ORACLE

Oracle® Database
Advanced Application Developer's Guide

11gRelease 1 (11.1)
B28424-01

July 2007

Oracle Database Advanced Application Developer's Guide, 11g Release 1 (11.1)
B28424-01

Copyright © 1996, 2007, Oracle. All rights reserved.

Primary Author: Sheila Moore

Contributing Authors: D. Adams, L. Ashdown, M. Cowan, J. Melnick, R. Moran, E. Paapanen, J. Russell, R.
Strohm, R. Ward

Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikov, T. Chang, L. Chen, M. Davidson, R. Day, R.
Decker, G. Doherty, D. Elson, A. Ganesh, M. Hartstein, Y. Hu, J. Huang, C. Iyer, N. Jain, R. Jenkins Jr., S.
Kotsovolos, S. Kumar, C. Lei, B. Llewellyn, D. Lorentz, V. Moore, K. Muthukkaruppan, V. Moore, J. Muller,
R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A. Yalamanchi, Q. Yu

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUOIACE ... et s et s e e XiX
AN S Lo = VT SPR R RRRT XiX
Documentation AcCesSSIDIlitycccooiiiiiiiiiiiiiii e XiX
Related DOCUITIEIESveoviieeiieceeeeeeeeeee ettt ettt eat e ete e eaaeeteesaeeeseesseseseeenseesseessesenseensessnssanseeans XX
CONMVEIILIONS ..oeitveeiiee ettt ettt e e eeet e e e e e et e e e e e eate e e e s essaaaeeeeesasaaaeeeesesasseessessaseseesesnassaeeeesssseseesssnssenesesons XX

What's New in Application Development? ... Xxiii
Oracle Database 11¢ Release 1 (11.1) New Features...........ccccocuiiiinniiciinininicicninccceencceecees XXiii

1 Introduction to Oracle Programmatic Environments

Overview of Oracle Application Developmentccccccoiiiiiiiiini 1-1
CHENE/SEIVET IMOAEL ...ttt ettt e et e e et e e s et e s saaeeseasteesaeessaseessseeesaseensnns 1-1
Server-Side COAINGccoiuiiiuiiiiiiiiieieeee e 1-2
Two-Tier and Three-Tier MOEIS........coiiiriiriiieieieeeeee ettt sttt 1-2
USEI INEEITACE ..ottt ettt ettt s sttt et et e et e st eseese et e esessessessenseneeneeseesensensens 1-2
Stateful and Stateless User INtErfaces.........oeiveireirieinieieieeieeeeeeee ettt 1-2

OVErview Of PL/SQL ..ottt ettt ettt ettt e s be st et et e st ententeneeneebeebeebessens 1-2
WRAt IS PL/SQLY ..ttt ettt ettt b et beseeseseeseseesesaesassesassesassesessesansesansns 1-3
Advantages of PL/SQL......ccccoiviiiiiiiiiiiiicccc s 1-4

Integration with Oracle Database...........ccoooeoiiiiiiiii e 1-4
High Performance.........ccocovciiiiiriiiiiiiiiiiiiiiicc s 1-4
High Productivityocuovici s 1-5
SCALADIIEY ..ot 1-5
Manageabilityccccccviririiiiiiiiiiii s 1-5
Object-Oriented Programming SUPPOIt.......c.ccceeiiiiiiiiiiiiiiiiiiiiiieeeeeee s 1-5
POTtability . .vveeeceiieeee e 1-6
SECUTILY ..t 1-6
PaCKAZES ...ttt e 1-6
PL/SQL Web Development TOOIS........ccccccviiiiiiiiiiiiiiiiins 1-6

Overview of Java Support Built into the Databaseccccccocciiiiiiiiiic 1-6
OVErview Of Oracle JVM ...ttt ettt ettt sttt et ebe b be i 1-7
Overview of Oracle Extensions t0 JDBCccceiriiiiirireeeteeeetet ettt 1-7

JTDBC TN DITVET ..ottt sttt ettt ettt st sttt ssesa e e e st eseesessessessensensensensensasessensas 1-8
JDBC OCI DITVET .uvvinieviieiiieiiteeieieittestetetetesestestesetesestesetesesesensesensesesesessesesesessesessesessansasen 1-8
JDBC Server-Side INternal DIiVer.........coioirieieieieieeeierierteee et 1-9

Oracle Database Extensions to JDBC Standardsc..ccccoceeerenenenenienenneneneseseieieeenes 1-9

Sample JDBC 2.0 PrOZIamc.c.oviueiiiiiicieie et 1-9
Sample Pre-2.0 JDBC Programi........c.cccccccuicuiiiiicmcieieicieeeeieeiereneeie e nenenens 1-10

JDBC in SQLJ APPLiCations.......ccvviuiviiiiiiiiiiiiiiiiiieieeiiee s 1-11
Overview of Oracle SQLToo ittt sttt ettt s et eae b e b ebe st nean 1-11
Benefits Of SQLJ ...cccvioiiieiiiieieieieteetetet ettt ettt ettt e st e st st be s e aesbestestesaeseesenbens 1-12
Comparing SQLJ t0 JDBC ..o s 1-12

SQLJ Stored Subprograms in the SEIVer ... 1-13
Overview Of Oracle JPUDIISNETc.cociviiriiieieieieietetete ettt esa e eseesaesesseenenses 1-13
Overview of Java Stored SUbPIograms...........ccooveueieiiiicieiiiic e 1-14
Overview of Oracle Database Web Services ..o 1-14
Overview of Writing Subprograms in Java........c.ccccccvcecciiceeeieeeeceeeeeeeeeneene s 1-15
Overview of Writing Database Triggers in Javacccooeueieiiiicieiniiceccc 1-15

Why Use Java for Stored Subprograms and Triggers?..........ccccevvvviviinnnninninnnnn 1-15
OVerview Of Pro*C/CH+ ..o 1-16
Implementing a Pro*C/C++ Application.........ccccovvviiiiiiiiiiiiiiiii 1-16
Highlights of Pro*C/C++ Features.........ccoooiiiiiiiiiicec 1-17
Overview of Pro*COBOLcccoiiiiiiiii s 1-18
Implementing a Pro*COBOL Application..........ccccoeiuieiniiiiiiiiiciiieeeeceeeeeeeceeenes 1-18
Highlights of Pro*COBOL Featurescccccceiiiiiiiiiiiiiiiiiiiiieeennes 1-19
Overview of OCI and OCCL ... s 1-20
Advantages of OCI and OCCL..........ccoiiiiiiiiiieii e 1-20
OCT and OCCI FUNCHONScviiieiiiiiiiiiiicieiis s 1-21
Procedural and Nonprocedural Elements of OCI and OCCI Applicationsc.ccceceeeveenceee 1-21
Building an OCI or OCCI AppPLiCation.........cccoeuviiiiiiiiieieiiiiiciiciciiceee s 1-22
Overview of Oracle Data Provider for .NET (ODP.NET)cccccccociiiiiiiiiiiiiicicceenas 1-23
Overview of Oracle Objects for OLE (OO40)cccoooviniiiiiininiiiiiiiics 1-24
0040 AUtOMAION SEIVET ...ovvviiiiiiiciiit s 1-25
0040 ODbject MOdel ..o s 1-25
OraSesSION......couiiiiiiiiiii s 1-27
OTFASEIVET ...t 1-27
OraDatabase.c.coiriiueuiiiiiicctr et 1-27
OraDynasetcciiiiiiiiiiiiiic s 1-28
OraFieldc.coiiiiiiiiicii s 1-28
OraMetaData and OraMDAttribute.........ccccociiiiiiiiiiiccces 1-28
OraParameter and OraParameters...........ccccocccecieiciiiieeeecceeeeeeeeeee s 1-28
OraParamATTaY ..ottt 1-28

(@ =110) 15w s | U TR 1-29

OTAAQ oo 1-29
OFaAQMSE ...ttt 1-29
OraAQAGENt ... s 1-29
Support for Oracle LOB and Object Datatypes..........cccoccueucueuciciiiiinieieieicereecseeeeeeeeeeseeeenes 1-29
OraBLOB and OraCLOB ... 1-30
OFaBFILE......oiiiiicicice ettt 1-30

Oracle Data CONIOL.......c.cciiiiiiiiiiiiccece et es 1-31
Oracle Objects for OLE C++ Class Library..........coooocoiicieiiiciccccn 1-31
Additional Sources of INfOrmMation..........cocueiriririeiiiinnieeinccece s 1-31

Choosing a Programming Environment ..o 1-31
Choosing a Precompiler or OCI...........cccooiiiiiiiii e 1-32
Choosing PL/SQL OF JAVAcueuiuiuiiiriiiiiiciieicicieieeeieieiceeeeeeiee e eeseees 1-32

Partl SQL for Application Developers

2 SAQL Processing for Application Developers

Grouping Operations into Transactions ..o, 2-1
Deciding How to Group Operations in Transactions............c.cccceeeenieiieieiinicieceeeeennes 2-1
Improving Transaction Performancecooreioiicciniicc e 2-2
Committing Transactions...........ccciiiiiiiiiiiiii e 2-2
Managing Commit Red0 ACHONooiiiiiiiiiiic e 2-3
Rolling Back Transactions.........ccceueiiricieiiiiicie ettt 2-5
Defining Transaction SaVEPOINES.........cccccueueiciiiiieieiiieiiieicieieieeeereeeeeee e 2-5

Ensuring Repeatable Reads with Read-Only Transactionsc.ccccoceviiiiiiininniinienn, 2-6

USING CUTSOTS.......ooviiiictceieitct e r bbb s st ea st a s ene e s s ae s en et 2-7
How Many Cursors Can a Session Have? ..o 2-7
Using a Cursor to Re-Execute a Statement.............cccooooiiiiiiiiiiic 2-7
ClOSING @ CUISOT -...ocucvtiiictcte ettt ettt a bbb 2-8
CanCeliNg @ CUISOT.....c.cucuiiiiiiiicieieieieete ettt 2-8

Locking Tables EXPLiCItLy ... s 2-8
Privileges ReqUired ..o 2-9
Choosing a Locking Strategycccciiiiiiiiiiiiiiceeeceeteieeie e 2-10

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE 2-10
When to Lock with SHARE MODE.........ccccooeiiiiiniiiiiiiiice e 2-11
When to Lock with SHARE ROW EXCLUSIVE MODEccccoooviininiiiniicnennns 2-12
When to Lock with EXCLUSIVE MODE..........ccccoviiiiiiiiiicsenns 2-12
Letting Oracle Database Control Table LOCKINg.........ccocoueuiiiiiiiiiiiicc, 2-13
Explicitly Acquiring ROW LOCKSc.cccuiiiiiiiiiiiiiicrcrce s 2-13

Using Oracle Lock Management Services ... 2-14
WHhen t0 Use USEr LOCKScooveuiuiiiiiiiiiricieienriectcere ettt 2-14
Example of @ USer LOCK.....c.cociiiiiiiicccccccce s 2-15
Viewing and Monitoring LOckSc.coriiiiiiii 2-15

Using Serializable Transactions for Concurrency Control..............cccccoovvinivnnnnnnnninnnnenn, 2-16
How Serializable Transactions INteractcccooviiiiiiiniiiiii e 2-17
Setting the Isolation Level of a Serializable Transactioncccoocieieiiniceiniccicice 2-19
Referential Integrity and Serializable Transactions ..o, 2-19
READ COMMITTED and SERIALIZABLE Isolation ..., 2-21

Transaction Set CONSISTENCYceuiiiiiiiieieiiciei s 2-21
Comparison of READ COMMITTED and SERIALIZABLE Transactions....................... 2-22
Choosing an Isolation Level for Transactions...........cccccceueueueueuririnereinennrrrrrreerereeccnes 2-22
Application Tips for TranSactionsccceeiuiiiiiiiiiicii s 2-23

Autonomous TranSactions ... s 2-23

Examples of Autonomous Transactionsc.cccccccucceiecieninirieicirreeerereeeseeeeeseee e 2-26
Ordering a Product.........cooeuoiiiiiic s 2-26
Withdrawing Money from a Bank AcCOUNt..........ccovviiiiiiiiiiiiccccccces 2-27

Defining Autonomous Transactionscccceueiiiiiiiicienc 2-29

Restrictions on Autonomous Transactions...........ccceveeicriniiiniiiiiiccc s 2-30
Resuming Execution After Storage Allocation Error ..., 2-30
What Operations Can Be Resumed After an Error Condition?..........cccccovvvviiniiinnnnnnn, 2-31
Handling Suspended Storage ALlOCAtion ... 2-31

3 Using SQL Datatypes in Database Applications

Overview of SQL Datatypes ... 3-1
Representing Character Datacooiiiiiiiiiiiiii e 3-2
Overview of Character Datatypes ..., 3-2
Specifying Column Lengths as Bytes or Characterscccooooeiiiice, 3-3
Choosing Between CHAR and VARCHAR?2 Datatypescccccceueueurueeuciiinieineceeeeeeeeeeennes 3-3
Using Character Literals in SQL Statements...........cccccouiiirieiiiiiiiice 3-4
Representing Numeric Data.............ccccoooiiiiiiii 3-5
Overview of NUumeric Datatypescccevuvriiiiriiiiiiiieccrrreerr e 3-5
Floating-Point Number FOrmats..........c.coooiiiiiiiiiicice e 3-6
Using a Floating-Point Binary Format ..o 3-7
Representing Special Values with Native Floating-Point Formatscccccccoevvvnnence. 3-8
Comparison Operators for Native Floating-Point Datatypes...........cccccoceviiiiiiniiinnnnnnn, 3-10
Arithmetic Operations with Native Floating-Point Datatypesccccccooreiniiiiiieinnnnn. 3-10
Conversion Functions for Native Floating-Point Datatypesccccccoceevvvvivvnvvnnneenes 3-11
Client Interfaces for Native Floating-Point Datatypescccccooevoiiiiiiiiiiciic, 3-11
OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE.............. 3-12

Native Floating-Point Datatypes Supported in Oracle OBJECT Types........ccccceuvurereencee 3-12
Pro*C/C++ Support for Native Floating-Point Datatypes.........cccccoovvriiiiiiiinnennnn, 3-12
Representing Date and Time Data.............ccccoiiiiiiiiiic e 3-12
Overview of Date and Time Datatypescccccceeuiieieriiiiininicereeeeeeeeeeeeeeee s 3-12
Displaying Current Date and Timeccoooiioiiiiiiiiicic s 3-13
Changing the Default Date Formatccoooiiiiiiiii 3-14
Changing the Default Time FOrmat.........cccocociiiiiiiiiiiiiccceecceeeeeeeeeeeeeeeeees 3-14
Arithmetic Operations with Date and Time Datatypes.........cccccooviiiiiiiieninciicce, 3-14
Converting Between Date and Time Types..........cccoeeiiiviininiiiiicieieicecee e, 3-15
Importing and Exporting Date and Time TYPescccccocerrriricrnvvennrrencrrereeeeereeeenes 3-15
Representing Specialized Data.............ccooooiiiiiiiiii e 3-16
Representing Geographic Data ..o 3-16
Representing Multimedia Data..........cccocceuiiiiiiiiiiccceecee e 3-16
Representing Large Amounts of Data..........ccooueiiiiiiiiii 3-16
Representing Searchable TeXt.........ccccciiiiiiiiiiiiiicc s 3-18
Representing XIMLccoiiiiiiiiiiii s 3-18
Representing Dynamically Typed Data..........ccccooiiiiiiiiiiiiic e, 3-19
Representing Data with ANSI/ISO, DB2, and SQL/DS Datatypesccccccceueucueueuiriicnennee 3-21
Representing Conditional Expressions as Dataccccocooeiiniiiiniiniic 3-22
Identifying ROWs by Address............coooiiiiiiiiiiiiiic e 3-23
Querying the ROWID PseudoCOIUMINccoiuiiiiiiiiiiiiiiiiieeeceeee s 3-24
Accessing the ROWID DatatyPe......ccccicuieiiiiiiiiiiiiccieieicceieieieeeene et senenens 3-24
Restricted ROWIDcoiiiiiiiiiiiiiccii s 3-24
Extended ROWIDccooiiiiciiineccteeettre ettt 3-24

vi

6

External Binary ROWID........coooiiiiiiiiic s 3-25

Accessing the UROWID Datatype.......cccooueiiirieiiiiiciic s 3-25
How Oracle Database Converts Datatypescccoviiiiniiininiie, 3-25
Datatype Conversion During AssSignmentscccceueuiirieiiiicicienicccc e 3-26
Datatype Conversion During Expression Evaluation ..., 3-27
Metadata for SQL Built-In FUNCHONScooeiiiiiiiiece ettt eva v 3-27

Using Regular Expressions in Database Applications

Overview of Regular EXpressions............ccooviiiiiiiiiiiiicccnes 4-1
What Are Regular EXPIessions?........cccoiiiiiiiicieiiiicie et 4-1
How Are Regular Expressions Useful?..............ooiiiiiii 4-2
Oracle Database Implementation of Regular EXpressions.........c.cccccccocccccuceiccicenecennnnns 4-2
Oracle Database Support for the POSIX Regular Expression Standard..........c.ccceoevviiiiinnen. 4-4

Metacharacters in Regular EXpressions ... 4-4
POSIX Metacharacters in Oracle Database Regular Expressions..........c.cccccoccccccucnciccnennes 4-4
Multilingual Extensions to POSIX Regular Expression Standardcccoeeiriiiiiincicinnnnn, 4-7
Perl-Influenced Extensions to POSIX Regular Expression Standardc.ccooeeiiiiiniininne, 4-8

Using Regular Expressions in SQL Statements: Scenarios...............ccooviiiniiiinnniinnnnnen, 4-10
Using a Constraint to Enforce a Phone Number Format ..., 4-10
Using Back References to Reposition Characters ... 4-11

Using Indexes in Database Applications

Privileges Needed to Create INdexes.............ccccoceuiiiiiiiiiiiiiiiiiiiiiiiiis 5-1
Guidelines for Application-Specific INAeXescccooeiriininicnineeeeeeee e 5-1
Which Come First, Data Or INAE@XES?cooiiiriiiiieiieeteeee ettt ettt et e eeve e eevaesaneeavaen 5-2
Create a New Temporary Table Space Before Creating Indexesccccceeeiiiiiinniiinnnns 5-2
Index the Correct Tables and COIUMNSc.cccciiiiiiiiiiiiiiiiiccce e 5-3
Limit the Number of Indexes for Each Table...........ccccccoviiiinniiiiiicccc 5-4
Choose Column Order in Composite INdeXes............ccocueueiiiiiiiiiicieecc e, 5-4
Gather INAex StatiStICSc.coeueuiuiuiiiiiieiicicicereecc e 5-5
Drop Unused INAEXeS.........coviiiiiiiiiiiiiiiiiiiiiccc s 5-5
Examples of Creating Basic Indexescccccccoeiiiiiiiiiiiiiiccs 5-5
When to Use Domain INAeXesccocoeiiiiiiiiiniiiiiiii e 5-6
When to Use Function-Based Indexes..............cccccouiiiininiiiiiiiiiiicccces 5-6
Advantages of Function-Based IndeXes...........c..coovruiiiiiiiiiiiiiniiicccce e 5-7
Restrictions on Function-Based INAEXESccccoiiiuiiiiiiiiiiiiiceccccceeecceeeeeeeennes 5-8
Examples of Function-Based INAeXes............cccoviiiiiiiiiiiiiiiiiiiiiiec, 5-9
Function-Based Index for Case-Insensitive Searches..............ccccccoecuiiiiiiiniiiiiiiniiiinnnns 5-9
Precomputing Arithmetic Expressions with a Function-Based Index..........c.cccccccc....... 5-10
Function-Based Index for Language-Dependent SOrting ..o, 5-10

Maintaining Data Integrity in Database Applications

Overview of CONStraintscccoooviiiiiiiii s 6-1
Enforcing Business Rules with Constraints............cccccocoeiiiiiiiiiiiiiiccccecceeas 6-2
Enforcing Business Rules with Application LOGICccccovrererriiinirnnirirrrre e 6-2
Creating Indexes for Use with CONStraintscococeiiiiiiiiiiiiiiic 6-2

vii

viii

When t0o Use NOT NULL CONSEFAINTS ...coouvviiieiieieieieceeeeccteeeeeeree et e e esneeeessveessnseessnseessnssessnsees 6-2

When to Use Default Column Values............ccccccvviiiiiiniiiniiiiiicnns 6-3
Setting Default Column ValUes..........cccccccuiiiiiiiiiiiiiiicceceeeeereeee e 6-4
Choosing a Primary Key for a Tablec.cccoiiiiiiii e, 6-4
When to Use UNIQUE CONSITAINTSccveeieiieieieeieiieeieeteeie st sreeaeseeae e eesesseesesseessesssensesssenns 6-5
When to Use Constraints On VIEWSccccviiiiiiiiiiic s 6-6
Enforcing Referential Integrity with Constraints.............ccccoooiii, 6-6
FOREIGN KEY Constraints and NULL Values..........cccccccovvinininiiiiinnniiiiininns 6-8
Defining Relationships Between Parent and Child Tablescccccocovvninnnnnnnnenrrene. 6-8
Rules for Multiple FOREIGN KEY CONStraintsc.cccceeuiieiiiiiieiiiiciiceeeeeeeeeeeenenes 6-9
Deferring Constraint Checks ..o 6-9
Minimizing Space and Time Overhead for Indexes Associated with Constraints.................. 6-11
Guidelines for Indexing Foreign Keys.............ccccooiiiiiiiiiicne 6-11
Referential Integrity in a Distributed Databaseccccoooiiiiiiiiii 6-12
When to Use CHECK Constraints............cccocovvoiieiiiiiiiii s 6-12
Restrictions on CHECK ConStraintsc.cccceevviiiiiiiiiiicccses 6-12
Designing CHECK CONStIaintS.........cccuiuiiiiiiiiiiiiicicieiciicice s 6-13
Rules for Multiple CHECK COnstraints........c.cccococueucueieueueiiiieicniecieeeeeeereeeeeeeeseeeeeeeeeeeeeees 6-13
Choosing Between CHECK and NOT NULL Constraints...........cccccocoeeieiiiiceininiciceccen, 6-13
Examples of Defining Constraints.............ccccooiiiiiiiiiiiiiccce e 6-14
Example: Defining Constraints with the CREATE TABLE Statement..........ccccccceevuvvurunnnene. 6-14
Example: Defining Constraints with the ALTER TABLE Statement..........c.cccccooveieieiinnnan. 6-14
Privileges Needed to Define Constraints...........c..ocococueieioiicieiiiicicecccc e 6-15
Naming CONStraints ... 6-15
Enabling and Disabling Constraints..............ccccooiiiiiiiiiiiie e 6-15
Why Disable CONStraints?..........cooouiiiiiiiiiiiciec 6-16
Creating Enabling Constraints (Default)ccccccoeirriiiininiiirecceeeeeeeeeeeeeeeeees 6-16
Creating Disabled CONStraintscococeueieiiiiiciiiciie e 6-16
Enabling Existing CONStraintsccccoioiiueieiiiiiciicciee e 6-17
Disabling Existing CONSIraiNtS.........cccciiiuiiiiimiiiiieceeeeeeeieee e enees 6-17
Guidelines for Enabling and Disabling Key Constraints...........cccocooooiiiiiiiiiiniiciecnen, 6-17
Fixing Constraint EXCEPHIONS.........cccoiuiiiiiiiiiiiiciccc s 6-17
Altering CONSLIaAINEScccccoviiiiiiiiiiiiiiic s 6-18
Renaming COonSIaintSccuiuiiuiieiiiicie et 6-18
Dropping Constraints..............ccoooiiiiiiiiii s 6-19
Managing FOREIGN KEY Constraints ... 6-20
Datatypes and Names for Foreign Key Columns..........c.ccooiiiiiiiiiiiiicc, 6-20
Limit on Columns in Composite Foreign Keys ..., 6-20
Foreign Key References Primary Key by Default...........cccccooioiiiiiiiiiiiiiiecccceeee 6-20
Privileges Required to Create FOREIGN KEY Constraintscocoooeveiiieieiniicicieiccnen, 6-20
Choosing How Foreign Keys Enforce Referential Integrityc.cccooovvivvinininiiiinicnnn, 6-21
Viewing Definitions of Constraints ... 6-21
Examples of Defining and Viewing Constraintsc.cccoooeiiiiiiiiiiiiiiicccen 6-21
Example 1: Listing All of Your Accessible Constraints............cccccccceeueiiiicieiincicecnienne, 6-22
Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints................... 6-23
Example 3: Listing Column Names that Constitute an Integrity Constraint........................ 6-23

Partll PL/SQL for Application Developers

7 Coding PL/SQL Subprograms and Packages

Overview of PL/SQL Program Units ... 7-1
ANONYMOUS BLOCKS ... 7-2
Stored PL/SQL Program URNitscccoiiiiiiiiiiiiiiiiciiiie e 7-4

Naming SUDPIOZIAMSccueiiiiiieiiiicie e 7-4
Subprogram Parametersc.cccccieueiiiiiiiiieeeeeeeee e 7-4
Creating SUDPTOZIAMSccviiiiiiciicic e 7-8
Altering SUDPIOZIAMS.........ooviiiiiicee e e 7-9
Dropping Subprograms and Packagesccccceevvrriririrrnninrrcscrrereere e 7-9
External SUDPIrOgIrams..........couiiiiiiiiiiiicicc s 7-10
Cross-Session PL/SQL Function Result Cacheccoovvieevieeiicieceeeceeeeeeeee e 7-10
PL/SQL PACKAGESovviiiiiiiicieiciciciicietecee ettt 7-10
PL/SQL Object Size LImits.......ccccciviiiiiiiiiiiiiiiiicicciiccciccee s 7-12
Creating Packages...........c.ooceieiiiiiic s 7-12
Naming Packages and Package ObJectscccccoceuiciiiiiiiiieeeecceceeceeeeneeeees 7-13
Package Invalidations and Session State............ccoceueiiiiiiiiiiiicicic 7-13
Packages Supplied with Oracle Databaseccooouoiiiiiiiiii 7-13
Overview of Bulk Bindingccccoevuririiiiiiiiiiiiiicecrcrceeeeeee s 7-14
When to Use Bulk Binds ... 7-14
TTIGZOIS oottt s 7-16

Compiling PL/SQL Subprograms for Native Execution...............cccooviiinnnininn, 7-16

Cursor Variables ... 7-17
Declaring and Opening Cursor Variables ... 7-17
Examples of Cursor Variables ... 7-17

Handling PL/SQL Compile-Time EITorsccccccoviiiiiiiniiiiiiiiiiciccs 7-19

Handling Run-Time PL/SQL EITOTSccccccocviviiiiiiiiiiiiiiiiiiicscse s 7-20
Declaring Exceptions and Exception Handling Routines............cccccocoecciiiiciiiinccnnnee. 7-21
Unhandled EXCEPHIONScoviviiiiiiiiiiiiiiiiiiiici s 7-23
Handling Errors in Distributed QUeries...........ccccccoiiiiiiiiiiiiiiiiiiicicccces 7-23
Handling Errors in Remote SUbPIograms..........ccccccccuieiciiiciiiiciniciiceeecceeeeeeeieeeeeeneeenees 7-23

Debugging Stored SUbPrograms............cccoviiiiiiiiiiiiii s 7-24
PL/SCOPE ..ttt 7-25
PL/SQL Hierarchical PrOfiler..........ooiiiiiiiieciicieeieeeeeteeeeete ettt et et eveete s eveeveeaeeseeseennen 7-25
Oracle JDEVEIOPETcvuimiiiiiiiiiiiiiciicicee s 7-25
DBMS_OUTPUT PaCkagec.ccuimiiiiiiiiiiiiiiiicicicieicieiiei i 7-25
Privileges for Debugging PL/SQL and Java Stored Subprogramscccccccceeueuruvunueunnnnne. 7-25
Writing Low-Level Debugging Code............ooiiiiiiiiiiii e 7-26
DBMS_DEBUG_JDWP PaCKaE.......ccvuimeiriiiiiciiriiicieiriitieiescie et 7-26
DBMS_DEBUG Package......c.cceueuiurieiiiiiiiieieicicicieieieieictceieeeie e seeeeseeees 7-26

Invoking Stored SUbProgramscccociiiiiiiiiiiniiii s 7-27
Privileges Required to Execute a SUbprogram ... 7-28
Invoking a Subprogram from a Trigger or Another Subprogram...........cccccceevvvnnrnncnne. 7-28
Invoking a Subprogram Interactively from Oracle Database Tools.........ccccceueiiiriiiiiinnnnen. 7-29
Invoking a Subprogram from a 3GL Applicationcccceevviieininiccieiiiccecec 7-29

Invoking Remote Subprograms ... 7-30

Remote Subprogram Invocations and Parameter Values ..o, 7-30
Referencing Remote ODJECtSccociuiuiiiiiiiiiiiccceccceee e 7-30
Synonyms for Subprograms and Packages...........cccceiieiiiiiiii 7-32
Invoking Stored PL/SQL Functions from SQL Statementsccccccoccoiniiiinniiiinnccne 7-32
Why Invoke Stored PL/SQL Subprograms from SQL Statements?...........cccccccoevccuirecnenne 7-33
Where PL/SQL Functions Can Appear in SQL Statementscccoeviiiniiinencinnnen, 7-33
When PL/SQL Functions Can Appear in SQL EXPressions............cccccoeeuvircueieiiiciciececcncnene. 7-33
Controlling Side Effects........ccoiiiiiiiiiiciccccceee et 7-35
ReSHTICHONSttt s 7-35
Declaring @ FUNCHON. ... 7-36
Parallel Query and Parallel DML ... 7-37
PRAGMA RESTRICT_REFERENCES for Backward Compatibilityccccoevvivrrnnnnnnn. 7-38
Serially Reusable PL/SQL PaCKagescccoeueiriiuiiiiniicicieieccie i 7-41
Package STAtes......c.cccuiuiuiiiiiiiccccccc e s 7-41

Why Serially Reusable Packages?............cooouevoiiiiiciiiiinieiic s 7-42

Syntax of Serially Reusable Packagesccocoeueuoiiiiiiiiiiiiciciccic s 7-42
Semantics of Serially Reusable Packages.........ccccccouvuvururireriiiniiiiiriniicrrcececeeeeeees 7-42
Examples of Serially Reusable Packagescccooeueieiiiiciiiiiicieiicicce 7-43
Returning Large Amounts of Data from a Function................cccoooi, 7-46
Coding Your Own Aggregate FUNctoONS..............cccoeiiiiiiiii 7-47

Using PL/Scope

Specifying Identifier Collection...............ccccocooiiiiiiiiiiiiii s 8-1
How Much Space is PL/Scope Data Using?cccocovininiinininniiiiniiiii, 8-2
Viewing PL/Scope Data...........cccccoviiiiiiiiiiiiiiiiiiic s 8-2
Static Data Dictionary VIEWS.......ccccoiiiiiiiiiiiiiicc e 8-2
Unique Keys.....c.couoiiiiiiiiii s 8-2
COMEEX L.t s 8-3
SIENALULE ... s 8-4

DO TOOL ..ottt 8-5
SOQL DEVEIOPET ..ottt 8-5
Identifier Types that PL/Scope Collects............cccovuiiiiininiiiiiiiiiiices 8-5
Usages that PL/Scope RePoOrts...........cccccovuiiiiiiiiiiiiiiiiniiiii s 8-6
Sample PL/SCOPE SESSIONc.c.ouiiiiiiiiiiiiiiiiccc e 8-7

Using the PL/SQL Hierarchical Profiler

Overview of PL/SQL Hierarchical Profilerccoooeoiiiieiieiieieieieieieere et eeas 9-1
Collecting Profile Data............cccccoiiiiiiiiiiiii 9-2
Understanding Raw Profiler Output............ccccooiiviiiiiiiiiiii 9-3
Namespaces of Tracked SUbDPTOGIrams..........ccooovieiiiiiiieiiieiice e 9-6
Special FUNCHON NAIMESc.ccuiuiiiiiiiiciiiciecte e 9-6
Analyzing Profile Data...........ccccocooiiiiiiiiiii 9-7
Creating Hierarchical Profiler Tables...........cccccooviiiiiinnnniiiiiiininnnnnc e 9-7
Understanding Hierarchical Profiler Tables ... 9-8
Hierarchical Profiler Database Table Columnscccccovuviinininiiniiie, 9-8

Distinguishing Between Overloaded Subprograms............cccccceevivivviinnnnninninecnnes 9-10

Hierarchical Profiler Tables for Sample PL/SQL Procedure...........cccoceueiivniiucincinnnnee. 9-11

Examples of Calls to DBMS_HPROF.analyze with Optionsccooeueiiieiiiinceines 9-11
PIShPTOf ULILILY ... 9-13
PIShPTOf OPHIONS ... 9-13
HTML Report from a Single Raw Profiler Output Fileccccoooiiii, 9-14
First Page Of REPOTTcovoviiiiiiiiicceccceeec s 9-14
Function-Level REPOITScovuiiiiiiiiiiiiiiiiiccc s 9-15
Module-Level REPOItS........cciiuiiiiiiiiiiiiiiiiiiiiciicicic s 9-16
Namespace-Level REPOTEScovvviviiiiiiiiiiiicerrr s 9-16
Parents and Children Report for a FUNction...........cccoceeeiiiiiniiinicci, 9-17
HTML Difference Report from Two Raw Profiler Output Filesccccoooorriiiiiiiiinnn, 9-18
Difference Report CONVENLIONS.......c.ccoeucueuiuiuiiiiiiiiriinieieirreeeeeeeireee e 9-19
First Page of Difference Report.........ocoooviiiiiiiiiiiii 9-19
Function-Level Difference Reports........ccccouoiiueiiiiiiiiiiiiieccc 9-20
Module-Level Difference REPOIEScccccccucuiiiiiiiiiiiiiiiiiiicrccccre s 9-21
Namespace-Level Difference RepOrts.........cccccovvevviiiiiiiiniiiiiiiiiiiiccccccccs 9-22
Parents and Children Difference Report for a Function ..., 9-22

10 Developing PL/SQL Web Applications

Overview of PL/SQL Web Applications.............ccccccoiuiiiiiiiiiiiiiicccccceennes 10-1
Implementing PL/SQL Web Applications.............cccociiiiiiiiininiiiiiiccne 10-2
PL/SQL GatEWaY ...vcviiiiiriiiiiiicicisicce s 10-2
MNOA_PISGLe.iiiieiiii s 10-2
Embedded PL/SQL GatEWaYc.ccceueueuemimiieieiciiicieiieieieieieeeieteeseieeeeeie e sesessseseseaeaaees 10-3
PL/SQL WeDb TOOIKit.....coouiiiiiiiiniiiiiiiiiiiiiin s 10-3
Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application 10-4
Using Embedded PL/SQL Gatewaycccccccooiiiiiiiiiiniiiiiicccce s 10-5
How Embedded PL/SQL Gateway Processes Client Requestsccccveueriiieiiiiiirninnenennn 10-5
Installing Embedded PL/SQL Gatewayccccoeueioirueieiiiicieieccicec e 10-7
Configuring Embedded PL/SQL Gatewayccccccceueueueuiemiucieinieieieeieeieiereieieeeeeneeeeeneseeeeeeeees 10-7
Configuring Embedded PL/SQL Gateway: OVeIviewcccccocueviimieicininieicinincieians 10-7
Configuring User Authentication for Embedded PL/SQL Gateway.........ccccccovevuernnnnes 10-9
Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway............... 10-18
Securing Application Access with Embedded PL/SQL Gatewaycccocoeeueiiinirieininnnen. 10-18
Restrictions in Embedded PL/SQL Gatewaycccccceuvviiininininniininninnnccccccceccaes 10-18
Using Embedded PL/SQL Gateway: SCENATIOccccceueuimimemeueucieicieieieieiceneieieieneeieeeeeenenenenens 10-18
Generating HTML Output with PL/SQL...........cccoooiiiiiiiicvnnes 10-20
Passing Parameters to PL/SQL Web Applicationscccociiuiiiiiiiiiciiicicccccenne. 10-21
Passing List and Dropdown-List Parameters from an HTML Form..........cccccccccevininnnne. 10-22
Passing Radio Button and Checkbox Parameters from an HTML Form..........ccccccocoeee.... 10-22
Passing Entry-Field Parameters from an HTML Form..........ccccoovviiiiiiiniiiniiiiiiiccnes 10-23
Passing Hidden Parameters from an HTML FOrmccccoceueiiinninnnnnnrrrncerecenes 10-24
Uploading a File from an HTML FOrm........ccccouoiiiiiiiiiic i 10-25
Submitting a Completed HTML FOImM.......ccccoiiiiiiiiiiiiiiiiiiiccccccccccenes 10-25
Handling Missing Input from an HTML FOIrmccccccccceiiiiiiniiirnccneneeececeenes 10-25
Maintaining State Information Between Web Pagesc.cccooeuiiiiiiiiciii, 10-26
Performing Network Operations in PL/SQL Stored Subprograms..............c.ccccccceiiiiincnne. 10-26

xi

1

12

Xii

Sending E-Mail from PL/SQL........ccccccoviiiiiiiiiiiiiii e 10-26

Getting a Host Name or Address from PL/SQL.........ccccccoviiinnniiiiiics 10-27
Using TCP/IP Connections from PL/SQL........ccccoiiiiiinenreeceeecccc e 10-27
Retrieving HTTP URL Contents from PL/SQL.......cccccccoviiiiiniiiiiiicin 10-27
Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQLcccccocerunin. 10-29

Developing PL/SQL Server Pages

What Are PL/SQL Server Pages and Why Use Them?c.cccccovvniinnnnniniii 11-1
Prerequisites for Developing and Deploying PL/SQL Server Pages.............ccccovvvininininnnnne. 11-2
PL/SQL Server Pages and the HTP Package ..o 11-3
PL/SQL Server Pages and Other Scripting Solutionscccccooiiiiiiiiiiiiiiin 11-3
Developing PL/SQL Server Pages............ccccoiiiiiiniiiiiiiiicsesssenens 11-4
Specifying Basic Server Page Characteristics.........ocoooiiiieiiiicieiciicc 11-5
Specifying the Scripting Language...........coocceueiiriciiiiiicicieicice e 11-6
Returning Data to the Client BrOWSETc.ccccccuiimiiiiiiiiiiccccccceceeeeceeeeeee s 11-6
Handling Script BITOISoouciiiiiciice s 11-7
Accepting User INPUL.......ooiiii s 11-8
Naming the PL/SQL Stored Procedure............ccccoeuiiiiiiiiiiiinnicceeceeeeeeeeeeeeeeeeeenes 11-8
Including the Contents of Other Files ..o 11-9
Declaring Global Variables in a PSP SCIiptccoooouoiiiieiiiicieece e 11-9
Specifying Executable Statements in a PSP Script.......cccccocveiiciciiiiiicicicrreeeeeene 11-10
Substituting Expression Values in a PSP Script........cccocovvvviiinininii 11-11
Quoting and Escaping Strings in @ PSP SCript.......cccooiiiiiiiiiiicic e, 11-11
Including Comments in @ PSP SCIiPtcccceeuiiiiiiiiiriiiirrcccreer e 11-12
Loading PL/SQL Server Pages into the Databasecccccccooiiiiiiiiiiiiicc, 11-13
Querying PL/SQL Server Pages Source Code..............cccoeiiiiiiiiiiiiiicccccccnes 11-13
Executing PL/SQL Server Pages Through URLScccccoiiiiiiiiiiiiicces 11-15
Examples of PL/SQL Server Pages............cccooiiiiiiiiiiiicccnnnvsssvssnnas 11-15
Setup for PL/SQL Server Pages Examples..........ccccoooiiriiiniiiiininiiccccc i 11-16
Printing the Sample Table With @ LOOPcccoeeuiiiiiiiiiiiiiicccccceeeeeeeeee s 11-17
Allowing a User Selection..........coocuiiiiiiiiiiiici 11-17
Using an HTML Form to Invoke a PL/SQL Server Page.........ccccococoviiniiiiiininiiccieccnn, 11-19
Including JavaScript in @ PSP File.......cooiiiiiiiiiicccccccccccccceeeee e 11-19
Debugging PL/SQL Server Pages.............cccccoviviiiiiiiiiiiiicccscvcsssssscsssnne 11-20
Putting PL/SQL Server Pages into Productioncccoooiiiiiiiccne. 11-22

Using Continuous Query Notification

Object Change Notification (OCN)cccciiiiiiiiiiiiiiiiicceece e 12-2
Query Result Change Notification (QRCN)ccccoiiiiniiiiiiiiii 12-2
GUATANTEEA IMOAE ...ttt ettt sttt e be st e sbeesaesbeessasseessesseessesseessesseessenseas 12-3
BESE-EffOIt MO ...cuviviiiiiieie ettt ettt ettt ve et e be et e be e s e ere et e teeaseereenseenseseeaean 12-3
Events that Generate NoOtifiCatiONScccovevieriirieiieieeeeeeee et ens 12-4
Committed DML TTanSactioNs........cccerueeciereecierrieieseestesseesteseessesreessessessesssessesseessesseessessesssessees 12-5
Committed DDL StateIMeNtSc.coeeeiieuieiiiecieeieetee ettt ettt ettt et et eraesbe e e eereereeeseensesseensas 12-5
Deregistration ..o 12-6
GLODAL EVENESeetiiieiiieiieieeetete ettt ettt ettt e e e sbessaesbesstesbeessesseessasseessenseessesseessesseensenses 12-6
INOHLICAtION CONTENESoveieiiiiiiiciecie ettt ettt ettt e e teesae e e e beerb e beesseseessereeseeseenes 12-7

Good Candidates fOr CONc.ooiiiiiieieie ettt ettt et e b e aesteesaesseessesssessessaessesseessesssessenses 12-7

Creating CON Registrationscccooiiiiiiiiiiiic e 12-10
PL/SQL CQN Registration INterfacecocoevvrreiiiiiiiiiicccccccceccecceneeeeenenes 12-10
CON Registration OPtioNS.........ccoeurieiiiiiieieiicieiei e 12-11

Notification Type Option.......ccciceiiiiiciciec s 12-11
QRCN Mode (QRCN Notification Type Only)cocoeeeeireeininiiiniiiiciiccccceeenenes 12-11
ROWID OPtON....oiiiiiiiiiiiiiiiniiiis s nas 12-12
Operations Filter Option (OCN Notification Type Only)........cccccooevriiniiiiiinn 12-12
Transaction Lag Option (OCN Notification Type Only)cccccovevvvvvrrnnnninnnecnnes 12-13
Notification Grouping OPHioNS..........cccoviiiiiiiniiiii e 12-13
Reliable OPtion.......ccoiiiiiicie s 12-14
Purge-on-Notify and Timeout OPtions ... 12-14
Prerequisites for Creating CON Registrations............ccoceueviiiiiiiiicciiicccc 12-14
Queries that Can Be Registered for Object Change Notification (OCN)cccceeveirunnenee. 12-15
Queries that Can Be Registered for Query Result Change Notification (QRCN)................ 12-15
Queries that Can Be Registered for QRCN in Guaranteed Mode...........ccccooviiinnnnne. 12-15
Queries that Can Be Registered for QRCN Only in Best-Effort Mode........................... 12-16
Queries that Cannot Be Registered for QRCN in Either Mode.........cccccoooiiiiiiccnnes 12-17
Using PL/SQL to Register Queries for CONccccoviiiiiiiniiiiiiis 12-18
Creating a PL/SQL Notification Handlercccooviiiiiniiiiicns 12-18
Creating a CQ_NOTIFICATIONS$_REG_INFO ODbject........ccccuiiimiiimiiicicciicenenes 12-19
Identifying Individual Queries in a Notificationc.ccooooiiiii 12-22
Adding Queries to an Existing Registrationcc.ccooeioiiiiiiic 12-22
Best Practices for CQN Registrationsccceeueevviriiiriernnnirreerre s 12-23
Troubleshooting CON Registrations...........cccueviiuiiiiiiiciciiicic e 12-23

Querying CON Registrations..............cccoooiiiiiiiiiiiiiiic e 12-24

Interpreting Notifications.............ccccocoooiiiiiiii 12-25
Interpreting a CQ_NOTIFICATIONS$_DESCRIPTOR ODbject.........ccocovuvivimimnivniiiiniiiininnnn, 12-25
Interpreting a CQ_NOTIFICATIONS$_TABLE Objectcccccevuviviviiininiiiiiiiinininccnn 12-26
Interpreting a CQ_NOTIFICATION$_QUERY ODbjeCt.....c.cceueueurueuririiririririiirirereeereeeenes 12-26
Interpreting a CQ_NOTIFICATIONS$_ROW ODbjectccocoviiiiiiiiniiiiiiniiiciicene, 12-27

Deleting Registrations..............cooooiiiiiiiiiiiiii e 12-27

Configuring CON: SCeNATIO.........cccoviviiiiiiiiiii e 12-27
Creating a PL/SQL Notification Handler ... 12-28
Registering the QUETIESccccociiiiiiiiiiiiiiiiiii e 12-30

Part Il Advanced Topics for Application Developers

13

Using Flashback Technology
Overview of Flashback Technologyc.cccovueuiiininiiiiinniiciincccree s 13-1
Application Development FEatures.........c.cccoccciiiiiiiiiiiiiicceeeecereeeeeeieeeeeeeeeeeeees 13-2
Database Administration FEAtUIESccvvveviieiiiiieieieee ettt 13-3
Configuring Your Database for Flashback Technologyccccocooeviiiiniiiininiieccee 13-3
Configuring Your Database for Automatic Undo Management...........c.cccccoeueucucuercuenunucunnnnne. 13-4
Configuring Your Database for Flashback Transaction QUeryccccecevvvviininiininininnnne 13-4
Configuring Your Database for Flashback Transaction Backout...........c.cccocevvivnninnnnnne 13-4

xiii

14

Xiv

Enabling Flashback Operations on Specific LOB Columns..........cccccccovveviiiiiiiinininnieninnnn, 13-5

Granting Necessary Privileges ... 13-5
Using Flashback Query (SELECT AS OF)........ccoooviiiiiiiniiiiiics s 13-5
Example of Examining and Restoring Past Data...........cccoeeiiiiiiiii 13-6
Guidelines for Flashback QUETYccocouiiiiiiiiiii 13-7
Using Flashback Version QUery ..o 13-7
Using Flashback Transaction QUEeTYccccccoviiiiiiiiiiiiiiiiiic s 13-9
Using Flashback Transaction Query with Flashback Version Querycccccovvninnnnnn 13-9
Using ORA_ROWSCNcooiiiiiiii s 13-11
Using DBMS_FLASHBACK Packagecccocoviiiiiiiiiiiiiiccnscecnscssssssssnnes 13-12
Using Flashback Transaction Backout............ccccoooiiiiiiiicces 13-13
TRANSACTION_BACKOUT ParamieterS.....uueeeevceuveeeeeieeereeeeeeeieeeeesesisseeessssssseessssssssssesssssnnes 13-13
TRANSACTION_BACKOUT RePOILScvrviiiiiiniiiiincciciiiicsss s 13-14

* FLASHBACK_TXN_STATEcciiiiiiiiiiiiiiiceire s 13-14
*_FLASHBACK_TXN_REPORTcccceviiiiiriiiiiiicie s 13-14

Using Flashback Data Archives.............ccocooiiiiiiiiiiii 13-15
Creating a Flashback Data Archivecooooiiiiiiic 13-15
Altering a Flashback Data ATChiVe..........cooiiiiiiiiicec e 13-16
Dropping a Flashback Data Archive ... 13-17
Specifying the Default Flashback Data Archivecccooooiiiiii, 13-17
Enabling and Disabling Flashback Data Archive...........ccccoocoiiiiiiiiiiiiiiicccceccenes 13-18
DDL Statements Not Allowed on Tables Enabled for Flashback Data Archive.................. 13-18
Viewing Flashback Data Archive Data ..o, 13-19
Flashback Data Archive SCeNarios. ... 13-19
Scenario: Using Flashback Data Archive to Enforce Digital Shredding....................... 13-19
Scenario: Using Flashback Data Archive to Access Historical Data..........ccccccooeeeuenie. 13-19
Scenario: Using Flashback Data Archive to Generate Reportsc.ccccceevvvverirencnnes 13-20
Scenario: Using Flashback Data Archive for Auditingccoooiiiiiiiiiiii 13-20
Scenario: Using Flashback Data Archive to Recover Data...........cccccccovviviiniinninnne, 13-21
General Guidelines for Flashback Technologycccccooiiinniiinniis 13-21
Performance Guidelines for Flashback Technologyccccooviiiiiiiiiiiiiicnns 13-22

Developing Applications Using Multiple Programming Languages

Overview of Multilanguage Programs.............cccccccviiiiiiiniiiiinii s 14-1
What Is an External Procedure?cocooeiviiniiinieinieineretrietiete ettt 14-2
Overview of Call Specification for External Procedures..............cccccooveeneineniinennecnenencne 14-3
Loading External Procedures ..o 14-3
Loading Java Class Methodscccccciiiiiiiiiiiiiiiiiicic s 14-4
Loading External C Procedures ..o 14-4
Define the C Procedures ... 14-5

Set Up the ENVITONMENt.......c.ccoiiiiiiiiiiiiiiiiiiic s 14-5
Identify the DLL......ccoiiiiiiiceeeece et eeees 14-7
Publish the External Procedures............ccccviiiiiininiiiiiniiiiiiccccccee 14-8
Publishing External Proceduresccociiiiiiiiiiiiiiiicceeecneeenesee e 14-8
AS LANGUAGE Clause for Java Class Methods.........ccoceverierierierieieieeeieese e seeseenens 14-10

AS LANGUAGE Clause for External C Procedures...........ccccoceiviiniiinininiiiiiniicinnes 14-10
LIBRARY oottt ettt sttt ettt 14-10

LANGUAGE ..ottt 14-10
CALLING STANDARD ..ottt 14-10

WITH CONTEXT ..o 14-11
PARAMETERS ..ottt 14-11
AGENT IN Lo 14-11
Publishing Java Class Methods..............cccooiiiiiiie 14-11
Publishing External C Proceduresccccccoiuiiiiiiiiiiiiniiiiis s 14-12
Locations of Call Specificationsccoeviriiiriiiniiiniiincec e 14-12
Example: Locating a Call Specification in a PL/SQL Package.........ccccccouvirieiniiciciiiinnne, 14-13
Example: Locating a Call Specification in a PL/SQL Package Body.........ccceooeiiiiiiiinnnne. 14-13
Example: Locating a Call Specification in an Object Type Specificationccccceeurerecncee. 14-13
Example: Locating a Call Specification in an Object Type Body......c.cccceviviiiniiiiniinnnnnnn 14-14
Example: Java with AUTHIDcccccoiiiiiiiiiiiiiircc s 14-14
Example: C with Optional AUTHIDccocoiiiiiiiir e 14-14
Example: Mixing Call Specifications in a Package.........ccccevuiurieiiiiciciiiicccc, 14-14
Passing Parameters to External C Procedures with Call Specifications..............ccccccoceeinii. 14-15
SPeCifying DatatyPesccceueueuiuiuiiiiiiieiccieieieieeeeteee et 14-16
External Datatype Mappings.........ccccceeeiiiiiiiiiiniiiiiiii e 14-17
Passing Parameters BY VALUE or BY REFERENCE..........c.ccccooiiii 14-19
Declaring Formal Parameters...........cccoovueuiiiurriririnirinririeerreee e 14-19
Overriding Default Datatype Mappingccccocoeueieiirieiiiiieicicce s 14-20
Specifying Properties.. ...t 14-20
INDICATOR ..ottt 14-22
LENGTH and MAXLENccoooiiiiiiiiiiiis s sssssssans 14-22
CHARSETID and CHARSETFORM.........ccooiiiiiiiiiiiiiciicecesesesssenens 14-23
Repositioning Parameters...........ccccvviiiiiiiiiiiiii s 14-23

SELF ..ot 14-23

BY REFERENCEcoooiiiiiiiiiiiis st 14-26

WITH CONTEXT ..ot 14-26
Interlanguage Parameter Mode Mappingscccocoeueieiimieieiniicieicicceece s 14-27
Executing External Procedures with CALL Statements..............cc.ccoccoeiiiiiiiiiiiiciicenne. 14-27
Preconditions for External Procedures ... 14-28
Privileges of External Procedures..............ccoouoiiiiiiiiiiicicc 14-28
Managing PermiSSions..........ccccuviiiiiiiiiiiiicc s 14-28
Creating Synonyms for External Procedures............c.cccoecciiiiiinininnniiirrcerceeenes 14-29

CALL Statement SYNtaXcceveieieiiiiicieeccee 14-29
Calling Java Class Methodscccceuiuiiiiiiiiiininiiiiiiiiiii e 14-30
Calling External C ProCEAULEScccccvueuiiiiririiirieiriririieereee e 14-30
Handling Errors and Exceptions in Multilanguage Programscccooeiiiiiniiiinnnnn. 14-31
Using Service Routines with External C Procedures..............cccccoouvivniinnnnnnnnnecaes 14-31
OCIEXtProc AlIOCCAlIMEMOTYcovviiiiciieiieieieerireeeeieieeeeeeee et 14-31
OCIEXtPrOCRAISEEXCP .ovvvviiiiiiiiiiciciiicic s 14-36
OCIExtProcRaise EXCPWItRIMSGcocuviiiiiiiiiiiiciiciciciicrcc s 14-37
Doing Callbacks with External C Procedures...............cccccoviiiiiininiiinniiiiiicces 14-37
OCIEXtPIOCGELENYoviiiiiiiiciciccic s 14-38
Object Support for OCI Callbacksceueiireiiiiiiieiicce e 14-39

XV

ReStrictions ON CallDACKSooouviiiiieiiieeeceeeeeeee ettt e e eaae e s erae e s eaneesnaees 14-39

Debugging External Proceduresccoououoiiiiiiiiicicieceeccie e 14-40
Example: Calling an External Procedure............ccccccoeiiiiiiiiiniiccereeeeeeeeeeees 14-41
Global Variables in External C Proceduresccocueeeeieniiriienieieceeiese et 14-41
Static Variables in External C Procedurescooeoererenieieieieeeiesie ettt 14-41
Restrictions on External C ProCeAUTIES...........ovevveieieieieieieiee sttt e eessasressessessessens 14-42

15 Developing Applications with Oracle XA

X/Open Distributed Transaction Processing (DTP)............ccccccccocvviviiiinininniiie, 15-1
DTP TerminOlOZYcovueueviiucieiiiinicieieicieie ittt bbb 15-2
Required Public Information ... 15-4

Oracle XA Library Subroutines ... 15-5
Oracle XA Library SUDIOUNES.........c.coiiiiiiiiiitict 15-5
Oracle XA Interface EXtENSIONS.........cociiimiiiiiiiiiiiiccc s 15-6

Developing and Installing XA Applications ... 15-6
DBA or System Administrator Responsibilities ..., 15-7
Application Developer Responsibilitiescococeoiiiiiciiiiiiiicce 15-8
Defining the Xa_0pen SEIING ... enenes 15-8

Syntax of the Xa_open StriNg ..o 15-8
Required Fields for the xa_open String ... 15-9
Optional Fields for the Xa_open String........cccccccccveriiiinneiiieeccreeeeeeeeeeeeeees 15-9
Using Oracle XA with Precompilers ... 15-11
Using Precompilers with the Default Databasecccooooi 15-11
Using Precompilers with a Named Database............ccocovciiinniiiiniciiicccccccnes 15-11
Using Oracle XA wWith OCT ... 15-12
Managing Transaction Control with Oracle XA...........ccoooiiiii 15-13
Examples of Precompiler Applications.........ccccucucucueueieiemeicinieieiiieieirieeeeeeeeeeeeses s 15-14
Migrating Precompiler or OCI Applications to TPM Applications...........cccccevveriiviiiivninnnne. 15-14
Managing Oracle XA Library Thread Safety ..o 15-15
Specifying Threading in the Open String..........cccccccceeeiiicinniiiicrccceeeeeereeees 15-16
Restrictions on Threading in Oracle XAcccooiiiiiii e 15-16
Using the DBMS_XA Package.........cccocouviiiiiriiiiiiiiiiiniiniiiicccscsss e 15-16

Troubleshooting XA Applicationscccocceiiiiiiiiiiii 15-19

Accessing Oracle XA Trace Files.........ccoooiiiiiiiii 15-19
xa_open String DDEEL ..o 15-20
Trace File LOCAHONSccviuiieiiiiiiiiiic s 15-20

Managing In-Doubt or Pending Oracle XA Transactions............ccococeueviinieieiniccieiincnennn, 15-20

Using SYS Account Tables to Monitor Oracle XA Transactions..........c.cccceevevnincnincncnccacnes 15-21

Oracle XA Issues and Restrictions ... 15-21
Using Database Links in Oracle XA Applications............cccoevviieiiiiiiiiiiiin 15-21
Managing Transaction Branches in Oracle XA Applicationscccocevvvveeeniicnierninccnennn, 15-22
Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)........cccccccccueucucnennnee 15-22

GLOBAL_TXN_PROCESSES Initialization Parametercccccoeveeeevveiveeeiereeeeeeeeneen. 15-23
Managing Transaction Branches on Oracle RAC............ccoooeiiiiniicicece 15-23
Managing Instance Recovery in Oracle RAC with DTP Services (10.2)ccccceevvruence. 15-24
Global Uniqueness of XIDs in Oracle RAC........cccccooviiiiiiiiiiccenes 15-25
Tight and Loose COUPLNGcccovuviriiiiiiiiiiiiiiiiiciicn e 15-25

XVi

16

17

SQL-Based Oracle XA ReStIiCHONScccievirieeieieeierieeeeteetesreereesteetesaessressessesseessessaessessessaenns 15-25

Rollbacks and COMMILScccouvviiiiiiiiiiiiiiiiii s 15-25
DDL Statementscceeveiiieiiiiiiiiiiii e 15-26
SESSION STAtE.....vvviiiicicici s 15-26
EXEC SQL ..o b 15-26
Miscellaneous ReStriCtIONS.covvviiiiiiiiiiiiiic e 15-26
Developing Applications on the Publish-Subscribe Model
Introduction to the Publish-Subscribe Model..............cccoooiiiiiiiiia 16-1
Publish-Subscribe Architecture ... 16-2
Database EVENESccccciiiiiiiiiiiiiiii s 16-2
Oracle Advanced QUEUINGc.cccuiuiuiuiiiiiiiiiiciceeeee et senes 16-3
Client NOtFICAtIONoiviviiiiiicicc s 16-3
Publish-Subscribe CONCePts ..o 16-3
Examples of a Publish-Subscribe MechaniSmccccccooeoiiiiininninnineinenceneeneeneenneeene 16-5
Using the Identity Code Package
Identity CONCEPLSccoovivimiiiiiiii s 17-1
What is the Identity Code Package?cccocoeviiiiiiiiiiiiiiiiiiccic s 17-5
Using the Identity Code Packagecccccoviiiiiiiiiniiiiininiiii s 17-6
Storing RFID Tags in Oracle Database Using MGD_ID Object Type.......cccccoccueueueucueucucucnnnes 17-6
Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in the
Column 17-7
Constructing MGD_ID Objects to Represent RFID Tags.........ccccooviirieieiiiciciciicicieaes 17-7
Inserting an MGD_ID Object into a Database Table...........cccccocovviirnnvninnniicrne 17-9
Querying MGD_ID Column TyYpPe......coooeuiieiirieieiiicieeci s 17-10
Creating Indexes on the MGD_ID Column Type........ccceuiiiriiieiiiirciiiccceecce i 17-10
Building a Function-Based Index Using the Member Functions of the MGD_ID Column
Type 17-10
Using MGD_ID Object Type FUNCHONSccovoiieiiiiicic 17-11
Using the get_component Function with the MGD_ID Object..........ccccooeevirirnrninnnen. 17-11
Parsing Tag Data from Standard Representations...........cccccceeveveerverneinnnnnnnrenecnes 17-12
Reconstructing Tag Representations from Fieldsc.cccooiiiiiiii 17-13
Translating Between Tag Representations............cccccccvuviviviviviininninninncnnecaes 17-13
Defining a New Category of Identity Codes and Adding Encoding Schemes to an Existing
Category 17-13
Creating a New Category of Identity Codes........cccocouiririiiiiiiiiiiic 17-14
Adding Two New Metadata Schemes to a Newly Created Categoryc.ccccevvunenne. 17-14
Identity Code Package TYPes ..ot 17-18
DBMS_MGD_ID_UTL Package............ccccoooeiiiiiimimiiiiiiiiiiissscsssssesssssnnens 17-19
Identity Code Metadata Tables and VIeWs.............ccccccciiiiiiiiiiiiiiiiiiiicccccene 17-20
Metadata View Definitionsccoevviiiiiiiiiiiiiic 17-21
Electronic Product Code (EPC) CONCEPLS.........cooruimimimimiiiiiiiiiiiiiicicntcst e 17-22
RFID Technology and EPC v1.1 Coding Schemescccccovvivivviinnnninnninicicccccens 17-22
Product Code Concepts and Their Current Use..........cccceuvuvererirrrrnrnnnrrreercece e 17-23
Electronic Product Code (EPC)ccoiiiiiriiiieneeieeeteee ettt sttt 17-23

xvii

Global Trade Identification Number (GTIN) and Serializable Global Trade Identification
Number (SGTIN) 17-24

Serial Shipping Container Code (SSCC) ..o 17-24

Global Location Number (GLN) and Serializable Global Location Number (SGLN). 17-24

Global Returnable Asset Identifier (GRAI)ccccueoiriririnenineseseeeteeeeeeee e 17-25

Global Individual Asset Identifier (GIAIL)cccccoverreneineircccncenceneseeeeeeeeeee 17-25

RFID EPC NEtWOTK.....cocviiiiiiiiiiiiicccn s 17-25

Oracle Tag Data Translation Schema...........ccooiiiiiiiis 17-25

A Multithreaded extproc Agent

Why Use the Multithreaded extproc Agent?............cccoiiiiiiiiiiniiies A-1
The Challenge of Dedicated Agent Architectureooooeiiiiiiiiiiiiiie A-1
The Advantage of Multithreading..........cccoceevviviiiiiiiiniicccrre s A-1
Multithreaded extproc Agent Architectureccccooiiiiiiiiiiie A-2
Monitor Threadccocoiiiiiniiiiiiiiii s A-4
Dispatcher TRreadsccocciiiiiiiiiccccececc e A-4
Task ThIeads......coviuiiiiiiiiiiiiici s A-4
Administering the Multithreaded extproc Agentcccccoevviiiiininiii A-4
Agent Control Utility (agtctl) Commands..........cccoceiiiiiiiiiieiccceeeeeeeeeeeeeeeeeeeees A-5
Using agtctl in Single-Line Command Mode.............ccoooiiiiiiiiiiiii e A-5
Setting Configuration Parameters for a Multithreaded extproc Agentc.cc.cc.cc..... A-5
Starting a Multithreaded extproc Agent..........c.ccccccuciiuiniiiinnicrreerr s A-6
Shutting Down a Multithreaded extproc Agentc.ccooiiiiiiiiie, A-6
Examining the Value of Configuration Parameters............ccocooviriiiiiiniiciec, A-7
Resetting a Configuration Parameter to Its Default Valuecccocoovvvviininnnnnne. A-7
Deleting an Entry for a Specific SID from the Control File...........c.ccccooooiniiiiin, A-7
Requesting Help ... A-7

Using Shell Mode COmMMANS..........cccciiuiuiiiiiiiiiceeeecieeeiee e sese e sesesesesesenenenses A-8
Example: Setting a Configuration Parameteroooeueiiieieiniiciciiiccc, A-8
Example: Starting a Multithreaded extproc Agent............ccoooiiiiiic, A-8
Configuration Parameters for Multithreaded extproc Agent Controlccccceeevvuvvevevirenennes A-8

Index

xviii

Audience

Preface

Oracle Database Advanced Application Developer’s Guide explains topics that experienced
application developers reference repeatedly. Information in this guide applies to
features that work the same on all supported platforms, and does not include
system-specific information.

