as the radio buttons in the App Builder
primary window Build/Test tool bar, to a tool
bar, and to make connections between the
controls and programmatic functions. Code will
have to be written to make a tool bar or footer
functional.

Initial State, Iconic Specifies whether the window is displayed as a
window or an icon when the compiled
application is opened.

Menu Property Editor
Used to create menus, the Menu Property Editor can be displayed by:

146 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

� Choosing Menus from the Editors menu of the App Builder primary window

Note - Choosing Menus from the Editors menu in the App Builder primary window
is the same as clicking the Tear-off button in the Revolving Property Editor when
the Object Type is Menu.

� Or, choosing Menu from the Revolving Property Editor Object Type option menu

� Or, choosing Create New Menu from the Popup Menu option menu in a property
editor.

A menu, unlike most of the objects edited in the Revolving Property Editor, is a
created object and is not available from an object palette.

Only properties unique to a menu object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, and Color. See “Property Editor: Common Properties” on page 135 for
descriptions of Items, Label, and Item State (Active).

Add New Menu Adds a new menu to the list of menus.

Edit Performs edit functions (Cut, Copy, Paste, Delete)
on the selected item in the list of menu objects.
Cut and Copy place the selected item in a buffer,
ready for Paste. Delete removes the item, but
does not place it in a buffer.

Tearoff Specifies whether tearoff is Enabled or Disabled.
If tearoff is enabled the selected menu will be
"postable." That is, the menu will be displayed
until you explicitly dismiss it if you click on the
Tearoff indicator (a dotted line).

Item Label Type Specifies the type of label (String, Graphic, or
Separator) for the item selected in the Items list.
If Graphic is chosen, "Label" becomes "Graphic
Filename." If Separator is chosen, Label or
Graphic Filename becomes inactive and Line
Style becomes active. A Separator menu item is
used to create a visual division in a menu, such
as that seen in the Editors menu of the App
Builder primary window.

Item Mnemonic Specifies one of the letters in the selected item as
a keyboard shortcut for choosing the item when
the menu is posted. The letter specified will be
underlined. Pressing the mnemonic letter when
the menu is posted will cause that item to be

Revolving Property Editor 147

chosen. Note that case is significant and that a
particular letter can be used as a mnemonic only
once within a menu.

Accelerator Specifies a keyboard shortcut for choosing the
selected item. An accelerator is comprised of a
prefix (Ctrl, Alt, Meta, or Shift), <Key> , and a
letter (upper or lower case). To make Control-x
an accelerator, for instance, type the following:

Ctrl<Key>x

When you display the menu in test mode or in
the compiled application, "Ctrl+x" will be
included to the right of the menu item label. If
you press the Control key and type x with the
cursor in the window that contains the menu, the
specified action will be performed.

You can combine the Shift key with one of the
other keys to form a compound prefix, if you
wish. To make Shift Control-x an accelerator, type
the following:

Shift Ctrl<Key>x

Line Style Specifies the type of line style for the selected
separator item; active only when Item Label Type
is Separator. Choices are None, Etched In, Etched
Out, Etched In Dash, Single Line, Double Line,
Etched Out Dash, Single Dashed Line, and
Double Dashed Line. A separator of the chosen
line style will be displayed in the menu instead
of a graphic or text label.

Item SubMenu A menu button and a text field for attaching,
de-attaching, creating, or editing a submenu for
the selected item in the Items list. If a submenu is
attached to the selected item, the name of the
submenu will be displayed in the text field.

Menubar Property Editor
Only properties unique to a menu bar object are described here. See “Property
Editor: Universal Properties” on page 134 for descriptions of Object Type, Objects,
Object Name, Initial State, and Color. See “Property Editor: Common Properties” on

148 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

page 135 for descriptions of Items, Item Label Type, Label, Pulldown Menu, and Item
State (Active).

Item Mnemonic Specifies one of the letters in the selected item as
a keyboard shortcut for displaying the menu. The
letter specified will be underlined in the menu
bar. In test mode and in the compiled application,
the menu will be displayed if you hold down the
Alt key and press the mnemonic letter (case is
irrelevant) while the window that contains the
menu bar has focus.

