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Preface

This guide describes database features that support applications using Large Object
(LOB) datatypes. The information in this guide applies to all platforms and does not
include system-specific information.

Oracle Database SecureFiles and Large Objects Developer’s Guide is intended for
programmers developing new applications that use LOBs, as well as those who have
already implemented this technology and now want to take advantage of new
features.

The increasing importance of multimedia data as well as unstructured data has led to
this topic being presented as an independent volume within the Oracle Application
Developers documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer’s Guide contains information that
describes the features and functionality of Oracle Database 10g.

What You Need To Use LOBs

The database includes all of the resources you need to use LOBs in your application;
however, there are some restrictions on how you can use LOBs as described in the
following:

See Also:

= "LOB Rules and Restrictions" on page 2-6

= "Restrictions for LOBs in Partitioned Index-Organized Tables"
on page 5-17

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

xvii



http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services

within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

xviii

For more information, see the following manuals:

»  Oracle Database PL/SQL Packages and Types Reference: Use this book to learn PL/SQL
and to get a complete description of this high-level programming language, which
is a procedural extension to SQL.

»  Oracle Call Interface Programmer’s Guide: Describes Oracle Call Interface (OCI). You
can use OCI to build third-generation language (3GL) applications in C or C++
that access Oracle Server.

»  Oracle C++ Call Interface Programmer’s Guide

»  Pro*C/C++ Programmer’s Guide: Oracle also provides the Pro* series of
precompilers, which allow you to embed SQL and PL/SQL in your application
programs.

»  Pro*COBOL Programmer’s Guide: The Pro*COBOL precompiler enables you to
embed SQL and PL/SQL in your COBOL programs for access to Oracle Server.

»  Programmer’s Guide to the Oracle Precompilers and Pro*Fortran Supplement to the
Oracle Precompilers Guide: Use these manuals for Fortran precompiler
programming to access Oracle Server.

= Java: Oracle Database offers the opportunity of working with Java in the database.
The Oracle Java documentation set includes the following:

»  Oracle Database JDBC Developer’s Guide and Reference
s Oracle Database Java Developer’s Guide
»  Oracle Database JPublisher User’s Guide

Oracle Database error message documentation is only available in HTML. If you only
have access to the Oracle Documentation CD, you can browse the error messages by
range. Once you find the specific range, use your browser "find in page" feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.



Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Multimedia

You can access the Oracle development environment for multimedia technology in a
number of different ways.

s Tobuild self-contained applications that integrate with the database, you can learn
about how to use the Oracle extensibility framework in Oracle Database Data
Cartridge Developer’s Guide

s To use Oracle Multimedia applications, refer to the following;:
»  Oracle Multimedia Reference.
»  Oracle Multimedia User’s Guide

Basic References

= For SQL information, see the Oracle Database SQL Language Reference and Oracle
Database Administrator’s Guide

s For information about using LOBs with Oracle XML DB, refer to Oracle XML DB
Developer’s Guide

s For information about Oracle XML SQL with LOB data, refer to Oracle Database
Advanced Replication

= For basic Oracle concepts, see Oracle Database Concepts.

= For information on using Oracle Data Pump, SQL*Loader, and other database
utilities, see Oracle Database Utilities

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at:

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at:

http://www.oracle.com/technology/documentation/

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
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What's New in Large Objects?

This section describes the new features in the following release:

LOB Features Introduced in Oracle Database 11g Release 1

LOB Features Introduced in Oracle Database 11g Release 1

Oracle SecureFiles adds the following capabilities:

Intelligent LOB compression enables users to explicitly compress data to save disk
space. This feature can only be used with the new LOB implementation in this
release (storage parameter SECUREFILE).

Intelligent LOB encryption introduces a new encryption facility for LOBs. The
encrypted data in now stored in-place and is available for random reads and
writes. This feature can only be used with the new LOB implementation in this
release (storage parameter SECUREFILE).

Deduplication enables Oracle Database to automatically detect duplicate LOB data
and conserve space by only storing one copy (storage parameter SECUREFILE).

LOB data path optimization includes logical cache above storage layer, read
prefetching, new caching modes, vectored IO, and so on.

New LOB APIs. Existing OCI functions work on the new SECUREFILE LOBs.
New OCI functions and PL/SQL packages are also added. Parameters of the
CREATE TABLE, ALTER TABLE, and SQL commands are new or changed for LOBs.
High performance space management includes changes to LOB SQL statements
and DBMS_ SPACE package changes.

See Also: Chapter 4, "Using Oracle SecureFiles"

OCI LOB prefetching gives you improved performance.

See Also: "Prefetching of LOB Data, Length, and Chunk Size" on page 7-9
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Part |

Getting Started

This part gives an introduction to Large Objects and introduces general concepts you
need to be familiar with to use LOBs in your application.

This part contains these chapters:

s Chapter 1, "Introduction to Large Objects"

»  Chapter 2, "Working with LOBs"

»  Chapter 3, "Managing LOBs: Database Administration"
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Introduction to Large Objects

This chapter introduces Large Objects (LOBs) and discusses how LOB datatypes are
used in application development. This chapter contains these topics:

What Are Large Objects?

Why Use Large Objects?

Why Not Use LONGs?

Different Kinds of LOBs

Introducing LOB Locators

Database Semantics for Internal and External LOBs
Large Object Datatypes

Object Datatypes and LOBs

Storing and Creating Other Datatypes with LOBs

What Are Large Objects?

Large Objects (LOBs) are a set of datatypes that are designed to hold large amounts of
data. A LOB can hold up to a maximum size ranging from 8 terabytes to 128 terabytes
depending on how your database is configured. Storing data in LOBs enables you to
access and manipulate the data efficiently in your application.

