
System Guide

Version 4.8

Proprietary and Trademark
Information
Copyright © 1999-2004, DataMirror Mobile Solutions, Inc.

All Rights Reserved

Version 4.8

This product and related documentation are protected by copyright and distributed under
license agreement restricting its use, copying, reproduction, distribution, performance, and
decompilation. No part of this product, or any other product of DataMirror Mobile Solutions,
Inc. or related documentation may be stored, transmitted, reproduced or used in any other
manner in any form by any means without prior written authorization from DataMirror Mobile
Solutions, Inc.

PointBase™ and UniSync™ are trademarks of DataMirror Mobile Solutions, Inc.

Microsoft, Windows, Windows 95, Windows 98, Windows 2000, and Windows NT are
registered trademarks of Microsoft Corporation. Adobe and Acrobat are registered trademarks
of Adobe Systems, Inc. Java™ is a registered trademark of Sun Microsystems, Inc. Other
brands and products are trademarks of their respective holders
Version 4.8 PointBase System 2

Table of Contents
Preface 5
Purpose 5
Audience 5
Release Notes 5
Document Feedback 6
Document Conventions Used in This Guide 6

Before You Begin 7
Java Virtual Machine Requirement 7
PointBase Jar Files 7
Understanding CLASSPATH 8
Understanding How CLASSPATH Works 8
Setting the CLASSPATH 9
Using JAR and ZIP files 10

Starting PointBase 11
PointBase Commander and Console 11
Starting PointBase Commander or Console for the First Time 12

Advanced Tips for Starting PointBase 13
Tips for Starting PointBase Server using Embedded - Server Option 13
Tips for Starting PointBase Embedded or Client 14
Tips for Security Manager 20

PointBase Supporting Tools 21
PointBase Commander 21
PointBase Console 23
PointBase Index Consistency Checking Utility 23

Verifying PointBase 26
PointBase Commander 26
PointBase Console 26
A JDBC Application 27
PointBase Example 27

Configuring PointBase 28
Version 4.8 PointBase System 3

 PointBase
PointBase.ini File 28
Configuring Database Properties 30

Performance Tuning 37
Optimizing Query Expressions 37
Optimizing MIN and MAX Functions in a Query 41
Optimizing Count(*) in a Query 42
Tuning Database Properties 43
Minimizing Locking Times 46
Using Indexes 46
Selecting Multiple Rows With Different Key Values 47
Using the UNION Operator 48

PointBase™ Cryptography 49
Database Encryption 49
Client and Server Communication Encryption 49
Available Algorithms 50
Setting Database Encryption 50
Setting Client and Server Communication Encryption 51

Database Log Flushing 52
How to Flush the Log Setting the log.filesize 52
How to Flush the Log Using PointBase Commander 53

PointBase™ Internationalization 54
What Types of Businesses are Likely to Use Unicode? 55
Are There any Limitations to Unicode? 55
Implementation 55
Restrictions 57

Using PointBase™ With IDEs 58
SunTM ONE Studio 58
Borland JBuilder 59
IBM VisualAge 60
WebGain Visual Cafe 4.1 60

Appendix A: System Tables 61

Appendix B: Error Messages 74

Appendix C:
Country and Language Codes 90

Language Codes 90
Country Codes 95
Version 4.8 PointBase System 4

Preface
Thank you for your interest in Version 4.8 of the PointBase product line.

Purpose

This guide describes how to start and configure your PointBase RDBMS. The following is a
list of some things you can expect from this guide.

• How to begin using PointBase Embedded and Embedded - Server Option
• A description of PointBase Embedded properties and how to configure
• PointBase Cryptography

Audience

This guide is geared towards the Java developing community. Because PointBase is a 100%
Pure Java Application Database, this guide assumes that you have the following concepts:

• basic knowledge of the Standard Query Language (SQL).
• basic knowledge of the Java programming language.
• basic knowledge of Java Database Connectivity (JDBC).
• basic database concepts.

Release Notes

The following link displays the most up-to-date information on PointBase products.

www.pointbase.com/support/releasenotes.html
Version 4.8 PointBase System 5

http://www.pointbase.com/support/releasenotes.html

 PointBase
Document Feedback

Please send comments or suggestions for all PointBase documentation to the following email
address.

pbdocfeedback@pointbase.com

Document Conventions Used in This Guide

Convention Identifies Examples

ALL
UPPERCASE
LETTERS

• Environment variables
• Database table names
• SQL Keywords

• PATH
• S_LST_OF_VAL
• CREATE TABLE

Courier
New font

• Directory, file, folder, and path
names

• Code
• Data you need to type

• c:\pointbase\img.bmp
• Set PointBase =
• Type Your Company

Name Here

Initial
Uppercase
Letters

PointBase names, objects, properties,
windows, screens, dialog boxes,
menus, buttons, tabs, applets, fields,
and icons

PointBase Embedded,
Business Component object,
List Editor window, Main
menu, and Cancel button

Italics • Book titles
• Cross references in an index or

glossary
• Variables
• Arguments to statements of

functions
• First appearance of a new word or

phrase
• Emphasis

• User’s Guide
• see also or see

• APPSRVR_4X_ROOT
• variable, rate, prompt$

• new word or phrase

• Do not do this before you
do that.

[] Optional italicized arguments or
characters inside angle brackets

[caption$]

{ | } Choice from listed arguments; use OR
operator (|) to separate

{Goto label | Resume Next |
Goto 0}
Version 4.8 PointBase System 6

mailto:docfeedback@pointbase.com

Before You Begin
This section describes important information about the Java Virtual Machine, Jar files and
CLASSPATH usage. If you are familiar with Jar files and CLASSPATH usage you can
continue to the next chapter. However, it is important to understand the concepts covered in
this chapter before you start PointBase.

Java Virtual Machine Requirement
PointBase Embedded and PointBase Embedded - Server Option require the use of a Java
Virtual Machine (JVM) compliant with the JDK 1.2 specification or higher.

PointBase recommends using the latest JVM available in order to be able to use all of the
functionality provided by PointBase. For example, if you were to use a JDK 1.2-compliant
JVM, PointBase would work, but some JDBC 3.0 methods would not be available.

PointBase Jar Files

PointBase appends a version number to the end of every PointBase jar file. A version number
is two digits. PointBase Embedded contains the pbembedded48ev.jar file. PointBase
Embedded is a database that accepts multiple concurrent connections from a “single” client
application. It is designed to run in the “same” JVM as the application of the developer. The
small footprint of PointBase Embedded makes it ideal for embedding within applications that
require built-in database functionality.

PointBase Embedded - Server Option contains both the pbclient48ev.jar file and the
pbembedded48ev.jar file. PointBase Embedded - Server Option is a database server that
accepts multiple concurrent connections through a network from client applications. It is
designed to run in a standalone JVM with the client applications running in separate JVMs,
which use the pbclient48ev.jar. The client applications can reside on the same machine
as the server or on different machines on the network.

For more information about the architecture of PointBase Embedded, please refer to the
PointBase Developer’s Guide.
Version 4.8 PointBase System 7

 PointBase
Understanding CLASSPATH

The following sections describe CLASSPATH concepts in PointBase which are essential to
using the PointBase jar files. CLASSPATH is either an environment variable or a Java Virtual
Machine (JVM) command line option, such as -classpath on Sun JVM. The CLASSPATH tells
the JVM where to find the files that it requires on the file system and is similar to the DOS Path
variable.

Understanding How CLASSPATH Works

A Java compiler (e.g. javac or jvc) compiles Java source files into class files, which a JVM is
able to interpret and execute. The JVM loads classes based on their name and the location
indicated by the CLASSPATH provided. For example, suppose our CLASSPATH is

classpath=c:\qa;c:\production

In this example, the system looks at only two directories: “qa” first, and then “production” if
the required class files are not found.

When the system becomes too large, developers create packages to group together related
code. These packages become part of the class’ name. For example, for a given file
databaseSample.java, the package statement may be

package com.pointbase.samples;

Where the fully qualified class name of the class file is the following:

com.pointbase.samples.databaseSample

The class loader appends “.class” to the class name and replaces the dots with system-specific
path delimiters. If you type the following:

java com.pointbase.samples.databaseSample

The JVM adds path delimiters such as the following:

com\pointbase\sample\databaseSample.class

The system runs through the CLASSPATH from left to right in attempting to locate the files.
Using the classpath example above, it first searches for:

c:\qa\com\producer\fruits\Banana.class

If successful, the system uses the class files found. If it fails to locate the file, it moves on to the
next folder specified in the CLASSPATH. In our example this would be the following:

c:\production\com\producer\fruits\Banana.class

If the class loader cannot find the required class file in any of the directories specified in the
classpath, the JVM reports that the class could not be found.
Version 4.8 PointBase System 8

 PointBase
Setting the CLASSPATH

You may set the classpath as an operating system environment variable or as a JVM command
line option. The following sections describe how to set the CLASSPATH, both permanently
and temporarily, for a number of common operating systems.

Using a Java Virtual Machine running Windows NT or Windows 2000

• Select the Environment tab via the Control Panel. (On windows 2000 you access the
Environment Variables through the Advanced tab.)

• Select or create the CLASSPATH variable and modify its value appropriately. Semi-
colons delimit class path values.

• Click Set (or OK on windows 2000), then Apply to complete the entry.

To temporarily create or update your CLASSPATH environment variable, open a command
prompt window and type:

set classpath=path1;path2;

The following is an example:

set classpath=c:\qa;c:\production;

Using a Java Virtual Machine running Windows 95/98

You need to update your autoexec.bat file with the path of the JVM libraries in the
CLASSPATH environment variable.

To temporarily create or update your CLASSPATH environment variable, open a command
prompt window and type:

set classpath=path1;path2;

The following is an example:

set classpath=c:\qa;c:\production;

Using UNIX Java Virtual Machine running Linux, Solaris, etc.

You need to update your .login or .profile file with the path of the JVM libraries in the
CLASSPATH environment variable.

To temporarily create or update your CLASSPATH environment variable, open an operating
system window and type:

setenv classpath /path1:/path2

The following is an example:

setenv classpath /qa:/production
Version 4.8 PointBase System 9

 PointBase
Using JAR and ZIP files

Java Virtual Machines allow you to group together classes into one file, called either a jar file
or a zip file. Both file formats may be compressed. In addition, jar files may also contain a
certificate that digitally signs the originating location of the jar file.

To use a jar file, you must specify its location to the JVM using the CLASSPATH. Continuing
with the example above, if you package the databaseSample class into a file called
Pointbase.jar, the previously defined CLASSPATH will not help in finding the class because
the JVM does not know about the jar file. You must specify jar files explicitly in the classpath,
as in the following example:

classpath=c:\Pointbase.jar

If you have specified the following class:

java com.pointbase.samples.databaseSample

then the JVM now looks at the CLASSPATH and finds the specified jar file. When found, the
jar file is opened by the JVM and inspected to verify there is a class inside called:

com.pointbase.samples.databaseSample.

The class is then directly loaded from the jar file.
Version 4.8 PointBase System 10

Starting PointBase
The following sections describe how to start PointBase. You can start PointBase in two
different ways:

• Using PointBase Commander
• Using PointBase Console

PointBase Commander and Console

PointBase Commander is a command line tool that you can use to perform administration
tasks, such as creating tables and running SQL scripts. As a database client, PointBase
Commander is oriented towards batch mode operation. Note that every command ends with a
semicolon in PointBase Commander.

NOTE: Currently, PointBase Commander has not been fully tested on a Macintosh.

PointBase Console is a graphical user interface (GUI) tool. With PointBase Console, you can
administer your data and perform the following:

• Create new databases.
• Execute, debug, and display the results of SQL commands.
• Create text filters from databases.
• Show the results of SELECT statements graphically.
• Import and export data.

NOTE: This application uses Sun's JFC/Swing package which is automatically downloaded
when you install PointBase.
Version 4.8 PointBase System 11

 PointBase
Starting PointBase Commander or Console for the First Time

You can start the Commander or Console tool for PointBase Embedded or the Client by
completing the following steps. However, to launch the Commander or Console for the Client,
you must first start the PointBase Server to use PointBase Embedded - Server Option.

Using Microsoft Windows

• Click the Start button on the Task bar.
• Navigate to programs, where you will find and select PointBase 4.7.
• Select Tools.
• Select Embedded Commander or Console or
• Select Start Server, and then select Server Commander or Console.

Using a Command Line Window

You can start the Commander or Console tool for PointBase Embedded or Server Option by
using a command line window and executing one of the PointBase executable files, for
example, “embedded_commander.exe” or “embedded_console.exe” for the Windows OS.
However, you must execute the “start_server” executable file before you execute the
“server_commander” or “server_console” files. By default, the location of the executable files
are in the directory “<install_directory>\tools\<pointbase product>.” For example, you would
navigate to the following file if you are using the Windows OS:

c:\pointbase\tools\embedded\embedded_commander.exe
Version 4.8 PointBase System 12

Advanced Tips for Starting
PointBase
The following sections describe how you can start PointBase immediately, without having to
answer the previous questions every time you launch PointBase. You can use a command line
to specify everything you need to start using PointBase, for example, the PointBase product
you want to launch (e.g. PointBase Embedded or Embedded - Server Option), what database to
access, and which tool (Commander or Console) you want to use. The commands may vary,
depending on your JVM.

Tips for Starting PointBase Server using Embedded - Server Option

You can edit the bat file located in the “<install
directory>\pointbase\samples\server_embedded\” directory before starting the PointBase
Server. By editing the bat file you can add commands at the end of the script (after
“com.pointbase.net.netServer”). To edit the bat file, open it in any text editor and append any
of the following commands to the end of the script and execute the bat file, for example, enter
the following:

java com.pointbase.net.netServer /win

• /win starts the server window. The system brings up a window displaying the server
status. Use this window to collect statistical information on usage, to log information, or
to shutdown the server.

• /d:<level> displays level (from 0 to 3). The server echoes JDBC API calls. Level 3
displays the most details.

• /database:<name> pre-opens the named database for an efficient first connection.

• /port:<port> specifies the port number to listen on.

• /file:<filename> records the netserver log to the specified filename.

• /pointbase.ini=<path to pointbase.ini> configures the system to search
for the “pointbase.ini” file in the path specified.

• /help displays all available command lines.

• /noconsole does not display the netServer window, allowing
you to run PointBase Server as a background thread on UNIX
and Solaris platforms.
Version 4.8 PointBase System 13

 PointBase
You can also enter the following commands in the Server command line window after you
launch the bat file.

• h or? displays the possible commands for this window.
• x or q shuts down the server.

• l displays the locked tables.

• c shows currently active connections, and for each connection shows the active
statements, and for each statement shows the actual SQL code.

• v displays the server version number.

Tips for Starting PointBase Embedded or Client

PointBase recommends that you create an executable file such as a DOS bat file (or UNIX
shell script) to launch the product, so you do not have to retype the launch script each time you
start the product. You can use, for example, the bat files in the directory: “<install
directory>\pointbase\samples\server_embedded.”

In order to create an executable file to launch PointBase, you must know the location of the
PointBase JAR files.

Locating Jar Files

By default the jar files are located in the following directory “\pointbase\lib.” For PointBase
Embedded, the JAR’s are “pbembedded48.jar and pbtools48.jar,” and for PointBase Server
they are “pbserver48.jar,” “pbclient48.jar,” and “pbtools48.jar.”

Calling Tool Class Files

To call a specific tool (Commander or Console) in your executable file, you must specify the
class at the command line in addition to the jar files, url, driver, etc. You will see in the
following examples, PointBase specifies the tool classes by the following entries:
com.pointbase.tools.toolsCommander (for Commander) or com.pointbase.tools.toolsConsole
(for Console). You may interchange these classes, depending on your preference.

NOTE: You must include the swingall.jar file, when you call the Console class,
com.pointbase.tools.toolsConsole. For example:

java -classpath pbembeddedxx.jar;pbtoolsxx.jar
com.pointbase.tools.toolsConsole [-plugin] driver url [,parameters] username password
Version 4.8 PointBase System 14

 PointBase
Variable Descriptions

The following table describes the variables in the examples to follow.

Variable Description

database Embedded, or Client (for example, pbembedded48)

xx The release number of the product

com.pointbase.tools.toolsCommander The tool class file for Commander

com.pointbase.tools.toolsConsole The tool class file for Console

plugin Used with special operating systems that are embedding
the Java Virtual Machine. Specifying this option does not
terminate the Java Virtual Machine when closing the
Console window. Use this option for Console only.

url Describes the location of the database to which you
connect. Possible URLs are:
• PointBase Embedded:

jdbc:pointbase:embedded:database_name
(PointBase also supports version 3.5 URLs or
earlier.)

• PointBase Embedded - Server Option
jdbc:pointbase:server://machine_name<:port>/
database_name
(PointBase also supports version 3.5 URLs or
earlier.)

database_name is the name of the database to which you
connect. The default port_number is 9092.

NOTE: If both server and client run on the same network
machine, you may use LOCALHOST as the
database_name.
Version 4.8 PointBase System 15

 PointBase
parameters Flags to create a new database, to overwrite an existing
database, or to connect to an existing database. The
following are the supported flags:
• new—creates a new database and connects to it, or

connects to a database if it already exists.
• create=true—behaves the same as the new flag.
• create=false—connects to database if it already

exists, or throws an exception if the database does
not exist.

• create=force—creates a new database and connects
to it, or overwrites the database if it already exists—
but only if you have authorization do to so. That is,
you must be either the database owner or the
PBSYSADMIN user. (See PointBase Developer’s
Guide for details on PBSYSADMIN predefined
user.)