Item State, Is Help Item Specifies that the selected item is the Help menu.
The Help menu appears at the right edge of the
menu bar and has a built-in connection to the
online help mechanism. The item labelled "Help"
is the help button, by default.

Paned Window Property Editor
A paned window, unlike most of the objects edited in the Revolving Property Editor,
is a created object and is not available from an object palette. See “To Create a Paned
Window” on page 50 for instructions for creating a paned window.

Only properties unique to a paned window object are described here. See “Property
Editor: Universal Properties” on page 134 for descriptions of Object Type, Objects,
Object Name, and Initial State.

Panes Lists the panes that comprise the paned window.

Pane Geometry Displays the W(idth) and H(eight) of the pane
selected in the Panes list.

Pane Height Specifies the Min(imum) and Max(imum) height
(in pixels) of the selected pane. These values
determine the limits for the panes when you
move the sash between panes.

Scale Property Editor
Only properties unique to a scale or gauge object are described here. See “Property
Editor: Universal Properties” on page 134 for descriptions of Object Type, Objects,
Object Name, Initial State, and Color. See “Property Editor: Common Properties” on
page 135 for descriptions of Label Type, Position (Label), Label, and Geometry.

Revolving Property Editor 149

Scale Type Specifies Scale or Gauge. A scale includes a slider
and is modifiable by a user (in the compiled
application or in test mode). A gauge indicates a
value, does not include a slider, and is not
modifiable by a user.

Orientation Specifies whether the scale object will be
displayed in Horizontal or Vertical orientation.

Direction Specifies Left to Right or Right to Left
incrementing of value for a horizontal scale
object, Bottom to Top or Top to Bottom
incrementing of value for a vertical scale object.

Value Range Specifies Min(imum), Max(imum, and
Incr(ement) values for a scale object. All values
must be integers. The increment value is used
when you click with the mouse at either end of
the scale object (in the compiled application or in
test mode). See Decimal Points.

Decimal Points Specifies the number of decimal places to shift
the scale value when displaying it (if Show Value
is checked). For example, a scale value of 250
with a Decimal Points value of 1 would display
as 25.0; a scale value of 250 with a Decimal
Points value of 2 would display as 2.50.

Initial Value Specifies the initial numerical value setting for
the scale.

Show Value Specifies whether the numerical value of the scale
position will be displayed. See Decimal Points
and Initial Value above.

Separator Property Editor
Only properties unique to a separator object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, Initial State, and Color. See “Property Editor: Common Properties” on page
135 for a description of Geometry.

Orientation Specifies whether the separator object will be
displayed in Horizontal or Vertical orientation.

150 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Line Style Specifies the type of line style for the separator.
Choices are None, Etched In, Etched Out, Etched
In Dash, Etched Out Dash, Single Line, Double
Line, Single Dashed Line, and Double Dashed
Line.

Spin Box Property Editor
Only properties unique to a spin box object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, Initial State, and Color. See “Property Editor: Common Properties” on page
135 for descriptions of Label Type, Position (Label), Label, Items, Item Label, and
Geometry.

Spin Box Type Specifies the type of spin box. If Numeric is
chosen, the Items, Label, Add Item, Edit, and
Selected properties are inactive. If String List is
chosen, the Value Range, Initial Value, and
Decimal Points properties are inactive.

Arrow Style Specifies the style of arrow to be displayed on the
spin box. Choices are Flat Beginning, Flat End,
Beginning, End, and Split.

Value Range Specifies Min(imum), Max(imum, and
Incr(ement) values for a spin box object. All
values must be integers. The increment value is
used when you click with the mouse on one of
the spin box arrows (in the compiled application
or in test mode). Value Range is inactive if Spin
Box Type is String List. See Decimal Points.

Initial Value Specifies the starting value in the spin box in the
compiled application. Initial Value is inactive if
Spin Box Type is String List.

Decimal Points Specifies the number of decimal places to shift
the spin box value when displaying it. For
example, a spin box value of 250 with a Decimal
Points value of 1 would display as 25.0; a spin
box value of 250 with a Decimal Points value of 2
would display as 2.50. Decimal Points is inactive
if Spin Box Type is String List.

