ORACLE

Oracle® Database
SecureFiles and Large Objects Developer's Guide

11gRelease 1 (11.1)
B28393-01

July 2007

Oracle Database SecureFiles and Large Objects Developer’s Guide, 11g Release 1 (11.1)
B28393-01

Copyright © 1996, 2007, Oracle. All rights reserved.

Primary Authors: Jack Melnick, Eric Paapanen

Contributors: Geeta Arora, J. Balaji, Kaan Baloglu, Debarun Banerjee, Subhranshu Banerjee, Thomas H.
Chang, M. Chien, D. Cruceanu, G. Edmiston, M. Fry, J. Kalogeropoulos, M. Kamani, S. Kotsovolos, Nirman
Kumar, K. Kunchithapadam, Geoff Lee, Scott Lynn, P. Manavazhi, Niloy Mukherjee, S. Muthulingam,
Dheeraj Pandey, R. Ratnam, C. Shay, A. Shehade, E. Shirk, Jan Syssauw, S. Vedala, E. Wan,]. Yang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUrOIACE ...ttt XVii
AN S Lo 1= VLT T T RRRR TR XVii
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiicc s XVii
Related DOCUITIEIESveoeeeeeiieetieeeeeeeteeeee ettt et ete et e eae e eteeaessaaeeseesateebeesneeesteesseeenseeseesnseenens Xviii
CONMVEIEIONS ..ooittieiiee ettt ettt e eeet e e e eeat e e e e e saaeeeesessaaaeeeeesaaeaseeeseaaseeeseessaaesessesnsssaessesssaeseeesansseeesessns XiX

What's New in Large ODBJECES?.............coo et XXi
LOB Features Introduced in Oracle Database 11g Release 1ccccccovuviviiinininniniiiiniiiiiins XXi

Part | Getting Started

1

Introduction to Large Objects

What Are Large Objects? ... 1-1
WHhy Use Large ODJECES?c.ccooiiiiiiieiiieieceree ettt 1-1
Using LOBs for Semi-structured Dataccocciciiiiiiiiiiiieeccecceeeeeeeeeeeeeeeeeseennes 1-2
Using LOBs for Unstructured Data...........ccoooiiiiiii e 1-2
Wy NOt USE LONGS? ..ottt se ettt 1-3
Different Kinds 0f LOBScccooiiiiiieieieeeeteet ettt st te et tesa b sa e te s e e ssaessesseessesseessesssansessenns 1-3
INEEINIAL LLOBSuieteteeeteeee ettt ettt et s bt ereeae s ra e b et ae b e ebaessesssesseereenseesaenbeeraanseeneas 1-3
External LOBs and the BFILE Datatype..........cccccocvciiiiiiiiiiiiicicciccececceeeeeeenennas 1-4
Introducing LOB LOCAtOIScccouiuiiiiiiiiiiiiiic e 1-4
Database Semantics for Internal and External LOBSccccoooiiiiiiiininiieeeeeee e 1-5
Large ObjJect DatatyPesccociviriiiiiiniiiiiiecireee ettt 1-5
Object Datatypes and LOBS ..o e 1-5
Storing and Creating Other Datatypes with LOBs............ccccccccooiiiiiiiiiiiie 1-6
VARRAYS StOTed @S LOBS.....cciiotictiiteeteeteceeettete ettt ettt ettt ettt aeebe et e v saesbeesseebeenseereenns 1-6
XMLType Columns Stored as CLOBS.........ccccccoiiviiiiiiiiiciii 1-6
LOBs Used in Oracle MUultimedia.......cocoeueieieieeieeiesesie ettt sttt sttt ese e 1-6

Working with LOBs

LOB Colummn SHAtes...........coocuiiiiiiiiiiiiiiii s 2-1
Locking a Row Containing a LOBcccooiiiiiiiiiiccc s 2-2
Opening and Closing LOBS ..o 2-2
LOB Locator and LOB Valule ... s 2-2

Using the Data Interface for LOBS.......c.cccooiiiiiiiii e 2-2

Using the LOB Locator to Access and Modify LOB Values..........cccccoooiiiiiiiniiiicee, 2-3
LOB Locators and BFILE LOCAtOTS.............cccooiuiiimiiiiiicicitccee s 2-3
Table print_mMedia ... 2-3
Initializing a LOB Column to Contain @ LOCAtOrccoueiiiriiiiiciei e 2-4
Initializing a Persistent LOB COIUMINccccocouiiiiiiiiiiiiiiicccceecicrecee e 2-4
Initializing BEILES.........coiiiiieieiee e 2-5
ACeSSING LOBSoooviiiii s 2-5
Accessing a LOB Using SQL.........cccooiiiiiiiiiiiiiiiiics s 2-5
Accessing a LOB Using the Data Interface...........cooocouoiiiiie, 2-6
Accessing a LOB Using the Locator Interface............cc.oooooiiicc 2-6
LOB Rules and Restrictionsccooiiiiiiiiiiiccc s 2-6
Rules for LOB COIUMMNS.......ccooiiiiiiiiiiiiiiciicc 2-6
Restrictions for LOB Operations ..o 2-8

3 Managing LOBs: Database Administration

Database Utilities for Loading Data into LOBscccccccooiiiiniine, 3-1
Using SQL*Loader to Load LOBS ..o 3-1
Using SQL*Loader to Populate a BFILE COlUMN.........c.coooviiiiiiiiiiiccic i 3-2
Using Oracle DataPump to Transfer LOB Data..........ccccccovviiiininiininiiiie, 3-4

Managing Temporary LOBScccocoiiiiiiiiiicc e 3-4
Managing Temporary Tablespace for Temporary LOBs.........c.ccccovviiiiiiiiinne, 3-4

Managing BFILEScccccooiiiiiii 3-5
Rules for Using Directory Objects and BFILES...........ccccccoiiiiiiiiiiiiccecceeereneeenenenes 3-5
Setting Maximum Number of Open BFEILES ... 3-5

Changing Tablespace Storage fora LOB ... 3-5

Part Il Application Design

4 Using Oracle SecureFiles

Storage of SecUureFiles ... 4-1
Parameters for CREATE TABLE With SECUREFILE LOBScccccooviiiiniiiiiiiniicccieines 4-1
BASICEFILE ...t 4-5
SECURETILE ..ottt s 4-5
CHUNK ..ot 4-5
RETENTION ..ottt s s 4-5
IMAXSIZE ...ttt 4-5
FREEPOOLS ..ottt 4-5
LOGGING/NOLOGGING/FILESYSTEM_LIKE_LOGGING........ccccceovummiviiriiniiiininnens 4-6
FREELISTS/FREELIST GROUPSccoceiiiiiiiniicierritieeseece e eesesaens 4-6
PCTVERSION/FREEPOOLScoiviiiiiiiiiiicei s 4-6
COMPRESS/NOCOMPRESS........ccoiiiiiiiiiii s 4-6
ENCRYPT/DECRYPT ...ttt 4-6
DEDUPLICATE/KEEP_DUPLICATES........ccccoviiiiiicce s 4-6
CREATE TABLE Usage Notes for Deduplication...........cccooeiiiiiiiicicieiicecceee 4-7
CREATE TABLE Examples for Deduplicationcccccccciiiiiiiiiiiiniiiicicccceceeeenas 4-7

CREATE TABLE Usage Notes for COmMPIession...........ccccovvveiiiiininininiiniiiiinens 4-8

CREATE TABLE Examples for COmMPressionooceueiiicieiiiicie et 4-8
CREATE TABLE Usage Notes for ENCryption.........ccccccccuciiieiiiiiiiieeicceeieecceeeeeeieeeeeeeenes 4-9
CREATE TABLE Examples for ENCIyption.........ccccceiiiiiiiniciiiiiiiiicceeeeecceeeennan 4-9
Parameters for ALTER TABLE With SECUREFILE LOBs.........cccccooviiiiiiiiiiciiiiee, 4-10
DEDUPLICATE/KEEP_DUPLICATES.........cccoceiiiiiiiiiiiies e 4-12
COMPRESS/INOCOMPRESS........cooviiiiiiiiiiiiciceee s 4-12
ENCRYPT/DECRYPT ..ottt 4-12
RETENTION ..ottt 4-12

ALTER TABLE Usage Notes for Deduplication............coooeueiiiiiieieiiiicieiicnecceee, 4-12
ALTER TABLE Examples for Deduplication..........cccouovieiiiiiicieiciccecce 4-12
ALTER TABLE Usage Notes for COMPIeSSION..........cceueueuiueueiririeieieirieeeieieieeeeeeeeeseeeeeeeeeseseees 4-13
ALTER TABLE Examples for COmMPIession..........ccccuieiiinieiiiiieiiieieicieeeeeeeeeeseseesenenes 4-13
ALTER TABLE Usage Notes for ENCIyption ... 4-13
ALTER TABLE Examples for ENCIYPtion.........ccocceuiicuiuiiiiiicicceeeeeeeieeeneneneneneeenenenenes 4-14
PL/SQL Packages for SECUREFILE LOBsSccccoooiiiiiiiiiiccccccencnnna 4-14
DBMS_LOB PaCKAZE......ccvuiuiiiiiiiiiiiiiiictce e 4-14
DBMS_LOB.GETOPTIONS ..ottt 4-14
DBMS_LOB.SETOPTIONS. ...ttt 4-14
DBMS_SPACE PaCKage.......ccccvuiuiiiiiiiiiiiiiiiiciici s 4-14
DBMS_SPACE.SPACE_USAGEcocoiiiiiiiiiiicictc s 4-15
Initialization Parameter ... 4-15
To LT Y e <y i1 <IN 4-15
Compatibility and Upgradingccooviiiiniiiniiiis 4-15
Migrating Columns from BasicFile LOBs to SecureFiles...............cccccoooviiinnnniiiiii, 4-16
Preventing Generation of Redo Space when Migrating to SecureFile LOBs 4-16
Online Redefinition.........cocciiiiiiiiiiiiii e 4-16
Online Redefinition Advantagesccccoceiieiiieiiieiiiec e 4-16

Online Redefinition Disadvantagescccccoeueiirieiiiicieececc 4-16

Using Online Redefinition for Migrating Tables with BasicFiles............ccccccoeeivnnnnnnnene. 4-16
Parallel Online Redefinitionccciiiiiiiiiiiiiiiic s 4-17

LOB Storage

Creating Tables That Contain LOBS ... 5-1
Initializing Persistent LOBs to NULL or EMPtYccccccceiiiiiiiiiiiiiiciccccccccceceeeeas 5-1
Setting a Persistent LOB t0 INULLccccccoviiiiiiiiiiices 5-2

Setting a Persistent LOB to EMPtYc.coovoiiiiiiiii e 5-2
INitialiZing LOBS.....c.ccoiiiiiiiiiiiiccce s 5-2
Initializing Persistent LOB Columns and Attributes to a Valuecccccoovvviiiinnnnnnenee. 5-2
Initializing BFILEs to NULL or a File Name........c.cccooooouiiiiiiii e, 5-2
Restriction on First Extent of a LOB Segment............cccccccciiiiiiiiiiiiiccccccececeees 5-3
Choosing a LOB Column Datatypeccooiiiiiiiiiiiiic s 5-3
LOBs Compared to LONG and LONG RAW TYPESccccovuriiiiiiieiiinicicieeeeeeeeeeeeenennas 5-3
Storing Varying-Width Character Data in LOBS..........cccoouoiiiiiiiiicccc e, 5-4
Implicit Character Set Conversions With LOBS ... 5-4
LOB Storage Parametersc.co.ooiiioiiiiiiicc e 5-4
Inline and Out-of-Line LOB Storage ... 5-4

vi

Defining Tablespace and Storage Characteristics for Persistent LOBscccocooviviiiiinininne. 5-5

Assigning a LOB Data Segment Name...........ccoooeiiiiiiiiiiccceccce 5-6
LOB Storage Characteristics for LOB Column or Attribute...........cccccooeiiiiiiiiiiiicens 5-6
TABLESPACE and LOB INAEX.......ccociuiiiiimiiiiiiiiiiiiccsscsssss s 5-7