If you specify more than one flag, PointBase will
recognize the last flag you specify.

In addition to, or instead of using one of the previous
flags for your parameter, you can also define one or more
database properties, for example:
database.home=c:\pointbase\myDatabases
The above example uses the following syntax:
<database property> = <value>
Refer to "Database Properties Described" on page 32 for
more details about database properties.

script The name of the script to run automatically. Use this
option for Commander only.

user The name of the user logging into the database (default:
PBPUBLIC)

password The password for the user (default: PBPUBLIC).

autocommit The switch command to set autocommit on or off. Enter
TRUE to set autocommit on, and enter FALSE to set
autocommit off. If you do not define TRUE or FALSE,
PointBase defaults to TRUE (autocommit on).

Variable Description
Version 4.8 PointBase System 16

 PointBase
Using a Sun or IBM Java Virtual Machine

The following examples present a model for creating an executable batch or script file using a
Sun or IBM Java Virtual Machine.

To start Commander

java -classpath pbembeddedxx.jar;pbtoolsxx.jar com.pointbase.tools.toolsCommander
com.pointbase.jdbc.jdbcUniversalDriver url[,parameters][script] user password
[autocommit]

To start Console

java -classpath pbembeddedxx.jar;pbtoolsxx.jar com.pointbase.tools.toolsConsole
com.pointbase.jdbc.jdbcUniversalDriver url[,parameters] user password [autocommit]

• To start Commander using PointBase Embedded (for example):
java -classpath .\lib\pbtools48.jar;.\lib\pbembedded48.jar
com.pointbase.tools.toolsCommander com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:sample,create=force pbpublic pbpublic true

To start PointBase Console using PointBase Embedded (for example):

java -classpath .\lib\pbembedded48.jar;.\lib\pbtools48.jar
com.pointbase.tools.toolsConsole com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:sample,create=false pbpublic pbpublic true

• To start Commander using the Client (for example):
java -classpath .\lib\pbtools48.jar;.\lib\pbclient48.jar
com.pointbase.tools.toolsCommander com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:server://server1/sample,database.home=c:\pointbase\myDatabases pbpublic
pbpublic false

To start PointBase Console using the Client (for example):

java -classpath .\lib\pbclient48.jar;.\lib\pbtools48.jar
com.pointbase.tools.toolsConsole com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:server://server1:9092/
sample,create=false,database.home=c:\pointbase\myDatabases pbpublic pbpublic false

Using a UNIX Java Virtual Machine running Linux, Solaris, etc.

The following examples present a model of how to create an executable file using a UNIX Java
Virtual Machine running Linux, Solaris, or other flavors of UNIX.

To start Commander

/bin/java -classpath pbtoolsxx.jar:pbembeddedxx.jar com.pointbase.tools.toolsCommander
com.pointbase.jdbc.jdbcUniversalDriver url[,parameters][script] username password
[autocommit]

To start Console

java -classpath ./lib/pbembeddedxx:./lib/pbtoolsxx.jar com.pointbase.tools.toolsConsole
[-plugin] com.pointbase.jdbc.jdbcUniversalDriver url[,parameters] username password
[autocommit]
Version 4.8 PointBase System 17

 PointBase
• To start PointBase Commander using PointBase Embedded (for example):
/bin/java -classpath ./lib/pbembedded48.jar:./lib/pbtools48.jar
com.pointbase.tools.toolsCommander com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:sample,create=true pbpublic pbpublic true

To start PointBase Console using PointBase Embedded (for example):

/bin/java -classpath ./lib/pbembedded48.jar:./lib/pbtools48.jar
com.pointbase.tools.toolsConsole com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:sample,create=true pbpublic pbpublic true

• To start PointBase Commander using the Client (for example):
/bin/java -classpath ./lib/pbclient48.jar:./lib/pbtools48.jar
com.pointbase.tools.toolsCommander com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:server://server1:9092/sample,create=force pbpublic pbpublic false

To start PointBase Console using the Client (for example):

java -classpath ./lib/pbclient48.jar:./lib/pbtools48.jar
com.pointbase.tools.toolsConsole com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:server://server1/sample,create=force pbpublic pbpublic false

Using a Macintosh OS 9

To run PointBase Console on a Macintosh running OS X or later, use the steps as given for
Unix environments.

To run PointBase Console on a Macintosh running OS 9 or earlier and connect to a PointBase
database, use JBindery. Use the following steps to run Console:

Setting the class file to run

In the JBindery Command window, enter the name of the PointBase Console class file to run.
The class file is: com.pointbase.tools.toolsConsole.

Setting the command parameters

Next, you need to set some command line arguments in the Optional parameters field. The
complete set of arguments to pass is:

[<-plugin>] <driver> <url>[,<any properties, comma separated>]<userid> <password>
[autocommit]

For example:
com.pointbase.jdbc.jdbcUniversalDriver jdbc:pointbase:mydb,database.home=MyHD/pointbase/
databases pbpublic pbpublic

NOTE: The arguments are separated by spaces. If you have a space in your drive name or in a
folder name, you should delimit the full URL with double quotes.

PointBase by default looks in \pointbase\databases for a database, which the Mac

interprets as <hard drive>/<folder>. The define option used in the Sun JVM has no equivalent
in the MRJ. You should pass the database.home property as part of the URL.
Version 4.8 PointBase System 18

 PointBase
Console also has a login dialog that appears if these parameters are not passed on startup. You
can specify a URL there.

Setting the CLASSPATH

Next, you must set a CLASSPATH to the PointBase jar files located in the folder
/pointbase/lib. In JBindery Classpath window, push the Add zip File button, then
navigate to the location of the PointBase jar files (\pointbase\lib) and select the jar
files you need. Here are the PointBase jar files:

• pbtoolsxx.jar: contains the class files for the PointBase Console query tool
• pbembeddedxx.jar: contains the class files for an application to connect to

PointBase Embedded, and for the multi-user database network server
• pbclientxx.jar: contains the class files for an application to connect to PointBase

server if using the Server option.

You must also set a CLASSPATH to the copy of swingall.jar in the MRJ folder. You
should not use the swingall.jar included with PointBase, if using Mac OS 9.x.

Running PointBase Embedded and Client

PointBase Embedded

To run PointBase Console against the PointBase Embedded, you need the file
pbembeddedxx.jar, as well as the PointBase Tools pbtoolsxx.jar.

PointBase Embedded - Server Option

To run PointBase Console using the PointBase Client tools, you need the files
pbclientxx.jar and pbtoolsxx.jar (where xx represents the release number. Check
the actual name of the jar file to be sure you have the correct name.)

To run your own application that connects to a PointBase database using the Server Option,
you only need the file pbclientxx.jar.

Running PointBase Server with Embedded - Server Option

The class file to run in order to start PointBase Server is
com.pointbase.net.netServer. The CLASSPATH must include
pbembeddedxx.jar. The command line can accept the argument "/win" in order to have
the PointBase Server window appear. If not used, the server will run "headless".

JBindery Tip

JBindery lets you save your configuration as a JBindery configuration, or as an application. If
you save it as a JBindery configuration, you can open it with the same settings and run it. If
you save it as an application, you can run it without seeing the JBindery interface.
Version 4.8 PointBase System 19

 PointBase
Tips for Security Manager

PointBase also can be run with Java Security Manager. With Java Security Manager enabled,
user may need to grant the following permission to PointBase jars.

java.io.FilePermission

Read, write, delete permissions on the
PointBase database.home directory. For a
client process where PointBase
database.home directory is on a server
machine and not available to the client,
permissions on the current working directory,
the directory specified by environment
variable java.io.tmpdir or the root directory
may be required.

java.net.SocketPermission

Listen, accept, connect, resolve permissions
on server listening port. The default is
localhost:9092, and on port localhost:20000 to
21000 for PointBase system locks. For clients,
permissions on server listening port, for
example serverhost:9092, are required.

java.util.PropertyPermission

Read permission on system properties
java.version, java.vendor, java.version,
user.name, os.name, os.version, os.arch,
java.io.tmpdir, file.tmpdir, java.class.path,
file.separator, and all PointBase properties
listed in PointBase configuration section.

com.pointbase.sp.spPermission
on classes used by store procedures or
functions
Version 4.8 PointBase System 20

PointBase Supporting Tools
This section describes the PointBase tools, PointBase Commander, PointBase Console and
integrity checking tools. You can use the PointBase tools to access and manipulate PointBase,
as well as to check database consistency and fix database corruptions.

PointBase Commander

After you launch the Commander, it prompts you for the following settings. You can choose to
accept the default values or enter new ones.

Do you wish to create a “New/Overwrite” Database? [default: N]:

(If you enter Y for yes, make sure to use a name that is different from your existing database,
or the existing database(s) will be destroyed and overwritten with no warning by a new empty
database.)

Select product to connect with: Embedded (E), or Server (S)? [default: E]:
Please enter the driver to use: [default: [com.pointbase.jdbc.jdbcUniversalDriver]:
Please enter the URL to use: [default: [jdbc:pointbase:embedded:sample]

(PointBase supports URLS from version 3.5 or earlier.)

User name: [default: PBPUBLIC]:

(The user name must exist in the SYSUSERS table in order to connect to the database.)

Password: [default: PBPUBLIC]:

In addition to standard SQL commands, PointBase Commander supports the following
commands, which are specific to PointBase Commander only. When using PointBase
Commander you must use only forward slashes (/), where slashes are required.

NOTE: Use the following command to view the most up-to-date commands that are specific
to PointBase Commander: HELP;
Version 4.8 PointBase System 21

 PointBase
Table 1: Commands for PointBase Commander Only

Command Syntax Description

SET SPOOL ON/OFF
<file_name>

Direct the output to a file ON/OFF. If the file is not
specified than Commander.spl file is created in the current
user dir.

SET STOP_ON_ERROR ON Stop execution of SQL script if error occurs

SET STOP_ON_ERROR OFF Do not stop execution of SQL script if error occurs

SET AUTOCOMMIT ON/OFF Set the autocommit mode to TRUE or FALSE.

SET TIMING ON Begin showing timing for commands.

SET TIMING OFF End showing timing for commands.

SET SCREENHEIGHT <value> Set the number of lines per page.

SET SCREENWIDTH <value> Set the number of characters per line.

SET PAUSE ON Turn ON pause after every command.

SET PAUSE OFF Turn OFF pause after every command.

SET DATA ON/OFF Turn ON/OFF the display of result set data.

SET NULLS <value> Set NULL value display.

SHOW SYSTEM Report Database Meta Information.

SWITCHLOGFILE Switch to a new database log file.

DESCRIBE <table> Report Table Information.

UNLOAD TABLE <table>
<file>

Unload a table in SQL format. <Table> is the name of the
table to unload. <File> is the .sql file that you want to
receive the scripts.

UNLOAD DATABASE <file>
[PRESERVE]

Unload a database in SQL format. <File> is the .sql file
that you want to receive the scripts. [PRESERVE]
preserves the ownership of schemas, grantors in GRANT
statements, and create ROLE owners.
NOTE: It does not preserve the DATABASE OWNER.
Whoever creates the new database is the database owner.

SHOW MEMORY Report memory used by the Java virtual machine.

RUN <file> Run a SQL script from the .sql file.

RUNJDBCMETA
<methodName>(args...)

Run a method in the JDBC database meta data.

-- Comment out a single line, outside any SQL statement.

/* ... */ Comment out multiple lines, inside or outside, any SQL
statement.
Version 4.8 PointBase System 22

 PointBase
NOTE: Please see "Optimizing Query Expressions" on page 37 for additional commands.

PointBase Console

Please refer to the PointBase Console Guide for information about using the PointBase
Console tool.

PointBase Index Consistency Checking Utility

This utility is used to check index consistency. It checks index structural consistency and is
able to dump detail index page information. To understand these page dumps requires some
knowledge of Pointbase internal and btree structure. This utility also provides a fix option to
recreate the index if it happened to be corrupted. This utility must be run alone on a quiescent
database, otherwise unexpected result may occur.

Utility Syntax

java com.pointbase.util.utilCheckIndex dbname {-n [schemaName.][tableName.]indexName |
-p controlPageId} [-d] [-toString] [-level n] [-fix] [-userId userid] [-password password]

Parameters:

dbName:

Name of database.

-all

Check all indexes.

-n [schemaName.][tableName.]indexName:

Using index name to specify the index to be checked.

-p controlPageId:

Using control page id to specify the index to be checked. This page id can be obtained from
sysindexes entries, column indexFirstPage.

-d:

Dumping detail index page contents. This will dump index key entries in both vertical and
horizontal order, otherwise only vertical order will be shown.

-toString:
Version 4.8 PointBase System 23

 PointBase
Working with -d option to dump index key entries as string instead of bytes.

-level n:

Checking level. Level1 checks index page links and key order consistency. Level 2 checks row
pointers in index key entries and crosses checking with table entries in addition to level 1
checking.

-fix:

Fixing the index. This option will fix a corrupted index. It does check the index first, if the
index checking passes, this option is no-op.

-userId userid

Specifying connection userid. Default is "pbpublic" if this parameter is not specified.

-password password:

Specifying connection password. Default is "pbpublic" if this parameter is not specified.

API Syntax

Connection must be established before calling these api’s.

Imported class:

import com.Pointbase.util.utilCheckIndex;

APIs:

public static boolean check(int p_ControlPageId, int
p_Level, PrintWriter p_Out)

Parameters:

p_ControlPageId: index control page(or first page) id.

p_Level: checking level.

p_Out: output stream.

Return: true for consistent, false for inconsistent.

public static boolean check(String p_IndexName, int
p_Level, PrintWriter p_Out)

Parameters:

p_IndexName: index name.

p_Level: checking level.
Version 4.8 PointBase System 24

 PointBase
p_Out: output stream.

Return: true for consistent, false for inconsistent.

public static void fix(Connection p_Con, String p_IndexName)

Parameters:

p_IndexName: index name.
Version 4.8 PointBase System 25

Verifying PointBase
You can verify PointBase in the following four ways:

• “PointBase Commander”
• “PointBase Console”
• “A JDBC Application”
• “PointBase Examples”

PointBase Commander

To verify PointBase using PointBase Commander, proceed as follows:

1. Start PointBase Commander.

2. Type the following SQL Statement:

> select tablename from systables;

The system returns a list of system tables and catalogs, such as SYSSCHEMATA,
SYSUSERS, SYSTABLES. If the list is missing, please contact your PointBase Support
representative at http://pointbase.custhelp.com.

PointBase Console

To verify PointBase using PointBase Console, perform the following:

1. Start PointBase Console.

2. Deselect “User Only Tables” from the Catalog menu.

3. Click the Catalog button from the Catalog menu.

4. Extend the Schemas icon to display the PointBase icon.

5. Extend the PointBase icon to display the Tables icon.

6. Extend the Tables icon.
Version 4.8 PointBase System 26

http://pointbase.custhelp.com

 PointBase
A list of system tables and catalogs display, such as SYSSCHEMATA, SYSUSERS,
SYSTABLES. If the list is missing, please contact your PointBase Support representative at
http://pointbase.custhelp.com.

A JDBC Application

To verify PointBase using JDBC APIs, proceed as follows:

Create a sample program that executes a SELECT SQL statement to retrieve the system
catalogs or you can refer to the JDBC Tutorial chapters of the PointBase Developer’s Guide
that uses the PointBase Sample Database Application. An example of the SELECT statement
is as follows:

> select tablename from systables;

Once you have retrieved the system catalogs correctly, the system displays a list of system
tables and catalogs, such as SYSSCHEMATA, SYSUSERS, SYSTABLES, etc...If the list is
incomplete or missing, please contact your PointBase Support representative at http://
pointbase.custhelp.com.

PointBase Example

You can verify PointBase with the example located in the
“\pointbase\samples\embedded_server folder.” It provides you with the following:

• Sample Database Application: this illustrates the basics of connecting, inserting some
data into the database and selecting it for output. It also describes more advanced JDBC
operations using PointBase, for example, batch operations and scrollable result sets.

• Example Batch files: these files give an example of batch files that start PointBase
Commander or Console. By viewing and editing these files in a text editor you can see
how batch files start PointBase.
Version 4.8 PointBase System 27

http://pointbase.custhelp.com
http://pointbase.custhelp.com
http://pointbase.custhelp.com

Configuring PointBase
This chapter explains how to configure PointBase database properties. Configuring database
properties allow you to control some aspects of PointBase behavior. The following sections
describe how to configure your PointBase Embedded RDBMS.

PointBase.ini File

The “pointbase.ini” file contains the PointBase database properties. You can select the
“pointbase.ini” parameters to configure the database properties. By configuring the database
properties, you can increase the performance of your system.

Changing the Location of the PointBase.ini File

The “pointbase.ini” file has one default location: “<install directory>\pointbase\tools\<product
name>.” You can override the default location of the “pointbase.ini” file by using the Define
option or by adding a parameter to the URL when connecting to PointBase.

Using the Define Option

You must use the Define option when you start PointBase. The following examples set the
location of the “pointbase.ini” file to “c:\pointbase\config\pointbase.ini.”