Revolving Property Editor 151

Selected Specifies whether the item selected in the Items
list will be selected when the compiled
application is opened. Only one item can be
selected. Selected is inactive if Spin Box Type is
Numeric.

Term Pane Property Editor
Only properties unique to a term pane object are described here. See “Property
Editor: Universal Properties” on page 134 for descriptions of Object Type, Objects,
Object Name, Initial State, and Color. See “Property Editor: Common Properties” on
page 135 for descriptions of Scrollbars, Border Frame, Position [XY], Size, Popup
Menu, and Menu Title.

Process String A text field for specifying the process (command)
that will be run in the term pane in the compiled
application. The default value is /bin/csh .

Text Field Property Editor
Only properties unique to a text field object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object
Name, Initial State, and Color. See “Property Editor: Common Properties” on page
135 for descriptions of Label Type, Position (Label), Label, Position [XY], and Width.

Operation Specifies whether the text field in the compiled
application and in test mode will be Editable or
Read-Only.

Maximum Chars Specifies the maximum number of characters that
can be typed in the text field. This field is
independent of the W(idth) field, which specifies
the width of the displayed text.

Initial Value Specifies the initial value to be displayed in the
text field in the compiled application or in test
mode.

Text Pane Property Editor
Only properties unique to a text pane object are described here. See “Property Editor:
Universal Properties” on page 134 for descriptions of Object Type, Objects, Object

152 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Name, Initial State, and Color. See “Property Editor: Common Properties” on page
135 for descriptions of Border Frame, Position [XY], Size, Popup Menu, and Menu
Title.

Operation Specifies whether the text pane in the compiled
application and in test mode will be Editable or
Read-Only.

Word Wrap Specifies whether words will be wrapped to the
following line when the Size W(idth) value is
reached.

Initial Value Specifies the initial value to be displayed in the
text pane in the compiled application or in test
mode.

Revolving Property Editor 153

154 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Index

A
accelerator for menu item 53, 148
Add Item button 138
adding

footer to window 146
items to Items list 138
menu bar to window 146
menu to list of menus 147
pane to paned window 51

tool bar to window 146
aligning objects 39
alignment choices 39
App Builder

exiting 17
icon 17
overview of process 17
primary window 16, 116
quitting 17
starting 17

application
building 110
building and running in one step 110
generating code for 110
quitting 111
running 110
setting behavior of 88, 91

Application Framework Editor 88
Apply button 138
Arrow Direction property 139
attaching

menu to object 56
menu while creating 57, 58
objects 91, 100, 101

submenu to menu item 58
submenu while creating 59, 60

attachments 94
Attachments button 138
Attachments Editor 101

B
background color 43, 135
border

creating for single object 94
setting frame style for groups 92
types of 135

Border Frame property 135
browser 126

editing objects 37
building application 110
button control 122

properties of 139
Button property editor 139

C
Cancel button 138
check box control 123
child pane 48
choice objects 140
Choice property editor 140
closing projects 26
Code Generator 110, 128

environment options 131
options 111

Code Generator Options dialog box 129

155

color
background 135
foreground 135

Color Chooser 43
combo box control 122, 141
Combo Box property editor 140
connecting

menu item and Call Function action 78
menu item and Execute Code action 79
menu item and predefined action 77
menu item to help topic 74

message to function 65
On Item help to Help menu item 73
two objects 75, 76

connections
drag 82
drop 82
editing 80
On Item help menu item 73
selecting objects through drag-linking 75
selecting objects through the Connections

Editor 76
testing 106

Connections button 138
Connections Editor 76
control objects

selecting 36
control pane 120
Control Pane property editor 141
controls

button 122
check box 123
combo box 122
drop rules 20
gauge 123
label 123
menu bar 123
menu button 122
option menu 122
radio box 123
scale 123
scrolling list 123
separator 123
spin box 124
text field 123