Preface topics:

= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle Database Advanced Application Developer’s Guide is intended for application
developers who are either developing new applications or converting existing
applications to run in the Oracle Database environment. This guide is also valuable to
anyone who is interested in the development of database applications, such as systems
analysts and project managers.

To use this document effectively, you need a working knowledge of:
= Application programming
s Structured Query Language (SQL)

= Object-oriented programming

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Xix

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

For more information, see the following documents in the Oracle Database 11g Release
1 (11.1) documentation set:

» Oracle Database PL/SQL Language Reference

» Oracle Call Interface Programmer’s Guide

» Oracle Database Security Guide

» Pro*C/C++ Programmer’s Guide

» Oracle Database SQL Language Reference

s Oracle Database Administrator’s Guide

» Oracle Database Concepts

» Oracle XML Developer’s Kit Programmer’s Guide
» Oracle XML DB Developer’s Guide

» Oracle Database Globalization Support Guide

» Oracle Database Sample Schemas

See also:

» Oracle PL/SQL Tips and Technigues by Joseph C. Trezzo. Oracle Press, 1999.

» Oracle PL/SQL Programming by Steven Feuerstein. 3rd Edition. O'Reilly &
Associates, 2002.

» Oracle PL/SQL Developer's Workbook by Steven Feuerstein. O'Reilly & Associates,
2000.

» Oracle PL/SQL Best Practices by Steven Feuerstein. O'Reilly & Associates, 2001.

Conventions

The following text conventions are used in this document:

XX

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

*_viewmeans all static data dictionary views whose names end with view. For
example, *_ ERRORS means ALL_ERRORS, DBA_ERRORS, and USER_ERRORS. For
more information about any static data dictionary view, or about static dictionary
views in general, see Oracle Database Reference.

XXi

XXii

What's New in Application Development?

What's New in Application Development? briefly describes new features of Oracle
Database 11g Release 1 (11.1) and provides links to additional information.

Oracle Database 11g Release 1 (11.1) New Features

The new application development features for Release 11.1 are:

WAIT Option for Data Definition Language (DDL) Statements
Binary XML Support for Oracle XML Database
Metadata for SQL Built-In Functions

Enhancements to Regular Expression Built-in Functions
Invisible Indexes

Cross-Session PL/SQL Function Result Cache
Sequences in PL/SQL Expressions

PL/Scope

PL/SQL Hierarchical Profiler

Query Result Change Notification

Flashback Transaction Backout

Flashback Data Archives

XA API Available Within PL/SQL

Support for XA /JTA in Oracle Real Application Clusters (Oracle RAC)
Environment

Identity Code Package

Enhanced Online Index Creation and Rebuilding

Embedded PL/SQL Gateway

Oracle Database Spawns Multithreaded extproc Agent Directly by Default

WAIT Option for Data Definition Language (DDL) Statements

DDL statements require exclusive locks on internal structures. If these locks are
unavailable when a DDL statement is issued, the DDL statement fails, though it might
have succeeded if it had been issued subseconds later. The WAIT option of the SQL
statement LOCK TABLE allows a DDL statement to wait for its locks for a specified
period of time before failing.

xXiii

XXiv

For more information, see "Choosing a Locking Strategy" on page 2-10.

Binary XML Support for Oracle XML Database

Binary XML is a third way to represent an XML document. Binary XML complements,
rather than replaces, the existing object-relational storage and CLOB storage
representations. Binary XML has two significant benefits:

s XML operations can be significantly optimized, whether or not an XML schema is
available.

s The internal representation of XML is the same on disk, in memory, and on wire.

As with other storage mechanisms, the details of binary XML storage are transparent
to you. You continue to use XMLType and its associated methods and operators.

For more information, see "Representing XML" on page 3-18.

See Also: Oracle XML DB Developer’s Guide

Metadata for SQL Built-In Functions

Metadata for SQL built-in functions is accessible through dynamic performance (V$)
views. Third-party tools can leverage built-in SQL functions without maintaining their
metadata in the application layer.

For more information, see "Metadata for SQL Built-In Functions" on page 3-27.

Enhancements to Regular Expression Built-in Functions

The regular expression built-in functions REGEXP_INSTR and REGEXP_SUBSTR have
increased functionality. A new regular expression built-in function, REGEXP_COUNT,
returns the number of times a pattern appears in a string. These functions act the same
in SQL and PL/SQL.

For more information, see "Oracle Database Implementation of Regular Expressions"
on page 4-2.

See Also: Oracle Database SQL Language Reference

Invisible Indexes

An invisible index is maintained by Oracle Database for every Data Manipulation
Language (DML) statement, but is ignored by the optimizer unless you explicitly set
the parameter OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE on a session or
system level.

Making an index invisible is an alternative to making it unusable or dropping it. Using
invisible indexes, you can do the following:

» Test the removal of an index before dropping it

» Create invisible indexes temporarily for specialized, nonstandard operations, such
as online application upgrades, without affecting the behavior of existing
applications

For more information, see "Drop Unused Indexes" on page 5-5.

Cross-Session PL/SQL Function Result Cache

Before Release 11.1, if you wanted your PL/SQL application to cache the results of a
function, you had to design and code the cache and cache-management subprograms.
If multiple sessions ran your application, each session had to have its own copy of the

cache and cache-management subprograms. Sometimes each session had to perform
the same expensive computations.

As of Release 11.1, PL/SQL provides a cross-session function result cache. Because the
function result cache is stored in a shared global area (SGA), it is available to any
session that runs your application.

For more information, see "Cross-Session PL/SQL Function Result Cache" on
page 7-10.

See Also: Oracle Database PL/SQL Language Reference

Sequences in PL/SQL Expressions

The pseudocolumns CURRVAL and NEXTVAL make writing PL/SQL source code easier
for you and improve run-time performance and scalability. You can use sequence_
name.CURRVAL and sequence_name NEXTVAL wherever you can use a NUMBER
expression.

For an example, see "Example of a PL/SQL Package Specification and Body" on
page 7-10.

See Also: Oracle Database PL/SQL Language Reference

PL/Scope

PL/Scope is a compiler-driven tool that collects and organizes data about user-defined
identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you
use it through interactive development environments (such as SQL Developer and
JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

For a detailed description of PL/Scope, see Chapter 8, "Using PL/Scope".

PL/SQL Hierarchical Profiler

Nonhierarchical (flat) profilers record the time that a program spends within each
subprogram—the function time or self time of each subprogram. Function time is
helpful, but often inadequate. For example, it is helpful to know that a program
spends 40% of its time in the subprogram INSERT_ORDER, but it is more helpful to
know which subprograms call INSERT_ORDER often and the total time the program
spends under INSERT_ORDER (including its descendent subprograms). Hierarchical
profilers provide such information.

The PL/SQL hierarchical profiler does the following:

= Reports the dynamic execution profile of your PL/SQL program, organized by
subprogram calls

= Accounts for SQL and PL/SQL execution times separately
= Requires no special source or compile-time preparation

m Stores results in database tables (hierarchical profiler tables) for custom report
generation by integrated development environment (IDE) tools (such as SQL
Developer and third-party tools)

To generate simple HTML reports from raw profiler output, you can use the
plshprof command-line utility.

XXV

XXVi

Each subprogram-level summary in the dynamic execution profile includes
information such as:

= Number of calls to the subprogram
= Time spent in the subprogram itself (function time or self time)
= Time spent in the subprogram itself and in its descendent subprograms (subtree
time)
s Detailed parent-children information, for example:
— All callers of a given subprogram (parents)
- All subprograms that a given subprogram called (children)
- How much time was spent in subprogram x when called from y
- How many calls to subprogram x were from y

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 9, "Using the
PL/SQL Hierarchical Profiler".

Query Result Change Notification

Before Release 11.1, Continuous Query Notification (CQN) published only object
change notifications, which result from DML or DDL changes to the objects associated
with registered the queries.

As of Release 11.1, CQN can also publish query result change notifications, which
result from DML or DDL changes to the result set associated with the registered
queries. New static data dictionary views enable you to see which queries are
registered for result-set-change notifications (see "Querying CQN Registrations" on
page 12-24).

For more information, see Chapter 12, "Using Continuous Query Notification".

Flashback Transaction Backout

The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure rolls back a transaction
and its dependent transactions while the database remains online. This recovery
operation uses undo data to create and execute the compensating transactions that
return the affected data to its original state.

For more information, see "Using Flashback Transaction Backout"” on page 13-13.

Flashback Data Archives

A Flashback Data Archive provides the ability to store and track all transactional
changes to a record over its lifetime. It is no longer necessary to build this intelligence
into the application. A Flashback Data Archive is useful for compliance with record
stage policies and audit reports.

For more information, see "Using Flashback Data Archives" on page 13-15.

XA API Available Within PL/SQL

The XA interface functionality that supports transactions involving multiple resource
managers, such as databases and queues, is now available within PL/SQL. You can

use PL/SQL to switch and share transactions across SQL*Plus sessions and across
processes.

For more information, see "Using the DBMS_XA Package" on page 15-16.

Support for XA/JTA in Oracle Real Application Clusters (Oracle RAC)
Environment

An XA transaction now spans Oracle RAC instances by default, allowing any
application that uses XA to take full advantage of the Oracle RAC environment,
enhancing the availability and scalability of the application.

For more information, see "Using Oracle XA with Oracle Real Application Clusters
(Oracle RAC)" on page 15-22.

Identity Code Package

The Identity Code Package provides tools to store, retrieve, encode, decode, and
translate between various product or identity codes, including Electronic Product
Code (EPC), in an Oracle Database. The Identity Code Package provides new data
types, metadata tables and views, and PL/SQL packages for storing EPC standard
RFID tags or new types of RFID tags in a user table.

The Identity Code Package allows the Oracle Database to recognize EPC coding
schemes, to support efficient storage and component-level retrieval of EPC data, and
to comply with the EPCglobal Tag Data Translation 1.0 (TDT) standard that defines
how to decode, encode, and translate between various EPC RFID tag representations.

The Identity Code Package also provides an extensible framework that enables you to
use pre-existing coding schemes with applications that are not included in the EPC
standard and adapt the Oracle Database both to these older systems and to evolving
identity codes that might become part of a future EPC standard.

The Identity Code Package also lets you create your own identity codes by first
registering the new encoding category, registering the new encoding type, and then
registering the new components associated with each new encoding type.

For more information, see Chapter 17, "Using the Identity Code Package".

Enhanced Online Index Creation and Rebuilding
Online index creation and rebuilding no longer requires a DML-blocking lock.

Before Release 11.1, online index creation and rebuilding required a very short-term
DML-blocking lock at the end of the rebuilding. The DML-blocking lock could cause a
spike in the number of waiting DML operations, and therefore a short drop and spike
of system usage. This system usage anomaly could trigger operating system alarm
levels.

Embedded PL/SQL Gateway

The PL/SQL gateway enables a user-written PL/SQL subprogram to be invoked in
response to a URL with parameters derived from an HTTP request. mod_plsql is a
form of the gateway that exists as a plug-in to the Oracle HTTP Server. Now the
PL/SQL gateway is also embedded in the database itself. The embedded PL/SQL
gateway uses the internal Oracle XML Database Listener and does not depend on the
Oracle HTTP Server. You configure the embedded version of the gateway with the
DBMS_EPG package.

For more information, see "Using Embedded PL/SQL Gateway" on page 10-5.

XXVii

XXViii

Oracle Database Spawns Multithreaded extproc Agent Directly by Default

When an application calls an external C procedure, either Oracle Database or Oracle
Listener starts the external procedure agent, extproc.

Before Release 11.1, Oracle Listener spawned the multithreaded extproc agent, and
you defined environment variables for extproc in the file l1istener.ora.

As of Release 11.1, by default, Oracle Database spawns extproc directly, eliminating
the risk that Oracle Listener might spawn extproc unexpectedly. This default
configuration is recommended for maximum security. If you use it, you define
environment variables for extproc in the file extproc.ora.

For more information, including situations in which you cannot use the default
configuration, see "Loading External Procedures" on page 14-3.

1

Introduction to Oracle Programmatic
Environments

Topics:

Overview of Oracle Application Development
Overview of PL/SQL

Overview of Java Support Built into the Database
Overview of Pro*C/C++

Overview of Pro*COBOL

Overview of OCI and OCCI

Overview of Oracle Data Provider for NET (ODP.NET)
Overview of Oracle Objects for OLE (O0O40)

Choosing a Programming Environment

Overview of Oracle Application Development

As an application developer, you have many choices when writing a program to
interact with Oracle database:

Client/Server Model
Server-Side Coding

Two-Tier and Three-Tier Models
User Interface

Stateful and Stateless User Interfaces

Client/Server Model

In a traditional client/server program, your application code runs on a client system;
that is, a system other than the database server. Database calls are transmitted from the
client system to the database server. Data is transmitted from the client to the server
for insert and update operations and returned from the server to the client for query
operations. The data is processed on the client system. Client/server programs are
typically written by using precompilers, whereas SQL statements are embedded
within the code of another language such as C, C++, or COBOL.

Introduction to Oracle Programmatic Environments 1-1

Overview of PL/SQL

Server-Side Coding

You can develop application logic that resides entirely inside the database by using
triggers that are executed automatically when changes occur in the database or stored
subprograms (procedures and functions) that are invoked explicitly. Off-loading the
work from your application lets you reuse code that performs verification and cleanup
and control database operations from a variety of clients. For example, by making
stored subprograms invocable through a Web server, you can construct a Web-based
user interface that performs the same functions as a client/server application.

Two-Tier and Three-Tier Models

Client/server computing is often referred to as a two-tier model: your application
communicates directly with the database server. In the three-tier model, a separate
application server processes the requests. The application server might be a basic Web
server, or might perform advanced functions like caching and load-balancing.
Increasing the processing power of this middle tier lets you lessen the resources
needed by client systems, resulting in a thin client configuration in which the client
system might need only a Web browser or other means of sending requests over the
TCP/IP or HTTP protocols.

User Interface

The user interface is what your application displays to end users. It depends on the
technology behind the application as well as the needs of the users themselves.
Experienced users can enter SQL statements that are passed on to the database. Novice
users can be shown a graphical user interface that uses the graphics libraries of the
client system (such as Windows or X-Windows). Any of these traditional user
interfaces can also be provided in a Web browser through HTML and Java.

Stateful and Stateless User Interfaces

In traditional client/server applications, the application can keep a record of user
actions and use this information over the course of one or more sessions. For example,
past choices can be presented in a menu so that they do not have to be entered again.
When the application is able to save information in this way, the application is
considered stateful.

Web or thin-client applications that are stateless are easier to develop. Stateless
applications gather all the required information, process it using the database, and
then start over with the next user. This is a popular way to process single-screen
requests such as customer registration.

There are many ways to add stateful action to Web applications that are stateless by
default. For example, an entry form on one Web page can pass information to
subsequent Web pages, allowing you to construct a wizard-like interface that
remembers the user's choices through several different steps. Cookies can be used to
store small items of information on the client system, and retrieve them when the user
returns to a Web site. Servlets can be used to keep a database session open and store
variables between requests from the same client.

Overview of PL/SQL

This section contains the following topics:

s WhatIs PL/SQL?

1-2 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL

= Advantages of PL/SQL
s PL/SQL Web Development Tools

What Is PL/SQL?

PL/SQL is Oracle's procedural extension to SQL, the standard database access
language. It is an advanced 4GL (fourth-generation programming language), which
means that it is an application-specific language. PL/SQL and SQL have built-in
treatment of the relational database domain.

In PL/SQL, you can manipulate data with SQL statements and control program flow
with procedural constructs such as loops. You can also do the following:

s Declare constants and variables
= Define subprograms
= Use collections and object types
s Trap run-time errors

Applications written in any of the Oracle programmatic interfaces can invoke PL/SQL
stored subprograms and send blocks of PL/SQL code to Oracle Database for
execution. 3GL applications can access PL/SQL scalar and composite datatypes
through host variables and implicit datatype conversion. A 3GL language is easier
than assembler language for a human to understand and includes features such as
named variables. Unlike 4GL, it is not specific to an application domain.

Example 1-1 provides an example of a simple PL/SQL subprogram. The procedure
debit_account withdraws money from a bank account. It accepts an account
number and an amount of money as parameters. It uses the account number to
retrieve the account balance from the database, then computes the new balance. If this
new balance is less than zero, then the procedure jumps to an error routine; otherwise,
it updates the bank account.

Example 1-1 Simple PL/SQL Example
PROCEDURE debit_account (p_acct_id INTEGER, p_debit_amount REAL)

IS
v_old_balance REAL;
v_new_balance REAL;
e_overdrawn EXCEPTION;
BEGIN
SELECT bal
INTO v_old_balance
FROM accts
WHERE acct_no = p_acct_id;
v_new_balance := v_old_balance - p_debit_amount;
IF v_new balance < 0 THEN
RAISE e_overdrawn;
ELSE
UPDATE accts SET bal = v_new _balance
WHERE acct_no = p_acct_id;
END IF;
COMMIT;
EXCEPTION

WHEN e_overdrawn THEN
-- handle the error
END debit_account;

Introduction to Oracle Programmatic Environments 1-3

Overview of PL/SQL

See Also:
» Oracle Database PL/SQL Language Reference
» Oracle Database SQL Language Reference

Advantages of PL/SQL

PL/SQL is a portable, high-performance transaction processing language with the
following advantages:

s Integration with Oracle Database

= High Performance

= High Productivity

= Scalability

= Manageability

s Object-Oriented Programming Support
= Portability

= Security

= Packages

Integration with Oracle Database

PL/SQL enables you use all of the Oracle Database SQL data manipulation, cursor
control, and transaction control statements. PL/SQL also supports the SQL functions,
operators, and pseudocolumns. You can manipulate data in Oracle Database flexibly
and safely.

PL/SQL supports all SQL datatypes. Combined with the direct access that SQL
provides, these shared datatypes integrate PL/SQL with the Oracle Database data
dictionary.

PL/SQL supports Dynamic SQL, which is a programming technique that enables you
to build and process SQL statements "on the fly" at run time. It gives PL/SQL
flexibility comparable to scripting languages such as Perl, Korn shell, and Tcl.

The $TYPE and $ROWTYPE attributes enable your code to adapt as table definitions
change. For example, the $TYPE attribute declares a variable based on the type of a
database column. If the column datatype changes, then the variable uses the correct
type at run time. This provides data independence and reduces maintenance costs.

High Performance

If your application is database intensive, then you can use PL/SQL blocks to group
SQL statements before sending them to Oracle Database for execution. This coding
strategy can drastically reduce the communication overhead between your application
and Oracle Database.

PL/SQL stored subprograms are compiled once and stored in executable form, so
subprogram calls are quick and efficient. A single call can start a compute-intensive
stored subprogram, reducing network traffic and improving round-trip response
times. Executable code is automatically cached and shared among users, lowering
memory requirements and call overhead.

1-4 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL

High Productivity

PL/SQL adds procedural capabilities such as Oracle Forms and Oracle Reports. For
example, you can use an entire PL/SQL block in an Oracle Forms trigger instead of
multiple trigger steps, macros, or user exits.

PL/SQL is the same in all environments. When you master PL/SQL with one Oracle
tool, you can transfer your knowledge to Oracle tools, multiplying your productivity
gains. For example, scripts written with one tool can be used by other tools.

Scalability

PL/SQL stored subprograms increase scalability by centralizing application
processing on the server. Automatic dependency tracking helps you develop scalable
applications.

The shared memory facilities of the shared server enable Oracle Database to support
many thousands of concurrent users on a single node. For more scalability, you can
use the Oracle Connection Manager to multiplex network connections.

Manageability

After being validated, you can use a PL/SQL stored subprogram in any number of
applications. If its definition changes, then only the subprogram is affected, not the
applications that invoke it. This simplifies maintenance and enhancement. Also,
maintaining a subprogram on the Oracle Database is easier than maintaining copies on
various client systems.

Object-Oriented Programming Support
PL/SQL supports object-oriented programming with:

n Object Types

s Collections

Object Types An object type is a user-defined composite datatype that encapsulates a
data structure along with the subprograms needed to manipulate the data. The
variables that form the data structure are called attributes. The subprograms that
characterize the action of the object type are called methods, which you can implement
in PL/SQL.

Object types are an ideal object-oriented modeling tool, which you can use to reduce
the cost and time required to build complex applications. Besides allowing you to
create software components that are modular, maintainable, and reusable, object types
allow different teams of programmers to develop software components concurrently.

Collections A collection is an ordered group of elements, all of the same type (for
example, the grades for a class of students). Each element has a unique subscript that
determines its position in the collection. PL/SQL offers two kinds of collections:
nested tables and varrays (variable-size arrays).

Collections work like the set, queue, stack, and hash table data structures found in
most third-generation programming languages. Collections can store instances of an
object type and can also be attributes of an object type. Collections can be passed as
parameters. You can use collections to move columns of data into and out of database
tables or between client-side applications and stored subprograms. You can define
collection types in a PL/SQL package, then use the same types across many
applications.

Introduction to Oracle Programmatic Environments 1-5

Overview of Java Support Built into the Database

Portability

Applications written in PL/SQL can run on any operating system and hardware
platform on which Oracle Database runs. You can write portable program libraries and
reuse them in different environments.

Security

PL/SQL stored subprograms enable you to divide application logic between the client
and the server, which prevents client applications from manipulating sensitive Oracle
Database data. Database triggers written in PL/SQL can prevent applications from
making specified updates and can audit user queries.

You can restrict access to Oracle Database data by allowing users to manipulate it only
through stored subprograms that have a restricted set of privileges. For example, you
can grant users access to a subprogram that updates a table but not grant them access
to the table itself.

See Also: Oracle Database Security Guide for details on database
security features

Packages

A package is an encapsulated collection of related program objects stored together in
the database. Program objects are subprograms, variables, constants, cursors, and
exceptions. For information about built-in packages, see Oracle Database PL/SQL
Packages and Types Reference.

PL/SQL Web Development Tools

Oracle Database provides built-in tools and technologies that enable you to deploy
PL/SQL applications over the Web. Thus, PL/SQL serves as an alternative to Web
application frameworks such as CGL

The PL/SQL Web Toolkit is a set of PL/SQL packages that you can use to develop
stored subprograms that can be invoked by a Web client. The PL/SQL Gateway
enables an HTTP client to invoke a PL/SQL stored subprogram through mod_plsql,
which is a plug-in to Oracle HTTP Server. This module performs the following actions:

1. Translates a URL passed by a browser client
2. Invokes an Oracle Database stored subprogram with the parameters in the URL

3. Returns output (typically HTML) to the client

See Also: Chapter 10, "Developing PL/SQL Web Applications” to
learn how to use PL/SQL in Web development

Overview of Java Support Built into the Database

This section provides an overview of built-in database features that support Java
applications. The database includes the core JDK libraries such as java.lang,
java.io, and so on. The database supports client-side Java standards such as JDBC
and SQLJ, and provides server-side JDBC and SQL]J drivers that allow data-intensive
Java code to run within the database.

This section contains the following topics:

s Overview of Oracle JVM

1-6 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

s Overview of Oracle Extensions to JDBC

s Overview of Oracle SQL]J

s Overview of Oracle JPublisher

s Overview of Java Stored Subprograms

s Overview of Oracle Database Web Services

s Overview of Writing Subprograms in Java

See Also:

» Oracle Database Java Developer’s Guide

» Oracle Database [DBC Developer’s Guide and Reference
» Oracle Database JPublisher User's Guide

Overview of Oracle JVM

Oracle JVM, the Java Virtual Machine provided with the Oracle Database, is compliant
with the J2SE version 1.4.x specification and supports the database session
architecture.

Any database session can activate a dedicated JVM. All sessions share the same JVM
code and statics; however, private states for any given session are held, and
subsequently garbage collected, in an individual session space.

This design provides the following benefits:

= Java applications have the same session isolation and data integrity as SQL
operations.

» There is no need to run Java in a separate process for data integrity.
= Oracle JVM is a robust JVM with a small memory footprint.

s The JVM has the same linear Symmetric Multiprocessing (SMP) scalability as the
database and can support thousands of concurrent Java sessions.

Oracle JVM works consistently with every platform supported by Oracle Database.
Java applications that you develop with Oracle JVM can easily be ported to any
supported platform.

Oracle JVM includes a deployment-time native compiler that enables Java code to be
compiled once, stored in executable form, shared among users, and invoked more
quickly and efficiently.

Security features of the database are also available with Oracle JVM. Java classes must
be loaded in a database schema (by using Oracle JDeveloper, a third-party IDE,
SQL*Plus, or the loadjava utility) before they can be called. Java class calls are secured
and controlled through database authentication and authorization, Java 2 security, and
invoker's rights (IR) or definer's rights (DR).

Overview of Oracle Extensions to JDBC

JDBC (Java Database Connectivity) is an API (Applications Programming Interface)
that allows Java to send SQL statements to an object-relational database such as Oracle
Database.

The JDBC standard defines four types of JDBC drivers:

Introduction to Oracle Programmatic Environments 1-7

Overview of Java Support Built into the Database

Type Description

1 A JDBC-ODBC bridge. Software must be installed on client systems.

2 Native methods (calls C or C++) and Java methods. Software must be installed on the
client.

3 Pure Java. The client uses sockets to call middleware on the server.

4 The most pure Java solution. Talks directly to the database by using Java sockets.

JDBC is based on the X/Open SQL Call Level Interface, and complies with the SQL92
Entry Level standard.

You can use JDBC to do dynamic SQL. In dynamic SQL, the embedded SQL statement
to be executed is not known before the application is run and requires input to build
the statement.

The drivers that are implemented by Oracle have extensions to the capabilities in the
JDBC standard that was defined by Sun Microsystems. Oracle's implementations of
JDBC drivers are described in the following sections. Oracle Database support of and
extensions to various levels of the JDBC standard are described in "Oracle Database
Extensions to JDBC Standards" on page 1-9.

Topics:

s JDBC Thin Driver

» JDBC OCI Driver

s JDBC Server-Side Internal Driver

s Oracle Database Extensions to JDBC Standards

= Sample JDBC 2.0 Program

= Sample Pre-2.0 JDBC Program

= JDBCin SQLJ Applications

JDBC Thin Driver

The JDBC thin driver is a Type 4 (100% pure Java) driver that uses Java sockets to
connect directly to a database server. It has its own implementation of a Two-Task
Common (TTC), a lightweight implementation of TCP/IP from Oracle Net. It is
written entirely in Java and is therefore platform-independent.

The thin driver does not require Oracle software on the client side. It does need a
TCP/IP listener on the server side. Use this driver in Java applets that are downloaded
into a Web browser or in applications for which you do not want to install Oracle
client software. The thin driver is self-contained, but it opens a Java socket, and thus
can only run in a browser that supports sockets.

JDBC OCI Driver

The JDBC OCI driver is a Type 2 JDBC driver. It makes calls to the OCI (Oracle Call
Interface) written in C to interact with Oracle Database, thus using native and Java
methods.

The OCI driver allows access to more features than the thin driver, such as Transparent
Application Fail-Over, advanced security, and advanced LOB manipulation.

1-8 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

The OCI driver provides the highest compatibility between different Oracle Database
versions. It also supports all installed Oracle Net adapters, including IPC, named
pipes, TCP/IP, and IPX/SPX.

Because it uses native methods (a combination of Java and C) the OCI driver is
platform-specific. It requires a client installation of version Oracle8i or later including
Oracle Net, OCl libraries, CORE libraries, and all other dependent files. The OCI
driver usually executes faster than the thin driver.

The OCI driver is not appropriate for Java applets, because it uses a C library that is
platform-specific and cannot be downloaded into a Web browser. It is usable in J2EE
components running in middle-tier application servers, such as Oracle Application
Server. Oracle Application Server provides middleware services and tools that support
access between applications and browsers.

JDBC Server-Side Internal Driver

The JDBC server-side internal driver is a Type 2 driver that runs inside the database
server, reducing the number of round-trips needed to access large amounts of data.
The driver, the Java server VM, the database, the Java native compiler (which speeds
execution by as much as 10 times), and the SQL engine all run within the same address
space.

This driver provides server-side support for any Java program used in the database:
SQLJ stored subprograms, triggers, and Java stored subprograms. You can also call
PL/SQL stored subprograms and triggers.

The server driver fully supports the same features and extensions as the client-side
drivers.

Oracle Database Extensions to JDBC Standards
Oracle Database includes the following extensions to the JDBC 1.22 standard:

= Support for Oracle datatypes

» Performance enhancement by row prefetching

s Performance enhancement by execution batching

= Specification of query column types to save round-trips
s Control of DatabaseMetaData calls

Oracle Database supports all APIs from the JDBC 2.0 standard, including the core
APIs, optional packages, and numerous extensions. Some of the highlights include
datasources, JTA, and distributed transactions.

Oracle Database supports the following features from the JDBC 3.0 standard:
= Support for JDK 1.4.

s Toggling between local and global transactions.

= Transaction savepoints.

= Reuse of prepared statements by connection pools.

Sample JDBC 2.0 Program

The following example shows the recommended technique for looking up a data
source using JNDI in JDBC 2.0:

// import the JDBC packages
import java.sqgl.*;

Introduction to Oracle Programmatic Environments 1-9

Overview of Java Support Built into the Database

import javax.sql.*;
import oracle.jdbc.pool.*;

InitialContext ictx = new InitialContext();

DataSource ds = (DataSource)ictx.lookup ("jdbc/OracleDS");

Connection conn = ds.getConnection();

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery("SELECT last_name FROM employees");
while (rs.next()) {

out.println(rs.getString("ename") + "
");

}

conn.close();

Sample Pre-2.0 JDBC Program

The following source code registers an Oracle JDBC thin driver, connects to the
database, creates a Statement object, executes a query, and processes the result set.

The SELECT statement retrieves and lists the contents of the 1ast_name column of
the hr.employees table.

import java.sql.*
import java.math.*
import java.io.*
import java.awt.*

class JdbcTest {
public static void main (String args []) throws SQLException {
// Load Oracle driver
DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

// Connect to the local database
Connection conn =
DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:0rcl",
“hr“, “hr") H

// Query the employee names
Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery ("SELECT last_name FROM employees");

// Print the name out
while (rset.next ())
System.out.println (rset.getString (1));
// Close the result set, statement, and the connection
rset.close();
stmt.close() ;
conn.close();

One Oracle Database extension to the JDBC drivers is a form of the

getConnection () method that uses a Properties object. The Properties object
lets you specify user, password, and database information as well as row prefetching
and execution batching.

To use the OCI driver in this code, replace the Connection statement with the
following, where MyHostString is an entry in the tnsnames.ora file:

Connection conn = DriverManager.getConnection ("jdbc:oracle:oci8:@MyHostString",
|lhrl|’ llhrll) ;

1-10 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

If you are creating an applet, then the getConnection () and registerDriver ()
strings are different.

JDBC in SQLJ Applications

JDBC code and SQL]J code (see "Overview of Oracle SQLJ" on page 1-11) interoperate,
allowing dynamic SQL statements in JDBC to be used with both static and dynamic
SQL statements in SQLJ. A SQL]J iterator class corresponds to the JDBC result set.

See Also: Oracle Database JDBC Developer's Guide and Reference for
more information on JDBC

Overview of Oracle SQLJ

SQLJ is an ANSI SQL-1999 standard for embedding SQL statements in Java source
code. SQL]J provides a simpler alternative to JDBC for both client-side and server-side
SQL data access from Java.

A SQL]J source file contains Java source with embedded SQL statements. Oracle SQLJ
supports dynamic as well as static SQL. Support for dynamic SQL is an Oracle
extension to the SQLJ standard.

Note: This document uses the term SQL]J to refer to the Oracle SQLJ
implementation, including Oracle SQL]J extensions.

Oracle Database provides a translator and a run time driver to support SQL]J. The SQL]
translator is 100% pure Java and is portable to any JVM that is compliant with JDK
version 1.1 or higher.

The Oracle SQLJ translator performs the following tasks:

» Translates SQL]J source to Java code with calls to the SQL]J run time driver. The
SQLJ translator converts the source code to pure Java source code and can check
the syntax and semantics of static SQL statements against a database schema and
verify the type compatibility of host variables with SQL types.

s Compiles the generated Java code with the Java compiler.

= (Optional) Creates profiles for the target database. SQL] generates "profile" files
with customization specific to Oracle Database.

Oracle Database supports SQL]J stored subprograms and triggers that execute in the
Oracle JVM. SQL] is integrated with JDeveloper. Source-level debugging support for
SQL] is available in JDeveloper.

The following is an example of a simple SQL]J executable statement, which returns one
value because employee_1id is unique in the employee table:

String name;
#sqgl { SELECT first_name INTO :name FROM employees WHERE employee_id=112 };
System.out.println("Name is " + name + ", employee number = " + employee_id);

Each host variable (or qualified name or complex Java host expression) included in a
SQL expression is preceded by a colon (:). Other SQLJ statements declare Java types.
For example, you can declare an iterator (a construct related to a database cursor) for
queries that retrieve many values, as follows:

#sqgl iterator EmpIter (String EmpNam, int EmpNumb) ;

Introduction to Oracle Programmatic Environments 1-11

Overview of Java Support Built into the Database

See Also: For more examples and details on Oracle SQL]J syntax:
» Oracle Database JPublisher User’s Guide
= Sample SQLJ code available on the Oracle Technology Network
Web site: http://www.oracle.com/technology/

Topics:

» Benefits of SQLJ

s Comparing SQL]J to JDBC

= SQLJ Stored Subprograms in the Server

Benefits of SQLJ

Oracle SQLJ extensions to Java allow rapid development and easy maintenance of
applications that perform database operations through embedded SQL.

In particular, Oracle SQL]J does the following:

= Provides a concise, legible mechanism for database access from static SQL. Most
SQL in applications is static. SQL]J provides more concise and less error-prone
static SQL constructs than JDBC does.

s Provides an SQL Checker module for verification of syntax and semantics at
translate time.

= Provides flexible deployment configurations, which makes it possible to
implement SQLJ on the client, server, or middle tier.

= Supports a software standard. SQL]J is an effort of a group of vendors and is
supported by all of them. Applications can access multiple database vendors.

= Provides source code portability. Executables can be used with all of the vendor
DBMSs if the code does not rely on any vendor-specific features.

= Enforces a uniform programming style for the clients and the servers.

= Integrates the SQL]J translator with Oracle JDeveloper, a graphical IDE that
provides SQLJ translation, Java compilation, profile customizing, and debugging
at the source code level, all in one step.

= Includes Oracle type extensions. Datatypes supported include: LOB datatypes,
ROWID, REF CURSOR, VARRAY, nested table, user-defined object types, RAW, and
NUMBER.

Comparing SQLJ to JDBC

JDBC provides a complete dynamic SQL interface from Java to databases. It gives
developers full control over database operations. SQLJ simplifies Java database
programming to improve development productivity.

JDBC provides fine-grained control of the execution of dynamic SQL from Java,
whereas SQL] provides a higher-level binding to SQL operations in a specific database
schema. Following are some differences between JDBC and SQLJ:

= SQLJ source code is more concise than equivalent JDBC source code.

= SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not.

1-12 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

= SQLJ provides strong typing of query outputs and return parameters and allows
type-checking on calls. JDBC passes values to and from SQL without compile-time
type checking.

= SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires a separate get or set statement for each bind variable
and specifies the binding by position number.

s SQLJ provides simplified rules for calling SQL stored subprograms. For example,
the following JDBC excerpt requires a generic call to a stored subprogram, in this
case fun, to have the following syntax. (This example shows SQL92 and Oracle
JDBC syntaxes. Both are allowed.)

prepStmt .prepareCall ("{call fun(?,?)}"); //stored procedure SQL92
prepStmt.prepareCall ("{? = call fun(?,?)}"); //stored function SQL92
prepStmt .prepareCall ("begin fun(:1,:2);end;"); //stored procedure Oracle
prepStmt.prepareCall ("begin :1 := fun(:2,:3);end;");//stored func Oracle

Following is the SQL]J equivalent:
#sql {call fun(param_ list) }; //Stored procedure

// Declare x

#sql x = {VALUES(fun(param list)) }; // Stored function
// where VALUES is the SQL construct

The following benefits are common to SQLJ and JDBC:
= SQLJ source files can contain JDBC calls. SQL] and JDBC are interoperable.

» Oracle JPublisher generates custom Java classes to be used in your SQLJ or JDBC
application for mappings to Oracle object types and collections.

= Java and PL/SQL stored subprograms can be used interchangeably.

SQLJ Stored Subprograms in the Server

SQLJ applications can be stored and executed in the server by using the following
techniques:

» Translate, compile, and customize the SQL]J source code on a client and load the
generated classes and resources into the server with the 1oadjava utility. The
classes are typically stored in a Java archive (.jar) file.

= Load the SQL]J source code into the server, also using 1oadjava, where it is
translated and compiled by the server's embedded translator.

See Also: Oracle Database [Publisher User’s Guide for more
information on using stored subprograms with Oracle SQLJ

Overview of Oracle JPublisher

Oracle JPublisher is a code generator that automates the process of creating
database-centric Java classes by hand. Oracle JPublisher is a client-side utility and is
built into the database system. You can run Oracle JPublisher from the command line
or directly from the Oracle JDeveloper IDE.

Oracle JPublisher inspects PL/SQL packages and database object types such as SQL
object types, VARRAY types, and nested table types, and then generates a Java class
that is a wrapper around the PL/SQL package with corresponding fields and
methods.

Introduction to Oracle Programmatic Environments 1-13

Overview of Java Support Built into the Database

The generated Java class can be incorporated and used by Java clients or J2EE
components to exchange and transfer object type instances to and from the database
transparently.

See Also: Oracle Database [Publisher User’s Guide

Overview of Java Stored Subprograms

Java stored subprograms enable you to implement programs that run in the database
server and are independent of programs that run in the middle tier. Structuring
applications in this way reduces complexity and increases reuse, security,
performance, and scalability.

For example, you can create a Java stored subprogram that performs operations that
require data persistence and a separate program to perform presentation or business
logic operations.

Java stored subprograms interface with SQL by using a similar execution model as
PL/SQL.

See Also: Oracle Database Java Developer’s Guide

Overview of Oracle Database Web Services

Web services represent a distributed computing paradigm for Java application
development that is an alternative to earlier Java protocols such as JDBC. It allows
application-to-application interaction through the XML and Web protocols. For
example, an electronics parts vendor can provide a Web-based programmatic interface
to its suppliers for inventory management. The vendor can invoke a Web service as
part of a program and automatically order new stock based on the data returned.

The key technologies used in Web services are:

» Web Services Description Language (WSDL), which is a standard format for
creating an XML document. WSDL describes what a web service can do, where it
resides, and how to invoke it. Specifically, it describes the operations and
parameters, including parameter types, provided by a Web service. In addition, a
WSDL document describes the location, the transport protocol, and the invocation
style for the Web service.

= Simple Object Access Protocol (SOAP) messaging, which is an XML-based
message protocol used by Web services. SOAP does not prescribe a specific
transport mechanism such as HTTP, FTP, SMTP, or JMS; however, most Web
services accept messages that use HTTP or HTTPS.

= Universal Description, Discovery, and Integration (UDDI) business registry, which
is a directory that lists Web services on the internet. The UDDI registry is often
compared to a telephone directory, listing unique identifiers (white pages),
business categories (yellow pages), and instructions for binding to a service
protocol (green pages).

Web services can use a variety of techniques and protocols. For example:
= Dispatching can occur in a synchronous (typical) or asynchronous manner.

= You can invoke a Web service in an RPC-style operation in which arguments are
sent and a response returned, or in a message style such as a one-way SOAP
document exchange.

= You can use different encoding rules: literal or encoded.

1-14 Oracle Database Advanced Application Developer's Guide

Overview of Java Support Built into the Database

You can invoke a Web service statically, when you might know everything about it
beforehand, or dynamically, in which case you can discover its operations and
transport endpoints while using it.

Oracle Database can function as either a Web service provider or as a Web service
consumer. When used as a provider, the database enables sharing and disconnected
access to stored subprograms, data, metadata, and other database resources such as
the queuing and messaging systems.

As a Web service provider, Oracle Database provides a disconnected and
heterogeneous environment that:

= Exposes stored subprograms independently of the language in which the
subprograms are written

= Exposes SQL Queries and XQuery

Overview of Writing Subprograms in Java

Subprograms (procedures and functions) are named blocks that encapsulate a
sequence of statements. They are like building blocks that you can use to construct
modular, maintainable applications. Write these named blocks and then define them
with the 1oadjava command or SQL CREATE FUNCTION, CREATE PROCEDURE, or
CREATE PACKAGE statements. These Java methods can accept arguments and can be
called from the following:

s SQL CALL statements

s Embedded SQL CALL statements

s PL/SQL blocks, subprograms, and packages

» DML statements (INSERT, UPDATE, DELETE, and SELECT)

= Oracle development tools such as OCI, Pro*C/C++, and Oracle Developer

s Oracle Java interfaces such as JDBC, SQLJ statements, CORBA, and Enterprise
Java Beans

s Method calls from object types
Topics:
s Overview of Writing Database Triggers in Java

s Why Use Java for Stored Subprograms and Triggers?

Overview of Writing Database Triggers in Java

A database trigger is a stored procedure that Oracle Database invokes ("fires")
automatically when certain events occur, for example, when a DML operation
modifies a certain table. Triggers enforce business rules, prevent incorrect values from
being stored, and reduce the need to perform checking and cleanup operations in each
application.

Why Use Java for Stored Subprograms and Triggers?

» Stored subprograms and triggers are compiled once, are easy to use and maintain,
and require less memory and computing overhead.

= Network bottlenecks are avoided, and response time is improved. Distributed
applications are easier to build and use.

s Computation-bound subprograms run faster in the server.

Introduction to Oracle Programmatic Environments 1-15

Overview of Pro*C/C++

= Data access can be controlled by letting users have only stored subprograms and
triggers that execute with DR instead of IR.

s PL/SQL and Java stored subprograms can invoke each other.

= Javain the server follows the Java language specification and can use the SQL]
standard, so that databases other than Oracle Database are also supported.

= Stored subprograms and triggers can be reused in different applications as well as
different geographic sites.

Overview of Pro*C/C++

The Pro*C/C++ precompiler is a software tool that allows the programmer to embed
SQL statements in a C or C++ source file. Pro*C/C++ reads the source file as input and
outputs a C or C++ source file that replaces the embedded SQL statements with Oracle
run-time library calls and is then compiled by the C or C++ compiler.

When there are errors found during the precompilation or the subsequent compilation,
modify your precompiler input file and rerun the two steps.

Topics:
s Implementing a Pro*C/C++ Application
= Highlights of Pro*C/C++ Features

Implementing a Pro*C/C++ Application

The following is a simple code fragment from a C source file that queries the table
employees in the schema hr:

#define UNAME_LEN 10

int emp_number;
/* Define a host structure for the output values of a SELECT statement. */
/* No declare section needed if precompiler option MODE=ORACLE */
struct {

VARCHAR 1last_name [UNAME_LEN] ;

float salary;

float commission_pct;
} emprec;
/* Define an indicator structure to correspond to the host output structure. */
struct {

short emp_name_ind;
short sal_ind;
short comm_ind;

} emprec_ind;

/* Select columns last_name, salary, and commission_pct given the user's input
/* for employee_id. */
EXEC SQL SELECT last_name, salary, commission_pct
INTO :emprec INDICATOR :emprec_ind
FROM employees
WHERE employee_id = :emp_number;

The embedded SELECT statement differs slightly from the interactive (SQL*Plus)
SELECT statement. Every embedded SQL statement begins with EXEC SQL. The colon
(:) precedes every host (C) variable. The returned values of data and indicators (set

1-16 Oracle Database Advanced Application Developer's Guide

Overview of Pro*C/C++

when the data value is NULL or character columns were truncated) can be stored in
structs (such as in the preceding code fragment), in arrays, or in arrays of structs.
Multiple result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, because of the unique employee number. Use
the actual names of columns and tables in embedded SQL.

Either use the default precompiler option values or enter values that give you control
over the use of resources, how errors are reported, the formatting of output, and how
cursors (which correspond to a particular connection or SQL statement) are managed.
Cursors are used when there are multiple result set values.

Enter the options either in a configuration file, on the command line, or in-line inside
your source code with a special statement that begins with EXEC ORACLE. If there are
no errors found, you can compile, link, and execute the output source file, like any
other C program that you write.

Use the precompiler to create server database access from clients that can be on many
different platforms. Pro*C/C++ gives you the freedom to design your own user
interfaces and to add database access to existing applications.

Before writing your embedded SQL statements, you can test interactive versions of the
SQL in SQL*Plus and then make minor changes to start testing your embedded SQL
application.

Highlights of Pro*C/C++ Features

The following is a short subset of the capabilities of Pro*C/C++. For complete details,
see Pro*C/C++ Precompiler Programmer’s Guide.

= You can write your application in either C or C++.

= You can write multithreaded programs if your platform supports a threads
package. Concurrent connections are supported in either single-threaded or
multithreaded applications.

= You can improve performance by embedding PL/SQL blocks. These blocks can
invoke subprograms in Java or PL/SQL that are written by you or provided in
Oracle Database packages.

= Using precompiler options, you can check the syntax and semantics of your SQL
or PL/SQL statements during precompilation, as well as at run time.

= You can invoke stored PL/SQL and Java subprograms. Modules written in
COBOL or in C can be invoked from Pro*C/C++. External C subprograms in
shared libraries can be invoked by your program.

= You can conditionally precompile sections of your code so that they can execute in
different environments.

= You can use arrays, or structures, or arrays of structures as host and indicator
variables in your code to improve performance.

= You can deal with errors and warnings so that data integrity is guaranteed. As a
programmer, you control how errors are handled.

= Your program can convert between internal datatypes and C language datatypes.

s The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI), lower-level
C and C++ interfaces, are available for use in your precompiler source.

s Pro*C/C++ supports dynamic SQL, a technique that allows users to input variable
values and statement syntax.

Introduction to Oracle Programmatic Environments 1-17

Overview of Pro*COBOL

s Pro*C/C++ can use special SQL statements to manipulate tables containing
user-defined object types. An Object Type Translator (OTT) maps the object types
and named collection types in your database to structures and headers that you
include in your source.

= Two kinds of collection types, nested tables and VARRAY, are supported with a set
of SQL statements that allow a high degree of control over data.

s Large Objects are accessed by another set of SQL statements.

= A new ANSI SQL standard for dynamic SQL is supported for new applications, so
that you can execute SQL statements with a varying number of host variables. An
older technique for dynamic SQL is still usable by pre-existing applications.

= Globalization support lets you use multibyte characters and UCS2 Unicode data.

= Using scrollable cursors, you can move backward and forward through a result
set. For example, you can fetch the last row of the result set, or jump forward or
backward to an absolute or relative position within the result set.

= A connection pool is a group of physical connections to a database that can be
shared by several named connections. Enabling the connection pool option can
help to optimize the performance of Pro*C/C++ application. The connection pool
option is not enabled by default.

Overview of Pro*COBOL

The Pro*COBOL precompiler is a software tool that allows the programmer to embed
SQL statements in a COBOL source code file. Pro*COBOL reads the source file as
input and outputs a COBOL source file that replaces the embedded SQL statements
with Oracle Database run-time library calls, and is then compiled by the COBOL
compiler.

When there are errors found during the precompilation or the subsequent compilation,
modify your precompiler input file and rerun the two steps.

Topics:
s Implementing a Pro*COBOL Application
= Highlights of Pro*COBOL Features

Implementing a Pro*COBOL Application

Here is a simple code fragment from a source file that queries the table employees in
the schema hr:

WORKING-STORAGE SECTION.
*
* DEFINE HOST INPUT AND OUTPUT HOST AND INDICATOR VARIABLES.
* NO DECLARE SECTION NEEDED IF MODE=ORACLE.
*
01 EMP-REC-VARS.

05 EMP-NAME PIC X(

10) VARYING.
05 EMP-NUMBER PIC S9(

(

(

(

0)

4) COMP VALUE ZERO.
05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMISSION PIC S9(5)
4)

05 COMM-IND PIC S9

V99 COMP-3 VALUE ZERO.
COMP VALUE ZERO.

PROCEDURE DIVISION.

1-18 Oracle Database Advanced Application Developer's Guide

Overview of Pro*COBOL

EXEC SQL
SELECT last_name, salary, commission_pct
INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
FROM employees
WHERE employee_id = :EMP-NUMBER

END-EXEC.

The embedded SELECT statement is only slightly different from an interactive
(SQL*Plus) SELECT statement. Every embedded SQL statement begins with EXEC
SQL. The colon (:) precedes every host (COBOL) variable. The SQL statement is
terminated by END-EXEC. The returned values of data and indicators (set when the
data value is NULL or character columns were truncated) can be stored in group items
(such as in the preceding code fragment), in tables, or in tables of group items.
Multiple result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, given the unique employee number. Use the
actual names of columns and tables in embedded SQL.

Use the default precompiler option values, or enter values that give you control over
the use of resources, how errors are reported, the formatting of output, and how
cursors are managed (cursors correspond to a particular connection or SQL statement).

Enter the options in a configuration file, on the command line, or in-line inside your
source code with a special statement that begins with EXEC ORACLE. If there are no
errors found, you can compile, link, and execute the output source file, like any other
COBOL program that you write.

Use the precompiler to create server database access from clients that can be on many
different platforms. Pro*COBOL gives you the freedom to design your own user
interfaces and to add database access to existing COBOL applications.

The embedded SQL statements available conform to an ANSI standard, so that you
can access data from many databases in a program, including remote servers
networked through Oracle Net.

Before writing your embedded SQL statements, you can test interactive versions of the
SQL in SQL*Plus and then make minor changes to start testing your embedded SQL
application.

Highlights of Pro*COBOL Features
The following is a short subset of the capabilities of Pro*COBOL.

= You can invoke stored PL/SQL or Java subprograms. You can improve
performance by embedding PL/SQL blocks. These blocks can invoke PL/SQL
subprograms written by you or provided in Oracle Database packages.

= Precompiler options enable you to define how cursors, errors, syntax-checking, file
formats, and so on, are handled.

= Using precompiler options, you can check the syntax and semantics of your SQL
or PL/SQL statements during precompilation, as well as at run time.

= You can conditionally precompile sections of your code so that they can execute in
different environments.

= Use tables, or group items, or tables of group items as host and indicator variables
in your code to improve performance.

= You can program how errors and warnings are handled, so that data integrity is
guaranteed.

Introduction to Oracle Programmatic Environments 1-19

Overview of OCl and OCCI

Pro*COBOL supports dynamic SQL, a technique that allows users to input
variable values and statement syntax.

See Also: Pro*COBOL Programmer’s Guide for complete details

Overview of OCl and OCCI

The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI) are application
programming interfaces (APIs) that enable you to create applications that use native
subprogram invocations of a third-generation language to access Oracle Database and
control all phases of SQL statement execution. These APIs provide:

Improved performance and scalability through the efficient use of system memory
and network connectivity

Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

N-tiered authentication
Comprehensive support for application development using Oracle objects
Access to external databases

Ability to develop applications that service an increasing number of users and
requests without additional hardware investments

OClI lets you manipulate data and schemas in a database using a host programming
language, such as C. OCCl is an object-oriented interface suitable for use with C++.
These APIs provide a library of standard database access and retrieval functions in the
form of a dynamic run-time library (OCILIB) that can be linked in an application at
run time. This eliminates the need to embed SQL or PL/SQL within 3GL programs.

See Also: For more information about OCI and OCCI calls:
» Oracle Call Interface Programmer’s Guide

» Oracle C++ Call Interface Programmer’s Guide

» Oracle Streams Advanced Queuing User’s Guide

» Oracle Database Globalization Support Guide

» Oracle Database Data Cartridge Developer’s Guide

Topics:

Advantages of OCI and OCCI

OCI and OCCI Functions

Procedural and Nonprocedural Elements of OCI and OCCI Applications
Building an OCI or OCCI Application

Advantages of OCl and OCCI

OCI and OCCI provide significant advantages over other methods of accessing Oracle
Database:

More fine-grained control over all aspects of the application design.

High degree of control over program execution.

1-20 Oracle Database Advanced Application Developer's Guide

Overview of OCl and OCCI

Use of familiar 3GL programming techniques and application development tools
such as browsers and debuggers.

Support of dynamic SQL, method 4.

Availability on the broadest range of platforms of all the Oracle programmatic
interfaces.

Dynamic bind and define using callbacks.
Describe functionality to expose layers of server metadata.
Asynchronous event notification for registered client applications.

Enhanced array data manipulation language (DML) capability for array INSERTS,
UPDATES, and DELETES.

Ability to associate a commit request with an execute to reduce round-trips.
Optimization for queries using transparent prefetch buffers to reduce round-trips.

Thread safety, so you do not have to implement mutual exclusion (mutex) locks on
OCI and OCCI handles.

The server connection in nonblocking mode means that control returns to the OCI
or OCCI code when a call is still executing or cannot complete.

OCl and OCCI Functions
Both OCI and OCCI have four kinds of functions:

Kind of Function Purpose

Relational To manage database access and process SQL
statements

Navigational To manipulate objects retrieved from the database

Database mapping and manipulation = To manipulate data attributes of Oracle types

External subprogram To write C callbacks from PL/SQL

Procedural and Nonprocedural Elements of OCI and OCCI Applications

OCI and OCCI enable you to develop applications that combine the nonprocedural
data access power of SQL with the procedural capabilities of most programming
languages, including C and C++. procedural and nonprocedural languages have these
characteristics:

In a nonprocedural language program, the set of data to be operated on is
specified, but what operations are performed and how the operations are to be
carried out is not specified. The nonprocedural nature of SQL makes it an easy
language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of
these languages makes them more complex than SQL, but it also makes them very
flexible and powerful.

Introduction to Oracle Programmatic Environments 1-21

Overview of OCl and OCCI

The combination of both nonprocedural and procedural language elements in an OCI
or OCCI program provides easy access to Oracle Database in a structured
programming environment.

OCI and OCCI support all SQL data definition, data manipulation, query, and
transaction control facilities that are available through Oracle Database. For example,
an OCI or OCCI program can run a query against Oracle Database. The queries can
require the program to supply data to the database using input (bind) variables, as
follows:

SELECT name FROM employees WHERE empno = :empnumber

In the preceding SQL statement, :empnumber is a placeholder for a value to be
supplied by the application.

Alternatively, you can use PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written
in SQL alone. OCI and OCCI also provide facilities for accessing and manipulating
objects in Oracle Database.

Building an OCI or OCCI Application

As Figure 1-1 shows, you compile and link an OCI or OCCI program in the same way
that you compile and link a nondatabase application. There is no need for a separate
preprocessing or precompilation step.

Figure 1-1 The OCI or OCCI Development Process

Source Files

I =

Host Language Compiler

'

Object Files H—F OCI Library
Host Linker ———

'

Application +—>

Object
Server

Note: To properly link your OCI and OCCI programes, it might be
necessary on some platforms to include other libraries, in addition to
the OCI and OCCl libraries. Check your Oracle platform-specific
documentation for further information about extra libraries that might
be required.

1-22 Oracle Database Advanced Application Developer's Guide

Overview of Oracle Objects for OLE (0040)

Overview of Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for NET (ODP.NET) is an implementation of a data provider for
Oracle Database.

ODP.NET uses APIs native to Oracle Database to offer fast and reliable access from
any .NET application to database features and data. It also uses and inherits classes
and interfaces available in the Microsoft .NET Framework Class Library.

For programmers using Oracle Provider for OLE DB, ADO (ActiveX Data Objects)
provides an automation layer that exposes an easy programming model. ADO.NET
provides a similar programming model, but without the automation layer, for better
performance. More importantly, the ADO.NET model allows native providers such as
ODP.NET to expose specific features and datatypes specific to Oracle Database.

See Also: Oracle Data Provider for NET Developer’s Guide

The following is a simple C# application that connects to Oracle Database and displays
its version number before disconnecting.

using System;
using Oracle.DataAccess.Client;

class Example

{

OracleConnection con;

void Connect ()
{
con = new OracleConnection();
con.ConnectionString = "User Id=hr;Password=hr;Data Source=oracle";
con.Open() ;
Console.WriteLine("Connected to Oracle" + con.ServerVersion);

}

void Close()

{
con.Close();
con.Dispose();

}

static void Main()
{
Example example = new Example();
example.Connect () ;
example.Close();
}
}

Note: Additional samples are provided in directory ORACLE_
BASE\ ORACLE_HOME\ODP.NET\Samples.