• Using the Microsoft Java Virtual Machine
jview /d:pointbase.ini=<path>

If you want the system to search for the “pointbase.ini” file in the “config” folder, enter the
following:

jview /d:pointbase.ini=c:\pointbase\config\pointbase.ini /cp
c:\pointbase\lib\pbtools47.jar;c:\pointbase\lib\pbembedded47.jar
com.pointbase.tools.toolsCommander com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:sample pbpublic pbpublic
Version 4.8 PointBase System 28

 PointBase
• When using the Sun Java Virtual Machine
java -Dpointbase.ini=<path>

If you want the system to search for the “pointbase.ini” file in the “config” folder, enter the
following:

java -Dpointbase.ini=c:\pointbase\config\pointbase.ini -classpath
c:\pointbase\lib\pbtools47.jar;c:\pointbase\lib\pbembedded47.jar
com.pointbase.tools.toolsCommander com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:sample pbpublic pbpublic

Using the URL

Use the URL when starting PointBase. The following example sets the location of the
“pointbase.ini” file by appending a parameter to the URL.

"jdbc:pointbase:embedded:databaseName,pointbase.ini=<path to pointbase.ini>"

If you want the system to search for the “pointbase.ini” file in the “config” folder, enter the
following:

java -classpath
c:\pointbase\lib\pbtools47.jar;c:\pointbase\lib\pbembedded47.jar
com.pointbase.tools.toolsCommander
com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:sample,pointbase.ini=c:\config\pointbase.ini pbpublic pbpublic

NOTE: Because PointBase Server Option does not use a URL on the server side, you can
change the location of the “pointbase.ini” file by entering the following at the
command line, when you start PointBase Server.

java com.pointbase.net.netServer /pointbase.ini=<path to pointbase.ini>.

How PointBase Locates the PointBase.ini File

PointBase searches for the “pointbase.ini” file in the following areas:

• URL
• -Dpointbase.ini=<folder\file> (or for jview /d:pointbase.ini=x)
• In the directory where the application loading the driver is located

NOTE: In the case of PointBase Server Option, PointBase searches the command line because
it has no URL option. See “Changing the Location of the PointBase.ini File.”

If PointBase is unable to find the “pointbase.ini” file, it uses the default database properties
defined in the section, “Database Properties.”
Version 4.8 PointBase System 29

 PointBase
Configuring Database Properties

This section describes how to configure the properties of the PointBase database. You can
configure or set the database properties in the following ways:

• Edit the parameters in the “pointbase.ini” file located in the directory, “<install
directory>\tools\<pointbase_product>.”

• Add a parameter(s) to the URL, when starting PointBase. The following example sets the
database.home parameter to C:\myDatabase.

"jdbc:pointbase:embedded:databaseName,create=true,database.home=C:\myDatabases"

The following code describes a more complete example:

java -classpath
c:\pointbase\embedded\lib\pbtools47.jar;c:\pointbase\embedded\lib\pbembedded47.jar
com.pointbase.tools.toolsCommander
com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:databaseName,create=true,database.home=C:\myDatabases pbpublic
pbpublic

• Use the PointBase Console. Refer to the PointBase Console Guide for more information.
• Use the Define option when starting PointBase. The following example sets the

database.home parameter to C:\myDatabase.
java -Ddatabase.home=C:\myDatabase ...

The following code describes a more complete example:

java -Ddatabase.home=C:\myDatabase -classpath
c:\pointbase\lib\pbtools47.jar;c:\pointbase\lib\pbembedded47.jar
com.pointbase.tools.toolsCommander com.pointbase.jdbc.jdbcUniversalDriver
jdbc:pointbase:embedded:databaseName,create=true pbpublic pbpublic

What Method of Configuration Takes Precedence?

Because database properties can be set in different ways, PointBase prioritizes which database
properties to use first, to avoid any conflicts. For example, if you define the database.home
parameter to c:\myDatabase using the URL and you also edit the “pointbase.ini” file to define
the database.home parameter to c:\temp, PointBase uses the URL definition instead of the
property set in the “pointbase.ini.” The database properties defined in the URL take first
precedence, then the properties defined in the “pointbase.ini” and finally, the properties
specified in the Define option. The following is the order of precedence.

1. URL parameter

2. -D (Define option)

3. pointbase.ini.

INI Parameter Organization

The INI parameters are organized into three categories.
Version 4.8 PointBase System 30

 PointBase
Connection

Some INI parameters are connection specific. Parameters specified through the URL override
the parameters specified by other means. If the same parameter is specified in multiple ways
then the order of precedence stated above is applied.

Database

Similar conditions apply for database parameters as for connection parameters. However only
the first connection is allowed to setup the initial parameters for that database. Any of these
parameters specified in subsequent connections are ignored.

Process

The user can set up the process-based initial parameters only once, at the time of the first
connection to any database in that process. Any of the parameters specified in subsequent
connections are ignored.

These categories and their related INI parameters are shown in table below:

Connection Database Process

crypto.communicationAlgorithm Crypto.databaseAlgorith
m

connection.convertUserInfoToUppercase

crypto.communicationKey crypto.databaseKey cache.checkpointinterval

fetch.blocksize database.pagesize cache.size

stream.checkSize debug.log documentation.home

transaction.isolationLevel debug.logSize server.port

debug.logLevel database.home

locale.country

locale.language

locks.maxCount

locks.timeout

log.filesize

log.syncatcommit

max.connections

sort.size
Version 4.8 PointBase System 31

 PointBase
Note: When using Server option, the INI parameters that are set on the client (URL, -D , INI
file) will override the parameters that are set on the server.

For example, consider a case where you start the server as shown below

java -Ddatabase.home=e:\myfolder\personal com.pointbase.net.netServer

and then start the client application as follows:

java -Ddatabase.home=e:\publicfolder com.pointbase.tools.toolsConsole

As database.home is categorized as a process INI parameter, the first client will set the
database.home as e:\publicfolder. All subsequent clients will connect to database located in
e:\publicfolder.

To avoid this, it is recommended that a pointbase.ini file on the client side contain only
parameters that relate to the client such as documentation.home and sort.size , and set server-
side parameters in pointbase.ini on the server.

Database Properties Described

The following table describes the PointBase parameters in the “pointbase.ini” file, which you
can use to configure the database properties. If you do not specify a value for a setting, the
system uses the default value listed in the following table.

table.pageReserve

connpool.size

SQLCaching.size

cursor.holdAcrossCommit

Table 1: PointBase Parameters

Key Name Default Description

cache.checkpointinterval 10 The checkpoint interval in seconds

cache.size 2063 Maximum number, in pages, held in cache.
Best performance is found when this value is a
prime number.
Version 4.8 PointBase System 32

 PointBase
connection.convertUserInfoToUppercase true Indicates the behavior of usernames and
passwords that are specified in JDBC
connection(i.e getConnection()) methods. If
this parameter is set to TRUE then the
usernames and passwords specified in the
JDBC connection methods, will be converted
to uppercase. If this parameter is set to false
then the usernames and passwords will be
taken as specified. The username and password
for the default user PBPUBLIC will always be
converted to uppercase regardless of the value
of this parameter.

connpool.size 10 The number of connections kept in pool when
using jdbcPooledDatasource to get
connections.

crypto.communicationAlgorithm None This is the name of algorithm to use for
transferring data between client and server. The
algorithm should be specified in the
“pointbase.ini” file on the client. The choices
are: twofish, blowfish, des, des3, tea , and idea.
Use <none> to specify no encryption. If the
user specifies “defaultAlg” as the value then
the Blowfish algorithm is used. Refer to the
“Cryptography” chapter of this guide for more
details on each of these algorithms.

crypto.communicationKey Private This is the encryption key used to encrypt data
which is transferred between client and server.
The key should be specified in the
“pointbase.ini” file on the client. Refer to the
“Cryptography” chapter of this guide for more
information.

crypto.DatabaseAlgorithm none This is an algorithm used to encrypt data in the
database. Options are BLOWFISH, DES,
DES3, TEA, IDEA, TWOFISH and none.
Refer to the “Cryptography” section of this
guide for more information.

crypto.databaseKey Private The database encryption key used across the
network. Refer to the “Cryptography” section
of this guide for more information.

cursor.holdAcrossCommit FALSE Sets the default for result set holdability. See
“Using Result Sets” in the PointBase
Developer’s Guide for more information.

database.home \pointbase\databases The folder in which database and log files are
located.

Table 1: PointBase Parameters

Key Name Default Description
Version 4.8 PointBase System 33

 PointBase
database.pagesize 4096 The size, in bytes, of each database page. This
can be any number divisible by 1024. The
minimum size is 1K and the maximum size is
32K. This property is valid only when creating
a new database.

debug.log FALSE An optional debug.log is created in the
PointBase home directory with the name of
<database name> + “Debug.log”. To turn it on,
set to TRUE. To turn off, set to FALSE.

If set to FALSE, PointBase may still write only
important exception information to PointBase
error log which is created in the PointBase
home directory with the name or <database
name> + “Error.log”.

If set to TRUE and debug.log file reaches its
maximum size, PointBase renames it to
<database name> + “Debug _save.log and
creates another debug.log to store any new
information. If the new debug.log also reaches
its maximum size, it replaces the old saved log
and PointBase creates another new debug.log.
At most, only two debug.log files will exist.

debug.logSize 200M Sets the total debug.log file size. Minimum
size is 1M, size smaller than 1M will not be
taken. Possible values may have the following
suffixes: M, G, or K. When the max log size is
reached, file is renamed and a new log file is
created. If reached again, the log is renamed
same as the previous one which is overwritten.

debug.logLevel 1 Sets the debug level from 1 to 3. A larger
number of debug level will dump more trace
information. For example, debug level 1 dumps
SQL statements, level 2 dumps locks info when
lock_wait timeout occurs, and level 3 dumps
setXXX values in prepared statements.

documentation.home <install_directory>\docs\ser
ver_embedded

This parameter is set to a folder where Console
looks for html help files.

fetch.blocksize 100 The number of rows to fetch in each request to
the database in retrieving rows of data. This
parameter affects PointBase Server Option
only.

Table 1: PointBase Parameters

Key Name Default Description
Version 4.8 PointBase System 34

 PointBase
locale.country localeLanguageDefault Sets the default country. Can be used in
conjunction with locale.language. This defaults
to the country relative to the locale.language
parameter value.

locale.language null Sets the default language. Can be used in
conjunction with locale.country. In this
parameter, null is equivalent to US.

locks.maxCount 2000 The number of row level locks held on a
particular table before it is converted to a table
lock.

locks.timeout 60 The period of time (in seconds) the database
waits for a lock to be acquired before rolling
back.

log.filesize 50M The maximum size of database log file. Once
this size is reached, the database starts writing a
new log file labeled with the next file number.
Old log file(s) are eventually removed when
they are no longer needed by the database. The
lower limit for this property is 10 times the
page size. The upper limit is the maximum
integer value of the file size (platform-
dependent). The value can be specified with an
appended k/K for Kilobyte units, m/M for
Megabyte as units, or g/G for Gigabyte units
(for example, log.filesize=300K).

log.syncatcommit false When you set this parameter to true, the log file
will be written to disc at the end of every
transaction.
When set to true, every time a commit is made
(by manually committing or auto commit =
true), a physical write to the log file on the disk
system will be FORCED.
When set to false, the return from COMMIT
statement is done before ensuring the last
commit log record is on the disk. If there is a
system crash, it is possible that last few
transactions that were perceived to be
committed at run time did not make it to disk
and got rolled back when the database is
opened after the crash.

max.connections 0 The default 0 means unlimited connections. It
is useful to set this to 1 if only 1 connection is
to be used. This will disable the lock manager
and a substantial performance gain will be
realized as a result.

Table 1: PointBase Parameters

Key Name Default Description
Version 4.8 PointBase System 35

 PointBase
server.port 9092 The server port number. Any valid port value
may be used. This value should be set on both
the client and the server “pointbase.ini” files.

sort.size 2048 The maximum size in KB for internal memory
sorting. When 2048 is used, the database uses
disk files to perform large sorts. The larger the
value, the faster the sort (at the expense of
memory). If the value is smaller, the memory
footprint will be smaller. Use a value that is
compatible with your environment.

SQLCaching.size 50 Specifies number of SQL caching entries in
memory. When this value is set to 0 (zero)
SQLCaching is disabled.

stream.checkSize true This ensures that the length of the stream
specified in JDBC methods is checked against
the length specified, for example, in methods
like: setAsciiStream(int parameter,
InputStream in, int length).

table.pageReserve 15 This integer value determines percentage of
space reserved in the table pages that can be
used by the UPDATE commands. This helps
future updates of the rows in the page to fit into
the same page.

transaction.isolationLevel TRANSACTION_
READ_COMMITTED

Other values for this field are:
TRANSACTION_REPEATABLE_READ,
TRANSACTION_SERIALIZABLE, and
TRANSACTION_READ_UNCOMMITTED.

Table 1: PointBase Parameters

Key Name Default Description
Version 4.8 PointBase System 36

Performance Tuning
This chapter explains how to improve the performance of PointBase. Improving the
performance increases the speed of database operations, for example, processing queries and
other SQL commands. By explaining specific database settings and how they affect
performance or, by explaining the appropriate steps to optimize a query, this chapter can help
you improve PointBase performance. Each of the following sections explain a different way to
accomplish increased performance.

Optimizing Query Expressions

Query optimization consists of analyzing an SQL query expression used within SELECT,
DELETE (where clause), INSERT (query expression), or UPDATE (where clause) statements
to determine the best way to execute the query expression. The description of which resources
to use and how to use them is known as a query plan.

Some of the major influences on the optimizer’s choice of a query plan are the following:

• The SQL table(s) in the database to be accessed.
• The size of each SQL table (number of rows and columns which impacts the number of

reads from physical storage).
• The indexes on the specified SQL table or tables and how they relate to the query

expression.
• The size of the cache that can contain the rows of the SQL table or tables.

Indexes are very crucial to the optimizer. If a column or columns of the index are used in the
where clause or as a joining column, then the optimizer can consider using the index in the
costing of a given query plan. The optimizer measures the cost of using any index that exists.
Indexes allow the database system to only access those rows that meet the criteria of the query
expression.

For an index, the optimizer determines the number of leaf pages (bottom tier), the depth of the
index and the selectivity factor. The selectivity factor is the number of unique index key
column values. Additionally, the optimizer determines the cost of scanning each row of the
table.

The optimizer in the PointBase is a cost-based optimizer. This means that it will look at the
numerous possible query plans and will determine which one is most optimal and least
expensive for a given query expression.
Version 4.8 PointBase System 37

 PointBase
One of the difficulties that an optimizer encounters is that the index information can become
quickly outdated. This occurs through deletions, insertions, and modifications to the actual key
values of the index. The number of leaf pages, the depth and the selectivity factor all become
invalid with just one or more deletions, insertions, or modifications. To solve this problem,
most database systems require a database administrator to run a statistics tool to update the
information on an index so that the optimizer always has current information.

The optimizer in PointBase does not require any such tool or the intervention of a database
administrator. The PointBase system automatically keeps the number of leaf pages, index
depth, and selectivity factor for each index consistently current. By keeping pertinent
information current, the optimizer will always have correct information to determine what
query plan should be employed to execute the query expression.

Execution Plan

Whenever a query is compiled, the optimizer figures out various ways the query can be
executed and picks the one with the lowest cost. The cost is determined in terms of the number
of I/Os needed to perform the query in addition to the CPU cost associated with evaluating the
portion of the query under consideration. The important elements of an execution plan are as
follows:

The Access Methods

If there are any indexes, are they used? If there are multiple indexes, which ones are used? If an
index is used, does the base table need to be accessed, or is all the information needed available
in the index? If only the index is accessed and not the base table, this is known as an index-
only access and can improve performance dramatically.

The Join Order

This determines the order in which tables are accessed. At each step, the execution plan
estimates costs and the number of rows produced.

The Join Type

This element could be a NESTED LOOP or an OUTER JOIN NESTED LOOP.

The Predicates

Where in the execution plan are the predicates put to use? The objective is to push the
computation as close to the data and filter it out as quickly as possible.

PLAN Facility

To generate the execution plan for a particular query, you may use the PLAN facility by
executing either of two PointBase Commander commands: EXPLAIN or SET PLANONLY
ON. Before using the PLAN facility, make sure that no existing tables with the names,
PLAN_TABLE and PLAN_QUERIES exist in your current schema.

If they do exist, make sure they have the correct columns by verifying them against the tables
described in the next sections. If they do not have the correct columns, you must drop the
PLAN_TABLE and PLAN_QUERIES tables before using the PLAN facility.
 Version 4.8 PointBase System 38

 PointBase
The following explains how to use the PLAN facility:

1. From PointBase Commander, enter the following: SET PLANONLY ON.

2. Compile and execute the query of interest. PointBase automatically returns the execution
plan for that query.

3. Finally enter: SET PLANONLY OFF. Once this is done, you can view the
PLAN_TABLE and PLAN_QUERIES tables with a SELECT statement.

The three steps explained above, can also be performed using the EXPLAIN command. Using
the PointBase Commander, enter the keyword, EXPLAIN, followed by the query for which
you want to create an execution plan. You may use INSERT, DELETE, UPDATE, or SELECT
for the query, for example:

EXPLAIN select * from t1;

Note that, using the EXPLAIN command clears the tables, PLAN_QUERIES and
PLAN_TABLE, each time you use the command. Using the EXPLAIN command is equivalent
to the following commands:

DELETE FROM PLAN_TABLE;
DELETE FROM PLAN_QUERIES;
SET PLANONLY ON;
SELECT * FROM <table name>;
SET PLANONLY OFF;

PLAN_QUERIES and PLAN_TABLE

The PLAN facility keeps the execution plan information in two SQL tables: PLAN_QUERIES
and PLAN_TABLE. These SQL tables can be accessed and modified with common SQL
commands. These tables have the following characteristics:

• The system automatically creates these tables.
• The owner of each table is the current user.
• As the user, you must truncate the tables to remove data that it no longer needs. To

remove data from these tables, use a DELETE statement.