Tablespace for LOB Index in Non-Partitioned Table............cccooooiiiiiiii 5-7
PCTVERSION ..ottt s 5-7
RETENTION Parameter for BASICFILE LOBSccooiiiiiiinicccccee e 5-8
RETENTION Parameter for SECUREFILE LOBs.........cccccccooiiiiiiiiiiiiiiiiccnes 5-9
CACHE / NOCACHE / CACHE READScccooiiiiiiiiiiiiinces e 5-9

CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache........................ 5-9
LOGGING / NOLOGGING Parameter for BASICFILE LOBsccccccceiiiiiiniiiiiiiine 5-10

LOBs Will Always Generate Undo for LOB Index Pages............c.cccovviiinniiiininnnne, 5-10

When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages 5-10
LOGGING/NOLOGGING for SECUREFILE LOBs.........cccccooiiiiiiiiiiiiiiicies 5-10

SECUREFILE LOBs Have Intelligence to Determine the Most Efficient Method Of
Generating Redo and Undo. 5-11

NOLOGGING is Useful for Bulk Loads or Inserts.ccccocovvviviiiniiniiniiiiinns 5-11
CHUNK L. 5-11
Choosing the Value of CHUNK ..o 5-11

Set INITIAL and NEXT to Larger than CHUNKccooooiiiiiiii 5-12
ENABLE or DISABLE STORAGE IN ROW Clauseccccocvuviviiinininiiiniiiininines 5-12
Guidelines for ENABLE or DISABLE STORAGE IN ROW ..o, 5-12
Indexing LOB COIUMIS ..ottt 5-13
Using Domain Indexing on LOB COIUMNS ..ot 5-13
Indexing LOB Columns Using a Text INdeXccccovuverrriiiniriniiccrrcrrereeeeseceenes 5-13
Function-Based Indexes 0n LOBSc.cccooiiiiiiiiiiiiiiiccc s 5-13
Extensible Indexing on LOB COIUMNScccoiuiiiiiieiiicie e 5-14
Extensible OPtMIZETcciiiiiiiiiicccecceeeee e aeees 5-14

Oracle Text Indexing Support for XMLcccocoiiiiiiiniiiicnns 5-15
Manipulating LOBs in Partitioned Tablescccccocovviiiiniiiiiiii 5-15
Partitioning a Table Containing LOB COIUMNS.........cccceeuviiiririririririrrirccerreeeieeeeeeeeeeeeeaes 5-15
Creating an Index on a Table Containing Partitioned LOB Columns..........cccccoovriiiniinnnnnn. 5-16
Moving Partitions Containing LOBS ... 5-16
Splitting Partitions Containing LOBS..........ccccevuiiiiiiiiiiiiccrcereeceee s 5-16
Merging Partitions Containing LOBS..........cccoooiuiiiiiiiii e, 5-16
LOBs in Index Organized Tablescccccciiiiiiiiiiiiiiiiccce e 5-16
Restrictions for LOBs in Partitioned Index-Organized Tablesccccocoiiiinnnnn 5-17
Updating LOBs in Nested Tables.............ccccccooiiiiniiiiiiiiiis 5-18

Advanced Design Considerations

LOB Buffering SubSYStem............cccoooiiiiiiiiiiiic s 6-1
Advantages of LOB BUferingcccccccoiviiiiiiiiiiiiiiccceece e 6-1
Guidelines for Using LOB BUfferingcccocevurriviviiinniiiirrccrreeen e 6-1
LOB Buffering Subsystem USage..........cccccevuiiiiiiiiiiiiiiiiiiiciiiiccssesss s 6-3

LOB Buffer Physical STrUCLUTEcccevviiiiiiiiiiiii e 6-3
LOB Buffering Subsystem Usage SCENATio..........cccoccueueuiuiimiueicmiereieieeereeieeneeenenerenenenenes 6-3
Flushing the LOB BUSfercccccoiiiiiiiiiiiiiccc s 6-4

Flushing the Updated LOB...........cccccoviiiiiiiiiiiicc s 6-5

Using Buffer-Enabled LOCAtOIScooiuiiiiiiiiic e 6-6
Saving Locator State to Avoid @ Reselect ... 6-6
OCI Example of LOB BUfering..........ccooooeioiiiiiiiiiiic e 6-6
Opening Persistent LOBs with the OPEN and CLOSE Interfaces..............ccccocovviiinnnnnnnnnnn. 6-9
Index Performance Benefits of Explicitly Opening a LOBccccccoevviinnnnnncnene. 6-9
Working with Explicitly Open LOB INStancesccoceueviiicieiiiicieicceec s 6-9
Read-Consistent LOCAtOTScccoiuiiiiiiiiiiiiic e 6-10
A Selected Locator Becomes a Read-Consistent Locatorcccooveviviiiniiiniiceinnen, 6-10
Example of Updating LOBs and Read-ConsiStencyccccoeueueiniricieiiinniceicciccei, 6-10
Example of Updating LOBs Through Updated Locators.............ccocorueiiiiiiniciiinicciiicc, 6-12
Example of Updating a LOB Using SQL DML and DBMS_LOB...........cccccccceeiiieiinniennne. 6-13
Example of Using One Locator to Update the Same LOB Value...........cccccocevvviiiiininnnnnnn 6-14
Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variablec.ccc.c...... 6-16
LOB Locators and Transaction Boundaries ... 6-17
Reading and Writing to a LOB Using LoCatorscccooeurueiiicieiiiiicc 6-18
Selecting the Locator Outside of the Transaction Boundarycccoooooiiiii, 6-18
Selecting the Locator Within a Transaction Boundary ... 6-19
LOB Locators Cannot Span Transactions ... 6-20
Example of Locator Not Spanning a Transaction ..., 6-20
LOBs in the Object Cache.............ccoooiiiiiiiiii s 6-21
Terabyte-Size LOB SUPPOTt........ccccocoiiiiiiiiiiiiiiiicii s 6-21
Maximum Storage Limit for Terabyte-Size LOBScccooouiiiiiiiii 6-22
Using Terabyte-Size LOBs With JDBC ..o 6-23
Using Terabyte-Size LOBs with the DBMS_LOB Package.........ccccceevoiiieieiiiciciiicice, 6-23
Using Terabyte-Size LOBs with OCI..........ccoooiiiii 6-23
Guidelines for Creating Gigabyte LOBSccccooiiiiiiiiiii 6-23
Creating a Tablespace and Table to Store Gigabyte LOBs........cccccooiiiiiiiiiiie, 6-24

Overview of Supplied LOB APIs

Programmatic Environments That Support LOBs............cccccccoiiiiiiiicce 7-1
Comparing the LOB INterfaces.............ccccoooiiiiiiiiiiiiiiiiiiccc e 7-2
Using PL/SQL (DBMS_LOB Package) to Work With LOBs.............cccooooviniiiiiiiccne, 7-5
Provide a LOB Locator Before Running the DBMS_LOB Routinecccccccevviiiiiiiiininnnns 7-5
Guidelines for Offset and Amount Parameters in DBMS_LOB Operationsccccceeueueen. 7-6
Determining Character Set ID ... 7-6
PL/SQL Functions and Procedures for LOBS.......ccooiiiieiiecee ettt 7-7
PL/SQL Functions and Procedures to Modify LOB Values...........ccccccocociiiiiiiiiiiiiicnnns 7-7
PL/SQL Functions and Procedures for Introspection of LOBs.........cccccccociiicecececceeennas 7-8
PL/SQL Operations on Temporary LOBS..........ccccooviiiiniiiiiiiiieceas 7-8
PL/SQL Read-Only Functions and Procedures for BFILEs...........cccccccceiuiiiiiiiiiiiiicennas 7-8
PL/SQL Functions and Procedures to Open and Close Internal and External LOBs 7-9
Using OCI to Work With LOBS..........ccccccoviiiiiiiiii s 7-9
Prefetching of LOB Data, Length, and Chunk Size............cccccccoiiiiiiiiiiiiiiiciins 7-9
Setting the CSID Parameter for OCI LOB APIScccccociiiiiiiiiiicccceccecceeeicieeeiennes 7-9
Fixed-Width and Varying-Width Character Set Rules for OCI............ccccoooiiiiiiiiiiiiinine, 7-9
Other OPerations ... 7-10

vii

INCLOBS I OCT ...ttt sttt sttt s se e nene 7-10

OCILobLoadFromFile2() Amount Parameter.............ccceeeeeuinireniininiineinieeneenecnneesneeerenenne 7-10
OCILobRead2() AMOUNt Parameter........ccccueveieiriiiniirieiesieieteeeeereere et ssess e aessesseseeseesannas 7-10
OCILobLocator Pointer ASSigNment...........cccoccueieiiiinieieiicieicecie e 7-11
LOB Locators in Defines and Out-Bind Variables in OCIcccoceoveineinennenncnncnenenenn 7-11
OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs.........c.cccccccevuvuence. 7-11
OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values.................... 7-11
OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE) Values....... 7-12
OCI Functions for Temporary LOBScccccoviiirirniiirncrrreee s 7-12
OCI Read-Only Functions for BFILES...........c.coooiiiiiiiiii e 7-12
OCI LOB LoCator FUNCHONSc.coctriiiiririiniiieieieieictetetetee et sttt et 7-12
OCI LOB-Buffering FUNCHONSc.cccccuiuiuiiiiiiiieieiiciceeieieiecieeeeeee e eeeaseees 7-13
OCI Functions to Open and Close Internal and External LOBs..........cccccccovviiiiininnnnee 7-13
OCT LOB EXQMIPLES ...ttt 7-13
Further Information About OCTc.ccovieiiioinnieieineteceeeeeesereereere ettt ees 7-13
Using C++ (OCCI) to Work With LOBSccccccooviiiiiiiiiiiiiccs 7-13
OCCI Classes fOr LOBS.......c.ccctreirieirieirietetertereteiestei ettt sttt se st bt sae b e b e ebeneene 7-14
CLOD CLASS...ceeuvrreeentrireieitinetetetrest ettt sttt ettt b et sn st sesnenene 7-14
BIOD ClaASS ...ttt sttt sttt sa et sttt e 7-14
BEILE ClaSS ..ueveeveieieieienteicrtee ettt sttt sttt ettt 7-15
Fixed-Width Character Set RULES........cccovueueirinirieriinneicctnrect ettt es 7-15
Varying-Width Character Set Rulescooiiiii e, 7-15
Offset and Amount Parameters for Other OCCI Operationsccccoooreeieiiicicieicccncnnn. 7-16
INCLOBS I OCCT....cveieiiiiieieeiniereieeirrereie sttt st se e sa et sasse et nenenene 7-16
Amount Parameter for OCCI LOB copy() Methods ..o, 7-16
Amount Parameter for OCCI read() Operations...........ccccceeeuiiiiiiiiiiiininiieees 7-16
Further Information About OCCT.........ccovieiiirirniereiinereicenneieeeneereetseerereesesrese e es 7-17
OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEsccccccovueuaene. 7-17
OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values................... 7-17
OCCI Methods to Read or Examine Persistent LOB and BFILE Values.......c.c.cccccccvureueucacne. 7-17
OCCI Read-Only Methods for BEILES.........ccccooiiiiiiiiiicieicii s 7-18
Other OCCI LOB MethOdS.......cooiiiiiieiiiiiiieieieieietetetet ettt sttt st stesaess e eseeseesessessensas 7-18
OCCI Methods to Open and Close Internal and External LOBs.........c.cccccccoeueiiiicicnicncnnnne. 7-18
Using C/C++ (Pro*C) to Work With LOBs...........ccccccoviiiiiiiiicccccs 7-18
First Provide an Allocated Input Locator Pointer That Represents LOB..............cccccccoceee... 7-19
Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs................. 7-19
Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values.............ccccuuee. 7-19
Pro*C/C++ Embedded SQL Statements for Introspection of LOBs..........cccccoeeviiierninicnnnn. 7-20
Pro*C/C++ Embedded SQL Statements for Temporary LOBs.........ccccccccceveiiccnniinnnes 7-20
Pro*C/C++ Embedded SQL Statements for BEILES........cccccovvieiieeiieieeeceecceeee e 7-20
Pro*C/C++ Embedded SQL Statements for LOB LOCAtOrScccoevvevveeveeciecreeiecrecreereere v 7-20
Pro*C/C++ Embedded SQL Statements for LOB Buffering............cccccccoccvcecciicccecccnenee. 7-20
Pro*C/C++ Embedded SQL Statements to Open and Close LOBs..........cccccviiiiniiiniinnnne. 7-21
Using COBOL (Pro*COBOL) to Work With LOBScccccciviniiiiiiiiiicncc, 7-21
First Provide an Allocated Input Locator Pointer That Represents LOB............cccccccceueuneeee. 7-21
Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs................ 7-21
Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values 7-22

viii

Pro*COBOL Embedded SQL Statements for Introspection of LOBs..........ccccccecevviiininnnne. 7-22

