ORACLE

Oracle® Database
SQL Reference

10g Release 2 (10.2)
B14200-01

June 2005

Oracle Database SQL Reference, 10g Release 2 (10.2)
B14200-01

Copyright © 1996, 2005, Oracle. All rights reserved.
Primary Author: Diana Lorentz

Contributor: Special thanks to Lex de Haan, who has for over ten years been a great source of information
and inspiration in the management of this book.

Contributors: Sundeep Abraham, Drew Adams, Patrick Amor, Geeta Arora, Lance Ashdown, Hermann
Baer, Vladimir Barriere, Subhransu Basu, Mark Bauer, Tammy Bednar, Eric Belden, Tolga Bozkaya, Bill
Bridge, Allen Brumm, Mark Callaghan, Thomas Chang, Timothy Chien, Dinesh Das, Jay Davison, Steve
Fogel, Amit Ganesh, John Haydu, Min-Hank Ho, Lilian Hobbs, Chandrasekharan lyer, Ken Jacobs, Bob
Jenkins, Ramkumar Krishnan, Muralidhar Krishnaprasad, Joydip Kundu, Paul Lane, Simon Law, Bill Lee,
Geoff Lee, Jeff Levinger, Nina Lewis, Brian Lin, Peter Linsley, Zhen Liu, Bryn Llewellyn, Rich Long,
Qianrong Ma, Anand Manikutty, Paul Manning, Robert McGuirk, Jim Melton, Mughees Minhas, Michael
Modller, Daniel Morgan, Ari Mozes, Niloy Mukherjee, Chuck Murray, Sujatha Muthulingam, Ananth
Raghavan, Kathy Rich, Antonio Romero, John Russell, Vivian Schupmann, Cathy Shea, Vikram Shukla,
Bipul Sinha, Mike Stewart, Sankar Subramanian, Srividya Tata, Kathy Taylor, Barry Trute, Randy Urbano,
Rama Vissapragada, Douglas Voss, Daniel Wong, Jianping Yang, Adiel Yoaz, Qin Yu, Tsae-Feng Yu, Fred
Zemke, Weiran Zhang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PIEIACE ... XXi
INTENAEA AUGIENCE ..ottt bttt et e e et ae bt b e bt bt e b e bt s b e e b et e seeneebeebeebeebeneas XXi
Documentation ACCESSIDITITYcoiviiiiiiiiie bbb XXi
REIALEA DOCUMIENLES ...ttt st se et r et renens XXii
(7] 01 7=] o1 1 To] o LSOO PSPPSR XXii

What's New in the SQL REfErE&NCE? ... Xxiii
Oracle Database 10g Release 2 New Features in the SQL Reference..........ccccoovvinnniniicnenne. XXiii
Oracle Database 10g Release 1 New Features in the SQL Reference...........ccccoovevvcvivncenencnenienen, XXV

1 Introduction to Oracle SQL

HISTONY OF SQL ..ot b b bbbttt bbbt et nn s 1-1
1@ IRS] =T o (o = o L3OO PR 1-1

[(oA @] IRV AV Lo SRS 1-2

Common Language for All Relational Databasesccccoeiiiiiiicii 1-3
RECENT ENNANCEMENTS ...ttt bbbttt ettt b e 1-3
LeXICAl CONVENTIONSot st e s te et e s beesbesbe e e e sbeearesteeseesteentesteeseenreens 1-3
JLEeL0] KU o] oL] o AP OSSOSO PP U PO URTPRUPTPRRPPRPIN 1-4

2 Basic Elements of Oracle SQL

DALATYPESeiiiiieiiii e 2-1
Oracle BUIlt-IN DatalyPeSccoviiiieeie ettt e et e et e st e e st e sbeeneeste e e e steaneesaenreens 2-6
CHAR DAALYPE ..ottt sttt e et b et e e b e e besse e bt sb e et e e aeebesneaneas 2-8
NCHAR DAALYPE ..o.veiiiiieiieie et er s 2-9
NVARCHARZ DATALYPE ...ocveeiviiereierereeieriee ettt sre e 2-9
VARCHARZ DAALYPEeiieieiiiitieit ettt sttt sttt se e sa e se e sbe e e nbe b enbenee e 2-9
VARCHAR DAALYE ..o.voeiiieiciieicie ettt et aneas 2-10
NUMBER Dataly PR ..vviiiiiiiiiiieiie sttt sttt st sbe e be e sbaesbe s sbeesaeebee e 2-10
Floating-PoinNt NUMDEIScoooiiii et e ettt 2-11
BINARY _FLOAT oottt bbbttt 2-12
BINARY_DOUBLE ... 2-12
NUMEFIC PIECEAEBNCE ...ttt bbbttt ettt sbe b e 2-13
DATE DAALYPE ...cviieiiiiiiee it 2-16
USING JUHAN DAYSvveieciiiee sttt st te e sne e 2-16
TIMESTAMP DAAYPEociiveiiiieiiiiee ittt 2-17

TIMESTAMP WITH TIME ZONE Datatypeccccocviiiiiiiiiiiiiiin s 2-17

TIMESTAMP WITH LOCAL TIME ZONE Datatypecccocvieririerieienieienieiesereseesienesnens 2-18
INTERVAL YEAR TO MONTH DatatyPeccooveriieieieniseniee e 2-18
INTERVAL DAY TO SECOND DatatyPe ...cccccovvveirieirieisieiesieie et sesieesnens 2-19
Datetime/ZInterval AritNMETICooiiii s 2-19
Support for Daylight SAVING TIMES ..o e 2-21
Datetime and Interval EXAMPIESccvoviiieiiiicc st sre e sre e 2-21
RAW and LONG RAW DaatatYPeScccocererierieriiieieeeeieetesie ettt ssesie s e sie e 2-22
2 I I - = 1Y/ o -SSR 2-25
BLOB DAtALYPE ...veeiviiiiieiiesiiie ettt sttt sttt sbe e be e e s be e sa e et ea b e nb e aeeba e 2-26
CLOB DAEALYPE ..viiueiitieitiieeie ettt sttt sttt re e bttt e e b e e be s b e e b e ebe et e sbeenbeaasebesaeeseesneas 2-26
NCLOB DAALY[IEcvvieeieiieeiiesieeiesieeseesiesieeseesteseesaessee e s saesseesesseessesseesesseensesseesenssessenssenns 2-26
RESTIICIEA ROWIS ...t bbb ettt e 2-27
EXEENAEA ROWIAS ...ooueiiiiiii et bbbttt be e e 2-27
Compatibility and MiIgrationccccooviiiiinirie e 2-27
UROWID DAALYPE ..ievveiiiiiie ittt sttt sttt st sbe et e ssa e et sbaeebe e sbaesbeenbee e 2-28
ANSI, DB2, and SQL/DS DALAtYPEScoveieiiriieiiisitrie sttt sbe sttt e sne e 2-28
USEr-DEfINEA TYPIES .viiieiiiiiiie ettt st eseeteasesbe st e besae st e tesaenseneeseeneenesrenrenes 2-30
L@ o =T od A 1 01 SO SS 2-30
REF DAALYPES ..ottt ettt sttt ettt b e bbb e bt e b e s bt e b e sbeebesbeesnesbeenbenrean 2-30
VAITAYS ..eveveeeeeieeeesteesee s e e e steeseesteestestees e e sseeneeaseeseeaseeseeaseeseenR e e teeseenseaseenaeemeeneeaneeneeaseeneeenennraens 2-31
NESTEA TADIES ...ttt b et besa e 2-31
O] = Tod (SR U o] o] [T=To I 1] o 1= SO SUUUT U USTROUPOURPRPRN 2-31
N 0 1Y/ 6= TS 2-32
ANYTYPE .ottt bttt sttt sttt s b b e st et e st et eebe e et et e nbenea 2-32
ANY DATA ettt e bbbt e te st e be e e be b ek e st e Eeseete st e b e et et e st e be e b e e e be e ebe e erereas 2-32
ANY DATASET ..ottt st b et bbb ekt ket ekt ettt st bbb et e et e 2-32
DY I 1Y/ o 1= PP TR PRSI 2-32
DY Y o1 T TSRO O PP O U URUPTPR 2-32
L0 I = =1 1Y 01O 2-33
(0] L Toa o] Y o= (01 & U - R SSPRS 2-34
SPALIAI TYPIES ..ttt ettt e b b s b s bbb e b b et nnenen 2-34
SDO_GEOMETRY .ottt ettt b bbbt b bbbttt ne et 2-34
SDO_TOPO_GEOMETRY ..ottt ettt snene 2-35
SDO_GEORASTER ...ttt sttt sttt b e st be e e sbeennenbe e e st 2-35
V1= o T T I/ o TSRS 2-35
L@ 2] 7 AN [0 [To OO RSRST 2-35
ORDIMEGE ..ottt b bbbt r b e sttt r e 2-35
ORDIMAGESIGNALULIEocviiieieeiiesie ettt e e ste e sre st et sae e e s e s eeneanearenrenes 2-35
L@ 2] AV T =T o TP SRSST 2-35
L0] T 5 T TSP STRRTR 2-36
ST IS 1 €111 4T Vo RS 2-36
0]] [0 SRS 2-36
SI_AVEIAGECOION ..ottt 2-36
Y I @0 Lo o 1153 oo | - 1 o NS USSR 2-36
IS 0 111 4 o] o =1 @] [SR 2-36
SI_TEXEUIE .ottt b bbb b e bt r e 2-36

Y LT 0 L] TSR 2-36

EXPIESSION FIILEE TYPB ...ttt s b e e e bbb e 2-36

Dt] (=115 [S 2-36
Datatype COmMPariSON RUIESccvciiiiiiiice sttt et e e e e ae e e e 2-37
NUMEEIC VAIUEBS ...ttt et sttt sttt e et e st e et e sta e beere et e saeesaesneeseesteas 2-37
DALE VAIUEBS ..ottt sttt et s e s et e be et e st et e et e e n e e e nearenrennenrenn 2-37
CRAFACIEE VAIUEBS ..ottt st et et e et e ete e e e saeenaesaeentesteeneenreens 2-37
SINGIE CRAIACTEIS .. .ieieiieieee ettt b e bt bt sb e sb e s b e sb e st et e s e e s e eaesbesbenbeneens 2-38

L@ 1=t A =Y LU -SSP 2-39
Varrays and NeSted TabIEScccoiiieii e 2-39
(DT (7 W OT0] 0 \VZ=T 5] o] o NS S 2-40
Implicit and EXplicit Data CONVEISIONcccovviviieiirieiesiesesee et ste e e esaesesnennens 2-40
] o] [ToT 1 A BT - W @01 £ V7=1] [o] o SR 2-40
Implicit Data ConVersion EXaMPIES..... ..ot 2-42
O] [Tol L A D= r= W O 0] V=T Y o] o S 2-43

I =T | OSSP 2-44
LI L =] - 1L ST SRTSR 2-44

N L T ol I =] - £ SSP 2-46

L CTo o] gl I (= | SRS 2-46
NUMBER and Floating-Point Literals ... 2-46
DAtetime LITEIalSccvoiiiieiice ettt sttt s e e e e nenrenrenrees 2-48

L C V= LI =T = | TSR 2-51
INTERVAL YEAR TO MONTH ..ottt sttt ettt 2-51
INTERVAL DAY TO SECOND ..ottt s s 2-52

0T o= LR 1Y/ o T =Y SR 2-54
NUMDBEr FOrmMat MOEIScoiiiic e et sre st 2-55
Number FOrmat EIEMENTSccoviic e 2-55
Datetime FOrmat MOUEIScoooviiieiceee et e e nneas 2-58
Datetime FOrmat EIEMENTSccooiiiieiiccce ettt st nre e 2-58
Uppercase Letters in Date Format EIementscccccoeoviveiinnininese e 2-59
Punctuation and Character Literals in Datetime Format Modelsc.cccccvene.e. 2-59

Datetime Format Elements and Globalization SUPPOIt ..o 2-62

ISO Standard Date Format EIEMENTSccccv i 2-62

The RR Datetime Format EIEMENtcocoooiiieie e 2-62

RR Datetime FOrmat EXamMPIES.........ccooiiiiiiiiiee e 2-63

Datetime Format EIemMent SUTFIXESccoov o 2-63

Format Model MOIFIEFSc.iciirccce e e ne s 2-64
Format MoOdel EXAMPIES ..ot 2-65
String-to-Date CONVErSiON RUIEScocoviiciiicc st eenens 2-66
DALY o g U 1Y o T 1= S 2-67
INUIES .ottt e bt b e e be et e s be e beste e s beeteesbesteesbeebseabeeaeeabeeaeesbesaeesbaeseesbeesresreans 2-68
NUIIS IN SQL FUNCLIONS ...viiiiiiiiiecc ettt sttt s bbb e st e beers b e sbeesbesneeneesrees 2-68
Nulls with Comparison CONAITIONSccciviiieiiii e 2-69
NUIS IN CONAITIONS ...ttt e bbb eebeebesaeesbesaeeresteas 2-69

L0 0 0] 0 1= o 1 RS 2-69
Comments Within SQL StatemMENTScccoveiiiiiiececse e sre e 2-69
Comments 0N SCHEM@A ODJECEScoiviiiiiiieiiii bbb 2-70

L Y1 o T 1T SR 2-71

Alphabetical Listing Of HINS ..o 2-74
ALL_ROWS HINT .ot 2-74
APPEND HIN ootk 2-75
CACHE HINT ottt bbbt bbb et 2-75
CLUSTER HINT oo 2-75
CURSOR_SHARING_EXACT HiNt ..cooiiiiiiiiiceieese e 2-75
DRIVING_SITE HINE ..ottt bbbt 2-76
DYNAMIC_SAMPLING HiNt .c.oviiiiiiceee e 2-76
FACT HINT oo bbbt et 2-77
FIRST_ROWS HINt ..ottt bbb bbb 2-77
FULL HINT oo 2-78
HASH HIN oot 2-78
INDEX HINE ettt bbb bbbttt b e e bbbt 2-78
INDEX_ASC HINT ..o 2-79
INDEX_COMBINE HiINE ..ot 2-79
INDEX_DESC HINt ..ottt ettt bbbt eb e 2-79
INDEX_FFS HINT ..o 2-80
INDEX_JOIN HINE ..ottt 2-80
INDEX_SS HINT ..ottt bbbttt bbbt 2-81
INDEX_SS_ASC HINTooviiiiiceree e 2-81
INDEX_SS_DESC HINtocoeiiiiiiiiiisiceneiee et 2-81
LEADING HiNE .ottt bbbt bbbttt 2-82
MERGE HINT ..o 2-82
MODEL_MIN_ANALYSIS HINt ..ot 2-83
NOAPPEND HINt ..ottt bbbttt 2-83
NOCACHE HIN ..o 2-83
NO_EXPAND HINE ...t 2-83
NO_FACT HINT oottt bbbt ettt 2-84
NO_INDEX HINT .ot 2-84
NO_INDEX_FFS HIN ..o 2-85
NO_INDEX _SS HINU ..ottt 2-85
NO_MERGE HINt ..ooooiiii e 2-85
NO_PARALLEL HINt ..o 2-86
NOPARALLEL HiINT...ociiiiiicieee ettt sbe b sne e 2-86
NO_PARALLEL_INDEX HINt ..ot 2-86
NOPARALLEL_INDEX HINt......ocoiiiiiiiiceeeee et 2-86
NO_PUSH_PRED HINU ..ottt 2-86
NO_PUSH_SUBQ HINEooiiiiiiiiiciseeene s 2-86
NO_PX_JOIN_FILTER HINE ...oiiiiiiiiiieeeee et 2-87
NO_REWRITE HINT ..ottt sne e 2-87
NOREWRITE HINT..o.oiiiiiieeee e 2-87
NO_QUERY_TRANSFORMATION HiNt ..ot 2-87
NO_STAR_TRANSFORMATION HiNt ..ot 2-87
NO_UNNEST HINT oo 2-88
NO_USE_HASH HINT ..ot 2-88

NO_USE_MERGE HIiNU ..ottt 2-88

NO_USE_NL HIME ©eooeeeeesveveeeoesoeeesssesssesseeessessesssessessssseessseessssessesssssessssessesssesssssseessssssssen 2-88

NO_XML_QUERY_REWRITE HiNt.....coooiiiiieiiceicieseese sttt 2-89
ORDERED HIN ..ottt 2-89
PARALLEL HINE oottt 2-89
PARALLEL_INDEX HIN oottt 2-90
PQ_DISTRIBUTE HINt ..ottt 2-90
PUSH_PRED HINE ..ottt naenn 2-92
PUSH_SUBQ HINt ..ottt nnenn 2-92
PX_JOIN_FILTER HINT .ottt 2-92
QB_NAME HINE oottt s be et nbens 2-92
REWRITE HINT oottt ettt bbbt nnenn 2-93
RULE HINT oottt bbbttt e s 2-93
STAR_TRANSFORMATION HiNt ..ot 2-93
UNNEST HINT oottt sttt nn s nnenn 2-94
USE_CONGCAT HINE 1ottt 2-94
USE_HASH HINT oottt 2-95
USE_IMERGE HINT ..oooiiiiicece sttt nnens 2-95
USE_INL HINT oottt 2-95
USE_NL_WITH_INDEX HINT ..ot 2-96
Database OB JECLS .. .c.eiiiiiietee ettt bbbt bbbt h bbb bbb e e 2-96
K3 od a1=] 0 - WO 1= PSP 2-96
[N\ o] g 1ol o =] 0 0 F= W @] 1= RS 2-97
Schema Object Names and QUALTITIErSoccoiiiiiiiiiic e 2-97
Schema Object NamMiNgG RUIESccvieiiiiciciese st s r e e e nnens 2-97
Schema Object Naming EXampPIEs ..o 2-100
Schema Object Naming GUIAEIINESccooiiiiiiiiiie e 2-101
Syntax for Schema Objects and Parts in SQL Statements..........ccccvvvvivvieviveneieseeeeeee e 2-101
How Oracle Database Resolves Schema Object Referencesc.ccccocvevvvveviivecc e 2-102
Referring to Objects in Other SChEMAScccviiiiiii s 2-103
Referring to Objects in Remote Databasesccccovevviiiiiinieie e 2-103
Creating Database LINKS ... s 2-103
Database LINK NAIMEScccoiiiiieieieicere sttt s sne e 2-103
Username and PaSSWOIG ... 2-104
Database CONNECE STFING......ccccoviiieieiee et besre s 2-104
Referring to Database LINKS ..o 2-104
Referring to Partitioned Tables and INAEXESccccvvviviirererece e 2-105
Referring to Object Type Attributes and Methods...........c.cccocvevv i, 2-106
Pseudocolumns
Hierarchical Query PSEUAOCOIUMNScccviiiiiiie ettt nneens 3-1
CONNECT_BY_ISCYCLE PSeUdOCOIUMN ...c.ooviiiiiiiiiiiiieicie et 3-1
CONNECT _BY_ISLEAF PSEUAOCOIUMINcvviiiiiciiiise e ere e 3-2
LEVEL PSEUAOCOIUMIN ...ttt bbbt sttt sn et 3-2
SequenCe PSEUAOCOIUMNS ..ottt bbbt 3-3
Where t0 USE SEQUENCE VAIUEScveveiieiese ettt st ene e snesnenees 3-3
HOW 10 USE SEQUENCE VAIUESooiiiiieiiiciete ettt sttt st naestesna e e nne s 3-4
Version QUEry PSEUAOCOIUIMINGoiiiiiiiiii ettt 3-5

Vii

viii

COLUMN_VALUE PSEUAOCOIUMINoiiiiiii sttt s te et ae e e s 3-6

OBJECT _ID PSEUAOCOIUMIN ..ottt ettt et et be e s te st e e s reenrenreenes 3-7
OBJECT _VALUE PSEUAOCOIUMN ..ottt sa e enaereanenne 3-7
ORA_ROWSCN PSeUAOCOIUMIN ...ttt ae s ra e ne s 3-8
ROWID PSEUAOCOTUMIN ...ttt ettt bbb bbb e bt e et et e b e 3-8
ROWNUM PSEUAOCOIUMIN ...ttt 3-9
XMLDATA PSEUAOCOTUMIN ..ottt bbb ettt eb ettt sn bbb 3-10
Operators
PN o To LU @] I @] o 1= 1 (o] SRR 4-1
Unary and BiNAry OPEIALOIScoccoeiiiiieieeieeie ettt sttt st sbe bbb st b e e e e e e e e 4-2
(@ 01T L o] gl o £ =Tot T [-1 o o= S 4-2
YN g 11 T gL Ao @ 0 T=T = o] RS SSR 4-3
CONCALENALION OPEIALON ... ittt b et b e bt s besbe s b e besbese e e e e et e st ebeebeabeanen 4-3
Hierarchical QUENY OPEIAtOrS.......cccvieiieieieieese sttt se e te et ste et e e e s eneenenseanearenres 4-5
PRIOR .ttt ettt s b e bbb bbbkt b et be e be e bkt e bt b e bbb bt nr e 4-5
CONNECT _BY_ROOT .ottt sttt st sttt abe e abe e abe e ebesaabe s abeseeseseatensaseens 4-5
ST @ o 1=T = 1 (o] -SSP 4-5
Y IO LT A @ o] - 1o PSSRSO 4-5
MULTISET EXCEPT .ottt ettt sttt et nn e 4-6
MULTISET INTERSECT ..ottt sttt bbb 4-7
MULTISET UNION ..ottt bbbttt nn e 4-8
USEr-DefiNed OPEIALOIS ...cc.oiuiiiiieiieie ettt ettt ettt b e bbb bt e b et e s e e e e neebe e e 4-9
Functions
1@] I U o (o1 4] o =SOSR 5-1
S [aTo] Lol Lo AVAY A U [Tod A o] o TS 5-3
NUMEFIC FUNCHIONS ...ttt bbb et eb e 5-3
Character Functions Returning Character Values ... 5-3
NLS Character FUNCLIONSciiiiieiee st 5-4
Character Functions Returning NUmMber ValUEscccccvevivieiiiiiicie i 5-4
DAtetime FUNCTIONS ...c..oiiiciiciieiceee ettt st sa et et et ene et e e aneenenns 5-4
General Comparison FUNCLIONScccoiiiiieicicccc st 5-5
CONVEISION FUNCLIONS ...ttt ettt et b bbb bbb e et 5-5
Large ODJECt FUNCLIONS ..o bbb e 5-6
COlIECTION FUNCLIONSoiiiiciiicitiit ettt bbb saenes 5-6
HierarchiCal FUNCLIONccooiiiiiii e e 5-6
Data MiNing FUNCHIONSccoiiiiiiiieie e 5-6
XIMIL FURNCLIONS ..ottt bbbttt ettt 5-7
Encoding and Decoding FUNCLIONSccccviiiiieic et 5-7
NULL-Related FUNCLIONScoiieiiiiiiiiciise et sttt s e se s sne e 5-7
Environment and ldentifier FUNCLIONS ..o 5-8
Yo o] g=To = (=N U] Tod Ao o LSS 5-8
ANAIYLIC FUNCHIONS .ottt bbb bbb e 5-9
Object Reference FUNCLIONScoi ittt st a e e enenne s 5-14
MOAET FUNCLIONS ...ttt bbbt b e e bt eb e et e b b e 5-15
Alphabetical Listing 0f SQL FUNCLIONSccciiiiiiiiieiee e 5-15

AACOS oovveeeoeeeeeeeeeeseseeese e e s e s s e e e ettt 5-15
ADD_IMONTHS ooooveeeeeoeee oo eeeeeseeesesee s eseseeees e sss s se s s eee e eseeeee e 5-16
APPENDCHILDXML ..ooooeeeeeveeceooeeeeesseeeseeeseesseseesssssssssssesessssessssssessssseessseessssssssssssssessseessssseeees 5-17
Y03 1 153 1 = SO 5-17
=] | OO 5-18
ASIN oo eeeeesseeeeee e ee ettt et 5-19
ATAN oo e eeeeeeseeee e esee e 2o st 2 8 e et e et ettt 5-19
F N N N oo 5-20
AAVG oo eeee ettt et 5-20
BFILENAME w.ovvoooovooeeee e eeeeeeesseeesees e sssseessssseesssessssssssesssesssee s sssessesssesssssssesssseessessssesssssesesennnnns 5-21
BIN_TO_NUM .ocoooeieeeeeeeeeeeoeessseseeeseeseeesseseess s eesssseessssees s ssseseeseesesssseesessseeeesessesesseeseseseens 5-22
BITAND .o oeeeeeooeeee e eeseeesee s seseeses e e st st e s e et ee e sss s 5-23
CARDINALITY oo ovveeeoeeeeeeseeeeeesseeesseeesss s ssseesssseees s s ssssseeeses s essesesssssesesesessesssssssseesseesen 5-24
CAST oo eeseee e sttt 5-24
o= | OO OO OO 5-27
CHARTOROWID .o eseeeeseeesee e essseessse s sssssseesss s eesseesssssesessesessesssssesseenssesen 5-27
(o] | = SO 5-28
CLUSTER_ID oooooeeeeeeeeeeeeooeeeeeeeeeeeesseeesseeesss s ssseeses e esssee e es s eseses s see e ssssee s 5-29
CLUSTER_PROBABILITY ooooeooeoeeoveeeeoeeseessesessssssssssesessssessssssssesssssesssssssssssssesssnessssssssssssssenesssean 5-30
CLUSTER_SET eooeeeeoeveeeeeeoeeeeeseeeeessseeesseseesse s eseseeses e sesseee e seseee e esseseec e 5-32
(070N I =5 =3O 5-34
(o7 T ={ o3 LV 5-35
[070]Y 1T 1= =3O 5-36
(070 N[0 LSOO OO 5-36
(o701 NAV/ =1 =3 OO OO 5-37
(70 == SO 5-38
CORR_* oooovveeeoeoeee e e e eeeeseeosse e ssseeses e e e et e sttt s s ee e ses e 5-39

(010121 I OO 5-40

(010121 OO 5-41
COS eeeeeeeeeeeeeeeeee e seseesee e e et e ettt 5-41
070 1] [0S0 5-42
COUNT oo eeeeseeese e eeeseese e s et e s ee e sseeee e 5-42
0103/ =3 =T o= T OO 5-44
COVAR _SAMP ..o eeseseesee e s e s s et e s s st ee e e seesenenee 5-45
(o181 Y/ =i o) 1= SO OO 5-46
(o181 1=1=1 N s 0 Y- O 5-47
CURRENT_TIMESTAMP ..oooooooeoeeoeeeeeoeeeeseseeeeseesesssesesessssesssssssssssssosessssssesssssssssseessssessesssssesenseeen 5-48
o3V 2SO 5-49
DBTIMEZONE .oovocooooeeeeeeeeeseeeoeseseseesseesesessessesessssesessesssessss e s e e e seseses e seessssessssee e eeeseessssssseeens 5-50
501) =3O 5-51
DECOMPOSE .ooovvocooeoeeeeeeeeeeeeeeeeaeesse s eessesesseess s seseese e e e ses e eee e eessseee e eee s seseseeees 5-52
DELETEXIML oovvvvvooooeoeeeeeeseeseeeeeseseseessessessesesssseesessssessesssesssseees s e ssesesessessessssesssseesseseseessessssssseeens 5-53
DENSE_ RANK oovvocoooeee oo s eeseeeeeseseseeseesseesssssssseeseseesessesssesssseeeesseee e sssseses e s eessesssseeneesessseesssssseeens 5-54
DEPTH oo eeeeeeeeoeeeeee e eseeeeesesee e essesess e s et s et s s seseseeees 5-55
DEREF ..ot eeeeeeeeesoeeee e eseeesss s e eeeeessse e e st e ettt e s 5-56
5101, = OO 5-57

EMPTY_BLOB, EMPTY_CLOB ..ot 5-58

EXISTSINODEooiitiiceitee e sttt b et bt bt e sttt et et et et ettt et st nn e 5-58
P bR R bR bR R R Rt R R R bRt b et be et b et ettt 5-59
) I R Y AN O I (o P> =3 1 1 1=) TS U USRTS 5-60
EXTRACT (XIMIL) 1ititiiiiieiteeee st st s b et bbbttt ettt sttt nn e 5-62
EXTRACTVALUE ..ottt st st b et bbbt bbbttt ettt 5-63
FEATURE_ID ..ottt st st b bbb bbbt b et ettt ettt ettt n e 5-63
FEATURE _SET ..ottt st st s b e bbb s b s btk e st ke st et e e be e et s e be s ebe st nn e 5-65
FEATURE_VALUE ..ottt et bbbt bt ettt ettt 5-67
1 S PSPPSR 5-68
FIRST _VALUE ..ottt ettt b bbbttt bttt ettt bt 5-70
FLOOR .ottt bbb kbbb bRt bR bRtk b et b ettt e 5-71
FROM _TZ oottt etk et bbb bRt bRt bRtk b et b et et e be bbb r s 5-71
G REATEST oottt st b bbb e b e s be e e ket ekt b et e bt be ek et e bt b e et et et te bt b r s 5-72
GROUPL_ID bbbt b et b et b et b et b ekttt et bbbt bt 5-72
GROUPTING ..o b e bt be s bbbt e bt be bt e b et e e b e st et st be st et b er s 5-73
GROUPING _ID ..ottt sttt b et b et bt sttt st s e be s e be s s et st te st e te b en s 5-74
HEXTORAWV ..ttt ettt bbb bbb b s ke s bt b et b et b et bt en et ne e 5-75
INTTC AP e b bttt et e b e et st b st e b e e b e s b e b e eb e b e s e e b e e b e st e b e s e et e s e et et abe e abeets 5-76
INSERTCHILDXIML ..ottt sttt ettt sttt sttt st ete st esesbes e ebesesbereabe e ate e abeeans 5-76
INSERTXMLBEFORE ..ottt ettt sttt st b et b et sttt et 5-78
INSTR oot b ettt ettt bt ek st b st e b e s b e b e b e R e e b e b e e b e R e e b e R e e b e R e e bR e b et et et 5-79
ITERATION_NUMBERocoiiiiititiiietstee ettt sttt sttt sttt esbe s e s b abesesbe e sbe e sbeens 5-80
LAG ottt b e R R R AR R R R R R R R R bR R e R e Rt n b bt n et es 5-81
S OSSP 5-82
NS I B A 2SSOSR 5-83
LAST _VALUE ...ttt bbb bt bbbttt ne bt 5-83
I 5 OSSP 5-85
2 SO RPRPRP 5-86
I N L N OSSPSR 5-86
0 OSSOSO 5-87
I N A OSSP 5-88
LOCALTIMESTAMP ..ottt ettt bbb bttt bbbt bt nn s e e 5-89
1 TSSO 5-90
I L TSP 5-90
LPAD .. bR R R R R R R bR bR bR R e R e Rt b b bt ne et e 5-91
I I 1 OSSP 5-91
YN S S = OO 5-92
IMLAX et bbb bbb e b e R R R AR R R R R R bR R R R R R e R e Rt n b bt ne sttt 5-93
Y1 T N N OSSOSO 5-94
Y SO 5-96
1Y I PSPPSR 5-97
MONTHS _BETWEEN ..ottt sttt bbbttt n bt ne e nn e 5-98
I N R 5-98
N3 o | TSSO P TR 5-99
NEW _THIME .ottt s bbb s bt bttt bbbt e en et s 5-100

N EX T DAY e bbb e 5-101

NLS_CHARSET_DECL_LEN ...ciiiiiiii s 5-101

NLS_CHARSET _ID oottt ettt ettt b et r et s et s e s sn b nens 5-102
NLS_CHARSET _NAME ...oo ittt ettt sene st s sene e neesenns 5-102
IS T 1 N1 I 2N TSRS SP 5-103
NLS_LOWER ..ottt ettt sttt bbb bt et e bt s et e bt e s et st et n e et benens 5-104
I ST = PSSP 5-104
N ISR U o = PSSP 5-106
NTILE oot e bbb s bbb s e bbb R e e b e b e bR e b b e bR e s bbb e s e ettt re e e b nens 5-106
I 1 1 PSSP 5-107
NUMTODSINTERVAL ..ottt ettt ettt sa bt s ase st ssetene s naesenens 5-108
NUMTOYMINTERVAL ..ottt ettt bbbt a b s 5-109
I A PSSP 5-110
I A PSR PS 5-111
ORA _HASH .ottt sttt e bbbt b et a et ettt et bt et enas 5-112
N I S PTSRSTRTRRN 5-112
PERCENT _RANK oottt ettt et bbbt s ettt a s esesere e e enas 5-113
PERCENTILE _CONT oottt sttt es sttt st s et s st b e a s b bt e s st 5-114
PERCENTILE_DISC ..ottt sttt ettt en et st se e ssesenenenanens 5-116
POWIER ..ottt ettt et b e st 44 Rt a bR R et bR e Rt e R et et Re et et n e et et 5-118
POWERMULTISET ooiiiicttteit ettt sttt es sttt b ettt ss et b ettt b e b s b ere s st 5-118
POWERMULTISET_BY_CARDINALITY oot sensenas 5-119
PREDICTION .ottt ettt sa b as sttt s ettt st s e e st s e e s esesere e e anas 5-120
PREDICTION_COST ..ottt sttt ettt eas sttt b ettt ss et b st et b a s eseber e s st 5-122
PREDICTION_DETAILS ..ottt ene st a s s esenenenennas 5-123
PREDICTION_PROBABILITY .ooioiiiciiiisissteise sttt ss st ssesenasnsanas 5-124
PREDICTION _SET ..ottt sttt ettt bbbttt ss et b ettt b e bbb re s st 5-126
PRESENTINNY L.ttt ettt es ettt se e s r et nsebe s et neebese e e ssesereneneneas 5-128
PRESENTYV .ottt ettt et s e 44 s et 4 st b ettt b et e be s e e s esesere e s anas 5-129
PREVIOUS ...ttt ettt s 44t a e s bbb bbbt et b et s et st e b e b e et es et re st et 5-130
LN N PSR SRRSTRTRRN 5-131
RATIO_TO_REPORT ..ottt sttt ettt et be et sttt s e s bese e s et eserenensanas 5-133
LRy ANV O] o =SSR 5-133
RAWTONHEX ..ottt ettt es sttt ettt st se s e s e ns et e s et neebese e e sseserenesennas 5-134
R ettt ettt Lt R R R et R R e R E AR e R £ Rt Re R e R e et Ee R et te R et et e R re et enan 5-134
L= IO] 1= SRR 5-135
REGEXP _INSTR ..ottt es sttt es et ne et st et s e e nseserenenennas 5-136
REGEXP_REPLACE ...oiiccie ettt ettt b ettt s gt et s et s s ena s st 5-138
REGEXP_SUBSTR ..ottt b et b ettt b et s be s et e e be st e en b et e enbesbeenes 5-140
REGR _ (Linear Regression) FUNCLIONS ..o sne s 5-142
REMAINDER ..ottt ettt ettt et b s ettt e g et e b e e s esesere e nennis 5-146
L o I A O SRR 5-147
L@ 18 LN (g U g o 1= o PSSP 5-148
L@ 1IN (o - =) RSP STRSRN 5-149
ROW _NUMBER ... b et b ettt sttt bt s e et e besbeen e beenbenbeenes 5-149
ROWIDTOCHAR ..ottt sttt es st tes et stetese e seese s er e e neetese e seebese e s asesereneneneas 5-150
ROWIDTONCHAR .ottt ettt b et sttt s et be b e s esesera s s s 5-151
L AN D L PSSP 5-151

xi

Xii

SCN_TO_TIMESTAMP ..ottt ettt ettt ettt sttt nnns 5-153
SESSIONTIMEZONE ..ottt bbbttt sttt 5-154
] OSSOSO 5-154
L] NSRS 5-155
RS 1 OO SOSO T SOTRTSOPRRPO 5-155
SINH bbb bRt Ee et be e Rt bt r e 5-156
S @ 10 N1 OSSOSO 5-156
RS] OSSOSO 5-157
STATS_BINOMIAL_TEST ..ottt sttt sttt ettt sttt ettt sttt 5-158
STATS _CROSSTAB ..ottt ettt sttt e et et st et st et st et ennns 5-159
STATS _F_TEST ittt b et b et b et b et b et b etk ekt ettt st et bbb n e 5-160
STATS _KS _TEST ottt sttt ettt e b sttt ettt et e et st e st bbbt e 5-161
STATS _IMODE ...ttt ettt ettt st be e bbbt e b s et st et st e te bt e nnns 5-162
STATS_ MW _TEST oottt b et bbb bbbt et e et s bbb n e 5-163
STATS_ONE_WAY_ANOWVA ..ottt ettt sttt sttt ettt st sb et nnns 5-164
N A I B I =5 SO P 5-165

STATS_T_TEST_ONE ..ottt ettt ettt sttt et e et 5-166

STATS_T_TEST _PAIRED ..ottt ettt ettt se et snere e 5-166

STATS_T_TEST_INDEP and STATS_T_TEST _INDEPUcccccoiiiiiiiieineiseese e 5-166
STATS_WSR_TEST ..ottt sttt sttt ekttt ettt s b bbb n e 5-168
STDDEV et bbb E bRt Rt R et be et e bt rne 5-169
STDDEYV _POP ...ttt st b et b ettt et st be st b bbb e bt et ettt nnns 5-170
STDDEV _SAMP ...ttt b btttk et et 5-171
SUBSTR et b bbbt bt b et b e R Rt Rt R et be e b e bt nne 5-172
SUM bbb R R Rt b et Re e R bRt Ee e Rt bt renrne 5-173
SYS_CONNECT_BY_PATH ..ottt sttt s e 5-175
SYS_CONTEXT ittt sttt b ettt b e ettt ettt st bt be et s et e et st e b st b et enn e 5-175
SYS_DBURIGEN ..ottt ettt st sttt sttt ettt st et te bt nnns 5-180
SYS_EXTRACT _UTC .ottt sttt ettt et 5-181
SYS_GUID .ottt sttt b bRttt be et et b b nnne 5-182
S ST I (2 =1 1 O SRRSO RPPPRIN 5-182
SYS_XIMLAGG ..ottt b et bbbt bbbttt 5-183
SYS_XIMLGEN ..ottt et ettt ettt st be et bbbttt e b b nnne 5-184
S 51 B AN I PP 5-185
SYSTIMESTAIMP ettt bbbkt ekt ettt bbb n e 5-185
L7 AN RSOOSR 5-186
L2 D1 I TSP 5-186
TIMESTAMP_TO_SCN ...ttt ettt sttt st b et b e b s eb e et seebe e 5-187
TO_BINARY_DOUBLE ...ttt bbbttt sb et et se et 5-187
TO_BINARY _FLOAT ittt ettt b ettt s b et be e be s be e be st e e sbeebe et e eseesbeeneenteaneas 5-188
IO T O VAN = (o1 T= T (o1 1=) TSRS 5-189
IO O VAN (0 Fo (=1 1 1 1=) TR 5-190
TO_CHAR (NUIMDET) 1ttt ettt et bbbt b et b et b e bt eb et ebe st b e 5-192
TO _CLOB ... bbbtttk e bbb R bbbt E e bt b s bbb et e 5-193
LI T 7 N I OSSO STRPSN 5-194
TO_DSINTERWVAL .ottt bttt sttt s be et e be bt e beebe et e ensesbeaneenteaneas 5-195

TO MULTIE BYTE ittt sttt st sttt ettt e ae et e e besbesbe st e st e st et et e s ensesseseaasabsebesbesrens 5-196
IO I N[O o VN = 3 (o5 T - Ut =1) RSP SPR 5-197
TO_NCHAR (AALETIME) .oiiiiiiciciceees sttt e e te e tesbe st e st e sre s b et et e e esseseeseasearearenresrens 5-197
TO_NCHAR (NUMDBEE) .ottt ettt bt b e bbb eeseebe e b e s beebesbenbesbe s 5-198
LI [= ST 5-199
TO _NUMBER ...ttt ettt et et e e e ae e teebesbe st e st e s ee b en b e st e e enseseeseaneeteatenresrens 5-199
TO SINGLE BYTE ..ottt sttt sttt a ettt et e et e s be st e st e st et et et e s ensessebeeaeebesbesbesbens 5-200
TO _TIMESTAIMP .ot et e et et et e Rt e beebesbestesbesee s en s e s ee e enseneereaneanenrennenrens 5-200
TO _TIMESTAMP_TZ ..ottt sttt sttt et e et e besbe st e st e s be st et et e e enseseeresneanestentesrens 5-201
TO _YMINTERWVAL ..ottt ettt ettt sttt et e te e ae st e et e s be s b e s besbe st et e s se e eneebearesbesbeatas 5-202
LR AN N ST I RSSO 5-203
TRANSLATE ... USING ..ot ettt sttt be et e be s be st ettt e e e e e eneesaeseaneaneas 5-203
TRE AT ettt ettt et e et e e b e e be s be s be et e be s ae s e st esseseeReebeebeebeebeebeebe b enbeste s ensetbereeaeebeetearesten 5-205
TRIM o ettt b e s et et e e ee e est e st e Re e Rt e R e e EeeRe R e EeeRe e en b e Rt e e en e eneereeneenenrenrenreas 5-206
B O 1N O 1UT a1 o= o SRR 5-207
IR LN L0 (o £) ST PRPRSN 5-207
LA ©] T N ST 5-208
11 0 USSP 5-209
UNISTR ettt ettt e et e st e st et e st e e e st e be e b e e be e b e e besbesbesbesbe st enbestessensebeeresbeabearas 5-209
L1 I N I SRS 5-210
L] = USSR 5-211
USER oottt sttt e ettt b e be b e e be b b et e st et oAt ke ek e e heebeebeebeebeebesbenbenbesbe e eneeteereeaeabeatas 5-211
L] 8 1 N A SRS 5-212
VALUE .o ettt e et ettt R e e R e e R e R e e R e e E et e Ee e e b et et et e Rt e R e e ReeReeteereeaearenrs 5-213
VAR POP ettt sttt et et e st e e e aeebeebeebeebesbesbe st et et e s easebbereeaeebeereabenren 5-213
R ST AN 1 TS 5-215
R/ N N L TS 5-215
WSIZE oottt ettt st e et et et e et At r e et eaeebeebeebeebeebeebe et et et et eatehbereaaeebeetaarenrea 5-217
AL I T = 1O L i S 5-217
DL I N T RSP PSSPRN 5-219
DAY I 7 RSP PSPPI 5-220
D Q1Y L L @] I A I I /N SR 5-221
XIMLCOMMENT oot ettt et eeae e beebesbe st e st e s be st en b e s b e s ens et eeseaneareatenrenrens 5-222
DAY @] N1 A LSO PR PSP 5-222
XIMLELEMENT L.ttt ettt s e s et e s b s b st st sn et e e e et eneeraeneenenreneees 5-223
KXIMILFOREST .ottt st sttt st st e e e Re et e e beebe st e st e s be b en b e st e e ensesseseaneeteatentenrens 5-225
DAY N T PSSP PSP 5-226
1 S 5-227
XMLQUERY ..ottt ettt a1t e e e Re ek e s beebe et e st e s ee st en b e st e e enseReereeReereerenrenrens 5-227
DAY L 1 N PRSPPI 5-229
XIMLSEQUENQCEocuiiiiiii ettt e et e s e s et e st s b st st se e st e e e e e e eneeraeneananreneees 5-229
KXIMLSERIALIZE ..ottt et sttt e et et be s be st e st e st et et et et enseseeseaneanestesnesrens 5-231
DL I N = PSPPI 5-231
XIMLTRANSFORM ..ottt et s et et s bbb sa e st e e e e et eneenaeneenaerenrees 5-233
ROUND and TRUNC Date FUNCLIONScccoiiiiicieicce ettt sre s 5-234
USer-Defined FUNCLIONScoiiiie ettt sttt st st be s ba e beereenes 5-235

Xiii

Xiv

g =TT WY1 (=SSR 5-236

INAME PFECEUEINCE ...t ettt b e bbbt sb e b e e e e s e e s e e st ebeebenbenben 5-236
NaMING CONVENTIONSoiicieeieiciseie st se e re e e st re e e se e e e eseenseneeresnesneas 5-237
Expressions
WA o o 10 | AT @ I d o (= 11S] o] g 1= SRS 6-1
ST 0] o] L= R T T = ESTS] Lo 1SS 6-3
COMPOUNG EXPIESSIONS ...eiiiiiiiie ettt ettt sttt ettt e bt b e s besbesbesbeseese e e et et et ebeebeabesnen 6-3
CASE EXPIESSIONS ..oviiiiitiiteiesiisieiestestesteessestestestessessesteseessesseseeseessasessesseasestessessessesesseensessesesssesessessessens 6-4
CURSOR EXPIrESSIONS.....ccuiiiiiieiieiestteite st atesteassesteestesteestesteestesseesseasseseasseaseaseessesseesteasesssenssessenssensennes 6-6
DAtetime EXPIESSIONSoouiiiitiitiite ittt ettt b et st se et e e et et be e b e e beeb e s besbe st enbese e s eneabeebeaneanenras 6-7
U Tod AT I {0 =TT o) 1P 6-9
Y (T = L T o T =TST] o] o 1SS 6-9
ODJECE ACCESS EXPIESSIONS ...ttt ettt ettt sttt b et b e e e s e s e e e bt et e sbeabesbe b seeeens 6-10
Scalar SUDQUETY EXPIESSIONScvciviieiieiisiesiesiestesiesaeeessesesesseste e se e e saessessesessessessessessessesseseensens 6-11
1Y/ oo L= b o] £S5 T o USROS 6-11
TyPe CONSLIUCTOr EXPIrESSIONSiiuiiiiiiiitiitiiiesteiee ettt bbb ettt eb e bbb bbb 6-13
NV L T= 1 o] LT b o (=] o] o 6-14
g 0] (ST (o I SR 6-15
Conditions
PN o To1 U] ST @] I @] o [o 1 d o] o 1SS 7-1
(0] oo [A To] T o £=Tot:Te (=] o Lo ST 7-3
CompParisSON CONAITIONSoiiiiiiiiieicc e e s st st e s tesresaeseese e e eee e eneenearearennens 7-4
Simple ComparisoN CONAITIONSccccviiiiieie e e e sre e e 7-5
Group ComparisSon CONAITIONSooiiiiiii b e 7-6
F1oating-PoiNt CONITIONS ..ottt e r e neerenre e 7-7
(o To] [or=1 I @7o] o o 1 £ To] o =SSOSR 7-7
MOAEI CONAITIONS ...ttt ettt b e b bt s b e s bt b e e e e e e neab e e b e beebeneas 7-9
IS ANY CONITION .ottt b et e ettt b bbbt b e e naenes 7-9
IS PRESENT CONAITION ..viviiiiiiiiiciiiieieieie ettt bbbt e 7-10
MUILISEL CONAITIONS ..eoviiecicec ettt sttt e s e s e e seeseerenresresee st nes 7-11
IS A SET CONITION ..ottt b bbbt e 7-11
IS EMPTY CONAITION 1ottt ettt ettt 7-11
MEMBER CONAITION ..ottt ettt st et s s eneeneebessesnenes 7-12
SUBMULTISET CONAITION ...ovoviiiiiiiiiiiiiiiesesee ettt 7-13
Pattern-matching CONAITIONScccviiiiiic e re e nre s 7-14
(I L Q= 0o o o [o o [OOSR 7-14
REGEXP_LIKE CONAITION ...oitiiiiiiciiiieti sttt sne e snenea 7-17
R =T [T 0] g T 111 o] o 1SS 7-18
(N[0T I @oT g o [1 To] o =TSSR 7-18
D QY | I o] o o [1 To] o OSSP PR TRTRPRPRITN 7-19
EQUALS_PATH CONAITION ...iiiiiiiiiiieiieise ettt sttt sttt 7-19
UNDER_PATH CONAITION ..ottt 7-20
(70 a1 oToT0T g To I @o] Lo [1 T0] o - 7-20
EXISTS CONITION ..ottt ettt b bbbt bbb b s e e bt e b e b e b b e b e 7-21
LN @o] o o 1) 4 o ISR 7-21

10

IS @ Lo Y/ o1 @0 a Te 1 £ To] o [P

Common SQL DDL Clauses

o] [o o= L (=R =) q T) o = LU T SRS 8-2
(o701 015y ¥ r= U F SRR 8-4
deallocate _UNUSEA CIAUSEccoveiiiciice s et e et st snesa e e e e e 8-26
L CES] o L=Tot 1 [or= 1 A] ISR 8-28
1OGQING _CLAUSE ...ttt b bbbt bbb bt e b e e e bbb e bt be bt et e be b sbe b e 8-36
[T =11 L= o] = T T 8-39
PhySical_attribDULES CIAUSEociiee ettt ar et e esaeaneenreas 8-42
LY 4T o] - TU - SRS S S 8-45
LY o] = Vo[- o] - T 1] 8-46
SQL Queries and Subqueries
About QUENIES aNd SUDGUETIEScviiiice s e r e nre e 9-1
Creating SIMPIE QUETIES ..ottt e e s te e e s teanaesbe e e e sreensenreenes 9-2
HierarchiCal QUETIESooi ittt s et e st e et e st e e b e sbeeabesaeeseesteetestaestesreens 9-2
Hierarchical QUEIY EXAMPIEScccoiviiiieiecec ettt st n e ene s 9-5
The UNION [ALL], INTERSECT, MINUS OPEratOrS......cccccivreiirieirieirieenieesieesienesieessesessesessesens 9-7
SOrting QUETNY RESUILS ...t bbb bbb et e b e b e e bt ebesbesbennen 9-9
Lo 1] o OO PESS RSP TPP 9-10
JOIN CONAITIONS ..ottt b bt bbb et s et s b e bbb e 9-10
o [U] o1 LSO USSRV 9-10
SEIF JOINS i bbb R bt b e bbb e ebe et 9-11
CArteSIAN PrOOUCESc..oiiiiiiieiit ettt bbb bbb ettt et eb et b e b b e 9-11
] 0 1=T o 1 SRS SRSSRN 9-11
OULET JOINS ..ttt ettt ettt b ekt e et st bt e bt e bbb bt e b et ettt e b e b e et e e ebe et 9-11
N g 1 X0 [S OS 9-13
1= 0 010 [1SSV 9-13
L0 YT Lo IS 10] oo [L] [T R 9-13
Unnesting 0f Nested SUDQUETIESoov ittt nne s 9-14
Selecting from the DUAL Table ... 9-15
DiStrDULE QUETIESviiveiiiitie ettt ettt sttt b e et e s be et e s be e et e sbeebesbeebesbeestesbeebesteesbe e 9-15
SQL Statements: ALTER CLUSTER to ALTER JAVA
TYPES OF SQL STALEMENTS ..o r e e e ereeresresresreseenaeeenees 10-1
Data Definition Language (DDL) StatemMentsccccoviiieieiie e 10-1
Data Manipulation Language (DML) Statementscccccoviieiineiininneesese e 10-2
Transaction Control STATEMENTS ..o e 10-3
SeSSION CONTIOl STATEMENTSciiiiiiiiie e ettt s b b nrea 10-3
SysStem CoNtrol STATEMENToooiiiiii e 10-3
Embedded SQL STAtEMENTSc.occviiiiiiiece ettt ettt be e sbe s sbeeba et e steesbeear e b ens 10-3
How the SQL Statement Chapters are Organizedcccccooeieiiieii s 10-3
ALTER CLUSTER ..ottt ettt et sta e et e et e e be e s abe e sbeesaeeanbeesnneanree e 10-5
ALTER DATABASE ...ttt ettt sttt bbbt e bttt s b et b e ab e b e et et 10-9
ALTER DIMENSION ..ottt sttt bttt ens 10-45

XV

11

12

13

14

XVi

ALTER DISKGROUP ..ot e s 10-48

ALTER FUNCTION ..ot et 10-61
ALTER INDEX ..o e 10-64
ALTER INDEXTYPE ..o s 10-82
ALTER JAVA et b e e 10-85

SQL Statements: ALTER MATERIALIZED VIEW to ALTER SYSTEM

ALTER MATERIALIZED VIEWoooiiiiie ettt sttt sttt v st sttt st bt e 11-2
ALTER MATERIALIZED VIEW LOGccoooi ittt ens e sneenassesnesnens 11-15
ALTER OPERATOR ..ottt sttt sttt et a et taebe s be st e s te s be st et e e e et en b e s e eneeneetestesnearenrs 11-21
ALTER OQUTLINE ..ottt sttt ettt e st et e s be s be st et e be e et e st e ssessensebaebesaeabeetas 11-24
ALTER PACKAGEooiiii ettt sttt e et e et teaae s te s be st sa et e saeseensenaereeneenearennenrens 11-26
ALTER PROCEDUREc.octiiitccse sttt sttt ettt st st st st b ettt en e e e neena et e teanearennan 11-29
ALTER PROFILEooiiecee ettt sttt ettt bbb st e ettt e sttt en et ensensebsebeeaeebeetas 11-32
ALTER RESOURCE COST ..ooiiiiictciese sttt ettt e et te st st saestesaeseensasaesasnsesessessessens 11-35
ALTER ROLE ..ottt st sttt ettt b e et e e teebe et et e be st et e be s te st ente s e e e eneatenrs 11-38
ALTER ROLLBACK SEGMENT ..ottt sttt sttt sttt e besne bt 11-40
ALTER SEQUENCQCEooiiiiiiiceee ettt sttt st ettt te st st st et e saeseensenaesaeneenensennenrens 11-43
ALTER SESSITON ..ottt ettt ta et e s be s b e s besbe st et et e e e b en b e s e eseens et e e reanearenrs 11-45
Initialization Parameters and ALTER SESSION..........ccccooiiiiii i 11-50
Session Parameters and ALTER SESSION ..o 11-53
ALTER SYSTEM ..ottt sttt e et et et st e st e st et st et et et et en e s e e seene et e e reaneerenras 11-60
Initialization Parameters and ALTER SYSTEM........cccooiiiiiiiii i 11-72
System Parameters and ALTER SYSTEM......ccccoiiiieccse e 11-83
Shared SErVEr PAraMELEIScccvcviiiciiie st e e st e e sre e ae e seenreens 11-83

SQL Statements: ALTER TABLE to ALTER TABLESPACE

ALTER TABLE ..o s 12-2
ALTER TABLESPACE ...ttt e 12-78

SQL Statements: ALTER TRIGGER to COMMIT

ALTER TRIGGER ..ottt et re s 13-2
ALTER TYPE .o s 13-5
ALTER USER ..o s 13-17
ALTER VIEW ..otttk h bbbt en s 13-24
ANALYZE ..o 13-26
ASSOCIATE STATISTICS ..o s 13-37
AUDIIT ettt E et 13-41
CALL e Rt 13-52
COMMENT L e 13-56
COMMIT et bbb R R bRt R s e b bttt e e neen e re s 13-58

SQL Statements: CREATE CLUSTER to CREATE JAVA

CREATE CLUSTER ...ttt ettt an e an e 14-2
CREATE CONTEXT oottt st sttt b et 14-9
CREATE CONTROLFILE ..ottt s 14-12

15

16

17

CREATE DATABASEo s 14-18

CREATE DATABASE LINK ... e 14-31
CREATE DIMENSION ..ottt 14-36
CREATE DIRECTORY ..ot e b s 14-41
CREATE DISKGROUP ..ot 14-43
CREATE FUNCTION ..ottt ettt 14-47
CREATE INDEX ..o e e s 14-57
CREATE INDEXTYPE .. oottt s 14-80
CREATE JAVA ettt r ettt r et r e 14-83
SQL Statements: CREATE LIBRARY to CREATE SPFILE
CREATE LIBRARY ..ottt sttt ettt n e 15-2
CREATE MATERIALIZED VIEWcooiiiiiiiii s 15-4
CREATE MATERIALIZED VIEW LOG ..ottt 15-25
CREATE OPERATOR ..ottt ettt ettt 15-32
CREATE OUTLINE ..ot e s 15-35
CREATE PACKAGE ..ottt b e et n s 15-39
CREATE PACKAGE BODY ..ottt ettt 15-43
CREATE PFILE ..ot e e 15-47
CREATE PROCEDURE ..ottt et 15-49
CREATE PROFILE ..ottt ettt 15-54
CREATE RESTORE POINT ..ot s 15-60
CREATE ROLE ..ottt bbb et r s 15-63
CREATE ROLLBACK SEGMENT ..ottt 15-66
CREATE SCHEMA ..o e e s 15-69
CREATE SEQUENCE ..ot e e 15-71
CREATE SPFILE ..ottt ettt 15-75
SQL Statements: CREATE SYNONYM to CREATE TRIGGER
CREATE SYNONYM ..ottt sttt 16-2
CREATE TABLE ... oo e 16-6
CREATE TABLESPACE ...ttt ettt an e n e 16-61
CREATE TRIGGER ..ottt 16-75
SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT
CREATE TYPE .ot e e n e e r e et nr et e en e sn e e r e nrenean 17-3
CREATE TYPE BODY ..ottt s b 17-20
CREATE USER ... ot b bttt en e n e 17-25
CREATE VIEW ..ottt ettt ettt 17-31
DELETE i s 17-42
DISASSOCIATE STATISTICS ...t 17-49
DROP CLUSTER ..ottt 17-51
DROP CONTEXT oot e e 17-53
DROP DATABASE ..ottt bbbttt 17-54
DROP DATABASE LINK ..o 17-55
DROP DIMENSION ..ot s 17-56

XVii

18

DROP DIRECTORY ...t bbb 17-57

DROP DISKGROUP ...t e 17-58
DROP FUNCTION ..ottt 17-60
DROP INDEX. ...t e 17-62
DROP INDEXTYPE ..o bbb 17-64
DIROP JAVA ettt et 17-65
DROP LIBRARY .o bbb s 17-66
DROP MATERIALIZED VIEW ...t 17-67
DROP MATERIALIZED VIEW LOGcoiiiiiiriiicnceseesre s 17-69
DROP OPERATOR ..ot e b 17-71
DROP OUTLINE ..o e sr s 17-72
DROP PACKAGE ...ttt 17-73
DROP PROCEDURE ..ottt s 17-75
DROP PROFILE ..o e 17-76
DROP RESTORE POINT ..ottt 17-77
DROP ROLE ..o e 17-78
DROP ROLLBACK SEGMENT ..ot s 17-79

SQL Statements: DROP SEQUENCE to ROLLBACK

19

XViii

DROP SEQUENCGEocoiiiiiiiit ettt 18-2
DROP SYNONYM .o e 18-3
DROP TABLE ...t e e 18-5
DROP TABLESPACE ..ottt 18-9
DROP TRIGGER.......coiiiiiii s 18-12
DROP TYPE ..o e 18-13
DROP TYPE BODY ..ottt 18-15
DROP USER ..o s 18-16
DROP VIEW .o et bbb r s 18-18
EXPLATN PLAN L. bbb 18-20
FLASHBACK DATABASE ... 18-23
FLASHBACK TABLE ..ot 18-26
GRAINT ettt E et R et R Rttt 18-32
INSERT o e 18-51
LOCK TABLE .ottt b bbb et b e ettt b e abearenns 18-68
IMERGE ...t 18-71
INOAUDIT L e bbb e b 18-76
PURGE ..o e et h bbbt R e Rt R R R n et 18-80
RENADME ... 18-82
REVOKE ... s 18-84
ROLLBACK .ttt b et h bbbt bt bt e bbb sttt e st ar e 18-92

SQL Statements: SAVEPOINT to UPDATE

SAVEPOINT et h et h bbbt E R b s e r e et et b e n e r e renre 19-2
SELECT ittt R R R R R e R e r e r et 19-4
SET CONSTRAINTIST oottt 19-48
SET ROLE .ttt h bRt R e e et 19-50

SET TRANSACTION .ot e e s 19-52
TRUNGCATE .ottt b e r bt s e ee bbbt et b et renre s 19-55
UPDATE o 19-59

A How to Read Syntax Diagrams

(C1 Vo] AT oS} Y) v D I TV | = 1o 1SR A-1
Required Keywords and Parameterscccccoeiiiieiiieie e see ettt e e e e snesnees A-2
Optional Keywords and PAraMELErSccoiiiiiiiie ettt A-3
RSV 11 = DGl 1o o LSS A-3
Y U] LT o T U BT T= Vo | =T S A-4
Database ODJECLSoiiiiiiiieie ettt bbbttt b e b e bbbt e A-4

B Oracle and Standard SQL

ANST STANTAITAS ...t b e bt b e bt e e et es b e b e e Rt e bt ek e s b e s beebesbesbesbeee e e e e B-1
ST @ 2 =T o F= 1 o LSOO B-2
Oracle Compliance To Core SQL:2003.........cci i sr e e eesresre e B-3
Oracle Support for Optional Features of SQL/Foundation:2003.............cccooeiiiiiinenene e B-8
Oracle Compliance wWith SQL/CLI2003cccoiieieececere et eens B-15
Oracle Compliance wWith SQL/PSM:2003ccooieieiieiiiieii s este et sre e se e s e e se e sre e e B-15
Oracle Compliance with SQL/MED:2003coiiiiiiiiieisesise et see e B-15
Oracle Compliance with SQL/XIMLI2005cccociieieieieisese e eens B-16
Oracle Compliance WIth FIPS 127-2ocv ottt sttt sra e e B-22
Oracle Extensions to Standard SQL ..ot ra e B-24
(O P =0t (=T G T AT U] o] o Lo o B-24

C Oracle Regular Expression Support

Multilingual Regular EXPression SYNTAXccccccveivvieieiinesesiseseseeeeesesessesese e e sseseessessesesneens C-1
Regular Expression Operator Multilingual Enhancements...........cccoccoce i C-2
Perl-influenced Extensions in Oracle Regular EXPresSions ... i C-3

D Oracle Database Reserved Words

E Examples

UsSIiNg EXIENSIDIE INAEXING ..eoiiiiiiiic bbb E-1
Using XML iN SQL StAateMENTScciiiiiiicicicecese et e sttt saesnenaeseeeenaeneas E-8
Index

Xix

XX

Preface

This reference contains a complete description of the Structured Query Language
(SQL) used to manage information in an Oracle Database. Oracle SQL is a superset of
the American National Standards Institute (ANSI) and the International Standards
Organization (ISO) SQL:1999 standard.

This Preface contains these topics:
« Intended Audience

« Documentation Accessibility
» Related Documents

= Conventions

Intended Audience

The Oracle Database SQL Reference is intended for all users of Oracle SQL.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://ww. oracl e. com accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

XXi

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

For more information, see these Oracle resources:

« Oracle Database PL/SQL User's Guide and Reference for information on PL/SQL, the
procedural language extension to Oracle SQL

« Pro*C/C++ Programmer's Guide, Oracle SQL*Module for Ada Programmer*s Guide, and
the Pro*COBOL Programmer*s Guide for detailed descriptions of Oracle embedded
SQL

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nmonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXii

What's New in the SQL Reference?

This section describes new features of Oracle Database 10g and provides pointers to
additional information.

For information on features that were new in earlier versions of Oracle Database,
please refer to the documentation for the earlier release.

Oracle Database 10g Release 2 New Features in the SQL Reference

The following top-level SQL statements are new or enhanced in this release:

ALTER DATABASE on page 10-9 has been enhanced as follows:

— New syntax in the st andby_dat abase_cl auses lets you bring a logical
standby database to the same state as the primary database.

— Additional new syntax in the st andby_dat abase_cl auses lets you
convert a primary database outside the Data Guard environment into a
physical standby database.

— New syntax in the managed_st andby_r ecovery clause lets you create a
logical standby database from the physical standby database.

— New syntax in the dat abase_fil e_cl auses lets you rename tempfiles as
well as datafiles and redo log files.

ALTER DISKGROUP on page 10-48 has new syntax that lets you specify when in
the course of a diskgroup rebalance operation control should be returned to the
user.

ALTER SYSTEM on page 11-60 has new syntax that lets you load information from
the server wallet into memory for database access, and to generate a new
transparent database encryption master key:

ALTER TABLESPACE on page 12-78 contains new syntax that lets you drop an
empty datafile or tempfile from the data dictionary and remove it from the
operating system.

ALTER USER on page 13-17 contains new syntax that lets you expose a user to
proxy use by enterprise users.

COMMIT on page 13-58 contains a new WRI TE clause that lets you specify the
priority with which the redo information generated by the commit operation is
written to the redo log.

CREATE DATABASE LINK on page 14-31 has new syntax that helps Data Pump
provide an encoded password for the database link during import of data.

XXiii

XXV

CREATE DIMENSION on page 14-36 and ALTER DIMENSION on page 10-45
contain new syntax that lets you preserve the hierarchical chain of parent-child
relationship by an alternative path that skips over a specified level if it is null.

CREATE RESTORE POINT on page 15-60 is a new SQL statement that lets you
create a restore point, to which you can flash back a table or the database.

CREATE TABLE on page 16-6 documents the new limit on number of partitions
and subpartitions as 1024K - 1.

CREATE TABLE on page 16-6 and ALTER TABLE on page 12-2 contains new
syntax that lets you encrypt column data.

CREATE USER on page 17-25 and ALTER USER on page 13-17 contain new syntax
for determining how global and external users are identified.

DROP RESTORE POINT on page 17-77 is a new SQL statement that lets you drop
a restore point.

FLASHBACK DATABASE on page 18-23 has new syntax that lets you flash back
the database to a restore point.

FLASHBACK TABLE on page 18-26 has new syntax that lets you flash back a table
to a restore point.

The following clauses are modified in this release:

All of the DML statements (I NSERT, UPDATE, DELETE, MERGE) now have an error
logging clause. See for example INSERT on page 18-51.

"Model Expressions” on page 6-11 have been enhanced to allow analytic functions
and FOR loops.

The following built-in data mining functions are new in this release:

CLUSTER_ID on page 5-29
CLUSTER_PROBABILITY on page 5-30
CLUSTER_SET on page 5-32
FEATURE_ID on page 5-63
FEATURE_SET on page 5-65
FEATURE_VALUE on page 5-67
PREDICTION on page 5-120
PREDICTION_COST on page 5-122
PREDICTION_DETAILS on page 5-123
PREDICTION_PROBABILITY on page 5-124
PREDICTION_SET on page 5-126

The following built-in XML functions are new in this release:

APPENDCHILDXML
DELETEXML
INSERTCHILDXML
INSERTXMLBEFORE
XMLCDATA
XMLCOMMENT

« XMLPI

« XMLROOT
« XMLPARSE
« XMLPI

« XMLQUERY

« XMLSERIALIZE

« XMLTABLE

The following datatypes are new in this release:

. "SDO_TOPO_GEOMETRY" on page 2-35

The following pseudocolumns are new in this release:
« COLUMN_VALUE Pseudocolumn on page 3-6
The following miscellaneous changes have been made:

« "Literals" on page 2-44 contains new syntax for the U-quoted text literal to support
Unicode text strings.

« Appendix C, "Oracle Regular Expression Support" on page C-1 lists the
Perl-influenced operators that are now supported in Oracle regular expression
functions and conditions.

« Two new hints are provided to handle parallel join bitmap filtering: "PX_JOIN _
FILTER Hint" on page 2-92 and "NO_PX_JOIN_FILTER Hint" on page 2-87.

« The new CHANGE NOTI FI CATI ONsystem privilege is documented in GRANT on
page 18-32.

Oracle Database 10g Release 1 New Features in the SQL Reference

The following datatypes are new in this release:

« The binary floating-point datatypes BINARY_FLOAT on page 2-12 and BINARY _
DOUBLE on page 2-12

« The spatial datatype SDO_GEORASTER on page 2-35

« The interMedia datatype SI_Stillimage on page 2-36 and six related Still Image
object types

The following top-level SQL statements are new or enhanced in this release:

« A number of new top-level SQL statements have been added to support
Automatic Storage Management:

— CREATE DISKGROUP on page 14-43
— ALTER DISKGROUP on page 10-48
— DROP DISKGROUP on page 17-58

In addition, the following statements have added syntax in support of Automatic
Storage Management:

— file_specification subclauses, dat af i | e_tenpfil e_spec andredo_| og_
fil e_spec, let you specify Automatic Storage Management files in the form
of ASM_filename on page 8-30, as well as file system files

XXV

— CREATE CONTROLFILE on page 14-12 lets you specify Automatic Storage
Management files as well as file system files

— CREATE TABLESPACE on page 16-61 lets you create a tablespace within an
Automatic Storage Management disk group using the "DATAFILE |
TEMPFILE Clause” on page 16-65

« CREATE DATABASE on page 14-18 has new syntax that lets you create a default
permanent tablespace for the database.

« ALTER DATABASE on page 10-9 has new syntax that lets you:

— Specify multiple temporary tablespaces (a tablespace group) as the database
default temporary tablespaces

— Assign or reassign a tablespace as the database default permanent tablespace
(using the DEFAULT TABLESPACE clause)

— Reset the target recovery incarnation for the database from the current
incarnation to the prior incarnation

— Begin backup of all the datafiles in the database
— Enable block change tracking for incremental backups of the database

— Update both global and local partitioned indexes as part of table partition
maintenance operations

— Revert the entire database, or some tablespaces of the database, to an earlier
version

— Control the relationship between primary databases and logical and physical
standby databases

— Assign or reassign a tablespace as the default permanent tablespace for the
database

— Add a logfile or enable a redo log thread by specifying an instance name
rather than a thread number

« ALTER MATERIALIZED VIEW LOG on page 11-15:

— Has a new FORCE clause that lets you specify the addition of attributes that
the materialized view log already has without causing Oracle to return an
error

— Lets you instruct Oracle Database to record a sequence value in the
materialized view log

« ALTER SYSTEM on page 11-60 has new syntax that lets you flush the buffer cache
of the system global area (SGA).

« ALTER TABLE on page 12-2 has new syntax that lets you manually compact the
table segment, adjust the high water mark, and free the recuperated space.

« ALTER TYPE on page 13-5 has new syntax that lets you modify varrays and
nested tables of scalar types.

« ALTER TABLESPACE on page 12-78 has new syntax that lets you:
— Rename the tablespace

— Guarantee that unexpired undo data will be preserved, even at the expense of
ongoing transactions that require undo segment space

« CREATE DATABASE on page 14-18 has new syntax that lets you:

XXVi

— Specify datafiles for the new SYSAUX system tablespace

— Specify a bigfile tablespace as the default for the database and override the
default for undo and default temporary tablespaces as well. A bigfile
tablespace contains a single datafile that can be up to 4GB in size.

— Create a default permanent tablespace for the database.

CREATE DIMENSION on page 14-36 and ALTER DIMENSION on page 10-45
have new syntax that lets you assign a name to a dimension attribute that is
different from the level name.

CREATE INDEX on page 14-57 and ALTER INDEX on page 10-64 have new
syntax that lets you create and maintain global hash-partitioned indexes.

CREATE INDEXTYPE on page 14-80 and ALTER INDEXTYPE on page 10-82 have
new syntax that supports array inserts using the ODClIndexInsert method.

CREATE MATERIALIZED VIEW on page 15-4 and ALTER MATERIALIZED
VIEW on page 11-2 have new syntax that enhances refresh operations.

CREATE OPERATOR on page 15-32 and ALTER OPERATOR on page 11-21 have
new syntax that lets you pass column information to the functional
implementation of the operator.

CREATE TABLESPACE on page 16-61 has new syntax that lets you create a bigfile
tablespace. Such a tablespace contains a single datafile that can contain up to 2%
or 4G blocks, resulting in a datafile of up to 128 terabytes (TB). CREATE
DATABASE on page 14-18 has related syntax that lets you specify a bigfile
tablespace as the default, undo, and default temporary tablespace for the database.

CREATE TABLESPACE on page 16-61 and ALTER TABLESPACE on page 12-78
have new syntax that lets you assign or reassign a temporary tablespace to a
tablespace group.

CREATE USER on page 17-25 and ALTER USER on page 13-17 have new syntax
that lets you specify multiple temporary tablespaces (a tablespace group) to a
user.

DROP TABLE on page 18-5 has a new PURGE clause that lets you drop the table
without moving it to the recycle bin.

FLASHBACK DATABASE on page 18-23 is a new statement that lets you revert
the entire database to an earlier version.

FLASHBACK TABLE on page 18-26 is a new statement that lets you revert one or
more tables to an earlier system change number (SCN) or timestamp or retrieve a
table that was dropped.

MERGE on page 18-71 has new syntax that lets you:
— Specify either the update operation or the insert operation, or both
— Delete rows from the target table during the update operation

PURGE on page 18-80 is a new SQL statement that lets you permanently remove
previously dropped objects from the recycle bin and release the space that was
associated with them.

SELECT on page 19-4 has new syntax that lets you:

— Issue a versions query, which returns all incarnations of the rows returned by
the query within a specified SCN or time range.