PLAN_QUERIES

The PLAN_QUERIES table stores the queries you executed after first executing, SET
PLANONLY ON. For example, the following queries are stored the PLAN_QUERIES table:

select * from t1,t2 where t1.c1 = t2.c1 and t1.c1>5 and t2.c1<100;
select * from t1 LEFT OUTER JOIN t2 on t1.c1=t2.c1;
select max(t1.c1) from t1,t2 group by t2.c1, t1.c1;

PLAN_QUERIES

Query Value

1
select * from t1,t2 where t1.c1 = t2.c1 and
t1.c1>5 and t2.c1<100

2
select * from t1 LEFT OUTER JOIN t2 on
t1.c1=t2.c1
 Version 4.8 PointBase System 39

 PointBase

P

PLAN_TABLE

The PLAN_TABLE table stores the execution plan for all SQL queries after executing the
command, SET PLANONLY ON or EXPLAIN. Note that PointBase automatically clears this
table after every EXPLAIN command. If you are using the PointBase Commander, make sure
to use the SET SCREENWIDTH <value> command to view all the columns in
PLAN_TABLE, for example: SET SCREENWIDTH 2000;

3
select max(t1.c1) from t1,t2 group by t2.c1,
t1.c1

PLAN_QUERIES

Query Value

LAN_TABLE

Query Block Step Operation
Access_
Method

Table_
Name

Index_
Name

Cost
Cum.
Cost

Output
_Rows

Expressions
Begin Key
Predicates

1 1 1 scan indexonly
scan

t1 ind1 1 1 5 <(T2.C1,
constant)

=constant

1 1 2 nested loop
join

table scan t2 Null 10 11 15 =(T1.C1,
T2.C1),
>(T1.C1,consta
nt)

=constant

2 1 1 none table scan t2 Null 5 5 20 Null >constant

2 1 2 outer
nested loop
join

table scan t1 Null 5 10 16 =(T1.C1,
T2.C1)

Null

2 1 3 group by Null Null Null Null Null (T2.C1,T1.C1) Null

3 1 2 scan table scan t3 Null 30 30 40 Null Null

3 1 3 nested loop
join

table scan t4 Null 20 50 80 Null Null
 Version 4.8 PointBase System 40

 PointBase
Optimizing MIN and MAX Functions in a Query

This section explains when the optimizer can optimize the MIN and MAX functions in a query,
which is also referred to as MIN/MAX Optimization. Optimizing MIN or MAX functions
increases the performance of a particular query that uses these functions. If a query meets
certain criteria, then at best, PointBase only has to read one row instead of reading all rows that
satisfy the key predicate(s). The following sections summarize the descriptions of MIN and
MAX functions and explain the necessary conditions for the optimizer to choose MIN/MAX
Optimization.

MAX Function

The MAX function returns the data item with the highest value for a column when applied to a
column containing numeric data. If you apply the MAX function to a CHARACTER value, it
returns the last value in the sorted values for that column. See the PointBase Developer’s
Guide for more information about MAX functions.

MIN Function

The MIN function returns the data item with the lowest value for a column when applied to a
column containing numeric data. If you apply the MIN function to a CHARACTER value, it
returns the first value in the sorted values for that column. See the PointBase Developer’s
Guide for more information about MIN functions.

MIN/MAX Optimization

For the optimizer to choose MIN/MAX Optimization, the query must meet certain criteria.
There can only be one aggregate in the SELECT list: a MIN aggregate or a MAX aggregate.
There can be no GROUP BY or HAVING clauses, and there can be no aggregates in the
WHERE clause.

If the query meets these specified criteria, the optimizer can choose MIN/MAX Optimization
to find the minimum or maximum of a column, which is either the leading column of an index
or is an index column up to and including the first column after all index key columns that are
covered by equality key predicates. It is also possible if there are range key predicates, but only
if the query performs MIN on an ASCENDING index or MAX on a DESCENDING index.

The following are examples of MIN or MAX optimization for the given index:

CREATE INDEX PUBLIC.IND2 on PUBLIC.ORDER_TBL (CUSTOMER_NUM, REP_NUM,
PRODUCT_NUM); /*Index columns are ASCENDING by default*/

SELECT MIN (CUSTOMER_NUM) /*CUSTOMER_NUM is the leading index column*/
FROM ORDER_TBL;

SELECT MIN (REP_NUM) /*REP_NUM is an index column up to and including the
first column after all index key columns that are cover by equality key
predicates*/
FROM ORDER_TBL
WHERE CUSTOMER_NUM = 1;

SELECT MIN(CUSTOMER_NUM) /*MIN on ASCENDING index column*/
FROM ORDER_TBL
WHERE CUSTOMER_NUM > 1; /*range key predicate*/
 Version 4.8 PointBase System 41

 PointBase
MAX on Ascending and MIN on Descending

In addition to the previous conditions, your query must also satisfy the following conditions, if
you are performing the MIN function on a descending index column or, the MAX function on
an ascending index column.

• For MIN or MAX, you cannot have any non-key predicates in the query.
• For MIN, the index column that you are querying cannot allow any NULL values.

Optimizing Count(*) in a Query
This section explains when the optimizer can optimize the count(*) function in a query, which
is also referred to as the Count(*) Optimization. Optimizing the count(*) function increases
the performance of a particular query that uses this function. If a query meets certain criteria,
then PointBase can return it's internal statistical count of the number of rows in the table as the
count. Without the optimization, PointBase must read every row in the table and count every
row seen. The following sections summarize the description of the count(*) function and
explains the necessary conditions for the optimizer to choose the count(*) optimization.

count(*) Function

The count(*) function returns the number of rows that satisfy the query after any where clause
predicates have been applied. If there is a group by clause, then a separate count is returned
that represents the number of rows in each group. See the PointBase Developer's Guide for
more information about COUNT functions.

count(*) Optimization

For the optimizer to choose count(*) Optimization, the query must meet certain criteria. There
can be only one table in the from clause, and only one aggregate in the select list: a count(*)
aggregate. There can be no group by or having clause, and no where clause. In other words,
the query must only be asking for the count of every row in the table. Under these conditions,
then the internal count of rows for the table is equivalent to the query result. Pointbase will
simply read the internal count and return. This will be very fast.

If the transaction isolation level is not read uncommitted, then to ensure the consistency of the
count(*) result, we will attempt to get a shared table lock on the table before reading the count.
If we must wait to get the lock, we will not use the optimization and will compute the count in
the normal fashion. We will not wait because if the table is busy, we could wait a long time to
get the table lock, perhaps longer than it would take to just compute the count by reading all
the rows. The table lock will be released in the usual manner, according to the transaction
isolation level.

Examples

The following are examples of the count(*) optimization:

Schema:

T1 (a int not null, b int not null, c int);

T2 (a int not null, b int not null, c int);
 Version 4.8 PointBase System 42

 PointBase
Query 1:

Select count(*) from t1;

Count(*) optimization is possible

Query 2:

Select count(*) from t1 where a < 100;

Count(*) optimization is NOT possible

Query 3:

Select count(*),min(a),max(a) from t1;

Count(*) optimization is NOT possible

Query 4:

Select count(*) from t1,t2;

Count(*) optimization is NOT possible

Query 5:

Select count(*) from t1 group by a;

Count(*) optimization is NOT possible

Tuning Database Properties

By configuring some of the database properties using the “pointbase.ini” parameters, you can
enhance the performance of PointBase. The following describes the “pointbase.ini” parameters
you can configure to improve performance. For a complete list and description of the
“pointbase.ini” parameters, refer to "PointBase Parameters" on page 32.

Increasing the Cache Size

Some performance improvement may be seen by increasing the size of the cache, which
reduces I/O. To set this size, change the value for the “pointbase.ini” parameter, “cache.size.”
The default value is 2063 buffers where each buffer holds a page. For best results, the cache
size should be a prime number. Increasing the size may give improved performance at the
expense of memory usage.

Setting the Database Page Size

Changing the value for the parameter, “database.pagesize,” sets the default pagesize for the
database at creation time. PointBase supports up to 16 different page sizes within a database
for different tables, as well as for indexes, and for blob and clob columns. Table and Index
 Version 4.8 PointBase System 43

 PointBase
pages support sizes of 1K to 32K in increments of 1K. BLOB and CLOB pages support any
size in increments of 1K. Careful attention to the optimum page size for a table, column, or
index can result in a performance improvement.

For example, if you always access a number of rows that require a page size less than 1K, you
should set the default to 1K. If you always access a number of rows that require a page size
more than 32K, you should set the default to 32K. If you always access a number of rows that
require a maximum page size of 32K or a minimum page size of 1K, you should set the default
page size to 4K (which is the PointBase default).

With 4K as your default page size, if you access a number of rows that require a page size
between 1K and 4K, you do not waste a significant amount of space on the page. If you access
a number of rows that require a page size between 4K and 32K, PointBase will create
additional pages as needed in multiples of 4K.
 Version 4.8 PointBase System 44

 PointBase
Setting the Number of Rows Returned

By knowing the number of rows of data you need to retrieve or fetch from the database, you
can configure the “fetch.blocksize” parameter to minimize network traffic and improve
performance. (This applies to PointBase Server Option only). This can also be set via a JDBC
statement for individual statements.

Disabling Some Logging

You can improve the performance of your system by setting the “log.forcewrite” parameter to
FALSE. By setting this parameter to false, a physical write to the log file on the disk system
will NOT be forced after each COMMIT. However, this can have a negative effect on the
recovery process. If there is an abnormal termination of the program, it is possible that some
committed transactions will be lost. In cases where recovery is not an important issue, it is safe
to set this to FALSE.

Setting Memory Usage for Sorting

If you are sorting or using ORDER BY statements, the “sort.size” parameter can improve the
performance of the system. This parameter is used to store rows in memory while sorting. If
current memory is not enough, then a temporary file is used. Tune this parameter depending on
the size of the result sets you are sorting. The larger the value, the faster the sort (at the expense
of memory). If the value is smaller, the memory footprint is smaller.

Caching SQL Statements

The “SQLCaching.size” parameter configures the number of statements with the plan stored in
cache memory. If you know the number of statements that your system uses repeatedly, you
can configure this parameter to match that same number of statements, improving the
performance of the system. If an SQL statement is stored in the cache, the compilation and
plan creation are eliminated, which can save time.

Reserving Table Space for Updates

By configuring the “table.pageReserve” parameter you can reserve space in each table to
improve the performance of the system every time it performs an UPDATE. This parameter
specifies how much space should be reserved while inserting rows into a table. The space
reserved will be used when updates increase the row length. If enough space is not available
for the updated row, then a new page will be allocated for the updated row. Having enough
space reduces the need for page allocation. If the table is not likely to be updated, then you can
set this value to 0.
 Version 4.8 PointBase System 45

 PointBase
Minimizing Locking Times

This section explains how to minimize locking times in PointBase to increase performance.
When you hold a lock on a table or row, it prevents another transaction to perform actions on
the same table or row, which may adversely affect performance. (The action prevented
depends on the type of lock held.) The following sections explain how to minimize locking
times in different ways to increase PointBase performance.

Writing Data at the End of Transactions

When possible, attempt to write data to the database at the end of a transaction. Since the write
locks will only be released once the transaction is committed, you can minimize the time that
the write locks will be held. This is especially important for hot-spot tables. These are tables
that have a small number of rows and that almost every transaction must update—also known
as Hot-Spot tables.

Using READ_COMMITTED

When reading data and the transaction-isolation level is set to READ_COMMITTED,
PointBase releases the lock on a row as soon it returns the row data to the user, minimizing
resource usage and maximizing concurrency. After all the reads are complete, no locks are
held.

Using Indexes

This section explains how to use indexes with PointBase to increase performance. Indexes
allow you to increase the speed of data access to disk. Poor use of indexes may adversely affect
performance. The following sections explain different ways to use indexes to improve
PointBase performance.

Ordering Columns

When creating indexes, order the index columns with performance in mind. That is, the first
index column should be a column for which you will most often have an equality key
predicate.

If you need to sort data by particular columns (ORDER BY) or need to group rows on
particular columns (GROUP BY), consider adding an index on those columns in the order by
which you need the data to be ordered or grouped. The optimizer can then use the index to
access the rows in the correct order—avoiding a sort.
 Version 4.8 PointBase System 46

 PointBase
Accessing Indexes Only

Whenever possible, consider adding enough columns to the index so that all columns
necessary for queries which use the index can be satisfied from the index itself. This type of
access is called "index-only" access.

Avoiding Parameters in Range Predicates

If possible, do not use parameters for range predicates on indexed columns. They make it hard
for the optimizer to determine how many rows will be accessed when using that index, making
it a difficult task for the optimizer to determine if using the index will be more efficient than a
table scan.

Scanning Indexes

To make sure your indexes are being used, use the EXPLAIN command. As discussed in the
section, "PLAN Facility" on page 38, the EXPLAIN command returns the execution plan for a
particular query. You may use EXPLAIN to see if you are getting index scans. If this is not the
case, and you feel you should be getting index scans, you may not have set up your indexes
correctly. Make sure to re-evaluate your indexes.

Calculating Index Overhead

Although index management can improve performance, it may add overhead to INSERT and
UPDATE operations. PointBase recommends calculating the correct balance so that the
overhead does not exceed the benefits. (Consequently, you should create indexes on
columns—only when they use the indexes in predicates—where the majority of results return a
small number of rows.) Use the following formula to calculate the cost/benefit ratio:

of rows selected / # of rows in table=cost-benefit

If the result is less than .10, then you should create indexes. If the result is greater, then you
should not create an index, as the overhead will cost more than its benefits.

Selecting Multiple Rows With Different Key Values

If you need to select multiple rows with different key values, consider using an IN predicate
instead of multiple OR predicates. This will be advantageous if all the OR values are close
together.

If all the OR values are not close together, consider using UNION DISTINCT instead of
multiple OR predicates. This will return the same result as using multiple OR predicates if the
primary key column(s) are being selected.
 Version 4.8 PointBase System 47

 PointBase
Using the UNION Operator

Use UNION ALL versus UNION DISTINCT if there are no duplicate rows between the two
parts of the union or if duplicate rows are acceptable.
 Version 4.8 PointBase System 48

PointBase™ Cryptography
Cryptography is the science of data protection. Encryption algorithms vary in their strength (or
their perceived ability to protect data) and performance, but have many aspects in common.
The symmetric ciphers used in the PointBase products all operate on blocks of data, using an
encryption key to produce new data blocks. These data blocks may later be used to reconstitute
the original data, provided the same key is used. A good algorithm, one that is said to be
strong, has properties that make plain-text difficult to decipher. PointBase uses encryption in
two places; in the database file(s), and between the client and server for network
communications.

Note: Encryption is not available in the evaluation version of PointBase.

Database Encryption

In this type of cryptography, the database pages themselves are encrypted. This type works
with the PointBase Embedded version and with the PointBase Embedded - Server Option. It is
possible to set the database to use a supported algorithm to encrypt all the data that is being
written to the disk files.

The performance overhead of each algorithm is different; however, it has been shown that
none of the supported algorithms contribute to any significant degradation to the database
performance.

Client and Server Communication Encryption

In this type of cryptography, a session key is generated by the client, using a zero-information
protocol negotiated with the server. This session key is then used in a symmetric stream cipher,
picked randomly each time a connection is made. The session key is destroyed each time a
connection is dropped. From this point on, all communications between client and server are
encrypted, including the database passwords and data.
Version 4.8 PointBase System 49

 PointBase
Available Algorithms

There are currently six available algorithms for your PointBase software: BLOWFISH, DES,
DES3, TEA, IDEA, and TWOFISH.

For more information on the various cryptographic algorithms, go to http://
www.kremlinencrypt.com/crypto/algorithms.html or read Applied Algorithms by Bruce
Schneier.

Setting Database Encryption

To set database encryption algorithms, you need to modify the “pointbase.ini” file on the
server. You need to add or update the following line to include the name of the algorithm. By
default the algorithm is none:

crypto.DatabaseAlgorithm=<algorithm_name>

For example:

crypto.DatabaseAlgorithm=tea

NOTE: The crypto.DatabaseAlgorithm property has no default setting.

Algorithm Description Key Length

BLOWFISH Blowfish is a complex modular algorithm that uses
a session key. It is very secure and relatively fast,
but its key setup is designed to be relatively slow.

Variable from 32 to 448 bits

DES An older type of encryption algorithm that works
best on hardware, but is extremely slow on
software. It uses a 56-bit session key.

56 bits

DES3 DES3 is similar to the older DES algorithm, but
the 56-bit session key is used three times, thereby
increasing security.

56 bit key used 3 times
(= 168 bits)

TEA TEA is a cryptographic algorithm designed to
minimize memory footprint while maximizing
speed.

128 bits

IDEA IDEA is considered a highly secure block
algorithm. Its 128-bit key is resistant to most
decryption attempts.

128 bits

TWOFISH TWOFISH is considered the most secure block
algorithm. Its 256-bit key 128-bit block cipher
with 16 rounds has thus far not been broken.

256 bits
Version 4.8 PointBase System 50

 PointBase
To set the database encryption key, you need to set the “pointbase.ini” parameter
crypto.databaseKey. Every PointBase encryption algorithm uses a key to encrypt data. You can
use any string value for this parameter, for example:

crypto.databaseKey=pointbase

NOTE: This parameter has a private default setting if no key is specified.

For more information on updating the “pointbase.ini file,” refer to the “Configuring
PointBase” section.