Why Use Large Objects?

This section introduces different types of data that you encounter when developing
applications and discusses which kinds of data are suitable for large objects.

In the world today, applications must deal with the following kinds of data:

Simple structured data.

This data can be organized into simple tables that are structured based on business
rules.

Complex structured data

This kind of data is complex in nature and is suited for the object-relational
features of the Oracle database such as collections, references, and user-defined

types.

Semi-structured data
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Why Use Large Objects?

This kind of data has a logical structure that is not typically interpreted by the
database. For example, an XML document that is processed by your application or
an external service, can be thought of as semi-structured data. The database
provides technologies such as Oracle XML DB, Advanced Queuing, and Messages
to help your application work with semi-structured data.

s Unstructured data

This kind of data is not broken down into smaller logical structures and is not
typically interpreted by the database or your application. A photographic image
stored as a binary file is an example of unstructured data.

Large objects are suitable for these last two kinds of data: semi-structured data and
unstructured data. Large objects features allow you to store these kinds of data in the
database as well as in operating system files that are accessed from the database.

With the growth of the internet and content-rich applications, it has become
imperative that the database support a datatype that:

s Can store unstructured and semi-structured data in an efficient manner.
= Is optimized for large amounts of data.

= Provides a uniform way of accessing data stored within the database or outside
the database.

Using LOBs for Semi-structured Data

Examples of semi-structured data include document files such as XML documents or
word processor files. These kinds of documents contain data in a logical structure that
is processed or interpreted by an application, and is not broken down into smaller
logical units when stored in the database.

Applications involving semi-structured data typically use large amounts of character
data. The Character Large Object (CLOB) and National Character Large Object (NCLOB)
datatypes are ideal for storing and manipulating this kind of data.

Binary File objects (BFILE datatypes) can also store character data. You can use
BFILEs to load read-only data from operating system files into CLOB or NCLOB
instances that you then manipulate in your application.

Using LOBs for Unstructured Data

Unstructured data cannot be decomposed into standard components. For example,
data about an employee can be structured into a name, which is stored as a string; an
identifier, such as an ID number, a salary and so on. A photograph, on the other hand,
consists of a long stream of 1s and 0s. These bits are used to switch pixels on or off so
that you can see the picture on a display, but are not broken down into any finer
structure for database storage.

Also, unstructured data such as text, graphic images, still video clips, full motion
video, and sound waveforms tends to be large in size. A typical employee record may
be a few hundred bytes, while even small amounts of multimedia data can be
thousands of times larger.

SQL datatypes that are ideal for large amounts of unstructured binary data include the
BLOB datatype (Binary Large Object) and the BFILE datatype (Binary File object).
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Different Kinds of LOBs

Why Not Use LONGs?

The database supports LONG as well as LOB datatypes. When possible, change your
existing applications to use LOBs instead of LONGs because of the added benefits that
LOBs provide. LONG-to-LOB migration enables you to easily migrate your existing
applications that access LONG columns, to use LOB columns.

See Also: Chapter 12, "Migrating Columns from LONGs to LOBs"

Applications developed for use with Oracle Database version 7 and earlier, used the
LONG or LONG RAW data type to store large amounts of unstructured data.

With the Oracle8i and later versions of the database, using LOB datatypes is
recommended for storing large amounts of structured and semi-structured data. LOB
datatypes have several advantages over LONG and LONG RAW types including:

= LOB Capacity: LOBs can store much larger amounts of data. LOBs can store 4GB
of data or more depending on you system configuration. LONG and LONG RAW
types are limited to 2GB of data.

= Number of LOB columns in a table: A table can have multiple LOB columns. LOB
columns in a table can be of any LOB type. In Oracle Database Release 7.3 and
higher, tables are limited to a single LONG or LONG RAW column.

= Random piece-wise access: LOBs support random access to data, but LONGs
support only sequential access.

= LOBs can also be object attributes.

Different Kinds of LOBs

Internal LOBs

Different kinds of LOBs can be stored in the database or in external files.

Note: LOBs in the database are sometimes also referred to as
internal LOBs or internal persistent LOBs.

LOBs in the database are stored inside database tablespaces in a way that optimizes
space and provides efficient access. The following SQL datatypes are supported for
declaring internal LOBs: BLOB, CLOB, and NCLOB. Details on these datatypes are given
in "Large Object Datatypes" on page 1-5.

Persistent and Temporary LOBs

Internal LOBs (LOBs in the database) can be either persistent or temporary. A
persistent LOB is a LOB instance that exists in a table row in the database. A
temporary LOB instance is created when you instantiate a LOB only within the scope
of your local application.

A temporary instance becomes a persistent instance when you insert the instance into
a table row.

Persistent LOBs use copy semantics and participate in database transactions. You can
recover persistent LOBs in the event of transaction or media failure, and any changes
to a persistent LOB value can be committed or rolled back. In other words, all the
Atomicity Consistency Isolation Durability (ACID) properties that pertain to using
database objects pertain to using persistent LOBs.
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Introducing LOB Locators

External LOBs and the BFILE Datatype

External LOBs are data objects stored in operating system files, outside the database
tablespaces. The database accesses external LOBs using the SQL datatype BFILE. The
BFILE datatype is the only external LOB datatype.

BFILEs are read-only datatypes. The database allows read-only byte stream access to
data stored in BFILEs. You cannot write to a BFILE from within your application.

The database uses reference semantics with BFILE columns. Data stored in a table
column of type BFILE, is physically located in an operating system file, not in the
database tablespace.

