Installing Solaris
by SecurityFocus Inc.
last updated Mon January 31, 2000
Installing Sun Solaris

Solaris is an extremely feature rich, robust and thoroughly modern OS. These features in some ways come at a cost; sometimes it is necessary to trade security for features. While in some circles this is certainly acceptable, any user desiring to install a Solaris machine in a networked environment, or on the Internet, needs to take action to remedy these problems. With over 500 packages, and well in excess of 100 setuid programs, Solaris isn't exactly as tight as a drum. One approach would be to install the system, and then go through and decide just what setuid programs belong, and which don't. Sound painful? Not only is it time consuming, but binaries which might seem harmless are installed which could later lead to security problems.. Only by starting with the smallest install footprint is it effective to spend time locking down a machine.

The first task when installing a machine is to determine what role it will be serving. Will a developer be sitting at it? Will it be a multi-user shell machine? Web or other service server? Firewall? There are a lot of different roles a machine can play; unfortunately we can't possibly go into every variant. So determine exactly and precisely the services needed on the machine. These should include the service the machine is being used for, and possibly a mechanism for remote access. Nothing more. Take the time to write down what is needed, who needs access to the machine, how they're going to gain access to it. Having a well defined game plan makes it much easier to proceed.

It would seem that the best way to discuss a secure installation of Solaris would be to walk through an actual installation, step by step. This article actually is in two pieces. The first portion discusses the actual installation procedure. We start with the insertion of a CD, and finish up with the addition of a couple of packages. The second article will begin with removing a few services, and finish up with the deployment of the server. The machine we're installing on is a Sparc Station 20/612, with 256 megs of ram, and about 4.5 gigs of drive space. Once upon a time, this machine was pretty cutting edge; now it serves nicely for the role this machine will be built as. In somewhat of a contrived setup, this machine will be serving as an SMTP server, a web server, and a caching nameserver. We will ultimately be using Apache+mod_perl+Embperl, and qmail and dnscache by Dan Bernstein. We will be installing the Early Access of Solaris 8. Installation for prior versions is extremely similar.

Each step has a box next to it. If you like, print out this article, and use it as a checklist, so you don't miss any steps. Even one mistake can result in problems.

With out further hesitation, we begin.

	
	Openboot Password and Security

Obviously, every installation begins with the insertion of a Solaris CD. Before installing Solaris, however, its worthwhile to discuss the merits of an eeprom password. This will prevent random people from executing commands in the eeprom. security-mode should be set to command, or full, and a security-password should be set. These are set using the "setenv" command at the OK prompt

ok setenv security-mode full
security-mode = full
ok setenv security-password <password to set>
security-password =

Make sure to set both the security mode and password.

	[image: image1.jpg]

	Do NOT plug in the ethernet

Make sure your ethernet cable isn't plugged in. People running NIS who don't want to manually configure will have to plug it in, but if you can avoid it, keep it out. During installation, RPC services are started, and some could potentially result in a compromise during the installation. It's much safer to keep the machine off the network until it's been secured.

	[image: image2.jpg]

	ok boot cdrom

	[image: image3.jpg]

	The Solaris install procedure begins.

Select proper language and locale. For American English, the choices are 0 on both screens. This has no security relevance.
OpenWindows will then start up, and displays a primary dialog about the install procedure. Continue.

	[image: image4.jpg]

	Network Configuration

The system identification then commences. This is where network identification will take place. If you need to use DHCP, or NIS, you'll need to plug your ethernet in now. You'll be able to unplug it shortly. You'll next select an IP or DHCP, and in the case of Solaris 8, whether or not you'll be enabling IPv6. Only enable it if you'll use it; while Sun suggests that everything will work fine if you option to install it and don't use it, configuring services and networks you don't need could prove damaging in the future -- err on the side of caution.

	[image: image5.jpg]

	Name Service Configuration

Next are the options for a naming service. If you're in a NIS environment, configure NIS. If possible, specify the NIS servers you'll be using, rather than having the installation broadcast for them. Not running NIS? You can select DNS, but be aware that if you're following this article, it won't be configured upon a reboot like it should be; the installation will try to verify the DNS servers after they are entered, and upon failure, will not configure DNS. If you must, plug in the ethernet for this portion, and remove it as soon as the DNS configuration portions are through.

	[image: image6.jpg]

	Netmask and Time

You next get to configure your subnet information, and set the time on the machine.

	[image: image7.jpg]

	Package selection

Finally, we reach the important part of the installation, the actual selection of packages to install. People are often tempted to install everything. It's easier, they protest, to install everything right off the bat, and worry about removing packages afterwards. When they realize they've installed in excess of 400 packages, any intentions they may have had to remove things are quickly tossed away. From a security perspective, this is not the best idea. For these reasons, select to install the Core System Support group. Once selected, choose to customize the install.

Here's the last chance for you to decide this machines role. Will it be on someone's desktop? A firewall? A web server? Define its role, and define it well. This mock installation machine will be functioning as a DNS, mail and webserver. This, of course, is a contrived example, and by no means is an endorsement of installing 3 such critical services on a single machine. From the security point of view, installing services which are critical to the internal network, such as DNS and SMTP, on a machine which serves content to the external world (WWW), is far from a good idea. This, however, is not a topic we will address here. Instead, we'll be installing these services in an attempt to make this article, and the subsequent one, as broadly applicable as possible.

As such, the core components are all we want, and then some. As core is the smallest installation we can do, we'll have to select it. We will remove a large portion of the core installation upon reboot. If you need to install OpenWindows, you can select to install the pieces you need now; large pieces of software like OpenWindows may be easier to install now, via the GUI tools, than via the command line after installation. This is, of course, based on what you feel comfortable with. Chances are you'll have to manually install packages at the command line anyhow, as you discover things which you need are missing.

	[image: image8.jpg]

	Disk partitioning

Continuing along, the installation process will give you the option of preserving slices. If you have home directories that you'd rather preserve than restore from backups, this is possible. It's best not to opt to preserve anything that contains prior install binaries, as they still have the potential of being used to elevate privileges if they are accessible upon reboot.