Setting Client and Server Communication Encryption

Similar to the database encryption, PointBase offers client and server communication
encryption. This database property is set only on the client machine, because the client initiates
the encryption. When the client connects to the server, it passes the “pointbase.ini” parameter
crypto.communication as true. This parameter is set to true by default. You can set this
encryption off by setting the “pointbase.ini” parameter to false. The following is an example:

crypto.communication=true

However, if you decide to keep this encryption on, but want to change the algorithm, you can
do so by setting the “pointbase.ini” parameter crypto.communicationAlgorithm. Set this
parameter in the same way you set the crypto.DatabaseAlgorithm, described in “Setting
Database Encryption Algorithms.” The following is an example:

crypto.communicationAlgorithm=blowfish

Also similar to database encryption is the parameter crypto.communicationKey. Every
PointBase encryption algorithm uses a key to encrypt data. Set this parameter the same way as
the database encryption key. The following is an example:

crypto.communicationKey=pointbase

NOTE: This parameter has a private default setting if no key is specified.
Version 4.8 PointBase System 51

Database Log Flushing
The PointBase database logs transaction information in a log file for its internal transaction
management and crash recovery. This log file grows over time due to transaction information
used when synchronizing data.

PointBase provides a mechanism for flushing the log files automatically. Instead of appending
log information to the same file, PointBase switches to a new file with an incrementing log file
number. The old log files are automatically removed if the log information is no longer needed.

Switching to a new log file can be done by either of the following three ways:

• Setting the property log.filesize.
• Programmatically invoking the switchLogFile() method in

com.pointbase.jdbc.jdbcConnection object (for PointBase Embedded) or
com.pointbase.net.netJDBCConnection object (for PointBase Embedded - Server
Option).

• Issuing a SWITCHLOGFILE command from PointBase Commander.

Since old log files are deleted automatically, you should not explicitly delete them.

How to Flush the Log Setting the log.filesize

The log.filesize property represents the maximum size of a database log file (default=50MB).
This property is set in the “pointbase.ini” file. Once this size is reached, the database starts
writing into a new log file labeled with the next file number. Old log file(s) are eventually
removed when they are no longer needed by the database. The lower limit for this property is
10 times the page size. The upper limit is the maximum integer value of the file size, which is
platform-dependent. The value can be specified with an appended k/K for Kilobytes, m/M for
Megabytes, or g/G for Gigabytes (for example, log.filesize=300K).
Version 4.8 PointBase System 52

 PointBase
How to Flush the Log Using PointBase Commander

Database log flushing can also be done by issuing a SWITCHLOGFILE command from
PointBase Commander. The SWITCHLOGFILE command forces the database to switch to a
new log file.

Syntax:

SWITCHLOGFILE

(Single word, no parameters.)

This is an internal command understood only by PointBase Commander.
Version 4.8 PointBase System 53

PointBase™ Internationalization
PointBase supports the Unicode standard for facilitating internationalization of applications.
Unicode is an international character set that supports over 650 of the world’s languages, such
as Japanese, Chinese, Russian, French, and German. The Unicode standard uses a 16-bit set
instead of 8-bit code sets used by other character sets.

This expansion provides codes for more than 65,000 characters, an increase of over 200 times
the capacity allowed by 8-bit code sets (256 characters). To keep character coding simple and
efficient, the Unicode standard assigns each character a unique 16-bit value and does not use
complex modes or escape codes to specify modified characters or special cases. This
simplicity and efficiency makes it easy for computers and software to handle Unicode-encoded
text files.

Unicode allows developers to create a single version of an application and deploy it anywhere
without requiring any modification to the code. The same Unicode application will work with
data in any language. In addition, the application will run on different language versions of the
operating system; for example, it can be deployed on a European language version of
Microsoft Windows NT 4.x as well as on a Japanese or Chinese version without any
modification. This results in a significant reduction in development, testing, and maintenance
costs.

The following sections further explain Unicode.

• “What Types of Businesses are Likely to Use Unicode?”
• “Are There any Limitations to Unicode?”
• “Implementation”
• “Restrictions”
Version 4.8 PointBase System 54

 PointBase
What Types of Businesses are Likely to Use Unicode?

The following businesses are most likely to use Unicode:

• Multinational companies that want to mix data from many offices and languages in one
database server.

• Software developers who want to create one version of an application and send it to
multiple countries without making any engineering changes.

• In-house MIS teams in banks and insurance companies.
• Libraries and museums which require that some fields contain text excerpts or names in

many different languages. Other users of Unicode are software companies providing
software to these institutions.

• Government departments (for example, immigration or intelligence) or non-profit
organizations that must keep records in many languages.

Are There any Limitations to Unicode?

Unicode presents the following limitations:

• Unicode is very powerful but it does not do everything. Unicode is intentionally designed
not to handle complex text-based operations such as sorting, hyphenation, and line
breaks, or to include font or display information. For these operations, Unicode relies on
the application or on the operating system.

• Unicode does not translate the text in applications into localized versions.
• Unicode does not translate data from one language to another.

Implementation

Unicode characters are multibyte letters and numbers that are used in most of the world’s
alphabets. Three areas are important for Unicode support:

1. “CHAR/CLOB handling”

2. “Expression package”

3. “Sort package”

CHAR/CLOB handling

PointBase makes use of a standard string-encoding algorithm called UTF-8. UTF-8 is a 1-to-3-
byte, variable-width encoding of Unicode. Different characters are one, two, or three bytes in
length. For example, ASCII characters (A-Z, a-z, 0-9, and so on) are encoded as one-byte
characters. Asian ideographs are encoded as three-byte characters. Accented European
characters are encoded as two-byte characters. UTF-8 is the format, which is usually supported
by database vendors and is a more compact storage format if the data is primarily ASCII
(English) data.
Version 4.8 PointBase System 55

 PointBase
Changing all string data to use UTF-8 avoids truncating Unicode characters when stored.
There is a slight overhead when using this encoding algorithm.

Expression package

The expression package is responsible for the database expressions that manipulate strings.
These expressions are:

• < (less than), <= (less than or equals too)
• > (greater than) >= (greater than or equals too)
• = (equals), !=, <> (not equals)
• Like (pattern matching)
• Upper/Lower (case conversion)
• Cast (from/to string types)

The source to an expression may be a literal, column or the result of another expression
(implicitly or explicitly through a marker variable). These are all Unicode capable. For the
expression LIKE the % wild card character will match zero or more Unicode characters.
The _ (underscore) wild card matches exactly one Unicode character. Character sets that
support variants (like German, where the “o” has many variants and French, where “e” may
be accented) require an exact match. In a cast expression where the source is a number and the
target is a String, there will not be any locale specific formatting, as for example, in France,
where the comma is used to delimit the thousands in a number.

Sort package

Databases make frequent use of a sort package. Indexes are inherently sorted, and ORDER BY
and GROUP BY statements also require sorting. When characters are stored using the
American ASCII character set, strings can be very efficiently sorted. Nothing more
sophisticated than a byte-for-byte comparison is required. This method does have its
limitations, but is generally used because of its inherent performance. One such limitation is
that ASCII represents the uppercase and lowercase alphabets separately and therefore an

A may sort higher (or lower depending on the sort direction) than a b. With Unicode, the
order of data sort is changed. Byte-for-byte comparisons cannot be performed. Each String
represented on a database page must now be converted back to its String representation.
From the collation sequence (that is a product of the tables country and language) a collation
key is generated. This key is then used to perform a comparison with another String’s key.
The collation key is capable of knowing, for any particular locale, the way in which
Strings compare with one another.

PointBase supports Internationalization at three different levels:

• Database: all schemas of the database.
• Schema: all tables and indexes of a schema.
• Table: all index and column/row values of a table.

NOTE: CLOB columns behave exactly as CHAR columns in all respects with regard to
Unicode. They may be used in expressions, may be sorted and may be stored/retrieved
as Unicode streams.
Version 4.8 PointBase System 56

 PointBase
Restrictions

Unicode presents the following restrictions:

• The database will accept parameters that are Unicode Strings; however, a SQL literal
must contain only characters that can be entered with a keyboard. There is no ability, as
in Java, to enter a Unicode character using a delimited form (for example \u0131).

• Variants on a single character are considered different in expressions (accented letters).
• There is a performance impact for Unicode tables in index creation and expressions that

require String columns to be operated on. This is a result of converting UTF-8 encoded
byte sequences to Strings.

• It is not possible to join two tables that have different collation sequences (the name of
the combination of language and country codes) on any CHAR/CLOB column.
Version 4.8 PointBase System 57

Using PointBase™ With IDEs
The following instructions explain how to integrate SunTM ONE Studio, Borland JBuilder,
IBM VisualAge, and WebGain Visual Cafe with PointBase. Note that several versions of the
following IDEs exist and may cause the setup to vary slightly.

NOTE: The following IDEs bundle PointBase: WebGain Visual Cafe, SunTM ONE Studio, and
Motorola (Metrowerks) Code Warrior.

SunTM ONE Studio

This section explains how to integrate PointBase with SunTM ONE Studio IDE.

1. Select Add jar from the Tools menu.

2. Use the Browse button to navigate to your PointBase jar files.
Once you have selected your jar file, it displays under File Systems in the Explorer
window.

Click the Project Defaults tab in the Explorer window.

3. Click the Add existing button.

4. Select Objects window.

5. Select a specific jar and click Ok.
Version 4.8 PointBase System 58

 PointBase
Borland JBuilder

This section provides information on how to integrate PointBase with Borland JBuilder 3.5
(Java) IDE.

To use PointBase with Borland JBuilder 3.5 (Java) IDE, you first need to create a new Java
project following the standard documentation from Borland. Once your project is created,
follow these steps to add PointBase:

1. Select Project Properties from the Project menu.

2. Select the Required Libraries tab and click the Add button on the dialog box.

3. Click the New button.

4. Enter POINTBASE in the Name field.

5. Click the Add button on the Class tab.

6. Browse to the location of your PointBase jar file (for example,
\pointbase\lib\pbembedded44.jar)

7. Select the jar file and Click Ok.
Repeat this step for other jar files, for example, pbclientxx.jar, where xx is
the release number.

8. Click OK on the Class tab.
In the dialog box, “Select one or more libraries,” POINTBASE should now appear in
the list of possible libraries.

9. Select POINTBASE and click Ok.
POINTBASE now appears in the Required Libraries tab of the Project Properties
dialog box.

10. Select Ok. You are now ready to write JDBC projects that access PointBase.

If you wish to make PointBase available to ALL default projects using JBuilder, follow the
previous procedure with the following change to step 1:

1. Select Default Project Properties from the Project menu.
Version 4.8 PointBase System 59

 PointBase
IBM VisualAge

This section explains how to integrate PointBase with VisualAge for Java.

1. Go to the File menu.

2. Select the Quick Start menu item in VisualAge.

3. Select Create Project from the Basic list and press Ok.

4. Create a Project named PointBase and press Finish.
The WorkBench now contains a project named PointBase.

5. Right-click on the project named PointBase in the Workbench window and select
Import from the list

6. Select jar file and press Next.

7. Use Browse to locate the “pbembeddedxx.jar” file in the lib subfolder of the
\pointbase\ directory (where xx represents the release number, for example 44).

8. Select the class and the resource check boxes and press Finish.

WebGain Visual Cafe 4.1

This section explains how to integrate PointBase with Web Gain Visual Cafe 4.1.

1. Select New Project from the Visual Cafe File menu.

2. Select the Data Bound Project wizard and click Ok.

This integrates PointBase classes with Visual Cafe automatically. For more
information about using Visual Cafe, please refer to the WebGain documentation.

If you are integrating a different PointBase database, other than the database bundled with
Visual Cafe, perform the following:

1. Select New Project from the Visual Cafe File menu.

2. Select Create Empty Project and click Ok.

3. Select Options from the Project menu.

4. Select the Directories tab.

5. Select Input class files from the “Show directories for” drop down field.

6. Click the New button located directly underneath the “Show directories for” drop
down field.

7. Enter folder name with the complete directory path to the
jar file, in the specified field.
or
Click the File button or the button directly to the right of the specified field.

8. Navigate to the PointBase classes in the PointBase lib directory.

9. Select your PointBase jar file and click Ok. (Accept the defaults.)
Version 4.8 PointBase System 60

Appendix A: System Tables
This chapter describes the PointBase system tables. The PointBase RDBMS stores information
about data structures in system tables. You cannot modify these system tables, because they are
automatically updated as a result of SQL operations by the database system.

However, these system tables can be queried using standard SQL SELECT statements. For
example, to view the components of table SYSTABLES, type the following:

select tablename from systables;

The following is a list of the PointBase system tables:

• "SYSDATABASES" on page 62
• "SYSTABLES" on page 62
• "SYSVIEWS" on page 63
• "SYSVIEWTABLES" on page 63
• "SYSCOLUMNS" on page 64
• "SYSINDEXES" on page 64
• "SYSINDEXKEYS" on page 65
• "SYSPAGESIZEMAP" on page 65
• "SYSSCHEMATA" on page 66
• "SYSUSERS" on page 66
• "SYSROLES" on page 66
• "SYSSQLDATATYPES" on page 67
• "SYSTABLECONSTRAINTS" on page 67
• "SYSKEYCONSTRAINTCOLUMNS" on page 67
• "SYSREFERENTIALCONSTRAINTS" on page 68
• "SYSCHECKCONSTRAINTS" on page 68
• "SYSTRIGGERS" on page 69
• "SYSTRIGGERCOLUMNS" on page 70
• "SYSROUTINES" on page 70
• "SYSPARAMETERS" on page 71
• "SYSTABLEPRIVILEGES" on page 71
• "SYSCOLUMNPRIVILEGES" on page 72
• "SYSROLEPRIVILEGES" on page 72
• "SYSROUTINEPRIVILEGES" on page 72
• "SYSTRIGGERROUTINEDEPEND" on page 73
• "SYSCONSTRAINTROUTINEDEPEND" on page 73
• "SYSSQLSTATEMENTS" on page 73
Version 4.8 PointBase System 61

 PointBase
SYSDATABASES

This table contains information about the PointBase database.

SYSTABLES

This table lists attributes of the tables in a PointBase database.

Column Name Data Type Description

DatabaseName varchar(128)
not null

The name of the database

DatabaseId integer not
null

The database ID number

OwnerName varchar(128)
not null

The username of the database owner

Creation timestamp not
null

The time that the database was created

Location varchar (900)
not null

The location of the database file

Column Name Data Type Description

SchemaId Integer System generated id of the schema

TableName Varchar(128) The name of the table

TableId Integer System generated id of the table

TableType Integer 1: Base 2: System

TableCreation Timestamp Creation time of the table

TableLastModified Timestamp Time of last table modification

TableFirstPage Integer First page to the table

PageSize Integer The size of the table, in kilobytes. “0” in this
field indicates the table uses either the default
pagesize which is 4 KB or the pagesize
specified in the pointbase.ini file. The
maximum pagesize is 32 KB. All pagesizes
should be a multiple of 1 KB.

LOBPageSize Integer The size of the LOB table, in kilobytes. “0” in
this field indicates the table uses either the
default pagesize which is 4 KB or the
pagesize specified in the pointbase.ini
file. There is no maximum lobpagesize. All
lobpagesizes should be a multiple of 1 KB.

ReplicationStatus Boolean For internal use only
Version 4.8 PointBase System 62

 PointBase
SYSVIEWS

This table stores the definitions of each view.

SYSVIEWTABLES

This table lists the table id of all tables referenced in the view

CommitBehavior Short 1: on commit delete rows
2: on commit preserve rows

Country Char(2) The country code value contained in the
country and language code property. It
defaults to US ASCII. If no value is specified
the default is US.

Language Char(2) The language code value contained in the
country and language code property. It
defaults to US ASCII. If no value is specified
the default is US.

TableOrgType Smallint 1: Entry Sequenced (default)
2: Key Sequenced

Column Name Data Type Description

SchemaId Integer System generated ID of the schema

ViewName Varchar(128) The name of the view

ViewId Integer System generated ID of the view

IsUpdatable Boolean TRUE if view is updateable, FALSE otherwise

CheckOption Char(1) N: Not specified, C: Specified WITH
CASCADED CHECK OPTION, L: Specified
WITH LOCAL CHECK OPTION
Only applies to updateable views

ViewDefinition Varchar(3958) Stores the view text: the SELECT statement that
defines the view

Column Name Data Type Description

ViewSchemaId Integer System generated ID of the view’s schema

ViewId Integer System generated ID of the view

Column Name Data Type Description
Version 4.8 PointBase System 63

 PointBase
SYSCOLUMNS

This table stores the definitions of columns in a PointBase database.

SYSINDEXES

This table describes attributes of indices.

TableSchemaId Integer System generated ID of the referenced table’s
schema

TableId Integer System generated ID of the referenced table

TableColumnId Integer System generated ID of the referenced table’s
column

Column Name Data Type Description

TableId Integer System generated id of the table

ColumnName Varchar(128) The name of the column

ColumnId Integer System generated id of the column

OrdinalPosition Integer Position number of the column within the
table

ColumnType Integer SQL Data Type value

ColumnLength Integer Data Length/Precision (maximum)

ColumnScale Integer Length of the scale

IsNullable Boolean True: can accept SQL NULL values, False:
cannot accept SQL NULL values

ColumnDefault Varchar(900) Default value for the column

Column Name Data Type Description

TableId Integer System generated Id of the table

IndexName Varchar(128) Name of the index

IndexId Integer System generated Id of the index

IndexSchemaId Integer Represents the Schema ID of the Schema
with which the index is associated.