You typically use BFILEs to hold:

= Binary data that does not change while your application is running, such as
graphics.

= Data that is loaded into other large object types, such as a BLOB or CLOB where
the data can then be manipulated.

= Data that is appropriate for byte-stream access, such as multimedia.

= Read-only data that is relatively large in size, to avoid taking up large amounts
database tablespace.

Any storage device accessed by your operating system can hold BFILE data, including
hard disk drives, CD-ROMs, PhotoCDs and DVDs. The database can access BFILEs
provided the operating system supports stream-mode access to the operating system
files.

Note: External LOBs do not participate in transactions. Any
support for integrity and durability must be provided by the
underlying file system as governed by the operating system.

Introducing LOB Locators

A LOB instance has a locator and a value. The LOB locator is a reference to where the
LOB value is physically stored. The LOB value is the data stored in the LOB.

When you use a LOB in an operation such as passing a LOB as a parameter, you are
actually passing a LOB locator. For the most part, you can work with a LOB instance in
your application without being concerned with the semantics of LOB locators. There is
no need to dereference LOB locators, as is required with pointers in some
programming languages.

There are some issues regarding the semantics of LOB locators and how LOB values
are stored that you should be aware of. These details are covered in the context of the
discussion where they apply throughout this guide.

See Also:

= "LOB Locator and LOB Value" on page 2-2

s "LOB Locators and BFILE Locators" on page 2-3
s "LOB Storage Parameters" on page 5-4
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Object Datatypes and LOBs

Database Semantics for Internal and External LOBs

In all programmatic environments, database semantics differ between internal LOBs
and external LOBs as follows:

= Internal LOBs use copy semantics.

With copy semantics, both the LOB locator and LOB value are logically copied
during insert, update, or assignment operations. This ensures that each table cell
or each variable containing a LOB, holds a unique LOB instance.

= External LOBs use reference semantics.

With reference semantics, only the LOB locator is copied during insert operations.
(Note that update operations do not apply to external LOBs as external LOBs are
read-only. This is explained in more detail later in this section.)

Large Object Datatypes

Table 1-1 describes each large object datatype supported by the database and describes
the kind of data each datatype is typically used for. The names of datatypes given here
are the SQL datatypes provided by the database. In general, the descriptions given for
the datatypes in this table and the rest of this book also apply to the corresponding
datatypes provided for other programmatic environments. Also, note that the term
"LOB" is generally used to refer to the set of all large object datatypes.

Table 1-1 Large Object Datatypes

SQL Datatype

Description

BLOB

CLOB

NCLOB

BFILE

Binary Large Object

Stores any kind of data in binary format. Typically used for
multimedia data such as images, audio, and video.

Character Large Object

Stores string data in the database character set format. Used for
large strings or documents that use the database character set
exclusively. Characters in the database character set are in a
fixed width format.

National Character Set Large Object

Stores string data in National Character Set format. Used for
large strings or documents in the National Character Set.
Supports characters of varying width format.

External Binary File

A binary file stored outside of the database in the host
operating system file system, but accessible from database
tables. BFILEs can be accessed from your application on a
read-only basis. Use BFILESs to store static data, such as image
data, that does not need to be manipulated in applications.

Any kind of data, that is, any operating system file, can be
stored in a BFILE. For example, you can store character data in
a BFILE and then load the BFILE data into a CLOB specifying
the character set upon loading.

Object Datatypes and LOBs

You can declare LOB datatypes as fields, or members, of object datatypes. For
example, you can have an attribute of type CLOB on an object type. In general, there is
no difference in the usage of a LOB instance in a LOB column and the usage of a LOB
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Storing and Creating Other Datatypes with LOBs

instance that is a member or of an object datatype. Any difference in usage is called
out when it applies. When used in this guide, the term LOB attribute refers to a LOB
instance that is a member of an object datatype. Unless otherwise specified,
discussions that apply to LOB columns also apply to LOB attributes.

Storing and Creating Other Datatypes with LOBs

You can use LOBs to create other user-defined datatypes or store other datatypes as
LOBs. This section discusses some of the datatypes provided with the database as
examples of datatypes that are stored or created with LOB types.

VARRAYs Stored as LOBs

An instance of type VARRAY in the database is stored as an array of LOBs when you
create a table in the following scenarios:

" If the VARRAY storage clause— VARRAY varray_item STORE AS —is not
specified, and the declared size of varray data is more than 4000 bytes.

= If the varray column properties are specified using the STORE AS LOB clause—
VARRAY varray_item STORE AS LOB ...

XMLType Columns Stored as CLOBs

A good example of how LOB datatypes can be used to store other datatypes is the
XMLType datatype. The XMLType datatype is sometimes stored as a CLOB . Setting up
your table or column to store XMLType datatypes as CLOBs enables you to store
schema-less XML documents in the database.

See Also:

s Oracle XML DB Developer’s Guide for information on creating
XMLType tables and columns and how XML is stored in
CLOB:s.

»  Oracle XML Developer’s Kit Programmer’s Guide, for information
about working with XML.

LOBs Used in Oracle Multimedia

Oracle Multimedia uses LOB datatypes to create datatypes specialized for use in
multimedia application such as Multimedia ORDAudio, ORDDoc, ORDImage, and
ORDVideo. Oracle Multimedia uses the database infrastructure to define object types,
methods, and LOBs necessary to represent these specialized types of data in the
database.

See Also:

»  Oracle Multimedia User’s Guide for more information on using
Multimedia.