XXVil

XXViii

— Perform a query on a partitioned outer join. The new syntax supports data
densification, the process of querying sparse data along a particular
dimension of data and returning rows that otherwise would have been
omitted from the data returned by the query.

— View the results of a query as a multidimensional array and perform
associated calculations.

The following clauses are modified in this release:

In the physical_attributes_clause on page 8-42, the MAXTRANS parameter has been
deprecated.

The name of the dat a_segnent _conpr essi on clause has been changed to

t abl e_conpr essi on for semantic clarity. The functionality has not changed.
This clause appears in a number of SQL statements. For example, see CREATE
TABLE table_compression on page 16-26.

The following built-in functions are new in this release:

A new aggregate function COLLECT on page 5-35.

A new category of collection functions lets you manipulate nested tables and
varrays. The collection functions are:

— CARDINALITY on page 5-24

— POWERMULTISET on page 5-118

— POWERMULTISET_BY_CARDINALITY on page 5-119
— SET on page 5-154

A new category of model functions are for use in specialized calculations and are
valid only in the nodel _cl ause of a query. The model functions are:

— CVon page 5-49

— PRESENTNNV on page 5-128

— PRESENTYV on page 5-129

— PREVIOUS on page 5-130

Functions to manipulate binary floating-point numbers:
- TO_BINARY_DOUBLE on page 5-187

- TO_BINARY_FLOAT on page 5-188

— NANVL on page 5-98

— REMAINDER on page 5-146

ORA_HASH on page 5-112

The regular expression functions REGEXP_INSTR on page 5-136, REGEXP_
REPLACE on page 5-138, and REGEXP_SUBSTR on page 5-140. The Oracle
Database implementation of regular expression support is discussed in
Appendix C, "Oracle Regular Expression Support".

A new set of aggregate functions to support statistical analysis of data:
— Correlation functions CORR_* on page 5-39

— MEDIAN on page 5-94

— STATS_BINOMIAL_TEST

— STATS_CROSSTAB

- STATS_F_TEST

- STATS_KS_TEST

- STATS_MODE

- STATS_MW._TEST

- STATS_ONE_WAY_ANOVA

— T-test functions STATS_T_TEST _*
- STATS_WSR_TEST

The following SQL operators are new or enhanced in this release:

Equality and inequality operators (= and <>) can be used to compare nested tables
and varrays.

The hierarchical operator: CONNECT_BY_ROOT on page 4-5

The multiset operators: MULTISET EXCEPT on page 4-6, MULTISET INTERSECT
on page 4-7, and MULTISET UNION on page 4-8

The following pseudocolumns are new in this release:

The hierarchical pseudo columns: CONNECT_BY_ISLEAF Pseudocolumn on
page 3-2 and CONNECT_BY_ISCYCLE Pseudocolumn on page 3-1

The "Version Query Pseudocolumns™ on page 3-5 let you extract information about
the rows returned by a version query.

The pseudocolumn ORA_ROWSCN Pseudocolumn on page 3-8 lets you obtain
the system change number of the most recent operation on a table.

The following conditions are new in this release:

The [NOT] I N conditions, formerly referred to as "membership condition", are now
documented as "I Nconditions" to distinguish them from the new MEMBER
conditions (see IN Condition on page 7-21)

The "Floating-Point Conditions” (I S[NOT] NANand | S[NOT] | NFI NI TE) on
page 7-7

IS A SET Condition on page 7-11

IS ANY Condition on page 7-9

IS EMPTY Condition on page 7-11

IS PRESENT Condition on page 7-10
MEMBER Condition on page 7-12
REGEXP_LIKE Condition on page 7-17
SUBMULTISET Condition on page 7-13

The following miscellaneous features are added:

New locale-independent format elements have been added to the tables in
"Format Models" on page 2-54.

Oracle Database now performs implicit conversion between CLOB and NCLOB
data.

You can now specify a LOB column in the UPDATE OF clause when creating an
update DML trigger.

XXiX

XXX

1

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs
and users access data in an Oracle database. Application programs and Oracle tools
often allow users access to the database without using SQL directly, but these
applications in turn must use SQL when executing the user's request. This chapter
provides background information on SQL as used by most database systems.

This chapter contains these topics:
« History of SQL

« SQL Standards

« Recent Enhancements

« Lexical Conventions

« Tools Support

History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared Data
Banks", in June 1970 in the Association of Computer Machinery (ACM) journal,
Communications of the ACM. Codd's model is now accepted as the definitive model for
relational database management systems (RDBMS). The language, Structured English
Query Language (SEQUEL) was developed by IBM Corporation, Inc., to use Codd's
model. SEQUEL later became SQL (still pronounced "sequel™). In 1979, Relational
Software, Inc. (now Oracle) introduced the first commercially available
implementation of SQL. Today, SQL is accepted as the standard RDBMS language.

SQL Standards

Oracle strives to comply with industry-accepted standards and participates actively in
SQL standards committees. Industry-accepted committees are the American National
Standards Institute (ANSI) and the International Organization for Standardization
(1SO), which is affiliated with the International Electrotechnical Commission (IEC).
Both ANSI and the ISO/IEC have accepted SQL as the standard language for
relational databases. When a new SQL standard is simultaneously published by these
organizations, the names of the standards conform to conventions used by the
organization, but the standards are technically identical.

The latest SQL standard was adopted in July 2003 and is often called SQL:2003. The
formal names of this standard are:

« ANSI/ZISO/IEC 9075:2003, "Database Language SQL", Parts 1
("SQL/Framework"), 2 ("SQL/Foundation™), 3 ("SQL/CLI"), 4 ("SQL/PSM"), 9

Introduction to Oracle SQL 1-1

SQL Standards

("SQL/MED"), 10 ("SQL/OLB"), 11 ("SQL/Schemata"), 13 ("SQL/JRT") and 14
("SQL/XML")

« ISO/IEC 9075:2003, "Database Language SQL", Parts 1 ("SQL/Framework"), 2
("SQL/Foundation"), 3 ("SQL/CLI"), 4 ("SQL/PSM"), 9 ("SQL/MED"), 10
("SQL/OLB"), 11 ("SQL/Schemata"), 13 ("SQL/JRT") and 14 ("SQL/XML")

See Also: Appendix B, "Oracle and Standard SQL" for a detailed
description of Oracle Database conformance to the SQL:2003
standards

At this writing, the next edition of Part 14, SQL/XML (ISO/IEC 9075-14) is in the
process of final approval as an International Standard, with adoption expected in the
final quarter of 2005.

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface to
a relational database such as Oracle Database, and all SQL statements are instructions
to the database. In this SQL differs from general-purpose programming languages like
C and BASIC. Among the features of SQL are the following:

« It processes sets of data as groups rather than as individual units.
« It provides automatic navigation to the data.

« It uses statements that are complex and powerful individually, and that therefore
stand alone. Flow-control statements were not part of SQL originally, but they are
found in the recently accepted optional part of SQL, ISO/IEC 9075-5: 1996.
Flow-control statements are commonly known as "persistent stored modules”
(PSM), and the PL/SQL extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to
retrieve a set of rows from a table, you define a condition used to filter the rows. All
rows satisfying the condition are retrieved in a single step and can be passed as a unit
to the user, to another SQL statement, or to an application. You need not deal with the
rows one by one, nor do you have to worry about how they are physically stored or
retrieved. All SQL statements use the optimizer, a part of Oracle Database that
determines the most efficient means of accessing the specified data. Oracle also
provides techniques that you can use to make the optimizer perform its job better.

SQL provides statements for a variety of tasks, including:
« Querying data

« Inserting, updating, and deleting rows in a table

« Creating, replacing, altering, and dropping objects

« Controlling access to the database and its objects

« Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

1-2 Oracle Database SQL Reference

Lexical Conventions

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can transfer
all skills you have gained with SQL from one database to another. In addition, all
programs written in SQL are portable. They can often be moved from one database to
another with very little modification.

Recent Enhancements

The Oracle Database SQL engine is the underpinning of all Oracle Database
applications. Oracle SQL continually evolves to meet the growing demands of
database applications and to support emerging computing architectures, APls, and
network protocols.

In addition to traditional structured data, SQL is capable of storing, retrieving, and
processing more complex data:

= Obiject types, collection types, and REF types provide support for complex
structured data. A number of standard-compliant multiset operators are now
supported for the nested table collection type.

« Large objects (LOBs) provide support for both character and binary unstructured
data. A single LOB can reach a size of 8 to 128 terabytes, depending on database
block size.

« The XMLType datatype provides support for semistructured XML data.
Native support of standards-based capabilities includes the following features:

= Native regular expression support lets you perform pattern searches on and
manipulate loosely formatted, free-form text within the database.

« Native floating-point datatypes based on the IEEE754 standard improve the
floating-point processing common in XML and Java standards and reduce the
storage space required for numeric data.

« Built-in SQL aggregate and analytic functions facilitate access to and manipulation
of data in data warehouses and data marts.

Ongoing enhancements in Oracle SQL will continue to provide comprehensive
support for the development of versatile, scalable, high-performance database
applications.

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to the
Oracle Database implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage returns,
spaces, or comments anywhere a space occurs within the definition of the statement.
Thus, Oracle Database evaluates the following two statements in the same manner:

SELECT | ast _nane, sal ary*12, MONTHS_BETWEEN(hi re_dat e, SYSDATE)
FROM enpl oyees;

SELECT | ast _nane,
salary * 12,
MONTHS_BETWEEN(hire_date, SYSDATE)
FROM enpl oyees;

Introduction to Oracle SQL 1-3

Tools Support

Case is insignificant in reserved words, keywords, identifiers and parameters.
However, case is significant in text literals and quoted names. Please refer to "Text
Literals" on page 2-44 for a syntax description of text literals.

Tools Support

Oracle provides a number of utilities to facilitate your SQL development process:

SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface and a
web-based user interface called iSQL*Plus.

Oracle JDeveloper is a multiple-platform integrated development environment
supporting the complete lifecycle of development for Java, Web services, and SQL.
It provides a graphical interface for executing and tuning SQL statements and a
visual schema diagrammer (database modeler). It also supports editing,
compiling, and debugging PL/SQL applications.

Oracle HTML DB is a hosted environment for developing and deploying
database-related Web applications. SQL Workshop is a component of Oracle
HTML DB that lets you view and manage database objects from a Web browser.
SQL Workshop offers quick access to a SQL command processor and a SQL script
repository.

See Also: SQL*Plus User's Guide and Reference and Oracle HTML DB
User's Guide for more information on these products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL
statements within a procedure programming language.

The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++
and COBOL compilers, respectively.

See Also: Oracle C++ Call Interface Programmer’s Guide, Pro*COBOL
Programmer's Guide, and Oracle Call Interface Programmer*s Guide for
additional information on the embedded SQL statements allowed in
each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does
not support this complete functionality, then you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User's Guide and
Reference.

1-4 Oracle Database SQL Reference

2

Datatypes

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.
These elements are the simplest building blocks of SQL statements. Therefore, before
using the statements described in Chapter 10 through Chapter 19, you should
familiarize yourself with the concepts covered in this chapter.

This chapter contains these sections:

« Datatypes

« Literals

« Format Models

« Nulls

« Comments

« Database Objects

« Schema Object Names and Qualifiers

« Syntax for Schema Objects and Parts in SQL Statements

Each value manipulated by Oracle Database has a datatype. The datatype of a value
associates a fixed set of properties with the value. These properties cause Oracle to
treat values of one datatype differently from values of another. For example, you can
add values of NUMBER datatype, but not values of RAWdatatype.

When you create a table or cluster, you must specify a datatype for each of its columns.
When you create a procedure or stored function, you must specify a datatype for each
of its arguments. These datatypes define the domain of values that each column can
contain or each argument can have. For example, DATE columns cannot accept the
value February 29 (except for a leap year) or the values 2 or 'SHOE'. Each value
subsequently placed in a column assumes the datatype of the column. For example, if
you insert' 01- JAN- 98" into a DATE column, then Oracle treats the ' 01- JAN- 98'
character string as a DATE value after verifying that it translates to a valid date.

Oracle Database provides a number of built-in datatypes as well as several categories
for user-defined types that can be used as datatypes. The syntax of Oracle datatypes
appears in the diagrams that follow. The text of this section is divided into the
following sections:

« Oracle Built-in Datatypes
« ANSI, DB2, and SQL/DS Datatypes

Basic Elements of Oracle SQL 2-1

Datatypes

« User-Defined Types

« Oracle-Supplied Types

« Datatype Comparison Rules
« Data Conversion

A datatype is either scalar or nonscalar. A scalar type contains an atomic value,
whereas a nonscalar (sometimes called a "collection™) contains a set of values. A large
object (LOB) is a special form of scalar datatype representing a large scalar value of
binary or character data. LOBs are subject to some restrictions that do not affect other
scalar types because of their size. Those restrictions are documented in the context of
the relevant SQL syntax.

The Oracle precompilers recognize other datatypes in embedded SQL programs. These
datatypes are called external datatypes and are associated with host variables. Do not
confuse built-in datatypes and user-defined types with external datatypes. For
information on external datatypes, including how Oracle converts between them and
built-in datatypes or user-defined types, see Pro*COBOL Programmer's Guide, and
Pro*C/C++ Programmer’s Guide.

datatypes::=

Oracle_built_in_datatypes

ANSI_supported_datatypes

user_defined_types

i

Oracle_supplied_types

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes
—(Iong_and_raw_datatypes)—

datetime_datatypes

large_object_datatypes

I

ll

rowid_datatypes

For descriptions of the Oracle built-in datatypes, please refer to "Oracle Built-in
Datatypes” on page 2-6.

2-2 Oracle Database SQL Reference

Datatypes

character_datatypes::=

BYTE

==
size %
f| CHAR
CE=h
-CHAR
- Oz 0
—| NCHAR

number_datatypes::=

NUMBER

BINARY_FLOAT

BINARY_DOUBLE
long_and_raw_datatypes::=
|__|,“
(D2 ()

datetime_datatypes::=

f| DATE
LOCAL
ﬁ@{fractionaI_seconds_precision)% WITH H TIME 5| ZONE
—| TIMESTAMP

o 0
—| INTERVAL |->| YEAR } 4 TO |->| MONTH
a 0 fe®—><fractional_seconds_precisionm
INTERVAL DAY TO H SECOND

large_object_datatypes::=
=
=y

Basic Elements of Oracle SQL 2-3

Datatypes

rowid_datatypes::.=

ROWID
-
UROWID

The ANSI-supported datatypes appear in the figure that follows. "ANSI, DB2, and
SQL/DS Datatypes" on page 2-28 discusses the mapping of ANSI-supported datatypes
to Oracle built-in datatypes.

ANSI_supported_datatypes::=

.-VARY|NG
,| CHARACTER
CHAR
o D@

NCHAR

(e (DG

NATIONAL Op(size O H
(o | N0

scale
- DECIMAL

DE

— INT

OEO

—| DOUBLE |—>| PRECISION |

|
\| REAL
Oracle_supplied_types::=

spatial_types

media_types

il

L

FLOAT

i

expression_filter_type

For a description of the expressi on_filter _type, please refer to "Expression
Filter Type" on page 2-36. Other Oracle-supplied types follow:

2-4 Oracle Database SQL Reference

Datatypes

any_types::=

SYS.AnyData

B

SYS.AnyDataSet

L

)

For descriptions of the Any types, please refer to "Any Types" on page 2-32.

XML_types:.=

=)

[GRiyee |
For descriptions of the XML types, please refer to "XML Types" on page 2-32.

spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, please refer to "Spatial Types" on page 2-34.
media_types::=
ORDAudio
ORDImage
ORDVideo

ORDDoc

OrdimageSignature

él’!!!
)

still_image_object_types::=
SI_Stilllmage

SI_AverageColor
SI_PositionalColor
—— SI_ColorHistogram [+—
SI_Texture

SI_FeatureList

SI_Color

A

For descriptions of the media types, please refer to "Media Types" on page 2-35.

Basic Elements of Oracle SQL 2-5

Datatypes

Oracle Built-in Datatypes

The table that follows summarizes Oracle built-in datatypes. Please refer to the syntax
in the preceding sections for the syntactic elements. The codes listed for the datatypes
are used internally by Oracle Database. The datatype code of a column or object
attribute is returned by the DUMP function.

Table 2-1 Built-in Datatype Summary

Code

Datatype

Description

1

VARCHAR2(si ze [BYTE | CHAR])

Variable-length character string having maximum length si ze
bytes or characters. Maximum si ze is 4000 bytes or characters,
and minimum is 1 byte or 1 character. You must specify si ze for
VARCHARZ.

BYTE indicates that the column will have byte length semantics;
CHAR indicates that the column will have character semantics.

NVARCHAR2(si ze)

Variable-length Unicode character string having maximum
length si ze characters. The number of bytes can be up to two
times si ze for ALL6UTF16 encoding and three times si ze for
UTF8 encoding. Maximum si ze is determined by the national
character set definition, with an upper limit of 4000 bytes. You
must specify si ze for N\VARCHAR2.

NUMBER((pr eci si on [, scal e]])

Number having precision p and scale s. The precision p can
range from 1 to 38. The scale s can range from -84 to 127.

LONG

Character data of variable length up to 2 gigabytes, or 23! -1
bytes. Provided for backward compatibility.

12

DATE

Valid date range from January 1, 4712 BC to December 31, 9999
AD. The default format is determined explicitly by the NLS
DATE_FORMAT parameter or implicitly by the NLS_TERRI TORY
parameter. The size is fixed at 7 bytes. This datatype contains the
datetime fields YEAR, MONTH, DAY, HOUR, M NUTE, and SECOND.
It does not have fractional seconds or a time zone.

21

Bl NARY_FLOAT

32-bit floating point number. This datatype requires 5 bytes,
including the length byte.

22

Bl NARY_DOUBLE

64-bit floating point number. This datatype requires 9 bytes,
including the length byte.

180

TI MESTAMP [(f racti onal _
seconds)]

Year, month, and day values of date, as well as hour, minute,
and second values of time, where f racti onal _seconds_

pr eci si on is the number of digits in the fractional part of the
SECOND datetime field. Accepted values of f racti onal _
seconds_preci si on are 0to 9. The default is 6. The default
format is determined explicitly by the NLS_DATE_FORVAT
parameter or implicitly by the NLS_TERRI TORY parameter. The
sizes varies from 7 to 11 bytes, depending on the precision. This
datatype contains the datetime fields YEAR, MONTH, DAY, HOUR,
M NUTE, and SECOND. It contains fractional seconds but does
not have a time zone.

181

TI MESTAMWP [(fractional _
seconds)] WITH TI ME ZONE

All values of TI MESTAMP as well as time zone displacement
value, where fract i onal _seconds_pr eci si on is the
number of digits in the fractional part of the SECOND datetime
field. Accepted values are 0 to 9. The default is 6. The default
format is determined explicitly by the NLS_DATE_FORVAT
parameter or implicitly by the NLS_TERRI TORY parameter. The
size is fixed at 13 bytes. This datatype contains the datetime
fields YEAR, MONTH, DAY, HOUR M NUTE, SECOND, TI MEZONE_
HOUR, and TI MEZONE_M NUTE. It has fractional seconds and an
explicit time zone.

2-6 Oracle Database SQL Reference

Datatypes

Table 2-1 (Cont.) Built-in Datatype Summary

Code Datatype Description

231 TI MESTAWP [(fractional _ All values of TI MESTAMP W TH TI ME ZONE, with the following
seconds)] WITH LOCAL TI MEZONE exceptions:

. Data is normalized to the database time zone when it is
stored in the database.

. When the data is retrieved, users see the data in the session
time zone.

The default format is determined explicitly by the NLS_DATE_
FORNVAT parameter or implicitly by the NLS_TERRI TORY
parameter. The sizes varies from 7 to 11 bytes, depending on the
precision.

182 | NTERVAL YEAR [(year _ Stores a period of time in years and months, where year _
preci si on)] TOMONTH pr eci si on is the number of digits in the YEAR datetime field.
Accepted values are 0 to 9. The default is 2. The size is fixed at 5
bytes.

183 | NTERVAL DAY [(day_pr eci si on)] Stores a period of time in days, hours, minutes, and seconds,
TOSECOND[(fracti onal _ where

seconds)] « day_preci sion isthe maximum number of digits in the

DAY datetime field. Accepted values are 0 to 9. The default
is 2.

« fractional _seconds_preci sion isthe number of
digits in the fractional part of the SECOND field. Accepted
values are 0 to 9. The default is 6.

The size is fixed at 11 bytes.

23 RAWSI ze) Raw binary data of length si ze bytes. Maximum si ze is 2000
bytes. You must specify si ze for a RAWvalue.

24 LONG RAW Raw binary data of variable length up to 2 gigabytes.

69 ROW D Base 64 string representing the unique address of a row in its
table. This datatype is primarily for values returned by the
ROW D pseudocolumn.

208 UROW D[(si ze)] Base 64 string representing the logical address of a row of an
index-organized table. The optional si ze is the size of a column
of type UROW D. The maximum size and default is 4000 bytes.

96 CHAR[(si ze [BYTE | CHAR])] Fixed-length character data of length si ze bytes. Maximum
si ze is 2000 bytes or characters. Default and minimum si ze is
1 byte.

BYTE and CHAR have the same semantics as for VARCHAR2.

96 NCHAR[(si ze)] Fixed-length character data of length si ze characters. The
number of bytes can be up to two times si ze for ALI6UTF16
encoding and three times si ze for UTF8 encoding. Maximum
si ze is determined by the national character set definition, with
an upper limit of 2000 bytes. Default and minimum si ze is 1
character.

112 CLOB A character large object containing single-byte or multibyte
characters. Both fixed-width and variable-width character sets
are supported, both using the database character set. Maximum
size is (4 gigabytes - 1) * (database block size).

Basic Elements of Oracle SQL 2-7

Datatypes

Table 2-1 (Cont.) Built-in Datatype Summary

Code Datatype Description

112 NCLOB A character large object containing Unicode characters. Both
fixed-width and variable-width character sets are supported,
both using the database national character set. Maximum size is
(4 gigabytes - 1) * (database block size). Stores national character
set data.

113 BLOB A binary large object. Maximum size is (4 gigabytes - 1) *
(database block size).

114 BFI LE Contains a locator to a large binary file stored outside the
database. Enables byte stream 1/0 access to external LOBs
residing on the database server. Maximum size is 4 gigabytes.

The sections that follow describe the Oracle datatypes as they are stored in Oracle
Database. For information on specifying these datatypes as literals, please refer to
"Literals" on page 2-44.

Character Datatypes

Character datatypes store character (alphanumeric) data, which are words and
free-form text, in the database character set or national character set. They are less
restrictive than other datatypes and consequently have fewer properties. For example,
character columns can store all alphanumeric values, but NUMBER columns can store
only numeric values.

Character data is stored in strings with byte values corresponding to one of the
character sets, such as 7-bit ASCII or EBCDIC, specified when the database was
created. Oracle Database supports both single-byte and multibyte character sets.

These datatypes are used for character data:
« CHAR Datatype

« NCHAR Datatype

« NVARCHAR2 Datatype

« VARCHAR?2 Datatype

For information on specifying character datatypes as literals, please refer to "Text
Literals" on page 2-44.

CHAR Datatype

The CHAR datatype specifies a fixed-length character string. Oracle ensures that all
values stored in a CHAR column have the length specified by si ze. If you insert a
value that is shorter than the column length, then Oracle blank-pads the value to
column length. If you try to insert a value that is too long for the column, then Oracle
returns an error.

The default length for a CHAR column is 1 byte and the maximum allowed is 2000
bytes. A 1-byte string can be inserted into a CHAR(10) column, but the string is
blank-padded to 10 bytes before it is stored.

When you create a table with a CHAR column, by default you supply the column
length in bytes. The BYTE qualifier is the same as the default. If you use the CHAR
qualifier, for example CHAR(10 CHAR), then you supply the column length in
characters. A character is technically a code point of the database character set. Its size
can range from 1 byte to 4 bytes, depending on the database character set. The BYTE
and CHAR qualifiers override the semantics specified by the NLS_LENGTH _

2-8 Oracle Database SQL Reference

Datatypes

SEMANTI CS parameter, which has a default of byte semantics. For performance
reasons, Oracle recommends that you use the NLS_LENGTH_SEMANTI CS parameter to
set length semantics and that you use the BYTE and CHAR qualifiers only when
necessary to override the parameter.

To ensure proper data conversion between databases with different character sets, you
must ensure that CHAR data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-37 for
information on comparison semantics

NCHAR Datatype

The NCHAR datatype is a Unicode-only datatype. When you create a table with an
NCHAR column, you define the column length in characters. You define the national
character set when you create your database.

The maximum length of a column is determined by the national character set
definition. Width specifications of character datatype NCHAR refer to the number of
characters. The maximum column size allowed is 2000 bytes.

If you insert a value that is shorter than the column length, then Oracle blank-pads the
value to column length. You cannot insert a CHAR value into an NCHAR column, nor
can you insert an NCHAR value into a CHAR column.

The following example compares the t r ansl at ed_descri pti on column of the
pm product descri pti ons table with a national character set string:

SELECT transl ated_descripti on FROM product _descriptions
WHERE transl ated_name = N LCD Monitor 11/PM;

Please refer to Oracle Database Globalization Support Guide for information on Unicode
datatype support.

NVARCHAR?2 Datatype

The NVARCHAR2 datatype is a Unicode-only datatype. When you create a table with an
NVARCHAR?2 column, you supply the maximum number of characters it can hold.
Oracle subsequently stores each value in the column exactly as you specify it,
provided the value does not exceed the maximum length of the column.

The maximum length of the column is determined by the national character set
definition. Width specifications of character datatype NVARCHAR2 refer to the number
of characters. The maximum column size allowed is 4000 bytes. Please refer to Oracle
Database Globalization Support Guide for information on Unicode datatype support.

VARCHAR?2 Datatype

The VARCHARZ datatype specifies a variable-length character string. When you create
a VARCHAR2 column, you supply the maximum number of bytes or characters of data
that it can hold. Oracle subsequently stores each value in the column exactly as you
specify it, provided the value does not exceed the column's maximum length of the
column. If you try to insert a value that exceeds the specified length, then Oracle
returns an error.

You must specify a maximum length for a VARCHAR2 column. This maximum must be
at least 1 byte, although the actual string stored is permitted to be a zero-length string
(" '). You can use the CHAR qualifier, for example VARCHAR2 (10 CHAR), to give the
maximum length in characters instead of bytes. A character is technically a code point
of the database character set. CHAR and BYTE qualifiers override the setting of the

Basic Elements of Oracle SQL 2-9

Datatypes

NLS LENGTH_SEMANTI CS parameter, which has a default of bytes. For performance
reasons, Oracle recommends that you use the NLS_LENGTH_SEMANTI CS parameter to
set length semantics and that you use the BYTE and CHAR qualifiers only when
necessary to override the parameter. The maximum length of VARCHAR2 data is 4000
bytes. Oracle compares VARCHARZ values using nonpadded comparison semantics.

To ensure proper data conversion between databases with different character sets, you
must ensure that VARCHARZ2 data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-37 for
information on comparison semantics

VARCHAR Datatype

Do not use the VARCHAR datatype. Use the VARCHAR2 datatype instead. Although the
VARCHAR datatype is currently synonymous with VARCHAR2, the VARCHAR datatype is
scheduled to be redefined as a separate datatype used for variable-length character
strings compared with different comparison semantics.

Numeric Datatypes

The Oracle Database numeric datatypes store positive and negative fixed and
floating-point numbers, zero, infinity, and values that are the undefined result of an
operation (that is, is "not a number" or NAN). For information on specifying numeric
datatypes as literals, please refer to "Numeric Literals" on page 2-46.

NUMBER Datatype

The NUMBER datatype stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10 to (but not including) 1.0 x 10'?°. If you specify an
arithmetic expression whose value has an absolute value greater than or equal to 1.0 x
10?8, then Oracle returns an error. Each NUVBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:
NUMBER(p, S)

where:

« pisthe precision, or the total number of significant decimal digits, where the most
significant digit is the left-most nonzero digit, and the least significant digit is the
right-most known digit. Oracle guarantees the portability of numbers with
precision of up to 20 base-100 digits, which is equivalent to 39 or 40 decimal digits
depending on the position of the decimal point.

« S isthe scale, or the number of digits from the decimal point to the least
significant digit. The scale can range from -84 to 127.

— Positive scale is the number of significant digits to the right of the decimal
point to and including the least significant digit.

— Negative scale is the number of significant digits to the left of the decimal
point, to but not including the least significant digit. For negative scale the
least significant digit is on the left side of the decimal point, because the actual
data is rounded to the specified number of places to the left of the decimal
point. For example, a specification of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When
scale is greater than precision, the precision specifies the maximum number of
significant digits to the right of the decimal point. For example, a column defined as

2-10 Oracle Database SQL Reference

Datatypes

NUMBER(4, 5) requires a zero for the first digit after the decimal point and rounds all
values past the fifth digit after the decimal point.

It is good practice to specify the scale and precision of a fixed-point number column
for extra integrity checking on input. Specifying scale and precision does not force all
values to a fixed length. If a value exceeds the precision, then Oracle returns an error. If
a value exceeds the scale, then Oracle rounds it.

Specify an integer using the following form:
NUMBER(p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER(p, 0) .

Specify a floating-point number using the following form:
NUMBER

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

See Also: "Floating-Point Numbers" on page 2-11
Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As
123.89 NUMBER 123.89

123.89 NUMBER(3) 124

123.89 NUMBER(6, 2) 123.89

123.89 NUMBER(6, 1) 123.9

123.89 NUVBER(3) exceeds precision
123.89 NUMBER(4, 2) exceeds precision
123.89 NUMBER(6, - 2) 100

.01234 NUMBER(4, 5) .01234

.00012 NUMBER(4, 5) .00012

.000127 NUMBER(4, 5) .00013

.0000012 NUMBER(2, 7) .0000012
.00000123 NUMBER(2, 7) .0000012

1.2e-4 NUMBER(2, 5) 0.00012

1.2e-5 NUMBER(2, 5) 0.00001

Floating-Point Numbers

Floating-point numbers can have a decimal point anywhere from the first to the last
digit or can have no decimal point at all. An exponent may optionally be used
following the number to increase the range (for example, 1.777). A scale value is
not applicable to floating-point numbers, because the number of digits that can appear
after the decimal point is not restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored
internally by Oracle Database. Values are stored using decimal precision for NUVBER.

Basic Elements of Oracle SQL 2-11

Datatypes

All literals that are within the range and precision supported by NUVBER are stored
exactly as NUMBER. Literals are stored exactly because literals are expressed using
decimal precision (the digits 0 through 9). Binary floating-point numbers are stored
using binary precision (the digits 0 and 1). Such a storage scheme cannot represent all
values using decimal precision exactly. Frequently, the error that occurs when
converting a value from decimal to binary precision is undone when the value is
converted back from binary to decimal precision. The literal 0.1 is such an example.

Oracle Database provides two numeric datatypes exclusively for floating-point
numbers:

BINARY_FLOAT BI NARY_FLOAT is a 32-bit, single-precision floating-point number
datatype. Each Bl NARY_FLOAT value requires 5 bytes, including a length byte.

BINARY_DOUBLE BI NARY_DOUBLE is a 64-bit, double-precision floating-point number
datatype. Each Bl NARY_DOUBLE value requires 9 bytes, including a length byte.

In a NUMBER column, floating point numbers have decimal precision. In a Bl NARY _
FLOAT or Bl NARY_DOUBLE column, floating-point numbers have binary precision.
The binary floating-point numbers support the special values infinity and NaN (not a
number).

You can specify floating-point numbers within the limits listed in Table 2-3 on
page 2-12. The format for specifying floating-point numbers is defined in "Numeric
Literals" on page 2-46.

Table 2-3 Floating Point Number Limits

Value Binary-Float Binary-Double
Maximum positive finite value 3.40282E+38F 1.79769313486231E+308
Minimum positive finite value 1.17549E-38F 2.22507485850720E-308

Oracle Database also supports the ANSI datatype FLQOAT. You can specify this
datatype using one of these syntactic forms:

FLOAT
FLOAT(n)

The number n indicates the number of bits of precision that the value can store. The
value for n can range from 1 to 126. To convert from binary to decimal precision,
multiply n by 0.30103. To convert from decimal to binary precision, multiply the
decimal precision by 3.32193. The maximum of 126 digits of binary precision is
roughly equivalent to 38 digits of decimal precision.

IEEE754 Conformance The Oracle implementation of floating-point datatypes
conforms substantially with the Institute of Electrical and Electronics Engineers (IEEE)
Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985 (IEEE754). The
new datatypes conform to IEEE754 in the following areas:

« The SQL function SQRT implements square root. See SQRT on page 5-157.

« The SQL function REMAI NDER implements remainder. See REMAINDER on
page 5-146.

« Arithmetic operators conform. See "Arithmetic Operators" on page 4-3.

« Comparison operators conform, except for comparisons with NaN. Oracle orders
NaN greatest with respect to all other values, and evaluates NaN equal to NaN. See
"Floating-Point Conditions" on page 7-7.

2-12 Oracle Database SQL Reference

Datatypes

LONG Datatype

« Conversion operators conform. See "Conversion Functions" on page 5-5.
« The default rounding mode is supported.
« The default exception handling mode is supported.

« The special values | NF, -1 NF, and NaN are supported. See "Floating-Point
Conditions" on page 7-7.

« Rounding of Bl NARY_FLOAT and Bl NARY_DOUBLE values to integer-valued
Bl NARY_FLQOAT and BI NARY_DOUBLE values is provided by the SQL functions
ROUND, TRUNC, CEIl L, and FLOOR

« Rounding of Bl NARY_FLOAT/BI NARY_DOUBLE to decimal and decimal to
Bl NARY_FLOAT/BI NARY_DOUBLE is provided by the SQL functions TO_CHAR,
TO_NUMBER, TO_NCHAR, TO_BI NARY_FLOAT, TO_BI NARY_DOUBLE, and CAST.

The new datatypes do not conform to IEEE754 in the following areas:
« -0iscoerced to +0.
« Comparison with NaNis not supported.

« All NaNvalues are coerced to either Bl NARY _FLOAT_NANor Bl NARY _DOUBLE
NAN.

« Non-default rounding modes are not supported.

« Non-default exception handling mode are not supported.

Numeric Precedence

Numeric precedence determines, for operations that support numeric datatypes, the
datatype Oracle uses if the arguments to the operation have different datatypes.
Bl NARY_DOUBLE has the highest numeric precedence, followed by Bl NARY_FLQAT,
and finally by NUVMBER. Therefore, in any operation on multiple numeric values:

« Ifany of the operands is Bl NARY_DOUBLE, then Oracle attempts to convert all the
operands implicitly to Bl NARY_DOUBLE before performing the operation.

« If none of the operands is Bl NARY_DOUBLE but any of the operands is Bl NARY _
FLOAT, then Oracle attempts to convert all the operands implicitly to Bl NARY _
FLOAT before performing the operation.

« Otherwise, Oracle attempts to convert all the operands to NUMBER before
performing the operation.

If any implicit conversion is needed and fails, then the operation fails. Table 2-10,
" Implicit Type Conversion Matrix" on page 2-40 for more information on implicit
conversion.

In the context of other datatypes, numeric datatypes have lower precedence than the
datetime/interval datatypes and higher precedence than character and all other
datatypes.

LONGcolumns store variable-length character strings containing up to 2 gigabytes -1,
or 2211 bytes. LONG columns have many of the characteristics of VARCHAR2 columns.
You can use LONGcolumns to store long text strings. The length of LONG values may
be limited by the memory available on your computer. LONG literals are formed as
described for "Text Literals" on page 2-44.

Do not create tables with LONGcolumns. Use LOB columns (CLOB, NCLOB, BLOB)
instead. LONG columns are supported only for backward compatibility.

Basic Elements of Oracle SQL 2-13

Datatypes

Oracle also recommends that you convert existing LONG columns to LOB columns.
LOB columns are subject to far fewer restrictions than LONGcolumns. Further, LOB
functionality is enhanced in every release, whereas LONG functionality has been static
for several releases. See the nodi fy_col _properti es clause of ALTER TABLE on
page 12-2 and TO_LOB on page 5-195 for more information on converting LONG
columns to LOB.

You can reference LONG columns in SQL statements in these places:
« SELECT lists

« SET clauses of UPDATE statements

« VALUES clauses of | NSERT statements

The use of LONGvalues is subject to these restrictions:

« Atable can contain only one LONGcolumn.

=« You cannot create an object type with a LONGattribute.

« LONGcolumns cannot appear in WHERE clauses or in integrity constraints (except
that they can appear in NULL and NOT NULL constraints).

« LONGcolumns cannot be indexed.
« LONGdata cannot be specified in regular expressions.
« A stored function cannot return a LONGvalue.

=« You can declare a variable or argument of a PL/SQL program unit using the LONG
datatype. However, you cannot then call the program unit from SQL.

« Within a single SQL statement, all LONG columns, updated tables, and locked
tables must be located on the same database.

« LONGand LONG RAWcolumns cannot be used in distributed SQL statements and
cannot be replicated.

« Ifatable has both LONGand LOB columns, then you cannot bind more than 4000
bytes of data to both the LONGand LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONGor the LOB
column.

In addition, LONG columns cannot appear in these parts of SQL statements:

« GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the
DI STI NCT operator in SELECT statements

« The UNI QUE operator of a SELECT statement

« The column list of a CREATE CLUSTER statement

« The CLUSTER clause of a CREATE MATERI ALI ZED VI EWstatement
« SQL built-in functions, expressions, or conditions

« SELECT lists of queries containing GROUP BY clauses

« SELECT lists of subqueries or queries combined by the UNI ON, | NTERSECT, or
M NUS set operators

« SELECT lists of CREATE TABLE ... AS SELECT statements
« ALTERTABLE ... MOVE statements
« SELECT lists in subqueries in | NSERT statements

Triggers can use the LONG datatype in the following manner:

2-14 Oracle Database SQL Reference

Datatypes

A SQL statement within a trigger can insert data into a LONGcolumn.

If data from a LONG column can be converted to a constrained datatype (such as
CHAR and VARCHAR?), then a LONGcolumn can be referenced in a SQL statement
within a trigger.

Variables in triggers cannot be declared using the LONG datatype.
:NEWand :OLD cannot be used with LONGcolumns.

You can use Oracle Call Interface functions to retrieve a portion of a LONGvalue from
the database.

See Also: Oracle Call Interface Programmer's Guide

Datetime and Interval Datatypes

The datetime datatypes are DATE, TI MESTAMP, TI MESTAMP W THTI ME ZONE, and
TI MESTAMP W TH LOCAL TI ME ZONE. Values of datetime datatypes are sometimes
called datetimes. The interval datatypes are | NTERVAL YEAR TOMONTH and

| NTERVAL DAY TO SECOND. Values of interval datatypes are sometimes called
intervals. For information on expressing datetime and interval values as literals,
please refer to "Datetime Literals" on page 2-48 and "Interval Literals" on page 2-51.

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype. Table 2—4 lists the datetime fields and their
possible values for datetimes and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify
the database and session time zones by querying the built-in SQL functions

DBTI MEZONE and SESSI ONTI MEZONE. If the time zones have not been set manually,
Oracle Database uses the operating system time zone by default. If the operating

system time zone is not a valid Oracle time zone, then Oracle uses UTC as the default
value.

Table 2-4 Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL
YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 0lto 12 Oto 11

DAY 01 to 31 (limited by the values of MONTHand YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)

HOUR 00to 23 Oto23

M NUTE 00 to 59 0to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the
fractional seconds. The 9(n) portion is not applicable precision of interval
for DATE. fractional seconds

TI MEZONE_HOUR

-12 to 14 (This range accommodates daylight saving Not applicable
time changes.) Not applicable for DATE or
TI MESTAMP.

Basic Elements of Oracle SQL 2-15

Datatypes

Table 2-4 (Cont.) Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL
TI MEZONE_M NUTE 00 to 59. Not applicable for DATE or TI MESTAMP. Not applicable

(See note at end of table)

TI MEZONE_REGQ ON Query the TZNAME column of the V3Tl MEZONE_ Not applicable

NAMES data dictionary view. Not applicable for
DATE or TI MESTAMP. For a complete listing of all
timezone regions, refer to Oracle Database
Globalization Support Guide.

TI MEZONE_ABBR Query the TZABBREV column of the V$TI MEZONE_ Not applicable
NAMES data dictionary view. Not applicable for
DATE or TI MESTAMP.

Note: TI MEZONE_HOUR and TI MEZONE_M NUTE are specified together and
interpreted as an entity in the format +| - hh:mm, with values ranging from -12:59 to
+14:00. Please refer to Oracle Data Provider for .NET Developer's Guide for information
on specifying time zone values for that API.

DATE Datatype

The DATE datatype stores date and time information. Although date and time
information can be represented in both character and number datatypes, the DATE
datatype has special associated properties. For each DATE value, Oracle stores the
following information: century, year, month, date, hour, minute, and second.

You can specify a DATE value as a literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. For examples of expressing DATE
values in both these ways, please refer to "Datetime Literals" on page 2-48.

Using Julian Days A Julian day number is the number of days since January 1, 4712 BC.
Julian days allow continuous dating from a common reference. You can use the date
format model "J" with date functions TO_DATE and TO_CHAR to convert between
Oracle DATE values and their Julian equivalents.

Note: Oracle Database uses the astronomical system of calculating
Julian days, in which the year 4713 BC is specified as -4712. The
historical system of calculating Julian days, in contrast, specifies 4713
BC as -4713. If you are comparing Oracle Julian days with values
calculated using the historical system, then take care to allow for the
365-day difference in BC dates. For more information, see
http://aa.usno. navy. m|/faq/ docs/m |l enniumhtnl.

The default date values are determined as follows:

« Theyear is the current year, as returned by SYSDATE.

« The month is the current month, as returned by SYSDATE.
« Theday is 01 (the first day of the month).

= The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date itself
is not specified, as in the following example, which is issued in the month of May:

SELECT TO DATE(’ 2005, ' YYYY') FROM DUAL;

2-16 Oracle Database SQL Reference

Datatypes

01- MAY- 05

Example This statement returns the Julian equivalent of January 1, 1997:

SELECT TO CHAR(TO DATE(' 01-01-1997', 'MW DD YYYY'),'J")
FROM DUAL,;

2450450

See Also: "Selecting from the DUAL Table" for a description of the
DUAL table

TIMESTAMP Datatype

The TI MESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus hour, minute, and second values. This
datatype is useful for storing precise time values. Specify the TI MESTAMP datatype as
follows:

TI MESTAMP [(fractional _seconds_preci sion)]

where fracti onal _seconds_preci si on optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

See Also: TO_TIMESTAMP on page 5-200 for information on
converting character data to TI MESTAMP data

TIMESTAMP WITH TIME ZONE Datatype

TI MESTAMP W THTI ME ZONE is a variant of TI MESTAMP that includes a time zone
offset in its value. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time—formerly Greenwich
Mean Time). This datatype is useful for collecting and evaluating date information
across geographic regions.

Specify the TI MESTAMP W THTI ME ZONE datatype as follows:
TI MESTAMP [(fractional _seconds_precision)] WTH Tl ME ZONE
where fracti onal _seconds_preci si on optionally specifies the number of digits

Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/.Oracle time zone data may not reflect the most
recent data available at this site.

Basic Elements of Oracle SQL 2-17

Datatypes

See Also:

« Oracle Database Globalization Support Guide for more information
on Oracle time zone data

« "Support for Daylight Saving Times" on page 2-21 and Table 2-19,
" Attributes of the XMLFormat Object” on page 2-67 for
information on daylight saving support

« TO_TIMESTAMP_TZ on page 5-201 for information on converting
character data to TI MESTAMP W THTI ME ZONE data

« ALTER SESSION on page 11-45 for information on the ERROR _
ON_OVERLAP_TI ME session parameter

TIMESTAMP WITH LOCAL TIME ZONE Datatype

TI MESTAMP W THLOCAL Tl ME ZONE is another variant of TI MESTAMP that includes a
time zone offset in its value. It differs from TI MESTAMP W THTI ME ZONE in that data
stored in the database is normalized to the database time zone, and the time zone
offset is not stored as part of the column data. When a user retrieves the data, Oracle
returns it in the user's local session time zone. The time zone offset is the difference (in
hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). This datatype is useful for displaying date
information in the time zone of the client system in a two-tier application.

Specify the TI MESTAMP W THLOCAL TI ME ZONE datatype as follows:
TI MESTAMP [(fractional _seconds_precision)] WTH LOCAL TI ME ZONE

where fracti onal _seconds_preci si on optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/.Oracletime zone data may not reflect the most
recent data available at this site.

See Also:

« Oracle Database Globalization Support Guide for more information
on Oracle time zone data

« Oracle Database Application Developer's Guide - Fundamentals for
examples of using this datatype and CAST on page 5-24 for
information on converting character data to TI| MESTAMP W TH
LOCAL TI ME ZONE

INTERVAL YEAR TO MONTH Datatype

| NTERVAL YEAR TOMONTH stores a period of time using the YEAR and MONTH
datetime fields. This datatype is useful for representing the difference between two
datetime values when only the year and month values are significant.

Specify | NTERVAL YEAR TOMONTH as follows:
| NTERVAL YEAR [(year_precision)] TO MONTH

where year _pr eci si on is the number of digits in the YEAR datetime field. The
default value of year _preci si onis 2.

You have a great deal of flexibility when specifying interval values as literals. Please
refer to "Interval Literals" on page 2-51 for detailed information on specify interval

2-18 Oracle Database SQL Reference

Datatypes

values as literals. Also see "Datetime and Interval Examples” on page 2-21 for an
example using intervals.

INTERVAL DAY TO SECOND Datatype

| NTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. This datatype is useful for representing the precise difference between
two datetime values.

Specify this datatype as follows:

| NTERVAL DAY [(day_precision)]
TO SECOND [(fractional _seconds_preci sion)]

where

« day_precision isthe number of digits in the DAY datetime field. Accepted
values are 0 to 9. The default is 2.

« fractional _seconds_preci sion isthe number of digits in the fractional part
of the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

You have a great deal of flexibility when specifying interval values as literals. Please
refer to "Interval Literals" on page 2-51 for detailed information on specify interval
values as literals. Also see "Datetime and Interval Examples" on page 2-21 for an
example using intervals.

Datetime/Interval Arithmetic

You can perform a number of arithmetic operations on date (DATE), timestamp

(TI MESTAMP, TI MESTAMP W THTI ME ZONE, and TI MESTAMP W THLOCAL TI ME
ZONE) and interval (I NTERVAL DAY TOSECOND and | NTERVAL YEAR TOMONTH) data.
Oracle calculates the results based on the following rules:

= You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to
date values and interprets NUVBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE
- 7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the
hi r e_dat e column of the sample table enpl oyees from SYSDATE returns the
number of days since each employee was hired. You cannot multiply or divide
date or timestamp values.

« Oracle implicitly converts Bl NARY_FLOAT and Bl NARY_DOUBLE operands to
NUMBER.

« Each DATE value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATE data. For example, the MONTHS _
BETWEEN function returns the number of months between two dates. The
fractional portion of the result represents that portion of a 31-day month.

« If one operand is a DATE value or a numeric value (neither of which contains time
zone or fractional seconds components), then:

— Oracle implicitly converts the other operand to DATE data. (The exception is
multiplication of a numeric value times an interval, which returns an interval.)

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

Basic Elements of Oracle SQL 2-19

Datatypes

— If the other operand has a fractional seconds value, then the fractional seconds

value is lost.

« When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATE datatype, Oracle implicitly converts the non-DATE
value to a DATE value. Please refer to "Datetime Functions” on page 5-4 for

information on which functions cause implicit conversion to DATE.

« Oracle performs all timestamp arithmetic in UTC time. For TI| MESTAMP W TH
LOCAL TI ME ZONE, Oracle converts the datetime value from the database time
zone to UTC and converts back to the database time zone after performing the
arithmetic. For TI MESTAMP W THTI ME ZONE, the datetime value is always in

UTC, so no conversion is necessary.

Table 2-5 is a matrix of datetime arithmetic operations. Dashes represent operations

that are not supported.

Table 2-5 Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric
DATE — — — —
+ — — DATE DATE
DATE DATE DATE DATE
* J— J— J— J—
/ — — — —
TIMESTAMP — — — —
+ — — TI MESTAMP —
I NTERVAL | NTERVAL TI MESTAWVP TI MESTAMP
* J— J— J— J—
/ — — _ —
INTERVAL — — — —
+ DATE TI MESTAMP | NTERVAL —
— — | NTERVAL —
* — — — | NTERVAL
/ — — — | NTERVAL
Numeric — — — —
+ DATE DATE — NA
— — — NA
* — — | NTERVAL NA
/ — — — NA

Examples You can add an interval value expression to a start time. Consider the
sample table oe. or der s with a column or der _dat e. The following statement adds
30 days to the value of the or der _dat e column:

SELECT order_id, order_date + |INTERVAL '30'

2-20 Oracle Database SQL Reference

DAY FROM orders;

Datatypes

Support for Daylight Saving Times

Oracle Database automatically determines, for any given time zone region, whether
daylight saving is in effect and returns local time values accordingly. The datetime
value is sufficient for Oracle to determine whether daylight saving time is in effect for
a given region in all cases except boundary cases. A boundary case occurs during the
period when daylight saving goes into or comes out of effect. For example, in the
US-Pacific region, when daylight saving goes into effect, the time changes from 2:00
a.m. to 3:00 a.m. The one hour interval between 2 and 3 a.m. does not exist. When
daylight saving goes out of effect, the time changes from 2:00 a.m. back to 1:00 a.m.,
and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZRand TZD format elements, as
described in Table 2-19. TZR represents the time zone region in datetime input strings.
Examples are 'Aust r al i a/ Nor t h', 'UTC, and 'Si ngapor e'. TZD represents an
abbreviated form of the time zone region with daylight saving information. Examples
are 'PST' for US/Pacific standard time and 'PDT" for US/Pacific daylight time. To see a
listing of valid values for the TZRand TZD format elements, query the TZNAME and
TZABBREV columns of the V$TI MEZONE_NAMES dynamic performance view.

Timezone region names are needed by the daylight saving feature. The region names
are stored in two time zone files. The default time zone file is the complete (larger) file
containing all time zones. The other time zone file is a small file containing only the
most common time zones to maximize performance. If your time zone is in the small
file, and you want to maximize performance, then you must provide a path to the
small file by way of the ORA_TZFI LE environment variable. Please refer to Oracle
Database Administrator’s Guide for more information about setting the ORA_TZFI LE
environment variable. For a complete listing of the timezone region names in both
files, please refer to Oracle Database Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/.Oracletime zone data may not reflect the most
recent data available at this site.

See Also:

« "Datetime Format Models" on page 2-58 for information on the
format elements and the session parameter ERROR_ON _
OVERLAP_TIME on page 11-53.

« Oracle Database Globalization Support Guide for more information
on Oracle time zone data

« Oracle Database Reference for information on the dynamic
performance views

Datetime and Interval Examples
The following example shows how to declare some datetime and interval datatypes.

CREATE TABLE time_table (

start_tine TI MESTANP,
duration_1 I NTERVAL DAY (6) TO SECOND (5),
duration_2 | NTERVAL YEAR TO MONTH);

The start _ti me column is of type TI MESTAMP. The implicit fractional seconds
precision of TI MESTAMP is 6.

The durati on_1 column is of type | NTERVAL DAY TO SECOND. The maximum
number of digits in field DAY is 6 and the maximum number of digits in the fractional
second is 5. The maximum number of digits in all other datetime fields is 2.

Basic Elements of Oracle SQL 2-21

Datatypes

The dur ati on_2 column is of type | NTERVAL YEAR TOMONTH. The maximum
number of digits of the value in each field (YEAR and MONTH) is 2.

Interval datatypes do not have format models. Therefore, to adjust their presentation,
you must combine character functions such as EXTRACT and concatenate the
components. For example, the following examples query the hr . enpl oyees and

oe. or der s tables, respectively, and change interval output from the form "yy-mm" to
"yy years mm months" and from "dd-hh" to "dddd days hh hours":

SELECT | ast_name, EXTRACT(YEAR FROM (SYSDATE - hire_date) YEAR TO MONTH)

|| * years '

|| EXTRACT(MONTH FROM (SYSDATE - hire_date) YEAR TO MONTH)

|| ' months' “Interval”
FROM enpl oyees ;
LAST_NAME I nterval
Ki ng 17 years 11 nonths
Kochhar 15 years 8 nonths
De Haan 12 years 4 nonths
Hunol d 15 years 4 nont hs
Er nst 14 years 0 nonths
Austin 7 years 11 nonths
Pat abal | a 7 years 3 nonths
Lorentz 6 years 3 nonths
G eenber g 10 years 9 nont hs

SELECT order _id,
EXTRACT(DAY FROM (SYSDATE - order_date) DAY TO SECOND)
|| ' days '
|| EXTRACT(HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
[| ' hours' "Interval"
FROM or ders;

ORDER I D Interval

RAW and LONG RAW Datatypes

The RAWand LONG RAWdatatypes store data that is not to be interpreted (that is, not
explicitly converted when moving data between different systems) by Oracle
Database. These datatypes are intended for binary data or byte strings. For example,
you can use LONG RAWto store graphics, sound, documents, or arrays of binary data,
for which the interpretation is dependent on the use.

Oracle strongly recommends that you convert LONG RAWcolumns to binary LOB
(BLOB) columns. LOB columns are subject to far fewer restrictions than LONGcolumns.
See TO_LOB on page 5-195 for more information.

2-22 Oracle Database SQL Reference

Datatypes

RAWis a variable-length datatype like VARCHARZ2, except that Oracle Net (which
connects user sessions to the instance) and the Import and Export utilities do not
perform character conversion when transmitting RAWor LONG RAWdata. In contrast,
Oracle Net and Import/Export automatically convert CHAR, VARCHAR2, and LONG
data from the database character set to the user session character set (which you can
set with the NLS_LANGUACE parameter of the ALTER SESSI ON statement), if the two
character sets are different.

When Oracle automatically converts RAWor LONG RAWdata to and from CHAR data, the
binary data is represented in hexadecimal form, with one hexadecimal character
representing every four bits of RAWdata. For example, one byte of RAWdata with bits
11001011 is displayed and entered as CB.

Large Object (LOB) Datatypes
The built-in LOB datatypes BLOB, CLOB, and NCLOB (stored internally) and BFI LE
(stored externally) can store large and unstructured data such as text, image, video,
and spatial data. The size of BLOB, CLOB, and NCLOB data can be up to (4 gigabytes -1)
* (the value of the CHUNK parameter of LOB storage). If the tablespaces in your
database are of standard block size, and if you have used the default value of the
CHUNK parameter of LOB storage when creating a LOB column, then this is equivalent
to (4 gigabytes - 1) * (database block size). BFI LE data can be up to 2%%-1 bytes,
although your operating system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

LOB columns contain LOB locators that can refer to in-line (in the database) or
out-of-line (outside the database) LOB values. Selecting a LOB from a table actually
returns the LOB locator and not the entire LOB value. The DBMS_LOB package and
Oracle Call Interface (OCI) operations on LOBs are performed through these locators.

LOBs are similar to LONGand LONG RAWtypes, but differ in the following ways:
« LOBs can be attributes of an object type (user-defined datatype).

« The LOB locator is stored in the table column, either with or without the actual
LOB value. BLOB, NCLOB, and CLOB values can be stored in separate tablespaces.
BFI LE data is stored in an external file on the server.

« When you access a LOB column, the locator is returned.

« A LOB can be up to (4 gigabytes - 1)*(database block size) in size. BFI LE data can
be up to 2%2-1 bytes, although your operating system may impose restrictions on
this maximum.

Preceding corrected; thomas.chang, 8/26/04.
« LOBs permit efficient, random, piece-wise access to and manipulation of data.
= You can define more than one LOB column in a table.

« With the exception of NCLOB, you can define one or more LOB attributes in an
object.

« You can declare LOB bind variables.
« You can select LOB columns and LOB attributes.

= You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you

Basic Elements of Oracle SQL 2-23

Datatypes

can set the internal LOB value to NULL, empty, or replace the entire LOB with data.
You can set the BFI LE to NULL or make it point to a different file.

« You can update a LOB row-column intersection or a LOB attribute with another
LOB row-column intersection or LOB attribute.

« You can delete a row containing a LOB column or LOB attribute and thereby also
delete the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an in-line LOB column (a LOB column stored in
the database) or a LOB attribute (an attribute of an object type column stored in the
database) simply by issuing an | NSERT or UPDATE statement.

Restrictions on LOB Columns LOB columns are subject to the following restrictions:
= You cannot specify a LOB as a primary key column.

« Oracle Database has limited support for remote LOBs. You can perform cr eat e
t abl e as sel ect andi nsert Zupdat e as sel ect of LOB columns.

For example:

CREATE TABLE t AS SELECT * FROM tabl el@enote_site;

I NSERT INTO t SELECT * FROM tabl el@enote_site;

UPDATE t SET | obcol = (SELECT | obcol FROMtablel@enote _site);

I NSERT I NTO tabl el@enote_site SELECT * from | ocal _table;

UPDATE tabl el@enote_site SET |obcol = (SELECT | obcol FROM I ocal _table);
DELETE FROM t abl el@emote_site <WHERE cl ause i nvol ving non_| ob_col ums>

In statements structured like the preceding examples, only standalone LOB
columns are allowed in the select list.

SQL functions and DBMS_L OB APIs are not supported for use with remote LOB
columns. For example, the following statement is supported:

CREATE TABLE AS SELECT cl ob_col FROM tab@lbs2;

However, the following statement is not supported:
CREATE TABLE AS SELECT DBMS_LOB. SUBSTR(cl ob_col) fromtab@bs2;
In addition, you can insert a character or binary buffer into a remote CLOB or

BLOB, and select a remote CLOB or BLOB into a character or binary buffer. For
example (in PL/SQL):

SELECT cl obcol 1, typel.blobattr |INTO varchar_bufl, raw buf2 FROM
tablel@enote site;

I NSERT | NTO tabl el@enotesite (clobcoll, typel.blobattr) VALUES varchar_buf1,
raw_buf 2;

This is the only supported syntax involving LOBs in remote tables. No other usage
is supported.
« Clusters cannot contain LOBs, either as key or nonkey columns.

« The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

— VARRAY of any LOB type

— VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute.

=« You cannot specify LOB columns in the ORDER BY clause of a query, or in the
CGROUP BY clause of a query or in an aggregate function.

2-24 Oracle Database SQL Reference

Datatypes

You cannot specify a LOB column in a SELECT... DI STI NCT or SELECT... UNI QUE
statement or in a join. However, you can specify a LOB attribute of an object type
columnina SELECT... DI STI NCT statement or in a query that uses the UNI ONor
M NUS set operator if the column’s object type has a MAP or ORDER function
defined on it.

You cannot specify LOB columns in ANALYZE... COVPUTE or ANALYZE...
ESTI MATE statements.

The first (I NI Tl AL) extent of a LOB segment must contain at least three database
blocks.

When creating an UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause.

You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the indextype specification of a domain index. In
addition, Oracle Text lets you define an index on a CLOB column.

In an | NSERT... AS SELECT operation, you can bind up to 4000 bytes of data to
LOB columns and attributes.

If a table has both LONGand LOB columns, you cannot bind more than 4000 bytes
of data to both the LONGand LOB columns in the same SQL statement. However,
you can bind more than 4000 bytes of data to either the LONGor the LOB column.

Note: For a table on which you have defined a DML trigger, if you
use OCI functions or DBMS_L OB routines to change the value of a LOB
column or the LOB attribute of an object type column, then the
database does not fire the DML trigger.

See Also:

« Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Programmer®s Guide for more information about these
interfaces and LOBs

« thenodify _col properties clause of ALTER TABLE on
page 12-2 and TO_LOB on page 5-195 for more information on
converting LONGcolumns to LOB columns

BFILE Datatype

The BFI LE datatype enables access to binary file LOBs that are stored in file systems
outside Oracle Database. A BFI LE column or attribute stores a BFI LE locator, which
serves as a pointer to a binary file on the server file system. The locator maintains the
directory name and the filename.

You can change the filename and path of a BFI LE without affecting the base table by
using the BFI LENAME function. Please refer to BFILENAME on page 5-21 for more
information on this built-in SQL function.

Correction in last sentence below; thomas.chang, 8/26/04.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFI LE data can be
up to 2%2-1 bytes, although your operating system may impose restrictions on this
maximum.

Basic Elements of Oracle SQL 2-25

Datatypes

The database administrator must ensure that the external file exists and that Oracle
processes have operating system read permissions on the file.

The BFI LE datatype enables read-only support of large binary files. You cannot
modify or replicate such a file. Oracle provides APIs to access file data. The primary
interfaces that you use to access file data are the DBMS_L OB package and the Oracle
Call Interface (OCI).

See Also: Oracle Database Application Developer's Guide - Large Objects
and Oracle Call Interface Programmer*s Guide for more information
about LOBs and CREATE DIRECTORY on page 14-41

BLOB Datatype

The BLOB datatype stores unstructured binary large objects. BLOB objects can be
thought of as bitstreams with no character set semantics. BLOB objects can store binary
data up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage). If the
tablespaces in your database are of standard block size, and if you have used the
default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

BL OB objects have full transactional support. Changes made through SQL, the DBVS
L OB package, or the Oracle Call Interface (OCI) participate fully in the transaction.
BLOB value manipulations can be committed and rolled back. However, you cannot
save a BLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

CLOB Datatype

The CLOB datatype stores single-byte and multibyte character data. Both fixed-width
and variable-width character sets are supported, and both use the database character
set. CLOB objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of
LOB storage) of character data. If the tablespaces in your database are of standard
block size, and if you have used the default value of the CHUNK parameter of LOB
storage when creating a LOB column, then this is equivalent to (4 gigabytes - 1) *
(database block size).

CLOB objects have full transactional support. Changes made through SQL, the DBVS
L OB package, or the Oracle Call Interface (OCI) participate fully in the transaction.
CLOB value manipulations can be committed and rolled back. However, you cannot
save a CLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

NCLOB Datatype

The NCLOB datatype stores Unicode data. Both fixed-width and variable-width
character sets are supported, and both use the national character set. NCLOB objects
can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of
character text data. If the tablespaces in your database are of standard block size, and if
you have used the default value of the CHUNK parameter of LOB storage when creating
a LOB column, then this is equivalent to (4 gigabytes - 1) * (database block size)(4
gigabytes-1) * (database block size).

NCL OB objects have full transactional support. Changes made through SQL, the DBVS
LOB package, or the OCI participate fully in the transaction. NCLOB value
manipulations can be committed and rolled back. However, you cannot save an NCLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

2-26 Oracle Database SQL Reference

Datatypes

See Also: Oracle Database Globalization Support Guide for information
on Unicode datatype support

ROWID Datatype
Each row in the database has an address. You can examine a row address by querying
the pseudocolumn ROW D. Values of this pseudocolumn are strings representing the
address of each row. These strings have the datatype RON D. You can also create tables
and clusters that contain actual columns having the RON D datatype. Oracle Database
does not guarantee that the values of such columns are valid rowids. Please refer to
Chapter 3, "Pseudocolumns” for more information on the RON D pseudocolumn.

Restricted Rowids

Beginning with Oracle8, Oracle SQL incorporated an extended format for rowids to
efficiently support partitioned tables and indexes and tablespace-relative data block
addresses (DBAs) without ambiguity.

Character values representing rowids in Oracle7 and earlier releases are called
restricted rowids. Their format is as follows:

bl ock.row. file

where:

« bl ock is a hexadecimal string identifying the data block of the datafile containing
the row. The length of this string depends on your operating system.

« rowis a four-digit hexadecimal string identifying the row in the data block. The
first row of the block has a digit of 0.

« fileisahexadecimal string identifying the database file containing the row. The
first datafile has the number 1. The length of this string depends on your operating
system.

Extended Rowids

The extended ROW D datatype stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an
identification number assigned to every database segment. You can retrieve the data
object number from the data dictionary views USER_OBJECTS, DBA OBJECTS, and
ALL_OBJECTS. Objects that share the same segment (clustered tables in the same
cluster, for example) have the same object number.

Extended rowids are stored as base 64 values that can contain the characters A-Z, a-z,
0-9, and the plus sign (+) and forward slash (/). Extended rowids are not available
directly. You can use a supplied package, DBMS_ROW D, to interpret extended rowid
contents. The package functions extract and provide information that would be
available directly from a restricted rowid as well as information specific to extended
rowids.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information on the functions available with the DBMS_ROW D package
and how to use them

Compatibility and Migration

The restricted form of a rowid is still supported in this release for backward
compatibility, but all tables return rowids in the extended format.

Basic Elements of Oracle SQL 2-27

Datatypes

See Also: Oracle Database Upgrade Guide for information regarding
compatibility and migration issues

UROWID Datatype

Each row in a database has an address. However, the rows of some tables have
addresses that are not physical or permanent or were not generated by Oracle
Database. For example, the row addresses of index-organized tables are stored in
index leaves, which can move. Rowids of foreign tables (such as DB2 tables accessed
through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROA D pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROA D pseudocolumn
of an index-organized table has a datatype of UROW D. You can access this
pseudocolumn as you would the RON D pseudocolumn of a heap-organized table (that
is, using a SELECT ... ROW D statement). If you want t o store the rowids of an
index-organized table, then you can define a column of type UROW D for the table and
retrieve the value of the ROW D pseudocolumn into that column.

Note: Heap-organized tables have physical rowids. Oracle does not
recommend that you specify a column of datatype UROW D for a
heap-organized table.

See Also: Oracle Database Concepts for more information on universal
rowids and "ROWID Datatype" on page 2-27 for a discussion of the
address of database rows

ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name that differs from the Oracle Database datatype name, records it as
the name of the datatype of the column, and then stores the column data in an Oracle
datatype based on the conversions shown in the tables that follow.

Table 2-6 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
CHARACTER(n) CHAR(n)
CHAR(n)

CHARACTER VARYI NG n) VARCHAR(n)
CHAR VARYI NG n)

NATI ONAL CHARACTER(n) NCHAR(n)

NATI ONAL CHAR(n)

NCHAR(n)

2-28 Oracle Database SQL Reference

Datatypes

Table 2-6 (Cont.) ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

NATI ONAL CHARACTER VARY!I NG(n) NVARCHAR2(n)
NATI ONAL CHAR VARYI NG(n)
NCHAR VARY! NG(n)

NUMERI C(p, s) NUVBER(p, s)
DECI MAL(p, s) (a)

I NTEGER NUVBER(38)
I NT
SMALLI NT
FLOAT (b) NUVBER
DOUBLE PRECI SI ON (c)
REAL (d)
Notes:
a. The NUMERI Cand DECI MAL datatypes can specify only fixed-point numbers.
For those datatypes, s defaults to 0.
b. The FLOAT datatype is a floating-point number with a binary precision b. The
default precision for this datatypes is 126 binary, or 38 decimal.
c. The DOUBLE PRECI SI ONdatatype is a floating-point number with binary
precision 126.
d. The REAL datatype is a floating-point number with a binary precision of 63, or

18 decimal.

Table 2-7 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype
CHARACTER(n) CHAR(n)
VARCHAR(n) VARCHAR(n)
LONG VARCHAR(n) LONG
DECI MAL(p, s) () NUVBER(p, s)
| NTEGER NUMBER(38)
SMALLI NT
FLOAT (b) NUVBER
Notes:
a. The DECI MAL datatype can specify only fixed-point numbers. For this
datatype, s defaults to 0..
b. The FLOAT datatype is a floating-point number with a binary precision b. The

default precision for this datatype is 126 binary or 38 decimal.

Do not define columns with the following SQL/DS and DB2 datatypes, because they
have no corresponding Oracle datatype:

« GCGRAPH C
« LONGVARGRAPHI C

Basic Elements of Oracle SQL 2-29

Datatypes

« VARGRAPHI C
« TIME

Note that data of type Tl ME can also be expressed as Oracle datetime data.

See Also: Datatypes in Oracle Database SQL Reference

User-Defined Types

User-defined datatypes use Oracle built-in datatypes and other user-defined datatypes
as the building blocks of object types that model the structure and behavior of data in
applications. The sections that follow describe the various categories of user-defined

types.
See Also:
« Oracle Database Concepts for information about Oracle built-in
datatypes
« CREATE TYPE on page 17-3 and the CREATE TYPE BODY on
page 17-20 for information about creating user-defined types
« Oracle Database Application Developer's Guide - Fundamentals for
information about using user-defined types
Object Types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

« A name, which identifies the object type uniquely within that schema.

« Attributes, which are built-in types or other user-defined types. Attributes model
the structure of the real-world entity.

« Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C or Java and stored externally. Methods
implement operations the application can perform on the real-world entity.

REF Datatypes

An object identifier (represented by the keyword O D) uniquely identifies an object
and enables you to reference the object from other objects or from relational tables. A
datatype category called REF represents such references. A REF datatype is a container
for an object identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling”. A
dangling REF is different from a null REF. To determine whether a REF is dangling or
not, use the condition I S [NOT] DANGLI NG For example, given object view oc_

or der s in the sample schema oe, the column cust oner _r ef is of type REF to type
cust oner _t yp, which has an attribute cust _enmi | :

SELECT o. cust oner _ref. cust _emai |
FROM oc_orders o
WHERE o. custoner _ref |'S NOT DANGLI NG

2-30 Oracle Database SQL Reference

Datatypes

Varrays

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
position of the element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of
variable size, which is why they are called varrays. You must specify a maximum size
when you declare the varray.

When you declare a varray, it does not allocate space. It defines a type, which you can
use as:

« The datatype of a column of a relational table
« An object type attribute
« APL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (that is, as part of the row data) or
out of line (in a LOB), depending on its size. However, if you specify separate storage
characteristics for a varray, then Oracle stores it out of line, regardless of its size. Please
refer to the varray_col_properties of CREATE TABLE on page 16-34 for more
information about varray storage.

Nested Tables

A nested table type models an unordered set of elements. The elements may be
built-in types or user-defined types. You can view a nested table as a single-column
table or, if the nested table is an object type, as a multicolumn table, with a column for
each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can use
to declare:

« The datatype of a column of a relational table
« An object type attribute
« APL/SQL variable, parameter, or function return type

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the nested
table data in a single table, which it associates with the enclosing relational or object
table.

Oracle-Supplied Types

Oracle provides SQL-based interfaces for defining new types when the built-in or
ANSI-supported types are not sufficient. The behavior for these types can be
implemented in C/C++, Java, or PL/ SQL. Oracle Database automatically provides the
low-level infrastructure services needed for input-output, heterogeneous client-side
access for new datatypes, and optimizations for data transfers between the application
and the database.

These interfaces can be used to build user-defined (or object) types and are also used
by Oracle to create some commonly useful datatypes. Several such datatypes are
supplied with the server, and they serve both broad horizontal application areas (for
example, the Any types) and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

Basic Elements of Oracle SQL 2-31

Datatypes

Any Types

XML Types

« Any Types
« XML Types
« Spatial Types
« Media Types

The Any types provide highly flexible modeling of procedure parameters and table
columns where the actual type is not known. These datatypes let you dynamically
encapsulate and access type descriptions, data instances, and sets of data instances of
any other SQL type. These types have OCI and PL/SQL interfaces for construction
and access.

ANYTYPE
This type can contain a type description of any named SQL type or unnamed transient
type.

ANYDATA

This type contains an instance of a given type, with data, plus a description of the
type. ANYDATA can be used as a table column datatype and lets you store
heterogeneous values in a single column. The values can be of SQL built-in types as
well as user-defined types.

ANYDATASET

This type contains a description of a given type plus a set of data instances of that
type. ANYDATASET can be used as a procedure parameter datatype where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information on the ANYTYPE, ANYDATA, and ANYDATASET types

Extensible Markup Language (XML) is a standard format developed by the World
Wide Web Consortium (W3C) for representing structured and unstructured data on
the World Wide Web. Universal resource identifiers (URIs) identify resources such as
Web pages anywhere on the Web. Oracle provides types to handle XML and URI data,
as well as a class of URIs called DBURI Ref types to access data stored within the
database itself. It also provides a new set of types to store and access both external and
internal URIs from within the database.

XMLType

This Oracle-supplied type can be used to store and query XML data in the database.
XM_Type has member functions you can use to access, extract, and query the XML
data using XPath expressions. XPath is another standard developed by the W3C
committee to traverse XML documents. Oracle XMLType functions support many W3C
XPath expressions. Oracle also provides a set of SQL functions and PL/SQL packages
to create XMLType values from existing relational or object-relational data.