IndexFirstPage Integer First page id of the index

Column Name Data Type Description
Version 4.8 PointBase System 64

 PointBase
SYSINDEXKEYS

This table lists attributes of index keys.

SYSPAGESIZEMAP

This table stores the definitions of page sizes in a PointBase database.

IndexType Integer Index key uniqueness. 1: primary, 2: unique,
4: duplicate keys allowed

IndexOrgType Integer 1: B-tree 2: Clustered Btree

IndexPageSize Integer The size of the table index, in kilobytes. “0”
in this field indicates the table uses either the
default pagesize which is 4 KB or the
pagesize specified in the pointbase.ini
file. The maximum indexpagesize is 32 KB.
All indexpagesizes should be a multiple of 1
KB.

IndexColList Varchar(10) For internal use only

IndexCreation Timestamp Creation time of the index

Column Name Data Type Description

TableId Integer System generated id of the table

IndexId Integer System generated id of the index

ColumnId Integer System generated id of the column

SortDirection Boolean True: Ascending, False: Descending

OrdinalPosition Integer Position of the column within the index

Column Name Data Type Description

PagesizeID Integer The ID number of the page size

Pagesize Integer The size of the page in kilobytes

Column Name Data Type Description
Version 4.8 PointBase System 65

 PointBase
SYSSCHEMATA

This table contains information on schemas in a catalog.

SYSUSERS

This table lists user information for a database.

SYSROLES

This table lists roles information for the database.

Column Name Data Type Description

SchemaName Varchar(128) The name of the schema

SchemaOwnerId Integer System generated id of the owner

SchemaId Integer System generated id of the schema

SchemaCreation Timestamp Schema creation time

SQLPath Varchar(900) The SQL path of the schema

Country Char(2) The country code value contained in the
country and language code property. It
defaults to US ASCII. If no value is specified
the default is US.

Language Char(2) The language code value contained in the
country and language code property. It
defaults to US ASCIl. If no value is specified
the default is US.

Column Name Data Type Description

UserName Varchar(128) Name of the user/owner

UserId Integer System generated id of the user/owner

Password Varchar(128) Password for the user/owner

Creation Timestamp Time of creation of the user/owner

DefaultPath Varchar(900) Default schema path of the user/owner

Default RoleName Varchar(128) The user’s default role name

Column Name Data Type Description

RoleName Varchar(128) Name of the role

RoleId Integer System generated id of the role
Version 4.8 PointBase System 66

 PointBase
SYSSQLDATATYPES

This table contains attributes of the data types listed in a schema.

SYSTABLECONSTRAINTS

This table lists the various types of constraints within a schema.

SYSKEYCONSTRAINTCOLUMNS

This table lists attributes of a constraint within a schema.

Column Name Data Type Description

SchemaId Integer System generated id of the schema

SQLType Integer SQL standard value of the data type

Name Varchar(30) SQL standard name of the data type

Length Integer Maximum length or precision of the data type

Scale Smallint Scale value of the data type

Creation Timestamp Time of creation of the data type

Column Name Data Type Description

SchemaId Integer System generated id of the schema

TableId Integer System generated id of the table

ConstraintName Varchar(128) Name of the constraint. The name is either
specified by the user/owner or by the system

ConstraintId Integer System generated id of the constraint

Type Character(1) Type of constraint: C: Check, F: Foreign Key, P:
Primary Key

IsDeferrable Boolean T: Deferrable, F: Immediate. Only Immediate is
allowed

IsInitiallyDeferred Boolean F: Immediate only

ColumnCount Smallint Number of columns in the constraint

Creation Timestamp Time of creation of the constraint

Column Name Data Type Description

ConstraintSchemaId Integer System generated id of the schema of the
constraint

ConstraintTableId Integer System generated id of the table of the constraint
Version 4.8 PointBase System 67

 PointBase
SYSREFERENTIALCONSTRAINTS

This table lists relationship attributes for a referenced table.

SYSCHECKCONSTRAINTS

This table lists attributes of a constraint that restricts the contents of a specific system table.

ConstraintId Integer System generated id of the constraint

ColumnId Integer System generated id of the column

OrdinalPosition Smallint Position of the column

Column Name Data Type Description

ConstraintSchemaId Integer System generated id of the schema

ConstraintTableId Integer System generated id of the table

ConstraintId Integer System generated id of the constraint

ConstraintIndexId Integer System generated id of the index

ReferenceSchemaId Integer System generated id of the schema where the
referenced table exists

ReferenceTableId Integer System generated id of the table where the
referenced table exists

ReferenceConstraintId Integer System generated id of the primary key of the
table where the referenced table exists

ReferenceColumnCoun
t

Smallint Number of columns in the primary key

MatchOption Boolean T: Full, F: Partial

UpdateRule Smallint 1: No Action, 2: Cascade, 3:Set Null, 4: Set
Default, 5:Restrict

DeleteRule Smallint 1: No Action, 2: Cascade, 3:Set Null, 4: Set
Default, 5:Restrict

Column Name Data Type Description

SchemaId Integer System generated id of the schema

TableId Integer System generated id of the table

ConstraintId Integer System generated id of the constraint

CheckClause Varchar(900) Text of the check constraint

Column Name Data Type Description
Version 4.8 PointBase System 68

 PointBase
SYSTRIGGERS

This table lists triggers for a specific schema.

Column Name Data Type Description

TableId Integer System generated id of the table referenced by
the trigger

Seqno Integer Trigger sequence number in the table

TriggerId Integer System generated id of the trigger

TableSchemaId Integer System generated id of the schema that contains
the table referenced by the trigger

TriggerSchemaId Integer System generated id of the schema that contains
the trigger

TriggerName String Name of the trigger

Event String D: Delete, I: Insert, or U: Update

Time String A: After or B: Before

Granularity String R: Row or S: Statement

IsColumnListImplicit Boolean T: column list is implicit, F: a column list was
specified

IsAtomic Boolean T: true, the body of the trigger is atomic

OldRowValue String Old row correlation value

NewRowValue String New row correlation value

OldTableValue String Old table correlation value

NewTableValue String New table correlation value

Creation Timestamp Time of creation of the trigger

SearchCondition String Search Condition text of the trigger
Version 4.8 PointBase System 69

 PointBase
SYSTRIGGERCOLUMNS

This table lists attributes of a trigger within a schema.

SYSROUTINES

This table lists routines and their components.

Column Name Data Type Description

TableId Integer System generated id of the table of the trigger

TriggerId Integer System generated id of the trigger

ColumnId Integer System generated id of the column of the table
that the trigger references

Column Name Data Type Description

SchemaId Integer System generated id of the schema that contains
the routine

RoutineName Varchar(128) Name of the routine

RoutineId Integer System generated id of the routine

RoutineType Integer Type of routine. 86: Function, 150: Procedure

Language Integer 237: SQL, 246: Java

SpecificSchemaId Integer System generated id of the schema that contains
the routine

SpecificName Varchar(128) Specific name used to reference the routine

IsDeterministic Boolean T: True, F: False

DataAccess Integer 125: No SQL, 238: Contains SQL, 239: Reads
SQL, 240: Modifies SQL

ExternalSchemaId Integer System generated id of the schema that contains
the external routine

ExternalName Varchar(128) Name of the Java class that contains the external
routine

ParameterStyle Integer 237: SQL

ReturnType Integer SQL data type value of the value being returned

Creation Timestamp Time of creation of the routine

Reentrant Boolean T: True F: False
Version 4.8 PointBase System 70

 PointBase
SYSPARAMETERS

This table lists various parameters that affect a routine.

SYSTABLEPRIVILEGES

This table lists ownership privileges on a table.

Column Name Data Type Description

SchemaId Integer System generated id of the schema

RoutineId Integer System generated id of the routine that contains
the parameter

ParameterName Varchar(128) Name of the parameter

ParameterType Integer PARSE_TYPE: PARAMETER: 232 (Input,
Output, Input/Output parameter)
PARSE_TYPE: PARAMETER: 234 (Return
value)
PARSE_TYPE: PARAMETER: 26 (Original
return value before casting)

OrdinalPosition Integer Position of the parameter in the list of
parameters of the routine

ParameterMode Integer 1: In, 2: Out, 3: InOut

ParameterCode Integer SQL data type value of the parameter

ParameterLength Integer Length or precision of the parameter

ParameterScale Integer Scale of the parameter

Column Name Data Type Description

SchemaId Integer System generated id of the schema

TableId Integer System generated id of the table

PrivilegeType Character(1) S: select, U: update, I: insert, D: delete, T:
trigger, R: Reference, A: All

GranteeId Integer System generated id of the grantee

GrantorId Integer System generated id of the grantor

IsGrantable Boolean T: can grant privilege to others, F: cannot grant
privilege to others
Version 4.8 PointBase System 71

 PointBase
SYSCOLUMNPRIVILEGES

This table lists attributes of an individual column for a table.

SYSROLEPRIVILEGES

This table lists privileges for a specific role.

SYSROUTINEPRIVILEGES

This table lists privileges for a specific routine.

Column Name Data Type Description

SchemaId Integer System generated id of the schema

TableId Integer System generated id of the table

ColumnId Integer System generated id of the column

PrivilegeType Character(1) S: select, U: update, I: insert, T: trigger, R:
reference

GranteeId Integer System generated id of the grantee

GrantorId Integer System generated id of the grantor

IsGrantable Boolean T: can grant privilege to others, F: cannot grant
privilege to others

Column Name Data Type Description

GranteeId Integer System generated id of the grantee

RoleId Integer System generated id of the role

GrantorId Integer System generated id of the grantor

IsGrantable Boolean T: can grant privilege to others, F: cannot grant
privilege to others

Column Name Data Type Description

SchemaId Integer System generated id of the schema

RoutineId Integer System generated id of the routine

PrivilegeType Character(1) E: Execute

GranteeId Integer System generated id of the grantee

GrantorId Integer System generated id of the grantor

IsGrantable Boolean T: can grant privilege to others, F: cannot grant
privilege to others
Version 4.8 PointBase System 72

 PointBase
SYSTRIGGERROUTINEDEPEND

This table lists the dependencies on a particular routine(s) for a specific trigger.

SYSCONSTRAINTROUTINEDEPEND

This table lists the dependencies on a particular routine(s) for a specific constraint.

SYSSQLSTATEMENTS

This table lists the type of SQL statements that can be used.

Column Name Data Type Description

RoutineId Integer Id of the routine

TriggerId Integer Id of the trigger

Column Name Data Type Description

ConstraintSchemaId Integer Id of the schema of the constraint

ConstraintId Integer Id of the constraint

RoutineSchemaId Integer Id of the schema of the routine

RoutineId Integer Id of the routine

Column Name Data Type Description

TRID Integer System generated id of the routine or trigger

Seqno Integer Sequence number of the statement

StatementType Byte 1: Call, 2: Routine invocation, 3: Return

Type String F: Function, P: Procedure, or T: Trigger

SQLText String Text of the SQL statement
Version 4.8 PointBase System 73

Appendix B: Error Messages
The following table describes PointBase error messages.

NOTE: In the message column, the numbers enclosed by braces represent parameter strings
based on the context of the error.

PointBase
message code

SQL
state
value

PointBase message

0 00000 Successful completion

1 02000 No data found.

1001 0100A Warning -- query expression {0} too long for information
schema.

1002 0100B Warning -- default value {0} too long for information
schema.

1003 0100C Warning -- dynamic result sets returned.

1004 0100D Warning -- additional result sets returned.

1005 0100E Warning -- attempted to return too many result sets.

1006 01001 Warning -- cursor conflict operation. {0}.

1007 01002 Warning -- disconnect error. {0}.

1008 01003 Null value eliminated in set function.

1009 01004 String data, right truncation.

1010 01006 Privilege not revoked. {0}.

1011 01007 Privilege not granted. {0}.

1012 01008 Implicit zero-bit padding.

1013 01009 Warning -- search condition {0} too long for information
schema.

1014 01H00 External routine warning. {0}.
Version 4.8 PointBase System 74

 PointBase
1015 01H01 ORDER BY expression not found in SELECT list.

1016 01H02 There has been a mismatch in the number of assignment
terms found during type checking.

1017 01H03 To take advantage of bug fixes related to Indexes--Unload
your tables. Create a new database and load them again.

2001 08001 SQL-client unable to establish SQL-connection. {0}

2002 08002 Connection name in use. {0}.

2003 08003 Connection does not exist. {0}.

2004 08004 SQL-server rejected establishment of SQL-connection.
{0}.

2005 08006 Connection failure. {0}.

2006 08007 Transaction resolution unknown. {0}.

2007 2E000 Invalid connection name. {0}.

2008 ZA000 Cannot find the JDBC driver "{0}". Driver needs to be
registered.

2009 ZA001 Error occurred while instantiating the JDBC driver "{0}"

2010 ZA002 No valid connection handle exists. Please reestablish a
connection handle through JDBC.

2011 ZA003 The JDBC feature {0} is not supported.

2012 ZA004 A JDBC operation of {0} failed.

2013 ZA005 Please note, the PointBase software you are currently
using was made available to you on a 30-day trial basis.
We appreciate your interest in evaluating our software for
use within your applications. The evaluation period for
this software has expired. To continue using this software
you will need to either purchase a full production copy
from our web site at http://www.pointbase.com/products/
purchase or contact PointBase sales within U.S. and
Canada at 1-877-238-8798. (Intl: 1-650-230-7200 touch
2).

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 75

 PointBase
2014 ZA006 Please note, the PointBase software you are currently
using was made available to you on a 30-day trial basis.
We appreciate your interest in evaluating our software for
use within your applications. The evaluation period for
this software will expire in {0} days. To continue using
this software you will need to either purchase a full
production copy from our web site at http://
www.pointbase.com/products/purchase or contact
PointBase sales within U.S. and Canada at 1-877-238-
8798. (Intl: 1-650-230-7200 touch 2).

2015 ZA007 The system has detected that another process on this
computer currently has the database open. If you are
certain this is a mistake, please wait a few minutes and try
again. If you are still unable to connect, you may delete the
lock file, which is located in the database home directory
with the same name as the database and the extension
".lck".

10001 30000 Invalid SQL statement at position {0}.

10002 ZB001 Double quoted string not ended at position {0}.

10003 ZB002 String not ended at position {0}.

10004 ZB003 An unexpected character was found at position {0}.

10005 ZB004 An unexpected token was found at position {0}.

10006 ZB005 Expected to find "{0}" instead found "{1}" at position
{2}.

10007 ZB006 Missing query expression at position {0}

10008 ZB007 Only constant expressions allowed here at position {0}.

10009 ZB007 Missing relational operator at position {0}.

10010 ZB009 Data type {0} is not a valid SQL data type supported by
PointBase. Please use one of the allowable types.

10011 ZB010 LOB size of {0}{1} is larger than 4 gigabytes which is the
maximum length supported for LOB data types.

10012 ZB011 {0} is not a valid DEFAULT clause value. Valid values are
NULL, constants, and datetime functions.

10013 ZB012 DEFAULT VALUE was found, but other expressions
exist. This is invalid syntax. See the Reference Manual.

10014 ZB013 The format {0} is not a valid BLOB format. The format
must be of the order: X’<hexit><hexit>...’ where <hexit>
is a digit (0..9) or A, a, B, b, C, c, D, d, E, e, F, or f.

10015 ZB014 The LIKE operator is only allowed for Character data.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 76

 PointBase
10016 ZB015 The grant object type: {0} is not a valid object type to
grant privileges to. Valid types are TABLE, FUNCTION,
METHOD, or PROCEDURE.

10017 ZB016 The grant privilege: {0} is not a valid privilege type. Valid
types are: SELECT, DELETE, INSERT, UPDATE,
REFERENCES, TRIGGER and EXECUTE.

10018 ZB017 The revoke object type: {0} is not a valid object type to
revoke privileges to. Valid types are TABLE,
FUNCTION, METHOD, or PROCEDURE.

10019 ZB018 The revoke privilege: {0} is not a valid privilege type.
Valid types are: SELECT, DELETE, INSERT, UPDATE,
REFERENCES, TRIGGER and EXECUTE.

10020 ZB019 It is not valid to have a TABLE trigger with an event time
of BEFORE. Only ROW triggers can have an event time
of BEFORE.

10021 ZB020 An AFTER DELETE statement trigger can specify OLD
TABLE alias name only.

10022 ZB021 A BEFORE DELETE trigger can specify an OLD ROW
alias name only.

10023 ZB022 A BEFORE INSERT trigger can specify a NEW ROW
alias name only.

10024 ZB023 An old values alias is equivalent to the new values alias.
Alias names must be unique per trigger definition. Please
change one of the alias names.

10025 ZB022 The set parameter {0} is invalid.

10026 ZB025 Expected to find a referential action. Instead found {0}.
The referential action must be one of the following:
CASCADE, SET NULL, SET DEFAULT, RESTRICT,
NO ACTION.

10027 ZB026 The scale {0} is larger than the precision {1}. Decimal and
Numeric data types require the scale to be less than or
equal to the precision.

10028 ZB027 LOB size of {0}{1} is larger than 4 gigabytes which is the
maximum length supported for LOB data types.

10029 ZB028 New Pagesize {0}KB cannot be supported. The new
pagesize exceeds the limit of {1} different pagesizes.

10030 ZB029 Trying to redefine {0} pagesize.

10031 ZB030 The size of {0} is smaller than the allowed minimal size of
one.

10032 ZB031 Table or Index pagesize {0}KB exceeds the 32KB limit.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 77

 PointBase
10033 ZB032 A NEW ROW or OLD ROW alias name was specified for
a statement trigger. Statement triggers can only specify
OLD TABLE or NEW TABLE alias names.