When given options for partitioning the disk, its often easier to let it auto partition, and then adjust the sizes it selects. Traditional wisdom suggests creating a separate /var partition, to prevent logs from filling the root partition, and causing problems. Swap obviously needs to be created. Usually the defaults the installation selects for whatever partitions created are insufficient, and will need to be adjusted. For this installation, the test machine is installed with independent /, /opt and /var partitions. /opt is an independent partition that /usr/local will actually be created in. This allows for easier to manage backups in some cases, as all local changes, in theory, are on the /opt partition. Swap is set to double that of the amount of ram in the system. The more swap you can afford to create, the better off you will be. Make sure to create room to store multiple days worth of logs in /var, and plenty of room for patches in the other partitions. Always err on the side of caution. Disk space is cheap, especially when you consider how frustrating having inadequately sized partitions can be Don't forget to create a sufficient /export/home partition. The numbers the test machine is configured with are 500 megs for /, 700 for /var, 500 for /opt, 500 for swap, and approximately 2 gigs for the /export/home partition. The web server we eventually install will live under this partition, in /export/home/apache.

	[image: image9.jpg]

	Mount remote volumes, and install the selected packages

Continue on with the installation, mount remote volumes if need be, and sit back. Installation of the core components are quick, but you should have enough time to sit back and ready yourself for the daunting task of securing your new installation that lies ahead.

	[image: image10.jpg]

	Reboot!

Once the machine reboots, log in as root. Don't forget to set a password!

	[image: image11.jpg]

	Package removal

Finally, we'll remove a few packages. This machine will not be running NIS. Nor will it be running some of the other packages the Core Systems Support option seems to install. The following packages were removed; they may not all exist on versions prior to 8, but it should give you a rough idea of the packages you don't need that may still be lurking.
Packages can be removed with the following syntax:
/usr/sbin/pkgrm
Removed:

· SUNWtleu (Thai localizations. Very odd.)

· SUNWsndmr (No need for audio on this machine)

· SUNWsndmu

· SUNWqfed (No qfe in this machine)

· SUNWpsdpr

· SUNWpcser (No pcmcia on this machine)

· SUNWpcmem

· SUNWpcmcu

· SUNWpcmci

· SUNWpcelx

· SUNWnisu

· SUNWnisr

· SUNWnamox (why did this get installed on a 32bit machine?)

· SUNWnamow (i said no Openwin!)

· SUNWxwmod

· SUNWxwdv

· SUNWplow

· SUNWplow1

· SUNWnamdt (no dt on this machAine)

· SUNWnafos (North Africa support. weird)

· SUNWmeaos (Middle East support)

· SUNWluxop (Sun Enterprise Network Array stuff)

· SUNWatfsr

· SUNWatfsu

· SUNWauda (more audio stuff)

· SUNWaudd

· SUNWdtcor (no dt)

· SUNWi15cs

· SUNWi1cs

	[image: image12.jpg]

	Adding packages

The next thing we need to do is add a few packages. This machine will have to have some services compiled on it, so we need to add the packages required for compiler support. These are:

· SUNWbtool

· SUNWsprot

· SUNWtoo

· SUNWhea

· SUNWarc

· SUNWlibC

· SUNWlibm

· SUNWlibms

Our final package list is as follows:

· system SUNWadmr System & Network Administration Root

· system SUNWcar Core Architecture, (Root)

· system SUNWcg6 GX (cg6) Device Driver

· system SUNWcsd Core Solaris Devices

· system SUNWcsl Core Solaris, (Shared Libs)

· system SUNWcsr Core Solaris, (Root)

· system SUNWcsu Core Solaris, (Usr)

· system SUNWdfb Dumb Frame Buffer Device Drivers

· system SUNWesu Extended System Utilities

· system SUNWftpr FTP Server, (Root)

· system SUNWftpu FTP Server, (Usr)

· system SUNWhmd SunSwift SBus Adapter Drivers

· system SUNWkey Keyboard configuration tables

· system SUNWkvm Core Architecture, (Kvm)

· system SUNWlibms Sun WorkShop Bundled shared libm

· system SUNWloc System Localization

· system SUNWnamos Northern America OS Support

· system SUNWpl5u Perl 5.005_03

· system SUNWrmodu Realmode Modules, (Usr)

· system SUNWsolnm Solaris Naming Enabler

· system SUNWswmt Install and Patch Utilities

· system SUNWudfr Universal Disk Format 1.50

· system SUNWbtool CCS tools bundled with SunOS

· system SUNWarc Archive Libraries

· system SUNWhea SunOS Header Files

· system SUNWlibm Sun WorkShop Bundled libm

· system SUNWlibms Sun WorkShop Bundled shared libm

· system SUNWsprot Solaris Bundled tools

· system SUNWtoo Programming Tools

· system SUNWlibC SPARCompilers Bundled libC

	[image: image13.jpg]

	Disable services

Conventional wisdom would suggest that now is the right time to fetch patches for this machine. Unfortunately, this machine is extremely open to attack at the moment. It would be best, in fact, to disable all services if possible prior to doing this. Go in to /etc/rc2.d, and see what you need and don't. On this installation, we remove the following:

· S71ldapclient

· S71rpc

· S73nfsclient

and comment out the final line of:

· S72inetsvc (the line that launches inetd)

We also comment everything out from inetd.conf. On the off chance that someone decides to launch inetd, it would be better that no services are running.

If you would prefer not to reboot the machine, the scripts to be deleted from /etc/rc2.d should be run with the "stop" command first. inetd will need to be killed manually. Check for things like sendmail still being there, if you installed it.

	[image: image14.jpg]

	Check for running services

Give a netstat -an, and see what's still running. Syslogd was still running on the test machine, as was routed and in.rdisc. Kill the last two, unless you cannot set a default route, and instead need to have the machine find it.

	[image: image15.jpg]

	Plug in the ethernet cable

Go ahead and plug in your ethernet cable. Set a default route, and also place it in the /etc/defaultrouter file, unless you have dynamically assigned routes. From the security perspective, static routes are better. You'll need to manually set the default route this one time. Upon subsequent reboots, the machine will automatically set the default.

	[image: image16.jpg]

	Configure DNS

The one last thing to do before you can get to sunsolve.sun.com is to set up DNS. Edit /etc/resolv.conf, and add your nameservers, and edit /etc/nsswitch.conf, changing the line that reads hosts to the following:
hosts: files dns
If you are running NIS for name service, this is not necessary.

	[image: image17.jpg]

	Get patches!

Finally, ftp to sunsolve.sun.com, go in the /pub/patches, and get the recommended patch cluster for the appropriate version of Solaris for this machine. Don't forget to install it! The patch cluster will include a README describing the patch installation process.

