Oracle® Data Provider for .NET
Developer's Guide

11gRelease 1 (11.1)
B28375-01

July 2007

ORACLE

Oracle Data Provider for NET Developer’s Guide 11g Release 1 (11.1)
B28375-01

Copyright © 2002, 2007, Oracle. All rights reserved.

Primary Author: Janis Greenberg

Contributing Authors: Riaz Ahmed, Kiminari Akiyama, Steven Caminez, Naveen Doraiswamy, Neeraj
Gupta, Sinclair Hsu, Alex Keh, Chithra Ramamurthy, Ashish Shah, Martha Woo, Arun Singh, Sujith
Somanathan

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUOIACE ... et s et s e e XV
AN S Lo = VLT OPRRRRRRT XV
Documentation AcCesSSIDILityccciiiiiiiiiiiiiii e XV
ReElated DOCUITIEIESveevieieiieeiieeeeeeeeee ettt ettt et e e eteeeaaeeteessaeeaeesaeseseeesesesseessesenseensessnssenseeens XVi
CONMVEIIEIONS .ooiiviieieeeeeeeeee ettt eeet et e e e e etae e e e e eeaae e e e eeeaaeeeeseesastaeeesesastasesessassesseessnsabeeesenssasseesesnsnrenesas XVii

What's New in Oracle Data Provider for .NET? ... XiX
New Features in Oracle Data Provider for .NET Release 11.1 ...cocoeoveiiiioiiiiieeeeee e XiX
New Features in Oracle Data Provider for .NET Release 10.2.0.3.....ccuuviveeiioieeieieeeeeeeeeeeeeeeee e XX
New Features in Oracle Data Provider for NET Release 10.2.0.2........cccoviverievieieeeieeeee e XX
New Features in Oracle Data Provider for .NET Release 10.2........coovovvivoieiiiiieeiieeeeee e XXi
New Features in Oracle Data Provider for .NET Release 10.1.0.3 ..ccoouvvvvvieiieieieiiieeeeeeeeeeeeeeee e XXii
New Features in Oracle Data Provider for NET Release 10.1cocooviiiieeveiicieiieeeeeeeeeeeeevee e XXiii
New Features in Oracle Data Provider for NET Release 9.2.0.4cccueeeeeiiieieeecieeeeeeeeeee e XXiv

1 Introducing Oracle Data Provider for .NET

.NET Data Access in Oracle: Products and Documentationcccccoovviiiiiinnnninnnnn, 1-1
Oracle Data Provider for .INET (ODP.INET) ...ccccecrerireiriiinieinetreeeieieieteieseere st 1-1
Oracle Developer Tools for Visual Studio INET ... 1-1
Oracle Database Extensions for INETccccccccoiiiiiiiiiiiiin, 1-2

Overview of Oracle Data Provider for NET (ODP.NET)ccccoceicimmiiinniciirieeccereeecnenes 1-2

Oracle Data Provider for INET ASSembLycccccocoviiiiiiiiiiiiiiiiiiices 1-3
Oracle.DataAccess.Client NameSPaCEcccceveieiiuricieiicie ettt 1-3
Oracle.DataAccess. Types NamMeSPaACEcoceviiruiiiiicieieiiccie et 1-6

Using ODP.NET Client Provider in a Simple Application ..., 1-8

2 Installing and Configuring Oracle Data Provider for .NET

System Requirements. ... 2-1
Oracle Data Provider for .NET Versioning Schemeccccccoooiiinniniinnnn 2-2
Installing Oracle Data Provider for NET ... 2-3
File Locations After Installation...............cccccccovviiiiiiiiiii 2-3
WINAOWS REZISIIY ...evviieee e 2-4
Search Order for Unmanaged DLLS.........cccccccciviiviiiiiiiiiiincns e 2-4
ODP.NET and Dependent Unmanaged DLL Mismatch.........ccccoooiiiiiiiiiiie 2-4

3 Features of Oracle Data Provider for .NET

Connecting to Oracle Database ..o 3-1
Connection String AttrDULES ..o 3-2
Specifying the Data Source Attribute..........ccooiiiii e, 3-4
ConNection POOLNE «......coiiiiiiiii e 3-5
Connection Pool Managementc.ccccuieiuiiiiiiieeeieeeeieeieieseeeeeeeeseeeseseee e 3-6
Connecting in Real Application Clusters (RAC) Databaseccccocovvvivnnnnnnnninnne, 3-7
Operating System Authentication ..., 3-9
Privileged CONNECIONScccceuiuiiiiiiiiiiiiiiciicicicceieeee et 3-10
Password EXPIration.........cciiiiiii s 3-10
Proxy AUthentiCation..........ccouiiiriiiiii 3-11
Dynamic Distributed Transaction Enlistmentccccccccciiiiiiiiiiiiicccceeeeeeeees 3-13
Client IAENIfIOTc.ovoviviiiiiiiiiii s 3-13
Transparent Application Failover (TAF) Callback Support ..o, 3-14

ADO.NET 2.0 FEAtUIEScocvevviiiii s 3-16
AbOUt ADONET 2.0 3-16
Backward Compatibility for ADO.NET ..o 3-17
Base Classes and Provider Factory Classes ... 3-17
Connection String BUilder...........ooouiiiiiiii 3-18
Data Source ENUMETAtOrcocoviviviiiiiiiiicecec s 3-18
Support for Schema DISCOVETY.......cccciuiiiiiiiiiiiiccceeece e 3-18
System.Transactions SUPPOLt........ccciiuiiiiiiiiiiiiiiiic s 3-19
Batch Processing SUPPOIt ..ot 3-22
ADO.NET 2.0 Only Classes and Class MEMDETSccccccucucueueueiememeuemeiercieieieeeieeneeeeeeneneneees 3-23

OracleCommand Object. ... 3-24
TTANSACHIONS ...vviviiiiiee s 3-24
Parameter BINAINGccccoovuiiiiiiiiiiceeceeee e 3-24
Statement Cachingcooiiiiiiiiici s 3-35

ODP.NET TYPes OVEIVIEWccccooviiiuiiiiiiitiiiiieieiccete sttt 3-37

Obtaining Data from an OracleDataReader Objectccooiiiinniiiiiniii, 3-38
Typed OracleDataReader ACCESSOTSccoiiurieiiiiicieiiicieie e 3-38
Obtaining LONG and LONG RAW Data.......c.ccocoieueiriniieirinicceriieeiscsieeeseeeseseesesaennne 3-42
Obtaining LOB Datacccceuiuiuiiiiiiiiiiicieicceeeieeieieeeeeeere e eseeees 3-43
Controlling the Number of Rows Fetched in One Database Round-Tripccccecevevivivinennnnn 3-47

PL/SQL REF CURSOR and OracleRefCUISOTc.ccecieieieiriieiieieetieiesiesieieieseeeeeese e esessessessens 3-48
Obtaining an OracleRefCursor ODJectccccciiiiiiiiciiiiniiiiccrreceeree s 3-48
Obtaining a REF CURSOR Data Type.......cccccooiuriiiiiiiiieiciini e 3-49
Populating an OracleDataReader from a REF CURSOR..........cccccoeviiiiiiiiiiceeccee, 3-49
Populating the DataSet from a REF CURSORcccccceeuiiiiiiiiniiiiicieceeeeeeeneeeeeeneenenes 3-49
Populating an OracleRefCursor from a REF CURSORcccccouiiiniiniiniii, 3-49
Updating a DataSet Obtained from a REF CURSOR..........ccccoooviimiiiiiiiiiccce, 3-50
Behavior of ExecuteScalar Method for REF CURSOR...........cccooooviiiiiiiniineiccn, 3-50
Passing a REF CURSOR to a Stored Procedure...........cccovviieiniiiiciniiiniicieccecccces 3-50

LOB SUPPOTIL....coooiiiiiiiiiiic et 3-51
Large Character and Large Binary Data TYPesccccoceuvuvirrriririinnnciierreeceeeeeeeeeenes 3-52
Oracle Data Provider for INET LOB ObjJects........ccccouvuiiiiiiniiiiiiiniiiiincnnes 3-52
Updating LOBs Using a DataSet...........cccccciiiiiiiiiiiiiiiiicccceees 3-53

Updating LOBs Using OracleCommand and OracleParameterc.cccoooeeiiiiiininnnnn, 3-53

Updating LOBs Using ODP.NET LOB Objects..........cccocooruiiiiiiriiiiiicieiccccc e 3-53
Temporary LOBS ..o s 3-54
ODPNET XML SUPPOIt....ccoviiiiimiiiiiiiiiiiii s 3-54
Supported XML Featurescccueioiiiiiiiicci et 3-55
XQUETY SUPPOTL .ot 3-56
OracleXmlType and Connection Dependency ..., 3-56
Updating XMLType Data in the Databasecccccoioimiiiiiiiiiicc 3-57
Updating XML Data in OracleXmITYPe ... 3-58
Characters with Special Meaning in XIML..........ccccooiiiniiiiiiiicc 3-58
Retrieving Query Result Set as XML.......cc.cooiiiiiiiiiii e 3-59
Data Manipulation Using XIML........cccccccoiiiiiiiiiiiieeeieeieieeenee e enenens 3-63
Database Change Notification SUpport ... 3-67
Database Change Notification Classesccccoeoiiiieieiiiicieiiicecc e 3-69
SUPPOTted OPErationsc.ccccucuimiiiiiiiiiiiicieieicieeieeeee ettt eees 3-70
Requirements of Notification Registration...........cccccourieiriniiniiniiiiicccc 3-71
Using Database Change Notificationcoocueiiiiiiiiiiiic e, 3-71
Best Practice Guidelines and Performance Considerations.............cccocovvivcriiniiiinincnnnnnn, 3-74
OracleDataAdapter Safe Type Mapping ... 3-74
Comparison Between Oracle Data Types and .NET Typescccccoooorriiiniiiiiciicciceecen, 3-74
SafeMapPing PrOPErtY ...t sees 3-76
OracleDataAdapter Requery Property ... 3-77
Guaranteeing Uniqueness in Updating DataSet to Database................cccccooviiiinniinnicnne. 3-78
What Constitutes Uniqueness in DataRow Objects?ccoccciueeiiiiinnnniirrcceenne 3-79
Configuring PrimaryKey and Constraints Properties............cooceeiiiiiincicce, 3-79
Updating Without PrimaryKey and Constraints Configurationccccooeviiiinnnnnn, 3-80
Globalization SUPPOTLccocoviiiiiiiiiiicc ettt s 3-80
Globalization SEttINGS........cccoviuiiiuiiiiiiiiiiic s 3-80
Globalization-Sensitive Operations...........ccoceueiiicieiiiciciecee e 3-83
Debug Tracing ... s 3-84
Registry Settings for Tracing Callscccoveiiieiiiniiiiii s 3-84
ODP.INET Configuration ... 3-85

4 Oracle Data Provider for .NET Server-Side Features

Introducing .NET Stored Procedure Execution Using ODP.NETccccccccevniiinnnnnnnnne. 4-1
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure................................. 4-2
Implicit Database CONNECIONccoiuiiiiiiiiiiiiiiiiiccicc e 4-2
Transaction SUPPOTT ... 4-3
Unsupported SQL COMMANGS........cccoiiiiiiiiiiiciti e 4-6
Porting Client Application to .NET Stored Procedure.................cccccconiniiiiinniiiinniiincccns 4-6

5 Oracle Data Provider for .NET Classes

OracleCommand CLASScccveviieieriieiirieie st etereete e et e steebe s e essesseessesseessesssessesssessesssessesssessesssensesnes 5-2
OracleCommand MEMDETS............ccooieiiirieiecieeieereceeere ettt ettt e ra e saesseers e reessesseesseeseeneas 5-4
OracleCommand CONSETUCLOTSoveieieireriierisestertesteteteteseesesseesessessessessessessessesessessessessessessenss 5-7
OracleCommand Static MethOdSccvevvevieiieiiieieiecieeeese ettt saesseeneas 5-9

vi

OracleCommand Properties ... 5-10

OracleCommand Public MethOdsc.oouiiiiiiiiiiiieieteeeeeeee ettt e ennas 5-27
OracleCommandBuilder Classccocceeieiieiiriiiieeeeerieeee ettt se e sae e e eesaeseesseseenes 5-42
OracleCommandBuilder MEMDETSccooveieriieienieiieeeie e ete st ete e sseseeese s e essesseeaesssessesseas 5-45
OracleCommandBuilder CONSIIUCIOTLSvevviivieiiieeieiieteeie ettt ettt sveesnesaeeenas 5-48
OracleCommandBuilder Static MethOdS.........cocuevierierieieieieieieiee ettt eseeas 5-50
OracleCommandBuilder Properties...........cccooviiiiiiiiniiiiiics 5-54
OracleCommandBuilder Public Methodsccoeririeieiiieieieee e 5-59
OracleCommandBuilder EVENTSccccviviiriirieieicieieieteeee sttt seese s se s ssenss 5-64
OracleConNection CLasSccccieiieieiiieieieetete ettt e e et este et e sseeseesseesaesseessesssessesssessaessessesseessenses 5-65
OracleConnection MEIMDETISccocvviiiieiiieeieiieteee ettt ete e ste e e ste s e e ste e s esbesssesseessesseessesaeennas 5-67
OracleConnection CONSIIUCLOTScccviieieieirieisestestesiesestestesteseseeseesessessessessessessessessessessesenses 5-70
OracleConnection Static Properties...........cocooviiiiiiiiiiicccccs 5-72
OracleConnection Static MEthOdSocceieiriririieeeee ettt 5-74
OracleConnection PrOperties..........cccocciiiiiiiiiiiicccecceee s 5-77
OracleConnection Public MethodsS.......ccoieiiiiieieiiieieiieieecee sttt aesve s 5-86
OracleConnection EVENTES.......cc.cccuiiiiiiiiiiiieie ettt et eeesaesra e sse e eeraessesseens 5-107
OracleDataAdapter Classccoceeveireinieinieincie ettt 5-110
OracleDataAdapter MemDbETsccccovviiiiiiiiiiiiiiiiii s 5-112
OracleDataAdapter CONSIUCIOLScoouiiiiieiiiicice e 5-115
OracleDataAdapter Static Methods.........cccceiuiiiiiiiiiiiiiiiccccceecee s 5-118
OracleDataAdapter Properties..........cooeiiiiiiiiiiiiiiiiiii e 5-119
OracleDataAdapter Public Methods ... 5-125
OracleDataAdapter EVENtScccccccuiiiiiiiiiiiiiicecc e 5-130
OracleDataReader Class..........c.cceeveiieieniieiereeeesteete e ste e eete e ete s e sssesseeeesseessesseessesseessesssessessenns 5-134
OracleDataReader MEIMDETS.........cccoouiiieriiieeiieceeie et eee et et eveetesreesseersesessessesssessasssensenns 5-137
OracleDataReader Static MethodsS........ccocviriirierierieieicieceeeese ettt esens 5-141
OracleDataReader Properties..........coouviiiiiiiniiiiiniiiiiii e 5-142
OracleDataReader Public Methodscooveiiiiieiiiieieceeeeeceteete et 5-152
OFACIEEITOT CLaASSccuiiieiieieeieieeteieete st te et e st st e e e eeste e tesseesse st eensesseentesseensesseensesseensesseesenseens 5-197
OracleErTOr MEIMDETScvieiieiieiieieeeeie ettt e te st et e s ae e sseesesstesaesseessessaessesssessesssassansennes 5-199
OracleError Static MEthOASoceeviieiiiicieie ettt ettt et re e ens 5-200
OracleError PrOPerties.ot 5-201
OracleError METNOAScccviviieiiiieiececteeee ettt ettt st e st e e ae s e eaesbeessessaessassaessenseenes 5-204
OracleErrorCollection CLass............ccocveeuieiiiiieiicieeiecieeeeete ettt eveeteeereereeve s e esseereesesssesesseens 5-205
OracleErrorCollection MEMDETScc.evveveieieieinieiieesiesieiesetesseaee e ssessessessessessessessesessenns 5-207
OracleErrorCollection Static Methodsccveieierienieiieieseeieseeee et sre e 5-208
OracleErrorCollection Properties...........cccocvviiiiiininiiiniiiiiiininiinsiiccc e 5-209
OracleErrorCollection PUblic MethodsS..........coeeveiiieieiniiisisesiesieeeeeeetene et esnns 5-210
OracleEXception Class ... 5-211
OracleException MemDbETs..........cccccvviiiiiiiiiniiiiiiiii e 5-213
OracleException Static MethOdSc.cccciiiiiiiiiiiiiiiiicccrccccrcer s 5-215
OracleException PrOPerties ... 5-216
OracleException Methods.........c.ccccuiiiiiiiiiiiiiniiiiiiii e 5-219
OracleInfoMessageEventArgs Class ..o 5-221
OracleInfoMessageEventArgs Members ... 5-223
OracleInfoMessageEventArgs Static Methods..........cooiiiii, 5-224

OracleInfoMessageEventArgs Properties. ... 5-225

OracleInfoMessageEventArgs Public Methods...........cooooiiiiii 5-227
OracleInfoMessageEventHandler Delegate..................cccccooooiiiiiiniiinis 5-228
OracleParameter Class...........coccooiiiiiiiiiiiiiiiii e 5-229

OracleParameter MEemMDETScccceuiiiiiiiiiiiiniiiiiiiiin e 5-231

OracleParameter CONSITUCIOTSc.cucueuruiuiuiieiririeieieirieirieeeee et 5-233

OracleParameter Static Methods............cccooeiiiiiiini 5-244

OracleParameter Properties. ...t 5-245

OracleParameter Public Methodsc.ccccciiiiiiiiiiiiccccece s 5-260
OracleParameterCollection Class............c.cooocuiiiiiiiiininiiiii e 5-263

OracleParameterCollection MemMDbETScccouiiiiiiiniiiiiiiiiiiicas 5-265

OracleParameterCollection Static Methods..........cccccccuiiiiiiiiiiiirrcceeeeeeeeaes 5-267

OracleParameterCollection Properties............cccovieiiiiiiiniiiiciiiicccc 5-268

OracleParameterCollection Public Methods ..., 5-271
OracleRowUpdatedEventHandler Delegate...................cccccoiiiiinniiiiiis 5-289
OracleRowUpdatedEventArgs Class. ...t 5-290

OracleRowUpdatedEventArgs Members............ccocuoiiiiiiiiiciciiccec 5-291

OracleRowUpdatedEventArgs CONSIUCIOTcccoueuiuimiueiririiiciricericeereeeeeeeeees s 5-293

OracleRowUpdatedEventArgs Static Methods..........cccccoveiiiiiiiiii 5-294

OracleRowUpdatedEventArgs Properties ...t 5-295

OracleRowUpdatedEventArgs Public Methods..........ccccccceiiiiiniiiiciccnnccreceae 5-296
OracleRowUpdatingEventArgs Class ... 5-297

OracleRowUpdatingEventArgs Members ..o 5-298

OracleRowUpdatingEventArgs Constructorccocueuiueueiriririiirierierereeeeeeee s 5-300

OracleRowUpdatingEventArgs Static Methods...........cooeeiiiiiii, 5-301

OracleRowUpdatingEventArgs Properties...........coooooieiiicicciicccccc 5-302

OracleRowUpdatingEventArgs Public Methodscccccevieiiiiiniiiiiiinncceeceae 5-303
OracleRowUpdatingEventHandler Delegate ... 5-304
OracleTransaction CIass ... 5-305

OracleTransaction MEMDETS...........ccccouvuiiiiiiiiriiiiiircr e 5-308

OracleTransaction Static Methods..........cccoeuiiiiiiiiiiiiiiicc 5-309

OracleTransaction PrOPerties ..o 5-310

OracleTransaction Public Methodsc.ccccccciiiiiiiniiiiiccceereee s 5-312
OracleCollectionType Enumeration ..o 5-320
OracleDbType ENUMETration ... 5-321
OracleParameterStatus Enumeration ... 5-323

Oracle Data Provider for .NET XML-Related Classes

OracleXmlCommandType Enumeration ... 6-2
OracleXmlQueryProperties Class ... s 6-3
OracleXmlQueryProperties MemMbETS...........ccccccueiriiiiiiiiiiiniiiiiiicncss s 6-7
OracleXmlQueryProperties CONSIIUCLOTcccueuiueuimiueieiiiieieicicieeeieteerereeeeene e eeeeeeeeeeeenas 6-8
OracleXmlQueryProperties PrOPerties ...t 6-9
OracleXmlQueryProperties Public Methodsccoevoiiiiiiiiiic e, 6-12
OracleXmlSaveProperties Class ... 6-13
OracleXmlSaveProperties MEmDETS...........cccoiuiviiiiiiiiieiiiiiiicc s 6-16
OracleXmlSaveProperties CONStIUCIONcoiuiiiiiiieieiiccc e 6-17

vii

OracleXmlSaveProperties Properties ... 6-18

OracleXmlSaveProperties Public Methodscoooiiii e, 6-22
OracleXmlStream Class...........cocooiriiiiiiiiiccccccctcce sttt ne e 6-23
OracleXmlStream MemDeTS...........ccoovuiuiiiiiiiiiiiiiiiiiiiie s 6-24
OracleXmlStream CONSEIUCIOTcouiuiviiiiiiiiiiiic s 6-26
OracleXmlStream Static Methodscccoviiiiiiiiiiniiii e 6-27
OracleXmlStream Instance Properties ... 6-28
OracleXmlStream Instance Methods............ccoiiiiiiiiiie 6-32
OracleXmITyYPpe Class..........cocoiiiiiiiiiiiiiii s 6-37
OracleXmIType Memberscoooiiiiiiiii 6-38
OracleXmIType ConsStruCtOrS......cccueiiicieiicecie s 6-40
OracleXmlIType Static MethOdScccciuiiiiiiiiiiiiiicccccccce s 6-43
OracleXmlType Instance Properties..........ccccoiiiimiiiiiiiiiieeeeeeeeee s 6-44
OracleXmlType Instance Methodscc.coooiriiiiiiii e, 6-49

7 ADO.NET 2.0 Classes

OracleClientFactory CIassccciiiiiiiiiiiiiiii s 7-2
OracleClientFactory MEMDETSccccciuiiiiiiiiiiiiiiiciicicceieeeee e 7-4
OracleClientFactory Public Properties...........cooieieioiiiiiiiiiiecc 7-5
OracleClientFactory Public Methods ..., 7-6

OracleConnectionStringBuilder Class............ccccocooiiiiiiiiiiiii 7-10
OracleConnectionStringBuilder Memberscooeueiiiiiiiicie e, 7-13
OracleConnectionStringBuilder CONStructorscoceueiiiieieiciicciecc e, 7-16
OracleConnectionStringBuilder Public Properties..........c.cccccocvciiiiiiiiiceiiiccccceeeee 7-18
OracleConnectionStringBuilder Public Methods ..o, 7-32

OracleDataSourceEnumerator Class ... 7-35
OracleDataSourceEnumerator Members.............ccovuiviiiiiiiiiiiiici e 7-37
OracleDataSourceEnumerator Public Methods. ..., 7-38

8 Database Change Notification

OracleDependency CIass.............ciiiiiiiiiiiiii s 8-2
OracleDependency MEemDETScccccouiiiiiriiiiiiiiiniiiiici e 8-3
OracleDependency CONSLIUCOTSc.cucueuiueiiiiiiieieieieieicicteirieieeereeeeeeee et 8-5
OracleDependency Static Fields ..o 8-9
OracleDependency Static Methodsccocoeiiiiiiiiiniiiiccce e, 8-11
OracleDependency Properties..........ccccciiiiiiiiiiiiiieeccceeeiee et 8-12
OracleDependency Methodscoiiiiiiiiiciiii 8-17
OracleDependency EVENnts..........ccccccciiiiiiiiiiiiiiiiiiiice s 8-20

OracleNotificationNRequest Classcccoueiruiirieinieiniiireieeneeeereeeee et 8-21
OracleNotificationRequest MemMDbeTsccccvviiiiiiiiiiiiiiiic s 8-22
OracleNotificationRequest Static Methodsccooviiieiiiiiiii, 8-23
OracleNotificationRequest PrOperties. ..o 8-24
OracleNotificationRequest Methods............cccooiiiiiiiiiiniiii 8-27

OracleNotificationEventArgs Class............cccccoiiiiiiiiiiiiiiiciceeceecee e 8-28
OracleNotificationEventArgs Memberscccooivvviiiiiriniriirrecceeeeeeeeee s 8-29
OracleNotificationEventArgs Static Fields.........ccocooiiiiiiiiiniiccc 8-30
OracleNotificationEventArgs Static Methods..........ccooeiiiiii, 8-31

viii

10

11

OracleNotificationEventArgs Properties.............coceiiieieiiiicicieccccc 8-32

OracleNotificationEventArgs Methods ..o, 8-37
OnChangeEventHandler Delegatecccoooiiiiiiiiiiiiii 8-38
OracleNotificationType Enumeration...........ccccooiiiiiiiiiii e 8-39
OracleNotificationSource Enumeration ... 8-40
OracleNotificationInfo Enumeration ... 8-41

Oracle Data Provider for .NET Globalization Classes

OracleGlobaliZation CLaSS.........c.cocvevirieriieiereeertee sttt e et et et este st esesseessesseessesssesseessensenssenseenes 9-2
OracleGlobalization MEMDETS..........ccvecveriieieriieieieeeeieeteie ettt e e e eae e esse s s essessaessessaessesseeses 9-4
OracleGlobalization Static Methods.........coiviriiiriieieeeeee et 9-6
OracleGlobalization PTOPErties ... 9-12
OracleGlobalization Public Methodsccoeveiiiiieiiirieieceeieeeee ettt 9-22

Oracle Data Provider for .NET Failover Classes

OracleFailoverEventArgs Class ... 10-2
OracleFailoverEventArgs Memberscoccueiiirieieiciccicci e 10-5
OracleFailoverEventArgs Static Methods ... 10-6
OracleFailoverEventArgs Properties...........cooiiieiiiiciecci s 10-7
OracleFailoverEventArgs Public Methods............coooeuiiiiiiii e, 10-8

OracleFailoverEventHandler Delegatecccooiiiiiiiiiiiie 10-9

FailoverEvent ENumeration..............cocoooiiiiiiiiiii 10-10

FailoverReturnCode Enumerationccccoovvivininiiiiiiiiiiiccas 10-11

FailoverType ENUMErationccccoviiiiiiiiiiiiiiiicc s 10-12

Oracle Data Provider for .NET Types Classes

OFACIEBFILE CLaSS......cceiiieieiieieiieieeteete ettt et e e st et e es e te et e st esaesseessessesnsesseensasssensenseensesssensennes 11-2
OracleBFile MEMDETS........cvooiieieiieieieeeste ettt ettt ettt e e ae s e s b e seessesseessessaessessaensassenseas 11-4
OracleBFile CONSIIUCIOISccvicieiieiietieeecte ettt ettt ettt e te e e e te e s e beessesbesssesseessesseensassesseas 11-7
OracleBFile Static FAELAScciviirieieieicieietee sttt ettt ess s esessessensas 11-9
OracleBFile Static MEthOdScceviieiiiiieieeieeeeseetese ettt ettt sa e seeseens 11-11
OracleBFile Instance Properties ... 11-12
OracleBFile INStance MethOdS........ccucveieireriinieieieieiee ettt ettt eeeese s s s essessessesens 11-19

OFACIEBIOD CIASScceeeieiieiiciieieetet ettt ettt te st e s e e e esbe e s s e seessesseeseesseessesseessesseessesssessansenns 11-38
OracleBlob MEIMDETSccvcuiiiiieiieirieeieeie ettt ettt et e v e teeaseereebesseesbesssessesssesseessensesseeseenns 11-40
OracleBlOD CONSIIUCLOTSviviieiieiieiiriieiesieieteteeteee e etee e seestessessestesteseeseeseeseesessessessessassessessnsenes 11-43
OracleBlob Static FIelds.......ccoiiieiiiriieiiciiciesieeeseete ettt ettt et e s e ssesesseens 11-45
OracleBlob Static MethodS.c.uccuiiuiiiieiieiieeeceeeteteete ettt et be s ens 11-46
OracleBlob Instance Properties ... 11-47
OracleBlob INStance MethodsS..........cecuiiieiieieriieieie ettt se s ens 11-53

OFACLECIOD CLASSooveieiivieieeteeieete ettt ettt e et be et e beess e beeasessseasesseessesseessesssensesssensenseans 11-73
OTacleClOD IMEMDETSc..cveieeieiieiieiitisesteietest et ettt e e stessessessessessessesseseaseesessessessessessessessessans 11-75
OracleClob CONSIUCIOTS .. .ccuviiieieieeieie ettt ete et ree e tesreesseereesaesseessessaessesssessasssessessesses 11-78
OracleClob Static FIELAS ...c..ccuiiuiciieiicieeieeeeete ettt ettt eve et et era e sa e beereens 11-80
OracleClob Static MENOAScccovviieiiriiieieieieieiee sttt ettt eese s sbesbesaessessessesaesansenns 11-81

OracleClob Instance Properties..........cccvviviinininiiiiii e 11-82

OracleClob INStance MethOdsc.cceeviiiieieiiciecieeeeteeee ettt s rs e 11-88
OracleRefCUISOT Classccevieieeiieieeierieeeeie ettt e te st esae st e beseessesseessesssessesssensesseessesssensesseenses 11-113
OracleRefCUIrSOr IMEIMDETScccevuieieiieieieeieteeieste ettt ete e eae e e aesseeseeseessesseessesseessesseasss 11-115
OracleRefCursor Static MethodsS..........ccuevieiiiiieieiicieiecee e e 11-116
OracleRefCursor PrOPETties.cccoccuiiiiciiiiiiiriiiiieierieecieecerieie s 11-117
OracleRefCursor Instance Methods..........cccouvvieieiieiinicieeeeeeeee e e 11-118

12 Oracle Data Provider for .NET Types Structures

OracleBinary StrUCUTe. ... 12-2
OracleBinary MembeTs.............coiiuiiiiiiiiiicicie et 12-4
OracleBinary CONSEIUCIOTc.c.cuiuiuiuiiiiiiiicieieiciceeteeie ettt seeees 12-7
OracleBinary Static Fields ... 12-8
OracleBinary Static Methodscouoiiiiiii 12-9
OracleBinary Static OPerators..........cccocccciiiiririeiiieiririeeerereeeeees e 12-15
OracleBinary Static Type Conversion Operatorscccccvieeieieinieciciciiicce e 12-21
OracleBinary Properties ...t 12-23
OracleBinary Instance Methods..........ccoeeiiiriiiiiiiicnr e 12-26

OracleDate SIUCHUTE ..ottt e 12-29
OracleDate MEmMDETSc.coueiriirieirieirctrtetrtetret ettt ettt sttt b et sb e nae s 12-31
OracleDate CONSIIUCTOTSc.cvvrueueuiirieiereiiiriereetrtereietesrereteteeseseseseeesesesestssenesesesesneseseaessseenes 12-34
OracleDate Static Fields.......coccovevreineiniincinctrcccceceeeee ettt ns 12-39
OracleDate Static Methodscoccccveirieririinieiniciniertrereecteese et saenene 12-41
OracleDate Static OPEratorsccccceueuciiuiicieiiiricieiieeeeieeereee e 12-47
OracleDate Static Type CONVEISIONSc.ovcueiiiimiirieiiicie et s 12-52
OracleDate Properties............covreueiiiiieieiicci e 12-56
OracleDate MEthodscoveueirinieieuinininieictrineeterteeecstre ettt se et seseseaeseneenen 12-60

OracleDecimal SErUCLULE............ccooioiiiiriiiiieiicc ettt e 12-65
OracleDecimal MEMDETS.........cccoevreririiriniiieiinieieteesteieeietes sttt st se et st b e ssese s s 12-67
OracleDecimal CONSEIUCTOTIS.c.c.courierereiriniereriiiriereieereereteetseeresesesaesesetessesesesesessenesesessesenenes 12-72
OracleDecimal Static FIEldSc.coeiriiiririinieiineiiieiccctctrc ettt 12-78
OracleDecimal Static (Comparison) Methods...........ccooiiiiiiiiiiiiiiicccccnes 12-82
OracleDecimal Static (Manipulation) Methods ... 12-87
OracleDecimal Static (Logarithmic) Methods.........c.cccoeeveiiniiiiiiiiii 12-101
OracleDecimal Static (Trigonometric) Methodsccccceiiiiiiiiiiiniiiie 12-106
OracleDecimal Static (Comparison) Operators ..ot 12-112
OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal) 12-120
OracleDecimal Static Operators (Conversion from OracleDecimal to .NET) 12-124
OracleDecimal PTOPETTIESc.cccccuiuiiiiiiiiiiciciiiicicceeieeceeeee s 12-129
OracleDecimal Instance Methodsc.cceeeiveinieineineicinceeecree et 12-133

OracleIntervalDS SErUCHUTE..........coouiiriiiriiirieie ettt st 12-139
OracleIntervalDS MEMDETSccccirrieueuieiniriereiitnieieieeneseeseaeetsessenesetsseneseaeseseenesesesessesesceesens 12-141
OracleIntervalDS CONSIITUCLOTS «....c.cvveutrieirieirieirietrieirietetee ettt ereeereseesee v s enesenenes 12-144
OracleIntervalDS Static FIelds.......ccoeiriiriiiniiinicinieiicc ettt 12-149
OraclelntervalDS Static Methods........c.cccouvrreieuirininieieinininreicitneeeieierenreneneesessesesesesesnesesceesens 12-151
OraclelntervalDS Static Operators..........cceiiiiiiiieieiiiiiiiieece s 12-158
OraclelntervalDS Type CONVETSIONS.........cccocuiuiuiiiiiiiiiiiiiiiieieieicieieiieeee e 12-166

OraclelntervalDS Properties. ...t 12-169

OraclelntervalDS Methodsccccciiiiiiiiiiiiniiiiiii 12-174
OracleInterval YM SHUCHULE............oooiiiiiiccccccc s 12-177
Oraclelnterval YM MemDbersccccoviiiiiiiiiiiiiiiiiiiiiii s 12-179
OracleInterval YM CONStIUCLOTScccuvvviiiiiiiiiiiiiiiiiiiii s 12-182
OracleInterval YM Static Fields ... 12-186
Oraclelnterval YM Static Methods ..o 12-188
OracleInterval YM Static Operatorsc.cooccueiiiicieieieiccieccie s 12-194
Oraclelnterval YM Type CONVEISIONS........cccccucuiuimeueirieieieieieieieieeereeeeeeieeeeeeeeeeeeseseses s 12-201
Oraclelnterval YM Properties...........ccoooviiiiiiieiiiiiiiniiiiiii s 12-204
Oraclelnterval YM Methodsccccviiiiiiiiiiiniiiiiiiii s 12-207
OracleString Structure.............ccocoiiiiiiiiii e 12-210
OracleString Members............cooiiiiiiii 12-212
OracleString CONSIIUCOTS.........ocrueiiiciei et 12-215
OracleString Static FIeldscccociiiiiiiiiiiiicccccree e 12-220
OracleString Static Methods ..o, 12-221
OracleString Static OPerators.............ooccueieiiiicieiiicc e 12-226
OracleString Type CONVEISIONSc.ccueuimimiueieiiiiieieiieieieieieieeeeeee et eseseseseseseaes 12-231
OracleString Properties ... 12-233
OracleString Methods.........couoiiii e 12-236
OracleTimeStamp SEUCTULE..........ccoooiviiiiiiiriece e 12-241
OracleTimeStamp Membersccccoviiiiniiiiiiiiii e 12-243
OracleTimeStamp CONStIUCTOrS.........oviuiiiiieciicc e 12-247
OracleTimeStamp Static Fieldscccccooiiiiiiii s 12-254
OracleTimeStamp Static Methodscccoeiiiiiiiiiiiiiis 12-256
OracleTimeStamp Static OPeratorsccoooiiuciiiiccieiec i 12-263
OracleTimeStamp Static Type CONVEISIONS........c.ccceueueuemiueiririeieirieieieieeerieeeeeseseses s 12-272
OracleTimeStamp Properties..........cciiiiiiiiiiiiiiiiiic s 12-278
OracleTimeStamp Methods..........couoiiiiiii e 12-283
OracleTimeStampLTZ StructUurecccocoviiiiiiiiiniriceeeeee e 12-294
OracleTimeStampLTZ MemDETScccccovviiiiiiiiiiiiiiiiicii e 12-296
OracleTimeStampLTZ CONSLIUCOTSc.cuvueiriiiiieiiiiiiiiiiciiiicci s 12-300
OracleTimeStampLTZ Static Fields........cccoviviiiiiiiiiiiiicccccccccccccceceeenes 12-307
OracleTimeStampLTZ Static Methods..........ccccoeiiiiiiiiiniiiiiiicicc 12-309
OracleTimeStampLTZ Static Operators...........ccoceuevicuiieiiiiceieieicceece e 12-317
OracleTimeStampLTZ Static Type CONVEISIONSccccceueururucucmrieirieiiieiriereereeereeeseeeseseeeens 12-326
OracleTimeStampLTZ PrOperties........ccviiiiiiiiieiniiieieieeceeeeseee s 12-332
OracleTimeStampLTZ Methodsccccceiiviiiiiiiiniiiiiinn s 12-337
OracleTimeStampTZ SErUCLUTLE.........c..ccoovmiiriiiiiiiice e 12-349
OracleTimeStampTZ MemDETSooiuiiiiiiiiiiiiiic s 12-351
OracleTimeStampTZ CONSLIUCLOTS........c.ceuiuiiiiiiiiiiiiiiiicic s 12-355
OracleTimeStampTZ Static FIeldsccccocoiiiiiiiiiiiiiicccccccceeeeeeeeeeeeeas 12-367
OracleTimeStampTZ Static Methodsccccoeiiiiiiiiiniiiiii 12-369
OracleTimeStampTZ Static OPeratorsc.cccceeeiiiiiiiiiiiiiiiiiice s 12-376
OracleTimeStampTZ Static Type CONVEISIONS......c.ccccucueueururieeciririeieieerieeeereeeeeeeees s 12-385
OracleTimeStampTZ PrOPerties ...t 12-391
OracleTimeStampTZ Methods..........cccccciiiiiiiiiiiiii s 12-397

xi

13 Oracle Data Provider for .NET Types Exceptions

OracleTypeEXception ClLass ... 13-2
OracleTypeEXCeption MEmDETS........c.ccicuiiiuimimiiiiiiiieieeieieieieieieieiee et senenens 13-3
OracleTypeException CONStIUCIOLS.ovuiuiiiiiiiiiieiiiiiccice s 13-5
OracleTypeException Static Methods ... 13-7
OracleTypeEXCeption Properties ...t enenens 13-8
OracleTypeException Methods.........ccccceiiiiiiiiiiiiiiiiiicc 13-10

OracleNullValueException Class ... 13-11
OracleNullValueException Membersc.ccccccuiiiiiriiiiiiininnicicrreereeeees s 13-12
OracleNullValueException CONStIUCLOLScccuvueiiiiiiiiiiiiiciiiciicccc s 13-14
OracleNullValueException Static Methods............ccooiiii 13-16
OracleNullValueException Properties...........ccccceciciiiieiiiiciceeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 13-17
OracleNullValueException Methodsccciiiiiiiiiiiiii 13-18

OracleTruncateException Class ... 13-19
OracleTruncateException MemDbErsccccccciiiiiiiiriiiiiiicirinreiicrceeeee s 13-20
OracleTruncateException CONStruCtOrS..........cociviiiiiiiiiiiiiiiiiccc s 13-22
OracleTruncateException Static Methods ... 13-24
OracleTruncateEXception Properties..........ococcciiiiiricieiinineeieicerieeeeeeeeeeeeses s 13-25
OracleTruncateException Methods..........ccccoeiiiiiiiiiiiiiii 13-26

A Oracle Schema Collections

Common Schema COlLECHONScceeieeiieieiicte ettt re e s e e saeereesse e e essesssesseessensesssensenns A-1
MetaDataCOllECIONS. ...veeiieviereeeeeie et eteste et et et ste e e et e b e te et e steesaesseesaesbeessesseessesseessensesseensenses A-1
DataSourceINfOrMMAatIONcccvecveieiieiiiiieireses ettt e ettt e e sressesbessessessesseseessessesessensensanes A-2
DataTyPes ...cccucveiiiiiiieieiei s A-3
RESTTICHIONS ..veeviieiieieeteeceeeee ettt et ae et e st e e be e s st e e beessaeesse e sbeesseesseesnsassseessesssennseean A-4
RESEIVEAWOTAS ...vovieeieiieiieiieicieeieet ettt ettt a et e s te st te b e ss e b e b e s e s essesaeseessesaesessensensanes A-5

ODP.NET-Specific Schema Collectionccccociiiiiiiiiiiiniiiiiiiiii s A-5
TADILES ..ottt ettt et b e e e be b e be et e e re e b e ert e beereebeets e bereenbeeteenteereenreenes A-5
COIUIMINIS ...ttt ettt et et e e et e bt e b e b e s b e s s essesbesseseesaesaaseasessessassessessessessessassassaseaseasansessensensanes A-6
VB ettt ettt st s e et e st e et e s at e et e e s ab e et e e s bt e et e et te et e e ae e ea b e e st e e s be e bt e e abeenbaeenseebaennts A-6
XIMLSCREINA ..ocvviviiiiiiicieeteete ettt ettt ettt be e e be e st e s aeesaeebeessesbeenseessessenseensesssenseeseenseens A-7
SIS weeuieieeiietteteetete et e e et et et e bt et e st eesse s st estesstansesseassesseensesseenseessensaeseenseensenseanee s e eneenseensenseennenseans A-7
SYTIOTIYINIS .oeiiiiiitcte ettt ettt bbb A-7
SEQUENCES ... A-8
0D od (o) o 1= TSR P A-8
PIOCEAUTIES ..ottt ettt ettt e st e st e bt ess e s st esaeestessesseessesssessasseessenssensesseensenses A-9
ProcedUIEPATaIMETErSccviiviiiieeieie ettt ettt ettt ettt e et ete e te e e e beessenbeesseseessaseenseseesean A-10
ATGUIMENES .ot A-11
PACKAZESvoeeieeiiict s A-11
PackageBodiesccciiiiiiiiiiiii s A-12
JAVACTASSES ...vvevievietiitiriitiiiieietetettette e s testeeteste st e st e b esbestesaesaeseeseasassessessassessassassessassassassesensensensenes A-13
INAEXES ettt ettt b e e st e b e et e eh e e s be e te et e ese e st e ere et e ereenseereenaennean A-13
INAEXCOIUINIIISvviviiiiiieieetecteeteete ettt ettt e ae et e etbeebe et e sbeesbesbeesseeseesbesseenseeseensessseseesean A-16
PrimaryKeys ... s A-16
FOreignKeysccuiiiiiiiiiiiiiiii s A-17

Xii

ForeignNKeyCOIUMIScoiiiiiiiiiiiiic s A-18
UNIQUEKEYS ..ottt A-18

Glossary

Index

xiii

Xiv

Audience

Preface

This document is your primary source of introductory, installation, postinstallation
configuration, and usage information for Oracle Data Provider for .NET.

Oracle Data Provider for .NET is an implementation of the Microsoft ADO.NET
interface.

This document describes the features of Oracle Database for Windows that apply to
the Windows 2000, Windows XP, and Windows Server 2003 operating systems.

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle Data Provider for NET Developer’s Guide is intended for programmers who are
developing applications to access an Oracle database using Oracle Data Provider for
NET. This documentation is also valuable to systems analysts, project managers, and
others interested in the development of database applications.

To use this document, you must be familiar with Microsoft NET Framework classes
and ADO.NET and have a working knowledge of application programming using
Microsoft C#, Visual Basic .NET, or another .NET language.

Although the examples in the documentation and the samples in the sample directory
are written in C#, developers can use these examples as models for writing code in
other .NET languages.

Users should also be familiar with the use of Structured Query Language (SQL) to
access information in relational database systems.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

XV

accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

XVi

For more information, see these Oracle resources:

» Oracle Database Installation Guide for Windows

» Oracle Database Release Notes for Windows

» Oracle Database Platform Guide for Windows

s Oracle Database Administrator’s Guide

» Oracle Database Advanced Application Developer’s Guide

» Oracle Database SecureFiles and Large Objects Developer’s Guide
» Oracle Database Oracle Real Application Clusters Administration and Deployment Guide
s Oracle Database New Features

» Oracle Database Concepts

» Oracle Database Reference

» Oracle Database Extensions for NET Developer’s Guide

» Oracle Database Object-Relational Developer’s Guide

» Oracle Database SQL Language Reference

s Oracle Net Services Administrator’s Guide

» Oracle Net Services Reference Guide

» Oracle Call Interface Programmer’s Guide

» Oracle Services for Microsoft Transaction Server Developer’s Guide
» Oracle Database Globalization Support Guide

» Oracle XML DB Developer’s Guide

» Oracle XML Developer’s Kit Programmer’s Guide

» Oracle Database Security Guide
» Oracle Spatial Developer’s Guide

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/contact/welcome.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

For additional information, see:

http://msdn.microsoft.com/netframework

and

http://msdn.microsoft.com/library

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvii

xviii

What's New in Oracle Data Provider for

.NET?

This section describes new features in Oracle Data Provider for .NET 11¢ Release 1

(11.1) and provides references to additional information. New features information
from previous releases is also retained to help those users migrating to the current

release.

The following sections describe the new features in Oracle Data Provider for .NET:

New Features in Oracle Data Provider for .NET Release 11.1
New Features in Oracle Data Provider for .NET Release 10.2.0.3
New Features in Oracle Data Provider for .NET Release 10.2.0.2
New Features in Oracle Data Provider for .NET Release 10.2
New Features in Oracle Data Provider for .NET Release 10.1.0.3
New Features in Oracle Data Provider for .NET Release 10.1
New Features in Oracle Data Provider for .NET Release 9.2.0.4

New Features in Oracle Data Provider for .NET Release 11.1

Oracle Data Provider for .NET release 11.1 includes the following:

ODP.NET Configuration

Developers can now configure ODP.NET using configuration files, including
application config, web.config, or machine.config.

Settings in the machine . config override the registry settings and the settings in
the application config or the web . config override the values in the
machine.config.

See Also: "ODP.NET Configuration” on page 3-85

Performance Enhancements
The following performance enhancements have been made:
- Improved Parameter Context Caching

This release enhances the existing caching infrastructure to cache
ODP.NET parameter contexts. This enhancement is independent of data-
base version and it is available for all the supported database versions.

Xix

This feature provides significant performance improvement for the appli-
cations that execute the same statement repeatedly.

This enhancement is transparent to the developer. No code changes are
needed to use this feature.

— Efficient LOB Retrieval

This release improves the performance of small-sized LOB retrieval by
reducing the number of round-trips to the database. This enhancement is
available only with Oracle 11g release 1.0 or higher database versions.

This enhancement is transparent to the developer. No code changes are
needed to use this feature.

New Features in Oracle Data Provider for .NET Release 10.2.0.3
Oracle Data Provider for .NET release 10.2.0.3 includes the following:

64-bit ODP.NET for Windows x64 and Windows Itanium

ODP.NET natively supports the 64-bit .NET Framework for both 64-bit Windows
platforms:

- Windows x64 for AMD64 and Intel EM64T processors
— 64-bit Windows for Intel Itanium

64-bit systems allow for more scalable and better performing ODP.NET
applications.

Configuring FetchSize Through the Windows Registry

This feature enables applications to specify the default result set fetch size through
the registry.

Local Transaction Support for System. Transactions

This feature enables System. Transactions to use local transactions rather than
distributed transactions. This can be specified either through the registry or
through a connection string attribute.

See Also: "Local Transaction for System.Transactions Support" on
page 3-25

New Features in Oracle Data Provider for .NET Release 10.2.0.2
Oracle Data Provider for .NET release 10.2.0.2 includes the following:

XX

Support for Microsoft ADO.NET 2.0, including:
— Provider Factory Classes and Base Classes

Simplifies data access code to access multiple data sources with a provider
generic APL

— Connection String Builder
Makes creating connections strings less error-prone and easier to manage.
- Data Source Enumerator

Enables the application to generically obtain a collection of the Oracle data
sources that the application can connect to.

- Support for Schema Discovery

Permits application developers to find and return database schema
information, such as tables, columns, and stored procedures.

- System.Transactions Support

ODP.NET supports implicit and explicit transactions using the
System.Transactions namespace models.

- Batch Processing Support

Enables batch processing when the OracleDataAdapter.Update method is
called.

See Also: "ADO.NET 2.0 Features" on page 3-16

New Features in Oracle Data Provider for .NET Release 10.2
Oracle Data Provider for .NET release 10.2 includes the following:

Server-Side Features

Server-side features for Oracle Data Provider for .NET provide data access from
NET stored procedures. Such procedures are enabled by Oracle Database
Extensions for .NET, a new feature included with Oracle database on Windows.
See Also:
» Chapter 4, "Oracle Data Provider for .NET Server-Side Features"

» Oracle Database Extensions for .NET Developer’s Guide

Support for Client Identifier

Oracle Data Provider for .INET exposes the OracleConnection.ClientId
property, thus providing support for Oracle Virtual Private Database (VPD) and
application context. Client identifier makes configuring VPD simpler for the
developer.

See Also: "Client Identifier" on page 3-13

Connection Pool Optimizations for Real Application Clusters (RAC)

Oracle Data Provider for .NET optimizes connection pooling for Oracle RAC
databases by balancing work requests across Oracle RAC instances, based on the
load balancing advisory and service goal. Furthermore, the ODP.NET connection
pool can be enabled to proactively free resources associated with connections that
have been severed due to a down Oracle RAC service, instance, or node.

See Also: "Connecting in Real Application Clusters (RAC) Database"
on page 3-7
Database Change Notification Support

Oracle Data Provider for .NET provides a notification framework that supports
Continuous Query Notification. This enables applications to receive notifications
when there is a change in a query result set or a change in the state of the database.

XXi

See Also:
= "Database Change Notification Support" on page 3-67
s Chapter 8, "Database Change Notification"

Connection Pooling Management

Oracle Data Provider for .NET connection pool management provides explicit
connection pool control to ODP.NET applications. Applications can explicitly clear
connections in a connection pool or all the connection pools.

See Also: "Connection Pool Management" on page 3-6

Better LOB performance and functionality with Oracle Database 10g release 2
(10.2) and later

See Also: '"InitialLOBFetchSize" on page 5-18

Support for IN and IN/OUT REF CURSOR Objects

This feature enables applications to retrieve REF Cursors from a PL/SQL
procedure or function and pass them to another stored procedure or function.

See Also: "Passing a REF CURSOR to a Stored Procedure” on
page 3-50

New Features in Oracle Data Provider for .NET Release 10.1.0.3
Oracle Data Provider for .NET release 10.1.0.3 includes the following:

XXii

Statement Caching

This feature provides and manages a cache of statements for each session. The
developer can control which statements are cached and how many. This improves
performance and scalability.

See Also: "Statement Caching" on page 3-35

.NET Framework 1.1 Enhancements

These enhancements expose new ADO.NET functionality that was introduced in
Microsoft .NET Framework 1.1.

See Also:
= "EnlistDistributedTransaction" on page 5-92
= "HasRows" on page 5-144

Support for Command Cancellation

These two new features relate to command cancellation. The CommandTimeout
feature cancels the execution of a command when a specified amount of time
elapses after the execution, while the Cancel method can be called explicitly by
the application to terminate the execution of a command.

See Also:
s "CommandTimeout" on page 5-15

= "Cancel" on page 5-27

s DeriveParameters Method

This method populates the parameter collection for the OracleCommand that
represents a stored procedure or function by querying the database for the
parameter information.

See Also: '"DeriveParameters" on page 5-50

s LOB Retrieval Enhancement

Entire LOB column data can be retrieved even if the select list does not contain a
primary key, ROWID, or unique key. This enhancement is available by setting the
InitialLOBFetchSize property value to -1 for CLOB and BLOB objects.

See Also: "Setting InitialLOBFetchSize to -1" on page 3-45

m LONG Retrieval Enhancement

Entire LONG column data can be retrieved even if the select list does not contain a
primary key, ROWID, or unique key. This enhancement is available by setting the
InitialLONGFetchSize property value to -1.

See Also: "Setting Initia LONGFetchSize to -1" on page 3-43

New Features in Oracle Data Provider for .NET Release 10.1
Oracle Data Provider for .NET release 10.1 includes the following:
= Support for Oracle Grids

ODP.NET is grid-enabled, allowing developers to take advantage of Oracle
Database Grid support without having to make changes to their application code.

= Support for BINARY FLOAT and BINARY DOUBLE data types in the database

ODP.NET supports the new database native types BINARY FLOAT and BINARY
DOUBLE

See Also: "Data Types BINARY_FLOAT and BINARY_DOUBLE"
on page 3-25
= Support for Multiple Homes
ODP.NET can be installed in Multiple Oracle Homes.

In order to make multiple homes available, some of the ODP.NET files include a
version number, and the use of a HOMEID is required.

» Support for Schema-Based XMLType in the Database
ODP.NET supports the native schema-based XMLType.

xXiii

New Features in Oracle Data Provider for .NET Release 9.2.0.4

Oracle Data Provider for .NET release 9.2.0.4, which was released on Oracle
Technology Network (OTN), included the following;:

s XML Support in ODP.NET
With XML support, ODP.NET can now:

- Store XML data natively in the database as Oracle Database native type,
XMLType.

— Access relational and object-relational data as XML data from an Oracle
Database instance into a Microsoft .NET environment, process the XML using
the Microsoft .NET Framework.

- Save changes to the database using XML data.
See Also: "ODP.NET XML Support" on page 3-54

= Support for PL/SQL Associative Array Binding

ODP.NET supports PL/SQL Associative Array (formerly known as PL/SQL
Index-By Tables) binding.

An application can bind an OracleParameter, as a PL/SQL Associative Array,
to a PL/SQL stored procedure using OracleParameter properties.

See Also: "PL/SQL Associative Array Binding" on page 3-29

= Support for InitialLOBFetchSize property on OracleCommand and
OracleDataReader objects

See Also: "Obtaining LOB Data" on page 3-43

XXiv

1

Introducing Oracle Data Provider for .NET

This chapter introduces Oracle Data Provider for INET (ODP.NET), an implementation
of a .NET data provider for Oracle Database.

This chapter contains these topics:

s .NET Data Access in Oracle: Products and Documentation
s Overview of Oracle Data Provider for NET (ODP.NET)

s Oracle Data Provider for NET Assembly

s Using ODPNET Client Provider in a Simple Application

.NET Data Access in Oracle: Products and Documentation

This section discusses Oracle components and products that work together to provide
NET data access to Oracle Database, how they relate to each other, and what
documentation is provided.

These Oracle products provide .NET integration on the Windows operating system:

Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for .NET provides data access for client applications from within
Oracle database. ODP.NET data access is fast and includes access to Oracle advanced
features, such as Real Application Clusters (RAC) and XML DB.

Oracle Data Provider for NET Developer’s Guide describes Oracle Data Provider for NET
features, their use, installation, requirements, and classes. The guide distinguishes
which classes are supported in .NET stored procedures and which classes are
supported for .NET clients.

Additionally, Oracle Data Provider for NET Dynamic Help, which is context-sensitive
online help, contains the same reference sections available in Oracle Data Provider for
.NET Developer’s Guide, this guide. Oracle Data Provider for NET Dynamic Help is
integrated with Visual Studio Dynamic Help.