XM_Type is a system-defined type, so you can use it as an argument of a function or as
the datatype of a table or view column. You can also create tables and views of

2-32 Oracle Database SQL Reference

Datatypes

XM_.Type. When you create an XMLType column in a table, you can choose to store the
XML data in a CLOB column or object relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create a
table or column conforming to the registered schema. In this case Oracle stores the
XML data in underlying object-relational columns by default, but you can specify
storage in a CLOB column even for schema-based data.

Queries and DML on XM_Type columns operate the same regardless of the storage
mechanism.

See Also: Oracle XML DB Developer's Guide for information about
using XMLType columns

URI Datatypes

Oracle supplies a family of URI types—URI Type, DBURI Type, XDBURI Type, and
HTTPURI Ty pe—which are related by an inheritance hierarchy. URI Type is an object
type and the others are subtypes of URI Type. Since URI Type is the supertype, you
can create columns of this type and store DBURI Type or HTTPURI Type type instances
in this column.

HTTPURIType You can use HTTPURI Type to store URLs to external Web pages or to
files. Oracle accesses these files using HTTP (Hypertext Transfer Protocol).

XDBURIType You can use XDBURI Type to expose documents in the XML database
hierarchy as URIs that can be embedded in any URI Type column in a table. The
XDBURI Type consists of a URL, which comprises the hierarchical name of the XML
document to which it refers and an optional fragment representing the XPath syntax.
The fragment is separated from the URL part by a pound sign (#). The following lines
are examples of XDBURI Type:

/ home/ oe/ docl. xm
/ hone/ oe/ docl. xm #/ or der s/ order _item

DBURIType DBURI Type can be used to store DBURI Ref values, which reference data
inside the database. Storing DBURI Ref values lets you reference data stored inside or
outside the database and access the data consistently.

DBURI Ref values use an XPath-like representation to reference data inside the
database. If you imagine the database as an XML tree, then you would see the tables,
rows, and columns as elements in the XML document. For example, the sample
human resources user hr would see the following XML tree:

<HR>
<EMPLOYEES>
<RON
<EMPLOYEE | D>205</ EMPLOYEE_| D>
<LAST_NAME>H ggi ns</ LAST_NAMVE>

<SALARY>12000</ SALARY>
. <I-- other colums -->
</ RON

. <l-- other rows -->
</ EMPLOYEES>
<!-- other tables..-->
</ HR>
<l-- other user schemas on which you have sone privilege on..-->

Basic Elements of Oracle SQL 2-33

Datatypes

Spatial Types

The DBURI Ref is an XPath expression over this virtual XML document. So to reference
the SALARY value in the EMPLOYEES table for the employee with employee number
205, we can write a DBURI Ref as,

| HR/ EMPLOYEES/ RON EMPLOYEE._| D=205] / SALARY

Using this model, you can reference data stored in CLOB columns or other columns
and expose them as URLSs to the external world.

URIFactory Package

Oracle also provides the URI Fact or y package, which can create and return instances
of the various subtypes of the URI Types. The package analyzes the URL string,
identifies the type of URL (HTTP, DBURI , and so on), and creates an instance of the
subtype. To create a DBURI instance, the URL must start with the prefix / or adb. For
example, URI Fact ory. get URI (' / or adb/ HR/ EMPLOYEES') would create a
DBURI Type instance and URI Fact ory. get Uri (' / sys/ schema') would create an
XDBURI Type instance.

See Also:

« Oracle Database Application Developer's Guide - Object-Relational
Features for general information on object types and type
inheritance

« Oracle XML Developer's Kit Programmer's Guide for more
information about these supplied types and their implementation

« Oracle Streams Advanced Queuing User's Guide and Reference for
information about using XM_Type with Oracle Advanced
Queuing

Oracle Spatial is designed to make spatial data management easier and more natural
to users of location-enabled applications, geographic information system (GIS)
applications, and geoimaging applications. After the spatial data is stored in an Oracle
database, you can easily manipulate, retrieve, and relate it to all the other data stored
in the database. The following datatypes are not available unless you have installed
Oracle Spatial.

SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEQVETRY in a user-defined table. Any table that has a
column of type SDO_GEQVETRY must have another column, or set of columns, that
defines a unique primary key for that table. Tables of this sort are sometimes called
geometry tables.

The SDO_GEOVETRY object type has the following definition:
CREATE TYPE SDO_GEQVETRY AS OBJECT (

sSgo_gtype NUMBER,
sdo_srid NUVBER,
sdo_poi nt SDO PO NT_TYPE,

sdo_elem.info SDO_ELEM | NFO_ARRAY,
sdo_or di nat es SDO_ORDI NATE_ARRAY) ;

2-34 Oracle Database SQL Reference

Datatypes

Media Types

SDO_TOPO_GEOMETRY

This type describes a topology geometry, which is stored in a single row, in a single
column of object type SDO TOPO _GEQVETRY in a user-defined table.

The SDO_TOPO_GEQVETRY object type has the following definition:
CREATE TYPE SDO TOPO GEOMETRY AS OBJECT (

tg_type NUMBER,
tg_id NUMBER,
tg_layer_id NUMBER,
topol ogy_id NUMBER) ;

SDO_GEORASTER

In the GeoRaster object-relational model, a raster grid or image object is stored in a
single row, in a single column of object type SDO_GEORASTER in a user-defined table.
Tables of this sort are called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO GEORASTER AS OBJECT (
rasterType NUMBER,
spatial Extent ~ SDO_GEQVETRY,
rasterDat aTabl e VARCHAR2(32),
rasterlD NUMBER,
met adat a XM.Type) ;

See Also: Oracle Spatial User's Guide and Reference, Oracle Spatial
Topology and Network Data Models, and Oracle Spatial GeoRaster for
information on the full implementation of the spatial datatypes and
guidelines for using them

Oracle interMedia uses object types, similar to Java or C++ classes, to describe
multimedia data. An instance of these object types consists of attributes, including
metadata and the media data, and methods. The interMedia datatypes are created in
the ORDSYS schema. Public synonyms exist for all the datatypes, so you can access
them without specifying the schema name.

See Also: Oracle interMedia Reference for information on the
implementation of these types and guidelines for using them

ORDAudio
The ORDAUDI Oobiject type supports the storage and management of audio data.

ORDImage
The ORDI MAGE object type supports the storage and management of image data.

ORDImageSignature

The ORDI mageSi gnat ur e object type supports a compact representation of the color,
texture, and shape information of image data.

ORDVideo
The ORDVI DEOobject type supports the storage and management of video data.

Basic Elements of Oracle SQL 2-35

Datatypes

ORDDoc

The ORDDOC object type supports storage and management of any type of media data,
including audio, image and video data. Use this type when you want all media to be
stored in a single column.

The following datatypes provide compliance with the 1ISO-IEC 13249-5 Still Image
standard, commonly referred to as SQL/MM Stillimage.

SI_Stillimage

The SI _Still | mage object type represents digital images with inherent image
characteristics such as height, width, and format.

SI_Color
The SI _Col or object type encapsulates color values.

SI_AverageColor

The SI _Aver ageCol or object type represents a feature that characterizes an image
by its average color.

SI_ColorHistogram

The SI _Col or Hi st ogr amobject type represents a feature that characterizes an image
by the relative frequencies of the colors exhibited by samples of the raw image.

SI_PositionalColor

Given an image divided into n by mrectangles, the SI _Posi ti onal Col or object
type represents the feature that characterizes an image by the n by mmost significant
colors of the rectangles.

S| Texture

The SI _Text ur e object type represents a feature that characterizes an image by the
size of repeating items (coarseness), brightness variations (contrast), and predominant
direction (directionality).

S| _FeatureList

The Sl _Feat ur eLi st object type is a list containing up to four of the image features
represented by the preceding object types (SI _Aver ageCol or, Sl _

Col or Hi st ogram SI _Posi ti onal Col or,and SI _Text ur e), where each feature is
associated with a feature weight.

Expression Filter Type

The Oracle Expression Filter allows application developers to manage and evaluate
conditional expressions that describe users' interests in data. The Expression Filter
includes the following datatype:

Expression

Expression Filter uses a virtual datatype called Expr essi on to manage and evaluate
conditional expressions as data in database tables. The Expression Filter creates a
column of Expr essi on datatype from a VARCHAR2 column by assigning an attribute
set to the column. This assignment enables a data constraint that ensures the validity
of expressions stored in the column.

2-36 Oracle Database SQL Reference

Datatype Comparison Rules

You can define conditions using the EVALUATE operator on an Expr essi on datatype
to evaluate the expressions stored in a column for some data. If you are using
Enterprise Edition, then you can also define an Expression Filter index on a column of
Expr essi on datatype to process queries using the EVALUATE operator.

See Also: Oracle Database Application Developer®s Guide - Rules
Manager and Expression Filter for more information on the Expression
Filter

Datatype Comparison Rules

This section describes how Oracle Database compares values of each datatype.

Numeric Values

Date Values

A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value
and is equal to itself.

See Also: "Numeric Precedence" on page 2-13 and "Floating-Point
Numbers" on page 2-11 for more information on comparison
semantics

A later date is considered greater than an earlier one. For example, the date equivalent
of '29-MAR-1997" is less than that of '05-JAN-1998" and '05-JAN-1998 1:35pm' is greater
than '05-JAN-1998 10:09am'.

Character Values

Character values are compared using one of these comparison rules:
« Blank-padded comparison semantics
« Nonpadded comparison semantics

The following sections explain these comparison semantics.

Blank-Padded Comparison Semantics If the two values have different lengths, then
Oracle first adds blanks to the end of the shorter one so their lengths are equal. Oracle
then compares the values character by character up to the first character that differs.
The value with the greater character in the first differing position is considered greater.
If two values have no differing characters, then they are considered equal. This rule
means that two values are equal if they differ only in the number of trailing blanks.
Oracle uses blank-padded comparison semantics only when both values in the
comparison are either expressions of datatype CHAR, NCHAR, text literals, or values
returned by the USER function.

Nonpadded Comparison Semantics Oracle compares two values character by
character up to the first character that differs. The value with the greater character in
that position is considered greater. If two values of different length are identical up to
the end of the shorter one, then the longer value is considered greater. If two values of
equal length have no differing characters, then the values are considered equal. Oracle
uses nonpadded comparison semantics whenever one or both values in the
comparison have the datatype VARCHAR2 or NVARCHAR2.

Basic Elements of Oracle SQL 2-37

Datatype Comparison Rules

The results of comparing two character values using different comparison semantics
may vary. The table that follows shows the results of comparing five pairs of character
values using each comparison semantic. Usually, the results of blank-padded and
nonpadded comparisons are the same. The last comparison in the table illustrates the
differences between the blank-padded and nonpadded comparison semantics.

Blank-Padded Nonpadded
"ac' > 'ab' "ac' > 'ab'
‘ab' > 'a' ‘ab' > 'a
‘ab' > "a' "ab' > 'a'
"ab' = "'ab' "ab' = "'ab'
‘a =ral ‘a > al

Single Characters

Oracle compares single characters according to their numeric values in the database
character set. One character is greater than another if it has a greater numeric value
than the other in the character set. Oracle considers blanks to be less than any
character, which is true in most character sets.

These are some common character sets:

« 7-bit ASCII (American Standard Code for Information Interchange)
« EBCDIC Code (Extended Binary Coded Decimal Interchange Code)
« 1SO 8859/1 (International Standards Organization)

« JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2-8 and Table 2-9.
Uppercase and lowercase letters are not equivalent. The numeric values for the
characters of a character set may not match the linguistic sequence for a particular
language.

Table 2-8 ASCII Character Set

Symbol Decimal value Symbol Decimal value

bl ank 32 ; 59

! 33 < 60
34 = 61

35 > 62

$ 36 ? 63

% 37 @ 64

& 38 A-Z 65-90
39 [91

(40 \ 92

) 41] 93

* 42 n 94

+ 43 _ 95

, 44 ‘ 96

2-38 Oracle Database SQL Reference

Datatype Comparison Rules

Table 2-8 (Cont.) ASCII Character Set

Object Values

Symbol Decimal value Symbol Decimal value
- 45 a-z 97-122
46 { 123
/ 47 124
0-9 48- 57 125
58 ~ 126
Table 2-9 EBCDIC Character Set
Symbol Decimal value Symbol Decimal value
bl ank 64 % 108
¢ 74 _ 109
75 > 110
< 76 ? 111
(77 122
+ 78 # 123
| 79 124
& 80 ' 125
! 90 = 126
$ 91 127
* 92 a-i 129-137
) 93 j-r 145- 153
; 94 S-z 162- 169
y 95 A- 193- 201
- 96 J-R 209- 217
/ 97 S-Z 226- 233

Object values are compared using one of two comparison functions: MAP and ORDER.
Both functions compare object type instances, but they are quite different from one
another. These functions must be specified as part of any object type that will be

compared with other object types.

See Also:

CREATE TYPE on page 17-3 for a description of MAP and

ORDER methods and the values they return

Varrays and Nested Tables
Comparison of nested tables is described in "Comparison Conditions" on page 7-4.

Datatype Precedence Oracle uses datatype precedence to determine implicit
datatype conversion, which is discussed in the section that follows. Oracle datatypes

take the following precedence:

« Datetime and interval datatypes

Basic Elements of Oracle SQL 2-39

Datatype Comparison Rules

« BI NARY_DCUBLE

« BI NARY_FLOAT

« NUMBER

« Character datatypes

« All other built-in datatypes

Data Conversion

Generally an expression cannot contain values of different datatypes. For example, an
expression cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle supports
both implicit and explicit conversion of values from one datatype to another.

Implicit and Explicit Data Conversion

Oracle recommends that you specify explicit conversions, rather than rely on implicit
or automatic conversions, for these reasons:

« SQL statements are easier to understand when you use explicit datatype
conversion functions.

« Implicit datatype conversion can have a negative impact on performance,
especially if the datatype of a column value is converted to that of a constant
rather than the other way around.

« Implicit conversion depends on the context in which it occurs and may not work
the same way in every case. For example, implicit conversion from a datetime
value to a VARCHARZ2 value may return an unexpected year depending on the
value of the NLS_DATE_FORNMAT parameter.

« Algorithms for implicit conversion are subject to change across software releases
and among Oracle products. Behavior of explicit conversions is more predictable.

Implicit Data Conversion

Oracle Database automatically converts a value from one datatype to another when
such a conversion makes sense. Implicit conversion to character datatypes follows
these rules:

Table 2-10 is a matrix of Oracle implicit conversions. The table shows all possible
conversions, without regard to the direction of the conversion or the context in which
it is made. The rules governing these details follow the table.

Table 2-10 Implicit Type Conversion Matrix
Y
£)
N 8 2
N 4 — ' (o]
e £ "'§J 2 o N 9
< T
x = >] > > m
c ¢ 5 ¢ pBE g £ §E ¢ z 2 8z 8 ¢
E E
T @) E o) Z Z @)
@) g z 2 58 = z o) S & 8 o D z
CHAR X X X X X X X X X X X
VARCHAR2 X X X X X X X X X X
NCHAR X X - X X X X X X X X X
NVARCHAR2 X X X X X X X X X X
DATE X X - - -

2-40 Oracle Database SQL Reference

Datatype Comparison Rules

Table 2-10 (Cont.) Implicit Type Conversion Matrix

Y
=)
N <oE 2
N 4 - | o
e < o . o a)
< T
o = S w > > o
c ¢ 0z £ whEf 2 % % ¢ 5 £ 8 8 8
T < O g £ & e) Z Z o < 0 _1 2]
) z z o g Z z o o | o x @)) z
DATETIME/ X X X X - - -- - X -
INTERVAL
NUMBER X - X -
BINARY _ X - X - -
FLOAT
BINARY _ X X X X - X X -
DOUBLE
LONG X X X - X - - X X X
RAW X X X - - X - X
ROWID X X X - - -
CLOB X X X X - - X - X
BLOB - - - X
NCLOB X X X X - - X - X

The following rules govern the direction in which Oracle Database makes implicit
datatype conversions:

« During | NSERT and UPDATE operations, Oracle converts the value to the datatype
of the affected column.

« During SELECT FROMoperations, Oracle converts the data from the column to the
type of the target variable.

« When comparing a character value with a numeric value, Oracle converts the
character data to a numeric value.

« Conversions between character values or NUMBER values and floating-point
number values can be inexact, because the character types and NUMBER use
decimal precision to represent the numeric value, and the floating-point numbers
use binary precision.

« When converting a CLOB value into a character datatype such as VARCHAR2, or
converting BLOB to RAWdata, if the data to be converted is larger than the target
datatype, then the database returns an error.

« Conversions from Bl NARY_FLQOAT to Bl NARY_DOUBLE are exact.

« Conversions from Bl NARY_DOUBLE to Bl NARY_FLQAT are inexact if the Bl NARY _
DOUBLE value uses more bits of precision that supported by the Bl NARY_FLOAT.

« When comparing a character value with a DATE value, Oracle converts the
character data to DATE.

« When you use a SQL function or operator with an argument of a datatype other
than the one it accepts, Oracle converts the argument to the accepted datatype.

« When making assignments, Oracle converts the value on the right side of the
equal sign (=) to the datatype of the target of the assignment on the left side.

« During concatenation operations, Oracle converts from noncharacter datatypes to
CHAR or NCHAR.

Basic Elements of Oracle SQL 2-41

Datatype Comparison Rules

« During arithmetic operations on and comparisons between character and
noncharacter datatypes, Oracle converts from any character datatype to a numeric,
date, or rowid, as appropriate. In arithmetic operations between CHAR/VARCHAR2
and NCHAR/NVARCHAR2, Oracle converts to a NUVBER.

« Comparisons between CHAR and VARCHARZ2 and between NCHAR and NVARCHAR2
types may entail different character sets. The default direction of conversion in
such cases is from the database character set to the national character set.

Table 2-11 shows the direction of implicit conversions between different character

types.

« Most SQL character functions are enabled to accept CLOBs as parameters, and
Oracle performs implicit conversions between CLOB and character types.
Therefore, functions that are not yet enabled for CLOBs can accept CLOBs through
implicit conversion. In such cases, Oracle converts the CLOBs to CHAR or
VARCHARZ before the function is invoked. If the CLOB is larger than 4000 bytes,
then Oracle converts only the first 4000 bytes to CHAR

Table 2-11 Conversion Direction of Different Character Types

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
from CHAR -- VARCHAR2 NCHAR NVARCHAR2
from VARCHAR2 VARCHAR2 -- NVARCHAR2 NVARCHAR2
from NCHAR NCHAR NCHAR - NVARCHAR2
from NVARCHAR2 NVARCHAR2 NVARCHAR2 NVARCHAR2 --

User-defined types such as collections cannot be implicitly converted, but must be
explicitly converted using CAST ... MULTI SET

Implicit Data Conversion Examples

Text Literal Example The text literal '10" has datatype CHAR. Oracle implicitly
converts it to the NUMBER datatype if it appears in a numeric expression as in the
following statement:

SELECT salary + '10'
FROM enpl oyees;

Character and Number Values Example When a condition compares a character
value and a NUMBER value, Oracle implicitly converts the character value to a NUVMBER
value, rather than converting the NUMBER value to a character value. In the following
statement, Oracle implicitly converts '200' to 200:

SELECT | ast _nane
FROM enpl oyees
VWHERE enpl oyee_id = '200';

Date Example In the following statement, Oracle implicitly converts '03- MAR- 97" to
a DATE value using the default date format 'DD- MON- YY"

SELECT | ast _nane
FROM enpl oyees
WHERE hire _date = '03- MAR- 97" ;

Rowid Example In the following statement, Oracle implicitly converts the text literal

'AAAGHG6 AADAAAAFGAAN to a rowid value. (Rowids are unique within a database, so
to use this example you must know an actual rowid in your database.)

2-42 Oracle Database SQL Reference

Datatype Comparison Rules

SELECT | ast _nane
FROM enpl oyees
VWHERE RON D = ' AAAGHGAADAAAAFGAAN ;

Explicit Data Conversion

You can explicitly specify datatype conversions using SQL conversion functions.
Table 2-12 shows SQL functions that explicitly convert a value from one datatype to
another.

You cannot specify LONGand LONG RAWvalues in cases in which Oracle can perform
implicit datatype conversion. For example, LONGand LONG RAWvalues cannot appear
in expressions with functions or operators. Please refer to "LONG Datatype" on

page 2-13 for information on the limitations on LONGand LONG RAWdatatypes.

Table 2-12 Explicit Type Conversions

r
- =
< m
8 S 3
- |
Y E 14 D) I'|'| D|
. < mi £ a .2 z > >
r < - I m = _ 2 o g o x x
< I X O s o T = 2 =z (e} g <
T O < 5 8 2 I o o 9 o o P Z
0O 5 < 4 O o 04 rx o Z o O m m
e £ 2 2 e o = e 229 o 2 e
from CHAR, TO_CHAR TO_ TO _DATE HEXTORAW CHARTO= -- TOCLOB TO_ TO_
VARCHAR?2, (char.) NUMBER TO_TI NESTAMP ROW D TO NCLOB Bl NARY_ Bl NARY_
NCHAR, TO NCHAR FLOAT DOUBLE
NVARCHAR2 (cﬁar) TO_
: TI MESTAMP_TZ
TO_
YM NTERVAL
TO_
DSI NTERVAL
fromNUMBER TO_CHAR -- TO_DATE -- -- -- -- TO_ TO_
(nuer) Ao o pe
TO_NCHAR | NTERVAL
(nunber) NUMIODS-
| NTERVAL
from Datetime/ TO_CHAR -- -- -- -- -- -- -- .-
Interval (date)
TO_NCHAR
(datetine)
from RAW RAWIOHEX -- -- -- -- -- TOBLOB -- -
RAWIONHEX
from ROWID ROW DTOCHAR - - -- -- -- - - -- .-
from LONG / -- -- -- -- -- -- TO LOB -- .-
LONG RAW
from CLOB, TO_CHAR -- -- -- -- -- TOCOmB -- -
NCLOB, BLOB TO_NCHAR TO NCLOB

Basic Elements of Oracle SQL 2-43

Literals

Table 2-12 (Cont.) Explicit Type Conversions

Y
- =
o < Q
o o 3
| -
o & o 3 g N 9
P4 < w £ a) - <§E Z_ > >
X < - I oM = _ 2 v g o i e &
< I X O = ¢ T z 2 = o) < <
I O < =) © 2 s o o 9 o o Z z
ocxF < z QO © 04 x I Z o O oM)
2 $2 2 2 o E 2 229 29o@ I 2
from CLOB, TO_CHAR -- -- .- -- -- TOOOB -- --
NCLOB, BLOB TO_NCHAR TO NCLOB
from BINARY_ TO CHAR TO_ -- -- -- - - TO_ TO_
FLOAT (char.) NUMBER BI NARY_ Bl NARY_
TO NCHAR FLOAT DOUBLE
(char.)
from BINARY_ TO_CHAR TO_ -- -- -- -- -- TO_ TO_
DOUBLE (char.) NUMBER BI NARY_ Bl NARY_
TO NCHAR FLOAT DOUBLE
(char.)
See Also: "Conversion Functions" on page 5-5 for details on all of
the explicit conversion functions
Literals

The terms literal and constant value are synonymous and refer to a fixed data value.
For example, 'JACK', 'BLUE ISLAND', and '101" are all character literals; 5001 is a
numeric literal. Character literals are enclosed in single quotation marks so that Oracle
can distinguish them from schema object names.

This section contains these topics:
« Text Literals

« Numeric Literals

« Datetime Literals

« Interval Literals

Many SQL statements and functions require you to specify character and numeric
literal values. You can also specify literals as part of expressions and conditions. You
can specify character literals with the 't ext ' notation, national character literals with
the N t ext ' notation, and numeric literals with the i nt eger, or nunber notation,
depending on the context of the literal. The syntactic forms of these notations appear
in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account any
optional precisions included in the datatypes. Examples of specifying datetime and
interval datatypes as literals are provided in the relevant sections of "Datatypes” on
page 2-1.

Text Literals

Use the text literal notation to specify values whenever ' stri ng' or appears in the
syntax of expressions, conditions, SQL functions, and SQL statements in other parts of
this reference. This reference uses the terms text literal, character literal, and string
interchangeably. Text, character, and string literals are always surrounded by single
guotation marks. If the syntax uses the term char , you can specify either a text literal

2-44 Oracle Database SQL Reference

Literals

or another expression that resolves to character data — for example, the | ast _nane
column of the hr . enpl oyees table. When char appears in the syntax, the single
guotation marks are not used.

The syntax of text literals is as follows:

text::=

roh 0@

O (msme)
o

quote_delimiter

where Nor n specifies the literal using the national character set (NCHAR or
NVARCHARZ2 data). By default, text entered using this notation is translated into the
national character set by way of the database character set when used by the server. To
avoid potential loss of data during the text literal conversion to the database character
set, set the environment variable ORA_NCHAR_L| TERAL_REPLACE to TRUE. Doing so
transparently replaces the n’ internally and preserves the text literal for SQL
processing.

See Also: Oracle Database Globalization Support Guide for more
information about N-quoted literals

In the top branch of the syntax:

« C isany member of the user's character set. A single quotation mark (*) within the
literal must be preceded by an escape character. To represent one single quotation
mark within a literal, enter two single quotation marks.

« ''are two single quotation marks that begin and end text literals.
In the bottom branch of the syntax:

« Qor g indicates that the alternative quoting mechanism will be used. This
mechanism allows a wide range of delimiters for the text string.

« The outermost are two single quotation marks that precede and follow,
respectively, the opening and closing quot e_del i ter.

« C isany member of the user's character set. You can include quotation marks () in
the text literal made up of ¢ characters. You can also include the quot e_
del i mi ter,aslong as it is not immediately followed by a single quotation mark.

« quote_delimter isany single- or multibyte character except space, tab, and
return. The quot e_del i m t er can be a single quotation mark. However, if the
guot e_del i m t er appears in the text literal itself, ensure that it is not
immediately followed by a single quotation mark.

If the opening quot e_del i m ter isoneof [, {, <, or (, then the closing quot e_
del i m t er must be the corresponding],}, >, or) . In all other cases, the opening
and closing quot e_del i mi t er must be the same character.

Text literals have properties of both the CHAR and VARCHAR2 datatypes:

« Within expressions and conditions, Oracle treats text literals as though they have
the datatype CHAR by comparing them using blank-padded comparison semantics.

« Atext literal can have a maximum length of 4000 bytes.

Basic Elements of Oracle SQL 2-45

Literals

Here are some valid text literals:

"Hell o'

" ORACLE. dbs'
"Jackie''s raincoat'
' 09- MAR- 98'

N nchar literal'

Here are some valid text literals using the alternative quoting mechanism:

q' ! name LIKE ' %DBVS %6 !

g < So," she said, '"It's finished.'>'

q' { SELECT * FROM enpl oyees WHERE | ast_name = 'Snith';}’
ng'i Y1234 i

g "nane like "['"'

See Also: "Blank-Padded Comparison Semantics" on page 2-37

Numeric Literals
Use numeric literal notation to specify fixed and floating-point numbers.

Integer Literals

You must use the integer notation to specify an integer whenever i nt eger appears in
expressions, conditions, SQL functions, and SQL statements described in other parts of
this reference.

The syntax of i nt eger is as follows:

integer::=

where di git isoneof0,1,2,3,4,5,6,7,8,9.
An integer can store a maximum of 38 digits of precision.
Here are some valid integers:

7
+255

NUMBER and Floating-Point Literals

You must use the number or floating-point notation to specify values whenever
nunber or n appears in expressions, conditions, SQL functions, and SQL statements in
other parts of this reference.

The syntax of nunber is as follows:

2-46 Oracle Database SQL Reference

Literals

number::=

(GO @]
o X

2N B

where

« +or-indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

« digitisoneof0,1,23,4,5/6,7,80r9.

« eor Eindicates that the number is specified in scientific notation. The digits after
the E specify the exponent. The exponent can range from -130 to 125.

« forFindicates that the number is a 32-bit binary floating point number (of type
Bl NARY_FLOAT).

« dor D indicates that the number is a 64-bit binary floating point number (of type
Bl NARY_DOUBLE)

If you omit f or F and d or D, then the number is of type NUVBER.

The suffixes f (F) and d (D) are supported only in floating-point number literals,
not in character strings that are to be converted to NUMBER. That is, if Oracle is
expecting a NUMBER and it encounters the string ' 9' , then it converts the string to
the number 9. However, if Oracle encounters the string ' 9f ' | then conversion fails
and an error is returned.

A number of type NUMBER can store a maximum of 38 digits of precision. If the literal
requires more precision than provided by NUMBER, Bl NARY_FLCQAT, or Bl NARY_
DOUBLE, then Oracle truncates the value. If the range of the literal exceeds the range
supported by NUMBER, Bl NARY_FLQAT, or Bl NARY_DOUBLE, then Oracle raises an
error.

If you have established a decimal character other than a period (.) with the
initialization parameter NLS_NUMERI C_CHARACTERS, then you must specify numeric
literals with ' t ext ' notation. In these cases, Oracle automatically converts the text
literal to a numeric value.

Note: You cannot use this notation for floating-point number literals.

For example, if the NLS_NUMERI C_CHARACTERS parameter specifies a decimal
character of comma, specify the number 5.123 as follows:

'5,123

See Also: ALTER SESSION on page 11-45 and Oracle Database
Reference

Here are some valid NUMBER literals:

Basic Elements of Oracle SQL 2-47

Literals

25

+6. 34
0.5
25e- 03
-1

Here are some valid floating-point number literals:

25f

+6. 34F
0. 5d
-1D

You can also use the following supplied floating-point literals in situations where a
value cannot be expressed as a numeric literal:

Literal Meaning Example

bi nary_fl oat _nan A value of type SELECT COUNT(*)
Bl NARY_FLOAT for FROM enpl oyees
which the condition WHERE TO Bl NARY_FLOAT(comi ssi on_pct)
I SNANs true I = Bl NARY_FLOAT NAN;

bi nary_fl oat _ Single-precision
infinity positive infinity

SELECT COUNT(*)
FROM enpl oyees
WHERE sal ary < BI NARY_FLOAT_INFINITY;

SELECT COUNT(*)

bi nary_doubl e_nan A value of type
Bl NARY_DOUBLE for FROM enpl oyees
which the condition WHERE TO Bl NARY_FLOAT(comi ssi on_pct)
I SNANis true I'= BI NARY_FLOAT_NAN,

SELECT COUNT(*)
FROM enpl oyees
WHERE sal ary < BI NARY_FLOAT I NFINITY;

bi nary_doubl e_ Double-precision
infinity positive infinity

Datetime Literals

Oracle Database supports four datetime datatypes: DATE, TI MESTAMP, TI MESTAMP
W TH TI ME ZONE, and TI MESTAMP W TH LOCAL TI ME ZONE.

Date Literals You can specify a DATE value as a string literal, or you can convert a
character or numeric value to a date value with the TO_DATE function. DATE literals
are the only case in which Oracle Database accepts a TO_DATE expression in place of a
string literal.

To specify a DATE value as a literal, you must use the Gregorian calendar. You can
specify an ANSI literal, as shown in this example:

DATE ' 1998- 12- 25'

The ANSI date literal contains no time portion, and must be specified in exactly this
format ('YYYY- MVt DD'). Alternatively you can specify an Oracle date value, as in the
following example:

TO DATE(' 98- DEC- 25 17:30'," YY- MON-DD HH24: M ')

The default date format for an Oracle DATE value is specified by the initialization
parameter NLS DATE_FORMAT. This example date format includes a two-digit
number for the day of the month, an abbreviation of the month name, the last two
digits of the year, and a 24-hour time designation.

2-48 Oracle Database SQL Reference

Literals

Oracle automatically converts character values that are in the default date format into
date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you
specify a date value without a date, then the default date is the first day of the current
month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you
query a DATE column, then you must either specify the time field in your query or
ensure that the time fields in the DATE column are set to midnight. Otherwise, Oracle
may not return the query results you expect. You can use the TRUNC (date) function to
set the time field to midnight, or you can include a greater-than or less-than condition
in the query instead of an equality or inequality condition.

Here are some examples that assume a table my_t abl e with a number column r ow_
numand a DATE column dat ecol :

I NSERT | NTO ny_table VALUES (1, SYSDATE);
I NSERT | NTO ny_table VALUES (2, TRUNC(SYSDATE));

SELECT * FROM ny_t abl e;

ROW NUM DATECOL

3- CCT- 02
3- CCT- 02

o o

SELECT * FROM ny_tabl e
VWHERE dat ecol = TO DATE(' 03- OCT-02',' DD- MON-YY');

ROW NUM DATECOL

2 03-0CT-02

SELECT * FROM ny_t abl e
WHERE dat ecol > TO DATE(' 02-OCT-02', ' DD MON-YY');

ROW NUM DATECOL

1 03- CCT- 02
2 03-QCT-02

o o

If you know that the time fields of your DATE column are set to midnight, then you
can query your DATE column as shown in the immediately preceding example, or by
using the DATE literal:

SELECT * FROM ny_t abl e WHERE dat ecol = DATE ' 2002-10-03';

However, if the DATE column contains values other than midnight, then you must
filter out the time fields in the query to get the correct result. For example:

SELECT * FROM ny_t abl e WHERE TRUNC(dat ecol) = DATE ' 2002- 10- 03" ;

Oracle applies the TRUNC function to each row in the query, so performance is better if
you ensure the midnight value of the time fields in your data. To ensure that the time

fields are set to midnight, use one of the following methods during inserts and
updates:

« Usethe TO DATE function to mask out the time fields:
I NSERT | NTO ny_tabl e VALUES

Basic Elements of Oracle SQL 2-49

Literals

(3, TO DATE(' 3- OCT-2002' , " DD- MON- YYYY'));

« Use the DATE literal:
I NSERT | NTO ny_tabl e VALUES (4, '03-OCT-02');

« Use the TRUNC function:

I NSERT | NTO ny_tabl e VALUES (5, TRUNC(SYSDATE));
The date function SYSDATE returns the current system date and time. The function
CURRENT _DATE returns the current session date. For information on SYSDATE, the

TO_* datetime functions, and the default date format, see "Datetime Functions” on
page 5-4.

TIMESTAMP Literals The TI MESTAMP datatype stores year, month, day, hour,
minute, and second, and fractional second values. When you specify TI MESTAMP as a
literal, the f racti onal _seconds_pr eci si on value can be any number of digits up
to 9, as follows:

TI MESTAMP * 1997-01- 31 09: 26: 50. 124’
TIMESTAMP WITH TIME ZONE Literals The TI MESTAMP W TH TI ME ZONE
datatype is a variant of TI MESTAMP that includes a time zone offset. When you specify

TI MESTAMP W TH TI ME ZONE as a literal, the f ract i onal _seconds_pr eci si on
value can be any number of digits up to 9. For example:

TI MESTAMP ' 1997-01- 31 09: 26: 56. 66 +02: 00’
Two TI MESTAMP W THTI ME ZONE values are considered identical if they represent

the same instant in UTC, regardless of the TI ME ZONE offsets stored in the data. For
example,

TI MESTAMP ' 1999- 04- 15 8: 00: 00 -8: 00

is the same as

TI MESTAWP ' 1999- 04-15 11:00: 00 -5:00'

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard
Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TI MESTAMP ' 1999- 04- 15 8: 00: 00 US/ Pacific'
To eliminate the ambiguity of boundary cases when the daylight saving time switches,

use both the TZR and a corresponding TZD format element. The following example
ensures that the preceding example will return a daylight saving time value:

TI MESTAWP ' 1999- 10-29 01:30: 00 US/ Pacific PDT'

You can also express the time zone offset using a datetime expression:
SELECT TI MESTAMP ' 1999- 10-29 01:30: 00" AT TIME ZONE ' US/ Pacific’ FROM DUAL;

See Also: "Datetime Expressions" on page 6-7 for more information

If you do not add the TZD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TI ME session parameter

2-50 Oracle Database SQL Reference

Literals

set to TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous
datetime as standard time in the specified region.

TIMESTAMP WITH LOCAL TIME ZONE Literals The TI MESTAMP W TH LOCAL

TI ME ZONE datatype differs from TI MESTAMP W TH TI ME ZONE in that data stored
in the database is normalized to the database time zone. The time zone offset is not
stored as part of the column data. There is no literal for TI MESTAVMP W TH LOCAL

TI ME ZONE. Rather, you represent values of this datatype using any of the other valid
datetime literals. The table that follows shows some of the formats you can use to
insert a value into a TI MESTAMP W TH LOCAL Tl ME ZONE column, along with the
corresponding value returned by a query.

Value Specified in INSERT Statement Value Returned by Query
' 19- FEB- 2004’ 19-FEB-2004.00.00.000000 AM
SYSTI MESTAMP 19-FEB-04 02.54.36.497659 PM

TO_TI MESTAMP(’ 19- FEB- 2004’ , ' DD- MON- YYYY')) ; 19-FEB-04 12.00.00.000000 AM

SYSDATE 19-FEB-04 02.55.29.000000 PM
TO _DATE(’ 19- FEB- 2004’ , ' DD- MON- YYYY')); 19-FEB-04 12.00.00.000000 AM
TI MESTAMP' 2004- 02-19 8: 00: 00 US/ Pacific’); 19-FEB-04 08.00.00.000000 AM

Notice that if the value specified does not include a time component (either explicitly
or implicitly, then the value returned defaults to midnight.

Interval Literals

An interval literal specifies a period of time. You can specify these differences in terms
of years and months, or in terms of days, hours, minutes, and seconds. Oracle
Database supports two types of interval literals, YEAR TOMONTH and DAY TO SECOND.
Each type contains a leading field and may contain a trailing field. The leading field
defines the basic unit of date or time being measured. The trailing field defines the
smallest increment of the basic unit being considered. For example, a YEAR TOMONTH
interval considers an interval of years to the nearest month. A DAY TOM NUTE interval
considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYM NTERVAL or
NUMTODSI NTERVAL conversion function to convert the numeric data into interval
values.

Interval literals are used primarily with analytic functions.
See Also: "Analytic Functions” on page 5-9, NUMTODSINTERVAL

on page 5-108, NUMTOYMINTERVAL on page 5-109, and Oracle
Database Data Warehousing Guide

INTERVAL YEAR TO MONTH
Specify YEAR TOMONTH interval literals using the following syntax:

Basic Elements of Oracle SQL 2-51

Literals

interval_year_to_month::=

O

— INTERVAL |->O{integer)

where

« ‘'integer [-integer]" specifies integer values for the leading and optional
trailing field of the literal. If the leading field is YEAR and the trailing field is
MONTH, then the range of integer values for the month field is 0 to 11.

« precisionisthe maximum number of digits in the leading field. The valid range
of the leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field If you specify a trailing field, it must be less
significant than the leading field. For example, | NTERVAL '0- 1' MONTHTO YEAR is not
valid.

The following | NTERVAL YEAR TOMONTH literal indicates an interval of 123 years, 2
months:

I NTERVAL ' 123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Form of Interval Literal Interpretation

I NTERVAL ' 123-2' YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is
greater than the default of 2 digits.

I NTERVAL ' 123" YEAR(3) An interval of 123 years 0 months.

I NTERVAL ' 300" MONTH(3) An interval of 300 months.

I NTERVAL '4' YEAR Maps to | NTERVAL ' 4-0' YEAR TO MONTH
and indicates 4 years.

I NTERVAL ' 50' MONTH Mapsto | NTERVAL ' 4-2' YEAR TO MONTH
and indicates 50 months or 4 years 2 months.

| NTERVAL ' 123" YEAR Returns an error, because the default precision

is 2, and '123" has 3 digits.

You can add or subtract one | NTERVAL YEAR TOMONTH literal to or from another to
yield another | NTERVAL YEAR TOMONTH literal. For example:

I NTERVAL '5-3' YEAR TO MONTH + | NTERVAL' 20' MONTH =
I NTERVAL ' 6-11' YEAR TO MONTH

INTERVAL DAY TO SECOND
Specify DAY TOSECOND interval literals using the following syntax:

2-52 Oracle Database SQL Reference

Literals

interval_day_to_second::=

i=tam)

[@{fractionaI_seconds_precisionh
A }>(leading_precision) %

SECOND

MINUTE

ﬁ@{fractional_seconds_precisionm

SECOND

where

« i nteger specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

« tinme_expr specifiesatimeinthe formatHH : M [:SS[.n]]] orM [:SS[. n]]
or SS[. n] , where n specifies the fractional part of a second. If n contains more
digits than the number specified by f r act i onal _seconds_pr eci si on, thenn
is rounded to the number of digits specified by the f racti onal _seconds_
pr eci si on value. You can specify t i ne_expr following an integer and a space
only if the leading field is DAY.

« | eadi ng_preci sion is the number of digits in the leading field. Accepted
values are 0 to 9. The default is 2.

« fractional _seconds_preci sion isthe number of digits in the fractional part
of the SECOND datetime field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field: If you specify a trailing field, it must be less
significant than the leading field. For example, | NTERVAL M NUTE TODAY is not valid.
As a result of this restriction, if SECOND is the leading field, the interval literal cannot
have any trailing field.

The valid range of values for the trailing field are as follows:
« HOUR Oto 23

« M NUTE: 0to 59

« SECOND: 0 to 59.999999999

Examples of the various forms of | NTERVAL DAY TO SECOND literals follow, including
some abbreviated versions:

Basic Elements of Oracle SQL 2-53

Format Models

Form of Interval Literal Interpretation
I NTERVAL ' 4 5:12:10.222" DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND(3) 222 thousandths of a second.

I NTERVAL '4 5:12' DAY TO M NUTE 4 days, 5 hours and 12 minutes.

I NTERVAL ' 400 5' DAY(3) TO HOUR 400 days 5 hours.

I NTERVAL ' 400" DAY(3) 400 days.

I NTERVAL ' 11:12:10.2222222"' HOUR 11 hours, 12 minutes, and 10.2222222 seconds.
TO SECOND(7)

I NTERVAL ' 11: 20" HOUR TO M NUTE 11 hours and 20 minutes.

I NTERVAL ' 10" HOUR 10 hours.

I NTERVAL ' 10: 22" M NUTE TO SECOND 10 minutes 22 seconds.

I NTERVAL ' 10" M NUTE 10 minutes.

| NTERVAL ' 4' DAY 4 days.

I NTERVAL ' 25" HOUR 25 hours.

I NTERVAL ' 40" M NUTE 40 minutes.

I NTERVAL ' 120" HOUR(3) 120 hours.

I NTERVAL ' 30. 12345"' SECOND(2, 4) 30.1235 seconds. The fractional second '12345'

is rounded to '1235' because the precision is 4.

You can add or subtract one DAY TOSECOND interval literal from another DAY TO
SECOND literal. For example.

I NTERVAL' 20" DAY - I NTERVAL' 240" HOUR = | NTERVAL' 10-0' DAY TO SECOND

Format Models

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database. When you convert a character string into a
date or number, a format model determines how Oracle Database interprets the string.
In SQL statements, you can use a format model as an argument of the TO_CHAR and
TO_DATE functions to specify:

= The format for Oracle to use to return a value from the database

« The format for a value you have specified for Oracle to store in the database
For example:

« The datetime format model for the string '17: 45: 29" is '"HH24: M : SS'.

« The datetime format model for the string '11- Nov- 1999' is 'DD- Mon- YYYY".
« The number format model for the string '$2, 304. 25'is '$9, 999. 99".

For lists of number and datetime format model elements, see Table 2-17, " Matching
Character Data and Format Models with the FX Format Model Modifier" on page 2-65
and Table 2-19, " Attributes of the XMLFormat Object" on page 2-67.

The values of some formats are determined by the value of initialization parameters.
For such formats, you can specify the characters returned by these format elements
implicitly using the initialization parameter NLS_TERRI TORY. You can change the
default date format for your session with the ALTER SESSI ON statement.

2-54 Oracle Database SQL Reference

Format Models

See Also:

« ALTER SESSION on page 11-45 for information on changing the
values of these parameters and Format Model Examples on
page 2-65 for examples of using format models

« TO_CHAR (datetime) on page 5-190, TO_CHAR (number) on
page 5-192, and TO_DATE on page 5-194

« Oracle Database Reference and Oracle Database Globalization Support
Guide for information on these parameters

This remainder of this section describes how to use:
« Number Format Models
« Datetime Format Models

« Format Model Modifiers

Number Format Models
You can use number format models in the following functions:

« Inthe TO _CHAR function to translate a value of NUMBER, Bl NARY_FLQAT, or
Bl NARY_DOUBLE datatype to VARCHAR2 datatype

« Inthe TO NUMBER function to translate a value of CHAR or VARCHAR2 datatype to
NUMBER datatype

« Inthe TO BI NARY_FLOAT and TO Bl NARY_DOUBLE functions to translate CHAR
and VARCHARZ expressions to Bl NARY _FLQAT or Bl NARY _DOUBLE values

All number format models cause the number to be rounded to the specified number of
significant digits. If a value has more significant digits to the left of the decimal place
than are specified in the format, then pound signs (#) replace the value. This event
typically occurs when you are using TO_CHAR with a restrictive number format string,
causing a rounding operation.

« If a positive NUMBER value is extremely large and cannot be represented in the
specified format, then the infinity sign (~) replaces the value. Likewise, if a
negative NUVMBER value is extremely small and cannot be represented by the
specified format, then the negative infinity sign replaces the value (-~).

« IfaBI NARY_FLOAT or Bl NARY_DOUBLE value is converted to CHAR or NCHAR,
and the input is either infinity or NaN (not a number), then Oracle always returns
the pound signs to replace the value.

Number Format Elements

A number format model is composed of one or more number format elements. The
tables that follow list the elements of a number format model and provide some
examples.

Negative return values automatically contain a leading negative sign and positive
values automatically contain a leading space unless the format model contains the M ,
S, or PR format element.

Basic Elements of Oracle SQL 2-55

Format Models

Table 2-13 Number Format Elements

Element Example Description

, (comma) 9, 999 Returns a comma in the specified position. You can specify multiple commas in a
number format model.

Restrictions:

« A comma element cannot begin a number format model.

« A comma cannot appear to the right of a decimal character or period in a
number format model.

. (period) 99. 99 Returns a decimal point, which is a period (.) in the specified position.
Restriction: You can specify only one period in a number format model.

$ $9999 Returns value with a leading dollar sign.

0 0999 Returns leading zeros.

9990 Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading space if positive
or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a zero for the
integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number when the integer part
is zero (regardless of zeros in the format model).

C C999 Returns in the specified position the ISO currency symbol (the current value of the
NLS_| SO CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is the current value
of the NLS_NUMERI C_CHARACTER parameter. The default is a period (.).
Restriction: You can specify only one decimal character in a number format model.

EEEE 9. 9EEEE Returns a value using in scientific notation.

G 999 Returns in the specified position the group separator (the current value of the
NLS_NUMERI C_CHARACTER parameter). You can specify multiple group
separators in a number format model.

Restriction: A group separator cannot appear to the right of a decimal character or
period in a number format model.

L L999 Returns in the specified position the local currency symbol (the current value of
the NLS_CURRENCY parameter).

Ml 9999M Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing blank.
Restriction: The MI format element can appear only in the last position of a
number format model.

PR 9999PR Returns negative value in <angle brackets>.

Returns positive value with a leading and trailing blank.
Restriction: The PR format element can appear only in the last position of a
number format model.

RN RN Returns a value as Roman numerals in uppercase.

m rn Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

2-56 Oracle Database SQL Reference

Format Models

Table 2-13 (Cont.) Number Format Elements

Element Example

Description

S $9999

9999S

Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).
Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a
number format model.

™ ™

The text minimum number format model returns (in decimal output) the smallest
number of characters possible. This element is case insensitive.

The default is TM9, which returns the number in fixed notation unless the output
exceeds 64 characters. If the output exceeds 64 characters, then Oracle Database
automatically returns the number in scientific notation.

Restrictions:
=« You cannot precede this element with any other element.

=« You can follow this element only with one 9 or one E (or), but not with any
combination of these. The following statement returns an error:

= SELECT TO CHAR(1234, ' TMde') FROM DUAL;

U u9999

Returns in the specified position the Euro (or other) dual currency symbol (the
current value of the NLS_DUAL_ CURRENCY parameter).

\% 999V99

Returns a value multiplied by 10" (and if necessary, round it up), where n is the
number of 9’s after the V.

X XXXX
XXXX

Returns the hexadecimal value of the specified number of digits. If the specified
number is not an integer, then Oracle Database rounds it to an integer.

Restrictions:

« This element accepts only positive values or 0. Negative values return an
error.

« You can precede this element only with 0 (which returns leading zeroes) or
FM. Any other elements return an error. If you specify neither 0 nor FM with
X, then the return always has 1 leading blank.

Table 2-14 shows the results of the following query for different values of nunber and

"t

SELECT TO CHAR(nunber, 'fnt')
FROM DUAL;

Table 2-14 Results of Number Conversions

number 'fmt' Result
-1234567890 9999999999S ' 1234567890-"
0 99. 99 ' . 00’
+0.1 99. 99 ' . 10'
-0.2 99. 99 =20
0 90. 99 ' 0.00
+0.1 90. 99 ' 0.10
-0.2 90. 99 ' -0.20
0 9999 ' 0'

Basic Elements of Oracle SQL 2-57

Format Models

Table 2-14 (Cont.) Results of Number Conversions

number 'fmt’ Result
1 9999 ' 1
0 B9999
1 B9999 ' 1
0 B90. 99 ' '
+123. 456 999. 999 ' 123. 456'
-123. 456 999. 999 '-123. 456'
+123. 456 FMB99. 009 ' 123. 456'
+123. 456 9. 9EEEE ' 1. 2E+02'
+1E+123 9. 9EEEE ' 1. 0E+123'
+123. 456 FMD. OEEEE '1. 2E+02'
+123. 45 FMB99. 009 ' 123. 45’
+123.0 FMB99. 009 ''123. 00’
+123. 45 L999. 99 ' $123. 45’
+123. 45 FML999. 99 ' $123. 45’
+1234567890 9999999999S ' 1234567890+

Datetime Format Models

You can use datetime format models in the following functions:

« Inthe TO * datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The TO_* datetime functions
are TO_CHAR TO_DATE, TO_TI MESTAMP, TO_TI MESTAMP_TZ, TO_YM NTERVAL,
and TO_DSI NTERVAL.)

« Inthe TO_CHARfunction to translate a datetime value that is in a format other than
the default format into a string (for example, to print the date from an application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the initialization
parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS
TERRI TORY. You can change the default datetime formats for your session with the
ALTER SESSI ON statement.

See Also: ALTER SESSION on page 11-45 and Oracle Database
Globalization Support Guide for information on the NLS parameters

Datetime Format Elements

A datetime format model is composed of one or more datetime format elements as
listed in Table 2-19, " Attributes of the XMLFormat Object” on page 2-67.

« For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use
'SYYYY' and 'BC' in the same format string.

« Some of the datetime format elements cannot be used in the TO_* datetime
functions, as noted in Table 2-19.

2-58 Oracle Database SQL Reference

Format Models

« The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATE format model: FF, TZD, TZH, TZM
and TZR.

« Many datetime format elements are blank padded to a specific length. Please refer
to the format model modifier FM on page 2-64 for more information.

Uppercase Letters in Date Format Elements Capitalization in a spelled-out word,
abbreviation, or Roman numeral follows capitalization in the corresponding format
element. For example, the date format model ‘DAY’ produces capitalized words like
'MONDAY"; '‘Day' produces 'Monday'; and 'day’ produces 'monday".

Punctuation and Character Literals in Datetime Format Models You can include these
characters in a date format model:

« Punctuation such as hyphens, slashes, commas, periods, and colons

« Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the
format model.

Table 2-15 Datetime Format Elements
Specify in TO_*
datetime
Element functions? Description
- Yes Punctuation and quoted text is reproduced in the result.
/
"text"
AD Yes AD indicator with or without periods.
A D
AM Yes Meridian indicator with or without periods.
AM
BC Yes BC indicator with or without periods.
B.C.
cC No Century.
SCC . If the last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then the
century is one greater than the first 2 digits of that year.
. If the last 2 digits of a 4-digit year are 00, then the century is the same as the
first 2 digits of that year.
For example, 2002 returns 21; 2000 returns 20.
D Yes Day of week (1-7).
DAY Yes Name of day, padded with blanks to length of 9 characters.
DD Yes Day of month (1-31).
DDD Yes Day of year (1-366).

Basic Elements of Oracle SQL 2-59

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Element

Specify in TO_*
datetime
functions?

Description

DL

Yes

Returns a value in the long date format, which is an extension of Oracle
Database’s DATE format (the current value of the NLS_DATE_FORMAT
parameter). Makes the appearance of the date components (day name, month
number, and so forth) depend on the NLS_TERRI TORY and NLS_LANGUAGE
parameters. For example, in the AVERI CAN_AMERI CA locale, this is equivalent to
specifying the format’ f mDay, Mont h dd, yyyy’ . In the GERVAN_GERVANY
locale, it is equivalent to specifying the format 'f nDay, dd. Month yyyy’.

Restriction: You can specify this format only with the TS element, separated by
white space.

Yes

Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the NLS
TERRI TORY and NLS_LANGUAGE parameters. For example, in the AVERI CAN_
AMERI CA locale, this is equivalent to specifying the format "MM DY RRRR'. In the
ENGLI SH_UNI TED_KI NGDOMlocale, it is equivalent to specifying the format
‘DD MM RRRR'.

Restriction: You can specify this format only with the TS element, separated by
white space.

DY

Yes

Abbreviated name of day.

No

Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

EE

Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

FF [1..9]

Yes

Fractional seconds; no radix character is printed (use the X format element to add
the radix character). Use the numbers 1 to 9 after FF to specify the number of
digits in the fractional second portion of the datetime value returned. If you do
not specify a digit, then Oracle Database uses the precision specified for the
datetime datatype or the datatype’s default precision.

Examples:’ HH: M : SS. FF’
SELECT TO_CHAR(SYSTI MESTAMP, ' SS. FF3’) from dual ;

FM

Yes

Returns a value with no leading or trailing blanks.

See Also: Additional discussion on this format model modifier in the Oracle
Database SQL Reference

FX

Yes

Requires exact matching between the character data and the format model.

See Also: Additional discussion on this format model modifier in the Oracle
Database SQL Reference

HH

Yes

Hour of day (1-12).

HH12

No

Hour of day (1-12).

HH24

Yes

Hour of day (0-23).

W

No

Week of year (1-52 or 1-53) based on the ISO standard.

I'YY
Y

No

Last 3, 2, or 1 digit(s) of 1ISO year.

I YYY

4-digit year based on the ISO standard.

Yes

Julian day; the number of days since January 1, 4712 BC. Number specified with J
must be integers.

=

Yes

Minute (0-59).

Yes

Month (01-12; January = 01).

2-60 Oracle Database SQL Reference

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Specify in TO_*

datetime

Element functions? Description

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to length of 9 characters.

PM No Meridian indicator with or without periods.

P.M

Q No Quarter of year (1, 2, 3, 4; January - March = 1).

RM Yes Roman numeral month (I-XII; January = 1).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.

See Also: Additional discussion on RR datetime format element in the Oracle
Database SQL Reference

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same
return as RR. If you do not want this functionality, then enter the 4-digit year.

SS Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

TS Yes Returns a value in the short time format. Makes the appearance of the time
components (hour, minutes, and so forth) depend on the NLS_TERRI TORY and
NLS_LANGUAGE initialization parameters.

Restriction: You can specify this format only with the DL or DS element,
separated by white space.

TZD Yes Daylight savings information. The TZD value is an abbreviated time zone string
with daylight savings information. It must correspond with the region specified
in TZR.

Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

TZH Yes Time zone hour. (See TZMformat element.)

Example:” HH: M : SS. FFTZH: TZM .

TZM Yes Time zone minute. (See TZHformat element.)
Example:” HH: M : SS. FFTZH: TZM .

TZR Yes Time zone region information. The value must be one of the time zone regions
supported in the database.
Example: US/Pacific

VW No Week of year (1-53) where week 1 starts on the first day of the year and continues
to the seventh day of the year.

W No Week of month (1-5) where week 1 starts on the first day of the month and ends
on the seventh.

X Yes Local radix character.

Example:’ HH: M : SSXFF' .

Y, YYY Yes Year with comma in this position.

YEAR No Year, spelled out; S prefixes BC dates with a minus sign (-).

SYEAR

YYYY Yes 4-digit year; S prefixes BC dates with a minus sign.

SYYYY

YYY Yes Last 3, 2, or 1 digit(s) of year.

YY

Y

Basic Elements of Oracle SQL 2-61

Format Models

Oracle returns an error if an alphanumeric character is found in the date string where a
punctuation character is found in the format string. For example, the following format
string returns an error:

TO CHAR (TO _DATE(' 0297, W YY), 'MM YY")

Datetime Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and
language in which you are using Oracle Database. For example, these datetime format
elements return spelled values:

« MONTH
« MON

« DAY

« DY

« BCorADorB.C.or AD.
« AMorPMor A.MorPM.

The language in which these values are returned is specified either explicitly with the
initialization parameter NLS_DATE_LANGUAGE or implicitly with the initialization
parameter NLS_LANGUACE. The values returned by the YEAR and SYEAR datetime
format elements are always in English.

The datetime format element D returns the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization
parameter NLS_TERRI TCORY.

See Also: Oracle Database Reference and Oracle Database Globalization
Support Guide for information on globalization support initialization
parameters

ISO Standard Date Format Elements

Oracle calculates the values returned by the datetime format elements IYYY, IYY, 1Y, I,
and IW according to the ISO standard. For information on the differences between
these values and those returned by the datetime format elements YYYY, YYY, YV, Y,
and WW, see the discussion of globalization support in Oracle Database Globalization
Support Guide.

The RR Datetime Format Element

The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR
datetime format element lets you store 20th century dates in the 21st century by
specifying only the last two digits of the year.

If you use the TO_DATE function with the YY datetime format element, then the year
returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies according
to the specified two-digit year and the last two digits of the current year.

That is:
« If the specified two-digit year is 00 to 49, then

— If the last two digits of the current year are 00 to 49, then the returned year has
the same first two digits as the current year.

2-62 Oracle Database SQL Reference

Format Models

— If the last two digits of the current year are 50 to 99, then the first 2 digits of
the returned year are 1 greater than the first 2 digits of the current year.

« If the specified two-digit year is 50 to 99, then

— If the last two digits of the current year are 00 to 49, then the first 2 digits of
the returned year are 1 less than the first 2 digits of the current year.

— If the last two digits of the current year are 50 to 99, then the returned year has
the same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format element.

RR Datetime Format Examples
Assume these queries are issued between 1950 and 1999:

SELECT TO CHAR(TO DATE(' 27-OCT-98', 'DD-MON-RR) ,' YYYY') "Year"
FROM DUAL;

Year

1998

SELECT TO CHAR(TO DATE(' 27-CCT-17', 'DD-MON-RR) ,' YYYY') "Year"
FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO CHAR(TO DATE(' 27-CCT-98', 'DD-MON-RR) ,' YYYY') "Year"
FROM DUAL;

Year
1998
SELECT TO CHAR(TO DATE(' 27-OCT-17', 'DD-MON-RR) ,' YYYY') "Year"
FROVI DUAL;
Year
2017
Note that the queries return the same values regardless of whether they are issued
before or after the year 2000. The RR datetime format element lets you write SQL

statements that will return the same values from years whose first two digits are
different.

Datetime Format Element Suffixes
Table 2-16 lists suffixes that can be added to datetime format elements:

Basic Elements of Oracle SQL 2-63

Format Models

Table 2-16 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes on date format element suffixes:

« When you add one of these suffixes to a datetime format element, the return value
is always in English.

« Datetime suffixes are valid only to format output. You cannot use them to insert a
date into the database.

Format Model Modifiers

The FMand FX modifiers, used in format models in the TO_CHAR function, control
blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each
subsequent occurrence toggles the effects of the modifier. Its effects are enabled for the
portion of the model following its first occurrence, and then disabled for the portion
following its second, and then reenabled for the portion following its third, and so on.

FM Fill mode. Oracle uses blank characters to fill format elements to a constant
width equal to the largest element for the relevant format model in the current session
language. For example, when NLS LANGUAGE is AVERI CAN, the largest element for
MONTH is SEPTEMBER, so all values of the MONTH format element are padded to 9
display characters. This modifier suppresses blank padding in the return value of the
TO_CHAR function:

« Inadatetime format element of a TO_CHAR function, this modifier suppresses
blanks in subsequent character elements (such as MONTH) and suppresses leading
zeroes for subsequent number elements (such as M) in a date format model.
Without FM the result of a character element is always right padded with blanks to
a fixed length, and leading zeroes are always returned for a number element. With
FM which suppresses blank padding, the length of the return value may vary.

« Inanumber format element of a TO_CHAR function, this modifier suppresses
blanks added to the left of the number, so that the result is left-justified in the
output buffer. Without FM the result is always right-justified in the buffer,
resulting in blank-padding to the left of the number.

FX Format exact. This modifier specifies exact matching for the character argument
and datetime format model of a TO_DATE function:

« Punctuation and quoted text in the character argument must exactly match (except
for case) the corresponding parts of the format model.

« The character argument cannot have extra blanks. Without FX, Oracle ignores
extra blanks.

« Numeric data in the character argument must have the same number of digits as
the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeroes.

When FX is enabled, you can disable this check for leading zeroes by using the FM
modifier as well.

2-64 Oracle Database SQL Reference

Format Models

If any portion of the character argument violates any of these conditions, then Oracle
returns an error message.

Format Model Examples
The following statement uses a date format model to return a character expression:

SELECT TO CHAR(SYSDATE, 'fnDDTH)||' of '||TO CHAR
(SYSDATE, 'fmMonth')||', '|| TO CHAR(SYSDATE, 'YYYY') "Ides"
FROM DUAL;

3RD of April, 1998

The preceding statement also uses the FMmodifier. If FMis omitted, then the month is
blank-padded to nine characters:

SELECT TO CHAR(SYSDATE, 'DDTH)||' of '|]|
TO CHAR(SYSDATE, 'Month')||', '|]
TO CHAR(SYSDATE, ' YYYY') "ldes"
FROM DUAL;

03RD of April , 1998

The following statement places a single quotation mark in the return value by using a
date format model that includes two consecutive single quotation marks:

SELECT TO CHAR(SYSDATE, 'fnDay')||''"'s Special' "Menu"
FROM DUAL;

Tuesday' s Speci al

Two consecutive single quotation marks can be used for the same purpose within a
character literal in a format model.

Table 2-17 shows whether the following statement meets the matching conditions for
different values of char and 'f nt ' using FX (the table named t abl e has a column
dat e_col um of datatype DATE):

UPDATE t abl e
SET date_col um = TO DATE(char, 'fmt');

Table 2-17 Matching Character Data and Format Models with the FX Format Model
Modifier

char 'fmt’ Match or Error?

'15/ JAN /1998 ' DD- MON- YYYY' Mat ch

15! JAN %/ 1998’ ' DD- MON- YYYY' Error
'15/ JAN/ 1998’ ' FXDD- MON- YYYY' Error
'15- JAN- 1998’ ' FXDD- MON- YYYY' Mat ch
" 1- JAN- 1998' ' FXDD- MON- YYYY' Error
' 01- JAN- 1998’ ' FXDD- MON- YYYY' Mat ch
'1- JAN- 1998' ' FXFNDD- MON- YYYY' Mat ch

Basic Elements of Oracle SQL 2-65

Format Models

Format of Return Values: Examples You can use a format model to specify the
format for Oracle to use to return values from the database to you.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99, 990. 99'

SELECT | ast_nane enpl oyee, TO CHAR(sal ary, '$99,990.99")
FROM enpl oyees
WHERE departnent _id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs,
commas every three digits, and two decimal places.

The following statement selects the date on which each employee from Department 20
was hired and uses the TO_CHAR function to convert these dates to character strings
with the format specified by the date format model 'f mvont h DD, YYYY"

SELECT | ast _nane enpl oyee,
TO CHAR(hire_date,’' fmvbnth DD, YYYY') hiredate
FROM enpl oyees
VWHERE department _id = 20;

With this format model, Oracle returns the hire dates without blank padding (as
specified by f m), two digits for the day, and the century included in the year.

See Also: "Format Model Modifiers" on page 2-64 for a description
of the f mformat element

Supplying the Correct Format Model: Examples When you insert or update a
column value, the datatype of the value that you specify must correspond to the
column datatype of the column. You can use format models to specify the format of a
value that you are converting from one datatype to another datatype required for a
column.

For example, a value that you insert into a DATE column must be a value of the DATE
datatype or a character string in the default date format (Oracle implicitly converts
character strings in the default date format to the DATE datatype). If the value is in
another format, then you must use the TO_DATE function to convert the value to the
DATE datatype. You must also use a format model to specify the format of the
character string.

The following statement updates Hunol d' s hire date using the TO_DATE function
with the format mask 'YYYY MM DD’ to convert the character string '1998 05 20' to a
DATE value:

UPDATE enpl oyees
SET hire_date = TO DATE(' 1998 05 20',' YYYY MM DD)
VHERE | ast_nane = 'Hunol d';

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to date
values (unless you have used the FX or FXFMmodifiers in the format model to control
exact format checking):

« You can omit punctuation included in the format string from the date string if all
the digits of the numerical format elements, including leading zeros, are specified.
In other words, specify 02 and not 2 for two-digit format elements such as MM,
DD, and YY.

2-66 Oracle Database SQL Reference

Format Models

« You can omit time fields found at the end of a format string from the date string.

« Ifamatch fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in Table 2-18.

Table 2-18 Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original

"MW " MON' and' MONTH
" MON " MONTH
" MONTH " MON'
vy Y.
'RR ' RRRR
XML Format Model

The SYS_XM_GEN function returns an instance of type XM_Type containing an XML
document. Oracle provides the XM_For mat object, which lets you format the output of
the SYS_XM_GEN function.

Table 2-19 lists and describes the attributes of the XM_For mat object. The function that
implements this type follows the table.

See Also:

« SYS_XMLGEN on page 5-184 for information on the SYS XM_GEN

function

« Oracle XML Developer's Kit Programmer's Guide for more
information on the implementation of the XM_For nat object and

its use

Table 2-19 Attributes of the XMLFormat Object

Attribute Datatype

Purpose

encl Tag VARCHAR2(100)

The name of the enclosing tag for the result of the SYS_XM_GEN
function. If the input to the function is a column name, the default is
the column name. Otherwise the default is RON When schemaType is
set to USE_Q VEN_SCHEMA, this attribute also gives the name of the
XMLSchema element.

schemaType VARCHAR2(100)

The type of schema generation for the output document. Valid values
are 'NO_SCHEMA' and 'USE_G VEN_SCHEMA'. The default is 'NO _
SCHEMA'.

schemaNane VARCHAR2(4000)

The name of the target schema Oracle uses if the value of the
schemaType is 'USE_G VEN_SCHEMA'. If you specify schemaNane,
then Oracle uses the enclosing tag as the element name.

t ar get NaneSpace VARCHAR2(4000)

The target namespace if the schema is specified (that is, schemaType
is GEN_SCHEMA _*, or USE_G VEN_SCHENMA)

dbur | VARCHAR2(2000)

The URL to the database to use if W TH_SCHENA is specified. If this
attribute is not specified, then Oracle declares the URL to the types as
a relative URL reference.

processi ngl ns VARCHAR2(4000)

User-provided processing instructions, which are appended to the top
of the function output before the element.

Basic Elements of Oracle SQL 2-67

Nulls

The function that implements the XM_For mat object follows:

STATI C FUNCTI ON cr eat eFor mat (
encl Tag I N varchar2 : ="' ROASET",
schemaType IN varchar2 := ' NO SCHEMA',
schemaNane IN varchar2 := null,
target NameSpace I N varchar2 := null,
dburl Prefix INvarchar2 := null,
processinglns IN varchar2 := null) RETURN XM.GenFor mat Type
deterninistic parallel _enable,
MEMBER PROCEDURE genSchema (spec I N varchar?2),
MEMBER PROCEDURE set SchenmaNanme(schenaName | N var char2),
MEMBER PROCEDURE set Tar get NameSpace(t ar get NameSpace | N var char 2),
MEMBER PROCEDURE set Encl osi ngEl enent Name(encl Tag | N varchar2),
MEMBER PROCEDURE set DbUr | Prefi x(prefix IN varchar?2),
MEMBER PROCEDURE set Processinglns(pi I N varchar2),
CONSTRUCTOR FUNCTI ON XM_GenFor mat Type (
encl Tag I N varchar2 := ' ROMSET',
schemaType IN varchar2 :='NO _SCHEMA',
schemaName | N varchar2 := null,
target NameSpace I N varchar2 := null,
dbUrl Prefix INvarchar2 := null,
processinglns INvarchar2 := null) RETURN SELF AS RESULT
deternministic parallel _enable .

Nulls

If a column in a row has no value, then the column is said to be null, or to contain null.
Nulls can appear in columns of any datatype that are not restricted by NOT NULL or
PRI MARY KEY integrity constraints. Use a null when the actual value is not known or
when a value would not be meaningful.

Do not use null to represent a value of zero, because they are not equivalent.

Note: Oracle Database currently treats a character value with a
length of zero as null. However, this may not continue to be true in
future releases, and Oracle recommends that you do not treat empty
strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example,
null added to 10 is null. In fact, all operators (except concatenation) return null when
given a null operand.

Nulls in SQL Functions

All scalar functions (except REPLACE, NVL, and CONCAT) return null when given a null
argument. You can use the NVL function to return a value when a null occurs. For
example, the expression NVL(commi ssi on_pct, 0) returns 0 if commi ssi on_pct is
null or the value of conmi ssi on_pct if itis not null.

Most aggregate functions ignore nulls. For example, consider a query that averages the
five values 1000, null, null, null, and 2000. Such a query ignores the nulls and
calculates the average to be (1000+2000)/2 = 1500.

2-68 Oracle Database SQL Reference

Comments

Nulls with Comparison Conditions

To test for nulls, use only the comparison conditions | SNULL and I SNOT NULL. If you
use any other condition with nulls and the result depends on the value of the null,
then the result is UNKNOWN. Because null represents a lack of data, a null cannot be
equal or unequal to any value or to another null. However, Oracle considers two nulls
to be equal when evaluating a DECODE function. Please refer to DECODE on page 5-51
for syntax and additional information.

Oracle also considers two nulls to be equal if they appear in compound keys. That is,
Oracle considers identical two compound keys containing nulls if all the non-null
components of the keys are equal.

Nulls in Conditions

A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no
rows. However, a condition evaluating to UNKNOWN differs from FALSE in that further
operations on an UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT
FALSE evaluates to TRUE, but NOT UNKNOWN evaluates to UNKNOWN.

Table 2-20 shows examples of various evaluations involving nulls in conditions. If the
conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT
statement, then no rows would be returned for that query.

Table 2-20 Conditions Containing Nulls

Condition Value of A Evaluation
a |'S NULL 10 FALSE
a |'S NOT NULL 10 TRUE
a |I'S NULL NULL TRUE
a |I'S NOT NULL NULL FALSE
a = NULL 10 UNKNOWN
a !'= NULL 10 UNKNOWN
a = NULL NULL UNKNOWN
a !'= NULL NULL UNKNOWN
a =10 NULL UNKNOWN
al!=10 NULL UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see
Table 7-5 on page 7-8, Table 7-6 on page 7-8, and Table 7-7 on page 7-8.

Comments

You can associate comments with SQL statements and schema objects.

Comments Within SQL Statements

Comments can make your application easier for you to read and maintain. For
example, you can include a comment in a statement that describes the purpose of the
statement within your application. With the exception of hints, comments within SQL

Basic Elements of Oracle SQL 2-69

Comments

statements do not affect the statement execution. Please refer to "Using Hints" on
page 2-71 on using this particular form of comment.

A comment can appear between any keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

« Begin the comment with a slash and an asterisk (/*). Proceed with the text of the
comment. This text can span multiple lines. End the comment with an asterisk and
aslash (*/). The opening and terminating characters need not be separated from
the text by a space or a line break.

« Begin the comment with -- (two hyphens). Proceed with the text of the comment.
This text cannot extend to a new line. End the comment with a line break.

Some of the tools used to enter SQL have additional restrictions. For example, if you
are using SQL*Plus, by default you cannot have a blank line inside a multiline
comment. For more information, please refer to the documentation for the tool you use
as an interface to the database.

A SQL statement can contain multiple comments of both styles. The text of a comment
can contain any printable characters in your database character set.