Overview of Oracle Objects for OLE (0040)

Oracle Objects for OLE (OO40) is a product designed to allow easy access to data
stored in Oracle Database with any programming or scripting language that supports
the Microsoft COM Automation and ActiveX technology. This includes Visual Basic,

Introduction to Oracle Programmatic Environments 1-23

Overview of Oracle Objects for OLE (0040)

Visual C++, Visual Basic For Applications (VBA), IIS Active Server Pages (VBScript
and JavaScript), and others.

See the OO40 online help for detailed information about using OO40O.
Oracle Objects for OLE consists of the following software layers:

s 0040 "In-Process" Automation Server

s Oracle Data Control

s Oracle Objects for OLE C++ Class Library

Figure 1-2 illustrates the OO40O software components.

Figure 1-2 Software Layers

Data Aware
ActiveX
Controls
A)
C++ Class Oracle Data Cf,?ﬂgﬂ?g
Libraries Control (VB, Excel, ASP)
COomM/DCOM

0040
In-Process

Automation
Server

Oracle Client
Libraries
(OCl, CORE,
NLS)

Oracle
Database

This illustration shows the OO4O software components (layers).
The first layer contains the Data Aware ActiveX Controls.

The second layer consists of C++ Class Libraries and Oracle Data Control Automation
Controllers (VB< Excel, ASP).

The third layer contains the COM/DCOM.
The fourth layer contains the OO40 In-Process Automation Server.
The fifth layer contains the Oracle Client Libraries (OCI, CORE, NLS).

The last layer contains the Oracle Database.

Topics:

s 0040 Automation Server

. 0040 Object Model

= Support for Oracle LOB and Object Datatypes

1-24 Oracle Database Advanced Application Developer's Guide

Overview of Oracle Objects for OLE (0040)

= Oracle Data Control
s Oracle Objects for OLE C++ Class Library

s Additional Sources of Information

0040 Automation Server

The OO40 Automation Server is a set of COM Automation objects for connecting to
Oracle Database, executing SQL statements and PL/SQL blocks, and accessing the
results.

Unlike other COM-based database connectivity APIs, such as Microsoft ADO, the
0040 Automation Server was developed specifically for use with Oracle Database.

It provides an optimized API for accessing features that are unique to Oracle Database
and are otherwise cumbersome or inefficient to use from ODBC or OLE
database-specific components.

0040 provides key features for accessing Oracle Database efficiently and easily in
environments ranging from the typical two-tier client/server applications, such as
those developed in Visual Basic or Excel, to application servers deployed in
multitiered application server environments such as Web server applications in
Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS).

Features include:

= Support for execution of PL/SQL and Java stored subprograms, and PL/SQL
anonymous blocks. This includes support for Oracle datatypes used as parameters
to stored subprograms, including PL/SQL cursors. See "Support for Oracle LOB
and Object Datatypes" on page 1-29.

= Support for scrollable and updatable cursors for easy and efficient access to result
sets of queries.

s Thread-safe objects and Connection Pool Management Facility for developing
efficient Web server applications.

s Full support for Oracle object-relational and LOB datatypes.
s Full support for Advanced Queuing.
= Support for array inserts and updates.

= Support for Microsoft Transaction Server (MTS).

0040 Object Model
The Oracle Objects for OLE object model is illustrated in Figure 1-3.

Introduction to Oracle Programmatic Environments 1-25

Overview of Oracle Objects for OLE (0040)

Figure 1-3 Objects and Their Relations

OraSession

OraDatabase

—(OraDynaset
—[OraMetaData

OraServer

OraField

OraMDAttribute

OraParameter

OraParamArray

~ & ~—~

OraAQMsg }

n
I b T 1

This figure shows OO40 objects and their relations. The relations are as follows:
s From OraServer to OraSession
= From OraDatabase to both OraServer and OraSession

s From each of OraDynaset, OraMetaData, OraParameters, OraSQLStmt, and
OraAQ to OraDatabase

s From multiple OraField objects to OraDynaset

s From multiple OraMDAttribute objects to OraMetaData

s From multiple OraParameter and OraParamArray objects to OraParameters
s from OraAQMsg to OraAQ

AR A A A A A A A AR AR AR AR A
Topics:

s OraSession

s OraServer

s OraDatabase

s OraDynaset

= OraField

s OraMetaData and OraMDAttribute

s OraParameter and OraParameters

s OraParamArray

s OraSQLStmt

= OraAQ

s OraAQMsg

s OraAQAgent

1-26 Oracle Database Advanced Application Developer's Guide

Overview of Oracle Objects for OLE (0040)

OraSession

An OraSession object manages collections of OraDatabase, OraConnection, and
OraDynaset objects used within an application.

Typically, a single OraSession object is created for each application, but you can create
named OraSession objects for shared use within and between applications.

The OraSession object is the top-most object for an application. It is the only object
created by the CreateObject VB/VBA API and not by an Oracle Objects for OLE
method. The following code fragment shows how to create an OraSession object:

Dim OraSession as Object
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

OraServer
OraServer represents a physical network connection to Oracle Database.

The OrasServer interface is introduced to expose the connection-multiplexing feature
provided in the Oracle Call Interface. After an OraServer object is created, multiple
user sessions (OraDatabase) can be attached to it by calling the OpenDatabase
method. This feature is particularly useful for application components, such as
Internet Information Server (IIS), that use Oracle Objects for OLE in n-tier distributed
environments.

The use of connection multiplexing when accessing Oracle Database with a large
number of user sessions active can help reduce server processing and resource
requirements while improving server scalability.

OraServer is used to share a single connection across multiple OraDatabase objects
(multiplexing), whereas each OraDatabase obtained from an OraSession has its own
physical connection.

OraDatabase

An OraDatabase interface adds additional methods for controlling transactions and
creating interfaces representing of Oracle object types. Attributes of schema objects can
be retrieved using the Describe method of the OraDatabase interface.

In releases prior to Oracle8i, an OraDatabase object is created by calling the
OpenDatabase method of an OraSession interface. The Oracle Net alias, user
name, and password are passed as arguments to this method. In Oracle8i and later,
calling this method results in implicit creation of an OraServer object.

An OraDatabase object can also be created using the OpenDatabase method of the
OraServer interface.

Transaction control methods are available at the OraDatabase (user session) level.
Transactions might be started as Read-Write (default), Serializable, or
Read-only. Transaction control methods include:

s BeginTrans

s CommitTrans

s RollbackTrans
For example:

UserSession.BeginTrans (0040_TXN_READ_WRITE)
UserSession.ExecuteSQL ("delete emp where empno = 1234")
UserSession.CommitTrans

Introduction to Oracle Programmatic Environments 1-27

Overview of Oracle Objects for OLE (0040)

OraDynaset

An OraDynaset object permits browsing and updating of data created from a SQL
SELECT statement.

The OraDynaset object can be thought of as a cursor, although in actuality several
real cursors might be used to implement the semantics of OraDynaset. An
OraDynaset object automatically maintains a local cache of data fetched from the
server and transparently implements scrollable cursors within the browse data. Large
queries might require significant local disk space; application developers are
encouraged to refine queries to limit disk usage.

OraField

An OraField object represents a single column or data item within a row of a
dynaset.

If the current row is being updated, then the OraField object represents the currently
updated value, although the value might not have been committed to the database.

Assignment to the Value property of a field is permitted only if a record is being
edited (using Edit) or a new record is being added (using AddNew). Other attempts to
assign data to a field's Value property results in an error.

OralMetaData and OraMDAttribute

An OraMetaData object is a collection of OraMDAt tribute objects that represent the
description information about a particular schema object in the database.

The OraMetaData object can be visualized as a table with three columns:
m Metadata Attribute Name

m Metadata Attribute Value

» Flag specifying whether the Value is another OraMetaData object

The OraMDAttribute objects contained in the OraMetaData object can be accessed
by subscripting using ordinal integers or by using the name of the property.
Referencing a subscript that is not in the collection results in the return of a NULL
OraMDAttribute object.

OraParameter and OraParameters

An OraParameter object represents a bind variable in a SQL statement or PL/SQL
block.

OraParameter objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value. You can automatically bind a parameter to
SQL and PL/SQL statements of other objects (as noted in the object descriptions), by
using the parameter name as a placeholder in the SQL or PL/SQL statement. Such use
of parameters can simplify dynamic queries and increase program performance.

OraParamArray

An OraParamArray object represents an array-type bind variable in a SQL statement
or PL/SQL block, as opposed to a scalar-type bind variable represented by the
OraParameter object.

OraParamArray objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each OraParamArray object
has an identifying name and an associated value.

1-28 Oracle Database Advanced Application Developer's Guide

Overview of Oracle Objects for OLE (0040)

OraSQLStmt

An OrasQLStmt object represents a single SQL statement. Use the CreateSQL
method to create an OraSQLStmt object from an OraDatabase object.

During create and refresh, OraSQLStmt objects automatically bind all relevant,
enabled input parameters to the specified SQL statement, using the parameter names
as placeholders in the SQL statement. This can improve the performance of SQL
statement execution without reparsing the SQL statement.

The OrasSQLStmt object can be used later to execute the same query using a different
value for the : SALARY placeholder. This is done as follows (updateStmt is the
OraSQLStmt object here):

OraDatabase.Parameters ("SALARY") .value = 200000
updateStmt.Parameters ("ENAME") .value = "KING"
updateStmt.Refresh

OraAQ
An OraAQ object is instantiated by calling the CreateAQ method of the
OraDatabase interface. It represents a queue that is present in the database.

Oracle Objects for OLE provides interfaces for accessing Oracle Advanced Queuing
(AQ) feature. It makes AQ accessible from popular COM-based development
environments such as Visual Basic. For a detailed description of Oracle Advanced
Queuing, see Oracle Streams Advanced Queuing User’s Guide.

OraAQMsg

The OraAQMsg object encapsulates the message to be enqueued or dequeued. The
message can be of any user-defined or raw type.

For a detailed description of Oracle Advanced Queuing, see Oracle Streams Advanced
Queuing User’s Guide.

OraAQAgent

The OraAQAgent object represents a message recipient and is only valid for queues
that allow multiple consumers. It is a child of OraaAQMsg.

An OraAQAgent object can be instantiated by calling the AQAgent method. For
example:

Set agent = gMsg.AQAgent (name)
An OraAQAgent object can also be instantiated by calling the AddRecipient
method. For example:

Set agent = gMsg.AddRecipient (name, address, protocol).

Support for Oracle LOB and Object Datatypes

Oracle Objects for OLE (OO40) provides full support for accessing and manipulating
instances of object datatypes and LOBs in Oracle Database. Figure 14 illustrates the
datatypes supported by OO40.

Instances of these types can be fetched from the database or passed as input or output
variables to SQL statements and PL/SQL blocks, including stored subprograms. All
instances are mapped to COM Automation Interfaces that provide methods for
dynamic attribute access and manipulation.

Introduction to Oracle Programmatic Environments 1-29

Overview of Oracle Objects for OLE (0040)

Figure 1-4 Supported Oracle Datatypes

(OraField

[OraParameter

—(OraRef }—(OraAttribute]]J
—(OraCollection }—(Element Values]]J
—(OraBLOB J

(OraParamArray

—(OraBFILE }

—(Value of all other scalar types J

Topics:
s OraBLOB and OraCLOB
s OraBFILE

OraBLOB and OraCLOB

The OraBlob and OraClob interfaces in Oracle Objects for OLE provide methods for
performing operations on large database objects of datatype BLOB, CLOB, and NCLOB.
BLOB, CLOB, and NCLOB datatypes are also referred to here as LOB datatypes.

LOB data is accessed using Read and the CopyToFile methods.

LOB data is modified using Write, Append, Erase, Trim, Copy, CopyFromFile,
and CopyFromBFile methods. Before modifying the content of a LOB column in a
row, a row lock must be obtained. If the LOB column is a field of an OraDynaset,
object, then the lock is obtained by calling the Edit method.

OraBFILE

The OraBFile interface in Oracle Objects for OLE provides methods for performing
operations on large database objects of datatype BFILE.

BFILE objects are large binary data objects stored in operating system files outside of
the database tablespaces.

Oracle Data Control

Oracle Data Control (ODC) is an ActiveX Control that is designed to simplify the
exchange of data between Oracle Database and visual controls such edit, text, list, and
grid controls in Visual Basic and other development tools that support custom
controls.

ODC acts as an agent to handle the flow of information from Oracle Database and a
visual data-aware control, such as a grid control, that is bound to it. The data control
manages various user interface (UI) tasks such as displaying and editing data. It also
executes and manages the results of database queries.

1-30 Oracle Database Advanced Application Developer's Guide

Choosing a Programming Environment

Oracle Data Control is compatible with the Microsoft data control included with
Visual Basic. If you are familiar with the Visual Basic data control, learning to use
Oracle Data Control is quick and easy. Communication between data-aware controls
and a Data Control is governed by a protocol that Microsoft specified.

Oracle Objects for OLE C++ Class Library

Oracle Objects for OLE (OO40) C++ Class Library is a collection of C++ classes that
provide programmatic access to the Oracle Object Server. Although the class library is
implemented using OLE Automation, neither the OLE development kit nor any OLE
development knowledge is necessary to use it. This library helps C++ developers
avoid the chore of writing COM client code for accessing the OO40O interfaces.

Additional Sources of Information

For detailed information about Oracle Objects for OLE see the online help provided
with the OO40 product:

= Oracle Objects for OLE Help
= Oracle Objects for OLE C++ Class Library Help

For examples of how to use Oracle Objects for OLE, see the samples in the ORACLE_
HOME\ 0040 directory of the Oracle Database installation and in the following;:

» Oracle Database SecureFiles and Large Objects Developer’s Guide

» Oracle Streams Advanced Queuing User’s Guide

Choosing a Programming Environment
To choose a programming environment for a new development project:
= Review the preceding overviews and the manuals for each environment.

= Read the platform-specific manual that explains which compilers are approved for
use with your platforms.

» If a particular language does not provide a feature you need, remember that
PL/SQL and Java stored subprograms can both be invoked from code written in
any of the languages in this chapter. Stored subprograms include triggers and
object type methods.

= External subprograms written in C can be invoked from OCI, Java, PL/SQL or
SQL. The external subprogram itself can call back into the database using either
SQL, OCI, or Pro*C (but not C++).

The following examples illustrate easy choices:

= Pro*COBOL does not support object types or collection types, while Pro*C/C++
does.

= SQLJ does not support dynamic SQL the way that JDBC does.
Topics:

s Choosing a Precompiler or OCI

s Choosing PL/SQL or Java

Introduction to Oracle Programmatic Environments 1-31

Choosing a Programming Environment

Choosing a Precompiler or OCI

Precompiler applications typically contain less code than equivalent OCI applications,
which can help productivity.

Some situations require detailed control of the database and are suited for OCI
applications (either pure OCI or a precompiler application with embedded OCI calls):

s OCI provides more detailed control over multiplexing and migrating sessions.

= OCI provides dynamic bind and define using callbacks that can be used for any
arbitrary structure, including lists.

s OCI has many calls to handle metadata.

= OClI allows asynchronous event notifications to be received by a client application.
It provides a means for clients to generate notifications for propagation to other
clients.

= OCI allows DML statements to use arrays to complete as many iterations as
possible before returning any error messages.

» OCI calls for special purposes include Advanced Queuing, globalization support,
Data Cartridges, and support of the date and time datatypes.

» OCI calls can be embedded in a Pro*C/C++ application.

Choosing PL/SQL or Java
Both Java and PL/SQL have built-in packages and libraries.

PL/SQL and Java interoperate in the server. You can execute a PL/SQL package from
Java or wrap a PL/SQL class with a Java wrapper so that it can be invoked from
distributed CORBA and EJB clients. Table 1-1 shows PL/SQL packages and their Java
equivalents.

Table 1-1 PL/SQL and Java Equivalent Software

PL/SQL Package Java Equivalent

DBMS_ALERT Call package with SQL]J or JDBC.

DBMS_DDL JDBC has this functionality.

DBMS_JOB Schedule a job that has a Java stored subprogram.
DBMS_LOCK Call with SQLJ or JDBC.

DBMS_MATIL Use JavaMail.

DBMS_OUTPUT Use subclass

oracle.aurora.rdbms.OracleDBMSOutputStream or Java
stored subprogram DBMS_JAVA.SET_STREAMS.

DBMS_PIPE Call with SQL]J or JDBC.

DBMS_SESSION Use JDBC to execute an ALTER SESSION statement.

DBMS_SNAPSHOT Call with SQL]J or JDBC.

DBMS_SQL Use JDBC.

DBMS_TRANSACTION Use JDBC to execute an ALTER SESSION statement.

DBMS_UTILITY Call with SQLJ or JDBC.

UTL_FILE Grant the JAVAUSERPRIV privilege and then use Java I/O entry
points.

1-32 Oracle Database Advanced Application Developer's Guide

Choosing a Programming Environment

Both Java and PL/SQL can be used to build applications in the database. Here are
some guidelines for their use:

PL/SQL is optimized for database access

PL/SQL uses the same datatypes as SQL. SQL datatypes are thus easier to use and
SQL operations are faster than with Java, especially when a large amount of data is
involved, when mostly database access is done, or when bulk operations are used.

PL/SQL is integrated with the database

PL/SQL is an extension to SQL offering data encapsulation, information hiding,
overloading, and exception-handling.

Some advanced PL/SQL capabilities are not available for Java in Oracle9i.
Examples are autonomous transactions and the dblink facility for remote
databases. Code development is usually faster in PL/SQL than in Java.

Both Java and PL/SQL have object-oriented features

Java has inheritance, polymorphism, and component models for developing
distributed systems. PL/SQL has inheritance and type evolution, the ability to
change methods and attributes of a type while preserving subtypes and table data
that use the type.

Java is used for open distributed applications

Java has a richer type system than PL/SQL and is an object-oriented language.
Java can use CORBA (which can have many different computer languages in its
clients) and EJB. PL/SQL packages can be invoked from CORBA or E]B clients.

You can run XML tools, the Internet File System, or JavaMail from Java.

Many Java-based development tools are available throughout the industry.

Introduction to Oracle Programmatic Environments 1-33

Choosing a Programming Environment

1-34 Oracle Database Advanced Application Developer's Guide

Part |

SQL for Application Developers

This part presents information that application developers need about Structured
Query Language (SQL), which is used to manage information in an Oracle Database.

Chapters:

» Chapter 2, "SQL Processing for Application Developers"

» Chapter 3, "Using SQL Datatypes in Database Applications"

» Chapter 4, "Using Regular Expressions in Database Applications"
» Chapter 5, "Using Indexes in Database Applications"

s Chapter 6, "Maintaining Data Integrity in Database Applications"

See Also: Oracle Database SQL Language Reference for a complete
description of SQL

2

SQL Processing for Application Developers

This chapter explains what application developers must know about how Oracle
Database processes SQL statements. Before reading this chapter, read the basic
information about SQL processing in Oracle Database Concepts.

Topics:

Grouping Operations into Transactions

Ensuring Repeatable Reads with Read-Only Transactions
Using Cursors

Locking Tables Explicitly

Using Oracle Lock Management Services

Using Serializable Transactions for Concurrency Control
Autonomous Transactions

Resuming Execution After Storage Allocation Error

Grouping Operations into Transactions
Topics:

Deciding How to Group Operations in Transactions
Improving Transaction Performance

Committing Transactions

Managing Commit Redo Action

Rolling Back Transactions

Defining Transaction Savepoints

Deciding How to Group Operations in Transactions

In general, deciding how to group operations in transactions is the concern of
application designers who use the programming interfaces to Oracle Database. When
deciding how to group transactions:

Define transactions such that work is accomplished in logical units and data
remains consistent.

Ensure that data in all referenced tables is in a consistent state before the
transaction begins and after it ends.

SQL Processing for Application Developers 2-1

Grouping Operations into Transactions

Ensure that each transaction consists only of the SQL statements or PL/SQL blocks
that comprise one consistent change to the data.

For example, suppose that you write a Web application that enables users to transfer
funds between accounts. The transaction must include the debit to one account, which
is executed by one SQL statement, and the credit to another account, which is executed
by a second SQL statement. Both statements must fail or succeed together as a unit of
work; the credit must not be committed without the debit. Other unrelated actions,
such as a new deposit to one account, must not be included in the same transaction.

Improving Transaction Performance

As an application developer, you must consider whether you can improve
performance. Consider the following performance enhancements when designing and
writing your application:

Use the SET TRANSACTION statement with the USE ROLLBACK SEGMENT clause to
explicitly assign a transaction to a rollback segment. This technique can eliminate
the need to allocate additional extents dynamically, which can reduce system
performance. This clause is valid only if you use rollback segments for undo. If
you use automatic undo management, then Oracle Database ignores this clause.

Establish standards for writing SQL statements so that you can take advantage of
shared SQL areas. Oracle Database recognizes identical SQL statements and allows
them to share memory areas. This reduces memory usage on the database server
and increases system throughput.

Use the ANALYZE statement to collect statistics that can be used by Oracle
Database to implement a cost-based approach to SQL statement optimization. You
can supply additional "hints" to the optimizer as needed.

Invoke the DBMS_APPLICATION_INFO.SET_ACTION procedure before beginning
a transaction to register and name a transaction for later use when measuring
performance across an application. Specify which type of activity a transaction
performs so that the system tuners can later see which transactions are taking up
the most system resources.

Increase user productivity and query efficiency by including user-written PL/SQL
functions in SQL expressions as described in "Invoking Stored PL/SQL Functions
from SQL Statements” on page 7-32.

Create explicit cursors when writing a PL/SQL application.

Reduce frequency of parsing and improve performance in precompiler programs
by increasing the number of cursors with MAX_OPEN_CURSORS.

Use the SET TRANSACTION statement with the ISOLATION LEVEL set to
SERIALIZABLE to get ANSI/ISO serializable transactions.

See Also:
= "How Serializable Transactions Interact” on page 2-17
s "Using Cursors" on page 2-7

» Oracle Database Concepts for more information about transaction
management

Committing Transactions

To commit a transaction, use the COMMIT statement. The following two statements are
equivalent and commit the current transaction:

2-2 Oracle Database Advanced Application Developer's Guide

Grouping Operations into Transactions

COMMIT WORK;
COMMIT;

The COMMIT statements lets you include the COMMENT parameter along with a
comment that provides information about the transaction being committed. This
option is useful for including information about the origin of the transaction when you
commit distributed transactions:

COMMIT COMMENT 'Dallas/Accts_pay/Trans_type 10B';

Managing Commit Redo Action

When a transaction updates the database, it generates a redo entry corresponding to
this update. Oracle Database buffers this redo in memory until the completion of the
transaction. When the transaction commits, the log writer process (LGWR) writes redo
for the commit, along with the accumulated redo of all changes in the transaction, to
disk. By default, Oracle Database writes the redo to disk before the call returns to the
client. This action introduces a latency in the commit because the application must
wait for the redo to be persisted on disk.

Suppose that you are writing an application that requires very high transaction
throughput. If you are willing to trade commit durability for lower commit latency,
then you can change the default COMMIT options so that the application does not need
to wait for Oracle Database to write data to the online redo logs.

Oracle Database enables you to change the handling of commit redo depending on the
needs of your application. You can change the commit action in the following
locations:

s COMMIT_WRITE initialization parameter at the system or session level
s COMMIT statement

The options in the COMMIT statement override the current settings in the initialization
parameter. Table 2-1 describes redo persistence options that you can set in either
location.

Caution: With the NOWAIT option of COMMIT or COMMIT WRITE, a
failure that occurs after the commit message is received, but before the
redo log record(s) are written, can falsely indicate to a transaction that
its changes are persistent.

Table 2-1 Options of COMMIT Statement and COMMIT_WRITE Initialization Parameter

Option Effect

WAIT Ensures that the commit returns only after the corresponding redo information is

(default) persistent in the online redo log. When the client receives a successful return
from this COMMIT statement, the transaction has been committed to durable
media.

A failure that occurs after a successful write to the log might prevent the success
message from returning to the client, in which case the client cannot tell whether
or not the transaction committed.

NOWAIT The commit returns to the client whether or not the write to the redo log has
completed. This behavior can increase transaction throughput.

SQL Processing for Application Developers 2-3

Grouping Operations into Transactions

Table 2-1 (Cont.) Options of COMMIT Statement and COMMIT_WRITE Initialization

Option Effect

BATCH The redo information is buffered to the redo log, along with other concurrently
executing transactions. When sufficient redo information is collected, a disk
write to the redo log is initiated. This behavior is called group commit, as redo
information for multiple transactions is written to the log in a single I/O
operation.

IMMEDIATE LGWR writes the transaction's redo information to the log. Because this
(default) operation option forces a disk I/0, it can reduce transaction throughput.

The following example shows how to set the commit action to BATCH and NOWAIT in
the initialization parameter file:

COMMIT_WRITE = BATCH, NOWAIT

You can change the commit action at the system level by executing ALTER SYSTEM as
in the following example:

ALTER SYSTEM SET COMMIT_WRITE = BATCH, NOWAIT

After the initialization parameter is set, a COMMIT statement with no options conforms
to the options specified in the parameter. Alternatively, you can override the current

initialization parameter setting by specifying options directly on the COMMIT
statement as in the following example:

COMMIT WRITE BATCH NOWAIT
In either case, your application specifies that log writer does not have to write the redo

for the commit immediately to the online redo logs and need not wait for confirmation
that the redo was written to disk.

Note: You cannot change the default IMMEDIATE and WAIT action
for distributed transactions.

If your application uses OCI, then you can modify redo action by setting the following
flags in the OCITransCommit function within your application:

Caution: There is a potential for silent transaction loss when you use
OCI_TRANS_WRITENOWAIT. Transaction loss occurs silently with
shutdown abort, startup force, and any instance or node failure. On a
RAC system asynchronously committed changes might not be
immediately available to read on other instances.

m OCI_TRANS_WRITEBATCH
s OCI_TRANS_WRITENOWAIT
s OCI_TRANS_WRITEIMMED
s OCI_TRANS_WRITEWAIT

The specification of the NOWAIT and BATCH options allows a small window of
vulnerability in which Oracle Database can roll back a transaction that your
application view as committed. Your application must be able to tolerate the following
scenarios:

2-4 Oracle Database Advanced Application Developer's Guide

Grouping Operations into Transactions

s The database host fails, which causes the database to lose redo that was buffered
but not yet written to the online redo logs.

= AfileI/O problem prevents log writer from writing buffered redo to disk. If the
redo logs are not multiplexed, then the commit is lost.
See Also:

» Oracle Database SQL Language Reference for information on the
COMMIT statement

» Oracle Call Interface Programmer’s Guide for information about the
OCITransCommit function

Rolling Back Transactions

To roll back an entire transaction, or to roll back part of a transaction to a savepoint,
use the ROLLBACK statement. For example, either of the following statements rolls
back the entire current transaction:

ROLLBACK WORK;
ROLLBACK;
The WORK option of the ROLLBACK statement has no function.

To roll back to a savepoint defined in the current transaction, use the TO option of the
ROLLBACK statement. For example, either of the following statements rolls back the
current transaction to the savepoint named POINT1:

SAVEPOINT Pointl;

ROLLBACK TO SAVEPOINT Pointl;
ROLLBACK TO Pointl;

Defining Transaction Savepoints

To define a savepoint in a transaction, use the SAVEPOINT statement. The following
statement creates the savepoint named ADD_EMP1 in the current transaction:

SAVEPOINT Add_empl;
If you create a second savepoint with the same identifier as an earlier savepoint, the

earlier savepoint is erased. After creating a savepoint, you can roll back to the
savepoint.

There is no limit on the number of active savepoints for each session. An active
savepoint is one that was specified since the last commit or rollback.

Table 2-2 shows a series of SQL statements that illustrates the use of COMMIT,
SAVEPOINT, and ROLLBACK statements within a transaction.

Table 2-2 Use of COMMIT, SAVEPOINT, and ROLLBACK

SQL Statement Results

SAVEPOINT a; First savepoint of this transaction
DELETE...; First DML statement of this transaction
SAVEPOINT b; Second savepoint of this transaction
INSERT INTO...; Second DML statement of this transaction
SAVEPOINT c; Third savepoint of this transaction

SQL Processing for Application Developers 2-5

Ensuring Repeatable Reads with Read-Only Transactions

Table 2-2 (Cont.) Use of COMMIT, SAVEPOINT, and ROLLBACK
SQL Statement Results

UPDATE...; Third DML statement of this transaction.
ROLLBACK TO c; UPDATE statement is rolled back, savepoint C remains defined

ROLLBACK TO b; INSERT statement is rolled back, savepoint C is lost, savepoint B remains
defined

ROLLBACK TO c; ORA-01086 error; savepoint C no longer defined
INSERT INTO...; New DML statement in this transaction

COMMIT; Commits all actions performed by the first DML statement (the DELETE
statement) and the last DML statement (the second INSERT statement)

All other statements (the second and the third statements) of the
transaction were rolled back before the COMMIT. The savepoint A is no
longer active.

Ensuring Repeatable Reads with Read-Only Transactions

By default, the consistency model for Oracle Database guarantees statement-level read
consistency, but does not guarantee transaction-level read consistency (repeatable
reads). If you want transaction-level read consistency, and if your transaction does not
require updates, then you can specify a read-only transaction. After indicating that
your transaction is read-only, you can execute as many queries as you like against any
database table, knowing that the results of each query in the read-only transaction are
consistent with respect to a single point in time.

A read-only transaction does not acquire any additional data locks to provide
transaction-level read consistency. The multi-version consistency model used for
statement-level read consistency is used to provide transaction-level read consistency;
all queries return information with respect to the system change number (SCN)
determined when the read-only transaction begins. Because no data locks are acquired,
other transactions can query and update data being queried concurrently by a
read-only transaction.

Long-running queries sometimes fail because undo information required for consistent
read (CR) operations is no longer available. This happens when committed undo
blocks are overwritten by active transactions. Automatic undo management provides a
way to explicitly control when undo space can be reused; that is, how long undo
information is retained. Your database administrator can specify a retention period by
using the parameter UNDO_RETENTION.

See Also: Oracle Database Administrator’s Guide for information on
long-running queries and resumable space allocation

For example, if UNDO_RETENTION is set to 30 minutes, then all committed undo
information in the system is retained for at least 30 minutes. This ensures that all
queries running for 30 minutes or less, under usual circumstances, do not encounter
the OER error "snapshot too old."

A read-only transaction is started with a SET TRANSACTION statement that includes
the READ ONLY option. For example:

SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first statement of a new transaction; if
any DML statements (including queries) or other non-DDL statements (such as SET
ROLE) precede a SET TRANSACTION READ ONLY statement, an error is returned. Once

2-6 Oracle Database Advanced Application Developer's Guide

Using Cursors

a SET TRANSACTION READ ONLY statement successfully executes, only SELECT
(without a FOR UPDATE clause), COMMIT, ROLLBACK, or non-DML statements (such
as SET ROLE, ALTER SYSTEM, LOCK TABLE) are allowed in the transaction.
Otherwise, an error is returned. A COMMIT, ROLLBACK, or DDL statement terminates
the read-only transaction; a DDL statement causes an implicit commit of the read-only
transaction and commits in its own transaction.

Using Cursors

PL/SQL implicitly declares a cursor for all SQL data manipulation statements,
including queries that return only one row. For queries that return more than one row,
you can explicitly declare a cursor to process the rows individually.

A cursor is a handle to a specific private SQL area. In other words, a cursor can be
thought of as a name for a specific private SQL area. A PL/SQL cursor variable
enables the retrieval of multiple rows from a stored subprogram (procedure or
function). Cursor variables enable you to pass cursors as parameters in your 3GL
application. Cursor variables are described in Oracle Database PL/SQL Language
Reference.

Although most Oracle Database users rely on the automatic cursor handling of the
database utilities, the programmatic interfaces offer application designers more control
over cursors. In application development, a cursor is a named resource available to a
program, which can be specifically used for parsing SQL statements embedded within
the application.

Topics:

s How Many Cursors Can a Session Have?
s Using a Cursor to Re-Execute a Statement
s Closing a Cursor

s Canceling a Cursor

How Many Cursors Can a Session Have?

There is no absolute limit to the total number of cursors one session can have open at
one time, subject to two constraints:

= Each cursor requires virtual memory, so a session's total number of cursors is
limited by the memory available to that process.

= A systemwide limit of cursors for each session is set by the initialization parameter
named OPEN_CURSORS found in the parameter file (such as INIT.ORA).

See Also: Oracle Database Reference for more information about
OPEN_CURSORS

Explicitly creating cursors for precompiler programs has advantages in tuning those
applications. For example, increasing the number of cursors can reduce the frequency
of parsing and improve performance. If you know how many cursors might be
required at a given time, you can open that many cursors simultaneously.

Using a Cursor to Re-Execute a Statement

After each stage of execution, the cursor retains enough information about the SQL
statement to re-execute the statement without starting over, as long as no other SQL

SQL Processing for Application Developers 2-7

Locking Tables Explicitly

statement was associated with that cursor. The statement can be reexecuted without
including the parse stage.

By opening several cursors, the parsed representation of several SQL statements can
be saved. Repeated execution of the same SQL statements can thus begin at the
describe, define, bind, or execute step, saving the repeated cost of opening cursors and
parsing.

To understand the performance characteristics of a cursor, a DBA can retrieve the text
of the query represented by the cursor using the V$SQL dynamic performance view.
Because the results of EXPLAIN PLAN on the original query might differ from the way
the query is actually processed, a DBA can get more precise information by examining
the following dynamic performance views:

View Description

V$SQL_PLAN Execution plan information for each child cursor loaded in the
library cache.

V$SQL_STATISTICS Execution statistics at the row source level for each child cursor.

V$SQL_STATISTICS_ALL Memory usage statistics for row sources that use SQL memory
(sort or hash-join). This view concatenates information in
V$SQL_PLAN with execution statistics from V$SQL_PLAN__
STATISTICS and V$SQL_WORKAREA.

See Also: Oracle Database Reference for details of the preceding
dynamic performance views

Closing a Cursor

Closing a cursor means that the information currently in the associated private area is
lost and its memory is deallocated. Once a cursor is opened, it is not closed until one of
the following events occurs:

s The user program terminates its connection to the server.

» If the user program is an OCI program or precompiler application, then it
explicitly closes any open cursor during the execution of that program. (However,
when this program terminates, any cursors remaining open are implicitly closed.)

Canceling a Cursor

Cancelling a cursor frees resources from the current fetch.The information currently in
the associated private area is lost but the cursor remains open, parsed, and associated
with its bind variables.

Note: You cannot cancel cursors using Pro*C/C++ or PL/SQL.

See Also: Oracle Call Interface Programmer’s Guide for information
about cancelling a cursor with the OCIStmtFetch2 statement

Locking Tables Explicitly

Oracle Database always performs necessary locking to ensure data concurrency,
integrity, and statement-level read consistency. You can override these default locking

2-8 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

mechanisms. For example, you might want to override the default locking of Oracle
Database if:

= You want transaction-level read consistency or "repeatable reads"—where
transactions query a consistent set of data for the duration of the transaction,
knowing that the data was not changed by any other transactions. This level of
consistency can be achieved by using explicit locking, read-only transactions,
serializable transactions, or overriding default locking for the system.

= A transaction requires exclusive access to a resource. To proceed with its
statements, the transaction with exclusive access to a resource does not have to
wait for other transactions to complete.

The automatic locking mechanisms can be overridden at the transaction level.
Transactions including the following SQL statements override Oracle Database's
default locking;:

s LOCK TABLE
= SELECT, including the FOR UPDATE clause

m SET TRANSACTION with the READ ONLY or ISOLATION LEVEL SERTALIZABLE
options

Locks acquired by these statements are released after the transaction is committed or

rolled back.

The following sections describe each option available for overriding the default
locking of Oracle Database. The initialization parameter DML_LOCKS determines the
maximum number of DML locks allowed.

See Also: Oracle Database Reference for more information about DML_
LOCKS

Although the default value is usually enough, you might need to increase it if you use
additional manual locks.

Caution: If you override the default locking of Oracle Database at
any level, be sure that the overriding locking subprograms operate
correctly: Ensure that data integrity is guaranteed, data concurrency is

acceptable, and deadlocks are either impossible or appropriately
handled.

Topics:

» Privileges Required

s Choosing a Locking Strategy

= Letting Oracle Database Control Table Locking
= Explicitly Acquiring Row Locks

Privileges Required

You can automatically acquire any type of table lock on tables in your schema. To
acquire a table lock on a table in another schema, you must have the LOCK ANY TABLE
system privilege or any object privilege (for example, SELECT or UPDATE) for the
table.

SQL Processing for Application Developers 2-9

Locking Tables Explicitly

Choosing a Locking Strategy

A transaction explicitly acquires the specified table locks when a LOCK TABLE
statement is executed. A LOCK TABLE statement manually overrides default locking.
When a LOCK TABLE statement is issued on a view, the underlying base tables are
locked. The following statement acquires exclusive table locks for the EMP_TAB and
DEPT_TAB tables on behalf of the containing transaction:

LOCK TABLE Emp_tab, Dept_tab
IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a
single lock mode can be specified for each LOCK TABLE statement.

Note: When a table is locked, all rows of the table are locked. No
other user can modify the table.

In the LOCK TABLE statement, you can also indicate how long you want to wait for the
table lock:

= If you do not want to wait, specify either NOWAIT or WAIT O.

You acquire the table lock only if it is immediately available; otherwise, an error
notifies you that the lock is not available at this time.

» If you want to wait up to n seconds to acquire the table lock, specify WAIT n,
where 1 is greater than 0 and less than or equal to 100000.

If the table lock is still unavailable after # seconds, an error notifies you that the
lock is not available at this time.

= If you want to wait indefinitely to acquire the lock, specify neither NOWAIT nor
WAIT.

The database waits indefinitely until the table is available, locks it, and returns
control to you. When the database is executing DDL statements concurrently with
DML statements, a timeout or deadlock can sometimes result. The database
detects such timeouts and deadlocks and returns an error.

For the syntax of the LOCK TABLE statement, see Oracle Database SQL Language
Reference.

Topics:

= When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE
= When to Lock with SHARE MODE

= When to Lock with SHARE ROW EXCLUSIVE MODE

= When to Lock with EXCLUSIVE MODE

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE

LOCK TABLE Emp_tab IN ROW SHARE MODE;
LOCK TABLE Emp_tab IN ROW EXCLUSIVE MODE;

ROW SHARE and ROW EXCLUSIVE table locks offer the highest degree of concurrency.
You might use these locks if:

= Your transaction needs to prevent another transaction from acquiring an
intervening share, share row, or exclusive table lock for a table before the table can

2-10 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

be updated in your transaction. If another transaction acquires an intervening
share, share row, or exclusive table lock, no other transactions can update the table
until the locking transaction commits or rolls back.

Your transaction needs to prevent a table from being altered or dropped before the
table can be modified later in your transaction.

When to Lock with SHARE MODE

LOCK TABLE Emp_tab IN SHARE MODE;

SHARE table locks are rather restrictive data locks. You might use these locks if:

Your transaction only queries the table, and requires a consistent set of the table
data for the duration of the transaction.

You can hold up other transactions that try to update the locked table, until all
transactions that hold SHARE locks on the table either commit or roll back.

Other transactions might acquire concurrent SHARE table locks on the same table,
also allowing them the option of transaction-level read consistency.

Caution: Your transaction might or might not update the table later
in the same transaction. However, if multiple transactions
concurrently hold share table locks for the same table, no transaction
can update the table (even if row locks are held as the result of a
SELECT FOR UPDATE statement). Therefore, if concurrent share table
locks on the same table are common, updates cannot proceed and
deadlocks are common. In this case, use share row exclusive or
exclusive table locks instead.

For example, assume that two tables, EMP_TAB and BUDGET_TAB, require a consistent
set of data in a third table, DEPT_TAB. For a given department number, you want to
update the information in both of these tables, and ensure that no new members are
added to the department between these two transactions.

Although this scenario is quite rare, it can be accommodated by locking the DEPT_TAB
table in SHARE MODE, as shown in the following example. Because the DEPT_TAB table
is rarely updated, locking it probably does not cause many other transactions to wait
long.

SQL Processing for Application Developers 2-11

Locking Tables Explicitly

Note: You might need to set up data structures similar to the
following for certain examples to work:

CREATE TABLE dept_tab(
deptno NUMBER(2) NOT NULL,
dname VARCHAR2 (14),
loc VARCHAR2(13));

CREATE TABLE emp_tab (
empno NUMBER (4) NOT NULL,
ename VARCHAR2 (10),
job VARCHAR2(9),
mgr NUMBER (4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2)) ;

CREATE TABLE Budget_tab (
totsal NUMBER(7,2),
deptno NUMBER(2) NOT NULL) ;

LOCK TABLE Dept_tab IN SHARE MODE;
UPDATE Emp_tab
SET sal = sal * 1.1
WHERE deptno IN
(SELECT deptno FROM Dept_tab WHERE loc = 'DALLAS');
UPDATE Budget_tab
SET Totsal = Totsal * 1.1
WHERE Deptno IN
(SELECT Deptno FROM Dept_tab WHERE Loc = 'DALLAS');

COMMIT; /* This releases the lock */

When to Lock with SHARE ROW EXCLUSIVE MODE
LOCK TABLE Emp_tab IN SHARE ROW EXCLUSIVE MODE;
You might use a SHARE ROW EXCLUSIVE table lock if:

= Your transaction requires both transaction-level read consistency for the specified
table and the ability to update the locked table.

= You do not care if other transactions acquire explicit row locks (using SELECT FOR
UPDATE), which might make UPDATE and INSERT statements in the locking
transaction wait and might cause deadlocks.

= You only want a single transaction to have this action.

When to Lock with EXCLUSIVE MODE
LOCK TABLE Emp_tab IN EXCLUSIVE MODE;
You might use an EXCLUSIVE table if:

= Your transaction requires immediate update access to the locked table. When your
transaction holds an exclusive table lock, other transactions cannot lock specific
rows in the locked table.

2-12 Oracle Database Advanced Application Developer's Guide

Locking Tables Explicitly

= Your transaction also ensures transaction-level read consistency for the locked
table until the transaction is committed or rolled back.

= You are not concerned about low levels of data concurrency, making transactions
that request exclusive table locks wait in line to update the table sequentially.

Letting Oracle Database Control Table Locking

Letting Oracle Database control table locking means your application needs less
programming logic, but also has less control, than if you manage the table locks
yourself.

Issuing the statement SET TRANSACTION ISOLATION LEVEL SERIALIZABLE or
ALTER SESSION ISOLATION LEVEL SERIALIZABLE preserves ANSI serializability
without changing the underlying locking protocol. This technique allows concurrent
access to the table while providing ANSI serializability. Getting table locks greatly
reduces concurrency.

See Also:

» Oracle Database SQL Language Reference for information on the SET
TRANSACTION statement

» Oracle Database SQL Language Reference for information on the
ALTER SESSION statements

Change the settings for these parameters only when an instance is shut down. If
multiple instances are accessing a single database, then all instances must use the same
setting for these parameters.

Explicitly Acquiring Row Locks

You can override default locking with a SELECT statement that includes the FOR
UPDATE clause. This statement acquires exclusive row locks for selected rows (as an
UPDATE statement does), in anticipation of updating the selected rows in a subsequent
statement.

You can use a SELECT FOR UPDATE statement to lock a row without actually changing
it. For example, several triggers in Oracle Database PL/SQL Language Reference show
how to implement referential integrity. In the EMP_DEPT_CHECK trigger, the row that
contains the referenced parent key value is locked to guarantee that it remains for the
duration of the transaction; if the parent key is updated or deleted, referential integrity
is violated.

SELECT FOR UPDATE statements are often used by interactive programs that allow a

user to modify fields of one or more specific rows (which might take some time); row
locks are acquired so that only a single interactive program user is updating the rows
at any given time.

If a SELECT FOR UPDATE statement is used when defining a cursor, the rows in the
return set are locked when the cursor is opened (before the first fetch) rather than
being locked as they are fetched from the cursor. Locks are only released when the
transaction that opened the cursor is committed or rolled back, not when the cursor is
closed.

Each row in the return set of a SELECT FOR UPDATE statement is locked individually;
the SELECT FOR UPDATE statement waits until the other transaction releases the
conflicting row lock. If a SELECT FOR UPDATE statement locks many rows in a table,

SQL Processing for Application Developers 2-13

Using Oracle Lock Management Services

and if the table experiences a lot of update activity, it might be faster to acquire an
EXCLUSIVE table lock instead.

Note: The return set for a SELECT FOR UPDATE might change while
the query is running; for example, if columns selected by the query are
updated or rows are deleted after the query started. When this
happens, SELECT FOR UPDATE acquires locks on the rows that did not
change, gets a new read-consistent snapshot of the table using these
locks, and then restarts the query to acquire the remaining locks.

This can cause a deadlock between sessions querying the table
concurrently with DML operations when rows are locked in a
nonsequential order. To prevent such deadlocks, design your
application so that any concurrent DML on the table does not affect
the return set of the query. If this is not feasible, you might want to
serialize queries in your application.

By default, the transaction waits until the requested row lock is acquired. If you are not
willing to wait to acquire the row lock, use either the NOWAIT clause of the LOCK
TABLE statement (see "Choosing a Locking Strategy" on page 2-10) or the SKIP
LOCKED clause of the SELECT FOR UPDATE statement.

If you can lock some of the requested rows, but not all of them, the SKIP LOCKED
option skips the rows that you cannot lock and locks the rows that you can lock.

See Also: Oracle Database SQL Language Reference for information on
the SELECT FOR UPDATE statement and an example of the SKIP
LOCKED clause

Using Oracle Lock Management Services

You can use Oracle Lock Management services (user locks) for your applications by
invoking subprograms the DBMS_LOCK package. It is possible to request a lock of a
specific mode, give it a unique name recognizable in another subprogram in the same
or another instance, change the lock mode, and release it. Because a reserved user lock
is the same as an Oracle Database lock, it has all the features of a database lock, such as
deadlock detection. Be certain that any user locks used in distributed transactions are
released upon COMMIT, or an undetected deadlock can occur.

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information on the DBMS_LOCK package

Topics:

s When to Use User Locks

= Example of a User Lock

= Viewing and Monitoring Locks

When to Use User Locks

User locks can help to:
s Provide exclusive access to a device, such as a terminal

= Provide application-level enforcement of read locks

2-14 Oracle Database Advanced Application Developer's Guide

Using Oracle Lock Management Services

s Detect when a lock is released and cleanup after the application

= Synchronize applications and enforce sequential processing

Example of a User Lock

The following Pro*COBOL precompiler example shows how locks can be used to
ensure that there are no conflicts when multiple people need to access a single device.

LRSS SR SRR SRR S S SR SRR SRS S SRS EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEE]

* Print Check *
* Any cashier may issue a refund to a customer returning goods. *
* Refunds under $50 are given in cash, more than $50 by check. *

* This code prints the check. The one printer is opened by all *
* the cashiers to avoid the overhead of opening and closing it *
* for every check. This means that lines of output from multiple *
* cashiers can become interleaved if we do not ensure exclusive *
* access to the printer. The DBMS_LOCK package is used to *
* ensure exclusive access. *
khkkkhkkhkhkhkhhhkhhhhkdhhhhdhhhkhdhhhhhhrhkhhhhhrhhhkhkhhhkhdhhhkhhhkkrhhrxhhxxkxdx
CHECK-PRINT
* Get the lock "handle" for the printer lock.
MOVE "CHECKPRINT" TO LOCKNAME-ARR.
MOVE 10 TO LOCKNAME-LEN.
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
END; END-EXEC.
* Lock the printer in exclusive mode (default mode) .
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE) ;
END; END-EXEC.
* We now have exclusive use of the printer, print the check.

* Unlock the printer so other people can use it
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE) ;
END; END-EXEC.

Viewing and Monitoring Locks

Table 2-5 describes the Oracle Database facilities that display locking information for
ongoing transactions within an instance.

Table 2-3 Ways to Display Locking Information

Tool Description

Oracle Enterprise From the Additional Monitoring Links section of the Database
Manager 10g Database Performance page, click Database Locks to display user blocks,
Control blocking locks, or the complete list of all database locks. See Oracle

Database 2 Day DBA for more information.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple character lock wait-for
graph in tree structured fashion. Using any ad hoc SQL tool (such as
SQL*Plus) to execute the script, it prints the sessions in the system
that are waiting for locks and the corresponding blocking locks. The
location of this script file is operating system dependent. (You must
have run the CATBLOCK.SQL script before using UTLLOCKT.SQL.)

SQL Processing for Application Developers 2-15

Using Serializable Transactions for Concurrency Control

Using Serializable Transactions for Concurrency Control

By default, Oracle Database permits concurrently executing transactions to modify,

add, or delete rows in the same table, and in the same data block. Changes made by
one transaction are not seen by another concurrent transaction until the transaction

that made the changes commits.

If a transaction A attempts to update or delete a row that has been locked by another
transaction B (by way of a DML or SELECT FOR UPDATE statement), then A's DML
statement blocks until B commits or rolls back. Once B commits, transaction A can see
changes that B has made to the database.

For most applications, this concurrency model is the appropriate one, because it
provides higher concurrency and thus better performance. But some rare cases require
transactions to be serializable. Serializable transactions must execute in such a way
that they appear to be executing one at a time (serially), rather than concurrently.
Concurrent transactions executing in serialized mode can make only the database
changes that they could make if the transactions ran one after the other.

Figure 2-1 shows a serializable transaction (B) interacting with another transaction
(A).

The ANSI/ISO SQL standard SQL92 defines three possible kinds of transaction
interaction, and four levels of isolation that provide increasing protection against these
interactions. These interactions and isolation levels are summarized in Table 2—4.

Table 2-4 Summary of ANSI Isolation Levels

Isolation Level Dirty Read' Unrepeatable Read®> Phantom Read?®
READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible
REPEATABLE READ Not possible Not possible Possible
SERIALIZABLE Not possible Not possible Not possible

1 A transaction can read uncommitted data changed by another transaction.
2 A transaction rereads data committed by another transaction and sees the new data.

3 A transaction can execute a query again, and discover new rows inserted by another
committed transaction.

The action of Oracle Database with respect to these isolation levels is summarized in
Table 2-5.

Table 2-5 ANSI Isolation Levels and Oracle Database

Isolation Level Description

READ UNCOMMITTED Oracle Database never permits "dirty reads." Although some other
database products use this undesirable technique to improve
thoughput, it is not required for high throughput with Oracle Database.

READ COMMITTED Oracle Database meets the READ COMMITTED isolation standard. This is
the default mode for all Oracle Database applications. Because an
Oracle Database query only sees data that was committed at the
beginning of the query (the snapshot time), Oracle Database actually
offers more consistency than is required by the ANSI/ISO SQL92
standards for READ COMMITTED isolation.

REPEATABLE READ Oracle Database does not normally support this isolation level, except
as provided by SERIALIZABLE.

2-16 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control

Table 2-5 (Cont.) ANSI Isolation Levels and Oracle Database

Isolation Level Description

SERIALIZABLE Oracle Database does not normally support this isolation level, except
as provided by SERIALIZABLE.

Topics:

= How Serializable Transactions Interact

= Setting the Isolation Level of a Serializable Transaction
= Referential Integrity and Serializable Transactions

= READ COMMITTED and SERIALIZABLE Isolation

= Application Tips for Transactions

How Serializable Transactions Interact

Figure 2-1 on page 2-18 shows how a serializable transaction (Transaction B) interacts
with another transaction (A, which can be either SERTALIZABLE or READ
COMMITTED).

When a serializable transaction fails with an ORA-08177 error ("cannot serialize
access"), the application can take any of several actions:

s Commit the work executed to that point

= Execute additional, different, statements, perhaps after rolling back to a prior
savepoint in the transaction

= Roll back the entire transaction and try it again

Oracle Database stores control information in each data block to manage access by
concurrent transactions. To use the SERIALIZABLE isolation level, you must use the
INITRANS clause of the CREATE TABLE or ALTER TABLE statement to set aside
storage for this control information. To use serializable mode, INITRANS must be set
to at least 3.

SQL Processing for Application Developers 2-17

Using Serializable Transactions for Concurrency Control

Figure 2-1 Time Line for Two Transactions

N/

TIME

TRANSACTION A

(arbitrary)

begin work
update row 2
in block 1

insert row 4

commit

Issue update "too recent”
for B to see

Change other row in
same block, see own
changes

Create possible
“phantom" row

Uncommitted changes
invisible

Make changes visible
to transactions that
begin later

Make changes
after A commits

B can see its own changes
but not the committed
changes of transaction A.

Failure on attempt to update
row updated and committed
since transaction B began

Setting the Isolation Level of a Serializable Transaction

You can change the isolation level of a transaction using the ISOLATION LEVEL clause
of the SET TRANSACTION statement, which must be the first statement issued in a

transaction.

TRANSACTION B

(serializable)

SET TRANSACTION
ISOLATION LEVEL <
SERIALIZABLE

read row 1 in block 1

update row 1 in block 1
read updated row 1 in
block 1

read old row 2 in block 1
search for row 4
(notfound)

update row 3 in block 1

re-read updated row 1
in block 1
search for row 4 (not found)
read old row 2 in block 1

update row 2 in block 1
FAILS; rollback and retry

Use the ALTER SESSION statement to set the transaction isolation level on a
session-wide basis.

See Also:

Oracle Database SQL Language Reference for the syntax of the ALTER
SESSION statement

Oracle Database SQL Language Reference for the syntax of the SET
TRANSACTION statement

2-18 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control

Oracle Database stores control information in each data block to manage access by
concurrent transactions. Therefore, if you set the transaction isolation level to
SERIALIZABLE, then you must use the ALTER TABLE statement to set INITRANS to
at least 3. This parameter causes Oracle Database to allocate sufficient storage in each
block to record the history of recent transactions that accessed the block. Use higher
values for tables that will undergo many transactions updating the same blocks.

Referential Integrity and Serializable Transactions

Because Oracle Database does not use read locks, even in SERIALIZABLE
transactions, data read by one transaction can be overwritten by another. Transactions
that perform database consistency checks at the application level must not assume that
the data they read will not change during the execution of the transaction (even
though such changes are not visible to the transaction). Database inconsistencies can
result unless such application-level consistency checks are coded carefully, even when
using SERTALIZABLE transactions.

Note: Examples in this section apply to both READ COMMITTED and
SERIALIZABLE transactions.

Figure 2-2 on page 2-20 shows two different transactions that perform
application-level checks to maintain the referential integrity parent/child relationship
between two tables. One transaction checks that a row with a specific primary key
value exists in the parent table before inserting corresponding child rows. The other
transaction checks to see that no corresponding detail rows exist before deleting a
parent row. In this case, both transactions assume (but do not ensure) that data they
read will not change before the transaction completes.

Figure 2-2 Referential Integrity Check

B's query does

not prevent this

e TRANSACTION A TRANSACTION B
read parent (it exists) read child rows (not found)
b insert child row(s) delete parent <=
commit work commit work

A's query does

not prevent this
delete

The read issued by transaction A does not prevent transaction B from deleting the
parent row, and transaction B's query for child rows does not prevent transaction A

SQL Processing for Application Developers 2-19

Using Serializable Transactions for Concurrency Control

from inserting child rows. This scenario leaves a child row in the database with no
corresponding parent row. This result occurs even if both A and B are SERIALIZABLE
transactions, because neither transaction prevents the other from making changes in
the data it reads to check consistency.

As this example shows, sometimes you must take steps to ensure that the data read by
one transaction is not concurrently written by another. This requires a greater degree
of transaction isolation than defined by SQL92 SERIALIZABLE mode.

Fortunately, it is straightforward in Oracle Database to prevent the anomaly described:

s Transaction A can use SELECT FOR UPDATE to query and lock the parent row and
thereby prevent transaction B from deleting the row.

s Transaction B can prevent Transaction A from gaining access to the parent row by
reversing the order of its processing steps. Transaction B first deletes the parent
row, and then rolls back if its subsequent query detects the presence of
corresponding rows in the child table.

Referential integrity can also be enforced in Oracle Database using database triggers,
instead of a separate query as in Transaction A. For example, an INSERT into the child
table can fire a BEFORE INSERT row-level trigger to check for the corresponding
parent row. The trigger queries the parent table using SELECT FOR UPDATE, ensuring
that parent row (if it exists) remains in the database for the duration of the transaction
inserting the child row. If the corresponding parent row does not exist, the trigger
rejects the insert of the child row.

SQL statements issued by a database trigger execute in the context of the SQL
statement that caused the trigger to fire. All SQL statements executed within a trigger
see the database in the same state as the triggering statement. Thus, in a READ
COMMITTED transaction, the SQL statements in a trigger see the database as of the
beginning of the triggering statement execution, and in a transaction executing in
SERIALIZABLE mode, the SQL statements see the database as of the beginning of the
transaction. In either case, the use of SELECT FOR UPDATE by the trigger correctly
enforces referential integrity.

READ COMMITTED and SERIALIZABLE Isolation

Oracle Database gives you a choice of two transaction isolation levels with different
characteristics. Both the READ COMMITTED and SERIALIZABLE isolation levels
provide a high degree of consistency and concurrency. Both levels reduce contention,
and are designed for deploying real-world applications. The rest of this section
compares the two isolation modes and provides information helpful in choosing
between them.

Topics:
s Transaction Set Consistency
s Comparison of READ COMMITTED and SERIALIZABLE Transactions

s Choosing an Isolation Level for Transactions

Transaction Set Consistency

A useful way to describe the READ COMMITTED and SERIALIZABLE isolation levels in
Oracle Database is to consider:

= A collection of database tables (or any set of data)

= A sequence of reads of rows in those tables

2-20 Oracle Database Advanced Application Developer's Guide

Using Serializable Transactions for Concurrency Control

s The set of transactions committed at any moment

An operation (a query or a transaction) is transaction set consistent if its read
operations all return data written by the same set of committed transactions. When an
operation is not transaction set consistent, some reads reflect the changes of one set of
transactions, and other reads reflect changes made by other transactions. Such an
operation sees the database in a state that reflects no single set of committed
transactions.

Oracle Database transactions executing in READ COMMITTED mode are transaction-set
consistent on an individual-statement basis, because all rows read by a query must be
committed before the query begins.

Oracle Database transactions executing in SERIALIZABLE mode are transaction set
consistent on an individual-transaction basis, because all statements in a
SERIALIZABLE transaction execute on an image of the database as of the beginning of
the transaction.

In other database systems, a single query run in READ COMMITTED mode provides
results that are not transaction set consistent. The query is not transaction set
consistent, because it might see only a subset of the changes made by another
transaction. For example, a join of a master table with a detail table can see a master
record inserted by another transaction, but not the corresponding details inserted by
that transaction, or vice versa. The READ COMMITTED mode avoids this problem, and
so provides a greater degree of consistency than read-locking systems.

In read-locking systems, at the cost of preventing concurrent updates, SQL92
REPEATABLE READ isolation provides transaction set consistency at the statement
level, but not at the transaction level. The absence of phantom protection means two
queries issued by the same transaction can see data committed by different sets of
other transactions. Only the throughput-limiting and deadlock-susceptible
SERIALIZABLE mode in these systems provides transaction set consistency at the
transaction level.

Comparison of READ COMMITTED and SERIALIZABLE Transactions

Table 2-6 summarizes key similarities and differences between READ COMMITTED and
SERIALIZABLE transactions.

Table 2-6 Read Committed and Serializable Transactions

Operation Read Committed Serializable
Dirty write Not Possible Not Possible
Dirty read Not Possible Not Possible
Unrepeatable read Possible Not Possible
Phantoms Possible Not Possible
Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction
Transaction set consistency Statement level ~ Transaction level
Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No
Different-row writers block writers No No
Same-row writers block writers Yes Yes

SQL Processing for Application Developers 2-21

Using Serializable Transactions for Concurrency Control

Table 2-6 (Cont.) Read Committed and Serializable Transactions

Operation Read Committed Serializable
Waits for blocking transaction Yes Yes
Subject to "can't serialize access" error ~ No Yes
Error after blocking transaction aborts ~ No No
Error after blocking transaction commits No Yes

Choosing an Isolation Level for Transactions

Choose an isolation level that is appropriate to the specific application and workload.
You might choose different isolation levels for different transactions. The choice
depends on performance and consistency needs, and consideration of application
coding requirements.