Pro*COBOL Embedded SQL Statements for Temporary LOBs.........cccccooireiiiiiciiiiicnen, 7-22
Pro*COBOL Embedded SQL Statements for BFILES........c.cccooiiiinecieieeeecteceeeveeeeee e 7-23
Pro*COBOL Embedded SQL Statements for LOB LOCAtOrScceeeeevereeciereieienieeieseeeeeeeenne. 7-23
Pro*COBOL Embedded SQL Statements for LOB Buffering.............cccoooooiiiiinna, 7-23
Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and BFILEs 7-23
Using COM (Oracle Objects for OLE) to Work With LOBs............cccccocoviiiiiiniiii 7-23
0040 Syntax Reference..........ooouiiiiiiiic e 7-24
OraBlob, OraClob, and OraBfile Object Interfaces Encapsulate Locators..........c.cccccovereeeacee. 7-24
OraBlob and OraClob Objects Are Retrieved as Part of Dynaset...........ccoooeueviiieieinnne, 7-24
Use the Clone Method to Retain Locator Independent of the Dynaset Move................ 7-24
Example of OraBlob and OraBfilec.ccccccoiiiiiiiiccreree s 7-24
0040 Methods and Properties to Access Data Stored in LOBs...........cccccoovviviiininnininninne 7-25
0040 Methods to Modify BLOB, CLOB, and NCLOB Values..........ccccccceceviiiininiinninninnee, 7-26
0040 Methods to Read or Examine Internal and External LOB Values...........c.ccccovvunnnee. 7-26
0040 Methods to Open and Close External LOBs (BFILES).........ccccccccoieiniiiiinniiiiiinnes 7-27
0040 Methods for Persistent LOB Bufferingc.c.cooooiiiiiice, 7-27
0040 Properties for Operating on LOBS.........cccccoiiiiiiiiceeeeeeeeeeeeeeeeeeeeeenees 7-27
0040 Read-Only Methods for External Lobs (BFILES)..........c.cccccoeiiiiiiiiiineiieiccienee, 7-27
0040 Properties for Operating on External LOBs (BFILES)..........ccccoceioiiiiiiiineicccie 7-28
Using Java (JDBC) to Work With LOBScccccoiiiiiiiiiccecceee s 7-28
Modifying Internal Persistent LOBs Using Java........ccccooioruiieiiinieiiiicieecccce, 7-28
Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java..........cccccovniinne. 7-29
BLOB, CLOB, and BFILE CLaSSESccovuiiitiieiiicteeeeeeetie et eteeeteeeteeeaeeeteseaeeeneseveseseeenseenns 7-29
Calling DBMS_LOB Package from Java (JDBC) ... 7-29
Referencing LOBs Using Java (JDBC)c.c.coovoiiiiiiiiiicc 7-29
Using OracleResultSet: BLOB and CLOB Objects Retrieved............cccociricciiiccnnne 7-29
JDBC Syntax References and Further Information ..o, 7-29
JDBC Methods for Operating on LOBs........c.cccoiiiiiiiiic s 7-30
JDBC oracle.sql. BLOB Methods to Modify BLOB Values.........c.cccccoeeiiiiiniiccicccnene 7-30
JDBC oracle.sql. BLOB Methods to Read or Examine BLOB Values.........cccccccoviiiiiinnnnn. 7-31
JDBC oracle.sql. BLOB Methods and Properties for BLOB Buffering...........ccccccoeeviniiinnnee 7-31
JDBC oracle.sql.CLOB Methods to Modify CLOB Valuescccoeeiiniininiiniinccicccane. 7-31
JDBC oracle.sql. CLOB Methods to Read or Examine CLOB Value........cccccooceeviiiiiiiinnnnn. 7-31
JDBC oracle.sql.CLOB Methods and Properties for CLOB Bufferingcccccoevveinnnnnnnes 7-32
JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values 7-32
JDBC oracle.sql.BFILE Methods and Properties for BFILE Buffering...........cccocovovviviinnnne 7-32
JDBC Temporary LOB APIS ... 7-33
JDBC: Opening and Closing LOBSc.ccccccciiiiiiiiiiricerreereeereees e 7-33
JDBC: Opening and Closing BLOBS............ccccoiiiiiiniii 7-33
Opening the BLOB Using JDBC........cccccccoeiiiiniiiiiniiiiiiiiciceseesseseees 7-34
Checking If the BLOB Is Open Using JDBCccccccccevviniiinrnnnirrrrrsreseeeeseseeeaenes 7-34
Closing the BLOB Using JDBCcccccociiiiiiiniiiiiicece s 7-34
JDBC: Opening and Closing CLOBS..........cccccceiiiiiininiicnc s 7-35
Opening the CLOB UsIing JDBCcccoiiiiiiiiicireerceeeeeeeee e 7-35
Checking If the CLOB Is Open Using JDBC...........cccocovviiiiiiiiiiiiccccccecees 7-35
Closing the CLOB Using JDBCcccccoviiiiiiiiiiiiiiiininiicnssiisinesisesse s 7-35

JDBC: Opening and Closing BFILEScccccooviiiiiiiiiice, 7-36

Opening BEILESccccooiiiiiiiiiiiiiiii s 7-36
Checking If the BFILE IS OPen......c.cccociiiiiiiiiiiiiciciciecicieeeieeeieeeeee e eaenes 7-36
Closing the BEILEcooiririiiiicici it 7-37

Usage Example (OpenCloseLob.java)..........ccocciiiiiiiiiiiicc 7-37
Truncating LOBs Using JDBCccccociiiiiiiiiiiiiices s 7-38
JDBC: Truncating BLOBScoooiiiiii e 7-39

JDBC: Truncating CLOBS.........ccooiiiiiiicccc s 7-39

JDBC BLOB Streaming APIScccccoviiiiiiiiiiiiii s 7-39
JDBC CLOB Streaming APISc.coooiriiiiii e 7-40
BFILE Streaming APIS..........oooiiiiiiiiiiitiicit s 7-41
JDBC BFILE Streaming Example (NewStreamLob.java)ccccoceeiiiivvninnnnnnene. 7-42

JDBC and EMpPty LOBS ..o 7-45
Oracle Provider for OLE DB (O1raOLEDB)..........cccccocoiiiiiiiiiccccce 7-45
Overview of Oracle Data Provider for NET (ODP.NET)cccocooviimiiiicncecceeneenenenne 7-46

Performance Guidelines

LOB Performance GUIAEIINES............oocvvviriirieieeieieeeeeseee ettt sse s s se s seessessaensenseenes 8-1
CRUNK SIZE ..ottt sttt sttt e st e s st et e esa e aessae b e esaesseesaessaessessaassenseessensesssesseesss 8-1
Performance Guidelines for Small BASICFILE LOBScccocoeviiiieiiiiieececeeeeeeeee e 8-1
General Performance Guidelines for BASICFILE LOBS.......cccccooieiiniinenieieieieieeee e 8-1
Temporary LOB Performance GUidelines...........coooeueiiiiiiiiiiiiiiciiicc 8-2
Performance Considerations for SQL Semantics and LOBSc.ccccoeieieviirieviecieecereeeeee 8-4

Moving Data to LOBs in a Threaded Environment................ccccccccooiniin, 8-4

LOB ACCESS SEAtISHICS ...c.uiiuiiiieiiiiieieciieteettete sttt ettt e st et e e e et e s st e ssessaessesssessesssasseessensanssenseenes 8-5
Example of Retrieving LOB Access Statistics..........cccoiiiiiiiiiiiiiiiiiicccens 8-6

Partlll SQL Access to LOBs

9

10

DDL and DML Statements with LOBs

Creating a Table Containing One or More LOB Columns.............ccccccccviiiiiiiiininiiciiicciiccne 9-1
Creating a Nested Table Containing a LOB ... 9-3
Inserting a Row by Selecting a LOB From Another Table................ccccccoooniiniii 9-4
Inserting a LOB Value Into a Table.............cccccccoiiiiiiiiiiiie s 9-5
Inserting a Row by Initializing a LOB Locator Bind Variableccccccoooinininn. 9-6
PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable...........c.ccccccoooeveiiie.. 9-7
C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable............ccccccceevivininnnnee. 9-7
COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable............ 9-8
C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable.............. 9-9
COM (O0O40): Inserting a Row by Initializing a LOB Locator Bind Variable.......................... 9-9
Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable............................ 9-10
Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()c.ccccccevnteininnceciernnecierenneneenaens 9-11
Updating a Row by Selecting a LOB From Another Table ... 9-12

SQL Semantics and LOBs
Using LOBS in SQL.........cooiiiiiiiii s 10-1

11

12

SQL Functions and Operators Supported for Use with LOBs ..., 10-2

UNICODE SUPPOLL ..ottt 10-5
Codepoint SEMANTICSc.ciiuiuiuiiieiiicicciceeee ettt eees 10-5
Return Values for SQL Semantics 0n LOBS.........cccoieiieieniieeeiecieeceeeetete st 10-6
LENGTH Return Value for LOBScccoiiiiiiiiiiiiiccietc s 10-6
Implicit Conversion of LOB Datatypes in SQLccccccocoiiiininiiniice, 10-6
Implicit Conversion Between CLOB and NCLOB Datatypes in SQLccccccceeviiniinnnne. 10-7
Unsupported Use of LOBs in SQL..........ccccccooiiiiiiiiininiiiiiiis 10-8
VARCHAR2 and RAW Semantics for LOBscccocoiiiniiiniiies 10-9
LOBs Returned from SQL FUNCLIONSccoecvieiiiiieiieiieiieeeie ettt ste e s e ssesae e essesnnes 10-9
ISNULL and IS [NOT] NULL Usage with VARCHAR2s and CLOBs.........ccccccoeiirininnnnn. 10-10
WHERE Clause Usage With LOBS.........ccoiiiiiiiiiiicccccccccccceeeeieee e 10-10
Built-in Functions for Remote LOBs and BFILEsccccccoooiiinniinniices 10-11
PL/SQL Semantics for LOBs
PL/SQL Statements and Variablescccccvevuieiiiiriiiieeceeeeeete ettt ns 11-1
Implicit Conversions Between CLOB and VARCHARR2.............cccccoiiiiiiiiiiiiices 11-1
Explicit Conversion FUNCIONS............cocccooiiriiiiiicncececeeree e 11-2
VARCHAR2 and CLOB in PL/SQL Built-In FUNCHONScceevieeiiiciecieecie et 11-3
PL/SQL CLOB Comparison Rules ..o 11-4
CLOBs Follow the VARCHAR? Collating SeqUenCe...........cccoevueerururereririrerrrerrereeeeeeeeesenes 11-5
PL/SQL Functions for Remote LOBs and BFILES.............c.cccoocvriiiiinieieeeieceee e e 11-5
Restrictions on Remote User-Defined FUNCtions. ..., 11-5
Remote Functions in PL/SQL, OCI, and JDBCcccceciriirieieieieieieeresreseieie e eeseeenenas 11-5
Migrating Columns from LONGs to LOBs