Example These statements contain many comments:

SELECT | ast_nane, salary + NVL(comi ssion_pct, 0),
job_id, e.departnent_id
/* Select all enployees whose conpensation is
greater than that of Pataballa.*/
FROM enpl oyees e, departnents d
/*The DEPARTMENTS table is used to get the department nane.*/
VHERE e. department _id = d. department _id
AND sal ary + NVL(comi ssion_pct,0) > /* Subquery: */
(SELECT sal ary + NVL(commi ssion_pct, 0)
/* total conpensation is salar + commission_pct */
FROM enpl oyees
WHERE | ast_nane = 'Pataballa');

SELECT | ast _nane, -- select the nane
salary + NVL(conm ssion_pct, 0),-- total conpensation
job_id, -- job
e.departnent _id -- and depart nent

FROM enpl oyees e, -- of all enployees

departnents d
VWHERE e. departrment _id = d. department _id

AND sal ary + NVL(comi ssion_pct, 0) > -- whose conpensation
- is greater than
(SELECT sal ary + NvL(commi ssion_pct,0) -- the compensation
FROM enpl oyees
WHERE | ast _name = 'Patabal |l a') -- of Pataballa.

Comments on Schema Objects

You can associate a comment with a table, view, materialized view, or column using
the COMMENT command. Comments associated with schema objects are stored in the
data dictionary. Please refer to COMMENT on page 13-56 for a description of
comments.

2-70 Oracle Database SQL Reference

Comments

Using Hints

You can use comments in a SQL statement to pass instructions, or hints, to the Oracle
Database optimizer. The optimizer uses these hints to choose an execution plan for the
statement, unless some condition exists that prevents the optimizer from doing so.
Hints should be used sparingly, and only after you have collected statistics on the
relevant tables and evaluated the optimizer plan without hints using the EXPLAI N
PLAN statement. In addition, be aware that changing database conditions can have
significant impact on how hints in your code affect performance.

A statement block can have only one comment containing hints, and that comment
must follow the SELECT, UPDATE, | NSERT, MERGE, or DELETE keyword. Only two
hints are used with | NSERT statements: The APPEND hint always follows the | NSERT
keyword, and the PARALLEL hint can follow the | NSERT keyword.

The following syntax diagram shows hints contained in both styles of comments that
Oracle supports within a statement block. The hint syntax must follow immediately
after an | NSERT, UPDATE, DELETE, SELECT, or MERCE keyword that begins the
statement block.

hint::=

RoN
*
G |

where:

« The plus sign (+) causes Oracle to interpret the comment as a list of hints. The plus
sign must follow immediately after the comment delimiter. No space is permitted.

« hi nt isone of the hints discussed in this section. The space between the plus sign
and the hint is optional. If the comment contains multiple hints, then separate the
hints by at least one space.

« stringisother commenting text that can be interspersed with the hints.
The - - + syntax requires that the entire comment be on a single line.

Oracle Database ignores hints and does not return an error under the following
circumstances:

« The hint contains misspellings or syntax errors. However, the database does
consider other correctly specified hints in the same comment.

« The comment containing the hint does not follow a DELETE, | NSERT, MERCGE,
SELECT, or UPDATE keyword.

« A combination of hints conflict with each other. However, the database does
consider other hints in the same comment.

« The database environment uses PL/SQL version 1, such as Forms version 3
triggers, Oracle Forms 4.5, and Oracle Reports 2.5.

Many hints can apply both to specific tables or indexes and more globally to tables
within a view or to columns that are part of indexes. The syntactic elements
t abl espec and i ndexspec define these global hints.

Basic Elements of Oracle SQL 2-71

Comments

tablespec::=

. view ll‘ll"

(table }»

You must specify the table to be accessed exactly as it appears in the statement. If the
statement uses an alias for the table, then use the alias rather than the table name in
the hint. However, do not include the schema name with the table name within the
hint, even if the schema name appears in the statement.

See Also: Oracle Database Performance Tuning Guide for information
on the following topics:
« When to use global hints and how Oracle interprets them

« Using EXPLAI N PLANto learn how the optimizer is executing a
query

« References in hints to tables within views

indexspec::=

index

[@O

(column

Specifying a Query Block in a Hint

You can specify an optional query block name in many hints to specify the query block
to which the hint applies. This syntax lets you specify in the outer query a hint that
applies to an inline view. When you specify a hint in the query block itself to which the
hint applies, you omit the @uer ybl ock syntax.

The syntax of the query block argument is of the form @juer ybl ock, where
qguer ybl ock is an identifier that specifies a query block in the query. The
guer ybl ock identifier can either be system-generated or user-specified.

« The system-generated identifier can be obtained by using EXPLAI N PLAN for the
query. Pretransformation query block names can be determined by running
EXPLAI N PLAN for the query using the NO_QUERY_TRANSFORMATI ON hint. See
"NO_QUERY_TRANSFORMATION Hint" on page 2-87.

« The user-specified name can be set with the @B_NAME hint. See "QB_NAME Hint"
on page 2-92.

Table 2-21 lists the hints by functional category and contains cross-references to the
syntax and semantics for each hint. An alphabetical listing of the hints follows the
table.

See Also: Oracle Database Performance Tuning Guide for
information on:

« using hints to optimize SQL statements and on detailed
information about using the t abl espec and i ndexspec
syntax

« specifying a query block in a hint

« descriptions of hint categories and when to use them

2-72 Oracle Database SQL Reference

Comments

Table 2-21 Hints by Functional Category

Hint Link to Syntax and Semantics
Optimization Goals and ALL_ROWS Hint on page 2-74
Approaches

FIRST_ROWS Hint on page 2-77
- RULE Hint on page 2-93

Access Path Hints CLUSTER Hint on page 2-75

- FULL Hint on page 2-78

- HASH Hint on page 2-78

-- INDEX Hint on page 2-78
NO_INDEX Hint on page 2-84

- INDEX_ASC Hint on page 2-79
INDEX_DESC Hint on page 2-79

-- INDEX_COMBINE Hint on page 2-79
-- INDEX_JOIN Hint on page 2-80

- INDEX_FFS Hint on page 2-80

- INDEX_SS Hint on page 2-81

- INDEX_SS_ASC Hint on page 2-81

- INDEX_SS_DESC Hint on page 2-81
-- NO_INDEX_FFS Hint on page 2-85

-- NO_INDEX_SS Hint on page 2-85

Join Order Hints ORDERED Hint on page 2-89
- LEADING Hint on page 2-82
Join Operation Hints USE_HASH Hint on page 2-95

NO_USE_HASH Hint on page 2-88

- USE_MERGE Hint on page 2-95
NO_USE_MERGE Hint on page 2-88

- USE_NL Hint on page 2-95
USE_NL_WITH_INDEX Hint on page 2-96
NO_USE_NL Hint on page 2-88

Parallel Execution Hints PARALLEL Hint on page 2-89
NO_PARALLEL Hint on page 2-86

- PARALLEL_INDEX Hint on page 2-90
NO_PARALLEL_INDEX Hint on page 2-86

- PQ_DISTRIBUTE Hint on page 2-90

Query Transformation Hints FACT Hint on page 2-77
NO_FACT Hint on page 2-84

- MERGE Hint on page 2-82
NO_MERGE Hint on page 2-85

- NO_EXPAND Hint on page 2-83
USE_CONCAT Hint on page 2-94

Basic Elements of Oracle SQL 2-73

Comments

Table 2-21 (Cont.) Hints by Functional Category

Hint Link to Syntax and Semantics

- REWRITE Hint on page 2-93
NO_REWRITE Hint on page 2-87

- UNNEST Hint on page 2-94
NO_UNNEST Hint on page 2-88

- STAR_TRANSFORMATION Hint on page 2-93
NO_STAR_TRANSFORMATION Hint on page 2-87

-- NO_QUERY_TRANSFORMATION Hint on page 2-87

Other Hints APPEND Hint on page 2-75
NOAPPEND Hint on page 2-83

- CACHE Hint on page 2-75
NOCACHE Hint on page 2-83

- CURSOR_SHARING_EXACT Hint on page 2-75

-- DRIVING_SITE Hint on page 2-76

-- DYNAMIC_SAMPLING Hint on page 2-76

- PUSH_PRED Hint on page 2-92
NO_PUSH_PRED Hint on page 2-86

- PUSH_SUBQ Hint on page 2-92
NO_PUSH_SUBQ Hint on page 2-86

- PX_JOIN_FILTER Hint on page 2-92
NO_PX_JOIN_FILTER Hint on page 2-87

- NO_XML_QUERY_REWRITE Hint on page 2-89

- QB_NAME Hint on page 2-92

- MODEL_MIN_ANALYSIS Hint on page 2-83

Alphabetical Listing of Hints

This section provides syntax and semantics for all hints in alphabetical order.
ALL_ROWS Hint

(P[RS (D)

The ALL_ROWS hint instructs the optimizer to optimize a statement block with a goal
of best throughput—that is, minimum total resource consumption. For example, the
optimizer uses the query optimization approach to optimize this statement for best
throughput:

SELECT /*+ ALL_ROAS */ enployee_id, last_name, salary, job_id
FROM enpl oyees
VWHERE enpl oyee_i d = 7566;

If you specify either the ALL_ROAS or the FI RST_ROWS hint in a SQL statement, and if
the data dictionary does not have statistics about tables accessed by the statement,
then the optimizer uses default statistical values, such as allocated storage for such
tables, to estimate the missing statistics and to subsequently choose an execution plan.

2-74 Oracle Database SQL Reference

Comments

These estimates might not be as accurate as those gathered by the DBMS_STATS
package, so you should use the DBMS_STATS package to gather statistics.

If you specify hints for access paths or join operations along with either the ALL_ ROAS
or FI RST_ROWS hint, then the optimizer gives precedence to the access paths and join
operations specified by the hints.

APPEND Hint

EHFEE (D

The APPEND hint instructs the optimizer to use direct-path | NSERT if your database is
running in serial mode. Your database is in serial mode if you are not using Enterprise
Edition. Conventional | NSERT is the default in serial mode, and direct-path | NSERT is
the default in parallel mode.

In direct-path | NSERT, data is appended to the end of the table, rather than using
existing space currently allocated to the table. As a result, direct-path | NSERT can be
considerably faster than conventional | NSERT.

See Also: Oracle Database Administrator*s Guide for information on
direct-path inserts

CACHE Hint

queryblock
R0 P @ oo

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The CACHE hint instructs the optimizer to place the blocks retrieved for the table at the
most recently used end of the LRU list in the buffer cache when a full table scan is
performed. This hint is useful for small lookup tables.

In the following example, the CACHE hint overrides the default caching specification of
the table:

SELECT /*+ FULL (hr_enp) CACHE(hr_enp) */ last_name
FROM enpl oyees hr_enp;

The CACHE and NOCACHE hints affect system statisticst abl e scans (I ong
t abl es) andtabl e scans (short tables),asshown inthe VESYSSTAT data
dictionary view.

CLUSTER Hint

queryblock
- EEOL 2N G 00

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The CLUSTER hint instructs the optimizer to use a cluster scan to access the specified
table. This hint applies only to clustered tables.

CURSOR_SHARING_EXACT Hint

@ CURSOR_SHARING_EXACT @

Basic Elements of Oracle SQL 2-75

Comments

Oracle can replace literals in SQL statements with bind variables, when it is safe to do
so. This replacement is controlled with the CURSOR_SHARI NGinitialization parameter.
The CURSOR_SHARI NG_EXACT hint instructs the optimizer to switch this behavior off.
In other words, Oracle executes the SQL statement without any attempt to replace
literals with bind variables.

DRIVING_SITE Hint

@ queryblock
TG STE L @D

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The DRI VI NG_SI TE hint instructs the optimizer to execute the query at a different site
than that selected by the database. This hint is useful if you are using distributed
guery optimization.

For example:

SELECT /*+ DRI VING_SI TE(depart ments) */ *
FROM enpl oyees, departnents@site
VHERE enpl oyees. department _id = departnents. department _id;

If this query is executed without the hint, then rows from depar t ment s are sent to
the local site, and the join is executed there. With the hint, the rows from enpl oyees
are sent to the remote site, and the query is executed there and the result set is
returned to the local site.

DYNAMIC_SAMPLING Hint

—>@->| DYNAMIC_SAMPLING |->@ @@@

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The DYNAM C_SAMPLI NG hint instructs the optimizer how to control dynamic
sampling to improve server performance by determining more accurate predicate
selectivity and statistics for tables and indexes.

You can set the value of DYNAM C_SAMPLI NGto a value from 0 to 10. The higher the
level, the more effort the compiler puts into dynamic sampling and the more broadly it
is applied. Sampling defaults to cursor level unless you specify t abl espec.

Thei nt eger valueis0to 10, indicating the degree of sampling.

If a cardinality statistic already exists for the table, then the optimizer uses it.
Otherwise, the optimizer enables dynamic sampling to estimate the cardinality
statistic.

If you specify t abl espec and the cardinality statistic already exists, then;

« If there is no single-table predicate (a WHERE clause that evaluates only one table),
then the optimizer trusts the existing statistics and ignores this hint. For example,
the following query will not result in any dynamic sampling if enpl oyees is
analyzed:

SELECT /*+ dynami c_sanpling(e 1) */ count(*)
FROM enpl oyees e;

2-76 Oracle Database SQL Reference

Comments

« Ifthere is a single-table predicate, then the optimizer uses the existing cardinality
statistic and estimates the selectivity of the predicate using the existing statistics.

To apply dynamic sampling to a specific table, use the following form of the hint:

SELECT /*+ dynami c_sanpl i ng(enpl oyees 1) */ *
FROM enpl oyees
WHERE . .,
See Also: Oracle Database Performance Tuning Guide for

information about dynamic sampling and the sampling levels that
you can set

FACT Hint

queryblock
- EFOLEEEN G o0

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The FACT hint is used in the context of the star transformation. It instructs the
optimizer that the table specified in t abl espec should be considered as a fact table.

FIRST_ROWS Hint

—>®->| FIRST_ROWS P@»Cinteger)—)@a@»

The FI RST_ROWS hint instructs Oracle to optimize an individual SQL statement for
fast response, choosing the plan that returns the first n rows most efficiently. For
i nt eger, specify the number of rows to return.

Note: The FI RST_ROWS hint specified without an argument,
which optimizes for the best plan to return the first single row, is
retained for backward compatibility and plan stability only.

For example, the optimizer uses the query optimization approach to optimize the
following statement for best response time:

SELECT /*+ FI RST_ROAS(10) */ enployee_id, last_name, salary, job_id
FROM enpl oyees
VWHERE departnent _id = 20;

In this example each department contains many employees. The user wants the first 10
employees of department 20 to be displayed as quickly as possible.

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in
SELECT statement blocks that include any blocking operations, such as sorts or
groupings. Such statements cannot be optimized for best response time, because
Oracle Database must retrieve all rows accessed by the statement before returning the
first row. If you specify this hint in any such statement, then the database optimizes for
best throughput.

See Also: "ALL_ROWS Hint" on page 2-74 for additional
information on the FI RST_ROWS hint and statistics

Basic Elements of Oracle SQL 2-77

Comments

FULL Hint

-queryblock
O 0o

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The FULL hint instructs the optimizer to perform a full table scan for the specified
table. For example;

SELECT /*+ FULL(e) */ enployee_id, |ast_nane
FROM hr. enpl oyees e
VWHERE | ast _nane LIKE :bl;

Oracle Database performs a full table scan on the enpl oyees table to execute this
statement, even if there is an index on the | ast _name column that is made available
by the condition in the WHERE clause.

The enpl oyees table has alias e in the FROMclause, so the hint must refer to the table
by its alias rather than by its name. Do not specify schema names in the hint even if
they are specified in the FROMclause.

HASH Hint

queryblock
- oL T G 0@

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)
The HASH hint instructs the optimizer to use a hash scan to access the specified table.
This hint applies only to tables stored in a table cluster.

INDEX Hint

queryblock ﬁW\
DN, oL 50

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX hint instructs the optimizer to use an index scan for the specified table. You
can use the | NDEX hint for function-based, domain, B-tree, bitmap, and bitmap join
indexes.

The behavior of the hint depends on the i ndexspec specification:

« If the | NDEX hint specifies a single available index, then the database performs a
scan on this index. The optimizer does not consider a full table scan or a scan of
another index on the table.

« For a hint on a combination of multiple indexes, Oracle recommends using
| NDEX_COMBI NE rather than | NDEX, because it is a more versatile hint. If the
I NDEX hint specifies a list of available indexes, then the optimizer considers the
cost of a scan on each index in the list and then performs the index scan with the
lowest cost. The database can also choose to scan multiple indexes from this list
and merge the results, if such an access path has the lowest cost. The database
does not consider a full table scan or a scan on an index not listed in the hint.

2-78 Oracle Database SQL Reference

Comments

« Ifthe | NDEX hint specifies no indexes, then the optimizer considers the cost of a
scan on each available index on the table and then performs the index scan with
the lowest cost. The database can also choose to scan multiple indexes and merge
the results, if such an access path has the lowest cost. The optimizer does not
consider a full table scan.

For example:

SELECT /*+ | NDEX (enpl oyees enp_department _ix)*/
enpl oyee_id, department_id
FROM enpl oyees
VWHERE departnent _id > 50;

INDEX_ASC Hint

queryblock I—)—W—\
AN @ L 0

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX_ASC hint instructs the optimizer to use an index scan for the specified
table. If the statement uses an index range scan, then Oracle Database scans the index
entries in ascending order of their indexed values. Each parameter serves the same
purpose as in "INDEX Hint" on page 2-78.

The default behavior for a range scan is to scan index entries in ascending order of
their indexed values, or in descending order for a descending index. This hint does not
change the default order of the index, and therefore does not specify anything more
than the | NDEX hint. However, you can use the | NDEX_ASC hint to specify ascending
range scans explicitly should the default behavior change.

INDEX_COMBINE Hint

® o)

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX_COMBI NE hint instructs the optimizer to use a bitmap access path for the
table. If i ndexspec is omitted from the | NDEX_COMBI NE hint, then the optimizer
uses whatever Boolean combination of indexes has the best cost estimate for the table.
If you specify i ndexspec, then the optimizer tries to use some Boolean combination
of the specified indexes. Each parameter serves the same purpose as in "INDEX Hint"
on page 2-78. For example:

SELECT /*+ | NDEX_COVBI NE(e enp_manager _i x enp_departnent _i x) */ *
FROM enpl oyees e
WHERE manager _id = 108
OR departnent _id = 110;

INDEX_DESC Hint

® @

Basic Elements of Oracle SQL 2-79

Comments

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX_DESC hint instructs the optimizer to use a descending index scan for the
specified table. If the statement uses an index range scan and the index is ascending,
then Oracle scans the index entries in descending order of their indexed values. In a
partitioned index, the results are in descending order within each partition. For a
descending index, this hint effectively cancels out the descending order, resulting in a
scan of the index entries in ascending order. Each parameter serves the same purpose
as in "INDEX Hint" on page 2-78. For example:

SELECT /*+ | NDEX_DESC(e enp_nane_ix) */ *
FROM enpl oyees e;

See Also: Oracle Database Performance Tuning Guide for information
on full scans

INDEX_FFS Hint

queryblock ﬁW\
DN G- L 5,0

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX_FFS hint instructs the optimizer to perform a fast full index scan rather
than a full table scan.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-78. For
example:

SELECT /*+ | NDEX_FFS(e enp_nane_ix) */ first_nane
FROM enpl oyees e;

INDEX_JOIN Hint

queryblock I—)W\
N, @ L 50

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX_JA N hint instructs the optimizer to use an index join as an access path.
For the hint to have a positive effect, a sufficiently small number of indexes must exist
that contain all the columns required to resolve the query.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-78. For
example, the following query uses an index join to access the manager _i d and
depart ment _i d columns, both of which are indexed in the enpl oyees table.

SELECT /*+ | NDEX_JO N(e enp_ranager _i x enp_department _i x) */ department _id
FROM enpl oyees e
VHERE manager _id < 110
AND departnent _id < 50;

2-80 Oracle Database SQL Reference

Comments

INDEX_SS Hint

queryblock ﬁw\
AN @ L 2 o

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX_SS hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan, then Oracle scans the index
entries in ascending order of their indexed values. In a partitioned index, the results
are in ascending order within each partition.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-78. For
example:

SELECT /*+ | NDEX_SS(e enp_name_i x) */ last_nane
FROM enpl oyees e
VWHERE first_name = 'Steven';

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

INDEX_SS_ASC Hint

®)

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX_SS_ASC hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan, then Oracle Database scans
the index entries in ascending order of their indexed values. In a partitioned index, the
results are in ascending order within each partition. Each parameter serves the same
purpose as in "INDEX Hint" on page 2-78.

The default behavior for a range scan is to scan index entries in ascending order of
their indexed values, or in descending order for a descending index. This hint does not
change the default order of the index, and therefore does not specify anything more
than the | NDEX_SS hint. However, you can use the | NDEX_SS_ASC hint to specify
ascending range scans explicitly should the default behavior change.

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

INDEX_SS_DESC Hint

® @)

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The | NDEX_SS_DESC hint instructs the optimizer to perform an index skip scan for
the specified table. If the statement uses an index range scan and the index is

Basic Elements of Oracle SQL 2-81

Comments

ascending, then Oracle scans the index entries in descending order of their indexed
values. In a partitioned index, the results are in descending order within each
partition. For a descending index, this hint effectively cancels out the descending
order, resulting in a scan of the index entries in ascending order.

Each parameter serves the same purpose as in the "INDEX Hint" on page 2-78. For
example:

SELECT /*+ | NDEX_SS DESC(e enp_nane_ix) */ |ast_nane
FROM enpl oyees e
WHERE first_name = ' Steven';

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

LEADING Hint

queryblock
O (G DO

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The LEADI NG hint instructs the optimizer to use the specified set of tables as the prefix
in the execution plan. This hint is more versatile than the ORDERED hint. For example:

SELECT /*+ LEADING(e j) */ *
FROM enpl oyees e, departnents d, job_history j
WHERE e. departnment _id = d.departnent_id
AND e. hire_date = j.start_date;

The LEADI NG hint is ignored if the tables specified cannot be joined first in the order
specified because of dependencies in the join graph. If you specify two or more
conflicting LEADI NG hints, then all of them are ignored. If you specify the ORDERED
hint, it overrides all LEADI NGhints.

MERGE Hint

queryblock

(@)oo

tablespec

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)
The MERGE hint lets you merge views in a query.

If a view's query block contains a GROUP BY clause or DI STI NCT operator in the
SELECT list, then the optimizer can merge the view into the accessing statement only if
complex view merging is enabled. Complex merging can also be used to merge an | N
subquery into the accessing statement if the subquery is uncorrelated.

For example:

SELECT /*+ MERGE(v) */ el.last_name, el.salary, v.avg_salary
FROM enpl oyees el,
(SELECT departnent _id, avg(salary) avg_salary
FROM enpl oyees e2
GROUP BY departnent _id) v
WHERE el. departnent _id = v.departnent_id AND el.salary > v.avg_sal ary;

2-82 Oracle Database SQL Reference

Comments

When the MERGE hint is used without an argument, it should be placed in the view
guery block. When MERGE is used with the view name as an argument, it should be
placed in the surrounding query.

MODEL_MIN_ANALYSIS Hint

—>®->| MODEL_MIN_ANALYSIS F@»

The MODEL_M N_ANALYSI S hint instructs the optimizer to omit some compile-time
optimizations of spreadsheet rules—primarily detailed dependency graph analysis.
Other spreadsheet optimizations, such as creating filters to selectively populate
spreadsheet access structures and limited rule pruning, are still used by the optimizer.

This hint reduces compilation time because spreadsheet analysis can be lengthy if the
number of spreadsheet rules is more than several hundreds.

NOAPPEND Hint

OILE O

The NOAPPEND hint instructs the optimizer to use conventional | NSERT by disabling
parallel mode for the duration of the | NSERT statement. Conventional | NSERT is the
default in serial mode, and direct-path | NSERT is the default in parallel mode.

NOCACHE Hint

-queryblock
LN GO

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The NOCACHE hint instructs the optimizer to place the blocks retrieved for the table at
the least recently used end of the LRU list in the buffer cache when a full table scan is
performed. This is the normal behavior of blocks in the buffer cache. For example:

SELECT /*+ FULL(hr _enp) NOCACHE(hr_enmp) */ |ast_nane
FROM enpl oyees hr_enp;

The CACHE and NOCACHE hints affect system statistics t abl e scans(| ong t abl es)
andt abl e scans(short tabl es), as shown in the VESYSSTAT view.

See Also: Oracle Database Performance Tuning Guide for information
on automatic caching of tables, depending on their size

NO_EXPAND Hint

O@@m D)

(See "Specifying a Query Block in a Hint" on page 2-72)

The NO_EXPAND hint instructs the optimizer not to consider OR-expansion for queries
having OR conditions or | N-lists in the WHERE clause. Usually, the optimizer considers
using OR expansion and uses this method if it decides that the cost is lower than not
using it. For example:

Basic Elements of Oracle SQL 2-83

Comments

SELECT /*+ NO_EXPAND */ *
FROM enpl oyees e, departnents d
VHERE e. manager _id = 108
R d. departnent _id = 110;

See Also:

« Oracle Database Performance Tuning Guide for a discussion of
OR-expansion

« the "USE_CONCAT Hint" on page 2-94, which is the opposite of
this hint

NO_FACT Hint

queryblock
LD GO

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)
The NO_FACT hint is used in the context of the star transformation. It instruct the
optimizer that the queried table should not be considered as a fact table.

NO_INDEX Hint

queryblock /_)W\
DN @ L 50

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The NO_I NDEX hint instructs the optimizer not to use one or more indexes for the
specified table. For example:

SELECT /*+ NO_| NDEX(enpl oyees enp_enpid) */ enployee_id
FROM enpl oyees
VHERE enpl oyee_id > 200;

Each parameter serves the same purpose as in "INDEX Hint" on page 2-78 with the
following modifications:

« Ifthis hint specifies a single available index, then the optimizer does not consider a
scan on this index. Other indexes not specified are still considered.

« Ifthis hint specifies a list of available indexes, then the optimizer does not consider
a scan on any of the specified indexes. Other indexes not specified in the list are
still considered.

« If this hint specifies no indexes, then the optimizer does not consider a scan on any
index on the table. This behavior is the same as a NO_| NDEX hint that specifies a
list of all available indexes for the table.

The NO_| NDEX hint applies to function-based, B-tree, bitmap, cluster, or domain
indexes. If a NO_| NDEX hint and an index hint (I NDEX, | NDEX_ASC, | NDEX_DESC,
| NDEX_COMBI NE, or | NDEX_FFS) both specify the same indexes, then the database
ignores both the NO_| NDEX hint and the index hint for the specified indexes and
considers those indexes for use during execution of the statement.

2-84 Oracle Database SQL Reference

Comments

NO_INDEX_FFS Hint

® Ao

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The NO_I NDEX_FFS hint instructs the optimizer to exclude a fast full index scan of the
specified indexes on the specified table. Each parameter serves the same purpose as in
the "INDEX Hint" on page 2-78. For example:

SELECT /*+ NO_INDEX FFS(itens itemorder_ix) */ order_id
FROM or der _itens itens;

NO_INDEX_SS Hint

®)

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The NO_I NDEX_SS hint instructs the optimizer to exclude a skip scan of the specified
indexes on the specified table. Each parameter serves the same purpose as in the
"INDEX Hint" on page 2-78.

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

NO_MERGE Hint

queryblock

(@)

tablespec

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The NO_MERGE hint instructs the optimizer not to combine the outer query and any
inline view queries into a single query.

This hint lets you have more influence over the way in which the view is accessed. For
example, the following statement causes view seat t | e_dept not to be merged.:

SELECT /*+NO MERCGE(seattle_dept)*/ el.last_nane, seattle_dept.departnent_name
FROM enpl oyees el,
(SELECT | ocation_id, departnent_id, departnent_name
FROM depar t ment s
WHERE | ocation_id
VWHERE el. departnent _id

1700) seattle_dept
seattle_dept.department _id;

When you use the NO_MERCE hint in the view query block, specify it without an
argument. When you specify NO_MERGE in the surrounding query, specify it with the
view name as an argument.

Basic Elements of Oracle SQL 2-85

Comments

NO_PARALLEL Hint

@ queryblock
™ (CEDI0OF

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The NO_PARALLEL hint overrides a PARALLEL parameter in the DDL that created or
altered the table. For example:

SELECT /*+ NO _PARALLEL(hr_enp) */ last_name
FROM enpl oyees hr_enp;

NOPARALLEL Hint
The NOPARALLEL hint has been deprecated. Use the NO_PARALLEL hint instead.

NO_PARALLEL_INDEX Hint

® @)
—>®->| NO_PARALLEL_INDEX @ s tablespec) @@

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The NO_PARALLEL _| NDEX hint overrides a PARALLEL parameter in the DDL that
created or altered the index, thus avoiding a parallel index scan operation.

NOPARALLEL_INDEX Hint

The NOPARALLEL | NDEX hint has been deprecated. Use the NO_PARALLEL_| NDEX
hint instead.

NO_PUSH_PRED Hint

queryblock

@)

tablespec

— :)->| NO_PUSH_PRED @

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The NO_PUSH_PRED hint instructs the optimizer not to push a join predicate into the
view. For example:

SELECT /*+ NO_MERGE(v) NO PUSH PRED(v) */ *
FROM enpl oyees e,
(SELECT manager _i d
FROM enpl oyees
) v
VHERE e. manager _id = v. manager _i d(+)
AND e. enpl oyee_id = 100;

NO_PUSH_SUBQ Hint

D@ O
_>(:)->| NO_PUSH_SUBQ @

2-86 Oracle Database SQL Reference

Comments

(See "Specifying a Query Block in a Hint" on page 2-72)

The NO_PUSH_SUBQhint instructs the optimizer to evaluate nonmerged subqueries as
the last step in the execution plan. Doing so can improve performance if the subquery
is relatively expensive or does not reduce the number of rows significantly.

NO_PX_JOIN_FILTER Hint

@ NO_PX_JOIN_FILTER F@—)Ctablespec)a@a@-)

This hint prevents the optimizer from using parallel join bitmap filtering.

NO_REWRITE Hint

ololco

(See "Specifying a Query Block in a Hint" on page 2-72)

The NO_REWRI TE hint instructs the optimizer to disable query rewrite for the query
block, overriding the setting of the parameter QUERY_REWRI TE_ENABLED. For
example:

SELECT /*+ NO_REWRI TE */ sun{s.anount_sol d) AS dollars
FROM sales s, tinmes t
WHERE s.tinme_id = t.tinme_id
GROUP BY t. cal endar_nont h_desc;

NOREWRITE Hint
The NOREWRI TE hint has been deprecated. Use the NO_REWRI TE hint instead.

NO_QUERY_TRANSFORMATION Hint

—>®->| NO_QUERY_TRANSFORMATION @

The NO_QUERY_TRANSFORNMATI ON hint instructs the optimizer to skip all query
transformations, including but not limited to OR-expansion, view merging, subquery
unnesting, star transformation, and materialized view rewrite. For example:

SELECT /*+ NO_QUERY_TRANSFORMATI ON */ enpl oyee_id, |ast_nane
FROM (SELECT *
FROM enpl oyees e) v
VWHERE v. | ast_nane = 'Smth’;

NO_STAR_TRANSFORMATION Hint

O® O
—>®->| NO_STAR_TRANSFORMATION | @

(See "Specifying a Query Block in a Hint" on page 2-72)

The NO_STAR_TRANSFORMATI ON hint instructs the optimizer not to perform star
guery transformation.

Basic Elements of Oracle SQL 2-87

Comments

NO_UNNEST Hint

O@@mo D)

(See "Specifying a Query Block in a Hint" on page 2-72)
Use of the NO_UNNEST hint turns off unnesting .

NO_USE_HASH Hint

@ queryblock
@ =T ¢ (@D

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The NO_USE_HASH hint instructs the optimizer to exclude hash joins when joining
each specified table to another row source using the specified table as the inner table.
For example:

SELECT /*+ NO USE_HASH(e d) */ *
FROM enpl oyees e, departnents d
VHERE e. departrment _id = d. department _id;

NO_USE_MERGE Hint

@ queryblock

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The NO_USE_MERGE hint instructs the optimizer to exclude sort-merge joins when
joining each specified table to another row source using the specified table as the inner
table. For example:

SELECT /*+ NO_USE_MERGE(e d) */ *
FROM enpl oyees e, departnents d
WHERE e. department _id = d. department _id
ORDER BY d. department _i d;

NO_USE_NL Hint

queryblock
(O (G- O

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The NO_USE_NL hint instructs the optimizer to exclude nested loops joins when
joining each specified table to another row source using the specified table as the inner
table. For example:

SELECT /*+ NO_USE_NL(I h) */ *
FROM orders h, order_itens |
VHERE | .order_id = h.order_id

AND | .order_id > 3500;

2-88 Oracle Database SQL Reference

Comments

When this hint is specified, only hash join and sort-merge joins are considered for the
specified tables. However, in some cases tables can be joined only by using nested
loops. In such cases, the optimizer ignores the hint for those tables.

NO_XML_QUERY_REWRITE Hint

@ NO_XML_QUERY_REWRITE |->@->

The NO_XM__QUERY_REWRI TE hint instructs the optimizer to prohibit the rewriting of
XPath expressions in SQL statements. For example:

SELECT /*+NO XM._QUERY_REVRI TE*/ XM_LQUERY(' <A/ >")
FROM dual ;

ORDERED Hint

@I =0

The ORDERED hint instructs Oracle to join tables in the order in which they appear in
the FROMclause. Oracle recommends that you use the LEADI NG hint, which is more
versatile than the ORDERED hint.

When you omit the ORDERED hint from a SQL statement requiring a join, the optimizer
chooses the order in which to join the tables. You might want to use the ORDERED hint
to specify a join order if you know something that the optimizer does not know about
the number of rows selected from each table. Such information lets you choose an
inner and outer table better than the optimizer could.

The following query is an example of the use of the ORDERED hint:

SELECT /*+ORDERED */ o.order_id, c.customer_id, |.unit_price * |.quantity
FROM custoners ¢, order items |, orders o
VWHERE c. cust | ast_nane = :bl
AND o. custoner _id = c.customer _id
AND o.order_id = |.order_id;

PARALLEL Hint

integer

DEFAULT

queryblock
® SN Gy 070"

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The PARALLEL hint instructs the optimizer to use the specified number of concurrent
servers for a parallel operation. The hint applies to the SELECT, | NSERT, MERGE,
UPDATE, and DELETE portions of a statement, as well as to the table scan portion.

Note: The number of servers that can be used is twice the value in
the PARALLEL hint, if sorting or grouping operations also take
place.

If any parallel restrictions are violated, then the hint is ignored.

Thei nt eger value specifies the degree of parallelism for the specified table.
Specifying DEFAULT or no value signifies that the query coordinator should examine

Basic Elements of Oracle SQL 2-89

Comments

the settings of the initialization parameters to determine the default degree of
parallelism. In the following example, the PARALLEL hint overrides the degree of
parallelism specified in the enpl oyees table definition:

SELECT /*+ FULL(hr_enp) PARALLEL(hr_enp, 5) */ last_nane
FROM enpl oyees hr_enp;

In the next example, the PARALLEL hint overrides the degree of parallelism specified
in the enpl oyees table definition and instructs the optimizer to use the default
degree of parallelism determined by the initialization parameters.

SELECT /*+ FULL(hr _enp) PARALLEL(hr_enp, DEFAULT) */ |ast_nane
FROM enpl oyees hr_enp;

Oracle ignores parallel hints on temporary tables. Please refer to CREATE TABLE on
page 16-6 and Oracle Database Concepts for more information on parallel execution.

PARALLEL_INDEX Hint

OlCED NG
@ PARALLEL_INDEX |(¢ (tablespec }

V)

O

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The PARALLEL | NDEX hint instructs the optimizer to use the specified number of
concurrent servers to parallelize index range scans for partitioned indexes.

Thei nt eger value indicates the degree of parallelism for the specified index.
Specifying DEFAULT or no value signifies that the query coordinator should examine
the settings of the initialization parameters to determine the default degree of
parallelism. For example, the following hint indicates three parallel execution
processes are to be used:

SELECT /*+ PARALLEL_| NDEX(tabl e1, index1, 3) */

PQ_DISTRIBUTE Hint

@ queryblock
@ PQ_DISTRIBUTE ({tablespec)—(outer_distribution)—(inner_distribution)»@e@—)

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The PQ_DI STRI BUTE hint instructs the optimizer how to distribute rows of joined
tables among producer and consumer query servers. Such distribution can improve
the performance of parallel join operations.

« outer_distribution isthe distribution for the outer table.
« inner_distribution isthe distribution for the inner table.

The values of the distributions are HASH, BROADCAST, PARTI T1 ON, and NONE. Only
six combinations table distributions are valid, as described in Table 2-22:

2-90 Oracle Database SQL Reference

Comments

Table 2-22 Distribution Hint Combinations

Distribution Description

HASH, HASH The rows of each table are mapped to consumer query servers,
using a hash function on the join keys. When mapping is
complete, each query server performs the join between a pair of
resulting partitions. This distribution is recommended when the
tables are comparable in size and the join operation is
implemented by hash-join or sort merge join.

BROADCAST, NONE All rows of the outer table are broadcast to each query server.
The inner table rows are randomly partitioned. This distribution
is recommended when the outer table is very small compared
with the inner table. As a general rule, use this distribution
when the inner table size multiplied by the number of query
servers is greater than the outer table size.

NONE, BROADCAST All rows of the inner table are broadcast to each consumer query
server. The outer table rows are randomly partitioned. This
distribution is recommended when the inner table is very small
compared with the outer table. As a general rule, use this
distribution when the inner table size multiplied by the number
of query servers is less than the outer table size.

PARTI TI ON, NONE The rows of the outer table are mapped using the partitioning of
the inner table. The inner table must be partitioned on the join
keys. This distribution is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers; for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

NONE, PARTI TI ON The rows of the inner table are mapped using the partitioning of
the outer table. The outer table must be partitioned on the join
keys. This distribution is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers; for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

NONE, NONE Each query server performs the join operation between a pair of
matching partitions, one from each table. Both tables must be
equipartitioned on the join keys.

For example, given two tables r and s that are joined using a hash join, the following
guery contains a hint to use hash distribution:

SELECT /*+ORDERED PQ DI STRI BUTE(s HASH, HASH) USE HASH (s)*/ col um_li st
FROMr, s
WHERE r. c=s. c;

To broadcast the outer table r, the query is:

SELECT /*+ORDERED PQ DI STRI BUTE(s BROADCAST, NONE) USE HASH (s) */ colum_Iist
FROMr,s
WHERE r. c=s.cC;

See Also: Oracle Database Concepts for more information on how
Oracle parallelizes join operations

Basic Elements of Oracle SQL 2-91

Comments

PUSH_PRED Hint

queryblock

(@)

tablespec

PUSH_PRED @_>

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The PUSH_PRED hint instructs the optimizer to push a join predicate into the view. For
example:

SELECT /*+ NO_MERGE(v) PUSH PRED(v) */ *
FROM enpl oyees e,
(SELECT manager _i d
FROM enpl oyees
) v
VHERE e. manager _id = v. manager _i d(+)
AND e. enpl oyee_id = 100;

PUSH_SUBQ Hint

0lolCEDT0

(See "Specifying a Query Block in a Hint" on page 2-72)

The PUSH_SUBQhint instructs the optimizer to evaluate nonmerged subqueries at the
earliest possible step in the execution plan. Generally, subqueries that are not merged
are executed as the last step in the execution plan. If the subquery is relatively
inexpensive and reduces the number of rows significantly, then evaluating the
subquery earlier can improve performance.

This hint has no effect if the subquery is applied to a remote table or one that is joined
using a merge join.

PX_JOIN_FILTER Hint

@ PX_JOIN_FILTER F@»Ctablespec)a@»@»

This hint forces the optimizer to use parallel join bitmap filtering.

QB_NAME Hint

() 9B NavE [auenplock)0 ()

(See "Specifying a Query Block in a Hint" on page 2-72)

Use the QB_NAME hint to define a name for a query block. This name can then be used
in a hint in the outer query or even in a hint in an inline view to affect query execution
on the tables appearing in the named query block.

If two or more query blocks have the same name, or if the same query block is hinted
twice with different names, then the optimizer ignores all the names and the hints
referencing that query block. Query blocks that are not named using this hint have
unique system-generated names. These names can be displayed in the plan table and
can also be used in hints within the query block, or in query block hints. For example:

2-92 Oracle Database SQL Reference

Comments

SELECT /*+ QB_NAME(gb) FULL(@b e) */ enployee_id, |ast_nane
FROM enpl oyees e
VWHERE | ast_nane = 'Snith’;

REWRITE Hint

< (@0
@Y @

(See "Specifying a Query Block in a Hint" on page 2-72)

The REVRI TE hint instructs the optimizer to rewrite a query in terms of materialized
views, when possible, without cost consideration. Use the REWRI TE hint with or
without a view list. If you use REWRI TE with a view list and the list contains an
eligible materialized view, then Oracle uses that view regardless of its cost.

Oracle does not consider views outside of the list. If you do not specify a view list,
then Oracle searches for an eligible materialized view and always uses it regardless of
the cost of the final plan.

See Also:

« Oracle Database Concepts and Oracle Database Advanced
Replication for more information on materialized views

« Oracle Database Data Warehousing Guide for more information on
using REVRI TE with materialized views

RULE Hint

EHFERD

The RULE hint disables the use of the optimizer. This hint is not supported and should
not be used.

STAR_TRANSFORMATION Hint

O® O
—>®->| STAR_TRANSFORMATION | @

(See "Specifying a Query Block in a Hint" on page 2-72)

The STAR_TRANSFORMATI ON hint instructs the optimizer to use the best plan in
which the transformation has been used. Without the hint, the optimizer could make a
guery optimization decision to use the best plan generated without the transformation,
instead of the best plan for the transformed query. For example:

SELECT /*+ STAR TRANSFORMATION */ *
FROM sales s, tines t, products p, channels c
WHERE s.time_id = t.tine_id
AND s.prod_id = p.product _id
AND s. channel _id = c.channel _id
AND p. product _status = 'obsolete';

Even if the hint is specified, there is no guarantee that the transformation will take
place. The optimizer generates the subqueries only if it seems reasonable to do so. If no

Basic Elements of Oracle SQL 2-93

Comments

subqueries are generated, then there is no transformed query, and the best plan for the
untransformed query is used, regardless of the hint.

See Also:

« Oracle Database Data Warehousing Guide for a full discussion of
star transformation.

» Oracle Database Reference for more information on the STAR_
TRANSFORVATI ON_ENABLED initialization parameter.

UNNEST Hint

ololCD0

(See "Specifying a Query Block in a Hint" on page 2-72)

The UNNEST hint instructs the optimizer to unnest and merge the body of the
subquery into the body of the query block that contains it, allowing the optimizer to
consider them together when evaluating access paths and joins.

Before a subquery is unnested, the optimizer first verifies whether the statement is
valid. The statement must then must pass heuristic and query optimization tests. The
UNNEST hint instructs the optimizer to check the subquery block for validity only. If
the subquery block is valid, then subquery unnesting is enabled without checking the
heuristics or costs.

See Also:

« "Collection Unnesting: Examples" on page 19-43 for more
information on unnesting nested subqueries and the conditions
that make a subquery block valid

« Oracle Database Performance Tuning Guide for additional
information on subquery unnesting

USE_CONCAT Hint

clolcEDo

(See "Specifying a Query Block in a Hint" on page 2-72)

The USE_CONCAT hint instructs the optimizer to transform combined OR-conditions in
the WHERE clause of a query into a compound query using the UNI ONALL set operator.
Without this hint, this transformation occurs only if the cost of the query using the
concatenations is cheaper than the cost without them. The USE_CONCAT hint overrides
the cost consideration. For example:

SELECT /*+ USE_CONCAT */ *
FROM enpl oyees e
VWHERE manager _id = 108
OR department _id = 110;

See Also: the "NO_EXPAND Hint" on page 2-83, which is the
opposite of this hint and Oracle Database Performance Tuning Guide for a
discussion of OR-expansion

2-94 Oracle Database SQL Reference

Comments

USE_HASH Hint

queryblock
- EEEOLLEN (G 00

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The USE_HASH hint instructs the optimizer to join each specified table with another
row source using a hash join. For example:

SELECT /*+ USE_HASH(I h) */ *
FROM orders h, order _itens |
WHERE | .order_id = h.order_id

AND | .order_id > 3500;

USE_MERGE Hint

@ queryblock
T (@O

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The USE_MERGE hint instructs the optimizer to join each specified table with another
row source using a sort-merge join. For example:

SELECT /*+ USE_MERGE(enpl oyees departnents) */ *
FROM enpl oyees, departnents
VHERE enpl oyees. department _id = departnents. department _id;

Use of the USE_NL and USE_MERGE hints is recommended with the LEADI NGand
ORDERED hints. The optimizer uses those hints when the referenced table is forced to
be the inner table of a join. The hints are ignored if the referenced table is the outer
table.

USE_NL Hint

The USE_NL hint instructs the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

queryblock
O (@ -0

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72)

The USE_NL hint instructs the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

Use of the USE_NL and USE_MERGE hints is recommended with the LEADI NGand
ORDERED hints. The optimizer uses those hints when the referenced table is forced to
be the inner table of a join. The hints are ignored if the referenced table is the outer
table.

In the following example, where a nested loop is forced through a hint, or der s is
accessed through a full table scan and the filter condition| . order _id = h. order _
i disapplied to every row. For every row that meets the filter condition, or der _

i t ens is accessed through the index or der _i d.

SELECT /*+ USE_NL(I h) */ h.customer_id, [.unit_price * |.quantity
FROM orders h ,order_itens |
WHERE | . order _id = h.order _id;

Basic Elements of Oracle SQL 2-95

Database Objects

Adding an | NDEX hint to the query could avoid the full table scan on or der s,
resulting in an execution plan similar to one used on larger systems, even though it
might not be particularly efficient here.

USE_NL_WITH_INDEX Hint

-queryblock A W
—>®->| USE_NL_WITH_INDEX @ © s tablespec) @@

A e

(See "Specifying a Query Block in a Hint" on page 2-72, tablespec::= on page 2-72,
indexspec::= on page 2-72)

The USE_NL_W TH_I NDEX hint instructs the optimizer to join the specified table to
another row source with a nested loops join using the specified table as the inner table.
For example:

SELECT /*+ USE_NL_W TH_I NDEX(| item product _ix) */ *
FROM orders h, order_itens |
VHERE | .order_id = h.order_id
AND | .order_id > 3500;

The following conditions apply:

« If noindex is specified, then the optimizer must be able to use some index with at
least one join predicate as the index key.

« Ifanindex is specified, then the optimizer must be able to use that index with at
least one join predicate as the index key.

Database Objects

Oracle Database recognizes objects that are associated with a particular schema and
objects that are not associated with a particular schema, as described in the sections
that follow.

Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a single
schema. Schema objects can be created and manipulated with SQL and include the
following types of objects:

Clusters

Constraints

Database links

Database triggers
Dimensions

External procedure libraries
Index-organized tables
Indexes

Indextypes

Java classes, Java resources, Java sources
Materialized views
Materialized view logs
Obiject tables

Object types

2-96 Oracle Database SQL Reference

Schema Object Names and Qualifiers

Object views

Operators

Packages

Sequences

Stored functions, stored procedures
Synonyms

Tables

Views

Nonschema Objects

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

Contexts

Directories

Parameter files (PFI LES) and server parameter files (SPFI LES)
Profiles

Roles

Rollback segments

Tablespaces

Users

In this reference, each type of object is briefly defined in Chapter 10 through

Chapter 19, in the section describing the statement that creates the database object.
These statements begin with the keyword CREATE. For example, for the definition of a
cluster, see CREATE CLUSTER on page 14-2.

See Also: Oracle Database Concepts for an overview of database
objects

You must provide names for most types of database objects when you create them.
These names must follow the rules listed in the following sections.

Schema Object Names and Qualifiers

Some schema objects are made up of parts that you can or must name, such as the
columns in a table or view, index and table partitions and subpartitions, integrity
constraints on a table, and objects that are stored within a package, including
procedures and stored functions. This section provides:

« Rules for naming schema objects and schema object location qualifiers

« Guidelines for naming schema objects and qualifiers

Schema Object Naming Rules

Every database object has a name. In a SQL statement, you represent the name of an
object with a quoted identifier or a nonquoted identifier.

« A quoted identifier begins and ends with double quotation marks ("). If you name
a schema object using a quoted identifier, then you must use the double quotation
marks whenever you refer to that object.

« A nonquoted identifier is not surrounded by any punctuation.

You can use either quoted or nonquoted identifiers to name any database object.
However, database names, global database names, and database link names are

Basic Elements of Oracle SQL 2-97

Schema Object Names and Qualifiers

always case insensitive and are stored as uppercase. If you specify such names as
quoted identifiers, then the quotation marks are silently ignored. Please refer to
CREATE USER on page 17-25 for additional rules for naming users and passwords.

The following list of rules applies to both quoted and nonquoted identifiers unless
otherwise indicated:

1. Names must be from 1 to 30 bytes long with these exceptions:
« Names of databases are limited to 8 bytes.
« Names of database links can be as long as 128 bytes.

If an identifier includes multiple parts separated by periods, then each attribute
can be up to 30 bytes long. Each period separator, as well as any surrounding
double quotation marks, counts as one byte. For example, suppose you identify a
column like this:

"schema"."tabl e"."col um"
The schema name can be 30 bytes, the table name can by 30 bytes, and the column

name can be 30 bytes. Each of the quotation marks and periods is a single-byte
character, so the total length of the identifier in this example can be up to 98 bytes.

2. Nonquoted identifiers cannot be Oracle Database reserved words. Quoted
identifiers can be reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object,
names might be further restricted by other product-specific reserved words.

Note: The reserved word ROWN Dis an exception to this rule. You
cannot use the uppercase word RON D, either quoted or nonquoted, as
a column name. However, you can use the uppercase word as a
guoted identifier that is not a column name, and you can use the word
with one or more lowercase letters (for example, "Rowi d" or "r owi d")
as any quoted identifier, including a column name.

See Also:

« Appendix D, "Oracle Database Reserved Words" for a listing of all
Oracle Database reserved words

« The manual for a specific product, such as Oracle Database PL/SQL
User's Guide and Reference, for a list of the reserved words of that
product

3. The Oracle SQL language contains other words that have special meanings. These
words include datatypes, schema names, function names, the dummy system table
DUAL, and keywords (the uppercase words in SQL statements, such as
DI MENSI ON, SEGVENT, ALLOCATE, DI SABLE, and so forth). These words are not
reserved. However, Oracle uses them internally in specific ways. Therefore, if you
use these words as names for objects and object parts, then your SQL statements
may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with SYS_ as schema object names, and
do not use the names of SQL built-in functions for the names of schema objects or
user-defined functions.

2-98 Oracle Database SQL Reference

Schema Object Names and Qualifiers

See Also: "Datatypes" on page 2-1, "SQL Functions" on page 5-1, and
"Selecting from the DUAL Table" on page 9-15

You should use ASCII characters in database names, global database names, and
database link names, because ASCII characters provide optimal compatibility
across different platforms and operating systems.

Note: Oracle recommends that user names and passwords be
encoded in ASCII or EBCDIC characters only, depending on your
platform. Please refer to Oracle Database Administrator*s Guide for more
information about this recommendation.

Nonquoted identifiers must begin with an alphabetic character from your
database character set. Quoted identifiers can begin with any character.

Nonquoted identifiers can contain only alphanumeric characters from your
database character set and the underscore (), dollar sign ($), and pound sign (#).
Database links can also contain periods (.) and "at" signs (@). Oracle strongly
discourages you from using $ and # in nonquoted identifiers.

Quoted identifiers can contain any characters and punctuations marks as well as
spaces. However, neither quoted nor nonquoted identifiers can contain double
guotation marks or the null character (\ 0).

Within a namespace, no two objects can have the same name.
The following schema objects share one namespace:

« Tables

« Views

« Sequences

« Private synonyms

« Stand-alone procedures

« Stand-alone stored functions

« Packages

« Materialized views

« User-defined types

Each of the following schema objects has its own namespace:
« Indexes

« Constraints

« Clusters

« Database triggers

« Private database links

« Dimensions

Because tables and views are in the same namespace, a table and a view in the
same schema cannot have the same name. However, tables and indexes are in
different namespaces. Therefore, a table and an index in the same schema can have
the same name.

Basic Elements of Oracle SQL 2-99

Schema Object Names and Qualifiers

Each schema in the database has its own namespaces for the objects it contains.
This means, for example, that two tables in different schemas are in different
namespaces and can have the same name.

Each of the following nonschema objects also has its own namespace:
= User roles

« Public synonyms

« Public database links

« Tablespaces

« Profiles

« Parameter files (PFI LES) and server parameter files (SPFI LES)

Because the objects in these namespaces are not contained in schemas, these
namespaces span the entire database.

8. Nongquoted identifiers are not case sensitive. Oracle interprets them as uppercase.
Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following names
to different objects in the same namespace:

enpl oyees

"enpl oyees"
" Enpl oyees”
" EMPLOYEES'

Note that Oracle interprets the following names the same, so they cannot be used
for different objects in the same namespace:

enpl oyees
EVMPLOYEES
" EMPLOYEES"

9. Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

10. Procedures or functions contained in the same package can have the same name, if
their arguments are not of the same number and datatypes. Creating multiple
procedures or functions with the same name in the same package with different
arguments is called overloading the procedure or function.

Schema Object Naming Examples
The following examples are valid schema object names:

| ast _name

hor se

hr.hire_date

"EVEN TH S & THAT!"
a_very_long_and_val id_name

All of these examples adhere to the rules listed in "Schema Object Naming Rules" on
page 2-97. The following example is not valid, because it exceeds 30 characters:

a_very_very_long_and_valid_name

2-100 Oracle Database SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

Although column aliases, table aliases, usernames, and passwords are not objects or
parts of objects, they must also follow these naming rules unless otherwise specified in
the rules themselves.

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:

« Use full, descriptive, pronounceable names (or well-known abbreviations).
« Use consistent naming rules.
« Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt, choose
the more descriptive name, because the objects in the database may be used by many
people over a period of time. Your counterpart ten years from now may have difficulty
understanding a table column with a name like pndd instead of paynent _due_dat e.

Using consistent naming rules helps users understand the part that each table plays in
your application. One such rule might be to begin the names of all tables belonging to
the FI NANCE application with fi n_.

Use the same names to describe the same things across tables. For example, the
department number columns of the sample enpl oyees and depar t nent s tables are
both named depart nment _i d.

Syntax for Schema Objects and Parts in SQL Statements

This section tells you how to refer to schema objects and their parts in the context of a
SQL statement. This section shows you:

« The general syntax for referring to an object

« How Oracle resolves a reference to an object

« How to refer to objects in schemas other than your own

« How to refer to objects in remote databases

« How to refer to table and index partitions and subpartitions

The following diagram shows the general syntax for referring to an object or a part:;

database _object_or_part::=
S
(object)

where:

« 0bj ect isthe name of the object.

« schemm is the schema containing the object. The schema qualifier lets you refer to
an object in a schema other than your own. You must be granted privileges to refer
to objects in other schemas. If you omit schena, then Oracle assumes that you are
referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown
with list item 7 on page 2-99. Nonschema objects, also shown with list item 7,
cannot be qualified with schenma because they are not schema objects. An

Basic Elements of Oracle SQL 2-101

Syntax for Schema Objects and Parts in SQL Statements

exception is public synonyms, which can optionally be qualified with "PUBLI C".
The quotation marks are required.

« part isa part of the object. This identifier lets you refer to a part of a schema
object, such as a column or a partition of a table. Not all types of objects have
parts.

« dbl i nk applies only when you are using the Oracle Database distributed
functionality. This is the name of the database containing the object. The dbl i nk
qualifier lets you refer to an object in a database other than your local database. If
you omit dbl i nk, then Oracle assumes that you are referring to an object in your
local database. Not all SQL statements allow you to access objects on remote
databases.

You can include spaces around the periods separating the components of the reference
to the object, but it is conventional to omit them.

How Oracle Database Resolves Schema Object References

When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating the
object, Oracle performs the operation specified by the statement on the object. If the
named object cannot be found in the appropriate namespace, then Oracle returns an
error.

The following example illustrates how Oracle resolves references to objects within SQL
statements. Consider this statement that adds a row of data to a table identified by the
name depart ment s:

I NSERT | NTO departments VALUES (
280, ' ENTERTAI NVENT_CLERK', 206, 1700);

Based on the context of the statement, Oracle determines that depar t ment s can be:
« Atable in your own schema

« Aview in your own schema

« A private synonym for a table or view

« A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering hamespaces outside your schema. In this example,
Oracle attempts to resolve the name depar t nent s as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonymes. If the object is a private synonym,
then Oracle locates the object for which the synonym stands. This object could be
in your own schema, another schema, or on another database. The object could
also be another synonym, in which case Oracle locates the object for which this
synonym stands.

2. If the object is in the namespace, then Oracle attempts to perform the statement on
the object. In this example, Oracle attempts to add the row of data to
depart ment s. If the object is not of the correct type for the statement, then Oracle
returns an error. In this example, depar t ment s must be a table, view, or a private
synonym resolving to a table or view. If depar t ment s is a sequence, then Oracle
returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches the
namespace containing public synonyms. If the object is in that namespace, then

2-102 Oracle Database SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

Oracle attempts to perform the statement on it. If the object is not of the correct
type for the statement, then Oracle returns an error. In this example, if
depart ment s is a public synonym for a sequence, then Oracle returns an error.

If a public synonym has any dependent tables or user-defined types, then you cannot
create an object with the same name as the synonym in the same schema as the
dependent objects.

If a synonym does not have any dependent tables or user-defined types, then you can
create an object with the same name in the same schema as the dependent objects.
Oracle invalidates any dependent objects and attempts to revalidate them when they
are next accessed.

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about how PL/SQL resolves identifier names

Referring to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the
schema name:

schema. obj ect

For example, this statement drops the enpl oyees table in the sample schema hr :

DROP TABLE hr. enpl oyees

Referring to Objects in Remote Databases

To refer to objects in databases other than your local database, follow the object name
with the name of the database link to that database. A database link is a schema object
that causes Oracle to connect to a remote database to access an object there. This
section tells you:

« How to create database links

« How to use database links in your SQL statements

Creating Database Links

You create a database link with the statement CREATE DATABASE LINK on
page 14-31. The statement lets you specify this information about the database link:

« The name of the database link

« The database connect string to access the remote database

« The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names When you create a database link, you must specify its name.

Database link names are different from names of other types of objects. They can be as
long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the
database to which the database link refers and the location of that database in the
hierarchy of database names. The following syntax diagram shows the form of the
name of a database link:

Basic Elements of Oracle SQL 2-103

Syntax for Schema Objects and Parts in SQL Statements

dblink::=

. domain I @ connect_descriptor

—(database)

where:

« dat abase should specify the nanme portion of the global name of the remote
database to which the database link connects. This global name is stored in the
data dictionary of the remote database; you can see this name in the G_OBAL _
NAME data dictionary view.

« domai n should specify the domai n portion of the global name of the remote
database to which the database link connects. If you omit domai n from the name
of a database link, then Oracle qualifies the database link name with the domain of
your local database as it currently exists in the data dictionary.

« connect _descri ptor lets you further qualify a database link. Using connect
descriptors, you can create multiple database links to the same database. For
example, you can use connect descriptors to create multiple database links to
different instances of the Real Application Clusters that access the same database.

The combination dat abase. domai n is sometimes called the service name.

See Also: Oracle Database Net Services Administrator's Guide

Username and Password Oracle uses the username and password to connect to the
remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by Oracle
Net to access the remote database. For information on writing database connect
strings, see the Oracle Net documentation for your specific network protocol. The
database string for a database link is optional.

Referring to Database Links

Database links are available only if you are using Oracle distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

« The complete database link name as stored in the data dictionary, including the
dat abase, donmai n, and optional connect _descri pt or components.

« Thepartial database link name is the dat abase and optional connect _
descri pt or components, but not the dormai n component.

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, then Oracle expands
the name to contain the domain of the local database as found in the global
database name stored in the data dictionary. (You can see the current global
database name in the GLOBAL_NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the same
name as the database link in the statement. Then, if necessary;, it searches for a
public database link with the same name.

« Oracle always determines the username and password from the first matching
database link (either private or public). If the first matching database link has
an associated username and password, then Oracle uses it. If it does not have

2-104 Oracle Database SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

an associated username and password, then Oracle uses your current
username and password.

« If the first matching database link has an associated database string, then
Oracle uses it. Otherwise Oracle searches for the next matching (public)
database link. If no matching database link is found, or if no matching link has
an associated database string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing the
remote database, if the value of the GLOBAL_NAMES parameter ist r ue, then
Oracle verifies that the dat abase. domai n portion of the database link name
matches the complete global name of the remote database. If this condition is true,
then Oracle proceeds with the connection, using the username and password
chosen in Step 2. If not, Oracle returns an error.

4. If the connection using the database string, username, and password is successful,
then Oracle attempts to access the specified object on the remote database using
the rules for resolving object references and referring to objects in other schemas
discussed earlier in this section.

You can disable the requirement that the dat abase. donai n portion of the database

link name must match the complete global name of the remote database by setting to

f al se the initialization parameter GLOBAL_ NAMES or the GLOBAL_NANMES parameter
of the ALTER SYSTEMor ALTER SESSI ON statement.

See Also: Oracle Database Administrator’s Guide for more information
on remote name resolution

Referring to Partitioned Tables and Indexes

Tables and indexes can be partitioned. When partitioned, these schema objects consist
of a number of parts called partitions, all of which have the same logical attributes.
For example, all partitions in a table share the same column and constraint definitions,
and all partitions in an index share the same index columns.

Partition-extended and subpartition-extended names let you perform some
partition-level and subpartition-level operations, such as deleting all rows from a
partition or subpartition, on only one partition or subpartition. Without extended
names, such operations would require that you specify a predicate (WHERE clause). For
range- and list-partitioned tables, trying to phrase a partition-level operation with a
predicate can be cumbersome, especially when the range partitioning key uses more
than one column. For hash partitions and subpartitions, using a predicate is more
difficult still, because these partitions and subpartitions are based on a system-defined
hash function.

Partition-extended names let you use partitions as if they were tables. An advantage of
this method, which is most useful for range-partitioned tables, is that you can build
partition-level access control mechanisms by granting (or revoking) privileges on these
views to (or from) other users or roles.To use a partition as a table, create a view by
selecting data from a single partition, and then use the view as a table.

You can specify partition-extended or subpartition-extended table names for the
following DML statements:

« DELETE
« | NSERT
« LOCKTABLE
« SELECT

Basic Elements of Oracle SQL 2-105

Syntax for Schema Objects and Parts in SQL Statements

« UPDATE

Syntax The basic syntax for using partition-extended and subpartition-extended
table names is:

partition_extended_name::=

PARTITION @{partition
SUBPARTITION

@O @),

Restrictions on Extended Names Currently, the use of partition-extended and
subpartition-extended table names has the following restrictions:

« No remote tables: A partition-extended or subpartition-extended table name
cannot contain a database link (dblink) or a synonym that translates to a table with
a dblink. To use remote partitions and subpartitions, create a view at the remote
site that uses the extended table name syntax and then refer to the remote view.

« Nosynonyms: A partition or subpartition extension must be specified with a base
table. You cannot use synonyms, views, or any other objects.

Example In the following statement, sal es is a partitioned table with partition
sal es_ql_2000. You can create a view of the single partition sal es_q1_ 2000, and
then use it as if it were a table. This example deletes rows from the partition.

CREATE VI EW QL_2000_sal es AS
SELECT * FROM sal es PARTI TI ON (SALES_Q1_2000);

DELETE FROM QL_2000_sal es WHERE amount _sold < 0;

Referring to Object Type Attributes and Methods

To refer to object type attributes or methods in a SQL statement, you must fully qualify
the reference with a table alias. Consider the following example from the sample
schema oe, which contains a type cust _addr ess_t yp and a table cust onmer s with
acust _addr ess column based on the cust _address_typ:

CREATE TYPE cust _address_typ
O D ' 82A4AF6A4CD1656DE034080020E0EE3D

AS OBJECT
(street_address VARCHAR2(40)
, postal _code VARCHAR2(10)
, City VARCHAR2(30)
, State_province VARCHAR2(10)
, country_id CHAR(2)

CREATE TABLE cust omers
(customer_id NUMVBER(6)
, cust_first_name VARCHAR2(20) CONSTRAI NT cust _f name_nn NOT NULL
, cust_last_nane VARCHAR2(20) CONSTRAI NT cust _| name_nn NOT NULL
, cust_address cust _address_typ

2-106 Oracle Database SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

In a SQL statement, reference to the post al _code attribute must be fully qualified
using a table alias, as illustrated in the following example:

SELECT c. cust _addr ess. postal _code FROM custoners c;

UPDATE custonmers ¢ SET c.cust_address. postal _code = ' GU13 BE5'
WHERE c. cust _address.city = 'Fleet';

To reference a member method that does not accept arguments, you must provide
empty parentheses. For example, the sample schema oe contains an object table

cat egori es_t ab, based on cat al og_t yp, which contains the member function
get Cat al ogNane. In order to call this method in a SQL statement, you must provide
empty parentheses as shown in this example:

SELECT TREAT(VALUE(c) AS catal og_typ).getCatal ogNane() "Catal og Type"
FROM categories_tab ¢
WHERE category_id = 90;

Cat al og Type

online catal og

See Also: Oracle Database Concepts for more information on
user-defined datatypes

Basic Elements of Oracle SQL 2-107

Syntax for Schema Objects and Parts in SQL Statements

2-108 Oracle Database SQL Reference

3

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table.
You can select from pseudocolumns, but you cannot insert, update, or delete their
values. A pseudocolumn is also similar to a function without arguments (please refer
to Chapter 5, "Functions". However, functions without arguments typically return the
same value for every row in the result set, whereas pseudocolumns typically return a
different value for each row.

This chapter contains the following sections:
« Hierarchical Query Pseudocolumns
« Sequence Pseudocolumns

« \ersion Query Pseudocolumns

« COLUMN_VALUE Pseudocolumn
« OBIJECT_ID Pseudocolumn

« OBIJECT_VALUE Pseudocolumn

« ORA _ROWSCN Pseudocolumn

« ROWID Pseudocolumn

« ROWNUM Pseudocolumn

« XMLDATA Pseudocolumn

Hierarchical Query Pseudocolumns

The hierarchical query pseudocolumns are valid only in hierarchical queries. The
hierarchical query pseudocolumns are:

« CONNECT_BY_ISCYCLE Pseudocolumn
« CONNECT_BY_ISLEAF Pseudocolumn
« LEVEL Pseudocolumn

CONNECT _BY_ISCYCLE Pseudocolumn

The CONNECT_BY_| SCYCLE pseudocolumn returns 1 if the current row has a child
which is also its ancestor. Otherwise it returns 0.

You can specify CONNECT_BY_| SCYCLE only if you have specified the NOCYCLE
parameter of the CONNECT BY clause. NOCYCLE enables Oracle to return the results of
a query that would otherwise fail because of a CONNECT BY loop in the data.

Pseudocolumns 3-1

Hierarchical Query Pseudocolumns

See Also: "Hierarchical Queries" on page 9-2 for more information
about the NOCYCLE parameter and "Hierarchical Query Examples" on
page 9-5 for an example that uses the CONNECT_BY_| SCYCLE
pseudocolumn

CONNECT_BY_ISLEAF Pseudocolumn

The CONNECT_BY_| SLEAF pseudocolumn returns 1 if the current row is a leaf of the
tree defined by the CONNECT BY condition. Otherwise it returns 0. This information
indicates whether a given row can be further expanded to show more of the hierarchy.

CONNECT_BY_ISLEAF Example The following example shows the first three levels
of the hr . enpl oyees table, indicating for each row whether it is a leaf row (indicated
by 1linthe | sLeaf column) or whether it has child rows (indicated by 0 in the

| sLeaf column):

SELECT | ast _nane "Enpl oyee", CONNECT _BY | SLEAF "IsLeaf",
LEVEL, SYS_CONNECT_BY_PATH(| ast_name, '/') "Path"
FROM enpl oyees
WHERE LEVEL <= 3 AND departnent_id = 80
START W TH enpl oyee_id = 100
CONNECT BY PRI OR enpl oyee_id = manager _id AND LEVEL <= 4;

Enpl oyee | sLeaf LEVEL Path
Russel | 0 2 [King/ Russel |
Tucker 1 3 /King/ Russel | / Tucker
Bernstein 1 3 /King/Russel | / Bernstein
Hal | 1 3 /King/ Russel | / Hal |
d sen 1 3 /King/Russel | / O sen
Canbr aul t 1 3 /King/ Russel | / Canbr aul t
Tuvaul t 1 3 /King/ Russel | / Tuvaul t
Partners 0 2 [King/Partners
Ki ng 1 3 /' King/ Partners/ Ki ng
Sully 1 3 [King/Partners/Sully
McEwen 1 3 [King/ Part ners/ McEwen
Snith 1 3 /King/Partners/Snith
Dor an 1 3 /King/ Partners/ Doran
Sewal | 1 3 /King/ Partners/ Sewal |
Errazuriz 0 2 |King/Errazuriz

1 3 [King/ Errazuriz/ Vi shney

Vi shney
34 rows sel ected.

See Also: "Hierarchical Queries" on page 9-2 and SYS_CONNECT _
BY_PATH on page 5-175

LEVEL Pseudocolumn

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for
aroot row, 2 for a child of a root, and so on. A root row is the highest row within an
inverted tree. A child row is any nonroot row. A parent row is any row that has
children. A leaf row is any row without children. Figure 3-1 shows the nodes of an
inverted tree with their LEVEL values.

3-2 Oracle Database SQL Reference

Sequence Pseudocolumns

Figure 3—1 Hierarchical Tree

Level 1 pg’l%tr/] X

Level 2 pagﬁ?é/ p%rﬁi?c}/

ovels | sy | | ey

Level 4 child/ child/ child/
leaf leaf leaf

To define a hierarchical relationship in a query, you must use the START W THand
CONNECT BY clauses.

See Also: "Hierarchical Queries" on page 9-2 for information on
hierarchical queries in general and "IN Condition" on page 7-21 for
restrictions on using the LEVEL pseudocolumn

Sequence Pseudocolumns

A sequence is a schema object that can generate unique sequential values. These
values are often used for primary and unique keys. You can refer to sequence values in
SQL statements with these pseudocolumns:

« CURRVAL: Returns the current value of a sequence

« NEXTVAL: Increments the sequence and returns the next value

You must qualify CURRVAL and NEXTVAL with the name of the sequence:
sequence. CURRVAL

sequence. NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you
must have been granted either SELECT object privilege on the sequence or SELECT
ANY SEQUENCE system privilege, and you must qualify the sequence with the schema
containing it:

schema. sequence. CURRVAL

schema. sequence. NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the
sequence with a complete or partial name of a database link:

schema. sequence. CURRVAL@bI i nk
schema. sequence. NEXTVAL@bI i nk

See Also: "Referring to Objects in Remote Databases” on page 2-103
for more information on referring to database links

Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in the following locations:

Pseudocolumns 3-3

Sequence Pseudocolumns

« The select list of a SELECT statement that is not contained in a subquery,
materialized view, or view

« The select list of a subquery in an | NSERT statement

« The VALUES clause of an | NSERT statement

« The SET clause of an UPDATE statement

Restrictions on Sequence Values You cannot use CURRVAL and NEXTVAL in the
following constructs:

« Asubquery in a DELETE, SELECT, or UPDATE statement

« Aquery of aview or of a materialized view

« A SELECT statement with the DI STI NCT operator

« A SELECT statement with a GROUP BY clause or ORDER BY clause

« A SELECT statement that is combined with another SELECT statement with the
UNI ON, | NTERSECT, or M NUS set operator

« The WHERE clause of a SELECT statement
« The DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement
« The condition of a CHECK constraint

Within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced LONG
columns, updated tables, and locked tables must be located on the same database.

How to Use Sequence Values

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVAL returns the initial value of the
sequence. Subsequent references to NEXTVAL increment the sequence value by the
defined increment and return the new value. Any reference to CURRVAL always
returns the current value of the sequence, which is the value returned by the last
reference to NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the
sequence with NEXTVAL. Please refer to CREATE SEQUENCE on page 15-71 for
information on sequences.

Within a single SQL statement containing a reference to NEXTVAL, Oracle increments
the sequence once:

« For each row returned by the outer query block of a SELECT statement. Such a
guery block can appear in the following places:

— Atop-level SELECT statement

— An | NSERT ... SELECT statement (either single-table or multitable). For a
multitable insert, the reference to NEXTVAL must appear in the VALUES clause,
and the sequence is updated once for each row returned by the subquery, even
though NEXTVAL may be referenced in multiple branches of the multitable
insert.