Oracle Developer Tools for Visual Studio .NET

Oracle Developer Tools is an add-in to Visual Studio that provides graphical user
interface (GUI) access to Oracle functionality. It provides improved developer
productivity and ease of use. Oracle Developer Tools provide the ability to build .NET
stored procedures using Visual Basic .NET, C#, and other .NET languages.

Oracle Developer Tools for Visual Studio .NET Help describes Oracle Developer Tools.
This help is in the form of dynamic help, which installs as part of the product.

Introducing Oracle Data Provider for NET 1-1

Overview of Oracle Data Provider for .NET (ODP.NET)

Additionally, the Oracle Developer Tools for Visual Studio .NET Help includes the
following documentation:

» Oracle Database PL/SQL User’s Guide and Reference

» Oracle Database SQL Language Reference

» Oracle Database Extensions for NET Developer’s Guide
» Oracle Database Error Messages

m Access to Oracle Data Provider for NET Dynamic Help

Oracle Database Extensions for .NET

Oracle Database Extensions for .NET provides the following;:

= Hosting of Microsoft Common Language Runtime (CLR) in an external process on
the server side, to execute .NET stored procedures.

s ODPNET data access on the server side, from within the .NET stored procedure.

Oracle Database Extensions for .NET features, their use, installation, and requirements
are described in Oracle Database Extensions for .NET Developer’s Guide.

Oracle Data Provider for NET Developer’s Guide describes all ODP.NET classes. Classes
that are not supported by Oracle Database Extensions for .NET are described as Not
Supported in a .NET Stored Procedure.

See Also:
= Oracle Developer Tools for Visual Studio .NET Help

» Oracle Database Extensions for NET Developer’s Guide for more
information about .NET stored procedures and functions

s "Oracle Data Provider for .NET Assembly" on page 1-3 for class
listings

s Chapter 4, "Oracle Data Provider for .NET Server-Side Features"

Overview of Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for .NET (ODP.NET) is an implementation of a .NET data
provider for Oracle Database, using and inheriting from classes and interfaces
available in the Microsoft NET Framework Class Library.

Following the .NET Framework, ODP.NET uses the ADO.NET model, which allows
native providers to expose provider-specific features and data types. This is similar to
Oracle Provider for OLE DB, where ADO (ActiveX Data Objects) provides an
automation layer that exposes an easy programming model. ADO.NET provides a
similar programming model, but without the automation layer, for better performance.

Oracle Data Provider for .NET uses Oracle native APIs to offer fast and reliable access
to Oracle data and features from any .NET application.

The ODP.NET classes described in this guide are contained in the
Oracle.DataAccess.dll assembly.

s Client Applications: All ODP.NET classes are available for use in client
applications.

s .NET Stored Procedures: Most ODP.NET classes can be used from within .NET
stored procedures and functions. Those classes which cannot, are labeled Not

1-2 Oracle Data Provider for .NET Developer's Guide

Oracle Data Provider for .NET Assembly

Supported in a .NET Stored Procedure. Additionally, some classes contain members
which may not be supported, and this is so indicated in the member tables that
follow the class descriptions, and listed in Chapter 4 of this guide.

See Also:

» Table 4-1, " API Support Comparison Between Client Application
and .NET Stored Procedure”

s "Oracle Data Provider for .NET Assembly" on page 1-3 for class
lists

s Chapter 4, "Oracle Data Provider for .NET Server-Side Features"

» Oracle Database Extensions for NET Developer’s Guide for more
information about .NET stored procedures and functions

Oracle Data Provider for .NET Assembly
The Oracle.DataAccess.dll assembly provides two namespaces:

s TheOracle.DataAccess.Client namespace contains ODP.NET classes and
enumerations for the client-side provider.

s TheOracle.DataAccess.Types namespace contains the Oracle Data Provider
for .NET data types (ODP.NET Types).

Oracle.DataAccess.Client Namespace

The Oracle.DataAccess.Client namespace contains implementations of core
ADO.NET classes and enumerations for ODP.NET, as well as ODP.NET specific
classes.

The following tables list ODP.NET classes, enumerations, and types that are supported
by the Oracle.DataAccess.Client namespace. The tables also indicated which
classes are not supported in .NET stored procedures.

Oracle.DataAccess.Client
Table 1-1 lists the client classes.

Table 1-1 Oracle.DataAccess.Client

Class Description

OnChangeEventHandler Delegate The OnChangedEventHandler event delegate
represents the signature of the method that
handles the notification.

Not Supported in a .NET Stored Procedure

OracleClientFactory Class An OracleClientFactory object allows
applications to instantiate ODP.NET classes in a
generic way.

OracleCommand Class An OracleCommand object represents a SQL
command, a stored procedure or function, or a
table name.

OracleCommandBuilder Class An OracleCommandBuilder object provides

automatic SQL generation for the
OracleDataAdapter when the database is
updated.

Introducing Oracle Data Provider for NET 1-3

Oracle Data Provider for .NET Assembly

Table 1-1 (Cont.) Oracle.DataAccess.Client

Class

Description

OracleConnection Class

OracleConnectionStringBuilder Class

OracleDataAdapter Class

OracleDataReader Class

OracleDataSourceEnumerator Class

OracleDependency Class

OracleError Class
OracleErrorCollection Class

OracleException Class

OracleFailoverEventArgs Class

OracleFailoverEventHandler Delegate

OracleGlobalization Class

OracleInfoMessageEventArgs Class

OracleInfoMessageEventHandler Delegate

OracleNotificationEventArgs Class

OracleNotificationRequest Class

1-4 Oracle Data Provider for .NET Developer's Guide

An OracleConnection object represents a
connection to Oracle Database.

An OracleConnectionStringBuilder
object allows applications to create or modify
connection strings.

An OracleDataAdapter object represents a
data provider object that communicates with
the Dataset.

An OracleDataReader object represents a
forward-only, read-only, in-memory result set.

An OracleDataSourceEnumerator object
allows applications to generically obtain a
collection of data sources to connect to.

An OracleDependency class represents a
dependency between an application and an
Oracle database.

Not Supported in a .NET Stored Procedure

The OracleError object represents an error
reported by an Oracle database.

An OracleErrorCollection object
represents a collection of OracleErrors.

The OracleException object represents an
exception that is thrown when Oracle Data
Provider for NET encounters an error.

The OracleFailoverEventArgs class
provides event data for the
OracleConnection.Failover event.

Not Supported in a .NET Stored Procedure

The OracleFailoverEventHandler
represents the signature of the method that
handles the OracleConnection.Failover
event.

Not Supported in a .NET Stored Procedure

The OracleGlobalization class is used to
obtain and set the Oracle globalization settings
of the session, thread, and local computer
(read-only).

The OracleInfoMessageEventArgs object
provides event data for the
OracleConnection.InfoMessage event.

The OracleInfoMessageEventHandler
delegate represents the signature of the method
that handles the
OracleConnection.InfoMessage event.

The OracleNotificationEventArgs class
provides event data for a notification.

An OracleNotificationRequest class
represents a notification request to be
subscribed in the database.

Not Supported in a .NET Stored Procedure

Oracle Data Provider for .NET Assembly

Table 1-1 (Cont.) Oracle.DataAccess.Client

Class

Description

OracleParameter Class
OracleParameterCollection Class

OracleRowUpdatedEventArgs Class

OracleRowUpdatedEventHandler Delegate

OracleRowUpdatingEventArgs Class

OracleRowUpdatingEventHandler Delegate

OracleTransaction Class

OracleXmlQueryProperties Class

OracleXmlSaveProperties Class

An OracleParameter object represents a
parameter for an OracleCommand.

An OracleParameterCollection object
represents a collection of OracleParameters.

The OracleRowUpdatedEventArgs object
provides event data for the
OracleDataAdapter.RowUpdated event.

The OracleRowUpdatedEventHandler
delegate represents the signature of the method
that handles the
OracleDataAdapter.RowUpdated event.

The OracleRowUpdatingEventArgs object
provides event data for the
OracleDataAdapter.RowUpdating event.

The OracleRowUpdatingEventHandler
delegate represents the signature of the method
that handles the
OracleDataAdapter.RowUpdating event.

An OracleTransaction object represents a
local transaction.

Not Supported in a .NET Stored Procedure

An OracleXmlQueryProperties object
represents the XML properties used by the
OracleCommand class when the
XmlCommandType property is Query.

An OraclexmlSaveProperties object
represents the XML properties used by the
OracleCommand class when the
XmlCommandType property is Insert,
Update, or Delete.

Oracle.DataAccess.Client Enumerations

Table 1-2 lists the client enumerations.

Table 1-2 Oracle.DataAccess.Client Enumerations

Enumeration

Description

FailoverEvent Enumeration

FailoverReturnCode Enumeration

FailoverType Enumeration

FailoverEvent enumerated values are used
to specify the state of the failover.

Not Supported in a .NET Stored Procedure

FailoverReturnCode enumerated values are
passed back by the application to the ODPNET
provider to request a retry in case of a failover
error, or to continue in case of a successful
failover.

Not Supported in a .NET Stored Procedure

FailoverType enumerated values are used to
indicate the type of failover event that was
raised.

Not Supported in a .NET Stored Procedure

Introducing Oracle Data Provider for NET 1-5

Oracle Data Provider for .NET Assembly

Table 1-2 (Cont.) Oracle.DataAccess.Client Enumerations

Enumeration

Description

OracleCollectionType Enumeration

OracleDbType Enumeration

OracleNotificationInfo Enumeration

OracleNotificationSource Enumeration

OracleNotificationType Enumeration

OracleParameterStatus Enumeration

OracleXmlCommandType Enumeration

OracleCollectionType enumerated values

specify whether or not the OracleParameter

object represents a collection, and if so, specifies
the collection type.

Not Supported in a .NET Stored Procedure

OracleDbType enumerated values are used to
explicitly specify the OracleDbType of an
OracleParameter.

OracleNotificationInfo enumerated
values specify the database event that causes
the notification.

Not Supported in a .NET Stored Procedure

OracleNotificationSource enumerated
values specify the different sources that cause
notification.

Not Supported in a .NET Stored Procedure

OracleNotificationType enumerated
values specify the different types that cause the
notification.

Not Supported in a .NET Stored Procedure

The OracleParameterStatus enumeration
type indicates whether a NULL value is fetched
from a column, or truncation has occurred
during the fetch, or a NULL value is to be
inserted into a database column.

The OracleXmlCommandType enumeration
specifies the values that are allowed for the
OracleXmlCommandType property of the
OracleCommand class.

Oracle.DataAccess.Types Namespace

The Oracle.DataAccess. Types namespace provides classes, structures, and
exceptions for Oracle native types that can be used with Oracle Data Provider for

.NET.

Oracle.DataAccess.Types Structures

Table 1-3 lists the type structures.

Table 1-3 Oracle.DataAccess.Types Structures

Structure Description

OracleBinary Structure The OracleBinary structure represents a variable-length
stream of binary data.

OracleDate Structure The OracleDate structure represents the Oracle DATE data
type.

OracleDecimal Structure The OracleDecimal structure represents an Oracle

NUMBER in the database or any Oracle numeric value.

OracleIntervalDS Structure The OracleIntervalDS structure represents the Oracle
INTERVAL DAY TO SECOND data type.

1-6 Oracle Data Provider for .NET Developer's Guide

Oracle Data Provider for .NET Assembly

Table 1-3 (Cont.) Oracle.DataAccess.Types Structures

Structure

Description

Oraclelnterval YM Structure
OracleString Structure
OracleTimeStamp Structure
OracleTimeStampLTZ Structure

OracleTimeStampTZ Structure

The OracleInterval¥YM structure represents the Oracle
INTERVAL YEAR TO MONTH data type.

The OracleString structure represents a variable-length
stream of characters.

The OracleTimeStamp structure represents the Oracle
TimeStamp data type.

The OracleTimeStampLTZ structure represents the Oracle
TIMESTAMP WITH LOCAL TIME ZONE data type.

The OracleTimeStampTZ structure represents the Oracle
TIMESTAMP WITH TIME ZONE data type.

Oracle.DataAccess.Types Exceptions
Type Exceptions are thrown only by ODP.NET type structures. Table 14 lists the type

exceptions.

Table 1-4 Oracle.DataAccess.Types Exceptions

Exception

Description

OracleTypeException Class

OracleNullValueException Class

OracleTruncateException Class

The OracleTypeException object is the base exception
class for handling exceptions that occur in the ODP.NET
Types classes.

The OracleNullValueException represents an
exception that is thrown when trying to access an ODP.NET
Types structure that is null.

The OracleTruncateException class represents an
exception that is thrown when truncation in an ODP.NET
Types class occurs.

Oracle.DataAccess.Types Classes

Table 1-5 lists the type classes.

Table 1-5 Oracle.DataAccess.Types Classes

Class Description

OracleBFile Class An OracleBFile is an object that has a reference to BFILE
data. It provides methods for performing operations on
BFILE objects.

OracleBlob Class An OracleBlob object is an object that has a reference to
BLOB data. It provides methods for performing operations
on BLOB objects.

OracleClob Class An OracleClob is an object that has a reference to CLOB

OracleRefCursor Class

OracleXmlStream Class

OracleXmlType Class

data. It provides methods for performing operations on
CLOB objects.

An OracleRefCursor object represents an Oracle REF
CURSOR.

An OracleXxmlStream object represents a sequential
read-only stream of XML data stored in an
OracleXmlType object.

An OracleXmlType object represents an Oracle Xm1Type
instance.

Introducing Oracle Data Provider for NET 1-7

Using ODP.NET Client Provider in a Simple Application

Using ODP.NET Client Provider in a Simple Application

The following is a simple C# application that connects to Oracle Database and displays
its version number before disconnecting:

/] c#

using System;
using Oracle.DataAccess.Client;

class Sample

{

static void Main()

{

// Connect to Oracle

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open () ;

// Display Version Number
Console.WriteLine ("Connected to Oracle " + con.ServerVersion) ;

// Close and Dispose OracleConnection
con.Close() ;
con.Dispose() ;

Note: Additional samples are provided in the ORACLE
BASE\ORACLE HOME\ODP.NET\Samples directory.

1-8 Oracle Data Provider for .NET Developer's Guide

2

Installing and Configuring
Oracle Data Provider for .NET

This chapter describes installation and configuration requirements for Oracle Data
Provider for .NET.

This chapter contains these topics:

System Requirements
Oracle Data Provider for .NET Versioning Scheme
Installing Oracle Data Provider for .NET

File Locations After Installation

System Requirements
Oracle Data Provider for .NET requires the following:

Windows operating system

- 32-bit: Windows Vista (Business, Enterprise, and Ultimate Editions), Windows
Server 2003, Windows Server 2003 R2, Windows 2000 or Windows XP
Professional Edition.

Oracle supports 32-bit ODP.NET on x86, AMD64, and Intel EM64T processors
on these operating systems.

- 64 bit: Windows Vista x64 (Business, Enterprise, and Ultimate Editions),
Windows Server 2003 x64, Windows Server 2003 R2 x64, or Windows XP x64.

Oracle supports 32-bit ODP.NET and 64-bit ODP.NET for Windows x64 on
these operating systems.

- 64-bit: Windows Server 2003 for Itanium-based systems.

Oracle supports 64-bit ODP.NET for Itanium on this operating system.
Microsoft NET Framework 1.0 or later.
For .NET Framework 2.0-specific features, ODP.NET 10.2.0.2.20 or later is required

64-bit Windows platforms support only 64-bit .NET Framework for version 2.0
and higher. Thus, 64-bit ODP.NET only supports 64-bit .NET Framework 2.0 or
higher. The first 64-bit ODP.NET version is 10.2.0.3.02 on both Windows x64 and
Itanium.

Access to Oracle9i Database Release 2 or later.

Installing and Configuring Oracle Data Provider for NET 2-1

Oracle Data Provider for .NET Versioning Scheme

» Oracle Client release 11.1 and Oracle Net Services (included with ODP.NET
Software).

Additional requirements are the following:

= Beginning with ODP.NET 10.2.0.2, two versions of the provider are available:
- ODPNET for .NET Framework 1.x
- ODPNET for .NET Framework 2.0 and 3.0

ODPNET for .NET Framework 2.0 and 3.0 supports ADO.NET 1.x and higher
features.

ODPNET for .NET Framework 2.0 supports both ADO.NET 1.x and ADO.NET 2.0
features. The API section of this guide indicates the NET Framework requirement
for each class, method, and property, in the class requirement sections and in the
declarations.

= Applications using Microsoft Enterprise Services transactions require Oracle
Services for Microsoft Transaction Server release 11.1.

= Applications using OracleXmlStreamand OracleXmlType classes with
schema-based XMLType require access to Oracle Database 10g release 1 (10.1) or
later.

See Also:
m http://msdn.microsoft.com/netframework

m http://otn.oracle.com/tech/xml/xdkhome.html to
download the Oracle XML Developer's Kit (XDK)

Oracle Data Provider for .NET Versioning Scheme

Starting with 10.2.0.2, Oracle Data Provider for .NET ships with two sets of binaries:
one set for NET Framework 1.x and another for .NET Framework 2.0 and higher.

For example, ODP.NET 11.1.0.6 binaries would be the following:
s ODPNET for .NET Framework 1.x-
— Oracle.DataAccess.dll
* Built with .NET Framework 1.0
* Assembly version number: 1.x.x.x
— OraOpsll.dll
* Used by ODP.NET for .NET Framework 1.x
* DLL version number: 1.x.x.x
= ODPNET for .NET Framework 2.0
— Oracle.DataAccess.dll
* Built with .NET Framework 2.0
* Assembly version number: 2.x.x.x
— OraOpsllw.dll
* Used by ODP.NET for .NET Framework 2.0

* DLL version number: 2.x.x.x

2-2 Oracle Data Provider for .NET Developer’s Guide

File Locations After Installation

The convention for ODP.NET assembly/DLL versioning is

nl.0102.0304.05

where:

s 1l is the most significant NET Framework version number.

= 0lo2 are the first two digits of the ODP.NET product version number.

= 0304 are the third and forth digits of the ODP.NET product version number.
= 05 is the fifth and last digit of the ODP.NET product version number.

For example, if the ODP.NET product version number is 11.1.0.6.0, the corresponding
ODP.NET assembly versions are:

s .NET Framework 1.x version: 1.111.6.0
s .NET Framework 2.0 version: 2.111.6.0

Note that the Oracle installer and documentation still refer to the ODP.NET product
version number and not the assembly /DLL version number.

As with the .NET Framework system libraries, the first digit of the assembly version
number indicates the version of the INET Framework to use with an ODP.NET
assembly.

Publisher Policy DLL is provided as before so that applications built with older
version of ODP.NET are redirected to the newer ODP.NET assembly, even though the
versioning scheme has changed.

Installing Oracle Data Provider for .NET

When you install Oracle Data Provider for .NET, Oracle Universal Installer
automatically registers ODP.NET with the Global Assembly Cache (GAC).

Additionally, Oracle Data Provider for NET Dynamic Help is registered with Visual
Studio .NET, providing context-sensitive online help that is seamlessly integrated with
Visual Studio Dynamic Help. With Dynamic Help, the user can access ODP.NET
documentation within the Visual Studio IDE by placing the cursor on an ODP.NET
keyword and pressing the F1 function key.

Oracle Data Provider for .NET creates an entry in the machine. config file of the
computer on which it is installed, for applications using ADO.NET 2.0 and
OracleClientFactory class. This enables the DbProviderFactories class to
recognize ODP.NET.

See Also: Oracle Database Installation Guide for Windows for
installation instructions

File Locations After Installation

The Oracle.DataAccess.dll assembly is installed as follows:
s NET Framework 1.x

ORACLE BASE\ORACLE HOME\odp.net\bin\1.x directory
s NET Framework 2.0

ORACLE BASE\ORACLE HOME\odp.net\bin\2.x directory

Installing and Configuring Oracle Data Provider for NET 2-3

File Locations After Installation

Documentation and the readme . txt file are installed in the ORACLE BASE\ORACLE
HOME\ODP .NET\doc directory.

Samples are provided in the ORACLE BASE\ORACLE HOME\ODP.NET\Samples
directory.

Windows Registry

Upon installation, ODP.NET creates entries for configuration and tracing within the
Windows Registry. Configuration and tracing registry values apply across all
ODPNET applications running in that Oracle client installation. Individual ODP.NET
applications can override some of these values by configuring them within the
ODP.NET application itself (for example, FetchSize). The ODP.NET registry values
are located under: HKLM\ Software\Oracle\ODP.NET\version\.

There is one key for .NET Framework 1.x and one key for .NET Framework 2.0 and
higher.

Search Order for Unmanaged DLLs

The D11Path registry value is used to indicate the directory that contains dependent
unmanaged DLLs.

The Oracle.DataAccess.dl1l searches for dependent unmanaged DLLs (such as
Oracle Client) in the following order:

1. Directory of the application/executable.
2. Directory specified by:

HKEY LOCAL MACHINE\Software\Oracle\ODP.NET\version\DllPath
3. Directories specified by the PATH environment variable.

Upon installation of ODP.NET, the D11Path registry value of type REG_SZ is set to
the ORACLE BASE\ORACLE HOME\bin directory where the corresponding
dependent DLLs are installed.

ODP.NET and Dependent Unmanaged DLL Mismatch

To enforce the usage of Oracle.DataAccess.dll assembly with the correct version
of its unmanaged DLLs, an exception is raised if Oracle.DataAccess.dl1 notices it
has loaded a mismatched version of a dependent unmanaged DLL.

2-4 Oracle Data Provider for .NET Developer’s Guide

3

Features of Oracle Data Provider for .NET

This chapter describes Oracle Data Provider for NET provider-specific features and
how to use them to develop .NET applications.

This chapter contains these topics:

= Connecting to Oracle Database

= ADO.NET 2.0 Features

s OracleCommand Object

= ODPNET Types Overview

= Obtaining Data from an OracleDataReader Object
s PL/SQL REF CURSOR and OracleRefCursor

= LOB Support

= ODPNET XML Support

= Database Change Notification Support

s OracleDataAdapter Safe Type Mapping

s OracleDataAdapter Requery Property

= Guaranteeing Uniqueness in Updating DataSet to Database
= Globalization Support

s Debug Tracing

= ODPNET Configuration

Connecting to Oracle Database
This section describes OracleConnect ion provider-specific features, including:
= Connection String Attributes
= Connection Pooling
s Connection Pool Management
s Connecting in Real Application Clusters (RAC) Database
s Operating System Authentication
= Privileged Connections

= Password Expiration

Features of Oracle Data Provider for NET 3-1

Connecting to Oracle Database

= Proxy Authentication

s Dynamic Distributed Transaction Enlistment

s Client Identifier

s Transparent Application Failover (TAF) Callback Support

Connection String Attributes

Table 3-1 lists the supported connection string attributes.

Table 3—1

Supported Connection String Attributes

Connection String Attribute

Description

Default Value

Connection Lifetime

Connection Timeout

Context Connection

Data Source

DBA Privilege

Decr Pool Size

Enlist

HA Events

Load Balancing

Incr Pool Size

Max Pool Size

Metadata Pooling

Min Pool Size

Password

3-2 Oracle Data Provider for .NET Developer’s Guide

Maximum life time (in seconds) of the
connection.

Maximum time (in seconds) to wait for a
free connection from the pool.

Returns an implicit database connection
if set to true.

Supported in a NET stored procedure only

Oracle Net Services Name, Connect
Descriptor, or an easy connect naming
that identifies the database to which to
connect.

Administrative privileges: SYSDBA or
SYSOPER.

Number of connections that are closed
when an excessive amount of
established connections are unused.

Controls the enlistment behavior and
capabilities of a connection in context of
COM+ transactions or
System.Transactions.

Enables ODP.NET connection pool to
proactively remove connections from
the pool when an Oracle RAC service,
service member, or node goes down.
Works with RAC, Data Guard, or a
single database instance.

Enables ODP.NET connection pool to
balance work requests across Oracle
RAC instances based on the load
balancing advisory and service goal.

Number of new connections to be
created when all connections in the pool
are in use.

Maximum number of connections in a
pool.

Caches metadata information.

Minimum number of connections in a
pool.

Password for the user specified by User
Id.

0

15

false

empty string

empty string

true

false

false

100

True

empty string

Connecting to Oracle Database

Table 3-1 (Cont.) Supported Connection String Attributes

Connection String Attribute Description Default Value
Persist Security Info Retrieval of the password in the false
connection string.
Pooling Connection pooling. true
Promotable Transaction Indicates whether or not a transaction is promotable
local or distributed throughout its
lifetime.
Proxy User Id User name of the proxy user. empty string
Proxy Password Password of the proxy user. empty string
Statement Cache Purge Statement cache purged when the false

connection goes back to the pool.

Statement Cache Size Statement cache enabled and cache size, 10
that is, the maximum number of
statements that can be cached.

User Id Oracle user name. empty string
Validate Connection Validation of connections coming from false
the pool.

The following example uses connection string attributes to connect to Oracle Database:

/] C#

using System;
using Oracle.DataAccess.Client;

class ConnectionSample

{

static void Main()

{

OracleConnection con = new OracleConnection() ;

//using connection string attributes to connect to Oracle Database
con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle";
con.Open () ;

Console.WriteLine ("Connected to Oracle" + con.ServerVersion) ;

// Close and Dispose OracleConnection object
con.Close() ;

con.Dispose() ;

Console.WriteLine ("Disconnected") ;

See Also:

= "OracleConnection Properties" on page 5-77 for detailed
information on connection attributes

s "OracleCommand Object" on page 3-24 for detailed information
on statement caching

Features of Oracle Data Provider for NET 3-3

Connecting to Oracle Database

Specifying the Data Source Attribute

This section describes different ways of specifying the data source attribute.

The following example shows a connect descriptor mapped to a TNS alias called
sales in the tnsnames. ora file:

sales=
(DESCRIPTION=
(ADDRESS= (PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
(CONNECT_DATA=
(SERVICE NAME=sales.us.acme.com)))

Using the TNS Alias

To connect as scott/tiger using the TNS Alias, a valid connection appears as
follows:

"user id=scott;password=tiger;data source=sales";

Using the Connect Descriptor

ODPNET also allows applications to connect without the use of the tnsnames.ora
file. To do so, the entire connect descriptor can be used as the "data source".

The connection string appears as follows:

"user id=scott;password=tiger;data source=" +
" (DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) " +
" (HOST=sales-server) (PORT=1521)) (CONNECT DATA="+
" (SERVICE NAME=sales.us.acme.com)))"

Using Easy Connect Naming Method

The easy connect naming method enables clients to connect to a database without any
configuration.

Prior to using the easy connect naming method, make sure that EZCONNECT is
specified by the NAMES . DIRECTORY_PATH parameter in the sqlnet .ora file as
follows:

NAMES.DIRECTORY PATH= (TNSNAMES, EZCONNECT)
With this enabled, ODP.NET allows applications to specify the "Data Source"
attribute in the form of:

//host: [port] / [service name]

Using the same example, some valid connection strings follow:

"user id=scott;password=tiger;data source=//sales-server:1521/sales.us.acme.com"
"user id=scott;password=tiger;data source=//sales-server/sales.us.acme.com"
"user id=scott;password=tiger;data source=sales-server/sales.us.acme.com"

If the port number is not specified, 1521 is used by default.

See Also: Oracle Net Services Administrator’s Guide for details and
requirements in the section Using Easy Connect Naming Method

3-4 Oracle Data Provider for .NET Developer’s Guide

Connecting to Oracle Database

Connection Pooling

ODP.NET connection pooling is enabled and disabled using the Pooling connection
string attribute. By default, connection pooling is enabled. The following are

ConnectionString attributes that control the behavior of the connection pooling

service:

Connection Lifetime
Connection Timeout
Decr Pool Size

HA Events

Incr Pool Size

Load Balancing

Max Pool Size

Min Pool Size
Pooling

Validate Connection

Connection Pooling Example

The following example opens a connection using ConnectionString attributes
related to connection pooling.

/] C#

using System;
using Oracle.DataAccess.Client;

class ConnectionPoolingSample

{

static void Main()

OracleConnection con = new OracleConnection() ;

//Open a connection using ConnectionString attributes

//related to connection pooling.

con.ConnectionString =
"User Id=scott;Password=tiger;Data Source=oracle;" +
"Min Pool Size=10;Connection Lifetime=120;Connection Timeout=60;" +
"Incr Pool Size=5; Decr Pool Size=2";

con.Open () ;

Console.WriteLine ("Connection pool successfully created");

// Close and Dispose OracleConnection object

con.Close() ;

con.Dispose() ;

Console.WriteLine ("Connection is placed back into the pool.");

Features of Oracle Data Provider for NET

Connecting to Oracle Database

Using Connection Pooling

When connection pooling is enabled (the default), the Open and Close methods of the
OracleConnection object implicitly use the connection pooling service, which is
responsible for pooling and returning connections to the application.

The connection pooling service creates connection pools by using the
ConnectionString property as a signature, to uniquely identify a pool.

If there is no existing pool with the exact attribute values as the ConnectionString
property, the connection pooling service creates a new connection pool. If a pool
already exists with the requested signature, a connection is returned to the application
from that pool.

When a connection pool is created, the connection pooling service initially creates the
number of connections defined by the Min Pool Size attribute of the
ConnectionString property. This number of connections is always maintained by
the connection pooling service for the connection pool.

At any given time, these connections are in use by the application or are available in
the pool.

The Incr Pool Size attribute of the ConnectionString property defines the
number of new connections to be created by the connection pooling service when
more connections are needed in the connection pool.

When the application closes a connection, the connection pooling service determines
whether or not the connection lifetime has exceeded the value of the Connection
Lifetime attribute. If so, the connection pooling service closes the connection;
otherwise, the connection goes back to the connection pool. The connection pooling
service enforces the Connection Lifetime only when a connection is going back to
the connection pool.

The Max Pool Size attribute of the ConnectionString property sets the maximum
number of connections for a connection pool. If a new connection is requested, but no
connections are available and the limit for Max Pool Size has been reached, then the
connection pooling service waits for the time defined by the Connection Timeout
attribute. If the Connection Timeout time has been reached, and there are still no
connections available in the pool, the connection pooling service raises an exception
indicating that the connection pool request has timed-out.

The Validate Connection attribute validates connections coming out of the pool.
This attribute should be used only when absolutely necessary, because it causes a
round-trip to the database to validate each connection immediately before it is
provided to the application. If invalid connections are uncommon, developers can
create their own event handler to retrieve and validate a new connection, rather than
using the Validate Connection attribute. This generally provides better
performance.

The connection pooling service closes connections when they are not used;
connections are closed every 3 minutes. The Decr Pool Size attribute of the
ConnectionString property provides connection pooling service for the maximum
number of connections that can be closed every 3 minutes.

Connection Pool Management

ODPNET connection pool management provides explicit connection pool control to
ODP.NET applications. Applications can explicitly clear connections in a connection
pool.

Using connection pool management, applications can do the following:

3-6 Oracle Data Provider for .NET Developer’s Guide

Connecting to Oracle Database

Note: These APIs are not supported in a .NET stored procedure.

» Clear connections from connection pools using the ClearPool method.

= Clear connections in all the connection pools in an application domain, using the
ClearAllPools method.

When connections are cleared from a pool, ODP.NET repopulates the pool with new
connections that have at least the number of connections set by Min Pool Size in the
connection string. New connections do not necessarily mean the pool will have valid
connections. For example, if the database server is down when ClearPool or
ClearAllPools is called, ODP.NET creates new connections, but these connections
are still invalid because they cannot connect to the database, even if the database
comes up a later time.

It is recommended that ClearPool and ClearAllPools not be called until the
application can create valid connections back to the database. .NET developers can
develop code that continuously checks whether or not a valid database connection can
be created and calls ClearPool or ClearAllPools once this is true.

See Also:
s "ClearPool" on page 5-74
s "ClearAllPools" on page 5-75

Connecting in Real Application Clusters (RAC) Database

This section discusses optimization and other aspects of connection and connection
pooling for a Real Application Clusters (RAC) database. Oracle RAC is the technology
that makes grids possible for Oracle database by providing the ability to access the
database from multiple instances, each running on nodes in a cluster.

Connection Optimizations for Oracle RAC

Oracle Data Provider for .NET optimizes connection and connection pooling for
Oracle RAC database by balancing work requests across Oracle RAC instances, based
on the load balancing advisory and service goal. Furthermore, the ODP.NET
connection pool can be enabled to proactively free resources associated with
connections that have been severed due to a down Oracle RAC service, service
member, or node.

Oracle Data Provider for .NET uses the following features to optimize connection and
connection pooling for Oracle RAC:

= Runtime Connection Load Balancing
When Runtime Connection Load Balancing is enabled:

— The ODP.NET connection pool dispenses connections based on the load
balancing advisory and service goal.

— The ODP.NET connection pool also balances the number of connections to
each service member providing the service, based on the load balancing
advisory and service goal.

By default, this feature is disabled. To enable runtime connection load balancing,
include "Load Balancing=true" in the connection string.

Features of Oracle Data Provider for NET 3-7

Connecting to Oracle Database

This feature can only be used with an Oracle RAC database and only if
"pooling=true".If "Load Balancing=true" is set and the connection
attempts to connect to a non-RAC database, an OracleException is thrown
with an error of "ORA-1031: insufficient privileges."

In order to use Runtime Connection Load Balancing, specific RAC configurations
must be set. For further information, see Oracle Database Oracle Real Application
Clusters Administration and Deployment Guide. Oracle Net Services should also be
configured for load balancing. See Oracle Net Services Administrator’s Guide for
further details.

The following connection string example enables Runtime Connection Load
Balancing:

"user id=scott;password=tiger;data source=erp;load balancing=true;"

See Also:
= "Supported Connection String Attributes" on page 5-79

» Oracle Database Oracle Real Application Clusters Administration and
Deployment Guide

= HA Events
When HA events is enabled:

= ODP.NET connection pool proactively removes connections from the pool
when an Oracle service, service member, or node goes down.

= ODPNET establishes connections to existing Oracle RAC instances if the
removal of severed connections bring the total number of connections below
the "min pool size".

By default this feature is disabled. To enable HA events, include "HA
Events=true" in the connection string. This feature can only be used against a
RAC database and only if "pooling=true".If the connection is established to a
non-RAC database, the HA events setting is ignored and no error is returned.

Note:

The database service being connected to must be configured for AQ
HA NOTIFICATIONS. For more details, see Oracle Database Oracle Real
Application Clusters Administration and Deployment Guide

The following connection string example enables HA Events:

"user id=scott;password=tiger;data source=erp;HA events=true;"

See Also:
= "Supported Connection String Attributes" on page 5-79

» Oracle Database Oracle Real Application Clusters Administration and
Deployment Guide

3-8 Oracle Data Provider for .NET Developer’s Guide

Connecting to Oracle Database

Pool Size Attributes in an Oracle RAC Database

When connection pools are created for a non-RAC database, pool size attributes are
applied to the single service. Similarly, when connection pools are created for an
Oracle RAC database, the pool size attributes are applied to a service and not to
service members. For example, if "Min Pool Size" is set to N, ODP.NET does not
create N connections for each service member. Instead, it creates, at minimum, N
connections for the entire service, where N connections are distributed among the
service members.

The following pool size connection string attributes are applied to a service.
m Min Pool Size

m Max Pool Size

s Incr Pool Size

m Decr Pool Size

Operating System Authentication

Oracle Database can use Windows user login credentials to authenticate database
users. To open a connection using Windows user login credentials, the User Id
ConnectionString attribute must be set to a slash (/) . If the Password attribute is
provided, it is ignored.

Note: Operating System Authentication is not supported in a
.NET stored procedure.

The following example shows the use of operating system authentication:

/* Create an OS-authenticated user in the database
Assume init.ora has OS_AUTHENT PREFIX set to "" and <OS_USER>
is any valid OS or DOMAIN user.

create user <OS_USER> identified externally;
grant connect, resource to <OS_USER>;

Login through OS Authentication and execute the sample. See Oracle
documentation for details on how to configure an 0S-Authenticated user

*/
/] C#

using System;
using Oracle.DataAccess.Client;

class OSAuthenticationSample

{

static void Main()

{

OracleConnection con = new OracleConnection();
//Establish connection using OS Authentication
con.ConnectionString = "User Id=/;Data Source=oracle;";
con.Open() ;

Console.WriteLine ("Connected to Oracle" + con.ServerVersion) ;

// Close and Dispose OracleConnection object

Features of Oracle Data Provider for NET 3-9

Connecting to Oracle Database

con.Close() ;
con.Dispose() ;
Console.WriteLine ("Disconnected") ;

}
}

See Also: Oracle Database Platform Guide for Windows for
information on how to set up Oracle Database to authenticate
database users using Windows user login credentials

Privileged Connections

Oracle allows database administrators to connect to Oracle Database with either
SYSDBA or SYSOPER privileges. This is done through the DBA Privilege attribute of
the ConnectionString property.

The following example connects scott/tiger as SYSDBA:
/] CH#

using System;
using Oracle.DataAccess.Client;

class PrivilegedConnectionSample

{

static void Main()

{

OracleConnection con = new OracleConnection() ;

//Connect scott/tiger as SYSDBA

con.ConnectionString = "User Id=scott;Password=tiger;" +
"DBA Privilege=SYSDBA;Data Source=oracle;";
con.Open() ;

Console.WriteLine ("Connected to Oracle" + con.ServerVersion) ;

// Close and Dispose OracleConnection object
con.Close() ;

con.Dispose () ;

Console.WriteLine ("Disconnected") ;

See Also: DBA Privilege " Supported Connection String
Attributes" on page 5-79 for further information on privileged
connections in the database

Password Expiration

Oracle allows users passwords to expire. ODP.NET lets applications handle the
password expiration by providing a new method, OpenWithNewPassword, that
opens the connection with a new password.

The following example uses the OracleConnection OpenWithNewPassword
method to connect with a new password of panther:

/* Database Setup

connect / as sysdba;

drop user testexpire cascade;

-- create user "testexpire" with password "testexpire"

grant connect , resource to testexpire identified by testexpire;

3-10 Oracle Data Provider for .NET Developer’s Guide

Connecting to Oracle Database

alter user testexpire password expire;

*/

/] C#

using System;
using Oracle.DataAccess.Client;

class PasswordExpirationSample

{

static void Main()

{

OracleConnection con = new OracleConnection() ;

try
con.ConnectionString =
"User Id=testexpire;Password=testexpire;Data Source=oracle";
con.Open() ;
Console.WriteLine ("Connected to Oracle" + con.ServerVersion);

}

catch (OracleException ex)

{

Console.WriteLine (ex.Message) ;

//check the error number

//ORA-28001 : the password has expired

if (ex.Number == 28001)

{
Console.WriteLine ("\nChanging password to panther");
con.OpenWithNewPassword ("panther") ;
Console.WriteLine ("Connected with new password.");

}
}
finally
{
// Close and Dispose OracleConnection object
con.Close() ;
con.Dispose() ;
Console.WriteLine ("Disconnected") ;

Note: The OpenWithNewPassword method should be used only
when the user password has expired, not for changing the
password.

See Also: "OpenWithNewPassword" on page 5-103

Proxy Authentication

With proper setup in the database, proxy authentication enables middle-tier
applications to control the security by preserving database user identities and
privileges, and auditing actions taken on behalf of these users. This is accomplished by

Features of Oracle Data Provider for NET 3-11

Connecting to Oracle Database

creating and using a proxy database user that connects and authenticates against the
database on behalf of a database user (that is, the real user) or database users.

Proxy authentication can then be used to provide better scalability with connection
pooling. When connection pooling is used in conjunction with proxy authentication,
the proxy authenticated connections can be shared among different real users. This is
because only the connection and session established for the proxy is cached. An
additional session is created for the real user when a proxy authenticated connection is
requested, but it will be destroyed appropriately when the proxy authenticated
connection is placed back into the pool. This design enables the application to scale
well without sacrificing security.

ODPNET applications can use proxy authentication by setting the "Proxy User Id"
and "Proxy Password" attributes in the connection string. The real user is specified
by the "User Id" attribute. Optionally, to enforce greater security, the real user's
password can be provided through the "Password" connection string attribute.

The following example illustrates the use of ODP.NET proxy authentication:

/* Log on as DBA (SYS or SYSTEM) that has CREATE USER privilege.
Create a proxy user and modified scott to allow proxy connection.

create user appserver identified by eagle;
grant connect, resource to appserver;
alter user scott grant connect through appserver;

*/
/] Cc#

using System;
using Oracle.DataAccess.Client;

class ProxyAuthenticationSample

{

static void Main()

{

OracleConnection con = new OracleConnection() ;

// Connecting using proxy authentication

con.ConnectionString = "User Id=scott;Password=tiger;" +
"Data Source=oracle;Proxy User Id=appserver;Proxy Password=eagle; ";
con.Open () ;

Console.WriteLine ("Connected to Oracle" + con.ServerVersion) ;

// Close and Dispose OracleConnection object
con.Close () ;

con.Dispose() ;

Console.WriteLine ("Disconnected") ;

3-12 Oracle Data Provider for .NET Developer’s Guide

Connecting to Oracle Database

See Also:

» Oracle Database Advanced Application Developer’s Guide for
details on designing a middle-tier server using proxy users

» Oracle Database SQL Language Reference for the description and
syntax of the proxy clause for the ALTER USER statement

s Oracle Database Security Guide section "Standard Auditing in a
Multitier Environment"

Dynamic Distributed Transaction Enlistment

For those applications that dynamically enlist in distributed transactions through the
EnlistDistributedTransaction or the EnlistTransaction method of the
OracleConnection object, the "enlist" connection string attribute must be set to
a value of either "dynamic" or "true".If "enlist=true", the connection enlists in
a transaction when the Open method is called on the OracleConnection object, if it
is within the context of a COM+ transaction or a System. Transactions. If not, the
OracleConnection object does not enlist in a distributed transaction, but it can later
enlist explicitly using the EnlistDistributedTransaction or the
EnlistTransaction method.If "enlist=false", the connection cannot enlist in
the transaction.

For applications that cannot be rebuilt using "Enlist=dynamic", a registry string
value, named DynamicEnlistment, of type REG_SZ, can be created under HKEY _
LOCAL MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly Version where
Assembly Versionis the full assembly version number of
Oracle.DataAccess.dll.

If ODP.NET is properly installed, there should already be value names such as
StatementCacheSize, TraceFileName, and so forth, under the same ODP.NET
key.

If the DynamicEnlistment registry key is set to 0 (or if the registry entry does not
exist), it does not affect the application in any way. However, if DynamicEnlistment
issetto 1, "Enlist=Ffalse" is treated the same as "Enlist=dynamic", enabling
applications to enlist successfully through the EnlistDistributedTransaction
method without any code change. Having DynamicEnlistment set to 1 does not
affect OracleConnection objects that have "Enlist=true" or
"Enlist=dynamic" in the connection string.

See Also:
= "Connection String Attributes” on page 3-2
= "EnlistDistributedTransaction" on page 5-92

Client Identifier

The client identifier is a predefined attribute from the Oracle application context
namespace USERENV. It is similar to proxy authentication because it can enable
tracking of user identities. However, client identifier does not require the creation of
two sessions (one for the proxy user and another for the end user) as proxy
authentication does. In addition, the client identifier does not have to be a database
user. It can be set to any string. But most importantly, by using client identifier,
ODP.NET developers can use application context and Oracle Label Security, and
configure Oracle Virtual Private Database (VPD) more easily. To set the client
identifier, ODP.NET applications can set the ClientId property on the
OracleConnection object after opening a connection. If connection pooling is

Features of Oracle Data Provider for NET 3-13

Connecting to Oracle Database

enabled, the ClientIdis reset to null whenever a connection is placed back into the
pool.

ODP.NET exposes the Client Id property on the OracleConnection object. Setting
the ClientId property internally sets the CLIENT IDENTIFIER attribute on the
session. To clear the C1ient Id property, simply setitto "" or string.Empty. The
ClientId property is write-only.

See Also:

s 'Clientld" on page 5-77

» Oracle Database Security Guide

Transparent Application Failover (TAF) Callback Support

Transparent Application Failover (TAF) is a feature in Oracle Database that provides
high availability.

Note: TAF is not supported in a .NET stored procedure.

TAF enables an application connection to automatically reconnect to another database
instance if the connection gets severed. Active transactions roll back, but the new
database connection, made by way of a different node, is identical to the original. This
is true regardless of how the connection fails.

With TAF, a client notices no loss of connection as long as there is one instance left
serving the application. The database administrator controls which applications run on
which instances, and also creates a failover order for each application.

When a session fails over to another database, the NLS settings that were initially set
on the original session are not carried over to the new session. Therefore, it is the
responsibility of the application to set these NLS settings on the new session.

TAF Notification

Given the delays that failovers can cause, applications may wish to be notified by a
TAF callback. ODP.NET supports the TAF callback function through the Failover
event of the OracleConnection object, which allows applications to be notified
whenever a failover occurs. To receive TAF callbacks, an event handler function must
be registered with the Failover event.

When Failover Occurs

When a failover occurs, the Failover event is raised and the registered event handler
is invoked several times during the course of reestablishing the connection to another
Oracle instance.

The first call to the event handler occurs when Oracle Database first detects an
instance connection loss. This allows the application to act accordingly for the
upcoming delay for the failover.

If the failover is successful, the Failover event is raised again when the connection is
reestablished and usable. At this time, the application can resynchronize the
OracleGlobalization session setting and inform the application user that a
failover has occurred.

If failover is unsuccessful, the Failover event is raised to inform the application that
a failover did not take place.

3-14 Oracle Data Provider for .NET Developer’s Guide

Connecting to Oracle Database

The application can determine whether or not the failover is successful by checking the
OracleFailoverEventArgs object that is passed to the event handler.

Registering an Event Handler for Failover
The following example registers an event handler method called OnFailover:

/] C#

using System;
using Oracle.DataAccess.Client;

class TAFCallBackSample
public static FailoverReturnCode OnFailover (object sender,
OracleFailoverEventArgs eventArgs)
{

switch (eventArgs.FailoverEvent)
{
case FailoverEvent.Begin :
Console.WriteLine (
" \nFailover Begin - Failing Over ... Please standby \n");
Console.WriteLine (
" Failover type was found to be " + eventArgs.FailoverType) ;
break;

case FailoverEvent.Abort
Console.WriteLine (" Failover aborted. Failover will not take place.\n");
break;

case FailoverEvent.End :
Console.WriteLine (" Failover ended ...resuming services\n");
break;

case FailoverEvent.Reauth :
Console.WriteLine (" Failed over user. Resuming services\n");
break;

case FailoverEvent.Error :
Console.WriteLine (" Failover error gotten. Sleeping...\n");
return FailoverReturnCode.Retry;

default
Console.WriteLine ("Bad Failover Event: %d.\n", eventArgs.FailoverEvent) ;
break;

}

return FailoverReturnCode.Success;
} /* OnFailover */

static void Main()

{

OracleConnection con = new OracleConnection();

con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
con.Open () ;

con.Failover += new OracleFailoverEventHandler (OnFailover) ;
Console.WriteLine ("Event Handler is successfully registered");

// Close and Dispose OracleConnection object

con.Close() ;
con.Dispose () ;

Features of Oracle Data Provider for NET 3-15

ADO.NET 2.0 Features

}
}

The Failover event invokes only one event handler. If multiple Failover event
handlers are registered with the Failover event, only the event handler registered
last is invoked.

Note: Distributed transactions are not supported in an
environment where failover is enabled.

See Also:

» Oracle Net Services Administrator’s Guide

s "OracleFailoverEventHandler Delegate" on page 10-9
s "OracleFailoverEventArgs Class" on page 10-2

ADO.NET 2.0 Features

Oracle Data Provider for .NET 10.2.0.2 or higher supports Microsoft ADO.NET 2.0
APIs and interfaces, for Oracle8i Database release 3 (8.1.7) and later.

This section contains the following topics:

s About ADO.NET 2.0

= Backward Compatibility for ADO.NET

= Base Classes and Provider Factory Classes

= Connection String Builder

= Data Source Enumerator

= Support for Schema Discovery

s System.Transactions Support

= Batch Processing Support

= ADO.NET 2.0 Only Classes and Class Members

About ADO.NET 2.0

ADO.NET 2.0 is a Microsoft specification that provides data access features designed
to work together for provider independence, increased component reuse, and
application convertibility. Additional features make it easier for an application to
dynamically discover information about the data source, schema, and provider.

Note: Using ODP.NET with Microsoft ADO.NET 2.0 requires
ADO.NET 2.0- compliant ODP.NET.

See Also:
ADO.NET in the MSDN Library

3-16 Oracle Data Provider for .NET Developer’s Guide

ADO.NET 2.0 Features

Backward Compatibility for ADO.NET

For writing provider-independent, generic data access code, ADO.NET 1.x uses
interfaces. For the same purpose, ADO.NET 2.0 provides an inheritance-based
approach, while continuing to maintain interfaces from ADO.NET 1.x for backwards

compatibility.

ODP.NET for ADO.NET 2.0 supports backward compatibility so that ADO.NET 1.x

APIs can be used.

This guide provides the declarations for both ADO.NET 2.0 and ADO.NET 1.x when

appropriate.

See Also: Chapter 7, "ADO.NET 2.0 Classes"

Base Classes and Provider Factory Classes

With ADO.NET 2.0, data classes derive from the base classes defined in the
System.Data.Common namespace. Developers can create provider-specific instances
of these base classes using provider factory classes.

Provider factory classes allow generic data access code to access multiple data sources
with a minimum of data source-specific code. This reduces much of the conditional
logic currently used by applications accessing multiple data sources.

Using Oracle Data Provider for .NET, the OracleClientFactory class can be
returned and instantiated, enabling an application to create instances of the following
ODP.NET classes that inherit from the base classes:

Table 3-2 ODP.NET Classes that Inherit from ADO.NET 2.0 Base Classes

ODP.NET Classes

Inherited from ADO.NET 2.0 Base Class

OracleClientFactory
OracleCommand
OracleCommandBuilder
OracleConnection
OracleConnectionStringBuilder
OracleDataAdapter
OracleDataReader
OracleDataSourceEnumerator
OracleException
OracleParameter
OracleParameterCollection

OracleTransaction

DbProviderFactory
DbCommand
DbCommandBuilder
DbConnection
DbConnectionStringBuilder
DbDataAdapter
DbDataReader
DbDataSourceEnumerator
DbException
DbParameter
DbParameterCollection

DbTransaction

In general, applications still require Oracle-specific connection strings, SQL or stored
procedure calls, and declare that a factory from Oracle.DataAccess.Client is

used.

See Also:

"OracleClientFactory Class" on page 7-10

Features of Oracle Data Provider for NET 3-17

ADO.NET 2.0 Features

Connection String Builder

The OracleConnectionStringBuilder class makes creating connection strings
less error-prone and easier to manage.

Using this class, developers can employ a configuration file to provide the connection
string and /or dynamically set the values though the key/value pairs. One example of
a configuration file entry follows:

<configurations>
<connectionStrings>
<add name="Publications" providerName="Oracle.DataAccess.Client"
connectionString="User Id=scott;Password=tiger;Data Source=instl" />
</connectionStrings>
</configuration>

Connection string information can be retrieved by specifying the connection string
name, in this example, Publications. Then, based on the providerName, the
appropriate factory for that provider can be obtained. This makes managing and
modifying the connection string easier. In addition, this provides better security
against string injection into a connection string.

See Also: "OracleConnectionStringBuilder Class" on page 7-10

Data Source Enumerator

The data source enumerator enables the application to generically obtain a collection
of the Oracle data sources that the application can connect to.

See Also: "OracleDataSourceEnumerator Class" on page 7-35

Support for Schema Discovery

ADO.NET 2.0 exposes five different types of metadata collections through the
OracleConnection.GetSchema APIL This permits application developers to
customize metadata retrieval on an individual-application basis, for any Oracle data
source. Thus, developers can build a generic set of code to manage metadata from
multiple data sources.

The following types of metadata are exposed:
m MetaDataCollections

A list of metadata collections that is available from the data source, such as tables,
columns, indexes, and stored procedures.

m Restrictions

The restrictions that apply to each metadata collection, restricting the scope of the
requested schema information.

s DataSourceInformation

Information about the instance of the database that is currently being used, such as
product name and version.

s DataTypes
A set of information about each data type that the database supports.
m ReservedWords

Reserved words for the Oracle query language.

3-18 Oracle Data Provider for .NET Developer’s Guide

ADO.NET 2.0 Features

See Also: Appendix A, "Oracle Schema Collections"

User Customization of Metadata

ODP.NET provides a comprehensive set of database schema information. Developers
can extend or customize the metadata that is returned by the Get Schema method on
an individual application basis.

To do this, developers must create a customized metadata file and provide the file
name to the application as follows:

1. Create a customized metadata file and put it in the CONFIG subdirectory where
the INET framework is installed. This is the directory that contains
machine.config and the security configuration settings.

This file must contain the entire set of schema configuration information, not just
the changes. Developers provide changes that modify the behavior of the schema
retrieval to user-specific requirements. For instance, a developer can filter out
internal database tables and just retrieve user-specific tables

2. Add an entry in the app . config file of the application, similar to the following,
to provide the name of the metadata file, in name-value pair format.

<oracle.dataaccess.client>
<settings>
<add name="MetaDataXml" value="CustomMetaData.xml" />
</settings>
</oracle.dataaccess.client>

When the Get Schema method is called, ODP.NET checks the app . config file for the
name of the customized metadata XML file. First, the Get Schema method searches for
an entry in the file with a element named after the provider, in this example,
oracle.dataaccess.client. In this XML element, the value that corresponds to
the name MetaDataXml is the name of the customized XML file, in this example,
CustomMetaData.xml.

If the metadata file is not in the correct directory, then the application loads the default
metadata XML file, which is part of ODP.NET.

See Also: "GetSchema" on page 5-95

System.Transactions Support

ODPNET for .NET Framework 2.0 supports System. Transactions. When
System.Transactions is used, the transaction becomes a distributed transaction
(default) immediately, unless local transaction is specified.

If applications use System. Transactions, it is required that the "enlist"
connection string attribute is set to either "true" (default) or "dynamic".

ODP.NET supports the following System. Transactions programming models for
applications using distributed transactions.

= Implicit Distributed Transaction Enlistment Using TransactionScope
= Explicit Distributed Transaction Enlistment Using CommittableTransaction

s Local Transaction for System.Transactions Support

Features of Oracle Data Provider for NET 3-19

ADO.NET 2.0 Features

Implicit Distributed Transaction Enlistment Using TransactionScope

The TransactionScope class provides a mechanism to write transactional
applications where the applications do not need to explicitly enlist in distributed
transactions.

To accomplish this, the application uses the TransactionScope object to define the
transactional code. Connections created within this transactional scope will enlist in a
distributed transaction.

Note that the application must call the Complete method on the
TransactionScope object to commit the changes. Otherwise, the transaction is
aborted by default.

/] c#

using System;

using Oracle.DataAccess.Client;
using System.Data;

using System.Data.Common;
using System.Transactions;

class psfTxnScope

{

static void Main()
int retval = 0;
string providerName = "Oracle.DataAccess.Client";
string constr =
@"User Id=scott;Password=tiger;Data Source=oracle;enlist=true";

// Get the provider factory.
DbProviderFactory factory = DbProviderFactories.GetFactory (providerName) ;

try
// Create a TransactionScope object, (It will start an ambient
// transaction automatically).
using (TransactionScope scope = new TransactionScope ())
// Create first connection object.
using (DbConnection connl = factory.CreateConnection())
// Set connection string and open the connection. this connection
// will be automatically enlisted in a distributed transaction.
connl.ConnectionString = constr;
connl.Open () ;

// Create a command to execute the sqgl statement.