Benefits of Migrating LONG Columns to LOB Columns.............ccccovviiinnininniiine, 12-1
Preconditions for Migrating LONG Columns to LOB Columns...........cccccoeeiiiniiiiininenennns 12-2
Dropping a Domain Index on a LONG Column Before Converting to a LOB...................... 12-2
Preventing Generation of Redo Space on Tables Converted to LOB Datatypes 12-2
Using utldtree.sql to Determine Where Your Application Needs Change...............ccccccuennnee. 12-3
Converting Tables from LONG to LOB Datatypes.............ccccccooeiiiiiiiiiiiiiiiiiicecccenennes 12-3
Using ALTER TABLE to Convert LONG Columns to LOB Columnsc.cccccccoeucucueicucnennne. 12-3
Migration ISSUESccouriiiiiiiiiiiciciciicic s 12-4
Copying a LONG to a LOB Column Using the TO_LOB Operator...........cccccocevuverinininninnnnes 12-4
Online Redefinition of Tables with LONG Columns..........ccccceeueirriirrnrnnnrrncerrereeenes 12-5
Migrating Applications from LONGS to LOBScccccoooviiiiiiiiiii 12-7
LOB Columns Are Not Allowed in Clustered Tables...........ccccccccueiirniiiiinnniiiiiicne 12-8
LOB Columns Are Not Allowed in UPDATE OF Triggerscccccceovueeuiueurrereeienirrceeeeereenes 12-8
Indexes on Columns Converted from LONG to LOB Datatypesc.cccoovreiiiiiiiiieininnnen, 12-8
Empty LOBs Compared to NULL and Zero Length LONGS..........ccccccccvuiiiiiiiiiiciiicine 12-9
Overloading with Anchored TYPes.......cccciiiiiiiiiicccceece s 12-9
Some Implicit Conversions Are Not Supported for LOB Datatypes...........ccccoevvvvinininininne. 12-10

PartIlV Using LOB APIs

xi

13 Operations Specific to Persistent and Temporary LOBs

Persistent LOB Operations.............ocoooioiiiiiiiiicccc s 13-1
Inserting @ LOB into @ Tablecccoooiiiiiiiiiiicccccccceee s 13-1
Selecting a LOB from a Tablecccccoviiiiiiiiiiiiiiicccc s 13-1

Temporary LOB Operations ..o 13-2
Creating and Freeing a Temporary LOBccccccciiiiiiiiiicccceceeeeeeeneeeeeeeee s 13-2

Creating Persistent and Temporary LOBs in PL/SQL ..o 13-3

Freeing Temporary LOBs in OCl............cccooiiiiiiiiiiccc s 13-4

14 Data Interface for Persistent LOBs

Overview of the Data Interface for Persistent LOBscccccccoiiiiiiiiiiiiiiccns 14-1
Benefits of Using the Data Interface for Persistent LOBsccccoviiiiniiniiii 14-2
Using the Data Interface for Persistent LOBs in PL/SQL.............ccccccoooviiiniininiiii 14-2
Guidelines for Accessing LOB Columns Using the Data Interface in SQL and PL/SQL..... 14-3
Implicit Assignment and Parameter Passing...........cccccoeveeeiiciiicieeeeeeeeeeeeeenenenenens 14-4
Passing CLOBs to SQL and PL/SQL Built-In Functions............ccccceeeiiiinninniiiicnen, 14-5
Explicit Conversion FUNCHONSc.coociiiiiii 14-5
Calling PL/SQL and C Procedures from SQL.......c.cccccoeiuiiiiiiiiiieicceeeeeeiceeeeeeeeenes 14-5
Calling PL/SQL and C Procedures from PL/SQL.........ccccooiiiiiiiiiiiiieiceceenens 14-5
Binds of All Sizes in INSERT and UPDATE Operations..........ccccccococeieiniinieieieiccieeeccien, 14-6
4000 Byte Limit on Results of @ SQL OPeratorcccoeeeieeiniiiniciiiiicceeecceeeeenenes 14-6
Example of 4000 Byte Result Limit of a SQL Operator...........cccoceevviviiiiiiiniininiienn, 14-6
Restrictions on Binds of More Than 4000 Bytesc.ccooiiiiiiiiice, 14-7
Parallel DML Support for LOBS.......cccciiiiiiiccceeeeieeieiee et senenes 14-7
Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and UPDATE 14-7
Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT Operations........ 14-8
Using the Data Interface for LOBs in Assignments and Parameter Passingccccc.c...... 14-8
Using the Data Interface for LOBs with PL/SQL Built-In Functions..........ccccceviiiniiinnnnn. 14-9
Using the Data Interface for Persistent LOBs in OCIcccoviiiiiiiiiicnn, 14-10
Binding LOB Datatypes in OCL........cccccccciiiiiiiiiiiiiccrreeerieeeieee s 14-10
Defining LOB Datatypes in OCIccccoiiiiiiiiiiiiic e 14-10
Using Multibyte Character Sets in OCI with the Data Interface for LOBs............ccccceueece. 14-11
Using OCI Functions to Perform INSERT or UPDATE on LOB Columns..........c.cccccvueue.ee. 14-11
Simple INSERTSs or UPDATESs in One Piece..........ccccovvviiiiiiiiiiiiiiins 14-11

Using Piecewise INSERTs and UPDATESs with Polling..........ccccoooeeviiininiiiiiicnnne 14-11
Piecewise INSERTs and UPDATEs with Callback.........ccccoeviiiiiiiiiiiiiins 14-11

Array INSERT and UPDATE Operations...........ccoceueiicieieiiiicieiceieeecie i 14-12

Using the Data Interface to Fetch LOB Data in OCIccccooiiiiiiiinicceccceccee 14-12
Simple Fetch in ONe PIeCe........covviiiiiiiir e 14-12
Piecewise Fetch with POILNGcoviiiiiiiiii 14-12
Piecewise With CallDack........cccoeueuiiiiiiiciiiniiciiiecccrec ettt 14-12

ATTAY FEIC .o 14-13
PL/SQL and C Binds from OCToouiiiiieiecieeiee ettt ettt eveesveesaeeeveeseseeevsenaneens 14-13
Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner...........c.ccceeeviriunnnes 14-13

Calling PL/SQL Out-binds in the "call f00(:1);" Mannercccceevviiirncccnccncnes 14-13
Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE................... 14-13
Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs...........cccccceuuu..e. 14-14

Xii

15

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner.........c.c.cccocovrueriirnnnen. 14-14

Calling PL/SQL Out-binds in the "call foo(:1);" Mannercccoocevviiiiiiiiiniinennes 14-14
Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytesc.ccccceveeee. 14-15
Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling................... 14-15
Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback................ 14-16
Binding LONG Data to LOB Columns Using an Array INSERTcccccoovvnnnnnnnne. 14-17
Selecting a LOB Column into a LONG Buffer Using a Simple Fetch.........c...cccoooooei. 14-18
Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling........... 14-19
Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback 14-20
Selecting a LOB Column into a LONG Buffer Using an Array Fetch ..o 14-21

Using the Data Interface for Persistent LOBs in Javaccccoooiiiiiiiiiiicces 14-22
Using the Data Interface with Remote LOBs..........cccccooiiiiiiiii 14-22
NON-SUPPOrted SYNLAX......ceviveiiiiiiiiiciciciciicc 14-22
Remote Data Interface Example in PL/SQLcccccocoiiiiiiiiiiiiiicne 14-23
Remote Data Interface Example in OCT........ccccccoiuiiiiiiiiiiiiicreeeeeeeeeeeeeeeeeeeesee s 14-23
Remote Data Interface Examples in JDBCcccccooviiiiiiiiii 14-24

Using LOB APIs

Supported ENVIronments. ... 15-2
Appending One LOB t0 ANother ..o 15-4
Determining Character Set FOrm ..o 15-5
Determining Character Set IDccccccooiiiiiiiiiiic s 15-5
Loading a LOB with Data from a BFILEccccococoiiiiiiiccca 15-6
Loading a BLOB with Data from a BFILEccccccoiiiiiie 15-7
Loading a CLOB or NCLOB with Data from a BFILE.............ccccccoooiiiiiiiiiiicce 15-9
PL/SQL: Loading Character Data from a BFILE into a LOB..........cccccccoviiiiiiiiine. 15-10
PL/SQL: Loading Segments of Character Data into Different LOBs..........ccccoeoeiiiicnnee 15-10
Determining Whether a LOB is Open...........ccccooviiiiiiiiiiiiicccceinnn 15-10
Java (JDBC): Checking If a LOB Is Openccooooiiiiiiniiieiiccci s 15-11
Checking If @ CLOB IS OPEIN ... 15-11
Checking If @ BLOB IS Open........cccoioiiiiiiiiiiiciicctci s 15-11
Displaying LOB Dataccccooviiiiiiiiiiiiii e 15-11
Reading Data from a LOB..........cccccoiiiiii e 15-13
LOB Array Read.........coooiiiiiiii sttt 15-14
Reading a Portion of a LOB (SUBSTR). ... 15-20
Comparing All or Part of TWo LOBS ... 15-21
Patterns: Checking for Patterns in a LOB Using INSTRcccccocoiiiiiiiiiiiciens 15-22
Length: Determining the Length of a LOB.............ccccocoiiiiiiiice 15-22
Copying All or Part of One LOB to Another LOB............ccocoiiiniiiiis 15-23
Copying a LOB LOCAtOr ...ttt 15-24
Equality: Checking If One LOB Locator Is Equal to Anotherccccocceieiniiinnnncninnnnes 15-25
Determining Whether LOB Locator Is Initialized.............ccccccccooiiiiiiis 15-25
Appending to @a LOB ... s 15-26
Writing Data to @ LOB ... 15-27
LOB Array WIGtec.oooiiiiiiiiiii s 15-29
Trimming LOB Data.........ccccccooiiiiiiiii s 15-35
Erasing Part of a LOB...........cococooiiiiiii e 15-36

xiii

16

Xiv

Enabling LOB BUffering ...t 15-37

Flushing the Buffer ... 15-37
Disabling LOB Buffering ... 15-38
Determining Whether a LOB instance Is Temporary.............cccocooviiiiiiniiiiiccccnes 15-39

Java (JDBC): Determining Whether a BLOB Is Temporarycccccoceueimeieiniiccieiiicceaes 15-40
Converting a BLOB t0 a CLOBccccooiiiiii s 15-40
Converting a CLOB t0 @a BLOB ... 15-41

LOB APIs for BFILE Operations

Supported Environments for BFILE APIscccoooooiiiiiicnne 16-2
Accessing BFILES...........cccoooiiiiiiiiic s 16-3
Directory ODJECtS.o 16-3
Initializing @ BFILE LOCAtOT «....c.coiuiiiiiiiici 16-3
How to Associate Operating System Files with a BFILEc.cccocooooiii, 16-4
BFILENAME and Initialization............ccoooiiiiiiiiccccccccccncs s 16-5
Characteristics of the BFILE Datatype ..o 16-5
DIRECTORY Name Specificationcccciiiiimiiiiiiiiiiiiiicceee s 16-5

On Windows PIatfOrms...........ccociiiiiiiiiiiic s 16-6

BEILE S@CULILYo.oooviiiiiiiiiiiiiiiiiicc ettt nne 16-6
Ownership and Privileges.........cccooiiiiiiiiii 16-6
Read Permission on a DIRECTORY ODject........ccccccciuiuiuiiiiiiiiiiiicicecieecceeeeeeieeeieeeeeeeeeenes 16-6
SQL DDL for BFILE S@CUTILYvvuiiiieiiiicieieieicie ettt 16-7
SQL DML for BFILE SECUTILYcvvviiiiiiiiiiiiiiiiiiciciiciccc s 16-7
Catalog Views on Directories ... 16-7
Guidelines for DIRECTORY USAGecceriiumieiiiiiieieiieicieeci s 16-8
BFILEs in Shared Server (Multithreaded Server) Mode........c..ccceevveneineenecnenccnccneenne 16-8
External LOB (BFILE) LOCAtOTS ...ccveoviruieieiieieiieieeteteeeeete sttt st te e e sneese e ssesnees 16-9
When Two Rows in a BFILE Table Refer to the Same Filecccccoviiviiiniinn 16-9