— A CREATETABLE ... AS SELECT statement
— A CREATE MATERI ALI ZED VI EW... AS SELECT statement
« For each row updated in an UPDATE statement

« For each | NSERT statement containing a VALUES clause

3-4 Oracle Database SQL Reference

Version Query Pseudocolumns

« For each row merged by a MERCE statement. The reference to NEXTVAL can
appear inthe merge_i nsert _cl ause or the ner ge_updat e_cl ause or both.
The NEXTVALUE value is incremented for each row updated and for each row
inserted, even if the sequence number is not actually used in the update or insert
operation. If NEXTVAL is specified more than once in any of these locations, then
the sequence is incremented once for each row and returns the same value for all
occurrences of NEXTVAL for that row.

If any of these locations contains more than one reference to NEXTVAL, then Oracle
increments the sequence once and returns the same value for all occurrences of
NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then
Oracle increments the sequence and returns the same value for both CURRVAL and
NEXTVAL.

A sequence can be accessed by many users concurrently with no waiting or locking.

Finding the next value of a sequence: Example This example selects the next value
of the employee sequence in the sample schema hr :

SELECT enpl oyees_seq. next val
FROVI DUAL;

Inserting sequence values into a table: Example This example increments the
employee sequence and uses its value for a new employee inserted into the sample
table hr . enpl oyees:

I NSERT | NTO enpl oyees
VALUES (enpl oyees_seq. nextval, 'John', 'Doe', 'jdoe'
'555-1212', TO DATE(SYSDATE), 'PU CLERK', 2500, null, null,
30);

Reusing the current value of a sequence: Example This example adds a new order
with the next order number to the master order table. It then adds suborders with this
number to the detail order table:

I NSERT | NTO orders (order_id, order_date, customer_id)
VALUES (orders_seq. nextval, TO DATE(SYSDATE), 106)

I NSERT | NTO order _itenms (order_id, line_itemid, product_id)
VALUES (orders_seq.currval, 1, 2359);

I NSERT I NTO order_items (order_id, line_itemid, product_id)
VALUES (orders_seq.currval, 2, 3290);

I NSERT | NTO order _items (order_id, line_itemid, product_id)
VALUES (orders_seq.currval, 3, 2381);

Version Query Pseudocolumns

The version query pseudocolumns are valid only in Oracle Flashback Version Query;,
which is a form of Oracle Flashback Query. The version query pseudocolumns are:

« VERSI ONS_STARTTI ME: Returns the timestamp of the first version of the rows
returned by the query.

« VERSI ONS_STARTSCN: Returns the SCN of the first version of the rows returned
by the query.

Pseudocolumns 3-5

COLUMN_VALUE Pseudocolumn

« VERSI ONS_ENDTI ME: Returns the timestamp of the last version of the rows
returned by the query.

« VERSI ONS_ENDSCN: Returns the SCN of the last version of the rows returned by
the query.

« VERSI ONS_XI D: For each version of each row, returns the transaction ID (a RAW
number) of the transaction that created that row version.

« VERSI ONS_OPERATI ON: For each version of each row, returns a single character
representing the operation that caused that row version. The values returned are |
(for an insert operation), U (for an update operation) or D (for a delete operation).

See Also: flashback _query clause on page 19-14 for more information
on version queries

COLUMN_VALUE Pseudocolumn

When you refer to an XM_Tabl e construct without the COLUMNS clause, or when you
use the TABLE function to refer to a scalar nested table type, the database returns a
virtual table with a single column. This name of this pseudocolumn is COLUMN _
VALUE.

In the context of XMLTabl e, the value returned is of datatype XMLType. For example,
the following two statements are equivalent, and the output for both shows COLUVMN _
VALUE as the name of the column being returned:

SELECT * FROM XMLTABLE(’ <a>123");

COLUWN_VALUE

<a>123</ a>
SELECT COLUWN_VALUE FROM (XM.Tabl e(’ <a>123"));

COLUWN_VALUE

<a>123</ a>

In the context of a TABLE function, the value returned is the datatype of the collection
element. The following statements create the two levels of nested tables illustrated in
"Multi-level Collection Example” on page 16-52 to show the uses of COLUVN_VALUE in
this context:

CREATE TYPE phone AS TABLE OF NUMBER

/

CREATE TYPE phone_|ist AS TABLE OF phone;

/

The next statement uses COLUMN_VAL UE to select from the phone type:

SELECT t. COLUMN_VALUE from tabl e(phone(1,2,3)) t;

COLUWN_VALUE

In a nested type, you can use the COLUVN_VALUE pseudocolumn in both the select list
and the TABLE function:

3-6 Oracle Database SQL Reference

OBJECT_VALUE Pseudocolumn

SELECT t. COLUWN_VALUE FROM
TABLE(phone_| i st (phone(1,2,3))) p, TABLE(p. COLUWN VALUE) t;
COLUWN_VALUE

The keyword COLUMN_VALUE is also the name that Oracle Database generates for the
scalar value of an inner nested table without a column or attribute name, as shown in
the example that follows. In this context, COLUVN_VALUE is not a pseudocolumn, but
an actual column name.

CREATE TABLE ny_custoners (
name VARCHAR2(25),
phone_nunbers phone_list)
NESTED TABLE phone_nunbers STORE AS outer_ntab
(NESTED TABLE COLUWN_VALUE STORE AS inner _ntab);

See Also:

« XMLTABLE on page 5-231 for information on that function

« table_collection_expression::= on page 18-53 for information on the
TABLE function

« ALTERTABLE examples in "Nested Tables: Examples" on
page 12-76

OBJECT _ID Pseudocolumn

The OBJECT _I D pseudocolumn returns the object identifier of a column of an object
table or view. Oracle uses this pseudocolumn as the primary key of an object table.
OBJECT _I Dis useful in | NSTEAD OF triggers on views and for identifying the ID of a
substitutable row in an object table.

Note: In earlier releases, this pseudocolumn was called SYS_NC
O D$. That name is still supported for backward compatibility.
However, Oracle recommends that you use the more intuitive name
OBJECT_I D.

See Also: Oracle Database Application Developer's Guide -
Object-Relational Features for examples of the use of this pseudocolumn

OBJECT VALUE Pseudocolumn

The OBJECT_VALUE pseudocolumn returns system-generated names for the columns
of an object table, XMLType table, object view, or XM_Ty pe view. This pseudocolumn is
useful for identifying the value of a substitutable row in an object table and for
creating object views with the W THOBJECT | DENTI FI ER clause.

Note: In earlier releases, this pseudocolumn was called SYS_NC
ROW NFC$. That name is still supported for backward compatibility.
However, Oracle recommends that you use the more intuitive name
OBJECT_VALUE.

Pseudocolumns 3-7

ORA_ROWSCN Pseudocolumn

See Also:

« Object_table on page 16-48 and object_view_clause on page 17-34 for
more information on the use of this pseudocolumn

« Oracle Database Application Developer*s Guide - Object-Relational
Features for examples of the use of this pseudocolumn

ORA_ROWSCN Pseudocolumn

For each row, ORA_ROWSCN returns the conservative upper bound system change
number (SCN) of the most recent change to the row. This pseudocolumn is useful for
determining approximately when a row was last updated. It is not absolutely precise,
because Oracle tracks SCNs by transaction committed for the block in which the row
resides. You can obtain a more fine-grained approximation of the SCN by creating
your tables with row-level dependency tracking. Please refer to CREATE TABLE ...
NOROWDEPENDENCIES | ROWDEPENDENCIES on page 16-44 for more
information on row-level dependency tracking.

You cannot use this pseudocolumn in a query to a view. However, you can use it to
refer to the underlying table when creating a view. You can also use this
pseudocolumn in the WHERE clause of an UPDATE or DELETE statement.

ORA_ROWSCN is not supported for Flashback Query. Instead, use the version query
pseudocolumns, which are provided explicitly for Flashback Query. Please refer to the
SELECT ... flashback_query_clause on page 19-14 for information on Flashback Query
and "Version Query Pseudocolumns" on page 3-5 for additional information on those
pseudocolumns.

Restriction: This pseudocolumn is not supported for external tables.
Example The first statement below uses the ORA ROASCN pseudocolumn to get the
system change number of the last operation on the enpl oyees table. The second

statement uses the pseudocolumn with the SCN_TO_TI MESTAMP function to
determine the timestamp of the operation:

SELECT ORA_ROWSCN, |ast_nanme FROM enpl oyees WHERE enpl oyee_id = 188;

SELECT SCN_TO _TI MESTAMP(ORA_ROASCN), |ast_name FROM enpl oyees
WHERE enpl oyee_id = 188;

See Also: SCN_TO_TIMESTAMP on page 5-153

ROWID Pseudocolumn

For each row in the database, the ROWN D pseudocolumn returns the address of the row.
Oracle Database rowid values contain information necessary to locate a row:

« The data object number of the object
« The data block in the datafile in which the row resides
« The position of the row in the data block (first row is 0)

« The datafile in which the row resides (first file is 1). The file number is relative to
the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in
different tables that are stored together in the same cluster can have the same rowid.

3-8 Oracle Database SQL Reference

ROWNUM Pseudocolumn

Values of the ROA D pseudocolumn have the datatype ROW D or UROW D. Please refer
to "ROWID Datatype"” on page 2-27 and "UROWID Datatype" on page 2-28 for more
information.

Rowid values have several important uses:

« They are the fastest way to access a single row.

« They can show you how the rows in a table are stored.
« They are unique identifiers for rows in a table.

You should not use ROW D as the primary key of a table. If you delete and reinsert a
row with the Import and Export utilities, for example, then its rowid may change. If
you delete a row, then Oracle may reassign its rowid to a new row inserted later.

Although you can use the RON D pseudocolumn in the SELECT and WHERE clause of a
guery, these pseudocolumn values are not actually stored in the database. You cannot
insert, update, or delete a value of the RON D pseudocolumn.

Example This statement selects the address of all rows that contain data for
employees in department 20:

SELECT RON'D, |ast_nane
FROM enpl oyees
WHERE departnent _id = 20;

ROWNUM Pseudocolumn

For each row returned by a query, the ROANUMpseudocolumn returns a number
indicating the order in which Oracle selects the row from a table or set of joined rows.
The first row selected has a ROANUMof 1, the second has 2, and so on.

You can use ROANUMto limit the number of rows returned by a query, as in this
example:

SELECT * FROM enpl oyees WHERE ROMUM < 10;

If an ORDER BY clause follows ROANUMin the same query, then the rows will be
reordered by the ORDER BY clause. The results can vary depending on the way the
rows are accessed. For example, if the ORDER BY clause causes Oracle to use an index
to access the data, then Oracle may retrieve the rows in a different order than without
the index. Therefore, the following statement will not have the same effect as the
preceding example:

SELECT * FROM enpl oyees WHERE ROMUM < 11 ORDER BY | ast _nane;

If you embed the ORDER BY clause in a subquery and place the ROANUMcondition in
the top-level query, then you can force the ROAWNUMcondition to be applied after the
ordering of the rows. For example, the following query returns the employees with the
10 smallest employee numbers. This is sometimes referred to as top-N reporting:

SELECT * FROM
(SELECT * FROM enpl oyees ORDER BY enpl oyee_i d)
VHERE ROMUM < 11;

In the preceding example, the ROANUMvalues are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
enpl oyee_i d in the subquery.

Conditions testing for ROANUMvalues greater than a positive integer are always false.
For example, this query returns no rows:

Pseudocolumns 3-9

XMLDATA Pseudocolumn

SELECT * FROM enpl oyees
VHERE ROMNUM > 1;

The first row fetched is assigned a ROANUMof 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROANUMof 1 and
makes the condition false. All rows subsequently fail to satisfy the condition, so no
rows are returned.

You can also use ROAWNUMto assign unique values to each row of a table, as in this
example:

UPDATE ny_tabl e
SET col uml = ROMUM

Please refer to the function ROW_NUMBER on page 5-149 for an alternative method
of assigning unique numbers to rows.

Note: Using ROWNUMIn a query can affect view optimization. For
more information, see Oracle Database Concepts.

XMLDATA Pseudocolumn

Oracle stores XM_Ty pe data either in LOB or object-relational columns, based on
XMLSchema information and how you specify the storage clause. The XMLDATA
pseudocolumn lets you access the underlying LOB or object relational column to
specify additional storage clause parameters, constraints, indexes, and so forth.

Example The following statements illustrate the use of this pseudocolumn. Suppose
you create a simple table of XML Type:

CREATE TABLE xni _| ob_tab of XM.TYPE;
The default storage is in a CLOB column. To change the storage characteristics of the
underlying LOB column, you can use the following statement:
ALTER TABLE xm | ob_tab MODIFY LOB (XMLDATA)
(STORAGE (BUFFER POOL DEFAULT) CACHE);

Now suppose you have created an XMLSchema-based table like the xwar ehouses
table created in "Using XML in SQL Statements" on page E-8. You could then use the
XML.DATA column to set the properties of the underlying columns, as shown in the
following statement:

ALTER TABLE xwar ehouses ADD (UNI QUE(XMLDATA. " War ehousel d"));

3-10 Oracle Database SQL Reference

A

Operators

An operator manipulates data items and returns a result. Syntactically, an operator
appears before or after an operand or between two operands.

This chapter contains these sections:
« About SQL Operators

« Arithmetic Operators

« Concatenation Operator

« Hierarchical Query Operators

« Set Operators

« Multiset Operators

« User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot by
themselves serve as the condition of a WHERE or HAVI NG clause in queries or
subqueries. For information on logical operators, which serve as conditions, please
refer to Chapter 7, "Conditions".

About SQL Operators

Operators manipulate individual data items called operands or arguments. Operators
are represented by special characters or by keywords. For example, the multiplication
operator is represented by an asterisk (*).

If you have installed Oracle Text, then you can use the SCORE operator, which is part
of that product, in Oracle Text queries. You can also create conditions with the built-in
Text operators, including CONTAI NS, CATSEARCH, and MATCHES. For more
information on these Oracle Text elements, please refer to Oracle Text Reference.

If you are using Oracle Expression Filter, then you can create conditions with the
built-in EVALUATE operator that is part of that product. For more information, please
refer to Oracle Database Application Developer®s Guide - Rules Manager and Expression
Filter.

Operators 4-1

About SQL Operators

Note: The combined values of the NLS COWP and NLS_SORT
initialization parameters determine the rules by which characters are
sorted and compared. If the NLS_COWVP parameter is set to

LI NGUI STI Cfor your database, then all entities in this chapter will be
interpreted according to the rules specified by the NLS SORT
parameter. Please refer to Oracle Database Globalization Support Guide
for more information on these parameters.

Unary and Binary Operators

The two general classes of operators are:

= unary: A unary operator operates on only one operand. A unary operator typically
appears with its operand in this format:

oper at or oper and

« binary: A binary operator operates on two operands. A binary operator appears
with its operands in this format:
operandl operator operand2

Other operators with special formats accept more than two operands. If an operator is

given a null operand, the result is always null. The only operator that does not follow
this rule is concatenation (] |).

Operator Precedence

Precedence is the order in which Oracle Database evaluates different operators in the
same expression. When evaluating an expression containing multiple operators,
Oracle evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle evaluates operators with equal precedence from left to right within
an expression.

Table 4-1 lists the levels of precedence among SQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 4-1 SQL Operator Precedence

Operator Operation

+, - (as unary operators), PRI OR, CONNECT_ identity, negation, location in hierarchy
BY_ROOT

* multiplication, division

+, - (asbinary operators), || addition, subtraction, concatenation
SQL conditions are evaluated after SQL See "Condition Precedence" on page 7-3
operators

Precedence Example In the following expression, multiplication has a higher
precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result to
1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

4-2 Oracle Database SQL Reference

Concatenation Operator

SQL also supports set operators (UNI ON, UNI ONALL, | NTERSECT, and M NUS), which
combine sets of rows returned by queries, rather than individual data items. All set
operators have equal precedence.

See Also: "Hierarchical Query Operators" on page 4-5 and
"Hierarchical Queries" on page 9-2 for information on the PRI OR
operator, which is used only in hierarchical queries

Arithmetic Operators

You can use an arithmetic operator with one or two arguments to negate, add,
subtract, multiply, and divide numeric values. Some of these operators are also used in
datetime and interval arithmetic. The arguments to the operator must resolve to
numeric datatypes or to any datatype that can be implicitly converted to a numeric
datatype.

Unary arithmetic operators return the same datatype as the numeric datatype of the
argument. For binary arithmetic operators, Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that
datatype, and returns that datatype. Table 4-2 lists arithmetic operators.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on

page 2-40 for more information on implicit conversion, "Numeric
Precedence" on page 2-13 for information on numeric precedence, and
"Datetime/Interval Arithmetic" on page 2-19

Table 4-2 Arithmetic Operators

Operator Purpose Example
+ - When these denote a positive or SELECT * FROM order _itens
negative expression, they are unary WHERE quantity = -1;
operators. SELECT * FROM enpl oyees
WHERE -sal ary < 0;
+ - When they add or subtract, they are SELECT hire_date
binary operators. FROM enpl oyees
WHERE SYSDATE - hire_date
> 365;
*/ Multiply, divide. These are binary UPDATE enpl oyees
operators. SET salary = salary * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate
double negation or the subtraction of a negative value. The characters -- are used to
begin comments within SQL statements. You should separate consecutive minus signs
with a space or parentheses. Please refer to "Comments" on page 2-69 for more
information on comments within SQL statements.

Concatenation Operator

The concatenation operator manipulates character strings and CLOB data. Table 4-3
describes the concatenation operator.

Operators 4-3

Concatenation Operator

Table 4-3 Concatenation Operator

Operator Purpose Example
11 Concatenates character strings SELECT 'Nane is ' || last_nane
and CLOB data. FROM enpl oyees;

The result of concatenating two character strings is another character string. If both
character strings are of datatype CHAR, the result has datatype CHAR and is limited to
2000 characters. If either string is of datatype VARCHAR?, the result has datatype
VARCHAR? and is limited to 4000 characters. If either argument is a CLOB, the result is
a temporary CLOB. Trailing blanks in character strings are preserved by concatenation,
regardless of the datatypes of the string or CLOB.

On most platforms, the concatenation operator is two solid vertical bars, as shown in
Table 4-3. However, some IBM platforms use broken vertical bars for this operator.
When moving SQL script files between systems having different character sets, such as
between ASCII and EBCDIC, vertical bars might not be translated into the vertical bar
required by the target Oracle Database environment. Oracle provides the CONCAT
character function as an alternative to the vertical bar operator for cases when it is
difficult or impossible to control translation performed by operating system or
network utilities. Use this function in applications that will be moved between
environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a
zero-length character string with another operand always results in the other operand,
so null can result only from the concatenation of two null strings. However, this may
not continue to be true in future versions of Oracle Database. To concatenate an
expression that might be null, use the NVL function to explicitly convert the expression
to a zero-length string.

See Also:

« "Character Datatypes" on page 2-8 for more information on the
differences between the CHAR and VARCHAR2 datatypes

« The functions CONCAT on page 5-36 and NVL on page 5-110

« Oracle Database Application Developer's Guide - Large Objects for
more information about CLOBs

Concatenation Example This example creates a table with both CHAR and VARCHAR2
columns, inserts values both with and without trailing blanks, and then selects these
values and concatenates them. Note that for both CHAR and VARCHAR2 columns, the
trailing blanks are preserved.

CREATE TABLE tabl (col 1 VARCHAR2(6), col 2 CHAR(6),
col 3 VARCHAR2(6), col4 CHAR(6));

I NSERT INTO tabl (coll, col?2, col 3, col 4)
VALUES ('abc', 'def ', 'ghi Yot TkET);

SELECT col 1] | col 2| | col 3| | col 4 "Concat enati on"
FROM t ab1;

Concat enation

abcdef ghi j ki

4-4 Oracle Database SQL Reference

Multiset Operators

Hierarchical Query Operators
Two operators, PRI ORand CONNECT_BY_ROOT, are valid only in hierarchical queries.

PRIOR

In a hierarchical query, one expression in the CONNECT BY condi t i on must be
qualified by the PRI OR operator. If the CONNECT BY condi t i on is compound, then
only one condition requires the PRI OR operator, although you can have multiple
PRI OR conditions. PRI OR evaluates the immediately following expression for the
parent row of the current row in a hierarchical query.

PRI ORis most commonly used when comparing column values with the equality
operator. (The PRI OR keyword can be on either side of the operator.) PRI OR causes
Oracle to use the value of the parent row in the column. Operators other than the
equal sign (=) are theoretically possible in CONNECT BY clauses. However, the
conditions created by these other operators can result in an infinite loop through the
possible combinations. In this case Oracle detects the loop at run time and returns an
error. Please refer to "Hierarchical Queries" on page 9-2 for more information on this
operator, including examples.

CONNECT_BY_ROOT

CONNECT_BY_ROOT is a unary operator that is valid only in hierarchical queries.
When you qualify a column with this operator, Oracle returns the column value using
data from the root row. This operator extends the functionality of the CONNECT BY
[PRI OR] condition of hierarchical queries.

Restriction on CONNECT_BY_ROOT You cannot specify this operator in the START
W TH condition or the CONNECT BY condition.

See Also: "CONNECT_BY_ROOT Examples" on page 9-6

Set Operators

Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 4-4 lists SQL set
operators. They are fully described, including examples and restrictions on these
operators, in "The UNION [ALL], INTERSECT, MINUS Operators" on page 9-7.

Table 4-4 Set Operators

Operator Returns

UNI ON All distinct rows selected by either query

UNI ON ALL All rows selected by either query, including all duplicates

| NTERSECT All distinct rows selected by both queries

M NUS All distinct rows selected by the first query but not the second

Multiset Operators
Multiset operators combine the results of two nested tables into a single nested table.

The examples related to multiset operators require that two nested tables be created
and loaded with data as follows:

Operators 4-5

Multiset Operators

First, make a copy of the oe. cust orrer s table called cust oner s_deno. We will add
the nested table columns to cust oner s_deno.

CREATE TABLE custoners_denmo AS
SELECT * FROM cust oners;

Next, create a table type called cust _address_t ab_t yp. This type will be used
when creating the nested table columns.

CREATE TYPE cust _address_tab_typ AS
TABLE OF cust _address_typ
/

Now, create two nested table columns in the cust oner s_deno table:

ALTER TABLE cust onmers_deno
ADD (cust_address_ntab cust_address_tab_typ,
cust _address2_ntab cust_address_tab_typ)
NESTED TABLE cust _address_ntab STORE AS cust_address_ntab_store
NESTED TABLE cust _address2_ntab STORE AS cust_address2_ntab_store;

Finally, load data into the two new nested table columns using data from the cust _
addr ess column of the oe. cust oner s table:

UPDATE CUSTOMERS DEMO cd
SET cust _address_ntab =
CAST(MULTI SET(SELECT cust _address
FROM cust oners ¢
WHERE c. customer _id =
cd. custoner _id) as cust_address_tab_typ);

UPDATE CUSTOMERS_DEMD cd
SET cust_address2_ntab =
CAST(MULTI SET(SELECT cust _address
FROM cust onmers ¢
WHERE c. customer_id =
cd. custoner _id) as cust_address_tab_typ);

MULTISET EXCEPT

MULTI SET EXCEPT takes as arguments two nested tables and returns a nested table
whose elements are in the first nested table but not in the second nested table. The two
input nested tables must be of the same type, and the returned nested table is of the
same type as well.

ALL

l DISTINCT '
—><nested_tab|e1>a| MULTISET |->| EXCEPT } (‘nested_table2)

« The ALL keyword instructs Oracle to return all elements in nest ed_t abl el that
are notin nest ed_t abl e2. For example, if a particular element occurs mtimes in
nest ed_t abl el and n times in nest ed_t abl e2, then the result will have
(m n) occurrences of the element if m >n and 0 occurrences if m<=n. ALL is the
default.

« The DI STI NCT keyword instructs Oracle to eliminate any element in nest ed_
t abl el which is also in nest ed_t abl e2, regardless of the number of
occurrences.

4-6 Oracle Database SQL Reference

Multiset Operators

« The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 7-4 for information on the comparability of
nonscalar types.

Example

The following example compares two nested tables and returns a nested table of those
elements found in the first nested table but not in the second nested table:

SELECT custoner_id, cust_address_ntab
MULTI SET EXCEPT DI STI NCT cust _address2_ntab nul tiset_except
FROM cust oner s_deno;

CUSTOMER | D MULTI SET_EXCEPT(STREET_ADDRESS, PCSTAL_CODE, CITY, STATE PROVI NCE, COUNTRY_| D)
101 CUST_ADDRESS_TAB_TYR(
102 CUST_ADDRESS_TAB_TYR(
103 CUST_ADDRESS TAB TYP(
104 CUST_ADDRESS_TAB_TYR(
105 CUST_ADDRESS_TAB_TYR(

—_— — — —

The preceding example requires the table cust oner s_denp and two nested table
columns containing data. Please refer to "Multiset Operators" on page 4-5 to create this
table and nested table columns.

MULTISET INTERSECT

MULTI SET | NTERSECT takes as arguments two nested tables and returns a nested
table whose values are common in the two input nested tables. The two input nested
tables must be of the same type, and the returned nested table is of the same type as
well.

DISTINCT
—>Cnested_table1>a| MULTISET |->| INTERSECT } 5 nested_table2)>

« The ALL keyword instructs Oracle to return all common occurrences of elements
that are in the two input nested tables, including duplicate common values and
duplicate common NULL occurrences. For example, if a particular value occurs m
timesin nest ed_t abl el and n times in nest ed_t abl e2, then the result would
contain the element mi n(m n) times. ALL is the default.

« The Dl STI NCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

« The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 7-4 for information on the comparability of
nonscalar types.

Example
The following example compares two nested tables and returns a nested table of those
elements found in both input nested tables:

SELECT custoner_id, cust_address_ntab
MULTI SET | NTERSECT DI STINCT cust _address2_ntab nul tiset_intersect
FROM cust oner s_deno;

CUSTOVER_| D MULTI SET_| NTERSECT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID

101 CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP(' 514 W Superior St', '46901', 'Kokom', 'IN, 'US))

Operators 4-7

Multiset Operators

102 CUST_ADDRESS_TAB_ TYP
103 CUST_ADDRESS_TAB_TYP
104 CUST_ADDRESS TAB TYP
105 CUST_ADDRESS TAB TYP

CUST_ADDRESS_TYP
CUST_ADDRESS_TYP
CUST_ADDRESS_TYP
CUST_ADDRESS_TYP

' 2515 Bl oyd Ave', '46218', 'Indianapolis', 'IN, 'US))
'8768 N State Rd 37", '47404', 'Bloomington', "IN, 'US))
' 6445 Bay Harbor Ln', '46254', 'Indianapolis', "IN, 'US))
'4019 W3Rd St', '47404', 'Bloonmington', "IN, 'US))

,\,\,\,\
~ XXX

The preceding example requires the table cust oner s_denp and two nested table
columns containing data. Please refer to "Multiset Operators" on page 4-5 to create this
table and nested table columns.

MULTISET UNION

MULTI SET UNI ON takes as arguments two nested tables and returns a nested table
whose values are those of the two input nested tables. The two input nested tables
must be of the same type, and the returned nested table is of the same type as well.

DISTINCT

—><nested_table1>a| MULTISET |—>| UNION I nested_table2 }»

« The ALL keyword instructs Oracle to return all elements that are in the two input
nested tables, including duplicate values and duplicate NULL occurrences. This is
the default.

« The DI STI NCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

« The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 7-4 for information on the comparability of
nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
elements from both input nested tables:

SELECT custoner_id, cust_address_ntab
MULTI SET UNI ON cust _address2_ntab mul tiset_union
FROM cust oner s_deno;

CUSTOVER_| D MULTI SET_UNI ON(STREET_ADDRESS, POSTAL_CCDE, CITY, STATE_PROVI NCE, COUNTRY_I D)

101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP('514 W Superior St', '46901', 'Kokomo', "IN, 'US'),
CUST_ADDRESS_TYP(' 514 W Superior St', '46901', 'Kokomo', "IN, 'US))

102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP!
CUST_ADDRESS_TYP
103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP!

104 CUST_ADDRESS TAB TYP(CUST_ADDRESS_TYP(' 6445 Bay Harbor Ln', '46254', 'Indianapolis',
CUST_ADDRESS_TYP(' 6445 Bay Harbor Ln', '46254', 'Indianapolis',
105 CUST_ADDRESS TAB TYP(CUST_ADDRESS_TYP(' 4019 W3Rd St', '47404', 'Bloomngton', "IN,
CUST_ADDRESS TYP(' 4019 W3Rd St', '47404', 'Bloomington', 'IN,

'2515 Bl oyd Ave', '46218', 'Indianapolis', "IN,

s,

(

(

(

(' 2515 Bl oyd Ave', '46218', 'Indianapolis', "IN,'US))

(' 8768 N State Rd 37', '47404', 'Bloonmington', "IN, 'US),
CUST_ADDRESS _TYP(' 8768 N State Rd 37', '47404', 'Bloomington', "IN, "US))

("IN, "US),

("IN, 'US))

(tus),

('s))

The preceding example requires the table cust oner s_deno and two nested table
columns containing data. Please refer to "Multiset Operators" on page 4-5 to create this

table and nested table columns.

4-8 Oracle Database SQL Reference

User-Defined Operators

User-Defined Operators

Like built-in operators, user-defined operators take a set of operands as input and
return a result. However, you create them with the CREATE OPERATOR statement, and
they are identified by user-defined names. They reside in the same namespace as
tables, views, types, and standalone functions.

After you have defined a new operator, you can use it in SQL statements like any other
built-in operator. For example, you can use user-defined operators in the select list of a
SELECT statement, the condition of a WHERE clause, or in ORDER BY clauses and
GROUP BY clauses. However, you must have EXECUTE privilege on the operator to do
so, because it is a user-defined object.

See Also: CREATE OPERATOR on page 15-32 for an example of
creating an operator and Oracle Database Data Cartridge Developer*s
Guide for more information on user-defined operators

Operators 4-9

User-Defined Operators

4-10 Oracle Database SQL Reference

D

Functions

Functions are similar to operators in that they manipulate data items and return a
result. Functions differ from operators in the format of their arguments. This format
enables them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

A function without any arguments is similar to a pseudocolumn (please refer to
Chapter 3, "Pseudocolumns”). However, a pseudocolumn typically returns a different
value for each row in the result set, whereas a function without any arguments
typically returns the same value for each row.

This chapter contains these sections:
« SQL Functions

« User-Defined Functions

SQL Functions

SQL functions are built into Oracle Database and are available for use in various
appropriate SQL statements. Do not confuse SQL functions with user-defined
functions written in PL/SQL.

If you call a SQL function with an argument of a datatype other than the datatype
expected by the SQL function, then Oracle attempts to convert the argument to the
expected datatype before performing the SQL function. If you call a SQL function with
a null argument, then the SQL function automatically returns null. The only SQL
functions that do not necessarily follow this behavior are CONCAT, NVL, REPLACE, and
REGEXP_REPLACE.

Note: The combined values of the NLS COWP and NLS_SORT
initialization parameters determine the rules by which characters are
sorted and compared. If the NLS COWVP parameter is set to

LI NGUI STI Cfor your database, then all entities in this chapter will be
interpreted according to the rules specified by the NLS SORT
parameter. Please refer to Oracle Database Globalization Support Guide
for more information on these parameters.

In the syntax diagrams for SQL functions, arguments are indicated by their datatypes.
When the parameter f unct i on appears in SQL syntax, replace it with one of the
functions described in this section. Functions are grouped by the datatypes of their
arguments and their return values.

Functions 5-1

SQL Functions

Note: When you apply SQL functions to LOB columns, Oracle
Database creates temporary LOBs during SQL and PL/SQL
processing. You should ensure that temporary tablespace quota is
sufficient for storing these temporary LOBs for your application.

See Also:

« "User-Defined Functions" on page 5-235 for information on user
functions and "Data Conversion" on page 2-40 for implicit
conversion of datatypes

« Oracle Text Reference for information on functions used with Oracle
Text

« Oracle Data Mining Application Developer's Guide for information
on frequent itemset functions used with Oracle Data Mining

The syntax showing the categories of functions follows:

function::=
single_row_function

aggregate_function

analytic_function

—Cobject_reference_function)—

model_function

u

user_defined_function

|

single_row_function::=
numeric_function
character_function
data_mining_function
datetime_function
conversion_function
collection_function

XML_function

o

\(miscellaneous_single_row_function)/

The sections that follow list the built-in SQL functions in each of the groups illustrated
in the preceding diagrams except user-defined functions. All of the built-in SQL
functions are then described in alphabetical order.

See Also: "User-Defined Functions" on page 5-235 and CREATE
FUNCTION on page 14-47

5-2 Oracle Database SQL Reference

SQL Functions

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. These functions can appear in select lists, WHERE clauses, START W THand
CONNECT BY clauses, and HAVI NGclauses.

Numeric Functions

Numeric functions accept numeric input and return numeric values. Most numeric
functions that return NUMBER values that are accurate to 38 decimal digits. The
transcendental functions COS, COSH, EXP, LN, LOG, SI N, SI NH, SQRT, TAN, and TANH
are accurate to 36 decimal digits. The transcendental functions ACCS, ASI N, ATAN, and
ATAN?2 are accurate to 30 decimal digits. The numeric functions are:

ABS

ACOS

ASIN

ATAN

ATAN?2

BITAND

CEIL

COSs

COSH

EXP

FLOOR

LN

LOG

MOD

NANVL

POWER
REMAINDER
ROUND (number)
SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC (number)
WIDTH_BUCKET

Character Functions Returning Character Values

Character functions that return character values return values of the same datatype as
the input argument. The length of the value returned by the function is limited by the
maximum length of the datatype returned.

« For functions that return CHAR or VARCHAR?, if the length of the return value
exceeds the limit, then Oracle Database truncates it and returns the result without
an error message.

« For functions that return CLOB values, if the length of the return values exceeds
the limit, then Oracle raises an error and returns no data.

The character functions that return character values are:

CHR
CONCAT
INITCAP

Functions 5-3

SQL Functions

LOWER

LPAD

LTRIM
NLS_INITCAP
NLS_LOWER
NLSSORT
NLS_UPPER
REGEXP_REPLACE
REGEXP_SUBSTR
REPLACE

RPAD

RTRIM
SOUNDEX
SUBSTR
TRANSLATE
TREAT

TRIM

UPPER

NLS Character Functions

The NLS character functions return information about the character set. The NLS
character functions are:

NLS_CHARSET_DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET_NAME

Character Functions Returning Number Values

Character functions that return number values can take as their argument any
character datatype.

The character functions that return number values are:

ASCII

INSTR
LENGTH
REGEXP_INSTR

Datetime Functions

Datetime functions operate on date (DATE), timestamp (T| MESTAMP, TI MESTAMP
W THTI ME ZONE, and TI MESTAMP W THLOCAL Tl ME ZONE), and interval (I NTERVAL
DAY TOSECOND, | NTERVAL YEAR TOMONTH) values.

Some of the datetime functions were designed for the Oracle DATE datatype (ADD _
MONTHS, CURRENT_DATE, LAST_DAY, NEW TI ME, and NEXT_DAY). If you provide a
timestamp value as their argument, Oracle Database internally converts the input type
to a DATE value and returns a DATE value. The exceptions are the MONTHS BETWEEN
function, which returns a number, and the ROUND and TRUNC functions, which do not
accept timestamp or interval values at all.

The remaining datetime functions were designed to accept any of the three types of
data (date, timestamp, and interval) and to return a value of one of these types.

The datetime functions are:

ADD_MONTHS
CURRENT_DATE

5-4 Oracle Database SQL Reference

SQL Functions

CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FROM_TZ

LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
NEXT_DAY
NUMTODSINTERVAL
NUMTOYMINTERVAL
ROUND (date)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_CHAR (datetime)
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_DSINTERVAL
TO_YMINTERVAL
TRUNC (date)
TZ_OFFSET

General Comparison Functions

The general comparison functions determine the greatest and or least value from a set

of values. The general comparison functions are:

GREATEST
LEAST

Conversion Functions

Conversion functions convert a value from one datatype to another. Generally, the
form of the function names follows the convention dat at ype TOdat at ype. The first
datatype is the input datatype. The second datatype is the output datatype. The SQL

conversion functions are:

ASCIISTR
BIN_TO_NUM

CAST
CHARTOROWID
COMPOSE

CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR
SCN_TO_TIMESTAMP
TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT

Functions 5-5

SQL Functions

TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB

TO_DATE
TO_DSINTERVAL
TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NCLOB
TO_NUMBER
TO_DSINTERVAL
TO_SINGLE_BYTE
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TO_YMINTERVAL
TRANSLATE ... USING
UNISTR

Large Object Functions
The large object functions operate on LOBs. The large object functions are:

BFILENAME
EMPTY_BLOB, EMPTY_CLOB

Collection Functions

The collection functions operate on nested tables and varrays. The SQL collection
functions are:

CARDINALITY

COLLECT

POWERMULTISET
POWERMULTISET_BY_CARDINALITY
SET

Hierarchical Function
The hierarchical function applies hierarchical path information to a result set.

SYS_CONNECT_BY_PATH

Data Mining Functions

The data mining functions operate on models that have been built using the DBVS_
DATA_M NI NG package or the Oracle Data Mining Java API. The SQL data mining
functions are:

CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
FEATURE_ID
FEATURE_SET
FEATURE_VALUE
PREDICTION

5-6 Oracle Database SQL Reference

SQL Functions

PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET

XML Functions

The XML functions operate on or return XML documents or fragments. The SQL XML
functions are:

APPENDCHILDXML
DELETEXML
DEPTH

EXTRACT (XML)
EXISTSNODE
EXTRACTVALUE
INSERTCHILDXML
INSERTXMLBEFORE
PATH
SYS_DBURIGEN
SYS_XMLAGG
SYS_XMLGEN
UPDATEXML
XMLAGG
XMLCDATA
XMLCOLATTVAL
XMLCOMMENT
XMLCONCAT
XMLFOREST
XMLPARSE

XMLPI
XMLQUERY
XMLROOT
XMLSEQUENCE
XMLSERIALIZE
XMLTABLE
XMLTRANSFORM

Encoding and Decoding Functions
The encoding and decoding functions let you inspect and decode data in the database.

DECODE
DUMP
ORA_HASH
VSIZE

NULL-Related Functions
The NULL-related functions facilitate null handling. The NULL-related functions are:

COALESCE
LNNVL
NULLIF
NVL

NVL2

Functions 5-7

SQL Functions

Environment and |dentifier Functions

The environment and identifier functions provide information about the instance and
session. These functions are:

SYS_CONTEXT
SYS_GUID
SYS_TYPEID
uID

USER
USERENV

Aggregate Functions

Aggregate functions return a single result row based on groups of rows, rather than on
single rows. Aggregate functions can appear in select lists and in ORDER BY and

HAVI NGclauses. They are commonly used with the GROUP BY clause in a SELECT
statement, where Oracle Database divides the rows of a queried table or view into
groups. In a query containing a GROUP BY clause, the elements of the select list can be
aggregate functions, GROUP BY expressions, constants, or expressions involving one of
these. Oracle applies the aggregate functions to each group of rows and returns a
single result row for each group.

If you omit the GROUP BY clause, then Oracle applies aggregate functions in the select
list to all the rows in the queried table or view. You use aggregate functions in the
HAVI NG clause to eliminate groups from the output based on the results of the
aggregate functions, rather than on the values of the individual rows of the queried
table or view.

See Also: "Using the GROUP BY Clause: Examples" on page 19-32
and the "HAVING Clause" on page 19-23 for more information on the
GROUP BY clause and HAVI NGclauses in queries and subqueries

Many (but not all) aggregate functions that take a single argument accept these
clauses:

« DI STI NCT causes an aggregate function to consider only distinct values of the
argument expression.

« ALL causes an aggregate function to consider all values, including all duplicates.

For example, the DI STI NCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If you
specify neither, then the default is ALL.

All aggregate functions except COUNT(*) and GROUPI NGignore nulls. You can use the
NVL function in the argument to an aggregate function to substitute a value for a null.
CQUNT never returns null, but returns either a number or zero. For all the remaining
aggregate functions, if the data set contains no rows, or contains only rows with nulls
as arguments to the aggregate function, then the function returns null.

You can nest aggregate functions. For example, the following example calculates the
average of the maximum salaries of all the departments in the sample schema hr :

SELECT AVG MAX(sal ary)) FROM enpl oyees GROUP BY department _id;

AVG MAX(SALARY))

5-8 Oracle Database SQL Reference

SQL Functions

This calculation evaluates the inner aggregate (MAX(sal ar y)) for each group defined
by the GROUP BY clause (depart nent _i d), and aggregates the results again.

The aggregate functions are:

AVG

COLLECT

CORR

CORR_*

COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST

GROUP_ID
GROUPING
GROUPING_ID
LAST

MAX

MEDIAN

MIN
PERCENTILE_CONT
PERCENTILE_DISC
PERCENT_RANK
RANK

REGR_ (Linear Regression) Functions
STATS_BINOMIAL_TEST
STATS_CROSSTAB
STATS_F _TEST
STATS_KS_TEST
STATS_MODE
STATS_ MW_TEST
STATS_ONE_WAY_ANOVA
STATS T_TEST_*
STATS_WSR_TEST
STDDEV
STDDEV_POP
STDDEV_SAMP
SUM

VAR_POP
VAR_SAMP
VARIANCE

Analytic Functions

Analytic functions compute an aggregate value based on a group of rows. They differ
from aggregate functions in that they return multiple rows for each group. The group
of rows is called a window and is defined by the anal yti c_cl ause. For each row, a
sliding window of rows is defined. The window determines the range of rows used to
perform the calculations for the current row. Window sizes can be based on either a
physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the
final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVI NGclauses are
completed before the analytic functions are processed. Therefore, analytic functions
can appear only in the select list or ORDER BY clause.

Functions 5-9

SQL Functions

Analytic functions are commonly used to compute cumulative, moving, centered, and
reporting aggregates.

analytic_function::=

DS
< O EE1 0 D Y0

analytic_clause::=

query_partition_clause —(order_by_clause) 1

query_partition_clause::=

PARTITION

order_by clause::=

M
N
e R o [r&Eh
SIBLINGS DESC
ORDER BY position

c_alias

it

windowing_clause::=

UNBOUNDED |—)| PRECEDING UNBOUNDED |—)| FOLLOWING

CURRENT |—>| ROW
PRECEDING
l FOLLOWING l

UNBOUNDED |->| PRECEDING h

CURRENT |—>| ROW

| PRECEDING I
FOLLOWING

value_expr

value_expr

|
CURRENT |->| ROW |
value_expr)->| PRECEDING

The semantics of this syntax are discussed in the sections that follow.

analytic_function

Specify the name of an analytic function (see the listing of analytic functions following
this discussion of semantics).

5-10 Oracle Database SQL Reference

SQL Functions

arguments

Analytic functions take 0 to 3 arguments. The arguments can be any numeric datatype
or any nonnumeric datatype that can be implicitly converted to a numeric datatype.
Oracle determines the argument with the highest numeric precedence and implicitly
converts the remaining arguments to that datatype. The return type is also that
datatype, unless otherwise noted for an individual function.

See Also: "Numeric Precedence"” on page 2-13 for information on
numeric precedence and Table 2-10, " Implicit Type Conversion
Matrix" on page 2-40 for more information on implicit conversion

analytic_clause

Use OVERanal yti c_cl ause to indicate that the function operates on a query result
set. That is, it is computed after the FROM WHERE, GROUP BY, and HAVI NGclauses. You
can specify analytic functions with this clause in the select list or ORDER BY clause. To
filter the results of a query based on an analytic function, nest these functions within
the parent query, and then filter the results of the nested subquery.

Notes on the analytic_clause:

= You cannot specify any analytic function in any part of the anal yti c_cl ause.
That is, you cannot nest analytic functions. However, you can specify an analytic
function in a subquery and compute another analytic function over it.

= You can specify OVERanal yti c_cl ause with user-defined analytic functions as
well as built-in analytic functions. See CREATE FUNCTION on page 14-47.

query_partition_clause

Use the PARTI TI ONBY clause to partition the query result set into groups based on
one or more val ue_expr . If you omit this clause, then the function treats all rows of
the query result set as a single group.

Touse the query_partition_cl ause inan analytic function, use the upper branch
of the syntax (without parentheses). To use this clause in a model query (in the

nodel _col um_cl auses) or a partitioned outer join (in the out er _j oi n_cl ause),
use the lower branch of the syntax (with parentheses).

You can specify multiple analytic functions in the same query, each with the same or
different PARTI TI ONBY keys.

If the objects being queried have the parallel attribute, and if you specify an analytic
function with the query_partiti on_cl ause, then the function computations are
parallelized as well.

Valid values of val ue_expr are constants, columns, nonanalytic functions, function
expressions, or expressions involving any of these.

order_by clause

Use the or der _by_cl ause to specify how data is ordered within a partition. For all
analytic functions except PERCENTI LE_CONT and PERCENTI LE_DI SC (which take
only a single key), you can order the values in a partition on multiple keys, each
defined by aval ue_expr and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is
especially useful when using functions that rank values, because the second
expression can resolve ties between identical values for the first expression.

Functions 5-11

SQL Functions

Whenever the or der _by_cl ause results in identical values for multiple rows, the
function returns the same result for each of those rows. Please refer to the analytic
example for SUM on page 5-173 for an illustration of this behavior.

Restrictions on the ORDER BY Clause

« When used in an analytic function, the or der _by_cl ause must take an
expression (expr). The SI BLI NGS keyword is not valid (it is relevant only in
hierarchical queries). Position (posi ti on) and column aliases (c_al i as) are also
invalid. Otherwise this or der _by_cl ause is the same as that used to order the
overall query or subquery.

« An analytic function that uses the RANGE keyword can use multiple sort keys in its
ORDER BY clause if it specifies either of these two windows:

— RANGE BETWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW The short form
of this is RANGE UNBOUNDED PRECEDI NG

— RANGE BETWEEN CURRENT ROWAND UNBOUNDED FOLLOW NG. The short form
of this is RANGE UNBOUNDED FOLLOW NG

Window boundaries other than these two can have only one sort key in the ORDER
BY clause of the analytic function. This restriction does not apply to window
boundaries specified by the ROWVkeyword.

ASC | DESC Specify the ordering sequence (ascending or descending). ASC is the
default.

NULLS FIRST | NULLS LAST Specify whether returned rows containing nulls should
appear first or last in the ordering sequence.

NULLS LAST is the default for ascending order, and NULLS FI RST is the default for
descending order.

Analytic functions always operate on rows in the order specified in the or der _by
cl ause of the function. However, the or der _by_cl ause of the function does not
guarantee the order of the result. Use the or der _by cl ause of the query to
guarantee the final result ordering.

See Also: order_by clause of SELECT on page 19-28 for more
information on this clause

windowing_clause

Some analytic functions allow the wi ndowi ng_cl ause. In the listing of analytic
functions at the end of this section, the functions that allow the wi ndowi ng_cl ause
are followed by an asterisk (*).

ROWS | RANGE These keywords define for each row a window (a physical or logical
set of rows) used for calculating the function result. The function is then applied to all
the rows in the window. The window moves through the query result set or partition
from top to bottom.

« ROWS specifies the window in physical units (rows).
« RANGE specifies the window as a logical offset.

You cannot specify this clause unless you have specified the or der _by_cl ause.
Some window boundaries defined by the RANGE clause let you specify only one
expression in the or der _by_cl ause. Please refer to "Restrictions on the ORDER BY
Clause"” on page 5-12.

5-12 Oracle Database SQL Reference

SQL Functions

The value returned by an analytic function with a logical offset is always deterministic.
However, the value returned by an analytic function with a physical offset may
produce nondeterministic results unless the ordering expression results in a unique
ordering. You may have to specify multiple columns in the or der _by_cl ause to
achieve this unique ordering.

BETWEEN ... AND Use the BETWEEN ... AND clause to specify a start point and end
point for the window. The first expression (before AND) defines the start point and the
second expression (after AND) defines the end point.

If you omit BETVEEEN and specify only one end point, then Oracle considers it the start
point, and the end point defaults to the current row.

UNBOUNDED PRECEDING Specify UNBOUNDED PRECEDI NGto indicate that the
window starts at the first row of the partition. This is the start point specification and
cannot be used as an end point specification.

UNBOUNDED FOLLOWING Specify UNBOUNDED FOLLOW NGto indicate that the
window ends at the last row of the partition. This is the end point specification and
cannot be used as a start point specification.

CURRENT ROW As a start point, CURRENT ROWspecifies that the window begins at
the current row or value (depending on whether you have specified RONor RANGE,
respectively). In this case the end point cannot be val ue_expr PRECEDI NG

As an end point, CURRENT ROWspecifies that the window ends at the current row or
value (depending on whether you have specified RONor RANGE, respectively). In this
case the start point cannot be val ue_expr FOLLON NG

value_expr PRECEDING or value_expr FOLLOWING For RANGE or ROV

« Ifval ue_expr FOLLOW NGis the start point, then the end point must be val ue_
expr FOLLOWN NG

« Ifval ue_expr PRECEDI NGis the end point, then the start point must be val ue_
expr PRECEDI NG

If you are defining a logical window defined by an interval of time in numeric format,
then you may need to use conversion functions.

See Also: NUMTOYMINTERVAL on page 5-109 and
NUMTODSINTERVAL on page 5-108 for information on converting
numeric times into intervals

If you specified ROAS:

« Vval ue_expr is a physical offset. It must be a constant or expression and must
evaluate to a positive numeric value.

« Ifval ue_expr is part of the start point, then it must evaluate to a row before the
end point.

If you specified RANGE:

« Vval ue_expr is alogical offset. It must be a constant or expression that evaluates
to a positive numeric value or an interval literal. Please refer to "Literals" on
page 2-44 for information on interval literals.

« You can specify only one expression in the or der _by_cl ause

Functions 5-13

SQL Functions

« Ifval ue_expr evaluates to a numeric value, then the ORDER BY expr must be a
numeric or DATE datatype.

« Ifval ue_expr evaluates to an interval value, then the ORDER BY expr must be a
DATE datatype.

If you omit the wi ndowi ng_cl ause entirely, then the default is RANGE BETWEEN
UNBOUNDED PRECEDI NG AND CURRENT ROW

Analytic functions are commonly used in data warehousing environments. In the list
of analytic functions that follows, functions followed by an asterisk (*) allow the full
syntax, including the wi ndowi ng_cl ause.

AVG *

CORR *
COVAR_POP *
COVAR_SAMP *
COUNT *
CUME_DIST
DENSE_RANK
FIRST
FIRST_VALUE *
LAG

LAST

LAST_VALUE *
LEAD

MAX *

MIN *

NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
STDDEV *
STDDEV_POP *
STDDEV_SAMP *
SUM *

VAR_POP *
VAR_SAMP *
VARIANCE *

See Also: Oracle Database Data Warehousing Guide for more
information on these functions and for scenarios illustrating their use

Object Reference Functions

Object reference functions manipulate REF values, which are references to objects of
specified object types. The object reference functions are:

DEREF
MAKE_REF
REF
REFTOHEX
VALUE

5-14 Oracle Database SQL Reference

ACOS

See Also: Oracle Database Concepts for more information about REF
datatypes

Model Functions

Model functions can be used only in the nodel _cl ause of the SELECT statement.
The model functions are:

Ccv
ITERATION_NUMBER
PRESENTNNYV
PRESENTV

PREVIOUS

Alphabetical Listing of SQL Functions

ABS

ACOS

The SQL functions are described in alphabetical order.

Syntax
0,0:0

Purpose
ABS returns the absolute value of n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the absolute value of -15:

SELECT ABS(-15) "Absol ute" FROM DUAL;

Absol ut e

Syntax
0,0:0

Purpose

ACGCS returns the arc cosine of n. The argument n must be in the range of -1 to 1, and
the function returns a value in the range of 0 to pi, expressed in radians.

Functions 5-15

ADD_MONTHS

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _
FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the arc cosine of .3:

SELECT ACCS(.3)"Arc_Cosine" FROM DUAL;

Arc_Cosi ne
1. 26610367
ADD_MONTHS
Syntax
(OO (D)
Purpose

ADD_MONTHS returns the date dat e plus i nt eger months. The date argument can be
a datetime value or any value that can be implicitly converted to DATE. The i nt eger
argument can be an integer or any value that can be implicitly converted to an integer.
The return type is always DATE, regardless of the datatype of dat e. If dat e is the last
day of the month or if the resulting month has fewer days than the day component of
dat e, then the result is the last day of the resulting month. Otherwise, the result has
the same day component as dat e.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples

The following example returns the month after the hi r e_dat e in the sample table
enpl oyees:
SELECT TO_CHAR(

ADD_MONTHS(hi re_date, 1),

' DD- MONF YYYY') "Next nonth"

FROM enpl oyees

VWHERE | ast_nane = 'Baer';

Next MNonth

07-JUL-1994

5-16 Oracle Database SQL Reference

ASCIISTR

APPENDCHILDXML

Syntax

O Gamesace simg)
—>| APPENDCHILDXML |—>®{XMLType_instance)—)O-)CXPath_string)@{value_expr) @—)

ASCIISTR

Purpose

APPENDCHI LDXM. appends a user-supplied value onto the target XML as the child of
the node indicated by an XPath expression.

« XM.Type_i nst ance is an instance of XMLType.

« The XPat h_st ri ng is an Xpath expression indicating one or more nodes onto
which one or more child nodes are to be appended. You can specify an absolute
XPat h_st ri ng with an initial slash or a relative XPat h_st ri ng by omitting the
initial slash. If you omit the initial slash, the context of the relative path defaults to
the root node.

« Theval ue_expr specifies one or more nodes of XMLType. It must resolve to a
string.

« The optional namespace_st ri ng provides namespace information for the
XPat h_st ri ng. This parameter must be of type VARCHARZ2.

See Also: Oracle XML DB Developer's Guide for more information
about this function

Examples

The following example adds an / Oamer node to the / WVar ehouse/ Bui | di ng node of
war ehouse_spec in the oe. war ehouses table if the value of the / Bui | di ng node
is "Rented":

UPDATE war ehouses SET war ehouse_spec =
APPENDCHI LDXM_(war ehouse_spec,
" Vr ehouse/ Bui | di ng' ,
XM.Type(' <Oaner >G andco</ Onner >'))
WHERE EXTRACTVALUE(war ehouse_spec, '/Warehouse/Building') = 'Rented';

SELECT war ehouse_i d, warehouse_nane,
EXTRACTVALUE(war ehouse_spec, '/\arehouse/ Bui | di ng/ Oaner') "Prop. Owmner"
FROM war ehouses
WHERE EXI STSNODE(war ehouse_spec, '/Warehouse/ Bui | di ng/ Omner') = 1;

WAREHOUSE_| D WAREHOUSE_NAME Pr op. Oaner

2 San Francisco G andco
3 New Jersey G andco

Syntax

E=EQl0lEDI0

Functions 5-17

ASCII

ASCII

Purpose

ASCI | STRtakes as its argument a string, or an expression that resolves to a string, in
any character set and returns an ASCII version of the string. Non-ASCII characters are
converted to the form \ xxxx, where xxxx represents a UTF-16 code unit.

See Also: Oracle Database Globalization Support Guide for information
on Unicode character sets and character semantics

Examples
The following example returns the ASCII string equivalent of the text string "ABACDE":

SELECT ASC! | STR(' ABACDE') FROM DUAL;

ASCl | STR("

AB\ 00CACDE

Syntax
O

Purpose
ASCl | returns the decimal representation in the database character set of the first
character of char .

char can be of datatype CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The value returned
is of datatype NUMBER. If your database character set is 7-bit ASCII, then this function
returns an ASCII value. If your database character set is EBCDIC Code, then this
function returns an EBCDIC value. There is no corresponding EBCDIC character
function.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information

Examples

The following example returns employees whose last names begin with the letter L,
whose ASCII equivalent is 76:

SELECT | ast _nane FROM enpl oyees
VWHERE ASCI | (SUBSTR(| ast _nanme, 1, 1,)) = 76;

Li vi ngst on

5-18 Oracle Database SQL Reference

ATAN

ASIN

ATAN

Syntax
0,0:0

Purpose
ASI Nreturns the arc sine of n. The argument n must be in the range of -1 to 1, and the
function returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _
FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the arc sine of .3:

SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

Arc_Sine

. 304692654

Syntax
0,0:0

Purpose
ATAN returns the arc tangent of n. The argument n can be in an unbounded range and
returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _
FLQOAT, then the function returns Bl NARY _DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;
Arc_Tangent

. 291456794

Functions 5-19

ATAN2

ATAN2

AVG

Syntax
o
[ATan2 (O ’6‘ OL0

Purpose

ATANZ returns the arc tangent of n1 and n2. The argument n1 can be in an unbounded
range and returns a value in the range of -pi to pi, depending on the signs of n1 and
n2, expressed in radians. ATAN2(n1, n2) is the same as ATAN2(n1/ n2).

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If any argument is Bl NARY _
FLOAT or Bl NARY_DQOUBLE, then the function returns Bl NARY_DOUBLE. Otherwise
the function returns NUVBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the arc tangent of .3 and .2:

SELECT ATAN2(.3, .2) "Arc_Tangent2" FROM DUAL;
Arc_Tangent 2

. 982793723

Syntax

| DISTINCT I
ALL

[a| OVER P@»Canalytic_clausem
expr)

AVG ((
See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions
Purpose

AVGreturns average value of expr .

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

If you specify DI STI NCT, then you can specify only the query_partiti on_cl ause
of theanal yti c_cl ause. Theorder by cl ause and wi ndowi ng_cl ause are not
allowed.

5-20 Oracle Database SQL Reference

BFILENAME

BFILENAME

See Also: "About SQL Expressions” on page 6-1 for information on
valid forms of expr and "Aggregate Functions” on page 5-8

Aggregate Example

The following example calculates the average salary of all employees in the
hr . enpl oyees table:

SELECT AV sal ary) "Average" FROM enpl oyees;

Aver age

Analytic Example

The following example calculates, for each employee in the enpl oyees table, the
average salary of the employees reporting to the same manager who were hired in the
range just before through just after the employee:

SELECT manager _id, last_name, hire_date, salary,
AVQE sal ary) OVER (PARTI TI ON BY manager _id ORDER BY hire_date
ROAS BETWEEN 1 PRECEDI NG AND 1 FOLLON NG AS c_mavg
FROM enpl oyees;

MANAGER_| D LAST_NAME H RE_DATE SALARY C_MAVG
100 Kochhar 21- SEP- 89 17000 17000
100 De Haan 13- JAN-93 17000 15000
100 Raphael y 07- DEC- 94 11000 11966. 6667
100 Kaufling 01- MAY- 95 7900 10633. 3333
100 Hartstein 17- FEB- 96 13000 9633. 33333
100 Weiss 18- JUL- 96 8000 11666. 6667
100 Russel | 01- OCT- 96 14000 11833. 3333

Syntax

0:0 OO0 90
Purpose

BFI LENANME returns a BFI LE locator that is associated with a physical LOB binary file
on the server file system.

« 'directory'isadatabase object that serves as an alias for a full path name on the
server file system where the files are actually located.

« 'fil enane’isthe name of the file in the server file system.

You must create the directory object and associate a BFI LE value with a physical file
before you can use them as arguments to BFI LENAME in a SQL or PL/SQL statement,
DBMS_LOB package, or OCI operation.

You can use this function in two ways:

« Ina DML statement to initialize a BFI LE column

Functions 5-21

BIN_TO_NUM

« Inaprogrammatic interface to access BFI LE data by assigning a value to the
BFI LE locator.

The directory argument is case sensitive. That is, you must ensure that you specify the
directory object name exactly as it exists in the data dictionary. For example, if an

" Admi n" directory object was created using mixed case and a quoted identifier in the
CREATE DI RECTORY statement, then when using the BFI LENAME function you must
refer to the directory object as' Adm n' . You must specify the filename argument
according to the case and punctuation conventions for your operating system.

See Also:

« Oracle Database Application Developer's Guide - Large Objects and
Oracle Call Interface Programmer's Guide for more information on
LOBs and for examples of retrieving BFI LE data

« CREATE DIRECTORY on page 14-41

Examples

The following example inserts a row into the sample table pm pri nt _nmedi a. The
example uses the BFI LENAME function to identify a binary file on the server file
system:

CREATE DI RECTCRY nedia_dir AS '/deno/ schema/ product _nedi a';
I NSERT | NTO print_nedia (product_id, ad_id, ad_graphic)

VALUES (3000, 31001,
bfilename(' MEDIA DIR, 'nodemconp_ad.gif'));

BIN_TO_NUM

Syntax

(N
EEIIIOSCHSO

Purpose

Bl N_TO _NUMconverts a bit vector to its equivalent number. Each argument to this
function represents a bit in the bit vector. This function takes as arguments any
numeric datatype, or any nonnumeric datatype that can be implicitly converted to
NUMBER. Each expr must evaluate to 0 or 1. This function returns Oracle NUVMBER

Bl N_TO NUMis useful in data warehousing applications for selecting groups of
interest from a materialized view using grouping sets.
See Also:

« group_by clause on page 19-21 for information on GROUPI NG SETS
syntax

« Table 2-10, " Implicit Type Conversion Matrix" on page 2-40 for
more information on implicit conversion

« Oracle Database Data Warehousing Guide for information on data
aggregation in general

5-22 Oracle Database SQL Reference

BITAND

BITAND

Examples
The following example converts a binary value to a number:

SELECT BIN_.TO NUM 1, 0, 1, 0) FROM DUAL;

BIN.TO NUM 1, 0, 1, 0)

10
Syntax
O:CDIO;CDIO
Purpose

Bl TAND computes an AND operation on the bits of expr 1 and expr 2, both of which
must resolve to honnegative integers, and returns an integer. This function is
commonly used with the DECODE function, as illustrated in the example that follows.

Both arguments can be any numeric datatype, or any nonnumeric datatype that can be
implicitly converted to NUMBER. The function returns NUMBER

Note: This function does not determine the datatype of the value
returned. Therefore, in SQL*Plus, you must specify Bl TAND in a
wrapper, such as TO_NUMBER, which returns a datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples

The following represents each or der _st at us in the sample table oe. or der s by
individual bits. (The example specifies options that can total only 7, so rows with
or der _st at us greater than 7 are eliminated.)

SELECT order _id, customer_id,
DECODE(Bl TAND(or der _status, 1), 1, 'Warehouse', 'PostOfice')
Locat i on,
DECCDE(Bl TAND(or der _st atus, 2),
DECCDE(BI TAND(or der _st at us, 4),
FROM or der s
VWHERE order _status < 8;

N

, "Gound, "Air') Method,
, "Insured , 'Certified) Receipt

~

ORDER_| D CUSTOMER_| D LOCATION METHOD RECEI PT

2458 101 PostOffice Air Certified
2397 102 Warehouse Air Certified
2454 103 Warehouse Air Certified
2354 104 PostOffice Air Certified
2358 105 Post Office Ground Certified
2381 106 Warehouse G ound Certified
2440 107 Warehouse G ound Certified
2357 108 Warehouse Air I nsured

2394 109 Warehouse Air I nsured

2435 144 Post Office Gound I nsured

Functions 5-23

CARDINALITY

2455 145 Warehouse G ound | nsured
2356 105 Warehouse Air I nsur ed
2360 107 PostOffice Ar I nsur ed
CARDINALITY
Syntax
—] CARDINALITY F@»{nested_table}@»
Purpose

CARDI NALI TY returns the number of elements in a nested table. The return type is
NUMBER If the nested table is empty, or is a null collection, then CARDI NALI TY returns
NULL.

Examples

The following example shows the number of elements in the nested table column ad_
t ext docs_nt ab of the sample table pm pri nt _nedi a:

SELECT product _id, CARDI NALI TY(ad_t ext docs_nt ab)
FROM print _nedi a;

PRODUCT | D CARDI NALI TY(AD_TEXTDOCS_NTAB)

CAST

Syntax

expr
CAS S
i[OS | pp—— 0

Purpose

CAST converts one built-in datatype or collection-typed value into another built-in
datatype or collection-typed value.

CAST lets you convert built-in datatypes or collection-typed values of one type into
another built-in datatype or collection type. You can cast an unnamed operand (such
as a date or the result set of a subquery) or a named collection (such as a varray or a
nested table) into a type-compatible datatype or named collection. The t ype_nane
must be the name of a built-in datatype or collection type and the operand must be a
built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype, a collection type, or an
instance of an ANYDATA type. If expr is an instance of an ANYDATA type, CAST will try
to extract the value of the ANYDATA instance and return it if it matches the cast target
type, otherwise, null will be returned. MULTI SET informs Oracle Database to take the
result set of the subquery and return a collection value. Table 5-1 shows which built-in

5-24 Oracle Database SQL Reference

CAST

datatypes can be cast into which other built-in datatypes. (CAST does not support
LONG, LONG RAW or the Oracle-supplied types.)

CAST does not directly support any of the LOB datatypes. When you use CAST to
convert a CLOB value into a character datatype or a BLOB value into the RAWdatatype,
the database implicitly converts the LOB value to character or raw data and then
explicitly casts the resulting value into the target datatype. If the resulting value is
larger than the target type, then the database returns an error.

When you use CAST ... MULTI SET to get a collection value, each select list item in the
guery passed to the CAST function is converted to the corresponding attribute type of
the target collection element type.

Table 5-1 Casting Built-In Datatypes

from
BINARY_ from
FLOAT, from from DATETIME / from from ROWID, from
BINARY_ CHAR, INTERVAL UROWID NCHAR,
DOUBLE VARCHAR2 NUMBER (Note 1) RAW (Note 2) NVARCHAR2
to BINARY_FLOAT, X X X -- -- -- X
BINARY_DOUBLE
to CHAR, X X X X X X
VARCHAR2
to NUMBER X X X -- -- X
to DATE, X --
TIMESTAMP,
INTERVAL
to RAW -- X --
to ROWID, UROWID X -- Xa
to NCHAR, X X X X X X
NVARCHAR2

Note 1: Datetime/interval includes DATE, TI MESTAMP, TI MESTAMP W TH
TI MEZONE, | NTERVAL DAY TO SECOND, and | NTERVAL YEAR TO MONTH.

Note 2: You cannot cast a UROW D to a ROW D if the UROW D contains the value of a
ROW D of an index-organized table.

If you want to cast a named collection type into another named collection type, then
the elements of both collections must be of the same type.

See Also: "Implicit Data Conversion" on page 2-40 for information
on how Oracle Database implicitly converts collection type data into
character data

If the result set of subquer y can evaluate to multiple rows, then you must specify the
MULTI SET keyword. The rows resulting from the subquery form the elements of the
collection value into which they are cast. Without the MULTI SET keyword, the
subquery is treated as a scalar subquery.

Built-In Datatype Examples
The following examples use the CAST function with scalar datatypes:

SELECT CAST(' 22- OCT-1997" AS TI MESTAMP W TH LOCAL TI ME ZONE)
FROM dual ;

SELECT product _i d,

Functions 5-25

CAST

CAST(ad_sour cet ext AS VARCHAR2(30))
FROM print _nedi a;

Collection Examples

The CAST examples that follow build on the cust _addr ess_t yp found in the sample
order entry schema, oe.

CREATE TYPE address_book_t AS TABLE OF cust _address_typ;

/

CREATE TYPE address_array_t AS VARRAY(3) OF cust_address_typ;
/

CREATE TABLE cust _address (

custno NUMBER,
street _address VARCHAR2(40) ,
postal _code VARCHAR2(10) ,
city VARCHAR2(30) ,
state_province VARCHAR2(10) ,
country_id CHAR(2));

CREATE TABLE cust_short (custno NUMBER nane VARCHAR2(31));
CREATE TABLE states (state_id NUMBER addresses address_array_t);

This example casts a subquery:

SELECT s. custno, s.nang,

CAST(MULTI SET(SELECT ca. street _address,
ca. postal _code,
ca.city,
ca. state_province,
ca.country_id

FROM cust _address ca
WHERE s. custno = ca. cust no)
AS address_book_t)
FROM cust _short s;

CAST converts a varray type column into a nested table:

SELECT CAST(s. addresses AS address_book_t)
FROM states s
WHERE s.state id = 111;

The following objects create the basis of the example that follows:

CREATE TABLE projects
(enpl oyee_i d NUMBER, project_name VARCHAR2(10));

CREATE TABLE enps_short
(enpl oyee_i d NUMBER, |ast_name VARCHAR2(10));

CREATE TYPE project_table_typ AS TABLE OF VARCHAR2(10);
/
The following example of a MULTI SET expression uses these objects:

SELECT e. | ast_nane,
CAST(MULTI SET(SELECT p. proj ect _name
FROM proj ects p
WHERE p. enpl oyee_id = e. enpl oyee_id
ORDER BY p. proj ect _nane)
AS project_table_typ)

FROM enps_short e;

5-26 Oracle Database SQL Reference

CHARTOROWID

CEIL

Syntax
0,0:0

Purpose
CEI L returns smallest integer greater than or equal to n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the smallest integer greater than or equal to the order
total of a specified order:

SELECT order_total, CElL(order_total) FROM orders
WHERE order _id = 2434;

CRDER _TOTAL CEI L(ORDER_TOTAL)

268651. 8 268652

CHARTOROWID

Syntax
0:CH20

Purpose

CHARTOROW D converts a value from CHAR, VARCHAR?2, NCHAR, or NVARCHAR2
datatype to RON D datatype.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples

The following example converts a character rowid representation to a rowid. (The
actual rowid is different for each database instance.)

SELECT | ast _nane FROM enpl oyees
VHERE RON' D = CHARTCROW D(' AAAFA1AAFAAAABSAA ') ;

Functions 5-27

CHR

CHR

Syntax

USING |5 NCHAR CS |_\
I o

Purpose

CHR returns the character having the binary equivalent to n as a VARCHAR2 value in
either the database character set or, if you specify USI NGNCHAR _CS, the national
character set.

For single-byte character sets, if n > 256, then Oracle Database returns the binary
equivalent of n nod 256. For multibyte character sets, n must resolve to one entire
code point. Invalid code points are not validated, and the result of specifying invalid
code points is indeterminate.

This function takes as an argument a NUVBER value, or any value that can be implicitly
converted to NUMBER, and returns a character.

Note: Use of the CHR function (either with or without the optional
USI NGNCHAR _CS clause) results in code that is not portable between
ASCII- and EBCDIC-based machine architectures.

See Also: NCHR on page 5-99 and Table 2-10, " Implicit Type
Conversion Matrix" on page 2-40 for more information on implicit
conversion

Examples

The following example is run on an ASCII-based machine with the database character
set defined as WE8ISO8859P1.:

SELECT CHR(67)| | CHR(65) | | CHR(84) "Dog" FROM DUAL;
Dog

CaT

To produce the same results on an EBCDIC-based machine with the WESEBCDIC1047
character set, the preceding example would have to be modified as follows:

SELECT CHR(195) || CHR(193)| | CHR(227) "Dog"
FROM DUAL;
Dog
CAT
For multibyte character sets, this sort of concatenation gives different results. For
example, given a multibyte character whose hexadecimal value is ala2 (al

representing the first byte and a2 the second byte), you must specify for n the decimal
equivalent of '‘ala?2’, or 41378. That is, you must specify:

SELECT CHR(41378) FROM DUAL;

5-28 Oracle Database SQL Reference

CLUSTER_ID

You cannot specify the decimal equivalent of al concatenated with the decimal
equivalent of a2, as in the following example:

SELECT CHR(161)| | CHR(162) FROM DUAL;

However, you can concatenate whole multibyte code points, as in the following
example, which concatenates the multibyte characters whose hexadecimal values are
ala2 and ala3:

SELECT CHR(41378) || CHR(41379) FROM DUAL;

The following example uses the UTF8 character set:

SELECT CHR (50052 USI NG NCHAR_CS) FROM DUAL;
CH
-

CLUSTER_ID

Syntax

CLUSTER_ID ((model)—(mining_attribute_clause)»@»

mining_attribute_clause::=

*

M
O
table

expr

PUI’pOSG

This function is for use with clustering models that have been created using the DBVS
DATA M NI NG package or with the Oracle Data Mining Java APL. It returns the cluster
identifier of the predicted cluster with the highest probability for the set of predictors
specified in the mi ni ng_at t ri but e_cl ause. The value returned is an Oracle
NUMBER.