DbCommand cmdl = factory.CreateCommand () ;

cmdl.Connection = connl;

cmdl.CommandText = @"insert into emp (empno, ename, job) values
(1234, 'empl', 'devl')";

// Execute the SQL statement to insert one row in DB.
retVal = cmdl.ExecuteNonQuery () ;
Console.WriteLine ("Rows to be affected by cmdl: {0}", retval);

// Close the connection and dispose the command object.

connl.Close() ;
connl.Dispose () ;

3-20 Oracle Data Provider for .NET Developer’s Guide

ADO.NET 2.0 Features

cmdl.Dispose() ;

}

// The Complete method commits the transaction. If an exception has
// been thrown or Complete is not called then the transaction is
// rolled back.
scope.Complete () ;
}
}
catch (Exception ex)
{
Console.WriteLine (ex.Message) ;
Console.WriteLine (ex.StackTrace) ;

}
}
}

Explicit Distributed Transaction Enlistment Using CommittableTransaction

The instantiation of the CommittableTransaction object and the
EnlistTransaction method provides an explicit way to create and enlist in a
distributed transaction.

Note that the application must call Commit or Rollback on the
CommittableTransaction object.

/] Cc#

using System;

using Oracle.DataAccess.Client;
using System.Data;

using System.Data.Common;

using System.Transactions;

class psfEnlistTransaction

{

static void Main()
int retval = 0;
string providerName = "Oracle.DataAccess.Client";
string constr =
@"User Id=scott;Password=tiger;Data Source=oracle;enlist=dynamic";

// Get the provider factory.
DbProviderFactory factory = DbProviderFactories.GetFactory (providerName) ;

try
// Create a committable transaction object.
CommittableTransaction cmtTx = new CommittableTransaction() ;

// Open a connection to the DB.

DbConnection connl = factory.CreateConnection();
connl.ConnectionString = constr;

connl.Open () ;

// enlist the connection with the commitable transaction.
connl.EnlistTransaction (cmtTx) ;

// Create a command to execute the sql statement.
DbCommand cmdl = factory.CreateCommand () ;

Features of Oracle Data Provider for NET 3-21

ADO.NET 2.0 Features

cmdl.Connection = connl;
cmdl . CommandText = @"insert into emp (empno, ename, job) values
(1234, 'empl', 'devl')";

// Execute the SQL statement to insert one row in DB.
retVal = cmdl.ExecuteNonQuery () ;
Console.WriteLine ("Rows to be affected by cmdl: {0}", retval);

// commit/rollback the transaction.
cmtTx. Commit () ; // commits the txn.
//cmtTx.Rollback(); // rolls back the txn.

// close and dispose the connection
connl.Close() ;
connl.Dispose() ;
cmdl .Dispose ()

}

catch (Exception ex)
Console.WriteLine (ex.Message) ;
Console.WriteLine (ex.StackTrace) ;

}
}
}

7

See Also: "EnlistTransaction" on page 5-94

Local Transaction for System.Transactions Support

Beginning with Oracle Data Provider for .NET release 10.2.0.3, applications can use
local transactions with System. Transactions. Previous versions of ODP.NET
supported only distributed transactions with System. Transactions.

To use local transactions, either the PromotableTransaction registry entry must be
created and set to "local" or the "Promotable Transaction" connection string
attribute must set to "local™".

If "local" is specified, the first connection opened in the TransactionScope uses a
local transaction. If any subsequent connections are opened within the same
TransactionScope, an exception is thrown. If there are connections already opened
in the TransactionScope, and an OracleConnection with "Promotable
Transaction=1local" attempts to open within the same TransactionScope, an
exception is thrown.

If "promotable" is specified, the first and all subsequent connections opened in the
same TransactionScope enlist in the same distributed transaction.

If both the registry and the connection string attribute are used and set to different
values, the connection string attribute overrides the registry entry value. If neither are
set, "promotable" is used. This is the default value and is equivalent to previous
versions of ODP.NET which only supported distributed transactions.

The registry entry for a particular version of ODP.NET applies for all applications
using that version of ODP.NET.

Batch Processing Support

The OracleDataAdapter UpdateBatchSize property enables batch processing
when the OracleDataAdapter.Update method is called. UpdateBatchSizeis a

3-22 Oracle Data Provider for .NET Developer’s Guide

ADO.NET 2.0 Features

numeric property that indicates how many DataSet rows to update the Oracle
database for each round-trip.

This enables the developer to reduce the number of round-trips to the database.

See Also: "UpdateBatchSize" on page 5-123

ADO.NET 2.0 Only Classes and Class Members

In addition to classes which are ADO.NET 2.0 only, other ODP.NET classes that inherit
from the System.Data . Common namespace include methods and properties which
require ADO.NET 2.0.

The following classes are ADO.NET 2.0 only:

OracleClientFactory Class
OracleConnectionStringBuilder Class

OracleDataSourceEnumerator Class

The following class members are ADO.NET 2.0 only:

OracleCommandBuilder Class Members

— CatalogLocation Property (Not Supported)
— CatalogSeparator Property (Not Supported)
- ConflictOption Property (Not Supported)
- QuotePrefix Property

- QuoteSuffix Property

- SchemaSeparator Property

— Quoteldentifier Method

- Unquoteldentifier Method
OracleConnection Class Members

- GetSchema Methods
OracleDataAdapter Class Members

- UpdateBatchSize Property

- ReturnProviderSpecificTypes Property
OracleDataReader Class Members

- HiddenFieldCount Property

VisibleFieldCount Property

- GetProviderSpecificFieldType Method
- GetProviderSpecificValue Method

- GetProviderSpecificValues Method
OracleParameter Class Members

- SourceColumnNullMapping Property
- ResetDbType Method

— ResetOracleDbType Method

Features of Oracle Data Provider for NET 3-23

OracleCommand Object

m OracleParameterCollection Class Members

- AddRange Method

OracleCommand Object

Transactions

The OracleCommand object represents SQL statements or stored procedures executed
on Oracle Database.

This section includes the following topics:
s Transactions
» Parameter Binding

s Statement Caching

Oracle Database starts a transaction only in the context of a connection. Once a
transaction starts, all the successive command execution on that connection run in the
context of that transaction. Transactions can be started only on an
OracleConnection object, and the read-only Transaction property on the
OracleCommand object is implicitly set by the OracleConnection object. Therefore,
the application cannot set the Transaction property, nor does it need to.

Note: Transactions are not supported in a .NET stored procedure.

Parameter Binding

When the DbType property of an OracleParameter object is set, the
OracleDbType property of the OracleParameter object changes accordingly, or
vice versa. The parameter set last prevails.

An application can bind the data and have ODP.NET infer both the DbType and
OracleDbType properties from the .NET type of the parameter value.

ODP.NET allows applications to obtain an output parameter as either a .NET
Framework type or an ODP.NET type. The application can specify which type to
return for an output parameter by setting the DbType property of the output
parameter (.NET type) or the OracleDbType property (ODP.NET type) of the
OracleParameter object. For example, if the output parameter is set as a

DbType . String type by setting the DbType property, the output data is returned as
a .NET String type. On the other hand, if the parameter is set as an
OracleDbType.Char type by setting the OracleDbType property, the output data is
returned as an OracleString type. If both DbType and OracleDbType properties
are set before the command execution, the last setting takes affect.

ODPNET populates InputOutput, Output, and ReturnValue parameters with the
Oracle data, through the execution of the following OracleCommand methods:

m ExecuteReader
s ExecuteNonQuery
m ExecuteScalar

An application should not bind a value for output parameters; it is the responsibility
of ODP.NET to create the value object and populate the OracleParameter Value
property with the object.

3-24 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Object

When binding by position (default) to a function, ODP.NET expects the return value to
be bound first, before any other parameters.

This section describes the following:

= Data Types BINARY_FLOAT and BINARY_DOUBLE
s OracleDbType Enumeration Type

s Inference of DbType, OracleDbType, and .NET Types
= PL/SQL Associative Array Binding

= Array Binding

See Also: "OracleDbType Enumeration” on page 5-321

Data Types BINARY_FLOAT and BINARY_DOUBLE

Starting from Oracle Database 10g, the database supports two new native data types,
BINARY FLOAT and BINARY DOUBLE.

The BINARY FLOAT and BINARY DOUBLE data types represent single-precision and
double-precision, floating-point values respectively.

In OracleParameter binding, an application should use the enumerations
OracleDbType.BinaryFloat and OracleDbType.BinaryDouble for BINARY
FLOAT and BINARY DOUBLE data types.

See Also:
= "GetDouble" on page 5-161
s "GetFloat" on page 5-163

OracleDbType Enumeration Type

OracleDbType enumerated values are used to explicitly specify the OracleDbType
value of an OracleParameter object.

Table 3-3 lists all the OracleDbType enumeration values with a description of each
enumerated value.

Table 3-3 OracleDbType Enumeration Values

Member Name Description

BFile Oracle BFILE type
BinaryFloat Oracle BINARY FLOAT type
BinaryDouble Oracle BINARY DOUBLE type
Blob Oracle BLOB type

Byte byte type

Char Oracle CHAR type

Clob Oracle CLOB type

Date Oracle DATE type

Decimal Oracle NUMBER type
Double 8-byte FLOAT type

Intlé 2-byte INTEGER type

Int32 4-byte INTEGER type

Features of Oracle Data Provider for NET 3-25

OracleCommand Object

Table 3-3 (Cont.) OracleDbType Enumeration Values

Member Name

Description

Int64
IntervalDS
Interval¥YM
Long
LongRaw
NChar
Object
NClob
NVarchar2
NestedTable
Raw

Ref
RefCursor
Single
TimeStamp
TimeStampLTZ
TimeStampTZ
Varchar?2
Varray

XmlType

8-byte INTEGER type

Oracle INTERVAL DAY TO SECOND type
Oracle INTERVAL YEAR TO MONTH type
Oracle LONG type

Oracle LONG RAW type

Oracle NCHAR type

Oracle Object type

Oracle NCLOB type

Oracle NVARCHAR?2 type

Oracle Nested Table type

Oracle RAW type

Oracle REF type
Oracle REF CURSOR type

4-byte FLOAT type

Oracle TIMESTAMP type

Oracle TIMESTAMP WITH LOCAL TIME ZONE type

ChadeTIMESTAMPWITHTIMEZONEtype

Oracle VARCHAR?2 type
Oracle VARRAY type

Oracle XMLType type

Inference of DbType, OracleDbType, and .NET Types

This section explains the inference from the System.Data.DbType, OracleDbType,
and Value properties in the OracleParameter class.

In the OracleParameter class, DbType, OracleDbType, and Value properties are
linked. Specifying the value of any of these properties infers the value of one or more
of the other properties.

Inference of DbType from OracleDbType In the OracleParameter class, specifying the
value of OracleDbType infers the value of DbType as shown in Table 3—4.

Table 3—-4 Inference of System.Data.DbType from OracleDbType

OracleDbType System.Data.DbType
BFile Object

Blob Object
BinaryFloat Single
BinaryDouble Double

Byte Byte

Char StringFixedLength
Clob Object

3-26 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Object

Table 3—-4 (Cont.) Inference of System.Data.DbType from OracleDbType

OracleDbType System.Data.DbType
Date Date
Decimal Decimal
Double Double
Intle Intle
Int32 Int32
Int64 Int64
IntervalDS TimeSpan
Interval¥YM Inte64
Long String
LongRaw Binary
NChar StringFixedLength
NClob Object
NestedTable Object
NVarchar?2 String
Object Object
Raw Binary
Ref Object
RefCursor Object
Single Single
TimeStamp DateTime
TimeStampLTZ DateTime
TimeStampTZ DateTime
Varchar?2 String
Varray Object
XmlType String

Inference of OracleDbType from DbType In the OracleParameter class, specifying the
value of DbType infers the value of OracleDbType as shown in Table 3-5.

Table 3-5 Inference of OracleDbType from DbType

System.Data.DbType OracleDbType
Binary Raw

Boolean Not Supported
Byte Byte
Currency Not Supported
Date Date
DateTime TimeStamp
Decimal Decimal

Features of Oracle Data Provider for .NET

3-27

OracleCommand Object

Table 3-5 (Cont.) Inference of OracleDbType from DbType

System.Data.DbType OracleDbType
Double Double
Guid Not Supported
Intleé Intleé
Int32 Int32
Inte4 Inte4
Object Object
Sbyte Not Supported
Single Single
String Varchar2
StringFixedLength Char

Time TimeStamp
UIntlé Not Supported
UInt32 Not Supported
Uinté64 Not Supported
VarNumeric Not Supported

Inference of DbType and OracleDbType from Value In the OracleParameter class, Value
is an object type that can be of any .NET Framework data type or ODP.NET type. If the

OracleDbType and DbType properties of the OracleParameter class are not
specified, the OracleDbType property is inferred from the type of the Value

property.

Table 3-6 shows the inference of DbType and OracleDbType properties from the
Value property when the type of Value is one of the NET Framework data types.

Table 3-6 Inference of DbType and OracleDbType from Value (.NET Datatypes)

Value (.NET Datatypes) System.Data.DbType OracleDbType
Byte Byte Byte

Byte [] Binary Raw

Char / Char [] String Varchar?
DateTime DateTime TimeStamp
Decimal Decimal Decimal
Double Double Double
Float Single Single
Intle Intleé Intleé
Int32 Int32 Int32
Int64 Int64 Int64
Single Single Single
String String Varchar?2
TimeSpan TimeSpan IntervalDS

3-28 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Object

Note: Using other .NET Framework data types as values for the
OracleParameter class without specifying either the DbType or
the OracleDbType properties raises an exception because
inferring DbType and OracleDbType properties from other NET
Framework data types is not supported.

Table 3-7 shows the inference of DbType and OracleDbType properties from the
Value property when type of Value is one of Oracle.DataAccess. Types.

Table 3-7 Inference of DbType and OracleDbType from Value (ODP.NET Types)

Yg:gile.DataAccess.Types) System.Data.DbType OracleDbType
OracleBFile Object BFile
OracleBinary Binary Raw
OracleBlob Object Blob
OracleClob Object Clob
OracleDate Date Date
OracleDecimal Decimal Decimal
OracleIntervalDS Object IntervalDS
OracleInterval¥YM Inte4 Interval¥YM
OracleRefCursor Object RefCursor
OracleString String Varchar?2
OracleTimeStamp DateTime TimeStamp
OracleTimeStampLTZ DateTime TimeStampLTZ
OracleTimeStampTZ DateTime TimeStampTZ
OracleXmlType String XmlType

PL/SQL Associative Array Binding

ODP.NET supports PL/SQL Associative Array (formerly known as PL/SQL Index-By
Tables) binding.

An application can bind an OracleParameter object, as a PL/SQL Associative
Array, to a PL/SQL stored procedure. The following OracleParameter properties
are used for this feature:

m CollectionType

This property must be set to
OracleCollectionType.PLSQLAssociativeArray to bind a PL/SQL
Associative Array.

m ArrayBindSize
This property is ignored for the fixed-length element types (such as Int32).

For variable-length element types (such as Varchar2), each element in the
ArrayBindSize property specifies the size of the corresponding element in the
Value property.

Features of Oracle Data Provider for NET 3-29

OracleCommand Object

For Output parameters, InputOutput parameters, and return values, this
property must be set for variable-length variables.

ArrayBindStatus

This property specifies the execution status of each element in the
OracleParameter.Value property.

Size

This property specifies the maximum number of elements to be bound in the
PL/SQL Associative Array.

Value

This property must be set to an array of values, null, or the DBNull.Value
property.

Example of PL/SQL Associative Arrays

This example binds three OracleParameter objects as PL/SQL Associative Arrays:
Paraml as an In parameter, Param2 as an InputOutput parameter, and Param3 as
an Output parameter.

PL/SQL Package: MYPACK

/*

Setup the tables and required PL/SQL:

connect scott/tiger@oracle
CREATE TABLE T1 (COL1 number, COL2 varchar2(20));

CREATE or replace PACKAGE MYPACK AS
TYPE AssocArrayVarchar2 t is table of VARCHAR(20) index by BINARY INTEGER;
PROCEDURE TestVarchar2 (
Paraml IN AssocArrayVarchar2 t,
Param2 IN OUT AssocArrayVarchar2 t,
Param3 OUT AssocArrayVarchar2 t);
END MYPACK;

CREATE or REPLACE package body MYPACK as
PROCEDURE TestVarchar?2 (
Paraml IN AssocArrayVarchar2 t,
Param2 IN OUT AssocArrayVarchar2 t,
Param3 OUT AssocArrayVarchar2 t)

IS
i integer;
BEGIN
-- copy a few elements from Param2 to Paraml\n
Param3 (1) := Param2(1);
Param3 (2) := NULL;
Param3 (3) := Param2 (3);
-- copy all elements from Paraml to Param2\n
Param2 (1) := Paraml(1);
Param2 (2) := Paraml (2);
Param2 (3) := Paraml(3);

-- insert some values to db\n
FOR i IN 1..3 LOOP
insert into T1 values(i,Param2(i));
END LOOP;
END TestVarchar2;
END MYPACK;

3-30 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Object

*/
/] Cc#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class AssociativeArraySample

{

static void Main()

{

OracleConnection con = new OracleConnection() ;

con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle";
con.Open () ;
Console.WriteLine ("Connected to Oracle" + con.ServerVersion);

OracleCommand cmd = new OracleCommand (
"begin MyPack.TestVarchar2(:1, :2, :3); end;", con);

OracleParameter Paraml cmd. Parameters.Add("1", OracleDbType.Varchar2) ;
OracleParameter Param2 = cmd.Parameters.Add("2", OracleDbType.Varchar2);
OracleParameter Param3 = cmd.Parameters.Add("3", OracleDbType.Varchar2);

Paraml.Direction = ParameterDirection.Input;
Param2.Direction = ParameterDirection.InputOutput;
Param3.Direction = ParameterDirection.Output;

// Specify that we are binding PL/SQL Associative Array

Paraml.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
Param2.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
Param3.CollectionType = OracleCollectionType.PLSQLAssociativeArray;

// Setup the values for PL/SQL Associative Array
Paraml.Value = new string[3] {

"First Element", "Second Element ", "Third Element "
Param2.Value = new string[3] {

"First Element", "Second Element ", "Third Element "

Param3.Value = null;

// Specify the maximum number of elements in the PL/SQL Associative Array
Paraml.Size =
Param2.Size
Param3.Size

3;
3;
3;

// Setup the ArrayBindSize for Paraml
Paraml.ArrayBindSize = new int[3] { 13, 14, 13 };

// Setup the ArrayBindStatus for Paraml
Paraml.ArrayBindStatus = new OracleParameterStatus[3] {
OracleParameterStatus.Success, OracleParameterStatus.Success,

OracleParameterStatus.Success};

// Setup the ArrayBindSize for Param2
Param2.ArrayBindSize = new int[3] { 20, 20, 20 };

// Setup the ArrayBindSize for Param3

Features of Oracle Data Provider for NET 3-31

OracleCommand Object

Param3.ArrayBindSize = new int[3] { 20, 20, 20 };

// execute the cmd
cmd . ExecuteNonQuery () ;

//print out the parameter's values
Console.WriteLine ("parameter values after executing the PL/SQL block");
for (int 1 = 0; 1 < 3; 1i++)
Console.WriteLine ("Param2 [{0}] = {1} ", i,
(cmd.Parameters[1] .Value as Array) .GetValue(i));

for (int i = 0; 1 < 3; 1++)
Console.WriteLine ("Param3 [{0}] = {1} ", i,
(cmd.Parameters[2] .Value as Array) .GetValue(i));

// Close and Dispose OracleConnection object
con.Close() ;

con.Dispose() ;

Console.WriteLine ("Disconnected") ;

Array Binding

The array bind feature enables applications to bind arrays of a type using the
OracleParameter class. Using the array bind feature, an application can insert
multiple rows into a table in a single database round-trip.

The following example inserts three rows into the Dept table with a single database
round-trip. The OracleCommand ArrayBindCount property defines the number of
elements of the array to use when executing the statement.

/] c#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindSample

{

static void Main()
OracleConnection con = new OracleConnection() ;
con.ConnectionString "User Id=scott;Password=tiger;Data Source=oracle;";
con.Open () ;
Console.WriteLine ("Connected successfully");

int [] myArrayDeptNo = new int[3] { 10, 20, 30 };
OracleCommand cmd = new OracleCommand () ;

// Set the command text on an OracleCommand object
cmd. CommandText = "insert into dept (deptno) values (:deptno)";

cmd.Connection = con;

// Set the ArrayBindCount to indicate the number of values
cmd . ArrayBindCount = 3;

// Create a parameter for the array operations
OracleParameter prm = new OracleParameter ("deptno", OracleDbType.Int32);

3-32 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Object

prm.Direction = ParameterDirection.Input;
prm.Value = myArrayDeptNo;

// Add the parameter to the parameter collection
cmd. Parameters.Add (prm) ;

// Execute the command
cmd . ExecuteNonQuery () ;
Console.WriteLine ("Insert Completed Successfully");

// Close and Dispose OracleConnection object

con.Close() ;
con.Dispose() ;

See Also: "Value" on page 5-257 for more information

OracleParameter Array Bind Properties The OracleParameter class provides two
properties for granular control when using the array bind feature:

ArrayBindSize

The ArrayBindSize property is an array of integers specifying the maximum
size for each corresponding value in an array. The ArrayBindSize property is
similar to the Size property of an OracleParameter object, except the
ArrayBindSize property specifies the size for each value in an array.

Before the execution, the application must populate the ArrayBindSize
property; after the execution, ODP.NET populates it.

The ArrayBindSize property is used only for parameter types that have variable
length such as C1ob, Blob, and Varchar2. The size is represented in bytes for
binary data types, and characters for the Unicode string types. The count for string
types does not include the terminating character. The size is inferred from the
actual size of the value, if it is not explicitly set. For an output parameter, the size
of each value is set by ODP.NET. The ArrayBindSize property is ignored for
fixed-length data types.

ArrayBindStatus

The ArrayBindStatus property is an array of OracleParameterStatus
values that specify the status of each corresponding value in an array for a
parameter. This property is similar to the Status property of the
OracleParameter object, except that the ArrayBindStatus property specifies
the status for each array value.

Before the execution, the application must populate the ArrayBindStatus
property. After the execution, ODP.NET populates the property. Before the
execution, an application using the ArrayBindStatus property can specify a
NULL value for the corresponding element in the array for a parameter. After the
execution, ODP.NET populates the ArrayBindStatus property, indicating
whether the corresponding element in the array has a null value, or if data
truncation occurred when the value was fetched.

Error Handling for Array Binding If an error occurs during an array bind execution, it can

be difficult to determine which element in the Value property caused the error.

ODP.NET provides a way to determine the row where the error occurred, making it
easier to find the element in the row that caused the error.

Features of Oracle Data Provider for NET 3-33

OracleCommand Object

When an OracleException object is thrown during an array bind execution, the
OracleErrorCollection object contains one or more OracleError objects. Each
of these OracleError objects represents an individual error that occurred during the
execution, and contains a provider-specific property, ArrayBindIndex, which
indicates the row number at which the error occurred.

The following example demonstrates error handling for array binding:

/* Database Setup

connect scott/tiger@oracle

drop table depttest;

create table depttest (deptno number(2));
*/

/] c#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindExceptionSample

{

static void Main()
OracleConnection con = new OracleConnection();
con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
con.Open() ;

OracleCommand cmd = new OracleCommand () ;

// Start a transaction
OracleTransaction txn = con.BeginTransaction(IsolationLevel.ReadCommitted) ;

try

{
int[] myArrayDeptNo = new int[3] { 10, 200000, 30 };
// int[] myArrayDeptNo = new int[3]{ 10,20,30};

// Set the command text on an OracleCommand object
cmd. CommandText = "insert into depttest (deptno) values (:deptno)";
cmd. Connection = con;

// Set the ArrayBindCount to indicate the number of values
cmd.ArrayBindCount = 3;

// Create a parameter for the array operations
OracleParameter prm = new OracleParameter ("deptno", OracleDbType.Int32);

prm.Direction = ParameterDirection.Input;
prm.Value = myArrayDeptNo;

// Add the parameter to the parameter collection
cmd. Parameters.Add (prm) ;

// Execute the command
cmd . ExecuteNonQuery () ;

}

catch (OracleException e)

{

Console.WriteLine ("OracleException {O} occured", e.Message);
if (e.Number == 24381)

3-34 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Object

for (int i = 0; 1 < e.Errors.Count; i++)
Console.WriteLine ("Array Bind Error {0} occured at Row Number {1}",
e.Errors[i] .Message, e.Errors[i].ArrayBindIndex) ;

txn.Commit () ;

}

cmd. Parameters.Clear() ;
cmd. CommandText = "select count (*) from depttest";

decimal rows = (decimal)cmd.ExecuteScalar();
Console.WriteLine("{0} row have been inserted", rows);

con.Close() ;
con.Dispose() ;

See Also: "ArrayBindIndex" on page 5-201 for more information

OracleParameterStatus Enumeration Types Table 3-8 lists OracleParameterStatus
enumeration values.

Table 3-8 OracleParameterStatus Members

Member Names Description

Success For input parameters, indicates that the input value has been
assigned to the column.

For output parameters, indicates that the provider assigned an
intact value to the parameter.

NullFetched Indicates that a NULL value has been fetched from a column or
an OUT parameter.

NullInsert Indicates that a NULL value is to be inserted into a column.

Truncation Indicates that truncation has occurred when fetching the data
from the column.

Statement Caching

Statement caching eliminates the need to parse each SQL or PL/SQL statement before
execution by caching server cursors created during the initial statement execution.
Subsequent executions of the same statement can reuse the parsed information from
the cursor, and then execute the statement without reparsing, for better performance.

In order to see performance gains from statement caching, Oracle recommends
caching only those statements that will be repeatedly executed. Furthermore, SQL or
PL/SQL statements should use parameters rather than literal values. Doing so takes
full advantage of statement caching, because parsed information from parameterized
statements can be reused even if the parameter values change in subsequent
executions. However, if the literal values in the statements are different, the parsed
information cannot be reused unless the subsequent statements also have the same
literal values.

Statement Caching Connection String Attributes

The following connection string attributes control the behavior of the ODP.NET
statement caching feature:

s Statement Cache Size

Features of Oracle Data Provider for NET 3-35

OracleCommand Object

This attribute enables or disables ODP.NET statement caching. By default, this
attribute is set to 10 (enabled). If it is set to 0, the attribute is disabled. If it is set to
a value greater than 0, ODP.NET statement caching is enabled and the value
specifies the maximum number of statements that can be cached for a connection.
Once a connection has cached up to the specified maximum cache size, the least
recently used cursor is freed to make room to cache the newly created cursor.

m Statement Cache Purge

This attribute provides a way for connections to purge all statements that are
cached when a connection is closed or placed back into the connection pool. By
default, this attribute is set to false, which means that cursors are not freed when
connections are placed back into the pool.

Enabling Statement Caching through the Registry

To enable statement caching by default for all ODP.NET applications running in a
system, without changing the application, set the registry key of HKEY LOCAL
MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly Version
\StatementCacheSize to a value greater than 0. This value specifies the number of
cursors that are to be cached on the server. By default, it is set to 10.

The default value for the system can be overridden at the connection pool level. The
Statement Cache Size attribute can be set to a different size than the registry value
or it can be turned off.

Statement Caching Methods and Properties

The following property and method are relevant only when statement caching is
enabled:

s OracleCommand.AddToStatementCache property

If statement caching is enabled, having this property set to t rue (default) adds
statements to the cache when they are executed. If statement caching is disabled or
if this property is set to false, the executed statement is not cached.

m OracleConnection.PurgeStatementCache method

This method purges all the cached statements by closing all open cursors on the
database that are associated with the particular connection. Note that statement
caching remains enabled after this call.

Connections and Statement Caching

Statement caching is managed separately for each connection. Therefore, executing the
same statement on different connections requires parsing once for each connection and
caching a separate cursor for each connection.

Pooling and Statement Caching

Pooling and statement caching can be used in conjunction. If connection pooling is
enabled and the Statement Cache Purge attribute is set to false, statements
executed on each separate connection are cached throughout the lifetime of the pooled
connection.

If the Statement Cache Purge attribute is set to true, all the cached cursors are
freed when the connection is placed back into the pool. When connection pooling is
disabled, cursors are cached during the lifetime of the connection, but the cursors are
closed when the OracleConnection object is closed or disposed of.

3-36 Oracle Data Provider for .NET Developer’s Guide

ODP.NET Types Overview

ODP.NET Types Overview

ODP.NET types represent Oracle native data types and PL/SQL data types as a
structure or as a class. ODP.NET type structures follow value semantics, while
ODPNET type classes follow reference semantics. ODP.NET types provide safer and
more efficient ways of obtaining Oracle native data and PL/SQL data types in a .NET
application than .NET types. For example, an OracleDecimal structure holds up to
38 digits of precision, while a .NET Decimal only holds up to 28.

Table 3-9 lists data types supported by ODP.NET and their corresponding ODP.NET
types: data types in the first column refer to both Oracle native data types and
PL/SQL data types of that name. Those data types that exist only in PL/SQL are
indicated by (PL/SQL only) after the data type name. The entries for the PL/SQL data
types also represent the subtypes of the data types, if any. The third column lists the
.NET Framework data type that corresponds to the Value property of each ODP.NET

type.

Table 3-9 Value Property Type of ODP.NET Type

Oracle Native Data Type or PL/SQL

.NET Framework Data

Data Type ODP.NET Type Types

BFILE OracleBFile class System.Byte[]

BINARY DOUBLE OracleDecimal System.Decimal
structure

BINARY_ FLOAT OracleDecimal System.Decimal
structure

BINARY INTEGER (PL/SQL only) OracleDecimal System.Decimal
structure

BLOB OracleBlob class System.Byte []

CHAR OracleString System.String
structure

CLOB OracleClob class System.String

DATE OracleDate structure System.DateTime

INTERVAL DAY TO SECOND OracleIntervalDS System.TimeSpan
structure

INTERVAL YEAR TO MONTH OracleInterval¥YM System.Inté64
structure

LONG OracleString System.String
structure

LONG RAW OracleBinary System.Byte []
structure

NCHAR OracleString System.String
structure

NCLOB OracleClob class System.String

NUMBER OracleDecimal System.Decimal
structure

NVARCHAR2 OracleString System.String
structure

PLS_INTEGER (PL/SQL only) OracleDecimal System.Decimal
Structure

Features of Oracle Data Provider for NET 3-37

Obtaining Data from an OracleDataReader Object

Table 3-9 (Cont.) Value Property Type of ODP.NET Type

Oracle Native Data Type or PL/SQL .NET Framework Data

Data Type ODP.NET Type Types

RAW OracleBinary System.Byte[]
structure

REF OracleRef class System.String

REF CURSOR (PL/SQL only) OracleRefCursor class Not Applicable

ROWID OracleString System.String
structure

TIMESTAMP OracleTimeStamp System.DateTime
structure

TIMESTAMP WITH LOCAL TIME ZONE OracleTimeStampLTZ System.DateTime

structure

TIMESTAMP WITH TIME ZONE OracleTimeStampTZ System.DateTime
structure

UROWID OracleString System.String
structure

VARCHAR2 OracleString System.String
structure

XMLType OracleXmlType class System.String

Obtaining Data from an OracleDataReader Object

The ExecuteReader method of the OracleCommand object returns an
OracleDataReader object, which is a read-only, forward-only result set.

This section provides the following information about the OracleDataReader
object:

s Typed OracleDataReader Accessors

= Obtaining LONG and LONG RAW Data

= Obtaining LOB Data

= Controlling the Number of Rows Fetched in One Database Round-Trip

Typed OracleDataReader Accessors

The OracleDataReader class provides two types of typed accessors:
= .NET Type Accessors
= ODPNET Type Accessors

.NET Type Accessors

Table 3-10 lists all the Oracle native database types that ODP.NET supports, and the
corresponding .NET types that can represent the Oracle native type. If more than one
NET type can be used to represent an Oracle native type, the first entry is the NET
type that best represents the Oracle native type. The third column indicates the valid
typed accessor that can be invoked for an Oracle native type to be obtained as a .NET
type. If an invalid typed accessor is used for a column, an InvalidCastException
is thrown. Oracle native data types depend on the version of the database; therefore,
some data types are not available in earlier versions of Oracle Database.

3-38 Oracle Data Provider for .NET Developer’s Guide

Obtaining Data from an OracleDataReader Object

See Also:
s "OracleDataAdapter Class" on page 5-110
s "OracleDataReader Class" on page 5-134

Table 3-10 .NET Type Accessors

Oracle Native Data Type .NET Type Typed Accessor
BFILE System.Byte[] GetBytes
BINARY DOUBLE System.Double GetDouble
BINARY FLOAT System.Single GetFloat
BLOB System.Byte[] GetBytes
CHAR System.String GetString
System. Char [] GetChars
CLOB System.String GetString
System. Char [] GetChars
DATE System.DateTime GetDateTime
INTERVAL DAY TO SECOND System.Timespan GetTimeSpan
INTERVAL YEAR TO MONTH System.Inté64 GetInte64
LONG System.String GetString
System. Char [] GetChars
LONG RAW System.Byte [] GetBytes
NCHAR System.String GetString
System. Char [] GetChars
NCLOB System.String GetString
System. Char [] GetChars
NUMBER System.Decimal GetDecimal
System.Byte GetByte
System.Intlé GetIntle
System.Int32 GetInt32
System.Inté64 GetInté64
System.Single GetFloat
System.Double GetDouble
NVARCHAR?2 System.String GetString
System. Char [] GetChars
RAW System.Byte[] GetBytes
ROWID System.String GetString
System. Char [] GetChars
TIMESTAMP System.DateTime GetDateTime
TIMESTAMP WITH LOCAL TIME ZONE System.DateTime GetDateTime
TIMESTAMP WITH TIME ZONE System.DateTime GetDateTime
UROWID System.String GetString
System. Char [] GetChars

Features of Oracle Data Provider for NET 3-39

Obtaining Data from an OracleDataReader Object

Table 3-10 (Cont.) .NET Type Accessors

Oracle Native Data Type .NET Type Typed Accessor

VARCHAR2 System.String GetString
System. Char [] GetChars

XMLType System.String GetString
System.Xml.XmlReader GetXmlReader

Certain methods and properties of the OracleDataReader object require ODP.NET
to map a NUMBER column to a .NET type based on the precision and scale of the
column. These members are:

= Item property

m GetFieldType method
s GetValue method

» GetValues method

ODP.NET determines the appropriate .NET type by considering the following .NET
types in order, and selecting the first NET type from the list that can represent the
entire range of values of the column:

m System.Byte

m System.Intlé

m System.Int32

m System.Inté64

m System.Single
m System.Double
m System.Decimal

If no .NET type exists that can represent the entire range of values of the column, then
an attempt is made to represent the column values as a System.Decimal type. If the
value in the column cannot be represented as System.Decimal, then an exception is
raised.

For example, consider two columns defined as NUMBER (4, 0) and NUMBER (10, 2).
The first NET types from the previous list that can represent the entire range of values
of the columns are System.Int16 and System.Double, respectively. However,
consider a column defined as NUMBER (20, 10) . In this case, there is no .NET type that
can represent the entire range of values on the column, so an attempt is made to return
values in the column as a System.Decimal type. If a value in the column cannot be
represented as a System.Decimal type, then an exception is raised.

The Fi11 method of the OracleDataAdapter class uses the OracleDataReader
object to populate or refresh a DataTable or DataSet with .NET types. As a result,
the .NET type used to represent a NUMBER column in the DataTable or DataSet also
depends on the precision and scale of the column.

3-40 Oracle Data Provider for .NET Developer’s Guide

Obtaining Data from an OracleDataReader Object

See Also:

s "OracleDataReader Class" on page 5-134
s "OracleDataAdapter Class" on page 5-110
s "[tem" on page 5-146

= "GetFieldType" on page 5-162

= "GetValues" on page 5-193

= "GetValue" on page 5-192

ODP.NET Type Accessors

ODP.NET exposes provider-specific types that natively represent the data types in the
database. In some cases, these ODP.NET types provide better performance and
functioning than the corresponding .NET types. The ODP.NET types can be obtained

from the OracleDataReader object by calling their respective typed accessor.

See Also:
ODP.NET types

Table 3-11 lists the valid type accessors that ODP.NET uses to obtain ODP.NET types

for an Oracle native type.

"ODP.NET Types Overview" on page 3-37 for a list of all

Table 3-11 ODP.NET Type Accessors
Oracle Native Data Type ODP.NET Type Typed Accessor
BFILE OracleBFile GetOracleBFile
BINARY DOUBLE OracleDecimal GetOracleDecimal
BINARY FLOAT OracleDecimal GetOracleDecimal
BLOB OracleBlob GetOracleBlob
OracleBlob GetOracleBlobForUpdate
OracleBinary GetOracleBinary
CHAR OracleString GetOracleString
CLOB OracleClob GetOracleClob
OracleClob GetOracleClobForUpdate
OracleString GetOracleString
DATE OracleDate GetOracleDate
INTERVAL DAY TO SECOND OracleIntervalDS GetOracleIntervalDS
INTERVAL YEAR TO MONTH OracleInterval¥M GetOracleIntervalYM
LONG OracleString GetOracleString
LONG RAW OracleBinary GetOracleBinary
NCHAR OracleString GetOracleString
NCLOB OracleString GetOracleString
NUMBER OracleDecimal GetOracleDecimal
NVARCHAR?2 OracleString GetOracleString
RAW OracleBinary GetOracleBinary
ROWID OracleString GetOracleString

Features of Oracle Data Provider for NET 3-41

Obtaining Data from an OracleDataReader Object

Table 3-11 (Cont) ODP.NET Type Accessors

Oracle Native Data Type ODP.NET Type Typed Accessor
TIMESTAMP OracleTimeStamp GetOracleTimeStamp
TIMESTAMP WITH LOCAL OracleTimeStampLTZ GetOracleTimeStampLTZ
TIME ZONE

TIMESTAMPWITHTIME ZONE OracleTimeStampTZ GetOracleTimeStampTZ

UROWID OracleString GetOracleString
VARCHAR2 OracleString GetOracleString
XMLType OracleString GetOracleString

OracleXmlType GetOracleXmlType

Obtaining LONG and LONG RAW Data

ODP.NET fetches and caches rows from the database during the Read method
invocations on the OracleDataReader object. The amount of LONG and LONG RAW
column data that is retrieved from this operation is determined by
InitialLONGFetchSize. The different behaviors observed when
InitialLONGFetchSize issetto 0, greater than 0, and -1 are explained in the
following sections.

Note: ODP.NET does not support the
CommandBehavior.SequentialAccess enumeration value.
Therefore, LONG and LONG RAW data can be fetched randomly.

Setting InitialLONGFetchSize to Zero or a Value Greater than Zero

The specified amount of InitialLONGFetchSize characters or bytes for LONG or
LONG RAW column data is retrieved into the cache during the Read method invocations
on the OracleDataReader object.

By default, InitialLONGFetchSize is set to 0. In this case, ODP.NET does not fetch
any LONG or LONG RAW column data during the Read method invocations on the
OracleDataReader object. The LONG or LONG RAW data is fetched when the typed
accessor method is explicitly invoked for the LONG or LONG RAW column, which incurs
a database round-trip because no data is cached.

If InitialLONGFetchSize is set to a value greater than 0, that amount of specified
data is cached by ODP.NET during the Read method invocations on the
OracleDataReader object. If the application requests an amount of data less than or
equal to the InitialLONGFetchSize through the typed accessor methods, no
database round-trip is incurred. However, an additional database round-trip is
required to fetch data beyond InitialLONGFetchSize.

To obtain data beyond the InitialLONGFetchSize characters or bytes, one of the
following must be in the select list:

= Primary key
= ROWID

= Unique columns - (defined as a set of columns on which a unique constraint has
been defined or a unique index has been created, where at least one of the columns
in the set has a NOT NULL constraint defined on it)

3-42 Oracle Data Provider for .NET Developer’s Guide

Obtaining Data from an OracleDataReader Object

To be able to fetch the entire LONG or LONG RAW data without having a primary key
column, a ROWID, or unique columns in the select list, set the size of the
InitialLONGFetchSize property on the OracleCommand object to equal or greater
than the number of characters or bytes needed to be retrieved.

The LONG or LONG RAW data is returned when the appropriate typed accessor method
(GetChars, GetOracleString, or GetString for LONG or GetOracleBinary or
GetBytes for LONG RAW) is called on the OracleDataReader object.

Setting InitialLONGFetchSize to -1

By setting InitialLONGFetchSize to -1, it is possible to fetch the entire LONG or
LONG RAW data from the database for a select query, without requiring a primary key,
ROWID, or unique column in the select list.

When InitialLONGFetchSize is set to -1, the entire LONG or LONG RAW data is
retrieved and cached during Read method invocations on the OracleDataReader
object. Calls to GetString, GetOracleString, GetChars, GetBytes, or
GetOracleBinary in the OracleDataReader return the entire column data.

Obtaining LOB Data

ODP.NET fetches and caches rows from the database during the Read method
invocations on the OracleDataReader object. The amount of LOB column data that
is retrieved from this operation is determined by InitialLOBFetchSize.

The following sections explain the different behaviors observed when
InitialLOBFetchSize issetto 0, greater than 0, and -1.

Setting InitialLOBFetchSize to Zero

By default, when the InitialLOBFetchSize property is 0, the GetOracleBlob
and GetOracleClob methods can be invoked on the OracleDataReader object to
obtain OracleBlob and OracleClob objects.

The following is a complete list of typed accessor methods that an application can call
for the CLOB and BLOB columns, if InitialLOBFetchSize is set to 0:

s Methods callable for BLOB column
- GetBytes
- GetValue
- GetValues
- GetOracleBinary
— GetOracleBlob
— GetOracleBlobForUpdate
— GetOracleValue
— GetOracleValues
s Methods callable for CLOB column
— GetChars
- GetString
- GetValue

— GetValues

Features of Oracle Data Provider for NET 3-43

Obtaining Data from an OracleDataReader Object

- GetOracleString

— GetOracleClob

— GetOracleClobForUpdate
— GetOracleValue

— GetOracleValues

Setting InitialLOBFetchSize to a Value Greater than Zero

If InitialLOBFetchSize is set to a value greater than 0, ODP.NET caches LOB data
up to InitialLOBFetchSize characters or bytes for each LOB selected during the
Read method invocations on the OracleDataReader object.

This section discusses the ways to fetch beyond the InitialLOBFetchSize
characters or bytes that are cached. The functionality has changed from Oracle
Database 10g release 2 (10.2) and later.

Obtaining Additional Data Prior to Oracle Database 10g Release 2 (10.2) With releases prior to
Oracle Database 10g release 2 (10.2), obtaining data beyond InitialLOBFetchSize
characters or bytes requires one of the following in the query select list:

= Primary key
= ROWID

s Unique columns - (defined as a set of columns on which a unique constraint has
been defined or a unique index has been created, where at least one of the columns
in the set has a NOT NULL constraint defined on it)

The requested LOB data is fetched from the database when the appropriate typed
accessor method is called on the OracleDataReader object.

To be able to fetch the entire LOB data without having a primary key column, a
ROWID, or unique columns in the select list, set the size of the
InitialLOBFetchSize property on the OracleCommand object to equal or greater
than the number of characters or bytes needed to be retrieved.

When the InitialLOBFetchSize property is set to a nonzero value, the
GetOracleBlob, GetOracleClob, GetOracleBlobForUpdate, and
GetOracleClobForUpdate typed accessor methods are disabled.

Obtaining Additional Data From Oracle Database 10g Release 2 (10.2) and Later Starting with
Oracle Database 10g release 2 (10.2), the entire LOB data is returned when a typed
accessor is invoked, regardless of the value set to the InitialLOBFetchSize
property. Primary key, ROWID, or unique columns are not required to be in the query
select list to obtain data beyond the specified InitialLOBFetchSize.

The GetOracleBlob, GetOracleClob, GetOracleBlobForUpdate, and
GetOracleClobForUpdate methods can now be invoked even if
InitialLOBFetchSize is greater than 0, starting with Oracle Database 10g release
2.

The following is a complete list of typed accessor methods that an application can call
for the CLOB and BLOB columns if InitialLOBFetchSize is set to a value greater
than 0:

m Methods callable for BLOB column
— GetBytes

— GetValue

3-44 Oracle Data Provider for .NET Developer’s Guide

Obtaining Data from an OracleDataReader Object

— GetValues
— GetOracleBinary
— GetOracleBlob
— GetOracleBlobForUpdate
— GetOracleValue
— GetOracleValues
s Methods callable for CLOB column
— GetChars
- GetString
- GetValue
— GetValues
- GetOracleString
— GetOracleClob
— GetOracleClobForUpdate
— GetOracleValue

— GetOracleValues

Setting InitialLOBFetchSize to -1

By setting InitialLOBFetchSize to -1, it is possible to fetch the entire LOB data
from the database for a select query, without requiring a primary key, ROWID, or
unique column in the select list. When InitialLOBFetchSize is set to -1, the entire
LOB column data is fetched and cached during the Read method invocations on the
OracleDataReader object. Calls to GetString, GetOracleString, GetChars,
GetBytes, or GetOracleBinary in the OracleDataReader allow retrieving all
data.

Methods Supported for InitiaLOBFetchSize of -1 This section lists supported and not
supported methods for the CLOB and BLOB data types when the
InitialLOBFetchSize property is setto -1.

Table 3-12 lists supported and not supported methods for the CLOB data types.

Table 3-12 OracleDataReader CLOB Methods

Supported Not Supported

GetChars GetOracleClob
GetString GetOracleClobForUpdate
GetValue

GetValues

GetOracleString

GetOracleValue

GetOracleValues

Table 3-13 lists supported and not supported methods for the BLOB data types.

Features of Oracle Data Provider for NET 3-45

Obtaining Data from an OracleDataReader Object

Table 3—-13 OracleDataReader BLOB Methods

Supported Not Supported

GetBytes GetOracleBlob

GetValue GetOracleBlobForUpdate
GetValues

GetOracleBinary

GetOracleValue

GetOracleValues

Performance Considerations Related to the InitialLOBFetchSize Property

This section discusses the advantages and disadvantages of the various
InitialLOBFetchSize property settings in different situations. It also discusses
ways to enhance performance, depending on which database release you are using.

Prior to Oracle Database 10g Release 2 (10.2) Setting the InitialLOBFetchSize
property to a nonzero value can improve performance in certain cases. Using the
InitialLOBFetchSize property can provide better performance than retrieving the
underlying LOB data using OracleBlob or OracleClob objects. This is true if an
application does not need to obtain OracleBlob and OracleClob objects from the
OracleDataReader object and the size of the LOB column data is not very large. The
InitialLOBFetchSize property is particularly useful in cases where the size of the
LOB column data returned by the query is approximately the same for all the rows.

It is generally recommended that the InitialL.OBFetchSize property be set to a
value larger than the size of the LOB data for more than 80% of the rows returned by
the query. For example, if the size of the LOB data is less than 1 KB in 80% of the rows,
and more than 1 MB for 20% of the rows, set the InitialLOBFetchSize property to
1KB.

See Also:

= "LOB Support" on page 3-51

s "Initial LOBFetchSize" on page 5-18

» "Initial LONGFetchSize" on page 5-19

Oracle Database 10g Release 2 (10.2) and Later An application does not have to choose
between performance and OracleBlob and OracleClob functionality. Setting the
InitialLOBFetchSize property results in a performance boost and still gives the
flexibility to use the OracleBlob and OracleClob objects.

If the size of the LOB data is unknown or if the LOB data size varies irregularly, then it
is better to leave the InitialLOBFetchSize property to its default value of 0. This
still gives better performance in most cases.

Setting the InitialLOBFetchSize property to a size equal to or greater than the
LOB data size for most rows improves performance. It is generally recommended that
the InitialLOBFetchSize property be set to a value larger than the size of the LOB
data for more than 80% of the rows returned by the query. For example, if the size of
the LOB data is less than 1 KB in 80% of the rows, and more than 1 MB for 20% of the
rows, set the InitialLOBFetchSize property to 1 KB.

3-46 Oracle Data Provider for .NET Developer’s Guide

Obtaining Data from an OracleDataReader Object

See Also:

= "LOB Support" on page 3-51

s 'Initial LOBFetchSize" on page 5-18

s "Initial LONGFetchSize" on page 5-19

Controlling the Number of Rows Fetched in One Database Round-Trip

Application performance depends on the number of rows the application needs to
fetch, and the number of database round-trips that are needed to retrieve them.

Use of FetchSize

The FetchSize property represents the total memory size in bytes that ODP.NET
allocates to cache the data fetched from a database round-trip.

The FetchSize property can be set either on the OracleCommand or the
OracleDataReader object, depending on the situation. Additionally, the
FetchSize property of the OracleCommand object is inherited by the
OracleDataReader object and can be modified.

If the FetchSize property is set on the OracleCommand object, then the newly
created OracleDataReader object inherits the FetchSize property of the
OracleCommand object. This inherited FetchSize value can be left as is, or modified
to override the inherited value. The FetchSize property of the OracleDataReader
object can be changed before the first Read method invocation, which allocates
memory specified by the FetchSize property. All subsequent fetches from the
database use the same cache allocated for that OracleDataReader object. Therefore,
changing the FetchSize value after the first Read method invocation has no effect.

Fine-Tuning FetchSize

By fine-tuning the FetchSize property, applications can control memory usage and
the number of rows fetched in one database round-trip for better performance. For
example, if a query returns 100 rows and each row takes 1024 bytes, then setting the
FetchSize property to 102400 takes just one database round-trip to fetch 100 rows.
For the same query, if the FetchSize property is set to 10240, it takes 10 database
round-trips to retrieve 100 rows. If the application requires all the rows to be fetched
from the result set, the first scenario is faster than the second. However, if the
application requires just the first 10 rows from the result set, the second scenario can
perform better because it fetches only 10 rows, not 100 rows.

Using the RowSize Property

The RowS1ize property of the OracleCommand object is populated with the row size
(in bytes) after an execution of a SELECT statement. The FetchSize property can
then be set to a value relative to the RowSize property by setting it to the result of
multiplying the RowS1ize value times the number of rows to fetch for each database
round-trip.

For example, setting the FetchSize to RowSize * 10 forces the OracleDataReader
object to fetch exactly 10 rows for each database round-trip. Note that the RowSize
value does not change due to the data length in each individual column. Instead, the
RowSize value is determined strictly from the metadata information of the database
table(s) that the SELECT statement is executed against.

The RowSize property can be used to set the FetchSize property at design time or
at runtime, as described in the following sections.

Features of Oracle Data Provider for NET 3-47

PL/SQL REF CURSOR and OracleRefCursor

Setting FetchSize Value at Design Time If the row size for a particular SELECT statement is
already known from a previous execution, the FetchSize value of the
OracleCommand object can be set at design time to the result of multiplying that row
size times the number of rows the application wishes to fetch for each database
round-trip. The FetchSize value set on the OracleCommand object is inherited by
the OracleDataReader object that is created by the ExecuteReader method
invocation on the OracleCommand object. Rather than setting the FetchSize value
on the OracleCommand object, the FetchSize value can also be set on the
OracleDataReader object directly. In either case, the FetchSize value is set at
design time, without accessing the RowSize property value at runtime.

Setting FetchSize Value at Runtime Applications that do not know the row size at design
time can use the RowSize property of the OracleCommand object to set the
FetchSize property of the OracleDataReader object. The RowSize property
provides a dynamic way of setting the FetchSize property based on the size of a
IOW.

After an OracleDataReader object is obtained by invoking the ExecuteReader
method on the OracleCommand object, the RowSize property is populated with the
size of the row (in bytes). By using the RowSize property, the application can
dynamically set the FetchSize property of the OracleDataReader object to the
product of the RowS1ize property value multiplied by the number of rows the
application wishes to fetch for each database round-trip. In this scenario, the
FetchSize property is set by accessing the RowSize property at runtime.

PL/SQL REF CURSOR and OracleRefCursor

The REF CURSOR is a data type in the Oracle PL/SQL language. It represents a cursor
or a result set in Oracle Database. The OracleRefCursor object is a corresponding
ODPNET type for the REF CURSOR type.

This section discusses the following aspects of using the REF CURSOR data type and
OracleRefCursor objects:

= Obtaining an OracleRefCursor Object

s Obtaining a REF CURSOR Data Type

= Populating an OracleDataReader from a REF CURSOR
= Populating the DataSet from a REF CURSOR

= Populating an OracleRefCursor from a REF CURSOR

» Updating a DataSet Obtained from a REF CURSOR

= Behavior of ExecuteScalar Method for REF CURSOR

= Passing a REF CURSOR to a Stored Procedure

Obtaining an OracleRefCursor Object

There are no constructors for OracleRefCursor objects. They can be acquired only
as parameter values from PL/SQL stored procedures, stored functions, or anonymous
blocks.

An OracleRefCursor object is a connected object. The connection used to execute
the command returning an OracleRefCursor object is required for its lifetime. Once
the connection associated with an OracleRefCursor object is closed, the
OracleRefCursor object cannot be used.

3-48 Oracle Data Provider for .NET Developer’s Guide

PL/SQL REF CURSOR and OracleRefCursor

Obtaining a REF CURSOR Data Type

A REF CURSOR data type can be obtained as an OracleDataReader, DataSet, or
OracleRefCursor object. If the REF CURSOR data type is obtained as an
OracleRefCursor object, it can be used to create an OracleDataReader object or
populate a DataSet from it. When accessing a REF CURSOR data type, always bind it
as an OracleDbType .RefCursor parameter.

Populating an OracleDataReader from a REF CURSOR

A REF CURSOR data type can be obtained as an OracleDataReader object by calling
the ExecuteReader method of the OracleCommand object. The output parameter
with the OracleDbType property set is bound to OracleDbType .RefCursor. None
of the output parameters of type OracleDbType .RefCursor is populated after the
ExecuteReader method is invoked.

If there are multiple output REF CURSOR parameters, use the NextResult method of
the OracleDataReader object to access the next REF CURSOR data type. The
OracleDataReader NextResult method provides sequential access to the REF
CURSOR data types; only one REF CURSOR data type can be accessed at a given time.

The order in which OracleDataReader objects are created for the corresponding
REF CURSOR data types depends on the order in which the parameters are bound. If a
PL/SQL stored function returns a REF CURSOR data type, then it becomes the first
OracleDataReader object and all the output REF CURSOR data types follow the
order in which the parameters are bound.

Populating the DataSet from a REF CURSOR

For the Fi11 method to populate the DataSet properly, the SelectCommand
property of the OracleDataAdapter class must be bound with an output parameter
of type OracleDbType .RefCursor. If the F111 method is successful, the DataSet
is populated with a DataTable that represents a REF CURSOR data type.

If the command execution returns multiple REF CURSOR data types, the DataSet is
populated with multiple DataTable objects.

With Oracle Database 11g release 1 (11.1), the extended property, REFCursorName,
has been introduced on the DataTable, to identify the REF CURSOR that populates
the DataTable.

This property is particularly useful when a DatasSet is being populated with more
than one REF CURSOR, one or more of which is Null. For example, if a DataSet is
populated by executing a stored procedure that returns three REF CURSORs and the
second REF CURSOR is NULL, the REFCursorName property value for the first
DataTable is REFCursor and for the second DataTable, REFCursor2 . No
DataTable is populated for the NULL REF CURSOR.