In the next article in this series, we'll discuss locking this machine down further, and installing the services it will be running.
Securing Solaris
by SecurityFocus Inc.
last updated Wed January 26, 2000
Securing Sun's Solaris Operating System

Now that you've installed patches, your machine should be pretty darn secure, right? Maybe in an ideal world, but there are still plenty of setuid programs left, and directory ownership problems to contend with. Plenty of work still needs to be done.

	[image: image18.jpg]

	Baselines

Just to set a baseline, here's what the SS20 we're working on currently looks like.
ps -ef

root 0 0 0 17:06:38 ? 0:01 sched

root 1 0 0 17:06:41 ? 0:00 /etc/init -

root 2 0 0 17:06:41 ? 0:00 pageout

root 3 0 0 17:06:41 ? 0:17 fsflush

root 200 1 0 17:07:37 ? 0:00 /usr/lib/saf/sac -t 300

root 203 200 0 17:07:37 ? 0:00 /usr/lib/saf/ttymon

root 45 1 0 17:06:53 ? 0:00 /usr/lib/devfsadm/devfseventd

root 49 1 0 17:07:04 ? 0:00 /usr/lib/devfsadm/devfsadmd

root 201 1 0 17:07:37 console 0:00 -sh

root 184 1 0 17:07:36 ? 0:00 /usr/sbin/nscd

root 168 1 0 17:07:35 ? 0:00 /usr/sbin/syslogd

root 190 1 0 17:07:36 ? 0:00 /usr/lib/utmpd

root 171 1 0 17:07:35 ? 0:00 /usr/sbin/cron

root 841 839 0 19:07:03 console 0:00 ps -ef

netstat -an

UDP: IPv4

 Local Address Remote Address State

-------------------- -------------------- -------

 *.514 Idle

 . Unbound

TCP: IPv4

 Local Address Remote Address Swind Send-Q Rwind Recv-Q State

-------------------- -------------------- ----- ------ ----- ------ -

 . *.* 0 0 24576 0 IDLE

 . *.* 0 0 24576 0 IDLE

Check your baselines and make sure they look how you expect them to. No services you don't intend on running should be present.
	[image: image19.jpg]

	Install and run Titan

Great. Now that we've set up a baseline, let's start to lock down the machine. Once upon a time, most of the work in locking down Solaris machines had to be done by hand, with a little help from precious few tools -- like Casper Dik's fixmodes. Now, that task is a lot easier, thanks to a program called Titan. Brad Powell, Matt Archibald, and Dan Farmer took the tasks that people have been manually performing for years, and scripted them -- great news for those without the time or patience to do everything by hand, especially when it needs to be done for dozens of machines.

Once you've downloaded and untarred Titan, go into the base directory and run the Titan-Config program. This will make backups of critical files, ensuring that you can undo the changes it makes if neccessary. It will then leave several sample configuration files in the directory. I usually use the sample.Server configuration file as a template, and enable the options to lock down directory permissions and file permission. Note that some of those permissions may be more extreme than needed, and some fine tuning may be in order. For example, a large quantity of setuid binaries will have executable permissions removed for everyone not in the staff group. This may work fine with a limited number of people who need to administer all portions of the machine, but an alternate method is to make use of Solaris' file ACL's, to give fine grain control over who can execute what binaries. The other thing you want to consider is activation of BSM. By default, Titan will enable it. BSM can generate mountains of logs, and while logging as much information as possible is a good policy, excessive logging might create disk space issues. Consider carefully if you're equipped to deal with what could be a considerable amount of additional log quantity, and remove the bsm.sh module if you decide you don't need it.

Titan is fairly straightforward to run. Running Titan with the -c option, followed by the configuration file, allows you to specify that it will run your configuration file. It may take a while to do its thing, so be patient. One important caveat to note is that titan will make use of some programs in the /usr/ucb directory. BSD chown is used quite frequently, so you may find it necessary to install the SUNWscpu package. Alternately, you can mimic the BSD chown behavior with a simple script:

#!/bin/sh

chown `echo $1 | sed 's/\./:/g'` $2

This will mimic the minimal functionality needed by the BSD features Titan actually uses, without the need for installing the whole BSD compatibility subsystem. Why Titan's authors insist on using the BSD style chown -- when the only difference is that they use the . versus : semantic for setting user and group -- isn't immediately apparant.

	[image: image20.jpg]

	Reboot!

After running Titan, you'll probably want to reboot your system, as it does alter some of the TCP/IP stack settings, and possibly enable BSM.

	[image: image21.jpg]

	Removal and ACL'ing of setuid root binaries

Titan leaves a large number of setuid binaries in place. The machine we're installing on will only be accessed via a serial console, and the only interactive account on it is root. Therefore, many setuid and setgid programs had their setuid and setgid bits removed. If you require remote access, and hopefully you'll be using sshd, you will need to keep pt_chmod setuid root.

Here are the binaries which are left setuid PRIOR to altering the permissions.