Controls palette 122, 124
copying objects 37
creating

border on object 94
child pane 48
connection between two objects 75, 76
custom dialog 34
groups 92
interface 15
layered panes 48

main window 34
menu while attaching 57, 58

menus 54, 55
messages 63, 65
modules 26
On Item help 72

On Item menu item 73
paned windows 50
projects 21
spanning control pane 34
submenu while attaching 59, 60

custom dialog
creating 34
default buttons in 142
definition of 118
parent main window for 141
properties of 141

Custom Dialog property editor 141
cutting objects 37

D
default button sets for messages 64
default buttons

for custom dialog 142
for messages 64

deleting objects 38
deselecting objects 36
displaying

fixed property editor 43
help 72
layered panes 49

distributing objects evenly 39
drag and drop 15

rules 19
setting behavior for 82, 84

Drag and Drop Editor 82
drag connection 82
drag operations 83
drag-link connection 75

156 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

drag-select 36
draw area pane 121

size of canvas in 142
Draw Area Pane property editor 142
drop connection 82
drop operations 83
drop rules

for controls 20
for panes 19

for windows 19
dtappbuilder command 17

E
Edit button 138
editing

browser 37
connections 80
group properties 92, 93

interface 37
interface objects 37
menu properties 55, 56
message properties 65

object properties 42
editor 140

Application Framework 88
Attachments 101
Connections 76
Drag and Drop 82
Help 73
Message 61, 63
retaining on workspace 138

encapsulated project file 25
environment options, Code Generator 112,

131
exporting

module in UIL format 29
modules 29

F
file selection dialog 119

properties of 142, 143
File Selection Dialog property editor 142
fixed property editor, displaying 43
foreground color 43, 135

G
gauge control 123

properties of 150
generating code for application 110
Geometry property 135
Graphic Filename property 136
Group Property Editor 92, 93, 143
grouping and attaching objects 91
groups

creating 92
editing properties of 92, 93
naming 92
properties for 143, 144
setting border frame style for 92
undoing 93

H
help

displaying 72
specifying menu bar item as 149

Help Editor 73
Help menu 74

connecting On Item help to 73
Help Text button 138
help volume 74
hiding modules 31

I
importing

module in UIL format 27
modules 27

Initial State property
active 135
Iconic 45
Visible 45, 135

interface
creating 15
overview of creating and maintaining 17

internationalization of application 88
Item Label Type property 53, 136
item mnemonic 53, 148, 149
Item State property 136

L
label control 123

157

alignment of 145
Label property 136
Label property editor 144
Label Type property 136
labels

arrow direction for 140
for buttons 139
for OK button in file selection dialog 143

position setting for 136
layered panes

creating 48
definition of 48
displaying 49
unmaking 49
viewing 49

line style for separator 53, 148
List property editor 145
lists, properties of 145

M
main window

creating 34
definition of 118
editing properties of 44, 47

Main Window property editor 146
menu bar control 123

properties of 149
menu button control 122
menu items

accelerator for 53
attaching help topic to 74
connecting to Call Function action 78
connecting to Execute Code action 79
connecting to predefined action 77
mnemonics for 53

Menu Property Editor 52, 146
Menu Title property 136
Menubar property editor 149
menus

attaching to objects 56
creating 54, 55
creating and attaching in one

procedure 57, 58
definition of 52
editing properties of 55, 56
Item Label Type for 53
and modules 54

properties of 147, 148
property for attaching 136
setting title for pop-up 136
style for separator line 53
Tearoff property 52, 147
testing 105

message dialog box, , see messages
Message Editor 61, 63
message types 64
messages

adding to module 64
connecting to functions 65
creating 63, 65
default button for 64
default button sets for 64
editing properties of 65
entering text for 64
naming 64
selecting type of 64

mnemonic, , see item mnemonic
module browser 126

editing objects 37
modules

adding message to 64
creating 26
exporting 29
hiding 31
importing 27
importing in UIL format 27
naming 27
removing from project 31
renaming 28
saving 28
saving in UIL format 29

showing 31
multiple-select 36

N
naming

application icon 146
custom dialog 141
groups 92, 144
messages 64
modules 27
projects 22
resource files 22