Populating an OracleRefCursor from a REF CURSOR

When the ExecuteNonQuery method is invoked on a command that returns one or
more REF CURSOR data types, each of the OracleCommand parameters that are bound
as an OracleDbType.RefCursor gets a reference to an OracleRefCursor object.

To create an OracleDataReader object from an OracleRefCursor object, invoke
the GetDataReader method from the OracleRefCursor object. Subsequent calls to
the GetDataReader method return a reference to the same OracleDataReader
object.

Features of Oracle Data Provider for NET 3-49

PL/SQL REF CURSOR and OracleRefCursor

To populate a DataSet with an OracleRefCursor object, the application can invoke
a Fi111 method of the OracleDataAdapter class that takes an OracleRefCursor
object. Similar to the OracleDataReader object, an OracleRefCursor object is
forward-only. Therefore, once a row is read from an OracleRefCursor object, that
same row cannot be obtained again from it unless it is populated again from a query.

When multiple REF CURSOR data types are returned from a command execution as
OracleRefCursor objects, the application can choose to create an
OracleDataReader object or populate a DataSet with a particular
OracleRefCursor object. All the OracleDataReader objects or DataSet objects
created from the OracleRefCursor objects are active at the same time, and can be
accessed in any order.

Updating a DataSet Obtained from a REF CURSOR

REF CURSOR types cannot be updated. However, data that is retrieved into a DataSet
can be updated. Therefore, the OracleDataAdapter class requires a custom SQL
statement to flush any REF CURSOR data updates to the database.

The OracleCommandBuilder object cannot be used to generate SQL statements for
REF CURSOR updates.

Behavior of ExecuteScalar Method for REF CURSOR

The ExecuteScalar method returns the value of the first column of the first row of
the REF CURSOR if it is one of the following:

m A return value of a stored function execution

» The first bind parameter of a stored procedure execution

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide for more information

Passing a REF CURSOR to a Stored Procedure

An application can retrieve a REF CURSOR type from a PL/SQL stored procedure or
function and pass it to another stored procedure or function. This feature is useful in
scenarios where a stored procedure or a function returns a REF CURSOR type to the
.NET application, and based on the application logic, the application passes this REF
CURSOR to another stored procedure for processing. Note that if you retrieve the data
from a REF CURSOR type in the .NET application, you cannot pass it back to another
stored procedure.

The following example demonstrate passing a REF CURSOR:
/*

connect scott/tigereoracle

create table test (coll number);
insert into test(coll) values (1);
commit;

create or replace package testPkg as type empCur is REF Cursor;
end testPkg;
/

create or replace procedure testSP(paraml IN testPkg.empCur, param2 OUT NUMBER)
as

begin

FETCH paraml into param2;

3-50 Oracle Data Provider for .NET Developer’s Guide

LOB Support

end;
/
*x/

/] C#

using System;
using Oracle.DataAccess.Client;
using System.Data;

class InRefCursorParameterSample

{

static void Main()

{

OracleConnection conn = new OracleConnection
("User Id=scott; Password=tiger; Data Source=oracle");

conn.Open(); // Open the connection to the database

// Command text for getting the REF Cursor as OUT parameter
String cmdTxtl = "begin open :1 for select coll from test; end;";

// Command text to pass the REF Cursor as IN parameter
String cmdTxt2 = "begin testSP (:1, :2); end;";

// Create the command object for executing cmdTxtl and cmdTxt2
OracleCommand cmd = new OracleCommand (cmdTxtl, conn);

// Bind the Ref cursor to the PL/SQL stored procedure
OracleParameter outRefPrm = cmd.Parameters.Add ("outRefPrm",
OracleDbType.RefCursor, DBNull.Value, ParameterDirection.Output) ;

cmd . ExecuteNonQuery () ; // Execute the anonymous PL/SQL block

// Reset the command object to execute another anonymous PL/SQL block
cmd. Parameters.Clear () ;
cmd. CommandText = cmdTxt2;

// REF Cursor obtained from previous execution is passed to this

// procedure as IN parameter

OracleParameter inRefPrm = cmd.Parameters.Add("inRefPrm",
OracleDbType.RefCursor, outRefPrm.Value, ParameterDirection.Input);

// Bind another Number parameter to get the REF Cursor column value
OracleParameter outNumPrm = cmd.Parameters.Add ("outNumPrm",
OracleDbType.Int32, DBNull.Value, ParameterDirection.Output) ;

cmd. ExecuteNonQuery () ; //Execute the stored procedure

// Display the out parameter value
Console.WriteLine ("out parameter is: " + outNumPrm.Value.ToString());

LOB Support

ODPNET provides an easy and optimal way to access and manipulate large object
(LOB) data types. This section includes the following topics:

Features of Oracle Data Provider for NET 3-51

LOB Support

s Large Character and Large Binary Data Types

» Oracle Data Provider for NET LOB Objects

s Updating LOBs Using a DataSet

s Updating LOBs Using OracleCommand and OracleParameter
s Updating LOBs Using ODP.NET LOB Objects

s Temporary LOBs

Large Character and Large Binary Data Types

Oracle Database supports large character and large binary data types.

Large Character Data Types
m CLOB - Character data can store up to 4 gigabytes.

= NCLOB - Unicode National character set data can store up to 4 gigabytes.

Large Binary Data Types
= BLOB - Unstructured binary data can store up to 4 gigabytes.

» BFILE - Binary data stored in external file can store up to 4 gigabytes.

Note: LONG and LONG RAW data types are made available for
backward compatibility in Oracle9i, but should not be used in new
applications.

Oracle Data Provider for .NET LOB Objects

ODP.NET provides three objects for manipulating LOB data: OracleBFile,
OracleBlob, and OracleClob.

Table 3-14 shows the proper ODP.NET object to use for a particular Oracle LOB type.

Table 3-14 ODP.NET LOB Objects

Oracle LOB Type ODP.NET LOB Object
BFILE OracleBFile

BLOB OracleBlob

CLOB OracleClob

NCLOB OracleClob

The ODP.NET LOB objects can be obtained by calling the proper typed accessor on the
OracleDataReader object, or by calling the proper typed accessor as an output
parameter on a command execution with the proper bind type.

All ODP.NET LOB objects inherit from the NET Stream class to provide generic
Stream operations. The LOB data (except for BFILE types) can be updated using the
ODP.NET LOB objects by using methods such as Write. Data is not cached in the LOB
objects when read and write operations are carried out. Therefore, each read or write
request incurs a database round-trip. The OracleClob object overloads the Read
method, providing two ways to read data from a CLOB. The Read method that takes a
byte [] as the buffer populates it with CLOB data as Unicode byte array. The Read
method that takes a char [] as the buffer populates it with Unicode characters.

3-52 Oracle Data Provider for .NET Developer’s Guide

LOB Support

Additional methods can also be found on the OracleBFile object. An OracleBFile
object must be explicitly opened using the OpenFile method before any data can be
read from it. To close a previously opened BFILE, use the CloseFile method.

Every ODP.NET LOB object is a connected object and requires a connection during its
lifetime. If the connection associated with a LOB object is closed, then the LOB object is
not usable and should be disposed of.

If an ODP.NET LOB object is obtained from an OracleDataReader object through a
typed accessor, then its Connection property is set with a reference to the same
OracleConnection object used by the OracleDataReader object. If a LOB object
is obtained as an output parameter, then its Connect ion property is set with a
reference to the same OracleConnection property used by the OracleCommand
object. If a LOB object is obtained by invoking an ODP.NET LOB object constructor to
create a temporary LOB, the Connection property is set with a reference to the
OracleConnection object provided in the constructor.

The ODP.NET LOB object Connection property is read-only and cannot be changed
during its lifetime. In addition, the ODP.NET LOB types object can be used only within
the context of the same OracleConnection referenced by the ODP.NET LOB object.
For example, the ODP.NET LOB Connection property must reference the same
connection as the OracleCommand object if the ODP.NET LOB object is a parameter of
the OracleCommand. If that is not the case, ODP.NET raises an exception when the
command is executed.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide for complete information about Oracle Database 10g LOBs
and how to use them

Updating LOBs Using a DataSet

BFILE and BLOB data are stored in the DataSet as byte arrays while CLOB and
NCLOB data are stored as strings. In a similar manner to other types, an
OracleDataAdapter object can be used to fill and update LOB data changes along
with the use of the OracleCommandBuilder object for automatically generating
SQL.

Note that an Oracle LOB column can store up to 4 GB of data. When the LOB data is
fetched into the DatagSet, the actual amount of LOB data the DataSet can hold for a
LOB column is limited to the maximum size of a .NET string type, which is 2 GB.
Therefore, when fetching LOB data that is greater than 2 GB, ODP.NET LOB objects
must be used to avoid any data loss.

Updating LOBs Using OracleCommand and OracleParameter

To update LOB columns, LOB data can be bound as a parameter for SQL statements,
anonymous PL/SQL blocks, or stored procedures. The parameter value can be set as a
NET Framework type, ODP.NET type, or as an ODP.NET LOB object type. For
example, when inserting .NET string data into a LOB column in an Oracle9i database
or later, that parameter can be bound as OracleDbType . Varchar2. For a parameter
whose value is set to an OracleClob object, the parameter should be bound as
OracleDbType.Clob.

Updating LOBs Using ODP.NET LOB Objects

Oracle BFILEs cannot be updated; therefore, OracleBFile objects do not allow
updates to BFILE columns.

Features of Oracle Data Provider for NET 3-53

ODP.NET XML Support

Two requirements must be met to update LOB data using ODP.NET LOB objects:
1. A transaction must be started before a LOB column is selected.

The transaction must be started using the BeginTransaction method on the
OracleConnection object before the command execution, so that the lock can be
released when the OracleTransaction Commit or Rollback method is
invoked.

2. The row in which the LOB column resides must be locked; as part of an entire
result set, or on a row-by-row basis.

a. Locking the entire result set

Add the FOR UPDATE clause to the end of the SELECT statement. After
execution of the command, the entire result set is locked.

b. Locking the row - there are two options:

- Invoke one of the OracleDataReader typed accessors
(GetOracleClobForUpdate or GetOracleBlobForUpdate) on the
OracleDataReader object to obtain an ODP.NET LOB object, while also
locking the current row.

This approach requires a primary key, unique column(s), or a ROWID in the
result set because the OracleDataReader object must uniquely identify
the row to re-select it for locking.

— Execute an INSERT or an UPDATE statement that returns a LOB in the
RETURNING clause.

Temporary LOBs

Temporary LOBs can be instantiated for BLOB, CLOB, and NCLOB objects. To instantiate
an ODP.NET LOB object that represents a temporary LOB, the OracleClob or the
OracleBlob constructor can be used.

Temporary ODP.NET LOB objects can be used for the following purposes:
» To initialize and populate a LOB column with empty or non-empty LOB data.

= To pass a LOB type as an input parameter to a SQL statement, an anonymous
PL/SQL block, or a stored procedure.

» To act as the source or the destination of data transfer between two LOB objects as
in the CopyTo operation.

Note: Temporary LOBs are not transaction aware. Commit and
rollback operations do not affect the data referenced by a temporary
LOB.

ODP.NET XML Support

ODP.NET allows the extraction of data from relational and object-relational tables and
views as XML documents. The use of XML documents for insert, update, and delete
operations to the database is also allowed. Oracle Database supports XML natively in
the database, through Oracle XML DB, a distinct group of technologies related to
high-performance XML storage and retrieval. Oracle XML DB is an evolution of the
database that encompasses both SQL and XML data models in a highly interoperable
mannet, providing native XML support.

3-54 Oracle Data Provider for .NET Developer’s Guide

ODP.NET XML Support

For samples related to ODP.NET XML support, see the following directory:

ORACLE BASE\ORACLE HOME\ODP.NET\Samples

This section includes these topics:

Supported XML Features

OracleXmlType and Connection Dependency

Updating XMLType Data in the Database

Updating XML Data in OracleXmlType

Characters with Special Meaning in XML

Retrieving Query Result Set as XML

Data Manipulation Using XML

Supported XML Features
XML support in ODP.NET provides the ability to do the following:

Store XML data natively in the database as the Oracle database native type,
XMLType.

Access relational and object-relational data as XML data from an Oracle Database
instance into the Microsoft NET environment, and process the XML using the
Microsoft .NET Framework.

Save changes to the database using XML data.

Execute XQuery statements.

See Also: "XQuery Support” on page 3-56

For the .NET application developer, these features include the following:

Enhancements to the OracleCommand, OracleConnection, and
OracleDataReader classes.

The following XML-specific classes:

OracleXmlType
OracleXmlType objects are used to retrieve Oracle native XMLType data.
OracleXmlStream

OracleXmlStream objects are used to retrieve XML data from
OracleXmlType objects as a read-only .NET Stream object.

OracleXmlQueryProperties

OracleXmlQueryProperties objects represent the XML properties used by
the OracleCommand class when the Xm1lCommandType property is Query.

OracleXmlSaveProperties

OracleXmlSaveProperties objects represent the XML properties used by
the OracleCommand class when the XmlCommandType property is Insert,
Update, or Delete.

Features of Oracle Data Provider for NET 3-55

ODP.NET XML Support

See Also:

s "OracleCommand Class" on page 5-2

s "OracleXmlType Class" on page 6-37

s "OracleXmlStream Class" on page 6-23

s "OracleXmlQueryProperties Class" on page 6-3
s "OracleXmlSaveProperties Class" on page 6-13
» Oracle XML DB Developer’s Guide

XQuery Support

Beginning with Oracle Database 10g release 2(10.2), ODP.NET supports the XQuery
language through a native implementation of SQL /XML functions, XMLQuery and
XMLTable. When executing XQuery statements, Oracle XML DB generally evaluates
XQuery expressions by compiling them into the same underlying structures as
relational queries. Queries are optimized, leveraging both relational-database and
XQuery-specific optimization technologies, so that Oracle XML DB serves as a native
XQuery engine.

The treatment of all XQuery expressions, whether natively compiled or evaluated
functionally, is transparent: programmers do not need to change their code to take
advantage of XQuery optimizations.

See Also: Oracle XML DB Developer’s Guide to learn more about
Oracle's XQuery support

OracleXmlIType and Connection Dependency

The read-only Connection property of the OracleXmlType class holds a reference
to the OracleConnection object used to instantiate the OracleXmlType class.

How the OracleXmlType object obtains a reference to an OracleConnection object
depends on how the OracleXmlType class is instantiated:

» Instantiated from an OracleDataReader class using the GetOracleXmlType,
GetOracleValue, or GetOracleValues method:

The Connection property is set with a reference to the same
OracleConnection object used by the OracleDataReader object.

= Instantiated by invoking an OracleXmlType constructor with one of the
parameters of type OracleConnection:

The Connection property is set with a reference to the same
OracleConnection object provided in the constructor.

» Instantiated by invoking an OracleXmlType (OracleClob) constructor:

The Connection property is set with a reference to the OracleConnection
object used by the OracleClob object.

An OracleXmlType object that is associated with one connection cannot be used with
a different connection. For example, if an OracleXmlType object is obtained using
OracleConnection A, that OracleXmlType object cannot be used as an input
parameter of a command that uses OracleConnection B. By checking the
Connection property of the OracleXmlType objects, the application can ensure that
OracleXmlType objects are used only within the context of the OracleConnection
referenced by its connection property. Otherwise, ODP.NET raises an exception.

3-56 Oracle Data Provider for .NET Developer’s Guide

ODP.NET XML Support

Updating XMLType Data in the Database

Updating XMLType columns does not require a transaction. However, encapsulating
the entire database update process within a transaction is highly recommended. This
allows the updates to be rolled back if there are any errors.

XMLType columns in the database can be updated using Oracle Data Provider for
NET in a few ways:

s Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder

s Updating with OracleCommand and OracleParameter

Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder

If the XMLType column is fetched into the DatasSet, the XMLType data is represented
asa .NET String.

Modifying XMLType data in the DataSet does not require special treatment.
XMLType data can be modified in the same way as any data that is stored in the
DataSet. When a change is made and the OracleDataAdapter.Update method is
invoked, the OracleDataAdapter object ensures that the XMLType data is handled
properly. The OracleDataAdapter object uses any custom SQL INSERT, UPDATE, or
DELETE statements that are provided. Otherwise, valid SQL statements are generated
by the OracleCommandBuilder object as needed to flush the changes to the
database.

Updating with OracleCommand and OracleParameter

The OracleCommand class provides a powerful way of updating XMLType data,
especially with the use of an OracleParameter object. To update columns in a
database table, the new value for the column can be passed as an input parameter of a
command.

Input Binding To update an XMLType column in the database, a SQL statement can be
executed using static values. In addition, input parameters can be bound to SQL
statements, anonymous PL/SQL blocks, or stored procedures to update XMLType
columns. The parameter value can be set as .NET Framework Types, ODP.NET Types,
or OracleXmlType objects.

While XMLType columns can be updated using an OracleXmlType object, having an
instance of an OracleXmlType class does not guarantee that the XMLType column in
the database can be updated.

Setting XMLType Column to NULL Value Applications can set an XMLType column in the
database to a NULL value, with or without input binding, as follows:
» Setting NULL values in an XMLType column with input binding

To set the XMLType column to NULL, the application can bind an input parameter
whose value is DBNull.Value. This indicates to the OracleCommand object that a
NULL value is to be inserted.

Passing in a null OracleXmlType object as an input parameter does not insert a
NULL value into the XMLType column. In this case, the OracleCommand object
raises an exception.

» Setting NULL Values in an XMLType Column without input binding

The following example demonstrates setting NULL values in an XMLType column
without input binding:

Features of Oracle Data Provider for NET 3-57

ODP.NET XML Support

// Create a table with an XMLType column in the database
CREATE TABLE XML_TABLE(NUM_COL number, XMLTYPE COL xmltype) ;

An application can set a NULL value in the XMLType column by explicitly inserting
a NULL value or by not inserting anything into that column as in the following
examples:

insert into xml table(xmltype col) values (NULL);

update xml_table t set t.xmltype_ col=NULL;

Setting XMLType Column to Empty XML Data The XMLType column can be initialized with
empty XML data, using a SQL statement:

// Create a table with an XMLType column in the database
CREATE TABLE XML TABLE (NUM_COL number, XMLTYPE COL xmltype);

INSERT INTO XML_TABLE (NUM_COL, XMLTYPE_COL) VALUES (4,
XMLType.createxml ('<DOC/>"')) ;

Updating XML Data in OracleXmiIType

The following are ways that XML data can be updated in an OracleXmlType object.

s The XML data can be updated by passing an XPATH expression and the new
value to the Update method on the OracleXmlType object.

s The XML data can be retrieved on the client side as the INET Framework
XmlDocument object using the GetXmlDocument method on the
OracleXmlType object. This XML data can then be manipulated using suitable
.NET Framework classes. A new OracleXmlType can be created with the
updated XML data from the .NET Framework classes. This new OracleXmlType
is bound as an input parameter to an update or insert statement.

Characters with Special Meaning in XML

The following characters in Table 3-15 have special meaning in XML. For more
information, refer to the XML 1.0 specifications

Table 3-15 Characters with Special Meaning in XML

Character Meaning in XML Entity Encoding
< Begins an XML tag <

> Ends an XML tag >

" Quotation mark "

' Apostrophe or single '

quotation mark

& Ampersand &

When these characters appear as data in an XML element, they are replaced with their
equivalent entity encoding.

Also certain characters are not valid in XML element names. When SQL identifiers
(such as column names) are mapped to XML element names, these characters are
converted to a sequence of hexadecimal digits, derived from the Unicode encoding of

3-58 Oracle Data Provider for .NET Developer’s Guide

ODP.NET XML Support

the character, bracketed by an introductory underscore, a lowercase x and a trailing
underscore. A blank space is not a valid character in an XML element name. If a SQL
identifier contains a space character, then in the corresponding XML element name,
the space character is replaced by _x0020_, which is based on Unicode encoding of
the space character.

Retrieving Query Result Set as XML

This section discusses retrieving the result set from a SQL query as XML data.

Handling Date and Time Format

Table 3-16 lists the date and time format handling when retrieving data, for different
database releases.

Table 3-16 Date and Time Format Handling When Retrieving Data

Database Release Date and Time Format Supported

Oracle%i release 2 (9.2.x) and Oracle DATE type data is retrieved in the format specified using
Oracle Database 10g the NLS_DATE_FORMAT in the session.

TIMESTAMP and TIMESTAMP WITH TIME ZONE type data is
retrieved in the format specified using the NL.S_TIMESTAMP
FORMAT and the NLS_TIMESTAMP_TZ_ FORMAT in the session.

If the result XML document is used to save changes back to the
database, then all DATE and TIMESTAMP data must be retrieved
in the XML document as the following ISO Date and Time
Format: YYYY-MM-DDThh:mm: ss. sss (ISO Format notation).

To do this, before the query is executed, the application must
explicitly perform an ALTER SESSION statement on the session
for the following NLS session parameters:

= NLS_DATE_FORMAT - Must be set to the following Oracle
Date and Time Format: YYYY-MM-DD"T"HH24 :MI:SS

= NLS_TIMESTAMP_ FORMAT - Must be set to the following
Oracle Date and Time Format:
YYYY-MM-DD"T"HH24 :MI:SS.FF3

] NLS TIMESTAMP_ TZ FORMAT - Must be set to the
following Oracle Date and Time Format:
YYYY-MM-DD"T"HH24 :MI:SS.FF3

Oracle Database 10g release The generated XML DATE and TIMESTAMP formats are based on
2 (10.2) or later the standard XML Schema formats.

For more information on the XML Schema specification, see

http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041
028/datatypes.html#isoformats

Characters with Special Meaning in Column Data

If the data in any of the select list columns in the query contains any characters with
special meaning in XML (see Table 3-15), these characters are replaced with their
corresponding entity encoding in the result XML document.

The following examples demonstrate how ODP.NET handles the angle bracket
characters in the column data:

/* Database Setup

connect scott/tigereoracle

drop table specialchars;

create table specialchars ("id" number, name varchar2(255));
insert into specialchars values (1, '<Jones>');

Features of Oracle Data Provider for NET 3-59

ODP.NET XML Support

commit;

*/
/] c#

using System;

using System.Data;

using System.Xml;

using Oracle.DataAccess.Client;

class QueryResultAsXMLSample

{

static void Main()

{

OracleConnection con = new OracleConnection() ;

con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
con.Open () ;

// Create the command
OracleCommand cmd = new OracleCommand("", con);

// Set the XML command type to query.
cmd. XmlCommandType = OracleXmlCommandType.Query;

// Set the SQL query
cmd. CommandText = "select * from specialchars";

// Set command properties that affect XML query behavior.
cmd.BindByName = true;

// Set the XML query properties
cmd . XmlQueryProperties.MaxRows = -1;

// Get the XML document as an XmlReader.
XmlReader xmlReader = cmd.ExecuteXmlReader () ;
XmlDocument xmlDocument = new XmlDocument () ;

xmlDocument . PreserveWhitespace = true;
xmlDocument .Load (xmlReader) ;
Console.WriteLine (xmlDocument .OuterXml) ;

// Close and Dispose OracleConnection object
con.Close () ;
con.Dispose() ;
}
}

The following XML document is generated for that table: The XML entity encoding
that represents the angle brackets appears in bold.

<?xml version = '1.0'?>
<ROWSET>
<ROW>
<id>1</id >
<NAME>&1t;Jones> </NAME>
</ROW>
</ROWSET>

3-60 Oracle Data Provider for .NET Developer’s Guide

ODP.NET XML Support

Characters in Table or View Name

If a table or view name has any non-alphanumeric characters other than an underscore
(L), the table or view name must be enclosed in quotation marks.

For example, to select all entries from a table with the name test'ing, the
CommandText property of the OracleCommand object must be set to the following
string:

"gelect * from \"test'ing\" ",

Case-Sensitivity in Column Name to XML Element Name Mapping

The mapping of SQL identifiers (column names) to XML element names is case-
sensitive, and the element names are in exactly the same case as the column names of
the table or view.

However, the root tag and row tag names are case-insensitive. The following example
demonstrates case-sensitivity in this situation:

//Create the following table
create table casesensitive table ("Id" number, NAME varchar2(255));

//insert name and id
insert into casesensitive table values(l, 'Smith');

The following XML document is generated:

<?xml version = '1.0'?>
<ROWSET>
<ROW>
<Id>1</Id>
<NAME>Smith</NAME>
</ROW>
</ROWSET>

Note that the element name for the Id column matches the case of the column name.

Column Name to XML Element Name Mapping

For each row generated by the SQL query, the SQL identifier (column name) maps to
an XML element in the generated XML document, as shown in the following example:

// Create the following table

create table emp table (EMPLOYEE ID NUMBER(4), LAST NAME varchar2(25));
// Insert some data

insert into emp table values (205, 'Higgins');

The SQL query, SELECT * FROM EMP_ TABLE, generates the following XML document:

<?XML version="1.0"?>
<ROWSET>
<ROW>
<EMPLOYEE_ID>205</EMPLOYEE_ID>
<LAST_NAME>HigginS</LAST_NAME>
</ROW>
</ROWSET>

The EMPLOYEE_ID and LAST NAME database columns of the employees table map
to the EMPLOYEE_ID and LAST NAME elements of the generated XML document.

This section demonstrates how Oracle database handles the mapping of SQL
identifiers to XML element names, when retrieving query results as XML from the

Features of Oracle Data Provider for NET 3-61

ODP.NET XML Support

database. The demonstration uses the specialchars table involving the some id
column.

// Create the specialchars table
create table specialchars ("some id" number, name varchar2 (255));

Note that the specialchars table has a column named some id that contains a
blank space character. The space character is not allowed in an XML element name.

When retrieving the query results as XML, the SQL identifiers in the query select list
can contain characters that are not valid in XML element names. When these SQL
identifiers (such as column names) are mapped to XML element names, each of these
characters is converted to a sequence of hexadecimal digits, derived from the Unicode
encoding of the characters, bracketed by an introductory underscore, a lowercase x,
and a trailing underscore.

Thus, the SQL query in the following example can be used to get a result as an XML
document from the specialchars table:

select "some id", name from specialchars;

See Also: "Characters with Special Meaning in XML" on
page 3-58

Improving Default Mapping You can improve the default mapping of SQL identifiers to
XML element names by using the following techniques:

= Modify the source. Create an object-relational view over the source schema, and
make that view the new source.

= Use cursor subqueries and cast-multiset constructs in the SQL query.

s Create an alias for the column or attribute names in the SQL query. Prefix the
aliases with an at sign (@) to map them to XML attributes instead of XML
elements.

= Modify the XML document. Use Extensible Stylesheet Language Transformation
(XSLT) to transform the XML document. Specify the XSL document and
parameters. The transformation is done automatically after the XML document is
generated from the relational data. Note that this may have an impact on
performance.

= Specify the name of the root tag and row tag used in the XML document.

Object-Relational Data

ODP.NET can generate an XML document for data stored in object-relational columns,
tables, and views, as shown in the following example:

// Create the following tables and types
CREATE TYPE "EmployeeType" AS OBJECT (EMPNO NUMBER, ENAME VARCHAR2 (20));
/
CREATE TYPE EmployeeListType AS TABLE OF "EmployeeType";
/
CREATE TABLE mydept (DEPTNO NUMBER, DEPTNAME VARCHAR2 (20),
EMPLIST EmployeeListType)
NESTED TABLE EMPLIST STORE AS EMPLIST TABLE;
INSERT INTO mydept VALUES (1, 'depta',
EmployeeListType ("EmployeeType" (1, 'empa')));

The following XML document is generated for the table:

3-62 Oracle Data Provider for .NET Developer’s Guide

ODP.NET XML Support

<?xml version = "1.0"?>
<ROWSET>
<ROW>
<DEPTNO>1</DEPTNO>
<DEPTNAME>depta</DEPTNAME>
<EMPLIST>
<EmployeeType>
<EMPNO>1</EMPNO>
<ENAME >empa< /ENAME >
</EmployeeType>
</EMPLIST>
</ROW>
</ROWSET>

ODP.NET encloses each item in a collection element, with the database type name of
the element in the collection. The mydept table has a collection in the EMPLIST
database column and each item in the collection is of type EmployeeType. Therefore,
in the XML document, each item in the collection is enclosed in the type name
EmployeeType, which appears in bold in the example.

NULL Values

If any database row has a column with a NULL value, then that column does not
appear for that row in the generated XML document.

Data Manipulation Using XML

This section discusses making changes to the database data using XML.

Handling Date and Time Format

Table 3-17 lists the date and time format handling when saving data, for different
database releases.

Table 3-17 Date and Time Format Handling When Saving Data

Database Release Date and Time Format Supported

Oracle9i release 2 (9.2.x) and All DATE, TIMESTAMP, and TIMESTAMP WITH TIME ZONE type

Oracle Database 10g data must be specified in the XML document in the ISO Date
and Time Format YYYY-MM-DDThh:mm: ss. sss (ISO Format
notation).

The following string is the ISO Date and Time Format notation
represented in the Oracle Date and Time Format notation:
YYYY-MM-DD"T"HH24 :MI:SS.FF3.

In addition to using the ISO Format notation in the XML
document, before the save is executed, the application must
explicitly perform an ALTER SESSTION command on the session
for the following NLS session parameters:

= NLS_DATE_FORMAT - Must be set to the following Oracle
Date and Time Format: YYYY-MM-DD"T"HH24 :MI: SS

= NLS TIMESTAMP FORMAT - Must be set to the following
Oracle Date and Time Format:
YYYY-MM-DD"T"HH24 :MI:SS.FF3

= NLS_TIMESTAMP TZ_ FORMAT - Must be set to the
following Oracle Date and Time Format:
YYYY-MM-DD"T"HH24 :MI:SS.FF3

Features of Oracle Data Provider for NET 3-63

ODP.NET XML Support

Table 3-17 (Cont.) Date and Time Format Handling When Saving Data

Database Release Date and Time Format Supported

Oracle Database 10g release The generated XML DATE and TIMESTAMP formats are based on
2 (10.2) or later the standard XML Schema formats.

For more information on the XML Schema specification, see

http://www.w3.0org/TR/2004/REC-xmlschema-2-20041
028/datatypes.html#isoformats

Saving Changes Using XML

Changes can be saved to database tables and views using XML data. However, insert,
update, and delete operations cannot be combined in a single XML document.
ODP.NET cannot accept a single XML document and determine which are insert,
update, or delete changes.

The insert change must be in an XML document containing only rows to be inserted,
the update changes only with rows to be updated, and the delete changes only with
rows to be deleted.

For example, using the employees table that comes with the HR sample schema, you
can specify the following query:

select employee id, last name from employees where employee id = 205;

The following XML document is generated:

<?xml version = '1.0'?>
<ROWSET>
<ROW>
<EMPLOYEE_ID>205</EMPLOYEE_ID>
<LAST_NAME>HigginS</LAST_NAME>
</ROW>
</ROWSET>

To change the name of employee 205 from Higgins to Smith, specify the
employees table and the XML data containing the changes as follows:

<?xml version = '1.0'?>
<ROWSET>
<ROW>
<EMPLOYEE_ID>205</EMPLOYEE_ID>
<LAST NAME>Smith</LAST NAME>
</ROW>
</ROWSET>

Characters with Special Meaning in Column Data

If the data in any of the elements in the XML document contains characters that have a
special meaning in XML (see Table 3-15), these characters must be replaced with
appropriate entity encoding, or be preceded by an escape character in the XML
document, so that the data is stored correctly in the database table column. Otherwise,
ODPNET throws an exception.

The following example demonstrates how ODP.NET handles the angle bracket special
characters in the column data, using entity encoding:

// Create the following table
create table specialchars ("id" number, name varchar2(255));

3-64 Oracle Data Provider for .NET Developer’s Guide

ODP.NET XML Support

The following XML document can be used to insert values (1, '<Jones>') into the
specialchars table. The XML entity encoding that represents the angle brackets
appears in bold.

<?xml version = '1.0'?>
<ROWSET>
<ROW>
<id>1</id >
<NAME>&1t; Jones> </NAME>
</ROW>
</ROWSET>

Characters with Special Meaning in Table or View Name

If a table or view name has any non-alphanumeric characters other than an underscore
(L), the table or view name must be enclosed in quotation marks.

For example, to save changes to a table with the name test 'ing, the
OracleCommand.XmlSaveProperties.TableName property must be set to
n \ "tegt! 1ng\ LRL

Case-Sensitivity in XML Element Name to Column Name Mapping

For each XML element that represents a row of data in the XML document, the child
XML elements map to database column names. The mapping of the child element
name to the column name is always case-sensitive, but the root tag and row tag names
are case-insensitive. The following example demonstrates this case-sensitivity:

//Create the following table
create table casesensitive table ("Id" number, NAME varchar2(255));

The following XML document can be used to insert values (1, Smith) into the
casesensitive_table:

<?xml version = '1.0'?>
<ROWSET>
<ROW>
<Id>1</Id>
<NAME>Smith</NAME>
</ROW>
</ROWSET>

Note that the element name for the Id column matches the case of the column name.

XML Element Name to Column Name Mapping

This section describes how Oracle database handles the mapping of XML element
names to column names when using XML for data manipulation in the database. The
following specialchars table involving the some id column demonstrates this
handling.

// Create the specialchars table
create table specialchars ("some id" number, name varchar2 (255));

Note that the specialchars table has a column named some id that contains a
blank space character. The space character is not allowed in an XML element name.

Features of Oracle Data Provider for NET 3-65

ODP.NET XML Support

Saving Changes to a Table Using an XML Document

When an XML document is used to save changes to a table or view, the
OracleCommand.XmlSaveProperties.UpdateColumnsList property is used to
specify the list of columns to update or insert.

When an XML document is used to save changes to a column in a table or view, and
the corresponding column name contains any of the characters that are not valid in an
XML element name, the escaped column name must be specified in the
UpdateColumnsList property as in the following example.

The following XML document can be used to insert values (2, <Jones>) into the
specialchars table:

<?xml version = '1.0'?>
<ROWSET>
<ROW>
<some_x0020_id>2</some_x0020_id>
<NAME>&1t ; Jones> ; </NAME>
</ROW>
</ROWSET>

The following example specifies the list of columns to update or insert:

/* Database Setup

connect scott/tigereoracle

drop table specialchars;

create table specialchars ("some id" number, name varchar2 (255));
insert into specialchars values (1, '<Jones>');

commit;

*/
/] C#

using System;

using System.Data;

using System.Xml;

using Oracle.DataAccess.Client;

class InsertUsingXmlDocSample

{

static void Main()

{

OracleConnection con = new OracleConnection();

con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
con.Open () ;
Console.WriteLine ("Connected Successfully");

// Create the command
OracleCommand cmd = new OracleCommand("", con);

// Set the XML command type to query.
cmd . XmlCommandType = OracleXmlCommandType.Insert;

// Set the XML document

cmd. CommandText = "<?xml version = '1.0'?>\n" + "<ROWSET>\n" + "<ROW>\n" +
"<some x0020_ id>2</some x0020_id>\n" + "<NAME><Jones></NAME>\n" +
"</ROW>\n" + "</ROWSET>\n";

cmd.XmlSaveProperties.Table = "specialchars";

string[] ucols = new stringl[2];

3-66 Oracle Data Provider for .NET Developer’s Guide

Database Change Notification Support

ucols[0] = "some x0020_ id";
ucols[1l] = "NAME";
cmd . XmlSaveProperties.UpdateColumnsList = ucols;

// Insert rows
int rows = cmd.ExecuteNonQuery () ;

Console.WriteLine ("Number of rows inserted successfully : {0} ", rows);

// Close and Dispose OracleConnection object
con.Close () ;
con.Dispose() ;

}
}

Improving Default Mapping You can improve the default mapping by using the following
techniques:

= Modify the target. Create an object-relational view over the target schema, and
make the view the new target.

= Modify the XML document. Use XSLT to transform the XML document. Specify
the XSL document and parameters. The transformation is done before the changes
are saved. Note that this is may have an impact on performance.

= Specify the name of the row tag used in the XML document.

Object-Relational Data
Changes in an XML document can also be saved to object-relational data. Each item in
a collection can be specified in one of the following ways in the XML document:

= By enclosing the database type name of the item as the XML element name.

= By enclosing the name of the database column holding the collection with
_ITEM appended as the XML element name.

Multiple Tables

Oracle Database does not save changes to multiple relational tables that have been
joined together. Oracle recommends that you create a view on those relational tables,
and then update that view. If the view cannot be updated, triggers can be used instead.

See Also: Oracle Database SQL Language Reference for the
description and syntax of the CREATE VIEW statement

Commit Transactions

When the changes in an XML document are made, either all the changes are
committed, or if an error occurs, all changes are rolled back.

Database Change Notification Support

Oracle Data Provider for .NET provides a notification framework that supports
Continuous Query Notification, enabling applications to receive notifications when
there is a change in a query result set, schema objects, or the state of the database.
Using Continuous Query Notification, an application can maintain the validity of the
client-side cache (for example, the ADO.NET DataSet) easily.

Features of Oracle Data Provider for NET 3-67

Database Change Notification Support

Note: The ODPNET Database Change Notification feature uses the
Continuous Query Notification feature in the Oracle database.

Note: Database Change Notification is not supported in a NET
stored procedure.

Using the notification framework, applications can specify a query result set as a
registered query for notification request on the database, and create this notification
registration to maintain the validity of the query result set. When there is a change on
the database that could affect the client-side cache's query results, the notification
framework notifies the application.

Note: The content of a change notification is referred to as an
invalidation message. It indicates that the query result set is now invalid
and provides information about the changes.

Based on the information provided by the invalidation message, the application can
then act accordingly. For example, the application might need to refresh its own copy
of the data for the registered query that is stored locally in the application.

Note: If a registered object is dropped from the database and a new
one is created with the same name in the same schema, re-registration
is required to receive notifications for the newly created object.

See Also: Oracle Database Advanced Application Developer’s Guide for
further information on Continuous Query Notification

By default, Windows Vista and Windows XP Service Pack 2 and higher enable the
Windows Firewall to block virtually all TCP network ports to incoming connections.
Therefore, for Continuous Query Notification to work properly on these operating
systems, the Windows Firewall must be configured properly to allow specific
executables to open specific ports.

See Also: Oracle Database Platform Guide for Windows for details on
configuring the Windows Firewall

Beginning with Oracle Database 11g and ODP.NET 11g (11.1), Database Change
Notification queries can be query-based (default) or object-based. The query-based
registrations allow ODP.NET to notify applications when the selected rows have
changed in the database. The object-based registrations allow ODP.NET to notify
applications for any changes that occur in the table(s) containing the selected rows.

Query-based notifications are supported only when all the following are true:
1. The Oracle database version is at least 11.1.

2. The select list contains no other column data types other than VARCHAR2 and
NUMBER.

3. The COMPATIBLE initialization parameter of the database is set to at least 11.0.0
and Automatic Undo Management (AUM) is enabled (the default).

3-68 Oracle Data Provider for .NET Developer’s Guide

Database Change Notification Support

If 1) is not met, the notification is registered as object-based for backward
compatibility.

If 2) and other documented restrictions are not met, the notification is registered as
object-based since ODP.NET uses the best-effort mode.

If 3) is not met, an error is returned upon registration.

For further details on the requirements for query-based change notification, please
read the chapter "Using Continuous Query Notification" in Oracle Database Advanced
Application Developer’s Guide.

This section contains the following topics:

Database Change Notification Classes
Supported Operations

Requirements of Notification Registration
Using Database Change Notification

Best Practice Guidelines and Performance Considerations

Database Change Notification Classes

The following classes are associated with Continuous Query Notification Support:

OracleDependency

Represents a dependency between an application and an Oracle database based on
the database events which the application is interested in. It contains information
about the dependency and provides the mechanism to notify the application when
specified database events occurs. The OracleDependency class is also
responsible for creating the notification listener to listen for database notifications.
There is only one database notification listener for each application domain. This
notification listener terminates when the application process terminates.

The dependency between the application and the database is not established when
the OracleDependency object is created. The dependency is established when
the command that is associated with this OracleDependency object is executed.
That command execution creates a database change notification registration in the
database.

When a change has occurred in the database, the HasChanges property of the
OracleDependency object is set to true. Furthermore, if an event handler was
registered with the OnChange event of the OracleDependency object, the
registered event handler function will be invoked.

OracleNotificationRequest

Represents a notification request to be registered in the database. It contains
information about the request and the properties of the notification.

OracleNotificationEventArgs

Represents the invalidation message generated for a notification when a specified
database event occurs and contains details about that database event.

Features of Oracle Data Provider for NET 3-69

Database Change Notification Support

See Also:

s "OracleDependency Class" on page 8-2

s "OracleNotificationRequest Class" on page 8-21

= "OracleNotificationEventArgs Class" on page 8-28

Supported Operations

The ODP.NET notification framework in conjunction with Continuous Query
Notification supports the following activities:

Creating a notification registration by:

- Creating an OracleDependency instance and binding it to an
OracleCommand instance.

Grouping multiple notification requests into one registration by:
— Using the OracleDependency . AddCommandDependency method.

- Setting the OracleCommand.Notification request using the same
OracleNotificationRequest instance.

Registering for database change notification by:

- Executing the OracleCommand. If either the notification property is null or
NotificationAutoEnlist is false, the notification will not be made.

Removing notification registration by:
- Using the OracleDependency.RemoveRegistration method.

- Setting the Timeout property in the OracleNotificationRequest
instance before the registration is created.

- Setting the IsNotifiedOnce property to true in the
OracleNotificationRequest instance before the registration is created.
The registration is removed once a database notification is sent.

Ensuring Change Notification Persistence by:

- Specifying whether or not the invalidation message is queued persistently in
the database before delivery. If an invalidation message is to be stored
persistently in the database, then the change notification is guaranteed to be
sent. If an invalidation message is stored in an in-memory queue, the change
notification can be received faster, however, it could be lost upon database
shutdown or crashes.

Retrieving notification information including:

— The changed object name.

— The schema name of the changed object.

— Database events that cause the notification, such as insert, delete, and so on.
— The RowID of the modified object row.

In Oracle SQL, the ROWIDTOCHAR (ROWID) and ROWIDTONCHAR (ROWID)
functions convert a ROWID value to VARCHAR2 and NVARCHAR data types,
respectively.

If these functions are used within a SQL statement, ROWIDs are not returned in
the OracleNotificationEventArgs object that is passed to the database
change notification callback.

3-70 Oracle Data Provider for .NET Developer’s Guide

Database Change Notification Support

s Defining the listener port number.

By default, the static OracleDependency . Port property is set to -1. This
indicates that the ODP.NET listens on a port that is randomly picked when
ODP.NET registers a database change notification request for the first time during
the execution of an application.

ODP.NET creates only one listener that listens on one port within an application
domain. Once ODP.NET starts the listener, the port number cannot be changed;
Changes to the static OracleDependency . Port property will generate an error
if a listener has already been created.

See Also:

s "OracleCommand Class" on page 5-2

= "Notification" on page 5-20

= "NotificationAutoEnlist" on page 5-21

= "OracleDependency Class" on page 8-2

= "OracleNotificationEventArgs Class" on page 8-28

Requirements of Notification Registration

The connected user must have the CHANGE NOTIFICATION privilege to create a
notification registration.

This SQL statement grants the CHANGE NOTIFICATION privilege:

grant change notification to user name

This SQL statement revokes the CHANGE NOTIFICATION privilege:

revoke change notification from user name

Using Database Change Notification

This section describes what the application should do, and the flow of the process,
when an application uses Continuous Query Notification to receive notifications for
any changes in the registered query result set.

Application Steps
The application should do the following:

1. Create an OracleDependency instance.

2. Assign an event handler to the OracleDependency . OnChange event property if
the application wishes to have an event handler invoked when database changes
are detected. Otherwise, the application can choose to poll on the HasChanges
property of the OracleDependency object. This event handler is invoked when
the change notification is received.

3. Set the port number for the listener to listen on. The application can specify the
port number for one notification listener to listen on. If the application does not
specify a port number, a random one is used by the listener.

4. Bind the OracleDependency instance to an OracleCommand instance that
contains the actual query to be executed. Internally, the Continuous Query

Features of Oracle Data Provider for NET 3-71

Database Change Notification Support

Notification request (an OracleNotificationRequest instance) is created and
assigned to the OracleCommand.Notification property.

Flow of Notification Process

1. When the command associated with the notification request is executed, the
notification registration is created in the database. The command execution must
return a result set, or contain one or more REF cursors for a PL/SQL stored
procedure.

2. ODPNET starts the application listener on the first successful notification
registration.

3. When a change related to the registration occurs in the database, the application is
notified through the event delegate assigned to the
OracleDependency.OnChange event property, or the application can poll the
OracleDependency .HasChanges property.

The following example demonstrates the database change notification feature.

// Database Setup

// NOTE: unless the following SQL command is executed,
// ORA-29972 will be obtained from running this sample
/*

grant change notification to scott;

*/

using System;

using System.Threading;

using System.Data;

using Oracle.DataAccess.Client;

using Oracle.DataAccess.Types;

//This sample shows the database change notification feature in ODP.NET.
//Application specifies to get a notification when emp table is updated.
//When emp table is updated, the application will get a notification
//through an event handler.

namespace NotificationSample

{

public class MyNotificationSample

{

public static bool IsNotified = false;

public static void Main(string[] args)

{
//To Run this sample, make sure that the change notification privilege
//is granted to scott.
string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = null;
OracleDependency dep = null;

try

{

con = new OracleConnection (constr) ;
OracleCommand cmd = new OracleCommand ("select * from emp", con);
con.Open() ;

// Set the port number for the listener to listen for the notification
// request
OracleDependency.Port = 1005;

// Create an OracleDependency instance and bind it to an OracleCommand

3-72 Oracle Data Provider for .NET Developer’s Guide

Database Change Notification Support

// instance.

// When an OracleDependency instance is bound to an OracleCommand

// instance, an OracleNotificationRequest is created and is set in the
// OracleCommand's Notification property. This indicates subsequent

// execution of command will register the notification.

// By default, the notification request is using the Database Change
// Notification.

dep = new OracleDependency (cmd) ;

// Add the event handler to handle the notification. The
// OnMyNotification method will be invoked when a notification message
// is received from the database
dep.OnChange +=
new OnChangeEventHandler (MyNotificationSample.OnMyNotificaton) ;

// The notification registration is created and the query result sets
// associated with the command can be invalidated when there is a

// change. When the first notification registration occurs, the

// notification listener is started and the listener port number

// will be 1005.

cmd . ExecuteNonQuery () ;

// Updating emp table so that a notification can be received when
// the emp table is updated.
// Start a transaction to update emp table
OracleTransaction txn = con.BeginTransaction();
// Create a new command which will update emp table
string updateCmdText =

"update emp set sal = sal + 10 where empno = 7782";
OracleCommand updateCmd = new OracleCommand (updateCmdText, con);
// Update the emp table
updateCmd. ExecuteNonQuery () ;
//When the transaction is committed, a notification will be sent from
//the database
txn.Commit () ;

)

catch (Exception e)

{

Console.WriteLine (e.Message) ;

}

con.Close() ;
// Loop while waiting for notification
while (MyNotificationSample.IsNotified == false)
{
Thread.Sleep(100) ;
}
}

public static void OnMyNotificaton(object src,
OracleNotificationEventArgs arg)

{
Console.WriteLine ("Notification Received");
DataTable changeDetails = arg.Details;
Console.WriteLine ("Data has changed in {0}",

changeDetails.Rows [0] ["ResourceName"]) ;

MyNotificationSample.IsNotified = true;

Features of Oracle Data Provider for NET 3-73

OracleDataAdapter Safe Type Mapping

Best Practice Guidelines and Performance Considerations

This section provides guidelines for working with Continuous Query Notification and
the ODP.NET notification framework, and discusses the performance impacts.

Every change notification registration consumes database memory, storage or network
resources, or some combination thereof. The resource consumption further depends on
the volume and size of the invalidation message. In order to scale well with a large
number of mid-tier clients, Oracle recommends that the client implement these best
practices:

s Few and mostly read-only tables

There should be few registered objects, and these should be mostly read-only, with
very infrequent invalidations. If an object is extremely volatile, then a large
number of invalidation notifications are sent, potentially requiring a lot of space
(in memory or on disk) in the invalidation queue. This is also true if a large
number of objects are registered.

= Few rows updated for each table

Transactions should update (or insert or delete) only a small number of rows
within the registered tables. Depending on database resources, a whole table could
be invalidated if too many rows are updated within a single transaction, for a
given table.

This policy helps to contain the size of a single invalidation message, and reduces
disk storage for the invalidation queue.

See Also: Oracle Database Advanced Application Developer’s Guide for
further information on Database Change Notification

OracleDataAdapter Safe Type Mapping

The ODP.NET OracleDataAdapter class provides the Safe Type Mapping feature to
ensure that the following Oracle data types do not lose data when converted to their
closely related .NET types in the DataSet:

= NUMBER

s DATE

= TimeStamp (refers to all TimeStamp objects)

s INTERVAL DAY TO SECOND

This section includes the following topics:

s Comparison Between Oracle Data Types and .NET Types
= SafeMapping Property

Comparison Between Oracle Data Types and .NET Types

The following sections provide more details about the differences between the Oracle
data types and the corresponding .NET types. In general, the Oracle data types allow a
greater degree of precision than the .NET types do.

3-74 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Safe Type Mapping

Oracle NUMBER Type to .NET Decimal Type

The Oracle data type NUMBER can hold up to 38 precision, and the NET Decimal type
can hold up to 28 precision. If a NUMBER data type that has more than 28 precision is
retrieved into a .NET Decimal type, it loses precision.

Table 3-18 lists the maximum and minimum values for Oracle NUMBER and .NET
Decimal types.

Table 3-18 Oracle NUMBER to .NET Decimal Comparisons

Value

Limits Oracle NUMBER .NET Decimal

Maximum 9.99999999999999999999999999999999999 79,228,162,514,264,337,593,543,950,335
99 e125

Minimum -9.99999999999999999999999999999999999 -79,228,162,514,264,337,593,543,950,335
99 e125

Oracle Date Type to .NET DateTime Type

The Oracle data type DATE can represent dates in BC whereas the NET DateTime
type cannot. If a DATE that goes to BC get retrieved into a .INET DateTime type, it
loses data.

Table 3-19 lists the maximum and minimum values for Oracle Date and .NET
DateTime types.

Table 3-19 Oracle Date to .NET DateTime Comparisons

Value

Limits Oracle Date .NET DateTime

Maximum Dec 31,9999 AD Dec 31,9999 AD 23:59:59.9999999
Minimum Jan 1, 4712 BC Jan 1, 0001 AD 00:00:00.0000000

Oracle TimeStamp Type to .NET DateTime Type

Similar to the DATE data type, the Oracle TimeStamp data type can represent a date in
BC, and a .NET DateTime type cannot. If a TimeStamp that goes to BC is retrieved
into a.NET DateTime type, it loses data. The Oracle TimeStamp type can represent
values in units of e-9; the NET DateTime type can represent only values in units of
e-7. The Oracle TimeStamp with time zone data type can store time zone information,
and the .NET DateTime type cannot.

Table 3-20 lists the maximum and minimum values for Oracle TimeStamp and .NET
DateTime types.

Table 3-20 Oracle TimeStamp to .NET DateTime Comparisons

Value

Limits Oracle TimeStamp .NET DateTime

Maximum Dec 31, 9999 AD 23:59:59.999999999 Dec 31, 9999 AD 23:59:59.9999999
Minimum Jan 1, 4712 BC 00:00:00.000000000 Jan 1, 0001 AD 00:00:00.0000000

Oracle INTERVAL DAY TO SECOND to .NET TimeSpan

The Oracle data type INTERVAL DAY TO SECOND can hold up to 9 precision, and the
.NET TimeSpan type can hold up to 7 precision. If an INTERVAL DAY TO SECOND data
type that has more than 7 precision is retrieved into a .NET TimeSpan type, it loses

Features of Oracle Data Provider for NET 3-75

OracleDataAdapter Safe Type Mapping

precision. The Oracle INTERVAL DAY TO SECOND type can represent values in units of
e-9, and the .NET TimeSpan type can represent only values in units of e-7.

Table 3-21 lists the maximum and minimum values for Oracle INTERVAL DAY TO
SECOND and .NET DateTime types.

Table 3-21 Oracle INTERVAL DAY TO SECOND to .NET TimeSpan Comparisons

Value

Limits Oracle INTERVAL DAY TO SECOND .NET TmeSpan

Maximum +999999999 23:59:59.999999999 +10675199 02:48:05.4775807

Minimum -999999999 23:59:59.999999999 -10675199 02:48:05.4775808
SafeMapping Property

The OracleDataAdapter Safe Type Mapping feature prevents data loss when
populating Oracle data for any of these types into a .NET DatasSet. By setting the
SafeMapping property appropriately, these types can be safely represented in the
DataSet, as either of the following;:

s NET byte [] in Oracle format
= .NET String
By default, Safe Type Mapping is disabled.

Using Safe Type Mapping

To use the Safe Type Mapping feature, the OracleDataAdapter.SafeMapping
property must be set with a hash table of key-value pairs. The key-value pairs must
map database table column names (of type string) to a .NET type (of type Type).
ODPNET supports Safe Type Mapping to byte [] and String types. Any other type
mapping causes an exception.

In situations where the column names are not known at design time, an asterisk ("*")
can be used to map all occurrences of database types to a safe .NET type. If both the
valid column name and the asterisk are present, the column name is used.

Note:
s Database table column names are case-sensitive.

s Column names in the hash table that correspond to invalid
column names are ignored.

Safe Type Mapping as a string is more readable without further conversion.
Converting certain Oracle data types to a string requires extra conversion, which can
be slower than converting it to a byte [1. Conversion of .NET strings back to
ODP.NET types relies on the formatting information of the session.

SafeTyping Example
[/ C#

using System;

using System.Data;

using Oracle.DataAccess.Client;

class SafeMappingSample

3-76 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Requery Property

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";

// In this SELECT statement, EMPNO, HIREDATE and SALARY must be
// preserved using safe type mapping.
string cmdstr = "SELECT EMPNO, ENAME, HIREDATE, SAL FROM EMP";

// Create the adapter with the selectCommand txt and the connection string
OracleDataAdapter adapter = new OracleDataAdapter (cmdstr, constr);

// Get the connection from the adapter
OracleConnection connection = adapter.SelectCommand.Connection;

// Create the safe type mapping for the adapter

// which can safely map column data to byte arrays, where

// applicable. By executing the following statement, EMPNO, HIREDATE AND
// SALARY columns will be mapped to byte[]

adapter.SafeMapping.Add("*", typeof (bytel]));

// Map HIREDATE to a string

// If the column name in the EMP table is case-sensitive,

// the safe type mapping column name must be case-sensitive.
adapter.SafeMapping.Add ("HIREDATE", typeof (string));

// Map EMPNO to a string

// If the column name in the EMP table is case-sensitive,

// the safe type mapping column name must also be case-sensitive.
adapter.SafeMapping.Add ("EMPNO", typeof (string)) ;
adapter.SafeMapping.Add ("SAL", typeof (string));

// Create and fill the DataSet using the EMP
DataSet dataset = new DataSet () ;
adapter.Fill (dataset, "EMP");

// Get the EMP table from the dataset
DataTable table = dataset.Tables["EMP"];

// Get the first row from the EMP table
DataRow row = table.Rows[0];

// Print out the row info

Console.WriteLine ("EMPNO Column: type = " + row["EMPNO"].GetType() +
": value = " + row["EMPNO"]) ;
Console.WriteLine ("ENAME Column: type = " + row["ENAME"] .GetType() +
", value = " + row["ENAME"]) ;
Console.WriteLine ("HIREDATE Column: type = " + row["HIREDATE"] .GetType ()+
", value = " + row["HIREDATE"]) ;
Console.WriteLine ("SAL Column: type = " + row["SAL"].GetType() +
": value = " + row["SAL"]);

See Also: "SafeMapping" on page 5-121

OracleDataAdapter Requery Property

The OracleDataAdapter Requery property controls whether or not queries are
reexecuted for OracleDataAdapter Fill calls after the initial Fi11 call.