»  Oracle Multimedia Reference for more information on using
Multimedia datatypes.
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Working with LOBs

This chapter describes the usage and semantics of LOBs that you need to be familiar
with to use LOBs in your application. Various techniques for working with LOBs are
covered.

Most of the discussions in this chapter regarding persistent LOBs assume that you are
dealing with LOBs in tables that already exist. The task of creating tables with LOB
columns is typically performed by your database administrator.

See Also:

»  Chapter 4, "Using Oracle SecureFiles" for creating LOBs using
the SECUREFILE paradigm

»  Chapter 5, "LOB Storage" for storage parameters used in
creating LOBs

This chapter contains these topics:

LOB Column States

Locking a Row Containing a LOB
Opening and Closing LOBs

LOB Locator and LOB Value

LOB Locators and BFILE Locators
Accessing LOBs

LOB Rules and Restrictions

LOB Column States

The techniques you use when accessing a cell in a LOB column differ depending on
the state of the given cell. A cell in a LOB Column can be in one of the following states:

NULL
The table cell is created, but the cell holds no locator or value.
Empty

A LOB instance with a locator exists in the cell, but it has no value. The length of
the LOB is zero.

Populated

A LOB instance with a locator and a value exists in the cell.
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Locking a Row Containing a LOB

Locking a Row Containing a LOB

You can lock a row containing a LOB to prevent other database users from writing to
the LOB during a transaction. To lock a row containing a LOB, specify the FOR
UPDATE clause when you select the row. While the row is locked, other users cannot
lock or update the LOB, until you end your transaction.

Opening and Closing LOBs

The LOB APIs include operations that enable you to explicitly open and close a LOB
instance. You can open and close a persistent LOB instance of any type: BLOB, CLOB,
NCLOB, or BFILE. You open a LOB to achieve one or both of the following results:

= Open the LOB in read-only mode.

This ensures that the LOB (both the LOB locator and LOB value) cannot be
changed in your session until you explicitly close the LOB. For example, you can
open the LOB to ensure that the LOB is not changed by some other part of your
program while you are using the LOB in a critical operation. After you perform
the operation, you can then close the LOB.

= Open the LOB in read write/mode—persistent BLOB, CLOB, or NCLOB instances
only.

Opening a LOB in read write mode defers any index maintenance on the LOB
column until you close the LOB. Opening a LOB in read write mode is only useful
if there is an extensible index on the LOB column and you do not want the
database to perform index maintenance every time you write to the LOB. This
technique can increase the performance of your application if you are doing
several write operations on the LOB while it is open.

If you open a LOB, then you must close the LOB at some point later in your session.
This is the only requirement for an open LOB. While a LOB instance is open, you can
perform as many operations as you want on the LOB—provided the operations are
allowed in the given mode.

See Also: "Opening Persistent LOBs with the OPEN and CLOSE
Interfaces" on page 6-9 for details on usage of these APIs.

LOB Locator and LOB Value

There are two techniques that you can use to access and modify LOB values:
= Using the Data Interface for LOBs
= Using the LOB Locator to Access and Modify LOB Values

Using the Data Interface for LOBs

You can perform bind and define operations on CLOB and BLOB columns in C
applications using the data interface for LOBs in OCI. Doing so, enables you to insert
or select out data in a LOB column without using a LOB locator as follows:

= Using a bind variable associated with a LOB column to insert character data into a
CLOB, or RAW data into a BLOB.

= Using a define operation to define an output buffer in your application that holds
character data selected from a CLOB, or RAW data selected from a BLOB.
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See Also: Chapter 14, "Data Interface for Persistent LOBs" for
more information on implicit assignment of LOBs to other
datatypes.

Using the LOB Locator to Access and Modify LOB Values

The value of a LOB instance stored in the database can be accessed through a LOB
locator, a reference to the location of the LOB value. Database tables store only locators
in CLOB, BLOB, NCLOB and BFILE columns. Note the following with respect to LOB
locators and values:

s To access or manipulate a LOB value, you pass the LOB locator to the various LOB
APIs.

= A LOB locator can be assigned to any LOB instance of the same type.

s The characteristics of a LOB as being temporary or persistent have nothing to do
with the locator. The characteristics of temporary or persistent apply only to the
LOB instance.

LOB Locators and BFILE Locators

There are differences between the semantics of locators for LOB types BLOB, CLOB,
and NCLOB on one hand, and the semantics of locators for the BFILE type on the other
hand:

s For LOB types BLOB, CLOB, and NCLOB, the LOB column stores a locator to the
LOB value. Each LOB instance has its own distinct LOB locator and also a distinct
copy of the LOB value.

»  For initialized BFILE columns, the row stores a locator to the external operating
system file that holds the value of the BFILE. Each BFILE instance in a given row
has its own distinct locator; however, two different rows can contain a BFILE
locator that points to the same operating system file.

Regardless of where the value of a LOB is stored, a locator is stored in the table row of
any initialized LOB column. Note that when the term locator is used without an
identifying prefix term, it refers to both LOB locators and BFILE locators. Also, when
you select a LOB from a table, the LOB returned is always a temporary LOB. For more
information on working with locators for temporary LOBs, see "LOBs Returned from
SQL Functions" on page 10-9.

Table print_media

The table print_media of the Oracle Database Sample Schema P, is used in many
examples in this documentation and is defined as:

CREATE TABLE print_media

( product_id NUMBER (6)

, ad_id NUMBER (6)

, ad_composite BLOB

, ad_sourcetext CLOB

, ad_finaltext CLOB

, ad_fltextn NCLOB

, ad_textdocs_ntab textdoc_tab
, ad_photo BLOB

, ad_graphic BFILE

, ad_header adheader_typ

) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;
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See Also: "Creating a Table Containing One or More LOB
Columns" on page 9-1 for the details of how print_media and its
associated tables and files are created.