-r-sr-xr-x 1 root bin 14692 Sep 16 14:05 /usr/lib/fs/ufs/quota

-rws--x--x 1 root staff 4436 Sep 16 14:03 /usr/lib/pt_chmod

-r-sr-xr-x 1 root bin 7528 Sep 16 14:07 /usr/lib/utmp_update

-r-sr-xr-x 1 root sys 28472 Sep 16 14:03 /usr/bin/sparcv7/ps

-r-sr-xr-x 2 root bin 11976 Sep 16 14:07 /usr/bin/sparcv7/uptime

-r-sr-xr-x 2 root bin 11976 Sep 16 14:07 /usr/bin/sparcv7/w

-rwsr-x--- 1 root staff 17932 Sep 16 13:58 /usr/bin/crontab

-rwsr-x--- 1 root staff 14600 Sep 16 14:08 /usr/bin/eject

-r-sr-xr-x 1 root bin 30596 Sep 16 14:00 /usr/bin/login

-rwsr-xr-x 2 root staff 104580 Sep 16 14:02 /usr/bin/passwd

-r-sr-xr-x 1 root bin 6968 Sep 16 14:02 /usr/bin/pfexec

-rwsr-x--- 1 root staff 16992 Sep 16 14:05 /usr/bin/rlogin

-rwsr-x--- 1 root staff 9536 Sep 16 14:05 /usr/bin/rsh

-rwsr-x--- 1 root staff 18172 Sep 16 14:05 /usr/bin/su

-rwsr-xr-x 2 root staff 104580 Sep 16 14:02 /usr/bin/yppasswd

-r-sr-xr-x 1 root bin 13556 Sep 16 14:07 /usr/sbin/sparcv7/whodo

-rwsr-x--- 3 root staff 18628 Sep 16 14:09 /usr/sbin/allocate

-rwsr-x--- 1 root staff 48180 Sep 16 13:57 /usr/sbin/ping

-rwsr-x--- 1 root staff 23564 Sep 16 14:04 /usr/sbin/sacadm

-r-sr-xr-x 1 root bin 36888 Sep 16 13:57 /usr/sbin/traceroute

-rwsr-x--- 3 root staff 18628 Sep 16 14:09 /usr/sbin/deallocate

-rwsr-x--- 3 root staff 18628 Sep 16 14:09 /usr/sbin/list_devices

-rws--x--x 1 qmailq qmail 19752 Jan 12 01:10 /var/qmail/bin/qmail-queue

-rws--x--x 1 root other 2052296 Jan 7 01:23 /opt/local/bin/ssh1

As you can see, that's quite a few binaries. I removed the setuid bits on all of them except su, utmp_update, ps, w and pt_chmod. I placed an ACL on su, ps and w, allowing the 'admin' user to run them.

getfacl su

file: su

owner: root

group: sys

user::r-x

group::--x #effective:--x

mask:--x

other:--x

setfacl -m user:admin:--x,other:---

getfacl su

file: su

owner: root

group: sys

user::r-x

user:admin:--x #effective:--x

group::--x #effective:--x

mask:--x

other:---

I did identical operations on ps and w. (In another article, I'll discuss more effective use of ACL's.) Our final tally is as follows:
-rws--x--x 1 root staff 4436 Sep 16 14:03 /usr/lib/pt_chmod

-r-sr-xr-x 1 root bin 7528 Sep 16 14:07 /usr/lib/utmp_update

-r-sr-x---+ 1 root sys 28472 Sep 16 14:03 /usr/bin/sparcv7/ps

-r-sr-x---+ 2 root bin 11976 Sep 16 14:07 /usr/bin/sparcv7/uptime

-r-sr-x---+ 2 root bin 11976 Sep 16 14:07 /usr/bin/sparcv7/w

-rws--x---+ 1 root staff 18172 Sep 16 14:05 /usr/bin/su

	[image: image22.jpg]

	Install compiler

In the previous article detailing installation, we decided to install a compiler on this system for convenience purposes. We'll use gcc. Installing it via a package, such as can be found on www.sunfreeware.com, will allow us to remove it after we've built all the software we need, if we choose to do so. www.sunfreeware.com has packages built for versions of Solaris from 2.5 through 8. While we'll only be getting gcc AND gzip from there, a variety of other packages can be downloaded. Depending on how much time you want to spend compiling your own packages, this site may be able to help you get things done. The usual caveat of not running packages you didn't compile applies; if at all possible, compile your own software.

Assuming you use www.sunfreeware.com to obtain a compiler, install first the gzip package, and then the gcc package, using the standard pkgadd utility.

	[image: image23.jpg]

	Install Apache

We next went ahead and downloaded Apache from www.apache.org, and modperl and Embperl from perl.apache.org. Installing these, at this stage, is pretty straightforward. We simply follow the directions as presented in the mod_perl directory. As Solaris 8 ships with perl, we didn't need to install another copy. However, those of you using this as a guide to installing and securing versions of Solaris prior to 8 will need to install perl. I chose to install this in /export/home/apache, as I will eventually be installing it chrooted. This will be the topic of an upcoming article, so keep an eye out for it.

	[image: image24.jpg]

	Install daemontools, ucspi-tcp, qmail and dnscache

I next went ahead and built and installed daemontools, ucspi-tcp, qmail and various pieces of dnscache. These are all available off of cr.yp.to. daemontools, ucspi-tcp and qmail were all installed in a fairly normal manner.

The following startup scripts were used:

#!/bin/sh

#Svscan script for running qmail-send via supervise

PATH=$PATH:/usr/local/bin

exec /var/qmail/rc

#!/sbin/sh

svscan startup script, placed in /etc/init.d, linked in /etc/rc2.d

case "$1" in

'start')

 [! -x /usr/local/bin/svscan] && exit 0

 (cd /usr/local/service; PATH=$PATH:/usr/local/bin /usr/local/bin/svscan&)

 ;;

'stop')

 cd /usr/local/service

 for i in `ls /usr/local/service`

 do

 svc -d $i

 done

 PATH=$PATH:/usr/local/bin

 /usr/bin/pkill -x -u 0 -P 1 svscan

 /usr/bin/pkill -x -u 0 -P 1 supervise

 ;;

*)

 echo "Usage: $0 { start | stop }"

 exit 1

 ;;

esac

exit 0

Follow the directions contained in the distributions; they're very straightforward.

Finally, we installed dnscache, also available off cr.yp.to. Dnscache is also straightforward; builds cleanly, installs cleanly, and comes with programs to configure some of its more complex features. The directions are also excellent. Since a single machine is acting as the local dns cache, and serves internal names for the network, we did one thing differently. Normally, a separate machine would be used as a DNS cache and as a name server. Rather than run hosts files, I chose to install a cache AND a nameserver for my network, 'internal', on a single machine. I simply created a clone of the loopback device, lo0:1, with the ip 127.0.0.2. I installed tinydns, per the instructions, and bound it to 127.0.0.2. I then told the external cache I installed to consult 127.0.0.2 for all lookups to the .internal network. Voila. Ideally, these two applications should be on separate machines, especially if the dns server will be serving requests from the outside.

	[image: image25.jpg]

	RPC Tips

If you are going to be running NFS, NIS, ToolTalk, or any of the other million or so RPC services Sun includes, you need to run rpcbind. That's OK, just be aware that RPC has traditionally been a weak point in most security models. NFS and NIS are started from startup scripts in /etc/rc2.d and rc3.d, namely S71rpc, S73nfs.client and S15nfs.server. Don't need them? Simply rm the startup scripts, or rename them to something not beginning with an S. Make sure to edit your /etc/inetd.conf, and remote non-essential RPC services. Please note that removing ttdbserverd may cause OpenWindows to freeze, or certain DeskSet tools to break. To prevent the freezing, edit the /usr/openwin/lib/openwin-sys file, and remove the line that starts the ttsession program.