BFILE Locator Variable ... 16-9
Guidelines for BEILES.........cccccooiiiiiiiiiiici s 16-9
Loading a LOB with BFILE Data............ccocoooiiiiiiiiiccctt e 16-10
Opening a BFILE with OPEN ... 16-11
Opening a BFILE with FILEOPEN............ccccocooiiiiiiiiicc e 16-12
Determining Whether a BFILE Is Open Using ISOPENcccooiiiiiiiiiniiccnne, 16-13
Determining Whether a BFILE Is Open with FILEISOPENcccccociiiiiiiiiiiiccne. 16-14
Displaying BFILE Dataccccccoiiiiiiiiiiiiii e 16-15
Reading Data from a BFILE...............ccoooiiiiiicccrcsst e 16-15
Reading a Portion of BFILE Data Using SUBSTRccccccocooiiiiiiiiccccccccnes 16-17
Comparing All or Parts of Two BFILES ... 16-17
Checking If a Pattern Exists in a BFILE Using INSTR............ccccoooiiiiiiccne, 16-18
Determining Whether a BFILE EXiSts..........ccccooiiiiiiiiiiiiiiiicccccccce e 16-19
Getting the Length of a BFILEccccooiiiiiiiiccc e 16-19
Assigning a BEILE LOCAtOXcccoovviiiiiiiiiii s 16-20
Getting Directory Object Name and File Name of a BFILE............cccoocociiinniiiinnniinee. 16-21
Updating a BFILE by Initializing a BFILE Locatorcccccccooiviniinniiie 16-21
Closing a BFILE with FILECLOSE............cccooooviiiiiiii s 16-22
Closing a BFILE with CLOSE ... 16-23

Closing All Open BFILEs with FILECLOSEALLcccococooiiiiiicceenccninan 16-24
Inserting a Row Containing a BFILE................c.c..cocooooiiiiince 16-25

A LOB Demonstration Files

PL/SQL LOB Demonstration FIles..........cccoiiiiiiiiiiiiieeeeeeeeee ettt A-1
OCI LOB Demonstration FIlEScccociviiniriiirieiesieeieeeiee et ae st sae e essse s esnsensenns A-3
COM 0040 LOB Demonstration FIles...........cccoceveiiriiiinieiieiesieie ettt see e s s ssaeeeens A-4
Java LOB Demonstration FIlesc.c.ccocoioiiiiriniinninicieineesteeseeneese et A-6
Glossary
Index

XV

XVi

Audience

Preface

This guide describes database features that support applications using Large Object
(LOB) datatypes. The information in this guide applies to all platforms and does not
include system-specific information.

Oracle Database SecureFiles and Large Objects Developer’s Guide is intended for
programmers developing new applications that use LOBs, as well as those who have
already implemented this technology and now want to take advantage of new
features.

The increasing importance of multimedia data as well as unstructured data has led to
this topic being presented as an independent volume within the Oracle Application
Developers documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer’s Guide contains information that
describes the features and functionality of Oracle Database 10g.

What You Need To Use LOBs

The database includes all of the resources you need to use LOBs in your application;
however, there are some restrictions on how you can use LOBs as described in the
following:

See Also:

= "LOB Rules and Restrictions" on page 2-6

= "Restrictions for LOBs in Partitioned Index-Organized Tables"
on page 5-17

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

xvii

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services

within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

xviii

For more information, see the following manuals:

» Oracle Database PL/SQL Packages and Types Reference: Use this book to learn PL/SQL
and to get a complete description of this high-level programming language, which
is a procedural extension to SQL.

» Oracle Call Interface Programmer’s Guide: Describes Oracle Call Interface (OCI). You
can use OCI to build third-generation language (3GL) applications in C or C++
that access Oracle Server.

» Oracle C++ Call Interface Programmer’s Guide

» Pro*C/C++ Programmer’s Guide: Oracle also provides the Pro* series of
precompilers, which allow you to embed SQL and PL/SQL in your application
programs.

» Pro*COBOL Programmer’s Guide: The Pro*COBOL precompiler enables you to
embed SQL and PL/SQL in your COBOL programs for access to Oracle Server.

» Programmer’s Guide to the Oracle Precompilers and Pro*Fortran Supplement to the
Oracle Precompilers Guide: Use these manuals for Fortran precompiler
programming to access Oracle Server.

= Java: Oracle Database offers the opportunity of working with Java in the database.
The Oracle Java documentation set includes the following:

» Oracle Database JDBC Developer’s Guide and Reference
s Oracle Database Java Developer’s Guide
» Oracle Database JPublisher User’s Guide

Oracle Database error message documentation is only available in HTML. If you only
have access to the Oracle Documentation CD, you can browse the error messages by
range. Once you find the specific range, use your browser "find in page" feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Multimedia

You can access the Oracle development environment for multimedia technology in a
number of different ways.

s Tobuild self-contained applications that integrate with the database, you can learn
about how to use the Oracle extensibility framework in Oracle Database Data
Cartridge Developer’s Guide

s To use Oracle Multimedia applications, refer to the following;:
» Oracle Multimedia Reference.
» Oracle Multimedia User’s Guide

Basic References

= For SQL information, see the Oracle Database SQL Language Reference and Oracle
Database Administrator’s Guide

s For information about using LOBs with Oracle XML DB, refer to Oracle XML DB
Developer’s Guide

s For information about Oracle XML SQL with LOB data, refer to Oracle Database
Advanced Replication

= For basic Oracle concepts, see Oracle Database Concepts.

= For information on using Oracle Data Pump, SQL*Loader, and other database
utilities, see Oracle Database Utilities

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at:

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at:

http://www.oracle.com/technology/documentation/

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xix

XX

What's New in Large Objects?

This section describes the new features in the following release:

LOB Features Introduced in Oracle Database 11g Release 1

LOB Features Introduced in Oracle Database 11g Release 1

Oracle SecureFiles adds the following capabilities:

Intelligent LOB compression enables users to explicitly compress data to save disk
space. This feature can only be used with the new LOB implementation in this
release (storage parameter SECUREFILE).

Intelligent LOB encryption introduces a new encryption facility for LOBs. The
encrypted data in now stored in-place and is available for random reads and
writes. This feature can only be used with the new LOB implementation in this
release (storage parameter SECUREFILE).

Deduplication enables Oracle Database to automatically detect duplicate LOB data
and conserve space by only storing one copy (storage parameter SECUREFILE).

LOB data path optimization includes logical cache above storage layer, read
prefetching, new caching modes, vectored IO, and so on.

New LOB APIs. Existing OCI functions work on the new SECUREFILE LOBs.
New OCI functions and PL/SQL packages are also added. Parameters of the
CREATE TABLE, ALTER TABLE, and SQL commands are new or changed for LOBs.
High performance space management includes changes to LOB SQL statements
and DBMS_ SPACE package changes.

See Also: Chapter 4, "Using Oracle SecureFiles"

OCI LOB prefetching gives you improved performance.

See Also: "Prefetching of LOB Data, Length, and Chunk Size" on page 7-9

XXi

XXii

Part |

Getting Started

This part gives an introduction to Large Objects and introduces general concepts you
need to be familiar with to use LOBs in your application.

This part contains these chapters:

s Chapter 1, "Introduction to Large Objects"

» Chapter 2, "Working with LOBs"

» Chapter 3, "Managing LOBs: Database Administration"

1

Introduction to Large Objects

This chapter introduces Large Objects (LOBs) and discusses how LOB datatypes are
used in application development. This chapter contains these topics:

What Are Large Objects?

Why Use Large Objects?

Why Not Use LONGs?

Different Kinds of LOBs

Introducing LOB Locators

Database Semantics for Internal and External LOBs
Large Object Datatypes

Object Datatypes and LOBs

Storing and Creating Other Datatypes with LOBs

What Are Large Objects?

Large Objects (LOBs) are a set of datatypes that are designed to hold large amounts of
data. A LOB can hold up to a maximum size ranging from 8 terabytes to 128 terabytes
depending on how your database is configured. Storing data in LOBs enables you to
access and manipulate the data efficiently in your application.

Why Use Large Objects?

This section introduces different types of data that you encounter when developing
applications and discusses which kinds of data are suitable for large objects.

In the world today, applications must deal with the following kinds of data:

Simple structured data.

This data can be organized into simple tables that are structured based on business
rules.

Complex structured data

This kind of data is complex in nature and is suited for the object-relational
features of the Oracle database such as collections, references, and user-defined

types.

Semi-structured data

Introduction to Large Objects 1-1

Why Use Large Objects?

This kind of data has a logical structure that is not typically interpreted by the
database. For example, an XML document that is processed by your application or
an external service, can be thought of as semi-structured data. The database
provides technologies such as Oracle XML DB, Advanced Queuing, and Messages
to help your application work with semi-structured data.

s Unstructured data

This kind of data is not broken down into smaller logical structures and is not
typically interpreted by the database or your application. A photographic image
stored as a binary file is an example of unstructured data.

Large objects are suitable for these last two kinds of data: semi-structured data and
unstructured data. Large objects features allow you to store these kinds of data in the
database as well as in operating system files that are accessed from the database.

With the growth of the internet and content-rich applications, it has become
imperative that the database support a datatype that:

s Can store unstructured and semi-structured data in an efficient manner.
= Is optimized for large amounts of data.

= Provides a uniform way of accessing data stored within the database or outside
the database.

Using LOBs for Semi-structured Data

Examples of semi-structured data include document files such as XML documents or
word processor files. These kinds of documents contain data in a logical structure that
is processed or interpreted by an application, and is not broken down into smaller
logical units when stored in the database.

Applications involving semi-structured data typically use large amounts of character
data. The Character Large Object (CLOB) and National Character Large Object (NCLOB)
datatypes are ideal for storing and manipulating this kind of data.

Binary File objects (BFILE datatypes) can also store character data. You can use
BFILEs to load read-only data from operating system files into CLOB or NCLOB
instances that you then manipulate in your application.

Using LOBs for Unstructured Data

Unstructured data cannot be decomposed into standard components. For example,
data about an employee can be structured into a name, which is stored as a string; an
identifier, such as an ID number, a salary and so on. A photograph, on the other hand,
consists of a long stream of 1s and 0s. These bits are used to switch pixels on or off so
that you can see the picture on a display, but are not broken down into any finer
structure for database storage.

Also, unstructured data such as text, graphic images, still video clips, full motion
video, and sound waveforms tends to be large in size. A typical employee record may
be a few hundred bytes, while even small amounts of multimedia data can be
thousands of times larger.

SQL datatypes that are ideal for large amounts of unstructured binary data include the
BLOB datatype (Binary Large Object) and the BFILE datatype (Binary File object).

1-2 Oracle Database SecureFiles and Large Objects Developer's Guide

Different Kinds of LOBs

Why Not Use LONGs?

The database supports LONG as well as LOB datatypes. When possible, change your
existing applications to use LOBs instead of LONGs because of the added benefits that
LOBs provide. LONG-to-LOB migration enables you to easily migrate your existing
applications that access LONG columns, to use LOB columns.

See Also: Chapter 12, "Migrating Columns from LONGs to LOBs"

Applications developed for use with Oracle Database version 7 and earlier, used the
LONG or LONG RAW data type to store large amounts of unstructured data.

With the Oracle8i and later versions of the database, using LOB datatypes is
recommended for storing large amounts of structured and semi-structured data. LOB
datatypes have several advantages over LONG and LONG RAW types including:

= LOB Capacity: LOBs can store much larger amounts of data. LOBs can store 4GB
of data or more depending on you system configuration. LONG and LONG RAW
types are limited to 2GB of data.

= Number of LOB columns in a table: A table can have multiple LOB columns. LOB
columns in a table can be of any LOB type. In Oracle Database Release 7.3 and
higher, tables are limited to a single LONG or LONG RAW column.