Features of Oracle Data Provider for NET 3-77

Guaranteeing Uniqueness in Updating DataSet to Database

The OracleDataAdapter Fill method allows appending or refreshing data in the
DataSet. When appending the DataSet using the same query with subsequent F111
calls, reexecuting the query may not be desirable.

When the Requery property is set to true, each subsequent Fill call reexecutes the
query and fills the DataSet. This is an expensive operation, and if the reexecution is
not required, set Requery to false. If any of the Select Command properties or
associated parameters must be changed, Requery must be set to true.

When the Requery property is set to false, the DatasSet has all the data as a
snapshot at a particular time. The query is executed only for the first Fill call;
subsequent Fi11 calls fetch the data from a cursor opened with the first execution of
the query. This feature is supported only for forward-only fetches. Fi11 calls that try
to fetch rows before the last fetched row raise an exception. The connection used for
the first F111 call must be available for subsequent Fi11 calls.

When filling a DataSet with an OracleRefCursor object, the Requery property
can be used in a similar manner. When the Requery property is set to false, both the
connection used for the first Fil1 call and the OracleRefCursor object must be
available for the subsequent Fi11 calls.

See Also:
= "Requery" on page 5-121
s "SelectCommand" on page 5-122

Guaranteeing Uniqueness in Updating DataSet to Database

This section describes how the OracleDataAdapter object configures the
PrimaryKey and Constraints properties of the DataTable object which
guarantee uniqueness when the OracleCommandBuilder object is updating
DataSet changes to the database.

Using the OracleCommandBuilder object to dynamically generate DML statements
to be executed against the database is one of the ways to reconcile changes made in a
single DataTable object with the database.

In this process, the OracleCommandBuilder object must not be allowed to generate
DML statements that may affect (update or delete) more that a single row in the
database when reconciling a single DataRow change. Otherwise the
OracleCommandBuilder could corrupt data in the database.

To guarantee that each DataRow object change affects only a single row, there must be
a set of DataColumn objects in the DataTable for which all rows in the DataTable
have a unique set of values. The set of DataColumn objects indicated by the properties
DataTable.PrimaryKey and DataTable.Constraints meets this requirement.
The OracleCommandBuilder object determines uniqueness in the DataTable by
checking if the DataTable . PrimaryKey is not a null value or if there exists a
UniqueConstraint object in the DataTable.Constraints collection.

This discussion first explains what constitutes uniqueness in DataRow objects and
then explains how to maintain that uniqueness while updating, through the
DataTable property configuration.

This section includes the following topics:
= What Constitutes Uniqueness in DataRow Objects?
s Configuring PrimaryKey and Constraints Properties

= Updating Without PrimaryKey and Constraints Configuration

3-78 Oracle Data Provider for .NET Developer’s Guide

Guaranteeing Uniqueness in Updating DataSet to Database

What Constitutes Uniqueness in DataRow Objects?

This section describes the minimal conditions that must be met to guarantee
uniqueness of DataRow objects. The condition of uniqueness must be guaranteed
before the DataTable.PrimaryKey and DataTable.Constraints properties can
be configured, as described in the next section.

Uniqueness is guaranteed in a DataTable object if any one of the following is true:

s All the columns of the primary key are in the select list of the
OracleDataAdapter.SelectCommand property.

s All the columns of a unique constraint are in the select list of the
OracleDataAdapter.SelectCommand property, with at least one involved
column having a NOT NULL constraint defined on it.

= All the columns of a unique index are in the select list of the
OracleDataAdapter.SelectCommand property, with at least one of the
involved columns having a NOT NULL constraint defined on it.

= A ROWID is present in the select list of the
OracleDataAdapter.SelectCommand property.

Note: A set of columns, on which a unique constraint has been
defined or a unique index has been created, requires at least one
column that cannot be null for the following reason: if all the
columns of the column set can be null, then multiple rows could
exist that have a NULL value for each column in the column set.
This would violate the uniqueness condition that each row has a
unique set of values for the column set.

Configuring PrimaryKey and Constraints Properties

If the minimal conditions described in "What Constitutes Uniqueness in DataRow
Objects?" on page 3-79 are met, then the DataTable.PrimaryKey or
DataTable.Constraints properties can be set.

After these properties are set, the OracleCommandBuilder object can determine
uniqueness in the DataTable by checking the DataTable.PrimaryKey property or
the presence of a UniqueConstraint object in the DataTable.Constraints
collection. Once uniqueness is determined, the OracleCommandBuilder object can
safely generate DML statements to update the database.

The OracleDataAdapter.FillSchema method attempts to set these properties
according to this order of priority:

1. If the primary key is returned in the select list, it is set as the
DataTable.PrimaryKey property.

2. If a set of columns that meets the following criteria is returned in the select list, it is
set as the DataTable . PrimaryKey property.

Criteria: The set of columns has a unique constraint defined on it or a unique
index created on it, with each column having a NOT NULL constraint defined on it.

3. If a set of columns that meets the following criteria is returned in the select list, a
UnigueConstraint objectis added to the DataTable.Constraints
collection, but the DataTable . PrimaryKey property is not set.

Features of Oracle Data Provider for NET 3-79

Globalization Support

Criteria: The set of columns has a unique constraint defined on it or a unique
index created on it, with at least one column having a NOT NULL constraint defined
on it.

4. If a ROWID is part of the select list, it is set as the DataTable.PrimaryKey
property.
Additionally, the OracleDataAdapter.FillSchema method performs as follows:

m Setting the DataTable.PrimaryKey property implicitly creates a
UniqueConstraint object.

s Ifa columnis part of the DataTable.PrimaryKey property or the
UnigqueConstraint object, or both, it will be repeated for each occurrence of the
column in the select list.

Updating Without PrimaryKey and Constraints Configuration

If the DataTable.PrimaryKey or Constraints properties have not been
configured, for example, if the application has not called the
OracleDataAdapter.FillSchema method, the OracleCommandBuilder object
directly checks the select list of the OracleDataAdapter.SelectCommand property
to determine if it guarantees uniqueness in the DataTable. However this check
results in a database round-trip to retrieve the metadata for the SELECT statement of
the OracleDataAdapter.SelectCommand.

Note that OracleCommandBuilder object cannot update a DataTable created from
PL/SQL statements because they do not return any key information in their metadata.

Globalization Support

ODP.NET globalization support enables applications to manipulate culture-sensitive
data appropriately. This feature ensures proper string format, date, time, monetary,
numeric, sort order, and calendar conventions depending on the Oracle globalization
settings.

See Also: "OracleGlobalization Class" on page 9-2

This section includes the following:
= Globalization Settings

= Globalization-Sensitive Operations

Globalization Settings
An OracleGlobalization object can be used to represent the following:
» Client Globalization Settings
= Session Globalization Settings

» Thread-Based Globalization Settings

Client Globalization Settings

Client globalization settings are derived from the Oracle globalization setting (NLS__
LANG) in the Windows registry of the local computer. The client globalization
parameter settings are read-only and remain constant throughout the lifetime of the

3-80 Oracle Data Provider for .NET Developer’s Guide

Globalization Support

application. These settings can be obtained by calling the
OracleGlobalization.GetClientInfo static method.

The following example retrieves the client globalization settings:

/] C#

using System;
using Oracle.DataAccess.Client;

class ClientGlobalizationSample

{

static void Main()

{

OracleGlobalization ClientGlob = OracleGlobalization.GetClientInfo();

Console.WriteLine ("Client machine language: " + ClientGlob.Language);
Console.WriteLine ("Client characterset: " + ClientGlob.ClientCharacterSet);

}
}

The properties of the OracleGlobalizat ion object provide the Oracle globalization
value settings.

Session Globalization Settings

Session globalization parameters are initially identical to client globalization settings.
Unlike client settings, session globalization settings can be updated. However, they
can be obtained only after establishing a connection against the database. The session
globalization settings can be obtained by calling the GetSessionInfo method on the
OracleConnection object. Invoking this method returns an instance of an
OracleGlobalization class whose properties represent the globalization settings
of the session.

When the OracleConnection object establishes a connection, it implicitly opens a
session whose globalization parameters are initialized with those values specified by
the client computer's Oracle globalization (or (NLS)) registry settings. The session
settings can be updated and can change during its lifetime.

The following example changes the date format setting on the session:

/] Cc#

using System;
using Oracle.DataAccess.Client;

class SessionGlobalizationSample

{

static void Main()

{

OracleConnection con = new OracleConnection() ;

con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
con.Open() ;

OracleGlobalization SessionGlob = con.GetSessionInfo();
// SetSessionInfo updates the Session with the new value
SessionGlob.DateFormat = "YYYY/MM/DD";

con.SetSessionInfo (SessionGlob) ;
Console.WriteLine ("Date Format successfully changed for the session");

Features of Oracle Data Provider for NET 3-81

Globalization Support

// Close and Dispose OracleConnection object
con.Close() ;
con.Dispose() ;

}
}

Thread-Based Globalization Settings

Thread-based globalization parameter settings are specific to each thread. Initially,
these settings are identical to the client globalization parameters, but they can be
changed as specified by the application. When ODP.NET Types are converted to and
from strings, the thread-based globalization parameters are used, if applicable.

Thread-based globalization parameter settings are obtained by invoking the
GetThreadInfo static method of the OracleGlobalization class. The
SetThreadInfo static method of the OracleGlobalization class can be called to
set the thread's globalization settings.

ODP.NET classes and structures rely solely on the OracleGlobalization settings
when manipulating culture-sensitive data. They do not use .NET thread culture
information. If the application uses only .NET types, OracleGlobalization
settings have no effect. However, when conversions are made between ODP.NET types
and .NET types, OracleGlobalization settings are used where applicable.

Note: Changes to the System.Threading.Thread.
CurrentThread.CurrentCulture property do not impact the
OracleGlobalization settings of the thread or the session, or
the reverse.

The following example shows how the thread's globalization settings are used by the
ODPNET Types:

/] c#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ThreadBasedGlobalizationSample

{

static void Main(string[] args)

{

// Set the thread's DateFormat for the OracleDate constructor
OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.DateFormat = "YYYY-MON-DD";
OracleGlobalization.SetThreadInfo (info) ;

// construct OracleDate from a string using the DateFormat specified.
OracleDate date = new OracleDate("1999-DEC-01");

// Set a different DateFormat for the thread
info.DateFormat = "MM/DD/YYYY";

OracleGlobalization.SetThreadInfo (info) ;

// Print "12/01/1999"
Console.WriteLine (date.ToString()) ;

3-82 Oracle Data Provider for .NET Developer’s Guide

Globalization Support

}

The OracleGlobalization object validates property changes made to it. If an
invalid value is used to set a property, an exception is thrown. Note that changes made
to the Territory and Language properties change other properties of the
OracleGlobalization object implicitly.

See Also: Oracle Database Globalization Support Guide for more
information on the properties affected by Territory and
Language globalization settings

Globalization-Sensitive Operations

This section lists ODP.NET types and operations that are dependent on or sensitive to
globalization settings.

Operations Dependent on Client Computer's Globalization Settings

The OracleString structure depends on the OracleGlobalization settings of
the client computer. The client character set of the local computer is used when it
converts a Unicode string to a byte [] in the GetNonUnicode method and when it
converts a byte [] of ANSI characters to Unicode in the OracleString constructor
that accepts a byte [].

Operations Dependent on Thread Globalization Settings

The thread globalization settings are used by ODP.NET types whenever they are
converted to and from .NET string types, where applicable. Specific thread
globalization settings are used in most cases, depending on the ODP.NET type, by the
following:

s The ToString method

s The Parse static method

» Constructors that accept .NET string data

= Conversion operators to and from .NET strings

For example, the OracleDate type uses the DateFormat property of the thread
globalization settings when the ToSt ring method is invoked on it. This returns a
DATE as a string in the format specified by the thread's settings.

For more details on the ODP.NET type methods that convert between ODP.NET types
and .NET string types, and to identify which thread globalization settings are used for
that particular method, read the remarks in Chapter 9.

The thread globalization settings also affect data that is retrieved into the DataSet as
a string using Safe Type Mapping. If the type is format-sensitive, the strings are always
in the format specified by the thread globalization settings.

For example, INTERVAL DAY TO SECOND data is not affected by thread settings
because no format is applicable for this type. However, the DateFormat and
NumericCharacters properties can impact the string representation of DATE and
NUMBER types, respectively, when they are retrieved as strings into the DataSet
through Safe Type Mapping.

Features of Oracle Data Provider for NET 3-83

Debug Tracing

See Also:
s "OracleDataAdapter Safe Type Mapping" on page 3-74

n Chapter 9, "Oracle Data Provider for .NET Globalization
Classes"

s Chapter 12, "Oracle Data Provider for .NET Types Structures"

Operations Sensitive to Session Globalization Parameters

Session globalization settings affect any data that is retrieved from or sent to the
database as a string.

For example, if a DATE column is selected with the TO_CHAR function applied on it,
the DATE column data will be a string in the date format specified by the DateFormat
property of the session globalization settings. Transmitting data in the other direction,
the string data that is to be inserted into the DATE column, must be in the format
specified by the DateFormat property of the session globalization settings.

Debug Tracing

ODP.NET provides debug tracing support, which allows logging of all the ODP.NET
activities into a trace file. Different levels of tracing are available.

The provider can record the following information:
= Entry and exit information for the ODP.NET public methods

s User-provided SQL statements as well as SQL statements modified by the
provider

= Connection pooling statistics such as enlistment and delistment
s Thread ID (entry and exit)

= HA Events and Load Balancing information

Registry Settings for Tracing Calls

The following registry settings should be configured under
HKEY LOCAL MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly Version

where Assembly Versionis the full assembly version number of
Oracle.DataAccess.dll.

TraceFileName
The valid values for TraceFileName are: any valid path name and file name.

TraceFileName specifies the file name that is to be used for logging trace
information. If TraceOption is set to 0, the name is used as is. However, if
TraceOptionis 1, the Thread ID is appended to the file name provided.

See Also: "TraceOption" on page 3-85

TraceLevel
The valid values for TraceLevel are:

= 0 =None

= 1= Entry, exit, and SQL statement information

3-84 Oracle Data Provider for .NET Developer’s Guide

ODP.NET Configuration

= 2 = Connection pooling statistics

» 4 = Distributed transactions (enlistment and delistment)

= 8 = User-mode dump creation upon unmanaged exception
= 16 = HA Event Information

= 32 = Load Balancing Information

TraceLevel specifies the level of tracing in ODP.NET. Because tracing all the entry
and exit calls for all the objects can be excessive, TraceLevel is provided to limit
tracing to certain areas of the provider.

To obtain tracing on multiple objects, simply add the valid values. For example, if
TraceLevel is set to 3, trace information is logged for entry, exit, SQL, and
connection pooling information.

The user-mode dump creation requires dbghelp.d1l1 version 5.1.2600.0 or later.

TraceOption
The valid values for TraceOption are:

= 0 =Single trace file
= 1= Multiple trace files

TraceOption specifies whether to log trace information in single or multiple files for
different threads. If a single trace file is specified, the file name specified in
TraceFileName is used. If the multiple trace files option is requested, a Thread ID is
appended to the file name provided to create a trace file for each thread.

ODP.NET Configuration

Starting with ODP.NET 11.1, Oracle Data Provider for .NET reads config files for
ODPNET configuration settings. The registry entries remain to be used as
machine-wide settings for a particular version of ODP.NET. However, the
configuration settings in the machine . config are used as .NET framework-wide
settings that override the registry values. The application or web config file is an
application-specific setting that overrides the machine . config setting (and also
overrides the registry).

The application or web config file can be useful and sometimes essential in scenarios
where more than one application on a computer use the same version of ODP.NET,
but each application needs a different ODP.NET configuration. The registry value
settings for a given version of ODP.NET affect all the applications that use that version
of ODP.NET. However, having ODP.NET configuration values in the application or
web config file assure that these settings are applied only for that application, thus
providing more granularity.

For example, if the application or web . config has a configuration setting of
StatementCacheSize of 100, such application-specific settings force the version of
ODP.NET that is loaded by that application to use 100 for the StatementCacheSize
and override any setting in the machine.config and in the registry. Note that for
any setting that does not exist in a config file (nachine . config or application/web
config), the value in the registry for a loaded version of ODP.NET is used, as in
previous releases.

Note that ODP.NET reads the machine . config files from the version of the NET
Framework in which ODP.NET runs, not from the version of ODP.NET.

Features of Oracle Data Provider for NET 3-85

ODP.NET Configuration

The following is a sample application config for NET Framework 1.x applications that
overrides all the registry settings:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<oracle.dataaccess.client>
<add key="Dl1lPath" value="C:\app\user\product\11l.1.0\client 1\BIN"/>

<add key="FetchSize" value="65536"/>
<add key="StatementCacheSize" value="10"/>
<add key="TraceFileName" value="c:\odpnetl.trc"/>
<add key="TraceLevel" value="0"/>
<add key="TraceOption" value="0"/>
</oracle.dataaccess.client>
</configuration>

The following is a sample application config for NET Framework 2.0 applications that
overrides all the registry settings. Note that the sample also demonstrates how to have
a provider factory entry that is specific for the application, which references version
2.111.6.0 of ODP.NET:

<?xml version="1.0" encoding="utf-8" ?>
<configurations
<system.data>
<DbProviderFactories>
<add name="Oracle Data Provider for .NET Version 11.1.0.6.0"
invariant="Oracle.DataAccess.Client Version 11.1.0.6.0"
description="Oracle Data Provider for .NET Version 11.1.0.6.0"
type="Oracle.DataAccess.Client.OracleClientFactory, Oracle.DataAccess,
Version=2.111.6.0, Culture=neutral, PublicKeyToken=89b483f429c47342" />
</DbProviderFactories>
</system.data>
<oracle.dataaccess.client>

<settings>
<add name="D11lPath" value="C:\app\user\product\11.1.0\client 1\BIN"/>
<add name="FetchSize" value="65536"/>
<add name="PromotableTransaction" value="promotable"/>
<add name="StatementCacheSize" value="10"/>
<add name="TraceFileName" value="c:\odpnet2.trc"/>
<add name="TraceLevel" value="0"/>
<add name="TraceOption" value="0"/>

</settings>

</oracle.dataaccess.client>
</configuration>

3-86 Oracle Data Provider for .NET Developer’s Guide

4

Oracle Data Provider for .NET
Server-Side Features

This chapter discusses server-side features provided by Oracle Data Provider for .NET.

With the support for .NET stored procedures in Oracle Databases for Windows that
Oracle Database Extensions for .NET provides, ODP.NET can be used to access Oracle
data through the implicit database connection that is available from the context of the
.NET stored procedure execution. Explicit user connections can also be created to
establish connections to the database that hosts the .NET stored procedure or to other
Oracle Databases.

See Also: Oracle Database Extensions for .NET Developer’s Guide

This chapter contains these topics:
s Introducing .NET Stored Procedure Execution Using ODP.NET
s Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

s Porting Client Application to .NET Stored Procedure

Introducing .NET Stored Procedure Execution Using ODP.NET

Oracle Data Provider for .NET classes and APIs provide data access to the Oracle
Database from a .NET client application and from .NET stored procedures and
functions.

However, some limitations and restrictions exist when Oracle Data Provider for NET
is used within a .NET stored procedure. These are discussed in the next section.

The following is a simple .NET stored procedure example.

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

public class CLRLibraryl

{

// .NET Stored Function returning the DEPTNO of the employee whose
// EMPNO is 'empno'
public static uint GetDeptNo (uint empno)

{

uint deptno = 0;

// Create and open a context connection
OracleConnection conn = new OracleConnection() ;

Oracle Data Provider for .NET Server-Side Features 4-1

Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

if (OracleConnection.IsAvailable == true)

{
}

else

{

conn.ConnectionString = "context connection=true";

//set connection string for a normal client connection
conn.ConnectionString = "user id=scott;password=tiger;" +
"data source=oracle";

}

conn.Open () ;

// Create and execute a command
OracleCommand cmd = conn.CreateCommand () ;
cmd. CommandText = "SELECT DEPTNO FROM EMP WHERE EMPNO = :1";
cmd. Parameters.Add (":1",0OracleDbType.Int32, empno,
System.Data.ParameterDirection.Input) ;
OracleDataReader rdr = cmd.ExecuteReader () ;
if (rdr.Read())
deptno = (uint)rdr.GetInt32(0);
rdr.Close () ;
cmd.Dispose () ;
conn.Close() ;
return deptno;
} // GetDeptNo
} // CLRLibraryl

See Also:

» Oracle Database Extensions for NET Developer’s Guide for more
information about how to create .NET Stored procedures

s Table4-1," API Support Comparison Between Client Application
and .NET Stored Procedure" on page 4-6

Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

This section covers important concepts that apply when Oracle Data Provider for NET
is used within a .NET stored procedure.

Implicit Database Connection

Within a .NET stored procedure, an implicit database connection is available for use to
access Oracle data. This implicit database connection should be used rather than
establishing a user connection because the implicit database connection is already
established by the caller of the .NET stored procedure, thereby minimizing resource
usage.

To obtain an OracleConnection object in a .NET stored procedure that represents
the implicit database connection, set the ConnectionString property of the
OracleConnection object to "context connection=true" and invoke the Open
method. No connection string attributes can be used with "context
connection=true", except the Statement Cache Size attribute.

The availability of the implicit database connection can be checked at runtime through
the static OracleConnection. IsAvailable property. This property always returns
true when Oracle Data Provider for .NET is used within a .NET stored procedure.
Otherwise, false is returned.

4-2 Oracle Data Provider for .NET Developer’s Guide

Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

Note: DBLinks are not supported in .NET stored procedures.

Only one implicit database connection is available within a .NET stored procedure
invocation. To establish more connections in addition to the implicit database
connection, an explicit connection must be created. When the Close method is
invoked on the OracleConnection that represents the implicit database connection,
the connection is not actually closed. Therefore, the Open method of the same or
another OracleConnection object can be invoked to obtain the connection that
represents the implicit database connection.

The implicit database connection can only be acquired by the Open method invocation
by a native Oracle thread that initially invokes the .NET stored procedure. However,
threads spawned from the native Oracle thread can use implicit database connections
that are obtained by the native Oracle thread.

See Also: "IsAvailable"” on page 5-72

Transaction Support

The .NET stored procedure execution automatically inherits the current transaction on
the implicit database connection. However, no explicit transaction can be started,
committed, or rolled back inside a .NET stored procedure. For example,
OracleConnection.BeginTransaction is notallowed for .NET stored procedure.
Neither local nor distributed transaction support is available for a .NET stored
procedure. If you have enlisted a client connection in a distributed transaction and call
a .NET stored procedure or a function, an error occurs.

If a .NET stored procedure or function performs operations on the database that are
required to be part of a transaction, the transaction must be started prior to calling the
NET stored procedure. Any desired commit or rollback must be performed after
returning from the .NET stored procedure or function.

.NET stored procedures do not support distributed transactions. If you have enlisted a
client connection in a distributed transaction and call a .NET stored procedure or
function, an error occurs.

The following example consists of a client application and a .NET stored procedure,
InsertRecordsp, that inserts an employee record into an EMP table.

Example (.NET Stored Procedure)
using System;
using System.Data;
using Oracle.DataAccess.Client;
// This class represents an Oracle .NET stored procedure that inserts
// an employee record into an EMP table of SCOTT schema.
public class InsertRecordSP
{
// This procedure will insert a row into the emp database
// For simplicity we are using only two parameters, the rest are hard coded
public static void InsertRecord(int EmpNo, string EmpName)

{

if (OracleConnection.IsAvailable == true)
OracleConnection conn = new OracleConnection (
"context connection=true");
conn.Open () ;
// Create new command object from connection context

Oracle Data Provider for .NET Server-Side Features 4-3

Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

OracleCommand Cmd = conn.CreateCommand () ;
Cmd.CommandText = "INSERT INTO EMP(EMPNO, ENAME, JOB," +
"MGR, HIREDATE, SAL, COMM, DEPTINO) " +
"VALUES (:1, :2, 'ANALYST',6 7566, " +
"'06-DEC-04', 5000, 0, 20)";
Cmd.Parameters.Add(":1", OracleDbType.Int32,
EmpNo, ParameterDirection.Input);
Cmd.Parameters.Add(":2", OracleDbType.Varchar2,
EmpName, ParameterDirection.Input);
Cmd.ExecuteNonQuery () ;

Example (Client Application)

The example enters new employee, Bernstein, employee number 7950, into the EMP
table.

/] C#

// This sample demonstrates how to start the transaction with ODP.NET client
// application and execute an Oracle .NET stored procedure that performs

// a DML operation. Since .NET stored procedure inherits the current

// transaction from the implicit database connection, DML operation

// in .NET stored procedure will not be in auto-committed mode.

// Therefore, it is up to the client application to do a COMMIT or ROLLBACK
// after returning from .NET stored procedure

using System;

using System.Data;

using Oracle.DataAccess.Client;

// In this class we are starting a transaction on the client side and

// executing a .NET stored procedure, which inserts a record into EMP

// table and then verifies record count before and after COMMIT statement
class TransactionSample

{

static void Main(string[] args)

{

OracleConnection Conn = null;
OracleTransaction Txn = null;
OracleCommand Cmd = null;
try
{
Console.WriteLine("Sample: Open DB connection in non auto-committed "
+ "mode, " +
"DML operation performed by .NET stored " +
"procedure doesn't have an effect before COMMIT " +
"is called.");
// Create and Open oracle connection
Conn = new OracleConnection() ;
Conn.ConnectionString = "User Id=scott;Password=tiger;" +
"Data Source=oracle;";
Conn.Open () ;
// Start transaction
Txn = Conn.BeginTransaction(IsolationLevel.ReadCommitted) ;
// Create command object
Cmd = new OracleCommand () ;
Cmd.Connection = Conn;
Cmd.CommandType = CommandType.StoredProcedure;
Cmd.CommandText = "InsertRecord"; // .NET Stored procedure
// Parameter settings
OracleParameter EmpNoPrm = Cmd.Parameters.Add (

4-4 Oracle Data Provider for .NET Developer’s Guide

Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

}

"empno", OracleDbType.Int32);

EmpNoPrm.Direction = ParameterDirection.Input;
EmpNoPrm.Value = 7950;
OracleParameter EmpNamePrm = Cmd.Parameters.Add (

"ename", OracleDbType.Varchar2, 10);
EmpNamePrm.Direction = ParameterDirection.Input;
EmpNamePrm.Value = "Bernstein";

// Execute .NET stored procedure
Cmd.ExecuteNonQuery () ;
Console.WriteLine("Number of record(s) before COMMIT {0}",

RecordCount ()) ;

Txn.Commit () ;
Console.WriteLine("Number of record(s) after COMMIT {0}",

RecordCount ()) ;

}

catch(OracleException OE)

{
}

finally

{

Console.WriteLine(OE.Message) ;

// Cleanup objects

if(null != Txn)
Txn.Dispose ()

if(null != Cmd)
Cmd.Dispose () ;

if(null != Conn && Conn.State == ConnectionState.Open)
Conn.Close() ;

i

static int RecordCount ()

{

int EmpCount = 0;
OracleConnection Conn = null;
OracleCommand Cmd = null;
try
{
Conn = new OracleConnection("User Id=scott;Password=tiger;" +
"Data Source=oracle;");
Conn.Open () ;
Cmd = new OracleCommand("SELECT COUNT(*) FROM EMP", Conn);
Object o = Cmd.ExecuteScalar();
EmpCount = Convert.ToInt32(o.ToString());

}

catch(OracleException OE)

{
}

finally

{

Console.WriteLine(OE.Message) ;

if(null != Cmd)
Cmd.Dispose () ;

}

return EmpCount;

}
)

Oracle Data Provider for .NET Server-Side Features 4-5

Porting Client Application to .NET Stored Procedure

Unsupported SQL Commands

Transaction controls commands such as COMMIT, ROLLBACK, and SAVEPOINT are not
supported in a .NET stored procedure.

Data definition commands such as CREATE and ALTER are not supported with an
implicit database connection, but they are supported with an explicit user connection
in a .NET stored procedure.

Porting Client Application to .NET Stored Procedure

All classes and class members provide the same functionality for both client
applications and .NET stored procedures, unless it is otherwise stated.

Table 4-1 lists those classes or class members that have different behavior depending
on whether or not they are used in a client application or in a .NET stored procedure.

Column Headings
The column heading for this table are:

Client application: The client application.
Implicit connection: The implicit database connections in a .NET stored procedure.

Explicit connection: The explicit user connections in a .NET stored procedure.

Table 4-1 API Support Comparison Between Client Application and .NET Stored

Procedure
Implicit
Connection/

Client Explicit
Class or Class Members Application Connection
OnChangeEventHandler Delegate
-all members Yes No/No
OracleDependency Class
-all members Yes No/No
OracleNotificationEventArgs Class
-all members Yes No/No
OracleNotificationRequest Class
-all members Yes No/No
OracleFailoverEventArgs Class
-all members Yes No/No
OracleFailoverEventHandler Delegate
-all members Yes No/No
OracleTransaction Class
-all members Yes No/No
OracleCommand Class
-Transaction Property Yes No #1/No #1

4-6 Oracle Data Provider for .NET Developer’s Guide

Porting Client Application to .NET Stored Procedure

Table 4-1 (Cont.) API Support Comparison Between Client Application and .NET Stored
Procedure

Implicit
Connection/

Client Explicit
Class or Class Members Application Connection
OracleConnection Class
-ConnectionTimeout Property Yes Yes #3/ Yes
-DataSource Property Yes Yes #2/Yes
-BeginTransaction Method Yes No/No
-ChangeDatabase Method No No/No
-Clone Method Yes No/Yes
-EnlistDistributed Transaction Method Yes No/No
-OpenWithNewPassword Method Yes No/ Yes
-Failover Event Yes No/No
-OracleFailoverEventHandler Delegate Yes No/No
ODP.NET Enumerations
-FailoverEvent Enumeration Yes No/No
-FailoverReturnCode Enumeration Yes No/No
-FailoverType Enumeration Yes No/No
-OracleNotificationInfo Enumeration Yes No/No
-OracleNotificationSource Enumeration Yes No/No
-OracleNotificationType Enumeration Yes No/No

Comments on Items in Table 4-1
1. Always returns null.

2. Implicit database connection always returns an empty string.

3. Implicit database connection always returns 0.

Oracle Data Provider for .NET Server-Side Features 4-7

Porting Client Application to .NET Stored Procedure

4-8 Oracle Data Provider for .NET Developer’s Guide

O

Oracle Data Provider for .NET Classes

This chapter describes the following Oracle Data Provider for .NET classes.
s OracleCommand Class

s OracleCommandBuilder Class

= OracleConnection Class

s OracleDataAdapter Class

= OracleDataReader Class

s OracleError Class

s OracleErrorCollection Class

s OracleException Class

s OracleInfoMessageEventArgs Class

= OracleInfoMessageEventHandler Delegate

= OracleParameter Class

= OracleParameterCollection Class

= OracleRowUpdatedEventArgs Class

s OracleRowUpdatedEventHandler Delegate
s OracleRowUpdatingEventArgs Class

= OracleRowUpdatingEventHandler Delegate
s OracleTransaction Class

= OracleCollectionType Enumeration

s OracleDbType Enumeration

m OracleParameterStatus Enumeration

Oracle Data Provider for .NET Classes 5-1

OracleCommand Class

OracleCommand Class

An OracleCommand object represents a SQL command, a stored procedure, or a table
name. The OracleCommand object is responsible for formulating the request and
passing it to the database. If results are returned, OracleCommand is responsible for
returning results as an OracleDataReader, a .NET XmlReader, a .NET Stream, a
scalar value, or as output parameters.

Class Inheritance
System.Object

System.MarshalByRefObject
System.ComponentModel . Component
System.Data.Common .DbCommand (ADO.NET 2.0 only)

Oracle.DataAccess.Client.OracleCommand

Declaration

// ADO.NET 2.0: C#
public sealed class OracleCommand : DbCommand, ICloneable

// ADO.NET 1.x: C#
public sealed class OracleCommand : Component, IDbCommand, ICloneable

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The execution of any transaction-related statements from an OracleCommand is not
recommended because it is not reflected in the state of the OracleTransaction
object represents the current local transaction, if one exists.

ExecuteXmlReader, ExecuteStream, and ExecuteToStream methods are only
supported for XML operations.

ExecuteReader and ExecuteScalar methods are not supported for XML
operations.

Example
/] Cc#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleCommandSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open () ;

5-2 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

string cmdQuery = "select ename, empno from emp";

// Create the OracleCommand
OracleCommand cmd = new OracleCommand (cmdQuery) ;

cmd. Connection = con;
cmd. CommandType = CommandType.Text;

// Execute command, create OracleDataReader object
OracleDataReader reader = cmd.ExecuteReader () ;

while (reader.Read())

{

// output Employee Name and Number

Console.WriteLine ("Employee Name : " + reader.GetString(0) + " , " +
"Employee Number : " + reader.GetDecimal(l));
}
// Clean up

reader.Dispose () ;
cmd.Dispose () ;
con.Dispose () ;

Requirements
Namespace: Oracle.DataAccess.Client

Assembly: Oracle.DataAccess.dll

Microsoft NET Framework Version: 1.x or 2.0

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Members

s OracleCommand Constructors

s OracleCommand Static Methods

s OracleCommand Properties

s OracleCommand Public Methods

Oracle Data Provider for .NET Classes 5-3

OracleCommand Members

OracleCommand Members

OracleCommand members are listed in the following tables:

OracleCommand Constructors
OracleCommand constructors are listed in Table 5-1.

Table 5-1

OracleCommand Constructors

Constructor

Description

OracleCommand Constructors

Instantiates a new instance of OracleCommand class
(Overloaded)

OracleCommand Static Methods
The OracleCommand static method is listed in Table 5-2.

Table 5-2 OracleCommand Static Method

Method

Description

Equals

Inherited from System.Object (Overloaded)

OracleCommand Properties

OracleCommand properties are listed in Table 5-3.

Table 5-3 OracleCommand Properties

Name Description

AddRowid Adds the ROWID as part of the select list

AddToStatementCache Causes executed statements to be cached, when the
property is set to t rue and statement caching is enabled

ArrayBindCount Specifies if the array binding feature is to be used and
also specifies the maximum number of array elements to
be bound in the Value property

BindByName Specifies the binding method in the collection

CommandText Specifies the SQL statement or stored procedure to run
against the Oracle database or the XML data used to
store changes to the Oracle database

CommandTimeout Specifies the number of seconds the command is
allowed to execute before terminating the execution
with an exception

CommandType Specifies the command type that indicates how the
CommandText property is to be interpreted

Connection Specifies the OracleConnection object that is used to
identify the connection to execute a command

Container Inherited from
System.ComponentModel . Component

DesignTimeVisible Specifies whether or not the OracleCommand object is
visible on designer controls.

FetchSize Specifies the size of OracleDataReader's internal
cache to store result set data

5-4 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

Table 5-3 (Cont.) OracleCommand Properties

Name Description

Initial LOBFetchSize Specifies the amount of data that the
OracleDataReader initially fetches for LOB columns

Initial LONGFetchSize Specifies the amount of data that the
OracleDataReader initially fetches for LONG and
LONG RAW columns

Notification Indicates that there is a notification request for the

command

NotificationAutoEnlist

Indicates whether or not to register for a database
change notification with the database automatically
when the command is executed

Parameters

Specifies the parameters for the SQL statement or stored
procedure

RowsSize

Specifies the amount of memory needed by the
OracleDataReader internal cache to store one row of
data

Site

Inherited from
System.ComponentModel . Component

Transaction

Specifies the OracleTransaction object in which the
OracleCommand executes

Not supported in a .NET stored procedure

UpdatedRowSource

Specifies how query command results are applied to the
row being updated

Not supported in a .NET stored procedure

XmlCommandType

Specifies the type of XML operation on the
OracleCommand

XmlQueryProperties

Specifies the properties that are used when an XML
document is created from the result set of a SQL query
statement

XmlSaveProperties

Specifies the properties that are used when an XML
document is used to save changes to the database

OracleCommand Public Methods
OracleCommand public methods are listed in Table 5-4.

Table 5-4 OracleCommand Public Methods

Public Method

Description

Cancel Attempts to cancels a command that is currently
executing on a particular connection
Clone Creates a copy of OracleCommand object
CreateObjRef Inherited from System.MarshalByRefObject
CreateParameter Creates a new instance of OracleParameter class
Dispose Inherited from
System.ComponentModel . Component
Equals Inherited from System.Object (Overloaded)

Oracle Data Provider for .NET Classes 5-5

OracleCommand Members

Table 5-4 (Cont.) OracleCommand Public Methods

Public Method Description

ExecuteNonQuery Executes a SQL statement or a command using the
XmlCommandType and CommandText properties and
returns the number of rows affected

ExecuteReader Executes a command (Overloaded)

ExecuteScalar Returns the first column of the first row in the result set
returned by the query

ExecuteStream Executes a command using the Xm1CommandType and
CommandText properties and returns the results in a
new Stream object

ExecuteToStream Executes a command using the Xm1CommandType and
CommandText properties and appends the results as an
XML document to the existing Stream

ExecuteXmlReader Executes a command using the Xm1CommandType and
CommandText properties and returns the result as an
XML document in a .NET XmlTextReader object

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService | Inherited from System.MarshalByRefObject

Prepare This method is a no-op

ToString Inherited from System.Object

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommand Class

5-6 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

OracleCommand Constructors

OracleCommand constructors instantiate new instances of OracleCommand class.

Overload List:
s OracleCommand()

This constructor instantiates a new instance of OracleCommand class.
s OracleCommand(string)

This constructor instantiates a new instance of OracleCommand class using the
supplied SQL command or stored procedure, and connection to the Oracle
database.

s OracleCommand(string, OracleConnection)

This constructor instantiates a new instance of OracleCommand class using the
supplied SQL command or stored procedure, and connection to the Oracle
database.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

OracleCommand()

This constructor instantiates a new instance of OracleCommand class.

Declaration
// C#

public OracleCommand () ;

Remarks

Default constructor.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

OracleCommand(string)

This constructor instantiates a new instance of OracleCommand class using the
supplied SQL command or stored procedure, and connection to the Oracle database.

Declaration
// C#

public OracleCommand (string cmdText) ;

Parameters
n cmdText

Oracle Data Provider for .NET Classes 5-7

OracleCommand Constructors

The SQL command or stored procedure to be executed.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

OracleCommand(string, OracleConnection)

This constructor instantiates a new instance of OracleCommand class using the
supplied SQL command or stored procedure, and connection to the Oracle database.

Declaration
// C#

public OracleCommand(string cmdText, OracleConnection OracleConnection) ;

Parameters
n cmdText

The SQL command or stored procedure to be executed.
s OracleConnection

The connection to the Oracle database.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

5-8 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

OracleCommand Static Methods

The OracleCommand static method is listed in Table 5-5.

Table 5-5 OracleCommand Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

Oracle Data Provider for .NET Classes 5-9

OracleCommand Properties

OracleCommand Properties

OracleCommand properties are listed in Table 5-6.

Table 5-6 OracleCommand Properties

Name Description

AddRowid Adds the ROWID as part of the select list

AddToStatementCache Causes executed statements to be cached, when the
property is set to t rue and statement caching is enabled

ArrayBindCount Specifies if the array binding feature is to be used and
also specifies the maximum number of array elements to
be bound in the Value property

BindByName Specifies the binding method in the collection

CommandText Specifies the SQL statement or stored procedure to run
against the Oracle database or the XML data used to store
changes to the Oracle database

CommandTimeout Specifies the number of seconds the command is allowed
to execute before terminating the execution with an
exception

CommandType Specifies the command type that indicates how the
CommandText property is to be interpreted

Connection Specifies the OracleConnection object that is used to
identify the connection to execute a command

Container Inherited from System. ComponentModel . Component

DesignTimeVisible Specifies whether or not the OracleCommand object is
visible on designer controls.

FetchSize Specifies the size of OracleDataReader's internal cache
to store result set data

Initial LOBFetchSize Specifies the amount of data that the
OracleDataReader initially fetches for LOB columns

InitiaLONGFetchSize Specifies the amount that of data the
OracleDataReader initially fetches for LONG and LONG
RAW columns

Notification Indicates that there is a notification request for the
command

NotificationAutoEnlist Indicates whether or not to register for a database change
notification with the database automatically when the
command is executed

Parameters Specifies the parameters for the SQL statement or stored
procedure

RowSize Specifies the amount of memory needed by the
OracleDataReader internal cache to store one row of
data

Site Inherited from System.ComponentModel . Component

Transaction Specifies the OracleTransaction object in which the
OracleCommand executes
Not supported in a .NET stored procedure

5-10 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

AddRowid

Table 5-6 (Cont.) OracleCommand Properties

Name Description

UpdatedRowSource Specifies how query command results are applied to the
row being updated
Not supported in a .NET stored procedure

XmICommandType Specifies the type of XML operation on the
OracleCommand

XmlQueryProperties Specifies the properties that are used when an XML
document is created from the result set of a SQL query
statement

XmlSaveProperties Specifies the properties that are used when an XML

document is used to save changes to the database

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

This property adds the ROWID as part of the select list.

Declaration

/] C#
public bool AddRowid {get; set;}

Property Value
bool

Remarks
Defaultis false.

This ROWID column is hidden and is not accessible by the application. To gain access to
the ROWIDs of a table, the ROWID must explicitly be added to the select list without the
use of this property.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommand Class

s OracleCommand Members

= "LOB Support" on page 3-51 for further information on how
this property used with LOBs

AddToStatementCache

This property causes executed statements to be cached when the property is set to
true and statement caching is enabled. If statement caching is disabled or if this
property is set to false, the executed statement is not cached.

Oracle Data Provider for .NET Classes 5-11

OracleCommand Properties

Declaration

/] C#
public bool AddToStatementCache{get; set;}

Return Value

Returns bool value. A value of true indicates that statements are being added to the
cache, false indicates otherwise.

Property Value

A bool value that indicates that the statements will be cached when they are
executed, if statement caching is enabled.

Remarks
Default is true.

AddToStatementCache is ignored if statement caching is disabled. Statement
caching is enabled by setting the Statement Cache Size connection string attribute
to a value greater than 0.

When statement caching is enabled, however, this property provides a way to
selectively add statements to the cache.

Example
/] C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class AddToStatementCacheSample

{

static void Main()
string constr = "User Id=scott;Password=tiger;Data Source=oracle;" +
"statement cache size=10";
OracleConnection con = new OracleConnection (constr) ;
con.Open () ;

OracleCommand cmd = new OracleCommand ("select * from emp", con);

if (cmd.AddToStatementCache)

Console.WriteLine ("Added to the statement cache:" + cmd.CommandText) ;
else

Console.WriteLine ("Not added to the statement cache:" + cmd.CommandText) ;

// The execution of "select * from emp" will be added to the statement cache
// because statement cache size is greater than 0 and OracleCommand's

// AddToStatementCache is true by default.

OracleDataReader readerEmp = cmd.ExecuteReader () ;

// Do not add "select * from dept" to the statement cache
cmd. CommandText = "select * from dept";
cmd.AddToStatementCache = false;

if (cmd.AddToStatementCache)

Console.WriteLine ("Added to the statement cache:" + cmd.CommandText) ;
else

5-12 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

ArrayBindCount

Console.WriteLine ("Not added to the statement cache:" + cmd.CommandText) ;

// The execution of "select * from dept" will not be added to the
// statement cache because AddToStatementCache is set to false.
OracleDataReader readerDept = cmd.ExecuteReader () ;

// Clean up
con.Dispose() ;

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

= "Statement Caching" on page 3-35

s ConnectionString on page 5-78

This property specifies if the array binding feature is to be used and also specifies the
number of array elements to be bound in the OracleParameter Value property.

Declaration

/] C#
public int ArrayBindCount {get; set;}

Property Value

An int value that specifies number of array elements to be bound in the
OracleParameter Value property.

Exceptions
ArgumentException - The ArrayBindCount value specified is invalid.

Remarks
Default = 0.

If ArrayBindCount is equal to 0, array binding is not used; otherwise, array binding
is used and OracleParameter Value property is interpreted as an array of values.
The value of ArrayBindCount must be specified to use the array binding feature.

If neither DbType nor OracleDbType is set, it is strongly recommended that you set
ArrayBindCount before setting the OracleParameter Value property so that
inference of DbType and OracleDbType from Value can be correctly done.

Array binding is not used by default.

If the XmlCommandType property is set to any value other than None, this property is
ignored.

Oracle Data Provider for .NET Classes 5-13

OracleCommand Properties

BindByName

CommandText

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

= "Array Binding" on page 3-32

= "Value" on page 5-257

This property specifies the binding method in the collection.

Declaration

/] C#
public bool BindByName {get; set;}

Property Value
Returns true if the parameters are bound by name; returns false if the parameters
are bound by position.

Remarks
Default = false.

BindByName is ignored under the following conditions:
= The value of the XmlCommandType property is Insert, Update, or Delete.

» The value of the XmlCommandType property is Query, but there are no
parameters set on the OracleCommand.

If the Xm1CommandType property is OracleXmlCommandType . Query and any
parameters are set on the OracleCommand, the BindByName property must be set to
true. Otherwise, the following OracleCommand methods throw an
InvalidOperationException.

s ExecuteNonQuery
m ExecuteXmlReader
m ExecuteStream

] ExecuteToStream

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

= "Array Binding" on page 3-32

= "Value" on page 5-257

This property specifies the SQL statement or stored procedure to run against the
Oracle database or the XML data used to store changes to the Oracle database.

5-14 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

Declaration

// BDO.NET 2.0: C
public override string CommandText {get; set;}

// ADO.NET 1.x: C#
public string CommandText {get; set;}

Property Value
A string.

Implements
IDbCommand

Remarks
The default is an empty string.

When the CommandType property is set to StoredProcedure, the CommandText
property is set to the name of the stored procedure. The command calls this stored
procedure when an Execute method is called.

The effects of Xm1CommandType values on CommandText are:
s XmlCommandType = None.

CommandType property determines the contents of CommandText.
» XmlCommandType = Query.

CommandText must be a SQL query. The SQL query should be a select statement.
CommandType property is ignored.

s XmlCommandType property is Insert, Update, or Delete.

CommandText must be an XML document. CommandType property is ignored.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

CommandTimeout

This property specifies the number of seconds that the command is allowed to execute
before terminating with an exception.

Declaration

// ADO.NET 2.0: C#
public override int CommandTimeout {get; set;}

// BADO.NET 1.x: C#
public int CommandTimeout {get; set;}

Property Value

int

Oracle Data Provider for .NET Classes 5-15

OracleCommand Properties

CommandType

Implements
IDbCommand . CommandTimeout

Exceptions
InvalidArgument - The specified value is less than 0.

Remarks

Default is 0 seconds, which enforces no time limit.

When the specified timeout value expires before a command execution finishes, the
command attempts to cancel. If cancellation is successful, an exception is thrown with

the message of ORA-01013: user requested cancel of current operation. If
the command executed in time without any errors, no exceptions are thrown.

In a situation where multiple OracleCommand objects use the same connection, the
timeout expiration on one of the OracleCommand objects may terminate any of the
executions on the single connection. To make the timeout expiration of a
OracleCommand cancel only its own command execution, simply use one
OracleCommand for each connection if that OracleCommand sets the
CommandTimeout property to a value greater than 0.

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

s http://msdn.microsoft.com/library for detailed
information about this Microsoft NET Framework 1.1 feature

This property specifies the command type that indicates how the CommandText
property is to be interpreted.

Declaration

// BDO.NET 2.0: C
public override CommandType CommandType {get; set;}

// ADO.NET 1.x: C#
public CommandType {get; set;}

Property Value
A CommandType.

Exceptions

ArgumentException - The value is not a valid CommandType such as:
CommandType.Text, CommandType.StoredProcedure,
CommandType.TableDirect.

Remarks
Default = CommandType . Text

If the value of the Xm1CommandType property is not None, then the CommandType
property is ignored.

5-16 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

Connection

This property specifies the OracleConnection object that is used to identify the
connection to execute a command.

Declaration
// C#

public OracleConnection Connection {get; set;}

Property Value
An OracleConnection object.

Implements
IDbCommand

Remarks

Default = null
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

DesignTimeVisible

This property specifies whether or not the OracleCommand object is visible on
designer controls.

Declaration
// C#

public override bool DesignTimeVisible { get; set; }

Property Value

A value that indicate whether or not OracleCommand object is visible in a control.
The default is true.

Remarks

This property is used by developers to indicate whether or not OracleCommand
object is visible in a control.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

Oracle Data Provider for NET Classes 5-17

OracleCommand Properties

FetchSize

This property specifies the size of OracleDataReader's internal cache to store result
set data.

Declaration

/] C#
public long FetchSize {get; set;}

Property Value
A long that specifies the size (in bytes) of the OracleDataReader's internal cache.

Exceptions
ArgumentException - The FetchSize value specified is invalid.

Remarks
Default = 65536.

The FetchSize property is inherited by the OracleDataReader that is created by a
command execution returning a result set. The FetchSize property on the
OracleDataReader object determines the amount of data the OracleDataReader
fetches into its internal cache for each database round-trip.

If the XmlCommandType property is set to any value other than None, this property is
ignored.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

= OracleCommand Class

» OracleCommand Members

s OracleDataReader "FetchSize" on page 5-143

InitialLOBFetchSize

This property specifies the amount of data that the OracleDataReader initially
fetches for LOB columns.

Declaration

/] C#
public int InitialLOBFetchSize {get; set;}

Property Value
An int specifying the number of characters or bytes to fetch initially.

Exceptions
ArgumentException - The InitialLOBFetchSize value specified is invalid.

Remarks

The value of InitialLOBFetchSize specifies the initial amount of LOB data that is
immediately fetched by the OracleDataReader. The property value specifies the
number of characters for CLOB and NCLOB data, and the number of bytes for BLOB
data.

5-18 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

The InitialLOBFetchSize value is used to determine the length of the LOB
column data to fetch, if the LOB column is in the select list. If the select list does not
contain a LOB column, the InitialLOBFetchSize value is ignored.

When InitialLOBFetchSize is set to -1, the entire LOB data is prefetched and
stored in the fetch array. Calls to Get String, GetChars or GetBytes in
OracleDataReader allow retrieving the entire data. In this case, the following
methods are disabled.

m GetOracleBlob

m GetOracleClob

= GetOracleClobForUpdate

m GetOracleBlobForUpdate

This feature works for retrieving data from Oracle Database 9i release 2 (9.2) and later
Default = 0.

For Oracle Database 10g release 2 (10.2) and later:

The maximum value supported for InitialLOBFetchSize is 2 GB.

Prior to Oracle Database 10g release 2 (10.2), if the InitialLOBFetchSize is set to a
nonzero value, GetOracleBlob and GetOracleClob methods were disabled. BLOB
and CLOB data was fetched by using GetBytes and GetChars methods, respectively.
In Oracle Database 10g release 2 (10.2), this restriction no longer exists.
GetOracleBlob and GetOracleClob methods can be used for any
InitialLOBFetchSize value zero or greater.

For releases prior to Oracle Database 10g release 2 (10.2):
The maximum value supported for InitialLOBFetchSize is 32 K.

To fetch more than the specified InitialLOBFetchSize value, one of the following
must be in the select list:

= Primary key
= ROWID

s Unique columns - (defined as a set of columns on which a unique constraint has
been defined or a unique index has been created, where at least one of the columns
in the set has a NOT NULL constraint defined on it)

If this property is set to 0, none of the preceding is required

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleCommand Class

= OracleCommand Members

= "Obtaining LOB Data" on page 3-43

InitiaLONGFetchSize

This property specifies the amount of data that the OracleDataReader initially
fetches for LONG and LONG RAW columns.

Declaration
// C#

Oracle Data Provider for .NET Classes 5-19

OracleCommand Properties

Notification

public int InitialLONGFetchSize {get; set;}

Property Value
An int specifying the amount.

Exceptions
ArgumentException-The InitialLONGFetchSize value specified is invalid.

Remarks
The maximum value supported for Initial LONGFetchSize is 32767. If this
property is set to a higher value, the provider resets it to 32767.

The value of InitialLONGFetchSize specifies the initial amount of LONG or LONG
RAW data that is immediately fetched by the OracleDataReader. The property value
specifies the number of characters for LONG data and the number of bytes for LONG
RAW. To fetch more than the specified InitialLONGFetchSize amount, one of the
following must be in the select list:

= Primary key
= ROWID

= Unique columns - (defined as a set of columns on which a unique constraint has
been defined or a unique index has been created, where at least one of the columns
in the set has a NOT NULL constraint defined on it)

The InitialLONGFetchSize value is used to determine the length of the LONG and
LONG RAW column data to fetch if one of the two is in the select list. If the select list
does not contain a LONG or a LONG RAW column, the InitialLONGFetchSize value
is ignored.

When InitialLONGFetchSize is set to -1, the entire LONG or LONG RAW data is
prefetched and stored in the fetch array. Calls to GetString, GetChars, or
GetBytes in OracleDataReader allow retrieving the entire data.

Default = 0.

Setting this property to 0 defers the LONG and LONG RAW data retrieval entirely until
the application specifically requests it.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

= "Obtaining LONG and LONG RAW Data" on page 3-42 for
further information

This instance property indicates that there is a notification request for the command.

Declaration
// C#

public OracleNotificationRequest Notification {set; get;}

5-20 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

Property Value
A notification request for the command.

Remarks

When a changed notification is first registered, the client listener is started in order to
receive any database notification. The listener uses the port number defined in the
OracleDependency . Port static field. Subsequent change notification registrations
use the same listener in the same client process and do not start another listener.

When Notification issettoan OracleNotificationRequest instance, a
notification registration is created (if it has not already been created) when the
command is executed. Once the registration is created, the properties of the
OracleNotificationRequest instance cannot be modified. If the notification
registration has already been created, the result set that is associated with the
command is added to the existing registration.

When Notification is set to null, subsequent command executions do not require
a notification request. If a notification request is not required, set the Notification
property to null, or set the NotificationAutoEnlist property to false.

For Continuous Query Notification, a notification request can be used for multiple
command executions. In that case, any query result set associated with different
commands can be invalidated within the same registration.

When the ROWID column is explicitly included in the query (or when AddRowid
property is set to true), then the row ID information is populated into the
OracleNotificationArgs.Details property when the
OracleDependency.OnChange event is fired.

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommand Class

s OracleCommand Members

= "Database Change Notification Support" on page 3-67
» Chapter 8, "Database Change Notification" on page 8-1

NotificationAutoEnlist

This instance property indicates whether or not to register for a database change
notification with the database automatically when the command is executed.

Declaration

// C#
public bool NotificationAutoEnlist {set; get;}

Property Value

A bool value indicating whether or not to make a database change notification
request automatically, when the command is executed. If
NotificationAutoEnlist is set to true, and the Notification property is set
appropriately, a database change notification request is registered automatically;
otherwise, no database change notification registration is made.