For environments with many concurrent users rapidly submitting transactions, you
must assess transaction performance against the expected transaction arrival rate and
response time demands, and choose an isolation level that provides the required
degree of consistency while performing well. Frequently, for high performance
environments, you must trade-off between consistency and concurrency (transaction
throughput).

Both Oracle Database isolation modes provide high levels of consistency and
concurrency (and performance) through the combination of row-level locking and
Oracle Database's multi-version concurrency control system. Because readers and
writers do not block one another in Oracle Database, while queries still see consistent
data, both READ COMMITTED and SERIALIZABLE isolation provide a high level of
concurrency for high performance, without the need for reading uncommitted ("dirty")
data.

READ COMMITTED isolation can provide considerably more concurrency with a
somewhat increased risk of inconsistent results (due to phantoms and unrepeatable
reads) for some transactions. The SERIALIZABLE isolation level provides somewhat
more consistency by protecting against phantoms and unrepeatable reads, and might
be important where a read /write transaction executes a query more than once.
However, SERIALIZABLE mode requires applications to check for the "can't serialize
access" error, and can significantly reduce throughput in an environment with many
concurrent transactions accessing the same data for update. Application logic that
checks database consistency must take into account the fact that reads do not block
writes in either mode.

Application Tips for Transactions

When a transaction runs in serializable mode, any attempt to change data that was
changed by another transaction since the beginning of the serializable transaction
causes an error:

ORA-08177: Can't serialize access for this transaction.
When you get this error, roll back the current transaction and execute it again. The
transaction gets a new transaction snapshot, and the operation is likely to succeed.

To minimize the performance overhead of rolling back transactions and executing
them again, try to put DML statements that might conflict with other concurrent
transactions near the beginning of your transaction.

2-22 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Autonomous Transactions

This section gives a brief overview of autonomous transactions and what you can do
with them.

See Also: Oracle Database PL/SQL Language Reference for detailed
information on autonomous transactions.

At times, you might want to commit or roll back some changes to a table
independently of a primary transaction's final outcome. For example, in a stock
purchase transaction, you might want to commit a customer's information regardless
of whether the overall stock purchase actually goes through. Or, while running that
same transaction, you might want to log error messages to a debug table even if the
overall transaction rolls back. Autonomous transactions enable you to do such tasks.

An autonomous transaction (AT) is an independent transaction started by another
transaction, the main transaction (MT). It lets you suspend the main transaction, do
SQL operations, commit or roll back those operations, then resume the main
transaction.

An autonomous transaction executes within an autonomous scope. An autonomous
scope is a routine you mark with the pragma (compiler directive) AUTONOMOUS_
TRANSACTION. The pragma instructs the PL/SQL compiler to mark a routine as
autonomous (independent). In this context, the term routine includes:

s Top-level (not nested) anonymous PL/SQL blocks
= Local, standalone, and packaged subprograms

= Methods of a SQL object type

= PL/SQL triggers

Figure 2-3 shows how control flows from the main routine (MT) to an autonomous
routine (AT) and back again. As you can see, the autonomous routine can commit
more than one transaction (AT1 and AT2) before control returns to the main routine.

Figure 2-3 Transaction Control Flow

Main Routine Autonomous Routine
PROCEDURE procl IS PROCEDURE proc2 IS
emp_id NUMBER; PRAGMA AUTON. . .
BEGIN dept_id NUMBER;
emp_id := 7788; BEGIN MT suspends
INSERT ... —— 1 MT begins dept_id := 20;
SELECT ... UPDATE ... — AT1 begins
proc2; > INSERT ...
DELETE ... UPDATE ...
COMMIT; — - +— MT ends COMMIT; —— — AT1 ends
END; INSERT ... — L ATD begins
INSERT ...
coMmMIT; ——+1+— AT2 ends
END; MT resumes

When you enter the executable section of an autonomous routine, the main routine
suspends. When you exit the routine, the main routine resumes. COMMIT and
ROLLBACK end the active autonomous transaction but do not exit the autonomous
routine. As Figure 2-3 shows, when one transaction ends, the next SQL statement
begins another transaction.

SQL Processing for Application Developers 2-23

Autonomous Transactions

A few more characteristics of autonomous transactions:

s The changes autonomous transactions effect do not depend on the state or the
eventual disposition of the main transaction. For example:

- Anautonomous transaction does not see any changes made by the main
transaction.

— When an autonomous transaction commits or rolls back, it does not affect the
outcome of the main transaction.

= The changes an autonomous transaction effects are visible to other transactions as
soon as that autonomous transaction commits. This means that users can access
the updated information without having to wait for the main transaction to
commit.

s Autonomous transactions can start other autonomous transactions.

Figure 2—4 illustrates some of the possible sequences autonomous transactions can
follow.

2-24 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Figure 2-4 Possible Sequences of Autonomous Transactions

A main transaction scope
(MT Scope) begins the main

fransaction. MTx. MTx MT Scope AT Scope 1 AT Scope 2 AT Scope 3 AT Scope 4
invokes the first autonomous
transaction scope (AT MTx
Scope1). MTx suspends. AT

Scope 1 begins the >
transaction Tx1.1. Tx1.1
At Scope 1 commits or rolls MT <

back Tx1.1, than ends. MTx X ><
resumes.

MTx invokes AT Scope 2. MT
suspends, passing control to >
AT Scope 2 which, initially, is

performing queries.

AT Scope 2 then begins
Tx2.1 by, say, doing an
update. AT Scope 2 commits
or rolls back Tx2.1.

2.1

Later, AT Scope 2 begins a
second transaction, Tx2.2, Tx2.2
then commits or rolls it back.

AT Scope 2 performs a few
queries, then ends, passing MTx ><
control back to MTx.

MTx invokes AT Scope 3.

MTx suspends, AT Scope 3
begins.

Tx3.1

AT Scope 3 begins Tx3.1
which, in turn, invokes AT
Scope 4. Tx3.1 suspends, AT
Scope 4 begins.

Tx4.1

AT Scope 4 begins Tx4.1,
commits or rolls it back, then
ends. AT Scope 3 resumes.

AT Scope 3 commits or rolls ™1 ><

back Tx3.1, then ends. MTx
resumes.

Finally, MT Scope commits or MTx

rolls back MTx, then ends. ><

Examples of Autonomous Transactions
s Ordering a Product

X

= Withdrawing Money from a Bank Account

As these examples illustrate, there are four possible outcomes when you use
autonomous and main transactions (see Table 2-7). There is no dependency between
the outcome of an autonomous transaction and that of a main transaction.

Table 2-7 Possible Transaction Outcomes

Autonomous Transaction Main Transaction

Commits Commits
Commits Rolls back
Rolls back Commits

SQL Processing for Application Developers 2-25

Autonomous Transactions

Table 2-7 (Cont.) Possible Transaction Outcomes

Autonomous Transaction Main Transaction

Rolls back Rolls back

Ordering a Product

In the example illustrated by Figure 2-5, a customer orders a product. The customer's
information (such as name, address, phone) is committed to a customer information
table—even though the sale does not go through.

Figure 2-5 Example: A Buy Order

MT Scope begins the main
transaction, MTx inserts the
buy order into a table. MT Scope AT Scope

MTx invokes the autonomous

transaction scope (AT >
Scope). When AT Scope ATx
begins, MT Scope suspends.

ATX, updates the audit table
with customer information.

A

MTx seeks to validate the
order, finds that the selected MTx ><

item is unavailable, and

therefore rolls back the main

transaction.

Withdrawing Money from a Bank Account

In this example, a customer tries to withdraw money from a bank account. In the
process, a main transaction invokes one of two autonomous transaction scopes (AT
Scope 1 or AT Scope 2).

The possible scenarios for this transaction are:

» Scenario 1: Sufficient Funds

» Scenario 2: Insufficient Funds with Overdraft Protection

» Scenario 3: Insufficient Funds Without Overdraft Protection

Scenario 1: Sufficient Funds There are sufficient funds to cover the withdrawal, so the
bank releases the funds (see Figure 2-6).

2-26 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Figure 2-6 Bank Withdrawal—Sufficient Funds

MTx generates a
transaction ID. MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1 inserts the transaction Txi.1
ID into the audit table and xi.
commits.

MTx validates the balance on <
the account. MTx ><

Tx2.1, updates the audit table > —y
using the transaction ID X2.
generated above, then
commits.

A

MTx releases the funds. MT
MTx ><

Scope ends.

Scenario 2: Insufficient Funds with Overdraft Protection There are insufficient funds to cover
the withdrawal, but the customer has overdraft protection, so the bank releases the
funds (see Figure 2-7).

SQL Processing for Application Developers 2-27

Autonomous Transactions

Figure 2-7 Bank Withdrawal—Insufficient Funds with Overdraft Protection

MT Scope AT Scope 1 AT Scope 2

MTx

x1.1

insufficient funds to cover the MTx
withdrawal. It finds that the
customer has overdraft
protection and sets a flag to
the appropriate value.

MTx discovers that there are < ><

Tx2.1, updates the >
audit table. Tx2.1

A

MTX, releases the funds. MT MTx ><

Scope ends.

Scenario 3: Insufficient Funds Without Overdraft Protection There are insufficient funds to
cover the withdrawal and the customer does not have overdraft protection, so the
bank withholds the requested funds (see Figure 2-8).

2-28 Oracle Database Advanced Application Developer's Guide

Autonomous Transactions

Figure 2-8 Bank Withdrawal—Insufficient Funds Without Overdraft Protection

MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1

insufficient funds to cover the MTx
withdrawal. It finds that the
customer does not have
overdraft protection and sets
a flag to the appropriate
value.

MTx discovers that there are < ><

Tx2.1, updates the >
audit table.

MTx Scope rolls back MTx,
denying the release of funds.
MT Scope ends.

MTx

X

X

Defining Autonomous Transactions

Note: This section is provided here to round out your general
understanding of autonomous transactions. For a more thorough
understanding of autonomous transactions, see Oracle Database
PL/SQL Language Reference.

To define autonomous transactions, you use the pragma (compiler directive)
AUTONOMOUS_TRANSACTION. The pragma instructs the PL/SQL compiler to mark the
subprogram or PL/SQL block as autonomous (independent).

You can code the pragma anywhere in the declarative section of a subprogram or
PL/SQL block. But, for readability, code the pragma at the top of the section. The
syntax follows:

PRAGMA AUTONOMOUS_TRANSACTION;

In the following example, you mark a packaged function as autonomous:

CREATE OR REPLACE PACKAGE Banking AS
FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
-- add additional functions and packages

END Banking;

CREATE OR REPLACE PACKAGE BODY Banking AS
FUNCTION Balance (Acct_id INTEGER) RETURN REAL IS
PRAGMA AUTONOMOUS_TRANSACTION;
My _bal REAL;

SQL Processing for Application Developers 2-29

Resuming Execution After Storage Allocation Error

BEGIN
--add appropriate code
END;
-- add additional functions and packages...
END Banking;

Restrictions on Autonomous Transactions

Autonomous transactions have the following restrictions:

= You cannot use the pragma to mark all subprograms in a package (or all methods
in an object type) as autonomous. Only individual routines can be marked
autonomous. For example, the following pragma is illegal:

CREATE OR REPLACE PACKAGE Banking AS
PRAGMA AUTONOMOUS_TRANSACTION; -- illegal
FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
END Banking;

= You cannot execute a PIPE ROW statement in your autonomous routine while your
autonomous transaction is open. You must close the autonomous transaction
before executing the PIPE ROW statement. This is normally accomplished by
committing or rolling back the autonomous transaction before executing the PIPE
ROW statement.

See Also: Oracle Database PL/SQL Language Reference

Resuming Execution After Storage Allocation Error

When a long-running transaction is interrupted by an out-of-space error condition,
your application can suspend the statement that encountered the problem and resume
it after the space problem is corrected. This capability is known as resumable storage
allocation. It lets you avoid time-consuming rollbacks, without the need to split the
operation into smaller pieces and write your own code to track its progress.

See Also:

» Oracle Database Concepts for more information about resumable
storage allocation

s Oracle Database Administrator's Guide for more information about
resumable storage allocation
Topics:
= What Operations Can Be Resumed After an Error Condition?

= Handling Suspended Storage Allocation

What Operations Can Be Resumed After an Error Condition?

Queries, DML operations, and certain DDL operations can all be resumed if they
encounter an out-of-space error. The capability applies if the operation is performed
directly by a SQL statement, or if it is performed within a stored subprogram,
anonymous PL/SQL block, SQL*Loader, or an OCI call such as OCIStmtExecute.

Operations can be resumed after these kinds of error conditions:

» Out of space errors, such as ORA-01653.

2-30 Oracle Database Advanced Application Developer's Guide

Resuming Execution After Storage Allocation Error

= Space limit errors, such as ORA-01628.
= Space quota errors, such as ORA-01536.

Certain storage errors cannot be handled using this technique. In dictionary-managed
tablespaces, you cannot resume an operation if you run into the limit for rollback
segments, or the maximum number of extents while creating an index or a table. Use
locally managed tablespaces and automatic undo management in combination with
this feature.

Handling Suspended Storage Allocation

When an operation is suspended, your application does not receive the usual error
code. Instead, perform any logging or notification by coding a trigger to detect the
AFTER SUSPEND event and invoke the functions in the DBMS_RESUMABLE package to
get information about the problem. Using this package, you can:

= Parse the error message with the DBMS_RESUMABLE.SPACE_ERROR_INFO
function. For details about this function, see Oracle Database PL/SQL Packages and
Types Reference.

= Setanew timeout value with the SET_TIMEOUT procedure.

Within the body of the trigger, you can perform any notifications, such as sending a
mail message to alert an operator to the space problem.

Alternatively, the DBA can periodically check for suspended statements using the
static data dictionary views DBA_RESUMABLE and USER_RESUMABLE (described in
Oracle Database Reference) and the dynamic performance view V$_SESSION_WAIT
(described in Oracle Database Reference).

When the space condition is corrected (usually by the DBA), the suspended statement
automatically resumes execution. If it is not corrected before the timeout period
expires, the operation causes a SERVERERROR exception.

To reduce the chance of out-of-space errors within the trigger itself, you must declare it
as an autonomous transaction so that it uses a rollback segment in the SYSTEM
tablespace. If the trigger encounters a deadlock condition because of locks held by the
suspended statement, the trigger is aborted and your application receives the original
error condition, as if it was never suspended. If the trigger encounters an out-of-space
condition, the trigger and the suspended statement are rolled back. You can prevent
the rollback through an exception handler in the trigger, and just wait for the
statement to be resumed.

In Example 2-1, a trigger handles applicable storage errors within the database. For
some kinds of errors, it aborts the statement and alerts the DBA that this has happened
through a mail message. For other errors that might be temporary, it specifies that the
statement waits for eight hours before resuming, with the expectation that the storage
problem will be fixed by then.

Example 2-1 Resumable Storage Allocation

CREATE OR REPLACE TRIGGER suspend_example
AFTER SUSPEND
ON DATABASE
DECLARE
cur_sid NUMBER;
cur_inst NUMBER;
err_type VARCHAR2 (64) ;
object_owner VARCHAR2 (64);
object_type VARCHAR2 (64);

SQL Processing for Application Developers 2-31

Resuming Execution After Storage Allocation Error

table_space_name VARCHAR2 (64);
object_name VARCHAR2 (64);
sub_object_name VARCHAR2 (64);
msg_body VARCHAR2 (64) ;
ret_value boolean;

error_txt varchar2 (64);
mail_conn utl_smtp.connection;

BEGIN

SELECT DISTINCT (sid) INTO cur_sid FROM vSmystat;

cur_inst := userenv('instance');

ret_value := dbms_resumable.space_error_info(err_type, object_owner,

object_type, table_space_name, object_name, sub_object_name);

IF object_type = 'ROLLBACK SEGMENT' THEN

INSERT INTO sys.rbs_error (SELECT sgl_text, error_msg, suspend_time

FROM dba_resumable WHERE session_id = cur_sid AND instance_id = cur_inst);

SELECT error_msg into error_txt FROM dba_resumable WHERE session_id = cur_sid
AND instance_id = cur_inst;

msg_body := 'Subject: Space error occurred: Space limit reached for rollback
segment '|| object_name || ' on ' || to_char (SYSDATE, 'Month dd, YYYY, HH:MIam')
|| '. Error message was: ' || error_txt;

mail_conn := utl_smtp.open_connection('localhost', 25);

utl_smtp.helo(mail_conn, 'localhost');
utl_smtp.mail (mail_conn, 'sender@localhost');
utl_smtp.rcpt(mail_conn, 'recipient@localhost');
utl_smtp.data(mail_conn, msg_body) ;
utl_smtp.quit(mail_conn);
dbms_resumable.abort (cur_sid) ;

ELSE

dbms_resumable.set_timeout (3600%*8) ;

END IF;

COMMIT;

END;

2-32 Oracle Database Advanced Application Developer's Guide

3

Using SQL Datatypes in Database
Applications

This chapter explains how to use SQL datatypes in database applications.
Topics:

s Overview of SQL Datatypes

» Representing Character Data

s Representing Numeric Data

= Representing Date and Time Data

= Representing Specialized Data

= Representing Conditional Expressions as Data
s Identifying Rows by Address

s How Oracle Database Converts Datatypes

s Metadata for SQL Built-In Functions

See Also:

» Oracle Database Object-Relational Developer’s Guide for information
about more complex types, such as object types, varrays, and
nested tables

» Oracle Database SecureFiles and Large Objects Developer’s Guide for
information about LOB datatypes

» Oracle Database PL/SQL Language Reference to learn about the
PL/SQL datatypes. Many SQL datatypes are the same or similar
in PL/SQL.

Overview of SQL Datatypes

A datatype associates a fixed set of properties with the values that can be used in a
column of a table or in an argument of a subprogram. These properties cause Oracle
Database to treat values of one datatype differently from values of another datatype.
For example, Oracle Database can add values of NUMBER datatype, but not values of
RAW datatype.

Oracle Database provides a number of built-in datatypes as well as several categories
for user-defined types that can be used as datatypes. The datatypes supported by
Oracle Database can be divided into the following categories:

Using SQL Datatypes in Database Applications 3-1

Representing Character Data

Oracle built-in datatypes, which include datatypes for characters, numbers, dates
and times (known as datetime datatypes), raw data, large objects (LOBs), and row
addresses (ROWIDs).

ANSI datatypes and datatypes from the IBM products SQL/DS and DB2, which
are usable in SQL statements that create tables and clusters

User-defined types, which use Oracle built-in datatypes and other user-defined
datatypes as the building blocks of object types that model the structure and action
of data in applications

Oracle supplied types, which are SQL-based interfaces for defining new types

The Oracle precompilers recognize other datatypes in embedded SQL programs. These
datatypes are called external datatypes and are associated with host variables. Do not
confuse Oracle Database built-in datatypes and user-defined types with external
datatypes.

See Also:

» Oracle Database SQL Language Reference for complete reference
information on the SQL datatypes

s Pro*COBOL Programmer’s Guide and Pro*C/C++ Programmer’s
Guide for information on external datatypes, including how Oracle
converts between them and built-in or user-defined types

» Oracle Database Concepts to learn about Oracle built-in datatypes

Representing Character Data

This section contains the following topics:

Overview of Character Datatypes

Specifying Column Lengths as Bytes or Characters
Choosing Between CHAR and VARCHAR?2 Datatypes
Using Character Literals in SQL Statements

Overview of Character Datatypes

You can use the following SQL datatypes to store alphanumeric data:

CHAR and NCHAR datatypes store fixed-length character literals.
VARCHAR?2 and NVARCHAR2 datatypes store variable-length character literals.
NCHAR and NVARCHAR2 datatypes store Unicode character data only.

CLOB and NCLOB datatypes store single-byte and multibyte character strings of up
to (4 gigabytes - 1) * (the value obtained from DBMS_LOB.GETCHUNKSIZE).

The LONG datatype stores variable-length character strings containing up to two
gigabytes, but with many restrictions. This datatype is provided only for
backward compatibility with existing applications. In general in new applications,
use CLOB and NCLOB datatypes to store large amounts of character data, and BLOB
and BFILE to store large amounts of binary data.

The LONG RAW datatype is similar to the RAW datatype, except that it stores raw
data with a length up to two gigabytes (2/31-1 bytes). The LONG RAW datatype is
provided only for backward compatibility with existing applications.

3-2 Oracle Database Advanced Application Developer's Guide

Representing Character Data

See Also:

» Oracle Database SecureFiles and Large Objects Developer’s Guide for
information on LOB datatypes (including CLOB and NCLOB
datatypes) and migration from LONG to LOB datatypes

» Oracle Database SQL Language Reference for restrictions on LONG
datatypes

Specifying Column Lengths as Bytes or Characters

You can specify the lengths of CHAR and VARCHAR2 columns as either bytes or
characters. The lengths of NCHAR and NVARCHAR2 columns are always specified in
characters, making them ideal for storing Unicode data, where a character might
consist of multiple bytes.

Consider the following list of column length specifications:
s 1d VARCHAR2 (32 BYTE)

The id column contains only single-byte data, up to 32 bytes.
s name VARCHAR2 (32 CHAR)

The name column contains data in the database character set. If the database
character set allows multibyte characters, then the 32 characters can be stored as
more than 32 bytes.

s biography NVARCHAR2 (2000)

The biography column can represent 2000 characters in any
Unicode-representable language. The encoding depends on the national character
set, but the column can contain multibyte values even if the database character set
is single-byte.

n comment VARCHAR2 (2000)

The representation of comment as 2000 bytes or characters depends on the
initialization parameter NL.S_LENGTH_SEMANTICS.

When using a multibyte database character encoding scheme, consider carefully the
space required for tables with character columns. If the database character encoding
scheme is single-byte, then the number of bytes and the number of characters in a
column is the same. If it is multibyte, however, then there generally is no such
correspondence. A character might consist of one or more bytes, depending upon the
specific multibyte encoding scheme and whether shift-in/shift-out control codes are
present. To avoid overflowing buffers, specify data as NCHAR or NVARCHAR? if it might
use a Unicode encoding that is different from the database character set.

See Also:

» Oracle Database Globalization Support Guide for more information
about SQL datatypes NCHAR and NVARCHAR2

» Oracle Database SQL Language Reference for more information about
SQL datatypes NCHAR and NVARCHAR2

Choosing Between CHAR and VARCHAR2 Datatypes

When deciding which datatype to use for a column that stores alphanumeric data in a
table, consider the following points of distinction:

= Space usage

Using SQL Datatypes in Database Applications 3-3

Representing Character Data

To store data more efficiently, use the VARCHAR2 datatype. The CHAR datatype
blank-pads and stores trailing blanks up to a fixed column length for all column
values, whereas the VARCHAR2 datatype does not add extra blanks.

s Comparison semantics

Use the CHAR datatype when you require ANSI compatibility in comparison
semantics (when trailing blanks are not important in string comparisons). Use the
VARCHAR?2 when trailing blanks are important in string comparisons.

= Future compatibility

The CHAR and VARCHAR2 datatypes are fully supported. At this time, the
VARCHAR datatype automatically corresponds to the VARCHAR2 datatype and is
reserved for future use.

When an application interfaces with Oracle Database, there is a character set on the
client and server side. Oracle Database uses the NLS_LANGUAGE parameter to
automatically convert CHAR, VARCHAR2, and LONG data from the database character
set to the character set defined for the user session, if these are different.

Oracle Database SQL Language Reference explains the comparison semantics that Oracle
Database uses to compare character data. Because Oracle Database blank-pads values
stored in CHAR columns but not in VARCHAR2 columns, a value stored in a VARCHAR?2
column can take up less space than the same value in a CHAR column. For this reason,
a full table scan on a large table containing VARCHAR2 columns may read fewer data
blocks than a full table scan on a table containing the same data stored in CHAR
columns. If your application often performs full table scans on large tables containing
character data, then you may be able to improve performance by storing data in
VARCHAR2 rather than in CHAR columns.

Performance is not the only factor to consider when deciding which datatype to use.
Oracle Database uses different semantics to compare values of each datatype. You
might choose one datatype over the other if your application is sensitive to the
differences between these semantics. For example, if you want Oracle Database to
ignore trailing blanks when comparing character values, then you must store these
values in CHAR columns.

See Also: Oracle Database SQL Language Reference for more
information on comparison semantics for these datatypes

Using Character Literals in SQL Statements

Many SQL statements, functions, expressions, and conditions require you to specify
character literal values. You can specify character literals with the following notations:

m Character literals with the ' text ' notation, as in the literals 'users01.dbf"
and 'Muthu''s computer'.

s National character literals with the N' text ' orn' text ' notation, where N or n
specifies the literal using the national character set. For example, N' résumé' is a
National character literal.

Oracle Database translates N-quoted text into the national character set by way of
the database character set. If client-side characters do not have corresponding
encoding in the database character set, then Oracle Database converts them into
question marks. To avoid the potential loss of data during the text literal
conversion, set the environment variable SORA_NCHAR_LITERAL_REPLACE to
TRUE. This setting transparently replaces the N' text ' internally and preserves
the text literal for SQL processing.

3-4 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

The UNISTR function provides support for Unicode character literals by enabling you
to specify the Unicode encoding value of characters in the string, as in
UNISTR('\1234"). This technique is useful, for example, when inserting data into
NCHAR columns. Because every character has a corresponding Unicode encoding, the
client application can safely send character data to the server without data loss.

By default you must quote character literals in single-quotes, as in 'Hello'. This
technique can sometimes be inconvenient if the text itself contains single quotes. In
such cases, you can also use the Q-quote mechanism, which enables you to specify g
or Q followed by a single quote and then another character to be used as the quote
delimiter. For example, the literal g'#it's the "final" deadline#' uses the
pound sign (#) as a quote delimiter for the string it's the "final" deadline.

The Q-quote delimiter can be any single- or multibyte character except space, tab, and
return. If the opening quote delimiteris a [, {, <, or (character, then the closing quote
delimiter must be the corresponding 1, }, >, or) character. In all other cases, the
opening and closing delimiter must be the identical character.

The following character literals use the alternative quoting mechanism:

q' (name LIKE '$DBMS_%%')'
g'<'Data, ' he said, 'Make it so.'>'
q'"name like '['"'

ng'i¥12341"

See Also:

» Oracle Database Globalization Support Guide for information about
national character sets

» Oracle Database SQL Language Reference for information about
character literals

Representing Numeric Data
This section contains the following topics:
s Overview of Numeric Datatypes
s Floating-Point Number Formats
= Comparison Operators for Native Floating-Point Datatypes
= Arithmetic Operations with Native Floating-Point Datatypes
= Conversion Functions for Native Floating-Point Datatypes

» Client Interfaces for Native Floating-Point Datatypes

Overview of Numeric Datatypes

The SQL datatypes NUMBER, BINARY_FLOAT, and BINARY_DOUBLE store numeric
data.

Use the NUMBER datatype to store real numbers in a fixed-point or floating-point
format. Numbers using this datatype are guaranteed to be portable among different
Oracle Database platforms, and offer up to 38 decimal digits of precision. You can store
positive and negative numbers of magnitude 1 x 107% through 9.99 x10'%, as well as 0,
in a NUMBER column.

The BINARY_FLOAT and BINARY_DOUBLE datatypes store floating-point data in the
32-bit IEEE 754 format and the double precision 64-bit IEEE 754 format respectively.
Compared to the Oracle NUMBER datatype, arithmetic operations on floating-point

Using SQL Datatypes in Database Applications 3-5

Representing Numeric Data

data are usually faster for BINARY_FLOAT and BINARY_DOUBLE. Also, high-precision
values require less space when stored as BINARY_FLOAT and BINARY_DOUBLE.

In client interfaces supported by Oracle Database, the native instruction set supplied
by the hardware vendor performs arithmetic operations on BINARY_FLOAT and
BINARY_DOUBLE datatypes. The term native floating-point datatypes refers to
datatypes including BINARY_FLOAT and BINARY_DOUBLE and to all implementations
of these types in supported client interfaces.

The floating-point number system is a common way of representing and manipulating
numeric values in computer systems. A floating-point number is characterized by the
following components:

= Binary-valued sign
= Signed exponent

= Significand

= Base

A floating-point value is the signed product of its significand and the base raised to
the power of its exponent, as in the following formula:

(-1)%i9" - gignificand * base ©*®Poment

For example, the number 4.31 is represented as follows:

(-1)% - 431 - 10 2

The components of the preceding representation are as follows:

Component Name Component Value

Sign 0
Significand 431
Base 10
Exponent -2
See Also:

» Oracle Database Concepts for information about the internal format
for the NUMBER datatype

» Oracle Database SQL Language Reference for more information about
the NUMBER datatype

» Oracle Database SQL Language Reference for more information about
the BINARY_FLOAT and BINARY_DOUBLE datatypes

Floating-Point Number Formats

A floating-point number format specifies how components of a floating-point number
are represented. The choice of representation determines the range and precision of the
values the format can represent. By definition, the range is the interval bounded by the
smallest and the largest values the format can represent and the precision is the
number of digits in the significand.

Formats for floating-point values support neither infinite precision nor infinite range.
There are a finite number of bits to represent a number and only a finite number of

3-6 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

values that a format can represent. A floating-point number that uses more precision
than available with a given format is rounded.

A floating-point number can be represented in a binary system (one that uses base 2),
as in the IEEE 754 standard, or in a decimal system (one that uses base 10), such as
Oracle NUMBER. The base affects many properties of the format, including how a
numeric value is rounded.

For a decimal floating-point number format like Oracle NUMBER, rounding is done to
the nearest decimal place (for example. 1000, 10, or 0.01). The IEEE 754 formats use a
binary format for floating-point values and round numbers to the nearest binary place
(for example: 1024, 512, or 1/64).

The native floating-point datatypes supported by the database round to the nearest
binary place, so they are not satisfactory for applications that require decimal
rounding. Use the Oracle NUMBER datatype for applications in which decimal
rounding is required on floating-point data.

Topics:
= Using a Floating-Point Binary Format

= Representing Special Values with Native Floating-Point Formats

Using a Floating-Point Binary Format

The value of a floating-point number that uses a binary format is determined by the
following formula:

(-1)% 2% (by by by ... by,)
Table 3-1 describes the components of the formula.

Table 3-1 Components of the Binary Format for Floating-Point Numbers

Component Specifies. ..

s Oor1l
E Any integer between E_;, and E,,,, inclusive (see Table 3-2)
b; 0 or 1, where the sequence of bits represents a number in base 2 (see Table 3-2)

The leading bit of the significand, b,, must be set (1), except for subnormal numbers
(explained later). Therefore, the leading bit is not actually stored, so the formats
provide n bits of precision although only n-1 bits are stored.

Note: The IEEE 754 specification also defines extended
single-precision and extended double-precision formats, which are not
supported by Oracle Database.

The parameters for these formats are described in Table 3-2.

Table 3-2 Summary of Binary Format Parameters

Parameter Single-precision (32-bit) Double-precision (64-bit)
p 24 53

Epnin -126 -1022

E +127 +1023

Using SQL Datatypes in Database Applications 3-7

Representing Numeric Data

The storage parameters for the formats are described in Table 3-3. The in-memory
formats for single-precision and double-precision datatypes are specified by IEEE 754.

Table 3-3 Summary of Binary Format Storage Parameters

Datatype Sign bits Exponent bits Significand bits Total bits
Single-precision 1 8 24 (23 stored) 32
Double-precision 1 11 53 (52 stored) 64

A significand is normalized when the leading bit of the significand is set. IEEE 754
defines denormal or subnormal values as numbers that are too small to be
represented with an implied leading set bit in the significand. The number is too small
because its exponent would be too large if its significand were normalized to have an
implied leading bit set. IEEE 754 formats support subnormal values. Subnormal values
preserve the following property:

if: x - y == 0.0 (using floating-point subtraction)
then: x ==y

Table 3—4 shows the range and precision of the required formats in the IEEE 754
standard and those of Oracle NUMBER. Range limits are expressed here in terms of
positive numbers; they also apply to the absolute value of a negative number. (The
notation "number e exponent" used here stands for number multiplied by 10 raised to the
exponent power: number - 10 ©Ponent)

Table 3-4 Range and Precision of IEEE 754 formats

Range and Single-precision Double-precision Oracle NUMBER
Precision 32-bit! 64-bit’ Datatype
Max positive normal 3.40282347e+38 1.7976931348623157e+308 < 1.0e126
number

Min positive normal 1.17549435e-38 2.2250738585072014e-308 1.0e-130
number

Max positive 1.17549421e-38 2.2250738585072009e-308 not applicable
subnormal number

Min positive 1.40129846e-45 4.9406564584124654e-324 not applicable
subnormal number

Precision (decimal 6-9 15-17 38 - 40

digits)

! These numbers are quoted from the IEEE Numerical Computation Guide.

See Also:

» Oracle Database SQL Language Reference, section "Numeric Literals",
for information about literal representation of numeric values

» Oracle Database SQL Language Reference for more information about
floating-point formats

Representing Special Values with Native Floating-Point Formats
Table 3-5 shows the special values that IEEE 754 allows to be represented.

3-8 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

Table 3-5 Special Values for Negative Floating-Point Formats

Value Meaning

+INF Positive infinity
-INF Negative infinity
NaN Not a number
+0 Positive zero

-0 Negative zero

NaN represent results of operations that are undefined. Many bit patterns in IEEE 754
represent NaN. Bit patterns can represent NaN with and without the sign bit set. IEEE
754 distinguishes between signalling NaNs and quiet NaNs.

IEEE 754 specifies action for when exceptions are enabled and disabled. Oracle
Database does not allow exceptions to be enabled; the database action is that specified
by IEEE 754 for when exceptions are disabled. In particular, Oracle Database makes no
distinction between signalling and quiet NaNs. Programmers who use OCI can retrieve
NaN values from Oracle Database; whether a retrieved NaN value is signalling or quiet
depends on the client platform and beyond the control of Oracle Database.

IEEE 754 does not define the bit pattern for either type of NaN. Positive infinity,
negative infinity, positive zero, and negative zero are each represented by a specific bit
pattern.

Ignoring signs, there are the following classes of values, with each of the classes except
for NaN greater than the one preceding it in the list:

s Zero

= Subnormal

= Normal

s Infinity

= NaN

In IEEE 754, NaN is unordered with other classes of special values and with itself.

When used with the database, special values of native floating-point datatypes act as
follows:

= AllNaNs are quiet.
» IEEE 754 exceptions are not raised.
= NaN is ordered as follows:

All non-NaN < NaN

Any NaN == any other NaN
s -0is converted to +0.
= All NaNs are converted to the same bit pattern.

See Also: "Comparison Operators for Native Floating-Point

Datatypes" on page 3-10 for more information on NaN compared to
other values

Using SQL Datatypes in Database Applications 3-9

Representing Numeric Data

Comparison Operators for Native Floating-Point Datatypes

Oracle Database defines the following comparison operators for operations involving
floating-point datatypes:

= Equalto

= Notequal to

s Greater than

» Greater than or equal to

s Less than

= Less than or equal to

s Unordered

Note the following special cases:

s Comparisons ignore the sign of zero (-0 is equal to, not less than, +0).

s In Oracle Database, NaN is equal to itself. NaN is greater than everything except
itself. That is, NaN == NaN and NaN > x, unless x is NaN.

See Also: "Representing Special Values with Native Floating-Point
Formats" on page 3-8 for more information on comparison results,
ordering, and other actions of special values.

Arithmetic Operations with Native Floating-Point Datatypes

Oracle Database defines operators for the following arithmetic operations:
= Multiplication

= Division

= Addition

= Subtraction

= Remainder

= Square root

You can define the mode used to round the result of the operation. Exceptions can be
raised when operations are performed. Exceptions can also be disabled.

Formerly, Java required floating-point arithmetic to be exactly reproducible. IEEE 754
does not require such action. The standard allows for the result of operations,
including arithmetic, to be delivered to a destination that uses a range greater than
that used by the operands to the operation.

You can compute the result of a double-precision multiplication at an extended
double-precision destination. When this is done, the result must be rounded as if the
destination were single-precision or double-precision. The range of the result, that is,
the number of bits used for the exponent, can use the range supported by the wider
(extended double-precision) destination. This occurrence may result in a
double-rounding error in which the least significant bit of the result is incorrect.

This situation can occur only for double-precision multiplication and division on
hardware that implements the IA-32 and IA-64 instruction set architecture. Thus, with
the exception of this case, arithmetic for these datatypes is reproducible across
platforms. When the result of a computation is NaN, all platforms produce a value for
which IS NAN is true. However, all platforms do not have to use the same bit pattern.

3-10 Oracle Database Advanced Application Developer's Guide

Representing Numeric Data

Conversion Functions for Native Floating-Point Datatypes

Oracle Database defines functions that convert between floating-point and other
formats, including string formats that use decimal precision (precision may be lost
during the conversion). For example, you can use the following functions:

= TO_BINARY_DOUBLE, which converts float to double, decimal (string) to double,
and float or double to integer-valued double

= TO_BINARY_FLOAT, which converts double to float, decimal (string) to float, and
float or double to integer-valued float

= TO_CHAR, which converts float or double to decimal (string)
= TO_NUMBER, which converts a float, double, or string to a number

Oracle Database can raise exceptions during conversion. The IEEE 754 specification
defines the following exceptions:

s Invalid

s Inexact

= Divide by zero

s Underflow

s Overflow

Oracle Database does not raise these exceptions for native floating-point datatypes.

Generally, situations that raise exceptions produce the values described in Table 3-6.

Table 3—-6 Values Resulting from Exceptions

Exception Value

Underflow 0

Overflow -INF, +INF

Invalid Operation NaN

Divide by Zero -INF, +INF, NaN

Inexact Any value - rounding was performed

Client Interfaces for Native Floating-Point Datatypes

Oracle Database has implemented support for native floating-point datatypes in the
following client interfaces:

= SQL

= PL/SQL

= OCIand OCCI

s Pro*C/C++

= JDBC

Topics:

= OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE
= Native Floating-Point Datatypes Supported in Oracle OBJECT Types

s Pro*C/C++ Support for Native Floating-Point Datatypes

Using SQL Datatypes in Database Applications 3-11

Representing Date and Time Data

OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE

The OCI API implements the IEEE 754 single precision and double precision native
floating-point datatypes with the datatypes SQLT_BFLOAT and SQLT_BDOUBLE
respectively. Conversions between these types and the SQL types BINARY_FLOAT and
BINARY_DOUBLE are exact on platforms that implement the IEEE 754 standard for the
C datatypes FLOAT and DOUBLE.

See Also: Oracle Call Interface Programmer’s Guide

Native Floating-Point Datatypes Supported in Oracle OBJECT Types

Oracle Database supports the SQL datatypes BINARY FLOAT and BINARY_DOUBLE as
attributes of Oracle OBJECT types.

Pro*C/C++ Support for Native Floating-Point Datatypes

Pro*C/C++ supports the native FLOAT and DOUBLE datatypes using the column
datatypes BINARY_FLOAT and BINARY_DOUBLE. You can use these datatypes in the
same way that Oracle NUMBER datatype is used. You can bind the native C/C++
datatypes FLOAT and DOUBLE to BINARY_FLOAT and BINARY_DOUBLE types
respectively by setting the Pro*C/C++ precompiler command line option NATIVE_
TYPES to Y (yes) when you compile your application.

Representing Date and Time Data
This section contains the following topics:
s Overview of Date and Time Datatypes
s Changing the Default Date Format
s Changing the Default Time Format
» Arithmetic Operations with Date and Time Datatypes
s Converting Between Date and Time Types
s Importing and Exporting Date and Time Types

Overview of Date and Time Datatypes
Oracle Database supports the following date and time datatypes:
s DATE

Use the DATE datatype to store point-in-time values (dates and times) in a table.
The DATE datatype stores the century, year, month, day, hours, minutes, and
seconds.

s TIMESTAMP

Use the TIMESTAMP datatype to store values that are precise to fractional seconds.
For example, an application that must decide which of two events occurred first
might use TIMESTAMP. An application that specifies the time for a job might use
DATE.

s TIMESTAMP WITH TIME ZONE

Because TIMESTAMP WITH TIME ZONE can also store time zone information, it is
particularly suited for recording date information that must be gathered or
coordinated across geographic regions.

3-12 Oracle Database Advanced Application Developer's Guide

Representing Date and Time Data

s TIMESTAMP WITH LOCAL TIME ZONE

Use TIMESTAMP WITH LOCAL TIME ZONE when the time zone is not significant.
For example, you might use it in an application that schedules teleconferences,
where participants each see the start and end times for their own time zone.

The TIMESTAMP WITH LOCAL TIME ZONE type is appropriate for two-tier
applications in which you want to display dates and times that use the time zone
of the client system. It is generally inappropriate in three-tier applications because
data displayed in a Web browser is formatted according to the time zone of the
Web server, not the time zone of the browser. The Web server is the database client,
so its local time is used.

s INTERVAL DAY TO SECOND

Use the INTERVAL DAY TO SECOND datatype to represent the precise difference
between two datetime values. For example, you might use this value to set a
reminder for a time 36 hours in the future or to record the time between the start
and end of a race. To represent long spans of time with high precision, you can use
a large value for the days portion.

s INTERVAL YEAR TO MONTH

Use the INTERVAL YEAR TO MONTH datatype to represent the difference between
two datetime values, where the only significant portions are the year and the
month. For example, you might use this value to set a reminder for a date 18
months in the future, or check whether 6 months have elapsed since a particular
date.

Oracle Database stores dates in its own internal format. Date data is stored in
fixed-length fields of seven bytes each, corresponding to century, year, month, day,
hour, minute, and second.

See Also: Oracle Call Interface Programmer’s Guide for a complete
description of the Oracle Database internal date format

Displaying Current Date and Time

Use the SQL function SYSDATE to return the system date and time. You can use the
FIXED_DATE initialization parameter to set SYSDATE to a constant, which can be
useful for testing.

By default, SYSDATE is printed without any BC or AD qualifier. You can add BC to the
format string to print the date with BC or AD as appropriate:

SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY BC')
FROM DUAL;

TO_CHAR (SYSDAT

24-JAN-2004 AD

For input and output of dates, the standard Oracle Database default date format is
DD-MON-RR. The RR datetime format element enables you store 20th century dates in
the 21st century by specifying only the last two digits of the year.

As explained in Oracle Database SQL Language Reference, the century of the return value
varies according to the specified two-digit year and the last two digits of the current
year. For example, the following format refers to the year 1954 in a query issued
between 1950 and 2049, but to the year 2054 in a query issued between 2050 and 2099:

'13-NOV-54"

Using SQL Datatypes in Database Applications 3-13

Representing Date and Time Data

Changing the Default Date Format

Use the following techniques to change the default date format:
= To change on an instance-wide basis, use the NLS_DATE_FORMAT parameter.
s To change during a session, use the ALTER SESSION statement.

To enter dates that are not in the current default date format, use the TO_DATE
function with a format mask. For example:

SELECT TO_CHAR(TO_DATE('27-0CT-98', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Be careful when using a date format such as DD-MON-YY. The YY indicates the year in
the current century. For example, 31-DEC-92 is December 31, 2092, not 1992 as you
might expect. If you want to indicate years in any century other than the current one,
use a different format mask, such as the default RR.

See Also: Oracle Database Concepts for information about Julian
dates. Oracle Database Julian dates might not be compatible with
Julian dates generated by other date algorithms.

Changing the Default Time Format
Time is stored in the following 24-hour format:

HH24:MI:SS

By default, the time in a DATE column is 12:00:00 A.M. (midnight) if no time portion is
entered or if the DATE is truncated.

In a time-only entry, the date portion defaults to the first day of the current month. To
enter the time portion of a date, use the TO_DATE function with a format mask
indicating the time portion, as shown in Example 3-1.

Example 3—-1 Indicating Time with the TO_DATE Function

-- create test table

CREATE TABLE birthdays

(Bname VARCHAR2 (20),
Bday DATE

)i

-- insert a row
INSERT INTO birthdays (bname, bday)
VALUES
('ANNIE',
TO_DATE('13-NOV-92 10:56 A.M.', 'DD-MON-YY HH:MI A.M.')
)i

Arithmetic Operations with Date and Time Datatypes

Oracle Database provides a number of features to help with date arithmetic, so that
you do not need to perform your own calculations on the number of seconds in a day,
the number of days in each month, and so on. Some useful features include the
following:

= ADD_MONTHS function, which returns the date plus the specified number of
months.

3-14 Oracle Database Advanced Application Developer's Guide

Representing Date and Time Data

SYSDATE function, which returns the current date and time set for the operating
system on which the database resides.

SYSTIMESTAMP function, which returns the system date, including fractional
seconds and time zone, of the system on which the database resides.

TRUNC function, which when applied to a DATE value, trims off the time portion
so that it represents the very beginning of the day (the stroke of midnight). By
truncating two DATE values and comparing them, you can determine whether
they refer to the same day. You can also use TRUNC along with a GROUP BY clause
to produce daily totals.

Arithmetic operators such as + and -. For example, SYSDATE-7 refers to 7 days
before the current system date.

INTERVAL datatypes, which enable you to represent constants when performing
date arithmetic rather than performing your own calculations. For example, you
can add or subtract INTERVAL constants from DATE values or subtract two DATE
values and compare the result to an INTERVAL.

Comparison operators such as >, <, =, and BETWEEN.

Converting Between Date and Time Types

Oracle Database provides several useful functions that enable you to convert to a from
datetime datatypes. Some useful functions include:

EXTRACT, which extracts and returns the value of a specified datetime field from a
datetime or interval value expression

NUMTODSINTERVAL, which converts a NUMBER or expression that can be implicitly
converted to a NUMBER value to an INTERVAL DAY TO SECOND literal

NUMTOYMINTERVAL, which converts a NUMBER or expression that can be implicitly
converted to a NUMBER value to an INTERVAL YEAR TO MONTH literal

TO_DATE, which converts character data to a DATE datatype
TO_CHAR, which converts DATE data to character data

TO_DSINTERVAL, which converts a character string to an INTERVAL DAY TO
SECOND value

TO_TIMESTAMP, which converts character data to a value of TIMESTAMP datatype

TO_TIMESTAMP_TZ, which converts character data to a value of TIMESTAMP
WITH TIME ZONE datatype

TO_YMINTERVAL, which converts a character string to an INTERVAL YEAR TO
MONTH type

See Also: Oracle Database SQL Language Reference for details about
each function

Importing and Exporting Date and Time Types

TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE values are
always stored in normalized format, so that you can export, import, and compare
them without worrying about time zone offsets. DATE and TIMESTAMP values do not
store an associated time zone, and you must adjust them to account for any time zone
differences between source and target databases.

Using SQL Datatypes in Database Applications 3-15

Representing Specialized Data

Representing Specialized Data
This section contains the following topics:
= Representing Geographic Data
= Representing Multimedia Data
= Representing Large Amounts of Data
= Representing Searchable Text
= Representing XML
= Representing Dynamically Typed Data
= Representing Data with ANSI/ISO, DB2, and SQL/DS Datatypes

Representing Geographic Data

To represent Geographic Information System (GIS) or spatial data in the database, you
can use Oracle Spatial features, including the type MDSYS.SDO_GEOMETRY. You can
store the data in the database by using either an object-relational or a relational model.
You can use a set of PL/SQL packages to query and manipulate the data.

See Also: Oracle Spatial Developer’s Guide to learn how to use
MDSYS.SDO_GEOMETRY

Representing Multimedia Data

Oracle Multimedia enables Oracle Database to store, manage, and retrieve images,
audio, video, or other heterogeneous media data in an integrated fashion with other
enterprise information. Oracle Multimedia extends Oracle Database reliability,
availability, and data management to multimedia content in traditional, Internet,
electronic commerce, and media-rich applications.

Whether you store such multimedia data inside the database as BLOB or BFILE
values, or store it externally on a Web server or other kind of server, you can use
Oracle Multimedia to access the data using either an object-relational or a relational
model, and manipulate and query the data using a set of object types.

Oracle Multimedia provides the ORDAudio, ORDDoc, ORDImage,
ORDImageSignature, ORDVideo, and SI_StillImage object types and methods
for the following purposes:

» Extracting metadata and attributes from multimedia data

= Retrieving and managing multimedia data from Oracle Multimedia, Web servers,
file systems, and other servers

s Performing manipulation operations on image data

See Also: Oracle Multimedia Reference for information about Oracle
Multimedia types

Representing Large Amounts of Data

Oracle Database provides several datatypes for representing large amounts of data.
These datatypes are grouped under the general category of Large Objects (LOBs).
Table 3-7 describes the different LOBs.

3-16 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

Table 3-7 Large Object Datatypes

Datatype Name Description

BLOB Binary large object Represents large amounts of binary data such as images,
video, or other multimedia data.

CLOB Character large object Represents large amounts of character data. CLOB types are
stored by using the database character set. Oracle database
stores a CLOB up to 4,000 bytes inline as a VARCHAR?. If the
CLOB exceeds this length, then Oracle database moves the
CLOB out of line.

NCLOB National character Represents large amounts of character data in National
large objects Character Set format.

BFILE External large object ~ Stores objects in the operating system's file system, outside
of the database files or tablespace. The BFILE type is
read-only; other LOB types are read /write. BFEILE objects
are also sometimes referred to as external LOBs.

An instance of type BLOB, CLOB, or NCLOB can exist as either a persistent LOB instance
or a temporary LOB instance. Persistent and temporary instances differ as follows:

= A temporary LOB instance is declared in the scope of your application.
= A persistent LOB instance is created and stored in the database.

With the exception of declaring, freeing, creating, and committing, operations on
persistent and temporary LOB instances are performed the same way.

The RAW and LONG RAW datatypes store data that is not interpreted by Oracle
Database, that is, it is not converted when moving data between different systems.
These datatypes are intended for binary data and byte strings. For example, LONG RAW
can store graphics, sound, documents, and arrays of binary data; the interpretation is
dependent on the use.

Oracle Net and the Export and Import utilities do not perform character conversion
when transmitting RAW or LONG RAW data. When Oracle Database automatically
converts RAW or LONG RAW data to and from CHAR data, as is the case when entering
RAW data as a literal in an INSERT statement, the database represents the data as one
hexadecimal character representing the bit pattern for every four bits of RAW data. For
example, one byte of RAW data with bits 11001011 is displayed and entered as CB.

You cannot index LONG RAW data, but you can index RAW data. In earlier releases, the
LONG and LONG RAW datatypes were typically used to store large amounts of data. Use
of these types is no longer recommended for new development. If your existing
application still uses these types, migrate your application to use LOB types. Oracle
recommends that you convert LONG RAW columns to binary LOB (BLOB) columns and
convert LONG columns to character LOB (CLOB or NCLOB) columns. LOB columns are
subject to far fewer restrictions than LONG and LONG RAW columns.

See Also:

» See Oracle Database SecureFiles and Large Objects Developer's Guide
for more information about LOBs

» See Oracle Database SQL Language Reference for restrictions on
LONG and LONG RAW datatypes

Using SQL Datatypes in Database Applications 3-17

Representing Specialized Data

Representing Searchable Text

Rather than writing low-level code to do full-text searches, you can use Oracle Text. It
stores the search data in a special kind of index, and lets you query the data with
operators and PL/SQL packages. This technology enables you to create your own
search engine using data from tables, files, or URLs, and combine the search logic with
relational queries. You can also search XML data this way with the XPath notation.

See Also: Oracle Text Application Developer’s Guide for more
information

Representing XML

If you have information stored as files in XML format, or if you want to take an object
type and store it as XML, then you can use the XMLType built-in type.

XMLType columns store their data as either CLOB or binary XML. The XMLType
constructor can turn an existing object of any datatype into an XML object.

When an XML object is inside the database, you can use queries to traverse it (using
the XML XPath notation) and extract all or part of its data.

You can also produce XML output from existing relational data and split XML
documents across relational tables and columns. You can use the following packages
to transfer XML data into and out of relational tables:

= DBMS_XMLQUERY, which provides database-to-XMLType functionality

= DBMS_XMLGEN, which converts the results of a SQL query to a canonical XML
format

= DBMS_XMLSAVE, which provides XML to database-type functionality
You can use the following SQL functions to process XML:

= EXTRACT, which applies a VARCHAR2 XPath string and returns an XMLType
instance containing an XML fragment

= SYS_XMLAGG, which aggregates all of the XML documents or fragments
represented by an expression and produces a single XML document

= SYS_XMLGEN, which takes an expression that evaluates to a particular row and
column of the database, and returns an instance of type XMLType containing an
XML document

= UPDATEXML, which takes as arguments an XMLType instance and an XPath-value
pair and returns an XMLType instance with the updated value

= XMLAGG, which takes a collection of XML fragments and returns an aggregated
XML document

= XMLCOLATTVAL, which creates an XML fragment and then expands the resulting
XML so that each XML fragment has the name column with the attribute name

= XMLCONCAT, which takes as input a series of XMLType instances, concatenates the
series of elements for each row, and returns the concatenated series

= XMLELEMENT, which takes an element name for identifier, an optional collection of
attributes for the element, and arguments that make up the content of the element

= XMLFOREST, which converts each of its argument parameters to XML, and then
returns an XML fragment that is the concatenation of these converted arguments

= XMLSEQUENCE, which either takes as input an XMLType instance and returns a
varray of the top-level nodes in the XML Type, or takes as input a REFCURSOR

3-18 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

instance, with an optional instance of the XMLFormat object, and returns as an
XMLSequence type an XML document for each row of the cursor

XMLTRANSFORM, which takes as arguments an XMLType instance and an XSL style
sheet, applies the style sheet to the instance, and returns an XMLType

See Also:

» Oracle XML DB Developer’s Guide for details about the XMLType
datatype

» Oracle XML Developer’s Kit Programmer’s Guide for information
about client-side programming with XML

» Oracle Database SQL Language Reference for information about XML
functions

Representing Dynamically Typed Data

Some languages allow datatypes to change at run time or let a program check the type
of a variable. For example, C has the union keyword and the void * pointer, while
Java has the typeof operator and wrapper types such as Number. Oracle Database
includes features that enable you to create variables and columns that can hold data of
any type and test such data values to determine their underlying representation. For
example, you can use these features to have a single table column represent a numeric
value in one row, a string value in another row, and an object in another row.

You can use the built-in type SYS.ANYDATA to represent values of any scalar or object
type. This type is an object type with methods to bring in a scalar value of any type,
and turn the value back into a scalar or object. In the same way, you can use the
built-in type SYS.ANYDATASET to represent values of any collection type.

To manipulate and check type information, you can use SYS.ANYTYPE in combination
with the DBMS_TYPES package. The program in Example 3-2 represents data of
different underlying types in a table, then interprets the underlying type of each row
and processes each value appropriately.

Example 3-2 Accessing Information in a SYS.ANYDATA Column

-- This example defines and executes a PL/SQL procedure that
-- uses methods built into SYS.ANYDATA to access information about
-- data stored in a SYS.ANYDATA table column.
DROP TYPE Employee_type FORCE;
DROP TABLE mytab;
CREATE OR REPLACE TYPE Employee_type AS OBJECT (empno NUMBER,
ename VARCHAR2 (10));
/
CREATE TABLE mytab (id NUMBER, data SYS.ANYDATA);
INSERT INTO mytab VALUES (1, SYS.ANYDATA.ConvertNumber (5));
INSERT INTO mytab VALUES (2,
SYS.ANYDATA.ConvertObject (Employee_type (5555, 'john')));

COMMIT;
CREATE OR REPLACE PROCEDURE p
IS
CURSOR cur IS SELECT id, data FROM mytab;
v_id mytab.id%TYPE;
v_data mytab.data%TYPE;
v_type SYS.ANYTYPE;
v_typecode PLS_INTEGER;
v_typename VARCHAR2 (60) ;
v_dummy PLS_INTEGER;

Using SQL Datatypes in Database Applications 3-19

Representing Specialized Data

v_n NUMBER;
v_employee Employee_type;
non_null_anytype_for_NUMBER exception;
unknown_typename exception;
BEGIN
OPEN cur;
LOOP

FETCH cur INTO v_id, v_data;
EXIT WHEN cur$NOTFOUND;

/* The typecode is a number that signifies what type is represented by v_data.
GetType also produces a value of type SYS.AnyType with methods you can call

to find precision and scale of a number, length of a string, and so on. */
v_typecode := v_data.GetType (v_type /* OUT */);

/* Now we compare the typecode against constants from DBMS_TYPES to see what
kind of data we have, and decide how to display it. */

CASE v_typecode
WHEN DBMS_TYPES.TYPECODE_NUMBER THEN
IF v_type IS NOT NULL
-- This condition should never happen, but check just in case.
THEN RAISE non_null_anytype_for_NUMBER; END IF;
-- For each type, there is a Get method.
v_dummy := v_data.GetNUMBER (v_n /* OUT */);
DBMS_OUTPUT.PUT_LINE (
TO_CHAR(v_id) || ': NUMBER = ' || To_Char(v_n));
WHEN DBMS_TYPES.TYPECODE_OBJECT THEN
v_typename := v_data.GetTypeName () ;
-- An object type's name is qualified with the schema name.
IF v_typename NOT IN ('HR.EMPLOYEE_TYPE')
-- If we encounter any object type besides EMPLOYEE_TYPE, raise an exception.
THEN RAISE unknown_typename; END IF;
v_dummy := v_data.GetObject (v_employee /* OUT */);
DBMS_OUTPUT.PUT _LINE (

To_Char (v_id) || ': user-defined type = ' || v_typename |
" (' || v_employee.empno || ', ' || v_employee.ename || ')');
END CASE;
END LOOP;
CLOSE cur;

EXCEPTION
WHEN non_null_anytype_for_NUMBER THEN
RAISE Application_Error (-20000,
'Paradox: the return AnyType instance FROM GetType ' ||
'should be NULL for all but user-defined types');
WHEN unknown_typename THEN
RAISE_Application Error (-20000, 'Unknown user-defined type ' ||
v_typename || ' - program written to handle only HR.EMPLOYEE TYPE');
END;
/

The query and procedure in Example 3-2 produce output like that shown in
Example 3-3.

Example 3-3 Sample Output for Example 3-2
SQL> SELECT t.data.gettypename() AS "Type Name" FROM mytab t;

Type Name

3-20 Oracle Database Advanced Application Developer's Guide

Representing Specialized Data

SYS.NUMBER
HR.EMPLOYEE_TYPE

SQL> EXEC p;
1: NUMBER = 5
2: user-defined type = HR.EMPLOYEE_TYPE (5555, john)

You can access the same features through the OCI interface by using the OCIType,
OCIAnyData, and OCIAnyDataSet interfaces.

See Also:

» Oracle Database PL/SQL Packages and Types Reference for details
about the DBMS_TYPES package

» Oracle Database Object-Relational Developer’s Guide for information
and examples using the ANYDATA, ANYDATASET, and ANYTYPE
types

» Oracle Call Interface Programmer’s Guide for details about the OCI
interfaces

Representing Data with ANSI/ISO, DB2, and SQL/DS Datatypes

You can define columns of tables in Oracle Database through ANSI/ISO, DB2, and
SQL/DS datatypes. Oracle Database internally converts such datatypes to Oracle
datatypes.

The ANSI datatype conversions are shown in Table 3-8. The ANSI/ISO datatypes
NUMERIC, DECIMAL, and DEC can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

Table 3-8 ANSI Datatype Conversions to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
CHARACTER (n) CHAR (n)
CHAR (n)

NUMERIC (p,s) NUMBER (p, s)

DECIMAL (p,s)

DEC (p,s)

INTEGER NUMBER (38)
INT

SMALLINT

FLOAT (p) FLOAT (p)
REAL FLOAT (63)
DOUBLE PRECISION FLOAT (126)
CHARACTER VARYING (n) VARCHAR2 (n)

CHAR VARYING (n)
TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

Table 3-9 shows the SQL /DS and DB2 conversions.