	[image: image26.jpg]

	NFS Tips

Over the years NFS users have graced the three letters of the acronym with many alternative meanings -- the most famous of which bawdily references the system's level of security. NFS isn't quite as evil as some would make it out to be. Yes, it's pretty insecure, but it seems to be a requirement in many environments. So here are a few steps to take to make things better.

First, don't share your root filesystem. There is no need to expose the entire machine. Instead, decide exactly what pieces of data need to be shared, and work from there. Don't export things to the world. It takes some extra work to specify what machines can mount a share, but it's not difficult to do, and it does a lot of good in securing some of NFS's problems. Try to export things nosuid, and only read/write if absolutely necessary: It can be a nuisance at times, but it prevents people from obtaining root on their local machine and easily getting root on other machines. (Please note the use of the word easily... NFS will definitely make it easier to do so). Finally, use the fsirand program on filesystems that will be mounted via NFS. This will help prevent trivial guessing of NFS file handles. If have the option, running NFS over Secure RPC will help from the authentication standpoint, but NFS traffic will still be visible on the wire.

	[image: image27.jpg]

	Remote Administration Tips

Solaris 2.6 and better ship with both SNMP and DMI enabled. Sadmind is also installed. SNMP has some very well known holes, some protocol specific and some that are peculiar to Sun. If you're going to run SNMP, make sure to get the latest patches. These will fix some of the problems, in a manner that is somewhat flawed -- whatever you do, do not attempt to make their snmpd support read/write. The daemons in question run out of /etc/rc3.d/S76snmpdx. Change it to begin with something other than an S, and that's one more problem eliminated. dmi is started out of S77dmi, also in /etc/rc3.d. Move this one too if you aren't using it. sadmind runs out of inetd, so to turn it off, simply comment out that entry and restart or HUP inetd.

	[image: image28.jpg]

	Weird Services

A few new services have been added that you might not know about. One such service is nscd -- the name service cache daemon. This service is meant to cache common name service requests. This will cache domain name queries, the password file, group file, and a few other files. The idea is to provide an on-machine cache for common queries. Nscd goes along way in speeding up common dns queries, and helps speed up things like NIS and NIS+. Disabling nscd can also break certain programs (Netscape for instance). The security impact of nscd is an unknown quantity, although early versions had definite problems: overpopulation of the cache would result in nscd segfaulting. On a site doing large quantities of name lookups, this can quickly become a problem. Also, the methods nscd uses for caching aren't readily apparent. If nscd doesn't cache the type of lookup being done, it may be possible to perform cache poisoning attacks against machines running nscd, in a manner similar to that employed against older versions of bind. Beware.

	[image: image29.jpg]

	Optional additions

Allowing remote access? If you can, only allow an encrypted method of access to be used. The most popular of these is SSH. The code has been thoroughly scrutinized, and while occasional problems do float to the surface, it's much better than running an unencrypted, weakly authenticated protocol like telnet.

If you have to run RPC services, change to Wietse Venema's secure rpcbind. It has enhanced logging and ACL capabilities. It's even based off of Sun rpcbind source code, so you don't have to worry about incompatibilities.TCP wrappers also go a long way in tightening the services you need to run .

Even if you aren't running "simple" services, the rule capabilities of the libwrap library work well, and there are already hooks for the library in popular secure service replacements like sshd.

Hopefully you're now running a machine that you can feel confident is secure. While not every machine will conform to the guidelines we used above, certain things remain constant: Always install as few packages as you can, run as few services as you can, and eliminate as many setuid programs as possible. This will go a long way in protecting your machine, now and in the future.

Back to the Basics: Solaris and inetd.conf Pt. 1
By Hal Flynn <hflynn@knology.net>
last updated Monday, March 20, 2000
Back to the Basics: Solaris and inetd.conf Pt. 1

Scope

This collection of material has been written to further clarify one of the more mystical configuration files on today's Solaris Operating System. For this example, we make use of the latest distribution of Solaris (at this time, 7). The topics covered are quite familiar to most seasoned administrators, although this publication has been written with administrators from beginning to advanced skill levels in mind.

What IS inetd.conf?

For those of you new to Solaris (and UNIX), the terms "inetd" and "inetd.conf" may be a bit unfamiliar to you. inetd, commonly called the services super-server, is a single controlling daemon process that handles some network services operating on a UNIX System. This daemon controls such services as telnetd, ftpd, time, rlogind and some RPC services. The file /etc/inetd.conf is the configuration file for this daemon.

The /etc/inetd.conf file is a plain text file specifying the services offered through inetd. In this file are the processes controlled by inetd, the protocols they operate on, as well as how they operate and their full paths. The concept of one daemon controlling others may be somewhat cryptic, but there's a valid reason.

inetd is capable of starting two types of services. Standard services run through inetd via well-known assigned port numbers (such as telnetd on port 23, ftpd on port 21). A listing of services can be found listed in /etc/services on a UNIX System. This file is essentially an index of all system services, and the ports and protocols they operate on. The other type of services inetd is capable of running are TCPMUX. Having its roots in RFC 1078, TCPMUX services are non-standard services, running on various port numbers. Placing a service under the control of inetd reduces the load on the system, as the daemons are started by inetd only when a request (or query) for their respective service occurs.

How this affects you

As inetd runs on Solaris by default, a Solaris system is able to take advantage of all the good that comes out of offering these services. There are a wealth of services available on a Solaris system, with a wide variety of functions to make administration and daily operation easier and more efficient. This also means, however, that somebody with ill intent can take advantage of some of the bad.

With all the recent hype around DDoS (Distributed Denial of Service) Attacks, and the compromising of vast quantities of Solaris machines, trin00, tfn, and various new mutations of these attacks, a lot of the victims of these attacks are scratching their heads and asking themselves what could have been done to prevent becoming victims. Along the same lines, many sites that weren't affected are scratching their heads, and asking themselves what can be done to prevent them from becoming victims. Perhaps all of this could have been prevented if the administrators of these sites had a better understanding of the services inetd offers, and the risks associated with them.

The default configuration of inetd on a Solaris system leaves much to be desired from the security perspective. By saying this, I don't mean inoperable by any means, if not quite the contrary. An abundance of services are configured to run on a stock installation of Solaris. In a recent install of Solaris 2.7 on an Enterprise 450 I built, I was appalled by some of the things that were running by default. It's this problem I'd like to focus upon and analyze.