10034 ZB033 An AFTER INSERT statement trigger can specify a NEW
TABLE alias name only.

10035 ZB034 Only a Routine (Function or Procedure) Invocation is
allowed at this point {0}.

10036 ZB035 The Trigger alias name {0} was used in the body of a
trigger but was not specified in the referencing clause.

10037 ZB036 The trigger {0} was defined on table {1}.{2}. This table is
not defined.

10038 ZB037 A BEFORE UPDATE trigger can specify NEW ROW or
OLD ROW alias names only.

10039 ZB038 An AFTER UPDATE statement trigger can specify OLD
TABLE or NEW TABLE alias names only.

10040 ZB039 The Trigger alias {0} has previously been specified.

10041 ZB040 An AFTER DELETE row trigger can specify OLD ROW
or OLD TABLE alias name only.

10042 ZB041 An AFTER INSERT row trigger can specify NEW ROW
or NEW TABLE alias names only.

10043 ZB042 An invalid parameter mode was specified for a parameter
of an SQL Function which requires all parameter modes to
be IN.

10044 ZB043 Attempted to add a constraint to a column that cannot be
supported.

15000 ZD000 System Catalog error {0}.

15001 42000 Access rule violation. User {0} does not have {1}
privilege on object {2}.

15002 2B000 Dependent privilege descriptors still exists on SQL object
{0}.

15003 2B000 Column reference "{0}" ambiguous at position {1}.

15004 2B000 Column "{0}" not found in table at position {1}.

15005 2B000 Table or correlation name "{0}" specified twice at position
{1}.

15006 2B000 Invalid table name "{0}" specified at position {1}.

15007 2B000 Invalid ORDER BY number "{0}" specified at position
{1}.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 78

 PointBase
15008 2B000 ORDER BY expression not found in SELECT list.

15009 ZD001 Cannot find the table "{0}.{1}".

15010 ZD002 Cannot find the index "{2}" for the table "{0}.{1}".

15011 ZD009 The table "{0}.{1}" already exists.

15012 ZD004 The index "{2}" for the table "{0}".{1} already exists.

15013 ZD005 Cannot find the schema "{0}" in the system catalog.

15014 ZD006 Column "{2}" of the table "{0}.{1}" is too long.
Maximum allowed length is {3} for this table pagesize.
Recreate the database with a larger page size.

15015 ZD013 Multiple Primary Keys were defined for the table. Only
one Primary Key is allowed.

15016 ZD014 The Key Column "{0}" did not specify NOT NULL. Key
Columns do not allow null values.

15017 ZD015 The Foreign Key {0} does not map to a primary key in
table {1}. Each foreign key must reference a table that has
a primary key made up of the same columns as specified
in the reference list.

15018 ZD016 Column "{0}" is not defined in table "{1}.{2}";

15019 ZD017 Duplicate Column "{2}" found in the table "{0}.{1}".

15020 ZD018 Column "{0}" in the select list is not a grouping column.

15021 ZD019 Cannot find the database "{0}" in system table
SYSDATABASES.

15022 ZD020 Cannot find the user "{0}.{1}" in system table
SYSUSERS.

15023 ZD021 "Cannot find the routine "{0}.{1}" with routine id {2} in
system tables SYSROUTINES.

15024 ZD022 "Cannot find the trigger "{0}.{1}" in system table
SYSTRIGGERS.

15025 ZD023 "Cannot find the routine "{0}" in system table
SYSROUTINES using "{1}" as the existing
CURRENT_PATH.

15026 ZD024 "The routine "{0}" already exists in system table
SYSROUTINES using "{1}" as the existing
CURRENT_PATH.

15027 ZD025 "The trigger "{0}" is already defined for table "{1}".

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 79

 PointBase
15028 ZD026 "The external "{0}" routine had the following runtime
exception "{1}"

15029 ZD027 "The external "{0}" routine could not be found at "{1}"

15030 ZD028 "The external "{0}" routine threw an exception: "{1}"

15031 ZD029 "The routine name "{0}" does not contain a "{1}" to
delimit the method name.

15032 ZD030 "Invalid column "{0}" specified at position {1}. The
column must be referenced in this specific join.

15033 ZD031 "Attempted to create a new database named "{0}" that is
already opened.

15034 ZD032 "Attempted to create a new database named "{0}" with
user: "{1}", password: "{2}". Only SYSADMIN can be
used to create a database.

15035 ZD033 Incompatible data types in UNION select expressions.

15036 ZD034 The number of expressions in the SELECT statements in
the UNION are different.

15037 ZD035 "Cannot find the schema with the id "{0}" in the system
catalog.

15038 ZD036 "Cannot find the table in the schema "{0}" with the id
"{1}}.

15039 ZD037 The Update statement Set clause found {0} target
column(s) and {1} source expression(s). The same
number of values must be found in each.

15040 ZD038 Only SysAdmin can drop the system table {0}.{1}.

15041 ZD039 Only SysAdmin can update the system table {0}.{1}.

15042 ZD040 The foreign key table {0}.{1} does not have a primary key
match to the referencing table.

15043 ZD041 Invalid data type for a negate operation. The data type
must be a type of the numeric family.

15044 ZD042 The Primary Key column {0} cannot have a default value
of NULL.

15045 ZD043 Invalid Constraint Type of {0} was specified.

15046 ZD044 "Cannot find the routine "{0}" in system table
SYSROUTINES using "{1}" as the existing
CURRENT_PATH.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 80

 PointBase
15047 ZD045 "Invalid Foreign Key Constraint {0}. Number of columns
in the parent and child are not equal. The parent has {1}
columns and the child has {2} columns.

15048 ZD046 "Invalid Foreign Key Constraint {0}. The data type of the
parent column {1} is not the same as of the child column
{2}.

15049 ZD047 Access rule violation. User {0} is not the owner of the
schema {1} and cannot create the SQL Object {2}.

15050 ZD048 Access rule violation. User {0} is not the owner of the
schema {1} and cannot drop the SQL Object {2}.

15051 ZD049 Constraint definition column {0} is not a valid column of
the table.

15052 ZD050 Column {0} occurs more than once in the same constraint
definition.

15053 ZD051 The SQL Routine was defined to have an SQL body but
the language specified was not SQL.

15054 ZD052 User {0} does not have the revoke privilege of {1} on
object {2}. The privilege was never granted.

15055 ZD053 The columns in the USING clause do not constitute a valid
join condition.

15056 ZD054 The constraint {0}.{1} was not found.

15057 ZD055 The constraint {0}.{1} already exists.

15058 ZD056 No Primary Key was found for table {0}.{1}. An attempt
was made to find a primary key because the table had been
used in the reference clause of a foreign key constraint.

15059 ZD057 The SQL Routine was defined to have a LANGUAGE of
SQL but contains an external body.

15300 3F000 Invalid schema name. {0} specified at position {1}.

15302 0E000 Invalid schema name list {0}.

15303 ZD301 Access rule violation. User {0} is not the owner of the
schema {1} and cannot create the SQL Object {2}.

20000 ZE000 query optimization errors. {0}.

25000 ZG000 Run-time execution errors. {0}.

25001 ZG001 An illegal attempt to perform an internal Bind command
occurred.

25002 ZG002 An illegal attempt to perform an internal Describe
command occurred.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 81

 PointBase
25003 ZG003 An illegal attempt to perform an internal Fetch command
occurred.

25004 ZG004 Dynamic parameter markers and Bind variable count
mismatch. Number of parameter markers: {0}. Number of
bind variables: {1}

25005 ZG005 The following value: {0} is not a valid SQL Boolean
value.

25006 ZG006 Not supported {0}

25007 ZG007 Illegal cast operation between type: {0} and type: {1}.

25008 ZG008 Attempted to insert a NULL value into a column that
specified NOT NULL.

25009 ZG009 Attempt to turn off log in the middle of a transaction.

25010 ZG010 Only Select Statements are allowed in the "plan only"
mode.

25011 ZG011 Subquery result is not a single scalar value.

25012 ZG012 Result Set {0} is an invalid/non-existent database result
set.

25013 ZG013 An illegal attempt to perform an internal GetResultSet
command occurred.

25015 ZG015 An attempt was made to convert between incompatible
data types.

25021 ZG021 Invalid combination of isolation level and transaction
access mode.

25101 3C000 Ambiguous cursor name. {0}.

25102 34000 Invalid cursor name. {0}.

25103 36001 Cursor sensitivity request rejected. {0}.

25104 36002 Cursor sensitivity request failed. {0}.

25105 24000 Invalid cursor state. {0}.

25201 22001 Data exception -- string data right truncation. {0}.

25202 22002 Data exception -- null value, no indicator parameter. {0}.

25203 22003 Data exception -- numeric value out of range. {0}.

25204 22004 Data exception -- null value not allowed. {0}.

25205 22005 Data exception -- error in assignment. {0}.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 82

 PointBase
25206 22007 Data exception -- invalid datetime format. {0}.

25207 22008 Data exception -- datetime field overflow. {0}.

25208 22009 Data exception -- invalid timezone displacement. {0}.

25209 22010 Data exception -- invalid indicator parameter value. {0}.

25210 22011 Data exception -- substring error. {0}.

25211 22012 Data exception -- division by zero. {0}.

25212 22014 Data exception -- invalid update value. {0}.

25213 22015 Data exception -- interval field overflow. {0}.

25214 22018 Data exception -- invalid character for cast. {0}.

25215 22019 Data exception -- invalid escape character. {0}.

25216 22020 Data exception -- invalid limit value. {0}.

25217 22022 Data exception -- indicator overflow. {0}.

25218 22023 Data exception -- invalid parameter value. {0}.

25219 22025 Data exception -- invalid escape sequence. {0}.

25220 22026 Data exception -- string data length mismatch. {0}.

25221 22027 Data exception -- trim error. {0}.

25222 22028 Data exception -- row already exists. {0}.

25223 2200A Data exception -- null value in reference target. {0}.

25224 2201B Data exception -- invalid regular expression. {0}.

25225 2201C Data exception -- null row not permitted in table. {0}.

25226 2201D Data Exception -- No Applicable Cast Operator. {0}

25227 2201E User {0} already exists in the database.

25228 2201F Schema {0} already exists in the database.

25229 22020 Duplicate row found in unique index.

25230 2201H Trigger {0} already exists in the database.

25301 38001 External routine exception -- containing SQL not
permitted. {0}.

25302 38002 External routine exception -- modifying SQL not
permitted. {0}.

25303 38003 External routine exception -- prohibited SQL statement
{0} not permitted.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 83

 PointBase
25304 38004 External routine exception -- reading SQL-data not
permitted. {0}.

25305 39001 External routine invocation exception -- invalid
SQLSTATE returned. {0}.

25306 39004 External routine invocation exception -- null value not
allowed. {0}.

25307 2F002 SQL routine exception -- modifying SQL-data not
permitted. {0}.

25308 2F003 SQL routine exception -- prohibited SQL-statement {0}
attempted.

25309 2F004 SQL routine exception -- reading SQL-data not permitted.
{0}.

25310 2F005 SQL routine exception -- function {0} executed no return
statement.

25401 0B000 Invalid transaction initiation. {0}.

25402 25001 Invalid transaction state -- active SQL-transaction. {0}.

25403 25002 Invalid transaction state -- branch transaction already
active. {0}.

25404 25003 Invalid transaction state -- inappropriate access mode for
branch transaction. {0}.

25405 25004 Invalid transaction state -- inappropriate isolation level for
branch transaction. {0}.

25406 25005 Invalid transaction state -- no active SQL-transaction for
branch transaction. {0}.

25407 25006 Invalid transaction state -- read-only SQL-transaction.
{0}.

25408 25007 Invalid transaction state -- schema and data statement
mixing not supported. {0}.

25409 25008 Invalid transaction state -- held cursor requires same
isolation level. {0}.

25410 2D000 Invalid transaction termination. {0}.

25411 40001 Transaction rollback serialization failure. {0}.

25412 40002 Transaction rollback integrity constraint violation. {0}.

25413 40003 Transaction rollback statement completion unknown. {0}.

25414 40004 Transaction rollback triggered action exception. {0}.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 84

 PointBase
25415 3B001 Savepoint invalid specification exception. {0}.

25416 3B002 Too many savepoints. {0}.

25417 3B003 Transaction Access Mode is READ_ONLY. No statement
that modifies data is allowed in this mode.

25418 3B004 Data Log is off for this table. This statement is not
allowed.

25501 09000 Triggered action exception. {0}.

25702 27000 Triggered data change violation. {0}.

26801 21000 Cardinality violation. {0}.

26802 44000 With check option violation. {0}.

26803 23000 Integrity constraint violation occurred with constraint {0}.

40000 ZL000 System catalog error. {0}.

40001 ZL001 System catalog internal error. {0}.

45000 ZM000 Space manager errors. {0}.

50000 ZN000 Cache Full. Current size is {0} pages. Increase the size of
the cache using the cache.size=<number of pages>

50001 ZN001 Cache manager I/O error. {0}.

50002 ZN002 Cache manager did not find requested page. Either retry
the system and try again or contact Technical Support.

50003 ZN003 Cache Manager Page Zero is a reserved page. Either retry
the system and try again or contact Technical Support.

50004 ZN004 Cache Manager Commit detected not all pages have zero
ref count first offending page number {0}. Either retry the
system and try again or contact Technical Support.

50005 ZN005 Page factory is null. Either retry the system and try again
or contact Technical Support.

50006 ZN006 Database {0} does not exist or cannot be found in home
{1} or either specify database.home=<folder> in
pointbase.ini to indicate the database folder.

50008 ZN008 An attempt (on {0}) to create a database failed because the
database already exists.

50009 ZN009 Page has a negative ref count: {0} {1}. Either retry the
system and try again or contact Technical Support.

50010 ZN010 No cache context has been set. Either retry the system and
try again or contact Technical Support.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 85

 PointBase
50011 ZN011 Database exceeds maximum size. This version {0}
supports a maximum database size of {1} MB.

50012 ZN012 SEVERE ERROR!!! The database file [{0}] has failed an
integrity check. A possible reason for this is a change in
page size. See the documentation for control over this
parameter. The database will be shutdown.

50013 ZN013 The database lock file [{0}] indicates that the database is
currently open in another process.

55000 ZP000 Transaction manager errors. {0}.

60000 ZQ000 Log manager errors. {0}.

65000 ZR000 Recovery manager errors. {0}.

70000 ZS000 Replication manager errors. {0}.

70001 ZS001 Filtering table {0} not specified in the list of table
referenced. One must specify tables in the list of the
command.

70002 ZS002 The table {0} specified in the UNISYNC command
cannot be found. Be sure that the table exists and the user
has synchronization privileges.

75000 ZT000 File I/O errors. {0}.

75001 ZT001 Character encoding {0} is not supported by the system.

76000 ZU000 The properties file ({0}) encountered a problem: {1}. The
pointbase.ini file has been specified incorrectly.

76001 ZU001 Class creation ({0}) error: {1}. Either retry the system and
try again or contact Technical Support.

77000 ZU000 The sort could not complete because memory was
exceeded. Try decreasing sort.size=<KB> in
pointbase.ini

77001 ZU001 No such element. (nextElement cannot go beyond end of
collection)

77002 ZU002 The elements could not be cast to the appropriate sort
interface

77003 ZU003 I/O Exception occurred during external sorting {0}

78000 ZW000 Operation {0} not permitted on incompatible types {1}
{2}

78001 ZW000 Marker type cannot be determined. The data type of the
dynamic parameter marker is an invalid SQL data type.

78002 ZW000 The data type of the operand is an invalid SQL data type.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 86

 PointBase
78003 ZW003 The value "{0}" cannot be converted to a number.

78004 ZW004 The default value "{0}" cannot be converted to {1}.

78005 ZW005 The expression "{0}" cannot be used in a comparison
predicate with "{1}" because they have incompatible
collation sequences.

79000 ZY000 Startup Exception: {0}. Either retry the system and try
again or contact Technical Support.

79001 ZY001 Database Initialization failed. Reason: {0}.

79002 ZY002 Database {0} already exists. Drop the database and
recreate it.

81000 ZZ000 Failed to insert key into btree page. This is a fatal error.

82000 ZZB00 Specified LOB offset {0} is out of range. Valid values are
from 0 to {1}.

82001 ZZB01 Failed to read LOB data from input stream. IOException =
{0}.

82002 ZZB02 Data Exception -- data is a stream of bytes for parameter
{0}

82003 ZZB03 Attempted to convert a large lob to an in-memory string.
Maximum size for conversion is {0}.

83000 ZZC00 Method called on an object not found in the object map.

83001 ZZC01 No method of this name found on this object

83002 ZZC02 An IO Exception occurred: {0}

83003 ZZC03 The maximum number of connections {0} has been
exceeded.

84000 ZZC01 Lock time out; try later.

84001 ZZC02 Lock Promotion timed out; try later.

84002 ZZC03 Lock escalation failed; try later.

84003 ZZC04 LockManager Internal error; Table lock not found.

84004 ZZC05 LockManager Internal error; table lock incompatible.

85000 ZZE00 Referential Integrity Violation. {0}.{1} references
{2}.{3}

86000 ZZF01 IO Exception when creating a Blob object : {0}

86001 ZZF02 Requested length on {0} of a Blob is too large.

86002 ZZF03 IO Exception when creating a Clob object: {0}

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 87

 PointBase
86003 ZZF04 IO Exception occurred on {0} of a Clob: {1}

86004 ZZF05 Requested length on {0} of a Clob is too large.

86005 ZZF06 This statement is closed.

86006 ZZF07 Select Statement is not allowed in executeUpdate or
executeBatch.

86007 ZZF08 Set Auto commit to false before you perform
executeBatch.

86008 ZZF09 There are no Statements available to perform
executeBatch.

86009 ZZF10 {0} not supported.

86010 ZZF11 JDBC {0} Core API Method not yet supported.

86011 ZZF12 There are no bind variables to bind with the statement.

86012 ZZF13 Object {0} not serializable.

86013 ZZF14 IOException occurred on {0} of PreparedStatement : {1}

86014 ZZF15 Parameter Index {0} exceeds the number of bind variables

86015 ZZF16 Column [{0}] does not exists in the result set.

86016 ZZF17 Date format error : {0}

86017 ZZF18 Number Format error: {0}

86018 ZZF19 This result set has been invalidated.

86019 ZZF20 IO Exception occurred on {0} of a ResultSet: {1}

86020 ZZF21 Syntax error in parsing native SQL statement within : {0}

86021 ZZF22 IOException occurred on {0} of ResultSet : {1}

86022 ZZF23 IOException occurred on {0} of JDBCPrimitives: {1}

86023 ZZF24 Malformed URL

86024 ZZF25 {0} server rejected SQL connection.

86025 ZZF26 {0} server returned unexpected data

86026 ZZF27 {0} server is a newer version than {0} client

86027 ZZF28 IO Exception when creating a netJDBCConnection object:
{0}

86028 ZZF29 Result set is in an invalid state. May be before the first row
or after the last row.

86029 ZZF30 {0}(String) method not allowed on a Prepared Statement.

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 88

 PointBase
86030 ZZF31 Execution cancelled due to autocommit or user request.