Initializing a LOB Column to Contain a Locator

Any LOB instance that is NULL does not have a locator. Before you can pass a LOB
instance to any LOB API routine, the instance must contain a locator. For example, you
can select a NULL LOB from a row, but you cannot pass the instance to the PL/SQL
DBMS_LOB.READ procedure. The following sub-sections describe how to initialize a
persistent LOB column and how to initialize a BFILE column.

Initializing a Persistent LOB Column

Before you can start writing data to a persistent LOB using the supported
programmatic environment interfaces (PL/SQL, OCI, OCCI, Pro*C/C++, Pro*COBOL,
Visual Basic, Java, or OLEDB), the LOB column/attribute must be made non-NULL,
that is, it must contain a locator.

You can accomplish this by initializing the persistent LOB to empty in an
INSERT/UPDATE statement using the functions EMPTY_BLOB for BLOBs or
EMPTY_CLOB for CLOBs and NCLOBs.

Note: You can use SQL to populate a LOB column with data even
if it contains a NULL value.

See Also: Chapter 5, "LOB Storage" for more information on
initializing LOB columns.

Running the EMPTY_BLOB () or EMPTY_CLOB () function in and of itself does not
raise an exception. However, using a LOB locator that was set to empty to access or
manipulate the LOB value in any PL/SQL DBMS_LOB or OCI function raises an
exception.

Valid places where empty LOB locators may be used include the VALUES clause of an
INSERT statement and the SET clause of an UPDATE statement.
See Also:

= "Directory Objects" on page 16-3 for details of CREATE
DIRECTORY and BFILENAME usage

= CREATE DIRECTORY statement in Oracle Database Reference. for
more information about creating a directory object

»  Oracle Database SQL Language Reference, CREATE DIRECTORY
statement

Note: Character strings are inserted using the default character set
for the instance.

The following INSERT statement in the PV, table print_media:
=  Populates ad_sourcetext with the character string 'my Oracle’,

»  Sets ad_composite, ad_finaltext, and ad_fltextn to an empty value,
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s Sets ad_photo to NULL, and

» Initializes ad_graphic to point to the file my_picture located under the logical
directory my_directory_object.

CREATE OR REPLACE DIRECTORY my_directory_object AS 'oracle/work/tklocal';
INSERT INTO print_media VALUES (1726, 1, EMPTY_BLOB(),

'my Oracle', EMPTY_CLOB(), EMPTY_CLOB(),

NULL, NULL, BFILENAME ('my_directory_object', 'my_picture'), NULL);

Similarly, the LOB attributes for the ad_header column in print_media can be
initialized to NULL, empty, or a character/raw literal, which is shown in the following
statement:

INSERT INTO print_media (product_id, ad_id, ad_header)
VALUES (1726, 1, adheader_typ('AD FOR ORACLE', sysdate,
'Have Grid', EMPTY_BLOB()));

See Also:

= "Inserting a Row by Selecting a LOB From Another Table" on
page 9-4

= 'Inserting a LOB Value Into a Table" on page 9-5

= "Inserting a Row by Initializing a LOB Locator Bind Variable"
on page 9-6

s "OCILobLocator Pointer Assignment" on page 7-11 for details
on LOB locator semantics in OCI

Initializing BFILEs

Before you can access BFILE values using LOB APlIs, the BFILE column or attribute
must be made non-NULL. You can initialize the BFILE column to point to an external
operating system file by using the BFILENAME function.

See Also: "Accessing BFILEs" on page 16-3 for more information
on initializing BFILE columns.

Accessing LOBs
You can access a LOB instance using the following techniques:
s Accessing a LOB Using SQL
= Accessing a LOB Using the Data Interface
= Accessing a LOB Using the Locator Interface

Accessing a LOB Using SQL

Support for columns that use LOB datatypes is built into many SQL functions. This
support enables you to use SQL semantics to access LOB columns in SQL. In most
cases, you can use the same SQL semantics on a LOB column that you would use on a
VARCHAR2 column.

See Also: For details on SQL semantics support for LOBs, see
Chapter 10, "SQL Semantics and LOBs".
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Accessing a LOB Using the Data Interface

You can select a LOB directly into CHAR or RAW buffers using the LONG-to-LOB APl in
OCI and PL/SQL. In the following PL/SQL example, ad_finaltext is selected into
a VARCHAR?2 buffer final_ad.

DECLARE
final_ad VARCHAR(32767);
BEGIN
SELECT ad_finaltext INTO final_ad FROM print_media
WHERE product_id = 2056 and ad_id = 12001 ;
/* PUT_LINE can only output up to 255 characters at a time */

DBMS_OUTPUT.PUT_LINE(final_ad);
/* more calls to read final_ ad */

END;

See Also: For more details on accessing LOBs using the data
interface, see Chapter 14, "Data Interface for Persistent LOBs".

Accessing a LOB Using the Locator Interface

You can access and manipulate a LOB instance by passing the LOB locator to the LOB
APIs supplied with the database. An extensive set of LOB APIs is provided with each
supported programmatic environment. In OCI, a LOB locator is mapped to a locator
pointer which is used to access the LOB value.

Note: In all environments, including OCI, the LOB APIs operate
on the LOB value implicitly—there is no need to "dereference" the
LOB locator.