Using SQL Datatypes in Database Applications 3-21

Representing Conditional Expressions as Data

Table 3-9 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype
CHARACTER (n) CHAR (n)
VARCHAR (n) VARCHAR2 (n)
LONG VARCHAR LONG

DECIMAL (p,s) NUMBER (p, s)
INTEGER NUMBER (38)
SMALLINT

FLOAT (p) FLOAT (p)
DATE DATE
TIMESTAMP TIMESTAMP

The datatypes TIME, GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC of IBM
products SQL /DS and DB2 have no corresponding Oracle datatype, and they cannot
be used.

Representing Conditional Expressions as Data

The Oracle Expression Filter feature enables you to store conditional expressions as
data in the database. The Oracle Expression Filter provides a mechanism that you can
use to place a constraint on a VARCHAR2 column to ensure that the values stored are
valid SQL WHERE clause expressions. This mechanism also identifies the set of
attributes that are legal to reference in the conditional expressions.

For example, suppose you create a traders table in which row holds data for a stock
trading account holder. You want to define a column that stores information about
stocks each trader is interested in as a conditional expression. You follow these steps:

1. Create a table traders holds data for a stock trading account holder:

CREATE TABLE traders

(name VARCHAR2 (50) ,
email VARCHAR2 (50) ,
interest VARCHAR2 (50)

)i

2. Create the user-defined datatype ticker with attributes for the trading symbol,
limit price, and amount of change in the stock price:

CREATE OR REPLACE TYPE ticker
AS OBJECT
(symbol VARCHAR2 (20),
price NUMBER,
change NUMBER
)

3. Use the following PL/SQL block to create an attribute set ticker based on the
ticker datatype:
BEGIN
DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(attr_set => 'ticker',
from _type => 'YES');
END;

3-22 Oracle Database Advanced Application Developer's Guide

Identifying Rows by Address

4. Associate the attribute set with the expression set stored in the database column
trader.interest as follows:

BEGIN
DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET (attr_set => 'ticker',
expr_tab => 'traders',
expr_col => 'interest');
END;

The preceding code places a constraint on the interest column that ensures the
column stores valid conditional expressions.

5. Populate the table with trader names, email addresses and conditional expressions
that represents a stock the trader is interested in at a particular price:

INSERT INTO traders (name, email, interest)
VALUES ('Vishu', 'vishu@abc.com', 'symbol = ''ABC'' AND price > 25');

6. Use the EVALUATE operator to identify the conditional expressions that evaluate
to TRUE for a given data item. For example, the following query returns traders
who are interested in a given stock quote (symbol='ABC', price=31,
change=5.2):

SELECT Name, Email

FROM Traders

WHERE EVALUATE (interest,
'symbol=>'"'ABC'',

price=>31,
change=>5.2"
) = 1;

To speed up this type of query, you can optionally create an Oracle Expression Filter
index on the interest column.

See Also: Oracle Database Rules Manager and Expression Filter
Developer’s Guide for details on Oracle Expression Filter

Identifying Rows by Address

Each row in a database table has an address called a rowid. You can examine a row
address by querying the pseudocolumn ROWID, whose values are strings representing
the address of each row. These strings have the datatype ROWID or UROWID. You can
also create tables and clusters that contain actual columns having the ROWID datatype.
Oracle Database does not guarantee that the values of such columns are valid rowids.

Rowid values are important for application development for the following reasons:
» They are the fastest way to access a single row.
s They can show you how the rows in a table are stored.

= They are unique identifiers for rows in a table.

See Also:

» Oracle Database Concepts for general information about the ROWID
pseudocolumn and the ROWID datatype

» Oracle Database SQL Language Reference to learn about the ROWID
pseudocolumn

Topics:

Using SQL Datatypes in Database Applications 3-23

Identifying Rows by Address

= Querying the ROWID Pseudocolumn
= Accessing the ROWID Datatype
» Accessing the UROWID Datatype

Querying the ROWID Pseudocolumn

Each table in Oracle Database has a pseudocolumn named ROWID. If the row is too
large to fit within a single data block, then ROWID identifies the initial row piece.
Although rowids are usually unique, different rows can have the same rowid if they
are in the same data block but in different clustered tables.

The following SQL statements return the ROWID pseudocolumn of the row of the
hr.employees table that satisfies the query, and inserts it into the t_tab table:

CREATE TABLE t_tab (coll ROWID);
INSERT INTO t_tab

SELECT ROWID

FROM hr.employees

WHERE employee_id = 7499;

Note: Although you can use the ROWID pseudocolumn in the
SELECT and WHERE clause of a query, these pseudocolumn values are
not actually stored in the database. You cannot insert, update, or
delete a value of the ROWID pseudocolumn.

Accessing the ROWID Datatype

In tables that are not index-organized and foreign tables, the values of the ROWID
pseudocolumn have the datatype ROWID. The format of this datatype is either
extended or restricted.

Topics:

= Restricted ROWID

s Extended ROWID

= External Binary ROWID

Restricted ROWID

Internally, the ROWID is a structure that holds information that the database server
needs to access a row. The restricted internal ROWID is 6 bytes on most platforms. Each
restricted rowid includes the following data:

s Datafile identifier
s Block identifier
s Row identifier

The restricted ROWID pseudocolumn is returned to client applications in the form of an
18-character string with a hexadecimal encoding of the datablock, row, and datafile
components of the ROWID.

Extended ROWID

The extended ROWID datatype includes the data in the restricted rowid plus a data
object number. The data object number is an identification number assigned to every
database segment. The extended internal ROWID is 10 bytes on most platforms.

3-24 Oracle Database Advanced Application Developer's Guide

How Oracle Database Converts Datatypes

Data in an extended ROWID pseudocolumn is returned to the client application in the
form of an 18-character string (for example, "AAAASMAALAAAAQKAAA"), which
represents a base 64 encoding of the components of the extended ROWID in a
four-piece format, OOOOOOFFFBBBBBBRRR. Extended rowids are not available directly.
You can use a supplied package, DBMS_ROWID, to interpret extended rowid contents.
The package functions extract and provide information that is available directly from a
restricted rowid as well as information specific to extended rowids.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_ROWID package

External Binary ROWID

Some client applications use a binary form of the ROWID. For example, OCI and some
precompiler applications can map the ROWID datatype to a 3GL structure on bind or
define calls. The size of the binary ROWID is the same for extended and restricted
ROWIDs. The information for the extended ROWID is included in an unused field of the
restricted ROWID structure.

The format of the extended binary ROWID, expressed as a C struct, is as follows:

struct riddef ({
ub4d ridobjnum; /* data obj#--this field is
unused in restricted ROWIDs */
ub2 ridfilenum;
ubl filler;
ubd ridblocknum;
ub?2 ridslotnum;

Accessing the UROWID Datatype

The rows of some tables have addresses that are not physical or permanent or were not
generated by Oracle Database. For example, the row addresses of index-organized
tables are stored in index leaves, which can move. Oracle provides these tables with
logical row identifiers, called logical rowids. Rowids of foreign tables, such as DB2
tables accessed through a gateway, are not standard Oracle Database rowids. Oracle
provides foreign tables with identifiers called foreign rowids.

Oracle Database uses universal rowids (urowids) to store the addresses of
index-organized and foreign tables. Both types of urowid are stored in the ROWID
pseudocolumn, as are the physical rowids of heap-organized tables.

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID pseudocolumn
of an index-organized table has a datatype of UROWID. You can access this
pseudocolumn as you would access the ROWID pseudocolumn of a heap-organized
table (that is, using a SELECT ROWID statement). To store the rowids of an
index-organized table, define a column of type UROWID for the table and retrieve the
value of the ROWID pseudocolumn into that column.

How Oracle Database Converts Datatypes

In some cases, Oracle Database allows data of one datatype where it expects data of a
different datatype. Generally, an expression cannot contain values with different
datatypes. However, Oracle Database can use various SQL functions to automatically
convert data to the expected datatype.

Using SQL Datatypes in Database Applications 3-25

How Oracle Database Converts Datatypes

See Also: Oracle Database SQL Language Reference for details about
datatype conversion

Topics:
» Datatype Conversion During Assignments

= Datatype Conversion During Expression Evaluation

Datatype Conversion During Assignments

The datatype conversion for an assignment succeeds if Oracle Database can convert
the datatype of the value used in the assignment to that of the assignment target.

For the examples in the following list, assume a package with a public variable and a
table declared as in the following statements:

CREATE PACKAGE Test_Pack AS varl CHAR(5); END;
CREATE TABLE Tablel_tab (coll NUMBER) ;

m variable := expression

The datatype of expression must be either the same as, or convertible to, the
datatype of variable. For example, Oracle Database automatically converts the
data provided in the following assignment within the body of a stored
subprogram:

VAR1 := 0;

s INSERT INTO Tablel_tab VALUES (expressionl, expression2,...)

The datatypes of expressionl, expression2, and so on, must be either the
same as, or convertible to, the datatypes of the corresponding columns in
Tablel_tab. For example, Oracle Database automatically converts the data
provided in the following INSERT statement for Tablel_tab:

INSERT INTO Tablel_tab VALUES (

19

)i

s UPDATE Tablel_tab SET column = expression

The datatype of expression must be either the same as, or convertible to, the
datatype of column. For example, Oracle Database automatically converts the
data provided in the following UPDATE statement issued against Tablel_tab:

UPDATE Tablel_tab SET coll =

30

m SELECT column INTO variable FROM Tablel tab

The datatype of column must be either the same as, or convertible to, the datatype
of variable. For example, Oracle Database automatically converts data selected
from the table before assigning it to the variable in the following statement:

SELECT Coll INTO Varl FROM Tablel_ tab WHERE Coll = 30;

3-26 Oracle Database Advanced Application Developer's Guide

Metadata for SQL Built-In Functions

Datatype Conversion During Expression Evaluation

For expression evaluation, Oracle Database can automatically perform the same
conversions as for assignments. An expression is converted to a type based on its
context. For example, operands to arithmetic operators are converted to NUMBER, and
operands to string functions are converted to VARCHAR2.

Oracle Database can automatically convert the following:
s VARCHAR2 or CHAR to NUMBER
s VARCHAR2 or CHAR to DATE

Character to NUMBER conversions succeed only if the character string represents a
valid number. Character to DATE conversions succeed only if the character string
satisfies the session default format, which is specified by the initialization parameter
NLS_DATE_FORMAT.

Some common types of expressions follow:
= Simple expressions, such as:

commission + '500'

= Boolean expressions, such as:

bonus > salary / '10°'

= Subprogram calls, such as:

MOD (counter, '2")

s WHERE clause conditions, such as:

WHERE hiredate = TO_DATE('1997-01-01"', 'yyyy-mm-dd')

m WHERE clause conditions, such as:
WHERE rowid = 'AAAAQOAATAAAADAAA'
In general, Oracle Database uses the rule for expression evaluation when a datatype
conversion is needed in places not covered by the rule for assignment conversions.
In assignments of the form:
variable := expression
Oracle Database first evaluates expression using the conversion rules for expressions;
expression can be as simple or complex as desired. If it succeeds, then the evaluation of

expression results in a single value and datatype. Then, Oracle Database tries to assign
this value to the target variable using the conversion rules for assignments.

Metadata for SQL Built-In Functions

You can see metadata for SQL built-in functions with the dynamic performance views
V$SQLFN_METADATA (which has general metadata) and V$SQLFN_ARG_METADATA
(which has metadata about arguments). You can join these views on the column
FUNCID. For functions with unlimited arguments, such as LEAST and GREATEST,
V$SQLFN_ARG_METADATA has only one row for each repeating argument.

These views allow third-party tools to leverage SQL built-in functions without
maintaining their metadata in the application layer.

Using SQL Datatypes in Database Applications 3-27

Metadata for SQL Built-In Functions

See Also: Oracle Database Reference for detailed information about
the dynamic performance views V$SQLFN_METADATA and V$SQLFN_
ARG_METADATA

Often, an argument for a SQL built-in function can have any datatype in a datatype
family. Table 3-10 shows which datatypes belong to which families.

Table 3—-10 Datatype Families

Family Datatypes

STRING CHARACTER
VARCHAR2
CLOB
NCHAR
NVARCHAR2
NCLOB

NUMERIC NUMBER
BINARY_FLOAT
BINARY_DOUBLE

DATETYPE DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

BINARY BLOB
RAW
LONGRAW

ARG Datatype

In the view V$SQLFN_METADATA, ARGn is the datatype of a function whose return
value has the same datatype as its nth argument. For example:

s The MAX function returns a value that has the datatype of its first argument, so the
MAX function has datatype ARG1.

= The DECODE function returns a value that has the datatype of its third argument,
so the DECODE function has datatype ARG3.

EXPR Datatype

In the view V$SQLFN_ARG_METADATA, EXPR is the datatype of an argument that can
be any expression. An expression is either a single value or a combination of values
and SQL functions that has a single value.

Table 3-11 Display Types of SQL Built-In Functions

Display Type Description Example

NORMAL FUNC(A,B, ...) LEAST (A,B,C)

3-28 Oracle Database Advanced Application Developer's Guide

Metadata for SQL Built-In Functions

Table 3-11 (Cont.) Display Types of SQL Built-In Functions

Display Type Description Example
ARITHMETIC A FUNC B) A+B
PARENTHESIS FUNC () SYS_GUID()
RELOP A FUNC B) A IN B
CASE_LIKE CASE statement or DECODE decode

NOPAREN FUNC SYSDATE

Using SQL Datatypes in Database Applications 3-29

Metadata for SQL Built-In Functions

3-30 Oracle Database Advanced Application Developer's Guide

4

Using Regular Expressions in Database
Applications

This chapter explains how to use regular expressions in database applications.
Topics:

= Overview of Regular Expressions

= Metacharacters in Regular Expressions

= Using Regular Expressions in SQL Statements: Scenarios

See Also:

» Oracle Database SQL Language Reference for information about
Oracle Database SQL functions for regular expressions

» Oracle Database Globalization Support Guide for details on using
SQL regular expression functions in a multilingual environment

» Oracle Regular Expressions Pocket Reference by Jonathan Gennick,
O'Reilly & Associates

» Mastering Regular Expressions by Jeffrey E. E. Friedl, O'Reilly &
Associates

Overview of Regular Expressions
Topics:
= What Are Regular Expressions?
s How Are Regular Expressions Useful?
= Oracle Database Implementation of Regular Expressions

s Oracle Database Support for the POSIX Regular Expression Standard

What Are Regular Expressions?

Regular expressions enable you to search for patterns in string data by using
standardized syntax conventions. You specify a regular expression through the
following types of characters:

= Metacharacters, which are operators that specify search algorithms

= Literals, which are the characters for which you are searching

Using Regular Expressions in Database Applications 4-1

Overview of Regular Expressions

A regular expression can specify complex patterns of character sequences. For
example, the following regular expression searches for the literals £ or ht, the t literal,
the p literal optionally followed by the s literal, and finally the colon (:) literal:

(f|ht) tps?:

The parentheses are metacharacters that group a series of pattern elements to a single
element; the pipe symbol (|) matches one of the alternatives in the group. The
question mark (?) is a metacharacter indicating that the preceding pattern, in this case
the s character, is optional. Thus, the preceding regular expression matches the http:,
https:, ftp:, and ftps: strings.

How Are Regular Expressions Useful?

Regular expressions are a powerful text processing component of programming
languages such as Perl and Java. For example, a Perl script can process each HTML file
in a directory, read its contents into a scalar variable as a single string, and then use
regular expressions to search for URLs in the string. One reason that many developers
write in Perl is for its robust pattern matching functionality.

Oracle's support of regular expressions enables developers to implement complex
match logic in the database. This technique is useful for the following reasons:

= By centralizing match logic in Oracle Database, you avoid intensive string
processing of SQL results sets by middle-tier applications. For example, life
science customers often rely on Perl to do pattern analysis on bioinformatics data
stored in huge databases of DNAs and proteins. Previously, finding a match for a
protein sequence such as [AG].{4}GK[ST] was handled in the middle tier. The
SQL regular expression functions move the processing logic closer to the data,
thereby providing a more efficient solution.

» Prior to Oracle Database 10g, developers often coded data validation logic on the
client, requiring the same validation logic to be duplicated for multiple clients.
Using server-side regular expressions to enforce constraints solves this problem.

s The built-in SQL and PL/SQL regular expression functions and conditions make
string manipulations more powerful and less cumbersome than in previous
releases of Oracle Database.

Oracle Database Implementation of Regular Expressions

Oracle Database implements regular expression support with a set of Oracle Database
SQL functions and conditions that enable you to search and manipulate string data.
You can use these functions in any environment that supports Oracle Database SQL.
You can use these functions on a text literal, bind variable, or any column that holds
character data such as CHAR, NCHAR, CLOB, NCLOB, NVARCHAR2, and VARCHAR?2 (but
not LONG).

Table 4-1 describes the regular expression functions and conditions.

4-2 Oracle Database Advanced Application Developer's Guide

Overview of Regular Expressions

Table 4-1 SQL Regular Expression Functions and Conditions

SQL Element Category Description

REGEXP_LIKE Condition Searches a character column for a pattern. Use this function in
the WHERE clause of a query to return rows matching a regular
expression. The condition is also valid in a constraint or as a
PL/SQL function returning a boolean.

The following WHERE clause filters employees with a first name
of Steven or Stephen:

WHERE REGEXP_LIKE(first_name, ‘ASte(v|ph)en$')

REGEXP_REPLACE Function Searches for a pattern in a character column and replaces each
occurrence of that pattern with the specified string.

The following function call puts a space after each character in
the country_name column:

REGEXP_REPLACE (country_name, '(.)', "\1 ')

REGEXP_INSTR Function Searches a string or substring for a given occurrence of a regular
expression pattern (a substring) and returns an integer
indicating the position in the string or substring where the
match is found. You specify which occurrence you want to find
and the start position.

The following function call performs a boolean test for a valid
email address in the email column:

REGEXP_INSTR (email, '\w+@\w+(\.\w+)+') > 0

REGEXP_SUBSTR Function Searches a string or substring for a given occurrence of a regular
expression pattern (a substring) and returns the substring itself.
You specify which occurrence you want to find and the start
position.

The following function call uses the x flag to match the first
string by ignoring spaces in the regular expression:

REGEXP_SUBSTR('oracle', 'orac le', 1, 1, 'x")

REGEXP_COUNT Function Returns the number of times a pattern appears in a string. You
specify the string and the pattern. You can also specify the start
position and matching options (for example, c for case
sensitivity).

The following function call returns the number of times that e
(but not E) appears in the string 'Albert Einstein’, starting
at character position 7 (that is, one):

REGEXP_COUNT ('Albert Einstein', 'e', 7, 'c')

A string literal in a REGEXP function or condition conforms to the rules of SQL text
literals. By default, regular expressions must be enclosed in single quotes. If your
regular expression includes the single quote character, then enter two single quotation
marks to represent one single quotation mark within the expression. This technique
ensures that the entire expression is interpreted by the SQL function and improves the
readability of your code. You can also use the g-quote syntax to define your own
character to terminate a text literal. For example, you can delimit your regular
expression with the pound sign (#) and then use a single quote within the expression.

Note: If your expression comes from a column or a bind variable,
then the same rules for quoting do not apply.

Using Regular Expressions in Database Applications 4-3

Metacharacters in Regular Expressions

See Also:

» Oracle Database SQL Language Reference for syntax, descriptions,
and examples of the REGEXP functions and conditions

» Oracle Database SQL Language Reference for information about
character literals

Oracle Database Support for the POSIX Regular Expression Standard

Oracle's implementation of regular expressions conforms to the following standards:
= IEEE Portable Operating System Interface (POSIX) standard draft 1003.2/D11.2
= Unicode Regular Expression Guidelines of the Unicode Consortium

Oracle Database follows the exact syntax and matching semantics for these operators
as defined in the POSIX standard for matching ASCII (English language) data. You can
find the POSIX standard draft at the following URL:

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html

Oracle Database enhances regular expression support in the following ways:

= Extends the matching capabilities for multilingual data beyond what is specified
in the POSIX standard.

= Adds support for the common Perl regular expression extensions that are not
included in the POSIX standard but do not conflict with it. Oracle Database
provides built-in support for some of the most heavily used Perl regular
expression operators, for example, character class shortcuts, the non-greedy
modifier, and so on.

Oracle Database supports a set of common metacharacters used in regular expressions.
The action of supported metacharacters and related features is described in
"Metacharacters in Regular Expressions" on page 4-4.

Note: The interpretation of metacharacters differs between tools that
support regular expressions. If you are porting regular expressions
from another environment to Oracle Database, ensure that the regular
expression syntax is supported and the action is what you expect.

Metacharacters in Regular Expressions
This section contains the following topics:
s POSIX Metacharacters in Oracle Database Regular Expressions
= Multilingual Extensions to POSIX Regular Expression Standard
» Perl-Influenced Extensions to POSIX Regular Expression Standard

POSIX Metacharacters in Oracle Database Regular Expressions

Table 4-2 lists the list of metacharacters supported for use in regular expressions
passed to SQL regular expression functions and conditions. These metacharacters
conform to the POSIX standard; any differences in action from the standard are noted
in the "Description” column.

4-4 Oracle Database Advanced Application Developer's Guide

Metacharacters in Regular Expressions

Table 4-2 POSIX Metacharacters in Oracle Database Regular Expressions

Syntax Operator Name Description Example
Any Character — Matches any character in the database character set. The expression a .b matches the
Dot If the n flag is set, it matches the newline character. strings abb, acb, and adb, but does
The newline is recognized as the linefeed character not match acc.
(\x0a) on Linux, UNIX, and Windows or the
carriage return character (\x0d) on Macintosh
platforms.
Note: In the POSIX standard, this operator matches
any English character except NULL and the
newline character.
+ One or More — Matches one or more occurrences of the preceding The expression a+ matches the
Plus Quantifier subexpression. strings a, aa, and aaa, but does not
match bbb.
? Zero or One — Matches zero or one occurrence of the preceding The expression ab?c matches the
Question Mark subexpression. strings abc and ac, but does not
Quantifier match abbc.
* Zero or More — Matches zero or more occurrences of the preceding The expression ab*c matches the
Star Quantifier subexpression. By default, a quantifier match is strings ac, abc, and abbc, but does
greedy because it matches as many times as not match abb.
possible while still allowing the rest of the match to
succeed.
{m} Interval—Exact ~ Matches exactly m occurrences of the preceding The expression a {3} matches the
Count subexpression. strings aaa, but does not match aa.
{m,} Interval—At Matches at least m occurrences of the preceding The expression a {3, } matches the
Least Count subexpression. strings aaa and aaaa, but does not
match aa.
{m, n} Interval—Betwee Matches at least m, but not more than n occurrences The expression a{3, 5} matches

n Count

of the preceding subexpression.

the strings aaa, aaaa, and aaaaa,
but does not match aa.

Matching
Character List

Matches any single character in the list within the
brackets. The following operators are allowed
within the list, but other metacharacters included
are treated as literals:

= Range operator: -

. POSIX character class: [: :]

. POSIX collation element: [. .]

» POSIX character equivalence class: [= =]

A dash (-) is a literal when it occurs first or last in
the list, or as an ending range point in a range
expression, as in [#--]. A right bracket (1) is
treated as a literal if it occurs first in the list.

Note: In the POSIX standard, a range includes all
collation elements between the start and end of the
range in the linguistic definition of the current
locale. Thus, ranges are linguistic rather than byte
values ranges; the semantics of the range
expression are independent of character set. In
Oracle Database, the linguistic range is determined
by the NLS_SORT initialization parameter.

The expression [abc] matches the
first character in the strings all,
bill, and cold, but does not
match any characters in do11.

Nonmatching
Character List

Matches any single character not in the list within
the brackets. Characters not in the nonmatching
character list are returned as a match. See the
description of the Matching Character List operator
for an account of metacharacters allowed in the
character list.

The expression [~abc] matches
the character d in the string
abcdef, but not the character a, b,
or c. The expression [“abc]+
matches the sequence def in the
string abcdef, but not a, b, or c.

The expression [~a-1] excludes
any character between a and 1
from the search result. This
expression matches the character j
in the string hij, but does not
match any characters in the string
abcdefghi.

Using Regular Expressions in Database Applications 4-5

Metacharacters in Regular Expressions

Table 4-2 (Cont.) POSIX Metacharacters in Oracle Database Regular Expressions

Syntax

Operator Name

Description

Example

Or

Matches one of the alternatives.

The expression a | b matches
character a or character b.

Subexpression or

Treats the expression within parentheses as a unit.

The expression (abc) ?def

Grouping The subexpression can be a string of literals or a matches the optional string abc,
complex expression containing operators. followed by def. Thus, the
expression matches abcdefghi
and def, but does not match ghi.

\n Backreference Matches the n' preceding subexpression, that is, The expression (abc [def)xy\1
whatever is grouped within parentheses, where nis Mmatches the strings abcxyabc and
an integer from 1 to 9. The parentheses cause an defxydef, but does not match
expression to be remembered; a backreference abcxydef or abexy.
refers to it. A backrefel.‘ence counts subexpressions A packreference enables you to
from left to right, starting with the opening search for a repeated string without
parenthesis of each preceding subexpression. The knowing the actual string ahead of
expression is invalid if the source string contains time. For example, the expression
fewer than 1 subexpressions preceding the \n. A (.*)\1¢ matches a line
Oracle supports the backreference expression in the ~consisting of two adjacent instances
regular expression pattern and the replacement of the same string.
string of the REGEXP_REPLACE function.

\ Escape Character Treats the subsequent metacharacter in the The expression \ + searches for the
expression as a literal. Use a backslash (\) to search plus character (+). It matches the
for a character that is normally treated as a plus character in the string
metacharacter. Use consecutive backslashes (\\) to abc+def, but does not match
match the backslash literal itself. abcdef.

A Beginning of Line Matches the beginning of a string (default). In The expression ~def matches def

Anchor multiline mode, it matches the beginning of any in the string defghi but does not
line within the source string. match def in abcdef.

$ End of Line Matches the end of a string (default). In multiline The expression defs$ matches def

Anchor mode, it matches the beginning of any line within in the string abcdef but does not

the source string.

match def in the string defghi.

4-6 Oracle Database Advanced Application Developer's Guide

Metacharacters in Regular Expressions

Table 4-2 (Cont.) POSIX Metacharacters in Oracle Database Regular Expressions

Syntax Operator Name Description Example
[:class:] POSIX Character Matches any character belonging to the specified The expression [[:upper:]]+
Class POSIX character class. You can use this operator searches for one or more
to search for characters with specific formatting consecutive uppercase characters.
such as uppercase characters, or you can search for =~ This expression matches DEF in the
special characters such as digits or punctuation string abcDEFghi but does not
characters. The full set of POSIX character classes is match the string abcdefghi.
supported.
Note: In English regular expressions, range
expressions often indicate a character class. For
example, [a-z] indicates any lowercase character.
This convention is not useful in multilingual
environments, where the first and last character of a
given character class might not be the same in all
languages. Oracle supports the character classes in
Table 4-3 based on character class definitions in
Globalization classification data.
[.element.] POSIX Collating Specifies a collating element to use in the regular The expression [[.ch.]] searches
Element Operator expression. The element must be a defined for the collating element ch and
collating element in the current locale. Use any matches ch in string chabc, but
collating element defined in the locale, including does not match cdefg. The
single-character and multicharacter elements. The expression [a-[.ch.]] specifies
NLS_SORT initialization parameter determines the range a to ch.
supported collation elements.
This operator lets you use a multicharacter collating
element in cases where only one character is
otherwise allowed. For example, you can ensure
that the collating element ch, when defined in a
locale such as Traditional Spanish, is treated as one
character in operations that depend on the ordering
of characters.
[=character=] POSIX Character Matches all characters that are members of the same The expression [[=n=]] searches
Equivalence character equivalence class in the current locale as for characters equivalent tonin a

Class

the specified character.

The character equivalence class must occur within a
character list, so the character equivalence class is
always nested within the brackets for the character
list in the regular expression.

Usage of character equivalents depends on how
canonical rules are defined for your database locale.
See Oracle Database Globalization Support Guide for
more information on linguistic sorting and string
searching.

Spanish locale. It matches both N
and fi in the string E1 Nifio.

See Also: Oracle Database SQL Language Reference for syntax,
descriptions, and examples of the REGEXP functions and conditions

Multilingual Extensions to POSIX Regular Expression Standard

When applied to multilingual data, Oracle's implementation of the POSIX operators
extends beyond the matching capabilities specified in the POSIX standard. Table 4-3
shows the relationship of the operators in the context of the POSIX standard.

» The first column lists the supported operators.

= The second column indicates whether the POSIX standard for Basic Regular
Expression (BRE) defines the operator.

s The third column indicates whether the POSIX standard for Extended Regular
Expression (ERE) defines the operator.

s The fourth column indicates whether the Oracle Database implementation extends
the operator's semantics for handling multilingual data.

Using Regular Expressions in Database Applications 4-7

Metacharacters in Regular Expressions

Oracle Database lets you enter multibyte characters directly, if you have a direct input
method, or use functions to compose the multibyte characters. You cannot use the
Unicode hexadecimal encoding value of the form \xxxx. Oracle evaluates the
characters based on the byte values used to encode the character, not the graphical
representation of the character.

Table 4-3 POSIX and Multilingual Operator Relationships

Multilingual

Operator POSIX BRE syntax POSIX ERE Syntax Enhancement
\ Yes Yes --
* Yes Yes --
+ -- Yes -
? -- Yes -
| -- Yes -
~ Yes Yes Yes
S Yes Yes Yes

Yes Yes Yes
[] Yes Yes Yes
() Yes Yes --
{m} Yes Yes -
{m,} Yes Yes --
{m,n} Yes Yes --
\n Yes Yes Yes
[..1] Yes Yes Yes
[::] Yes Yes Yes
[==] Yes Yes Yes

Perl-Influenced Extensions to POSIX Regular Expression Standard

Table 4—4 describes Perl-influenced metacharacters supported in Oracle Database
regular expression functions and conditions. These metacharacters are not in the
POSIX standard, but are common at least partly due to the popularity of Perl. Perl
character class matching is based on the locale model of the operating system, whereas
Oracle Database regular expressions are based on the language-specific data of the
database. In general, a regular expression involving locale data cannot be expected to
produce the same results between Perl and Oracle Database.

4-8 Oracle Database Advanced Application Developer's Guide

Metacharacters in Regular Expressions

Table 44 Perl-Influenced Extensions in Oracle Regular Expressions

Reg. Exp. Matches. ..

Example

\d A digit character. It is equivalent to the The expression ~\ (\d{3}\) \d{3}-\d{4}$ matches

POSIX class [[:digit:]]. (650) 555-1212 but does not match
650-555-1212.

\D A nondigit character. It is equivalent to the ~ The expression \w\d\D matches b2b and b2_ but does
POSIX class [~ [:digit:]1]. not match b22.

\w A word character, which is defined as an The expression \w+@\w+ (\ . \w+) + matches the string
alphanumeric or underscore (_) character. It jdoe@company.co.uk but not the string
is equivalent to the POSIX class jdoe@company.

[[:alnum:]_].If you do not want to
include the underscore character, you can
use the POSIX class [[:alnum:]].

\W A nonword character. It is equivalent to the =~ The expression \w+\W\s\w+ matches the string to:
POSIX class [~ [:alnum:]_]. bill but not the string to bill.

\'s A whitespace character. It is equivalent to The expression \ (\w\s\w\s\) matches the string (a
the POSIX class [[: space:]]. b) but not the string (ab).

\S A nonwhitespace character. It is equivalent ~ The expression \ (\w\S\w\S\) matches the string
to the POSIX class [~ [:space:]]. (abde) but not the string (a b d e).

\A Only at the beginning of a string. In The expression \AL matches only the first L character
multi-line mode, that is, when embedded in the string Linel\nLine2\n, regardless of whether
newline characters in a string are considered the search is in single-line or multi-line mode.
the termination of a line, \A does not match
the beginning of each line.

\7Z Only at the end of string or before a newline In the expression \s\Z, the \'s matches the last space
ending a string. In multi-line mode, thatis, inthestring. i n e \n, regardless of whether the
when embedded newline characters in a search is in single-line or multi-line mode.
string are considered the termination of a
line, \ Z does not match the end of each line.

\z Only at the end of a string. In the expression \ s\ z, the \ s matches the newline in
thestring . i n e \n, regardless of whether the
search is in single-line or multi-line mode.

? The preceding pattern element 0 or more The expression \w ?x\w is "non-greedy" and so

times (non-greedy). This quantifier matches matches abxc in the string abxcxd. The expression

the empty string whenever possible. \w*x\w is "greedy" and so matches abxcxd in the
string abxcxd. The expression \w* ?x\w also
matches the string xa.

+? The preceding pattern element 1 or more The expression \w+?x\w is "non-greedy" and so
times (non-greedy). matches abxc in the string abxcxd. The expression

\w+x\w is "greedy" and so matches abxcxd in the
string abxcxd. The expression \w+?x\w does not
match the string xa, but does match the string axa.

27 The preceding pattern element 0 or 1 time The expression a??aa is "non-greedy" and matches aa
(non-greedy). This quantifier matches the in the string aaaa. The expression a?aa is "greedy"
empty string whenever possible. and so matches aaa in the string aaaa.

{n}? The preceding pattern element exactly n The expression (a|aa) {2} ? matches aa in the string
times (non-greedy). In this case {n}? is aaaa.
equivalent to {n}.

{n,}? The preceding pattern element at least n The expression a{2, } ? is "non-greedy" and matches
times (non-greedy). aa in the string aaaaa. The expression a{2, } is

"greedy" and so matches aaaaa.
{n,m}? Atleast n but not more than m times The expression a{2, 4} ? is "non-greedy" and matches

(non-greedy). {0, m} ? matches the empty
string whenever possible.

aa in the string aaaaa. The expression a{2, 4} is
"greedy" and so matches aaaa.

Using Regular Expressions in Database Applications 4-9

Using Regular Expressions in SQL Statements: Scenarios

The Oracle Database regular expression functions and conditions support the pattern

matching modifiers described

Table 4-5 Pattern Matching Modifiers

in Table 4-5.

Mod. Description

Example

i Specifies case-insensitive matching. The following regular expression returns AbCd:
REGEXP_SUBSTR('AbCd', 'abcd', 1, 1, 'i')
c Specifies case-sensitive matching. The following regular expression fails to match:

REGEXP_SUBSTR('AbCd', 'abcd', 1, 1, 'c')

n Allows the period (.), which by default does
not match newlines, to match the newline

The following regular expression matches the string only
because the n flag is specified:

character. REGEXP_SUBSTR ('a'| |CHR(10)||'d', 'a.d', 1, 1, 'n')

m Performs the search in multi-line mode. The The following regular expression returns ac:
metacharacter ~ and $ signify the start and
end, respectively, of any line anywhere in
the source string, rather than only at the
start or end of the entire source string.

REGEXP_SUBSTR('ab'||CHR(10)||'ac', '"a.', 1, 2, 'm")

x Ignores whitespace characters in the regular The following regular expression returns abcd:
expression. By default, whitespace

characters match themselves. REGEXP_SUBSTR('abed’, 'a b cd', 1, 1, 'x')

Using Regular Expressions in SQL Statements: Scenarios
This section contains the following scenarios:
= Using a Constraint to Enforce a Phone Number Format

= Using Back References to Reposition Characters

Using a Constraint to Enforce a Phone Number Format

Regular expressions are a useful way to enforce constraints. For example, suppose that
you want to ensure that phone numbers are entered into the database in a standard
format. Example 4-1 creates a contacts table and adds a CHECK constraint to the p_
number column to enforce the following format mask:

(XXX) XXX-XXXX

Example 4-1 Enforcing a Phone Number Format with Regular Expressions

CREATE TABLE contacts (
1 _name VARCHAR?2 (30) ,
p_number VARCHAR2 (30)
CONSTRAINT c_contacts_pnf
CHECK (REGEXP_LIKE (p_number, '~\(\d{3}\) \d{3}-\d{4}s'))
)i

Table 4-6 explains the elements of the regular expression.

Table 4-6 Explanation of the Regular Expression Elements in Example 4—1

Regular Expression
Element Matches . ..

~ The beginning of the string.

4-10 Oracle Database Advanced Application Developer's Guide

Using Regular Expressions in SQL Statements: Scenarios

Table 4-6 (Cont.) Explanation of the Regular Expression Elements in Example 4-1

Regular Expression
Element Matches . ..

\ (A left parenthesis. The backward slash (\) is an escape character that
indicates that the left parenthesis following it is a literal rather than a
grouping expression.

\d{3} Exactly three digits.

\) A right parenthesis. The backward slash (\) is an escape character that
indicates that the right parenthesis following it is a literal rather than a
grouping expression.

(space character) A space character.
\d{3} Exactly three digits.
- A hyphen.

\d{4} Exactly four digits.

$ The end of the string.

Example 4-2 shows a SQL script that attempts to insert seven phone numbers into the
contacts table. Only the first two INSERT statements use a format that conforms to
the c_contacts_pnf constraint; the remaining statements generate CHECK constraint
erTors.

Example 4-2 insert_contacts.sql

-- first two statements use valid phone number format
INSERT INTO contacts (p_number)

VALUES('(650) 555-5555");
INSERT INTO contacts (p_number)
VALUES(' (215) 555-3427');

-- remaining statements generate check contraint errors
INSERT INTO contacts (p_number)
VALUES('650 555-5555")
INSERT INTO contacts (p_number)
VALUES('650 555 5555)
INSERT INTO contacts (p_number)
VALUES('650-555-5555")i
)

)

)

)

1
i

INSERT INTO contacts (p_number

VALUES(' (650)555-5555" ;
INSERT INTO contacts (p_number
VALUES(' (650) 555-5555" ;

i

/

Using Back References to Reposition Characters

As explained in Table 4-2, back references store matched subexpressions in a
temporary buffer, thereby enabling you to reposition characters. You access buffers
with the \ n notation, where n is a number between 1 and 9. Each subexpression is
contained in parentheses and is numbered from left to right.

Example 4-3 creates a famous_people table and populates the famous_
people.names column with names in different formats.

Example 4-3 Using Back References to Reposition Characters

CREATE TABLE famous_people
(names VARCHAR2 (30));

Using Regular Expressions in Database Applications 4-11

Using Regular Expressions in SQL Statements: Scenarios

-- populate table with data
INSERT INTO famous_people
VALUES ('John Quincy Adams');
INSERT INTO famous_people
VALUES ('Harry S. Truman');
INSERT INTO famous_people
VALUES ('John Adams');
INSERT INTO famous_people
VALUES (' John Quincy Adams');
INSERT INTO famous_people
VALUES ('John_Quincy_ Adams');
COMMIT;

Example 4-4 shows a query that repositions names in the format "first middle last" to
the format "last, first middle". It ignores names not in the format "first middle last".

Example 4-4 Using Back References to Reposition Characters

SELECT names "names",
REGEXP_REPLACE (names,
"MA\SH) \s (\S+) \s(\S+)$",
"\3, \11\2")
AS "names after regexp"
FROM famous_people;

Table 4-7 explains the elements of the regular expression.

Table 4-7 Explanation of the Regular Expression Elements in Example 4-4

Regular Expression

Element Description

~ Matches the beginning of the string.

S Matches the end of the string.

(\S+) Matches one or more nonspace characters. The parentheses are not
escaped so they function as a grouping expression.

\s Matches a whitespace character.

\1 Substitutes the first subexpression, that is, the first group of

parentheses in the matching pattern.

\2 Substitutes the second subexpression, that is, the second group of
parentheses in the matching pattern.

\3 Substitutes the third subexpression, that is, the third group of
parentheses in the matching pattern.

, Inserts a comma character.

Example 4-5 shows the result set of the query in Example 4—4. The regular expression
matched only the first two rows.

Example 4-5 Result Set of Regular Expression Query

John Quincy Adams
Adams, John Quincy

4-12 Oracle Database Advanced Application Developer's Guide

Using Regular Expressions in SQL Statements: Scenarios

Harry S. Truman
Truman, Harry S.

John Adams
John Adams

John Quincy Adams
John Quincy Adams

John_Quincy_Adams
John_Quincy_Adams

Using Regular Expressions in Database Applications 4-13

Using Regular Expressions in SQL Statements: Scenarios

4-14 Oracle Database Advanced Application Developer's Guide

O

Using Indexes in Database Applications

This chapter explains how to use indexes in database applications.
Topics:

= Privileges Needed to Create Indexes

= Guidelines for Application-Specific Indexes

= Examples of Creating Basic Indexes

= When to Use Domain Indexes

s When to Use Function-Based Indexes

See Also:

s Oracle Database Administrator’s Guide for information about
creating and managing indexes

» Oracle Database Performance Tuning Guide for detailed information
about using indexes

» Oracle Database SQL Language Reference for the syntax of
statements to work with indexes

» Oracle Database Administrator’s Guide for information on creating
hash clusters to improve performance, as an alternative to
indexing

Privileges Needed to Create Indexes

When using indexes in an application, you might need to request that the DBA grant
privileges or make changes to initialization parameters.

To create a new index, you must own, or have the INDEX object privilege for, the
corresponding table. The schema that contains the index must also have a quota for
the tablespace intended to contain the index, or the UNLIMITED TABLESPACE system
privilege. To create an index in another user's schema, you must have the CREATE ANY
INDEX system privilege.

Guidelines for Application-Specific Indexes

You can create indexes on columns to speed up queries. Indexes provide faster access
to data for operations that return a small portion of a table's rows.

In general, create an index on a column in any of the following situations:

s The column is queried frequently.

Using Indexes in Database Applications 5-1

Guidelines for Application-Specific Indexes

m A referential constraint exists on the column.
= A UNIQUE key constraint exists on the column.

You can create an index on any column; however, if the column is not used in any of
these situations, creating an index on the column does not increase performance and
the index takes up resources unnecessarily.

Although the database creates an index for you on a column with a constraint,
explicitly creating an index on such a column is recommended.

You can use the following techniques to determine which columns are best candidates
for indexing:

s Use the EXPLAIN PLAN feature to show a theoretical execution plan of a given
query statement.

= Use the dynamic performance view V$SQL_PLAN to determine the actual
execution plan used for a given query statement.

Sometimes, if an index is not being used by default and it would be more efficient to
use that index, you can use a query hint so that the index is used.

The following sections explain how to create, alter, and drop indexes using SQL
statements, and give guidelines for managing indexes.

See Also:

» Oracle Database Performance Tuning Guide for information on using
the V$SQL_PLAN view, the EXPLAIN PLAN statement, query hints,
and measuring the performance benefits of indexes

» Oracle Database Reference for general information about the
V$SQL__PLAN view
Topics:
s Which Come First, Data or Indexes?
s Create a New Temporary Table Space Before Creating Indexes
= Index the Correct Tables and Columns
» Limit the Number of Indexes for Each Table
s Choose Column Order in Composite Indexes
» Gather Index Statistics

s Drop Unused Indexes

Which Come First, Data or Indexes?

Typically, you insert or load data into a table (using SQL*Loader or Import) before
creating indexes. Otherwise, the overhead of updating the index slows down the insert
or load operation. The exception to this rule is that you must create an index for a
cluster before you insert any data into the cluster.

Create a New Temporary Table Space Before Creating Indexes

When you create an index on a table that already has data, Oracle Database must use
sort space to create the index. The database uses the sort space in memory allocated for
the creator of the index (the amount for each user is determined by the initialization
parameter SORT_AREA_SIZE), but the database must also swap sort information to

5-2 Oracle Database Advanced Application Developer's Guide

Guidelines for Application-Specific Indexes

and from temporary segments allocated on behalf of the index creation. If the index is
extremely large, it can be beneficial to complete the following steps:

1.
2.

Create a new temporary tablespace using the CREATE TABLESPACE statement.

Use the TEMPORARY TABLESPACE option of the ALTER USER statement to make
this your new temporary tablespace.

Create the index using the CREATE INDEX statement.

Drop this tablespace using the DROP TABLESPACE statement. Then use the ALTER
USER statement to reset your temporary tablespace to your original temporary
tablespace.

Under certain conditions, you can load data into a table with the SQL*Loader "direct
path load", and an index can be created as data is loaded.

See Also: Oracle Database Utilities for information on direct path load

Index the Correct Tables and Columns

Use the following guidelines for determining when to create an index:

Create an index if you frequently want to retrieve less than about 15% of the rows
in a large table. This threshold percentage varies greatly, however, according to the
relative speed of a table scan and how clustered the row data is about the index
key. The faster the table scan, the lower the percentage; the more clustered the row
data, the higher the percentage.

Index columns that are used for joins to improve join performance.

Primary and unique keys automatically have indexes, but you might want to
create an index on a foreign key; see Chapter 6, "Maintaining Data Integrity in
Database Applications" for more information.

Small tables do not require indexes; if a query is taking too long, then the table
might have grown from small to large.

Some columns are strong candidates for indexing. Columns with one or more of the
following characteristics are good candidates for indexing:

Values are unique in the column, or there are few duplicates.
There is a wide range of values (good for regular indexes).
There is a small range of values (good for bitmap indexes).

The column contains many nulls, but queries often select all rows having a value.
In this case, a comparison that matches all the non-null values, such as:

WHERE COL_X >= -9.99 *power (10,125)

is preferable to

WHERE COL_X IS NOT NULL

This is because the first uses an index on COL_X (assuming that COL_X is a
numeric column).

Columns with the following characteristics are less suitable for indexing:

There are many nulls in the column and you do not search on the non-null values.

LONG and LONG RAW columns cannot be indexed.

Using Indexes in Database Applications 5-3

Guidelines for Application-Specific Indexes

The size of a single index entry cannot exceed roughly one-half (minus some
overhead) of the available space in the data block. Consult with the database
administrator for assistance in determining the space required by an index.

Limit the Number of Indexes for Each Table

The more indexes, the more overhead is incurred as the table is altered. When rows are
inserted or deleted, all indexes on the table must be updated. When a column is
updated, all indexes on the column must be updated.

You must weigh the performance benefit of indexes for queries against the
performance overhead of updates. For example, if a table is primarily read-only, you
might use more indexes; but, if a table is heavily updated, you might use fewer
indexes.

Choose Column Order in Composite Indexes

Although you can specify columns in any order in the CREATE INDEX statement, the
order of columns in the CREATE INDEX statement can affect query performance. In
general, put the column expected to be used most often first in the index. You can
create a composite index (using several columns), and the same index can be used for
queries that reference all of these columns, or just some of them.

For example, assume the columns of the VENDOR_PARTS table are as shown in
Example 5-1.

Example 5-1 VENDOR_PARTS Table

VEND ID PART NO UNIT COST
1012 10-440 25

1012 10-441 39

1012 457 4.95

1010 10-440 .27

1010 457 5.10

1220 8-300 1.33

1012 8-300 1.19

1292 457 5.28

Assume that there are five vendors, and each vendor has about 1000 parts.

Suppose that the VENDOR_PARTS table is commonly queried by SQL statements such
as the following:

SELECT * FROM vendor_parts
WHERE part_no = 457 AND vendor_id = 1012;

To increase the performance of such queries, you might create a composite index
putting the most selective column first; that is, the column with the most values:

CREATE INDEX ind_vendor_id
ON vendor_parts (part_no, vendor_id);

Composite indexes speed up queries that use the leading portion of the index. So in
this example, the performance of queries with WHERE clauses using only the PART_NO
column improve also. Because there are only five distinct values, placing a separate
index on VENDOR_ID serves no purpose.

5-4 Oracle Database Advanced Application Developer's Guide

Examples of Creating Basic Indexes

Gather Index Statistics

The database can use indexes more effectively when it has statistical information about
the tables involved in the queries. You or the DBA can periodically gather statistics by
invoking procedures such as DBMS_STATS.GATHER_TABLE_STATISTICS and DBMS_
STATS.GATHER_SCHEMA_STATISTICS. For information about these procedures, see
Oracle Database PL/SQL Packages and Types Reference.

Drop Unused Indexes

You might drop an index if:

= It does not speed up queries. The table might be very small, or there might be
many rows in the table but very few index entries.

= The queries in your applications do not use the index.

To find out if an index is being used, you can monitor it. If you see that the index is
never used, rarely used, or used in a way that seems to provide no benefit, you can
either drop it immediately or you can make it invisible until you are sure that you do
not need it, and then drop it. If you discover that you do need the invisible index, you
can make it visible again.

When you drop an index, all extents of the index's segment are returned to the
containing tablespace and become available for other objects in the tablespace.

To drop an index, use the SQL statement DROP INDEX. For example, the following
statement drops the index named Emp_name:

DROP INDEX Emp_ename;

If you drop a table, then all associated indexes are dropped.
To drop an index, the index must be contained in your schema or you must have the
DROP ANY INDEX system privilege.

See Also:

m Oracle Database Administrator’s Guide for information about
monitoring index usage

m Oracle Database Administrator’s Guide for information about
making indexes invisible

» Oracle Database SQL Language Reference for information about the
DROP INDEX statement

Examples of Creating Basic Indexes

You can create an index for a table to improve the performance of queries issued
against the corresponding table. You can also create an index for a cluster. You can
create a composite index on multiple columns up to a maximum of 32 columns. A
composite index key cannot exceed roughly one-half (minus some overhead) of the
available space in the data block.

Oracle Database automatically creates an index to enforce a UNIQUE or PRIMARY KEY
constraint. In general, it is better to create such constraints to enforce uniqueness,
instead of using the obsolete CREATE UNIQUE INDEX syntax.

Use the SQL statement CREATE INDEX to create an index.

Using Indexes in Database Applications 5-5

When to Use Domain Indexes

In this example, an index is created for a single column, to speed up queries that test
that column:

CREATE INDEX emp_ename ON emp_tab (ename) ;

In this example, several storage settings are explicitly specified for the index:

CREATE INDEX emp_ename ON emp_tab (ename)
TABLESPACE users

STORAGE (INITIAL 20K
NEXT 20k
PCTINCREASE 75)
PCTFREE 0;

In this example, the index applies to two columns, to speed up queries that test either
the first column or both columns:

CREATE INDEX emp_ename ON emp_tab(ename, empno);

In this example, the query is going to sort on the function UPPER (ENAME) . An index
on the ENAME column itself does not speed up this operation, and it might be slow to
invoke the function for each result row. A function-based index precomputes the result
of the function for each column value, speeding up queries that use the function for
searching or sorting:

CREATE INDEX emp_upper_ename ON emp_tab (UPPER (ename)) ;

When to Use Domain Indexes

Domain indexes are appropriate for special-purpose applications implemented using
data cartridges. The domain index helps to manipulate complex data, such as spatial,
audio, or video data. If you need to develop such an application, see Oracle Database
Data Cartridge Developer’s Guide.

Oracle Database supplies a number of specialized data cartridges to help manage
these kinds of complex data. So, if you need to create a search engine, or a geographic
information system, you can do much of the work simply by creating the right kind of
index.

When to Use Function-Based Indexes

5-6

A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

Note:

= The index is more effective if you gather statistics for the table or
schema, using the procedures in the DBMS_STATS package.

s The index cannot contain any null values. Either ensure that the
appropriate columns contain no null values, or use the NVL
function in the index expression to substitute some other value for
nulls.

The expression indexed by a function-based index can be an arithmetic expression or
an expression that contains a PL/SQL function, package function, C callout, or SQL

Oracle Database Advanced Application Developer's Guide

When to Use Function-Based Indexes

function. Function-based indexes also support linguistic sorts based on collation keys,
efficient linguistic collation of SQL statements, and case-insensitive sorts.

Like other indexes, function-based indexes improve query performance. For example,
if you need to access a computationally complex expression often, then you can store it
in an index. Then when you need to access the expression, it is already computed. You
can find a detailed description of the advantages of function-based indexes in
"Advantages of Function-Based Indexes" on page 5-7.

Function-based indexes have all of the same properties as indexes on columns. Unlike
indexes on columns that can be used by both cost-based and rule-based optimization,
however, function-based indexes can be used by only by cost-based optimization.
Other restrictions on function-based indexes are described in "Restrictions on
Function-Based Indexes" on page 5-8.

See Also:

» Oracle Database Concepts for general information about
function-based indexes

» Oracle Database Administrator’s Guide for information about
creating function-based indexes

Topics:
= Advantages of Function-Based Indexes
s Restrictions on Function-Based Indexes

= Examples of Function-Based Indexes

Advantages of Function-Based Indexes

Function-based indexes:

= Increase the number of situations where the optimizer can perform a range scan
instead of a full table scan.

For example, consider the expression in this WHERE clause:

CREATE INDEX Idx ON Example_tab(Column_a + Column_b) ;
SELECT * FROM Example_tab WHERE Column_a + Column_b < 10;

The optimizer can use a range scan for this query because the index is built on
(column_a + column_b). Range scans typically produce fast response times if the
predicate selects less than 15% of the rows of a large table. The optimizer can
estimate how many rows are selected by expressions more accurately if the
expressions are materialized in a function-based index. (Expressions of
function-based indexes are represented as virtual columns and ANALYZE can build
histograms on such columns.)

= Precompute the value of a computationally intensive function and store it in the
index.

An index can store computationally intensive expression that you access often.
When you need to access a value, it is already computed, greatly improving query
execution performance.

= Create indexes on object columns and REF columns.

Using Indexes in Database Applications 5-7

When to Use Function-Based Indexes

Methods that describe objects can be used as functions on which to build indexes.
For example, you can use the MAP method to build indexes on an object type
column.

= Create more powerful sorts.

You can perform case-insensitive sorts with the UPPER and LOWER functions,
descending order sorts with the DESC keyword, and linguistic-based sorts with the
NLSSORT function.

Note: Oracle Database sorts columns with the DESC keyword in
descending order. Such indexes are treated as function-based indexes.
Descending indexes cannot be bitmapped or reverse, and cannot be
used in bitmapped optimizations. To get the DESC functionality prior
to Oracle Database version 8, remove the DESC keyword from the
CREATE INDEX statement.

Another function-based index calls the object method distance_from_equator for
each city in the table. The method is applied to the object column Reg_0Ob3j. A query
can use this index to quickly find cities that are more than 1000 miles from the equator:

CREATE INDEX Distance_index
ON Weatherdata_tab (Distance_from_equator (Reg_obj));

SELECT * FROM Weatherdata_tab
WHERE (Distance_from_equator (Reg_Obj)) > '1000';

Another index stores the temperature delta and the maximum temperature. The result
of the delta is sorted in descending order. A query can use this index to quickly find
table rows where the temperature delta is less than 20 and the maximum temperature
is greater than 75.

CREATE INDEX compare_index
ON Weatherdata_tab ((Maxtemp - Mintemp) DESC, Maxtemp) ;

SELECT * FROM Weatherdata_tab
WHERE ((Maxtemp - Mintemp) < '20' AND Maxtemp > '75');

Restrictions on Function-Based Indexes

Function-based indexes have the following restrictions:

= Only cost-based optimization can use function-based indexes. Remember to
invoke DBMS_STATS.GATHER_TABLE_STATISTICS or DBMS_STATS.GATHER_
SCHEMA_STATISTICS, for the function-based index to be effective.

= Any top-level or package-level PL/SQL functions that are used in the index
expression must be declared as DETERMINISTIC. That is, they always return the
same result given the same input, for example, the UPPER function. You must
ensure that the subprogram really is deterministic, because Oracle Database does
not check that the assertion is true.

The following semantic rules demonstrate how to use the keyword
DETERMINISTIC:

= You can declare a top level subprogram as DETERMINISTIC.

5-8 Oracle Database Advanced Application Developer's Guide

When to Use Function-Based Indexes

= You can declare a PACKAGE level subprogram as DETERMINISTIC in the
PACKAGE specification but not in the PACKAGE BODY. Errors are raised if
DETERMINISTIC is used inside a PACKAGE BODY

= You can declare a private subprogram (declared inside another subprogram or
a PACKAGE BODY) as DETERMINISTIC

= A DETERMINISTIC subprogram can invoke another subprogram whether the
invoked subprogram is declared as DETERMINISTIC or not.

s If you change the semantics of a DETERMINISTIC function and recompile it, then
existing function-based indexes and materialized views report results for the prior
version of the function. Thus, if you change the semantics of a function, you must
manually rebuild any dependent function-based indexes and materialized views.

= Expressions in a function-based index cannot contain any aggregate functions. The
expressions must reference only columns in a row in the table.

= You must analyze the table or index before the index is used.
= Bitmap optimizations cannot use descending indexes.
= Function-based indexes are not used when OR-expansion is done.

s The index function cannot be marked NOT NULL. To avoid a full table scan, you
must ensure that the query cannot fetch null values.

= Function-based indexes cannot use expressions that return VARCHAR2 or RAW data
types of unknown length from PL/SQL functions. A workaround is to limit the
size of the function's output by indexing a substring of known length:

-- INITIALS() might return 1 letter, 2 letters, 3 letters, and so on.
-- We limit the return value to 10 characters for purposes of the index.
CREATE INDEX func_substr_index ON

emp_tab(substr(initials(ename),1,10);

-- Invoke SUBSTR both when creating the index and when referencing
-- the function in queries.
SELECT SUBSTR(initials(ename),1,10) FROM emp_tab;

See Also: Oracle Database SQL Language Reference for an account of
CREATE FUNCTION restrictions.

Examples of Function-Based Indexes

s Function-Based Index for Case-Insensitive Searches
s Precomputing Arithmetic Expressions with a Function-Based Index

= Function-Based Index for Language-Dependent Sorting

Function-Based Index for Case-Insensitive Searches
The following statement allows faster case-insensitive searches in table EMP_TAB.

CREATE INDEX Idx ON Emp_tab (UPPER(Ename));

The SELECT statement uses the function-based index on UPPER(e_name) to return all
of the employees with name like :KEYCOL.

SELECT * FROM Emp_tab WHERE UPPER (Ename) like :KEYCOL;

Using Indexes in Database Applications 5-9

When to Use Function-Based Indexes

Precomputing Arithmetic Expressions with a Function-Based Index
The following statement computes a value for each row using columns A, B, and C,
and stores the results in the index.

CREATE INDEX Idx ON Fbi_tab (A + B * (C - 1), A, B);

The SELECT statement can either use index range scan (because the expression is a
prefix of index IDX) or index fast full scan (which might be preferable if the index has
specified a high parallel degree).

SELECT a FROM Fbi_tab WHERE A + B * (C - 1) < 100;

Function-Based Index for Language-Dependent Sorting

This example demonstrates how a function-based index can be used to sort based on
the collation order for a national language. The NLSSORT function returns a sort key
for each name, using the collation sequence GERMAN.

CREATE INDEX Nls_index
ON Nls_tab (NLSSORT(Name, 'NLS_SORT = German'));

The SELECT statement selects all of the contents of the table and orders it by NAME.
The rows are ordered using the German collation sequence. The Globalization Support
parameters are not needed in the SELECT statement, because in a German session,
NLS_ SORT is set to German and NLS_COMP is set to ANSTI.

SELECT * FROM Nls_tab WHERE Name IS NOT NULL
ORDER BY Name;

5-10 Oracle Database Advanced Application Developer's Guide

6

Maintaining Data Integrity in Database
Applications

This chapter explains how to use constraints to enforce the business rules associated
with your database and prevent the entry of invalid information into tables.

Topics:

s Overview of Constraints

= Enforcing Referential Integrity with Constraints
» Minimizing Space and Time Overhead for Indexes Associated with Constraints
= Guidelines for Indexing Foreign Keys

= Referential Integrity in a Distributed Database

s When to Use CHECK Constraints

» Examples of Defining Constraints

s Enabling and Disabling Constraints

= Altering Constraints

= Dropping Constraints

s Managing FOREIGN KEY Constraints

= Viewing Definitions of Constraints

Overview of Constraints

You can define constraints to enforce business rules on data in your tables. Business
rules specify conditions and relationships that must always be true, or must always be
false. Because each company defines its own policies about things like salaries,
employee numbers, inventory tracking, and so on, you can specify a different set of
rules for each database table.

When an integrity constraint applies to a table, all data in the table must conform to
the corresponding rule. When you issue a SQL statement that modifies data in the
table, Oracle Database ensures that the new data satisfies the integrity constraint,
without the need to do any checking within your program.