= Random piece-wise access: LOBs support random access to data, but LONGs
support only sequential access.

= LOBs can also be object attributes.

Different Kinds of LOBs

Internal LOBs

Different kinds of LOBs can be stored in the database or in external files.

Note: LOBs in the database are sometimes also referred to as
internal LOBs or internal persistent LOBs.

LOBs in the database are stored inside database tablespaces in a way that optimizes
space and provides efficient access. The following SQL datatypes are supported for
declaring internal LOBs: BLOB, CLOB, and NCLOB. Details on these datatypes are given
in "Large Object Datatypes" on page 1-5.

Persistent and Temporary LOBs

Internal LOBs (LOBs in the database) can be either persistent or temporary. A
persistent LOB is a LOB instance that exists in a table row in the database. A
temporary LOB instance is created when you instantiate a LOB only within the scope
of your local application.

A temporary instance becomes a persistent instance when you insert the instance into
a table row.

Persistent LOBs use copy semantics and participate in database transactions. You can
recover persistent LOBs in the event of transaction or media failure, and any changes
to a persistent LOB value can be committed or rolled back. In other words, all the
Atomicity Consistency Isolation Durability (ACID) properties that pertain to using
database objects pertain to using persistent LOBs.

Introduction to Large Objects 1-3

Introducing LOB Locators

External LOBs and the BFILE Datatype

External LOBs are data objects stored in operating system files, outside the database
tablespaces. The database accesses external LOBs using the SQL datatype BFILE. The
BFILE datatype is the only external LOB datatype.

BFILEs are read-only datatypes. The database allows read-only byte stream access to
data stored in BFILEs. You cannot write to a BFILE from within your application.

The database uses reference semantics with BFILE columns. Data stored in a table
column of type BFILE, is physically located in an operating system file, not in the
database tablespace.

You typically use BFILEs to hold:

= Binary data that does not change while your application is running, such as
graphics.

= Data that is loaded into other large object types, such as a BLOB or CLOB where
the data can then be manipulated.

= Data that is appropriate for byte-stream access, such as multimedia.

= Read-only data that is relatively large in size, to avoid taking up large amounts
database tablespace.

Any storage device accessed by your operating system can hold BFILE data, including
hard disk drives, CD-ROMs, PhotoCDs and DVDs. The database can access BFILEs
provided the operating system supports stream-mode access to the operating system
files.

Note: External LOBs do not participate in transactions. Any
support for integrity and durability must be provided by the
underlying file system as governed by the operating system.

Introducing LOB Locators

A LOB instance has a locator and a value. The LOB locator is a reference to where the
LOB value is physically stored. The LOB value is the data stored in the LOB.

When you use a LOB in an operation such as passing a LOB as a parameter, you are
actually passing a LOB locator. For the most part, you can work with a LOB instance in
your application without being concerned with the semantics of LOB locators. There is
no need to dereference LOB locators, as is required with pointers in some
programming languages.

There are some issues regarding the semantics of LOB locators and how LOB values
are stored that you should be aware of. These details are covered in the context of the
discussion where they apply throughout this guide.

See Also:

= "LOB Locator and LOB Value" on page 2-2

s "LOB Locators and BFILE Locators" on page 2-3
s "LOB Storage Parameters" on page 5-4

1-4 Oracle Database SecureFiles and Large Objects Developer's Guide

Object Datatypes and LOBs

Database Semantics for Internal and External LOBs

In all programmatic environments, database semantics differ between internal LOBs
and external LOBs as follows:

= Internal LOBs use copy semantics.

With copy semantics, both the LOB locator and LOB value are logically copied
during insert, update, or assignment operations. This ensures that each table cell
or each variable containing a LOB, holds a unique LOB instance.

= External LOBs use reference semantics.

With reference semantics, only the LOB locator is copied during insert operations.
(Note that update operations do not apply to external LOBs as external LOBs are
read-only. This is explained in more detail later in this section.)

Large Object Datatypes

Table 1-1 describes each large object datatype supported by the database and describes
the kind of data each datatype is typically used for. The names of datatypes given here
are the SQL datatypes provided by the database. In general, the descriptions given for
the datatypes in this table and the rest of this book also apply to the corresponding
datatypes provided for other programmatic environments. Also, note that the term
"LOB" is generally used to refer to the set of all large object datatypes.

Table 1-1 Large Object Datatypes

SQL Datatype

Description

BLOB

CLOB

NCLOB

BFILE

Binary Large Object

Stores any kind of data in binary format. Typically used for
multimedia data such as images, audio, and video.

Character Large Object

Stores string data in the database character set format. Used for
large strings or documents that use the database character set
exclusively. Characters in the database character set are in a
fixed width format.

National Character Set Large Object

Stores string data in National Character Set format. Used for
large strings or documents in the National Character Set.
Supports characters of varying width format.

External Binary File

A binary file stored outside of the database in the host
operating system file system, but accessible from database
tables. BFILEs can be accessed from your application on a
read-only basis. Use BFILESs to store static data, such as image
data, that does not need to be manipulated in applications.

Any kind of data, that is, any operating system file, can be
stored in a BFILE. For example, you can store character data in
a BFILE and then load the BFILE data into a CLOB specifying
the character set upon loading.

Object Datatypes and LOBs

You can declare LOB datatypes as fields, or members, of object datatypes. For
example, you can have an attribute of type CLOB on an object type. In general, there is
no difference in the usage of a LOB instance in a LOB column and the usage of a LOB

Introduction to Large Objects 1-5

Storing and Creating Other Datatypes with LOBs

instance that is a member or of an object datatype. Any difference in usage is called
out when it applies. When used in this guide, the term LOB attribute refers to a LOB
instance that is a member of an object datatype. Unless otherwise specified,
discussions that apply to LOB columns also apply to LOB attributes.

Storing and Creating Other Datatypes with LOBs

You can use LOBs to create other user-defined datatypes or store other datatypes as
LOBs. This section discusses some of the datatypes provided with the database as
examples of datatypes that are stored or created with LOB types.

VARRAYs Stored as LOBs

An instance of type VARRAY in the database is stored as an array of LOBs when you
create a table in the following scenarios:

" If the VARRAY storage clause— VARRAY varray_item STORE AS —is not
specified, and the declared size of varray data is more than 4000 bytes.

= If the varray column properties are specified using the STORE AS LOB clause—
VARRAY varray_item STORE AS LOB ...

XMLType Columns Stored as CLOBs

A good example of how LOB datatypes can be used to store other datatypes is the
XMLType datatype. The XMLType datatype is sometimes stored as a CLOB . Setting up
your table or column to store XMLType datatypes as CLOBs enables you to store
schema-less XML documents in the database.

See Also:

s Oracle XML DB Developer’s Guide for information on creating
XMLType tables and columns and how XML is stored in
CLOB:s.

» Oracle XML Developer’s Kit Programmer’s Guide, for information
about working with XML.

LOBs Used in Oracle Multimedia

Oracle Multimedia uses LOB datatypes to create datatypes specialized for use in
multimedia application such as Multimedia ORDAudio, ORDDoc, ORDImage, and
ORDVideo. Oracle Multimedia uses the database infrastructure to define object types,
methods, and LOBs necessary to represent these specialized types of data in the
database.

See Also:

» Oracle Multimedia User’s Guide for more information on using
Multimedia.

» Oracle Multimedia Reference for more information on using
Multimedia datatypes.

1-6 Oracle Database SecureFiles and Large Objects Developer's Guide

2

Working with LOBs

This chapter describes the usage and semantics of LOBs that you need to be familiar
with to use LOBs in your application. Various techniques for working with LOBs are
covered.

Most of the discussions in this chapter regarding persistent LOBs assume that you are
dealing with LOBs in tables that already exist. The task of creating tables with LOB
columns is typically performed by your database administrator.

See Also:

» Chapter 4, "Using Oracle SecureFiles" for creating LOBs using
the SECUREFILE paradigm

» Chapter 5, "LOB Storage" for storage parameters used in
creating LOBs

This chapter contains these topics:

LOB Column States

Locking a Row Containing a LOB
Opening and Closing LOBs

LOB Locator and LOB Value

LOB Locators and BFILE Locators
Accessing LOBs

LOB Rules and Restrictions

LOB Column States

The techniques you use when accessing a cell in a LOB column differ depending on
the state of the given cell. A cell in a LOB Column can be in one of the following states:

NULL
The table cell is created, but the cell holds no locator or value.
Empty

A LOB instance with a locator exists in the cell, but it has no value. The length of
the LOB is zero.

Populated

A LOB instance with a locator and a value exists in the cell.

Working with LOBs 2-1

Locking a Row Containing a LOB

Locking a Row Containing a LOB

You can lock a row containing a LOB to prevent other database users from writing to
the LOB during a transaction. To lock a row containing a LOB, specify the FOR
UPDATE clause when you select the row. While the row is locked, other users cannot
lock or update the LOB, until you end your transaction.

Opening and Closing LOBs

The LOB APIs include operations that enable you to explicitly open and close a LOB
instance. You can open and close a persistent LOB instance of any type: BLOB, CLOB,
NCLOB, or BFILE. You open a LOB to achieve one or both of the following results:

= Open the LOB in read-only mode.

This ensures that the LOB (both the LOB locator and LOB value) cannot be
changed in your session until you explicitly close the LOB. For example, you can
open the LOB to ensure that the LOB is not changed by some other part of your
program while you are using the LOB in a critical operation. After you perform
the operation, you can then close the LOB.

= Open the LOB in read write/mode—persistent BLOB, CLOB, or NCLOB instances
only.

Opening a LOB in read write mode defers any index maintenance on the LOB
column until you close the LOB. Opening a LOB in read write mode is only useful
if there is an extensible index on the LOB column and you do not want the
database to perform index maintenance every time you write to the LOB. This
technique can increase the performance of your application if you are doing
several write operations on the LOB while it is open.

If you open a LOB, then you must close the LOB at some point later in your session.
This is the only requirement for an open LOB. While a LOB instance is open, you can
perform as many operations as you want on the LOB—provided the operations are
allowed in the given mode.

See Also: "Opening Persistent LOBs with the OPEN and CLOSE
Interfaces" on page 6-9 for details on usage of these APIs.

LOB Locator and LOB Value

There are two techniques that you can use to access and modify LOB values:
= Using the Data Interface for LOBs
= Using the LOB Locator to Access and Modify LOB Values

Using the Data Interface for LOBs

You can perform bind and define operations on CLOB and BLOB columns in C
applications using the data interface for LOBs in OCI. Doing so, enables you to insert
or select out data in a LOB column without using a LOB locator as follows:

= Using a bind variable associated with a LOB column to insert character data into a
CLOB, or RAW data into a BLOB.

= Using a define operation to define an output buffer in your application that holds
character data selected from a CLOB, or RAW data selected from a BLOB.

2-2 Oracle Database SecureFiles and Large Objects Developer’s Guide

LOB Locators and BFILE Locators

See Also: Chapter 14, "Data Interface for Persistent LOBs" for
more information on implicit assignment of LOBs to other
datatypes.

Using the LOB Locator to Access and Modify LOB Values

The value of a LOB instance stored in the database can be accessed through a LOB
locator, a reference to the location of the LOB value. Database tables store only locators
in CLOB, BLOB, NCLOB and BFILE columns. Note the following with respect to LOB
locators and values:

s To access or manipulate a LOB value, you pass the LOB locator to the various LOB
APIs.

= A LOB locator can be assigned to any LOB instance of the same type.

s The characteristics of a LOB as being temporary or persistent have nothing to do
with the locator. The characteristics of temporary or persistent apply only to the
LOB instance.

LOB Locators and BFILE Locators

There are differences between the semantics of locators for LOB types BLOB, CLOB,
and NCLOB on one hand, and the semantics of locators for the BFILE type on the other
hand:

s For LOB types BLOB, CLOB, and NCLOB, the LOB column stores a locator to the
LOB value. Each LOB instance has its own distinct LOB locator and also a distinct
copy of the LOB value.