The Vital Services

Let's take a look at some of the defaults Solaris chooses when installing inetd. The inetd.conf file has numerous entries in it, and the first group of them I'd like to look at is what I consider the "Vital" services. I choose to call them "Vital" as these services tend to be standard, and necessary on every UNIX and/or Solaris system that's networked in any sort of production/development/enterprise environment.

Two of the most vital commonly used, and probably the only necessary services (in my opinion) are telnetd and ftpd. I'll not delve into these, as I feel they've been sufficiently discussed in RFC's, mailing lists, books, and a variety of other media. I will, however, make mention that I myself do not often use these. All too often machines are compromised, and in these days no network is safe. The days of using plain text protocols over networks with no worry are over.

However, in some environments, there's no option to NOT running them. It's instances such as these that I can only recommend limiting one's risk. Things such as firewalling, cryptographic virtual private networks, access limitation, rsh (restricted shell), and tcp wrapping can aid with this. While most of these our outside of our discussion, we will discuss tcp wrappers later.

I will, however, take time to mention the SSH protocol. The use of cryptography is the only safe and viable alternative internally and externally. Telnetd and ftpd are quickly being replaced by SSH and OpenSSH, and with great benefit to security of networks. It was not long ago I was sitting and listening to Alan Cox in a conversation, as he was chatting with a few others about the benefits of cryptography. He talked about how those (countries) who are lagging behind in making the transition to PKI, SSH, and other such security measures will be the first to go when the first real big round of cyber-terrorism between countries occurs. I feel that statement was valid not only in the present day political boiling pot we live in, but also in the corporate arena. The SSH protocol has been proven again and again, and OpenSSH (the free alternative to the commercial version) is coming along quite nicely. In short, use SSH.

The "Other" Stuff

And you say, "There are 50,000 other services in this file! Aren't any of them useful/necessary?" To me, most of them are what could be referred to as "gravy"; added bonuses or perhaps proprietary tools particular to Solaris. Well, let's get into what they are, and what they're for. The best way to do this is to start at the top of the inetd.conf file, and work our way down to the last "stock" service in a "stock" install of Solaris 7. In this paper we'll cover the tcp and udp services. In a second article, we'll analyze RPC services. With your terminal ready, and vi open to /etc/inetd.conf, let's begin.

The first two are already given: telnetd and ftpd. We'll skip those. Next, is name. As you can see in the file, name uses udp, and calls /usr/sbin/in.tnamed when requested. What would a call for in.tnamed be? Well, the roots come from our forefathers, DARPA. This daemon is compatible with the old IEN 116 standard, the predecessor of modern naming service, DNS. This protocol is obsolete, and is no longer used.

Next, we come to shell, or remote shell, as most of us know it. rsh uses tcp, and connects on well-known port 514. The purpose of this daemon is to allow a remote user to connect to a machine, authenticate, and execute a command on the machine. Somewhat like telnet, however, when the command terminates, so does the shell. This is a good utility, although there's some things I'm not particularly fond of. Here's why: WEAK SECURITY. This service relies on 2 types of access control lists. These lists are /etc/hosts.equiv, and $HOMEDIR/.rhosts. The principle is that if a user wants to connect to the machine using rsh, the user must have an entry for the host name in /etc/hosts.equiv. If this requirement isn't met, the next step is verification on a user level. This is done via checking the .rhost file for the users name on the connecting machine, and also for the hostname of the machine the user is connecting from. From this, there's an introduction of 2 problems. The first one is, if a machine on the network is compromised, and this machine has either host.equiv or .rhost entries on other machines, all the other machines with these matching entries are compromised. Next, there's the fact that spoofing is trivial. It can be done, and there's not much you can do to prevent somebody from doing it if they're determined. Finally, rsh makes no use of any sort of encryption between hosts. A person could sniff the network, and wait for the opportunity to hijack the terminal or collect user passwords, thus giving them system access. Finally, all authentication information is sent in plain text. These 4 weaknesses make rsh less than ideal.

Next in line is login, or remote login (rlogind). rlogin uses the same principles as rsh. Remote systems can be added to /etc/hosts.equiv, or a user can set up a .rhost file in their home directory. Yet again, the same problems exist with this one as with rsh; weak authentication, spoofing, compromising of a trusted host, and a lack of encryption.

rexec provides tcp services via well known port 512. This service allows for remote execution of commands upon request to the daemon. rexec relies on one of two means of authentication for connection and execution of commands. Either a user specified .netrc file, containing information from the user, or when the connection is initiated, the prompting for the username and password by the daemon process. This daemon has a majority of the same security problems as rsh and rlogin.

comsat is a mail notification daemon. It uses udp and runs on port 512. I find this useful on a machine that either serves as a gateway for all my operations, or a workstation I may have all my mail forwarded to. Not necessarily a vital service, although it is handy. It listens on port 512 for incoming mail, and when mail arrives, prints about the first 7 lines of the mail to terminal, excluding the header.

talk, or talkd, is another udp service, operating at port 517. This service allows users to remotely connect to the machine, and initiate talk sessions with users currently logged into another machine. There are no direct security implications involved with this service. The real problem lies with users from outside of the local machine being able to talk with users on the local machine. With a little social engineering, a user might be coaxed to give away a login and password, making it possible for a remote user to access the local users account.

uucp, or Unix to Unix copy protocol, is a tcp service relying on port 540. This service is a bit old and deprecated, having been largely replaced by SMTP and NNTP. The real problem with this service is, again, lack of line encryption, allowing the potential of sniffing passwords.

Now we'll look at tftp, or trivial file transfer protocol. This service uses udp, and operates on port 69. Some sites find this service necessary as it's needed for a diskless client to boot. The implementation of tftpd tends to be a security nightmare for a number of reasons. First, there's the fact that a tftp server offers no authentication means whatsoever. Next, the tftp server attempts to change it's home directory to /tftpboot, although if this directory doesn't exist, the results can be unpredictable. Next, tftpd allows a user to read all publicly readable files, and runs as user nobody. tftpd also allows a users to write to all publicly writable files. If you MUST run this server, consider running it with the -s flag, which enforces that a change of directory must succeed. See the man page for more information.

Next, finger, systat, and netstat. finger permits a user external to the system to look up another users information on the local machine, and operates on port 79. systat gives a list of the running processes on a machine to a remote user, and operates on port 11 using tcp. netstat makes use of tcp on port 15, and gives a wealth of information about all existing network connections on a machine. All three of these services are flagrant security risks. They provide a wealth of information to a user external to the machine, some of which might be useful to a would be attacker.