Them ni ng_attribute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.

Functions 5-29

CLUSTER_PROBABILITY

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator's Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

« PREDICTION on page 5-120

Examples

The following example lists the clusters into which customers of a given dataset have
been grouped.

This example, and the prerequisite data mining operations, including the creation of
the dm sh_cl us_sanpl e model and the dm sh_sanpl e_appl y_pr epar ed view,
can be found in the demo file $ORACLE_HOVE/ r dbs/ deno/ drkndeno. sql .
General information on data mining demo files is available in Oracle Data Mining
Administrator’s Guide. The example is presented here to illustrate the syntactic use of
the function.

SELECT CLUSTER_I D(km sh_clus_sanmpl e USING *) AS clus, COUNT(*) AS cnt
FROM km sh_sanpl e_appl y_pr epar ed

GROUP BY CLUSTER I D(km sh_cl us_sanpl e USI NG *)

ORDER BY cnt DESC;

CLUS CNT
2 580
10 199
6 185
8 115
12 98
16 82
19 81
15 68
18 65
14 27

10 rows sel ected.

CLUSTER_PROBABILITY

Syntax

O O
—J| CLUSTER_PROBABILITY @ (‘model) (‘mining_attribute_clause)5(}>

5-30 Oracle Database SQL Reference

CLUSTER_PROBABILITY

mining_attribute_clause::=

*

M
O
table

expr

Purpose

This function is for use with clustering models that have been created with the DBVS_
DATA_M NI NG package or with the Oracle Data Mining Java API. It returns a measure
of the degree of confidence of membership of an input row in a cluster associated with
the specified model.

« Forcl uster _id,specify the identifier of the cluster in the model. The function
returns the probability for the specified cluster. If you omit this clause, then the
function returns the probability associated with the best predicted cluster. You can
use the form without cl ust er _i d in conjunction with the CLUSTER | D function
to obtain the best predicted pair of cluster ID and probability.

« Them ning_attribute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

« CLUSTER_ID on page 5-29 and PREDICTION on page 5-120 for
information on related data mining functions

Examples

The following example determines the ten most representative customers, based on
likelihood, in cluster 2.

This example, and the prerequisite data mining operations, including the creation of
the dm sh_cl us_sanpl e model and the dm sh_sanpl e_appl y_pr epar ed view,
can be found in the demo file $ORACLE_HOVE/ r dbrs/ deno/ drkndeno. sql .
General information on data mining demo files is available in Oracle Data Mining
Administrator’s Guide. The example is presented here to illustrate the syntactic use of
the function.

SELECT *
FROM (SELECT cust _id, CLUSTER _PROBABI LI TY(km sh_cl us_sanple, 2 USING *) prob
FROM km sh_sanpl e_appl y_pr epar ed
ORDER BY prob DESC)
VWHERE ROMUM < 11,

CUST ID PROB

100052 . 9993

Functions 5-31

CLUSTER_SET

100962 . 9993
101208 . 9993
100281 . 9993
100012 . 9993
101009 .9992
100173 . 9992
101176 . 9991
100672 . 9991
101420 .9991

10 rows sel ected.

CLUSTER_SET

Syntax

I(*.'H'ﬁﬁﬁbF\\

CLUSTER_SET (X model) \ mining_attribute_clause)(>

mining_attribute_clause::=

*

table
expr

Purpose

This function is for use with clustering models that have been created with the DBMS
DATA_M NI NG package or with the Oracle Data Mining Java API. It returns a varray of
objects containing all possible clusters that a given row belongs to. Each object in the
varray is a pair of scalar values containing the cluster ID and the cluster probability.
The object fields are named CLUSTER | Dand PROBABI LI TY, and both are Oracle
NUVBER

« For the optional t opNargument, specify a positive integer. Doing so restricts the
set of predicted clusters to those that have one of the top N probability values. If
you omitt opNor set it to NULL, then all clusters are returned in the collection. If
multiple clusters are tied for the Nt h value, the database still returns only N
values.

« For the optional cut of f argument, specify a positive integer to restrict the
returned clusters to those with a probability greater than or equal to the specified
cutoff. You can filter only by cut of f by specifying NULL for t opNand the desired
cutoff value for cut of f .

You can specify t opNand cut of f together to restrict the returned clusters to those
that are in the top Nand have a probability that passes the threshold.

Them ni ng_attri bute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.

5-32 Oracle Database SQL Reference

CLUSTER_SET

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Examples

The following example lists the most relevant attributes (with confidence > 55%) of
each cluster to which customer 101362 belongs with > 20% likelihood.

This example, and the prerequisite data mining operations, including the creation of
the dm sh_cl us_sanpl e model and the views and type, can be found in the demo
file $ORACLE_HOVE/ r dbns/ deno/ dnkndeno. sql . General information on data
mining demo files is available in Oracle Data Mining Administrator's Guide. The
example is presented here to illustrate the syntactic use of the function.

WTH
clus_tab AS (
SELECT i d,
A attribute name anane,
A. condi tional _operator op,
NVL(A. attribute_str_val ue,
ROUND(DECODE(A. attribute_nane, N col,
A attribute_numvalue * N scale + N shift,
A attribute_numvalue),4)) val,
A attribute_support support,
A attribute_confidence confidence
FROV TABLE(DBMS_DATA M NI NG GET_MODEL_DETAILS_KM ' km sh_cl us_sanple')) T,
TABLE(T.rul e. antecedent) A
km sh_sanpl e_norm N
WHERE A. attribute_nane = N.col (+) AND A attribute_confidence > 0.55
),
clust AS (
SELECT i d,
CAST(COLLECT(Cattr(aname, op, TO CHAR(val), support, confidence))
AS Cattrs) cl_attrs
FROM cl us_t ab
GROUP BY i d
),
custclus AS (
SELECT T.cust_id, S.cluster_id, S.probability
FROM (SELECT cust _id, CLUSTER SET(km sh_clus_sanple, NULL, 0.2 USING *) pset
FROM km sh_sanpl e_appl y_pr epar ed
WHERE cust _id = 101362) T,
TABLE(T. pset) S
)
SELECT A. probability prob, Acluster_id cl_id,
B.attr, B.op, B.val, B.supp, B.conf
FROM custcl us A,
(SELECT T.id, C*
FROM clust T,
TABLE(T.cl _attrs) C B
VWHERE A.cluster_id = B.id
ORDER BY prob DESC, cl_id ASC, conf DESC, attr ASC, val ASC

Functions 5-33

COALESCE

COALESCE

PRCB CL_I D ATTR OP VAL SUPP CONF
. 7873 8 HOUSEHOLD_SIZE IN 9+ 126 . 7500
. 7873 8 CUST_MARI TAL_ST IN Divorc. 118 . 6000
ATUS

. 7873 8 CUST_MARI TAL_ST IN NeverM 118 . 6000
ATUS

. 7873 8 CUST_MARI TAL_ST IN Separ-. 118 . 6000
ATUS

. 7873 8 CUST_MARI TAL_ST IN W dowed 118 . 6000
ATUS

. 2016 6 AGE >= 17 152 . 6667
. 2016 6 AGE <= 31.6 152 . 6667
. 2016 6 CUST_MARI TAL_ST IN NeverM 168 . 6667

ATUS

8 rows sel ected.

Syntax

O
O @0

Purpose

CQALESCE returns the first non-null expr in the expression list. At least one expr
must not be the literal NULL. If all occurrences of expr evaluate to null, then the
function returns null.

Oracle Database uses short-circuit evaluation. That is, the database evaluates each
expr value and determines whether it is NULL, rather than evaluating all of the expr
values before determining whether any of them is NULL.

If all occurrences of expr are numeric datatype or any nonnumeric datatype that can
be implicitly converted to a numeric datatype, then Oracle Database determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

This function is a generalization of the NVL function.
You can also use COALESCE as a variety of the CASE expression. For example,
COALESCE (exprl, expr2)

is equivalent to:
CASE WHEN expr1 IS NOT NULL THEN exprl ELSE expr2 END

5-34 Oracle Database SQL Reference

COLLECT

COLLECT

Similarly,
COALESCE (exprl, expr2, ..., exprn), for n>=3

is equivalent to:

CASE WHEN expr1 IS NOT NULL THEN exprl
ELSE COALESCE (expr2, ..., exprn) END

See Also: NVL on page 5-110 and "CASE Expressions" on page 6-4

Examples

The following example uses the sample oe. product _i nf or mati on table to
organize a clearance sale of products. It gives a 10% discount to all products with a list
price. If there is no list price, then the sale price is the minimum price. If there is no
minimum price, then the sale price is "5";

SELECT product _id, list_price, mn_price,
COALESCE(0. 9*list_price, mn_price, 5) "Sale"
FROM product _i nformation
WHERE supplier_id = 102050;

PRODUCT I D LI ST_PRICE M N_PRICE Sale
2382 850 731 765
3355 5
1770 73 73
2378 305 247 274.5
1769 48 43.2

Syntax

—J couLect F@—)(column)»@»

Purpose

COLLECT takes as its argument a column of any type and creates a nested table of the
input type out of the rows selected. To get the results of this function you must use it
within a CAST function.

If col um is itself a collection, then the output of COLLECT is a nested table of
collections.

See Also: CAST on page 5-24

Examples

The following example creates a nested table from the varray column of phone
numbers in the sample table oe. cust oner s:

CREATE TYPE phone_book _t AS TABLE OF phone_list_typ;

/

SELECT CAST(COLLECT(phone_nunbers) AS phone_book_t)
FROM cust oners;

Functions 5-35

COMPOSE

COMPOSE

CONCAT

Syntax
OEQ

Purpose

COWVPOSE takes as its argument a string, or an expression that resolves to a string, in
any datatype, and returns a Unicode string in its fully normalized form in the same
character set as the input. char can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. For example, an o code point qualified by an umlaut
code point will be returned as the o-umlaut code point.

CLOB and NCLOB values are supported through implicit conversion. If char isa
character LOB value, it is converted to a VARCHAR value before the COVPOSE
operation. The operation will fail if the size of the LOB value exceeds the supported
length of the VARCHAR in the particular development environment.

See Also: Oracle Database Globalization Support Guide for information
on Unicode character sets and character semantics

Examples
The following example returns the o-umlaut code point:

SELECT COMPOSE (‘o' || UNISTR('\0308')) FROM DUAL;
e0)
8

See Also: UNISTR on page 5-209

Syntax
[CONAT WD) { D) F ()

Purpose

CONCAT returns char 1 concatenated with char 2. Both char 1 and char 2 can be any
of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHARZ2, CLOB, or NCLOB. The string
returned is in the same character set as char 1. Its datatype depends on the datatypes
of the arguments.

In concatenations of two different datatypes, Oracle Database returns the datatype that
results in a lossless conversion. Therefore, if one of the arguments is a LOB, then the
returned value is a LOB. If one of the arguments is a national datatype, then the
returned value is a national datatype. For example:

» CONCAT(CLOB, NCLOB) returns NCLOB
» CONCAT(NCLOB, NCHAR) returns NCLOB
» CONCAT(NCLOB, CHAR) returns NCLOB
» CONCAT(NCHAR, CLOB) returns NCLOB

5-36 Oracle Database SQL Reference

CONVERT

CONVERT

This function is equivalent to the concatenation operator (] |).

See Also: "Concatenation Operator” on page 4-3 for information on
the CONCAT operator

Examples
This example uses nesting to concatenate three character strings:
SELECT CONCAT(CONCAT(| ast_name, '''s job category is '),
job_id) "Job"
FROM enpl oyees
WHERE enpl oyee_id = 152;

Hall's job category is SA REP

Syntax
oo CEE 0
Purpose

CONVERT converts a character string from one character set to another. The datatype of
the returned value is VARCHAR2.

« Thechar argument is the value to be converted. It can be any of the datatypes
CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

« Thedest char_set argument is the name of the character set to which char is
converted.

« Thesource_char_set argument is the name of the character set in which char
is stored in the database. The default value is the database character set.

Both the destination and source character set arguments can be either literals or
columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that the
destination character set contains a representation of all the characters defined in the
source character set. Where a character does not exist in the destination character set, a
replacement character appears. Replacement characters can be defined as part of a
character set definition.

Examples

The following example illustrates character set conversion by converting a Latin-1
string to ASCII. The result is the same as importing the same string from a
WES8ISO8859P1 database to a US7ASCII database.

SELECT CONVERT('AET O@ABCDE"', 'USTASCII', 'WESI SCB859P1')
FROM DUAL,;

CONVERT(* AEi OzBCDE

AEI ??2ABCDE?

Functions 5-37

CORR

CORR

Common character sets include:

« US7ASCII: US 7-bit ASCII character set

=« WESDEC: West European 8-bit character set

« F7DEC: DEC French 7-bit character set

« WESEBCDIC500: IBM West European EBCDIC Code Page 500

« WEB8ISO8859P1: ISO 8859-1 West European 8-bit character set

« UTF8: Unicode 4.0 UTF-8 Universal character set, CESU-8 compliant
« AL32UTF8: Unicode 4.0 UTF-8 Universal character set

Syntax

f—)| OVER P@»Canalytic_clause)%
DE O

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

CORRreturns the coefficient of correlation of a set of number pairs. You can use it as an
aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Oracle Database applies the function to the set of (expr 1, expr 2) after eliminating the
pairs for which either expr 1 or expr 2 is null. Then Oracle makes the following
computation:

COVAR POP(exprl, expr2) / (STDDEV_POP(exprl) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

Note: The CORR function calculates the Pearson's correlation
coefficient, which requires numeric expressions as arguments. Oracle
also provides the CORR_S (Spearman's rho coefficient) and CORR_K
(Kendall's tau-b coefficient) to support nonparametric or rank
correlation.

5-38 Oracle Database SQL Reference

CORR_*

See Also: "Aggregate Functions" on page 5-8, "About SQL
Expressions” on page 6-1 for information on valid forms of expr, and
CORR_* on page 5-39 and CORR_S on page 5-40

Aggregate Example

The following example calculates the coefficient of correlation between the list prices
and minimum prices of products by weight class in the sample table oe. pr oduct _
i nformati on:

SELECT wei ght _class, CORR(list_price, min_price)
FROM product _i nformation
GROUP BY wei ght _cl ass;

WEI GHT_CLASS CORR(LI ST_PRI CE, M N_PRI CE)
1 . 99914795
2 . 999022941
3 . 998484472
4 . 999359909
5 . 999536087

Analytic Example

The following example shows the correlation between duration at the company and
salary by the employee's position. The result set shows the same correlation for each
employee in a given job:

SELECT enpl oyee_id, job_id,
TO CHAR((SYSDATE - hire_date) YEAR TO MONTH) "Yrs-Ms", sal ary,
CORR(SYSDATE- hire_date, salary)
OVER(PARTI TION BY job_id) AS "Correl ation”

FROM enpl oyees

WHERE departnent _id in (50, 80)

ORDER BY job_id, enployee_id;

EMPLOYEE ID JOB ID Yrs- Mhs SALARY Correl ation

145 SA_MAN +08- 07 14000 912385598
146 SA_MAN +08- 04 13500 912385598
147 SA_MAN +08- 02 12000 912385598
148 SA MAN +05- 07 11000 .912385598
149 SA MAN +05- 03 10500 .912385598
150 SA REP +08- 03 10000 .80436755
151 SA REP +08- 02 9500 . 80436755
152 SA_REP +07-09 9000 .80436755
153 SA _REP +07-01 8000 .80436755
154 SA REP +06- 05 7500 . 80436755
155 SA REP +05- 06 7000 .80436755

CORR_*
The CORR_* functions are:
. CORR S
. CORR K

Functions 5-39

CORR_S

CORR_S

Syntax

correlation::=

COEFFICIENT

I ONE_SIDED_SIG '
l TWO_SIDED_SIG '

CORR_K
e} OED O o

Purpose

The CORR function (see CORR on page 5-38) calculates the Pearson's correlation
coefficient and requires numeric expressions as input. The CORR_* functions support
nonparametric or rank correlation. They let you find correlations between expressions
that are ordinal scaled (where ranking of the values is possible). Correlation
coefficients take on a value ranging from -1 to 1, where 1 indicates a perfect
relationship, -1 a perfect inverse relationship (when one variable increases as the other
decreases), and a value close to 0 means no relationship.

These functions takes as arguments any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle Database
determines the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, makes the calculation, and returns NUVBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

expr 1 and expr 2 are the two variables being analyzed. The third argument is a
return value of type VARCHARZ. If you omit the third argument, the default is
CCOEFFI ClI ENT. The meaning of the return values is shown in the table that follows:

Table 5-2 CORR_* Return Values

Return Value Meaning

COEFFI Cl ENT Coefficient of correlation

ONE_SI DED_SI G One-tailed significance of the correlation
TWO SIDED SIG Two-tailed significance of the correlation

CORR_S calculates the Spearman's rho correlation coefficient. The input expressions
should be a set of (x;, y;) pairs of observations. The function first replaces each value
with a rank. Each value of x; is replaced with its rank among all the other x;s in the
sample, and each value of y; is replaced with its rank among all the other y;s. Thus,
each x; and y; take on a value from 1 to n, where n is the total number of pairs of
values. Ties are assigned the average of the ranks they would have had if their values
had been slightly different. Then the function calculates the linear correlation
coefficient of the ranks.

CORR_S Example Using Spearman's rho correlation coefficient, the following
example derives a coefficient of correlation for each of two different comparisons --
sal ary and conmi ssi on_pct,and sal ary and enpl oyee_i d:

5-40 Oracle Database SQL Reference

COS

CORR_K

COS

SELECT COUNT(*) count,
CORR_S(sal ary, comm ssion_pct) commi ssion,
CORR_S(sal ary, enpl oyee_id) enpid

FROM enpl oyees;

COUNT COWM SSI ON EMPI D

107 . 735837022 -.04482358

CORR_K calculates the Kendall's tau-b correlation coefficient. As for CORR_S, the input
expressions are a set of (x;, y;) pairs of observations. To calculate the coefficient, the
function counts the number of concordant and discordant pairs. A pair of observations
is concordant if the observation with the larger x also has a larger value of y. A pair of
observations is discordant if the observation with the larger x has a smaller y.

The significance of tau-b is the probability that the correlation indicated by tau-b was
due to chance--a value of 0 to 1. A small value indicates a significant correlation for
positive values of tau-b (or anticorrelation for negative values of tau-b).

CORR_K Example Using Kendall's tau-b correlation coefficient, the following
example determines whether a correlation exists between an employee's salary and
commission percent:

SELECT CORR _K(sal ary, conmi ssion_pct, 'COEFFICI ENT') coefficient,
CORR K(sal ary, comm ssion_pct, 'TWO SIDED SIG) two_sided_p_val ue
FROM hr . enpl oyees;

COEFFI CI ENT TWO S| DED_P_VALUE

. 603079768 3.4702E- 07

Syntax
0,0:0

Purpose

COS returns the cosine of n (an angle expressed in radians).

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _

FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the cosine of 180 degrees:

SELECT COS(180 * 3. 14159265359/ 180)
"Cosi ne of 180 degrees" FROM DUAL;

Functions 5-41

COSH

COSH

COUNT

Cosi ne of 180 degrees

Syntax
0,0:0

Purpose
COSH returns the hyperbolic cosine of n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY_
FLQAT, then the function returns Bl NARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the hyperbolic cosine of zero:

SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

Syntax

f—)| OVER F@{analytic_clausem
)

STINCT
o
ALL

expr

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

COUNT returns the number of rows returned by the query. You can use it as an
aggregate or analytic function.

If you specify DI STI NCT, then you can specify only the query_partiti on_cl ause
of theanal yti c_cl ause. Theorder _by_cl ause and wi ndowi ng_cl ause are not
allowed.

If you specify expr , then COUNT returns the number of rows where expr is not null.
You can count either all rows, or only distinct values of expr .

5-42 Oracle Database SQL Reference

COUNT

If you specify the asterisk (*), then this function returns all rows, including duplicates
and nulls. COUNT never returns null.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Examples
The following examples use COUNT as an aggregate function:

SELECT COUNT(*) "Total" FROM enpl oyees;

SELECT COUNT(*) "Allstars" FROM enpl oyees
WHERE commi ssion_pct > 0;

SELECT COUNT(DI STI NCT manager _id) "Managers" FROM enpl oyees;

Manager s

Analytic Example

The following example calculates, for each employee in the enpl oyees table, the
moving count of employees earning salaries in the range 50 less than through 150
greater than the employee's salary.

SELECT | ast _nane, salary,
COUNT(*) OVER (ORDER BY sal ary RANGE BETWEEN 50 PRECEDI NG
AND 150 FOLLOA'NG) AS nov_count FROM enpl oyees;

LAST_NAME SALARY MOV_COUNT
d son 2100 3
Mar kl e 2200 2
Phi | t anker 2200 2
Landry 2400 8
Cee 2400 8
Col menar es 2500 10
Pat el 2500 10

Functions 5-43

COVAR_POP

COVAR_POP

Syntax

OVER analytic_clause
o PP (D@D)

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

COVAR_POP returns the population covariance of a set of number pairs. You can use it
as an aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Oracle Database applies the function to the set of (expr 1, expr 2) pairs after
eliminating all pairs for which either expr 1 or expr 2 is null. Then Oracle makes the
following computation:

(SUM exprl * expr2) - SUMexpr2) * SUMexprl) / n) / n

where n is the number of (expr 1, expr 2) pairs where neither expr 1 nor expr 2 is
null.

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

See Also: "About SQL Expressions” on page 6-1 for information on
valid forms of expr and "Aggregate Functions” on page 5-8

Aggregate Example

The following example calculates the population covariance and sample covariance for
time employed (SYSDATE - hi r e_dat e) and salary using the sample table
hr. enmpl oyees:

SELECT job_id,
COVAR_POP(SYSDATE- hire_date, salary) AS covar_pop,
COVAR_SAVP(SYSDATE- hire_date, salary) AS covar_sanp
FROM enpl oyees
WHERE departnent _id in (50, 80)
GROUP BY job_id;

JOBID COVAR PCP COVAR SANP
ST_MAN 436092. 000 545115. 000
SH CLERK 782717.500 823913.158
SA MAN 660700. 000 825875. 000
SA REP 579988. 466 600702. 340

ST_CLERK 176577. 250 185870. 789

5-44 Oracle Database SQL Reference

COVAR_SAMP

Analytic Example

The following example calculates cumulative sample covariance of the list price and
minimum price of the products in the sample schema oe:

SELECT product _id, supplier_id,
COVAR_POP(list_price, mn_price)
OVER (ORDER BY product _id, supplier_id)
AS CUM COVP,
COVAR _SAMP(list_price, mn_price)
OVER (ORDER BY product _id, supplier_id)
AS CUM COvVs
FROM product _i nformation p
WHERE category_id = 29
ORDER BY product _id, supplier_id;

PRODUCT_ID SUPPLIER ID CUM COVP CUM COVS

1774 103088 0
1775 103087 1473.25 2946.5
1794 103096 1702. 77778 2554. 16667
1825 103093 1926. 25 2568. 33333
2004 103086 1591.4 1989.25
2005 103086 1512.5 1815
2416 103088 1475.97959 1721.97619
COVAR_SAMP
Syntax

[al OVER F@{analytic_clausem
D@D O

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose
COVAR_SANP returns the sample covariance of a set of number pairs. You can use it as
an aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Oracle Database applies the function to the set of (expr 1, expr 2) pairs after
eliminating all pairs for which either expr 1 or expr 2 is null. Then Oracle makes the
following computation:

(SUMexprl * expr2) - SUMexprl) * SUMexpr2) / n) / (n-1)

where n is the number of (expr 1, expr 2) pairs where neither expr 1 nor expr 2 is
null.

Functions 5-45

CUME_DIST

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example
Please refer to the aggregate example for COVAR_POP on page 5-44.

Analytic Example
Please refer to the analytic example for COVAR_POP on page 5-44.

CUME_DIST

Aggregate Syntax

cume_dist_aggregate::=

O
o o et

Analytic Syntax

cume_dist_analytic::=
query_partition_clause
CUME_DIST o o OVER B{((order_by_clause)(>

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

CUME_DI ST calculates the cumulative distribution of a value in a group of values. The
range of values returned by CUME_DI ST is >0 to <=1. Tie values always evaluate to the
same cumulative distribution value.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle Database determines
the argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, makes the calculation, and returns NUVBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on

page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

5-46 Oracle Database SQL Reference

CURRENT_DATE

« Asan aggregate function, CUVE_DI ST calculates, for a hypothetical row r
identified by the arguments of the function and a corresponding sort specification,
the relative position of row r among the rows in the aggregation group. Oracle
makes this calculation as if the hypothetical row r were inserted into the group of
rows to be aggregated over. The arguments of the function identify a single
hypothetical row within each aggregate group. Therefore, they must all evaluate to
constant expressions within each aggregate group. The constant argument
expressions and the expressions in the ORDER BY clause of the aggregate match by
position. Therefore, the number of arguments must be the same and their types
must be compatible.

« Asan analytic function, CUVE_DI ST computes the relative position of a specified
value in a group of values. For a row r , assuming ascending ordering, the CUME_
DI ST of r is the number of rows with values lower than or equal to the value of r,
divided by the number of rows being evaluated (the entire query result set or a
partition).

Aggregate Example

The following example calculates the cumulative distribution of a hypothetical
employee with a salary of $15,500 and commission rate of 5% among the employees in
the sample table oe. enpl oyees:

SELECT CUME_DI ST(15500, .05) WTH N GROUP
(ORDER BY sal ary, commission_pct) "Cune-Dist of 15500"
FROM enpl oyees;

Cune-Di st of 15500

. 972222222

Analytic Example

The following example calculates the salary percentile for each employee in the
purchasing division. For example, 40% of clerks have salaries less than or equal to
Himuro.

SELECT job_id, last_nane, salary, CUME_DI ST()
OVER (PARTITION BY job_i d ORDER BY sal ary) AS cune_di st
FROM enpl oyees
VHERE job_id LIKE ' PU%

JOB ID LAST_NAME SALARY CUME DI ST
PU CLERK Col nenares 2500 2
PU CLERK Himuro 2600 !
PU CLERK Tobhi as 2800 .6
PU CLERK Baida 2900 8
PU CLERK Khoo 3100 1
PU_MAN Raphael y 11000 1

CURRENT_DATE

Syntax

CURRENT_DATE

Functions 5-47

CURRENT_TIMESTAMP

Purpose
CURRENT_DATE returns the current date in the session time zone, in a value in the
Gregorian calendar of datatype DATE.

Examples
The following example illustrates that CURRENT _DATE is sensitive to the session time
zone:

ALTER SESSI ON SET TIME_ZONE = '-5:0";

ALTER SESSI ON SET NLS_DATE_FORVAT = ' DD- MON- YYYY HH24: M : SS';
SELECT SESSI ONTI MEZONE, CURRENT_DATE FROM DUAL;

SESSI ONTI MEZONE CURRENT_DATE

-05: 00 29- MAY-2000 13:14:03

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSI ONTI MEZONE, CURRENT_DATE FROM DUAL;

SESSI ONTI MEZONE CURRENT_DATE

CURRENT_TIMESTAMP

Syntax

o precision o

—>| CURRENT_TIMESTAMP }

Purpose

CURRENT _TI MESTAMP returns the current date and time in the session time zone, in a
value of datatype TI MESTAMP W THTI ME ZONE. The time zone offset reflects the
current local time of the SQL session. If you omit precision, then the default is 6. The
difference between this function and LOCALTI MESTANMP is that CURRENT _TI MESTAMP
returns a TI MESTAMP W TH T1 ME ZONE value while LOCALTI MESTAMP returns a

TI MESTAMP value.

In the optional argument, pr eci si on specifies the fractional second precision of the
time value returned.

See Also: LOCALTIMESTAMP on page 5-89

Examples

The following example illustrates that CURRENT_TI MESTAMP is sensitive to the
session time zone:

ALTER SESSION SET TIME_ZONE = '-5:0';

ALTER SESSI ON SET NLS_DATE_FORVAT = ' DD- MON- YYYY HH24: M : SS';
SELECT SESSI ONTI MEZONE, CURRENT_TI MESTAMP FROM DUAL;

SESSI ONTI MEZONE CURRENT_TI MESTAMP

-05: 00 04- APR-00 01.17.56.917550 PM -05: 00

ALTER SESSI ON SET TIME_ZONE = '-8:0';

5-48 Oracle Database SQL Reference

Ccv

CV

SELECT SESSI ONTI MEZONE, CURRENT_TI MESTAMP FROM DUAL;

SESSI ONTI MEZONE CURRENT_TI MESTAWP

-08: 00 04- APR-00 10.18. 21. 366065 AM -08: 00

If you use the CURRENT _TI MESTAMP with a format mask, take care that the format
mask matches the value returned by the function. For example, consider the following
table:

CREATE TABLE current _test (coll TI MESTAMP WTH TI ME ZONE) ;
The following statement fails because the mask does not include the TI ME ZONE
portion of the type returned by the function:

| NSERT I NTO current _test VALUES
(TO_TI MESTAMP_TZ(CURRENT_TI MESTAMP, ' DD- MON- RR HH. M . SSXFF PM));

The following statement uses the correct format mask to match the return type of
CURRENT_TI MESTAMP:

I NSERT I NTO current _test VALUES (TO_TI MESTAMP_TZ
(CURRENT_TI MESTAWP, ' DD- MON-RR HH. M . SSXFF PM TZH TZM));

Syntax
OF
Purpose

The CV function can be used only in the nodel _cl ause of a SELECT statement and
then only on the right-hand side of a model rule. It returns the current value of a
dimension column carried from the left-hand side to the right-hand side of a rule. This
function is used in the nodel _cl ause to provide relative indexing with respect to the
dimension column. The return type is that of the datatype of the dimension column. If
you omit the argument, it defaults to the dimension column associated with the
relative position of the function within the cell reference.

The CV function may be used outside a cell reference. In this case, di nensi on_
col um is required.

See Also: model_clause on page 19-23 and "Model Expressions" on
page 6-11 for the syntax and semantics

Example

The following example assigns the sum of the sales of the product represented by the
current value of the dimension column (Mouse Pad or Standard Mouse) for years 1999
and 2000 to the sales of that product for year 2001:

SELECT country, prod, year, s
FROM sal es_vi ew_r ef
MCDEL
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e s)

Functions 5-49

DBTIMEZONE

| GNORE NAV
UNI QUE DI MENSI ON
RULES UPSERT SEQUENTI AL ORDER
(
S[FOR prod IN (' Muse Pad', 'Standard Muse'), 2001] =
s[CV(), 1999] + s[CV(), 2000]
)
ORDER BY country, prod, year;

COUNTRY PRCD YEAR S
France Mouse Pad 1998 25009. 42
France Mouse Pad 1999 3678. 69
France Mouse Pad 2000 3000. 72
France Mouse Pad 2001 6679. 41
France St andard Muse 1998 2390. 83
France St andard Muse 1999 2280. 45
France St andard Muse 2000 1274. 31
France St andard Muse 2001 3554. 76
Cer many Mouse Pad 1998 5827. 87
Cer many Mouse Pad 1999 8346. 44
Cer many Mouse Pad 2000 7375. 46
Cer many Mouse Pad 2001 15721.9
Cer many Standard Mouse 1998 7116. 11
Cer many Standard Mouse 1999 6263. 14
Cer many Standard Muse 2000 2637. 31
Cer many Standard Muse 2001 8900. 45

16 rows sel ected.

The preceding example requires the view sal es_vi ew_r ef . Refer to "The MODEL
clause: Examples" on page 19-35 to create this view.

DBTIMEZONE

Syntax

Purpose

DBTI MEZONE returns the value of the database time zone. The return type is a time
zone offset (a character type in the format ' [+| -] TZH: TZM) or a time zone region
name, depending on how the user specified the database time zone value in the most
recent CREATE DATABASE or ALTER DATABASE statement.

Examples
The following example assumes that the database time zone is set to UTC time zone:

SELECT DBTI MEZONE FROM DUAL,;

5-50 Oracle Database SQL Reference

DECODE

DECODE

Syntax
O @)
default
= @O (@O OF
Purpose

DECODE compares expr to each sear ch value one by one. If expr isequal to a
sear ch, then Oracle Database returns the corresponding r esul t . If no match is
found, then Oracle returns def aul t . If def aul t is omitted, then Oracle returns null.

The arguments can be any of the numeric types (NUMBER, Bl NARY_FLQAT, or
Bl NARY_DOUBLE) or character types.

« Ifexpr and sear ch are character data, then Oracle compares them using
nonpadded comparison semantics. expr, sear ch,and r esul t can be any of the
datatypes CHAR, VARCHAR2, NCHAR, or N\VARCHARZ2. The string returned is of
VARCHARZ datatype and is in the same character set as the first r esul t parameter.

« Ifthefirstsear ch-resul t pair are numeric, then Oracle compares all
sear ch-resul t expressions and the first expr to determine the argument with
the highest numeric precedence, implicitly converts the remaining arguments to
that datatype, and returns that datatype.

The sear ch,resul t,and def aul t values can be derived from expressions. Oracle
Database uses short-circuit evaluation. That is, the database evaluates each sear ch
value only before comparing it to expr , rather than evaluating all sear ch values
before comparing any of them with expr . Consequently, Oracle never evaluates a
sear ch if a previous sear ch is equal to expr .

Oracle automatically converts expr and each sear ch value to the datatype of the first
sear ch value before comparing. Oracle automatically converts the return value to the
same datatype as the firstr esul t . If the firstr esul t has the datatype CHAR or if the
firstresul t is null, then Oracle converts the return value to the datatype VARCHAR2.

In a DECODE function, Oracle considers two nulls to be equivalent. If expr is null, then
Oracle returns the r esul t of the first sear ch that is also null.

The maximum number of components in the DECODE function, including expr ,
searches,resul ts,anddef aul t, is 255.

See Also: "Datatype Comparison Rules" on page 2-37 for
information on comparison semantics, "Data Conversion" on

page 2-40 for information on datatype conversion in general,
"Floating-Point Numbers" on page 2-11 for information on
floating-point comparison semantics, and "Implicit and Explicit Data
Conversion" on page 2-40 for information on the drawbacks of
implicit conversion

Examples

This example decodes the value war ehouse_i d. If war ehouse_i d is 1, then the
function returns 'Sout hl ake'; if war ehouse_i d is 2, then it returns 'San
Franci sco'; and so forth. If war ehouse_i d is not 1, 2, 3, or 4, then the function
returns 'Non donesti c'.

SELECT product _id,

Functions 5-51

DECOMPOSE

DECODE (war ehouse_id, 1, 'Southl ake',
2, 'San Francisco',
3, 'New Jersey',
4, 'Seattle',
"Non dormestic')
"Location of inventory" FROMinventories
WHERE product _id < 1775;

DECOMPOSE

Syntax

CANONICAL
l COMPATIBILITY I

(Oams OF

Purpose

DECOVPCSE is valid only for Unicode characters. DECOMPOSE takes as its argument a
string in any datatype and returns a Unicode string after decomposition in the same
character set as the input. For example, an o-umlaut code point will be returned as the
"0" code point followed by an umlaut code point.

« Stringcan be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CL OB,
or NCLOB.

» CANONI CAL causes canonical decomposition, which allows recomposition (for
example, with the COMPCSE function) to the original string. This is the default.

« COVPATI BI LI TY causes decomposition in compatibility mode. In this mode,
recomposition is not possible. This mode is useful, for example, when
decomposing half-width and full-width katakana characters, where recomposition
might not be desirable without external formatting or style information.

CLOB and NCLOB values are supported through implicit conversion. If char isa
character LOB value, it is converted to a VARCHAR value before the COVPOSE
operation. The operation will fail if the size of the LOB value exceeds the supported
length of the VARCHAR in the particular development environment.

See Also: Oracle Database Globalization Support Guide for information
on Unicode character sets and character semantics

Examples
The following example ss the string "Chat eaux" into its component code points:

SELECT DECOVPCSE (' Chateaux') FROM DUAL;

Cha”t eaux

5-52 Oracle Database SQL Reference

DELETEXML

DELETEXML

Syntax

0
—J{ DELETEXML @{XMLType_instance XPath_string @

Purpose

DELETEXM. deletes the node or nodes matched by the XPath expression in the target
XML.

« XM.Type_i nst ance is an instance of XMLType.

« The XPat h_st ri ng is an Xpath expression indicating one or more nodes that are
to be deleted. You can specify an absolute XPat h_st ri ng with an initial slash or
a relative XPat h_st r i ng by omitting the initial slash. If you omit the initial slash,
the context of the relative path defaults to the root node. Any child nodes of the
nodes specified by XPat h_st ri ng are also deleted.

« The optional namespace_st ri ng provides namespace information for the
XPat h_st ri ng. This parameter must be of type VARCHAR2.

See Also: Oracle XML DB Developer*'s Guide for more information
about this function

Examples

The following example removes the / Omer node from the war ehouse_spec of one
of the warehouses modified in the example for APPENDCHILDXML on page 5-17:

UPDATE war ehouses SET war ehouse_spec =
DELETEXM_(war ehouse_spec,
" | \\ar ehouse/ Bui | di ng/ Oaner")
WHERE war ehouse_id = 2;

SELECT war ehouse_i d, war ehouse_spec FROM war ehouses
VWHERE war ehouse_id in (2,3);

| D WAREHOUSE SPEC
2 <?xm version="1.0"?>

<War ehouse>
<Bui | di ng>Rent ed</ Bui | di ng>
<Ar ea>50000</ Ar ea>
<Docks>1</ Docks>
<DockType>Si de | oad</ DockType>
<\t er Access>Y</ Wat er Access>
<Rai | Access>N</ Rai | Access>
<Par ki ng>Lot </ Par ki ng>
<Vd earance>12 ft</Vd earance>

</ \ar ehouse>

3 <?xm version="1.0"?>
<War ehouse>
<Bui | di ng>Rent ed
<Owner >G andco</ Oaner >
<Owner >Thi r dOaner </ Omner >
<Owner >Lesser Co</ Oaner >
</ Bui | di ng>

Functions 5-53

DENSE_RANK

<Ar ea>85700</ Ar ea>

<DockType/ >

<\Wat er Access>N</ Wat er Access>

<Rai | Access>N</ Rai | Access>

<Par ki ng>St r eet </ Par ki ng>

<Vd earance>11.5 ft</Vd earance>
</ \ar ehouse>

DENSE_RANK

Aggregate Syntax

dense_rank_aggregate::=

O
o\ o E

Analytic Syntax

dense_rank_analytic::=
query_partition_clause
DENSE_RANK 0 o OVER [((5 order_by_clause)(P

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

DENSE_RANK computes the rank of a row in an ordered group of rows and returns the
rank as a NUMBER. The ranks are consecutive integers beginning with 1. The largest
rank value is the number of unique values returned by the query. Rank values are not
skipped in the event of ties. Rows with equal values for the ranking criteria receive the
same rank. This function is useful for top-N and bottom-N reporting.

This function accepts as arguments any numeric datatype and returns NUVBER.

« Asan aggregate function, DENSE_RANK calculates the dense rank of a hypothetical
row identified by the arguments of the function with respect to a given sort
specification. The arguments of the function must all evaluate to constant
expressions within each aggregate group, because they identify a single row
within each group. The constant argument expressions and the expressions in the
order _by_cl ause of the aggregate match by position. Therefore, the number of
arguments must be the same and types must be compatible.

« Asan analytic function, DENSE_RANK computes the rank of each row returned
from a query with respect to the other rows, based on the values of the val ue_
exprs intheorder by cl ause.

5-54 Oracle Database SQL Reference

DEPTH

DEPTH

Aggregate Example

The following example computes the ranking of a hypothetical employee with the
salary $15,500 and a commission of 5% in the sample table oe. enpl oyees:

SELECT DENSE_RANK(15500, .05) WTH N GROUP
(ORDER BY sal ary DESC, commission_pct) "Dense Rank"
FROM enpl oyees;

Dense Rank

Analytic Example

The following statement selects the department name, employee name, and salary of
all employees who work in the human resources or purchasing department, and then
computes a rank for each unique salary in each of the two departments. The salaries
that are equal receive the same rank. Compare this example with the example for
RANK on page 5-131.

SELECT d. department _name, e.last_nane, e.salary, DENSE_RANK()
OVER (PARTI TION BY e. departnent _id ORDER BY e.sal ary) AS drank
FROM enpl oyees e, departments d
WHERE e. department _id = d. department _id
AND d. departnent _id IN ('30", '40");

DEPARTMENT_NAME LAST_NAME SALARY DRANK
Pur chasi ng Col nenar es 2500 1
Pur chasi ng H muro 2600 2
Pur chasi ng Tobi as 2800 3
Pur chasi ng Bai da 2900 4
Pur chasi ng Khoo 3100 5
Pur chasi ng Raphael y 11000 6
Human Resour ces Mar vi s 6500

Syntax

—>| DEPTH P@»Ccorrelation_integer)@—)

Purpose

DEPTH s an ancillary function used only with the UNDER_PATHand EQUALS_PATH
conditions. It returns the number of levels in the path specified by the UNDER _PATH
condition with the same correlation variable.

The correl ati on_i nt eger can be any NUMBER integer. Use it to correlate this
ancillary function with its primary condition if the statement contains multiple
primary conditions. Values less than 1 are treated as 1.

See Also: EQUALS_PATH Condition on page 7-19, UNDER_PATH
Condition on page 7-20, and the related function PATH on page 5-112

Examples

The EQUALS PATHand UNDER _PATH conditions can take two ancillary functions,
DEPTH and PATH. The following example shows the use of both ancillary functions.

Functions 5-55

DEREF

DEREF

The example assumes the existence of the XMLSchema war ehouses. xsd (created in
"Using XML in SQL Statements"” on page E-8).

SELECT PATH(1), DEPTH(2)
FROM RESCURCE_VI EW

WHERE UNDER PATH(res, '/sys/schemas/CE, 1)=1
AND UNDER PATH(res, '/sys/schemas/CE , 2)=1;

PATH(1) DEPTH(2)
[www. or acl e. com 1
/ www. or acl e. com xwar ehouses. xsd 2
Syntax

O
Purpose

DEREF returns the object reference of argument expr , where expr must return a REF
to an object. If you do not use this function in a query, then Oracle Database returns
the object ID of the REF instead, as shown in the example that follows.

See Also: MAKE_REF on page 5-92

Examples

The sample schema oe contains an object type cust _addr ess_t yp. The "REF
Constraint Examples" on page 8-24 create a similar type, cust _addr ess_t yp_new,
and a table with one column that is a REF to the type. The following example shows
how to insert into such a column and how to use DEREF to extract information from
the column:

I NSERT | NTO address_t abl e VALUES
("1 First', "&45 EU8', "Paris', 'CA, 'US);

I NSERT | NTO cust oner _addr esses
SELECT 999, REF(a) FROM address_table a;

SELECT address FROM cust ormer _addr esses;
000022020876B2245DBE325C5FE03400400B40DCB176B2245DBE305C5FE03400400B40DCB1
SELECT DEREF(address) FROM custoner _addr esses;

DEREF(ADDRESS) (STREET_ADDRESS, POSTAL_CODE, CITY, STATE PROVINCE, COUNTRY_I D)

CUST_ADDRESS TYP('1 First', 'GA5 EU8', 'Paris', "CA', 'US)

5-56 Oracle Database SQL Reference

DUMP

DUMP

Syntax

length
Oy LN
-0

Purpose

DUMP returns a VARCHAR?Z value containing the datatype code, length in bytes, and
internal representation of expr . The returned result is always in the database character
set. For the datatype corresponding to each code, see Table 2-2, " Storage of Scale and
Precision"” on page 2-11.

The argument r et ur n_f mt specifies the format of the return value and can have any
of the following values:

« 8returns result in octal notation.

« 10 returns result in decimal notation.

« 16 returns result in hexadecimal notation.
« 17 returns result as single characters.

By default, the return value contains no character set information. To retrieve the
character set name of expr, add 1000 to any of the preceding format values. For
example, ar et ur n_f nt of 1008 returns the result in octal and provides the character
set name of expr.

The arguments st art _posi ti onand| engt h combine to determine which portion
of the internal representation to return. The default is to return the entire internal
representation in decimal notation.

If expr is null, then this function returns NULL.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules” on page 2-37 for more
information

Examples
The following examples show how to extract dump information from a string
expression and a column:

SELECT DUMP(' abc', 1016)
FROM DUAL,;

DUVP(' ABC , 1016)

Typ=96 Len=3 Char act er Set =WEBDEC. 61, 62, 63
SELECT DUMP(| ast_nane, 8, 3, 2) "OCTAL"

FROM enpl oyees
WHERE | ast _nane = 'Hunol d';

Functions 5-57

EMPTY_BLOB, EMPTY_CLOB

Typ=1 Len=6: 156, 157

SELECT DUMP(| ast _nane, 10, 3, 2) "ASClI"
FROM enpl oyees
WHERE | ast _name = 'Hunol d';

Typ=1 Len=6: 110, 111

EMPTY_BLOB, EMPTY_CLOB

Syntax

empty LOB::=
EpdS

Purpose

EMPTY_BLOB and EMPTY_CLOB return an empty LOB locator that can be used to
initialize a LOB variable or, in an | NSERT or UPDATE statement, to initialize a LOB
column or attribute to EMPTY. EMPTY means that the LOB is initialized, but not
populated with data.

Restriction on LOB Locators You cannot use the locator returned from this function
as a parameter to the DBMS_L OB package or the OCI.

Examples

The following example initializes the ad_phot o column of the sample pm pri nt _
nmedi a table to EMPTY:

UPDATE print_media SET ad_photo = EMPTY_BLOB();

EXISTSNODE
Syntax
—J EXISTSNODE F@{XMLType_instance)@-)@ @
Purpose

EXI STSNODE determines whether traversal of an XML document using a specified
path results in any nodes. It takes as arguments the XML Ty pe instance containing an
XML document and a VARCHAR2 XPath string designating a path. The optional
nanespace_st ri ng must resolve to a VARCHAR?2 value that specifies a default
mapping or namespace mapping for prefixes, which Oracle Database uses when
evaluating the XPath expression(s).

The return value is NUMBER:

5-58 Oracle Database SQL Reference

EXP

EXP

« 0if no nodes remain after applying the XPath traversal on the document

« lifany nodes remain

Examples
The following example tests for the existence of the / War ehouse/ Dock node in the
XML path of the war ehouse_spec column of the sample table oe. war ehouses:

SELECT war ehouse_i d, war ehouse_nane
FROM war ehouses
WHERE EXI STSNODE(war ehouse_spec, '/Warehouse/ Docks') = 1;

WAREHOUSE_| D WAREHOUSE_NAME

1 Sout hl ake, Texas
2 San Francisco
4 Seattle, Washington

Syntax
0,050

Purpose
EXP returns e raised to the nth power, where e = 2.71828183 ... The function returns a
value of the same type as the argument.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _
FLQOAT, then the function returns Bl NARY _DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power" FROM DUAL;
e to the 4th power

54.59815

Functions 5-59

EXTRACT (datetime)

EXTRACT (datetime)

Syntax

extract_datetime::=

YEAR
MONTH

DAY

Bl

LR

|

HOUR

MINUTE

o SECOND datetime_value_expression
-EXTRACT -FROM
TIMEZONE_HOUR interval_value_expression

TIMEZONE_MINUTE

TIMEZONE_REGION

TIMEZONE_ABBR

Purpose

EXTRACT extracts and returns the value of a specified datetime field from a datetime
or interval value expression. When you extract a TI MEZONE_REG ONor TI MEZONE
ABBR (abbreviation), the value returned is a string containing the appropriate time
zone name or abbreviation. When you extract any of the other values, the value
returned is in the Gregorian calendar. When extracting from a datetime with a time
zone value, the value returned is in UTC. For a listing of time zone names and their
corresponding abbreviations, query the V3TI MEZONE_NAMES dynamic performance
view.

This function can be very useful for manipulating datetime field values in very large
tables, as shown in the first example below.

Note: Timezone region names are needed by the daylight savings
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight savings
support until you provide a path to the complete (larger) file by
way of the ORA_TZFI LE environment variable.

Some combinations of datetime field and datetime or interval value expression result
in ambiguity. In these cases, Oracle Database returns UNKNOWN (see the examples that
follow for additional information).

The field you are extracting must be a field of the dat et i me_val ue_expr or

i nterval val ue_expr . For example, you can extract only YEAR, MONTH, and DAY
from a DATE value. Likewise, you can extract TI MEZONE_HOUR and TI MEZONE

M NUTE only from the TI MESTAMP W TH TI ME ZONE datatype.

5-60 Oracle Database SQL Reference

EXTRACT (datetime)

See Also:

« Oracle Database Administrator's Guide for more information about
setting the ORA_TZFI LE environment variable

« Oracle Database Globalization Support Guide. for a complete listing
of the timezone region names in both files

« "Datetime/Interval Arithmetic" on page 2-19 for a description of
dateti me_val ue_expr andi nt erval _val ue_expr

« Oracle Database Reference for information on the dynamic
performance views

Examples

The following example returns from the oe. or der s table the number of orders
placed in each month:

SELECT EXTRACT(rmonth FROM order _date) "Month",
COUNT(order _date) "No. of Orders”
FROM or ders
GROUP BY EXTRACT(nonth FROM or der _dat e)
ORDER BY "No. of Orders" DESC

Month No. of Orders

[EEN

[N
A NP OONOUUCIWOO NP

12 rows sel ect ed.

The following example returns the year 1998.
SELECT EXTRACT(YEAR FROM DATE ' 1998- 03-07') FROM DUAL;

EXTRACT(YEARFROVDATE' 1998- 03-07")

1998
The following example selects from the sample table hr . enpl oyees all employees
who were hired after 1998:

SELECT | ast_nane, enployee_id, hire_date
FROM enpl oyees
WHERE EXTRACT(YEAR FROM
TO DATE(hire_date, 'DD-MON-RR)) > 1998
ORDER BY hire_date;

LAST_NAVE EMPLOYEE_| D HI RE_DATE

Landry 127 14- JAN- 99

Functions 5-61

EXTRACT (XML)

Lorentz 107 07- FEB-99
Cabrio 187 07- FEB- 99

The following example results in ambiguity, so Oracle returns UNKNOAN:

SELECT EXTRACT(TI MEZONE_REG ON
FROM TI MESTAMP ' 1999- 01- 01 10: 00: 00 - 08: 00')
FROM DUAL;

EXTRACT(TI MEZONE_REGQ ONFROMTT MESTAMP' 1999- 01- 0110: 00: 00- 08: 00")

The ambiguity arises because the time zone numerical offset is provided in the
expression, and that numerical offset may map to more than one time zone region.

EXTRACT (XML)
Syntax
extract_xml::=
—>| EXTRACT |—>®{XMLType_instance)»@»(XPath_string) @»
Purpose

EXTRACT (XML) is similar to the EXI STSNODE function. It applies a VARCHAR2 XPath
string and returns an XML Ty pe instance containing an XML fragment. You can specify
an absolute XPat h_st ri ng with an initial slash or a relative XPat h_st ri ng by
omitting the initial slash. If you omit the initial slash, the context of the relative path
defaults to the root node. The optional nanmespace_st ri ng must resolve to a
VARCHARZ value that specifies a default mapping or namespace mapping for prefixes,
which Oracle Database uses when evaluating the XPath expression(s).

Examples

The following example extracts the value of the / WAr ehouse/ Dock node of the XML
path of the war ehouse_spec column in the sample table oe. war ehouses:

SELECT war ehouse_nane, EXTRACT(war ehouse_spec, '/Warehouse/ Docks')
"Nunber of Docks"”
FROM war ehouses
VWHERE war ehouse_spec |'S NOT NULL;

WAREHOUSE NAMVE Nurmber of Docks
Sout hl ake, Texas <Docks>2</ Docks>
San Francisco <Docks>1</ Docks>
New Jer sey <Docks/ >
Seattle, Washington <Docks>3</ Docks>

Compare this example with the example for EXTRACTVALUE on page 5-63, which
returns the scalar value of the XML fragment.

5-62 Oracle Database SQL Reference

FEATURE_ID

EXTRACTVALUE

Syntax
O
—] EXTRACTVALUE @{XMLType_instance)a@-(XPath_string) @

The EXTRACTVALUE function takes as arguments an XM_Ty pe instance and an XPath
expression and returns a scalar value of the resultant node. The result must be a single
node and be either a text node, attribute, or element. If the result is an element, then
the element must have a single text node as its child, and it is this value that the
function returns. You can specify an absolute XPat h_st ri ng with an initial slash or a
relative XPat h_st ri ng by omitting the initial slash. If you omit the initial slash, the
context of the relative path defaults to the root node.

If the specified XPath points to a node with more than one child, or if the node pointed
to has a non-text node child, then Oracle returns an error. The optional nanmespace_
st ri ng must resolve to a VARCHAR2 value that specifies a default mapping or
namespace mapping for prefixes, which Oracle uses when evaluating the XPath
expression(s).

For documents based on XML schemas, if Oracle can infer the type of the return value,
then a scalar value of the appropriate type is returned. Otherwise, the result is of type
VARCHAR2. For documents that are not based on XML schemas, the return type is
always VARCHAR2.

Examples

The following example takes as input the same arguments as the example for
EXTRACT (XML) on page 5-62. Instead of returning an XML fragment, as does the
EXTRACT function, it returns the scalar value of the XML fragment:

SELECT war ehouse_nane,
EXTRACTVALUE(e. war ehouse_spec, '/ Wrehouse/ Docks')
"Docks"
FROM war ehouses e
WHERE war ehouse_spec |'S NOT NULL;

WAREHOUSE _NAME Docks
Sout hl ake, Texas 2
San Franci sco 1
New Jer sey

Seattle, Washington 3

FEATURE_ID

Syntax

FEATURE_ID |(((model)—(mining_attribute_clause)»@»

Functions 5-63

FEATURE_ID

mining_attribute_clause:=

*

M
O
table

expr

Purpose

This function is for use with feature extraction models that have been created using the
DBVS_DATA M NI NG package or with the Oracle Data Mining Java APL. It returns an
Oracle NUMBER that is the identifier of the feature with the highest coefficient value.

Thenmi ning_attribute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Examples

The following example lists the features and corresponding count of customers in a
dataset.

This example and the prerequisite data mining operations, including creation of the
nnf _sh_sanpl e model and nnf _sh_sanpl e_appl y_pr epar ed view, can be found
in the demo file $ORACLE_HOVE/ r dbns/ deno/ dmmndeno. sql . General information
on data mining demo files is available in Oracle Data Mining Administrator's Guide. The
example is presented here to illustrate the syntactic use of the function.

SELECT FEATURE_I D(nnf _sh_sanple USING *) AS feat, COUNT(*) AS cnt
FROM nnf _sh_sanpl e_appl y_pr epar ed

GROUP BY FEATURE | D(nnf _sh_sanpl e USI NG *)

ORDER BY cnt DESC;

5-64 Oracle Database SQL Reference

FEATURE_SET

FEATURE_SET

Syntax

A (e~
_ \
FEATURE_SET (model mining_attribute_clause)-(>

mining_attribute_clause:=

*

table

allas

expr

Purpose

This function is for use with feature extraction models that have been created using the
DBVS_DATA M NI NG package or with the Oracle Data Mining Java APL. It returns a
varray of objects containing all possible features. Each object in the varray is a pair of
scalar values containing the feature ID and the feature value. The object fields are
named FEATURE_| Dand VALUE, and both are Oracle NUVBER

The optional t opNargument is a positive integer that restricts the set of features to
those that have one of the top Nvalues. If there is a tie at the Nt h value, the database
still returns only Nvalues. If you omit this argument, then the function returns all
features.

The optional cut of f argument restricts the returned features to only those that have a
feature value greater than or equal to the specified cutoff. To filter only by cut of f,
specify NULL for t opNand the desired cutoff for cut of f .

Thenm ning_attribute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Examples

The following example lists the top features corresponding to a given customer record
(based on match quality), and determines the top attributes for each feature (based on
coefficient > 0.25).

This example and the prerequisite data mining operations, including the creation of
the model, views, and type, can be found in the demo file $ORACLE _
HOVE/ r dbns/ deno/ dmmdeno. sql . General information on data mining demo files

Functions 5-65

FEATURE_SET

is available in Oracle Data Mining Administrator’s Guide. The example is presented here
to illustrate the syntactic use of the function.

WTH
feat_tab AS (
SELECT F.feature_id fid,
A attribute_nane attr,
TO CHAR(A attribute_val ue) val,
A coefficient coeff
FROM TABLE(DBMS_DATA M NI NG GET_MODEL_DETAI LS NVF(' nnf_sh_sanple')) F,
TABLE(F. attribute_set) A
WHERE A. coefficient > 0.25
),
feat AS (
SELECT fid,
CAST(COLLECT(Featattr(attr, val, coeff))
AS Featattrs) f_attrs
FROM feat tab
GROUP BY fid
).
cust _10 features AS (
SELECT T.cust_id, S.feature_id, S. value
FROM (SELECT cust _id, FEATURE_SET(nnf_sh_sanple, 10 USING *) pset
FROM nnf _sh_sanpl e_appl y_pr epar ed
WHERE cust_id = 100002) T,
TABLE(T. pset) S
)
SELECT A.value, A feature_id fid,
B.attr, B.val, B.coeff
FROM cust 10 features A
(SELECT T.fid, F.*
FROM feat T,
TABLE(T.f attrs) F) B
VWHERE A.feature_id = B.fid
ORDER BY A value DESC, A feature_ id ASC, coeff DESC, attr ASC, val ASC

VALUE FID ATTR VAL COEFF
6. 8409 7 YRS_RESI DENCE 1. 3879
6. 8409 7 BOOKKEEPI NG_APPLI CATI ON . 4388
6. 8409 7 CUST_GENDER M . 2956
6. 8409 7 COUNTRY_NAME United States of Ane .2848

rica
6. 4975 3 YRS_RESI DENCE 1.2668
6. 4975 3 BOOKKEEPI NG_APPLI CATI ON . 3465
6. 4975 3 COUNTRY_NAME United States of Ane .2927

rica
6. 4886 2 YRS_RESI DENCE 1. 3285
6. 4886 2 CUST_GENDER M . 2819
6. 4886 2 PRI NTER_SUPPLI ES . 2704
6. 3953 4 YRS_RESI DENCE 1.2931
5. 9640 6 YRS_RESI DENCE 1. 1585
5. 9640 6 HOVE_THEATER PACKACE . 2576
5. 2424 5 YRS_RESI DENCE 1. 0067
2.4714 8 YRS_RESI DENCE . 3297
2. 3559 1 YRS_RESI DENCE . 2768
2. 3559 1 FLAT_PANEL_MONI TOR . 2593

17 rows sel ected.

5-66 Oracle Database SQL Reference

FEATURE_VALUE

FEATURE_VALUE

Syntax

O~ O
FEATURE_VALUE ((model) X mining_attribute_clause)(>

mining_attribute_clause:=

*

table

allas

expr

Purpose

This function is for use with feature extraction models that have been created using the
DBMS_DATA M NI NG package or with the Oracle Data Mining Java API. It returns the
value of a given feature. If you omit the f eat ur e_i d argument, then the function
returns the highest feature value. You can use this form in conjunction with the
FEATURE | Dfunction to obtain the largest feature/value combination.

Thenmi ning_attribute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Examples
The following example lists the customers that correspond to feature 3, ordered by
match quality.

This example and the prerequisite data mining operations, including the creation of
the model and view, can be found in the demo file $ORACLE _

HOVE/ r dbns/ denp/ dmmdeno. sql . General information on data mining demo files
is available in Oracle Data Mining Administrator's Guide. The example is presented here
to illustrate the syntactic use of the function.

SELECT *
FROM (SELECT cust _id, FEATURE VALUE(nnf_sh_sanple, 3 USING *) match_quality
FROM nnf _sh_sanpl e_appl y_pr epar ed
ORDER BY match_qual ity DESC)
VWHERE ROMUM < 11,

CUST_I D MATCH_QUALITY

100210 19. 4101627

Functions 5-67

FIRST

100962
101151
101499
100363
100372
100982
101039
100759
100953

10 rows sel ected.

FIRST

Syntax

first::=

{aggregate_functionH KEEP |—>

15
14.
14.
14.
. 3335148
14.
14.
14.
14.

14

2482251
5685197
4186292
4037396

1716545
1079914
0913761
0799737

=)
ASC

—>@->| DENSE_RANK |->| FIRST |->| ORDER |->| BY expr

[a| OVER Kquery_panition_clauseh

See Also:

"Analytic Functions” on page 5-9 for information on

syntax, semantics, and restrictions of the ORDER BY clause and OVER

clause

Purpose

FI RST and LAST are very similar functions. Both are aggregate and analytic functions
that operate on a set of values from a set of rows that rank as the FI RST or LAST with
respect to a given sorting specification. If only one row ranks as FI RST or LAST, the
aggregate operates on the set with only one element.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

When you need a value from the first or last row of a sorted group, but the needed
value is not the sort key, the FI RST and LAST functions eliminate the need for self
joins or views and enable better performance.

« Theaggregate_ function isanyone ofthe M N, MAX, SUM AVG COUNT,
VARI ANCE, or STDDEV functions. It operates on values from the rows that rank
either FI RST or LAST. If only one row ranks as FI RST or LAST, the aggregate
operates on a singleton (nonaggregate) set.

« DENSE RANK FI RST or DENSE_RANK LAST indicates that Oracle Database will
aggregate over only those rows with the minimum (FI RST) or the maximum
(LAST) dense rank (also called olympic rank).

5-68 Oracle Database SQL Reference

FIRST

You can use the FI RST and LAST functions as analytic functions by specifying the
OVERclause. The query_partitioni ng_cl ause is the only part of the OVER clause
valid with these functions.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and LAST on
page 5-82

Aggregate Example

The following example returns, within each department of the sample table

hr . enpl oyees, the minimum salary among the employees who make the lowest
commission and the maximum salary among the employees who make the highest
commission:

SELECT departnent _id,
M N(sal ary) KEEP (DENSE_RANK FI RST ORDER BY commi ssi on_pct) "Wrst",
MAX(sal ary) KEEP (DENSE_RANK LAST ORDER BY commi ssion_pct) "Best"
FROM enpl oyees
GROUP BY department _id;

DEPARTMENT_I D Wor st Best
10 4400 4400
20 6000 13000
30 2500 11000
40 6500 6500
50 2100 8200
60 4200 9000
70 10000 10000
80 6100 14000
90 17000 24000

100 6900 12000
110 8300 12000
7000 7000

Analytic Example

The next example makes the same calculation as the previous example but returns the
result for each employee within the department:

SELECT | ast _nane, departnent_id, salary,
M N(sal ary) KEEP (DENSE_RANK FI RST ORDER BY comm ssion_pct)
OVER (PARTI TI ON BY department _id) "Wrst",
MAX(sal ary) KEEP (DENSE_RANK LAST ORDER BY conmi ssi on_pct)
OVER (PARTI TI ON BY department _id) "Best"
FROM enpl oyees
CORDER BY department _id, salary;

LAST_NAVE DEPARTVENT I D SALARY Wor st Best
Wal en 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
Getz 110 8300 8300 12000
H ggi ns 110 12000 8300 12000
G ant 7000 7000 7000

Functions 5-69

FIRST_VALUE

FIRST_VALUE

Syntax

f_)| IGNORE |->| NULLS |—\

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions, including valid forms of expr

Purpose

FI RST_VALUE is an analytic function. It returns the first value in an ordered set of
values. If the first value in the set is null, then the function returns NULL unless you
specify | GNORE NULLS. This setting is useful for data densification. If you specify

| GNORE NULLS, then FI RST_VALUE returns the fist non-null value in the set, or NULL
if all values are null. Please refer to "Using Partitioned Outer Joins: Examples" on

page 19-41 for an example of data densification.

You cannot use FI RST_VALUE or any other analytic function for expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions for
expr . Please refer to "About SQL Expressions” on page 6-1 for information on valid
forms of expr.

Examples
The following example selects, for each employee in Department 90, the name of the
employee with the lowest salary.

SELECT departnent _id, |ast_nane, salary, FIRST_VALUE(last_nane)
OVER (ORDER BY sal ary ASC ROAS UNBOUNDED PRECEDI NG AS | owest _sal
FROM (SELECT * FROM enpl oyees WHERE departnent _id = 90

CRDER BY enpl oyee_i d);

DEPARTMENT | D LAST_NAME SALARY LOWEST SAL
90 Kochhar 17000 Kochhar
90 De Haan 17000 Kochhar
90 King 24000 Kochhar

The example illustrates the nondeterministic nature of the FI RST_VALUE function.
Kochhar and DeHaan have the same salary, so are in adjacent rows. Kochhar appears
first because the rows returned by the subquery are ordered by enpl oyee i d.
However, if the rows returned by the subquery are ordered by enpl oyee_i d in
descending order, as in the next example, then the function returns a different value:

SELECT departnent _id, |ast_nane, salary, FlIRST_VALUE(Iast_nane)
OVER (ORDER BY sal ary ASC ROAS UNBOUNDED PRECEDI NG as fv
FROM (SELECT * FROM enpl oyees WHERE departnent _id = 90
ORDER by enpl oyee_i d DESC);

DEPARTMENT _| D LAST_NAME SALARY FV
90 De Haan 17000 De Haan
90 Kochhar 17000 De Haan
90 King 24000 De Haan

The following example shows how to make the FI RST_VALUE function deterministic
by ordering on a unique key.

5-70 Oracle Database SQL Reference

FROM_TZ

SELECT departnent _id, last_nane, salary, hire_date,
FI RST_VALUE(| ast _nane) OVER
(ORDER BY salary ASC, hire_date ROAS UNBOUNDED PRECEDI NG AS fv
FROM (SELECT * FROM enpl oyees
WHERE departnent _id = 90 ORDER BY enpl oyee_i d DESC);

DEPARTMENT_I D LAST_NAME SALARY H RE_DATE FV

90 Kochhar 17000 21- SEP-89 Kochhar
90 De Haan 17000 13- JAN-93 Kochhar
90 King 24000 17-JUN-87 Kochhar

FLOOR

Syntax
000

Purpose
FLOOR returns largest integer equal to or less than n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the largest integer equal to or less than 15.7:

SELECT FLOOR(15.7) "Floor" FROV DUAL;

FROM_TZ

Syntax
—>| FROM_TZ F@»(timestamp_value)s@e(time_zone_value)s@»

Purpose

FROM TZ converts a timestamp value and a time zone to a TI MESTAMP W THTI ME
ZONE value. t i ne_zone_val ue is a character string in the format' TZH: TZM or a
character expression that returns a string in TZR with optional TZD format.

Examples
The following example returns a timestamp value to TI MESTAMP W THTI ME ZONE:

SELECT FROM TZ(Tl MESTAMP ' 2000- 03-28 08: 00: 00", '3:00")
FROM DUAL;

Functions 5-71

GREATEST

GREATEST

GROUP_ID

FROM_TZ(TI MESTAMP' 2000- 03- 2808: 00: 00", * 3: 00")

28- MAR-00 08.00.00 AM +03: 00

Syntax

O
EzzaloN 0

Purpose

GREATEST returns the greatest of the list of one or more expressions. Oracle Database
uses the first expr to determine the return type. If the first expr is numeric, then
Oracle determines the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that datatype before the comparison, and returns
that datatype. If the first expr is not numeric, then each expr after the first is
implicitly converted to the datatype of the first expr before the comparison.

Oracle Database compares each expr using nonpadded comparison semantics.
Character comparison is based on the value of the character in the database character
set. One character is greater than another if it has a higher character set value. If the
value returned by this function is character data, then its datatype is always
VARCHAR2.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on

page 2-40 for more information on implicit conversion, "Floating-Point
Numbers" on page 2-11 for information on binary-float comparison
semantics, and "Datatype Comparison Rules" on page 2-37

Examples
The following statement selects the string with the greatest value:

SELECT GREATEST (' HARRY', 'HARRI OT", 'HAROLD)
"Geatest" FROM DUAL;

G eat est

Syntax
0:0

Purpose

GROUP_I Ddistinguishes duplicate groups resulting from a GROUP BY specification. It
is useful in filtering out duplicate groupings from the query result. It returns an Oracle
NUMBER to uniquely identify duplicate groups. This function is applicable only in a
SELECT statement that contains a GROUP BY clause.

5-72 Oracle Database SQL Reference

GROUPING

GROUPING

If n duplicates exist for a particular grouping, then GROUP_I Dreturns numbers in the
range 0 to n-1.

Examples

The following example assigns the value 1 to the duplicate co. country_regi on
grouping from a query on the sample tables sh. count ri es and sh. sal es:

SELECT co. country_region, co.country_subregion,
SUM's. amount _sol d) "Revenue",
CGROUP_ID() g
FROM sal es s, custoners c, countries co
WHERE s.cust_id = c.cust_id AND
c.country_id = co.country_id AND
s.time_id = "1-JAN 00" AND
co.country_region IN (" Arericas', 'Europe')
GROUP BY co. country_region,
ROLLUP (co. country_region, co.country_subregion);

COUNTRY_REG ON COUNTRY_SUBREG ON Revenue G
Arer i cas Northern America 220844 0
Aneri cas Sout hern Anerica 10872 0
Eur ope Eastern Europe 12751 0
Eur ope Vst ern Europe 558686 0
Areri cas 231716 0
Eur ope 571437 0
Arer i cas 231716 1
Eur ope 571437 1

To ensure that only rows with GROUP_I| D< 1 are returned, add the following HAVI NG
clause to the end of the statement :

HAVI NG GROUP_1 () < 1

Syntax
0:CHI0

Purpose

CGROUPI NGdistinguishes superaggregate rows from regular grouped rows. GROUP BY
extensions such as ROLLUP and CUBE produce superaggregate rows where the set of
all values is represented by null. Using the GROUPI NG function, you can distinguish a
null representing the set of all values in a superaggregate row from a null in a regular
row.

The expr in the GROUPI NG function must match one of the expressions in the GROUP
BY clause. The function returns a value of 1 if the value of expr in the row is a null
representing the set of all values. Otherwise, it returns zero. The datatype of the value
returned by the GROUPI NG function is Oracle NUMBER. Please refer to the SELECT
group_by clause on page 19-21 for a discussion of these terms.

Examples

In the following example, which uses the sample tables hr . depart nent s and
hr . empl oyees, if the GROUPI NGfunction returns 1 (indicating a superaggregate row

Functions 5-73

GROUPING_ID

rather than a regular row from the table), then the string "All Jobs" appears in the
"JOB" column instead of the null that would otherwise appear:

SELECT DECODE(GROUPI NG department _name), 1, "All Departnents',
depart ment _nane) AS departnent,
DECODE(GROUPING(j ob_id), 1, "All Jobs', job_id) AS job,
COUNT(*) "Total Empl", AV@salary) * 12 "Average Sal"
FROM enpl oyees e, departnents d
WHERE d. departrment _id = e.department _id
CGROUP BY ROLLUP (departnent_name, job_id);

DEPARTMENT JOB Total Enpl Average Sal
Accounti ng AC_ACCOUNT 1 99600
Account i ng AC_MR 1 144000
Account i ng Al Jobs 2 121800
Admi ni stration AD _ASST 1 52800
Adni ni stration Al'l Jobs 1 52800
Executive AD_PRES 1 288000
Executive AD VP 2 204000
Executive Al Jobs 3 232000
Fi nance FI _ACCOUNT 5 95040
Fi nance FI MR 1 144000
Fi nance Al'l Jobs 6 103200
GROUPING_ID
Syntax

[N
[GROUPNG D KD+ (@) ()

Purpose

GROUPI NG _I Dreturns a number corresponding to the GROUPI NG bit vector associated
with a row. GROUPI NG_| Dis applicable only in a SELECT statement that contains a
GROUP BY extension, such as ROLLUP or CUBE, and a GROUPI NGfunction. In queries
with many GROUP BY expressions, determining the GROUP BY level of a particular row
requires many GROUPI NG functions, which leads to cumbersome SQL. GROUPI NG _| D
is useful in these cases.

GROUPI NG _I Dis functionally equivalent to taking the results of multiple GROUPI NG
functions and concatenating them into a bit vector (a string of ones and zeros). By
using GROUPI NG _| Dyou can avoid the need for multiple GROUPI NG functions and
make row filtering conditions easier to express. Row filtering is easier with

GROUPI NG _| Dbecause the desired rows can be identified with a single condition of
GROUPI NG_| D= n. The function is especially useful when storing multiple levels of
aggregation in a single table.