» For initialized BFILE columns, the row stores a locator to the external operating
system file that holds the value of the BFILE. Each BFILE instance in a given row
has its own distinct locator; however, two different rows can contain a BFILE
locator that points to the same operating system file.

Regardless of where the value of a LOB is stored, a locator is stored in the table row of
any initialized LOB column. Note that when the term locator is used without an
identifying prefix term, it refers to both LOB locators and BFILE locators. Also, when
you select a LOB from a table, the LOB returned is always a temporary LOB. For more
information on working with locators for temporary LOBs, see "LOBs Returned from
SQL Functions" on page 10-9.

Table print_media

The table print_media of the Oracle Database Sample Schema P, is used in many
examples in this documentation and is defined as:

CREATE TABLE print_media

(product_id NUMBER (6)

, ad_id NUMBER (6)

, ad_composite BLOB

, ad_sourcetext CLOB

, ad_finaltext CLOB

, ad_fltextn NCLOB

, ad_textdocs_ntab textdoc_tab
, ad_photo BLOB

, ad_graphic BFILE

, ad_header adheader_typ

) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

Working with LOBs 2-3

LOB Locators and BFILE Locators

See Also: "Creating a Table Containing One or More LOB
Columns" on page 9-1 for the details of how print_media and its
associated tables and files are created.

Initializing a LOB Column to Contain a Locator

Any LOB instance that is NULL does not have a locator. Before you can pass a LOB
instance to any LOB API routine, the instance must contain a locator. For example, you
can select a NULL LOB from a row, but you cannot pass the instance to the PL/SQL
DBMS_LOB.READ procedure. The following sub-sections describe how to initialize a
persistent LOB column and how to initialize a BFILE column.

Initializing a Persistent LOB Column

Before you can start writing data to a persistent LOB using the supported
programmatic environment interfaces (PL/SQL, OCI, OCCI, Pro*C/C++, Pro*COBOL,
Visual Basic, Java, or OLEDB), the LOB column/attribute must be made non-NULL,
that is, it must contain a locator.

You can accomplish this by initializing the persistent LOB to empty in an
INSERT/UPDATE statement using the functions EMPTY_BLOB for BLOBs or
EMPTY_CLOB for CLOBs and NCLOBs.

Note: You can use SQL to populate a LOB column with data even
if it contains a NULL value.

See Also: Chapter 5, "LOB Storage" for more information on
initializing LOB columns.

Running the EMPTY_BLOB () or EMPTY_CLOB () function in and of itself does not
raise an exception. However, using a LOB locator that was set to empty to access or
manipulate the LOB value in any PL/SQL DBMS_LOB or OCI function raises an
exception.

Valid places where empty LOB locators may be used include the VALUES clause of an
INSERT statement and the SET clause of an UPDATE statement.
See Also:

= "Directory Objects" on page 16-3 for details of CREATE
DIRECTORY and BFILENAME usage

= CREATE DIRECTORY statement in Oracle Database Reference. for
more information about creating a directory object

» Oracle Database SQL Language Reference, CREATE DIRECTORY
statement

Note: Character strings are inserted using the default character set
for the instance.

The following INSERT statement in the PV, table print_media:
= Populates ad_sourcetext with the character string 'my Oracle’,

» Sets ad_composite, ad_finaltext, and ad_fltextn to an empty value,

2-4 Oracle Database SecureFiles and Large Objects Developer’s Guide

Accessing LOBs

s Sets ad_photo to NULL, and

» Initializes ad_graphic to point to the file my_picture located under the logical
directory my_directory_object.

CREATE OR REPLACE DIRECTORY my_directory_object AS 'oracle/work/tklocal';
INSERT INTO print_media VALUES (1726, 1, EMPTY_BLOB(),

'my Oracle', EMPTY_CLOB(), EMPTY_CLOB(),

NULL, NULL, BFILENAME ('my_directory_object', 'my_picture'), NULL);

Similarly, the LOB attributes for the ad_header column in print_media can be
initialized to NULL, empty, or a character/raw literal, which is shown in the following
statement:

INSERT INTO print_media (product_id, ad_id, ad_header)
VALUES (1726, 1, adheader_typ('AD FOR ORACLE', sysdate,
'Have Grid', EMPTY_BLOB()));

See Also:

= "Inserting a Row by Selecting a LOB From Another Table" on
page 9-4

= 'Inserting a LOB Value Into a Table" on page 9-5

= "Inserting a Row by Initializing a LOB Locator Bind Variable"
on page 9-6

s "OCILobLocator Pointer Assignment" on page 7-11 for details
on LOB locator semantics in OCI

Initializing BFILEs

Before you can access BFILE values using LOB APlIs, the BFILE column or attribute
must be made non-NULL. You can initialize the BFILE column to point to an external
operating system file by using the BFILENAME function.

See Also: "Accessing BFILEs" on page 16-3 for more information
on initializing BFILE columns.

Accessing LOBs
You can access a LOB instance using the following techniques:
s Accessing a LOB Using SQL
= Accessing a LOB Using the Data Interface
= Accessing a LOB Using the Locator Interface

Accessing a LOB Using SQL

Support for columns that use LOB datatypes is built into many SQL functions. This
support enables you to use SQL semantics to access LOB columns in SQL. In most
cases, you can use the same SQL semantics on a LOB column that you would use on a
VARCHAR2 column.

See Also: For details on SQL semantics support for LOBs, see
Chapter 10, "SQL Semantics and LOBs".

Working with LOBs 2-5

LOB Rules and Restrictions

Accessing a LOB Using the Data Interface

You can select a LOB directly into CHAR or RAW buffers using the LONG-to-LOB APl in
OCI and PL/SQL. In the following PL/SQL example, ad_finaltext is selected into
a VARCHAR?2 buffer final_ad.

DECLARE
final_ad VARCHAR(32767);
BEGIN
SELECT ad_finaltext INTO final_ad FROM print_media
WHERE product_id = 2056 and ad_id = 12001 ;
/* PUT_LINE can only output up to 255 characters at a time */

DBMS_OUTPUT.PUT_LINE(final_ad);
/* more calls to read final_ ad */

END;

See Also: For more details on accessing LOBs using the data
interface, see Chapter 14, "Data Interface for Persistent LOBs".

Accessing a LOB Using the Locator Interface

You can access and manipulate a LOB instance by passing the LOB locator to the LOB
APIs supplied with the database. An extensive set of LOB APIs is provided with each
supported programmatic environment. In OCI, a LOB locator is mapped to a locator
pointer which is used to access the LOB value.

Note: In all environments, including OCI, the LOB APIs operate
on the LOB value implicitly—there is no need to "dereference" the
LOB locator.

See Also:
» Chapter 7, "Overview of Supplied LOB APIs"

"OCILobLocator Pointer Assignment”" on page 7-11 for details
on LOB locator semantics in OCI

LOB Rules and Restrictions

This section provides details on LOB rules and restrictions.

Rules for LOB Columns
LOB columns are subject to the following rules and restrictions:
= You cannot specify a LOB as a primary key column.

s Oracle Database has limited support for remote LOBs. Remote LOBs are
supported in three ways.

1. Create table as select or insert as select.

CREATE TABLE t AS SELECT * FROM tablel@remote_site;

INSERT INTO t SELECT * FROM tablel@remote_site;

UPDATE t SET lobcol = (SELECT lobcol FROM tablel@remote_site);

INSERT INTO tablel@remote_site SELECT * FROM local_table;

UPDATE tablel@remote_site SET lobcol = (SELECT lobcol FROM local_table);
DELETE FROM tablel@remote_site <WHERE clause involving non_lob_columns>

2-6 Oracle Database SecureFiles and Large Objects Developer’s Guide

LOB Rules and Restrictions

In statements structured like the preceding examples, only standalone LOB
columns are allowed in the select list.

2. Functions on remote LOBs returning scalars. SQL and PL/SQL functions
having a LOB parameter and returning a scalar datatype are supported. Other
SQL functions and DBMS_LOB APIs are not supported for use with remote LOB
columns. For example, the following statement is supported:

CREATE TABLE tab AS SELECT DBMS_LOB.GETLENGTH@dbs2 (clob_col) len FROM tab@dbs2;
CREATE TABLE tab AS SELECT LENGTH(clob_col) len FROM tab@dbs2;

However, the following statement is not supported because DBMS_LOB. SUBSTR
returns a LOB:

CREATE TABLE tab AS SELECT DBMS_LOB.SUBSTR(clob_col) from tab@dbs2;

3. Data Interface for remote LOBs. You can insert a character or binary buffer into
a remote CLOB or BLOB, and select a remote CLOB or BLOB into a character or
binary buffer. For example (in PL/SQL):

SELECT clobcoll, typel.blobattr INTO varchar_bufl, raw_buf2 FROM
tablel@remote_site;

INSERT INTO tablel@remotesite (clobcoll, typel.blobattr) VALUES varchar_bufl,
raw_buf2;

INSERT INTO tablel@remotesite (lobcol) VALUES (’'test’);

UPDATE tablel SET lobcol = ’'xxxX’;

These are the only supported syntax involving LOBs in remote tables. No other
usage is supported.
Clusters cannot contain LOBs, either as key or non-key columns.

The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

- VARRAY of any LOB type

- VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute

- ANYDATA of any LOB type
— ANYDATA of any type containing a LOB

You cannot specify LOB columns in the ORDER BY clause of a query, or in the
GROUP BY clause of a query or in an aggregate function.

You cannot specify a LOB column in a SELECT... DISTINCT or SELECT... UNIQUE
statement or in a join. However, you can specify a LOB attribute of an object type
column in a SELECT... DISTINCT statement or in a query that uses the UNION or
MINUS set operator if the column's object type has a MAP or ORDER function
defined on it.

The first (INITIAL) extent of a LOB segment must contain at least three database
blocks.

When creating an UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause.

You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the indextype specification of a domain index. In
addition, Oracle Text lets you define an index on a CLOB column.

Working with LOBs 2-7

LOB Rules and Restrictions

s Inan INSERT... AS SELECT operation, you can bind up to 4000 bytes of data to
LOB columns and attributes.

= If a table has both LONG and LOB columns, you cannot bind more than 4000 bytes
of data to both the LONG and LOB columns in the same SQL statement. However,
you can bind more than 4000 bytes of data to either the LONG or the LOB column.

Note: For a table on which you have defined a DML trigger, if you
use OCI functions or DBMS_LOB package to change the value of a
LOB column or the LOB attribute of an object type column, the
database does not fire the DML trigger.

See Also:

s Chapter 4, "Using Oracle SecureFiles" for the LOB capabilities
(encryption, compression, and deduplication) introduced in
Oracle Release 1 (11.1).

= "Restrictions for LOBs in Partitioned Index-Organized Tables"
on page 5-17

s Chapter 12, "Migrating Columns from LONGs to LOBs" under
"Migrating Applications from LONGs to LOBs" on page 12-7,
describes LONG to LOB migration limitations for clustered
tables, replication, triggers, domain indexes, and
function-based indexes.

= "Unsupported Use of LOBs in SQL" on page 10-8 for
restrictions on SQL semantics.

» For details on the INITIAL extent of a LOB segment, see
"Restriction on First Extent of a LOB Segment" on page 5-3.

= LOBs in partitioned index-organized tables are also subject to a
number of other restrictions. See "Restrictions for LOBs in
Partitioned Index-Organized Tables" on page 5-17 for more
information.

= "Using the Data Interface with Remote LOBs" on page 14-22

Restrictions for LOB Operations

Other general LOB restrictions include the following:

s InSQL Loader, A field read from a LOB cannot be used as an argument to a clause.
See "Database Ultilities for Loading Data into LOBs" on page 3-1 for more
information.

= Session migration is not supported for BFILEs in shared server (multithreaded
server) mode. This implies that operations on open BFILEs can persist beyond the
end of a call to a shared server. In shared server sessions, BFILE operations are
bound to one shared server, they cannot migrate from one server to another.