86031 ZZF32 Fetch size must be greater or equal to 0

86032 ZZF33 Max rows must be greater or equal to 0

86033 ZZF33 Field size must be greater or equal to 0

86034 ZZF34 Only Select Statements are allowed in the executeQuery.

86035 ZZF35 Query time out value should be greater or equal to 0

86036 ZZF36 The referencing alias {0} is not supported.

86037 ZZF37 {0} assignment allowed for before triggers only.

86038 ZD031 "Attempted to open a database named "{0}" when another
database named "{1}" is already open.

86039 ZZF38 Wrong pattern [{0}] provided in [{1}] for [{2}].

86040 ZZF39 Invalid Parameter [{0}] in [{1}] for [{2}]. [{3}] not
allowed.

86041 ZZF40 Invalid Array parameter [{0}] in [{1}] for [{2}]. Length
should be greater than 0.

90000 ZZF90 shutdown called on the server.

90001 ZZF91 shutdown force called on the server.

90002 ZZF92 Can not shutdown the server. {0} users currently
connected. Use shutdown force to shutdown.

90003 ZZF93 You are not allowed to create a new database.

90004 ZZF94 Maximum supported database size has been reached.

90005 ZZF95 Can not shutdown the database. {0} connections currently
opened. Use shutdown force to shutdown database.

90006 ZZF96 Database Server is shutdown

PointBase
message code

SQL
state
value

PointBase message
Version 4.8 PointBase System 89

Appendix C:
Country and Language Codes
This section lists valid Language Codes and valid Country Codes.

Language Codes

(AFAN) OROMO OM

ABKHAZIAN AB

AFAR AA

AFRIKAANS AF

ALBANIAN SQ

AMHARIC AM

ARABIC AR

ARMENIAN HY

ASSAMESE AS

AYMARA AY

AZERBAIJANI AZ

BASHKIR BA

BASQUE EU

BENGALI;
BANGLA

BN

BHUTANI DZ

BIHARI BH

BISLAMA BI

BRETON BR

BULGARIAN BG
Version 4.8 PointBase System 90

 PointBase
BURMESE MY

BYELORUSSIAN BE

CAMBODIAN KM

CATALAN CA

CHINESE ZH

CORSICAN CO

CROATIAN HR

CZECH CS

DANISH DA

DUTCH NL

ENGLISH EN

ESPERANTO EO

ESTONIAN ET

FAROESE FO

FIJI FJ

FINNISH FI

FRENCH FR

FRISIAN FY

GALICIAN GL

GEORGIAN KA

GERMAN DE

GREEK EL

GREENLANDIC KL

GUARANI GN

GUJARATI GU

HAUSA HA

HEBREW
(FORMERLY IW)

HE

HINDI HI

HUNGARIAN HU

ICELANDIC IS
Version 4.8 PointBase System 91

 PointBase
INDONESIAN
(FORMERLY IN)

ID

INTERLINGUA IA

INTERLINGUE IE

INUKTITUT IU

INUPIAK IK

IRISH GA

ITALIAN IT

JAPANESE JA

JAVANESE JW

KANNADA KN

KASHMIRI KS

KAZAKH KK

KINYARWANDA RW

KIRGHIZ KY

KIRUNDI RN

KOREAN KO

KURDISH KU

LAOTHIAN LO

LATIN LA

LATVIAN,
LETTISH

LV

LINGALA LN

LITHUANIAN LT

MACEDONIAN MK

MALAGASY MG

MALAY MS

MALAYALAM ML

MALTESE MT

MAORI MI

MARATHI MR

MOLDAVIAN MO
Version 4.8 PointBase System 92

 PointBase
MONGOLIAN MN

NAURU NA

NEPALI NE

NORWEGIAN NO

OCCITAN OC

ORIYA OR

PASHTO, PUSHTO PS

PERSIAN FA

POLISH PL

PORTUGUESE PT

PUNJABI PA

QUECHUA QU

RHAETO-
ROMANCE

RM

ROMANIAN RO

RUSSIAN RU

SAMOAN SM

SANGHO SG

SANSKRIT SA

SCOTS GAELIC GD

SERBIAN SR

SERBO-
CROATIAN

SH

SESOTHO ST

SETSWANA TN

SHONA SN

SINDHI SD

SINHALESE SI

SISWATI SS

SLOVAK SK

SLOVENIAN SL

SOMALI SO
Version 4.8 PointBase System 93

 PointBase
SPANISH ES

SUNDANESE SU

SWAHILI SW

SWEDISH SV

TAGALOG TL

TAJIK TG

TAMIL TA

TATAR TT

TELUGU TE

THAI TH

TIBETAN BO

TIGRINYA TI

TONGA TO

TSONGA TS

TURKISH TR

TURKMEN TK

TWI TW

UIGHUR UG

UKRAINIAN UK

URDU UR

UZBEK UZ

VIETNAMESE VI

VOLAPUK VO

WELSH CY

WOLOF WO

XHOSA XH

YIDDISH
(FORMERLY JI)

YI

YORUBA YO

ZHUANG ZA

ZULU ZU
Version 4.8 PointBase System 94

 PointBase
Country Codes

The following table lists valid country codes.

AFGHANISTAN AF

ALBANIA AL

ALGERIA DZ

AMERICAN SAMOA AS

ANDORRA AD

ANGOLA AO

ANGUILLA AI

ANTARCTICA AQ

ANTIGUA AND BARBUDA AG

ARGENTINA AR

ARMENIA AM

ARUBA AW

AUSTRALIA AU

AUSTRIA AT

AZERBAIJAN AZ

BAHAMAS BS

BAHRAIN BH

BANGLADESH BD

BARBADOS BB

BELARUS BY

BELGIUM BE

BELIZE BZ

BENIN BJ

BERMUDA BM

BHUTAN BT

BOLIVIA BO

BOSNIA AND HERZEGOWINA BA
Version 4.8 PointBase System 95

 PointBase
BOTSWANA BW

BOUVET ISLAND BV

BRAZIL BR

BRITISH INDIAN OCEAN
TERRITORY

IO

BRUNEI DARUSSALAM BN

BULGARIA BG

BURKINA FASO BF

BURUNDI BI

CAMBODIA KH

CAMEROON CM

CANADA CA

CAPE VERDE CV

CAYMAN ISLANDS KY

CENTRAL AFRICAN REPUBLIC CF

CHAD TD

CHILE CL

CHINA CN

CHRISTMAS ISLAND CX

COCOS (KEELING) ISLANDS CC

COLOMBIA CO

COMOROS KM

CONGO CG

COOK ISLANDS CK

COSTA RICA CR

COTE D’IVOIRE CI

CROATIA (LOCAL NAME:
HRVATSKA)

HR

CUBA CU

CYPRUS CY

CZECH REPUBLIC CZ

DENMARK DK
Version 4.8 PointBase System 96

 PointBase
DJIBOUTI DJ

DOMINICA DM

DOMINICAN REPUBLIC DO

EAST TIMOR TP

ECUADOR EC

EGYPT EG

EL SALVADOR SV

EQUATORIAL GUINEA GQ

ERITREA ER

ESTONIA EE

ETHIOPIA ET

FALKLAND ISLANDS
(MALVINAS)

FK

FAROE ISLANDS FO

FIJI FJ

FINLAND FI

FRANCE FR

FRANCE, METROPOLITAN FX

FRENCH GUIANA GF

FRENCH POLYNESIA PF

FRENCH SOUTHERN
TERRITORIES

TF

GABON GA

GAMBIA GM

GEORGIA GE

GERMANY DE

GHANA GH

GIBRALTAR GI

GREECE GR

GREENLAND GL

GRENADA GD

GUADELOUPE GP
Version 4.8 PointBase System 97

 PointBase
GUAM GU

GUATEMALA GT

GUINEA GN

GUINEA-BISSAU GW

GUYANA GY

HAITI HT

HEARD AND MC DONALD
ISLANDS

HM

HONDURAS HN

HONG KONG HK

HUNGARY HU

ICELAND IS

INDIA IN

INDONESIA ID

IRAN (ISLAMIC REPUBLIC OF) IR

IRAQ IQ

IRELAND IE

ISRAEL IL

ITALY IT

JAMAICA JM

JAPAN JP

JORDAN JO

KAZAKHSTAN KZ

KENYA KE

KIRIBATI KI

KOREA, DEMOCRATIC
PEOPLE’S REPUBLIC OF

KP

KOREA, REPUBLIC OF KR

KUWAIT KW

KYRGYZSTAN KG

LAO PEOPLE’S DEMOCRATIC
REPUBLIC

LA

LATVIA LV
Version 4.8 PointBase System 98

 PointBase
LEBANON LB

LESOTHO LS

LIBERIA LR

LIBYAN ARAB JAMAHIRIYA LY

LIECHTENSTEIN LI

LITHUANIA LT

LUXEMBOURG LU

MACAU MO

MACEDONIA, THE FORMER
YUGOSLAV REPUBLIC OF

MK

MADAGASCAR MG

MALAWI MW

MALAYSIA MY

MALDIVES MV

MALI ML

MALTA MT

MARSHALL ISLANDS MH

MARTINIQUE MQ

MAURITANIA MR

MAURITIUS MU

MAYOTTE YT

MEXICO MX

MICRONESIA, FEDERATED
STATES OF

FM

MOLDOVA, REPUBLIC OF MD

MONACO MC

MONGOLIA MN

MONTSERRAT MS

MOROCCO MA

MOZAMBIQUE MZ

MYANMAR MM

NAMIBIA NA
Version 4.8 PointBase System 99

 PointBase
NAURU NR

NEPAL NP

NETHERLANDS NL

NETHERLANDS ANTILLES AN

NEW CALEDONIA NC

NEW ZEALAND NZ

NICARAGUA NI

NIGER NE

NIGERIA NG

NIUE NU

NORFOLK ISLAND NF

NORTHERN MARIANA
ISLANDS

MP

NORWAY NO

OMAN OM

PAKISTAN PK

PALAU PW

PANAMA PA

PAPUA NEW GUINEA PG

PARAGUAY PY

PERU PE

PHILIPPINES PH

PITCAIRN PN

POLAND PL

PORTUGAL PT

PUERTO RICO PR

QATAR QA

REUNION RE

ROMANIA RO

RUSSIAN FEDERATION RU

RWANDA RW

SAINT KITTS AND NEVIS KN
Version 4.8 PointBase System 100

 PointBase
SAINT LUCIA LC

SAINT VINCENT AND THE
GRENADINES

VC

SAMOA WS

SAN MARINO SM

SAO TOME AND PRINCIPE ST

SAUDI ARABIA SA

SENEGAL SN

SEYCHELLES SC

SIERRA LEONE SL

SINGAPORE SG

SLOVAKIA (SLOVAK
REPUBLIC)

SK

SLOVENIA SI

SOLOMON ISLANDS SB

SOMALIA SO

SOUTH AFRICA ZA

SOUTH GEORGIA AND THE
SOUTH SANDWICH ISLANDS

GS

SPAIN ES

SRI LANKA LK

ST. HELENA SH

ST. PIERRE AND MIQUELON PM

SUDAN SD

SURINAME SR

SVALBARD AND JAN MAYEN
ISLANDS

SJ

SWAZILAND SZ

SWEDEN SE

SWITZERLAND CH

SYRIAN ARAB REPUBLIC SY

TAIWAN, PROVINCE OF CHINA TW

TAJIKISTAN TJ
Version 4.8 PointBase System 101

 PointBase
TANZANIA, UNITED REPUBLIC
OF

TZ

THAILAND TH

TOGO TG

TOKELAU TK

TONGA TO

TRINIDAD AND TOBAGO TT

TUNISIA TN

TURKEY TR

TURKMENISTAN TM

TURKS AND CAICOS ISLANDS TC

TUVALU TV

UGANDA UG

UKRAINE UA

UNITED ARAB EMIRATES AE

UNITED KINGDOM GB

UNITED STATES US

UNITED STATES MINOR
OUTLYING ISLANDS

UM

URUGUAY UY

UZBEKISTAN UZ

VANUATU VU

VATICAN CITY STATE (HOLY
SEE)

VA

VENEZUELA VE

VIET NAM VN

VIRGIN ISLANDS (BRITISH) VG

VIRGIN ISLANDS (U.S.) VI

WALLIS AND FUTUNA
ISLANDS

WF

WESTERN SAHARA EH

YEMEN YE

YUGOSLAVIA YU
Version 4.8 PointBase System 102

 PointBase
ZAIRE ZR

ZAMBIA ZM

ZIMBABWE ZW
Version 4.8 PointBase System 103

	Proprietary and Trademark Information
	Table of Contents
	Preface
	Purpose
	Audience
	Release Notes
	Document Feedback
	Document Conventions Used in This Guide

	Before You Begin
	Java Virtual Machine Requirement
	PointBase Jar Files
	Understanding CLASSPATH
	Understanding How CLASSPATH Works
	Setting the CLASSPATH
	Using a Java Virtual Machine running Windows NT or Windows 2000
	Using a Java Virtual Machine running Windows 95/98
	Using UNIX Java Virtual Machine running Linux, Solaris, etc.

	Using JAR and ZIP files

	Starting PointBase
	PointBase Commander and Console
	Starting PointBase Commander or Console for the First Time
	Using Microsoft Windows
	Using a Command Line Window

	Advanced Tips for Starting PointBase
	Tips for Starting PointBase Server using Embedded - Server Option
	Tips for Starting PointBase Embedded or Client
	Locating Jar Files
	Calling Tool Class Files
	Variable Descriptions
	Using a Sun or IBM Java Virtual Machine
	Using a UNIX Java Virtual Machine running Linux, Solaris, etc.
	Using a Macintosh OS 9

	Tips for Security Manager

	PointBase Supporting Tools
	PointBase Commander
	PointBase Console
	PointBase Index Consistency Checking Utility
	Utility Syntax
	API Syntax

	Verifying PointBase
	PointBase Commander
	PointBase Console
	A JDBC Application
	PointBase Example

	Configuring PointBase
	PointBase.ini File
	Changing the Location of the PointBase.ini File
	How PointBase Locates the PointBase.ini File

	Configuring Database Properties
	What Method of Configuration Takes Precedence?
	INI Parameter Organization
	Database Properties Described

	Performance Tuning
	Optimizing Query Expressions
	Execution Plan
	PLAN Facility
	PLAN_QUERIES and PLAN_TABLE

	Optimizing MIN and MAX Functions in a Query
	MAX Function
	MIN Function
	MIN/MAX Optimization

	Optimizing Count(*) in a Query
	count(*) Function
	count(*) Optimization
	Examples

	Tuning Database Properties
	Increasing the Cache Size
	Setting the Database Page Size
	Setting the Number of Rows Returned
	Disabling Some Logging
	Setting Memory Usage for Sorting
	Caching SQL Statements
	Reserving Table Space for Updates

	Minimizing Locking Times
	Writing Data at the End of Transactions
	Using READ_COMMITTED

	Using Indexes
	Ordering Columns
	Accessing Indexes Only
	Avoiding Parameters in Range Predicates
	Scanning Indexes
	Calculating Index Overhead

	Selecting Multiple Rows With Different Key Values
	Using the UNION Operator

	PointBase™ Cryptography
	Database Encryption
	Client and Server Communication Encryption
	Available Algorithms
	Setting Database Encryption
	Setting Client and Server Communication Encryption

	Database Log Flushing
	How to Flush the Log Setting the log.filesize
	How to Flush the Log Using PointBase Commander

	PointBase™ Internationalization
	What Types of Businesses are Likely to Use Unicode?
	Are There any Limitations to Unicode?
	Implementation
	CHAR/CLOB handling
	Expression package
	Sort package

	Restrictions

	Using PointBase™ With IDEs
	SunTM ONE Studio
	Borland JBuilder
	IBM VisualAge
	WebGain Visual Cafe 4.1

	Appendix A: System Tables
	Appendix B: Error Messages
	Appendix C: Country and Language Codes
	Language Codes
	Country Codes