See Also:
»  Chapter 7, "Overview of Supplied LOB APIs"

"OCILobLocator Pointer Assignment”" on page 7-11 for details
on LOB locator semantics in OCI

LOB Rules and Restrictions

This section provides details on LOB rules and restrictions.

Rules for LOB Columns
LOB columns are subject to the following rules and restrictions:
= You cannot specify a LOB as a primary key column.

s Oracle Database has limited support for remote LOBs. Remote LOBs are
supported in three ways.

1. Create table as select or insert as select.

CREATE TABLE t AS SELECT * FROM tablel@remote_site;

INSERT INTO t SELECT * FROM tablel@remote_site;

UPDATE t SET lobcol = (SELECT lobcol FROM tablel@remote_site);

INSERT INTO tablel@remote_site SELECT * FROM local_table;

UPDATE tablel@remote_site SET lobcol = (SELECT lobcol FROM local_table);
DELETE FROM tablel@remote_site <WHERE clause involving non_lob_columns>
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In statements structured like the preceding examples, only standalone LOB
columns are allowed in the select list.

2. Functions on remote LOBs returning scalars. SQL and PL/SQL functions
having a LOB parameter and returning a scalar datatype are supported. Other
SQL functions and DBMS_LOB APIs are not supported for use with remote LOB
columns. For example, the following statement is supported:

CREATE TABLE tab AS SELECT DBMS_LOB.GETLENGTH@dbs2 (clob_col) len FROM tab@dbs2;
CREATE TABLE tab AS SELECT LENGTH(clob_col) len FROM tab@dbs2;

However, the following statement is not supported because DBMS_LOB. SUBSTR
returns a LOB:

CREATE TABLE tab AS SELECT DBMS_LOB.SUBSTR(clob_col) from tab@dbs2;

3. Data Interface for remote LOBs. You can insert a character or binary buffer into
a remote CLOB or BLOB, and select a remote CLOB or BLOB into a character or
binary buffer. For example (in PL/SQL):

SELECT clobcoll, typel.blobattr INTO varchar_bufl, raw_buf2 FROM
tablel@remote_site;

INSERT INTO tablel@remotesite (clobcoll, typel.blobattr) VALUES varchar_bufl,
raw_buf2;

INSERT INTO tablel@remotesite (lobcol) VALUES (’'test’);

UPDATE tablel SET lobcol = ’'xxxX’;

These are the only supported syntax involving LOBs in remote tables. No other
usage is supported.
Clusters cannot contain LOBs, either as key or non-key columns.

The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

- VARRAY of any LOB type

- VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute

- ANYDATA of any LOB type
— ANYDATA of any type containing a LOB

You cannot specify LOB columns in the ORDER BY clause of a query, or in the
GROUP BY clause of a query or in an aggregate function.

You cannot specify a LOB column in a SELECT... DISTINCT or SELECT... UNIQUE
statement or in a join. However, you can specify a LOB attribute of an object type
column in a SELECT... DISTINCT statement or in a query that uses the UNION or
MINUS set operator if the column's object type has a MAP or ORDER function
defined on it.

The first (INITIAL) extent of a LOB segment must contain at least three database
blocks.

When creating an UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause.

You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the indextype specification of a domain index. In
addition, Oracle Text lets you define an index on a CLOB column.
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s Inan INSERT... AS SELECT operation, you can bind up to 4000 bytes of data to
LOB columns and attributes.

= If a table has both LONG and LOB columns, you cannot bind more than 4000 bytes
of data to both the LONG and LOB columns in the same SQL statement. However,
you can bind more than 4000 bytes of data to either the LONG or the LOB column.

Note: For a table on which you have defined a DML trigger, if you
use OCI functions or DBMS_LOB package to change the value of a
LOB column or the LOB attribute of an object type column, the
database does not fire the DML trigger.

See Also:

s Chapter 4, "Using Oracle SecureFiles" for the LOB capabilities
(encryption, compression, and deduplication) introduced in
Oracle Release 1 (11.1).

= "Restrictions for LOBs in Partitioned Index-Organized Tables"
on page 5-17

s Chapter 12, "Migrating Columns from LONGs to LOBs" under
"Migrating Applications from LONGs to LOBs" on page 12-7,
describes LONG to LOB migration limitations for clustered
tables, replication, triggers, domain indexes, and
function-based indexes.

= "Unsupported Use of LOBs in SQL" on page 10-8 for
restrictions on SQL semantics.

»  For details on the INITIAL extent of a LOB segment, see
"Restriction on First Extent of a LOB Segment" on page 5-3.

= LOBs in partitioned index-organized tables are also subject to a
number of other restrictions. See "Restrictions for LOBs in
Partitioned Index-Organized Tables" on page 5-17 for more
information.

= "Using the Data Interface with Remote LOBs" on page 14-22

Restrictions for LOB Operations

Other general LOB restrictions include the following:

s InSQL Loader, A field read from a LOB cannot be used as an argument to a clause.
See "Database Ultilities for Loading Data into LOBs" on page 3-1 for more
information.

= Session migration is not supported for BFILEs in shared server (multithreaded
server) mode. This implies that operations on open BFILEs can persist beyond the
end of a call to a shared server. In shared server sessions, BFILE operations are
bound to one shared server, they cannot migrate from one server to another.
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Managing LOBs: Database Administration

This chapter describes administrative tasks that must be performed to set up,
maintain, and use a database that contains LOBs.