2-8 Oracle Database SecureFiles and Large Objects Developer’s Guide

3

Managing LOBs: Database Administration

This chapter describes administrative tasks that must be performed to set up,
maintain, and use a database that contains LOBs.

This chapter contains these topics:

Database Utilities for Loading Data into LOBs
Managing Temporary LOBs

Managing BFILEs

Changing Tablespace Storage for a LOB

Database Utilities for Loading Data into LOBs

The following utilities are recommended for bulk loading data into LOB columns as
part of database setup or maintenance tasks:

SQL*Loader
Oracle DataPump

Note: Application Developers: If you are loading data into a LOB
in your application, then using the LOB APIs is recommended. See
Chapter 15, "Using LOB APIs" for details on APIs that allow you to
load LOBs from files.

Using SQL*Loader to Load LOBs

There are two general techniques for using SQL*Loader to load data into LOBs:

Loading data from a primary data file

Loading from a secondary data file using LOBFILEs

Consider the following issues when loading LOBs with SQL*Loader:

For SQL*Loader conventional path loads, failure to load a particular LOB does not
result in the rejection of the record containing that LOB; instead, the record ends
up containing an empty LOB.

For SQL*Loader direct-path loads, the LOB could be empty or truncated. LOBs are
sent in pieces to the server for loading. If there is an error, then the LOB piece with
the error is discarded and the rest of that LOB is not loaded. In other words, if the
entire LOB with the error is contained in the first piece, then that LOB column is
either empty or truncated.

Managing LOBs: Database Administration 3-1

Database Utilities for Loading Data into LOBs

= When loading from LOBFILEs specify the maximum length of the field
corresponding to a LOB-type column. If the maximum length is specified, then it is
taken as a hint to help optimize memory usage. It is important that the maximum
length specification does not underestimate the true maximum length.

s When using SQL*Loader direct-path load, loading LOBs can take up substantial
memory. If the message "SQL*Loader 700 (out of memory)" appears when loading
LOBs, then internal code is probably batching up more rows in each load call than
can be supported by your operating system and process memory. A work-around
is to use the ROWS option to read a smaller number of rows in each data save.

m You can also use the Direct Path API to load LOBs.

s Using LOBFILEs is recommended when loading columns containing XML data in
CLOBs or XMLType columns. Whether you perform a direct-path load or a
conventional path load with SQL*Loader depends on whether you need to
validate XML documents upon loading.

= If the XML document must be validated upon loading, then use conventional
path load.

= Ifitis not necessary to ensure that the XML document is valid or you can
safely assume that the XML document is valid, then you can perform a
direct-path load. Performance is higher when you use direct-path load because
the overhead of XML validation is incurred.

A conventional path load executes SQL INSERT statements to populate tables in an
Oracle database. A direct path load eliminates much of the Oracle database
overhead by formatting Oracle data blocks and writing the data blocks directly to
the database files.

A direct-path load does not compete with other users for database resources, so it
can usually load data at near disk speed. Considerations inherent to direct path
loads, such as restrictions, security, and backup implications, are discussed in
Oracle Database Utilities.

s Tables to be loaded must already exist in the database. SQL*Loader never creates
tables. It loads existing tables that either already contain data or are empty.

s The following privileges are required for a load:
= You must have INSERT privileges on the table to be loaded.

= You must have DELETE privilege on the table to be loaded, when using the
REPLACE or TRUNCATE option to empty out the old data before loading
the new data in its place.

See Also: For details on using SQL*Loader to load LOBs and
other details on SQL*Loader usage, refer to the Oracle Database
Utilities guide.

Using SQL*Loader to Populate a BFILE Column

This section describes how to load data from files in the file system into a BFILE
column.

See Also: "Supported Environments for BFILE APIs" on
page 16-2

3-2 Oracle Database SecureFiles and Large Objects Developer’s Guide

Database Utilities for Loading Data into LOBs

Note that the BFILE datatype stores unstructured binary data in operating system files
outside the database. A BFILE column or attribute stores a file locator that points to a
server-side external file containing the data.

Note: A particular file to be loaded as a BFILE does not have to
actually exist at the time of loading.

SQL*Loader assumes that the necessary DIRECTORY objects have already been
created.

See Also: See "Directory Objects" on page 16-3 and the sections
following it for more information on creating directory objects.

A control file field corresponding to a BFILE column consists of column name
followed by the BFILE directive.

The BFILE directive takes as arguments a DIRECTORY object name followed by a
BFILE name. Both of these can be provided as string constants, or they can be
dynamically sourced through some other field.

See Also: Oracle Database Utilities for details on SQL*Loader
syntax.

The following two examples illustrate the loading of BFILES.

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager

GRANT CREATE ANY DIRECTORY to samp;

CONNECT samp/samp

CREATE OR REPLACE DIRECTORY adgraphic_photo as '/tmp';
CREATE OR REPLACE DIRECTORY adgraphic_dir as '/tmp';

In the following example only the file name is specified dynamically.
Control file:

LOAD DATA

INFILE sample9.dat

INTO TABLE Print_media

FIELDS TERMINATED BY ','

(product_id INTEGER EXTERNAL(6),

FileName FILLER CHAR(30),

ad_graphic BFILE(CONSTANT "modem_graphic_2268_21001", FileName))

Data file:

007, modem_2268.3jpg,
008, monitor_3060.jpg,
009, keyboard_2056.jpg,

Managing LOBs: Database Administration 3-3

Managing Temporary LOBs

Note: product_ID defaults to (255) if a size is not specified. It is
mapped to the file names in the data file. ADGRAPHIC_PHOTO is the
directory where all files are stored. ADGRAPHIC_DIRis a
DIRECTORY object created previously.

In the following example, the BFILE and the DIRECTORY object are specified
dynamically.

Control file:

LOAD DATA

INFILE samplel0.dat

INTO TABLE Print_media

FIELDS TERMINATED BY ','

(

product_id INTEGER EXTERNAL(6),
ad_graphic BFILE (DirName, FileName),
FileName FILLER CHAR(30),

DirName FILLER CHAR(30)

)

Data file:

007, monitor_3060.jpg, ADGRAPHIC_PHOTO,
008, modem_2268.jpg, ADGRAPHIC_PHOTO,
009, keyboard_2056.jpg, ADGRAPHIC_DIR,

Note: DirName FILLER CHAR (30) is mapped to the data file

field containing the directory name corresponding to the file being
loaded.

Using Oracle DataPump to Transfer LOB Data

You can use Oracle DataPump to transfer LOB data from one database to another.

See Also: For details on using Oracle DataPump, refer to the
Oracle Database Utilities guide.

Managing Temporary LOBs

The database keeps track of temporary LOBs in each session, and provides a v$ view
called v$temporary_lobs. From the session, the application can determine which
user owns the temporary LOB. As a database administrator, you can use this view to
monitor and guide any emergency cleanup of temporary space used by temporary

LOBs.

Managing Temporary Tablespace for Temporary LOBs

3-4

Temporary tablespace is used to store temporary LOB data. As a database
administrator you control data storage resources for temporary LOB data by

controlling user access to temporary tablespaces and by the creation of different

temporary tablespaces.

See Also: Refer to the Oracle Database Administrator’s Guide for
details on managing temporary tablespaces.

Oracle Database SecureFiles and Large Objects Developer’s Guide

Changing Tablespace Storage for a LOB

Managing BFILEs

This section describes administrative tasks for managing databases that contain
BFILESs.

Rules for Using Directory Objects and BFILEs
When creating a directory object or BFILESs, ensure that the following conditions are
met:

s The operating system file must not be a symbolic or hard link.

= The operating system directory path named in the Oracle DIRECTORY object
must be an existing operating system directory path.

= The operating system directory path named in the Oracle DIRECTORY object
should not contain any symbolic links in its components.

Setting Maximum Number of Open BFILEs
A limited number of BFILEs can be open simultaneously in each session. The

initialization parameter, SESSION_MAX_OPEN_FILES defines an upper limit on the
number of simultaneously open files in a session.

The default value for this parameter is 10. That is, you can open a maximum of 10 files
at the same time in each session if the default value is used. If you want to alter this
limit, then the database administrator can change the value of this parameter in the
init.ora file. For example:

SESSION_MAX_OPEN_FILES=20
If the number of unclosed files reaches the SESSION_MAX_ OPEN_FILES value, then

you will not be able to open any more files in the session. To close all open files, use
the DBMS_LOB.FILECLOSEALL call.

Changing Tablespace Storage for a LOB

As the database administrator, you can use the following techniques to change the
default storage for a LOB after the table has been created:

= Using ALTER TABLE... MODIFY: You can change LOB tablespace storage as
follows:

Note:

s The ALTER TABLE syntax for modifying an existing LOB
column uses the MODIFY LOB clause, not the LOB. . . STORE
AS clause. The LOB. . . STORE AS clause is only for newly
added LOB columns.

» There are two kinds of LOB storage clauses:
LOB_storage_clause and
modify_ LOB_storage_clause. In the ALTER TABLE
MODIFY LOB statement, you can only specify the
modify_ LOB_storage_clause.

ALTER TABLE test MODIFY
LOB (lobl)

Managing LOBs: Database Administration 3-5

Changing Tablespace Storage for a LOB

STORAGE (

NEXT 4M

MAXEXTENTS 100

PCTINCREASE 50
)

Using ALTER TABLE... MOVE: You can also use the MOVE clause of the ALTER
TABLE statement to change LOB tablespace storage. For example:

ALTER TABLE test MOVE
TABLESPACE tbsl
LOB (lobl, lob2)
STORE AS (
TABLESPACE tbs2
DISABLE STORAGE IN ROW) ;

3-6 Oracle Database SecureFiles and Large Objects Developer’s Guide

Part Ii

Application Design

This part covers issues that you need to consider when designing applications that use
LOBs.

This part contains these chapters:

s Chapter 4, "Using Oracle SecureFiles"

s Chapter 5, "LOB Storage"

» Chapter 6, "Advanced Design Considerations"
» Chapter 7, "Overview of Supplied LOB APIs"

» Chapter 8, "Performance Guidelines"

4

Using Oracle SecureFiles

This chapter describes how to use SecureFiles, which were introduced to supplement
the original LOBs implementation that is identified by the SQL parameter
BASICFILE. This chapter contains these topics:

= Storage of SecureFiles

s PL/SQL Packages for SECUREFILE LOBs
» Initialization Parameter

s Compatibility and Upgrading

= Migrating Columns from BasicFile LOBs to SecureFiles

Storage of SecureFiles

This section summarizes LOB storage characteristics used to design tables with LOB
column types. Beginning with Release 11.1, a new LOB storage paradigm is used by
the database when the storage keyword SECUREFILE appears in the CREATE TABLE
statement. The old storage paradigm is in effect if the keyword SECUREFILE is not
used, or if the keyword BASICFILE is used. BASICFILE (the original LOB storage
paradigm) is the default storage. The database administrator can use the following
initialization parameter in init.ora to modify the above settings:

See Also: "db_securefile" on page 4-15

Parameters for CREATE TABLE With SECUREFILE LOBs

A SecureFile can only be created in an automatic segment space management (ASSM)
tablespace. The following parameter descriptions apply to the LOB storage paradigm
using parameter SECUREFILE.

See Also: Oracle Database SQL Language Reference, CREATE TABLE
statement.

The new LOB features need new storage parameters. All the new parameters are
described after the following BNF of CREATE TABLE.

CREATE [GLOBAL TEMPORARY | TABLE
[schema.]table OF
[schema.]object_type
[(relational_properties)]
[ON COMMIT { DELETE | PRESERVE } ROWS]
[OID_clause]
[OID_index_clause]

Using Oracle SecureFiles 4-1

Storage of SecureFiles

[physical_properties]
[table_properties] ;

<relational_properties> ::=
{ column_definition
| { out_of_line_ constraint
| out_of_line ref constraint
| supplemental_logging props
}
[, { column_definition
| { out_of_line constraint
| out_of_line ref constraint

| supplemental logg