Time is a daemon process that runs for the internal system, using both tcp and udp on port 37 for machine formatted time. It's calculated by the number of seconds since Midnight, January 1 of 1900. Consider your operation. Is your shop a 24/7 shop? Do you have your shop staffed at 1 am? Allowing remote users this kind of information could lead to them ultimately discovering when to mount an attack against your systems.

Echo uses port 7 for tcp and udp traffic, and has its roots in RFC 862. It's implemented as a debugging and measurement tool, sending back to the originating source any data it receives. This opens great potential for Denial of Service attacks.

Discard functions on tcp and udp via port 9. This service has roots in RFC 863, and is implemented as a debugging tool. Its purpose is to throw away anything it receives.

Daytime is the same offering as time, except in human readable form. It functions on port 13.

chargen functions on port 19, and utilizes tcp and udp. Chargen awaits a connection while functioning under tcp, and once initiated, sends a continuous stream of data until the initiating source closes the connection. Under udp, the service awaits a datagram. When one is received, it responds with a datagram containing between 0 and 512 characters. This is frequently used in denial of service attacks.

The last service we'll cover is the printer daemon. The printer daemon functions on port 515 using tcp connections. The printer daemon is useful tool, making printing from workstations to a remote printer possible. The problem with this is security. Any sufficiently secure site will place printing resources either in a local network, or place an Access Control List structure guarding their print servers, for fear of wasting trees and money.

Conclusion

Thus far, we've discussed the current tcp and udp services offered through inetd on a stock Solaris installation. The next article in this series will cover the Sun RPC services, as well as some of the things we can use to make inetd more secure.

Acknowledgments and special thanks to: Alan Cox at Red Hat Inc., Josh Uziel and Casper Dik at Sun Microsystems, Steve Goldsby at Integrated Computer Solutions, Andy Kroll, and anybody I might have missed.
Back to the Basics: Solaris and inetd.conf
By Hal Flynn <hflynn@knology.net>
last updated Monday, March 20, 2000
Solaris File Access Control Lists

Scope

This collection of material has been written to further clarify one of the more mystical configuration files on today's Solaris Operating System. For this example, we make use of the latest distribution of Solaris (at this time, 7). The topics covered are quite familiar to most seasoned administrators, although this publication has been written with administrators from beginning to advanced skill levels in mind. This document will focus on rpc services started via inetd.

An Analysis of RPC

To make a short analysis of Remote Procedure Call (RPC), let's look at the internals, and how it works. First, a query is sent to rpcbind on port 111. rpcbind keeps a table of the rpc services registered on the system, and sends the request for the service to the appropriate port. RPC is capable of use both the socket and TLI API, making a number of different transport protocols available. Here, we'll only discuss the protocols used on the current Sun Solaris version 7 (11/97). You'll notice there are some rpc services contained in /etc/inetd.conf. There's a valid reason for this. Much like the other services that run under control of inetd, these services don't run until they're needed. At the time they're called for, rpcbind makes the call for them, then inetd starts the service. Let's get close and personal with some of the internals.

The Protocols

Before getting into the protocols, let's explain a few of the standards to make the terms a little more meaningful. rpc has a few different types of protocols, with more protocols called semantics. Semantics are the basics of how the connection functions.

tpi_clts is the first and most commonly used semantic. It functions as a transport provider interface and connection-less protocol. When descending the stack, this semantic makes use of UDP to traverse a network.

tpi_cots is the next semantic. It is also a transport provider interface. This semantic is connection oriented in nature. As you might have guessed, this means it uses TCP when descending the stack to the network.

tpi_cots_ord is the last we'll discuss. This semantic is basically the same as tpi_cots. However, it has an added feature. This semantic supports orderly release. "Orderly release?" you say. Here's the difference. The first type uses what's called "abortive release." This means that at any time, the connection between the two ends may be broken, and all unsent data discarded. Orderly release does the opposite, preventing the loss of data by sending all data before closing the connection. At any time during transit between the two ends, if the connection is aborted, the data transport continues until all data is sent from the server to the client.

The first commonly used protocol is circuit_v. The official reference is the man pages for rpc and netconfig, but we'll give a brief summary of it. The circuit_v protocol is a connection oriented transport medium which uses only visible connection oriented protocols from /etc/netconfig (semantics tpi_cots and tpi_cots_ord).

The second commonly used protocol is datagram_v. It's similar to circuit_v in that it queries /etc/netconfig to use only visible protocols, except for the fact that, as the name may indicate, it uses connection-less datagram transports (tpi_clts).

In reference to the DoD model, rpc is a high level protocol, functioning on the application level. It makes use of External Data Representation (XDR) in packets. XDR is another unique part of rpc, which serves a few good purposes, such as resolving differences in hardware architecture and byte ordering (Big Endian versus Little Endian).

RPC used with Solaris is what's known as Transport Independent RPC (TI-RPC). TI-RPC is capable of running over any protocol. This means that although the default is to run over TCP and UDP, it can be fitted to function in any environment. A RPC request can additionally be specified to run over a specific protocol exclusively by setting the Environment Variable NETPATH. When an RPC procedure starts, it first searches out the NETPATH variable, then defaults to /etc/netconfig. With this said, let's look at the services.

RPC Services

admind is the distributed systems administration daemon. This daemon interfaces with the Solstice Admin Suite package, making remote administration (such as adding users, setting passwords, and the like) possible. It functions using TLI over standard UDP. This daemon has been the topic of numerous discussions in security circles, as it has been used to exploit a number of Sun systems due to a buffer overflow (See Sun Security Bulletin #00191). This daemon supports security features worth investigating if using it is a must.

rquotad is the remote quota daemon. It manages quotas for local file systems mounted on remote systems, and returns the info to the remote system. This service functions over the datagram_v protocol.

rusersd is the remote network username server. It allows a remote server to view a list of the users on a local machine. This server users datagram_v as well as circuit_v.

sprayd is the spray server. It's used mainly for testing, and often to simulate a network load. It's also capable of reporting the dropping of packets under special circumstances. This service uses datagram_v.

rwalld is the remote wall daemon. It provides all the usual functions of wall, making it possible to send wallops to remote systems. It makes uses of datagram_v.

rstatd is the remote statistics server. It provides performance information to from the kernel, and also makes the neat little graph on the CDE Desktop work. rstatd uses datagram_v.