Examples

The following example shows how to extract grouping IDs from a query of the sample
table sh. sal es:

SELECT channel _id, promo_id, sum(anount_sol d) s_sales,
GROUPI NG channel _i d) gc,
GROUPI NG promo_i d) gp,

5-74 Oracle Database SQL Reference

HEXTORAW

GROUPI NG_I D(channel _id, prono_id) gcp,
GROUPI NG_I D(promo_i d, channel _id) gpc
FROM sal es

WHERE promo_id > 496

GROUP BY CUBE(channel _id, prono_id);

C PROMOID S SALES & &P GCP GPC
C 497 26094. 35 0 0 0 0
C 498 22272.4 0 0 0 0
C 499 19616.8 0 0 0 0
C 9999 87781668 0 0 0 0
C 87849651. 6 0 1 1 2
| 497 50325.8 0 0 0 0
| 498 52215.4 0 0 0 0
| 499 58445. 85 0 0 0 0
[9999 169497409 0 0 0 0
[169658396 0 1 1 2
P 497 31141.75 0 0 0 0
P 498 46942.8 0 0 0 0
P 499 24156 0 0 0 0
P 9999 70890248 0 0 0 0
P 70992488. 6 0 1 1 2
S 497 110629. 75 0 0 0 0
S 498 82937.25 0 0 0 0
S 499 80999. 15 0 0 0 0
S 9999 267205791 0 0 0 0
S 267480357 0 1 1 2
T 497 8319. 6 0 0 0 0
T 498 5347.65 0 0 0 0
T 499 19781 0 0 0 0
T 9999 28095689 0 0 0 0
T 28129137.3 0 1 1 2
497 226511.25 1 0 2 1
498 209715.5 1 0 2 1
499 202998. 8 1 0 2 1
9999 623470805 1 0 2 1
624110031 1 1 3 3
HEXTORAW
Syntax
D@0
Purpose

HEXTORAWCconverts char containing hexadecimal digits in the CHAR, VARCHAR2,
NCHAR, or N\VARCHARZ character set to a raw value.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules” on page 2-37 for more
information.

Functions 5-75

INITCAP

INITCAP

Examples
The following example creates a simple table with a raw column, and inserts a
hexadecimal value that has been converted to RAW

CREATE TABLE test (raw_col RAW10));
| NSERT | NTO test VALUES (HEXTORAW' 7D));

See Also: "RAW and LONG RAW Datatypes" on page 2-22 and
RAWTOHEX on page 5-133

Syntax
OEDQ

Purpose

I NI TCAP returns char , with the first letter of each word in uppercase, all other letters
in lowercase. Words are delimited by white space or characters that are not
alphanumeric.

char can be of any of the datatypes CHAR, VARCHAR2, NCHAR, or N\VARCHAR2. The
return value is the same datatype as char . The database sets the case of the initial
characters based on the binary mapping defined for the underlying character set. For
linguistic-sensitive uppercase and lowercase, please refer to NLS_INITCAP on

page 5-103.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples
The following example capitalizes each word in the string:

SELECT | NI TCAP(' the soap') "Capitals" FROM DUAL;

Capital s

The Soap

INSERTCHILDXML

Syntax

INSERTCHILDXML

O s)
—>@{XMLType_instance)»@—(XPath_string)»@»(child_expr)»@{value_expr) @—>

5-76 Oracle Database SQL Reference

INSERTCHILDXML

Purpose

| NSERTCHI LDXM_ inserts a user-supplied value into the target XML at the node
indicated by the XPath expression. Compare this function with INSERTXMLBEFORE

on page 5-78.

See Also: Oracle XML DB Developer's Guide for more information
about this function

XM.Type_i nst ance is an instance of XMLType.

The XPat h_st ri ng is an Xpath expression indicating one or more nodes into
which the one or more child nodes are to be inserted. You can specify an absolute
XPat h_st ri ng with an initial slash or a relative XPat h_st ri ng by omitting the
initial slash. If you omit the initial slash, the context of the relative path defaults to
the root node.

The chi | d_expr specifies the one or more element or attribute nodes to be
inserted.

The val ue_expr is an fragment of XMLTy pe that specifies one or more notes
being inserted. It must resolve to a string.

The optional nanespace_st ri ng provides namespace information for the
XPat h_st ri ng. This parameter must be of type VARCHARZ2.

Examples

The following example adds a second / Oamner node to the war ehouse_spec of one
of the warehouses updated in the example for APPENDCHILDXML on page 5-17:

UPDATE war ehouses SET war ehouse_spec =

| NSERTCH LDXM.(war ehouse_spec,

"/ \Nar ehouse/ Bui I ding', ' Oaner',
XM.Type(' <Oaner >Lesser Co</ Omner>'))
WHERE war ehouse_id = 3;

SELECT war ehouse_spec FROM war ehouses

WHERE war ehouse_id = 3;

WAREHOUSE_SPEC

<?xm version="1.0"?>
<\W\ar ehouse>

<Bui | di ng>Rent ed
<Owner >Gr andco</ Oaner >
<Owner >Lesser Co</ Oaner >
</ Bui | di ng>
<Ar ea>85700</ Ar ea>
<DockType/ >
<\t er Access>N</ Wt er Access>
<Rai | Access>N</ Rai | Access>
<Par ki ng>St r eet </ Par ki ng>
<VC earance>11.5 ft </ VO earance>

</ \W\ar ehouse>

Functions 5-77

INSERTXMLBEFORE

INSERTXMLBEFORE

Syntax

O
—] INSERTXMLBEFORE |->@->(xvv|LType_instance)@{xpath_string)@{value_expr) @

Purpose

| NSERTXMLBEFCRE inserts a user-supplied value into the target XML before the node
indicated by the XPath expression. Compare this function with INSERTCHILDXML on
page 5-76.

« XM.Type_i nst ance is an instance of XMLType.

« The XPat h_st ri ng is an Xpath expression indicating one or more nodes into
which one or more child nodes are to be inserted. You can specify an absolute
XPat h_st ri ng with an initial slash or a relative XPat h_st ri ng by omitting the
initial slash. If you omit the initial slash, the context of the relative path defaults to
the root node.

« Theval ue_expr isafragment of XMLType that defines one or more nodes being
inserted and their position within the parent node. It must resolve to a string.

« The optional namespace_st ri ng provides namespace information for the
XPat h_st ri ng. This parameter must be of type VARCHARZ2.

See Also: Oracle XML DB Developer*'s Guide for more information
about this function

Examples

The following example is similar to that for INSERTCHILDXML on page 5-76, but it
adds a third / Oaner node before the / Oaner node added in the other example. The
output of the query has been formatted for readability.

UPDATE war ehouses SET war ehouse_spec =
| NSERTXM_.BEFORE(war ehouse_spec,
'/ \War ehouse/ Bui | di ng/ Omner[2] ',
XM.Type(' <Oaner >Thi r dOaner </ Oaner >'))
WHERE war ehouse_id = 3;

SELECT war ehouse_nane, EXTRACT(war ehouse_spec,
'/ \War ehouse/ Bui | di ng/ Oamner') "Oaners"
FROM war ehouses
WHERE war ehouse_id = 3;

New Jersey <Oaner>G andco</ Oaner >

<Owner >Thi r dOaner </ Oaner >
<Oaner >Lesser Co</ Onner >

5-78 Oracle Database SQL Reference

INSTR

INSTR

Syntax

position
ﬁ@*@ \

substring

O

Purpose

The | NSTR functions search st ri ng for subst ri ng. The function returns an integer
indicating the position of the character in st ri ng that is the first character of this
occurrence. | NSTR calculates strings using characters as defined by the input character
set. | NSTRB uses bytes instead of characters. | NSTRC uses Unicode complete
characters. | NSTR2 uses UCS2 code points. | NSTR4 uses UCS4 code points.

« positionisannonzero integer indicating the character of st ri ng where Oracle
Database begins the search. If posi t i on is negative, then Oracle counts backward
from the end of st ri ng and then searches backward from the resulting position.

« occurrence is an integer indicating which occurrence of st ri ng Oracle should
search for. The value of occur r ence must be positive.

Both st ri ng and subst ri ng can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The value returned is of NUVMBER datatype.

Both posi ti on and occur r ence must be of datatype NUMBER, or any datatype that
can be implicitly converted to NUMBER, and must resolve to an integer. The default
values of both posi ti on and occurr ence are 1, meaning Oracle begins searching at
the first character of st ri ng for the first occurrence of subst ri ng. The return value
is relative to the beginning of st ri ng, regardless of the value of posi ti on, and is
expressed in characters. If the search is unsuccessful (if subst ri ng does not appear
occurr ence times after the posi t i on character of st ri ng), then the return value is
0.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples

The following example searches the string CORPORATE FLOOR, beginning with the
third character, for the string "OR". It returns the position in CORPORATE FLOOR at
which the second occurrence of "OR" begins:

SELECT | NSTR(' CORPORATE FLOOR ,' OR, 3, 2)
"I'nstring" FROM DUAL;

Instring

In the next example, Oracle counts backward from the last character to the third
character from the end, which is the first Oin FLOOR. Oracle then searches backward
for the second occurrence of OR, and finds that this second occurrence begins with the
second character in the search string :

Functions 5-79

ITERATION_NUMBER

SELECT | NSTR(' CORPORATE FLOOR ,' OR, -3, 2)
"Reversed Instring"
FROM DUAL;

Reversed Instring

The next example assumes a double-byte database character set.

SELECT | NSTRB(' CORPORATE FLOOR ,' OR ,5,2) "Instring in bytes"
FROM DUAL;

Instring in bytes

ITERATION_NUMBER

Syntax

—>| ITERATION_NUMBER |->

Purpose

The | TERATI ON_NUMBER function can be used only in the nodel _cl ause of the
SELECT statement and then only when | TERATE(nunber) is specified in the nodel _
rul es_cl ause. It returns an integer representing the completed iteration through the
model rules. The | TERATI ON_NUMBER function returns 0 during the first iteration. For
each subsequent iteration, the | TERATI ON_NUMBER function returns the equivalent of
i terati on_nunber plusone.

See Also: model_clause on page 19-23 and "Model Expressions" on
page 6-11 for the syntax and semantics

Examples

The following example assigns the sales of the Mouse Pad for the years 1998 and 1999
to the sales of the Mouse Pad for the years 2001 and 2002 respectively:

SELECT country, prod, year, s
FROM sal es_vi ew _ref
MODEL
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON
RULES UPSERT SEQUENTI AL ORDER | TERATE(2)
(
s[' Mouse Pad', 2001 + | TERATI ON_NUMBER] =
s[' Mouse Pad', 1998 + | TERATI ON_NUVBER]

)
ORDER BY country, prod, year;
COUNTRY PRCD YEAR S
France Mouse Pad 1998 2509. 42
France Mouse Pad 1999 3678. 69
France Mouse Pad 2000 3000. 72

5-80 Oracle Database SQL Reference

LAG

France Mouse Pad 2001 2509. 42
France Mouse Pad 2002 3678. 69
France Standard Muse 1998 2390. 83
France Standard Muse 1999 2280. 45
France Standard Muse 2000 1274. 31
France Standard Mouse 2001 2164.54
Cer many Mouse Pad 1998 5827. 87
Cer many Mouse Pad 1999 8346. 44
Cer many Mouse Pad 2000 7375. 46
Cer nmany Mouse Pad 2001 5827. 87
Cer many Mouse Pad 2002 8346. 44
Cer many Standard Muse 1998 7116. 11
Cer many Standard Muse 1999 6263. 14
Cer many Standard Muse 2000 2637. 31
Cer many Standard Muse 2001 6456. 13

18 rows sel ected.

The preceding example requires the view sal es_vi ew _r ef . Please refer to "The
MODEL clause: Examples" on page 19-35 to create this view.

LAG

Syntax

—>| LAG value_expr) @—>

query_partition_clause
OVER (order_by_clause)(b

See Also: "Analytic Functions” on page 5-9 for information on
syntax, semantics, and restrictions, including valid forms of val ue_
expr

PUI’pOSG

LAGis an analytic function. It provides access to more than one row of a table at the
same time without a self join. Given a series of rows returned from a query and a
position of the cursor, LAG provides access to a row at a given physical offset prior to
that position.

If you do not specify of f set, then its default is 1. The optional def aul t value is
returned if the offset goes beyond the scope of the window. If you do not specify
def aul t, then its default is null.

You cannot use LAGor any other analytic function for val ue_expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions for
val ue_expr.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and LEAD on page 5-85

Examples

The following example provides, for each salesperson in the enpl oyees table, the
salary of the employee hired just before:

Functions 5-81

LAST

LAST

SELECT | ast_nane, hire_date, salary,
LAG(salary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
FROM enpl oyees
WHERE job_id = ' PU CLERK';

LAST NAME H RE_DATE SALARY PREV_SAL
Khoo 18- MAY- 95 3100 0
Tobi as 24-JUL- 97 2800 3100
Bai da 24- DEC- 97 2900 2800
H nuro 15- NOV- 98 2600 2900
Col menar es 10- AUG 99 2500 2600
Syntax

last::=

{aggregate_functionH KEEP |—>

—>®->| DENSE_RANK |->| LAST |->| ORDER |->| BY expr

[a| OVER Kquery_panition_clauseh

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions of the query_partitioni ng_
cl ause

Purpose

FI RST and LAST are very similar functions. Both are aggregate and analytic functions
that operate on a set of values from a set of rows that rank as the FI RST or LAST with
respect to a given sorting specification. If only one row ranks as FI RST or LAST, the
aggregate operates on the set with only one element.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Please refer to FIRST on page 5-68 for complete information on this function and for
examples of its use.

5-82 Oracle Database SQL Reference

LAST_VALUE

LAST DAY
Syntax
O@EQ
Purpose
LAST_DAY returns the date of the last day of the month that contains dat e. The return
type is always DATE, regardless of the datatype of dat e.
Examples
The following statement determines how many days are left in the current month.
SELECT SYSDATE,
LAST_DAY(SYSDATE) "Last"
LAST_DAY(SYSDATE) - SYSDATE "Days Left"
FROMV DUAL;
SYSDATE Last Days Left
30- MAY-01 31- MAY-01 1
The following example adds 5 months to the hire date of each employee to give an
evaluation date:
SELECT | ast_nane, hire_date, TO_CHAR(
ADD_MONTHS(LAST_DAY(hire_date), 5)) "Eval Date"
FROM enpl oyees;
LAST_NAMVE HI RE_DATE Eval Date
Ki ng 17- JUN-87 30- NOV- 87
Kochhar 21- SEP- 89 28- FEB- 90
De Haan 13- JAN-93 30- JUN-93
Hunol d 03-JAN-90 30-JUN-90
Er nst 21- MAY-91 31-COCT-91
Austin 25- JUN- 97 30- NOv- 97
Pat abal | a 05- FEB-98 31-JUL-98
Lorentz 07- FEB-99 31-JUL-99
LAST VALUE
Syntax

IGNORE |->| NULLS |—\

@ =D D

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions, including valid forms of expr

Purpose

LAST_VALUE is an analytic function. It returns the last value in an ordered set of
values. If the last value in the set is null, then the function returns NULL unless you

Functions 5-83

LAST_VALUE

specify | GNORE NULLS. This setting is useful for data densification. If you specify

| GNORE NULLS, then LAST _VALUE returns the fist non-null value in the set, or NULL
if all values are null. Please refer to "Using Partitioned Outer Joins: Examples" on
page 19-41 for an example of data densification.

You cannot use LAST_VALUE or any other analytic function for expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions for
expr . Please refer to "About SQL Expressions” on page 6-1 for information on valid
forms of expr.

Examples

The following example returns, for each row, the hire date of the employee earning the
highest salary:

SELECT | ast_nane, salary, hire_date, LAST VALUE(hire_date) OVER

(ORDER BY sal ary

ROAS BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLON NG AS |v
FROM (SELECT * FROM enpl oyees WHERE departnent _id = 90

ORDER BY hire_date);

LAST_NAME SALARY H RE_DATE LV

Kochhar 17000 21- SEP-89 17- JUN-87
De Haan 17000 13-JAN-93 17- JUN-87
Ki ng 24000 17-JUN-87 17- JUN-87

This example illustrates the nondeterministic nature of the LAST VALUE function.
Kochhar and De Haan have the same salary, so they are in adjacent rows. Kochhar
appears first because the rows in the subquery are ordered by hi r e_dat e. However,
if the rows are ordered by hi r e_dat e in descending order, as in the next example,
then the function returns a different value:

SELECT | ast_nane, salary, hire_date, LAST VALUE(hire_date) OVER

(ORDER BY sal ary

ROAS BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLON' NG AS |v
FROM (SELECT * FROM enpl oyees WHERE departnent _id = 90

ORDER BY hire_date DESC);

LAST_NAME SALARY H RE_DATE LV

De Haan 17000 13-JAN-93 17- JUN-87
Kochhar 17000 21- SEP-89 17- JUN-87
Ki ng 24000 17-JUN-87 17- JUN-87

The following two examples show how to make the LAST_VALUE function
deterministic by ordering on a unique key. By ordering within the function by both
sal ary and hi r e_dat e, you can ensure the same result regardless of the ordering in
the subquery.

SELECT | ast_nane, salary, hire_date, LAST VALUE(hire_date) OVER
(ORDER BY sal ary, hire_date

ROAS BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOA'NG) AS |v
FROM (SELECT * FROM enpl oyees WHERE department _id = 90

ORDER BY hire_date);

LAST_NAME SALARY H RE_DATE LV

Kochhar 17000 21- SEP-89 17- JUN-87
De Haan 17000 13-JAN-93 17- JUN-87
Ki ng 24000 17-JUN-87 17- JUN-87

5-84 Oracle Database SQL Reference

LEAD

LEAD

SELECT | ast_nane, salary, hire_date, LAST VALUE(hire_date) OVER
(ORDER BY salary, hire_date
ROWS BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLON NG AS |v
FROM (SELECT * FROM enpl oyees WHERE departnent _id = 90
ORDER BY hire_date DESC);

LAST_NAME SALARY H RE_DATE LV
Kochhar 17000 21- SEP-89 17- JUN-87
De Haan 17000 13- JAN-93 17- JUN-87
Ki ng 24000 17- JUN-87 17- JUN-87
Syntax

—{ LA H(0)(valve_expr) S S O

query_partition_clause
A order_by_clause }(b

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions, including valid forms of val ue_
expr

PUI’pOSG

LEAD is an analytic function. It provides access to more than one row of a table at the
same time without a self join. Given a series of rows returned from a query and a
position of the cursor, LEAD provides access to a row at a given physical offset beyond
that position.

If you do not specify of f set , then its default is 1. The optional def aul t value is
returned if the offset goes beyond the scope of the table. If you do not specify
def aul t, then its default value is null.

You cannot use LEAD or any other analytic function for val ue_expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions for
val ue_expr.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and LAG on page 5-81

Examples

The following example provides, for each employee in the enpl oyees table, the hire
date of the employee hired just after:

SELECT | ast_nane, hire_date,
LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "NextH red"
FROM enpl oyees WHERE departnent _id = 30;

LAST_NAME H RE_DATE NextHired
Raphael y 07- DEC-94 18- MAY-95
Khoo 18- MAY- 95 24-JUL-97

Functions 5-85

LEAST

Tobi as 24-JUL- 97 24- DEC 97
Bai da 24- DEC-97 15- NOv-98
H nuro 15- NOV- 98 10- AUG 99
Col menar es 10- AUG 99
LEAST
Syntax
© " D
Purpose
LEAST returns the least of the list of expr s. All expr s after the first are implicitly
converted to the datatype of the first expr before the comparison. Oracle Database
compares the expr s using nonpadded comparison semantics. If the value returned by
this function is character data, then its datatype is always VARCHAR2.
See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion, "Floating-Point
Numbers" on page 2-11 for information on binary-float comparison
semantics, and "Datatype Comparison Rules" on page 2-37
Examples
The following statement selects the string with the least value:
SELECT LEAST(' HARRY',' HARRI OT" , ' HAROLD) "LEAST"
FROM DUAL;
LEAST
HARCLD
LENGTH
Syntax
length::=
LENGTH

Purpose

The LENGTH functions return the length of char . LENGTH calculates length using
characters as defined by the input character set. LENGTHB uses bytes instead of
characters. LENGTHC uses Unicode complete characters. LENGTH2 uses UCS2 code
points. LENGTH4 uses UCS4 code points.

5-86 Oracle Database SQL Reference

LN

LN

char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. The return value is of datatype NUVBER. If char has datatype CHAR, then the
length includes all trailing blanks. If char is null, then this function returns null.

Restriction on LENGTHB The LENGTHB function is supported for single-byte LOBs
only. It cannot be used with CLOB and NCLOB data in a multibyte character set.

Examples

The following example uses the LENGTH function using a single-byte database
character set:

SELECT LENGTH(' CANDIDE') "Length in characters"”
FROM DUAL;

Length in characters

The next example assumes a double-byte database character set.
SELECT LENGTHB (' CANDIDE') "Length in bytes"
FROM DUAL;

Length in bytes

Syntax
0,00

Purpose

LNreturns the natural logarithm of n, where n is greater than 0.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _

FLQOAT, then the function returns Bl NARY _DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural log of 95" FROM DUAL;
Natural log of 95

4.55387689

Functions 5-87

LNNVL

LNNVL

Syntax
—>| LNNVL F@{condition}»@»

Purpose

LNNVL provides a concise way to evaluate a condition when one or both operands of
the condition may be null. The function can be used only in the WHERE clause of a
query. It takes as an argument a condition and returns TRUE if the condition is FALSE
or UNKNOAN and FALSE if the condition is TRUE. LNNVL can be used anywhere a scalar
expression can appear, even in contexts where the | S[NOT] NULL, AND, or OR
conditions are not valid but would otherwise be required to account for potential
nulls. Oracle Database sometimes uses the LNNVL function internally in this way to
rewrite NOT | N conditions as NOT EXI STS conditions. In such cases, output from
EXPLAI N PLAN shows this operation in the plan table output. The condi t i on can
evaluate any scalar values but cannot be a compound condition containing AND, OR, or
BETVEEN.

The table that follows shows what LNNVL returns given that a =2 and b is null.

Condition Truth of Condition LNNVL Return Value
a=1 FALSE TRUE

a=2 TRUE FALSE

al SNULL FALSE TRUE

b=1 UNKNOWN TRUE

b1 SNULL TRUE FALSE

a=b UNKNOWN TRUE

Examples

Suppose that you want to know the number of employees with commission rates of
less than 20%, including employees who do not receive commissions. The following
guery returns only employees who actually receive a commission of less than 20%:

SELECT COUNT(*) FROM enpl oyees WHERE conmi ssion_pct < . 2;

To include the 72 employees who receive no commission at all, you could rewrite the
guery using the LNNVL function as follows:

SELECT COUNT(*) FROM enpl oyees WHERE LNNVL(conmi ssion_pct >= .2);

5-88 Oracle Database SQL Reference

LOCALTIMESTAMP

LOCALTIMESTAMP

Syntax

o timestamp_precision o

—)| LOCALTIMESTAMP

Purpose

LOCALTI MESTANP returns the current date and time in the session time zone in a
value of datatype TI MESTAMP. The difference between this function and CURRENT _
TI MESTAMP is that LOCALTI MESTANP returns a TI MESTAMP value while CURRENT _
Tl MESTAMP returns a TI MESTAMP W THTI MVE ZONE value.

The optional argumentti mest anp_pr eci si on specifies the fractional second
precision of the time value returned.

See Also: CURRENT_TIMESTAMP on page 5-48

Examples
This example illustrates the difference between LOCALTI MESTAMP and CURRENT _
TI MESTAMP:

ALTER SESSI ON SET TIME_ZONE = '-5:00';
SELECT CURRENT_TI MESTAMP, LOCALTI MESTAVP FROM DUAL,;

CURRENT_TI MESTAVP LOCALTI MESTAMP

04- APR-00 01.27.18.999220 PM -05:00 04-APR-00 01.27.19 PM

ALTER SESSI ON SET TIME_ZONE = '-8:00';
SELECT CURRENT_TI MESTAMP, LOCALTI MESTAVP FROM DUAL,;

CURRENT_TI MESTAWP LOCALTI MESTAWP

04- APR-00 10. 27.45.132474 AM -08: 00 04- APR-00 10. 27.451 AM
If you use the LOCALTI MESTAMP with a format mask, take care that the format mask
matches the value returned by the function. For example, consider the following table:
CREATE TABLE | ocal _test (coll1 TIMESTAVP WTH LOCAL TIME ZONE);
The following statement fails because the mask does not include the TI ME ZONE
portion of the return type of the function:
I NSERT | NTO | ocal _test VALUES

(TO_TI NESTAMP(LOCALTI MESTAMP, ' DD- MON-RR HH. M . SSXFF'));
The following statement uses the correct format mask to match the return type of
LOCALTI MESTAMP:

I NSERT | NTO | ocal _test VALUES
(TO_TI MESTAMP(LOCALTI MESTAMWP, ' DD- MON-RR HH. M . SSXFF PM));

Functions 5-89

LOG

LOG

LOWER

Syntax
ESL0:O.0:OL0

Purpose
LOGreturns the logarithm, base n2, of n1. The base n1 can be any positive value other
than 0 or 1 and n2 can be any positive value.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If any argument is Bl NARY _
FLOAT or Bl NARY_DQOUBLE, then the function returns Bl NARY_DOUBLE. Otherwise
the function returns NUVBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the log of 100:

SELECT LOX 10, 100) "Log base 10 of 100" FROM DUAL;

Log base 10 of 100

Syntax
0;CHL0

Purpose

LOAER returns char , with all letters lowercase. char can be any of the datatypes
CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The return value is the same
datatype as char . The database sets the case of the characters based on the binary
mapping defined for the underlying character set. For linguistic-sensitive lowercase,
please refer to NLS_LOWER on page 5-104.

Examples
The following example returns a string in lowercase:

SELECT LOMER(' MR. SCOTT MCM LLAN) "Lower case”
FROV DUAL;

Lower case

m. scott ncmllan

5-90 Oracle Database SQL Reference

LTRIM

LPAD

LTRIM

Syntax

.exprz
T OED OO QO

Purpose

LPAD returns expr 1, left-padded to length n characters with the sequence of
characters in expr 2. This function is useful for formatting the output of a query.

Both expr 1 and expr 2 can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHARZ datatype if expr 1
is a character datatype and a LOB if expr 1 is a LOB datatype. The string returned is in
the same character set as expr 1. The argument n must be a NUMBER integer or a value
that can be implicitly converted to a NUMBER integer.

If you do not specify expr 2, then the default is a single blank. If expr 1 is longer than
n, then this function returns the portion of expr 1 that fits in n.

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Examples
The following example left-pads a string with the asterisk (*) and period (.) characters:

SELECT LPADX(' Page 1',15,'*.") "LPAD exanpl e"
FROM DUAL;

LPAD exanpl e

..*'*.*Page 1

Syntax

mo@ L,

Purpose

LTRI Mremoves from the left end of char all of the characters contained in set . If you
do not specify set , it defaults to a single blank. If char is a character literal, then you
must enclose it in single quotes. Oracle Database begins scanning char from its first
character and removes all characters that appear in set until reaching a character not
in set and then returns the result.

Both char and set can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype if char is
a character datatype and a LOB if char is a LOB datatype.

See Also: RTRIM on page 5-152

Functions 5-91

MAKE_REF

MAKE_REF

Examples

The following example trims the redundant first word from a group of product names
in the oe. pr oduct s table:

SELECT product _name, LTRI M product_nane, 'Mnitor ') "Short Name"
FROM product s
WHERE product _name LIKE 'Mnitor%;

PRODUCT _NAME Short Nane
Monitor 17/HR 17/ HR
Mnitor 17/HR F 17/HR F
Monitor 17/ SD 17/ SD
Monitor 19/ SD 19/ SD
Monitor 19/SDI'M 19/ SDI'M
Monitor 21/D 21/D
Monitor 21/ HR 21/ HR
Monitor 21/HR' M 21/ HR'M
Monitor 21/ SD 21/ SD

Monitor Hinge - HD Hinge - HD
Monitor Hinge - STD Hinge - STD

Syntax

Purpose

MAKE REF creates a REF to a row of an object view or a row in an object table whose
object identifier is primary key based. This function is useful, for example, if you are
creating an object view

See Also: Oracle Database Application Developer's Guide -
Object-Relational Features for more information about object views and
DEREF on page 5-56

Examples

The sample schema oe contains an object view oc_i nvent or i es based on

i nvent ory_t yp. The object identifier is pr oduct _i d. The following example creates
a REF to the row in the oc_i nvent or i es object view with a pr oduct _i d of 3003:

SELECT MAKE_REF (oc_inventories, 3003) FROM DUAL;

MAKE_REF(OC_| NVENTOR! ES, 3003)

00004A038A0046857C14617141109EE03408002082543600000014260100010001
00290090606002A00078401FE0000000B03C21F040000000000000000000000000
0000000000

5-92 Oracle Database SQL Reference

MAX

MAX

Syntax
f—)| OVER F@{analytic_clausem

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

MAX returns maximum value of expr . You can use it as an aggregate or analytic
function.

If you specify DI STI NCT, then you can specify only the query_partition_cl ause
of theanal yti c_cl ause. Theorder by cl ause andw ndow ng_cl ause are not
allowed.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr , "Floating-Point Numbers" on page 2-11 for
information on binary-float comparison semantics, and "Aggregate
Functions" on page 5-8

Aggregate Example
The following example determines the highest salary in the hr . enpl oyees table:

SELECT MAX(sal ary) "Maxinuni FROM enpl oyees;

Analytic Example

The following example calculates, for each employee, the highest salary of the
employees reporting to the same manager as the employee.

SELECT manager _id, |ast_nane, salary,
MAX(sal ary) OVER (PARTITI ON BY manager _i d) AS nygr_max
FROM enpl oyees;

MANAGER | D LAST NAME SALARY MR _MAX
100 Kochhar 17000 17000
100 De Haan 17000 17000
100 Raphael y 11000 17000
100 Kaufling 7900 17000
100 Fripp 8200 17000
100 Vi ss 8000 17000

If you enclose this query in the parent query with a predicate, then you can determine
the employee who makes the highest salary in each department;

SELECT manager _id, |ast_name, salary
FROM (SELECT manager _id, |ast_nanme, salary,
MAX(sal ary) OVER (PARTI TI ON BY manager _i d) AS rmax_sal

Functions 5-93

MEDIAN

FROM enpl oyees) WHERE sal ary = rmax_sal ;

MANAGER | D LAST_NAME SALARY
100 Kochhar 17000

100 De Haan 17000

101 G eenberg 12000

101 H ggens 12000

102 Hunol d 9000

103 Ernst 6000

108 Favi et 9000

114 Khoo 3100

120 Nayer 3200

120 Tayl or 3200

121 Sarchand 4200

122 Chung 3800

123 Bel | 4000

124 Rajs 3500

145 Tucker 10000

146 King 10000

147 Vi shney 10500

148 Qzer 11500

149 Abel 11000

201 Coyal 6000

205 Getz 8300

Ki ng 24000

MEDIAN
Syntax

f—)| OVER @{query partition_ clausem
MEDIAN

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

MEDI AN is an inverse distribution function that assumes a continuous distribution
model. It takes a numeric or datetime value and returns the middle value or an
interpolated value that would be the middle value once the values are sorted. Nulls
are ignored in the calculation.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If you specify only expr, then
the function returns the same datatype as the numeric datatype of the argument. if you
specify the OVER clause, then Oracle Database determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that
datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

The result of MEDI AN is computed by first ordering the rows. Using N as the number of
rows in the group, Oracle calculates the row number (RN) of interest with the formula

5-94 Oracle Database SQL Reference

MEDIAN

RN= (1 + (0.5*(N-1)). The final result of the aggregate function is computed by linear
interpolation between the values from rows at row numbers CRN= CEIl LI NG(RN) and
FRN = FLOOR(RN).

The final result will be:

if (CRN=FRN=RN) then
(val ue of expression fromrow at RN)

el se
(CRN - RN) * (value of expression for rowat FRN) +
(RN - FRN) * (value of expression for row at CRN)

You can use MEDI AN as an analytic function. You can specify only the query__
partition_cl ause inits OVERclause. It returns, for each row, the value that would
fall in the middle among a set of values within each partition.

Compare this function with these functions:

« PERCENTILE_CONT on page 5-114, which returns, for a given percentile, the
value that corresponds to that percentile by way of interpolation. MEDI AN s the
specific case of PERCENTI LE_CONT where the percentile value defaults to 0.5.

« PERCENTILE_DISC on page 5-116, which is useful for finding values for a given
percentile without interpolation.

Aggregate Example
The following query returns the median salary for each department in the
hr . enpl oyees table:

SELECT departnent _id, MEDI AN(sal ary)
FROM enpl oyees
CGROUP BY department _id;

DEPARTMENT | D MEDI AN(SALARY)

10 4400

20 9500

30 2850

40 6500

50 3100

60 4800

70 10000

80 8900

90 17000

100 8000
110 10150
7000

Analytic Example

The following query returns the median salary for each manager in a subset of
departments in the hr . enpl oyees table;

SELECT manager _id, enployee_id, salary,
MEDI AN(sal ary) OVER (PARTI TI ON BY manager _id) "Median by Myr"
FROM enpl oyees
WHERE departnent _id > 60;

MANAGER | D EMPLOYEE ID SALARY Median by Myr

100 149 10500 13500
100 148 11000 13500

Functions 5-95

MIN

100 147 12000 13500
100 146 13500 13500
100 145 14000 13500
100 101 17000 13500
100 102 17000 13500
101 204 10000 12000
101 108 12000 12000
101 205 12000 12000
108 113 6900 7800
108 111 7700 7800
108 112 7800 7800
108 110 8200 7800
108 109 9000 7800
145 155 7000 8500
145 154 7500 8500
MIN
Syntax

| DISTINCT I
ALL

f—)| OVER P@{analytic_clausem
(‘expr ())

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

MIN |5((

Purpose

M Nreturns minimum value of expr . You can use it as an aggregate or analytic
function.

If you specify DI STI NCT, then you can specify only the query_partiti on_cl ause
of theanal yti c_cl ause. Theorder _by_cl ause and wi ndowi ng_cl ause are not
allowed.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr , "Floating-Point Numbers" on page 2-11 for
information on binary-float comparison semantics, and "Aggregate
Functions" on page 5-8

Aggregate Example
The following statement returns the earliest hire date in the hr . enpl oyees table:

SELECT M N(hire_date) "Earliest" FROM enpl oyees;

Earli est

17- JUN- 87

Analytic Example

The following example determines, for each employee, the employees who were hired
on or before the same date as the employee. It then determines the subset of
employees reporting to the same manager as the employee, and returns the lowest
salary in that subset.

5-96 Oracle Database SQL Reference

MOD

SELECT manager _id, last_name, hire_date, salary,
M N(sal ary) OVER(PARTI TI ON BY manager _i d ORDER BY hire_date
RANGE UNBOUNDED PRECEDI NG AS p_cnin

FROM enpl oyees;
MANAGER | D LAST NANE HI RE_DATE SALARY P CMN
100 Kochhar 21- SEP- 89 17000 17000
100 De Haan 13- JAN-93 17000 17000
100 Raphael y 07- DEC- 94 11000 11000
100 Kaufling 01- MAY- 95 7900 7900
100 Hartstein 17- FEB- 96 13000 7900
100 Wi ss 18- JUL- 96 8000 7900
100 Russel | 01- OCT- 96 14000 7900
100 Partners 05- JAN- 97 13500 7900
100 Errazuriz 10- MAR- 97 12000 7900
MOD
Syntax
OO0
Purpose

MOD returns the remainder of n2 divided by nl1. Returns n2 if nl1 is 0.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Examples
The following example returns the remainder of 11 divided by 4:

SELECT MODX(11,4) "Mbpdul us" FROV DUAL;

This function behaves differently from the classical mathematical modulus function
when mis negative. The classical modulus can be expressed using the MOD function
with this formula:

m- n * FLOOR(n n)

The following table illustrates the difference between the MOD function and the
classical modulus:

m n MOD(m,n) Classical Modulus

11 4 3 3

Functions 5-97

MONTHS_BETWEEN

m n MOD(m,n) Classical Modulus
11 -4 3 -1

-11 4 -3 1

-11 -4 -3 -3

See Also: FLOOR on page 5-71 and REMAINDER on page 5-146,
which is similar to MOD, but uses ROUND in its formula instead of
FLOOR

MONTHS_BETWEEN

Syntax
—>| MONTHS_BETWEEN 0 o .)
Purpose

MONTHS BETWEEN returns number of months between dates dat el and dat e2. If
dat el is later than dat e2, then the result is positive. If dat el is earlier than dat e2,
then the result is negative. If dat el and dat e2 are either the same days of the month
or both last days of months, then the result is always an integer. Otherwise Oracle
Database calculates the fractional portion of the result based on a 31-day month and
considers the difference in time components dat el and dat e2.

Examples
The following example calculates the months between two dates:
SELECT MONTHS_BETWEEN
(TO DATE(' 02- 02-1995' , ' MV DD- YYYY'),
TO DATE(' 01-01-1995',' MM DD YYYY')) "Months"
FROM DUAL;

1. 03225806

NANVL

Syntax
00000

Purpose

The NANVL function is useful only for floating-point numbers of type Bl NARY _FLOAT
or Bl NARY_DOUBLE. It instructs Oracle Database to return an alternative value n1 if
the input value n2 is NaN (not a number). If n2 is not NaN, then Oracle returns n2. This
function is useful for mapping NaN values to NULL.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

5-98 Oracle Database SQL Reference

NCHR

NCHR

See Also: Table 2-10, " Implicit Type Conversion Matrix" on

page 2-40 for more information on implicit conversion, "Floating-Point
Numbers" on page 2-11 for information on binary-float comparison
semantics, and "Numeric Precedence" on page 2-13 for information on
numeric precedence

Examples
Using table f | oat _poi nt _deno created for TO_BINARY_DOUBLE on page 5-187,
insert a second entry into the table:

Insert INTO float_point_demo
VALUES (0,' NaN, ' NaN);

SELECT * FROM fl oat _poi nt _deno;

DEC_NUM BI N_DOUBLE BI N_FLOAT

1234.56 1.235E+003 1.235E+003
0 Nan Nan
The following example returns bi n_f | oat if it is a number. Otherwise, 0 is returned.
SELECT bin_float, NANVL(bin_float,0)
FROM f | oat _poi nt _deno;

BI N_FLOAT NANVL(BI N_FLOAT, 0)

1. 235E+003 1. 235E+003
Nan 0

Syntax

—>| NCHR P@{number}»@»

Purpose

NCHR returns the character having the binary equivalent to nunber in the national
character set. This function is equivalent to using the CHR function with the USI NG
NCHAR_CS clause.

This function takes as an argument a NUVBER value, or any value that can be implicitly
converted to NUMBER, and returns a character.

See Also: CHR on page 5-28

Examples
The following examples return the nchar character 187:

SELECT NCHR(187) FROM DUAL;
NC
>

SELECT CHR(187 USI NG NCHAR CS) FROM DUAL;

Functions 5-99

NEW_TIME

NEW_TIME

Syntax
0 @ o timezonel}@-{timezoneZ}a@—)

Purpose

NEW TI ME returns the date and time in time zone t i rezone2 when date and time in
time zone t i nezonel are dat e. Before using this function, you must set the NLS
DATE_FORMAT parameter to display 24-hour time. The return type is always DATE,
regardless of the datatype of dat e.

Note: This function takes as input only a limited number of time
zones. You can have access to a much greater number of time zones by
combining the FROM_TZ function and the datetime expression. See
FROM_TZ on page 5-71 and the example for "Datetime Expressions"
on page 6-7.

The arguments ti mezonel andt i nezone2 can be any of these text strings:
« AST, ADT: Atlantic Standard or Daylight Time

« BST, BDT: Bering Standard or Daylight Time

« CST, CDT: Central Standard or Daylight Time

« EST, EDT: Eastern Standard or Daylight Time

« GMT: Greenwich Mean Time

« HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.
« MST, MDT: Mountain Standard or Daylight Time

« NST: Newfoundland Standard Time

« PST, PDT: Pacific Standard or Daylight Time

« YST, YDT: Yukon Standard or Daylight Time

Examples
The following example returns an Atlantic Standard time, given the Pacific Standard
time equivalent;

ALTER SESSI ON SET NLS_DATE_FORMAT =
' DD- MON- YYYY HH24: M : SS';

SELECT NEW TI ME(TO_DATE(
'11-10-99 01:23:45', 'MW DD-YY HH24:M:SS),
"AST', 'PST') "New Date and Tine" FROM DUAL;

New Date and Time

09- NOv-1999 21: 23: 45

5-100 Oracle Database SQL Reference

NLS_CHARSET_DECL_LEN

NEXT_DAY

Syntax
| NEXT_DAY [Ob(ate o p(char ()

Purpose

NEXT_DAY returns the date of the first weekday named by char that is later than the
date dat e. The return type is always DATE, regardless of the datatype of dat e. The
argument char must be a day of the week in the date language of your session, either
the full name or the abbreviation. The minimum number of letters required is the
number of letters in the abbreviated version. Any characters immediately following
the valid abbreviation are ignored. The return value has the same hours, minutes, and
seconds component as the argument dat e.

Examples
This example returns the date of the next Tuesday after February 2, 2001:

SELECT NEXT_DAY(' 02- FEB-2001' , ' TUESDAY') "NEXT DAY"
FROM DUAL,;

06- FEB- 2001

NLS_CHARSET DECL_LEN

Syntax
—>| NLS_CHARSET_DECL_LEN |->@{byte_coum ’ ‘ ‘ o
Purpose

NLS CHARSET DECL_LENreturns the declaration length (in number of characters) of
an NCHAR column. The byt e_count argument is the width of the column. The char _
set i d argument is the character set ID of the column.

Examples
The following example returns the number of characters that are in a 200-byte column
when you are using a multibyte character set:

SELECT NLS CHARSET DECL_LEN
(200, nls_charset _id('jal6eucfixed))
FROM DUAL;

NLS_CHARSET_DECL_LEN(200, NLS_CHARSET_| I ' JAL6EUCFI XED))

Functions 5-101

NLS_CHARSET_ID

NLS_CHARSET ID

Syntax
OGEH)

Purpose

NLS CHARSET | Dreturns the character set ID number corresponding to character set
name st ri ng. The st ri ng argument is a run-time VARCHARZ2 value. The st ri ng
value 'CHAR_CS' returns the database character set ID number of the server. The

st ri ng value 'NCHAR_CS' returns the national character set ID number of the server.

Invalid character set names return null.

Examples
The following example returns the character set ID of a character set:

SELECT NLS_CHARSET | [I(' j al6euc')
FROM DUAL;

NLS_CHARSET | D(' JAL6EUC)

See Also: Oracle Database Globalization Support Guide for a list of
character set names

NLS_CHARSET NAME

Syntax
—{ NLS_CHARSET_NAME F@{number}s@»

Purpose

NLS CHARSET NAME returns the name of the character set corresponding to ID
number nunber . The character set name is returned as a VARCHAR2 value in the
database character set.

If nunber is not recognized as a valid character set ID, then this function returns null.

Examples

The following example returns the character set corresponding to character set ID
number 2:

SELECT NLS_CHARSET_NAME(2)
FROM DUAL;

See Also: Oracle Database Globalization Support Guide for a list of
character set IDs

5-102 Oracle Database SQL Reference

NLS_INITCAP

NLS_INITCAP
Syntax
SO o
Purpose

NLS | NI TCAP returns char , with the first letter of each word in uppercase, all other
letters in lowercase. Words are delimited by white space or characters that are not
alphanumeric.

Both char and' nl spar am can be any of the datatypes CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. The string returned is of VARCHAR2 datatype and is in the same character
setaschar.

The value of ' nl spar am can have this form;
"NLS_SORT = sort'

where sort is either a linguistic sort sequence or Bl NARY. The linguistic sort sequence
handles special linguistic requirements for case conversions. These requirements can
result in a return value of a different length than the char . If you omit' nl spar ani ,
then this function uses the default sort sequence for your session.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples
The following examples show how the linguistic sort sequence results in a different
return value from the function:

SELECT NLS_I NI TCAP
("ijsland') "InitCap" FROM DUAL;

I nitCap

I'jsland
SELECT NLS_I NI TCAP

("ijsland", 'NLS_SORT = XDutch') "InitCap"
FROM DUAL;

| Jsl and

See Also: Oracle Database Globalization Support Guide for information
on sort sequences

Functions 5-103

NLS_LOWER

NLS_LOWER

NLSSORT

Syntax

-nlsparam
O@ YO Savol

Purpose
NLS LOWERreturns char, with all letters lowercase.

Both char and' nl spar anmi can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHARZ datatype if char is
a character datatype and a LOB if char is a LOB datatype. The return string is in the
same character set as char .

The' nl spar am can have the same form and serve the same purpose as in the NLS
I NI TCAP function.

Examples

The following statement returns the character string 'ci t t a' ' using the XGerman
linguistic sort sequence:

SELECT NLS_LOVER

("CTTA "', "NLS_SORT = XGernman') "Lowercase"
FROV DUAL;
Lower c
citta
Syntax
OO0 ®
o}
Purpose

NLSSORT returns the string of bytes used to sort char .

Both char and ' nl spar am can be any of the datatypes CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. The string returned is of RAWdatatype.

The value of ' nl spar am can have the form

"NLS_SORT = sort'

where sort is a linguistic sort sequence or Bl NARY. If you omit' nl sparam , then
this function uses the default sort sequence for your session. If you specify Bl NARY,
then this function returns char .

If you specify ' nl spar am , then you can append to the linguistic sort name the suffix
_ai torequest an accent-insensitive sort or _ci to request a case-insensitive sort.
Please refer to Oracle Database Globalization Support Guide for more information on
accent- and case-insensitive sorting.

5-104 Oracle Database SQL Reference

NLSSORT

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples

This function can be used to specify sorting and comparison operations based on a
linguistic sort sequence rather than on the binary value of a string. The following
example creates a test table containing two values and shows how the values returned
can be ordered by the NLSSORT function:

CREATE TABLE test (nane VARCHAR2(15));
I NSERT | NTO test VALUES (' Gaardiner');
I NSERT | NTO test VALUES (' Gaberd');

I NSERT | NTO test VALUES (' Gaasten');

SELECT * FROM test ORDER BY nane;

Gaar di ner
Gaast en
Gaberd

SELECT * FROM test ORDER BY NLSSORT(nane, 'NLS_SORT = XDanish');

Gaberd
Gaar di ner
Gaast en

The following example shows how to use the NLSSCORT function in comparison
operations:

SELECT * FROM test WHERE name > ' Gaberd';
no rows sel ected

SELECT * FROM test WHERE NLSSCRT(nane, ' NLS_SORT = XDanish') >
NLSSORT(' Gaberd', ' NLS_SORT = XDani sh');

Gaar di ner
Gaast en

If you frequently use NLSSORT in comparison operations with the same linguistic sort
sequence, then consider this more efficient alternative: Set the NLS_COVP parameter
(either for the database or for the current session) to LI NGUI STI C, and set the NLS _
SORT parameter for the session to the desired sort sequence. Oracle Database will use
that sort sequence by default for all sorting and comparison operations during the
current session:

ALTER SESSI ON SET NLS_COWP
ALTER SESSI ON SET NLS_SORT

"LINGU STIC ;
' XDani sh' ;

SELECT * FROM test WHERE nanme > ' Gaberd';

Functions 5-105

NLS_UPPER

NLS_UPPER

NTILE

NAMVE

Gaar di ner

CGaasten
See Also: Oracle Database Globalization Support Guide for information
on sort sequences

Syntax

-nlsparam
O@ YO Savot

Purpose
NLS UPPER returns char, with all letters uppercase.

Both char and ' nl spar ami can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype if char is
a character datatype and a LOB if char is a LOB datatype. The return string is in the
same character set as char .

The' nl spar am can have the same form and serve the same purpose as in the NLS
I NI TCAP function.

Examples
The following example returns a string with all the letters converted to uppercase:

SELECT NLS_UPPER (' groRe') "Uppercase"
FROM DUAL;

SELECT NLS_UPPER (' groBe', 'NLS SORT = XGerman') "Uppercase"
FROM DUAL;

See Also: NLS_INITCAP on page 5-103

Syntax

query_partition_clause
NTILE o o OVER (X order_by_clause }{ b

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions, including valid forms of expr

5-106 Oracle Database SQL Reference

NULLIF

Purpose

NTI LE is an analytic function. It divides an ordered data set into a number of buckets
indicated by expr and assigns the appropriate bucket number to each row. The
buckets are numbered 1 through expr . The expr value must resolve to a positive
constant for each partition. Oracle Database expects an integer, and if expr isa
noninteger constant, then Oracle truncates the value to an integer. The return value is
NUVMVBER.

The number of rows in the buckets can differ by at most 1. The remainder values (the
remainder of number of rows divided by buckets) are distributed one for each bucket,
starting with bucket 1.

If expr is greater than the number of rows, then a number of buckets equal to the
number of rows will be filled, and the remaining buckets will be empty.

You cannot use NTI LE or any other analytic function for expr . That is, you cannot
nest analytic functions, but you can use other built-in function expressions for expr .

See Also: "About SQL Expressions” on page 6-1 for information on
valid forms of expr and Table 2-10, " Implicit Type Conversion
Matrix" on page 2-40 for more information on implicit conversion

Examples

The following example divides into 4 buckets the values in the sal ary column of the
oe. enpl oyees table from Department 100. The sal ar y column has 6 values in this
department, so the two extra values (the remainder of 6 / 4) are allocated to buckets 1
and 2, which therefore have one more value than buckets 3 or 4.

SELECT | ast _nane, sal ary, NTILE(4) OVER (ORDER BY sal ary DESC)
AS quartile FROM enpl oyees
WHERE departnment _id = 100;

LAST_NAME SALARY QUARTI LE
G eenber g 12000 1
Favi et 9000 1
Chen 8200 2
Ur man 7800 2
Sciarra 7700 3
Popp 6900 4
NULLIF
Syntax
OICDIOCDI0

Purpose

NULLI F compares expr 1 and expr 2. If they are equal, then the function returns null.
If they are not equal, then the function returns expr 1. You cannot specify the literal
NULL for expr 1.

If both arguments are numeric datatypes, then Oracle Database determines the
argument with the higher numeric precedence, implicitly converts the other argument
to that datatype, and returns that datatype. If the arguments are not numeric, then
they must be of the same datatype, or Oracle returns an error.

Functions 5-107

NUMTODSINTERVAL

The NULLI F function is logically equivalent to the following CASE expression:
CASE WHEN exprl = expr 2 THEN NULL ELSE exprl END

See Also: "CASE Expressions" on page 6-4

Examples

The following example selects those employees from the sample schema hr who have
changed jobs since they were hired, as indicated by aj ob_i d inthej ob_hi story
table different from the currentj ob_i d in the enpl oyees table:

SELECT e.last_nanme, NULLIF(e.job_id, j.job_id) "dd Job ID'
FROM enpl oyees e, job_history j
WHERE e. enpl oyee_id = j.enployee_id
ORDER BY | ast _nane;

LAST_NAME Qd Job ID
De Haan AD_VP
Hartstein M MAN
Kaufling ST_MAN
Kochhar AD VP
Kochhar AD_VP
Raphael y PU_MAN
Tayl or SA _REP
Tayl or
Whal en AD ASST
Vihal en

NUMTODSINTERVAL
Syntax
—{ NUMTODSINTERVAL b (Os(n)s(, (") (r0)
Purpose

NUMTODSI NTERVAL converts n to an | NTERVAL DAY TO SECOND literal. The argument
n can be any NUMBER value or an expression that can be implicitly converted to a
NUMBER value. The argumenti nt er val _uni t can be of CHAR, VARCHAR2, NCHAR, or
NVARCHARZ2 datatype. The value for i nt er val _uni t specifies the unit of n and must
resolve to one of the following string values:

« ‘DAY’

« 'HOUR

« ‘M NUTE
= 'SECOND

i nterval _unit iscase insensitive. Leading and trailing values within the
parentheses are ignored. By default, the precision of the return is 9.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

5-108 Oracle Database SQL Reference

NUMTOYMINTERVAL

Examples

The following example uses NUMIODSI NTERVAL in a COUNT analytic function to
calculate, for each employee, the number of employees hired by the same manager
within the past 100 days from his or her hire date. Please refer to "Analytic Functions"
on page 5-9 for more information on the syntax of the analytic functions.

SELECT manager _id, last_name, hire_date,
COUNT(*) OVER (PARTITION BY manager _id ORDER BY hire_date
RANGE NUMTODSI NTERVAL(100, 'day') PRECEDI NG AS t_count
FROM enpl oyees;

MANAGER | D LAST NAME H RE DATE T _COUNT
100 Kochhar 21- SEP- 89 1
100 De Haan 13- JAN-93 1
100 Raphael y 07- DEC- 94 1
100 Kaufling 01- MAY- 95 1
100 Hartstein 17- FEB- 96 1
149 G ant 24- MAY- 99 1
149 Johnson 04- JAN- 00 1
201 CGoyal 17- AUG 97 1
205 Getz 07- JUN- 94 1

Ki ng 17- JUN- 87 1

NUMTOYMINTERVAL

Syntax
—>| NUMTOYMINTERVAL o Q ‘ ‘ ‘ o
Purpose

NUMTOYM NTERVAL converts number n to an | NTERVAL YEAR TOMONTH literal. The
argument n can be any NUMBER value or an expression that can be implicitly converted
to a NUMBER value. The argument i nt er val _uni t can be of CHAR, VARCHARZ,
NCHAR, or NVARCHAR?2 datatype. The value for i nt er val _uni t specifies the unit of n
and must resolve to one of the following string values:

« 'YEAR
« 'MONTH

i nterval _unit iscase insensitive. Leading and trailing values within the
parentheses are ignored. By default, the precision of the return is 9.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples

The following example uses NUMTOYM NTERVAL in a SUManalytic function to
calculate, for each employee, the total salary of employees hired in the past one year
from his or her hire date. Please refer to "Analytic Functions” on page 5-9 for more
information on the syntax of the analytic functions.

SELECT | ast _nane, hire_date, salary, SUMsalary)
OVER (ORDER BY hire_date
RANGE NUMTOYM NTERVAL(1,'year') PRECEDING AS t_sal

Functions 5-109

NVL

NVL

FROM enpl oyees;

LAST_NAVE H RE_DATE SALARY T_SAL
Ki ng 17- JUN- 87 24000 24000
Whal en 17- SEP-87 4400 28400
Kochhar 21- SEP- 89 17000 17000
Mar kI e 08- MAR- 00 2200 112400
Ande 24- VAR 00 6400 106500
Banda 21- APR- 00 6200 109400
Kumar 21- APR- 00 6100 109400
Syntax
O CDIO;CDIO
Purpose

NVL lets you replace null (returned as a blank) with a string in the results of a query. If
expr 1 is null, then NVL returns expr 2. If expr 1 is not null, then NVL returns expr 1.

The arguments expr 1 and expr 2 can have any datatype. If their datatypes are
different, then Oracle Database implicitly converts one to the other. If they are cannot
be converted implicitly, the database returns an error. The implicit conversion is
implemented as follows:

« Ifexpr 1 ischaracter data, then Oracle Database converts expr 2 to the datatype of
expr 1 before comparing them and returns VARCHARZ in the character set of
expr 1.

« Ifexpr1is numeric, then Oracle determines which argument has the highest
numeric precedence, implicitly converts the other argument to that datatype, and
returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Examples

The following example returns a list of employee names and commissions,
substituting "Not Applicable" if the employee receives no commission:

SELECT | ast _nane, NVL(TO_CHAR(comri ssion_pct), 'Not Applicable')
"COW SSI ON' FROM enpl oyees
WHERE | ast _name LI KE ' B%
ORDER BY | ast _nane;

LAST_NAME COW SSI ON
Baer Not Applicabl e
Bai da Not Applicabl e
Banda .1

Bat es .15

Bel | Not Applicable
Bernstein .25

5-110 Oracle Database SQL Reference

NVL2

NVL2

Bi ssot Not Applicabl e
Bl oom .2
Bul | Not Applicable
Syntax

Ol CDIOCDI0:CDI0
Purpose

NVL2 lets you determine the value returned by a query based on whether a specified
expression is null or not null. If expr 1 is not null, then NVL2 returns expr 2. If expr 1
is null, then NVL2 returns expr 3.

The argument expr 1 can have any datatype. The arguments expr 2 and expr 3 can
have any datatypes except LONG

If the datatypes of expr 2 and expr 3 are different:

« Ifexpr 2 ischaracter data, then Oracle Database converts expr 3 to the datatype of
expr 2 before comparing them unless expr 3 is a null constant. In that case, a
datatype conversion is not necessary. Oracle returns VARCHAR?2 in the character set
of expr 2.

« If expr 2 is numeric, then Oracle determines which argument has the highest
numeric precedence, implicitly converts the other argument to that datatype, and
returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Examples

The following example shows whether the income of some employees is made up of
salary plus commission, or just salary, depending on whether the commi ssi on_pct
column of enpl oyees is null or not.

SELECT | ast _nane, salary, NVL2(comi ssion_pct,
salary + (salary * conmission_pct), salary) income
FROM enpl oyees WHERE | ast _nane |ike ' B%
ORDER BY | ast _nane;

LAST NAME SALARY | NCOVE
Baer 10000 10000
Bai da 2900 2900
Banda 6200 6882
Bat es 7300 8468
Bel | 4000 4000
Bernstein 9500 11970
Bi ssot 3300 3300
Bl oom 10000 12100
Bul | 4100 4100

Functions 5-111

ORA_HASH

ORA_HASH

PATH

Syntax

O i)

olc L0

Purpose

ORA_HASH is a function that computes a hash value for a given expression. This
function is useful for operations such as analyzing a subset of data and generating a
random sample.

« The expr argument determines the data for which you want Oracle Database to
compute a hash value. There are no restrictions on the type or length of data
represented by expr, which commonly resolves to a column name.

« The optional max_bucket argument determines the maximum bucket value
returned by the hash function. You can specify any value between 0 and
4294967295. The default is 4294967295.

« Theoptional seed_val ue argument enables Oracle to produce many different
results for the same set of data. Oracle applies the hash function to the
combination of expr and seed_val ue. You can specify any value between 0 and
4294967295. The default is 0.

The function returns a NUVBER value.

Examples

The following example creates a hash value for each combination of customer ID and
product ID in the sh. sal es table, divides the hash values into a maximum of 100
buckets, and returns the sum of the anount _sol d values in the first bucket (bucket 0).
The third argument (5) provides a seed value for the hash function. You can obtain
different hash results for the same query by changing the seed value.

SELECT SUM anount _sol d) FROM sal es
WHERE ORA HASH(CONCAT(cust _id, prod_id), 99, 5) = 0;

SUM AMDUNT_SOLD)

7315
Syntax
—>| PATH F@{correlation_integer)»@»
Purpose

PATH s an ancillary function used only with the UNDER_PATHand EQUALS PATH
conditions. It returns the relative path that leads to the resource specified in the parent
condition.

5-112 Oracle Database SQL Reference

PERCENT_RANK

Thecorrel ati on_i nt eger can be any NUVMBER integer and is used to correlate this
ancillary function with its primary condition. Values less than 1 are treated as 1.

See Also: EQUALS_PATH Condition on page 7-19 and UNDER_
PATH Condition on page 7-20

Example

Please refer to the related function DEPTH on page 5-55 for an example using both of
these ancillary functions of the EQUALS PATHand UNDER_PATH conditions.

PERCENT_RANK

Aggregate Syntax

percent_rank_aggregate::=

O
ol ol)

Analytic Syntax

percent_rank_analytic::=
query_partition_clause
PERCENT_RANK o 0 OVER b(((order_by_clause)()>

See Also: "Analytic Functions” on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

PERCENT _RANK is similar to the CUME_DI ST (cumulative distribution) function. The
range of values returned by PERCENT _RANK is 0 to 1, inclusive. The first row in any set
has a PERCENT _RANK of 0. The return value is NUVBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

« Asan aggregate function, PERCENT _RANK calculates, for a hypothetical row r
identified by the arguments of the function and a corresponding sort specification,
the rank of row r minus 1 divided by the number of rows in the aggregate group.
This calculation is made as if the hypothetical row r were inserted into the group
of rows over which Oracle Database is to aggregate. The arguments of the function
identify a single hypothetical row within each aggregate group. Therefore, they
must all evaluate to constant expressions within each aggregate group. The
constant argument expressions and the expressions in the ORDER BY clause of the

Functions 5-113

PERCENTILE_CONT

aggregate match by position. Therefore the number of arguments must be the
same and their types must be compatible.

« Asan analytic function, for a row r , PERCENT _RANK calculates the rank of r
minus 1, divided by 1 less than the number of rows being evaluated (the entire
query result set or a partition).

Aggregate Example

The following example calculates the percent rank of a hypothetical employee in the
sample table hr . enpl oyees with a salary of $15,500 and a commission of 5%:

SELECT PERCENT_RANK(15000, .05) W TH N GROUP
(ORDER BY sal ary, commission_pct) "Percent-Rank"
FROM enpl oyees;

Per cent - Rank

. 971962617

Analytic Example

The following example calculates, for each employee, the percent rank of the
employee's salary within the department:

SELECT department _id, last_nane, salary,
PERCENT_RANK()
OVER (PARTI TI ON BY departnent _i d ORDER BY sal ary DESC) AS pr
FROM enpl oyees
ORDER BY pr, salary;

DEPARTMENT _| D LAST_NAME SALARY PR
10 Whal en 4400 0
40 Marvis 6500 0
80 Vi shney 10500 . 176470588
50 Everett 3900 . 181818182
30 Khoo 3100 .2
80 Johnson 6200 . 941176471
50 Markle 2200 . 954545455
50 Philtanker 2200 . 954545455
50 A son 2100 1

PERCENTILE_CONT
Syntax

5-114 Oracle Database SQL Reference

PERCENTILE_CONT

See Also: "Analytic Functions” on page 5-9 for information on
syntax, semantics, and restrictions of the OVER clause

Purpose

PERCENTI LE_CONT is an inverse distribution function that assumes a continuous
distribution model. It takes a percentile value and a sort specification, and returns an
interpolated value that would fall into that percentile value with respect to the sort
specification. Nulls are ignored in the calculation.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

The first expr must evaluate to a numeric value between 0 and 1, because it is a
percentile value. This expr must be constant within each aggregation group. The
ORDER BY clause takes a single expression that must be a numeric or datetime value,
as these are the types over which Oracle can perform interpolation.

The result of PERCENTI LE_CONT is computed by linear interpolation between values
after ordering them. Using the percentile value (P) and the number of rows (N) in the
aggregation group, we compute the row number we are interested in after ordering
the rows with respect to the sort specification. This row number (RN) is computed
according to the formulaRN = (1+ (P*(N-1)). The final result of the aggregate
function is computed by linear interpolation between the values from rows at row
numbers CRN = CEl LI NG(RN) and FRN = FLOCR(RN) .

The final result will be:

If (CRN=FRN=RN then the result is
(val ue of expression fromrow at RN)

O herwise the result is
(CRN - RN) * (value of expression for row at FRN) +
(RN - FRN) * (value of expression for row at CRN)

You can use the PERCENTI LE_CONT function as an analytic function. You can specify
only the query_partitioni ng_cl ause in its OVERclause. It returns, for each row,
the value that would fall into the specified percentile among a set of values within
each partition.

The MEDI AN function is a specific case of PERCENTI LE_CONT where the percentile
value defaults to 0.5. For more information, please refer to MEDIAN on page 5-94.

Aggregate Example
The following example computes the median salary in each department:

SELECT departnent _id,
PERCENTI LE_CONT(0.5) W TH N GROUP (ORDER BY sal ary DESC)
"Medi an cont",
PERCENTI LE_DI SC(0.5) W TH N GROUP (ORDER BY sal ary DESC)
"Medi an disc”
FROM enpl oyees GROUP BY departnent _id;

DEPARTMENT I D Medi an-cont Medi an-di sc

10 4400 4400
20 9500 13000

Functions 5-115

PERCENTILE_DISC

30 2850 2900
40 6500 6500
50 3100 3100
60 4800 4800
70 10000 10000
80 8800 8800
90 17000 17000
100 8000 8200
110 10150 12000

PERCENTI LE_CONT and PERCENTI LE_DI SC may return different results.

PERCENTI LE_CONT returns a computed result after doing linear interpolation.
PERCENTI LE_DI SCsimply returns a value from the set of values that are aggregated
over. When the percentile value is 0.5, as in this example, PERCENTI LE_CONT returns
the average of the two middle values for groups with even number of elements,
whereas PERCENTI LE_DI SCreturns the value of the first one among the two middle
values. For aggregate groups with an odd number of elements, both functions return
the value of the middle element.

Analytic Example

In the following example, the median for Department 60 is 4800, which has a
corresponding percentile (Per cent _Rank) of 0.5. None of the salaries in Department
30 have a percentile of 0.5, so the median value must be interpolated between 2900
(percentile 0.4) and 2800 (percentile 0.6), which evaluates to 2850.

SELECT | ast _nane, salary, departnent_id,
PERCENTI LE_CONT(0.5) WTH N GROUP (ORDER BY sal ary DESC)
OVER (PARTI TI ON BY department _id) "Percentile_Cont",
PERCENT_RANK()
OVER (PARTI TI ON BY department _id ORDER BY sal ary DESC) "Percent _Rank"
FROM enpl oyees WHERE departnent _id IN (30, 60);

LAST_NAME SALARY DEPARTMENT_I D Percentile_Cont Percent_Rank
Raphael y 11000 30 2850 0
Khoo 3100 30 2850 .2
Bai da 2900 30 2850 .4
Tobi as 2800 30 2850 .6
H nur o 2600 30 2850 .8
Col nenar es 2500 30 2850 1
Hunol d 9000 60 4800 0
Er nst 6000 60 4800 .25
Austin 4800 60 4800 .5
Pat abal | a 4800 60 4800 .5
Lorentz 4200 60 4800 1

PERCENTILE_DISC

Syntax

=3
ASC
(OpCexor () witrin 1 Group |—>®9| ORDER | BY |(expr) @
[a| OVER F@»{query_partition_clausem

5-116 Oracle Database SQL Reference

PERCENTILE_DISC

See Also: "Analytic Functions” on page 5-9 for information on
syntax, semantics, and restrictions of the OVER clause

Purpose

PERCENTI LE_DI SCis an inverse distribution function that assumes a discrete
distribution model. It takes a percentile value and a sort specification and returns an
element from the set. Nulls are ignored in the calculation.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

The first expr must evaluate to a numeric value between 0 and 1, because it is a
percentile value. This expression must be constant within each aggregate group. The
ORDER BY clause takes a single expression that can be of any type that can be sorted.

For a given percentile value P, PERCENTI LE_DI SCsorts the values of the expression
in the ORDER BY clause and returns the value with the smallest CUME_DI ST value
(with respect to the same sort specification) that is greater than or equal to P.

Aggregate Example
See aggregate example for PERCENTILE_CONT on page 5-114.

Analytic Example

The following example calculates the median discrete percentile of the salary of each
employee in the sample table hr . enpl oyees:

SELECT | ast _nane, salary, departnent_id,
PERCENTI LE_DI SC(0.5) W TH N GROUP (ORDER BY sal ary DESC)
OVER (PARTI TI ON BY department _id) "Percentile_Disc",
CUME_DI ST() OVER (PARTITI ON BY departnent _id
ORDER BY sal ary DESC) "Curme_Dist"
FROM enpl oyees where departnent _id in (30, 60);

LAST_NAME SALARY DEPARTMENT | D Percentile Disc Cume_Dist
Raphael y 11000 30 2900 . 166666667
Khoo 3100 30 2900 . 333333333
Bai da 2900 30 2900 .5
Tobi as 2800 30 2900 . 666666667
H muro 2600 30 2900 . 833333333
Col nenar es 2500 30 2900 1
Hunol d 9000 60 4800 .2
Er nst 6000 60 4800 4
Austin 4800 60 4800 .8
Pat abal | a 4800 60 4800 .8
Lorentz 4200 60 4800 1

The median value for Department 30 is 2900, which is the value whose corresponding
percentile (Curme_Di st) is the smallest value greater than or equal to 0.5. The median
value for Department 60 is 4800, which is the value whose corresponding percentile is
the smallest value greater than or equal to 0.5.

Functions 5-117

POWER

POWER

Syntax
RELO:OL0: 00

Purpose
POVER returns n2 raised to the n1 power. The base n2 and the exponent n1 can be any
numbers, but if n2 is negative, then n1 must be an integer.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If any argument is Bl NARY _
FLOAT or Bl NARY_DQOUBLE, then the function returns Bl NARY_DOUBLE. Otherwise
the function returns NUVBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns 3 squared:

SELECT PONER(3, 2) "Rai sed" FROM DUAL;

POWERMULTISET

Syntax
0:CDHL0

Purpose

POAERMULTI SET takes as input a nested table and returns a nested table of nested
tables containing all nonempty subsets (called submultisets) of the input nested table.

« expr can be any expression that evaluates to a nested table.
« If expr resolves to null, then Oracle Database returns NULL.
« If expr resolves to a nested table that is empty, then Oracle returns an error.

« The element types of the nested table must be comparable. Please refer to
"Comparison Conditions" on page 7-4 for information on the comparability of
nonscalar types.

Note: This function is not supported in PL/SQL.

Examples
First, create a datatype that is a nested table of the cust _address_tab_type
datatype:

CREATE TYPE cust _address_tab_tab_typ
AS TABLE OF cust _address_tab_typ;

5-118 Oracle Database SQL Reference

POWERMULTISET_BY_CARDINALITY

Now, select the nested table column cust _addr ess_nt ab from the cust oners_
deno table using the POAERMULTI SET function:

SELECT CAST(PONERMULTI SET(cust _addr ess_nt ab)
AS cust _address_tab_tab_typ)
FROM cust oner s_deno;

CAST(PONERMULTI SET(CUST_ADDRESS_NTAB) AS CUST_ADDRESS TAB_TAB TYP)
(STREET_ADDRESS, POSTAL_CODE, CITY, STATE PROVI NCE, COUNTRY_I D)
CUST_ADDRESS TAB TAB TYP(CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP
('514 WSuperior St', '46901', 'Kokomo', "IN, 'US)))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
(' 2515 Bloyd Ave', '46218', 'Indianapolis', "IN, 'US)))
CUST_ADDRESS _TAB TAB_TYP(CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP
('8768 N State Rd 37", '47404', 'Bloomington', "IN, "US)))
CUST_ADDRESS TAB TAB TYP(CUST_ADDRESS TAB_TYP(CUST_ADDRESS TYP
(' 6445 Bay Harbor Ln', '46254', 'lIndianapolis', "IN, "US)))

The preceding example requires the cust oner s_deno table and a nested table
column containing data. Please refer to "Multiset Operators” on page 4-5 to create this
table and nested table columns.

POWERMULTISET_BY_CARDINALITY

Syntax
—>| POWERMULTISET _BY_CARDINALITY o @ o o
Purpose

PONERMULTI SET_BY_CARDI NALI TY takes as input a nested table and a cardinality
and returns a nested table of nested tables containing all nonempty subsets (called
submultisets) of the nested table of the specified cardinality.

« expr can be any expression that evaluates to a nested table.

« cardinality can be any positive integer.

« Ifexpr resolves to null, Oracle Database returns NULL.

« Ifexpr resolves to a nested table that is empty, then Oracle returns an error.

« The element types of the nested table must be comparable. Please refer to
"Comparison Conditions" on page 7-4 for information on the comparability of
nonscalar types.

Note: This function is not supported in PL/SQL.

Examples

First, duplicate the elements in all the nested table rows to increase the cardinality of
the nested table rows to 2:

UPDATE cust onmers_deno
SET cust _address_ntab = cust_address_ntab MULTI SET UNI ON cust _address_nt ab;

Functions 5-119

PREDICTION

PREDICTION

Now, select the nested table column cust _addr ess_nt ab from the cust omers__
denp table using the PONERMULTI SET_BY_CARDI NALI TY function:

SELECT CAST(POANERMULTI SET_BY_CARDI NALI TY(cust _address_ntab, 2)
AS cust _address_tab_tab_typ)
FROM cust oner s_deno;

CAST(PONERMULTI SET_BY_CARDI NALI TY(CUST_ADDRESS_NTAB, 2) AS CUST_ADDRESS_TAB_TAB_TYP)
(STREET_ADDRESS, POSTAL_CCDE, CITY, STATE_PROVI NCE, COUNTRY_| D)
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
(CUST_ADDRESS_TYP(' 514 W Superior St', '46901', 'Kokomo', "IN, "US),
CUST_ADDRESS_TYP(' 514 W Superior St', '46901', 'Kokomo', 'IN, 'US)))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
(CUST_ADDRESS_TYP(' 2515 Bloyd Ave', '46218', 'Indianapolis', "IN, 'US),
CUST_ADDRESS_TYP(' 2515 Bl oyd Ave', '46218', 'Indianapolis', "IN, "US)))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
(CUST_ADDRESS TYP(' 8768 N State Rd 37', '47404', 'Bloonington', "IN, 'US),
CUST_ADDRESS_TYP(' 8768 N State Rd 37', '47404', 'Bloomington', "IN, 'US)))

The preceding example requires the cust oner s_deno table and a nested table
column containing data. Please refer to "Multiset Operators" on page 4-5 to create this
table and nested table columns.