Default value: true

Oracle Data Provider for .NET Classes 5-21

OracleCommand Properties

Parameters

RowSize

Remarks

A notification request can be used for multiple command executions using the same
OracleCommand instance. In that case, set the NotificationAutoEnlist property
to true.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommand Class

s OracleCommand Members

= "Database Change Notification Support" on page 3-67
» Chapter 8, "Database Change Notification" on page 8-1

This property specifies the parameters for the SQL statement or stored procedure.

Declaration
// C#

public OracleParameterCollection Parameters {get;}

Property Value
OracleParameterCollection

Implements
IDbCommand

Remarks
Default value = an empty collection

The number of the parameters in the collection must be equal to the number of
parameter placeholders within the command text, or an error is raised.

If the command text does not contain any parameter tokens (such as, : 1, : 2), the values
in the Parameters property are ignored.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommand Class

s OracleCommand Members

This property specifies the amount of memory needed by the OracleDataReader
internal cache to store one row of data.

Declaration

/] C#
public long RowSize {get;}

Property Value

A long that indicates the amount of memory (in bytes) that an OracleDataReader
needs to store one row of data for the executed query.

5-22 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

Remarks

Default value = 0

The RowSize property is set to a nonzero value after the execution of a command that
returns a result set. This property can be used at design time or dynamically during
run-time, to set the FetchSize, based on number of rows. For example, to enable the
OracleDataReader to fetch N rows for each database round-trip, the
OracleDataReader FetchSize property can be set dynamically to RowSize * N.
Note that for the FetchSize to take effect appropriately, it must be set after
OracleCommand.ExecuteReader () but before OracleDataReader.Read ().

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleCommand Class

» OracleCommand Members

s OracleDataReader "FetchSize" on page 5-18

Transaction

This property specifies the OracleTransaction object in which the
OracleCommand executes.

Declaration
// C#

public OracleTransaction Transaction {get;}

Property Value
OracleTransaction

Implements
IDbCommand

Remarks
Default value = null
Transaction returns a reference to the transaction object associated with the

OracleCommand connection object. Thus the command is executed in whatever
transaction context its connection is currently in.

Note: When this property is accessed through an IDbCommand
reference, its set accessor method is not operational.

Remarks (.NET Stored Procedure)

Always returns null.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

Oracle Data Provider for .NET Classes 5-23

OracleCommand Properties

UpdatedRowSource

This property specifies how query command results are applied to the row to be
updated.

Declaration

// ADO.NET 2.0: C#
public override UpdateRowSource UpdatedRowSource {get; set;}

// ADO.NET 1.x: C#
public UpdateRowSource UpdatedRowSource {get; set;}

Property Value
An UpdateRowSource.

Implements
IDbCommand

Exceptions
ArgumentException - The UpdateRowSource value specified is invalid.

Remarks
Always returns UpdateRowSource,

Set accessor throws an ArgumentException if the value is other than
UpdateRowSource.None.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

XmiCommandType
This property specifies the type of XML operation on the OracleCommand.

Declaration

/] Cc#
public OracleXmlCommandType XmlCommandType {get; set;}

Property Value
An OracleXmlCommandType.

Remarks
Default value is None.

XmlCommandType values and usage:
= None - The CommandType property specifies the type of operation.

= Query - CommandText property must be set to a SQL select statement. The query
is executed, and the results are returned as an XML document. The SQL select
statement in the CommandText and the properties specified by the

5-24 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

XmlQueryProperties property are used to perform the operation. The
CommandType property is ignored.

» Insert,Update, or Delete - CommandText property is an XML document
containing the changes to be made. The XML document in the CommandText and
the properties specified by the XmlSaveProperties property are used to
perform the operation. The CommandType property is ignored.

See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommand Class

s OracleCommand Members

XmlQueryProperties

This property specifies the properties that are used when an XML document is created
from the result set of a SQL query statement.

Declaration
// C#

public OracleXmlQueryProperties XmlQueryProperties {get; set;}

Property Value
OracleXmlQueryProperties.

Remarks

When a new instance of OracleCommand is created, an instance of
OracleXmlQueryProperties is automatically available on the OracleCommand
instance through the OracleCommand.XmlQueryProperties property.

A new instance of OracleXmlQueryProperties can be assigned to an
OracleCommand instance. Assigning an instance of OracleXmlQueryProperties
to the XmlQueryProperties of an OracleCommand instance creates a new instance
of the given OracleXmlQueryProperties instance for the OracleCommand. This
way each OracleCommand instance has its own OracleXmlQueryProperties
instance.

Use the default constructor to get a new instance of OracleXmlQueryProperties.

Use the OraclexXxmlQueryProperties.Clone () method to get a copy of an
OracleXmlQueryProperties instance.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

XmISaveProperties

This property specifies the properties that are used when an XML document is used to
save changes to the database.

Declaration
// C#

Oracle Data Provider for .NET Classes 5-25

OracleCommand Properties

public OracleXmlSaveProperties XmlSaveProperties {get; set;)}

Property Value
OracleXmlSaveProperties.

Remarks

When a new instance of OracleCommand is created, an instance of
OracleXmlSaveProperties is automatically available on the OracleCommand
instance through the OracleCommand.XmlSaveProperties property.

A new instance of OracleXmlSaveProperties can be assigned to an
OracleCommand instance. Assigning an instance of OracleXmlSaveProperties to
the XmlSaveProperties of an OracleCommand instance creates a new instance of
the given OracleXmlSaveProperties instance for the OracleCommand. This way
each OracleCommand instance has its own OracleXmlSaveProperties instance.

Use the default constructor to get a new instance of OracleXmlSaveProperties.

Use the OracleXxmlSaveProperties.Clone () method to get a copy of an
OracleXmlSaveProperties instance.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

5-26 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

OracleCommand Public Methods

OracleCommand public methods are listed in Table 5-7.

Table 5-7 OracleCommand Public Methods

Public Method

Description

Cancel Attempts to cancels a command that is currently
executing on a particular connection

Clone Creates a copy of OracleCommand object

CreateObjRef Inherited from System.MarshalByRefObject

CreateParameter Creates a new instance of OracleParameter class

Dispose Inherited from
System.ComponentModel . Component

Equals Inherited from System.Object (Overloaded)

ExecuteNonQuery Executes a SQL statement or a command using the
XmlCommandType and CommandText properties
and returns the number of rows affected

ExecuteReader Executes a command (Overloaded)

ExecuteScalar Returns the first column of the first row in the
result set returned by the query

ExecuteStream Executes a command using the Xm1CommandType
and CommandText properties and returns the
results in a new Stream object

ExecuteToStream Executes a command using the Xm1lCommandType
and CommandText properties and appends the
results as an XML document to the existing
Stream

ExecuteXmlReader Executes a command using the Xm1CommandType
and CommandText properties and returns the
result as an XML document in a .NET
XmlTextReader object

GetHashCode Inherited from System.Object

GetLifetimeService

Inherited from System.MarshalByRefObject

GetType

Inherited from System.Object

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Prepare This method is a no-op
ToString Inherited from System.Object
See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommand Class

s OracleCommand Members

This method attempts to cancel a command that is currently executing on a particular

connection.

Oracle Data Provider for .NET Classes 5-27

OracleCommand Public Methods

Declaration

// BDO.NET 2.0: C#
public override void Cancel () ;

// ADO.NET 1.x: C#
public void Cancel();

Implements
IDbCommand. Cancel

Remarks

If cancellation of the command succeeds, an exception is thrown. If cancellation is not
successful, no exception is thrown. If there is no command being executed at the time
of the Cancel invocation, Cancel does nothing. Invoking the Cancel method does
not guarantee that the command executing at the time will always be cancelled. The
execution may complete before it can be terminated. In such cases, no exception is
thrown.

When multiple OracleCommand objects share the same connection, only one
command can be executed on that connection at any one time. When it is invoked, the
Cancel method attempts to cancel the statement currently running on the connection
that the OracleCommand object is using to execute the command. However, when
multiple OracleCommand objects execute statements on the same connection
simultaneously, issuing a Cancel method invocation may cancel any of the issued
commands. This is because the command designated for cancellation may complete
before the Cancel invocation is effective. If this happens, a command executed by a
different OracleCommand could be cancelled instead.

There are several ways to avoid this non-deterministic situation that the Cancel
method can cause:

= The application can create just one OracleCommand object for each connection.
Doing so assures that the Cancel invocation only cancels commands executed by
the OracleCommand object using a particular connection.

» Command executions in the application are synchronized between
OracleCommand objects that use the same connection.

These suggestions do not apply if Cancel is not used in the application.

Because the termination on the currently running execution is non-deterministic, it is
recommended that any non-atomic SQL or PL/SQL execution be started within a
transaction. When the command execution successfully terminates with an exception
of ORA-01013: user requested cancel of current operation, the transaction
can be rolled back for data integrity. Examples of non-atomic execution are collections
of DML command executions that are executed one-by-one and multiple DML
commands that are part of a PL/SQL stored procedure or function.

Example
/] C#

// This example shows how command executions can be cancelled in a

// deterministic way even if multiple commands are executed on a single

// connection. This is accomplished by synchronizing threads through events.
// Since the Cancel method terminates the currently running operation on the
// connection, threads must be serialized if multiple threads are using the
// same connection to execute server round-trip incurring operations.

5-28 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

// Furthermore, the example shows how the execution and cancel threads should
// be synchronized so that nth iteration of the command execution does not
// inappropriately cancel the (n+1)th command executed by the same thread.

using System;

using System.Data;

using Oracle.DataAccess.Client;
using System.Threading;

class CancelSample
{
private OracleCommand cmd;
Thread tl1, t2;
// threads signal following events when assigned operations are completed

private AutoResetEvent ExecuteEvent = new AutoResetEvent (false);
private AutoResetEvent CancelEvent = new AutoResetEvent (false);
private AutoResetEvent FinishedEvent = new AutoResetEvent (false);
AutoResetEvent [] ExecuteAndCancel = new AutoResetEvent [2];

// Default constructor
CancelSample ()
{
cmd = new OracleCommand("select * from all objects",
new OracleConnection("user id=scott;password=tiger;data source=oracle"));
ExecuteAndCancel [0] = ExecuteEvent;
ExecuteAndCancel [1] = CancelEvent;

}

// Constructor that takes a particular command and connection
CancelSample (string command, OracleConnection con)

cmd = new OracleCommand (command, con);

ExecuteAndCancel [0] = ExecuteEvent;

ExecuteAndCancel [1] = CancelEvent;

}

// Execution of the command
public void Execute()
OracleDataReader reader = null;
try
Console.WriteLine ("Execute.");
reader = cmd.ExecuteReader () ;
Console.WriteLine ("Execute Done.") ;
reader.Close() ;

}

catch (Exception e)

{

Console.WriteLine ("The command has been cancelled.", e.Message);

Console.WriteLine ("ExecuteEvent.Set()");
ExecuteEvent.Set () ;

// Canceling of the command
public void Cancel ()

{

try

Oracle Data Provider for .NET Classes 5-29

OracleCommand Public Methods

// cancel query if it takes longer than 100 ms to finish execution
System.Threading.Thread.Sleep(100) ;

Console.WriteLine ("Cancel.");

cmd. Cancel () ;

}

catch (Exception e)

{

Console.WriteLine (e.ToString()) ;
}
Console.WriteLine ("Cancel done.");
Console.WriteLine ("CancelEvent.Set ()");
CancelEvent.Set () ;

// Execution of the command with a potential of cancelling
public void ExecuteWithinLimitedTime ()
{
for (int 1 = 0; 1 < 5; 1i++)
{
Monitor.Enter (typeof (CancelSample)) ;
try
{
Console.WriteLine ("Executing " + this.cmd.CommandText) ;
ExecuteEvent .Reset () ;
CancelEvent .Reset () ;
tl = new Thread(new ThreadStart (this.Execute));
t2 = new Thread(new ThreadStart (this.Cancel));
tl.Start();
t2.Start();

)

finally

{

WaitHandle.WaitAll (ExecuteAndCancel) ;
Monitor.Exit (typeof (CancelSample)) ;
}
}
FinishedEvent.Set () ;
}
[MTAThread]
static void Main()

{

try

{

AutoResetEvent [] ExecutionCompleteEvents = new AutoResetEvent[3];

// Create the connection that is to be used by three commands

OracleConnection con = new OracleConnection("user id=scott;" +
"password=tiger;data source=oracle");

con.Open() ;

// Create instances of CancelSample class

CancelSample testl = new CancelSample("select * from all objects", con);

CancelSample test2 = new CancelSample ("select * from all objects, emp",
con) ;

CancelSample test3 = new CancelSample ("select * from all objects, dept",
con) ;

// Create threads for each CancelSample object instance
Thread tl = new Thread(new ThreadStart (testl.ExecuteWithinLimitedTime)) ;

5-30 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

Clone

Thread t2 = new Thread(new ThreadStart (test2.ExecuteWithinLimitedTime)) ;
Thread t3 = new Thread(new ThreadStart (test3.ExecuteWithinLimitedTime)) ;

// Obtain a handle to an event from each object

ExecutionCompleteEvents[0] = testl.FinishedEvent;
ExecutionCompleteEvents[1] = test2.FinishedEvent;
ExecutionCompleteEvents[2] = test3.FinishedEvent;

// Start all threads to execute three commands using a single connection
tl.Start();
t2.8tart();
t3.8tart();

// Wait for all three commands to finish executing/canceling before
//closing the connection

WaitHandle.WaitAll (ExecutionCompleteEvents) ;

con.Close() ;

}

catch (Exception e)

{

Console.WriteLine (e.ToString()) ;

}
}
}

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleCommand Class

= OracleCommand Members

s http://msdn.microsoft.com/library for detailed
information about this Microsoft NET Framework 1.1 feature

This method creates a copy of an OracleCommand object.

Declaration

/] C#
public object Clone();

Return Value
An OracleCommand object.

Implements
ICloneable

Remarks

The cloned object has the same property values as that of the object being cloned.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

Oracle Data Provider for .NET Classes 5-31

OracleCommand Public Methods

CreateParameter

This method creates a new instance of OracleParameter class.

Declaration
// C#

public OracleParameter CreateParameter();

Return Value
A new OracleParameter with default values.

Implements

IDbCommand
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

ExecuteNonQuery

This method executes a SQL statement or a command using the Xm1CommandType
and CommandText properties and returns the number of rows affected.

Declaration

// ADO.NET 2.0: C#
public override int ExecuteNonQuery () ;

// ADO.NET 1.x: C#
public int ExecuteNonQuery () ;

Return Value
The number of rows affected.

Implements
IDbCommand

Exceptions
InvalidOperationException - The command cannot be executed.

Remarks
ExecuteNonQuery returns the number of rows affected, for the following:

n If the command is UPDATE, INSERT, or DELETE and the Xm1lCommandType
property is set to OracleXmlCommandType . None.

» If the XmlCommandType property is set to OracleXmlCommandType . Insert,
OracleXmlCommandType .Update, OracleXmlCommandType .Delete.

For all other types of statements, the return value is - 1.

ExecuteNonQuery is used for either of the following:

5-32 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

= Catalog operations (for example, querying the structure of a database or creating
database objects such as tables).

s Changing the data in a database without using a DataSet, by executing UPDATE,
INSERT, or DELETE statements.

s Changing the data in a database using an XML document.

Although ExecuteNonQuery does not return any rows, it populates any output
parameters or return values mapped to parameters with data.

If the XmlCommandType property is set to OracleXmlCommandType .Query then
ExecuteNonQuery executes the select statement in the CommandText property, and
if successful, returns -1. The XML document that is generated is discarded. This is
useful for determining if the operation completes successfully without getting the
XML document back as a result.

If the Xm1CommandType property is set to OracleXmlCommandType . Insert,
OracleXmlCommandType.Update, or OracleXmlCommandType .Delete, then the
value of the CommandText property is an XML document. ExecuteNonQuery saves
the changes in that XML document to the table or view that is specified in the
XmlSaveProperties property. The return value is the number of rows that are
processed in the XML document. Also, each row in the XML document could affect
multiple rows in the database, but the return value is still the number of rows in the
XML document.

Example
/] Cc#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteNonQuerySample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open () ;

OracleCommand cmd = new OracleCommand (
"select sal from emp where empno=7934", con);

object sal = cmd.ExecuteScalar();
Console.WriteLine ("Employee sal before update: " + sal);

cmd. CommandText = "update emp set sal = sal + .01 where empno=7934";

// Auto-commit changes
int rowsUpdated = cmd.ExecuteNonQuery () ;

if (rowsUpdated > 0)

{

cmd. CommandText = "select sal from emp where empno=7934";
sal = cmd.ExecuteScalar();
Console.WriteLine ("Employee sal after update: " + sal);

}

// Clean up

Oracle Data Provider for .NET Classes 5-33

OracleCommand Public Methods

cmd.Dispose () ;
con.Dispose() ;

}
}

Requirements

For XML support, this method requires Oracle9i XML Developer's Kits (Oracle XDK)
or later, to be installed in the database. Oracle XDK can be downloaded from Oracle
Technology Network (OTN).

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleCommand Class

= OracleCommand Members

m http://otn.oracle.com/
ExecuteReader

Overload List:
ExecuteReader executes a command specified in the CommandText.

s ExecuteReader()

This method executes a command specified in the CommandText and returns an
OracleDataReader object.

s ExecuteReader(CommandBehavior)

This method executes a command specified in the CommandText and returns an
OracleDataReader object, using the specified CommandBehavior value.

See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

ExecuteReader()

This method executes a command specified in the CommandText and returns an
OracleDataReader object.

Declaration
// C#

public OracleDataReader ExecuteReader () ;

Return Value
An OracleDataReader.

Implements
IDbCommand

Exceptions
InvalidOperationException - The command cannot be executed.

5-34 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

Remarks

When the CommandType property is set to CommandType . StoredProcedure, the
CommandText property should be set to the name of the stored procedure.

The specified command executes this stored procedure when ExecuteReader is
called. If parameters for the stored procedure consist of REF CURSOR objects, behavior
differs depending on whether ExecuteReader () or ExecuteNonQuery () is called.
If ExecuteReader () is invoked, REF CURSOR objects can be accessed through the
OracleDataReader that is returned.

If more than one REF CURSOR is returned from a single execution, subsequent REF
CURSOR objects can be accessed sequentially by the NextResult method on the
OracleDataReader. If the ExecuteNonQuery method is invoked, the output
parameter value can be cast to a OracleRefCursor type and the OracleRefCursor
object then can be used to either populate a DataSet or create an
OracleDataReader object from it. This approach provides random access to all the
REF CURSOR objects returned as output parameters.

The value of 100 is used for the FetchSize. If 0 is specified, no rows are fetched. For
further information, see "Obtaining LONG and LONG RAW Data" on page 3-42.

If the value of the Xm1CommandType property is set to
OracleXmlCommandType.Insert, OracleXmlCommandType .Update,
OracleXmlCommandType.Delete, or OracleXmlCommandType .Query then the
ExecuteReader method throws an InvalidOperationException.

Example
// C

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteReaderSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open() ;

OracleCommand cmd = new OracleCommand ("select ename from emp", con);
OracleDataReader reader = cmd.ExecuteReader () ;

while (reader.Read())

{

Console.WriteLine ("Employee Name : " + reader.GetString(0));

}

// Clean up
reader.Dispose () ;
cmd.Dispose () ;
con.Dispose () ;

Oracle Data Provider for .NET Classes 5-35

OracleCommand Public Methods

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

s "OracleRefCursor Class" on page 11-113

ExecuteReader(CommandBehavior)

This method executes a command specified in the CommandText and returns an
OracleDataReader object, using the specified behavior.

Declaration
/] C#

public OracleDataReader ExecuteReader (CommandBehavior behavior) ;

Parameters

m behavior

The expected behavior.

Return Value
An OracleDataReader.

Implements
IDbCommand

Exceptions
InvalidOperationException - The command cannot be executed.

Remarks

A description of the results and the effect on the database of the query command is
indicated by the supplied behavior that specifies command behavior.

For valid CommandBehavior values and for the command behavior of each
CommandBehavior enumerated type, read the .NET Framework documentation.

When the CommandType property is set to CommandType . StoredProcedure, the
CommandText property should be set to the name of the stored procedure. The
command executes this stored procedure when ExecuteReader () is called.

If the stored procedure returns stored REF CURSORs, read the section on
OracleRefCursors for more details. See "OracleRefCursor Class" on page 11-113.

The value of 100 is used for the FetchSize. If 0 is specified, no rows are fetched. For
more information, see "Obtaining LONG and LONG RAW Data" on page 3-42.

If the value of the Xm1CommandType property is set to
OracleXmlCommandType.Insert, OracleXmlCommandType.Update,
OracleXmlCommandType.Delete, or OracleXmlCommandType .Query then the
ExecuteReader method throws an InvalidOperationException.

5-36 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

s "OracleRefCursor Class" on page 11-113

ExecuteScalar

This method executes the query using the connection, and returns the first column of
the first row in the result set returned by the query.

Declaration

// BDO.NET 2.0: C#
public override object ExecuteScalar();

// ADO.NET 1.x: C#
public object ExecuteScalar();

Return Value
An object which represents the value of the first row, first column.

Implements
IDbCommand

Exceptions
InvalidOperationException - The command cannot be executed.

Remarks

Extra columns or rows are ignored. ExecuteScalar retrieves a single value (for
example, an aggregate value) from a database. This requires less code than using the
ExecuteReader () method, and then performing the operations necessary to
generate the single value using the data returned by an OracleDataReader.

If the query does not return any row, it returns null.

The ExecuteScalar method throws an InvalidOperationException, if the
value of the Xm1lCommandType property is set to one of the following
OracleXmlCommandType values: Insert, Update, Delete, Query.

Example
/] C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteScalarSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open () ;

Oracle Data Provider for .NET Classes 5-37

OracleCommand Public Methods

OracleCommand cmd = new OracleCommand ("select count (*) from emp", con);
object count = cmd.ExecuteScalar();
Console.WriteLine ("There are {O} rows in table emp", count);

// Clean up
cmd.Dispose () ;
con.Dispose() ;

See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

ExecuteStream

This method executes a command using the Xm1CommandType and CommandText
properties and returns the result as an XML document in a new Stream object.

Declaration
// C#

public Stream ExecuteStream();

Return Value
A Stream.

Remarks
The behavior of ExecuteStream varies depending on the XmlCommandType
property value:
» XmlCommandType = OracleXmlCommandType .None
ExecuteStream throws an InvalidOperationException.

s XmlCommandType = OracleXmlCommandType.Query

ExecuteStream executes the select statement in the CommandText property, and
if successful, returns an OracleClob object containing the XML document that
was generated. OracleClob contains Unicode characters.

If the SQL query does not return any rows, then ExcecuteStream returns an
OracleClob object containing an empty XML document.

» XmlCommandType = OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, or OracleXmlCommandType.Delete.

The value of the CommandText property is an XML document. ExecuteStream
saves the data in that XML document to the table or view that is specified in the
XmlSaveProperties property and an empty OracleClob is returned.

Requirements

For database releases 8.1.7 and 9.0.1 only: This method requires Oracle XML
Developer's Kit (Oracle XDK) release 9.2 or later to be installed on the database. Oracle
XDK can be downloaded from Oracle Technology Network (OTN).

5-38 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

» Oracle XML DB Developer’s Guide

sm http://otn.oracle.com/

ExecuteToStream

This method executes a command using the Xm1CommandType and CommandText
properties and appends the result as an XML document to the existing Stream
provided by the application.

Declaration
/] C#

public void ExecuteToStream(Stream outputStream) ;

Parameters
m outputStream

A Stream.

Remarks
The behavior of ExecuteToStream varies depending on the XmlCommandType
property value:
» XmlCommandType = OracleXmlCommandType .None
ExecuteToStream throws an InvalidOperationException.

s XmlCommandType = OracleXmlCommandType.Query

ExecuteToStream executes the select statement in the CommandText property,
and if successful, appends the XML document that was generated to the given
Stream.

If the SQL query does not return any rows, then nothing is appended to the given
Stream. The character set of the appended data is Unicode.

» XmlCommandType = OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, or OracleXmlCommandType.Delete

The value of the CommandText property is an XML document.
ExecuteToStreamsaves the changes in that XML document to the table or view
that is specified in the Xml1SaveProperties property. Nothing is appended to
the given Stream.

Requirements

For database releases 8.1.7 and 9.0.1 only: This method requires Oracle XML
Developer's Kit (Oracle XDK) release 9.2 or later to be installed on the database. Oracle
XDK can be downloaded from Oracle Technology Network (OTN).

Oracle Data Provider for .NET Classes 5-39

OracleCommand Public Methods

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

» Oracle XML DB Developer’s Guide

sm http://otn.oracle.com/

ExecuteXmIReader

This method executes the command using the Xm1lCommandType and CommandText
properties and returns the result as an XML document in a .NET Xm1TextReader
object.

Declaration

// C#
public XmlReader ExecuteXmlReader () ;

Return Value
An XmlReader.

Remarks
The behavior of ExecuteXmlReader varies depending on the XmlCommandType
property value:
» XmlCommandType = OracleXmlCommandType .None
ExecuteStream throws an InvalidOperationException.

s XmlCommandType = OracleXmlCommandType.Query

ExecuteXmlReader executes the select statement in the CommandText property,
and if successful, returns a .NET XmlTextReader object containing the XML
document that was generated.

If the XML document is empty, which can happen if the SQL query does not return
any rows, then an empty .NET XmlTextReader object is returned.

» XmlCommandType = OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, or OracleXmlCommandType.Delete.

The value of the CommandText property is an XML document, and
ExecuteXmlReader saves the changes in that XML document to the table or
view that is specified in the XmlSaveProperties property. An empty .NET
XmlTextReader object is returned.

Requirements

For database releases 8.1.7 and 9.0.1 only: This method requires Oracle XML
Developer's Kit (Oracle XDK) release 9.2 or later to be installed on the database. Oracle
XDK can be downloaded from Oracle Technology Network (OTN).

5-40 Oracle Data Provider for .NET Developer’s Guide

OracleCommand Class

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommand Class

s OracleCommand Members

» Oracle XML DB Developer’s Guide

sm http://otn.oracle.com/

Oracle Data Provider for .NET Classes 5-41

OracleCommandBuilder Class

OracleCommandBuilder Class

An OracleCommandBuilder object provides automatic SQL generation for the
OracleDataAdapter when updates are made to the database.

Class Inheritance
System.Object

System.MarshalByRefObject
System.ComponentModel . Component
System.Data.Common.DbCommandBuilder (ADO.NET 2.0 only)

OracleDataAccess.Client.OracleCommandBuilder

Declaration

// BADO.NET 2.0: C#
public sealed class OracleCommandBuilder : DbCommandBuilder

// ADO.NET 1.x: C#
public sealed class OracleCommandBuilder : Component

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleCommandBuilder automatically generates SQL statements for single-table
updates when the SelectCommand property of the OracleDataAdapter is set. An
exception is thrown if the DataSet contains multiple tables. The
OracleCommandBuilder registers itself as a listener for RowUpdat ing events
whenever its DataAdapter property is set. Only one OracleDataAdapter object
and one OracleCommandBuilder object can be associated with each other at one
time.

To generate INSERT, UPDATE, or DELETE statements, the OracleCommandBuilder
uses ExtendedProperties within the DataSet to retrieve a required set of
metadata. If the SelectCommand is changed after the metadata is retrieved (for
example, after the first update), the RefreshSchema method should be called to
update the metadata.

OracleCommandBuilder first looks for the metadata from the
ExtendedProperties of the DataSet; if the metadata is not available,
OracleCommandBuilder uses the Select Command property of the
OracleDataAdapter to retrieve the metadata.

Example

The following example performs an update on the EMP table. It uses the
OracleCommandBuilder object to create the UpdateCommand for the
OracleDataAdapter object when OracleDataAdapter.Update () is called.

/] Cc#

using System;
using System.Data;

5-42 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

using Oracle.DataAccess.Client;

class OracleCommandBuilderSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
string cmdstr = "SELECT empno, sal from emp";

// Create the adapter with the selectCommand txt and the
// connection string
OracleDataAdapter adapter = new OracleDataAdapter (cmdstr, constr);

// Create the builder for the adapter to automatically generate
// the Command when needed
OracleCommandBuilder builder = new OracleCommandBuilder (adapter) ;

// Create and fill the DataSet using the EMP
DataSet dataset = new DataSet();
adapter.Fill (dataset, "EMP");

// Get the EMP table from the dataset
DataTable table = dataset.Tables["EMP"];

// Indicate DataColumn EMPNO is unique
// This is required by the OracleCommandBuilder to update the EMP table
table.Columns ["EMPNO"] .Unique = true;

// Get the first row from the EMP table
DataRow row = table.Rows[0];

// Update the salary
double sal = double.Parse(row["SAL"].ToString());
row["SAL"] = sal + .01;

// Now update the EMP using the adapter

// The OracleCommandBuilder will create the UpdateCommand for the
// adapter to update the EMP table

adapter.Update (dataset, "EMP");

Console.WriteLine ("Row updated successfully");

Requirements
Namespace: Oracle.DataAccess.Client

Assembly: Oracle.DataAccess.dll

Microsoft NET Framework Version: 1.x or 2.0

Oracle Data Provider for .NET Classes 5-43

OracleCommandBuilder Class

See Also:

"Oracle.DataAccess.Client Namespace" on page 1-3
OracleCommandBuilder Members
OracleCommandBuilder Constructors
OracleCommandBuilder Static Methods
OracleCommandBuilder Properties
OracleCommandBuilder Public Methods

OracleCommandBuilder Events

5-44 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

OracleCommandBuilder Members

OracleCommandBuilder members are listed in the following tables:

OracleCommandBuilder Constructors
OracleCommandBuilder constructors are listed in Table 5-8.

Table 5-8 OracleCommandBuilder Constructors

Constructor Description
OracleCommandBuilder Instantiates a new instance of OracleCommandBuilder
Constructors class (Overloaded)

OracleCommandBuilder Static Methods
OracleCommandBuilder static methods are listed in Table 5-9.

Table 5-9 OracleCommandBuilder Static Methods

Methods Description

DeriveParameters Queries for the parameters of a stored procedure or
function, represented by a specified OracleCommand,
and populates the OracleParameterCollection of
the command with the return values

Equals Inherited from System.Object (Overloaded)

OracleCommandBuilder Properties
OracleCommandBuilder properties are listed in Table 5-10.

Table 5-10 OracleCommandBuilder Properties

Name Description
Container Inherited from System.ComponentModel . Component
CaseSensitive Indicates whether or not double quotes are used around Oracle object

names when generating SQL statements

CatalogLocation Not Supported

CatalogSeparator Not Supported

ConflictOption Not Supported

DataAdapter Indicates the OracleDataAdapter for which the SQL statements are
generated

QuotePrefix Specifies the beginning character or characters used to specify database

objects whose names contain special characters such as spaces or
reserved words

Supported Only in ADO.NET 2.0-Compliant ODPNET

QuoteSuffix Specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or
reserved words

Supported Only in ADO.NET 2.0-Compliant ODPNET

SchemaSeparator Specifies the character to be used for the separator between the schema
identifier and other identifiers

Supported Only in ADO.NET 2.0-Compliant ODPNET

Oracle Data Provider for .NET Classes 5-45

OracleCommandBuilder Members

Table 5-10 (Cont.) OracleCommandBuilder Properties

Name Description

Site

Inherited from System. ComponentModel . Component

OracleCommandBuilder Public Methods
OracleCommandBuilder public methods are listed in Table 5-11.

Table 5-11 OracleCommandBuilder Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel . Component

Equals Inherited from System.Object (Overloaded)

GetDeleteCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
deletions on the database

GetHashCode Inherited from System.Object

GetInsertCommand Gets the automatically generated OracleCommand object

that has the SQL statement (CommandText) perform
insertions on the database

GetLifetimeService

Inherited from System.MarshalByRefObject

GetType

Inherited from System.Object

GetUpdateCommand

Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
updates on the database

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Quoteldentifier

Returns the correct quoted form of the provided unquoted
identifier, with any embedded quotes in the identifier
properly escaped

Supported Only in ADO.NET 2.0-Compliant ODP.NET

RefreshSchema

Refreshes the database schema information used to
generate INSERT, UPDATE, or DELETE statements

Unquoteldentifier

Returns the correct unquoted form of the provided quoted
identifier, removing any escape notation for quotes
embedded in the identifier

Supported Only in ADO.NET 2.0-Compliant ODPNET

ToString

Inherited from System.Object

OracleCommandBuilder Events
The OracleCommandBuilder event is listed in Table 5-12.

Table 5-12 OracleCommandBuilder Events

Event Name

Description

Disposed

Inherited from System. ComponentModel . Component

5-46 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommandBuilder Class

Oracle Data Provider for .NET Classes 5-47

OracleCommandBuilder Constructors

OracleCommandBuilder Constructors

OracleCommandBuilder constructors create new instances of the
OracleCommandBuilder class.

Overload List:
s OracleCommandBuilder()

This constructor creates an instance of the OracleCommandBuilder class.
s OracleCommandBuilder(OracleDataAdapter)
This constructor creates an instance of the OracleCommandBuilder class and
sets the DataAdapter property to the provided OracleDataAdapter object.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

OracleCommandBuilder()

This constructor creates an instance of the OracleCommandBuilder class.

Declaration
// C#

public OracleCommandBuilder () ;

Remarks

Default constructor.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

OracleCommandBuilder(OracleDataAdapter)

This constructor creates an instance of the OracleCommandBuilder class and sets
the DataAdapter property to the provided OracleDataAdapter object.

Declaration

// C
public OracleCommandBuilder (OracleDataAdapter da);

Parameters
[] da

The OracleDataAdapter object provided.

5-48 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

Oracle Data Provider for .NET Classes 5-49

OracleCommandBuilder Static Methods

OracleCommandBuilder Static Methods

OracleCommandBuilder static methods are listed in Table 5-13.

Table 5-13 OracleCommandBuilder Static Methods

Methods Description

DeriveParameters Queries for the parameters of a stored procedure or function,
represented by a specified OracleCommand, and populates the
OracleParameterCollection of the command with the
return values

Equals Inherited from System.Object (Overloaded)

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

DeriveParameters

This method queries for the parameters of a stored procedure or function, represented
by a specified OracleCommand, and populates the OracleParameterCollection
of the command with the return values.

Declaration
// C#

public static void DeriveParameters (OracleCommand command) ;

Parameters
n command

The command that represents the stored procedure or function for which
parameters are to be derived.

Exceptions

InvalidOperationException - The CommandText is not a valid stored procedure
or function name, the CommandType is not CommandType . StoredProcedure, or
the Connection.State is not ConnectionState.Open.

Remarks

When DeriveParameters is used to populate the Parameter collection of an
OracleCommand Object that represents a stored function, the return value of the
function is bound as the first parameter (at position 0 of the
OracleParameterCollection).

DeriveParameters can only be used for stored procedures or functions, not for
anonymous PL/SQL blocks.

Invoking DeriveParameters deletes all existing parameters in the parameter
collection of the command.

DeriveParameters incurs a database round-trip and should only be used during
design time. To avoid unnecessary database round-trips in a production environment,

5-50 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

the DeriveParameters method itself should be replaced with the explicit parameter
settings that were returned by the DeriveParameters method at design time.

DeriveParameters can only preserve the case of the stored procedure or function
name if it is encapsulated by double-quotes. For example, if the stored procedure in
the database is named GetEmployees with mixed-case, the CommandText property
on the OracleCommand object must be set appropriately as in the following example:

cmd. CommandText = "\"GetEmployees\"";

Stored procedures and functions in a package must be provided in the following
format:

<package names.<procedure or function namex>

For example, to obtain parameters for a stored procedure named GetEmployees
(mixed-case) in a package named EmpProcedures (mixed-case), the name provided
to the OracleCommand is:

"\ "EmpProcedures\".\"GetEmployees\""

DeriveParameters cannot be used for object type methods.

The derived parameters contain all the metadata information that is needed for the
stored procedure to execute properly. The application must provide the value of the
parameters before execution, if required. The application may also modify the
metadata information of the parameters before execution. For example, the Size
property of the OracleParameter may be modified for PL/SQL character and string
types to optimize the execution of the stored procedure.

The output values of derived parameters return as .NET Types by default. To obtain
output parameters as provider types, the OracleDbType property of the parameter
must be set explicitly by the application to override this default behavior. One quick
way to do this is to set the OracleDbType to itself for all output parameters that
should be returned as provider types.

The BindByName property of the supplied OracleCommand is left as is, but the
application can change its value.

If the specified stored procedure or function is overloaded, the first overload is used to
populate the parameters collection.

// Database Setup

/*

connect scott/tiger@oracle

CREATE OR REPLACE PROCEDURE MyOracleStoredProc (arg in IN VARCHARZ,
arg_out OUT VARCHAR2) IS

BEGIN
arg out := arg_in;

END;

/

*/

/] C#

using System;

using System.Data;

using Oracle.DataAccess.Client;

class DeriveParametersSample

{

static void Main()

{

Oracle Data Provider for .NET Classes 5-51

OracleCommandBuilder Static Methods

// Create the PL/SQL Stored Procedure MyOracleStoredProc as indicated in
// the preceding Database Setup

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open() ;

// Create an OracleCommand
OracleCommand cmd = new OracleCommand ("MyOracleStoredProc", con);
cmd. CommandType = CommandType.StoredProcedure;

// Derive Parameters
OracleCommandBuilder.DeriveParameters (cmd) ;
Console.WriteLine ("Parameters Derived") ;

// Prints "Number of Parameters for MyOracleStoredProc = 2"
Console.WriteLine ("Number of Parameters for MyOracleStoredProc = {0}",
cmd. Parameters.Count) ;

// The PL/SQL stored procedure MyOracleStoredProc has one IN and
// one OUT parameter. Set the Value for the IN parameter.
cmd.Parameters[0] .Value = "MyText";

// The application may modify the other OracleParameter properties also
// This sample uses the default Size for the IN parameter and modifies
// the Size for the OUT parameter

// The default size for OUT VARCHAR2 is 4000
// Prints "cmd.Parameters[1l].Size = 4000"

Console.WriteLine ("cmd.Parameters([1] .Size = " + cmd.Parameters[1l].Size);

// Set the Size for the OUT parameter
cmd.Parameters[1] .Size = 6;

// Execute the command
cmd . ExecuteNonQuery () ;

// Prints "cmd.Parameters[l].Value = MyText"
Console.WriteLine ("cmd.Parameters([1] .Value = " + cmd.Parameters[1].Value);

con.Close () ;
con.Dispose () ;

5-52 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

Example

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleCommandBuilder Class

= OracleCommandBuilder Members

= OracleCommand Class

» OracleParameter Class

= OracleParameterCollection Class

s http://msdn.microsoft.com/library for detailed
information about this Microsoft NET Framework 1.1 feature

Oracle Data Provider for .NET Classes 5-53

OracleCommandBuilder Properties

OracleCommandBuilder Properties

CaseSensitive

OracleCommandBuilder properties are listed in Table 5-14.

Table 5-14 OracleCommandBuilder Properties

Name Description

Container Inherited from System. ComponentModel . Component

CaseSensitive Indicates whether or not double quotes are used around Oracle object
names when generating SQL statements

CatalogLocation Not Supported

CatalogSeparator Not Supported

ConflictOption Not Supported

DataAdapter Indicates the OracleDataAdapter for which the SQL statements are
generated

QuotePrefix Specifies the beginning character or characters used to specify database
objects whose names contain special characters such as spaces or
reserved words
Supported Only in ADO.NET 2.0-Compliant ODP.NET

QuoteSuffix Specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or
reserved words
Supported Only in ADO.NET 2.0-Compliant ODPNET

SchemaSeparator Specifies the character to be used for the separator between the schema
identifier and other identifiers
Supported Only in ADO.NET 2.0-Compliant ODPNET

Site Inherited from System. ComponentModel . Component

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommandBuilder Class

s OracleCommandBuilder Members

This property indicates whether or not double quotes are used around Oracle object
names (for example, tables or columns) when generating SQL statements.

Declaration
// C#

bool CaseSensitive {get; set;}

Property Value

A bool that indicates whether or not double quotes are used.

Remarks

Default = false

5-54 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

CatalogLocation
This property is not supported.

Declaration

// BDO.NET 2.0: C#
public override CatalogLocation Cataloglocation {get; set;}

Exceptions
NotSupportedException - This property is not supported.

Remarks

This property is not supported.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

CatalogSeparator
This property is not supported.

Declaration

// BADO.NET 2.0: C#
public override string CatalogSeparator {get; set;}

Exceptions
NotSupportedException - This property is not supported.

Remarks

This property is not supported.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

ConflictOption
This property is not supported.

Oracle Data Provider for .NET Classes 5-55

OracleCommandBuilder Properties

Declaration

// BDO.NET 2.0: C
public override string ConflictOption {get; set;}

Exceptions
NotSupportedException - This property is not supported.

Remarks

This property is not supported.
See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

DataAdapter
This property indicates the OracleDataAdapter object for which the SQL
statements are generated.
Declaration
/] C#
OracleDataAdapter DataAdapter{get; set;}
Property Value
An OracleDataAdapter object.
Remarks
Default = null
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class
s OracleCommandBuilder Members
QuotePrefix

This property specifies the beginning character or characters used to specify database
objects whose names contain special characters such as spaces or reserved words.

Declaration

// BDO.NET 2.0: C
public override string QuotePrefix {get; set;}

Property Value
The beginning character or characters to use. The default valueis "\ " .
Exceptions

ArgumentNullException - The input value is null.

5-56 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

QuoteSuffix

NotSupportedException - The input value is not "\ " ".

Remarks

This property is independent of any OracleConnection or OracleCommand
objects. Only "\ " " is supported as the quote prefix.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

This property specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or reserved words.

Declaration

// BDO.NET 2.0: C
public override string QuoteSuffix {get; set;}

Property Value
The ending character or characters to use. The default valueis "\ " ".

Exceptions
ArgumentNullException - The input value is null.

NotSupportedException - The input value is not "\ " ".

Remarks

This property is independent of any OracleConnection or OracleCommand
objects. Only "\ " " is supported as the quote suffix value.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

SchemaSeparator

This property specifies the character to be used for the separator between the schema
identifier and other identifiers.

Declaration

// BDO.NET 2.0: C#
public override string SchemaSeparator {get; set; }

Property Value
The character to be used as the schema separator.

Oracle Data Provider for .NET Classes 5-57

OracleCommandBuilder Properties

Exceptions
ArgumentNullException - The input value is null.

NotSupportedException - The input value is not a dot (.).

Remarks

The default schema separator is a dot (.). The only acceptable value for this property
isadot (.).

This property is independent of any OracleConnection or OracleCommand
objects.

Example
/] Cc#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class SchemaSeperatorSample

{

static void Main(string[] args)

{

try

{

OracleCommandBuilder cmdBuilder = new OracleCommandBuilder() ;

//schemaSeparator is dot(.)
Console.WriteLine ("schemaSeparator is {0}",
cmdBuilder.SchemaSeparator) ;

//set the schemaseparator, only '.' is allowed.
cmdBuilder.SchemaSeparator = ".";

// the only acceptable value for this property is a dot (.)
// Hence the following line will throw NotSupportedException
cmdBuilder.SchemaSeparator = "!I";

}

catch (Exception ex)

{

Console.WriteLine (ex.Message) ;
Console.WriteLine (ex.StackTrace) ;

}
}
}

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

5-58 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

OracleCommandBuilder Public Methods

OracleCommandBuilder public methods are listed in Table 5-15.

Table 5-15 OracleCommandBuilder Public Methods

Public Method

Description

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System. ComponentModel . Component

Equals Inherited from System.Object (Overloaded)

GetDeleteCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
deletions on the database

GetHashCode Inherited from System.Object

GetlnsertCommand Gets the automatically generated OracleCommand object

that has the SQL statement (CommandText) perform
insertions on the database

GetLifetimeService

Inherited from System.MarshalByRefObject

GetType

Inherited from System.Object

GetUpdateCommand

Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
updates on the database

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Quoteldentifier Returns the correct quoted form of the provided unquoted
identifier, with any embedded quotes in the identifier
properly escaped
Supported Only in ADO.NET 2.0-Compliant ODP.NET

RefreshSchema Refreshes the database schema information used to
generate INSERT, UPDATE, or DELETE statements

Unquoteldentifier Returns the correct unquoted form of the provided quoted
identifier, removing any escape notation for quotes
embedded in the identifier
Supported Only in ADO.NET 2.0-Compliant ODP.NET

ToString Inherited from System.Object

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

GetDeleteCommand

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform deletions on the database when an
application calls Update () on the OracleDataAdapter.

Declaration

/] C#

public OracleCommand GetDeleteCommand () ;

Oracle Data Provider for NET Classes 5-59

OracleCommandBuilder Public Methods

Return Value
An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already
disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter
property is null, or the primary key cannot be retrieved from the SelectCommand
property of the OracleDataAdapter.

See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

GetinsertCommand

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform insertions on the database when an
application calls Update () on the OracleDataAdapter.

Declaration
// C#

public OracleCommand GetInsertCommand () ;

Return Value
An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already
disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter
property is null, or the primary key cannot be retrieved from the SelectCommand
property of the OracleDataAdapter.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

GetUpdateCommand

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform updates on the database when an application
calls Update () on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetUpdateCommand () ;

5-60 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

Quoteldentifier

Return Value
An OracleCommand.

Exceptions
ObjectDisposedException - The OracleCommandBuilder object is already
disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter
property is null, or the primary key cannot be retrieved from the SelectCommand
property of the OracleDataAdapter.

See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

This method returns the correct quoted form of the provided unquoted identifier, with
any embedded quotes in the identifier properly escaped.

Declaration

// ADO.NET 2.0: C#
public override string QuoteIdentifier(string unquotedIdentifier);

Parameters
m UnquotedIdentifier

An unquoted identifier string.

Return Value

The quoted version of the identifier. Embedded quotes within the identifier are
properly escaped.

Exceptions
ArgumentNullException - The input parameter is null.

Remarks
This method is independent of any OracleConnection or OracleCommand objects.

Example
/] C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class QuoteIdentifierSample

{

static void Main(string[] args)

{

OracleCommandBuilder builder = new OracleCommandBuilder () ;

Oracle Data Provider for .NET Classes 5-61

OracleCommandBuilder Public Methods

string quoteldentifier = builder.QuoteIdentifier ("US\"ER");

//quoteldentifier for "US\"ER" is (\"US\"\"ER\")
Console.WriteLine ("quoteIdentifier is {0}" , quoteIldentifier);

}
}

See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

RefreshSchema

This method refreshes the database schema information used to generate INSERT,
UPDATE, or DELETE statements.

Declaration

// ADO.NET 2.0: C#
public override void RefreshSchema() ;

// ADO.NET 1.x: C#
public void RefreshSchema () ;

Remarks

An application should call RefreshSchema whenever the SelectCommand value of
the OracleDataAdapter object changes.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

s OracleCommandBuilder Members

Unquoteldentifier

This method returns the correct unquoted form of the provided quoted identifier,
removing any escape notation for quotes embedded in the identifier.

Declaration

// ADO.NET 2.0: C#
public override string Unquoteldentifier(string quotedIdentifier);

Parameters
m quotedIdentifier

The quoted string identifier.

Return Value
The unquoted identifier, with escape notation for any embedded quotes removed.

Exceptions
ArgumentNullException - The input parameter is null.

5-62 Oracle Data Provider for .NET Developer’s Guide

OracleCommandBuilder Class

ArgumentException - The input parameter is empty.

Remarks
This method is independent of any OracleConnection or OracleCommand objects.

Example
/] C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class UnQuoteIdentifierSample

{

static void Main(string[] args)

{

//create an OracleCommandBuilder object.
OracleCommandBuilder builder = new OracleCommandBuilder () ;

string identifier = "US\"ER";
Console.WriteLine ("Identifier is {0}", identifier);

// quote the identifier
string quoteIdentifier = builder.QuoteIdentifier(identifier);

//quoteldentifier of "US\"ER" is (\"US\"\"ER\")
Console.WriteLine ("QuotedIdentifier is {0}" , quoteIdentifier);
string unquoteldentifier = builder.UnquoteIdentifier (quoteldentifier);

//And its unquoteIdentifier is US\"ER
Console.WriteLine ("UnquotedIdentifier is {0}" , unquoteldentifier);

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleCommandBuilder Class

» OracleCommandBuilder Members

Oracle Data Provider for .NET Classes 5-63

OracleCommandBuilder Events

OracleCommandBuilder Events

The OracleCommandBuilder event is listed in Table 5-16.

Table 5-16 OracleCommandBuilder Event

Event Name

Description

Disposed

Inherited from System. ComponentModel . Component

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleCommandBuilder Class

s OracleCommandBuilder Members

5-64 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

OracleConnection Class

An OracleConnection object represents a connection to an Oracle database.

Class Inheritance
System.Object

System.MarshalByRefObject
System.ComponentModel . Component
System.Data.Common.DbConnection (ADO.NET 2.0 only)

Oracle.DataAccess.Client.OracleConnection

Declaration

// ADO.NET 2.0: C#
public sealed class OracleConnection : DbConnection, IDbConnection, ICloneable

// ADO.NET 1.x: C#
public sealed class OracleConnection : Component, IdbConnection, ICloneable

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example
// C

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleConnectionSample

{

static void Main()

{

// Connect

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;

con.Open () ;

// Execute a SQL SELECT

OracleCommand cmd = con.CreateCommand () ;

cmd. CommandText = "select * from emp";
OracleDataReader reader = cmd.ExecuteReader () ;

// Print all employee numbers
while (reader.Read())
Console.WriteLine (reader.GetInt32(0));

// Clean up
reader.Dispose () ;
cmd.Dispose () ;
con.Dispose () ;

Oracle Data Provider for .NET Classes 5-65

OracleConnection Class

Requirements
Namespace: Oracle.DataAccess.Client

Assembly: Oracle.DataAccess.dll

Microsoft NET Framework Version: 1.x or 2.0

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Members

s OracleConnection Constructors

s OracleConnection Static Properties

s OracleConnection Static Methods

s OracleConnection Properties

» OracleConnection Public Methods

s OracleConnection Events

5-66 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

OracleConnection Members

OracleConnection members are listed in the following tables:

OracleConnection Constructors
OracleConnection constructors are listed in Table 5-17.

Table 5-17 OracleConnection Constructors

Constructor Description

OracleConnection Constructors Instantiates a new instance of the
OracleConnection class (Overloaded)

OracleConnection Static Properties
The OracleConnection static property is listed in Table 5-19.

Table 5-18 OracleConnection Static Property

Property Description

IsAvailable Indicates whether or not the implicit database
connection is available for use

OracleConnection Static Methods
The OracleConnection static method is listed in Table 5-19.

Table 5-19 OracleConnection Static Method

Method Description
Equals Inherited from System.Object (Overloaded)
ClearPool Clears the connection pool that is associated with

the provided OracleConnection object.

Not supported in a .NET stored procedure

ClearAllPools Clears all connections from all the connection pools

Not supported in a .NET stored procedure

OracleConnection Properties
OracleConnection properties are listed in Table 5-20

Table 5-20 OracleConnection Properties

Name Description

Clientld Specifies the client identifier for the connection

ConnectionString Specifies connection information used to connect to an Oracle
database

ConnectionTimeout Indicates the maximum amount of time that the Open method can

take to obtain a pooled connection before the request is terminated

Container Inherited from System.ComponentModel . Component
Database Not Supported
DataSource Specifies the Oracle Net Services Name, Connect Descriptor, or an

easy connect naming that identifies the database to which to connect

Oracle Data Provider for .NET Classes 5-67

OracleConnection Members

Table 5-20 (Cont.) OracleConnection Properties

Name Description

ServerVersion Specifies the version number of the Oracle database to which the
OracleConnection has established a connection

Site Inherited from System.ComponentModel . Component

State Specifies the current state of the connection

OracleConnection Public Methods
OracleConnection public methods are listed in Table 5-21.

Table 5-21

OracleConnection Public Methods

Public Method

Description

BeginTransaction Begins a local transaction (Overloaded)
Not supported in a .NET stored procedure
ChangeDatabase Not Supported
Clone Creates a copy of an OracleConnection object
Not supported in a .NET stored procedure
Close Closes the database connection
CreateCommand Creates and returns an OracleCommand object
associated with the OracleConnection object
CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from

System.ComponentModel . Component

EnlistDistributed Transaction

Enables applications to explicitly enlist in a specified
distributed transaction

Not supported in a .NET stored procedure

EnlistTransaction Enables applications to enlist in a specified distributed
transaction
Supported Only in ADO.NET 2.0-Compliant ODPNET
Not supported in a .NET stored procedure

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetLifetimeService

Inherited from System.MarshalByRefObject

GetSchema

Returns schema information for the data source of the
OracleConnection

Supported Only in ADO.NET 2.0-Compliant ODPNET

GetSessionInfo

Returns or refreshes the property values of the
OracleGlobalization object that represents the
globalization settings of the session (Overloaded)

GetType

Inherited from System.Object

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Open

Opens a database connection with the property
settings specified by the ConnectionString

5-68 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

Table 5-21 (Cont.) OracleConnection Public Methods

Public Method Description

OpenWithNewPassword Opens a new connection with the new password

Not supported in a .NET stored procedure

PurgeStatementCache Flushes the Statement Cache by closing all open
cursors on the database, when statement caching is
enabled

SetSessionInfo Alters the session's globalization settings with the

property values provided by the
OracleGlobalization object

ToString Inherited from System.Object

OracleConnection Events
OracleConnection events are listed in Table 5-22.

Table 5-22 OracleConnection Events

Event Name Description
Disposed Inherited from
System.ComponentModel . Component
Failover An event that is triggered when an Oracle failover
occurs

Not supported in a .NET stored procedure

InfoMessage An event that is triggered for any message or
warning sent by the database
StateChange An event that is triggered when the connection state
changes
See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleConnection Class

Oracle Data Provider for .NET Classes 5-69

OracleConnection Constructors

OracleConnection Constructors

OracleConnection constructors instantiate new instances of the
OracleConnection class.

Overload List:
s OracleConnection()

This constructor instantiates a new instance of the OracleConnection class
using default property values.

= OracleConnection(String)
This constructor instantiates a new instance of the OracleConnection class with
the provided connection string.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleConnection Class

s OracleConnection Members

OracleConnection()

This constructor instantiates a new instance of the OracleConnection class using
default property values.

Declaration
// C#

public OracleConnection();

Remarks
The properties for OracleConnection are set to the following default values:

s ConnectionString = empty string

s ConnectionTimeout =15 (default value of 0 is used for the implicit database
connection)

= DataSource = empty string

m ServerVersion = empty string

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

» OracleConnection Members

OracleConnection(String)

This constructor instantiates a new instance of the OracleConnection class with the
provided connection string.

Declaration

/] c#

public OracleConnection(String connectionString) ;

5-70 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

Parameters
m connectionString

The connection information used to connect to the Oracle database.

Remarks

The ConnectionString property is set to the supplied connectionString. The
ConnectionString property is parsed and an exception is thrown if it contains
invalid connection string attributes or attribute values.

The properties of the OracleConnection object default to the following values
unless they are set by the connection string:

s ConnectionString = empty string

s ConnectionTimeout =15 (default value of 0 is used for the implicit database
connection)

= DataSource = empty string

m ServerVersion = empty string

See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleConnection Class

s OracleConnection Members

Oracle Data Provider for .NET Classes 5-71

OracleConnection Static Properties

OracleConnection Static Properties

IsAvailable

The OracleConnection static property is listed in Table 5-23.