rexd is the remote execution server. It's similar to rlogin and rexec, as it allows a user to remotely execute commands, and for interactive commands spawning a pseudo-terminal to handle the request. This service uses standard TCP and TLI. It by default has relaxed security. If its use is necessary, security specifications can be made in pam.conf. It's often a greater risk than rexec, rlogin, and rsh.

ttdbserverd is the Sun Tooltalk Database Server. To talk briefly about Tooltalk, it is an integrated application environment, acting as a mediator of communication between applications, and allowing them to exchange data. Tooltalk additionally allows the launching of applications with different respective data types. For example, a .txt file, when double clicked upon, goes to Tooltalk, which in turn launches a text editor. If a hyperlink is contained in this document, clicking upon the hyperlink could additionally launch a web browser, and so forth. This daemon process is a database daemon responsible for keeping the TT_DB file at the mount point of each partition, containing files that will be used by Tooltalk, or Tooltalk objects. This will allow a user with a remote ttsession to launch applications using the protocol. There have been recent problems with ttdbserverd, namely a buffer overflow which has allowed the remote penetration of numerous Solaris Systems. See Sun security advisory #193.

ufsd is currently part of an incomplete add-on package, which in the future will be capable of fixing ufs file systems.

kcms_server is part of the Kodak Color Management System. This daemon uses rpc over tcp. The purpose of this daemon is serving profiles to remote workstations. inetd starts the daemon when a request is made from a remote KCMS library. Here's a little detail as to what this all means. KCMS is essentially a C++ framework of objects for showing color on the display. The kcms_server's sole client is the KCMS library. When a request for profiles is made by a remote KCMS library, the kcms_server searches /usr/openwin/etc/devdata/profiles and /etc/openwin/devdata/profiles for information in a read-only capacity. When the query is made, the server is started by inetd, and only runs as needed. See the KCMS documents on http://docs.sun.com for object and structure information.

cachefsd is the cache filesystem daemon. It functions using tcp. This daemon is responsible for the cache filesystem, which takes frequently accessed files and stores in a central directory on the disk. It can be administrated with the cfsadmin utility.

kerbd is the Kerberos daemon. It's responsible for validating rpc requests using the Kerberos encryption scheme for authentication. It additionally generates Kerberos tickets (authentication keys) and maps remote users into their respective uid and gid. This service is used for Secure RPC, and more notably Secure NFS. kerbd uses a protocol not previously mentioned, called ticlts. It functions over loopback (local to host).

gssd is the Generic Security Service Daemon. This daemon is an additional level of security, coupled with kerbd for Secure RPC. It is responsible for identification of both sides of the transaction, data integrity, privacy, and additionally encrypts data between the points of the transaction. This process uses tpi_cots_ord. It uses loopback as well.

Finally, there's rpc.cmsd, the Calendar Manager Service Daemon. It is primarily used by dtcm, the GUI Utility for managing calendars. It functions over udp. The primary function of this daemon is database management of local calendars. It additionally permits users on remote hosts to create calendars locally by configuration of cmsd.conf. This daemon has also had some recent security issues. Refer to Sun Security bulletin #188 for more information. Recent Security Developments

Unless you've been out on Safari, the likelihood of having heard about the recent DDoS of some rather large name Internet Businesses is pretty good. I'll only make mention of a few of the recent things, as there's still developments being made in detection and removal of DDoS servers.

Trin00, the Tribe Flood Network (tfn), and stacheldraht are Distributed Denial of Service tools used to consume networks resources, and create a general annoyance. Rather than going into explanations of these tools and talking at great about them, I'll simply refer to Dave Dittrich's excellent analysis of them found at:
http://www.washington.edu/People/dad/
Now while these are not directly related to inetd, bear with me while I make a connection. When these clients were initially discovered, it propagated itself on a large number of Solaris Systems. This is due to some of the recent problems with rpc code and the servers deployed with a Solaris System, most notably, the Calendar Manager (rpc.cmsd) and the Distributed System Administration Daemon (sadmind). These two daemons, along with a barrage of other rpc problems, make anything rpc related undesirable for the security conscious.

What Can You Do?

There are a number of approaches one can take in securing inetd. The seemingly most successful and rational way is the "Minimal" approach, cutting out everything that's not needed. Trimming services reduces the risk of being compromised by some exploitable, intermittent problem in code, and lightens the load on a system. It's a win-win situation.
Additionally, there are some programs out there to make inetd a little more secure. Tcp Wrappers is a widely used wrapper program for all daemons running in inetd.conf. It's capable of providing access control lists based on services, and clients wishing to use them. It's highly configurable, and can also be customized to generate alert mails and verbose logs. The shortcoming with this program is it's inability to protect rpc services.
Tripwire is another program used to protect your system. It's not directly related to inetd, but warrants further investigation for the curious. Tripwire makes and stores md5 hashes of all system binaries to external media (such as a floppy disk), which may be write protected and compared against the system on a regular basis. There is currently a free distribution, although there is much recommendation against its use. The commercial distribution is the latest and greatest, and there's also currently gnu versions being developed.
Although not directly inetd related, rpcbind by Wietse Venema can make help as well. Rpcbind is a cross between Sun's rpcbind and tcp wrappers, placing access control on rpcbind. This will not necessarily defend your rpc services, as a determined person will just scan for rpc services directly, but it will make it a little harder for the less determined and less knowledgeable.
If your organization has either not taken firewalling seriously, or doesn't have the funding to purchase firewalls, there are a number of good open source and free software solutions available out there. Ipf is one that I'm particularly fond of, and is coming along quite nicely. There are also many low cost commercial solutions available.
Conclusion

Inetd is a simple program, making system performance better and more scalable. It supports a number of complex services, and is a critical point of review when securing a Solaris machine. Rpc services should be approached with caution, and disabled when unnecessary. Awareness, Operating System patching, and routine security audits are all part of a good administrative schedule, making a system less vulnerable to downtime, and other indirect results from negligence. DDoS is real and present problem, and can be stopped by responsibility of administrators and security conscious staff. Added layers of security are something that all responsible administrators, managers, and security personnel should investigate. Not to is to flirt with inevitable disaster.

Acknowledgments and special thanks to: Alan Cox at Red Hat Inc., Josh Uziel and Casper Dik at Sun Microsystems, Steve Goldsby at Integrated Computer Solutions, Andy Kroll, and anybody I might have missed.