Maintaining Data Integrity in Database Applications 6-1

Overview of Constraints

Enforcing Business Rules with Constraints

You can enforce rules by defining constraints more reliably than by adding logic to
your application. Oracle Database can check that all the data in a table obeys an
integrity constraint faster than an application can.

For example, to ensure that each employee works for a valid department:
1. Create a rule that all values in the department table are unique:
ALTER TABLE Dept_tab ADD PRIMARY KEY (Deptno);
2. Create a rule that every department listed in the employee table must match one
of the values in the department table:
ALTER TABLE Emp_tab
ADD FOREIGN KEY (Deptno) REFERENCES Dept_tab (Deptno) ;
When you add a new employee record to the table, Oracle Database automatically
checks that its department number appears in the department table.

To enforce this rule without constraints, you can use a trigger to query the department
table and test that each new employee's department is valid. This method is less
reliable than using constraints, because SELECT in Oracle Database uses consistent
read (CR), so the query might miss uncommitted changes from other transactions.

Enforcing Business Rules with Application Logic

You might enforce business rules through application logic as well as through
constraints, if you can filter out bad data before attempting an insert or update. This
might let you provide instant feedback to the user, and reduce the load on the
database. This technique is appropriate when you can determine that data values are
wrong or out of range without checking against any data already in the table.

Creating Indexes for Use with Constraints

All enabled unique and primary keys require corresponding indexes. Create these
indexes by hand, rather than letting the database create them. Note that:

= Constraints use existing indexes where possible, rather than creating new ones.

= Unique and primary keys can use non-unique as well as unique indexes. They can
even use only the first few columns of non-unique indexes.

= At most one unique or primary key can use each non-unique index.
s The column orders in the index and the constraint do not need to match.

» If you need to check whether an index is used by a constraint, for example when
you want to drop the index, the object number of the index used by a unique or
primary key constraint is stored in CDEF$.ENABLED for that constraint. It is not
shown in any static data dictionary view or dynamic performance view.

= Oracle Database does not automatically index foreign keys.

When to Use NOT NULL Constraints

By default, all columns can contain nulls. Only define NOT NULL constraints for
columns of a table that absolutely require values at all times.

For example, a new employee's manager or hire date might be temporarily omitted.
Some employees might not have a commission. Columns like these must not have NOT

6-2 Oracle Database Advanced Application Developer's Guide

Overview of Constraints

NULL constraints. However, an employee name might be required from the very
beginning, and you can enforce this rule with a NOT NULL integrity constraint.

NOT NULL constraints are often combined with other types of constraints to further
restrict the values that can exist in specific columns of a table. Use the combination of
NOT NULL and UNIQUE key constraints to force the input of values in the UNIQUE key;
this combination of data integrity rules eliminates the possibility that a new row's data
conflicts with an existing row's data.

Because Oracle Database indexes do not store keys that are all null, if you want to
allow index-only scans of the table or some other operation that requires indexing all
rows, you must put a NOT NULL constraint on at least one indexed column.

See Also: "Defining Relationships Between Parent and Child Tables"
on page 6-8
A NOT NULL constraint is specified like this:
ALTER TABLE emp MODIFY ename NOT NULL;
Example 6-1 shows an example of a table with NOT NULL constraints. The JOB column
has a NOT NULL constraint, so no row can have the value NULL in the JOB column. The

COMM column does not have a NOT NULL constraint, so any row can have the value
NULL in the COMM column.

Example 6-1 EMPLOYEES Table

ID LNAME JOB MGR HIREDATE SAL COMM DEPTNO
100 King AD_PRES 17-JUN-87 24000 90
101 Kochhar AD_VP 100 21-SEP-89 17000 90
102 De Hann AD_VP 100 13-JAN-93 17000 90
103 Hunold IT_PROG 102 03-JAN-90 9000 60

When to Use Default Column Values

Assign default values to columns that contain a typical value. For example, in the
DEPT_TAB table, if most departments are located at one site, then the default value for
the LOC column can be set to this value (such as NEW YORK).

Default values can help avoid errors where there is a number, such as zero, that
applies to a column that has no entry. For example, a default value of zero can simplify
testing, by changing a test like this:

IF sal IS NOT NULL AND sal < 50000

to the simpler form:

IF sal < 50000

Depending upon your business rules, you might use default values to represent zero
or false, or leave the default values as NULL to signify an unknown value.

Defaults are also useful when you use a view to make a subset of a table's columns
visible. For example, you might allow users to insert rows through a view. The base
table might also have a column named INSERTER, not included in the definition of the
view, to log the user that inserts each row. To record the user name automatically,
define a default value that invokes the USER function:

CREATE TABLE audit_trail
(

Maintaining Data Integrity in Database Applications 6-3

Overview of Constraints

valuel NUMBER,

value2 VARCHAR2(32),

inserter VARCHAR2 (30) DEFAULT USER
)i

Setting Default Column Values

Default values can be defined using any literal, or almost any expression, including
calls to the following:

s SYSDATE

s SYS_CONTEXT
s USER

s USERENV

= UID

Default values cannot include expressions that refer to a sequence, PL/SQL function,
column, LEVEL, ROWNUM, or PRIOR. The datatype of a default literal or expression
must match or be convertible to the column datatype.

Sometimes the default value is the result of a SQL function. For example, a call to

SYS_CONTEXT can set a different default value depending on conditions such as the
user name. To be used as a default value, a SQL function must have parameters that
are all literals, cannot reference any columns, and cannot invoke any other functions.

If you do not explicitly define a default value for a column, the default for the column
is implicitly set to NULL.

You can use the keyword DEFAULT within an INSERT statement instead of a literal
value, and the corresponding default value is inserted.

Choosing a Primary Key for a Table

Each table can have one primary key, which uniquely identifies each row in a table
and ensures that no duplicate rows exist. When selecting a primary key, use these
guidelines:

= Whenever practical, use a column containing a sequence number. This satisfies all
the other guidelines.

s Choose a column whose data values are unique, because the purpose of a primary
key is to uniquely identify each row of the table.

s Choose a column whose data values never change. A primary key value is only
used to identify a row in the table, and its data must never be used for any other
purpose.

»s Choose a column that does not contain any nulls. A PRIMARY KEY constraint, by
definition, does not allow any row to contain a null in any column that is part of
the primary key.

» Choose a column that is short and numeric. Short primary keys are easy to type.

You can use sequence numbers to easily generate numeric primary keys.

= Minimize your use of composite primary keys. Although composite primary keys
are allowed, they do not satisfy all of the other recommendations. For example,
composite primary key values are long and cannot be assigned by sequence
numbers.

6-4 Oracle Database Advanced Application Developer's Guide

Overview of Constraints

When to Use UNIQUE Constraints

Choose columns for unique keys carefully. The purpose of these constraints is different
from that of primary keys. Unique key constraints are appropriate for any column
where duplicate values are not allowed. Primary keys identify each row of the table
uniquely, and typically contain values that have no significance other than being
unique. Figure 61 shows an example of a table with a unique key constraint.

Figure 6—1 Table with a UNIQUE Constraint

— UNIQUE Key Constraint
Table DEPARTMENTS (no row may duplicate a
DEPID | DNAME | LOC value in the constraint's

10 Administration [1700 column)
20 Marketing 1800
30 Purchasing 1700
40 Human Resources [2400
INSERT
INTO
50 MARKETING 1700 —4— This row violates the UNIQUE key constraint,
because "MARKETING" is already present in another
row; therefore, it is not allowed in the table.
60 2400 —§— This row is allowed because a null value is
entered for the DNAME column; however, if a

NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

Note: You cannot have identical values in the non-null columns of a
composite UNIQUE key constraint (UNIQUE key constraints allow
NULL values).

Some examples of good unique keys include:

= Anemployee social security number (the primary key might be the employee
number)

= A truck license plate number (the primary key might be the truck number)

= A customer phone number, consisting of the two columns AREA_CODE and
LOCAL_PHONE (the primary key might be the customer number)

= A department name and location (the primary key might be the department
number)

When to Use Constraints On Views

The constraints in this chapter apply to tables, not views.

Although you can declare constraints on views, such constraints do not help maintain
data integrity. Instead, they are used to enable query rewrites on queries involving
views, which helps performance with materialized views and other data warehousing
features. Such constraints are always declared with the DISABLE keyword, and you
cannot use the VALIDATE keyword. The constraints are never enforced, and there is no
associated index.

Maintaining Data Integrity in Database Applications 6-5

Enforcing Referential Integrity with Constraints

See Also: Oracle Database Data Warehousing Guide for information
about using constraints in data warehousing

Enforcing Referential Integrity with Constraints

Whenever two tables contain one or more common columns, Oracle Database can
enforce the relationship between the two tables through a referential integrity
constraint. Define a PRIMARY or UNIQUE key constraint on the column in the parent
table (the one that has the complete set of column values). Define a FOREIGN KEY
constraint on the column in the child table (the one whose values must refer to existing
values in the other table).

See Also: "Defining Relationships Between Parent and Child Tables"
on page 6-8 for information on defining additional constraints,
including the foreign key

Figure 6-2 shows a foreign key defined on the department number. It guarantees that
every value in this column must match a value in the primary key of the department
table. This constraint prevents erroneous department numbers from getting into the
employee table.

Foreign keys can be comprised of multiple columns. Such acomposite foreign key
must reference a composite primary or unique key of the exact same structure, with
the same number of columns and the same datatypes. Because composite primary and
unique keys are limited to 32 columns, a composite foreign key is also limited to 32
columns.

6-6 Oracle Database Advanced Application Developer's Guide

Enforcing Referential Integrity with Constraints

Figure 6-2 Tables with FOREIGN KEY Constraints

Parent Key
Primary key of
referenced table
Table DEPARTMENTS
DEPID | DNAME | Loc
10 Administration [1700
20 Marketing 1800
30 Purchasing 1700 Foreign Ke
40 Human Resources |2400 (valuegs in dgpendent
il table must match a value
Referenced or Seell . in unique key or primary
Parent Table .- key of referenced table)
Table EMPLOYEES
ID | LNAME | JOB MGR HIREDATE SAL COMM | DEPTNO
100 King AD_PRES 17-JUN-87 24000 90
101 Kochhar AD_VP 100 21-SEP-89 17000 90
102 De Hann AD_VP 100 13-JAN-93 17000 90
103 Hunold IT_PROG 102 03-JAN-90 9000 60 . .
This row violates
the referential
. constraint
Dependent or Child Table because "50"
is not present
in the referenced
table's primary
INSERT key; therefore,
INTO .
the row is not
allowed in
556 CRICKET PU_CLERK 31-0CT-96 5000 25 —3%- the table.
556 CRICKET PU_CLERK 31-0CT-96 5000 —13& Thisrow is
allowed in the
table because a
null value is
entered in the
DEPTNO column;

FOREIGN KEY Constraints and NULL Values

however, if a not
null constraint is
also defined for
this column, this
row is not allowed.

Foreign keys allow key values that are all NULL, even if there are no matching

PRIMARY or UNIQUE keys.

= By default (without any NOT NULL or CHECK clauses), the FOREIGN KEY constraint
enforces the match none rule for composite foreign keys in the ANSI/ISO

standard.

= To enforce the match full rule for NULL values in composite foreign keys, which
requires that all components of the key be NULL or all be non-null, define a CHECK
constraint that allows only all nulls or all non-nulls in the composite foreign key.

For example, with a composite key comprised of columns 2, B, and C:

CHECK ((A IS NULL AND B IS NULL AND C IS NULL) OR
(A IS NOT NULL AND B IS NOT NULL AND C IS NOT NULL))

= In general, it is not possible to use declarative referential integrity to enforce the
match partial rule for NULL values in composite foreign keys, which requires the

Maintaining Data Integrity in Database Applications 6-7

Enforcing Referential Integrity with Constraints

non-null portions of the key to appear in the corresponding portions in the
primary or unique key of a single row in the referenced table. You can often use
triggers to handle this case, as described in Oracle Database PL/SQL Language
Reference.

Defining Relationships Between Parent and Child Tables

Several relationships between parent and child tables can be determined by the other
types of constraints defined on the foreign key in the child table.

No Constraints on the Foreign Key When no other constraints are defined on the
foreign key, any number of rows in the child table can reference the same parent key
value. This model allows nulls in the foreign key.

This model establishes a one-to-many relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. An example of such a
relationship is shown in Figure 6-2 between the employee and department tables.
Each department (parent key) has many employees (foreign key), and some employees
might not be in a department (nulls in the foreign key).

NOT NULL Constraint on the Foreign Key When nulls are not allowed in a foreign
key, each row in the child table must explicitly reference a value in the parent key
because nulls are not allowed in the foreign key.

Any number of rows in the child table can reference the same parent key value, so this
model establishes a one-to-many relationship between the parent and foreign keys.
However, each row in the child table must have a reference to a parent key value; the
absence of a value (a null) in the foreign key is not allowed. The same example in the
previous section can be used to illustrate such a relationship. However, in this case,
employees must have a reference to a specific department.

UNIQUE Constraint on the Foreign Key When a UNIQUE constraint is defined on the
foreign key, only one row in the child table can reference a given parent key value.
This model allows nulls in the foreign key.

This model establishes a one-to-one relationship between the parent and foreign keys
that allows undetermined values (nulls) in the foreign key. For example, assume that
the employee table had a column named MEMBERNO, referring to an employee
membership number in the company insurance plan. Also, a table named INSURANCE
has a primary key named MEMBERNO, and other columns of the table keep respective
information relating to an employee insurance policy. The MEMBERNO in the employee
table must be both a foreign key and a unique key:

= To enforce referential integrity rules between the EMP_TAB and INSURANCE tables
(the FOREIGN KEY constraint)

= To guarantee that each employee has a unique membership number (the UNIQUE
key constraint)

UNIQUE and NOT NULL Constraints on the Foreign Key When both UNIQUE and
NOT NULL constraints are defined on the foreign key, only one row in the child table
can reference a given parent key value, and because NULL values are not allowed in
the foreign key, each row in the child table must explicitly reference a value in the
parent key.

This model establishes a one-to-one relationship between the parent and foreign keys
that does not allow undetermined values (nulls) in the foreign key. If you expand the
previous example by adding a NOT NULL constraint on the MEMBERNO column of the

6-8 Oracle Database Advanced Application Developer's Guide

Enforcing Referential Integrity with Constraints

employee table, in addition to guaranteeing that each employee has a unique
membership number, you also ensure that no undetermined values (nulls) are allowed
in the MEMBERNO column of the employee table.

Rules for Multiple FOREIGN KEY Constraints

Oracle Database allows a column to be referenced by multiple FOREIGN KEY
constraints; there is no limit on the number of dependent keys. This situation might be
present if a single column is part of two different composite foreign keys.

Deferring Constraint Checks

When Oracle Database checks a constraint, it signals an error if the constraint is not
satisfied. You can use the SET CONSTRAINTS statement to defer checking the validity
of constraints until the end of a transaction.

Note: You cannotissue a SET CONSTRAINTS statement inside a
trigger.

The SET CONSTRAINTS setting lasts for the duration of the transaction, or until
another SET CONSTRAINTS statement resets the mode.

See Also: Oracle Database SQL Language Reference for more
information about the SET CONSTRAINTS statement

Consider the following guidelines when deferring constraint checks:
= Select appropriate data.

You may wish to defer constraint checks on UNIQUE and FOREIGN keys if the data
you are working with has any of the following characteristics:

- Tables are snapshots.

— Some tables contain a large amount of data being manipulated by another
application, which may or may not return the data in the same order.

= Update cascade operations on foreign keys.
= Ensure that constraints are deferrable.

After you have identified and selected the appropriate tables, ensure that their
FOREIGN, UNIQUE and PRIMARY key constraints are created deferrable. You can
do so by issuing statements similar to the following:

CREATE TABLE dept (
deptno NUMBER PRIMARY KEY,
dname VARCHAR2 (30)
)i
CREATE TABLE emp (
empno NUMBER,
ename VARCHAR2 (30),
deptno NUMBER REFERENCES (dept),
CONSTRAINT pk_emp_empno PRIMARY KEY (empno) DEFERRABLE,
CONSTRAINT fk_emp_deptno FOREIGN KEY (deptno)
REFERENCES (dept.deptno) DEFERRABLE);
INSERT INTO dept VALUES (10, 'Accounting');
INSERT INTO dept VALUES (20, 'SALES');
INSERT INTO emp VALUES (1, 'Corleone', 10);

Maintaining Data Integrity in Database Applications 6-9

Minimizing Space and Time Overhead for Indexes Associated with Constraints

INSERT INTO emp VALUES (2, 'Costanza', 20);
COMMIT;

SET CONSTRAINT fk_emp_deptno DEFERRED;
UPDATE dept SET deptno = deptno + 10
WHERE deptno = 20;

SELECT * from emp ORDER BY deptno;

EMPNO ENAME DEPTNO
1 Corleone 10
2 Costanza 20

UPDATE emp SET deptno = deptno + 10
WHERE deptno = 20;
SELECT * FROM emp ORDER BY deptno;

EMPNO ENAME DEPTNO
1 Corleone 10
2 Costanza 30
COMMIT;

m Set all constraints deferred.

Within the application that manipulates the data, you must set all constraints
deferred before you begin processing any data. Use the following DML statement
to set all constraints deferred:

SET CONSTRAINTS ALL DEFERRED;

Note: The SET CONSTRAINTS statement applies only to the current
transaction. The defaults specified when you create a constraint
remain as long as the constraint exists. The ALTER SESSION SET
CONSTRAINTS statement applies for the current session only.

» Check the COMMIT (optional)

You can check for constraint violations before committing by issuing the SET
CONSTRAINTS ALL IMMEDIATE statement just before issuing the COMMIT. If there
are any problems with a constraint, this statement fails and the constraint causing
the error is identified. If you commit while constraints are violated, the transaction
rolls back and you receive an error message.

Minimizing Space and Time Overhead for Indexes Associated with
Constraints

When you create a UNIQUE or PRIMARY key, Oracle Database checks to see if an
existing index can be used to enforce uniqueness for the constraint. If there is no such
index, the database creates one.

When Oracle Database uses a unique index to enforce a constraint, and constraints
associated with the unique index are dropped or disabled, the index is dropped. To
preserve the statistics associated with the index (which would take a long time to

re-create), specify the KEEP INDEX clause on the DROP statement for the constraint.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot disable or
drop the PRIMARY or UNIQUE key constraint or the index.

6-10 Oracle Database Advanced Application Developer's Guide

When to Use CHECK Constraints

Note: UNIQUE and PRIMARY keys with deferrable constraints must
all use non-unique indexes.

To reuse existing indexes when creating unique and primary key constraints, you can
include USING INDEX in the constraint clause. For example:

CREATE TABLE b
(
bl INTEGER,
b2 INTEGER,
CONSTRAINT u_b_1 (bl, b2) USING INDEX (CREATE UNIQUE INDEX b_index on b(bl,
b2),
CONSTRAINT u_b_2 (bl, b2) USING INDEX b_index
)i

Guidelines for Indexing Foreign Keys
Index foreign keys unless the matching unique or primary key is never updated or

deleted.

See Also: Oracle Database Concepts for more information about
indexing foreign keys

Referential Integrity in a Distributed Database

The declaration of a referential constraint cannot specify a foreign key that references a
primary or unique key of a remote table.

However, you can maintain parent/child table relationships across nodes using

triggers.

See Also: Oracle Database PL/SQL Language Reference for more
information about triggers that enforce referential integrity

Note: If you decide to define referential integrity across the nodes of
a distributed database using triggers, be aware that network failures
can make both the parent table and the child table inaccessible.

For example, assume that the child table is in the SALES database, and
the parent table is in the HQ database.

If the network connection between the two databases fails, then some
DML statements against the child table (those that insert rows or
update a foreign key value) cannot proceed, because the referential
integrity triggers must have access to the parent table in the HQ
database.

When to Use CHECK Constraints

Use CHECK constraints when you need to enforce integrity rules based on logical
expressions, such as comparisons. Never use CHECK constraints when any of the other
types of constraints can provide the necessary checking.

See Also: "Choosing Between CHECK and NOT NULL Constraints"
on page 6-13

Maintaining Data Integrity in Database Applications 6-11

When to Use CHECK Constraints

Examples of CHECK constraints include the following:

= A CHECK constraint on employee salaries so that no salary value is greater than
10000.

= A CHECK constraint on department locations so that only the locations "BOSTON",
"NEW YORK", and "DALLAS" are allowed.

= A CHECK constraint on the salary and commissions columns to prevent the
commission from being larger than the salary.

Restrictions on CHECK Constraints

A CHECK constraint requires that a condition be true or unknown for every row of the
table. If a statement causes the condition to evaluate to false, then the statement is
rolled back. The condition of a CHECK constraint has the following limitations:

s The condition must be a boolean expression that can be evaluated using the values
in the row being inserted or updated.

= The condition cannot contain subqueries or sequences.

s The condition cannot include the SYSDATE, UID, USER, or USERENV SQL
functions.

= The condition cannot contain the pseudocolumns LEVEL or ROWNUM.
s The condition cannot contain the PRIOR operator.

s The condition cannot contain a user-defined SQL function.

See Also:

» Oracle Database SQL Language Reference for information about the
LEVEL pseudocolumn

» Oracle Database SQL Language Reference for information about the
ROWNUM pseudocolumn

» Oracle Database SQL Language Reference for information about the
PRIOR operator (used in hierarchical queries)

Designing CHECK Constraints

When using CHECK constraints, remember that a CHECK constraint is violated only if
the condition evaluates to false; true and unknown values (such as comparisons with
nulls) do not violate a check condition. Ensure that any CHECK constraint that you
define is specific enough to enforce the rule.

For example, consider the following CHECK constraint:

CHECK (Sal > 0 OR Comm >= 0)

At first glance, this rule may be interpreted as "do not allow a row in the employee
table unless the employee salary is greater than zero or the employee commission is
greater than or equal to zero." But if a row is inserted with a null salary, that row does
not violate the CHECK constraint, regardless of whether or not the commission value is
valid, because the entire check condition is evaluated as unknown. In this case, you
can prevent such violations by placing NOT NULL constraints on both the SAL and
COMM columns.

6-12 Oracle Database Advanced Application Developer's Guide

Examples of Defining Constraints

Note: If you are not sure when unknown values result in NULL
conditions, review the truth tables for the logical conditions in Oracle
Database SQL Language Reference

Rules for Multiple CHECK Constraints

A single column can have multiple CHECK constraints that reference the column in its
definition. There is no limit to the number of CHECK constraints that can be defined
that reference a column.

The order in which the constraints are evaluated is not defined, so be careful not to
rely on the order or to define multiple constraints that conflict with each other.

Choosing Between CHECK and NOT NULL Constraints

According to the ANSI/ISO standard, a NOT NULL constraint is an example of a CHECK
constraint, where the condition is:

CHECK (Column_name IS NOT NULL)

Therefore, you can write NOT NULL constraints for a single column using either a NOT
NULL constraint or a CHECK constraint. The NOT NULL constraint is easier to use than
the CHECK constraint.

In the case where a composite key can allow only all nulls or all values, you must use a
CHECK integrity constraint. For example, the following expression of a CHECK integrity
constraint allows a key value in the composite key made up of columns C1 and C2 to
contain either all nulls or all values:

CHECK ((Cl IS NULL AND C2 IS NULL) OR
(C1 IS NOT NULL AND C2 IS NOT NULL))

Examples of Defining Constraints

Here are some examples showing how to create simple constraints during the
prototype phase of your database design.

Each constraint is given a name in these examples. Naming the constraints prevents
the database from creating multiple copies of the same constraint, with different
system-generated names, if the DDL is run multiple times.

See Also: Oracle Database Administrator’s Guide for information on
creating and maintaining constraints for a large production database

Example: Defining Constraints with the CREATE TABLE Statement

The following examples of CREATE TABLE statements show the definition of several
constraints:

CREATE TABLE DeptTab (
Deptno NUMBER(3) CONSTRAINT pk_DeptTab_Deptno PRIMARY KEY,
Dname VARCHAR2 (15),
Loc VARCHAR2 (15),
CONSTRAINT u_DeptTab_Dname_Loc UNIQUE (Dname, Loc),
CONSTRAINT c_DeptTab_Loc
CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')));

CREATE TABLE EmpTab (

Maintaining Data Integrity in Database Applications 6-13

Examples of Defining Constraints

Empno NUMBER (5) CONSTRAINT pk_EmpTab_Empno PRIMARY KEY,

)
Ename VARCHAR2 (15) NOT NULL,
Job VARCHAR2 (10),
Mgor NUMBER (5) CONSTRAINT r_EmpTab_Mgr REFERENCES EmpTab,
Hiredate DATE,
Sal NUMBER(7,2),
Comm NUMBER (5,2),

Deptno NUMBER (3) NOT NULL
CONSTRAINT r_EmpTab_DeptTab REFERENCES DeptTab ON DELETE CASCADE) ;

Example: Defining Constraints with the ALTER TABLE Statement

You can also define constraints using the constraint clause of the ALTER TABLE
statement. For example:

CREATE UNIQUE INDEX u_DeptTab_Deptno ON DeptTab (Deptno) ;
ALTER TABLE DepTab
ADD CONSTRAINT pk_DeptTab_Deptno PRIMARY KEY (Deptno);

ALTER TABLE EmpTab
ADD CONSTRAINT fk_DeptTab_Deptno FOREIGN KEY (Deptno) REFERENCES DeptTab;
ALTER TABLE EmpTab MODIFY (Ename VARCHAR2 (15) NOT NULL) ;

You cannot create a validated constraint on a table if the table already contains rows
that violate the constraint.

Privileges Needed to Define Constraints

The creator of a constraint must have the ability to create tables (the CREATE TABLE or
CREATE ANY TABLE system privilege), or the ability to alter the table (the ALTER object
privilege for the table or the ALTER ANY TABLE system privilege) with the constraint.
Additionally, UNIQUE and PRIMARY KEY constraints require that the owner of the
table have either a quota for the tablespace that contains the associated index or the
UNLIMITED TABLESPACE system privilege. FOREIGN KEY constraints also require
some additional privileges.

See Also: "Privileges Required to Create FOREIGN KEY
Constraints" on page 6-20

Naming Constraints

Assign names to constraints NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and
CHECK using the CONSTRAINT option of the constraint clause. This name must be
unique with respect to other constraints that you own. If you do not specify a
constraint name, one is assigned automatically by Oracle Database.

Choosing your own name makes error messages for constraint violations more
understandable, and prevents the creation of duplicate constraints with different
names if the SQL statements are run more than once.

See the previous examples of the CREATE TABLE and ALTER TABLE statements for
examples of the CONSTRAINT option of the constraint clause. The name of each
constraint is included with other information about the constraint in the data
dictionary.

See Also: "Viewing Definitions of Constraints" on page 6-21 for
examples of static data dictionary views

6-14 Oracle Database Advanced Application Developer's Guide

Enabling and Disabling Constraints

Enabling and Disabling Constraints

This section explains the mechanisms and procedures for manually enabling and
disabling constraints.

enabled constraint. When a constraint is enabled, the corresponding rule is enforced
on the data values in the associated columns. The definition of the constraint is stored
in the data dictionary.

disabled constraint. When a constraint is disabled, the corresponding rule is not
enforced. The definition of the constraint is still stored in the data dictionary.

An integrity constraint represents an assertion about the data in a database. This
assertion is always true when the constraint is enabled. The assertion may or may not
be true when the constraint is disabled, because data that violates the integrity
constraint can be in the database.

Topics:

= Why Disable Constraints?

s Creating Enabling Constraints (Default)

s Creating Disabled Constraints

= Enabling Existing Constraints

= Disabling Existing Constraints

= Guidelines for Enabling and Disabling Key Constraints

= Fixing Constraint Exceptions

Why Disable Constraints?

During day-to-day operations, keep constraints enabled. In certain situations,
temporarily disabling the constraints of a table makes sense for performance reasons.
For example:

= When loading large amounts of data into a table using SQL*Loader

= When performing batch operations that make massive changes to a table (such as
changing each employee number by adding 1000 to the existing number)

= When importing or exporting one table at a time

Temporarily turning off constraints can speed up these operations.

Creating Enabling Constraints (Default)

When you define an integrity constraint in a CREATE TABLE or ALTER TABLE
statement, Oracle Database automatically enables the constraint by default. For code
clarity, you can explicitly enable the constraint by including the ENABLE clause in its
definition.

Use this technique when creating tables that start off empty, and are populated a row
at a time by individual transactions. In such cases, you want to ensure that data is
consistent at all times, and the performance overhead of each DML operation is small.

The following CREATE TABLE and ALTER TABLE statements both define and enable
constraints:

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY) ;
ALTER TABLE Emp_tab

Maintaining Data Integrity in Database Applications 6-15

Enabling and Disabling Constraints

ADD PRIMARY KEY (Empno) ;

An ALTER TABLE statement that tries to enable an integrity constraint fails if any
existing row of the table violates the integrity constraint. The statement rolls back and
the constraint definition is neither stored nor enabled.

See Also: "Fixing Constraint Exceptions” on page 6-17 for more
information about rows that violate constraints

Creating Disabled Constraints

The following CREATE TABLE and ALTER TABLE statements both define and disable
constraints:

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY DISABLE) ;

ALTER TABLE Emp_tab
ADD PRIMARY KEY (Empno) DISABLE;

Use this technique when creating tables that will be loaded with large amounts of data
before anybody else accesses them, particularly if you need to cleanse data after
loading it, or need to fill empty columns with sequence numbers or parent/child
relationships.

An ALTER TABLE statement that defines and disables an constraints never fails,
because its rule is not enforced.

Enabling Existing Constraints

To enable an existing constraint, use the ALTER TABLE statement with the ENABLE
clause.

Once you have finished cleansing data and filling empty columns, you can enable
constraints that were disabled during data loading.

The following statements are examples of statements that enable disabled constraints:
ALTER TABLE DeptTab

ENABLE CONSTRAINT uk_DeptTab_Dname_Loc;

ALTER TABLE DeptTab
ENABLE PRIMARY KEY
ENABLE UNIQUE (Dname)
ENABLE UNIQUE (Loc);

An ALTER TABLE statement that attempts to enable an integrity constraint fails if any
of the table rows violate the integrity constraint. The statement is rolled back and the
constraint is not enabled.

See Also: "Fixing Constraint Exceptions” on page 6-17 for more
information about rows that violate constraints

Disabling Existing Constraints

To disable an existing constraint, use the ALTER TABLE statement with the DISABLE
clause.

If you need to perform a large load or update when a table already contains data, you
can temporarily disable constraints to improve performance of the bulk operation.

6-16 Oracle Database Advanced Application Developer's Guide

Altering Constraints

The following statements are examples of statements that disable enabled constraints:

ALTER TABLE DeptTab
DISABLE CONSTRAINT uk_DeptTab_Dname_Loc;

ALTER TABLE DeptTab
DISABLE PRIMARY KEY
DISABLE UNIQUE (Dname)
DISABLE UNIQUE (Loc);

Guidelines for Enabling and Disabling Key Constraints

When enabling or disabling UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints, be
aware of several important issues and prerequisites. UNIQUE key and PRIMARY KEY
constraints are usually managed by the database administrator.

See Also: Oracle Database Administrator’s Guide and "Managing
FOREIGN KEY Constraints" on page 6-20

Fixing Constraint Exceptions

If a row of a table disobeys an integrity constraint, then this row is in violation of the
constraint and is called an exception to the constraint. If any exceptions exist, then the
constraint cannot be enabled. The rows that violate the constraint must be updated or
deleted before the constraint can be enabled.

You can identify exceptions for a specific integrity constraint as you try to enable the
constraint.

See Also: '"Fixing Constraint Exceptions” on page 6-17 for more
information on this procedure

When you try to create or enable a constraint, and the statement fails because integrity
constraint exceptions exist, the statement is rolled back. You cannot enable the
constraint until all exceptions are either updated or deleted. To determine which rows
violate the integrity constraint, include the EXCEPTIONS option in the ENABLE clause
of a CREATE TABLE or ALTER TABLE statement.

See Also: Oracle Database Administrator’s Guide for more information
about responding to constraint exceptions

Altering Constraints

Starting with Oracle8i, you can alter the state of an existing constraint with the
MODIFY CONSTRAINT clause.

See Also: Oracle Database SQL Language Reference for information on
the parameters you can modify

The following statements show several alternatives for whether the CHECK constraint
is enforced, and when the constraint checking is done:

CREATE TABLE X1Tab (al NUMBER CONSTRAINT c_X1Tab_al CHECK (al>3)
DEFERRABLE DISABLE) ;

ALTER TABLE X1Tab MODIFY CONSTRAINT c_Xl1Tab_al ENABLE;

ALTER TABLE X1Tab MODIFY CONSTRAINT c_Xl1Tab_al RELY;

ALTER TABLE X1Tab MODIFY CONSTRAINT c_X1Tab_al INITIALLY DEFERRED;

ALTER TABLE X1Tab MODIFY CONSTRAINT c_Xl1Tab_al ENABLE NOVALIDATE;

Maintaining Data Integrity in Database Applications 6-17

Altering Constraints

The following statements show several alternatives for whether the NOT NULL
constraint is enforced, and when the checking is done:

CREATE TABLE X1Tab (al NUMBER CONSTRAINT c_X1Tab_al
NOT NULL DEFERRABLE INITIALLY DEFERRED NORELY DISABLE) ;

ALTER TABLE X1Tab ADD CONSTRAINT One_cnstrt UNIQUE(al)
DEFERRABLE INITIALLY IMMEDIATE RELY USING INDEX PCTFREE = 30
ENABLE VALIDATE;

ALTER TABLE X1Tab MODIFY UNIQUE(al)
INITIALLY DEFERRED NORELY USING INDEX PCTFREE = 40
ENABLE NOVALIDATE;

The following statements show several alternatives for whether the primary key
constraint is enforced, and when the checking is done:

CREATE TABLE tl (al INT, bl INT);
ALTER TABLE tl ADD CONSTRAINT pk_tl_al PRIMARY KEY(al) DISABLE;
ALTER TABLE tl MODIFY PRIMARY KEY INITIALLY IMMEDIATE
USING INDEX PCTFREE = 30 ENABLE NOVALIDATE;
ALTER TABLE tl MODIFY PRIMARY KEY
USING INDEX PCTFREE = 35 ENABLE;
ALTER TABLE tl MODIFY PRIMARY KEY ENABLE NOVALIDATE;

Renaming Constraints

Because constraint names must be unique, even across multiple schemas, you can
encounter problems when you want to clone a table and all its constraints, because the
constraint name for the new table conflicts with the one for the original table. Or, you
might create a constraint with a default system-generated name, and later realize that
you want to give the constraint a name that is easy to remember, so that you can easily
enable and disable it.

One of the properties you can alter for a constraint is its name. The following SQL*Plus
script finds the system-generated name for a constraint and changes it:

prompt Enter table name to find its primary key:
accept table_name
select constraint_name from user_constraints
where table_name = upper('&table_name.')
and constraint_type = 'P';

prompt Enter new name for its primary key:
accept new_constraint

set serveroutput on

declare
-- USER_CONSTRAINTS.CONSTRAINT NAME is declared as VARCHAR2 (30).
-- Using $TYPE here protects us if the length changes in a future release.
constraint_name user_constraints.constraint_name$type;
begin
select constraint_name into constraint_name from user_constraints
where table_name = upper ('&table_name.')
and constraint_type = 'P';

dbms_output.put_line('The primary key for ' || upper('&table name.') || ' is: '
|| constraint_name);

6-18 Oracle Database Advanced Application Developer's Guide

Managing FOREIGN KEY Constraints

execute immediate
'‘alter table &table_name. rename constraint ' || constraint_name ||
' to &new_constraint.';
end;
/

Dropping Constraints

Drop an integrity constraint if the rule that it enforces is no longer true or if the
constraint is no longer needed. Drop an integrity constraint using the ALTER TABLE
statement and the DROP clause. For example, the following statements drop
constraints:

ALTER TABLE DeptTab DROP UNIQUE (Dname) ;

ALTER TABLE DeptTab DROP UNIQUE (Loc);

ALTER TABLE EmpTab DROP PRIMARY KEY, DROP CONSTRAINT fk_EmpTab_Dname;
DROP TABLE EmpTab CASCADE CONSTRAINTS;

When dropping UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints, be aware of
several important issues and prerequisites. UNIQUE and PRIMARY KEY constraints are
usually managed by the database administrator.

See Also: Oracle Database Administrator’s Guide and "Managing
FOREIGN KEY Constraints" on page 6-20

Managing FOREIGN KEY Constraints

General information about defining, enabling, disabling, and dropping all types of
constraints is given in section "Dropping Constraints" on page 6-19. The present
section supplements this information, focusing specifically on issues regarding
FOREIGN KEY constraints, which enforce relationships between columns in different
tables.

Note: FOREIGN KEY constraints cannot be enabled if the constraint
of the referenced primary or unique key is not present or not enabled.

Datatypes and Names for Foreign Key Columns

You must use the same datatype for corresponding columns in the dependent and
referenced tables. The column names do not need to match.

Limit on Columns in Composite Foreign Keys

Because foreign keys reference primary and unique keys of the parent table, and
PRIMARY KEY and UNIQUE key constraints are enforced using indexes, composite
foreign keys are limited to 32 columns.

Foreign Key References Primary Key by Default

If the column list is not included in the REFERENCES option when defining a FOREIGN
KEY constraint (single column or composite), then Oracle Database assumes that you
intend to reference the primary key of the specified table. Alternatively, you can
explicitly specify the column(s) to reference in the parent table within parentheses.
Oracle Database automatically checks to verify that this column list references a

Maintaining Data Integrity in Database Applications 6-19

Managing FOREIGN KEY Constraints

primary or unique key of the parent table. If it does not, then an informative error is
returned.

Privileges Required to Create FOREIGN KEY Constraints

To create a FOREIGN KEY constraint, the creator of the constraint must have privileged
access to the parent and child tables.

Parent Table The creator of the referential integrity constraint must own the
parent table or have REFERENCES object privileges on the columns that constitute
the parent key of the parent table.

Child Table The creator of the referential integrity constraint must have the ability
to create tables (that is, the CREATE TABLE or CREATE ANY TABLE system
privilege) or the ability to alter the child table (that is, the ALTER object privilege
for the child table or the ALTER ANY TABLE system privilege).

In both cases, necessary privileges cannot be obtained through a role; they must be
explicitly granted to the creator of the constraint.

These restrictions allow:

The owner of the child table to explicitly decide which constraints are enforced
and which other users can create constraints

The owner of the parent table to explicitly decide if foreign keys can depend on the
primary and unique keys in her tables

Choosing How Foreign Keys Enforce Referential Integrity

Oracle Database allows different types of referential integrity actions to be enforced, as
specified with the definition of a FOREIGN KEY constraint:

Prevent Delete or Update of Parent Key The default setting prevents the deletion
or update of a parent key if there is a row in the child table that references the key.
For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab) ;

Delete Child Rows When Parent Key Deleted The ON DELETE CASCADE action
allows parent key data that is referenced from the child table to be deleted, but not
updated. When data in the parent key is deleted, all rows in the child table that
depend on the deleted parent key values are also deleted. To specify this
referential action, include the ON DELETE CASCADE option in the definition of the
FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab
ON DELETE CASCADE) ;

Set Foreign Keys to Null When Parent Key Deleted The ON DELETE SET NULL
action allows data that references the parent key to be deleted, but not updated.
When referenced data in the parent key is deleted, all rows in the child table that
depend on those parent key values have their foreign keys set to null. To specify
this referential action, include the ON DELETE SET NULL option in the definition of
the FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab
ON DELETE SET NULL) ;

6-20 Oracle Database Advanced Application Developer's Guide

Examples of Defining and Viewing Constraints

Viewing Definitions of Constraints

To find the names of constraints, what columns they affect, and other information to
help you manage them, query the static data dictionary views * _CONSTRAINTS and
*_CONS_COLUMNS.

See Also: Oracle Database Reference for information on *_
CONSTRAINTS and * CONS_COLUMNS

Examples of Defining and Viewing Constraints

The following CREATE TABLE statements define a number of constraints:

CREATE TABLE DeptTab (

Deptno NUMBER(3) PRIMARY KEY,

Dname VARCHAR2 (15),

Loc VARCHAR2 (15),

CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc),

CONSTRAINT c_DeptTab_Loc

CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO'))

)i

CREATE TABLE EmpTab (

Empno NUMBER(5) PRIMARY KEY,

Ename VARCHAR2 (15) NOT NULL,

Job VARCHAR2 (10) ,

Mgr NUMBER (5) CONSTRAINT r_EmpTab_Mgr

REFERENCES Emp_tab ON DELETE CASCADE,

Hiredate DATE,

Sal NUMBER(7,2),

Comm NUMBER (5,2),

Deptno NUMBER (3) NOT NULL

CONSTRAINT r_EmpTab_Deptno REFERENCES DeptTab

)i

Examples:
= Example 1: Listing All of Your Accessible Constraints
= Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints

= Example 3: Listing Column Names that Constitute an Integrity Constraint

Example 1: Listing All of Your Accessible Constraints
The following query lists all constraints defined on all tables accessible to the user:
SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME, R_CONSTRAINT_NAME
FROM USER_CONSTRAINTS;
Considering the example statements at the beginning of this section, a list similar to
this is returned:
CONSTRAINT_NAME C TABLE NAME R_CONSTRAINT_NAME
SYS_C00275 P DEPTTAB

UK_DEPTTAB_DNAME U DEPTTAB
C_DEPTTAB_LOC C DEPTTAB

SYS_C00278 C EMPTAB
SYS_C00279 C EMPTAB
SYS_C00280 P EMPTAB

Maintaining Data Integrity in Database Applications 6-21

Examples of Defining and Viewing Constraints

FK_EMPTAB_MGR R EMPTAB SYS_C00280
R_EMPTAB_DEPT R EMPTAB SYS_C00275

Notice the following:

= Some constraint names are user specified (such as UK_DEPTTAB_DNAME), while
others are system specified (such as SYS_C00275).

= Each constraint type is denoted with a different character in the CONSTRAINT _
TYPE column. The following table summarizes the characters used for each
constraint type.

Constraint Type Character

PRIMARY KEY P
UNIQUE KEY o)
FOREIGN KEY R
CHECK, NOT NULL C

Note: An additional constraint type is indicated by the character "v"
in the CONSTRAINT_TYPE column. This constraint type corresponds
to constraints created using the WITH CHECK OPTION for views.

Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints

In the previous example, several constraints are listed with a constraint type of C. To
distinguish which constraints are NOT NULL constraints and which are CHECK
constraints in the EMPTAB and DEPTTAB tables, submit the following query:

SELECT CONSTRAINT_NAME, SEARCH_CONDITION
FROM USER_CONSTRAINTS
WHERE (TABLE _NAME = 'DEPTTAB' OR TABLE_NAME = 'EMPTAB') AND
CONSTRAINT_TYPE = 'C';

Considering the example CREATE TABLE statements at the beginning of this section, a
list similar to this is returned:

CONSTRAINT_NAME SEARCH_CONDITION

C_DEPTTAB_LOC LOC IN ('NEW YORK', 'BOSTON', 'CHICAGO')
SYS_C00278 ENAME IS NOT NULL
SYS_C00279 DEPTNO IS NOT NULL

Notice that the following are explicitly listed in the SEARCH_CONDITION column:
= NOT NULL constraints

s The conditions for user-defined CHECK constraints

Example 3: Listing Column Names that Constitute an Integrity Constraint

The following query lists all columns that constitute the constraints defined on all
tables accessible to you, the user:

SELECT CONSTRAINT_NAME, TABLE_NAME, COLUMN_NAME
FROM USER_CONS_COLUMNS;

6-22 Oracle Database Advanced Application Developer's Guide

Examples of Defining and Viewing Constraints

Considering the example statements at the beginning of this section, a list similar to

this is returned:

CONSTRAINT_NAME TABLE_NAME COLUMN_NAME

FK_EMPTAB_DEPT
UK_DEPTTAB_DNAME
UK_DEPTTAB_LOC
C_DEPTTAB_LOC
FK_EMPTAB_MGR
SYS_C00275
SYS_C00278
SYS_C00279
SYS_C00280

EMPTAB
DEPTTAB
DEPTTAB
DEPTTAB
EMPTAB
DEPTTAB
EMPTAB
EMPTAB
EMPTAB

DEPTNO
DNAME
LoC
LoC
MGR
DEPTNO
ENAME
DEPTNO
EMPNO

Maintaining Data Integrity in Database Applications 6-23

Examples of Defining and Viewing Constraints

6-24 Oracle Database Advanced Application Developer's Guide

Part Il

PL/SQL for Application Developers

This part presents information that application developers need about PL/SQL, the
Oracle procedural extension of SQL.

Chapters:

Chapter 7, "Coding PL/SQL Subprograms and Packages"
Chapter 8, "Using PL/Scope"

Chapter 9, "Using the PL/SQL Hierarchical Profiler"
Chapter 10, "Developing PL/SQL Web Applications"
Chapter 11, "Developing PL/SQL Server Pages"

Chapter 12, "Using Continuous Query Notification"

See Also: Oracle Database PL/SQL Language Reference for a complete
description of PL/SQL

7

Coding PL/SQL Subprograms and Packages

This chapter describes some of the procedural capabilities of Oracle Database for
application development, including;:

s Overview of PL/SQL Program Units

s Compiling PL/SQL Subprograms for Native Execution

» Cursor Variables

» Handling PL/SQL Compile-Time Errors

» Handling Run-Time PL/SQL Errors

= Debugging Stored Subprograms

» Invoking Stored Subprograms

s Invoking Remote Subprograms

s Invoking Stored PL/SQL Functions from SQL Statements
= Returning Large Amounts of Data from a Function

s Coding Your Own Aggregate Functions

See Also:

» Oracle Database PL/SQL Language Reference for more information
about PL/SQL subprograms

» Oracle Database PL/SQL Language Reference for more information
about PL/SQL packages

Overview of PL/SQL Program Units

PL/SQL is a modern, block-structured programming language. It provides several
features that make developing powerful database applications very convenient. For
example, PL/SQL provides procedural constructs, such as loops and conditional
statements, that are not available in standard SQL.

You can directly enter SQL data manipulation language (DML) statements inside
PL/SQL blocks, and you can use subprograms supplied by Oracle to perform data
definition language (DDL) statements.

PL/SQL code runs on the server, so using PL/SQL lets you centralize significant parts
of your database applications for increased maintainability and security. It also enables
you to achieve a significant reduction of network overhead in client/server
applications.

Coding PL/SQL Subprograms and Packages 7-1

Overview of PL/SQL Program Units

Note: Some Oracle tools, such as Oracle Forms, contain a PL/SQL
engine that lets you run PL/SQL locally.

You can even use PL/SQL for some database applications in place of 3GL programs
that use embedded SQL or Oracle Call Interface (OCI).

PL/SQL program units include:

= Anonymous Blocks

s Stored PL/SQL Program Units
» Triggers

See Also:

» Oracle Database PL/SQL Language Reference for syntax and
examples of operations on PL/SQL packages

» Oracle Database PL/SQL Packages and Types Reference for
information about the PL/SQL packages that come with Oracle
Database

» Oracle Database Concepts for information about dependencies
among stored PL/SQL program units

Anonymous Blocks

An anonymous block is a PL/SQL program unit that has no name. An anonymous
block consists of an optional declarative part, an executable part, and one or more
optional exception handlers.

The declarative part declares PL/SQL variables, exceptions, and cursors. The
executable part contains PL/SQL code and SQL statements, and can contain nested
blocks. Exception handlers contain code that is invoked when the exception is raised,
either as a predefined PL/SQL exception (such as NO_DATA_FOUND or ZERO_DIVIDE)
or as an exception that you define.

The following example of a PL/SQL anonymous block prints the names of all
employees in department 20 in the hr.employees table by using the DBMS_OUTPUT

package:
DECLARE
Last_name VARCHAR2 (10) ;
Cursor cl IS SELECT last_name
FROM employees
WHERE department_id = 20;
BEGIN
OPEN c1;
LOOP

FETCH cl INTO Last_name;
EXIT WHEN cl%NOTFOUND;
DBMS_OUTPUT.PUT_LINE (Last_name) ;
END LOOP;
END;
/

7-2 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Program Units

Note: If you test this block using SQL*Plus, then enter the statement
SET SERVEROUTPUT ON so that output using the DBMS_OUTPUT
procedures (for example, PUT_LINE) is activated. Also, end the
example with a slash (/) to activate it.

Exceptions let you handle Oracle Database error conditions with PL/SQL program
logic. This enables your application to prevent the server from issuing an error that can
cause the client application to end. The following anonymous block handles the
predefined Oracle Database exception NO_DATA_FOUND (which results in an
ORA-01403 error if not handled):

DECLARE
Emp_number INTEGER := 9999;
Emp_name VARCHAR2 (10) ;
BEGIN
SELECT Ename INTO Emp_name FROM Emp_tab
WHERE Empno = Emp_number; -- no such number
DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('No such employee: ' || Emp_number);
END;

You can also define your own exceptions, declare them in the declaration part of a
block, and define them in the exception part of the block. An example follows:

DECLARE
Emp_name VARCHAR?2 (10) ;
Emp_number INTEGER;
Empno_out_of_range EXCEPTION;
BEGIN

Emp_number := 10001;
IF Emp_number > 9999 OR Emp_number < 1000 THEN
RAISE Empno_out_of_range;
ELSE
SELECT Ename INTO Emp_name FROM Emp_tab
WHERE Empno = Emp_number;

DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
END IF;
EXCEPTION
WHEN Empno_out_of_range THEN
DBMS_OUTPUT. PUT_LINE ('Employee number ' || Emp_number ||

' is out of range.');
END;

Anonymous blocks are usually used interactively from a tool, such as SQL*Plus, or in
a precompiler, OCI, or SQL*Module application. They are usually used to invoke
stored subprograms or to open cursor variables.

See Also:

» Oracle Database PL/SQL Packages and Types Reference for complete
information about the DBMS_OUTPUT package

» Oracle Database PL/SQL Language Reference and "Handling
Run-Time PL/SQL Errors" on page 7-20

» "Cursor Variables" on page 7-17

Coding PL/SQL Subprograms and Packages 7-3

Overview of PL/SQL Program Units

Stored PL/SQL Program Units

A stored PL/SQL program unit is a subprogram (procedure or function) or package
that:

= Has aname.

= Can take parameters, and can return values.
s Isstored in the data dictionary.

= Can be invoked by many users.

If a subprogram belongs to a package, it is called a package subprogram; if not, it is
called a standalone subprogram.

Topics:

= Naming Subprograms

= Subprogram Parameters

s Creating Subprograms

= Altering Subprograms

= Dropping Subprograms and Packages

= External Subprograms

s Cross-Session PL/SQL Function Result Cache
s PL/SQL Packages

s PL/SQL Object Size Limits

s Creating Packages

= Naming Packages and Package Objects

= Package Invalidations and Session State
s Packages Supplied with Oracle Database
s Overview of Bulk Binding

s When to Use Bulk Binds

Naming Subprograms

Because a subprogram is stored in the database, it must be named. This distinguishes
it from other stored subprograms and makes it possible for applications to invoke it.
Each publicly-visible subprogram in a schema must have a unique name, and the
name must be a legal PL/SQL identifier.

Note: If you plan to invoke a stored subprogram using a stub
generated by SQL*Module, then the stored subprogram name must
also be a legal identifier in the invoking host 3GL language, such as
Adaor C.

Subprogram Parameters

Stored subprograms can take parameters. The following example shows a stored
subprogram that is similar to the anonymous block in "Anonymous Blocks" on
page 7-2.

7-4 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Program Units

Caution: To execute the following, use CREATE OR REPLACE
PROCEDURE.

PROCEDURE Get_emp_names (Dept_num IN NUMBER) IS
Emp_name VARCHAR2 (10) ;
CURSOR cl (Depno NUMBER) IS
SELECT Ename FROM Emp_tab
WHERE deptno = Depno;
BEGIN
OPEN cl (Dept_num) ;
LOOP
FETCH cl INTO Emp_name;
EXIT WHEN C1%NOTFOUND;
DBMS_OUTPUT. PUT_LINE (Emp_name) ;
END LOOP;
CLOSE c1;
END;

In the procedure Get_emp_names, the department number is an input parameter that
is used when the parameterized cursor c1 is opened.

The formal parameters of a subprogram have three major attributes, described in
Table 7-1.

Table 7-1 Attributes of Subprogram Parameters

Parameter Attribute Description

Name This must be a legal PL/SQL identifier.

Mode This indicates whether the parameter is an input-only parameter (IN),
an output-only parameter (OUT), or is both an input and an output
parameter (IN OUT). If the mode is not specified, then IN is assumed.

Datatype This is a standard PL/SQL datatype.

Topics:

= Parameter Modes

ms Parameter Datatypes

= %TYPE and %ROWTYPE Attributes

» Tables and Records

» Default Parameter Values

Parameter Modes Parameter modes define the action of formal parameters. You can use
the three parameter modes, IN (the default), OUT, and IN OUT, with any subprogram.
Avoid using the OUT and IN OUT modes with functions. Good programming practice

dictates that a function returns a single value and does not change the values of
variables that are not local to the subprogram.

Table 7-2 summarizes the information about parameter modes.

Table 7-2 Parameter Modes
IN ouT IN OUT

The default. Must be specified. Must be specified.

Coding PL/SQL Subprograms and Packages 7-5

Overview of PL/SQL Program Units

Table 7-2 (Cont.) Parameter Modes

IN OouT IN OUT
Passes values to a Returns values to the caller. Passes initial values to a
subprogram. subprogram; returns updated

values to the caller.

Formal parameter acts likea Formal parameter acts likean = Formal parameter acts like an

constant. uninitialized variable. initialized variable.
Formal parameter cannot be Formal parameter cannot be Formal parameter must be
assigned a value. used in an expression; must be assigned a value.

assigned a value.
Actual parameter canbea Actual parameter must be a Actual parameter must be a
constant, initialized variable, variable. variable.

literal, or expression.

See Also: Oracle Database PL/SQL Language Reference for details
about parameter modes

Parameter Datatypes The datatype of a formal parameter consists of one of the
following:
= Anunconstrained type name, such as NUMBER or VARCHAR2.

= A type that is constrained using the $TYPE or $ROWTYPE attributes.

Note: Numerically constrained types such as NUMBER(2) or
VARCHAR2(20) are not allowed in a parameter list.

%TYPE and %ROWTYPE Attributes Use the type attributes $TYPE and $ROWTYPE to
constrain the parameter. For example, the Get_emp_names procedure specification in
"Subprogram Parameters" on page 7-4 can be written as the following;:

PROCEDURE Get_emp_names (Dept_num IN Emp_tab.Deptno$TYPE)
This has the Dept_num parameter take the same datatype as the Deptno column in

the Emp_tab table. The column and table must be available when a declaration using
$TYPE (or $ROWTYPE) is elaborated.

Using $TYPE is recommended, because if the type of the column in the table changes,
then it is not necessary to change the application code.

If the Get_emp_names procedure is part of a package, then you can use
previously-declared public (package) variables to constrain a parameter datatype. For
example:

Dept_number number (2) ;
PROCEDURE Get_emp_names (Dept_num IN Dept_number%TYPE) ;

Use the $ROWTYPE attribute to create a record that contains all the columns of the
specified table. The following example defines the Get_emp_rec procedure, which
returns all the columns of the Emp_ tab table in a PL/SQL record for the given empno:

Caution: To execute the following, use the statement CREATE OR
REPLACE PROCEDURE.

7-6 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Program Units

PROCEDURE Get_emp_rec (Emp_number IN Emp_tab.Empno%$TYPE,
Emp_ret OUT Emp_tab%ROWTYPE) IS
BEGIN
SELECT Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno

INTO Emp_ret
FROM Emp_tab
WHERE Empno = Emp_number;

END;

You can invoke this procedure from a PL/SQL block as follows:

DECLARE

Emp_row Emp_tab%ROWTYPE; -- declare a record matching a
-- row in the Emp_tab table

BEGIN
Get_emp_rec (7499, Emp_row) ; -- invoke for Emp_tab# 7499
DBMS_OUTPUT. PUT (Emp_row.Ename || ' ' || Emp_row.Empno) ;
DBMS_OUTPUT.PUT (' || Emp_row.Job || ' ' || Emp_row.Mgr);
DBMS_OUTPUT.PUT ("' || Emp_row.Hiredate || ' ' || Emp_row.Sal);
DBMS_OUTPUT.PUT (' || Emp_row.Comm || ' '|| Emp_row.Deptno);

DBMS_OUTPUT.NEW_LINE;
END;

Stored functions can also return values that are declared using $ROWTYPE. For
example:
FUNCTION Get_emp_rec (Dept_num IN Emp_tab.Deptno%TYPE)

RETURN Emp_tab%ROWIYPE IS ...

Tables and Records You can pass PL/SQL tables as parameters to stored subprograms.
You can also pass tables of records as parameters.

Note: When passing a user defined type, such as a PL/SQL table or
record to a remote subprogram, to make PL/SQL use the same
definition so that the type checker can verify the source, you must
create a redundant loop back DBLINK so that when the PL/SQL
compiles, both sources pull from the same location.

Default Parameter Values Parameters can take default values. Use the DEFAULT keyword
or the assignment operator to give a parameter a default value. For example, the
specification for the Get_emp_names procedure can be written as the following:

PROCEDURE Get_emp_names (Dept_num IN NUMBER DEFAULT 20) IS ...

or
PROCEDURE Get_emp_names (Dept_num IN NUMBER := 20) IS ...
When a parameter takes a default value, it can be omitted from the actual parameter

list when you invoke the subprogram. When you do specify the parameter value on
the invocation, it overrides the default value.

Note: Unlike in an anonymous PL/SQL block, you do not use the
keyword DECLARE before the declarations of variables, cursors, and
exceptions in a stored subprogram. In fact, it is an error to use it.

Coding PL/SQL Subprograms and Packages 7-7

Overview of PL/SQL Program Units

Creating Subprograms

Use a text editor to write the subprogram. At the beginning of the subprogram, place
the following statement:

CREATE PROCEDURE Procedure_name AS

For example, to use the example in "%TYPE and %ROWTYPE Attributes" on page 7-6,
create a text (source) file called get_emp.sgl containing the following code:

CREATE PROCEDURE Get_emp_rec (Emp_number IN Emp_tab.Empno%TYPE,
Emp_ret OUT Emp_tab%ROWTYPE) AS
BEGIN
SELECT Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno

INTO Emp_ret
FROM Emp_tab
WHERE Empno = Emp_number;

END;

/

Then, using an interactive tool such as SQL*Plus, load the text file containing the
procedure by entering the following statement:

SQL> @get_emp
This loads the procedure into the current schema from the get_emp.sqgl file (. sql is

the default file extension). The slash (/) at the end of the code is not part of the code, it
only activates the loading of the procedure.

Caution: When developing a new subprogram, it is usually
preferable to use the statement CREATE OR REPLACE PROCEDURE or
CREATE OR REPLACE FUNCTION. This statement replaces any
previous version of that subprogram in the same schema with the
newer version, but without warning.

You can use either the keyword IS or AS after the subprogram parameter list.

See Also:

» Oracle Database SQL Language Reference for the syntax of the
CREATE FUNCTION statement

» Oracle Database SQL Language Reference for the syntax of the
CREATE PROCEDURE statement

Privileges Needed

To create a subprogram, a package specification, or a package body, you must meet the
following prerequisites:

= You must have the CREATE PROCEDURE system privilege to create a subprogram
or package in your schema, or the CREATE ANY PROCEDURE system privilege to
create a subprogram or package in another user's schema. In either case, the
package body must be created in the same schema as the package.

7-8 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Program Units

Note: To create without errors (to compile the subprogram or
package successfully) requires the following additional privileges:

= The owner of the subprogram or package must be explicitly
granted the necessary object privileges for all objects referenced
within the body of the code.

= The owner cannot obtain required privileges through roles.

If the privileges of the owner of a subprogram or package change, then the
subprogram must be reauthenticated before it is run. If a necessary privilege to a
referenced object is revoked from the owner of the subprogram or package, then the
subprogram cannot be run.