This chapter contains these topics:

Database Utilities for Loading Data into LOBs
Managing Temporary LOBs

Managing BFILEs

Changing Tablespace Storage for a LOB

Database Utilities for Loading Data into LOBs

The following utilities are recommended for bulk loading data into LOB columns as
part of database setup or maintenance tasks:

SQL*Loader
Oracle DataPump

Note: Application Developers: If you are loading data into a LOB
in your application, then using the LOB APIs is recommended. See
Chapter 15, "Using LOB APIs" for details on APIs that allow you to
load LOBs from files.

Using SQL*Loader to Load LOBs

There are two general techniques for using SQL*Loader to load data into LOBs:

Loading data from a primary data file

Loading from a secondary data file using LOBFILEs

Consider the following issues when loading LOBs with SQL*Loader:

For SQL*Loader conventional path loads, failure to load a particular LOB does not
result in the rejection of the record containing that LOB; instead, the record ends
up containing an empty LOB.

For SQL*Loader direct-path loads, the LOB could be empty or truncated. LOBs are
sent in pieces to the server for loading. If there is an error, then the LOB piece with
the error is discarded and the rest of that LOB is not loaded. In other words, if the
entire LOB with the error is contained in the first piece, then that LOB column is
either empty or truncated.
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= When loading from LOBFILEs specify the maximum length of the field
corresponding to a LOB-type column. If the maximum length is specified, then it is
taken as a hint to help optimize memory usage. It is important that the maximum
length specification does not underestimate the true maximum length.

s When using SQL*Loader direct-path load, loading LOBs can take up substantial
memory. If the message "SQL*Loader 700 (out of memory)" appears when loading
LOBs, then internal code is probably batching up more rows in each load call than
can be supported by your operating system and process memory. A work-around
is to use the ROWS option to read a smaller number of rows in each data save.

m  You can also use the Direct Path API to load LOBs.

s Using LOBFILEs is recommended when loading columns containing XML data in
CLOBs or XMLType columns. Whether you perform a direct-path load or a
conventional path load with SQL*Loader depends on whether you need to
validate XML documents upon loading.

= If the XML document must be validated upon loading, then use conventional
path load.

= Ifitis not necessary to ensure that the XML document is valid or you can
safely assume that the XML document is valid, then you can perform a
direct-path load. Performance is higher when you use direct-path load because
the overhead of XML validation is incurred.

A conventional path load executes SQL INSERT statements to populate tables in an
Oracle database. A direct path load eliminates much of the Oracle database
overhead by formatting Oracle data blocks and writing the data blocks directly to
the database files.

A direct-path load does not compete with other users for database resources, so it
can usually load data at near disk speed. Considerations inherent to direct path
loads, such as restrictions, security, and backup implications, are discussed in
Oracle Database Utilities.

s Tables to be loaded must already exist in the database. SQL*Loader never creates
tables. It loads existing tables that either already contain data or are empty.

s The following privileges are required for a load:
= You must have INSERT privileges on the table to be loaded.

= You must have DELETE privilege on the table to be loaded, when using the
REPLACE or TRUNCATE option to empty out the old data before  loading
the new data in its place.

See Also: For details on using SQL*Loader to load LOBs and
other details on SQL*Loader usage, refer to the Oracle Database
Utilities guide.

Using SQL*Loader to Populate a BFILE Column

This section describes how to load data from files in the file system into a BFILE
column.

See Also: "Supported Environments for BFILE APIs" on
page 16-2
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Note that the BFILE datatype stores unstructured binary data in operating system files
outside the database. A BFILE column or attribute stores a file locator that points to a
server-side external file containing the data.

Note: A particular file to be loaded as a BFILE does not have to
actually exist at the time of loading.

SQL*Loader assumes that the necessary DIRECTORY objects have already been
created.

See Also: See "Directory Objects" on page 16-3 and the sections
following it for more information on creating directory objects.

A control file field corresponding to a BFILE column consists of column name
followed by the BFILE directive.

The BFILE directive takes as arguments a DIRECTORY object name followed by a
BFILE name. Both of these can be provided as string constants, or they can be
dynamically sourced through some other field.

See Also: Oracle Database Utilities for details on SQL*Loader
syntax.

The following two examples illustrate the loading of BFILES.

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager

GRANT CREATE ANY DIRECTORY to samp;

CONNECT samp/samp

CREATE OR REPLACE DIRECTORY adgraphic_photo as '/tmp';
CREATE OR REPLACE DIRECTORY adgraphic_dir as '/tmp';

In the following example only the file name is specified dynamically.
Control file:

LOAD DATA

INFILE sample9.dat

INTO TABLE Print_media

FIELDS TERMINATED BY ','

(product_id INTEGER EXTERNAL(6),

FileName FILLER CHAR(30),

ad_graphic BFILE(CONSTANT "modem_graphic_2268_21001", FileName))

Data file:

007, modem_2268.3jpg,
008, monitor_3060.jpg,
009, keyboard_2056.jpg,
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Note: product_ID defaults to (255) if a size is not specified. It is
mapped to the file names in the data file. ADGRAPHIC_PHOTO is the
directory where all files are stored. ADGRAPHIC_DIRis a
DIRECTORY object created previously.

In the following example, the BFILE and the DIRECTORY object are specified
dynamically.

Control file:

LOAD DATA

INFILE samplel0.dat

INTO TABLE Print_media

FIELDS TERMINATED BY ','

(

product_id INTEGER EXTERNAL(6),
ad_graphic BFILE (DirName, FileName),
FileName FILLER CHAR(30),

DirName FILLER CHAR(30)

)

Data file:

007, monitor_3060.jpg, ADGRAPHIC_PHOTO,
008, modem_2268.jpg, ADGRAPHIC_PHOTO,
009, keyboard_2056.jpg, ADGRAPHIC_DIR,

Note: DirName FILLER CHAR (30) is mapped to the data file

field containing the directory name corresponding to the file being
loaded.