Table 5-23 OracleConnection Static Property

Property Description

IsAvailable Indicates whether or not the implicit database
connection is available for use

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

This property indicates whether or the implicit database connection is available for
use.

Declaration

// C#
public static bool IsAvailable {get;}

Property Value
Returns true if the implicit database connection is available for use.

Remarks

The availability of the implicit database connection can be checked at runtime through
this static property. When Oracle Data Provider for .NET is used within a .NET stored
procedure, this property always returns true. Otherwise, false is returned.

To obtain an OracleConnection object in a .NET stored procedure that represents
the implicit database connection, set the ConnectionString property of the
OracleConnection object to "context connection=true" and invoke the Open
method.

Note that not all features that are available for an explicit user connection are available
for an implicit database connection. See "Implicit Database Connection" on page 4-2
for details.

Example

// C# (Library/DLL)

using System;

using Oracle.DataAccess.Client;

public class IsAvailableSample

{

static void MyStoredProcedure ()

{

OracleConnection con = new OracleConnection();
if (OracleConnection.IsAvailable)

{

// This function is invoked as a stored procedure

5-72 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

// Obtain the implicit database connection by setting

// "context connection=true" in the connection string
con.ConnectionString = "context connection=true";
else

{

// This function is not invoked as a stored procedure
// Set the connection string for a normal client connection
con.ConnectionString = "user id=scott;password=tiger;data source=oracle";

}

con.Open () ;
Console.WriteLine ("connected!") ;

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

Oracle Data Provider for .NET Classes 5-73

OracleConnection Static Methods

OracleConnection Static Methods

The OracleConnection static method is listed in Table 5-24.

Table 5-24 OracleConnection Static Method

Method Description
Equals Inherited from System.Object (Overloaded)
ClearPool Clears the connection pool that is associated with the provided

OracleConnection object.

Not supported in a .NET stored procedure

ClearAllPools Clears all connections from all the connection pools

Not supported in a .NET stored procedure

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

ClearPool

This method clears the connection pool that is associated with the provided
OracleConnection object.

Declaration
// C#

public static void ClearPool (OracleConnection connection) ;

Remarks

When this method is invoked, all idle connections are closed and freed from the pool.
Currently used connections are not discarded until they are returned to the pool.

The ClearPool method should be invoked only when valid connections can be
created (that is, the database is up and can be connected to). Otherwise, the
ClearPool method may just create invalid connections to a downed database
instance. Assuming valid database connections, a ClearPool invocation creates a
connection pool with usable connections. Therefore, connection requests succeed even
after the invocation of this method. Connections created after this method invocation
are not cleared unless another invocation is made.

This method can be invoked with an OracleConnection object before opening the
connection as well as after, provided the ConnectionString is properly set.

Exceptions

InvalidOperationException — Either the connection pool cannot be found or the
provided connection string is invalid.

Example
/] Cc#

// Sample demonstrating the use of ClearPool API in OracleConnection class

using System;

5-74 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

ClearAllPools

using Oracle.DataAccess.Client;

class ClearPoolSample

{

static void Main()

{

Console.WriteLine ("Running ClearPool sample...");

// Set the connection string

string strConn = "User Id=scott;Password=tiger;Data Source=oracle;" +
"Min pool size=5;";

OracleConnection conn = new OracleConnection (strConn) ;

// Open the connection
conn.Open () ;

// Clears the connection pool associated with connection 'conn'
OracleConnection.ClearPool (conn);

// This connection will be placed back into the pool
conn.Close ();

// Open the connection again to create additional connections in the pool
conn.Open () ;

// Create a new connection object
OracleConnection connNew = new OracleConnection (strConn) ;

// Clears the pool associated with Connection 'connNew'

// Since the same connection string is set for both the connections,
// connNew and conn, they will be part of the same connection pool.
// We need not do an Open() on the connection object before calling
// ClearPool

OracleConnection.ClearPool (connNew) ;

// cleanup
conn.Close() ;
Console.WriteLine ("Done!") ;

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

This method clears all connections from all the connection pools.

Declaration

// C#
public static void ClearAllPools () ;

Remarks (Oracle.DataAccess.Client only)

This call is analogous to calling ClearPool for all the connection pools that are
created for the application.

Oracle Data Provider for .NET Classes 5-75

OracleConnection Static Methods

Exceptions

InvalidOperationException —No connection pool could be found for the
application.

Example
// C

// Sample demonstrating the use of ClearAllPools API in OracleConnection class

using System;
using Oracle.DataAccess.Client;

class ClearAllPoolsSample

{

static void Main()
{
Console.WriteLine ("Running ClearAllPools sample...");
// Set the connection string
string strConn = "User Id=scott;Password=tiger;Data Source=oracle;" +
"Min pool size=5;";
OracleConnection conn = new OracleConnection (strConn) ;

// Create another connection object with a different connection string
string strConnNew = "User Id=scott;Password=tiger;Data Source=oracle;";
OracleConnection connNew = new OracleConnection (strConnNew) ;

// Open the connections. Separate pools are created for conn and connNew
conn.Open () ;
connNew.Open () ;

// Clears the pools associated with conn and connNew
OracleConnection.ClearAllPools () ;

// cleanup

conn.Close () ;

connNew.Close () ;
Console.WriteLine ("Done!") ;

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

» OracleConnection Members

s "ClearPool" on page 5-74

5-76 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

OracleConnection Properties

Clientid

OracleConnection properties are listed in Table 5-25

Table 5-25 OracleConnection Properties

Name Description

Clientld Specifies the client identifier for the connection

ConnectionString Specifies connection information used to connect to an Oracle
database

ConnectionTimeout Indicates the maximum amount of time that the Open method can

take to obtain a pooled connection before the request is terminated

Container Inherited from System. ComponentModel . Component

Database Not Supported

DataSource Specifies the Oracle Net Services Name, Connect Descriptor, or an
easy connect naming that identifies the database to which to connect

ServerVersion Specifies the version number of the Oracle database to which the
OracleConnection has established a connection

Site Inherited from System.ComponentModel . Component

State Specifies the current state of the connection

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

This property specifies the client identifier for the connection.

Declaration

/] C#
public string ClientId {set;}

Property Value
The string to be used as the client identifier.

Remarks
The default value isnull.

Setting ClientId tonull resets the client identifier for the connection. Setting
ClientId to an empty string sets the client identifier for the connection to an empty
string. ClientIdis set to null when the Close method is called on the

OracleConnection object.

Using the ClientId property allows the application to set the client identifier in the
application context for every database session using ODP.NET. This enables ODP.NET
developers to configure the Oracle Virtual Private Database (VPD) more easily.

Oracle Data Provider for .NET Classes 5-77

OracleConnection Properties

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

s "Client Identifier" on page 3-13

» Oracle Database Security Guide

ConnectionString

This property specifies connection information used to connect to an Oracle database.

Declaration

// BDO.NET 2.0: C
public override string ConnectionString{get; set;}

// ADO.NET: 1.x C#
public string ConnectionString{get; set;}

Property Value

If the connection string is supplied through the constructor, this property is set to that
string.

Implements
IDbConnection

Exceptions
ArgumentException - An invalid syntax is specified for the connection string.

InvalidOperationException - ConnectionString is being set while the
connection is open.

Remarks
The default value is an empty string.

ConnectionString must be a string of attribute name and value pairings, separated
by a semi-colon, for example:

"User Id=scott;password=tiger;data source=oracle"

If the ConnectionString is not in a proper format, an exception is thrown. All
spaces are ignored unless they are within double quotes.

When the ConnectionString property is set, the OracleConnection object
immediately parses the string for errors. An ArgumentException is thrown if the
ConnectionString contains invalid attributes or invalid values. Attribute values for
User Id, Password, Proxy User Id, Proxy Password, and Data Source (if
provided) are not validated until the Open method is called.

The connection must be closed to set the ConnectionString property. When the
ConnectionString property is reset, all previously set values are reinitialized to
their default values before the new values are applied.

Starting with ODP.NET 11.1, password and proxy password connection string
attribute values are accepted as case-sensitive strings. Thus, they are passed to the

5-78 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

database for authentication in the case provided in the connection string. Therefore, if
the database is configured to support case-sensitive passwords, passwords must be
passed in the correct case.

If a connection string attribute is set more than once, the last setting takes effect and no
exceptions are thrown.

Boolean connection string attributes can be set to either true, false, yes, or no.

Remarks (.NET Stored Procedure)

To obtain an OracleConnection object in a .NET stored procedure that represents
the implicit database connection, set the ConnectionString property of the
OracleConnection object to "context connection=true" and invoke the Open
method. Other connection string attributes cannot be used in conjunction with
"context connection" when it is set to true.

Supported Connection String Attributes
Table 5-26 lists the supported connection string attributes.

Table 5-26 Supported Connection String Attributes

Connection String Default
Attribute Description Value
Connection Maximum life time (in seconds) of the connection. 0
Lifetime

This attribute specifies the lifetime of the connection in
seconds. Before the Connection is placed back into the pool,
the lifetime of the connection is checked. If the lifetime of the
connection exceeds this property value, the connection is
closed and disposed of. If this property value is 0, the
connection lifetime is never checked. Connections that have
exceeded their lifetimes are not closed and disposed of, if
doing so brings the number of connections in the pool below
the Min Pool Size.

Connection Maximum time (in seconds) to wait for a free connection 15
Timeout from the pool.

This attribute specifies the maximum amount of time (in
seconds) that the Open () method can take to obtain a pooled
connection before it terminates the request. This value comes
into effect only if no free connection is available from the
connection pool and the Max Pool Size is reached. If a free
connection is not available within the specified time, an
exception is thrown. Connection Timeout does not limit
the time required to open new connections.

This attribute value takes effect for pooled connection
requests and not for new connection requests.

(The default value is 0 for the implicit database connection in
a .NET stored procedure.)

Context Returns an implicit database connection if set to true. false

connection An implicit database connection can only be obtained from

within a .NET stored procedure. Other connection string
attributes cannot be used in conjunction with "context
connection" when itis set to true.

Supported in a .NET stored procedure only

Data Source Oracle Net Services Name, Connect Descriptor, or an easy empty
connect naming that identifies the database to which to string
connect.

Oracle Data Provider for .NET Classes 5-79

OracleConnection Properties

Table 5-26 (Cont.) Supported Connection String Attributes

Connection String Default

Attribute Description Value

DBA Privilege Administrative privileges SYSDBA or SYSOPER. empty
string

This connection string attribute only accepts SYSDBA or
SYSOPER as the attribute value. It is case insensitive.

Decr Pool Size Number of connections that are closed when an excessive 1
amount of established connections are unused.

This connection string attribute controls the maximum
number of unused connections that are closed when the pool
regulator makes periodic checks. The regulator thread is
spawned every 3 minutes and closes up to Decr Pool Size
amount of pooled connections if they are not used. The pool
regulator never takes the total number of connections below
the Min Pool Size by closing pooled connections.

Enlist Controls the enlistment behavior and capabilities of a true
connection in context of COM+ transactions or
System.Transactions.

If this attribute is set to true, the connection is automatically
enlisted in the thread's transaction context. If this attribute is
false, no enlistments are made. If this attribute is set to
dynamic, applications can dynamically enlist in distributed
transactions. This attribute can be set to true, false, yes,
no, or dynamic.

HA Events Enables ODP.NET connection pool to proactively remove false
connections from the pool when a RAC service, service
member, or node goes down.

This feature can only used against a RAC database and only
if "pooling=true".

This attribute can be set to true, false, yes, or no.

Load Balancing Enables ODP.NET connection pool to balance work requests false
across RAC instances based on the load balancing advisory
and service goal.

This feature can only used against a RAC database and only
if "pooling=true".

This attribute can be set to true, false, yes, or no.

Incr Pool Size Number of new connections to be created when all 5
connections in the pool are in use.

This connection string attribute determines the number of
new connections that are established when a pooled
connection is requested, but no unused connections are
available and Max Pool Size is not reached. If new
connections have been created for a pool, the regulator thread
skips a cycle and does not have an opportunity to close any
connections for 6 minutes. Note, however, that some
connections can be still be closed during this time if their
lifetime has been exceeded.

5-80 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

Table 5-26 (Cont.) Supported Connection String Attributes

Connection String Default
Attribute Description Value
Max Pool Size Maximum number of connections in a pool. 100

This attribute specifies the maximum number of connections
allowed in the particular pool used by that
OracleConnection. Simply changing this attribute in the
connection string does not change the Max Pool Size
restriction on a currently existing pool. Doing so simply
creates a new pool with a different Max Pool Size
restriction. This attribute must be set to a value greater than
the Min Pool Size. This value is ignored unless Pooling is
turned on.

Metadata Pooling Caches metadata information. True

This attribute indicates whether or not metadata information
for executed queries are cached for improved performance.

Min Pool Size Minimum number of connections in a pool. 1

This attribute specifies the minimum number of connections
to be maintained by the pool during its entire lifetime.
Simply changing this attribute in the connection string does
not change the Min Pool Size restriction on a currently
existing pool. Doing so simply creates a new pool with a
different Min Pool Size restriction. This value is ignored
unless Pooling is turned on.

Password Password for the user specified by User Id. empty

This attribute specifies an Oracle user's password. Password string

is case-sensitive.

Persist Retrieval of the password in the connection string. false

Security Info If this attribute is set to £alse, the Password value setting is

not returned when the application requests the
ConnectionString after the connection is successfully
opened by the Open () method. This attribute can be set to
either true, false, yes, or no.

Pooling Connection pooling. true

This attribute specifies whether or not connection pooling is
to be used. Pools are created using an attribute value
matching algorithm. This means that connection strings
which only differ in the number of spaces in the connection
string use the same pool. If two connection strings are
identical except that one sets an attribute to a default value
while the other does not set that attribute, both requests
obtain connections from the same pool. This attribute can be
set to either true, false, yes, or no.

Proxy User Id User name of the proxy user. empty

This connection string attribute specifies the middle-tier user, string

or the proxy user, who establishes a connection on behalf of a
client user specified by the User Id attribute. ODP.NET
attempts to establish a proxy connection if either the Proxy
User Id or the Proxy Password attribute is set to a
non-empty string.

For the proxy user to connect to an Oracle database using
operating system authentication, the Proxy User Id mustbe
setto "/". The Proxy Password is ignored in this case. The
User Id cannot be set to " /" when establishing proxy
connections. The case of this attribute value is preserved.

Oracle Data Provider for .NET Classes 5-81

OracleConnection Properties

Table 5-26 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description

Default
Value

Proxy Password

Statement Cache
Purge

Statement Cache
Size

User Id

Validate
Connection

Password of the proxy user.

This connection string attribute specifies the password of the
middle-tier user or the proxy user. This user establishes a
connection on behalf of a client user specified by the User 1d
attribute. ODP.NET attempts to establish a proxy connection
if either the Proxy User Id or the Proxy Password
attribute is set to a non-empty string.

The case of this attribute value is preserved if it is
surrounded by double quotes.

Statement cache purged when the connection goes back to
the pool.

If statement caching is enabled, setting this attribute to true
purges the Statement Cache when the connection goes back
to the pool.

Statement cache enabled and cache size set size, that is, the
maximum number of statements that can be cached.

A value greater than zero enables statement caching and sets
the cache size to itself.

This value should not be greater than the value of the OPEN_
CURSORS parameter set in the init .ora database
configuration file.

Oracle user name.

This attribute specifies the Oracle user name. The case of this
attribute value is preserved if it is surrounded by double
quotes. For the user to connect to an Oracle database using
operating system authentication, set the User Idto "/".
Any Password attribute setting is ignored in this case.

Validation of connections coming from the pool.

Validation causes a round-trip to the database for each
connection. Therefore, it should only be used when necessary.

empty
string

false

10

empty
string

false

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleConnection Class

s OracleConnection Members

ConnectionTimeout

This property indicates the maximum amount of time that the Open method can take
to obtain a pooled connection before the request is terminated.

Declaration

// ADO.NET 2.0: C#

public override int ConnectionTimeout {get;}

// ADO.NET 1.x: C#

public int ConnectionTimeout {get;}

5-82 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

Database

DataSource

Property Value
The maximum time allowed for a pooled connection request, in seconds.

Implements
IDbConnection

Remarks

This property indicates the connection timeout that has been set using the
ConnectionString attribute Connection TimeOut.

This property is read-only.

Remarks (.NET Stored Procedure)

There is no connection string specified by the application and a connection on the
implicit database is always available, therefore, this property is set to 0.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

m OracleConnection Members

This property is not supported.

Declaration

// ADO.NET 2.0: C#
public override string Database {get;}

// ADO.NET 1.x: C#
public string Database {get;}

Property Value
A string.

Implements
IDbConnection.Database

Remarks

This property is not supported. It always returns an empty string.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleConnection Class

s OracleConnection Members

This property specifies the Oracle Net Services Name, Connect Descriptor, or an easy
connect naming that identifies the database to which to connect

Oracle Data Provider for NET Classes 5-83

OracleConnection Properties

Declaration

// BDO.NET 2.0: C
public override string DataSource {get;}

// ADO.NET 1.x: C#
public string DataSource {get;}

Property Value

Oracle Net Services Name, Connect Descriptor, or an easy connect naming that
identifies the database to which to connect.

Remarks (.NET Stored Procedure)

The value of this property is always an empty string for the implicit database
connection.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

ServerVersion

This property specifies the version number of the Oracle database to which the
OracleConnection has established a connection.

Declaration

// ADO.NET 2.0: C#
public override string ServerVersion {get;}

// ADO.NET 1.x: C#
public string ServerVersion {get;}

Property Value
The version of the Oracle database.

Exceptions
InvalidOperationException - The connection is closed.

Remarks

The default is an empty string.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

State

This property specifies the current state of the connection.

Declaration
// ADO.NET 2.0: C#

5-84 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

public override ConnectionState State {get;}

// BADO.NET 1.x: C#
public ConnectionState State {get;}

Property Value
The ConnectionState of the connection.

Implements
IDbConnection

Remarks

ODP.NET supports ConnectionState.Closed and ConnectionState.Open for
this property. The default value is ConnectionState.Closed.

See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleConnection Class

s OracleConnection Members

Oracle Data Provider for .NET Classes 5-85

OracleConnection Public Methods

OracleConnection Public Methods

OracleConnection public methods are listed in Table 5-27.

Table 5-27 OracleConnection Public Methods

Public Method

Description

BeginTransaction Begins a local transaction (Overloaded)
Not supported in a .NET stored procedure
ChangeDatabase Not Supported
Clone Creates a copy of an OracleConnection object
Not supported in a .NET stored procedure
Close Closes the database connection
CreateCommand Creates and returns an OracleCommand object
associated with the OracleConnection object
CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from

System.ComponentModel . Component

EnlistDistributed Transaction

Enables applications to explicitly enlist in a specified
distributed transaction

Not supported in a .NET stored procedure

EnlistTransaction Enables applications to enlist in a specified distributed
transaction
Supported Only in ADO.NET 2.0-Compliant ODP.NET
Not supported in a .NET stored procedure

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetLifetimeService

Inherited from System.MarshalByRefObject

GetSchema

Returns schema information for the data source of the
OracleConnection

Supported Only in ADO.NET 2.0-Compliant ODP.NET

GetSessionInfo

Returns or refreshes the property values of the
OracleGlobalization object that represents the
globalization settings of the session (Overloaded)

GetType

Inherited from System.Object

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Open Opens a database connection with the property
settings specified by the ConnectionString

OpenWithNewPassword Opens a new connection with the new password
Not supported in a .NET stored procedure

PurgeStatementCache Flushes the Statement Cache by closing all open
cursors on the database, when statement caching is
enabled

SetSessionInfo Alters the session's globalization settings with the

property values provided by the
OracleGlobalization object

5-86 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

Table 5-27 (Cont.) OracleConnection Public Methods

Public Method Description
ToString Inherited from System.Object
See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

» OracleConnection Members

BeginTransaction

BeginTransaction methods begin local transactions.

Overload List
s BeginTransaction()

This method begins a local transaction.
= BeginTransaction(IsolationLevel)

This method begins a local transaction with the specified isolation level.

BeginTransaction()

This method begins a local transaction.

Declaration
// C#

public OracleTransaction BeginTransaction();

Return Value
An OracleTransaction object representing the new transaction.

Implements
IDbConnection

Exceptions
InvalidOperationException - A transaction has already been started.

Remarks

The transaction is created with its isolation level set to its default value of
IsolationLevel.ReadCommitted. All further operations related to the transaction
must be performed on the returned OracleTransaction object.

Remarks (.NET Stored Procedure)

Using this method causes a Not Supported exception.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

Oracle Data Provider for .NET Classes 5-87

OracleConnection Public Methods

BeginTransaction(lsolationLevel)

This method begins a local transaction with the specified isolation level.

Declaration
// C#

public OracleTransaction BeginTransaction(IsolationLevel isolationLevel);

Parameters
m IisolationLevel

The isolation level for the new transaction.

Return Value
An OracleTransaction object representing the new transaction.

Implements
IDbConnection

Exceptions
InvalidOperationException - A transaction has already been started.

ArgumentException - The isolationLevel specified is invalid.

Remarks
The following two isolation levels are supported:

m IsolationLevel.ReadCommitted
m IsolationLevel.Serializable

Requesting other isolation levels causes an exception.

Remarks (.NET Stored Procedure)
Using this method causes a Not Supported exception.

Example
/] Cc#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class BeginTransactionSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open () ;

// Create an OracleCommand object using the connection object
OracleCommand cmd = con.CreateCommand () ;

// Start a transaction
OracleTransaction txn = con.BeginTransaction(IsolationLevel.ReadCommitted) ;

// Update EMP table

5-88 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

cmd. CommandText = "update emp set sal = sal + 100";
cmd . ExecuteNonQuery () ;

// Rollback transaction
txn.Rollback() ;
Console.WriteLine ("Transaction rolledback") ;

// Clean up

txn.Dispose() ;
cmd.Dispose () ;
con.Dispose () ;

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

ChangeDatabase
This method is not supported.

Declaration

// ADO.NET 2.0: C#
public override void ChangeDatabase (string databaseName) ;

// ADO.NET 1.x: C#
public void ChangeDatabase (string databaseName) ;

Parameters
n databaseName

The name of the database that replaces the current database name.

Implements
IDbConnection.ChangeDatabase

Exceptions
NotSupportedException - Method not supported.

Remarks

This method is not supported and throws a Not SupportedException if invoked.
See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleConnection Class

s OracleConnection Members

Clone

This method creates a copy of an OracleConnection object.

Oracle Data Provider for .NET Classes 5-89

OracleConnection Public Methods

Declaration

/] Cc#
public object Clone();

Return Value
An OracleConnection object.

Implements
ICloneable

Remarks
The cloned object has the same property values as that of the object being cloned.

Remarks (.NET Stored Procedure)
This method is not supported for an implicit database connection.

Example
/] C#

using System;
using Oracle.DataAccess.Client;

class CloneSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open () ;

// Need a proper casting for the return value when cloned
OracleConnection clonedCon = (OracleConnection)con.Clone () ;

// Cloned connection is always closed, regardless of its source,
// But the connection string should be identical
clonedCon.Open () ;
if (clonedCon.ConnectionString.Equals (con.ConnectionString))
Console.WriteLine ("The connection strings are the same.");
else
Console.WriteLine ("The connection strings are different.");

// Close and Dispose OracleConnection object
clonedCon.Dispose () ;

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

Close

This method closes the connection to the database.

5-90 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

Declaration

// BADO.NET 2.0: C#
public override void Close();

// ADO.NET 1.x: C#
public void Close();

Implements
IDbConnection

Remarks
Performs the following;:

= Rolls back any pending transactions.

= Places the connection to the connection pool if connection pooling is enabled. Even
if connection pooling is enabled, the connection can be closed if it exceeds the
connection lifetime specified in the connection string. If connection pooling is
disabled, the connection is closed.

s Closes the connection to the database.

The connection can be reopened using Open () .

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

CreateCommand

This method creates and returns an OracleCommand object associated with the
OracleConnection object.

Declaration
// C#

public OracleCommand CreateCommand () ;

Return Value
The OracleCommand object.

Implements
IDbConnection

Example
// C

using System;
using System.Data;
using Oracle.DataAccess.Client;

class CreateCommandSample

{

static void Main()

{

// Connect

Oracle Data Provider for .NET Classes 5-91

OracleConnection Public Methods

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open() ;

// Execute a SQL SELECT

OracleCommand cmd = con.CreateCommand () ;

cmd. CommandText = "select * from emp";
OracleDataReader reader = cmd.ExecuteReader();

// Print all employee numbers
while (reader.Read())
Console.WriteLine (reader.GetInt32(0));

// Clean up
reader.Dispose () ;
cmd.Dispose () ;
con.Dispose () ;

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

EnlistDistributedTransaction

This method enables applications to explicitly enlist in a specific distributed
transaction after a connection has been opened.

Declaration
/] C#

public void EnlistDistributedTransaction(ITransaction transaction);

Parameters

m transaction

An ITransaction interface.

Exceptions
InvalidOperationException - The connection is part of a local transaction or the
connection is closed.

Remarks

EnlistDistributedTransaction enables objects to enlist in a specific transaction
that is passed to the method. The ITransaction interface can be obtained by
applying an (ITransaction) cast to the ContexUtil.Transaction property
within the component that started the distributed transaction.

The connection must be open before calling this method or an
InvalidOperationException is thrown.

If a connection is part of a local transaction that was started implicitly or explicitly
while attempting to enlist in a distributed transaction, the local transaction is rolled
back and an exception is thrown.

5-92 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

By default, distributed transactions roll back, unless the method-level AutoComplete
declaration is set.

Invoking the commit on the ITranasction raises an exception.

Invoking the rollback on the ITransaction method and calling
ContextUtil.SetComplete on the same distributed transaction raises an
exception.

Remarks (.NET Stored Procedure)
Using this method causes a Not Supported exception.

Example
Application:

/] C#

/* This is the class that will utilize the Enterprise Services
component. This module needs to be built as an executable.

The Enterprise Services Component DLL must be built first
before building this module.

In addition, the DLL needs to be referenced appropriately
when building this application.

*/

using System;
using System.EnterpriseServices;
using DistribTxnSample;

class DistribTxnSample App

{

static void Main()

{

DistribTxnSample Comp comp = new DistribTxnSample Comp () ;
comp . DoWork () ;
}

}

Component:

/] C#

/* This module needs to be
1) built as a component DLL/Library
2) built with a strong name

This library must be built first before the application is built.
*/

using System;

using System.Data;

using Oracle.DataAccess.Client;
using System.EnterpriseServices;

namespace DistribTxnSample

{

[Transaction (TransactionOption.RequiresNew)]
public class DistribTxnSample Comp : ServicedComponent

{

Oracle Data Provider for .NET Classes 5-93

OracleConnection Public Methods

public void DoWork ()

{

string constr =

"User Id=scott;Password=tiger;Data Source=oracle;enlist=false";
OracleConnection con = new OracleConnection (constr) ;
con.Open() ;

// Enlist in a distrubuted transaction
con.EnlistDistributedTransaction((ITransaction)ContextUtil.Transaction) ;

// Update EMP table

OracleCommand cmd = con.CreateCommand () ;

cmd. CommandText = "UPDATE emp set sal = sal + .01";
cmd . ExecuteNonQuery () ;

// Commit
ContextUtil.SetComplete () ;

// Dispose OracleConnection object
con.Dispose() ;

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleConnection Class

= OracleConnection Members

= "EnlistTransaction" on page 5-94

s http://msdn.microsoft.com/library for detailed
information about this Microsoft NET Framework 1.1 feature

EnlistTransaction
This method enlists the connection to the specified transaction.

Supported Only in ADO.NET 2.0-Compliant ODP.NET

Declaration
// C#

public override void EnlistTransaction(Transaction transaction)

Parameters
m transaction

A System.Transactions.Transaction object.
Exceptions

InvalidOperationException - The connection is part of a local transaction or the
connection is closed.

5-94 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

GetSchema

Remarks

Invocation of this method immediately enlists the connection to a distributed
transaction that is specified by the provided transaction parameter.

If OoracleConnection is still associated with a distributed transaction that has not
completed from a previous EnlistTransaction method invocation, calling this
method will cause an exception to be thrown.

In general, for distributed transaction enlistments to succeed, the "enlist"
connection string attribute must be set to either "true" or "dynamic" before
invoking the Open method. Setting the "enlist" connection string attribute to
"true" will implicitly enlist the connection when the Open method is called, if the
connection is within a transaction context. Setting it to "dynamic" allows the
connection to dynamically enlist in distributed transactions when an
EnlistTransaction or EnlistDistributedTransaction method is called. The
"enlist" attribute should be set to "false" only if the connection will never enlist
in a distributed transaction.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

= OracleConnection Members

»s "System.Transactions Support" on page 3-19

= "EnlistDistributedTransaction" on page 5-92

GetSchema methods return schema information for the data source of the
OracleConnection.

Supported Only in ADO.NET 2.0-Compliant ODP.NET

Overload List
s GetSchema()

This method returns schema information for the data source of the
OracleConnection.

s GetSchema (string collectionName)

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name.

s GetSchema (string collectionName, string][] restrictions)

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name and the
specified string array for the restriction values.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

Oracle Data Provider for .NET Classes 5-95

OracleConnection Public Methods

GetSchema()

This method returns schema information for the data source of the
OracleConnection.

Declaration

// ADO.NET 2.0: C#
public override DataTable GetSchema() ;

Return Value
A DataTable object.

Exceptions
InvalidOperationException — The connection is closed.

Remarks

This method returns a DataTable object that contains a row for each metadata
collection available from the database.

The method is equivalent to specifying the String value "MetaDataCollections"
when using the Get Schema (String) method.

Example
/] Cc#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class GetSchemaSample

{

static void Main(string[] args)
string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
string ProviderName = "Oracle.DataAccess.Client";

DbProviderFactory factory = DbProviderFactories.GetFactory (ProviderName) ;

using (DbConnection conn = factory.CreateConnection())
try
conn.ConnectionString = constr;
conn.Open () ;

//Get all the schema collections and write to an XML file.
//The XML file name is Oracle.DataAccess.Client Schema.xml
DataTable dtSchema = conn.GetSchema() ;

dtSchema.WriteXml (ProviderName + " Schema.xml");

)

catch (Exception ex)

{

Console.WriteLine (ex.Message) ;
Console.WriteLine (ex.StackTrace) ;

}
}

5-96 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

GetSchema (string collectionName)

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name.

Declaration

// BDO.NET 2.0: C#
public override DataTable GetSchema (string collectionName) ;

Parameters
collectionName

Name of the collection for which metadata is required.

Return Value
A DataTable object.

Exceptions
ArgumentException — The requested collection is not defined.

InvalidOperationException — The connection is closed.

InvalidOperationException — The requested collection is not supported by
current version of Oracle database.

InvalidOperationException — No population string is specified for requested
collection.

Example
/] C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class GetSchemaSample

{

static void Main(string[] args)

{

string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
string ProviderName = "Oracle.DataAccess.Client";

DbProviderFactory factory = DbProviderFactories.GetFactory (ProviderName) ;
using (DbConnection conn = factory.CreateConnection())

{

try

Oracle Data Provider for .NET Classes 5-97

OracleConnection Public Methods

)

conn.ConnectionString = constr;
conn.Open () ;

//Get MetaDataCollections and write to an XML file.
//This is equivalent to GetSchema ()
DataTable dtMetadata =
conn.GetSchema (DbMetaDataCollectionNames.MetaDataCollections) ;
dtMetadata.WriteXml (ProviderName + " MetaDataCollections.xml");

//Get Restrictions and write to an XML file.
DataTable dtRestrictions =

conn.GetSchema (DbMetaDataCollectionNames.Restrictions) ;
dtRestrictions.WriteXml (ProviderName + " Restrictions.xml");

//Get DataSourceInformation and write to an XML file.
DataTable dtDataSrcInfo =

conn.GetSchema (DbMetaDataCollectionNames.DataSourceInformation) ;
dtDataSrcInfo.WriteXml (ProviderName + " DataSourceInformation.xml");

//data types and write to an XML file.
DataTable dtDataTypes =

conn.GetSchema (DbMetaDataCollectionNames.DataTypes) ;
dtDataTypes.WriteXml (ProviderName + " DataTypes.xml");

//Get ReservedWords and write to an XML file.
DataTable dtReservedWords =

conn.GetSchema (DbMetaDataCollectionNames.ReservedWords) ;
dtReservedWords.WriteXml (ProviderName + " ReservedWords.xml") ;

//Get all the tables and write to an XML file.
DataTable dtTables = conn.GetSchema ("Tables");
dtTables.WriteXml (ProviderName + " Tables.xml");

//Get all the views and write to an XML file.
DataTable dtViews = conn.GetSchema ("Views") ;
dtViews.WriteXml (ProviderName + " Views.xml");

//Get all the columns and write to an XML file.
DataTable dtColumns = conn.GetSchema ("Columns") ;
dtColumns.WriteXml (ProviderName + " Columns.xml");

catch (Exception ex)

{

}
}
}
}

Console.WriteLine (ex.Message) ;
Console.WriteLine (ex.StackTrace) ;

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

5-98 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

GetSchema (string collectionName, string[] restrictions)

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name and the
specified string array for the restriction values.

Declaration

// ADO.NET 2.0: C#
public override DataTable GetSchema (string collectionName,
string[] restrictions) ;

Parameters
m collectionName

The name of the collection of metadata being retrieved.
m restrictions

An array of restrictions that apply to the metadata being retrieved.

Return Value
A DataTable object.

Exception
s ArgumentException — The requested collection is not defined.

» InvalidOperationException —One of the following conditions exist:
— The connection is closed.

- The requested collection is not supported by the current version of Oracle
database.

- More restrictions were provided than the requested collection supports.

- No population string is specified for requested collection.

Remarks

This method takes the name of a metadata collection and an array of String values that
specify the restrictions for filtering the rows in the returned DataTable. This returns a
DataTable that contains only rows from the specified metadata collection that match
the specified restrictions.

For example, if the Columns collection has three restrictions (owner, tablename, and
columnname), to retrieve all the columns for the EMP table regardless of schema, the
GetSchema method must pass in at least these values: null, EMP.

If no restriction value is passed in, default values are used for that restriction, which is
the same as passing in null. This differs from passing in an empty string for the
parameter value. In this case, the empty string (" ") is considered the value for the
specified parameter.

collectionName is not case-sensitive, but restrictions (string values) are.

Example
/] C#

using System;
using System.Data;

Oracle Data Provider for .NET Classes 5-99

OracleConnection Public Methods

using System.Data.Common;
using Oracle.DataAccess.Client;

class GetSchemaSample

{

static void Main(string[] args)
string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
string ProviderName = "Oracle.DataAccess.Client";

DbProviderFactory factory = DbProviderFactories.GetFactory (ProviderName) ;

using (DbConnection conn = factory.CreateConnection())
try
conn.ConnectionString = constr;
conn.Open () ;

//Get Restrictions
DataTable dtRestrictions =
conn.GetSchema (DbMetaDataCollectionNames.Restrictions) ;

DataView dv = dtRestrictions.DefaultView;

dv.RowFilter = "CollectionName = 'Columns'";
dv.Sort = "RestrictionNumber";

for (int 1 = 0; 1 < dv.Count; i++)
Console.WriteLine ("{0} (default) {1}"
dtRestrictions.Rows[i] ["RestrictionName"],
dtRestrictions.Rows[i] ["RestrictionDefault"]) ;

//Set restriction string array
string[] restrictions = new string[3];

//Get all columns from all tables owned by "SCOTT"
restrictions[0] = "SCOTT";
DataTable dtAllScottCols = conn.GetSchema ("Columns", restrictions);

// clear collection
for (int 1 = 0; 1 < 3; 1++)
restrictions[i] = null;

//Get all columns from all tables named "EMP" owned by any
//owner/schema

restrictions[1] = "EMP";

DataTable dtAllEmpCols = conn.GetSchema ("Columns", restrictions);

// clear collection
for (int i = 0; 1 < 3; 1i++4)
restrictions[i] = null;

//Get columns named "EMPNO" from tables named "EMP",

//owned by any owner/schema

restrictions[1] = "EMP";

restrictions[2] = "EMPNO";

DataTable dtAllScottEmpCols = conn.GetSchema ("Columns", restrictions);

// clear collection

5-100 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

GetSessioninfo

}

for (int 1 = 0; 1 < 3; 1+4)
restrictions([i] = null;

//Get columns named "EMPNO" from all

//tables, owned by any owner/schema

restrictions[2] = "EMPNO";

DataTable dtAllEmpNoCols = conn.GetSchema ("Columns", restrictions);

}

catch (Exception ex)

{

Console.WriteLine (ex.Message) ;
Console.WriteLine (ex.Source) ;

}

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

m OracleConnection Members

GetSessionInfo returns or refreshes an OracleGlobalization object that
represents the globalization settings of the session.

Overload List:

GetSessionlnfo()

This method returns a new instance of the OracleGlobalization object that
represents the globalization settings of the session.

GetSessionInfo()

This method returns a new instance of the OracleGlobalization object that
represents the globalization settings of the session.

GetSessionInfo(OracleGlobalization)

This method refreshes the provided OracleGlobalization object with the
globalization settings of the session.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

Declaration

/] c#

public OracleGlobalization GetSessionInfo();

Return Value
The newly created OracleGlobalization object.

Oracle Data Provider for .NET Classes 5-101

OracleConnection Public Methods

Example
/] C#

using System;
using Oracle.DataAccess.Client;

class GetSessionInfoSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open () ;

// Get session info from connection object
OracleGlobalization info = con.GetSessionInfo();

// Update session info
info.DateFormat = "YYYY-MM-DD";
con.SetSessionInfo(info) ;

// Execute SQL SELECT

OracleCommand cmd = con.CreateCommand () ;

cmd. CommandText = "select TO _CHAR(hiredate) from emp";

Console.WriteLine ("Hire Date ({0}): {1}",
info.DateFormat, cmd.ExecuteScalar());

// Clean up
cmd.Dispose () ;
con.Dispose() ;

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

GetSessionInfo(OracleGlobalization)

This method refreshes the provided OracleGlobalization object with the
globalization settings of the session.

Declaration
// C#

public void GetSessionInfo(OracleGlobalization oraGlob) ;

Parameters
n oraGlob

The OracleGlobalization object to be updated.

5-102 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

Open
This method opens a connection to an Oracle database.
Declaration
// BDO.NET 2.0: C#
public overide void Open();
// RDO.NET 1.x: C#
public void Open() ;
Implements
IDbConnection
Exceptions
ObjectDisposedException - The object is already disposed.
InvalidOperationException - The connection is already opened or the
connection string is null or empty.
Remarks
The connection is obtained from the pool if connection pooling is enabled. Otherwise,
a new connection is established.
It is possible that the pool does not contain any unused connections when the Open ()
method is invoked. In this case, a new connection is established.
If no connections are available within the specified connection timeout value, when
the Max Pool Size is reached, an OracleException is thrown.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class
s OracleConnection Members
OpenWithNewPassword
This method opens a new connection with the new password.
Declaration
/] Cc#

public void OpenWithNewPassword (string newPassword) ;

Parameters
m newPassword

A string that contains the new password.

Oracle Data Provider for .NET Classes 5-103

OracleConnection Public Methods

Remarks

This method uses the ConnectionString property settings to establish a new
connection. The old password must be provided in the connection string as the
Password attribute value.

This method can only be called on an OracleConnection in the closed state.

Remarks (.NET Stored Procedure)
This method is not supported with an implicit database connection.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleConnection Class

= OracleConnection Members

= "Password Expiration" on page 3-10

PurgeStatementCache

This method flushes the statement cache by closing all open cursors on the database,
when statement caching is enabled.

Declaration
// C#

public void PurgeStatementCache () ;

Remarks

Flushing the statement cache repetitively results in decreased performance and may
negate the performance benefit gained by enabling the statement cache.

Statement caching remains enabled after the call to PurgeStatementCache.

Invocation of this method purges the cached cursors that are associated with the
OracleConnection. It does not purge all the cached cursors in the database.

Example
/] C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class PurgeStatementCacheSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle;" +
"Statement Cache Size=20";

OracleConnection con = new OracleConnection (constr) ;

con.Open () ;

OracleCommand cmd = new OracleCommand ("select * from emp", con);
cmd. CommandType = CommandType.Text;

OracleDataReader reader = cmd.ExecuteReader () ;

// Purge Statement Cache

5-104 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

SetSessioninfo

con.PurgeStatementCache () ;

// Close and Dispose OracleConnection object
Console.WritelLine ("Statement Cache Flushed");
con.Close() ;

con.Dispose() ;

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

» OracleConnection Members

= "Statement Caching" on page 3-35

= ConnectionString on page 5-78

This method alters the session's globalization settings with all the property values
specified in the provided OracleGlobalization object.

Declaration
/] C#

public void SetSessionInfo(OracleGlobalization oraGlob) ;

Parameters
n oraGlob

An OracleGlobalization object.

Remarks
Calling this method is equivalent to calling an ALTER SESSION SQL on the session.

Example
/] C#

using System;
using Oracle.DataAccess.Client;

class SetSessionInfoSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open() ;

// Get session info from connection object
OracleGlobalization info = con.GetSessionInfo();

// Update session info
info.DateFormat = "YYYY-MM-DD";

con.SetSessionInfo (info) ;

// Execute SQL SELECT

Oracle Data Provider for .NET Classes 5-105

OracleConnection Public Methods

OracleCommand cmd = con.CreateCommand () ;

cmd. CommandText = "select TO _CHAR(hiredate) from emp";

Console.WriteLine ("Hire Date ({0}): {1}",
info.DateFormat, cmd.ExecuteScalar());

// Clean up
cmd.Dispose () ;
con.Dispose() ;

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

5-106 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

OracleConnection Events

OracleConnection events are listed in Table 5-28.

Table 5-28 OracleConnection Events

Event Name Description
Disposed Inherited from System. ComponentModel . Component
Failover An event that is triggered when an Oracle failover occurs

Not supported in a .NET stored procedure

InfoMessage An event that is triggered for any message or warning sent by the
database
StateChange An event that is triggered when the connection state changes
See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

Failover

This event is triggered when an Oracle failover occurs.

Declaration
// C#

public event OracleFailoverEventHandler Failover;

Event Data

The event handler receives an OracleFailoverEventArgs object which exposes the
following properties containing information about the event.

m FailoverType
Indicates the type of the failover.
s FailoverEvent

Indicates the state of the failover.

Remarks

The Failover event is raised when a connection to an Oracle instance is
unexpectedly severed. The client should create an OracleFailoverEventHandler
delegate to listen to this event.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleConnection Class

s OracleConnection Members

s "OracleFailoverEventArgs Properties” on page 10-7

s "OracleFailoverEventHandler Delegate" on page 10-9

Oracle Data Provider for .NET Classes 5-107

OracleConnection Events

InfoMessage

StateChange

This event is triggered for any message or warning sent by the database.

Declaration
// C#

public event OracleInfoMessageEventHandler InfoMessage;

Event Data

The event handler receives an OracleInfoMessageEventArgs object which
exposes the following properties containing information about the event.

m Errors

The collection of errors generated by the data source.
m Message

The error text generated by the data source.
s Source

The name of the object that generated the error.

Remarks

In order to respond to warnings and messages from the database, the client should
create an OracleInfoMessageEventHandler delegate to listen to this event.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleConnection Class

s OracleConnection Members

= "OracleInfoMessageEventArgs Properties” on page 5-225

s "OracleInfoMessageEventHandler Delegate” on page 5-228

This event is triggered when the connection state changes.

Declaration

// ADO.NET 2.0: C#
public override event StateChangeEventHandler StateChange;

// BADO.NET 1.x: C#
public event StateChangeEventHandler StateChange;

Event Data

The event handler receives a StateChangeEventArgs object which exposes the
following properties containing information about the event.

n CurrentState
The new state of the connection.
m OriginalState

The original state of the connection.

5-108 Oracle Data Provider for .NET Developer’s Guide

OracleConnection Class

Remarks

The StateChange event is raised after a connection changes state, whenever an
explicit call is made to Open, Close or Dispose.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleConnection Class

= OracleConnection Members

= Microsoft ADO.NET documentation for a description of
StateChangeEventHandler

Oracle Data Provider for .NET Classes 5-109

OracleDataAdapter Class

OracleDataAdapter Class

An OracleDataAdapter object represents a data provider object that populates the
DataSet and updates changes in the DatasSet to the Oracle database.

Class Inheritance
System.Object

System.MarshalByRefObject
System.ComponentModel . Component
System.Data.Common.DataAdapter
System.Data.Common.DbDataAdapter (ADO.NET 2.0 only)

Oracle.DataAccess.Client.OracleDataAdapter

Declaration

/] C#
public sealed class OracleDataAdapter : DbDataAdapter, IDbDataAdapter

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example
The following example uses the OracleDataAdapter and the dataset to update the
EMP table:

/] c#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleDataAdapterSample

{

static void Main()

{

string constr "User Id=scott;Password=tiger;Data Source=oracle";
string cmdstr = "SELECT empno, sal from emp";

// Create the adapter with the selectCommand txt and the
// connection string
OracleDataAdapter adapter = new OracleDataAdapter (cmdstr, constr);

// Create the builder for the adapter to automatically generate
// the Command when needed
OracleCommandBuilder builder = new OracleCommandBuilder (adapter) ;

// Create and fill the DataSet using the EMP
DataSet dataset = new DataSet();
adapter.Fill (dataset, "EMP");

// Get the EMP table from the dataset
DataTable table = dataset.Tables["EMP"];

5-110 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

// Indicate DataColumn EMPNO is unique
// This is required by the OracleCommandBuilder to update the EMP table
table.Columns ["EMPNO"] .Unique = true;

// Get the first row from the EMP table
DataRow row = table.Rows[0];

// Update the salary
double sal = double.Parse(row["SAL"].ToString());
row["SAL"] = sal + .01;

// Now update the EMP using the adapter

// The OracleCommandBuilder will create the UpdateCommand for the
// adapter to update the EMP table

adapter.Update (dataset, "EMP");

Console.WriteLine ("Row updated successfully");

Requirements
Namespace: Oracle.DataAccess.Client

Assembly: Oracle.DataAccess.dll

Microsoft NET Framework Version: 1.x or 2.0

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Members

s OracleDataAdapter Constructors

s OracleDataAdapter Static Methods

s OracleDataAdapter Properties

s OracleDataAdapter Public Methods

s OracleDataAdapter Events

Oracle Data Provider for .NET Classes 5-111

OracleDataAdapter Members

OracleDataAdapter Members

OracleDataAdapter members are listed in the following tables:

OracleDataAdapter Constructors
OracleDataAdapter constructors are listed in Table 5-29.

Table 5-29 OracleDataAdapter Constructors

Constructor

Description

OracleDataAdapter Constructors

Instantiates a new instance of
OracleDataAdapter class (Overloaded)

OracleDataAdapter Static Methods
The OracleDataAdapter static method is listed in Table 5-30.

Table 5-30 OracleDataAdapter Static Method

Method

Description

Equals

Inherited from System.Object (Overloaded)

OracleDataAdapter Properties

OracleDataAdapter properties are listed in Table 5-31.

Table 5-31

OracleDataAdapter Properties

Name

Description

AcceptChangesDuringFill

Inherited from
System.Data.Common.DataAdapter

Container

Inherited from
System.ComponentModel . Component

ContinueUpdateOnError

Inherited from
System.Data.Common.DataAdapter

DeleteCommand A SQL statement or stored procedure to delete rows
from an Oracle database
InsertCommand A SQL statement or stored procedure to insert new

rows into an Oracle database

MissingMappingAction

Inherited from
System.Data.Common.DataAdapter

MissingSchemaAction

Inherited from
System.Data.Common.DataAdapter

Requery

Determines whether or not the SelectCommand is
reexecuted on the next call to Fi11l

ReturnProviderSpecificTypes

Determines if the Fi11 method returns
ODP.NET-specific values or NET common language
specification values

SafeMapping Creates a mapping between column names in the result
set to .NET types, to preserve the data
SelectCommand A SQL statement or stored procedure that returns a

single or multiple result set

5-112 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

Table 5-31 (Cont) OracleDataAdapter Properties

Name Description
Site Inherited from
System.ComponentModel . Component
TableMappings Inherited from
System.Data.Common.DataAdapter
UpdateBatchSize Specifies a value that enables or disables batch
processing support, and specifies the number of SQL
statements that can be executed in a single round-trip
to the database
Supported Only in ADO.NET 2.0-Compliant ODP.NET
UpdateCommand A SQL statement or stored procedure to update rows

from the DataSet to an Oracle database

OracleDataAdapter Public Methods
OracleDataAdapter public methods are listed in Table 5-32.

Table 5-32 OracleDataAdapter Public Methods

Public Method

Description

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from
System.ComponentModel . Component
Equals Inherited from System.Object (Overloaded)
Fill Adds or refreshes rows in the DataSet to match
the data in the Oracle database (Overloaded)
FillSchema Inherited from

System.Data.Common.DbDataAdapter

GetFillParameters

Inherited from
System.Data.Common.DbDataAdapter

GetHashCode

Inherited from System.Object

GetLifetimeService

Inherited from System.MarshalByRefObject

GetType

Inherited from System.Object

InitializeLifetimeService

Inherited from System.MarshalByRefObject

ToString

Inherited from System.Object

Update

Inherited from
System.Data.Common.DbDataAdapter

OracleDataAdapter Events

OracleDataAdapter events are listed in Table 5-33.

Table 5-33 OracleDataAdapter Events

Event Name Description

Disposed Inherited from System. ComponentModel . Component

FillError Inherited from System.Data.Common.DbDataAdapter

RowUpdated Thish e\::lent is raised when row(s) have been updated by the Update ()
metho

Oracle Data Provider for .NET Classes 5-113

OracleDataAdapter Members

Table 5-33 (Cont.) OracleDataAdapter Events

Event Name

Description

RowUpdating

This event is raised when row data are about to be updated to the database

5-114 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

OracleDataAdapter Constructors

OracleDataAdapter constructors create new instances of an OracleDataAdapter
class.

Overload List:

OracleDataAdapter()

OracleDataAdapter()
This constructor creates an instance of an OracleDataAdapter class.
OracleDataAdapter(OracleCommand)

This constructor creates an instance of an OracleDataAdapter class with the
provided OracleCommand as the SelectCommand.

OracleDataAdapter(string, OracleConnection)

This constructor creates an instance of an OracleDataAdapter class with the
provided OracleConnection object and the command text for the
SelectCommand.

OracleDataAdapter(string, string)
This constructor creates an instance of an OracleDataAdapter class with the
provided connection string and the command text for the SelectCommand.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Class
s OracleDataAdapter Members

This constructor creates an instance of an OracleDataAdapter class with no
arguments.

Declaration

// C#
public OracleDataAdapter();

Remarks
Initial values are set for the following OracleDataAdapter properties as indicated:

MissingMappingAction = MissingMappingAction.Passthrough

MissingSchemaAction = MissingSchemaAction.Add

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Class

s OracleDataAdapter Members

OracleDataAdapter(OracleCommand)

This constructor creates an instance of an OracleDataAdapter class with the
provided OracleCommand as the SelectCommand.

Oracle Data Provider for .NET Classes 5-115

OracleDataAdapter Constructors

Declaration
/] C#

public OracleDataAdapter (OracleCommand selectCommand) ;

Parameters
m selectCommand

The OracleCommand that is to be set as the SelectCommand property.

Remarks
Initial values are set for the following OracleDataAdapter properties as indicated:

m MissingMappingAction = MissingMappingAction.Passthrough

m MissingSchemaAction = MissingSchemaAction.Add

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Class

s OracleDataAdapter Members

OracleDataAdapter(string, OracleConnection)

This constructor creates an instance of an OracleDataAdapter class with the
provided OracleConnection object and the command text for the Select Command.

Declaration
// C#

public OracleDataAdapter (string selectCommandText, OracleConnection
selectConnection) ;

Parameters
n selectCommandText

The string that is set as the CommandText of the Select Command property of the
OracleDataAdapter.

m selectConnection

The OracleConnection to connect to the Oracle database.

Remarks

The OracleDataAdapter opens and closes the connection, if it is not already open. If
the connection is open, it must be explicitly closed.

Initial values are set for the following OracleDataAdapter properties as indicated:
m MissingMappingAction = MissingMappingAction.Passthrough
m MissingSchemaAction = MissingSchemaAction.Add

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataAdapter Class
s OracleDataAdapter Members

5-116 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

OracleDataAdapter(string, string)

This constructor creates an instance of an OracleDataAdapter class with the
provided connection string and the command text for the SelectCommand.

Declaration
// C#

public OracleDataAdapter (string selectCommandText, string
selectConnectionString) ;

Parameters
m selectCommandText

The string that is set as the CommandText of the SelectCommand property of the
OracleDataAdapter.

m selectConnectionString

The connection string.

Remarks
Initial values are set for the following OracleDataAdapter properties as indicated:

m MissingMappingAction = MissingMappingAction.Passthrough

m MissingSchemaAction = MissingSchemaAction.Add

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Class

s OracleDataAdapter Members

Oracle Data Provider for .NET Classes 5-117

OracleDataAdapter Static Methods

OracleDataAdapter Static Methods

The OracleDataAdapter static method is listed in Table 5-34.

Table 5-34 OracleDataAdapter Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Class

s OracleDataAdapter Members

5-118 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

OracleDataAdapter Properties

OracleDataAdapter properties are listed in Table 5-35.

Table 5-35 OracleDataAdapter Properties

Name

Description

AcceptChangesDuringFill

Inherited from
System.Data.Common.DataAdapter

Container

Inherited from
System.ComponentModel . Component

ContinueUpdateOnError

Inherited from
System.Data.Common.DataAdapter

DeleteCommand A SQL statement or stored procedure to delete rows
from an Oracle database
InsertCommand A SQL statement or stored procedure to insert new

rows into an Oracle database

MissingMappingAction

Inherited from
System.Data.Common.DataAdapter

MissingSchemaAction

Inherited from
System.Data.Common.DataAdapter

Requery

Determines whether or not the Select Command is
reexecuted on the next call to Fill

ReturnProviderSpecificTypes

Determines if the Fi11l method returns
ODP.NET-specific values or NET common language
specification values

SafeMapping

Creates a mapping between column names in the result
set to .NET types, to preserve the data

SelectCommand

A SQL statement or stored procedure that returns a
single or multiple result set

Site

Inherited from
System.ComponentModel . Component

TableMappings

Inherited from
System.Data.Common.DataAdapter

UpdateBatchSize

Specifies a value that enables or disables batch
processing support, and specifies the number of SQL
statements that can be executed in a single round-trip
to the database

Supported Only in ADO.NET 2.0-Compliant ODPNET

UpdateCommand

A SQL statement or stored procedure to update rows
from the DataSet to an Oracle database

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataAdapter Class

s OracleDataAdapter Members

Oracle Data Provider for .NET Classes 5-119

OracleDataAdapter Properties

DeleteCommand

This property is a SQL statement or stored procedure to delete rows from an Oracle
database.

Declaration
// C#

public OracleCommand DeleteCommand {get; set;}

Property Value

An OracleCommand used during the Update call to delete rows from tables in the
Oracle database, corresponding to the deleted rows in the DataSet.