The EXECUTE privilege on a subprogram gives a user the right to run a subprogram
owned by another user. Privileged users run the subprogram under the security
domain of the owner of the subprogram. Therefore, users never need to be granted the
privileges to the objects referenced by a subprogram. This allows for more disciplined
and efficient security strategies with database applications and their users.
Furthermore, all subprograms and packages are stored in the data dictionary (in the
SYSTEM tablespace). No quota controls the amount of space available to a user who
creates subprograms and packages.

Note: Package creation requires a sort. The user creating the package
must be able to create a sort segment in the temporary tablespace with
which the user is associated.

Altering Subprograms

To alter a subprogram, you must first drop it using the DROP PROCEDURE or DROP
FUNCTION statement, then re-create it using the CREATE PROCEDURE or CREATE
FUNCTION statement. Alternatively, use the CREATE OR REPLACE PROCEDURE or
CREATE OR REPLACE FUNCTION statement, which first drops the subprogram if it
exists, then re-creates it as specified.

Caution: The subprogram is dropped without warning.

Dropping Subprograms and Packages

A standalone subprogram, a standalone function, a package body, or an entire package
can be dropped using the SQL statements DROP PROCEDURE, DROP FUNCTION, DROP
PACKAGE BODY, and DROP PACKAGE, respectively. A DROP PACKAGE statement drops
both the specification and body of a package.

The following statement drops the 01d_sal_raise procedure in your schema:

DROP PROCEDURE 01d_sal_raise;

Privileges Needed

To drop a subprogram or package, the subprogram or package must be in your
schema, or you must have the DROP ANY PROCEDURE privilege. An individual
subprogram within a package cannot be dropped; the containing package specification
and body must be re-created without the subprograms to be dropped.

Coding PL/SQL Subprograms and Packages 7-9

Overview of PL/SQL Program Units

External Subprograms

A PL/SQL subprogram executing on an Oracle Database instance can invoke an
external subprogram written in a third-generation language (3GL). The 3GL
subprogram runs in a separate address space from that of the database.

See Also: Chapter 14, "Developing Applications Using Multiple
Programming Languages" for information about external
subprograms

Cross-Session PL/SQL Function Result Cache

Using the PL/SQL cross-session function result cache can save significant space and
time. Each time a result-cached PL/SQL function is invoked with different parameter
values, those parameters and their result are stored in the cache. Subsequently, when
the same function is invoked with the same parameter values, the result is retrieved
from the cache, instead of being recomputed. Because the cache is stored in a shared
global area (SGA), it is available to any session that runs your application.

If a database object that was used to compute a cached result is updated, the cached
result becomes invalid and must be recomputed.

The best candidates for result-caching are functions that are invoked frequently but
depend on information that changes infrequently or never.

For more information about the PL/SQL cross-session function result cache, see Oracle
Database PL/SQL Language Reference.

PL/SQL Packages

A package is a collection of related program objects (for example, subprogram,
variables, constants, cursors, and exceptions) stored together in the database.

Using packages is an alternative to creating subprograms as standalone schema
objects. Packages have many advantages over standalone subprograms. For example,
they:

» Let you organize your application development more efficiently.

= Let you grant privileges more efficiently.

= Let you modify package objects without recompiling dependent schema objects.
= Enable Oracle Database to read multiple package objects into memory at once.

= Can contain global variables and cursors that are available to all subprograms in
the package.

= Let you overload subprograms. Overloading a subprogram means creating
multiple subprograms with the same name in the same package, each taking
arguments of different number or datatype.

See Also: Oracle Database PL/SQL Language Reference for more
information about subprogram name overloading

The specification part of a package declares the public types, variables, constants, and
subprograms that are visible outside the immediate scope of the package. The body of
a package defines the objects declared in the specification, as well as private objects
that are not visible to applications outside the package.

Example of a PL/SQL Package Specification and Body The following example shows a
package specification for a package named Employee_management. The package

7-10 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Program Units

contains one stored function and two stored procedures. The body for this package
defines the function and the procedures:

CREATE PACKAGE BODY Employee_management AS
FUNCTION Hire_emp (ename VARCHAR2, Job VARCHAR2,
Mgr NUMBER, Hiredate DATE, Sal NUMBER, Comm NUMBER,
Deptno NUMBER) RETURN NUMBER IS
New_empno NUMBER (10) ;

-- This function accepts all arguments for the fields in
-- the employee table except for the employee number.

-- A value for this field is supplied by a sequence.

-- The function returns the sequence number generated

-- by the invocation of this function.

BEGIN
New_empno := Emp_sequence.NEXTVAL;
INSERT INTO emp VALUES (New_empno, ename, Job, Mgr,
Hiredate, Sal, Comm, Deptno);
RETURN (New_empno) ;
END Hire_emp;

PROCEDURE fire_emp (emp_id IN NUMBER) AS

-- This procedure deletes the employee with an employee
-- number that corresponds to the argument Emp_id. If
-- no employee is found, then an exception is raised.

BEGIN
DELETE FROM emp WHERE Empno = Emp_id;
IF SQL3NOTFOUND THEN
Raise_application_error(-20011, 'Invalid Employee
Number: ' || TO_CHAR(Emp_id));
END IF;
END fire_emp;

PROCEDURE Sal_raise (Emp_id IN NUMBER, Sal_incr IN NUMBER) AS

-- This procedure accepts two arguments. Emp_id is a
-- number that corresponds to an employee number.

-- SAL_INCR is the amount by which to increase the

-- employee's salary. If employee exists, then update
-- salary with increase.

BEGIN
UPDATE emp
SET Sal = Sal + Sal_incr
WHERE Empno = Emp_id;
IF SQL3NOTFOUND THEN
Raise_application_error(-20011, 'Invalid Employee
Number: ' || TO_CHAR(Emp_id));
END IF;
END Sal_raise;
END Employee_management ;

Coding PL/SQL Subprograms and Packages 7-11

Overview of PL/SQL Program Units

Note: If you want to try this example, then first create the sequence
number Emp_sequence. Do this with the following SQL*Plus
statement:

SQL> CREATE SEQUENCE Emp_sequence
> START WITH 8000 INCREMENT BY 10;

PL/SQL Object Size Limits

The size limit for PL/SQL stored database objects such as subprograms, triggers, and
packages is the size of the Descriptive Intermediate Attributed Notation for Ada
(DIANA) code in the shared pool in bytes. The Linux and UNIX limit on the size of
the flattened DIANA /code size is 64K but the limit might be 32K on desktop
platforms.

The most closely related number that a user can access is the PARSED_SIZE in the
static data dictionary view *_OBJECT_SIZE. That gives the size of the DIANA in
bytes as stored in the SYS. IDL_xxx$ tables. This is not the size in the shared pool.
The size of the DIANA part of PL/SQL code (used during compilation) is significantly
larger in the shared pool than it is in the system table.

Creating Packages

Each part of a package is created with a different statement. Create the package
specification using the CREATE PACKAGE statement. The CREATE PACKAGE statement
declares public package objects.

To create a package body, use the CREATE PACKAGE BODY statement. The CREATE
PACKAGE BODY statement defines the procedural code of the public subprograms
declared in the package specification.

You can also define private, or local, package subprograms, and variables in a package
body. These objects can only be accessed by other subprograms in the body of the
same package. They are not visible to external users, regardless of the privileges they
hold.

It is often more convenient to add the OR REPLACE clause in the CREATE PACKAGE or
CREATE PACKAGE BODY statements when you are first developing your application.
The effect of this option is to drop the package or the package body without warning.
The CREATE statements are:

CREATE OR REPLACE PACKAGE Package_name AS ...

and

CREATE OR REPLACE PACKAGE BODY Package_name AS ...

Creating Packaged Objects The body of a package can contain:

= Subprograms declared in the package specification.

= Definitions of cursors declared in the package specification.

s Local subprograms, not declared in the package specification.
s Local variables.

Subprograms, cursors, and variables that are declared in the package specification are
global. They can be invoked, or used, by external users that have EXECUTE permission
for the package or that have EXECUTE ANY PROCEDURE privileges.

7-12 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Program Units

When you create the package body, ensure that each subprogram that you define in
the body has the same parameters, by name, datatype, and mode, as the declaration in
the package specification. For functions in the package body, the parameters and the
return type must agree in name and type.

Privileges to Needed to Create or Drop Packages The privileges required to create or drop a
package specification or package body are the same as those required to create or drop
a standalone subprogram. See "Creating Subprograms" on page 7-8 and "Dropping
Subprograms and Packages" on page 7-9.

Naming Packages and Package Objects

The names of a package and all public objects in the package must be unique within a
given schema. The package specification and its body must have the same name. All
package constructs must have unique names within the scope of the package, unless
overloading of subprogram names is desired.

Package Invalidations and Session State

Each session that references a package object has its own instance of the corresponding
package, including persistent state for any public and private variables, cursors, and
constants. If any of the session's instantiated packages (specification or body) are
invalidated, then all package instances in the session are invalidated and recompiled.
As a result, the session state is lost for all package instances in the session.

When a package in a given session is invalidated, the session receives the following
error the first time it attempts to use any object of the invalid package instance:

ORA-04068: existing state of packages has been discarded

The second time a session makes such a package call, the package is reinstantiated for
the session without error.

Note: For optimal performance, Oracle Database returns this error
message only once—each time the package state is discarded.

If you handle this error in your application, ensure that your error
handling strategy can accurately handle this error. For example, when
a subprogram in one package invokes a subprogram in another
package, your application must be aware that the session state is lost
for both packages.

In most production environments, DDL operations that can cause invalidations are
usually performed during inactive working hours; therefore, this situation might not
be a problem for end-user applications. However, if package invalidations are
common in your system during working hours, then you might want to code your
applications to handle this error when package calls are made.

Packages Supplied with Oracle Database

There are many packages provided with Oracle Database, either to extend the
functionality of the database or to give PL/SQL access to SQL features. You can invoke
these packages from your application.

See Also: Oracle Database PL/SQL Packages and Types Reference for an
overview of these Oracle Database packages

Coding PL/SQL Subprograms and Packages 7-13

Overview of PL/SQL Program Units

Overview of Bulk Binding

Oracle Database uses two engines to run PL/SQL blocks and subprograms. The
PL/SQL engine runs procedural statements, while the SQL engine runs SQL
statements. During execution, every SQL statement causes a context switch between
the two engines, resulting in performance overhead.

Performance can be improved substantially by minimizing the number of context
switches required to run a particular block or subprogram. When a SQL statement
runs inside a loop that uses collection elements as bind variables, the large number of
context switches required by the block can cause poor performance. Collections
include the following:

= Varrays

= Nested tables

= Index-by tables
s Host arrays

Binding is the assignment of values to PL/SQL variables in SQL statements. Bulk
binding is binding an entire collection at once. Bulk binds pass the entire collection
back and forth between the two engines in a single operation.

Typically, using bulk binds improves performance for SQL statements that affect four
or more database rows. The more rows affected by a SQL statement, the greater the
performance gain from bulk binds.

Note: This section provides an overview of bulk binds to help you
decide whether to use them in your PL/SQL applications. For detailed
information about using bulk binds, including ways to handle
exceptions that occur in the middle of a bulk bind operation, see
Oracle Database PL/SQL Language Reference.

Parallel DML is disabled with bulk binds.

When to Use Bulk Binds

Consider using bulk binds to improve the performance of the following;:
= DML Statements that Reference Collections

s SELECT Statements that Reference Collections

= FOR Loops that Reference Collections and Return DML

DML Statements that Reference Collections The FORALL keyword can improve the
performance of INSERT, UPDATE, or DELETE statements that reference collection
elements.

For example, the following PL/SQL block increases the salary for employees whose
manager's ID number is 7902, 7698, or 7839, both with and without using bulk binds:

DECLARE
TYPE Numlist IS VARRAY (100) OF NUMBER;
Id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN

-- Efficient method, using a bulk bind
FORALL i IN Id.FIRST..Id.LAST -- bulk-bind the VARRAY
UPDATE Emp_tab SET Sal = 1.1 * Sal
WHERE Mgr = Id(i);

7-14 Oracle Database Advanced Application Developer's Guide

Overview of PL/SQL Program Units

-- Slower method, running the UPDATE statements within a regular loop
FOR i IN Id.FIRST..Id.LAST LOOP
UPDATE Emp_tab SET Sal = 1.1 * Sal
WHERE Mgr = Id(i);
END LOOP;
END;

Without the bulk bind, PL/SQL sends a SQL statement to the SQL engine for each
employee that is updated, leading to context switches that hurt performance.

If you have a set of rows prepared in a PL/SQL table, you can bulk-insert or
bulk-update the data using a loop like:

FORALL i in Emp_Data.FIRST..Emp_Data.LAST
INSERT INTO Emp_tab VALUES (Emp_Data(i));

SELECT Statements that Reference Collections The BULK COLLECT INTO clause can
improve the performance of queries that reference collections.

For example, the following PL/SQL block queries multiple values into PL/SQL tables,
both with and without bulk binds:

-- Find all employees whose manager's ID number is 7698.
DECLARE

TYPE Var_tab IS TABLE OF VARCHAR2 (20) INDEX BY PLS_INTEGER;

Empno VAR_TAB;

Ename VAR_TAB;

Counter NUMBER;

CURSOR C IS

SELECT Empno, Ename FROM Emp_tab WHERE Mgr = 7698;

BEGIN

-- Efficient method, using a bulk bind
SELECT Empno, Ename BULK COLLECT INTO Empno, Ename
FROM Emp_Tab WHERE Mgr = 7698;

-- Slower method, assigning each collection element within a loop.

counter := 1;
FOR rec IN C LOOP
Empno (Counter) := rec.Empno;
Ename (Counter) := rec.Ename;
Counter := Counter + 1;
END LOOP;
END;

You can use BULK COLLECT INTO with tables of scalar values, or tables of $TYPE
values.

Without the bulk bind, PL/SQL sends a SQL statement to the SQL engine for each
employee that is selected, leading to context switches that hurt performance.

FOR Loops that Reference Collections and Return DML You can use the FORALL keyword
along with the BULK COLLECT INTO keywords to improve the performance of FOR
loops that reference collections and return DML.

For example, the following PL/SQL block updates the Emp_tab table by computing
bonuses for a collection of employees; then it returns the bonuses in a column called
Bonlist. The actions are performed both with and without using bulk binds:

Coding PL/SQL Subprograms and Packages 7-15

Compiling PL/SQL Subprograms for Native Execution

DECLARE
TYPE Emplist IS VARRAY(100) OF NUMBER;
Empids EMPLIST := EMPLIST (7369, 7499, 7521, 7566, 7654, 7698);
TYPE Bonlist IS TABLE OF Emp_tab.sal%TYPE;
Bonlist_inst BONLIST;
BEGIN
Bonlist_inst := BONLIST(1,2,3,4,5);

FORALL i IN Empids.FIRST..empIDs.LAST
UPDATE Emp_tab SET Bonus = 0.1 * Sal
WHERE Empno = Empids(i)

RETURNING Sal BULK COLLECT INTO Bonlist;

FOR i1 IN Empids.FIRST..Empids.LAST LOOP
UPDATE Emp_tab Set Bonus = 0.1 * sal
WHERE Empno = Empids(i)
RETURNING Sal INTO BONLIST(i);
END LOOP;
END;

Without the bulk bind, PL/SQL sends a SQL statement to the SQL engine for each
employee that is updated, leading to context switches that hurt performance.

Triggers

A trigger is a special kind of PL/SQL anonymous block. You can define triggers to fire
before or after SQL statements, either on a statement level or for each row that is
affected. You can also define INSTEAD OF triggers or system triggers (triggers on
DATABASE and SCHEMA).

See Also: Oracle Database PL/SQL Language Referencefor more
information about triggers

Compiling PL/SQL Subprograms for Native Execution

You can speed up PL/SQL subprograms by compiling them into native code residing
in shared libraries.

You can use native compilation with both the supplied Oracle packages and
subprograms you write yourself. Subprograms compiled this way work in all server
environments, such as the shared server configuration (formerly known as
multithreaded server) and Oracle Real Application Clusters (Oracle RAC).

This technique is most effective for computation-intensive subprograms that do not
spend much time executing SQL, because it can do little to speed up SQL statements
invoked from these subprograms.

With Java, you can use the ncomp tool to compile your own packages and classes.

See Also:

» Oracle Database PL/SQL Language Reference for details on PL/SQL
native compilation

» Oracle Database Java Developer’s Guide for details on Java native
compilation

7-16 Oracle Database Advanced Application Developer's Guide

Cursor Variables

Cursor Variables

A cursor is a static object; a cursor variable is a pointer to a cursor. Because cursor
variables are pointers, they can be passed and returned as parameters to subprograms.
A cursor variable can also refer to different cursors in its lifetime.

Additional advantages of cursor variables include the following:
= Encapsulation

Queries are centralized in the stored subprogram that opens the cursor variable.
= Easy maintenance

If you need to change the cursor, then you only need to make the change in one
place: the stored subprogram. There is no need to change each application.

= Convenient security

The user of the application is the username used when the application connects to
the server. The user must have EXECUTE permission on the stored subprogram
that opens the cursor. But, the user does not need to have READ permission on the
tables used in the query. This capability can be used to limit access to the columns
in the table, as well as access to other stored subprograms.

See Also: Oracle Database PL/SQL Language Reference for more
information about cursor variables

Topics:
= Declaring and Opening Cursor Variables

= Examples of Cursor Variables

Declaring and Opening Cursor Variables

Memory is usually allocated for a cursor variable in the client application using the
appropriate ALLOCATE statement. In Pro*C, use the EXEC SQL ALLOCATE cursor_
name statement. In OCI, use the Cursor Data Area.

You can also use cursor variables in applications that run entirely in a single server
session. You can declare cursor variables in PL/SQL subprograms, open them, and use
them as parameters for other PL/SQL subprograms.

Examples of Cursor Variables

This section includes several examples of cursor variable usage in PL/SQL. For
additional cursor variable examples that use the programmatic interfaces, see the
following:

» Pro*C/C++ Programmer’s Guide
» Pro*COBOL Programmer’s Guide
» Oracle Call Interface Programmer’s Guide

Example 7-1 creates a package, Emp_data, that defines a PL/SQL cursor variable
type, Emp_val_cv_type, and two procedures. The first procedure, Open_emp_cv,
opens the cursor variable using a bind variable in the WHERE clause. The second
procedure, Fetch_emp_data, fetches rows from the Emp_ tab table using the cursor
variable. Example 7-2 invokes the Emp_data package procedures from a PL/SQL
block.

Coding PL/SQL Subprograms and Packages 7-17

Cursor Variables

Example 7-1 Package for Fetching Data with Cursor Variable

CREATE OR REPLACE PACKAGE Emp_data AS
TYPE Emp_val_cv_type IS REF CURSOR RETURN Emp_tab%ROWTYPE;

PROCEDURE Open_emp_cv (Emp_cv IN OUT Emp_val_cv_type,
Dept_number IN INTEGER) ;
PROCEDURE Fetch_emp_data (emp_cv IN Emp_val_cv_type,
emp_row ouT Emp_tab%ROWTYPE) ;

END Emp_data;

CREATE OR REPLACE PACKAGE BODY Emp_data AS
PROCEDURE Open_emp_cv (Emp_cv IN OUT Emp_val_cv_type,
Dept_number IN INTEGER) IS
BEGIN
OPEN emp_cv FOR SELECT * FROM Emp_tab WHERE deptno = dept_number;
END open_emp_cv;
PROCEDURE Fetch_emp_data (Emp_cv IN Emp_val_cv_type,
Emp_row OUT Emp_tab%$ROWTYPE) IS
BEGIN
FETCH Emp_cv INTO Emp_row;
END Fetch_emp_data;
END Emp_data;

Example 7-2 Invoking Package Procedures from a PL/SQL Block

DECLARE

-- declare a cursor variable
Emp_curs Emp_data.Emp_val_cv_type;
Dept_number Dept_tab.Deptno%TYPE;
Emp_row Emp_tab%ROWTYPE;

BEGIN
Dept_number := 20;
-- open the cursor using a variable
Emp_data.Open_emp_cv (Emp_curs, Dept_number) ;
-- fetch the data and display it
LOOP
Emp_data.Fetch_emp_data (Emp_curs, Emp_row);
EXIT WHEN Emp_curs$NOTFOUND;
DBMS_OUTPUT . PUT (Emp_row.Ename || ' ');
DBMS_OUTPUT.PUT_LINE (Emp_row.Sal) ;
END LOOP;
END;

The power of cursor variables comes from their ability to point to different cursors.
Example 7-3 uses a discriminant to open a cursor variable to point to one of two
different cursors.

Example 7-3 Cursor Variable with Discriminator

CREATE OR REPLACE PACKAGE Emp_dept_data AS
TYPE Cv_type IS REF CURSOR;
PROCEDURE Open_cv (Cv IN OUT cv_type,
Discrim IN POSITIVE) ;
END Emp_dept_data;

CREATE OR REPLACE PACKAGE BODY Emp_dept_data AS
PROCEDURE Open_cv (Cv IN OUT cv_type,
Discrim IN POSITIVE) IS
BEGIN
IF Discrim = 1 THEN

7-18 Oracle Database Advanced Application Developer's Guide

Handling PL/SQL Compile-Time Errors

OPEN Cv FOR SELECT * FROM Emp_tab WHERE Sal > 2000;
ELSIF Discrim = 2 THEN
OPEN Cv FOR SELECT * FROM Dept_tab;
END IF;
END Open_cv;
END Emp_dept_data;

You can invoke the Open_cv procedure in Example 7-3 to open the cursor variable
and point it to a query on either the Emp_tab table or the Dept_tab table.
Example 7—4 uses the cursor variable to fetch data and then uses the ROWTYPE_
MISMATCH predefined exception to handle either fetch.

Example 7-4 ROWTYPE_MISMATCH Predefined Exception

DECLARE
Emp_rec Emp_tab%ROWTYPE;
Dept_rec Dept_tab%ROWTYPE;

Cv Emp_dept_data.CV_TYPE;

BEGIN
Emp_dept_data.open_cv(Cv, 1); -- Open Cv For Emp_tab Fetch
Fetch cv INTO Dept_rec; -- but fetch into Dept_tab record

-- which raises ROWTYPE_MISMATCH
DBMS_OUTPUT. PUT (Dept_rec.Deptno) ;
DBMS_OUTPUT.PUT_LINE(' ' || Dept_rec.Loc);

EXCEPTION
WHEN ROWTYPE_MISMATCH THEN
BEGIN
DBMS_OUTPUT. PUT_LINE
('Row type mismatch, fetching Emp_tab data...');
FETCH Cv INTO Emp_rec;
DBMS_OUTPUT. PUT (Emp_rec.Deptno) ;
DBMS_OUTPUT.PUT_LINE(' ' || Emp_rec.Ename);
END;

Handling PL/SQL Compile-Time Errors

To list compile-time errors, query the static data dictionary view *_ERRORS. From
these views, you can retrieve original source code. The error text associated with the
compilation of a subprogram is updated when the subprogram is replaced, and it is
deleted when the subprogram is dropped.

When you use SQL*Plus to submit PL/SQL code, and when the code contains errors,
you receive notification that compilation errors have occurred, but there is no
immediate indication of what the errors are. For example, if you submit a standalone
(or stored) procedure PROC1 in the file procl.sgl as follows:

SQL> @procl

If there are one or more errors in the code, then you receive a notice such as the
following:

MGR-00072: Warning: Procedure procl created with compilation errors

In this case, use the SHOW ERRORS statement in SQL*Plus to get a list of the errors that
were found. SHOW ERRORS with no argument lists the errors from the most recent

compilation. You can qualify SHOW ERRORS using the name of a subprogram, package,
or package body:

Coding PL/SQL Subprograms and Packages 7-19

Handling Run-Time PL/SQL Errors

SQL> SHOW ERRORS PROC1
SQL> SHOW ERRORS PROCEDURE PROC1

Note: Before issuing the SHOW ERRORS statement, use the SET
LINESIZE statement to get long lines on output. The value 132 is
usually a good choice. For example:

SET LINESIZE 132

Assume that you want to create a simple procedure that deletes records from the
employee table using SQL*Plus:

CREATE OR REPLACE PROCEDURE Fire_emp (Emp_id NUMBER) AS
BEGIN
DELETE FROM Emp_tab WHER Empno = Emp_id;
END
/
Notice that the CREATE PROCEDURE statement has two errors: the DELETE statement
has an error (the E is absent from WHERE), and the semicolon is missing after END.

After the CREATE PROCEDURE statement is entered and an error is returned, a SHOW
ERRORS statement returns the following lines:

SHOW ERRORS;

ERRORS FOR PROCEDURE Fire_emp:

LINE/COL ERROR
3/27 PL/SQL-00103: Encountered the symbol "EMPNO" wh.
5/0 PL/SQL-00103: Encountered the symbol "END" when .

2 rows selected.

Notice that each line and column number where errors were found is listed by the
SHOW ERRORS statement.
See Also:

» Oracle Database Reference for more information about the static
data dictionary view *_SOURCE.

s SQL*Plus User's Guide and Reference for more information about
the SHOW ERRORS statement

Handling Run-Time PL/SQL Errors

Oracle Database allows user-defined errors in PL/SQL code to be handled so that
user-specified error numbers and messages are returned to the client application. After
received, the client application can handle the error based on the user-specified error
number and message returned by Oracle Database.

User-specified error messages are returned using the RAISE_APPLICATION_ERROR
procedure. For example:

RAISE_APPLICATION_ERROR (Error_number, 'text', Keep_error_stack)
This procedure stops subprogram execution, rolls back any effects of the subprogram,

and returns a user-specified error number and message (unless the error is trapped by
an exception handler). ERROR_NUMBER must be in the range of -20000 to -20999.

7-20 Oracle Database Advanced Application Developer's Guide

Handling Run-Time PL/SQL Errors

Use error number -20000 as a generic number for messages where it is important to
relay information to the user, but having a unique error number is not required. Text
must be a character expression, 2 Kbytes or less (longer messages are ignored). Keep_
error_stack can be TRUE if you want to add the error to any already on the stack, or
FALSE if you want to replace the existing errors. By default, this option is FALSE.

Note: Some of the Oracle Database packages, such as DBMS_
OUTPUT, DBMS_DESCRIBE, and DBMS_ALERT, use application error
numbers in the range -20000 to -20005. See the descriptions of these
packages for more information.

The RAISE_APPLICATION_ERROR procedure is often used in exception handlers or in
the logic of PL/SQL code. For example, the following exception handler selects the
string for the associated user-defined error message and invokes the RAISE_
APPLICATION_ERROR procedure:

WHEN NO_DATA_FOUND THEN
SELECT Error_string INTO Message
FROM Error_table,
VSNLS_PARAMETERS V
WHERE Error_number = -20101 AND Lang = v.value AND
v.parameter = "NLS_LANGUAGE";
Raise_application_error(-20101, Message);

See Also: "Handling Errors in Remote Subprograms" on
page 7-23 for information on exception handling when invoking
remote subprograms

Topics:

s Declaring Exceptions and Exception Handling Routines
s Unhandled Exceptions

» Handling Errors in Distributed Queries

= Handling Errors in Remote Subprograms

Declaring Exceptions and Exception Handling Routines

User-defined exceptions are explicitly defined and signaled within the PL/SQL block
to control processing of errors specific to the application. When an exception is raised
(signaled), the usual execution of the PL/SQL block stops, and a routine called an
exception handler is invoked. Specific exception handlers can be written to handle any
internal or user-defined exception.

Application code can check for a condition that requires special attention using an IF
statement. If there is an error condition, then two options are available:

= Enter a RAISE statement that names the appropriate exception. A RAISE
statement stops the execution of the subprogram, and control passes to an
exception handler (if any).

s Invoke the RAISE_APPLICATION_ERROR procedure to return a user-specified
error number and message.

Coding PL/SQL Subprograms and Packages 7-21

Handling Run-Time PL/SQL Errors

You can also define an exception handler to handle user-specified error messages. For
example, Figure 7-1 shows the following:

= An exception and associated exception handler in a subprogram

= A conditional statement that checks for an error (such as transferring funds not
available) and enters a user-specified error number and message within a trigger

» How user-specified error numbers are returned to the invoking environment (in
this case, a subprogram), and how that application can define an exception that
corresponds to the user-specified error number

Declare a user-defined exception in a subprogram or package body (private
exceptions), or in the specification of a package (public exceptions). Define an
exception handler in the body of a subprogram (standalone or package).

Figure 7-1 Exceptions and User-Defined Errors

Procedure fire_emp (empid NUMBER) IS
invalid_empid EXCEPTION;

PRAGMA EXCEPTION_INIT(invalid empid, -20101); <
BEGIN Error number
. returned to
DELETE FROM emp WHERE empno = empid; camng
EXCEPTION environment
WHEN invlid_empid THEN
INSERT INTO emp_audit
VALUES (empid, ’‘Fired before probation ended’) ;
END;
- TRIGGER emp_probation
BEFORE DELETE ON emp
Table EMP FOR EACH ROW
BEGIN
IF (sysdate-:old.hiredate)<30 THEN
raise_application_error (20101,
"Employee’ | |old.ename| |’ on probation’)
END IF;
< END;

Unhandled Exceptions

In database PL/SQL program units, an unhandled user-error condition or internal
error condition that is not trapped by an appropriate exception handler causes the
implicit rollback of the program unit. If the program unit includes a COMMIT statement
before the point at which the unhandled exception is observed, then the implicit
rollback of the program unit can only be completed back to the previous COMMIT.

Additionally, unhandled exceptions in database-stored PL/SQL program units
propagate back to client-side applications that invoke the containing program unit. In
such an application, only the application program unit invocation is rolled back (not
the entire application program unit), because it is submitted to the database as a SQL
statement.

If unhandled exceptions in database PL/SQL program units are propagated back to
database applications, modify the database PL/SQL code to handle the exceptions.
Your application can also trap for unhandled exceptions when invoking database
program units and handle such errors appropriately.

7-22 Oracle Database Advanced Application Developer's Guide

Handling Run-Time PL/SQL Errors

Handling Errors in Distributed Queries

You can use a trigger or a stored subprogram to create a distributed query. This
distributed query is decomposed by the local Oracle Database instance into a
corresponding number of remote queries, which are sent to the remote nodes for
execution. The remote nodes run the queries and send the results back to the local
node. The local node then performs any necessary post-processing and returns the
results to the user or application.

If a portion of a distributed statement fails, possibly due to a constraint violation, then
Oracle Database returns error number ORA-02055. Subsequent statements, or
subprogram invocations, return error number ORA-02067 until a rollback or a
rollback to savepoint is entered.

Design your application to check for any returned error messages that indicates that a
portion of the distributed update has failed. If you detect a failure, rollback the entire
transaction (or rollback to a savepoint) before allowing the application to proceed.

Handling Errors in Remote Subprograms

When a subprogram is run locally or at a remote location, four types of exceptions can
occur:

s PL/SQL user-defined exceptions, which must be declared using the keyword
EXCEPTION.

s PL/SQL predefined exceptions, such as NO_DATA_FOUND.
s SQL errors, such as ORA-00900 and ORA-02015.

= Application exceptions, which are generated using the RAISE_APPLICATION_
ERROR procedure.

When using local subprogrames, all of these messages can be trapped by writing an
exception handler, such as shown in the following example:

EXCEPTION
WHEN ZERO_DIVIDE THEN
/* Handle the exception */

Notice that the WHEN clause requires an exception name. If the exception that is raised
does not have a name, such as those generated with RAISE_APPLICATION_ERROR,
then one can be assigned using PRAGMA_EXCEPTION_INIT, as shown in the
following example:

DECLARE
Null_salary EXCEPTION;

PRAGMA EXCEPTION_INIT (Null_salary, -20101);
BEGIN

RAISE_APPLICATION_ERROR(-20101, 'salary is missing');
EXCEPTION

WHEN Null_salary THEN

When invoking a remote subprogram, exceptions are also handled by creating a local
exception handler. The remote subprogram must return an error number to the local
invoking subprogram, which then handles the exception, as shown in the previous
example. Because PL/SQL user-defined exceptions always return ORA-06510 to the

Coding PL/SQL Subprograms and Packages 7-23

Debugging Stored Subprograms

local subprogram, these exceptions cannot be handled. All other remote exceptions can
be handled in the same manner as local exceptions.

Debugging Stored Subprograms

Compiling a stored subprogram involves fixing any syntax errors in the code. You
might need to do additional debugging to ensure that the subprogram works correctly,
performs well, and recovers from errors. Such debugging might involve:

» Adding extra output statements to verify execution progress and check data
values at certain points within the subprogram.

= Running a separate debugger to analyze execution in greater detail.
Topics:

s PL/Scope

s PL/SQL Hierarchical Profiler

» Oracle JDeveloper

= DBMS_OUTPUT Package

» Privileges for Debugging PL/SQL and Java Stored Subprograms

= Writing Low-Level Debugging Code

= DBMS_DEBUG_JDWP Package

= DBMS_DEBUG Package

PL/Scope

PL/Scope is a compiler-driven tool that collects and organizes data about user-defined
identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you
use it through interactive development environments (such as SQL Developer and
JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

For more information about PL/Scope, see Chapter 8, "Using PL/Scope".

PL/SQL Hierarchical Profiler

The PL/SQL hierarchical profiler reports the dynamic execution profile of your
PL/SQL program, organized by subprogram calls. It accounts for SQL and PL/SQL
execution times separately. Each subprogram-level summary in the dynamic execution
profile includes information such as number of calls to the subprogram, time spent in
the subprogram itself, time spent in the subprogram's subtree (that is, in its descendent
subprograms), and detailed parent-children information.

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 9, "Using the
PL/SQL Hierarchical Profiler".

7-24 Oracle Database Advanced Application Developer's Guide

Debugging Stored Subprograms

Oracle JDeveloper

Recent releases of Oracle JDeveloper have extensive features for debugging PL/SQL,
Java, and multi-language programs. You can get Oracle JDeveloper as part of various
Oracle product suites. Often, a more recent release is available as a download at
http://www.oracle.com/technology/.

DBMS_OUTPUT Package

You can also debug stored subprograms and triggers using the Oracle Database
package DBMS_OUTPUT. Put PUT and PUT_LINE statements in your code to output the
value of variables and expressions to your terminal.

Privileges for Debugging PL/SQL and Java Stored Subprograms

Starting with Oracle Database 10g, a new privilege model applies to debugging
PL/SQL and Java code running within the database. This model applies whether you
are using Oracle JDeveloper, Oracle Developer, or any of the various third-party
PL/SQL or Java development environments, and it affects both the DBMS_DEBUG and
DBMS_DEBUG_JDWP APIs.

For a session to connect to a debugger, the effective user at the time of the connect
operation must have the DEBUG CONNECT SESSION system privilege. This effective
user might be the owner of a DR routine involved in making the connect call.

When a debugger becomes connected to a session, the session login user and the
currently enabled session-level roles are fixed as the privilege environment for that
debugging connection. Any DEBUG or EXECUTE privileges needed for debugging must
be granted to that combination of user and roles.

= Tobe able to display and change Java public variables or variables declared in a
PL/SQL package specification, the debugging connection must be granted either
EXECUTE or DEBUG privilege on the relevant code.

= Tobe able to either display and change private variables or breakpoint and
execute code lines step by step, the debugging connection must be granted DEBUG
privilege on the relevant code

Caution: The DEBUG privilege allows a debugging session to do
anything that the subprogram being debugged could have done if
that action had been included in its code.

In addition to these privilege requirements, the ability to stop on individual code lines
and debugger access to variables are allowed only in code compiled with debug
information generated. Use the PLSQL_DEBUG parameter and the DEBUG keyword on
statements such as ALTER PACKAGE to control whether the PL/SQL compiler includes
debug information in its results. If not, variables are not accessible, and neither
stepping nor breakpoints stop on code lines. The PL/SQL compiler never generates
debug information for code hidden with the PL/SQL wrap utility.

See Also: Oracle Database PL/SQL Language Reference, for
information about the wrap utility

The DEBUG ANY PROCEDURE system privilege is equivalent to the DEBUG privilege

granted on all objects in the database. Objects owned by SYS are included if the value
of the 07_DICTIONARY_ACCESSIBILITY parameter is TRUE.

Coding PL/SQL Subprograms and Packages 7-25

Debugging Stored Subprograms

A debug role mechanism is available to carry privileges needed for debugging that are
not normally enabled in the session. See the documentation on the DBMS_DEBUG and
DBMS_DEBUG_JDWP packages for details on how to specify a debug role and any
necessary related password.

The JAVADEBUGPRIV role carries the DEBUG CONNECT SESSION and DEBUG ANY
PROCEDURE privileges. Grant it only with the care those privileges warrant.

Caution: Granting DEBUG ANY PROCEDURE privilege, or granting
DEBUG privilege on any object owned by SYS, means granting
complete rights to the database.

Writing Low-Level Debugging Code

If you are writing code for part of a debugger, you might need to use packages such as
DBMS_DEBUG_JDWP or DBMS_DEBUG.

DBMS_DEBUG_JDWP Package

The DBMS_DEBUG_JDWP package, provided starting with Oracle9i Release 2, provides
a framework for multi-language debugging that is expected to supersede the DBMS_
DEBUG package over time. It is especially useful for programs that combine PL/SQL
and Java.

DBMS_DEBUG Package

The DBMS_DEBUG package, provided starting with Oracle8i, implements server-side
debuggers and provides a way to debug server-side PL/SQL program units. Several of
the debuggers available, such as Oracle Procedure Builder and various third-party
vendor solutions, use this APL

See Also:

» Oracle Procedure Builder Developer’s Guide

» Oracle Database PL/SQL Packages and Types Reference for more
information about theDBMS_DEBUG package and associated
privileges

» Oracle Database PL/SQL Packages and Types Reference for more
information about theDBMS_OUTPUT package and associated
privileges

s The Oracle JDeveloper documentation for information on using
package DBMS_DEBUG_JDWP

» Oracle Database SQL Language Reference for more details on
privileges

s The PL/SQL page at
http://www.oracle.com/technology/ for information
about writing low-level debug code

7-26 Oracle Database Advanced Application Developer's Guide

Invoking Stored Subprograms

Invoking Stored Subprograms

Note: You might need to set up data structures, similar to the
following, for certain examples to work:

CREATE TABLE Emp_tab (

Empno NUMBER (4) NOT NULL,
Ename VARCHAR2 (10) ,

Job VARCHAR2 (9) ,

Mgr NUMBER (4) ,

Hiredate DATE,

Sal NUMBER (7, 2) ,

Comm NUMBER(7,2),

Deptno NUMBER(2));

CREATE OR REPLACE PROCEDURE fire_empl (Emp_id NUMBER) AS
BEGIN
DELETE FROM Emp_tab WHERE Empno = Emp_id;
END;
VARIABLE Empnum NUMBER;

PL/SQL subprograms can be invoked from many different environments. For
example:

s From the body of another subprogram

» From the body of a trigger

s Interactively, using an Oracle Database tool

s From within an application (such as a SQL*Forms or a precompiler application)
s From a SQL statement

The following topics include common examples of invoking subprograms from within
these environments (except from an SQL statement, which is covered in "Invoking
Stored PL/SQL Functions from SQL Statements" on page 7-32). For more information
about invoking PL/SQL subprograms, including passing parameters, see Oracle
Database PL/SQL Language Reference.

Topics:

» Privileges Required to Execute a Subprogram

» Invoking a Subprogram from a Trigger or Another Subprogram

» Invoking a Subprogram Interactively from Oracle Database Tools

» Invoking a Subprogram from a 3GL Application

Privileges Required to Execute a Subprogram

If you are the owner of a standalone subprogram or package, then you can run the
standalone subprogram or packaged subprogram, or any public subprogram or
packaged subprogram at any time, as described in the previous sections. If you want
to run a standalone or packaged subprogram owned by another user, then the
following conditions apply:

= You must have the EXECUTE privilege for the standalone subprogram or package
containing the subprogram, or you must have the EXECUTE ANY PROCEDURE

Coding PL/SQL Subprograms and Packages 7-27

Invoking Stored Subprograms

system privilege. If you are executing a remote subprogram, then you must be
granted the EXECUTE privilege or EXECUTE ANY PROCEDURE system privilege
directly, not through a role.

= You must include the name of the owner in the invocation. For example:

EXECUTE Jward.Fire_emp (1043);
EXECUTE Jward.Hire_fire.Fire_emp (1043);

» If the subprogram is a definer's-rights (DR) subprogram, then it runs with the
privileges of the subprogram owner. The owner must have all the necessary object
privileges for any referenced objects.

» If the subprogram is an invoker's-rights (IR) subprogram, then it runs with your
privileges (as the invoker). In this case, you also need privileges on all referenced
objects; that is, all objects accessed by the subprogram through external references
that are resolved in your schema. You might hold these privileges directly or
through a role. Roles are enabled unless an IR subprogram is invoked directly or
indirectly by a DR subprogram.

Note: You might need to set up the following data structures for
certain examples to work:

CONNECT SYS/password AS SYSDBA;

CREATE USER Jward IDENTIFIED BY Jward;
GRANT CREATE ANY PACKAGE TO Jward;
GRANT CREATE ANY SESSION TO Jward;
GRANT EXECUTE ANY PROCEDURE TO Jward;
CONNECT SCOTT/password AS SYSDBA;

Invoking a Subprogram from a Trigger or Another Subprogram

A subprogram or trigger can invoke another stored subprogram. For example,
included in the body of one subprogram might be the following line:

Sal_raise(Emp_id, 200);

This line invokes the Sal_raise procedure. Emp_1id is a variable within the context
of the procedure. Recursive subprogram invocations are allowed within PL/SQL: A
subprogram can invoke itself.

Invoking a Subprogram Interactively from Oracle Database Tools

A subprogram can be invoked interactively from an Oracle Database tool, such as
SQL*Plus. For example, to invoke a procedure named SAL_RAISE, owned by you, you
can use an anonymous PL/SQL block, as follows:

BEGIN
Sal_raise (7369, 200);
END;

Note: Interactive tools, such as SQL*Plus, require you to follow
these lines with a slash (/) to run the PL/SQL block.

An easier way to run a block is to use the SQL*Plus statement EXECUTE, which wraps
BEGIN and END statements around the code you enter. For example:

7-28 Oracle Database Advanced Application Developer's Guide

Invoking Remote Subprograms

EXECUTE Sal_raise (7369, 200);

Some interactive tools allow session variables to be created. For example, when using
SQL*Plus, the following statement creates a session variable:

VARIABLE Assigned_empno NUMBER

After defined, any session variable can be used for the duration of the session. For
example, you might run a function and capture the return value using a session
variable:

EXECUTE :Assigned_empno := Hire_emp('JSMITH', 'President’',
1032, SYSDATE, 5000, NULL, 10);

PRINT Assigned_empno;

ASSIGNED_EMPNO

See Also:

s SQL*Plus User's Guide and Reference for information about the
EXECUTE command

= Your tools documentation for information about performing
similar operations using your development tool

Invoking a Subprogram from a 3GL Application

A 3GL database application, such as a precompiler or an OCI application, can include
an invocation to a subprogram within the code of the application.

To run a subprogram within a PL/SQL block in an application, simply invoke the
subprogram. The following line within a PL/SQL block invokes the Fire_emp
procedure:

Fire_empl (: Empnun) ;

In this case, :Empno is a host (bind) variable within the context of the application.

To run a subprogram within the code of a precompiler application, you must use the
EXEC call interface. For example, the following statement invokes the Fire_emp
procedure in the code of a precompiler application:

EXEC SQL EXECUTE
BEGIN
Fire_empl (:Empnum) ;
END;
END-EXEC;

See Also: For information about invoking PL/SQL subprograms
from within 3GL applications:

» Oracle Call Interface Programmer’s Guide

» Pro*C/C++ Programmer’s Guide

Invoking Remote Subprograms

Invoke remote subprograms using an appropriate database link and the subprogram
name. The following SQL*Plus statement runs the procedure Fire_emp located in the
database and pointed to by the local database link named BOSTON_SERVER:

EXECUTE fire_empl@boston_server (1043);

Coding PL/SQL Subprograms and Packages 7-29

Invoking Remote Subprograms

See Also: "Handling Errors in Remote Subprograms” on
page 7-23 for information on exception handling when invoking
remote subprograms

Topics:
= Remote Subprogram Invocations and Parameter Values
= Referencing Remote Objects

= Synonyms for Subprograms and Packages

Remote Subprogram Invocations and Parameter Values

You must explicitly pass values to all remote subprogram parameters, even if there are
defaults. You cannot access remote package variables and constants.

Referencing Remote Objects

Remote objects can be referenced within the body of a locally defined subprogram.
The following procedure deletes a row from the remote employee table:

CREATE OR REPLACE PROCEDURE fire_emp (emp_id NUMBER) IS
BEGIN

DELETE FROM emp@boston_server WHERE empno = emp_id;
END;

The following list explains how to properly invoke remote subprograms, depending
on the invoking environment.

= Remote subprograms (standalone and packaged) can be invoked from within a
subprogram, an OCI application, or a precompiler application by specifying the
remote subprogram name, a database link, and the arguments for the remote
subprogram.

CREATE OR REPLACE PROCEDURE local_procedure(arg IN NUMBER) AS
BEGIN

fire_empl@boston_server (arg) ;
END;

= In the previous example, you can create a synonym for FIRE_EMP1@BOSTON_
SERVER. This enables you to invoke the remote subprogram from an Oracle
Database tool application, such as a SQL*Forms application, as well from within a
subprogram, OCI application, or precompiler application.

CREATE SYNONYM synonyml for fire_empl@boston_server;
CREATE OR REPLACE PROCEDURE local_procedure(arg IN NUMBER) AS
BEGIN
synonyml (arg) ;
END;

= If you do not want to use a synonym, then you can write a local cover subprogram
to invoke the remote subprogram.

DECLARE
arg NUMBER;
BEGIN
local_procedure (arg) ;
END;

Here, local_procedure is defined as in the first item of this list.

7-30 Oracle Database Advanced Application Developer's Guide

Invoking Remote Subprograms

See Also: "Synonyms for Subprograms and Packages" on
page 7-32

Caution: Unlike stored subprograms, which use compile-time
binding, run-time binding is used when referencing remote
subprograms. The user account to which you connect depends on
the database link.

All invocations to remotely stored subprograms are assumed to perform updates;
therefore, this type of referencing always requires two-phase commit of that
transaction (even if the remote subprogram is read-only). Furthermore, if a transaction
that includes a remote subprogram invocation is rolled back, then the work done by
the remote subprogram is also rolled back.

A subprogram invoked remotely can usually execute a COMMIT, ROLLBACK, or
SAVEPOINT statement, the same as a local subprogram. However, there are some
differences in action:

= If the transaction was originated by a database that is not an Oracle database, as
might be the case in XA applications, these operations are not allowed in the
remote subprogram.

= After doing one of these operations, the remote subprogram cannot start any
distributed transactions of its own.

s If the remote subprogram does not commit or roll back its work, the commit is
done implicitly when the database link is closed. In the meantime, further
invocations to the remote subprogram are not allowed because it is still considered
to be performing a transaction.

A distributed update modifies data on two or more databases. A distributed update is
possible using a subprogram that includes two or more remote updates that access
data on different databases. Statements in the construct are sent to the remote
databases, and the execution of the construct succeeds or fails as a unit. If part of a
distributed update fails and part succeeds, then a rollback (of the entire transaction or
to a savepoint) is required to proceed. Consider this when creating subprograms that
perform distributed updates.

Pay special attention when using a local subprogram that invokes a remote
subprogram. If a timestamp mismatch is found during execution of the local
subprogram, then the remote subprogram is not run, and the local subprogram is
invalidated.

Synonyms for Subprograms and Packages
Synonyms can be created for standalone subprograms and packages to do the
following:
» Hide the identity of the name and owner of a subprogram or package.
= Provide location transparency for remotely stored subprograms (standalone or
within a package).

When a privileged user needs to invoke a subprogram, an associated synonym can be
used. Because the subprograms defined within a package are not individual objects
(the package is the object), synonyms cannot be created for individual subprograms
within a package.

Coding PL/SQL Subprograms and Packages 7-31

Invoking Stored PL/SQL Functions from SQL Statements

For more information about synonyms, see Oracle Database Concepts.

Invoking Stored PL/SQL Functions from SQL Statements

To be invoked from a SQL statement, a stored PL/SQL function must be declared
either at schema level or in a package specification.

The following SQL statements can invoke stored PL/SQL functions:

INSERT
UPDATE
DELETE
SELECT
CALL

(CALL can also invoke a stored PL/SQL procedure.)

To invoke a PL/SQL subprogram from SQL, you must either own or have EXECUTE
privileges on the subprogram. To select from a view defined with a PL/SQL function,
you must have SELECT privileges on the view. No separate EXECUTE privileges are
necessary to select from the view.

For general information about invoking subprograms, including passing parameters,
see Oracle Database PL/SQL Language Reference.

Topics:

Why Invoke Stored PL/SQL Subprograms from SQL Statements?
Where PL/SQL Functions Can Appear in SQL Statements

When PL/SQL Functions Can Appear in SQL Expressions
Controlling Side Effects

Serially Reusable PL/SQL Packages

Why Invoke Stored PL/SQL Subprograms from SQL Statements?
Invoking PL/SQL subprograms in SQL statements enables you to do the following:

Increase user productivity by extending SQL.

Expressiveness of the SQL statement increases where activities are too complex,
too awkward, or unavailable with SQL.

Increase query efficiency.

Functions used in the WHERE clause of a query can filter data using criteria that
must otherwise be evaluated by the application.

Manipulate character strings to represent special datatypes (for example, latitude,
longitude, or temperature).

Provide parallel query execution.

If the query is parallelized, then SQL statements in your PL/SQL subprogram
might also be run in parallel (using the parallel query option).

7-32 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

Where PL/SQL Functions Can Appear in SQL Statements

A PL/SQL function can appear in a SQL statement wherever a built-in SQL function
or an expression can appear in a SQL statement. For example, a PL/SQL function can
appear in the following:

mn Select list of the SELECT statement

s Condition of the WHERE or HAVING clause

n CONNECT BY, START WITH, ORDER BY, or GROUP BY clause
s VALUES clause of the INSERT statement

s SET clause of the UPDATE statement

A PL/SQL table function (which returns a collection of rows) can appear in a SELECT
statement in place of the following:

s Column name in the SELECT list

s Table name in the FROM clause

A PL/SQL function cannot appear in the following contexts, which require
unchanging definitions:

» CHECK constraint clause of a CREATE or ALTER TABLE statement

s Default value specification for a column

When PL/SQL Functions Can Appear in SQL Expressions

To be invoked from a SQL expression, a PL/SQL function must satisfy the following
additional requirements:

= It must be a row function, not a column (group) function; that is, its argument
cannot be an entire column.

s Its formal parameters must be IN parameters, not OUT or IN OUT parameters.

s Its formal parameters and its result value (if any) must have Oracle built-in
datatypes (such as CHAR, DATE, or NUMBER), not PL/SQL datatypes (such as
BOOLEAN, RECORD, or TABLE).

There is an exception to this rule: A formal parameter can have a PL/SQL
datatype if the corresponding actual parameter is implicitly converted to the
datatype of the formal parameter (as in Example 7-6).

The function in Example 7-5 satisfies the preceding requirements. It uses the table
payroll:

CREATE TABLE payroll (srate NUMBER,
orate NUMBER,
acctno NUMBER) ;

Example 7-5 PL/SQL Function that Can Appear in a SQL Expression

CREATE FUNCTION gross_pay (emp_id IN NUMBER,
st_hrs IN NUMBER DEFAULT 40,
ot_hrs IN NUMBER DEFAULT 0)
RETURN NUMBER IS
st_rate NUMBER;
ot_rate NUMBER;

BEGIN
SELECT srate, orate INTO st_rate, ot_rate FROM payroll

Coding PL/SQL Subprograms and Packages 7-33

Invoking Stored PL/SQL Functions from SQL Statements

WHERE acctno = emp_id;
RETURN st_hrs * st_rate + ot_hrs * ot_rate;
END gross_pay;

In the SQL*Plus script in Example 7-6, the SQL statement CALL invokes the PL/SQL
function £1, whose formal parameter has PL/SQL datatype PLS_INTEGER. The CALL
statement succeeds because the actual parameter, 2, is implicitly converted to the
datatype PLS_INTEGER. If the actual parameter had a value outside the range of PL.S_
INTEGER, the CALL statement would fail.

Example 7-6 PL/SQL Function with Formal Parameter of PL/SQL Datatype, Invoked from
a SQL Expression

CREATE OR REPLACE FUNCTION f1 (b IN PLS_INTEGER)
RETURN PLS_INTEGER IS
BEGIN
RETURN
CASE
WHEN b > 0 THEN 1
WHEN b <= 0 THEN -1
ELSE NULL
END;
END f1;
/
VARIABLE x NUMBER
CALL £1(b=>2) INTO :x
/
PRINT x
1

Controlling Side Effects

The purity of a stored subprogram refers to the side effects of that subprogram on
database tables or package variables. Side effects can prevent the parallelization of a
query, yield order-dependent (and therefore, indeterminate) results, or require that
package state be maintained across user sessions. Various side effects are not allowed
when a function is invoked from a SQL query or DML statement.

In releases prior to Oracle8i, Oracle Database leveraged the PL/SQL compiler to
enforce restrictions during the compilation of a stored subprogram or a SQL statement.
Starting with Oracle8i, the compile-time restrictions were relaxed, and a smaller set of
restrictions are enforced during execution.

This change provides uniform support for stored subprograms written in PL/SQL,
Java, and C, and it allows programmers the most flexibility possible.

Topics:

» Restrictions

= Declaring a Function

= Parallel Query and Parallel DML

= PRAGMA RESTRICT_REFERENCES for Backward Compatibility

Restrictions

When a SQL statement is run, checks are made to see if it is logically embedded within
the execution of an already running SQL statement. This occurs if the statement is run

7-34 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

from a trigger or from a subprogram that was in turn invoked from the already
running SQL statement. In these cases, further checks occur to determine if the new
SQL statement is safe in the specific context.

The following restrictions are enforced on subprograms:

= A subprogram invoked from a query or DML statement might not end the current
transaction, create or rollback to a savepoint, or ALTER the system or session.

= A subprogram invoked from a query (SELECT) statement or from a parallelized
DML statement might not execute a DML statement or otherwise modify the
database.

= A subprogram invoked from a DML statement might not read or modify the
particular table being modified by that DML statement.

These restrictions apply regardless of what mechanism is used to run the SQL
statement inside the subprogram or trigger. For example:

= They apply to a SQL statement invoked from PL/SQL, whether embedded
directly in a subprogram or trigger body, run using the native dynamic
mechanism (EXECUTE IMMEDIATE), or run using the DBMS_SQL package.

= They apply to statements embedded in Java with SQL]J syntax or run using JDBC.

s They apply to statements run with OCI using the callback context from within an
"external” C function.

You can avoid these restrictions if the execution of the new SQL statement is not
logically embedded in the context of the already running statement. PL/SQL's
autonomous transactions provide one escape (see "Autonomous Transactions" on
page 2-23). Another escape is available using Oracle Call Interface (OCI) from an
external C function, if you create a new connection rather than using the handle
available from the OCIExtProcContext argument.

Declaring a Function

You can use the keywords DETERMINISTIC and PARALLEL_ENABLE in the syntax for
declaring a function. These are optimization hints that inform the query optimizer and
other software components about the following:

= Functions that need not be invoked redundantly
= Functions permitted within a parallelized query or parallelized DML statement

Only functions that are DETERMINISTIC are allowed in function-based indexes and in
certain snapshots and materialized views.

A deterministic function depends solely on the values passed into it as arguments and
does not reference or modify the contents of package variables or the database or have
other side-effects. Such a function produces the same result value for any combination
of argument values passed into it.

You place the DETERMINISTIC keyword after the return value type in a declaration of
the function. For example:

CREATE FUNCTION F1 (P1 NUMBER) RETURN NUMBER DETERMINISTIC IS
BEGIN

RETURN P1 * 2;
END;

You might place this keyword in the following places:

s On a function defined in a CREATE FUNCTION statement

Coding PL/SQL Subprograms and Packages 7-35

Invoking Stored PL/SQL Functions from SQL Statements

s In a function declaration in a CREATE PACKAGE statement
s On a method declaration in a CREATE TYPE statement

Do not repeat the keyword on the function or method body in a CREATE PACKAGE
BODY or CREATE TYPE BODY statement.

Certain performance optimizations occur on invocations of functions that are marked
DETERMINISTIC without any other action being required. The following features
require that any function used with them be declared DETERMINISTIC:

= Any user-defined function used in a function-based index.

= Any function used in a materialized view, if that view is to qualify for Fast Refresh
or is marked ENABLE QUERY REWRITE.

The preceding functions features attempt to use previously calculated results rather
than invoking the function when it is possible to do so.

It is good programming practice to make functions that fall in the following categories
DETERMINISTIC:

s Functions used in a WHERE, ORDER BY, or GROUP BY clause

s Functions that MAP or ORDER methods of a SQL type

= Functions that help determine whether or where a row appears in a result set
Keep the following points in mind when you create DETERMINISTIC functions:

s The database cannot recognize if the action of the function is indeed deterministic.
If the DETERMINISTIC keyword is applied to a function whose action is not truly
deterministic, then the result of queries involving that function is unpredictable.

s If you change the semantics of a DETERMINISTIC function and recompile it, then
existing function-based indexes and materialized views report results for the prior
version of the function. Thus, if you change the semantics of a function, you must
manually rebuild any dependent function-based indexes and materialized views.

See Also: Oracle Database SQL Language Reference for an account of
CREATE FUNCTION restrictions

Parallel Query and Parallel DML

Oracle Database's parallel execution feature divides the work of executing a SQL
statement across multiple processes. Functions invoked from a SQL statement that is
run in parallel might have a separate copy run in each of these processes, with each
copy invoked for only the subset of rows that are handled by that process.

Each process has its own copy of package variables. When parallel execution begins,
these are initialized based on the information in the package specification and body as
if a new user is logging into the system; the values in package variables are not copied
from the original login session. And changes made to package variables are not
automatically propagated between the various sessions or back to the original session.
Java STATIC class attributes are similarly initialized and modified independently in
each process. Because a function can use package (or Java STATIC) variables to
accumulate some value across the various rows it encounters, Oracle Database cannot
assume that it is safe to parallelize the execution of all user-defined functions.

For SELECT statements in Oracle Database versions prior to 8.1.5, the parallel query
optimization allowed functions noted as both RNPS and WNPS in a PRAGMA
RESTRICT_REFERENCES declaration to run in parallel. Functions defined with
CREATE FUNCTION statements had their code implicitly examined to determine if they

7-36 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

were pure enough; parallelized execution might occur even though a pragma cannot
be specified on these functions.

See Also: "PRAGMA RESTRICT_REFERENCES for Backward
Compeatibility" on page 7-38

For DML statements in Oracle Database versions prior to 8.1.5, the parallelization
optimization looked to see if a function was noted as having all four of RNDS, WNDS,
RNPS and WNPS specified in a PRAGMA RESTRICT_REFERENCES declaration; those
functions that were marked as neither reading nor writing to either the database or
package variables could run in parallel. Again, those functions defined with a CREATE
FUNCTION statement had their code implicitly examined to determine if they were
actually pure enough; parallelized execution might occur even though a pragma
cannot be specified on these functions.

Oracle Database versions 8.1.5 and later continue to parallelize those functions that
earlier versions recognize as parallelizable. The PARALLEL_ENABLE keyword is the
preferred way to mark your code as safe for parallel execution. This keyword is
syntactically similar to DETERMINISTIC as described in "Declaring a Function" on
page 7-36; it is placed after the return value type in a declaration of the function, as in:

CREATE FUNCTION F1 (P1 NUMBER) RETURN NUMBER PARALLEL_ENABLE IS
BEGIN

RETURN P1 * 2;
END;

A PL/SQL function defined with CREATE FUNCTION might still be run in parallel
without any explicit declaration that it is safe to do so, if the system can determine that
it neither reads nor writes package variables nor invokes any function that might do
so. A Java method or C function is never seen by the system as safe to run in parallel,
unless the programmer explicitly indicates PARALLEL_ENABLE on the call
specification, or provides a PRAGMA RESTRICT_REFERENCES indicating that the
function is sufficiently pure.