Using Oracle DataPump to Transfer LOB Data

You can use Oracle DataPump to transfer LOB data from one database to another.

See Also: For details on using Oracle DataPump, refer to the
Oracle Database Utilities guide.

Managing Temporary LOBs

The database keeps track of temporary LOBs in each session, and provides a v$ view
called v$temporary_lobs. From the session, the application can determine which
user owns the temporary LOB. As a database administrator, you can use this view to
monitor and guide any emergency cleanup of temporary space used by temporary

LOBs.

Managing Temporary Tablespace for Temporary LOBs

3-4

Temporary tablespace is used to store temporary LOB data. As a database
administrator you control data storage resources for temporary LOB data by

controlling user access to temporary tablespaces and by the creation of different

temporary tablespaces.

See Also: Refer to the Oracle Database Administrator’s Guide for
details on managing temporary tablespaces.
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Managing BFILEs

This section describes administrative tasks for managing databases that contain
BFILESs.

Rules for Using Directory Objects and BFILEs
When creating a directory object or BFILESs, ensure that the following conditions are
met:

s The operating system file must not be a symbolic or hard link.

= The operating system directory path named in the Oracle DIRECTORY object
must be an existing operating system directory path.

= The operating system directory path named in the Oracle DIRECTORY object
should not contain any symbolic links in its components.

Setting Maximum Number of Open BFILEs
A limited number of BFILEs can be open simultaneously in each session. The

initialization parameter, SESSION_MAX_OPEN_FILES defines an upper limit on the
number of simultaneously open files in a session.

The default value for this parameter is 10. That is, you can open a maximum of 10 files
at the same time in each session if the default value is used. If you want to alter this
limit, then the database administrator can change the value of this parameter in the
init.ora file. For example:

SESSION_MAX_OPEN_FILES=20
If the number of unclosed files reaches the SESSION_MAX_ OPEN_FILES value, then

you will not be able to open any more files in the session. To close all open files, use
the DBMS_LOB.FILECLOSEALL call.

Changing Tablespace Storage for a LOB

As the database administrator, you can use the following techniques to change the
default storage for a LOB after the table has been created:

= Using ALTER TABLE... MODIFY: You can change LOB tablespace storage as
follows:

Note:

s The ALTER TABLE syntax for modifying an existing LOB
column uses the MODIFY LOB clause, not the LOB. . . STORE
AS clause. The LOB. . . STORE AS clause is only for newly
added LOB columns.

»  There are two kinds of LOB storage clauses:
LOB_storage_clause and
modify_ LOB_storage_clause. In the ALTER TABLE
MODIFY LOB statement, you can only specify the
modify_ LOB_storage_clause.

ALTER TABLE test MODIFY
LOB (lobl)
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STORAGE  (

NEXT 4M

MAXEXTENTS 100

PCTINCREASE 50
)

Using ALTER TABLE... MOVE: You can also use the MOVE clause of the ALTER
TABLE statement to change LOB tablespace storage. For example:

ALTER TABLE test MOVE
TABLESPACE tbsl
LOB (lobl, lob2)
STORE AS (
TABLESPACE tbs2
DISABLE STORAGE IN ROW) ;
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Application Design

This part covers issues that you need to consider when designing applications that use
LOBs.

This part contains these chapters:

s Chapter 4, "Using Oracle SecureFiles"

s Chapter 5, "LOB Storage"

»  Chapter 6, "Advanced Design Considerations"
»  Chapter 7, "Overview of Supplied LOB APIs"

»  Chapter 8, "Performance Guidelines"
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Using Oracle SecureFiles

This chapter describes how to use SecureFiles, which were introduced to supplement
the original LOBs implementation that is identified by the SQL parameter
BASICFILE. This chapter contains these topics:

= Storage of SecureFiles

s PL/SQL Packages for SECUREFILE LOBs
» Initialization Parameter

s Compatibility and Upgrading

= Migrating Columns from BasicFile LOBs to SecureFiles

Storage of SecureFiles

This section summarizes LOB storage characteristics used to design tables with LOB
column types. Beginning with Release 11.1, a new LOB storage paradigm is used by
the database when the storage keyword SECUREFILE appears in the CREATE TABLE
statement. The old storage paradigm is in effect if the keyword SECUREFILE is not
used, or if the keyword BASICFILE is used. BASICFILE (the original LOB storage
paradigm) is the default storage. The database administrator can use the following
initialization parameter in init.ora to modify the above settings:

See Also: "db_securefile" on page 4-15

Parameters for CREATE TABLE With SECUREFILE LOBs

A SecureFile can only be created in an automatic segment space management (ASSM)
tablespace. The following parameter descriptions apply to the LOB storage paradigm
using parameter SECUREFILE.

See Also: Oracle Database SQL Language Reference, CREATE TABLE
statement.

The new LOB features need new storage parameters. All the new parameters are
described after the following BNF of CREATE TABLE.

CREATE [ GLOBAL TEMPORARY | TABLE
[ schema.]table OF
[ schema.]object_type
[ ( relational_properties ) ]
[ ON COMMIT { DELETE | PRESERVE } ROWS ]
[ OID_clause ]
[ OID_index_clause ]
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[ physical_properties ]
[ table_properties ] ;

<relational_properties> ::=
{ column_definition
| { out_of_line_ constraint
| out_of_line ref constraint
| supplemental_logging props
}
[, { column_definition
| { out_of_line constraint
| out_of_line ref constraint

| supplemental logg