158 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

windows 45, 146

O
object information area 124, 125
object types 18
objects

adding to selection 36
aligning 39
attaching 100, 101
button 122
check box 123
choice 140
combo box 122
creating border for 94
cut or copy 37
deleting 38
deselecting 36
distributing evenly 39
draw area pane 121
editing 37
editing properties of 42
gauge 123
grouping and attaching in one

procedure 91
label 123
label setting for 136
label type for 136
menu bar 123
menu button 122
option menu 122
paste 37
position in relation to parent 137
radio box 123
rules for dropping 19
scale 123
scrolling list 123
selecting 36
separator 123
setting fixed size 137
setting size to fit contents 137
spin box 124
term pane 121
text field 123
text pane 120

width and height values of 135
XY location of 135

OK button 138

On Item help
creating 72
menu item 73

opening
existing projects 22
property editor 41

option menu control 122
options, Code Generator 111

P
palette

Controls 122, 124
Panes 119
Windows 117

Paned Window property editor 149
paned windows

adding pane to 51
creating 50
definition of 49
properties of 149
unmaking 51

panes
adding to paned window 51
attaching a scroll bar to 137
drop rules 19
setting absolute width and height for 137

pasting objects 37
Position property 136, 137
primary main window

editing properties of 44, 47
setting for application 88

Project Organizer 125
projects

closing 26
creating 21
naming 22
opening existing 22
removing a module from 31
renaming 24
saving 23
saving as encapsulated file 25
saving in different folder 24
testing 103

property editor
Button 139
Choice 140

159

Combo Box 140
Control Pane 141
Custom Dialog 141
Draw Area Pane 142
File Selection Dialog 142
Group 92, 93, 143
Label 144
List 145
Main Window 146
Menu 146
Menubar 149
opening 41
Paned Window 149
Scale 149
Separator 150
Spin Box 151
Term Pane 152
Text Field 152
Text Pane 153

Q
quitting

App Builder 17
application 111

R
radio box control 122
removing module from project 31
renaming

modules 28
projects 24

Reset button 138
resource file

attributes written to 88
naming 22

Revolving Property Editor
common buttons in 137, 139
common properties in 135, 137
universal properties in 134, 135

rules
drag and drop 19
for dropping objects 19

running application 110
in one step 110

S
saving

module in UIL format 29
modules 28
project 23
project to different folder 24
project to encapsulated file 25

scale control 123
properties of 150

Scale property editor 149
Scrollbars setting 137
scrolling list control 123
selecting

colors 43
message type 64
multiple objects 36
objects 36
single object 35, 36

separator 123
properties of 150

Separator property editor 150
session management method 88
setting

background color 43
border frame style for groups 92
Code Generator options 111
environment options 112

foreground color 43
internationalization 88
primary main window for application 88
vendor name for application 88
version number for application 88

showing modules 31
size

of draw area canvas 142
of lists 145
of pane in paned window 149
setting for combo box 141
of window 146
to fit contents 137

Size Policy property 45, 137
Size property 137
spanning control pane

creating 34
description of 34

spin box control 124
properties of 151, 152

160 Common Desktop Environment: Application Builder User’s Guide ♦ February 2000

Spin Box property editor 151
starting App Builder 17
submenus

attaching to menu items 58
creating and attaching in one

procedure 59, 60
property for attaching 136

T
Tear-off button 137
tear-off property editor, displaying 43
Tearoff menu property 52, 147
term pane 121

process string for 152
Term Pane property editor 152
testing

connections 106
menus 105
projects 103

text field control 123
properties of 152

Text Field property editor 152
text pane

definition of 120
properties of 153

Text Pane property editor 153
title bar 116
ToolTalk message handling 88
types of objects 18

U
UIL format

importing modules in 27
saving module in 29

ungrouping objects 93
unmaking

layered panes 49
paned windows 51

user interface, , see interface
User Resize Mode 45

V
vendor name, setting for application 88
version number, setting for application 88
viewing layered panes 49

W
windows

adding footer 146
adding menu bar 146
adding tool bar 146
creating main 34
drop rules 19
main 44, 118
naming 45, 146
parent for custom dialog 141
primary 44
setting absolute width and height for 137
setting size of 137
spanning control pane 34

Windows palette 117

161