Remarks
Default = null

If there is primary key information in the DataSet, the DeleteCommand can be
automatically generated using the OracleCommandBuilder, if no command is
provided for this.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataAdapter Class

s OracleDataAdapter Members

InsertCommand

This property is a SQL statement or stored procedure to insert new rows into an Oracle
database.

Declaration
/] C#

public OracleCommand InsertCommand {get; set;}

Property Value

An OracleCommand used during the Update call to insert rows into a table,
corresponding to the inserted rows in the DataSet.

Remarks
Default =null

If there is primary key information in the DataSet, the InsertCommand can be
automatically generated using the OracleCommandBuilder, if no command is
provided for this property.

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataAdapter Class

s OracleDataAdapter Members

5-120 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

Requery

This property determines whether or not the SelectCommand is reexecuted on the
next call to Fill.

Declaration
// C#

public Boolean Requery {get; set;}

Property Value

Returns true if the SelectCommand is reexecuted on the next call to Fil11;
otherwise, returns false.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

» OracleDataAdapter Class

s OracleDataAdapter Members

s "OracleDataAdapter Requery Property" on page 3-77

ReturnProviderSpecificTypes

SafeMapping

This property determines if the Fi11 method returns ODP.NET-specific values or
.NET common language specification compliant values.

Supported Only in ADO.NET 2.0-Compliant ODP.NET

Declaration
/] C#

public Boolean ReturnProviderSpecificTypes {get; set;}

Property Value
A value that indicates whether or not the Fi11 method returns ODP.NET-specific
values.

A value of false indicates that the Fi11 method returns .NET common language
specification compliant values.

The defaultis false.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Class

s OracleDataAdapter Members

This property creates a mapping between column names in the result set to .NET types
that represent column values in the DataSet, to preserve the data.

Declaration

/] C#
public Hashtable SafeMapping {get; set;}

Oracle Data Provider for .NET Classes 5-121

OracleDataAdapter Properties

Property Value
A hash table.

Remarks
Default =null

The safeMapping property is used, when necessary, to preserve data in the following
types:

s DATE

s TimeStamp (refers to all TimeStamp objects)

[INTERVAL DAY TO SECOND

= NUMBER

Example
See the example in "OracleDataAdapter Safe Type Mapping" on page 3-74.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataAdapter Class
s OracleDataAdapter Members
s "OracleDataAdapter Safe Type Mapping" on page 3-74

SelectCommand

This property is a SQL statement or stored procedure that returns single or multiple
result sets.

Declaration
/] C#

public OracleCommand SelectCommand {get; set;}

Property Value

An OracleCommand used during the Fill call to populate the selected rows to the
DataSet.

Remarks
Default = null

If the SelectCommand does not return any rows, no tables are added to the dataset
and no exception is raised.

If the SELECT statement selects from a VIEW, no key information is retrieved when a
FillSchema () oraFill () withMissingSchemaAction.AddWithKey is
invoked.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataAdapter Class

s OracleDataAdapter Members

s "OracleDataAdapter Requery Property" on page 3-77

5-122 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

UpdateBatchSize

This property specifies a value that enables or disables batch processing support, and
specifies the number of SQL statements that can be executed in a single round-trip to
the database.

Supported Only in ADO.NET 2.0-Compliant ODP.NET

Declaration

/] C#
public virtual int UpdateBatchSize {get; set;}

Property Value
An integer that returns the batch size.

Exceptions
ArgumentOutOfRangeException - The value is set to a number < 0.

Remarks

Update batches executed with large amounts of data may encounter an
"PL.S-00123: Program too large™" error. To avoid this error, reduce the size of
UpdateBatchSize to a smaller value.

For each row in the DataSet that has been modified, added, or deleted, one SQL
statement will be executed on the database.

Values are as follows:
= Value=0
The data adapter executes all the SQL statements in a single database round-trip
= Value = 1 - Default value
This value disables batch updating and SQL statements are executed one at a time.
= Value=nwheren>1

The data adapter updates n rows of data per database round-trip.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Class

s OracleDataAdapter Members

= "Batch Processing Support” on page 3-22

UpdateCommand

This property is a SQL statement or stored procedure to update rows from the
DataSet to an Oracle database.

Declaration

/] CH
public OracleCommand UpdateCommand {get; set;}

Oracle Data Provider for .NET Classes 5-123

OracleDataAdapter Properties

Property Value
An OracleCommand used during the Update call to update rows in the Oracle
database, corresponding to the updated rows in the DatasSet.

Remarks
Default = null

If there is primary key information in the DataSet, the UpdateCommand can be
automatically generated using the OracleCommandBuilder, if no command is
provided for this property.

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3

» OracleDataAdapter Class

s OracleDataAdapter Members

s "OracleDataAdapter Requery Property" on page 3-77

5-124 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

OracleDataAda

pter Public Methods

OracleDataAdapter public methods are listed in Table 5-36.

Table 5-36 OracleDataAdapter Public Methods

Public Method

Description

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from
System.ComponentModel . Component
Equals Inherited from System.Object (Overloaded)
Fill Adds or refreshes rows in the DataSet to match the
data in the Oracle database (Overloaded)
FillSchema Inherited from

System.Data.Common.DbDataAdapter

GetFillParameters

Inherited from
System.Data.Common.DbDataAdapter

GetHashCode

Inherited from System.Object

GetLifetimeService

Inherited from System.MarshalByRefObject

GetType

Inherited from System.Object

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Fill

ToString Inherited from System.Object
Update Inherited from
System.Data.Common.DbDataAdapter
See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3

» OracleDataAdapter Class

s OracleDataAdapter Members

Fill populates or refreshes the specified DataTable or DataSet.

Overload List:
Fill(DataTable, OracleRefCursor)

This method adds or refreshes rows in the specified DataTable to match those in

the provided OracleRefCursor object.

Fill(DataSet, OracleRefCursor)

This method adds or refreshes rows in the DataSet to match those in the
provided OracleRefCursor object.

Fill(DataSet, string, OracleRefCursor)

This method adds or refreshes rows in the specified source table of the DataSet

to match those in the provided OracleRefCursor object.

Fill(DataSet, int, int, string, OracleRefCursor)

Oracle Data Provider for .NET Classes 5-125

OracleDataAdapter Public Methods

This method adds or refreshes rows in a specified range in the DataSet to match
rows in the provided OracleRefCursor object.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataAdapter Class

s OracleDataAdapter Members

Fill(DataTable, OracleRefCursor)

This method adds or refreshes rows in the specified DataTable to match those in the
provided OracleRefCursor object.

Declaration
// C#

public int Fill (DataTable dataTable, OracleRefCursor refCursor);

Parameters
n dataTable

The DataTable object being populated.
s refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value
The number of rows added to or refreshed in the DataTable.

Exceptions
ArgumentNullException-The dataTable or refCursor parameter is null.

InvalidOperationException-The OracleRefCursor is already being used to
fetch data.

NotSupportedException - The SafeMapping type is not supported.

Remarks

No schema or key information is provided, even if the Fi11l method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

» OracleDataAdapter Class

s OracleDataAdapter Members

s "OracleDataAdapter Requery Property" on page 3-77

Fill(DataSet, OracleRefCursor)

This method adds or refreshes rows in the DataSet to match those in the provided
OracleRefCursor object.

Declaration
// C#

5-126 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

public int Fill (DataSet dataSet, OracleRefCursor refCursor);

Parameters
n dataSet

The DataSet object being populated.
» refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value
Returns the number of rows added or refreshed in the DataSet.

Exceptions
ArgumentNullException - The dataSet or refCursor parameter is null.

InvalidOperationException-The OracleRefCursor is already being used to
fetch data.

InvalidOperationException - The OracleRefCursor is ready to fetch data.

NotSupportedException - The SafeMapping type is not supported.

Remarks
If there is no DataTable to refresh, a new DataTable named Table is created and
populated using the provided OracleRefCursor object.

No schema or key information is provided, even if the Fi11l method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataAdapter Class

s OracleDataAdapter Members

s "OracleDataAdapter Requery Property" on page 3-77

Fill(DataSet, string, OracleRefCursor)

This method adds or refreshes rows in the specified source table of the DataSet to
match those in the provided OracleRefCursor object.

Declaration

// C
public int Fill (DataSet dataSet, string srcTable, OracleRefCursor

refCursor) ;

Parameters
n dataSet

The DataSet object being populated.
m srcTable
The name of the source table used in the table mapping.

n refCursor

Oracle Data Provider for .NET Classes 5-127

OracleDataAdapter Public Methods

Fill(DataSet, int,

The OracleRefCursor that rows are being retrieved from.

Return Value
Returns the number of rows added or refreshed into the DataSet.

Exceptions
ArgumentNullException-The dataSet or refCursor parameter is null.

InvalidOperationException-The OracleRefCursor is already being used to
fetch data or the source table name is invalid.

NotSupportedException - The SafeMapping type is not supported.

Remarks
No schema or key information is provided, even if the Fi11l method is called with

MissingSchemaAction set to MissingSchemaAction.AddWithKey.
See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataAdapter Class
s OracleDataAdapter Members
s "OracleDataAdapter Requery Property" on page 3-77

int, string, OracleRefCursor)

This method adds or refreshes rows in a specified range in the DataSet to match rows
in the provided OracleRefCursor object.

Declaration
// C#

public int Fill (DataSet dataSet, int startRecord, int maxRecords,
string srcTable, OracleRefCursor refCursor);

Parameters
n dataSet

The DataSet object being populated.
m startRecord
The record number to start with.
m maxRecords
The maximum number of records to obtain.
m srcTable
The name of the source table used in the table mapping.
m refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

This method returns the number of rows added or refreshed in the Dataset. This
does not include rows affected by statements that do not return rows.

5-128 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

Exceptions

ArgumentNullException-The dataSet or refCursor parameter is null.

InvalidOperationException-The OracleRefCursor is already being used to
fetch data or the source table name is invalid.

NotSupportedException - The SafeMapping type is not supported.

Remarks

No schema or key information is provided, even if the Fi11l method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

See Also:

"Oracle.DataAccess.Client Namespace" on page 1-3
OracleDataAdapter Class

OracleDataAdapter Members

"OracleDataAdapter Requery Property” on page 3-77

Oracle Data Provider for .NET Classes 5-129

OracleDataAdapter Events

OracleDataAdapter Events

OracleDataAdapter events are listed in Table 5-37.

Table 5-37 OracleDataAdapter Events

Event Name Description
Disposed Inherited from System.ComponentModel . Component
FillError Inherited from System.Data.Common.DbDataAdapter
RowUpdated This event is raised when row(s) have been updated by the Update ()
method
RowUpdating This event is raised when row data are about to be updated to the database
See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataAdapter Class
s OracleDataAdapter Members

RowUpdated
This event is raised when row(s) have been updated by the Update () method.

Declaration

/] c#
public event OracleRowUpdatedEventHandler RowUpdated;

Event Data

The event handler receives an OracleRowUpdatedEventArgs object which exposes
the following properties containing information about the event.

s Command
The OracleCommand executed during the Update.
s Errors (inherited from RowUpdatedEventArgs)
The exception, if any, is generated during the Update.
s RecordsAffected (inherited from RowUpdatedEventArgs)

The number of rows modified, inserted, or deleted by the execution of the
Command.

= Row (inherited from RowUpdatedEventArgs)
The DataRow sent for Update.

s StatementType (inherited from RowUpdatedEventArgs)
The type of SQL statement executed.

= Status (inherited from RowUpdatedEventArgs)
The UpdateStatus of the Command.

s TableMapping (inherited from RowUpdatedEventArgs)

The DataTableMapping used during the Update.

5-130 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

Example
The following example shows how to use the RowUpdating and RowUpdated events.

/] C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class RowUpdatedSample
{
// Event handler for RowUpdating event
protected static void OnRowUpdating(object sender,
OracleRowUpdatingEventArgs e)
{

Console.WriteLine ("Row updating..... "),
Console.WriteLine ("Event arguments:");
Console.WriteLine ("Command Text: " + e.Command.CommandText) ;
Console.WriteLine ("Command Type: " + e.StatementType) ;
(

Console.WriteLine ("Status: " + e.Status);

// Event handler for RowUpdated event

protected static void OnRowUpdated (object sender,
OracleRowUpdatedEventArgs e)

{

Console.WriteLine ("Row updated..... ",

Console.WriteLine ("Event arguments:");

Console.WriteLine ("Command Text: " + e.Command.CommandText) ;
(
(

Console.WriteLine ("Command Type: " + e.StatementType);
Console.WriteLine ("Status: " + e.Status);

static void Main()
string constr = "User Id=scott;Password=tiger;Data Source=oracle";

string cmdstr = "SELECT EMPNO, ENAME, SAL FROM EMP";

// Create the adapter with the selectCommand txt and the
// connection string
OracleDataAdapter adapter = new OracleDataAdapter (cmdstr, constr);

// Create the builder for the adapter to automatically generate
// the Command when needed
OracleCommandBuilder builder = new OracleCommandBuilder (adapter) ;

// Create and fill the DataSet using the EMP
DataSet dataset = new DataSet();
adapter.Fill (dataset, "EMP");

// Get the EMP table from the dataset
DataTable table = dataset.Tables["EMP"];

// Indicate DataColumn EMPNO is unique
// This is required by the OracleCommandBuilder to update the EMP table
table.Columns ["EMPNO"] .Unique = true;

// Get the first row from the EMP table
DataRow row = table.Rows[0];

Oracle Data Provider for .NET Classes 5-131

OracleDataAdapter Events

RowUpdating

// Update the salary
double sal = double.Parse(row["SAL"].ToString());
row["SAL"] = sal + .01;

// Set the event handlers for the RowUpdated and the RowUpdating event
// the OnRowUpdating() method will be triggered before the update, and
// the OnRowUpdated() method will be triggered after the update
adapter.RowUpdating += new OracleRowUpdatingEventHandler (OnRowUpdating) ;
adapter.RowUpdated += new OracleRowUpdatedEventHandler (OnRowUpdated) ;

// Now update the EMP using the adapter

// The OracleCommandBuilder will create the UpdateCommand for the

// adapter to update the EMP table

// The OnRowUpdating() and the OnRowUpdated() methods will be triggered
adapter.Update (dataset, "EMP");

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataAdapter Class

s OracleDataAdapter Members

s "OracleRowUpdatedEventHandler Delegate" on page 5-289

This event is raised when row data are about to be updated to the database.

Declaration

/] C#
public event OracleRowUpdatingEventHandler RowUpdating;

Event Data

The event handler receives an OracleRowUpdat ingEventArgs object which
exposes the following properties containing information about the event.

Command

The OracleCommand executed during the Update.

Errors (inherited from RowUpdat ingEventArgs)

The exception, if any, is generated during the Update.

Row (inherited from RowUpdatingEventArgs)

The DataRow sent for Update.

StatementType (inherited from RowUpdatingEventArgs)
The type of SQL statement executed.

Status (inherited from RowUpdatingEventArgs)

The UpdateStatus of the Command.

TableMapping (inherited from RowUpdatingEventArgs)

The DataTableMapping used during the Update.

5-132 Oracle Data Provider for .NET Developer’s Guide

OracleDataAdapter Class

Example

The example for the RowUpdated event also shows how to use the RowUpdating
event. See RowUpdated event "Example" on page 5-131.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataAdapter Class

s OracleDataAdapter Members

s "OracleRowUpdatingEventHandler Delegate" on page 5-304

Oracle Data Provider for .NET Classes 5-133

OracleDataReader Class

OracleDataReader Class

An OracleDataReader object represents a forward-only, read-only, in-memory
result set.

Unlike the DataSet, the OracleDataReader stays connected and fetches one row at
a time.

The following section contain related information:
= "Obtaining LONG and LONG RAW Data" on page 3-42.
= "Obtaining Data from an OracleDataReader Object" on page 3-38.

Class Inheritance
System.Object

System.MarshalByRefObject
System.Data.Common.DataReader
System.Data.Common.DbDataReader (ADO.NET 2.0 only)

Oracle.DataAccess.Client.OracleDataReader

Declaration
// ADO.NET 2.0: C#

public sealed class OracleDataReader : DbDataReader, IEnumerable,
IDataReader, IDisposable, IDataRecord

// ADO.NET 1.x: C#
public sealed class OracleDataReader : MarshalByRefObject, IEnumerable,
IDataReader, IDisposable, IDataRecord

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

An OracleDataReader instance is constructed by a call to the ExecuteReader
method of the OracleCommand object. The only properties that can be accessed after
the DataReader is closed or has been disposed, are IsClosed and
RecordsAffected.

Example
The following OracleDataReader example retrieves the data from the EMP table:

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle

CREATE TABLE empInfo (

empno NUMBER (4) PRIMARY KEY,

empName VARCHAR2 (20) NOT NULL,

hiredate DATE,

salary NUMBER(7,2),

jobDescription Clob,

byteCodes BLOB

)i

5-134 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

Insert into empInfo (EMPNO, EMPNAME, JOBDESCRIPTION, byteCodes) values
(1, 'KING', 'SOFTWARE ENGR', '5657');
Insert into empInfo (EMPNO, EMPNAME, JOBDESCRIPTION, byteCodes) values
(2, 'SCOTT', 'MANAGER', '5960');
commit;

*/

/] C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleDataReaderSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";

OracleConnection con = new OracleConnection (constr) ;

con.Open () ;

string cmdstr = "SELECT * FROM EMPINFO";

OracleConnection connection = new OracleConnection(constr);
OracleCommand cmd = new OracleCommand (cmdstr, con);

OracleDataReader reader = cmd.ExecuteReader();

// Declare the variables to retrieve the data in EmpInfo

short empNo;

string empName;

DateTime hireDate;

double salary;

string jobDesc;

byte[] byteCodes = new byte[10];

// Read the next row until end of row
while (reader.Read())

{

empNo = reader.GetInt16 (0);

Console.WriteLine ("Employee number: " + empNo) ;

empName = reader.GetString(1l);

Console.WriteLine ("Employee name: " + empName) ;

// The following columns can have NULL value, so it

// 1is important to call IsDBNull before getting the column data

if (!reader.IsDBNull(2))

hireDate = reader.GetDateTime (2) ;
Console.WriteLine ("Hire date: " + hireDate);

}

if (!reader.IsDBNull(3))

{

salary = reader.GetDouble(3);
Console.WriteLine("Salary: " + salary);

}

if (!reader.IsDBNull (4))

{

Oracle Data Provider for .NET Classes 5-135

OracleDataReader Class

jobDesc = reader.GetString(4);
Console.WriteLine ("Job Description: " + jobDesc);

}

if (!reader.IsDBNull(5))

{

long len = reader.GetBytes(5, 0, byteCodes, 0, 10);

Console.Write ("Byte codes: ");
for (int 1 = 0; 1 < len; i++)
Console.Write (byteCodes[i] .ToString("x")) ;

Console.WriteLine() ;

}

Console.WriteLine () ;

}

// Clean up
reader.Dispose () ;
con.Dispose () ;

Requirements
Namespace: Oracle.DataAccess.Client

Assembly: Oracle.DataAccess.dll

Microsoft NET Framework Version: 1.x or 2.0

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Members

= OracleDataReader Static Methods

s OracleDataReader Properties

s OracleDataReader Public Methods

= OracleDataReader SchemaTable

5-136 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

OracleDataReader Members

OracleDataReader members are listed in the following tables:

OracleDataReader Static Methods
The OracleDataReader static method is listed in Table 5-38.

Table 5-38 OracleDataReader Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleDataReader Properties
OracleDataReader properties are listed in Table 5-39.

Table 5-39 OracleDataReader Properties

Property Description

Depth Gets a value indicating the depth of nesting for the current
row

FetchSize Specifies the size of OracleDataReader's internal cache

FieldCount Gets the number of columns in the result set

HasRows Indicates whether the OracleDataReader has one or more
rows

HiddenFieldCount Gets the number of fields in the OracleDataReader that
are hidden
Supported Only in ADO.NET 2.0-Compliant ODPNET

IsClosed Indicates whether or not the data reader is closed

Item Gets the value of the column (Overloaded)

Initial LOBFetchSize Specifies the amount that the OracleDataReader initially

fetches for LOB columns

InitiaLONGFetchSize Specifies the amount that the OracleDataReader initially
fetches for LONG and LONG RAW columns

RecordsAffected Gets the number of rows changed, inserted, or deleted by
execution of the SQL statement

VisibleFieldCount Gets the number of fields in the OracleDataReader that
are not hidden

Supported Only in ADO.NET 2.0-Compliant ODPNET

OracleDataReader Public Methods
OracleDataReader public methods are listed in Table 5-40.

Table 5-40 OracleDataReader Public Methods

Public Method Description

Close Closes the OracleDataReader

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Releases any resources or memory allocated by the object

Oracle Data Provider for .NET Classes 5-137

OracleDataReader Members

Table 5-40 (Cont) OracleDataReader Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetBoolean Not Supported

GetByte Returns the byte value of the specified column

GetBytes Populates the provided byte array with up to the maximum
number of bytes, from the specified offset (in bytes) of the
column

GetChar Not Supported

GetChars Populates the provided character array with up to the
maximum number of characters, from the specified offset
(in characters) of the column

GetData Not Supported

GetDataTypeName Returns the ODP.NET type name of the specified column

GetDateTime Returns the DateTime value of the specified column

GetDecimal Returns the decimal value of the specified NUMBER
column

GetDouble Returns the double value of the specified NUMBER column
or BINARY DOUBLE column

GetEnumerator Returns an IEnumerator that can be used to iterate
through the collection

GetFieldType Returns the Type of the specified column

GetFloat Returns the float value of the specified NUMBER column
or BINARY FLOAT column

GetGuid Not Supported

GetHashCode Inherited from System.Object

GetIntl6 Returns the Int16 value of the specified NUMBER column

GetInt32 Returns the Int32 value of the specified NUMBER column

GetInt64 Returns the Int 64 value of the specified NUMBER column

GetLifetimeService Inherited by System.MarshalByRefObject

GetName Returns the name of the specified column

GetOracleBFile Returns an OracleBFile object of the specified BFILE
column

GetOracleBinary Returns an OracleBinary structure of the specified
column

GetOracleBlob Returns an OracleBlob object of the specified BLOB
column

GetOracleBlobForUpdate Returns an updatable OracleBlob object of the specified
BLOB column

GetOracleClob Returns an OracleClob object of the specified CLOB
column

GetOracleClobForUpdate Returns an updatable OracleClob object of the specified
CLOB column

GetOracleDate Returns an OracleDate structure of the specified DATE
column

5-138 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

Table 5-40 (Cont) OracleDataReader Public Methods

Public Method

Description

GetOracleDecimal Returns an OracleDecimal structure of the specified
NUMBER column

GetOraclelntervalDS Returns an OracleIntervalDS structure of the specified
INTERVAL DAY TO SECOND column

GetOracleIntervalYM Returns an OracleIntervalYM structure of the specified
INTERVAL YEAR TO MONTH column

GetOracleString Returns an OracleString structure of the specified
column

GetOracleTimeStamp Returns an OracleTimeStamp structure of the Oracle

TimeStamp column

GetOracleTimeStampLTZ

Returns an OracleTimeStampLTZ structure of the
specified Oracle TimeStamp WITH LOCAL TIME ZONE
column

GetOracleTimeStampTZ Returns an OracleTimeStampTZ structure of the specified
Oracle TimeStamp WITH TIME ZONE column

GetOracleXmlType Returns an OracleXmlType object of the specified
XMLType column

GetOracleValue Returns the specified column value as a ODP.NET type

GetOracleValues Gets all the column values as ODP.NET types

GetOrdinal Returns the 0-based ordinal (or index) of the specified

column name

GetProviderSpecificField Type

Returns an Object that represents the underlying
provider-specific field type

Supported Only in ADO.NET 2.0-Compliant ODP.NET

GetProviderSpecificValue

Returns an object that represents the underlying
provider-specific value of the specified ordinal

Supported Only in ADO.NET 2.0-Compliant ODP.NET

GetProviderSpecificValues

Returns an array of objects that represent the underlying
provider-specific values

Supported Only in ADO.NET 2.0-Compliant ODP.NET

GetSchemaTable Returns a DataTable that describes the column metadata
of the OracleDataReader

GetString Returns the string value of the specified column

GetTimeSpan Returns the TimeSpan value of the specified INTERVAL
DAY TO SECOND column

GetType Inherited from System.Object class

GetValue Returns the column value as a .NET type

GetValues Gets all the column values as .NET types

GetXmlReader Returns the value of an XMLType column as an instance of
an .NET XmlTextReader

IsDBNull Indicates whether or not the column value is null

NextResult Advances the data reader to the next result set when
reading the results

Read Reads the next row in the result set

Oracle Data Provider for .NET Classes 5-139

OracleDataReader Members

Table 5-40 (Cont) OracleDataReader Public Methods

Public Method Description
ToString Inherited from System.Object
See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataReader Class

5-140 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

OracleDataReader Static Methods

The OracleDataReader static method is listed in Table 5-41.

Table 5-41 OracleDataReader Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

Oracle Data Provider for .NET Classes 5-141

OracleDataReader Properties

OracleDataReader Properties

Depth

OracleDataReader properties are listed in Table 5-42.

Table 5-42 OracleDataReader Properties

Property Description

Depth Gets a value indicating the depth of nesting for the current
row

FetchSize Specifies the size of OracleDataReader's internal cache

FieldCount Gets the number of columns in the result set

HasRows Indicates whether the OracleDataReader has one or more
Trows

HiddenFieldCount Gets the number of fields in the OracleDataReader that
are hidden
Supported Only in ADO.NET 2.0-Compliant ODPNET

IsClosed Indicates whether or not the data reader is closed

Item Gets the value of the column (Overloaded)

Initial LOBFetchSize Specifies the amount that the OracleDataReader initially
fetches for LOB columns

InitiaLONGFetchSize Specifies the amount that the OracleDataReader initially
fetches for LONG and LONG RAW columns

RecordsAffected Gets the number of rows changed, inserted, or deleted by
execution of the SQL statement

VisibleFieldCount Gets the number of fields in the OracleDataReader that
are not hidden
Supported Only in ADO.NET 2.0-Compliant ODPNET

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3

s OracleDataReader Class

m OracleDataReader Members

This property gets a value indicating the depth of nesting for the current row.

Declaration
// BDO.NET 2.0: C#

public override int Depth {get;}

// ADO.NET 1.x: C#

public int Depth {get;}

Property Value

The depth of nesting for the current row.

Implements
IDataReader

5-142 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

FetchSize

FieldCount

Exceptions
InvalidOperationException - The reader is closed.

Remarks
Default =0

This property always returns zero because Oracle does not support nesting.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Class

= OracleDataReader Members

This property specifies the size of OracleDataReader's internal cache.

Declaration

/] C#
public long FetchSize {get; set;}

Property Value

A long that specifies the amount of memory (in bytes) that the OracleDataReader
uses for its internal cache.

Exceptions
ArgumentException - The FetchSize value specified is invalid.

Remarks
Default = The OracleCommand's FetchSize property value.

The FetchSize property is inherited by the OracleDataReader that is created by a
command execution returning a result set. The FetchSize property on the
OracleDataReader object determines the amount of data fetched into its internal
cache for each database round-trip.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class

s OracleDataReader Members

s OracleCommand "ExecuteReader()" on page 5-34

s OracleCommand "RowSize" on page 5-22

This property returns the number of columns in the result set.

Declaration

// ADO.NET 2.0: C#
public override int FieldCount {get;}

// ADO.NET 1.x: C#

Oracle Data Provider for .NET Classes 5-143

OracleDataReader Properties

HasRows

public int FieldCount {get;}

Property Value
The number of columns in the result set if one exists, otherwise 0.

Implements
IDataRecord

Exceptions
InvalidOperationException - The reader is closed.

Remarks
Default =0

This property has a value of 0 for queries that do not return result sets.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

This property indicates whether the OracleDataReader has one or more rows.

Declaration

// ADO.NET 2.0: C#
public override bool HasRows {get;}

// BADO.NET 1.x: C#
public bool HasRows {get;}

Return Value
bool

Remarks
HasRows indicates whether or not the OracleDataReader has any rows.

The value of HasRows does not change based on the row position. For example, even
if the application has read all the rows from the result set and the next Read method
invocation will return false, the HasRows property still returns true since the result set
was not empty to begin with.

Rows are fetched to determine the emptiness of the OracleDataReader when
HasRows property is accessed for the first time after the creation of the
OracleDataReader object.

Example
// C

using System;
using Oracle.DataAccess.Client;

5-144 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

class HasRowsSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open() ;

OracleCommand cmd = new OracleCommand (
"select * from emp where empno = 9999", con);

OracleDataReader reader = cmd.ExecuteReader () ;

if (!reader.HasRows)

Console.WriteLine ("The result set is empty.");
else

Console.WriteLine ("The result set is not empty.");

con.Dispose() ;

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

m http://msdn.microsoft.com/library for detailed
information about this Microsoft NET Framework 1.1 feature

HiddenFieldCount
This property gets the number of fields in the OracleDataReader that are hidden.

Supported Only in ADO.NET 2.0-Compliant ODP.NET

Declaration

// C
public int HiddenFieldcount { get; }

Property Value
The number of fields in the OracleDataReader that are hidden.

Exceptions
InvalidOperationException - The reader is closed.

Remarks

OracleDataReader.FieldCount and
OracleDataReader.VisibleFieldCount return the visible field count.

Oracle Data Provider for .NET Classes 5-145

OracleDataReader Properties

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

= OracleDataReader Members

= "VisibleFieldCount" on page 5-150

s 'FieldCount" on page 5-143

IsClosed
This property indicates whether or not the data reader is closed.
Declaration
// BDO.NET 2.0: C
public override bool IsClosed {get;}
// ADO.NET 1.x: C#
public bool IsClosed {get;}
Property Value
If the OracleDataReader is in a closed state, returns true; otherwise, returns
false.
Implements
IDataReader
Remarks
Default = true
IsClosed and RecordsAffected are the only two properties that are accessible
after the OracleDataReader is closed.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class
s OracleDataReader Members
Item

This property gets the value of the column in .NET data type.

Overload List:
s Item [index]

This property gets the .NET Value of the column specified by the column index.
s Item [string]

This property gets the NET Value of the column specified by the column name.

5-146 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

Item [index]
This property gets the .NET Value of the column specified by the column index.

Declaration

// BDO.NET 2.0: C
public override object this[int index] {get;}

// ADO.NET 1.x: C#
public object this[int index] {get;}

Parameters

s Iindex

The zero-based index of the column.

Property Value
The .NET value of the specified column.

Implements
IDataRecord

Remarks
Default = Not Applicable

In C#, this property is the indexer for this class.

See Also:

= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Class

= OracleDataReader Members

Item [string]
This property gets the .NET Value of the column specified by the column name.

Declaration

// BADO.NET 2.0: C#
public override object this[string columnName] {get;}

// ADO.NET 1.x: C#
public object this[string columnName] {get;}

Parameters

n columnName

The name of the column.

Oracle Data Provider for .NET Classes 5-147

OracleDataReader Properties

Property Value
The .NET Value of the specified column.

Implements
IDataRecord

Remarks
Default = Not Applicable

A case-sensitive search is made to locate the specified column by its name. If this fails,
then a case-insensitive search is made.

In C#, this property is the indexer for this class.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

InitialLOBFetchSize

This property specifies the amount that the OracleDataReader initially fetches for
LOB columns.

Declaration

/] C#
public int InitialLOBFetchSize {get;}

Property Value
The size of the chunk to retrieve.

Exceptions
InvalidOperationException - The reader is closed.

Remarks

For Oracle Database 10g release 2 (10.2) and later, the maximum value supported for
InitialLOBFetchSize is2 GB.

For releases prior to Oracle Database 10g release 2 (10.2), the maximum value
supported for InitialLOBFetchSize is 32K.

Default is the OracleCommand. InitialLOBFetchSize, from which this value is
inherited.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Class

s OracleDataReader Members

s 'Initial LOBFetchSize" on page 5-18 for further information on
OracleCommand.InitiallLOBFetchSize

= "Obtaining LOB Data" on page 3-43

5-148 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

InitiaLONGFetchSize

RecordsAffected

This property specifies the amount that the OracleDataReader initially fetches for
LONG and LONG RAW columns.

Declaration

/] C#
public long InitialLONGFetchSize {get;}

Property Value
The size of the chunk to retrieve. The default is 0.

Exceptions
InvalidOperationException - The reader is closed.

Remarks

The maximum value supported for InitialLONGFetchSize is 32767. If this
property is set to a higher value, the provider resets it to 32767.

Default is OracleCommand. InitialLONGFetchSize, from which this value is
inherited.

This property is read-only for the OracleDataReader.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

s "Initial LONGFetchSize" on page 5-19 for further information on
OracleCommand.InitialLONGFetchSize

= "Obtaining LONG and LONG RAW Data" on page 3-42

This property gets the number of rows changed, inserted, or deleted by execution of
the SQL statement.

Declaration

/] Ch
public int RecordsAffected {get;}

Property Value
The number of rows affected by execution of the SQL statement.

Implements
IDataReader

Remarks
Default =0

The value of -1 is returned for SELECT statements.

IsClosed and RecordsAffected are the only two properties that are accessible
after the OracleDataReader is closed.

Oracle Data Provider for .NET Classes 5-149

OracleDataReader Properties

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

VisibleFieldCount

This property gets the number of fields in the OracleDataReader that are not
hidden.

Supported Only in ADO.NET 2.0-Compliant ODP.NET

Declaration
// C#

public override int VisibleFieldcount { get; }

Property Value
The number of fields that are not hidden.

Exceptions
InvalidOperationException - The reader is closed.

Remarks

If an application sets the AddRowid property on an OracleCommand object to true,
then the application can access the RowId but it is not a visible field. If RowId is added
in the select statement list, then it is a visible field.
OracleDataReader.VisibleFieldCount and
OracleDataReader.FieldCount always have the same value.

Example
/] C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class VisibleFieldCountSample

{

static void Main(string[] args)

{

string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
DbProviderFactory factory =
DbProviderFactories.GetFactory ("Oracle.DataAccess.Client") ;

using (DbConnection conn = factory.CreateConnection())

{

conn.ConnectionString = constr;

try

{
conn.Open () ;
OracleCommand cmd = (OracleCommand)factory.CreateCommand() ;
cmd. Connection = (OracleConnection)conn;

5-150 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

//to gain access to ROWIDs of the table
cmd.AddRowid = true;
cmd.CommandText = "select empno, ename from emp;";

OracleDataReader reader = cmd.ExecuteReader () ;

int visFC = reader.VisibleFieldCount; //Results in 2
int hidFC = reader.HiddenFieldCount; // Results in 1

Console.Write("Visible field count: " + visFC);
Console.Write("Hidden field count: " + hidFC);

reader.Dispose () ;
cmd.Dispose () ;

}

catch (Exception ex)

{

Console.WriteLine (ex.Message) ;
Console.WriteLine (ex.StackTrace) ;

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class

s OracleDataReader Members

= "VisibleFieldCount" on page 5-150

= 'FieldCount" on page 5-143

Oracle Data Provider for .NET Classes 5-151

OracleDataReader Public Methods

OracleDataReader Public Methods

OracleDataReader public methods are listed in Table 5-43.

Table 5-43 OracleDataReader Public Methods

Public Method

Description

Close Closes the OracleDataReader

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases any resources or memory allocated by the object

Equals Inherited from System.Object (Overloaded)

GetBoolean Not Supported

GetByte Returns the byte value of the specified column

GetBytes Populates the provided byte array with up to the maximum
number of bytes, from the specified offset (in bytes) of the
column

GetChar Not Supported

GetChars Populates the provided character array with up to the
maximum number of characters, from the specified offset
(in characters) of the column

GetData Not Supported

GetDataTypeName Returns the ODP.NET type name of the specified column

GetDateTime Returns the DateTime value of the specified column

GetDecimal Returns the decimal value of the specified NUMBER
column

GetDouble Returns the double value of the specified NUMBER column
or BINARY DOUBLE column

GetEnumerator Returns an IEnumerator that can be used to iterate
through the collection

GetFieldType Returns the Type of the specified column

GetFloat Returns the float value of the specified NUMBER column
or BINARY FLOAT column

GetGuid Not Supported

GetHashCode Inherited from System.Object

GetInt16 Returns the Int16 value of the specified NUMBER column

GetInt32 Returns the Int32 value of the specified NUMBER column

GetInt64 Returns the Int64 value of the specified NUMBER column

GetLifetimeService

Inherited by System.MarshalByRefObject

GetName Returns the name of the specified column

GetOracleBFile Returns an OracleBFile object of the specified BFILE
column

GetOracleBinary Returns an OracleBinary structure of the specified
column

GetOracleBlob Returns an OracleBlob object of the specified BL.OB

column

5-152 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

Table 5-43 (Cont) OracleDataReader Public Methods

Public Method

Description

GetOracleBlobForUpdate

Returns an updatable OracleBlob object of the specified
BLOB column

GetOracleClob

Returns an OracleClob object of the specified CL.OB
column

GetOracleClobForUpdate

Returns an updatable OracleClob object of the specified
CLOB column

GetOracleDate Returns an OracleDate structure of the specified DATE
column

GetOracleDecimal Returns an OracleDecimal structure of the specified
NUMBER column

GetOraclelntervalDS Returns an OracleIntervalDS structure of the specified
INTERVAL DAY TO SECOND column

GetOracleIntervalYM Returns an OracleIntervalYM structure of the specified
INTERVAL YEAR TO MONTH column

GetOracleString Returns an OracleString structure of the specified
column

GetOracleTimeStamp Returns an OracleTimeStamp structure of the Oracle

TimeStamp column

GetOracleTimeStampLTZ

Returns an OracleTimeStampLTZ structure of the
specified Oracle TimeStamp WITH LOCAL TIME ZONE
column

GetOracleTimeStampTZ Returns an OracleTimeStampTZ structure of the specified
Oracle TimeStamp WITH TIME ZONE column

GetOracleXmlType Returns an OracleXmlType object of the specified
XMLType column

GetOracleValue Returns the specified column value as a ODP.NET type

GetOracleValues Gets all the column values as ODP.NET types

GetOrdinal Returns the 0-based ordinal (or index) of the specified

column name

GetProviderSpecificField Type

Returns an Object that represents the underlying
provider-specific field type

Supported Only in ADO.NET 2.0-Compliant ODP.NET

GetProviderSpecificValue

Returns an object that represents the underlying
provider-specific value of the specified ordinal

Supported Only in ADO.NET 2.0-Compliant ODP.NET

GetProviderSpecificValues

Returns an array of objects that represent the underlying
provider-specific values

Supported Only in ADO.NET 2.0-Compliant ODP.NET

GetSchemaTable Returns a DataTable that describes the column metadata
of the OracleDataReader

GetString Returns the string value of the specified column

GetTimeSpan Returns the TimeSpan value of the specified INTERVAL
DAY TO SECOND column

GetType Inherited from System.Object class

GetValue Returns the column value as a .NET type

Oracle Data Provider for .NET Classes 5-153

OracleDataReader Public Methods

Table 5-43 (Cont) OracleDataReader Public Methods

Public Method Description
GetValues Gets all the column values as .NET types
GetXmlReader Returns the value of an XMLType column as an instance of

an .NET XmlTextReader

IsDBNull Indicates whether or not the column value is null

NextResult Advances the data reader to the next result set when
reading the results

Read Reads the next row in the result set

ToString Inherited from System.Object

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class

s OracleDataReader Members

Close

This method closes the OracleDataReader.

Declaration

// ADO.NET 2.0: C#
public override void Close() ;

// ADO.NET 1.x: C#
public void Close() ;

Implements
IDataReader

Remarks
The Close method frees all resources associated with the OracleDataReader.

Example

The code example for the OracleDataReader class includes the Close method. See
OracleDataReader Overview "Example" on page 5-134.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

Dispose

This method releases any resources or memory allocated by the object.
Declaration

/] CH

public void Dispose() ;

5-154 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

Implements
IDisposable

Remarks

The Dispose method also closes the OracleDataReader.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Class
= OracleDataReader Members

GetBoolean
This method is not supported.

Declaration

// ADO.NET 2.0: C#
public override bool GetBoolean(int index) ;

// ADO.NET 1.x: C#
public bool GetBoolean (int index) ;

Parameters
n index

The zero-based column index.

Implements
IDataRecord

Exceptions

NotSupportedException - This property is not supported.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class
» OracleDataReader Members

GetByte

This method returns the byte value of the specified column.

Declaration

// ADO.NET 2.0: C#
public override byte GetByte (int index) ;

// BADO.NET 1.x: C#
public byte GetByte(int index);

Parameters

s Iindex

Oracle Data Provider for .NET Classes 5-155

OracleDataReader Public Methods

The zero-based column index.

Return Value
The value of the column as a byte.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.
See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Class

s OracleDataReader Members

GetBytes

This method populates the provided byte array with up to the maximum number of
bytes, from the specified offset (in bytes) of the column.

Declaration

// BDO.NET 2.0: C#
public override long GetBytes(int index, long fieldOffset, byte[] buffer,
int bufferOffset, int length);

// BADO.NET 1.x: C#
public long GetBytes(int index, long fieldOffset, byte[] buffer,
int bufferOffset, int length);

Parameters
s Iindex

The zero-based column index.
m fieldOffset
The offset within the column from which reading begins (in bytes).
s Dbuffer
The byte array that the data is read into.
m bufferOffset
The offset within the buffer to begin reading data into (in bytes).
s length

5-156 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

GetChar

The maximum number of bytes to read (in bytes).

Return Value
The number of bytes read.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks

This method returns the number of bytes read into the buffer. This may be less than
the actual length of the field if the method has been called previously for the same
column.

If a null reference is passed for buffer, the length of the field in bytes is returned.

IsDBNull should be called to check for NULL values before calling this method.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Class

s OracleDataReader Members

This method is not supported.

Declaration

// BDO.NET 2.0: C#
public override long GetChar (int index) ;

// ADO.NET 1.x: C#
public long GetChar (int index);

Parameters

s Iindex

The zero based column index.

Implements
IDataRecord

Exceptions
NotSupportedException - This property is not supported.

Oracle Data Provider for .NET Classes 5-157

OracleDataReader Public Methods

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

GetChars

This method populates the provided character array with up to the maximum number
of characters, from the specified offset (in characters) of the column.

Declaration

// BDO.NET 2.0: C#
public override long GetChars(int index, long fieldOffset, char[] buffer,
int bufferOffset, int length);

// BADO.NET 1.x: C#
public long GetChars(int index, long fieldOffset, char[] buffer,
int bufferOffset, int length);

Parameters
s Iindex

The zero based column index.
m fieldOffset
The index within the column from which to begin reading (in characters).
s Dbuffer
The character array that the data is read into.
m bufferOffset
The index within the buffer to begin reading data into (in characters).
m length

The maximum number of characters to read (in characters).

Return Value
The number of characters read.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

5-158 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

Remarks

This method returns the number of characters read into the buffer. This may be less
than the actual length of the field, if the method has been called previously for the
same column.

If a null reference is passed for buffer, the length of the field in characters is returned.

IsDBNull should be called to check for NULL values before calling this method.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

GetDataTypeName
This method returns the ODP.NET type name of the specified column.

Declaration

// ADO.NET 2.0: C#
public override string GetDataTypeName (int index);

// ADO.NET 1.x: C#
public string GetDataTypeName (int index);

Parameters
s Iindex

The zero-based column index.

Return Value
The name of the ODP.NET type of the column.

Implements
IDataRecord

Exceptions
InvalidOperationException - The reader is closed.

IndexOutOfRangeException - The column index is invalid.

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class

s OracleDataReader Members

GetDateTime

This method returns the DateTime value of the specified column.

Declaration

// BDO.NET 2.0: C#
public override DateTime GetDateTime (int index) ;

Oracle Data Provider for .NET Classes 5-159

OracleDataReader Public Methods

// ADO.NET 1.x: C#
public DateTime GetDateTime (int index);

Parameters
n index

The zero-based column index.

Return Value
The DateTime value of the column.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.
See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class
s OracleDataReader Members

GetDecimal

This method returns the decimal value of the specified NUMBER column.

Declaration

// ADO.NET 2.0: C#
public override decimal GetDecimal (int index) ;

// ADO.NET 1.x: C#
public decimal GetDecimal (int index);

Parameters

s Iindex

The zero-based column index.

Return Value
The decimal value of the column.

Implements
IDataRecord

5-160 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

GetDouble

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.
InvalidCastException - The accessor method is invalid for this column type or

the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class
s OracleDataReader Members

This method returns the double value of the specified NUMBER column or BINARY _
DOUBLE column.

Declaration

// ADO.NET 2.0: C#
public override double GetDouble (int index);

// ADO.NET 1.x: C#
public double GetDouble(int index) ;

Parameters

s Iindex

The zero-based column index.

Return Value
The double value of the column.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.
InvalidCastException - The accessor method is invalid for this column type or

the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.

Starting with Oracle Database 10g, GetDouble now supports retrieval of data from
BINARY DOUBLE columns.

Oracle Data Provider for .NET Classes 5-161

OracleDataReader Public Methods

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

GetEnumerator

This method returns an IEnumerator that can be used to iterate through the
collection (record set).

Declaration

// BDO.NET 2.0: C#
public override IEnumerator GetEnumerator();

// ADO.NET 1.x: C#
IEnumerator IEnumerable.GetEnumerator () ;

Return Value
An IEnumerator that can be used to iterate through the collection (record set).

Exceptions

InvalidOperationException - The reader is closed.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

s OracleDataReader Members

GetFieldType

This method returns the type of the specified column.

Declaration

// BDO.NET 2.0: C#
public override Type GetFieldType (int index) ;

// ADO.NET 1.x: C#
public Type GetFieldType (int index) ;

Parameters

s Iindex

The zero-based column index.

Return Value
The type of the default NET type of the column.

Implements
IDataRecord

Exceptions
InvalidOperationException - The reader is closed.

5-162 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

GetFloat

IndexOutOfRangeException - The column index is invalid.

Remarks

GetFieldType returns a type that corresponds to the value that the application
obtains after invoking the GetValue accessor or Item property on the
OracleDataReader. For example, if the column is a string, this method returns a
NET Type object for a .NET string.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

This method returns the f1oat value of the specified NUMBER column or BINARY _
FLOAT column.

Declaration

// BADO.NET 2.0: C#
public override float GetFloat (int index);

// ADO.NET 1.x: C#
public float GetFloat (int index) ;

Parameters

s Iindex

The zero-based column index.

Return Value
The float value of the column.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.
InvalidCastException - The accessor method is invalid for this column type or

the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.

Starting with Oracle Database 10g, Get Float now supports retrieval of data from
BINARY FLOAT columns.

Oracle Data Provider for .NET Classes 5-163

OracleDataReader Public Methods

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

GetGuid
This method is not supported.
Declaration
// ADO.NET 2.0: C#
public override Guid GetGuid (int index) ;
// BDO.NET 1.x: C#
public Guid GetGuid(int index) ;
Parameters
s Iindex
The zero-based column index.
Implements
IDataRecord
Exceptions
NotSupportedException - This property is not supported.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class
s OracleDataReader Members
Getint16

This method returns the Int 16 value of the specified NUMBER column.

Note: short is equivalent to Int1e.

Declaration

// ADO.NET 2.0: C#
public override short GetIntlé (int index);

// ADO.NET 1.x: C#
public short GetIntlé (int index) ;

Parameters

s Iindex

The zero-based column index.

5-164 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

GetlInt32

Return Value
The Int16 value of the column.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.
InvalidCastException - The accessor method is invalid for this column type or

the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
s OracleDataReader Class
s OracleDataReader Members

This method returns the Int32 value of the specified NUMBER column.

Note: int isequivalentto Int32.

Declaration

// ADO.NET 2.0: C#
public override int GetInt32 (int index) ;

// ADO.NET 1.x: C#
public int GetInt32(int index);

Parameters

s Iindex

The zero-based column index.

Return Value
The Int32 value of the column.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Oracle Data Provider for .NET Classes 5-165

OracleDataReader Public Methods

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class
= OracleDataReader Members

Getint64
This method returns the Int64 value of the specified NUMBER column.

Note: longisequivalent to Int64.

Declaration

// ADO.NET 2.0: C#
public override long GetInté64 (int index);

// ADO.NET 1.x: C#
public long GetInt64 (int index);

Parameters
n index

The zero-based column index.

Return Value
The Int64 value of the column.

Implements
IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.
See Also:
= "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Class
s OracleDataReader Members

5-166 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

GetName

This method returns the name of the specified column.

Declaration

// ADO.NET 2.0: C#
public override string GetName (int index) ;

// ADO.NET 1.x: C#
public string GetName (int index) ;

Parameters
n index

The zero-based column index.

Return Value
The name of the column.

Implements
IDataRecord

Exceptions
InvalidOperationException - The reader is closed.

IndexOutOfRangeException - The column index is invalid.

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

GetOracleBFile

This method returns an OracleBFile object of the specified BFILE column.

Declaration

// C
public OracleBFile GetOracleBFile(int index) ;

Parameters
n index

The zero-based column index.

Return Value
The OracleBFile value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Oracle Data Provider for .NET Classes 5-167

OracleDataReader Public Methods

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class
= OracleDataReader Members

GetOracleBinary

This method returns an OracleBinary structure of the specified column.

Declaration
// C#

public OracleBinary GetOracleBinary(int index) ;

Parameters

s Iindex

The zero-based column index.

Return Value
The OracleBinary value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks
IsDBNull should be called to check for NULL values before calling this method.

GetOracleBinary is used on the following Oracle types:
= BFILE

= BLOB

= LONG RAW

= RAW

See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

s OracleDataReader Members

5-168 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

GetOracleBlob

This method returns an OracleBlob object of the specified BLOB column.

Declaration

// Ch
public OracleBlob GetOracleBlob(int index) ;

Parameters
s Iindex

The zero-based column index.

Return Value
The OracleBlob value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.
InvalidCastException - The accessor method is invalid for this column type or

the column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.
See Also:
s "Oracle.DataAccess.Client Namespace" on page 1-3
= OracleDataReader Class

s OracleDataReader Members

GetOracleBlobForUpdate

GetOracleBlobForUpdate returns an updatable OracleBlob object of the
specified BLOB column.

Overload List:
= GetOracleBlobForUpdate(int)

This method returns an updatable OracleBlob object of the specified BLOB
column.

= GetOracleBlobForUpdate(int, int)

This method returns an updatable OracleBlob object of the specified BLOB
column using a WAIT clause.

GetOracleBlobForUpdate(int)
This method returns an updatable OracleBlob object of the specified BLOB column.

Declaration

// C#
public OracleBlob GetOracleBlobForUpdate (int index);

Oracle Data Provider for .NET Classes 5-169

OracleDataReader Public Methods

Parameters
n index

The zero-based column index.

Return Value
An updatable OracleBlob object.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks

When the OracleCommand's ExecuteReader () method is invoked, all the data
fetched by the OracleDataReader is from a particular snapshot. Therefore, calling
an accessor method on the same column always returns the same value. However, the
GetOracleBlobForUpdate () method incurs a database round-trip to obtain a
reference to the current BLOB data while also locking the row using the FOR UPDATE
clause. This means that the OracleBlob obtained from GetOracleBlob () can have
a different value than the OracleBlob obtained from

GetOracleBlobForUpdate () since it is not obtained from the original snapshot.

The returned OracleBlob object can be used to safely update the BLOB because the
BLOB column has been locked after a call to this method.

Invoking this method internally executes a SELECT . . FOR UPDATE statement without
a WAIT clause. Therefore, the statement can wait indefinitely until a lock is acquired
for that row.

IsDBNull should be called to check for NULL values before calling this method.

Example

The following example gets the OracleBlob object for update from the reader,
updates the OracleBlob object, and then commits the transaction.

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle

CREATE TABLE empInfo (

empno NUMBER(4) PRIMARY KEY,

empName VARCHAR2 (20) NOT NULL,

hiredate DATE,

salary NUMBER(7,2),

jobDescription Clob,

byteCodes BLOB

)

Insert into empInfo (EMPNO, EMPNAME, JOBDESCRIPTION, byteCodes) values
(1, 'KING', 'SOFTWARE ENGR', '5657');

Insert into empInfo (EMPNO, EMPNAME, JOBDESCRIPTION, byteCodes) values
(2, 'SCOTT', 'MANAGER', '5960');

commit;

*/
/] c#

5-170 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

using System;

using System.Data;

using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class GetOracleBlobForUpdateSample

{

static void Main()

{

string constr = "User Id=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection (constr) ;
con.Open() ;

// Get the ByteCodes for empno = 1
string cmdstr = "SELECT BYTECODES, EMPNO FROM EMPINFO where EMPNO = 1";
OracleCommand cmd = new OracleCommand (cmdstr, con);

// Since we are going to update the OracleBlob object, we will
//have to create a transaction
OracleTransaction txn = con.BeginTransaction() ;

// Get the reader
OracleDataReader reader = cmd.ExecuteReader () ;

// Declare the variables to retrieve the data in EmpInfo
OracleBlob byteCodesBlob;

// Read the first row
reader.Read () ;
if (!reader.IsDBNull(0))

{

byteCodesBlob = reader.GetOracleBlobForUpdate (0);

// Close the reader
reader.Close() ;

// Update the ByteCodes object
byte[] addedBytes = new byte[2] {0, 0};
byteCodesBlob.Append (addedBytes, 0, addedBytes.Length) ;

// Now commit the transaction

txn.Commit () ;

Console.WriteLine ("Blob Column successfully updated");
}
else

reader.Dispose () ;

// Close the connection
con.Dispose() ;

Oracle Data Provider for .NET Classes 5-171

OracleDataReader Public Methods

See Also:

s "Oracle.DataAccess.Client Namespace" on page 1-3
» OracleDataReader Class

» OracleDataReader Members

= "LOB Support" on page 3-51

GetOracleBlobForUpdate(int, int)

This method returns an updatable OracleBlob object of the specified BLOB column
using a WAIT clause.

Declaration

// C#
public OracleBlob GetOracleBlobForUpdate (int index, int wait);

Parameters

s Iindex
The zero-based column index.
s wait

The number of seconds the method waits to acquire a lock.

Return Value
An updatable OracleBlob object.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed,
Read () has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or
the column value is NULL.

Remarks

When the OracleCommand's ExecuteReader () method is invoked, all the data
fetched by the OracleDataReader is from a particular snapshot. Therefore, calling
an accessor method on the same column always returns the same value. However, the
GetOracleBlobForUpdate () method incurs a database round-trip to obtain a
reference to the current BLOB data while also locking the row using the FOR UPDATE
clause. This means that the OracleBlob obtained from GetOracleBlob () can have
a different value than the OracleBlob obtained from

GetOracleBlobForUpdate () since it is not obtained from the original snapshot.

IsDBNull should be called to check for NULL values before calling this method.

The returned OracleBlob object can be used to safely update the BLOB because the
BLOB column has been locked after a call to this method.

Invoking this method internally executes a SELECT . . FOR UPDATE statement which
locks the row.

Different WAIT clauses are appended to the statement, depending on the wait value.
If the wait value is:

5-172 Oracle Data Provider for .NET Developer’s Guide

OracleDataReader Class

GetOracleClob

n 0

"NOWAIT" is appended at the end of a SELECT . . FOR UPDATE statement. The
statement executes immediately whether the lock is acquired or not. If the lock is
not acquired, an exception is thrown.

[] n

"WAIT n" is appended at the end of a SELECT. . FOR UPDATE statement. The
statement executes as soon as the lock is acquired. However, if the lock cannot be
acquired by n seconds, this method call throws an exception.

The WAIT n" feature is only available for Oracle9i