An additional run-time restriction is imposed on functions run in parallel as part of a
parallelized DML statement. Such a function is not permitted to in turn execute a DML
statement; it is subject to the same restrictions that are enforced on functions that are
run inside a query (SELECT) statement.

See Also: '"Restrictions" on page 7-35

PRAGMA RESTRICT_REFERENCES for Backward Compatibility

In Oracle Database versions prior to 8.1.5 (Oracle8i), programmers used the pragma
RESTRICT_REFERENCES to assert the purity level of a subprogram. In subsequent
versions, use the hints PARALLEL-ENABLE and DETERMINISTIC, instead, to
communicate subprogram purity to Oracle Database.

You can remove RESTRICT_REFERENCES from your code. However, this pragma
remains available for backward compatibility in situations where one of the following
is true:

= Itis impossible or impractical to edit existing code to remove RESTRICT_
REFERENCES completely. If you do not remove it from a subprogram S1 that
depends on another subprogram S2, then RESTRICT_REFERENCES might also be
needed in S2, so that S1 will compile.

s Replacing RESTRICT_REFERENCES in existing code with hints
parallel-enable and deterministic would negatively affect the action of

Coding PL/SQL Subprograms and Packages 7-37

Invoking Stored PL/SQL Functions from SQL Statements

new, dependent code. Use RESTRICT_REFERENCES to preserve the action of the
existing code.

An existing PL/SQL application can thus continue using the pragma even on new
functionality, to ease integration with the existing code. Do not use the pragma in a
wholly new application.

If you use the pragma RESTRICT_REFERENCES, place it in a package specification,
not in a package body. It must follow the declaration of a subprogram, but it need not
follow immediately. Only one pragma can reference a given subprogram declaration.

To code the pragma RESTRICT_REFERENCES, use the following syntax:

PRAGMA RESTRICT_REFERENCES (
Function_name, WNDS [, WNPS] [, RNDS] [, RNPS] [, TRUST]);

Where:

Option Description

WNDS The subprogram writes no database state (does not modify database tables).

RNDS The subprogram reads no database state (does not query database tables).

WNPS The subprogram writes no package state (does not change the values of packaged
variables).

RNPS The subprogram reads no package state (does not reference the values of packaged
variables).

TRUST The other restrictions listed in the pragma are not enforced; they are simply
assumed to be true. This allows easy invocation from functions that have
RESTRICT_REFERENCES declarations to those that do not.

You can pass the arguments in any order. If any SQL statement inside the subprogram
body violates a rule, then you get an error when the statement is parsed.

In the following example, the function compound neither reads nor writes database or
package state; therefore, you can assert the maximum purity level. Always assert the
highest purity level that a subprogram allows. That way, the PL/SQL compiler never
rejects the subprogram unnecessarily.

Note: You might need to set up the following data structures for
certain examples here to work:

CREATE TABLE Accts (

Yrs NUMBER,
Amt NUMBER,
Acctno NUMBER,
Rte NUMBER) ;
CREATE PACKAGE Finance AS -- package specification

FUNCTION Compound
(Years IN NUMBER,
Amount IN NUMBER,
Rate IN NUMBER) RETURN NUMBER;
PRAGMA RESTRICT_ REFERENCES (Compound, WNDS, WNPS, RNDS, RNPS);
END Finance;

CREATE PACKAGE BODY Finance AS --package body
FUNCTION Compound

7-38 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

(Years 1IN NUMBER,
Amount IN NUMBER,
Rate IN NUMBER) RETURN NUMBER IS
BEGIN
RETURN Amount * POWER((Rate / 100) + 1, Years);
END Compound;
-- no pragma in package body
END Finance;

Later, you might invoke compound from a PL/SQL block, as follows:

DECLARE
Interest NUMBER;
Acct_id NUMBER;
BEGIN
SELECT Finance.Compound(Yrs, Amt, Rte) -- function invocation
INTO Interest
FROM Accounts
WHERE Acctno = Acct_id;

Topics:
s Using the Keyword TRUST
= Differences between Static and Dynamic SQL Statements

s Opverloading Packaged PL/SQL Functions

Using the Keyword TRUST The keyword TRUST in the RESTRICT_REFERENCES syntax
allows easy invocation from functions that have RESTRICT REFERENCES
declarations to those that do not. When TRUST is present, the restrictions listed in the
pragma are not actually enforced, but rather are simply assumed to be true.

When invoking a function from a section of code that is using pragmas to one that is
not, there are two likely usage styles. One is to place a pragma on the routine to be
invoked, for example on a call specification for a Java method. Then, invocations from
PL/SQL to this method complain if the method is less restricted than the invoking
subprogram. For example:

CREATE OR REPLACE PACKAGE Pl IS
FUNCTION F1 (P1 NUMBER) RETURN NUMBER IS
LANGUAGE JAVA NAME 'CLASS1.METHODNAME (int) return int';
PRAGMA RESTRICT_REFERENCES (F1,WNDS, TRUST) ;
FUNCTION F2 (P1 NUMBER) RETURN NUMBER;

PRAGMA RESTRICT_REFERENCES (F2,WNDS) ;
END;

CREATE OR REPLACE PACKAGE BODY Pl IS
FUNCTION F2 (P1 NUMBER) RETURN NUMBER IS
BEGIN

RETURN F1(P1);
END;
END;

Here, F2 can invoke F1, as F1 was declared to be WNDS.

The other approach is to mark only the invoker, which might then invoke any
subprogram without complaint. For example:

CREATE OR REPLACE PACKAGE Pla IS
FUNCTION F1 (P1 NUMBER) RETURN NUMBER IS

Coding PL/SQL Subprograms and Packages 7-39

Invoking Stored PL/SQL Functions from SQL Statements

LANGUAGE JAVA NAME 'CLASS1.METHODNAME (int) return int';
FUNCTION F2 (P1 NUMBER) RETURN NUMBER;
PRAGMA RESTRICT_REFERENCES (F2,WNDS, TRUST) ;
END;

CREATE OR REPLACE PACKAGE BODY Pla IS
FUNCTION F2 (P1 NUMBER) RETURN NUMBER IS
BEGIN

RETURN F1(P1);
END;
END;

Here, F2 can invoke F1 because while F2 is promised to be WNDS (because TRUST is
specified), the body of F2 is not actually examined to determine if it truly satisfies the
WNDS restriction. Because F2 is not examined, its invocation of F1 is allowed, even
though there is no PRAGMA RESTRICT_REFERENCES for F1.

Differences between Static and Dynamic SQL Statements Static INSERT, UPDATE, and
DELETE statements do not violate RNDS if these statements do not explicitly read any
database states, such as columns of a table. However, dynamic INSERT, UPDATE, and
DELETE statements always violate RNDS, regardless of whether or not the statements
explicitly read database states.

The following INSERT violates RNDS if it is executed dynamically, but it does not
violate RNDS if it is executed statically.

INSERT INTO my_table values(3, 'SCOTT');

The following UPDATE always violates RNDS statically and dynamically, because it
explicitly reads the column name of my_table.

UPDATE my_table SET id=777 WHERE name='SCOTT';

Overloading Packaged PL/SQL Functions PL/SQL lets you overload packaged (but not
standalone) functions: You can use the same name for different functions if their
formal parameters differ in number, order, or datatype family.

However, a RESTRICT_REFERENCES pragma can apply to only one function
declaration. Therefore, a pragma that references the name of overloaded functions
always applies to the nearest preceding function declaration.

In this example, the pragma applies to the second declaration of valid:

CREATE PACKAGE Tests AS
FUNCTION Valid (x NUMBER) RETURN CHAR;
FUNCTION Valid (x DATE) RETURN CHAR;
PRAGMA RESTRICT_REFERENCES (valid, WNDS) ;
END;

Serially Reusable PL/SQL Packages

PL/SQL packages usually consume user global area (UGA) memory corresponding to
the number of package variables and cursors in the package. This limits scalability,
because the memory increases linearly with the number of users. The solution is to
allow some packages to be marked as SERIALLY_REUSABLE (using pragma syntax).

For serially reusable packages, the package global memory is not kept in the UGA for
each user; rather, it is kept in a small pool and reused for different users. This means
that the global memory for such a package is only used within a unit of work. At the

7-40 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

end of that unit of work, the memory can therefore be released to the pool to be reused
by another user (after running the initialization code for all the global variables).

The unit of work for serially reusable packages is implicitly a call to the server; for
example, an OCI call to the server, or a PL/SQL RPC call from a client to a server, or an
RPC call from a server to another server.

Topics:

= Package States

s Why Serially Reusable Packages?

= Syntax of Serially Reusable Packages

= Semantics of Serially Reusable Packages

= Examples of Serially Reusable Packages

Package States

The state of a nonreusable package (one not marked SERIALLY_REUSABLE) persists
for the lifetime of a session. A package state includes global variables, cursors, and so
on.

The state of a serially reusable package persists only for the lifetime of a call to the
server. On a subsequent call to the server, if a reference is made to the serially reusable
package, then Oracle Database creates a new instantiation of the serially reusable
package and initializes all the global variables to NULL or to the default values
provided. Any changes made to the serially reusable package state in the previous
calls to the server are not visible.

Note: Creating a new instantiation of a serially reusable package
on a call to the server does not necessarily imply that Oracle
Database allocates memory or configures the instantiation object.
Oracle Database looks for an available instantiation work area
(which is allocated and configured) for this package in a
least-recently used (LRU) pool in the SGA.

At the end of the call to the server, this work area is returned back
to the LRU pool. The reason for keeping the pool in the SGA is that
the work area can be reused across users who have requests for the
same package.

Why Serially Reusable Packages?

Because the state of a nonreusable package persists for the lifetime of the session, this
locks up UGA memory for the whole session. In some applications, such as Oracle
Office, a log-on session typically exists for days. Applications often need to use certain
packages only for short periods of the session. Ideally, such applications could
de-instantiate the package state in after they finish using the package (the middle of
the session).

SERIALLY_REUSABLE packages enable you to design applications that manage
memory better for scalability. Package states that matter only for the duration of a call
to the server can be captured in SERIALLY_REUSABLE packages.

Syntax of Serially Reusable Packages
A package can be marked serially reusable by a pragma. The syntax of the pragma is:

Coding PL/SQL Subprograms and Packages 7-41

Invoking Stored PL/SQL Functions from SQL Statements

PRAGMA SERIALLY_REUSABLE;

A package specification can be marked serially reusable, whether or not it has a
corresponding package body. If the package has a body, then the body must have the
serially reusable pragma, if its corresponding specification has the pragma; it cannot
have the serially reusable pragma unless the specification also has the pragma.

Semantics of Serially Reusable Packages
A package that is marked SERIALLY_REUSABLE has the following properties:
= Its package variables are meant for use only within the work boundaries, which

correspond to calls to the server (either OCI call boundaries or PL/SQL RPC calls
to the server).

Note: If the application programmer makes a mistake and
depends on a package variable that is set in a previous unit of
work, then the application program can fail. PL/SQL cannot check
for such cases.

= A pool of package instantiations is kept, and whenever a "unit of work" needs this
package, one of the instantiations is "reused"”, as follows:

— The package variables are reinitialized (for example, if the package variables
have default values, then those values are reinitialized).

— The initialization code in the package body is run again.
= At the "end work" boundary, cleanup is done.
— If any cursors were left open, then they are silently closed.

— Some nonreusable secondary memory is freed (such as memory for collection
variables or long VARCHAR?2S).

— This package instantiation is returned back to the pool of reusable
instantiations kept for this package.

» Serially reusable packages cannot be accessed from database triggers or other
PL/SQL subprograms that are invoked from SQL statements. If you try, then
Oracle Database generates an error.

Examples of Serially Reusable Packages
= Example 1: How Package Variables Act Across Call Boundaries

= Example 2: How Package Variables Act Across Call Boundaries

= Example 3: Open Cursors in Serially Reusable Packages at Call Boundaries
Example 1: How Package Variables Act Across Call Boundaries This example has a serially
reusable package specification (there is no body).

CONNECT SCOTT/password
CREATE OR REPLACE PACKAGE Sr_pkg IS

PRAGMA SERIALLY_REUSABLE;

N NUMBER := 5; -- default initialization
END Sr_pkg;

Suppose your Enterprise Manager (or SQL*Plus) application issues the following:

7-42 Oracle Database Advanced Application Developer's Guide

Invoking Stored PL/SQL Functions from SQL Statements

CONNECT SCOTT/password

first CALL to server
BEGIN

Sr_pkg.N := 10;
END;

second CALL to server
BEGIN

DBMS_OQUTPUT.PUT_LINE (Sr_pkg.N) ;
END;

This program prints:

5

Note: If the package had not had the pragma SERIALLY_
REUSABLE, the program would have printed '10".

Example 2: How Package Variables Act Across Call Boundaries This example has both a
package specification and package body, which are serially reusable.

CONNECT SCOTT/password

DROP PACKAGE Sr_pkg;
CREATE OR REPLACE PACKAGE Sr_pkg IS
PRAGMA SERIALLY_REUSABLE;
TYPE Str_table_type IS TABLE OF VARCHAR2 (200) INDEX BY PLS_INTEGER;
Num NUMBER := 10;
Str VARCHAR2 (200) 'default-init-str';
Str_tab STR_TABLE_TYPE;

PROCEDURE Print_pkg;
PROCEDURE Init_and_print_pkg (N NUMBER, V VARCHAR2);
END Sr_pkg;
CREATE OR REPLACE PACKAGE BODY Sr_pkg IS
-- the body is required to have the pragma because the
-- specification of this package has the pragma
PRAGMA SERIALLY_REUSABLE;
PROCEDURE Print_pkg IS

BEGIN
DBMS_OUTPUT.PUT_LINE('num: ' || Sr_pkg.Num);
DBMS_OUTPUT.PUT_LINE('str: ' || Sr_pkg.Str);
DBMS_OUTPUT. PUT_LINE ('number of table elems: ' || Sr_pkg.Str_tab.Count);

FOR 1 IN 1..Sr_pkg.Str_tab.Count LOOP
DBMS_OUTPUT.PUT_LINE (Sr_pkg.Str_tab(i));
END LOOP;
END;
PROCEDURE Init_and_print_pkg (N NUMBER, V VARCHAR2) IS
BEGIN
-- init the package globals
Sr_pkg.Num := N;
Sr_pkg.Str := V;
FOR i IN 1..n LOOP
Sr_pkg.Str_tab(i) := Vv || ' ' || i;
END LOOP;
-- print the package
Print_pkg;
END;

Coding PL/SQL Subprograms and Packages 7-43

Invoking Stored PL/SQL Functions from SQL Statements

END Sr_pkg;
SET SERVEROUTPUT ON;
Rem SR package access in a CALL:

BEGIN
-- initialize and print the package
DBMS_OUTPUT.PUT_LINE('Initing and printing pkg state..');
Sr_pkg.Init_and_print_pkg(4, 'abracadabra');
-- print it in the same call to the server.
-- we should see the initialized values.
DBMS_OUTPUT.PUT_LINE('Printing package state in the same CALL...');
Sr_pkg.Print_pkg;

END;

Initing and printing pkg state..
num: 4

str: abracadabra

number of table elems: 4
abracadabra 1

abracadabra 2

abracadabra 3

abracadabra 4

Printing package state in the same CALL...
num: 4

str: abracadabra

number of table elems: 4
abracadabra 1

abracadabra 2

abracadabra 3

abracadabra 4

REM SR package access in subsequent CALL:

BEGIN
-- print the package in the next call to the server.
-- The package state should be reset to the initial (default) values.
DBMS_OUTPUT.PUT_LINE('Printing package state in the next CALL...');
Sr_pkg.Print_pkg;

END;

Statement processed.

Printing package state in the next CALL...

num: 10

str: default-init-str

number of table elems: 0

Example 3: Open Cursors in Serially Reusable Packages at Call Boundaries This example
demonstrates that any open cursors in serially reusable packages get closed
automatically at the end of a work boundary (which is a call). Also, in a new call, these
cursors need to be opened again.

REM For serially reusable pkg: At the end work boundaries
REM (which is currently the OCI call boundary) all open
REM cursors will be closed.

REM

REM Because the cursor is closed - every time we fetch we
REM will start at the first row again.

CONNECT SCOTT/password
DROP PACKAGE Sr_pkg;

7-44 Oracle Database Advanced Application Developer's Guide

Returning Large Amounts of Data from a Function

DROP TABLE People;

CREATE TABLE People (Name VARCHAR2 (20));
INSERT INTO People VALUES ('ET');
INSERT INTO People VALUES ('RAMBO');
CREATE OR REPLACE PACKAGE Sr_pkg IS

PRAGMA SERIALLY_ REUSABLE;
CURSOR C IS SELECT Name FROM People;

END Sr_pkg;

SQL> SET SERVEROUTPUT ON;

SQL>

CREATE OR REPLACE PROCEDURE Fetch_from_cursor IS
Name VARCHAR2 (200) ;

BEGIN

IF (Sr_pkg.C$ISOPEN) THEN
DBMS_OUTPUT.PUT_LINE('cursor is already open.');

ELSE
DBMS_OUTPUT.PUT_LINE('cursor is closed; opening now.');
OPEN Sr_pkg.C;

END IF;

-- fetching from cursor.

FETCH sr_pkg.C INTO name;

DBMS_OUTPUT.PUT_LINE('fetched: ' || Name);
FETCH Sr_pkg.C INTO name;
DBMS_OUTPUT.PUT_LINE('fetched: ' || Name);

-- Oops forgot to close the cursor (Sr_pkg.C).
-- But, because it is a Serially Reusable pkg's cursor,
-- it will be closed at the end of this CALL to the server.

END;

EXECUTE fetch_from_ cursor;
cursor is closed; opening now.
fetched: ET

fetched: RAMBO

Returning Large Amounts of Data from a Function

In a data warehousing environment, you might use a PL/SQL function to transform
large amounts of data. Perhaps the data is passed through a series of transformations,
each performed by a different function. PL/SQL table functions let you perform such
transformations without significant memory overhead or the need to store the data in
tables between each transformation stage. These functions can accept and return
multiple rows, can return rows as they are ready rather than all at once, and can be
parallelized.

In this technique:

The producer function uses the PTPELINED keyword in its declaration.

The producer function uses an OUT parameter that is a record, corresponding to a
row in the result set.

As each output record is completed, it is sent to the consumer function using PIPE
ROW.

The producer function ends with a RETURN statement that does not specify any
return value.

The consumer function or SQL statement uses the TABLE keyword to treat the
resulting rows like a regular table.

For example:

Coding PL/SQL Subprograms and Packages 7-45

Coding Your Own Aggregate Functions

CREATE FUNCTION StockPivot (p refcur_pkg.refcur_t) RETURN TickerTypeSet PIPELINED
IS
out_rec TickerType := TickerType (NULL,NULL,NULL) ;
in_rec p%ROWTYPE;
BEGIN
LOOP
-- Function accepts multiple rows through a REF CURSOR argument.
FETCH p INTO in_rec;
EXIT WHEN p%NOTFOUND;
-- Return value is a record type that matches the table definition.

out_rec.ticker := in_rec.Ticker;
out_rec.PriceType := '0';
out_rec.price := in_rec.OpenPrice;

-- Once a result row is ready, we send it back to the calling program,
-- and continue processing.

PIPE ROW(out_rec);
-- This function outputs twice as many rows as it receives as input.

out_rec.PriceType := 'C';
out_rec.Price := in_rec.ClosePrice;
PIPE ROW(out_rec);
END LOOP;
CLOSE p;
-- The function ends with a RETURN statement that does not specify any value.
RETURN;
END;
/

-- Here we use the result of this function in a SQL query.
SELECT * FROM TABLE (StockPivot (CURSOR (SELECT * FROM StockTable)));

-- Here we use the result of this function in a PL/SQL block.
DECLARE
total NUMBER := 0;
price_type VARCHAR2(1);
BEGIN
FOR item IN (SELECT * FROM TABLE (StockPivot (CURSOR (SELECT * FROM StockTable))))
LOOP
-- Access the values of each output row.
-- We know the column names based on the declaration of the output type.
-- This computation is just for illustration.

total := total + item.price;
price_type := item.price_type;
END LOOP;
END;
/

Coding Your Own Aggregate Functions

To analyze a set of rows and compute a result value, you can code your own aggregate
function that works the same as a built-in aggregate like SUM:

= Define a SQL object type that defines these member functions:
m ODCIAggregateInitialize
n ODCIAggregatelterate
n ODCIAggregateMerge

s ODCIAggregateTerminate

7-46 Oracle Database Advanced Application Developer's Guide

Coding Your Own Aggregate Functions

Code the member functions. In particular, ODCIAggregateIterate
accumulates the result as it is invoked once for each row that is processed. Store
any intermediate results using the attributes of the object type.

Create the aggregate function, and associate it with the new object type.

Call the aggregate function from SQL queries, DML statements, or other places
that you might use the built-in aggregates. You can include typical options such as
DISTINCT and ALL in the invocation of the aggregate function.

See Also: Oracle Database Data Cartridge Developer’s Guide for
more information about user-defined aggregate functions

Coding PL/SQL Subprograms and Packages 7-47

Coding Your Own Aggregate Functions

7-48 Oracle Database Advanced Application Developer's Guide

8

Using PL/Scope

PL/Scope is a compiler-driven tool that collects data about user-defined identifiers
from PL/SQL source code at program-unit compilation time and makes it available in
static data dictionary views. The collected data includes information about identifier
types, usages (declaration, definition, reference, call, assigment) and the location of
each usage in the source code.

PL/Scope enables the development of powerful and effective PL/Scope source code
browsers that increase PL/SQL developer productivity by minimizing time spent
browsing and understanding source code.

Note: PL/Scope cannot collect data for a PL/SQL program unit
whose source code is wrapped. For information about wrapping
PL/SQL source code, see Oracle Database PL/SQL Language Reference.

Topics:

= Specifying Identifier Collection

= How Much Space is PL/Scope Data Using?
= Viewing PL/Scope Data

= Identifier Types that PL/Scope Collects

= Usages that PL/Scope Reports

= Sample PL/Scope Session

Specifying Identifier Collection

By default, PL/Scope does not collect data for identifiers in the PL/SQL source
program. To have PL/Scope collect data for all identifiers in the PL/SQL source
program, including identifiers in package bodies, use the following SQL statement:

ALTER SESSION SET PLSCOPE_SETTINGS='IDENTIFIERS:ALL'

Note: Collecting all identifiers might generate large amounts of data
and slow compile time.

PLSCOPE_SETTINGS='IDENTIFIERS:ALL" affects only the PL/SQL code compiled
after you specify it. If you compile a PL/SQL program unit with PLSCOPE_
SETTINGS='IDENTIFIERS:NONE' (the default), PL/Scope does not collect its
identifiers, and drops any identifiers that it previously collected for that unit. To have

Using PL/Scope 8-1

How Much Space is PL/Scope Data Using?

PL/Scope collect its identifiers, recompile the program unit with PLSCOPE_
SETTINGS='IDENTIFIERS:ALL"'. To see the value that IDENTIFIERS had when a
compilation unit was compiled, see the static data dictionary view
*_PLSQL_OBJECT_SETTINGS.

PL/Scope stores the data that it collects in the SYSAUX tablespace. If the SYSAUX
tablespace is unavailable, and you compile a program unit with PLSCOPE_
SETTINGS='IDENTIFIERS:ALL', PL/Scope does not collect data for the compiled
object. The compiler does not issue a warning, but it saves a warning in USER_
ERRORS.

How Much Space is PL/Scope Data Using?

Because PL/Scope stores its data in the SYSAUX tablespace, you can use the following
query to display the amount of space that the data is using:

SELECT SPACE_USAGE_KBYTES FROM V$SYSAUX_OCCUPANTS
WHERE OCCUPANT_NAME='PL/SCOPE';

For information about managing the SYSAUX tablespace and monitoring its occupants,
see Oracle Database Administrator’s Guide.

Viewing PL/Scope Data
To view the data that PL/Scope has collected, you can use any of the following:
» Static Data Dictionary Views
= Demo Tool

s SQL Developer

Static Data Dictionary Views

The static data dictionary views *_IDENTIFIERS display information about
PL/Scope identifiers, including their types and usages. For general information about
these views, see Oracle Database Reference.

Topics:
s Unique Keys
= Context

= Signature

Unique Keys

Each row of a *_IDENTIFIERS view represents a unique usage of an identifier in the
PL/SQL program unit. In each of these views, the following are equivalent unique
keys within a compilation unit:

s LINE, COL, and USAGE
s USAGE_ID

For the usages in the *_ IDENTIFIERS views, see "Usages that PL/Scope Reports" on
page 8-6.

8-2 Oracle Database Advanced Application Developer's Guide

Viewing PL/Scope Data

Note: An identifier that is passed to a subprogram in IN OUT mode
has two rows in *_IDENTIFIERS: a REFERENCE usage
(corresponding to IN) and an ASSIGNMENT usage (corresponding to
ouT).

Context

Context is useful for discovering relationships between usages. Except for top-level
schema object declarations and definitions, every usage of an identifier happens
within the context of another usage. For example:

= Alocal variable declaration happens within the context of a top-level procedure
declaration.

s If an identifier is declared as a variable, such as x VARCHAR?2 (10), the USAGE_
CONTEXT_ID of the VARCHAR?2 type reference contains the USAGE_ID of the x
declaration, allowing you to associate the variable declaration with its type.

In other words, USAGE_CONTEXT_ID is a reflexive foreign key to USAGE_ID, as
Example 8-1 shows.

Example 8-1 USAGE_CONTEXT_ID and USAGE_ID

CONNECT USR/password
ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';
/
CREATE PROCEDURE a (pl IN BOOLEAN) IS
v PLS_INTEGER;
BEGIN
v o= 42;
DBMS_OUTPUT.PUT_LINE (V) ;
RAISE_APPLICATION_ERROR (-20000, 'Bad');
EXCEPTION
WHEN Program_Error THEN NULL;
END a;
/
CREATE PROCEDURE b (p2 OUT PLS_INTEGER, p3 IN OUT VARCHAR2) IS
n NUMBER;
g BOOLEAN := TRUE;
BEGIN
FOR j IN 1..5 LOOP
a(qg); a(TRUE); a(TRUE);
IF j > 2 THEN
GOTO z;
END IF;
END LOOP;
<<z>> DECLARE
d CONSTANT CHAR(1l) := 'X';
BEGIN
SELECT COUNT(*) INTO n FROM Dual WHERE Dummy = d;
END z;
END b;
/
WITH v AS (
SELECT Line,
Col,
INITCAP(NAME) Name,
LOWER (TYPE) Type,
LOWER (USAGE) Usage,

Using PL/Scope 8-3

Viewing PL/Scope Data

)

SELECT RPAD(LPAD(' ',

USAGE_ID,
USAGE_CONTEXT_ID

FROM USER_IDENTIFIERS

WHERE Object_Name =
AND Object_Type =

B
' PROCEDURE'

2* (Level-1)) ||
Name, 20, '.")||' ']
RPAD(Type, 20) ||
RPAD (Usage, 20)

IDENTIFIER_USAGE_CONTEXTS

FROM v

START WITH USAGE_CONTEXT_ID = 0

CONNECT BY PRIOR USAGE_ID =

ORDER SIBLINGS BY Line, Col

IDENTIFIER_USAGE_CONTEXTS

Bt e procedure
= 3 procedure
P2, formal out
P3.. i, formal in out
P variable
[variable
[0 variable
S iterator
A procedure
[0 variable
AL procedure
Ao, procedure
Teeeeiieeeea iterator
/R label
/N label
Devivininin constant
Dovvvvvin, constant
1 variable
Deveeeieeeea constant
Signature

The signature of an identifier is unique, within and across program units. That is, the
signature distinguishes the identifier from other identifiers with the same name,
whether they are defined in the same program unit or different program units.

For the program unit in Example 8-2, which has two identifiers named p, the static
data dictionary view USER_IDENTIFIERS has several rows in which NAME is p, but in
these rows, SIGNATURE varies. The rows associated with the outer procedure p have
one signature, and the rows associated with the inner procedure p have another
signature. If program unit g calls procedure p, the USER_IDENTIFIERS view for g has
a row in which NAME is p and SIGNATURE is the signature of the outer procedure p.

Example 8-2 Program Unit with Two Identifiers Named p

CREATE OR REPLACE PROCEDURE p IS

PROCEDURE p IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Inner p');

END p;
BEGIN

8-4 Oracle Database Advanced Application Developer's Guide

USAGE_CONTEXT_ID

declaration
definition
declaration
declaration
declaration
declaration
assignment
declaration
call
reference
call

call
reference
reference
declaration
declaration
assignment
assignment
reference

Identifier Types that PL/Scope Collects

Demo Tool

DBMS_OUTPUT.PUT_LINE('Outer p');

p0);
END p;

SORACLE_HOME/plsgl/demo/plscopedemo.sql is an HTML-based demo
implemented as a PL/SQL Web Application using the PL/SQL Web Toolkit. For more
information about PL/SQL Web Applications, see "Implementing PL/SQL Web
Applications" on page 10-2.

SQL Developer

PL/Scope is a feature of SQL Developer. For information about using PL/Scope from
SQL Developer, see the SQL Developer online documentation.

Identifier Types that PL/Scope Collects

Table 8-1 shows the identifier types that PL/Scope collects, in alphabetical order. The
identifier types in Table 8-1 appear in the TYPE column of the * _IDENTIFIER static
data dictionary views, which are described in Oracle Database Reference.

Note: Identifiers declared in compilation units that were not
compiled with PLSCOPE_SETTINGS='IDENTIFIERS:ALL' donot
appear in *_IDENTIFIER static data dictionary views.

Table 8—1 Identifier Types that PL/Scope Collects

TYPE Column Value = Comment

ASSOCIATIVE ARRAY

CONSTANT

CURSOR

BFILE DATATYPE Each DATATYPE is a base type declared in package STANDARD. In
BLOB DATATYPE order to collect and view these identifiers, package STANDARD must

BOOLEAN DATATYPE be compiled with PLSCOPE_SETTINGS='IDENTIFIERS:ALL".
CHARACTER DATATYPE

CLOB DATATYPE

DATE DATATYPE

INTERVAL DATATYPE

NUMBER DATATYPE

TIME DATATYPE

TIMESTAMP DATATYPE

EXCEPTION

FORMAL IN
FORMAL IN OUT
FORMAL OUT

FUNCTION

INDEX TABLE

ITERATOR An iterator is the index of a FOR loop.
LABEL A label declaration also acts as a context.
LIBRARY

Using PL/Scope 8-5

Usages that PL/Scope Reports

Table 8—1 (Cont.) Identifier Types that PL/Scope Collects

TYPE Column Value Comment

NESTED TABLE

OBJECT

OPAQUE Examples of internal opaque types are ANYDATA and XMLType.
PACKAGE

PROCEDURE

RECORD

REFCURSOR

SUBTYPE

SYNONYM PL/Scope does not resolve the base object name of a synonym. To
find the base object name of a synonym, query *_SYNONYMS.

TRIGGER
UROWID
VARRAY

VARIABLE Can be object attribute, local variable, package variable, or record
field.

Usages that PL/Scope Reports

Table 8-2 shows the usages that PL/Scope reports, in alphabetical order. The identifier
types in Table 8-2 appear in the USAGE column of the *_ IDENTIFIER static data
dictionary views, which are described in Oracle Database Reference.

Table 8-2 Usages that PL/Scope Reports

USAGE Column
Value Description

ASSIGNMENT An assignment can be made only to an identifier that can have a value,
such as a VARIABLE. Examples of assignments are:

= Using an identifier to the left of an assignment operator
= Using an identifier in the INTO clause of a FETCH statement
= Passing an identifier to a subprogram by reference (OUT mode)

= Using an identifier as the bind argument in the USING clause of an
EXECUTE IMMEDIATE statement in either OUT or IN OUT mode

An identifier that is passed to a subprogram in IN OUT mode has both a
REFERENCE usage (corresponding to IN) and an ASSIGNMENT usage
(corresponding to OUT).

CALL In the context of PL/Scope, a CALL is an operation that pushes a new call
stack; that is:

= A call toa FUNCTION or PROCEDURE
= Executing or fetching a cursor identifier (a logical call to SQL)

A GOTO statement or raise of an exception is not a CALL, because neither
pushes a new call stack.

8-6 Oracle Database Advanced Application Developer's Guide

Sample PL/Scope Session

Table 8-2 (Cont.) Usages that PL/Scope Reports

USAGE Column
Value Description

DECLARATION A DECLARATION tells the compiler that an identifier exists, and each
identifier has exactly one DECLARATION. Each DECLARATION can have an
associated datatype.

For a loop index declaration, LINE and COL (in *_IDENTIFIERS views)
are the line and column of the FOR clause that implicitly declares the loop
index.

For a label declaration, LINE and COL are the line and column on which the
label appears (and is implicitly declared) within the delimiters << and >>.

DEFINITION A DEFINITION tells the compiler how to implement or use a previously
declared identifier.

Each of the following types of identifiers has a DEFINITION:
= EXCEPTION (can have multiple definitions)

L] FUNCTION

L] OBJECT

L] PACKAGE

u PROCEDURE

L] TRIGGER

For a top-level identifier only, the DEFINITION and DECLARATION are in
the same place.

REFERENCE A REFERENCE uses an identifier without changing its value. Examples of
references are:

= Raising an exception identifier

= Using a type identifier in the declaration of a variable or formal
parameter

= Using a variable identifier whose type contains fields to access a field.
For example, in myrecordvar.myfield := 1, a reference is made to
myrecordvar, and an assignment is made tomyfield.

= Using a cursor for any purpose except FETCH
= Passing an identifier to a subprogram by value (IN mode)

= Using an identifier as the bind argument in the USING clause of an
EXECUTE IMMEDIATE statement in either IN or IN OUT mode

An identifier that is passed to a subprogram in IN OUT mode has both a
REFERENCE usage (corresponding to IN) and an ASSIGNMENT usage
(corresponding to OUT).

Sample PL/Scope Session
The sample PL/Scope session uses the following PL/SQL procedure, example.sgl:

CREATE OR REPLACE PACKAGE PACKl IS
TYPE rl is RECORD (rfl VARCHAR2(10));
FUNCTION F1(fpl NUMBER) RETURN NUMBER;
PROCEDURE PI1 (ppl VARCHAR2) ;

END PACK1;

CREATE OR REPLACE PACKAGE BODY PACKl IS
FUNCTION F1(fpl NUMBER) RETURN NUMBER IS
a NUMBER := 10;
BEGIN
RETURN a;

Using PL/Scope 8-7

Sample PL/Scope Session

END F1;
PROCEDURE P1 (ppl VARCHAR2) IS
prl rl;
BEGIN
prl.rfl := ppl;
END;
END PACK1;

In the following sample session, assume that you are logged in as HR:

1. Set the session parameter:

SQL> ALTER SESSION SET PLSCOPE_SETTINGS='IDENTIFIERS:ALL';

2. Compile the PL/SQL procedure example.sql:

SQL> @example.sqgl

3. Verify that PL/Scope collected all identifiers for the package body:

SQL> SELECT PLSCOPE_SETTINGS
FROM USER_PLSQL_OBJECT SETTINGS
WHERE NAME='PACK1' AND TYPE='PACKAGE BODY'

PLSCOPE_SETTINGS

IDENTIFIERS:ALL

4. Display unique identifiers in HR by querying for all DECLARATION usages. For
example, to see all unique identifiers with name like %1, use the following query:

SQL> SELECT NAME, SIGNATURE, TYPE
FROM USER_IDENTIFIERS
WHERE NAME LIKE '%1' AND USAGE='DECLARATION'
ORDER BY OBJECT_TYPE, USAGE_ID;

NAME SIGNATURE TYPE
ok 41820FAUDSEFBETOT6951T8D0CSCAEF PACKAGE
R1 EEBB6849DEE31BC77BF186EBAESD4AE2D RECORD
RF1 41D70040337349634A7F547BC83517C7 VARIABLE
F1 EEFCF8352A41F4F264B4EF20D7F63A74 FUNCTION
FP1 70648ECIEIC3CT7FAL0COAE6415FAEC3B FORMAL IN
Pl OBE2106B9EFA719D49AF60965EBD69AE PROCEDURE
PP1 85B6COF3BBA39185B004650823224448B FORMAL IN
FP1 771368AE41084ADD477DE62A7B1D4278 FORMAL IN
PP1 D98482491487F39B4CBC8B776130B739 FORMAL IN
PR1 174C2528B929953F4FE2A43DEBA2B5D0 VARIABLE
Pl 3D1CA191D63523E40E25A72D89424324 FORMAL IN

8-8 Oracle Database Advanced Application Developer's Guide

Sample PL/Scope Session

The *_IDENTIFIERS static data dictionary views display only basic type names;
for example, the TYPE of a local variable or record field is VARIABLE. To
determine the exact type of a VARIABLE, you must use its USAGE_CONTEXT_ID.

Find all local variables:

SQL> SELECT a.NAME variable_name,
b.NAME context_name,
a.SIGNATURE
FROM USER_IDENTIFIERS a, USER_IDENTIFIERS b
WHERE a.USAGE_CONTEXT_ID = b.USAGE_ID
a.TYPE = 'VARIABLE'
a.USAGE = 'DECLARATION'
AND a.OBJECT_NAME = 'PACK1'
a.0BJECT_NAME = b.OBJECT_NAME
a.0BJECT_TYPE = b.OBJECT_TYPE
AND (b.TYPE = 'FUNCTION' or b.TYPE = 'PROCEDURE')
ORDER BY a.OBJECT _TYPE, a.USAGE_ID;

VARIABLE_NAME CONTEXT_NAME SIGNATURE
A Fl 2268998957D20FACD63493B7AT77BC55B
PR1 Pl 174C2528B929953F4FE2A43DEBA2B5D0

Find all usages performed on the local variable A:

SQL> SELECT USAGE, USAGE_ID, OBJECT_NAME, OBJECT_TYPE
FROM USER_IDENTIFIERS
WHERE SIGNATURE='2268998957D20FACD63493B7A77BC55B"
ORDER BY OBJECT_TYPE, USAGE_ID;

USAGE USAGE_ID OBJECT_NAME OBJECT_TYPE

DECLARATION 4 PACK1 PACKAGE BODY
ASSIGNMENT 5 PACK1 PACKAGE BODY
REFERENCE 6 PACK1 PACKAGE BODY

The usages performed on the local identifier A are the identifier declaration
(USAGE_ID 6), an assignment (USAGE_ID 8), and a reference
(USAGE_ID9).

From the declaration of the local identifier 2, find its type:

SQL> SELECT a.NAME, a.TYPE
FROM USER_IDENTIFIERS a, USER_IDENTIFIERS b
WHERE a.USAGE = 'REFERENCE'
AND a.USAGE_CONTEXT_ID = b.USAGE_ID
AND b.USAGE = 'DECLARATION'
AND b.SIGNATURE = '2268998957D20FACD63493B7A77BC55B"
AND a.OBJECT_TYPE = b.OBJECT TYPE
AND a.OBJECT_NAME = b.OBJECT_NAME;

NUMBER DATATYPE STANDARD

Using PL/Scope 8-9

Sample PL/Scope Session

Note: This query produces this output only if package STANDARD
was compiled with PLSCOPE_SETTINGS="'IDENTIFIERS:ALL"'. By
default, this query returns no identifier data. Please see the 11gR1
release notes for more information on how to compile package
STANDARD for PL/Scope.

8. Find out where the assignment to local identifier A occurred:

SQL> SELECT LINE, COL, OBJECT_NAME, OBJECT_TYPE
FROM USER_IDENTIFIERS
WHERE SIGNATURE='666CEC3A2180DF4013CEBE330A8CE747"
AND USAGE='ASSIGNMENT';

LINE COL OBJECT_NAME OBJECT_TYPE

3 7 PACK1 PACKAGE BODY

8-10 Oracle Database Advanced Application Developer's Guide

9

Using the PL/SQL Hierarchical Profiler

You can use the PL/SQL hierarchical profiler to identify bottlenecks and
performance-tuning opportunities in PL/SQL applications.

The profiler reports the dynamic execution profile of a PL/SQL program organized by
function calls, and accounts for SQL and PL/SQL execution times separately. No
special source or compile-time preparation is required; any PL/SQL program can be
profiled.

This chapter describes the PL/SQL hierarchical profiler and explains how to use it to
collect and analyze profile data for a PL/SQL program.

Topics:

s Overview of PL/SQL Hierarchical Profiler
» Collecting Profile Data

s Understanding Raw Profiler Output

= Analyzing Profile Data

= plshprof Utility

Overview of PL/SQL Hierarchical Profiler

Nonhierarchical (flat) profilers record the time that a program spends within each
subprogram—the function time or self time of each subprogram. Function time is
helpful, but often inadequate. For example, it is helpful to know that a program
spends 40% of its time in the subprogram INSERT_ORDER, but it is more helpful to
know which subprograms call INSERT_ORDER often and the total time the program
spends under INSERT_ORDER (including its descendant subprograms). Hierarchical
profilers provide such information.

The PL/SQL hierarchical profiler does the following:

= Reports the dynamic execution profile of your PL/SQL program, organized by
subprogram calls

= Accounts for SQL and PL/SQL execution times separately
= Requires no special source or compile-time preparation

m Stores results in database tables (hierarchical profiler tables) for custom report
generation by integrated development environment (IDE) tools (such as SQL
Developer and third-party tools)

= Provides subprogram-level execution summary information, such as:

= Number of calls to the subprogram

Using the PL/SQL Hierarchical Profiler 9-1

Collecting Profile Data

= Time spent in the subprogram itself (function time or self time)

= Time spent in the subprogram itself and in its descendent subprograms
(subtree time)

s Detailed parent-children information, for example:
— All callers of a given subprogram (parents)
- All subprograms that a given subprogram called (children)
- How much time was spent in subprogram x when called from y

- How many calls to subprogram x were from y

The PL/SQL hierarchical profiler is implemented by the DBMS_HPROF package and
has two components:

Data collection

The data collection component is an intrinsic part of the PL/SQL Virtual Machine.
The DBMS_HPROF package provides APIs to turn hierarchical profiling on and off.
The raw profiler output is written to a file.

Analyzer

The analyzer component processes the raw profiler output and stores the results in
hierarchical profiler tables.

Note: To generate simple HTML reports directly from raw profiler
output, without using the Analyzer, you can use the plshprof
command-line utility.

Collecting Profile Data

To collect profile data from your PL/SQL program for the PL/SQL hierarchical
profiler, follow these steps:

1.

Ensure that you have the following privileges:
= EXECUTE privilege on the DBMS_HPROF package

= WRITE privilege on the directory that you specify when you call DBMS_
HPROF.START_PROFILING

Use the DBMS_HPROF.START_PROFILING PL/SQL API to start hierarchical
profiler data collection in a session.

Run your PL/SQL program long enough to get adequate code coverage.

To get the most accurate measurements of elapsed time, avoid unrelated activity
on the system on which your PL/SQL program is running.

Use the DBMS_HPROF.STOP_PROFILING PL/SQL API to stop hierarchical profiler
data collection.

For more information about DBMS_HPROF.START_PROFILING and DBMS_
HPROF.STOP_PROFILING, see Oracle Database PL/SQL Packages and Types Reference.

Consider the following PL/SQL procedure, test:

CREATE OR REPLACE PROCEDURE test IS

n NUMBER;

PROCEDURE foo IS

9-2 Oracle Database Advanced Application Developer's Guide

Understanding Raw Profiler Output

BEGIN
SELECT COUNT(*) INTO n FROM EMPLOYEES;
END foo;

BEGIN -- test
FOR 1 IN 1..3 LOOP
foo;
END LOOP;
END test;
/
SHOW ERRORS;

The SQL script fragment in Example 9-1 profiles the execution of the PL/SQL
procedure test. The parameters to DBMS_HPROF.START_PROFILING specify that
raw profiler output is written to the file test.trc in the OS directory, which is
mapped to the directory object PLSHPROF_DIR (see note following example).

Example 9-1 Profiling a PL/SQL Procedure

BEGIN
-- Start profiling:
DBMS_HPROF . START_PROFILING ('PLSHPROF_DIR', 'test.trc');
END;
/
-- Execute procedure to be profiled:
BEGIN
test;
END;
/
BEGIN
-- Stop profiling:
DBMS_HPROF . STOP_PROFILING;
END;
/

Note: A directory object is an alias for a file system pathname. For
example, the following CREATE DIRECTORY statement creates the
directory object PLSHPROF_DIR and maps it to the file system
directory /private/plshprof/results:

CONNECT / AS SYSDBA;

CREATE DIRECTORY PLSHPROF_DIR as '/private/plshprof/results';

To execute the SQL script fragment in Example 9-1, you must have
READ and WRITE privileges on PLSHPROF_DIR. The following GRANT
statement grants READ and WRITE privileges on PLSHPROF_DIR to
HR:

CONNECT / AS SYSDBA;
GRANT READ, WRITE ON DIRECTORY PLSHPROF_DIR TO HR;

For more information about using directory objects, see Oracle
Database SecureFiles and Large Objects Developer’s Guide.

Understanding Raw Profiler Output

Raw profiler output is intended to be processed by the analyzer component of the
PL/SQL hierarchical profiler. However, even without such processing, it provides a
simple function-level trace of the program. This topic explains how to understand raw
profiler output.

Using the PL/SQL Hierarchical Profiler 9-3

Understanding Raw Profiler Output

Note: The raw profiler format shown in this chapter is intended only
to illustrate conceptual features of raw profiler output. Format
specifics are subject to change at each Oracle Database release.

The SQL script fragment in Example 9-1 wrote the following raw profiler output to the
file test.trc:

P#V PLSHPROF Internal Version 1.0

P#! PL/SQL Timer Started

P#C PLSQL."".""."_ plsgl_vm"

P#X 3

P#C PLSQL."".""."__ anonymous_block"

P#X 54

P#C PLSQL."SYS"."DBMS_OUTPUT"::11."GET_LINES"#660bd56albl640db #180
P#X 15

P#R

P#X 155

P#R

P#X 2

P#R

P#C PLSQL."".""."_ plsqgl_wvm"

P#X 3

P#C PLSQL."".""."__anonymous_block"

P#X 33

P#C PLSQL."HR"."TEST"::7."TEST"#980980e97e42f8ec #1
P#X 4

P#C PLSQL."HR"."TEST"::7."TEST.F00"#980980e97e42f8ec #4
P#X 37

P#C SQL."HR"."TEST"::7."__static_sqgl_exec_line6" #6
P#X 182

P#R

P#X 19

P#R

P#X 2

P#C PLSQL."HR"."TEST"::7."TEST.F00"#980980e97e42f8ec #4
P#X 5

P#C SQL."HR"."TEST"::7."_ static_sqgl_exec_line5" #6
P#X 81

P#R

P#X 3

P#R

P#X 1

P#C PLSQL."HR"."TEST"::7."TEST.F00"#980980e97e42f8ec #4
P#X 3

P#C SQL."HR"."TEST"::7."__static_sqgl_exec_line6" #6
P#X 78

P#R

P#X 2

P#R

P#X 1

P#R

P#X 1

P#R

P#X 3

P#R

P#C PLSQL."".""."_ plsgl_wvm"

P#X 3

P#C PLSQL."".""."__ anonymous_block"

9-4 Oracle Database Advanced Application Developer's Guide

Understanding Raw Profiler Output

P#X
P#C
P#X
P#R
P#X
P#R
P#X
P#R
P#C
P#X
P#C
P#X
P#C
P#R
P#R
P#R

54
PLSOQL.
14

55

PLSOQL.

PLSQL.
29
PLSQL.

ngygn

"gygn

. "DBMS_OUTPUT"::11."GET_LINES"#660bd56alb1640db #180

."__plsgl_vm"
."__anonymous_block"

. "DBMS_HPROF"::11."STOP_PROFILING"#980980e97e42f8ec #53

P#! PL/SQL Timer Stopped

PL/SQL procedure successfully completed.

Table 9-1 Raw Profiler Output File Indicators

Indicator Meaning

P#V PLSHPROF banner with version number

P#C Call to a subprogram (call event)

P#R Return from a subprogram (return event)

P#X Elapsed time between preceding and following events
P#! Comment

Call events (P#C) and return events (P#R) are always properly nested (like matched
parentheses). If a called subprogram is exited due to an unhandled exception, the
profiler still reports a matching return event.

Each call event (P#C) entry in the raw profiler output includes the following
information:

= Namespace to which the called subprogram belongs

See "Namespaces of Tracked Subprograms" on page 9-6.
= Name of the PL/SQL module in which the called subprogram is defined
s Type of the PL/SQL module in which the called subprogram is defined
= Name of the called subprogram

This name might be one of the "Special Function Names" on page 9-6.

s Hexadecimal value that represents an MD5 hash of the signature of the called
subprogram

The DBMS_HPROF.analyze PL/SQL API (described in "Analyzing Profile Data"
on page 9-7) stores the hash value in a hierarchical profiler table, which allows
both you and DBMS_HPROF.analyze to distinguish between overloaded
subprograms (subprograms with the same name).

= Line number at which the called subprogram is defined in the PL/SQL module

PL/SQL hierarchical profiler does not measure time spent at individual lines
within modules, but you can use line numbers to identify the source locations of

Using the PL/SQL Hierarchical Profiler 9-5

Understanding Raw Profiler Output

subprograms in the module (as IDE/Tools do) and to distinguish between
overloaded subprograms.

For example, consider the following entry in the preceding example of raw profiler
output:

P#C PLSQL."HR"."TEST"::7."TEST.FO0"#980980e97e42f8ec #4

The components of the preceding entry have the following meanings:

Component Meaning

PLSQL PLSQL is the namespace to which the called subprogram belongs.

"HR"."TEST" HR.TEST is the name of the PL/SQL module in which the called
subprogram is defined.

7 7 is the internal enumerator for the module type of HR.TEST.
Examples of module types are procedure, package, and package
body.

"TEST.FOO" TEST.FOO is the name of the called subprogram.

#980980e97e42f8ec #980980e97e42f8ec is a hexadecimal value that represents an
MDS5 hash of the signature of TEST.FOO.

#3 3 is the line number in the PL/SQL module HR.TEST at which
TEST.FOO is defined.

Namespaces of Tracked Subprograms

The subprograms that the PL/SQL hierarchical profiler tracks are classified into the
namespaces PLSQL and SQL, as follows:

= Namespace PLSQL includes:
- PL/SQL subprogram calls
- PL/SQL triggers
- PL/SQL anonymous blocks
- Remote subprogram calls
- Package-initialization blocks

= Namespace SQL includes SQL statements executed from PL/SQL, such as queries,
DML statements, DDL statements, and native dynamic SQL statements

Special Function Names

PL/SQL hierarchical profiler tracks certain operations as if they were functions with
the names and namespaces shown in Table 9-2.

Table 9-2 Function Names of Operations that the PL/SQL Hierarchical Profiler Tracks

Tracked Operation Function Name Namespace
Call to PL/SQL Virtual Machine _ plsgl_wvm PL/SQL
PL/SQL anonymous block __anonymous_block PL/SQL
Initialization code in package _ pkg_init PL/SQL

specification or package body

Static SQL statement at line 1ine# __static_sqgl_exec_lineline# SQL

9-6 Oracle Database Advanced Application Developer's Guide

Analyzing Profile Data

Table 9-2 (Cont.) Function Names of Operations that the PL/SQL Hierarchical Profiler

Tracked Operation Function Name Namespace
Dynamic SQL statement at line Iine# __ dyn_sql_exec_lineline# SQL
SQL FETCH statement at line 1ine# __sqgl_fetch_lineline# SQL

Analyzing Profile Data

The analyzer component of the PL/SQL hierarchical profiler, DBMS_HPROF.analyze,
processes the raw profiler output and stores the results in the hierarchical database
tables described in Table 9-3.

Table 9-3 PL/SQL Hierarchical Profiler Database Tables

Table Description

DBMSHP_RUNS Top-level information for this run of DBMS_
HPROF.analyze. For column descriptions, see Table 9-4
on page 9-8.

DBMSHP_FUNCTION_INFO Information for each subprogram profiled in this run of

DBMS_HPROF.analyze. For column descriptions, see
Table 9-5 on page 9-9.

DBMSHP_PARENT_CHILD_INFO Parent-child information for each subprogram profiled in
this run of DBMS_HPROF.analyze. For column
descriptions, see Table 9-6 on page 9-8.

Topics:
» Creating Hierarchical Profiler Tables

s Understanding Hierarchical Profiler Tables

Note: To generate simple HTML reports directly from raw profiler
output, without using the Analyzer, you can use the plshprof
command-line utility. For details, see "plshprof Utility" on page 9-13.

Creating Hierarchical Profiler Tables

To create the hierarchical profiler tables in Table 9-3 and the other data structures
required for persistently storing profile data, follow these steps:

1. Run the script dbmshptab.sqgl (located in the directory rdbms /admin).

This script creates both the hierarchical profiler tables in Table 9-3 and the other
data structures required for persistently storing profile data.

Note: Running the script dbmshptab.sql drops any previously
created hierarchical profiler tables.

2. Ensure that you have the following privileges:
= EXECUTE privilege on the DBMS_HPROF package
= READ privilege on the directory that DBMS_HPROF.analyze specifies

3. Usethe PL/SQL API DBMS_HPROF.analyze to analyze a single raw profiler
output file and store the results in hierarchical profiler tables.

Using the PL/SQL Hierarchical Profiler 9-7

Analyzing Profile Data

(For an example of a raw profiler output file, see test.trc in "Collecting Profile
Data" on page 9-2.)

For more information about DBMS_HPROF.analyze, see Oracle Database PL/SQL
Packages and Types Reference.
4. Use the hierarchical profiler tables to generate custom reports.

The call to DBMS_HPROF.analyze in Example 9-2 does the following;:

= Analyzes the profile data in the raw profiler output file test.trc (from
"Collecting Profile Data" on page 2), which is in the directory that is mapped to the
directory object PLSHPROF_DIR, and stores the data in the hierarchical profiler
tables in Table 9-3 on page 9-7.

= Returns in the variable runid a unique identifier that you can use to query the
hierarchical profiler tables in Table 9-3 on page 9-7. (By querying these hierarchical
profiler tables, you can produce customized reports.)

Example 9-2 Call to DBMS_HPROF.analyze

CONNECT HR/password;

VARIABLE runid NUMBER;

BEGIN

:runid := DBMS_HPROF.analyze (LOCATION=>'PLSHPROF_DIR',
FILENAME=>'test.trc'
RUN_COMMENT=>'First run of TEST');

END;

/

PRINT :runid;

Understanding Hierarchical Profiler Tables

The following topics explain how to use the hierarchical profiler tables in Table 9-3:
» Hierarchical Profiler Database Table Columns

» Distinguishing Between Overloaded Subprograms

= Hierarchical Profiler Tables for Sample PL/SQL Procedure

» Examples of Calls to DBMS_HPROF.analyze with Options

Hierarchical Profiler Database Table Columns

Table 9—4 describes the columns of the hierarchical profiler table DBMSHP_RUNS, which
contains one row of top-level information for each run of DBMS_HPROF.analyze.

The primary key for the hierarchical profiler table DBMSHP_RUNS is RUNID.

Table 9-4 DBMSHP_RUNS Table Columns

Column Name Column Datatype Column Contents

RUNID NUMBER PRIMARY KEY Unique identifier for this run of
DBMS_HPROF.analyze, generated
from DBMSHP_RUNNUMBER sequence.

RUN_TIMESTAMP TIMESTAMP Timestamp for this run of DBMS_
HPROF.analyze.

RUN_COMMENT VARCHAR2 (2047) Comment that you provided for this
run of DBMS_HPROF.analyze.

9-8 Oracle Database Advanced Application Developer's Guide

Analyzing Profile Data

Table 9-4 (Cont.) DBMSHP_RUNS Table Columns

Column Name Column Datatype Column Contents

TOTAL_ELAPSED_TIME INTEGER Total elapsed timefor this run of
DBMS_HPROF.analyze.

Table 9-5 describes the columns of the hierarchical profiler table DBMSHP_FUNCTION_
INFO, which contains one row of information for each subprogram profiled in this run
of DBMS_HPROF.analyze. If a subprogram is overloaded, Table 9-5 has a row for each
variation of that subprogram. Each variation has its own LINE# and HASH (see
"Distinguishing Between Overloaded Subprograms" on page 9-10).

The primary key for the hierarchical profiler table DBMSHP_FUNCTION_INFO is
RUNID, SYMBOLID.

Table 9-5 DBMSHP_FUNCTION_INFO Table Columns

Column Name Column Datatype Column Contents

RUNID NUMBER References RUNID column of DBMSHP__
RUNS table. For a description of that
column, see Table 9-4.

SYMBOLID NUMBER Symbol identifier for subprogram
(unique for this run of DBMS_
HPROF.analyze).

OWNER VARCHAR2 (32) Owner of module in which each
subprogram is defined (for example,
SYS or HR).

MODULE VARCHAR2 (2047) Module in which subprogram is defined

(for example, DBMS_LOB, UTL_HTTP, or
MY_PACKAGE).

TYPE VARCHAR2 (32) Type of module in which subprogram is
defined (for example, PACKAGE,
PACKAGE_BODY, or PROCEDURE).

FUNCTION VARCHAR2 (4000) Name of subprogram (not necessarily a
function) (for example, INSERT_ORDER,
PROCESS_ITEMS, or TEST).

This name might be one of the "Special
Function Names" on page 9-6.

For subprogram B defined within
subprogram A, this name is A.B.

A recursive call to function X is denoted
X@n, where n is the recursion depth. For
example, X@1 is the first recursive call to
X.

LINE# NUMBER Line number in OWNER.MODULE at
which FUNCTION is defined.

HASH RAW (32) Hash code for signature of subprogram
(unique for this run of DBMS_
HPROF.analyze).

NAMESPACE VARCHAR2 (32) Namespace of subprogram. For details,
see "Namespaces of Tracked
Subprograms" on page 9-6.

SUBTREE_ELAPSED_TIME INTEGER Elapsed time, in microseconds, for
subprogram, including time spent in
descendant subprograms.

Using the PL/SQL Hierarchical Profiler 9-9

Analyzing Profile Data

Table 9-5 (Cont.) DBMSHP_FUNCTION_INFO Table Columns

Column Name Column Datatype Column Contents

FUNCTION_ELAPSED_TIME INTEGER Elapsed time, in microseconds, for
subprogram, excluding time spent in
descendant subprograms.

CALLS INTEGER Number of calls to subprogram.

Table 9-6 describes the columns of the hierarchical profiler table DBMSHP_PARENT_
CHILD_INFO, which contains one row of parent-child information for each unique
parent-child subprogram combination profiled in this run of DBMS_HPROF.analyze.

Table 9-6 DBMSHP_PARENT_CHILD_INFO_RUNS Table Columns

Column Name Column Datatype Column Contents

RUNID NUMBER References RUNID column of
DBMSHP_FUNCTION_INFO table. For
a description of that column, see
Table 9-5.

PARENTSYMID NUMBER Parent symbol ID.

RUNID, PARENTSYMID references
DBMSHP_FUNCTION_INFO (RUNID,
SYMBOLID).

CHILDSYMID VARCHAR2 (32) Child symbol ID.

RUNID, CHILDSYMID references
DBMSHP_FUNCTION_INFO (RUNID,

SYMBOLID).
SUBTREE_ELAPSED_ INTEGER Elapsed time, in microseconds, for
TIME RUNID, CHILDSYMID when called

from RUNID, PARENTSYMID,
including time spent in descendant

subprograms.
FUNCTION_ELAPSED_ INTEGER Elapsed time, in microseconds, for
TIME RUNID, CHILDSYMID when called

from RUNID, PARENTSYMID,
excluding time spent in descendant
subprograms.

CALLS INTEGER Number of calls to RUNID,
CHILDSYMID from RUNID,
PARENTSYMID.

Distinguishing Between Overloaded Subprograms

Overloaded subprograms are different subprograms with the same name (see Oracle
Database PL/SQL La