Syntax

schema .

_
PREDICTION ((model) (' mining_attribute_clause) b

cost_matrix_clause::=
COST |+ MODEL

mining_attribute_clause::=

*

table

allas

expr

Purpose

This function is for use with models created by the DBMS_DATA M NI NG package or
with the Oracle Data Mining Java API. It returns the best prediction for the model. The
datatype returned depends on the target value type used during the build of the
model. For regression models, this function returns the expected value.

COST MODEL Specify COST MODEL to indicate that the scoring should be performed
by taking into account the cost matrix that was associated with the model at build

5-120 Oracle Database SQL Reference

PREDICTION

time. If no such cost matrix exists, then the database returns an error. The COST MODEL
clause is relevant only for decision tree classification models.

If you omit the COST MODEL clause, the best prediction is the target class with the
highest probability. If two or more classes are tied with the highest probability, the
database chooses one class.

mining_attribute_clause This maps the predictors that were provided when the
model was built. Specifying USI NG * maps to all to the columns and expressions that
can be retrieved from the underlying inputs (tables, views, and so on).

« Ifyou specify more predictors in the mi ni ng_at tri but e_cl ause than there are
predictors used by the model, then the extra expressions are silently ignored.

« If you specify fewer predictors than are used during the build, then the operation
proceeds with the subset of predictors you specify and returns information on a
best-effort basis. All types of models will return a result regardless of the number
of predictors you specify in this clause.

« Ifyou specify a predictor with the same name as was used during the build but a
different datatype, then the database implicitly converts to produce a predictor
value of the same type as the original build.

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Example

The following example returns by gender the average age of customers who are likely
to use an affinity card. The PREDI CTI ON function takes into account only the cust _
marital _status,education,andhousehol d_si ze predictors.

This example, and the prerequisite data mining operations, including the creation of
the view, can be found in the demo file SORACLE _

HOVE/ r dbns/ deno/ didt deno. sql . General information on data mining demo files
is available in Oracle Data Mining Administrator’s Guide. The example is presented here
to illustrate the syntactic use of the function.

SELECT cust _gender, COUNT(*) AS cnt, ROUND(AVG age)) AS avg_age
FROM mi ni ng_dat a_appl y_v
VWHERE PREDI CTI ON(DT_SH O as_sanpl e COST MODEL
USI NG cust _marital _status, education, household_size) =1
CGROUP BY cust _gender
ORDER BY cust _gender;

C CNT AVG_AGE
F 170 38
M 685 42

Functions 5-121

PREDICTION_COST

PREDICTION_COST

Syntax

schema . ‘ class

—>| PREDICTION_COST @ (model) {cost_matrix_clause){mining_attribute_clause)@

cost_matrix_clause::=
COST |+ MODEL

mining_attribute_clause::=

*

table

allas

expr

Purpose

This function is for use with decision tree classification models created by the DBMS
DATA M NI NG package or with the Oracle Data Mining Java API. It is not valid with
other types of models. It returns a measure of cost for a given prediction as an Oracle
NUMBER.

If you specify the optional cl ass parameter, then the function returns the cost for the
specified class. If you omit the cl ass parameter, then the function returns the cost
associated with the best prediction. You can use this form in conjunction with the
PREDI CTI ON function to obtain the best pair of prediction value and cost.

COST MODEL indicates that the scoring should be performed by taking into account the
cost matrix that was associated with the model at build time. If no such cost matrix
exists, then the database returns an error.

Thenmi ni ng_attribute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.
See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Example

The following example finds the ten customers living in Italy who are least expensive
to convince to use an affinity card.

This example and the prerequisite data mining operations can be found in the demo
file SORACLE_HOVE/ r dbrs/ deno/ ddt deno. sql . General information on data

5-122 Oracle Database SQL Reference

PREDICTION_DETAILS

mining demo files is available in Oracle Data Mining Administrator’s Guide. The
example is presented here to illustrate the syntactic use of the function.

WTH
cust _italy AS (
SELECT cust _id
FROM mi ni ng_data_apply_v
WHERE country_nanme = 'Italy’
ORDER BY PREDI CTI ON_COST(DT_SH O as_sanpl e, 1 COST MODEL USING *) ASC, 1
)
SELECT cust _id
FROM cust _italy
WHERE r ownum < 11,

100081
100179
100185
100324
100344
100554
100662
100733
101250
101306

10 rows sel ect ed.

PREDICTION_DETAILS

Syntax

fﬂ‘iﬂiibw"k\
—]{ PREDICTION_DETAILS |->@ U {model}{mining_attribute_clause)s@»

mining_attribute_clause::=

*

table

allas

expr

Purpose

This function is for use with decision tree models and single-feature Adaptive Bayes
Network (ABN) models created by the DBVMS_DATA M NI NG package or with the
Oracle Data Mining Java API. It returns an XML string containing model-specific
information related to the scoring of the input row. In this release, the return value
takes the following form:

<Node id= "integer"/>

Functions 5-123

PREDICTION_PROBABILITY

where i nt eger is the identifier of a data mining tree node. The form of the output is
subject to change. It may be enhanced to provide additional prediction information in
future releases.

Them ni ng_attribute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Example

The following example uses all attributes from the mi ni ng_dat a_appl y_v view that
are relevant predictors for the DT_SH Cl as_sanpl e decision tree model. For
customers who work in technical support and are under age 25, it returns the tree
node that results from scoring those records with the DT_SH O as_sanpl e model.

This example, and the prerequisite data mining operations, including the creation of
the view, can be found in the demo files $ORACLE _

HOVE/ r dbns/ deno/ dmdt deno. sql . General information on data mining demo files
is available in Oracle Data Mining Administrator's Guide. The example is presented here
to illustrate the syntactic use of the function.

SELECT cust _id, education,
PREDI CTI ON_DETAI LS(DT_SH C as_sanpl e using *) treenode
FROM ni ni ng_dat a_apply_v
WHERE occupation = 'TechSup’ AND age < 25
ORDER BY cust _id;

CUST_| D EDUCATI ON TREENCDE

100234 < Bach. <Node id="21"/>
100320 < Bach. <Node id="21"/>
100349 < Bach. <Node id="21"/>
100419 < Bach. <Node id="21"/>
100583 < Bach. <Node id="13"/>
100657 HS-grad <Node id="21"/>
101171 < Bach. <Node id="21"/>
101225 < Bach. <Node id="21"/>
101338 < Bach. <Node id="21"/>

9 rows selected.

PREDICTION_PROBABILITY

Syntax

0
—{ PREDICTION_PROBABILITY @ (‘model) ((mining_attribute_clause)} }>

5-124 Oracle Database SQL Reference

PREDICTION_PROBABILITY

mining_attribute_clause::=

*

M
O
table

expr

Purpose

This function is for use with classification models created by the DBM5_DATA M NI NG
package or with the Oracle Data Mining Java API. It is not valid with other types of
models. It returns the probability for a given prediction as an Oracle NUVBER

If you specify the optional cl ass parameter, then the function returns the probability
for the specified class. This is equivalent to the probability associated with choosing
the given target class value.

If you omit the cl ass parameter, then the function returns the probability associated
with the best prediction. You can use this form in conjunction with the PREDI CTI ON
function to obtain the best pair of prediction value and probability.

Themi ni ng_attri bute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Example

The following example returns the 10 customers living in Italy who are most likely to
use an affinity card.

This example, and the prerequisite data mining operations, including the creation of
the view, can be found in the demo files $ORACLE _

HOVE/ r dbns/ deno/ didt deno. sql . General information on data mining demo files
is available in Oracle Data Mining Administrator's Guide. The example is presented here
to illustrate the syntactic use of the function.

SELECT cust _id FROM (
SELECT cust _id
FROM mi ni ng_dat a_appl y_v
WHERE country _name = 'ltaly'
ORDER BY PREDI CTI ON_PROCBABI LI TY(DT_SH O as_sanpl e, 1 USING *)
DESC, cust _id)
VWHERE r ownum < 11;

100081
100179

Functions 5-125

PREDICTION_SET

100185
100324
100344
100554
100662
100733
101250
101306

10 rows sel ected.

PREDICTION_SET

Syntax

O
PREDICTION_SET (model

cost_matrix_clause
(mining_attribute_clause)(b

cost_matrix_clause::=
COST |+ MODEL

mining_attribute_clause::=

*

table

allas
expr

Purpose

This function is for use with classification models created using the DBVS_DATA

M NI NG package or with the Oracle Data Mining Java API. It is not valid with other
types of models. It returns a varray of objects containing all classes in a multiclass
classification scenario. The object fields are named PREDI CTI ON, PROBABI LI TY, and
COST. The datatype of the PREDI CTI ONfield depends on the target value type used
during the build of the model. The other two fields are both Oracle NUMBER. The
elements are returned in the order of best prediction to worst prediction.

« Forbest N, specify a positive integer to restrict the returned target classes to the N
having the highest probability. If multiple classes are tied in the Nth value, the
database still returns only Nvalues. If you want to filter only by cut of f , specify
NULL for this parameter.

« Forcut of f, specify a NUMBER value to restrict the returned target classes to those
with a cost less than or equal to the specified cost value. You can filter solely by
cut of f by specifying NULL for best N.

5-126 Oracle Database SQL Reference

PREDICTION_SET

When you specify values for both best Nand cut of f, you restrict the returned
predictions to only those that are the best Nand have a probability (or cost when
COST MODEL is specified) surpassing the threshold.

« Specify COST MODEL to indicate that the scoring should be performed by taking
into account the cost matrix that was associated with the model at build time. If no
such cost matrix exists, then the database returns an error.

When you specify COST MODEL, both best Nand cut of f are treated with respect
to the prediction cost, not the prediction probability. That is, best Nrestricts the
result to the target classes having the N best (lowest) costs, and cut of f restricts
the target classes to those with a cost less than or equal to the specified cutoff.

When you specify this clause, each object in the collection is a triplet of scalar
values containing the prediction value (the datatype of which depends on the
target value type used during model build), the prediction probability, and the
prediction cost (both Oracle NUVBER).

If you omit COST MODEL, each object in the varray is a pair of scalars containing
the prediction value and prediction probability. The datatypes returned are as
described in the preceding paragraph.

Them ni ng_attri bute_cl ause behaves as described for the PREDI CTI ON
function. Please refer to mining_attribute_clause on page 5-121.

See Also:

« Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

« Oracle Data Mining Administrator's Guide for information on the
demo programs available in the code

« Oracle Data Mining Application Developer's Guide for information
on writing Oracle Data Mining applications

Example

The following example lists, for ten customers, the likelihood and cost of using or
rejecting an affinity card. This example has a binary target, but such a query is also
useful in multiclass classification such as Low, Med, and High.

This example and the prerequisite data mining operations can be found in the demo
file $ORACLE_HOVE/ r dbns/ deno/ dndt denp. sql . General information on data
mining demo files is available in Oracle Data Mining Administrator’s Guide. The
example is presented here to illustrate the syntactic use of the function.

SELECT T.cust_id, S prediction, S probability, S. cost
FROM (SELECT cust _id,
PREDI CTI ON_SET(dt _sh_cl as_sanpl e COST MODEL USING *) pset
FROM mi ni ng_dat a_appl y_v
WHERE cust _id < 100011) T,
TABLE(T. pset) S
ORDER BY cust _id, S.prediction;

CUST_I D PREDI CTI ON PROBABI LI TY COST

100001 0 96682 27
100001 1 03318 .97
100002 0 . 74038 2.08
100002 1 25962 74
100003 0 90909 73

Functions 5-127

PRESENTNNV

100003 1 .09091 .91
100004 0 .90909 .73
100004 1 .09091 .91
100005 0 . 27236 5.82
100005 1 . 72764 .27
100006 0 1.00000 .00
100006 1 .00000 1.00
100007 0 .90909 .73
100007 1 .09091 .91
100008 0 .90909 .73
100008 1 .09091 .91
100009 0 .27236 5.82
100009 1 . 72764 .27
100010 0 .80808 1.54
100010 1 .19192 .81

20 rows selected

PRESENTNNV

Syntax

—>| PRESENTNNV F@»{cell_reference ’ ’ o

Purpose

The PRESENTNNV function can be used only in the nodel _cl ause of the SELECT
statement and then only on the right-hand side of a model rule. It returns expr 1
when, prior to the execution of the nodel _cl ause, cel | _ref erence exists and is
not null. Otherwise it returns expr 2.

See Also: model_clause on page 19-23 and "Model Expressions" on
page 6-11 for the syntax and semantics

Examples

In the following example, if a row containing sales for the Mouse Pad for the year 2002
exists, and the sales value is not null, then the sales value remains unchanged. If the
row exists and the sales value is null, then the sales value is set to 10. If the row does
not exist, then the row is created with the sales value set to 10.

SELECT country, prod, year, s
FROM sal es_vi ew ref
MODEL
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON
RULES UPSERT SEQUENTI AL ORDER
(s['Muse Pad', 2002] =
PRESENTNNV(s[' Mouse Pad', 2002], s['Muse Pad', 2002], 10)

)
ORDER BY country, prod, year;

COUNTRY PRCD YEAR S
France Mouse Pad 1998 2509. 42
France Mouse Pad 1999 3678. 69

5-128 Oracle Database SQL Reference

PRESENTV

PRESENTV

France Mouse Pad
France Mouse Pad
France Mouse Pad
France Standard Muse
France Standard Muse
France Standard Muse
France Standard Muse
Cer many Mouse Pad
Cer many Mouse Pad
Cer nmany Mouse Pad
Cer many Mouse Pad
Cer many Mouse Pad
Cer many Standard Muse
Cer many Standard Muse
Cer many Standard Muse
Cer nany St andard Mouse

18 rows sel ected.

The preceding example requires the view sal es_vi ew ref.
"Examples" on page 19-30 to create this view.

Syntax
—>| PRESENTV @{cell_reference . ’ o
Purpose

2000
2001
2002
1998
1999
2000
2001
1998
1999
2000
2001
2002
1998
1999
2000
2001

3000. 72
3269. 09

10
2390. 83
2280. 45
1274.31
2164. 54
5827. 87
8346. 44
7375. 46
9535. 08

10
7116. 11
6263. 14
2637. 31
6456. 13

Please refer to

The PRESENTYV function can be used only within the nodel _cl ause of the SELECT
statement and then only on the right-hand side of a model rule. It returns expr 1
when, prior to the execution of the rodel _cl ause, cel | _r ef er ence exists.

Otherwise it returns expr 2.

See Also:
page 6-11 for the syntax and semantics

Examples

model_clause on page 19-23 and "Model Expressions" on

In the following example, if a row containing sales for the Mouse Pad for the year 2000
exists, then the sales value for the Mouse Pad for the year 2001 is set to the sales value
for the Mouse Pad for the year 2000. If the row does not exist, then a row is created

with the sales value for the Mouse Pad for year 20001 set to 0.

SELECT country, prod, year, s
FROM sal es_vi ew _ref
MCDEL
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON
RULES UPSERT SEQUENTI AL ORDER
(
s[' Mouse Pad', 2001] =
PRESENTV(s[' Mouse Pad', 2000], s['Muse Pad', 2000]

. 0)

Functions 5-129

PREVIOUS

ORDER BY country, prod, year;

COUNTRY PRCD YEAR S
France Mouse Pad 1998 25009. 42
France Mouse Pad 1999 3678. 69
France Mouse Pad 2000 3000. 72
France Mouse Pad 2001 3000. 72
France St andard Muse 1998 2390. 83
France St andard Muse 1999 2280. 45
France St andard Muse 2000 1274. 31
France St andard Muse 2001 2164.54
CGer many Mouse Pad 1998 5827. 87
Cer many Mouse Pad 1999 8346. 44
Cer many Mouse Pad 2000 7375. 46
Cer many Mouse Pad 2001 7375. 46
Cer many Standard Mouse 1998 7116. 11
Cer many Standard Muse 1999 6263. 14
Cer many Standard Mouse 2000 2637. 31
Cer many Standard Muse 2001 6456. 13

16 rows sel ected.

The preceding example requires the view sal es_vi ew_r ef . Please refer to "The
MODEL clause: Examples" on page 19-35 to create this view.

PREVIOUS
Syntax
© 0
Purpose

The PREVI QUS function can be used only in the nodel _cl ause of the SELECT
statement and then only in the | TERATE ... [UNTI L] clause of the nodel _rul es_
cl ause. It returns the value of cel | _r ef er ence at the beginning of each iteration.

See Also: model_clause on page 19-23 and "Model Expressions" on
page 6-11 for the syntax and semantics

Examples

The following example repeats the rules, up to 1000 times, until the difference between
the values of cur _val at the beginning and at the end of an iteration is less than one;

SELECT dimcol, cur_val, numof _iterations
FROM (SELECT 1 AS dimcol, 10 AS cur_val FROM dual)
MODEL
DI MENSI ON BY (dimcol)
MEASURES (cur_val, 0 numof _iterations)
| GNORE NAV
UNI QUE DI MENSI ON
RULES | TERATE (1000) UNTIL (PREVIQUS(cur_val[1]) - cur_val[1] < 1)
(
cur_val[1] = cur_val[1]/2,
numof iterations[1] = numof _iterations[1] + 1

)s

5-130 Oracle Database SQL Reference

RANK

RANK

DIMCOL CUR VAL NUM OF | TERATI ONS

Aggregate Syntax

rank_aggregate::=

'.
o » WITHIN |->| GROUP |—>

Analytic Syntax

rank_analytic::=
query_partition_clause
RANK o o OVER B{((order_by_clause) }>

See Also: "Analytic Functions” on page 5-9 for information on
syntax, semantics, and restrictions

Purpose
RANK calculates the rank of a value in a group of values. The return type is NUVBER

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Rows with equal values for the ranking criteria receive the same rank. Oracle Database
then adds the number of tied rows to the tied rank to calculate the next rank.
Therefore, the ranks may not be consecutive numbers. This function is useful for top-N
and bottom-N reporting.

« Asan aggregate function, RANK calculates the rank of a hypothetical row
identified by the arguments of the function with respect to a given sort
specification. The arguments of the function must all evaluate to constant
expressions within each aggregate group, because they identify a single row
within each group. The constant argument expressions and the expressions in the
ORDER BY clause of the aggregate match by position. Therefore, the number of
arguments must be the same and their types must be compatible.

« Asan analytic function, RANK computes the rank of each row returned from a
query with respect to the other rows returned by the query, based on the values of
the val ue_expr s inthe order by cl ause.

Functions 5-131

RANK

Aggregate Example

The following example calculates the rank of a hypothetical employee in the sample
table hr . enpl oyees with a salary of $15,500 and a commission of 5%:

SELECT RANK(15500, .05) WTH N GROUP
(ORDER BY sal ary, conmission_pct) "Rank"
FROM enpl oyees;

Similarly, the following query returns the rank for a $15,500 salary among the
employee salaries:

SELECT RANK(15500) W TH N GROUP
(ORDER BY salary DESC) "Rank of 15500"
FROM enpl oyees;

Rank of 15500

Analytic Example

The following statement ranks the employees in the sample hr schema in department

80 based on their salary and commission. Identical salary values receive the same rank
and cause nonconsecutive ranks. Compare this example with the example for DENSE _
RANK on page 5-54.

SELECT departnent _id, |ast_nanme, salary, comm ssion_pct,
RANK() OVER (PARTI TI ON BY departnent _id
ORDER BY sal ary DESC, comm ssion_pct) "Rank"
FROM enpl oyees WHERE departnent _id = 80;

DEPARTMENT _| D LAST_NAME SALARY COWM SSI ON_PCT Rank
80 Russel | 14000 4 1
80 Partners 13500 .3 2
80 Errazuriz 12000 .3 3
80 Qrer 11500 .25 4
80 Canbraul t 11000 .3 5
80 Abel 11000 .3 5
80 Zl ot key 10500 .2 7
80 Vi shney 10500 .25 8
80 Bl oom 10000 .2 9
80 Tucker 10000 .3 10
80 King 10000 .35 11
80 Fox 9600 .2 12
80 G eene 9500 .15 13
80 Bernstein 9500 25 14
80 Sully 9500 .35 15
80 Hall 9000 25 16
80 MEwen 9000 .35 17
80 Hutton 8800 25 18
80 Tayl or 8600 .2 19
80 Livingston 8400 .2 20
80 A sen 8000 .2 21
80 Snith 8000 .3 22
80 Canbraul t 7500 .2 23
80 Dor an 7500 .3 24

5-132 Oracle Database SQL Reference

RAWTOHEX

80 Snith 7400 .15 25
80 Bates 7300 .15 26
80 Marvins 7200 .1 27
80 Tuvaul t 7000 .15 28
80 Sewal | 7000 .25 29
80 Lee 6800 1 30
80 Ande 6400 1 31
80 Banda 6200 .1 32
80 Johnson 6200 .1 32
80 Kumar 6100 .1 34

RATIO_TO_REPORT

RAWTOHEX

Syntax

—J{ raTI0_T0_REPORT [()3(expr () (@

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions, including valid forms of expr

Purpose

RATI O_TO_REPORT is an analytic function. It computes the ratio of a value to the sum
of a set of values. If expr evaluates to null, then the ratio-to-report value also
evaluates to null.

The set of values is determined by the query_partiti on_cl ause. If you omit that
clause, then the ratio-to-report is computed over all rows returned by the query.

You cannot use RATI O_TO_REPORT or any other analytic function for expr . That is,
you cannot nest analytic functions, but you can use other built-in function expressions
for expr . Please refer to "About SQL Expressions” on page 6-1 for information on valid
forms of expr .

Examples

The following example calculates the ratio-to-report value of each purchasing clerk's
salary to the total of all purchasing clerks' salaries:

SELECT | ast _nane, sal ary, RATIO TO REPORT(salary) OVER () AS rr
FROM enpl oyees
VHERE job_id = 'PU CLERK ;

LAST NAMVE SALARY RR
Khoo 3100 . 223021583
Bai da 2900 . 208633094
Tobi as 2800 . 201438849
H nuro 2600 . 18705036
Col menar es 2500 . 179856115
Syntax

o (D@0

Functions 5-133

RAWTONHEX

Purpose
RAWIOHEX converts r awto a character value containing its hexadecimal equivalent.
The r awargument must be RAWdatatype.

You can specify a BLOB argument for this function if it is called from within a PL/SQL
block.

Examples
The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWICHEX(raw_col umm) "G aphi cs"
FROM gr aphi cs;

G aphi cs

See Also: "RAW and LONG RAW Datatypes" on page 2-22 and
HEXTORAW on page 5-75

RAWTONHEX

REF

Syntax
0:CDZ0

Purpose

RAWIONHEX converts r awto an NVARCHARZ character value containing its
hexadecimal equivalent.

Examples
The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWIONHEX(r aw_col umm),
DUWP (RAWIONHEX (raw_col umm)) "DUWP"

FROM gr aphi cs;
RAWTONHEX(RA) DUWP
7D Typ=1 Len=4: 0, 55,0, 68
Syntax
—>| REF P@»{correlation_variable)»@»
Purpose

REF takes as its argument a correlation variable (table alias) associated with a row of
an object table or an object view. A REF value is returned for the object instance that is
bound to the variable or row.

5-134 Oracle Database SQL Reference

REFTOHEX

Examples

The sample schema oe contains a type called cust _addr ess_t yp, described as
follows:

Attribute Type
STREET_ADDRESS VARCHAR2(40)
POSTAL_CODE VARCHAR2(10)
aTy VARCHAR2(30)
STATE_PROVI NCE VARCHAR2(10)
COUNTRY_| D CHAR(2)

The following example creates a table based on the sample type oe. cust _addr ess_
t yp, inserts a row into the table, and retrieves a REF value for the object instance of the
type in the addresses table:

CREATE TABLE addresses OF cust_address_typ;

I NSERT | NTO addresses VALUES (
'123 First Street', "4GF HLJ', 'Qur Town', 'Qurcounty', 'US);

SELECT REF(e) FROM addresses e;

00002802097CD1261E51925B60E0340800208254367CD1261E51905B60E034080020825436010101820000

REFTOHEX

See Also: Oracle Database Concepts for information on REFs

Syntax
0;CDI0

Purpose

REFTOHEX converts argument expr to a character value containing its hexadecimal
equivalent. expr must return a REF.

Examples

The sample schema oe contains a war ehouse_t yp. The following example builds on
that type to illustrate how to convert the REF value of a column to a character value
containing its hexadecimal equivalent:

CREATE TABLE war ehouse_t abl e OF war ehouse_typ
(PRI MARY KEY (warehouse_id));

CREATE TABLE | ocation_table
(location_number NUMBER buil di ng REF warehouse_typ
SCOPE | S war ehouse_tabl e);
I NSERT | NTO war ehouse_t abl e VALUES (1, 'Downtown', 99);
I NSERT | NTO | ocation_table SELECT 10, REF(w) FROM warehouse_table w;

SELECT REFTCHEX(bui | di ng) FROM | ocati on_t abl e;

Functions 5-135

REGEXP_INSTR

REFTCHEX(BUI LDI NG)

0000220208859B5E9255C31760E034080020825436859B5E9255C21760E034080020825436

REGEXP_INSTR

Syntax

—] REGEXP_INSTR @{source_cha

‘ match_parameter

Lo

Purpose

REGEXP_| NSTR extends the functionality of the | NSTR function by letting you search
a string for a regular expression pattern. The function evaluates strings using
characters as defined by the input character set. It returns an integer indicating the
beginning or ending position of the matched substring, depending on the value of the
ret urn_opti on argument. If no match is found, the function returns 0.

This function complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines. For more information, please refer to Appendix C,
"Oracle Regular Expression Support".

sour ce_char is a character expression that serves as the search value. It is
commonly a character column and can be of any of the datatypes CHAR,
VARCHARZ2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

pat t er n is the regular expression. It is usually a text literal and can be of any of
the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHARZ. It can contain up to 512
bytes. If the datatype of pat t er n is different from the datatype of sour ce_char,
Oracle Database converts pat t er n to the datatype of sour ce_char . For a listing
of the operators you can specify in pat t er n, please refer to Appendix C, "Oracle
Regular Expression Support".

posi ti on is a positive integer indicating the character of sour ce_char where
Oracle should begin the search. The default is 1, meaning that Oracle begins the
search at the first character of sour ce_char.

occur r ence is a positive integer indicating which occurrence of pat t er n in
sour ce_char Oracle should search for. The default is 1, meaning that Oracle
searches for the first occurrence of pat t er n.

return_opti on lets you specify what Oracle should return in relation to the
occurrence:

— Ifyou specify 0, then Oracle returns the position of the first character of the
occurrence. This is the default.

— Ifyou specify 1, then Oracle returns the position of the character following the
occurrence.

mat ch_par anet er is a text literal that lets you change the default matching
behavior of the function. You can specify one or more of the following values for
mat ch_par anet er:

5-136 Oracle Database SQL Reference

REGEXP_INSTR

— 'i' specifies case-insensitive matching.
— ' c' specifies case-sensitive matching.

— 'n' allows the period (.), which is the match-any-character character, to match
the newline character. If you omit this parameter, the period does not match
the newline character.

— ''m treats the source string as multiple lines. Oracle interprets * and $ as the
start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this
parameter, Oracle treats the source string as a single line.

— X’ ignores whitespace characters. By default, whitespace characters match
themselves.

If you specify multiple contradictory values, Oracle uses the last value. For
example, if you specify ' i ¢' , then Oracle uses case-sensitive matching. If you
specify a character other than those shown above, then Oracle returns an error.

If you omit mat ch_par anet er, then:

— The default case sensitivity is determined by the value of the NLS_SORT
parameter.

— A period (.) does not match the newline character.

— The source string is treated as a single line.

See Also: INSTR on page 5-79 and REGEXP_SUBSTR on page 5-140

Examples

The following example examines the string, looking for occurrences of one or more
non-blank characters. Oracle begins searching at the first character in the string and
returns the starting position (default) of the sixth occurrence of one or more non-blank
characters.

SELECT
REGEXP_I NSTR(' 500 Oracl e Parkway, Redwood Shores, CA',
“[~]+, 1, 6) "REGEXP_INSTR'
FROM DUAL;

REGEXP_I NSTR

The following example examines the string, looking for occurrences of words
beginning with s, r, or p, regardless of case, followed by any six alphabetic characters.
Oracle begins searching at the third character in the string and returns the position in
the string of the character following the second occurrence of a seven-letter word
beginning with s, r, or p, regardless of case.

SELECT
REGEXP_I NSTR(' 500 Oracl e Parkway, Redwood Shores, CA',
"[s|r|pl[[:alpha:]]{6}', 3, 2, 1, "i"') "REGEXP_INSTR'
FROM DUAL;

REGEXP_I NSTR

Functions 5-137

REGEXP_REPLACE

REGEXP_REPLACE

Syntax

—>| REGEXP_REPLACE P@e(source_char)e@{pattern)»

‘ match_parameter

replace_string \ \
Q0

Purpose

REGEXP_REPLACE extends the functionality of the REPLACE function by letting you
search a string for a regular expression pattern. By default, the function returns

sour ce_char with every occurrence of the regular expression pattern replaced with
repl ace_stri ng. The string returned is in the same character set as sour ce_char.
The function returns VARCHAR? if the first argument is not a LOB and returns CLOB if
the first argument is a LOB.

This function complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines. For more information, please refer to Appendix C,
"Oracle Regular Expression Support".

sour ce_char is a character expression that serves as the search value. It is
commonly a character column and can be of any of the datatypes CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB or NCLOB.

pat t er n is the regular expression. It is usually a text literal and can be of any of
the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHARZ. It can contain up to 512
bytes. If the datatype of pat t er n is different from the datatype of sour ce_char,
Oracle Database converts pat t er n to the datatype of sour ce_char . For a listing
of the operators you can specify in pat t er n, please refer to Appendix C, "Oracle
Regular Expression Support".

repl ace_stri ng can be of any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. Ifr epl ace_stri ng isa CLOB or NCLOB, then
Oracle truncates r epl ace_stri ng to 32K. Ther epl ace_st ri ng can contain up
to 500 backreferences to subexpressions in the form \ n, where n is a number from
1to 9. If n is the backslash character inr epl ace_st ri ng, then you must precede
it with the escape character (\ \). For more information on backreference
expressions, please refer to the notes to "Oracle Regular Expression Support”,
Table C-1 on page C-1.

posi ti on is a positive integer indicating the character of sour ce_char where
Oracle should begin the search. The default is 1, meaning that Oracle begins the
search at the first character of sour ce_char.

occur r ence is a nonnegative integer indicating the occurrence of the replace
operation:

— If you specify 0, then Oracle replaces all occurrences of the match.
— If you specify a positive integer n, then Oracle replaces the nth occurrence.

mat ch_par anet er is a text literal that lets you change the default matching
behavior of the function. This argument affects only the matching process and has

5-138 Oracle Database SQL Reference

REGEXP_REPLACE

no effect onr epl ace_st ri ng. You can specify one or more of the following
values for mat ch_par anet er:

specifies case-insensitive matching.

— ' ¢' specifies case-sensitive matching.

— 'n' allows the period (.), which is the match-any-character character, to match

the newline character. If you omit this parameter, the period does not match
the newline character.

— ''m treats the source string as multiple lines. Oracle interprets * and $ as the
start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this
parameter, Oracle treats the source string as a single line.

— X’ ignores whitespace characters. By default, whitespace characters match
themselves.

If you specify multiple contradictory values, Oracle uses the last value. For
example, if you specify ' i ¢’ , then Oracle uses case-sensitive matching. If you
specify a character other than those shown above, then Oracle returns an error.

If you omit mat ch_par anet er, then:

— The default case sensitivity is determined by the value of the NLS_SORT
parameter.

— A period (.) does not match the newline character.

— The source string is treated as a single line.

See Also: REPLACE on page 5-147

Examples

The following example examines phone_nunber , looking for the pattern
XXX XXX.XXXX. Oracle reformats this pattern with (XXx) XXX-XXXX.

SELECT
REGEXP_REPLACE(phone_nunber,
C([0digit:JI{8N . ([[:digit:]1{3})\. ([[:digit:]]{4})",
"(\1) \2-\13") "REGEXP_REPLACE'
FROM enpl oyees;

REGEXP_REPLACE
515) 123-4567
515) 123-4568
515) 123-4569
590) 423-4567

f o~ o~ —~ —
E A s

The following example examines count ry_narme. Oracle puts a space after each
non-null character in the string.

SELECT
REGEXP_REPLACE(country name, '(.)', '"\1 ') "REGEXP_REPLACE"
FROM countri es;

REGEXP_REPLACE

Functions 5-139

REGEXP_SUBSTR

Bel gi
Brazi

um
|
Canada

The following example examines the string, looking for two or more spaces. Oracle
replaces each occurrence of two or more spaces with a single space.

SELECT
REGEXP_REPLACE(' 500 Oracle Par kway, Redwood Shores, CA',
"(){2,}", " ') "REGEXP_REPLACE"
FROM DUAL;
REGEXP_REPLACE

500 Oracl e Parkway, Redwood Shores, CA

REGEXP_SUBSTR

Syntax

REGEXP_SUBSTR o source_char)»@-(pattern)»

occurrence
OG- - —
0

Purpose

REGEXP_SUBSTR extends the functionality of the SUBSTR function by letting you
search a string for a regular expression pattern. It is also similar to REGEXP_| NSTR,
but instead of returning the position of the substring, it returns the substring itself.
This function is useful if you need the contents of a match string but not its position in
the source string. The function returns the string as VARCHAR2 or CLOB data in the
same character set as sour ce_char.

This function complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines. For more information, please refer to Appendix C,
"Oracle Regular Expression Support”.

« source_char isacharacter expression that serves as the search value. It is
commonly a character column and can be of any of the datatypes CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

« patternisthe regular expression. It is usually a text literal and can be of any of
the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHARZ. It can contain up to 512
bytes. If the datatype of pat t er n is different from the datatype of sour ce_char,
Oracle Database converts pat t er n to the datatype of sour ce_char . For a listing
of the operators you can specify in pat t er n, please refer to Appendix C, "Oracle
Regular Expression Support".

« positionisa positive integer indicating the character of sour ce_char where
Oracle should begin the search. The default is 1, meaning that Oracle begins the
search at the first character of sour ce_char.

5-140 Oracle Database SQL Reference

REGEXP_SUBSTR

« occurrence is a positive integer indicating which occurrence of patt ern in
sour ce_char Oracle should search for. The default is 1, meaning that Oracle
searches for the first occurrence of pat t er n.

« match_paramet er isatext literal that lets you change the default matching
behavior of the function. You can specify one or more of the following values for
mat ch_par aneter:

- i ' specifies case-insensitive matching.
— ' c' specifies case-sensitive matching.

— 'n' allows the period (.), which is the match-any-character character, to match
the newline character. If you omit this parameter, the period does not match
the newline character.

— ''m treats the source string as multiple lines. Oracle interprets * and $ as the
start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this
parameter, Oracle treats the source string as a single line.

— X’ ignores whitespace characters. By default, whitespace characters match
themselves.

If you specify multiple contradictory values, Oracle uses the last value. For
example, if you specify ' i ¢' , then Oracle uses case-sensitive matching. If you
specify a character other than those shown above, then Oracle returns an error.

If you omit mat ch_par anet er, then:

— The default case sensitivity is determined by the value of the NLS_SORT
parameter.

— A period (.) does not match the newline character.

— The source string is treated as a single line.

See Also: SUBSTR on page 5-172 and REGEXP_INSTR on
page 5-136

Examples

The following example examines the string, looking for the first substring bounded by
commas. Oracle Database searches for a comma followed by one or more occurrences
of non-comma characters followed by a comma. Oracle returns the substring,
including the leading and trailing commas.

SELECT
REGEXP_SUBSTR(' 500 Oracl e Parkway, Redwood Shores, CA',
",[M1+"') "REGEXPR SUBSTR'
FROM DUAL;

REGEXPR_SUBSTR

, Redwood Shores,

The following example examines the string, looking for htt p: // followed by a
substring of one or more alphanumeric characters and optionally, a period (.). Oracle
searches for a minimum of three and a maximum of four occurrences of this substring
between ht t p: // and either a slash (/) or the end of the string.

Functions 5-141

REGR_ (Linear Regression) Functions

SELECT
REGEXP_SUBSTR("' htt p: // www. or acl e. cont products',
"http: //([[:alnum]]+\.?){3,4}/?") "REGEXP_SUBSTR'
FROM DUAL;

REGEXP_SUBSTR

http:// ww. oracl e. conl

REGR_ (Linear Regression) Functions

The linear regression functions are:
«» REGR SLOPE

» REGR | NTERCEPT

«» REGR _COUNT

Syntax

linear_regr::=

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT
REGR_R2
| f—)| OVER F@{analytic_clausem
N ey W G Ve Yo Ya e

REGR_AVGY
REGR_SXX

REGR_SYY

A

REGR_SXY

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

The linear regression functions fit an ordinary-least-squares regression line to a set of
number pairs. You can use them as both aggregate and analytic functions.

See Also: "Aggregate Functions" on page 5-8 and "About SQL
Expressions"” on page 6-1 for information on valid forms of expr

5-142 Oracle Database SQL Reference

REGR_ (Linear Regression) Functions

These functions take as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Oracle applies the function to the set of (expr 1, expr 2) pairs after eliminating all
pairs for which either expr 1 or expr 2 is null. Oracle computes all the regression
functions simultaneously during a single pass through the data.

expr 1 is interpreted as a value of the dependent variable (ay value), and expr 2 is
interpreted as a value of the independent variable (an x value).

« REGR_SLOPE returns the slope of the line. The return value is a numeric datatype
and can be null. After the elimination of null (expr 1, expr 2) pairs, it makes the
following computation:

COVAR POP(exprl, expr2) / VAR_POP(expr2)

« REGR | NTERCEPT returns the y-intercept of the regression line. The return value
is a numeric datatype and can be null. After the elimination of null (expr 1,
expr 2) pairs, it makes the following computation:

AVE exprl) - REGR SLOPE(exprl, expr2) * AVG expr2)

« REGR_COUNT returns an integer that is the number of non-null number pairs used
to fit the regression line.

« REGR _R2 returns the coefficient of determination (also called R-squared or
goodness of fit) for the regression. The return value is a numeric datatype and can
be null. VAR_POP(expr 1) and VAR_POP(expr 2) are evaluated after the
elimination of null pairs. The return values are:

NULL if VAR POP(expr2) =0

1if VAR POP(exprl) =0 and
VAR POP(expr2) !'=0

PONER(CORR(expr1, expr),2) if VAR POP(exprl) > 0 and
VAR POP(expr2 '=0

All of the remaining regression functions return a numeric datatype and can be null:

« REGR_AVGX evaluates the average of the independent variable (expr 2) of the
regression line. It makes the following computation after the elimination of null
(expr 1, expr 2) pairs:

AV expr 2)
« REGR_AVGY evaluates the average of the dependent variable (expr 1) of the

regression line. It makes the following computation after the elimination of null
(expr 1, expr 2) pairs:

AV expr 1)

REGR_SXY, RECR_SXX, REGR_SYY are auxiliary functions that are used to compute
various diagnostic statistics.

Functions 5-143

REGR_ (Linear Regression) Functions

« REGR_SXX makes the following computation after the elimination of null (expr 1,
expr 2) pairs:

REGR_COUNT(exprl, expr2) * VAR _POP(expr2)

« REGR_SYY makes the following computation after the elimination of null (expr 1,
expr 2) pairs;

REGR_COUNT(exprl, expr2) * VAR POP(expr1l)

« REGR_SXY makes the following computation after the elimination of null (expr 1,
expr 2) pairs:

REGR_COUNT(exprl, expr2) * COVAR POP(exprl, expr2)

The following examples are based on the sample tables sh. sal es and sh. product s.

General Linear Regression Example

The following example provides a comparison of the various linear regression
functions used in their analytic form. The analytic form of these functions can be
useful when you want to use regression statistics for calculations such as finding the
salary predicted for each employee by the model. The sections that follow on the
individual linear regression functions contain examples of the aggregate form of these
functions.

SELECT job_id, enployee_id ID, salary,
REGR_SLOPE(SYSDATE- hire_date, salary)
OVER (PARTITION BY job_id) slope,
REGR_| NTERCEPT(SYSDATE- hi re_date, sal ary)
OVER (PARTITION BY job_id) intcpt,
REGR_R2(SYSDATE- hire_date, salary)
OVER (PARTITION BY job_id) rsar,
REGR_COUNT(SYSDATE- hi re_dat e, sal ary)
OVER (PARTITION BY job_id) count,
REGR_AVGX(SYSDATE- hi re_date, sal ary)
OVER (PARTITION BY job_id) avgx,
REGR_AVGY(SYSDATE- hi re_date, sal ary)
OVER (PARTITION BY job_id) avgy
FROM enpl oyees
WHERE departnent _id in (50, 80)
ORDER BY job_id, enployee_id,;

JOB_ID I D SALARY SLOPE I NTCPT RSQR COUNT AVGX AVGY
SA_MAN 145 14000 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 146 13500 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 147 12000 .355 -1707.035 .832 5 12200. 000 2626.589
SA_MAN 148 11000 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 149 10500 .355 -1707.035 .832 5 12200.000 2626.589
SA _REP 150 10000 .257 404.763 . 647 29 8396.552 2561.244
SA _REP 151 9500 .257 404.763 .647 29 8396.552 2561.244
SA_REP 152 9000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 153 8000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 154 7500 .257 404.763 .647 29 8396.552 2561.244
SA _REP 155 7000 .257 404.763 .647 29 8396.552 2561.244
SA _REP 156 10000 .257 404.763 .647 29 8396.552 2561.244

5-144 Oracle Database SQL Reference

REGR_ (Linear Regression) Functions

REGR_SLOPE and REGR_INTERCEPT Examples

The following example calculates the slope and regression of the linear regression
model for time employed (SYSDATE - hi r e_dat e) and salary using the sample table
hr . empl oyees. Results are grouped by j ob_i d.

SELECT job_id,
REGR_SLOPE(SYSDATE- hire_date, sal ary) sl ope,
REGR_| NTERCEPT(SYSDATE- hi re_date, sal ary) intercept
FROM enpl oyees
WHERE department _id in (50, 80)
GROUP BY job_id
ORDER BY job_i d;
JOB_ID SLOPE | NTERCEPT

SA_MAN . 355 -1707. 030762
SA_REP .257 404.767151
SH _CLERK . 745 159.015293
ST_CLERK .904 134.409050
ST_MAN .479 -570.077291

REGR_COUNT Examples

The following example calculates the count of by j ob_i d for time employed
(SYSDATE - hi r e_dat e) and salary using the sample table hr. enpl oyees. Results
are grouped by j ob_i d.

SELECT job_id,
REGR_COUNT(SYSDATE- hi re_date, salary) count
FROM enpl oyees
WHERE departnent _id in (30, 50)
GROUP BY job_id;

JOBID COUNT
ST_MAN 5
PU_MAN 1
SH CLERK 20
PU_CLERK 5
ST_CLERK 20

REGR_R2 Examples

The following example calculates the coefficient of determination the linear regression
of time employed (SYSDATE - hi r e_dat e) and salary using the sample table
hr . enpl oyees:

SELECT job_id,

REGR_R2(SYSDATE- hire_date, salary) Regr_R2
FROM enpl oyees
WHERE departnent _id in (80, 50)
GROUP by job_id;

JOB_ID RECGR_R2
ST_MAN . 694185080
SH CLERK . 879799698
SA_MAN . 832447480
SA _REP . 647007156

ST_CLERK . 742808493

Functions 5-145

REMAINDER

REMAINDER

REGR_AVGY and REGR_AVGX Examples

The following example calculates the average values for time employed (SYSDATE -
hi r e_dat e) and salary using the sample table hr. enpl oyees. Results are grouped
byjob_id:

SELECT job_id,
REGR_AVGY(SYSDATE- hi re_date, sal ary) avgy,
REGR_AVGX(SYSDATE- hi re_date, salary) avgx
FROM enpl oyees
VWHERE department _id in (30, 50)
GROUP BY job_id,;

JOB_ID AVGY AVGX
ST_MAN 2899. 055555556 7280
PU_MAN 3785. 455555556 11000
SH CLERK 2531. 955555556 4925

2709. 255555556 2780

ST_CLERK 2631. 605555556 2785

REGR_SXY, REGR_SXX, and REGR_SYY Examples

The following example calculates three types of diagnostic statistics for the linear
regression of time employed (SYSDATE - hi r e_dat e) and salary using the sample
table hr . enpl oyees:

SELECT job_id,
REGR_SXY(SYSDATE- hire_date, salary) regr_sxy,
REGR_SXX(SYSDATE- hire_date, salary) regr_sxx,
REGR_SYY(SYSDATE- hire_date, salary) regr_syy
FROM enpl oyees
WHERE departnent _id in (80, 50)
GROUP BY job_id
ORDER BY job_id;

JOBID REGR SXY REGR SXX REGR SYY

SA_MAN 3303500 9300000. 0 1409642
SA _REP 16819665.5 65489655.2 6676562. 55

SH_CLERK 4248650 5705500.0 3596039
ST_CLERK 3531545 3905500.0 4299084. 55
ST_MAN 2180460 4548000.0 1505915. 2
Syntax

D@D
Purpose

REMAI NDER returns the remainder of n2 divided by n1.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

5-146 Oracle Database SQL Reference

REPLACE

REPLACE

The MOD function is similar to REMAI NDER except that it uses FLOOR in its formula,
whereas REMAI NDER uses ROUND. Please refer to MOD on page 5-97.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

« Ifnl =0 orn2 = infinity, then Oracle returns
— An error if the arguments are of type NUVBER
— NaNif the arguments are Bl NARY_FLQOAT or Bl NARY_DOUBLE.
« Ifnl!=0, then the remainder is n2 - (n1*N) where Nis the integer nearest n2/n1.

« Ifn2is afloating-point number, and if the remainder is 0, then the sign of the
remainder is the sign of n2. Remainders of 0 are unsigned for NUVBER values.

Examples

Using table f | oat _poi nt _denm, created for the TO_BI NARY_DOUBLE "Examples" on
page 5-188, the following example divides two floating-point numbers and returns the
remainder of that operation;

SELECT bin_float, bin_double, REMAI NDER(bin_float, bin_double)
FROM f | oat _poi nt _deno;

BI N_FLOAT Bl N_ DOUBLE REMAI NDER(BI N_FLCAT, BI N_DOUBLE)

1. 235E+003 1. 235E+003 5. 859E- 005

Syntax

®
o ‘ search_string @-)

Purpose

REPLACE returns char with every occurrence of sear ch_st ri ng replaced with
repl acenent _string.Ifrepl acement _stri ng is omitted or null, then all
occurrences of sear ch_stri ng are removed. If sear ch_stri ng is null, then char
is returned.

Both search_stringandrepl acenent _string, aswell as char, can be any of
the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The string
returned is in the same character set as char . The function returns VARCHAR? if the
first argument is not a LOB and returns CLOB if the first argument is a LOB.

REPLACE provides functionality related to that provided by the TRANSLATE function.
TRANSLATE provides single-character, one-to-one substitution. REPLACE lets you
substitute one string for another as well as to remove character strings.

See Also: TRANSLATE on page 5-203

Examples
The following example replaces occurrences of J with BL:

Functions 5-147

ROUND (number)

SELECT REPLACE(' JACK and JUE' ,"J','BL") "Changes"
FROM DUAL,;

BLACK and BLUE

ROUND (number)

Syntax

round_number::=

integer
0 EN G,

Purpose

ROUND returns n rounded to i nt eger places to the right of the decimal point. If you
omiti nt eger, then n is rounded to 0 places. The argument i nt eger can be negative
to round off digits left of the decimal point.

n can be any numeric datatype or any nonnumeric datatype that can be implicitly
converted to a numeric datatype. The argument i nt eger must be an integer. If you
omiti nt eger, then the function returns the same datatype as the numeric datatype of
the argument. If you include i nt eger , then the function returns NUVBER

For NUMBER values, the value n is rounded away from 0 (for example, to x+1 when x.5
is positive and to x-1 when x.5 is negative). For Bl NARY_FLQOAT and Bl NARY_DOUBLE
values, the function rounds to the nearest even value. Please refer to the examples that
follow.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example rounds a number to one decimal point;

SELECT ROUND(15.193,1) "Round" FROM DUAL;

The following example rounds a number one digit to the left of the decimal point:
SELECT ROUND(15.193,-1) "Round" FROM DUAL;

The following examples illustrate the difference between rounding NUMBER and
floating-point number values. NUMBER values are rounded up (for positive values),
whereas floating-point numbers are rounded toward the nearest even value:

SELECT ROUND(1.5), ROUND(2.5) FROM DUAL;

5-148 Oracle Database SQL Reference

ROW_NUMBER

ROUND(1. 5) ROUNDY 2. 5)

SELECT ROUND(1.5f), ROUND(2.5f) FROM DUAL;

ROUND(1. 5F) ROUND(2. 5F)

2. 0E+000 2. 0E+000

ROUND (date)

Syntax

round_date::=

FERo@ L,

Purpose

ROUND returns dat e rounded to the unit specified by the format model f nt . The value
returned is always of datatype DATE, even if you specify a different datetime datatype
for dat e. If you omit f nt , then dat e is rounded to the nearest day. The dat e
expression must resolve to a DATE value.

See Also: "ROUND and TRUNC Date Functions" on page 5-234 for
the permitted format models to use in f mt

Examples
The following example rounds a date to the first day of the following year:

SELECT ROUND (TO DATE (' 27-CCT-00"),"' YEAR)
"New Year" FROM DUAL;

01- JAN-01

ROW_NUMBER

Syntax

query_partition_clause
ROW_NUMBER o o oVvER (¢ {order_by_clause)a(:)»

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

ROW NUMBER is an analytic function. It assigns a unique humber to each row to which
it is applied (either each row in the partition or each row returned by the query), in the
ordered sequence of rows specified in the or der _by_cl ause, beginning with 1.

Functions 5-149

ROWIDTOCHAR

By nesting a subquery using ROW NUMBER inside a query that retrieves the ROV
NUMBER values for a specified range, you can find a precise subset of rows from the
results of the inner query. This use of the function lets you implement top-N,
bottom-N, and inner-N reporting. For consistent results, the query must ensure a
deterministic sort order.

You cannot use ROW NUMBER or any other analytic function for expr . That is, you
cannot nest analytic functions, but you can use other built-in function expressions for
expr . Please refer to "About SQL Expressions” on page 6-1 for information on valid
forms of expr.

Examples

For each department in the sample table oe. enpl oyees, the following example
assigns numbers to each row in order of employee's hire date:

SELECT departnent _id, |ast_nane, enployee_id, RONNUMVBER()
OVER (PARTI TI ON BY department _id ORDER BY enpl oyee_id) AS enp_id
FROM enpl oyees;

DEPARTMENT _| D LAST_NAME EMPLOYEE_I D EMP_ID
10 Whal en 200 1
20 Hartstein 201 1
20 Fay 202 2
30 Raphael y 114 1
30 Khoo 115 2
30 Baida 116 3
30 Tobi as 117 4
30 Hnuro 118 5
30 Col nenares 119 6
40 Mavris 203 1

100 Popp 113 6
110 H ggi ns 205 1
110 Getz 206 2

ROW NUMBER is a nhondeterministic function. However, enpl oyee_i d is a unique key,
so the results of this application of the function are deterministic.

See Also: FIRST_VALUE on page 5-70 and LAST_VALUE on
page 5-83 for examples of nondeterministic behavior

The following inner-N query selects all rows from the enpl oyees table but returns
only the fifty-first through one-hundredth row:

SELECT | ast _nane FROM
(SELECT | ast_name, ROWNUMBER() OVER (ORDER BY | ast_name) R FROM enpl oyees)
WHERE R BETWEEN 51 and 100;

ROWIDTOCHAR

Syntax

[rowoT00m (DA

5-150 Oracle Database SQL Reference

RPAD

Purpose

ROW DTCOCHAR converts a rowid value to VARCHAR? datatype. The result of this
conversion is always 18 characters long.

Examples
The following example converts a rowid value in the enpl oyees table to a character
value. (Results vary for each build of the sample database.)

SELECT RON' D FROM enpl oyees
WHERE RON DTOCHAR(ROW D) LIKE ' %JAAB% ;

AAAFT | AAFAAAABSAAD

ROWIDTONCHAR

RPAD

Syntax
O@DQ

Purpose

ROW DTONCHAR converts a rowid value to NVARCHAR2 datatype. The result of this
conversion is always 18 characters long.

Examples
The following example converts a rowid value to an NVARCHAR? string:
SELECT LENGTHB(ROW DTCONCHAR(ROW D)), ROW DTONCHAR(ROW D)

FROM enpl oyees;

LENGTHB(ROW DTONCHAR(RO D)) ROW DTONCHAR(RON D

36 AAAFT | AAFAAAABSAAA

Syntax

.expr2
B OE00-L 2T g,

Purpose

RPAD returns expr 1, right-padded to length n characters with expr 2, replicated as
many times as necessary. This function is useful for formatting the output of a query.

Both expr 1 and expr 2 can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype if expr 1
is a character datatype and a LOB if expr 1 is a LOB datatype. The string returned is in
the same character set as expr 1. The argument n must be a NUMBER integer or a value
that can be implicitly converted to a NUVBER integer.

Functions 5-151

RTRIM

expr 1 cannot be null. If you do not specify expr 2, then it defaults to a single blank. If
expr 1 is longer than n, then this function returns the portion of expr 1 that fits in n.

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Examples

The following example creates a simple chart of salary amounts by padding a single
space with asterisks:

SELECT | ast_nane, RPAD(' ', salary/1000/1, '*') "Salary"
FROM enpl oyees
WHERE departnent _id = 80
ORDER BY | ast _nane;

LAST_NAVE Sal ary

Abel Kok ok ok kK kk kK
Ande kKK kK
Banda Kk ok ok ok

Bat es Kk kKKK
Bernstein KA KA KK
Bl oom *kkkkkkkk
Canbraul t Kk kkkkh Kk
Canbraul t KKKk K

Dor an Kok k kK K
Errazuriz KA KA KA KKK
Fox *kkk kKKK
G eene *kkkkKkk*k
Hal | Kok ok ok ok Kk K
Hut t on Kk kK kK
Johnson KR AR K

King *ok ok ok ok ok k kK
Syntax

o 22,

Purpose

RTRI Mremoves from the right end of char all of the characters that appear in set .
This function is useful for formatting the output of a query.

If you do not specify set , then it defaults to a single blank. If char is a character
literal, then you must enclose it in single quotes. RTRI Mworks similarly to LTRI M

Both char and set can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHARZ datatype if char is
a character datatype and a LOB if char is a LOB datatype.

See Also: LTRIM on page 5-91

5-152 Oracle Database SQL Reference

SCN_TO_TIMESTAMP

Examples
The following example trims all the right-most occurrences of period, slash, and equal
sign from a string:

SELECT RTRIM'BROMING ./=./=/=.[=[=.=","/=.") "RTR M exanpl " FROM DUAL;

RTRI M exam

SCN_TO_TIMESTAMP

Syntax
—] SCN_TO_TIMESTAMP |—>®a(number)—>@—>

Purpose

SCN_TO_TI MESTANP takes as an argument a number that evaluates to a system
change number (SCN), and returns the approximate timestamp associated with that
SCN. The returned value is of TI MESTAMP datatype. This function is useful any time
you want to know the timestamp associated with an SCN. For example, it can be used
in conjunction with the ORA_ROWSCN pseudocolumn to associate a timestamp with the
most recent change to a row.

See Also: ORA_ROWSCN Pseudocolumn on page 3-8 and
TIMESTAMP_TO_SCN on page 5-187

Examples

The following example uses the ORA_ROWSCN pseudocolumn to determine the system
change number of the last update to a row and uses SCN_TO_TI MESTAMP to convert
that SCN to a timestamp:

SELECT SCN_TO Tl MESTAMP(ORA_ROASCN) FROM enpl oyees
WHERE enpl oyee_id = 188;

You could use such a query to convert a system change number to a timestamp for use
in an Oracle Flashback Query:

SELECT sal ary FROM enpl oyees WHERE enpl oyee_id = 188;
SALARY

UPDATE enpl oyees SET sal ary = sal ary*10 WHERE enpl oyee_id = 188;
COWM T;

SELECT sal ary FROM enpl oyees WHERE enpl oyee_id = 188;
SALARY

SELECT SCN_TO_TI MESTAMP(ORA_ROASCN) FROM enpl oyees
WHERE enpl oyee_id = 188;
SCN_TO TI MESTAVP(ORA_ROWSCN)

28- AUG- 03 01. 58. 01. 000000000 PM

Functions 5-153

SESSIONTIMEZONE

FLASHBACK TABLE enpl oyees TO TI MESTAWP
TO_TI MESTAMP(" 28- AUG- 03 01. 00. 00. 000000000 PM);

SELECT sal ary FROM enpl oyees WHERE enpl oyee_id = 188;
SALARY

SESSIONTIMEZONE

Syntax

—>| SESSIONTIMEZONE |->

Purpose

SESSI ONTI MEZONE returns the time zone of the current session. The return type is a
time zone offset (a character type in the format' [+|] TZH: TZM) or a time zone
region name, depending on how the user specified the session time zone value in the
most recent ALTER SESSI ON statement.

Note: You can set the default client session time zone using the ORA _
SDTZ environment variable. Please refer to Oracle Database
Globalization Support Guide for more information on this variable.

Examples
The following example returns the time zone of the current session:

SELECT SESSI ONTI MEZONE FROM DUAL,;

SET

Syntax
—>| SET @{nested_table)@

Purpose

SET converts a nested table into a set by eliminating duplicates. The function returns a
nested table whose elements are distinct from one another. The returned nested table is
of the same type as the input nested table.

The element types of the nested table must be comparable. Please refer to "Comparison
Conditions" on page 7-4 for information on the comparability of nonscalar types.

Example

The following example selects from the cust oner s_deno table the unique elements
of the cust _addr ess_nt ab nested table column:

SELECT custoner_id, SET(cust_address_ntab) address
FROM cust oner s_deno;

5-154 Oracle Database SQL Reference

SIN

CUSTOVER_| D ADDRESS(STREET_ADDRESS, POSTAL_CCDE, CITY, STATE_PROVI NCE, COUNTRY_| D)

101 CUST ADDRESS TAB TYP(CUST ADDRESS TYP(

102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP(

103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP(' 8768 N State Rd 37', '47404', 'Bloonington', 'IN, 'US))
((
((

SIGN

SIN

104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS TYP|
105 CUST_ADDRESS_TAB_TYP(CUST ADDRESS TYP

'514 W Superior St', '46901', 'Kokomo', 'IN, 'US"))
' 2515 Bl oyd Ave', '46218', 'Indianapolis', "IN, 'US))

' 6445 Bay Harbor Ln', '46254', 'Indianapolis', "IN, 'US))
"4019 W3Rd St', '47404', 'Bloonmington', "IN, 'US))

The preceding example requires the table cust oner s_deno and a nested table
column containing data. Please refer to "Multiset Operators" on page 4-1 to create this
table and nested table column.

Syntax
0,0:0

Purpose

SI GNreturns the sign of n. This function takes as an argument any numeric datatype,
or any nonnumeric datatype that can be implicitly converted to NUMBER, and returns
NUMBER.

For value of NUMBER type, the sign is:

L[] '1 |fn<0
« 0ifn=0
« 1ifn>0

For binary floating-point numbers (Bl NARY_FLQOAT and Bl NARY_DOUBLE), this
function returns the sign bit of the number. The sign bit is:

L[] '1 |f n<0
« +1ifn>=0or n=NaN

Examples
The following example indicates that the argument of the function (- 15) is <O0:

SELECT SIGN(-15) "Sign" FROM DUAL;

Syntax
0,0:0

Purpose
SI Nreturns the sine of n (an angle expressed in radians).

Functions 5-155

SINH

SINH

SOUNDEX

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _
FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the sine of 30 degrees:
SELECT SIN(30 * 3. 14159265359/ 180)

"Sine of 30 degrees" FROM DUAL;

Sine of 30 degrees

Syntax
0,0:0

Purpose

S| NH returns the hyperbolic sine of n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY_

FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the hyperbolic sine of 1:

SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

1.17520119

Syntax
O

Purpose

SOUNDEX returns a character string containing the phonetic representation of char .
This function lets you compare words that are spelled differently, but sound alike in
English.

5-156 Oracle Database SQL Reference

SQRT

The phonetic representation is defined in The Art of Computer Programming, Volume 3:
Sorting and Searching, by Donald E. Knuth, as follows:

1. Retain the first letter of the string and remove all other occurrences of the
following letters: a, e, h, i, 0, u, w, y.

2. Assign numbers to the remaining letters (after the first) as follows:

3. Iftwo or more letters with the same number were adjacent in the original name
(before step 1), or adjacent except for any intervening h and w, then omit all but
the first.

4. Return the first four bytes padded with 0.

char can be of any of the datatypes CHAR, VARCHAR2, NCHAR, or N\VARCHAR2. The
return value is the same datatype as char .

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples

The following example returns the employees whose last names are a phonetic
representation of "Smyth":

SELECT | ast _nane, first_name
FROM hr . enpl oyees

VHERE SOUNDEX(| ast _nane)

= SOUNDEX(' SWTHE');

LAST_NAME FI RST_NAME

Snith Li ndsey
Smith W1 liam
SQRT
Syntax
0,0:0
Purpose

SQRT returns the square root of n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Functions 5-157

STATS_BINOMIAL_TEST

« Ifnresolves to a NUMBER, then the value n cannot be negative. SQRT returns a real
number.

« Ifnresolves to a binary floating-point number (Bl NARY_FLQOAT or Bl NARY_
DOUBLE):

— Ifn>=0, the result is positive.
— Ifn =-0, the result is -0.
— Ifn <0, the result is NaN.

Examples
The following example returns the square root of 26:

SELECT SQRT(26) "Square root" FROM DUAL;

Squar e root

5.09901951

STATS_BINOMIAL_TEST

Syntax
TWO_SIDED_PROB
I EXACT_PROB _

ONE_SIDED_PROB_OR_MORE

ONE_SIDED_PROB_OR_LESS

—>| STATS_BINOMIAL_TEST o ’ ’ P @
Purpose

STATS_BI NOM AL_TEST is an exact probability test used for dichotomous variables,
where only two possible values exist. It tests the difference between a sample
proportion and a given proportion. The sample size in such tests is usually small.

This function takes four arguments: expr 1 is the sample being examined. expr 2
contains the values for which the proportion is expected to be, and p is a proportion to
test against. The fourth argument is a return value of type VARCHARZ. If you omit the
fourth argument, the default is TWO_SI DED_PROB. The meaning of the return values is
shown in Table 5-3.

Table 5-3 STATS_BINOMIAL Return Values

Return Value Meaning

TWO_SI DED _PROB The probability that the given population proportion, p,
could result in the observed proportion or a more extreme
one.

EXACT_PROB The probability that the given population proportion, p,

could result in exactly the observed proportion.

ONE_SI DED_PROB_OR_MORE The probability that the given population proportion, p,
could result in the observed proportion or a larger one.

ONE_SI DED_PROB_OR_LESS The probability that the given population proportion, p,
could result in the observed proportion or a smaller one.

5-158 Oracle Database SQL Reference

STATS_CROSSTAB

EXACT_PROB gives the probability of getting exactly proportion p. In cases where you
want to test whether the proportion found in the sample is significantly different from
a 50-50 split, p would normally be 0.50. If you want to test only whether the
proportion is different, then use the return value TWO_SI DED_PROB. If your test is
whether the proportion is more than the value of expr 2, then use the return value
ONE_SI DED_PROB_OR_MORE. If the test is to determine whether the proportion of
expr 2 is less, then use the return value ONE_SI DED _PROB_OR_LESS.

STATS_BINOMIAL_TEST Example The following example determines the probability
that reality exactly matches the number of men observed under the assumption that
69% of the population is composed of men:

SELECT AVG DECODE(cust _gender, "M, 1, 0)) real _proportion,
STATS_BI NOM AL_TEST
(cust _gender, 'M, 0.68, 'EXACT_PROB') exact,
STATS _BI NOM AL_TEST
(cust _gender, 'M, 0.68, 'ONE_SIDED PROB OR LESS') prob_or_Iess
FROM sh. cust oners;

STATS_CROSSTAB

Syntax

-| CONT_COEFFICIENT |-

_COHENS_K
olcplelCE 0%

Purpose

Crosstabulation (commonly called crosstab) is a method used to analyze two nominal
variables. The STATS CROSSTAB function takes three arguments: two expressions and
a return value of type VARCHAR2. expr 1 and expr 2 are the two variables being
analyzed. The function returns one number, determined by the value of the third
argument. If you omit the third argument, the default is CHl SQ_SI G The meaning of
the return values is shown in Table 5-4.

Table 5-4 STATS_CROSSTAB Return Values

Return Value Meaning

CHI SQ _OBS Observed value of chi-squared

CH SQ SI G Significance of observed chi-squared
CHI SQ DF Degree of freedom for chi-squared
PHI _COEFFI CI ENT Phi coefficient

CRAMERS_V Cramer's V statistic

CONT_COEFFI ClI ENT Contingency coefficient

Functions 5-159

STATS_F_TEST

Table 5-4 (Cont.) STATS_CROSSTAB Return Values

Return Value Meaning

COHENS_K Cohen's kappa

STATS_CROSSTAB Example The following example determines the strength of the
association between gender and income level:

SELECT STATS_CROSSTAB
(cust _gender, cust_income_|evel, 'CH SQ OBS') chi_squared,
STATS_CRCSSTAB
(cust _gender, cust_income_|level, 'CH SQSIG) p_val ue,
STATS_CROSSTAB
(cust _gender, cust_income_|evel, 'PH _COEFFICIENT') phi _coefficient
FROM sh. cust oner s;

CH _SQUARED P_VALUE PH _COEFFI CI ENT

251. 690705 1. 2364E-47 . 067367056

STATS F TEST

Syntax

STATISTIC

ONE_SIDED_SIG

TWO_SIDED_SIG

[ss Fest H(D DA o

Purpose
STATS_F_TEST tests whether two variances are significantly different. The observed

value of f is the ratio of one variance to the other, so values very different from 1
usually indicate significant differences.

This function takes three arguments: expr 1 is the grouping or independent variable
and expr 2 is the sample of values. The function returns one number, determined by
the value of the third argument. If you omit the third argument, the default is TWO _
S| DED_SI G The meaning of the return values is shown in Table 5-5.

Table 5-5 STATS_F_TEST Return Values

Return Value Meaning

STATI STI C The observed value of f

DF_NUM Degree of freedom for the numerator
DF_DEN Degree of freedom for the denominator
ONE_SI DED SI G One-tailed significance of f

TWO SIDED SIG Two-tailed significance of

5-160 Oracle Database SQL Reference

STATS_KS_TEST

The observed value of f is the ratio of the variance of one group to the variance of the
second group. The significance of the observed value of f is the probability that the
variances are different just by chance--a number between 0 and 1. A small value for the
significance indicates that the variances are significantly different. The degree of
freedom for each of the variances is the number of observations in the sample minus 1.

STATS_F_TEST Example The following example determines whether the variance in
credit limit between men and women is significantly different. The results, a p_value
not close to zero, and an f_statistic close to 1, indicate that the difference between
credit limits for men and women are not significant.

SELECT VARI ANCE(DECODE(cust _gender, 'M, cust _credit _linmit, null)) var_nen,
VARI ANCE(DECODE(cust _gender, 'F', cust_credit_limt, null)) var_wonen,
STATS_F_TEST(cust _gender, cust_credit_limt, 'STATISTIC) f_statistic,
STATS_F_TEST(cust _gender, cust_credit_limt) two_sided_p_val ue

FROM sh. cust oners;

VAR MEN VAR WOVEN F_STATI STI C TWO_SI DED_P_VALUE

12879896.7 13046865 1.01296348 . 311928071

STATS_KS_TEST

Syntax

STATISTIC

[Srs rs Test (DA DA 0}

Purpose

STATS_KS_ TEST is a Kolmogorov-Smirnov function that compares two samples to
test whether they are from the same population or from populations that have the
same distribution. It does not assume that the population from which the samples
were taken is normally distributed.

This function takes three arguments: two expressions and a return value of type
VARCHARZ. expr 1 classifies the data into the two samples. expr 2 contains the values
for each of the samples. If expr 1 classifies the rows into only one sample or into more
than two samples, then an error is raised.The function returns one value determined
by the third argument. If you omit the third argument, then the default is SI G The
meaning of the return values is shown in Table 5-6.

Table 5-6 STATS_KS_TEST Return Values

Return Value Meaning
STATI STIC Observed value of D
SIG Significance of D

STATS_KS _TEST Example Using the Kolmogorov Smirnov test, the following
example determines whether the distribution of sales between men and women is due
to chance:

SELECT stats_ks_test(cust_gender, ampunt_sold, 'STATISTIC) ks_statistic,
stats_ks_test(cust_gender, anount_sold) p_val ue

Functions 5-161

STATS_MODE

FROM sh. custoners ¢, sh.sales s
WHERE c.cust _id = s.cust_id;

KS_STATI STIC P_VALUE

. 003841396 . 004080006

STATS_MODE

Syntax
OEO

Purpose

STATS_MODE takes as its argument a set of values and returns the value that occurs
with the greatest frequency. If more than one mode exists, Oracle Database chooses
one and returns only that one value.

To obtain multiple modes (if multiple modes exist), you must use a combination of
other functions, as shown in the hypothetical query:

SELECT x FROM (SELECT x, COUNT(x) AS cnt1
FROMt GROUP BY x)
WHERE cnt1 =
(SELECT MAX(cnt2) FROM (SELECT COUNT(X) AS cnt2 FROMt GROUP BY X))

Examples
The following example returns the mode of salary per department in the
hr . enpl oyees table:

SELECT departnent _id, STATS MXDE(sal ary) FROM enpl oyees
CGROUP BY departnent _id;

DEPARTMENT | D STATS_MODE(SALARY)

10 4400

20 6000

30 2500

40 6500

50 2500

60 4800

70 10000

80 9500

90 17000

100 6900
110 8300
7000

If you need to retrieve all of the modes (in cases with multiple modes), you can do so
using a combination of other functions, as shown in the next example:

SELECT commi ssion_pct FROM
(SELECT commi ssion_pct, COUNT(conmi ssion_pct) AS cntl FROM enpl oyees
GROUP BY commi ssion_pct)
VWHERE cntl =
(SELECT MAX (cnt2) FROM
(SELECT COUNT(conmi ssion_pct) AS cnt2

5-162 Oracle Database SQL Reference

STATS_MW_TEST

FROM enpl oyees GROUP BY commi ssi on_pct));

STATS_MW_TEST

Syntax

|

olclelCE

Purpose

A Mann Whitney test compares two independent samples to test the null hypothesis
that two populations have the same distribution function against the alternative
hypothesis that the two distribution functions are different.

Ox

The STATS_MWV TEST does not assume that the differences between the samples are
normally distributed, as do the STATS_T_TEST_* functions. This function takes three
arguments and a return value of type VARCHAR2. expr 1 classifies the data into
groups. expr 2 contains the values for each of the groups. The function returns one
value, determined by the third argument. If you omit the third argument, the default is
TWO_SI DED_SI G The meaning of the return values is shown in the table that follows.

Table 5-7 STATS_MW_TEST Return Values

Return Value Meaning

STATI STI C The observed value of Z
U_STATI STI C The observed value of U
ONE_SI DED_SI G One-tailed significance of Z
TWO_SI DED_SI G Two-tailed significance of Z

STATS_MW TEST computes the probability that the samples are from the same
distribution by checking the differences in the sums of the ranks of the values. If the
samples come from the same distribution, then the sums should be close in value.

STATS_MW_TEST Example Using the Mann Whitney test, the following example
determines whether the distribution of sales between men and women is due to
chance:

SELECT STATS MW TEST
(cust _gender, amount_sold, 'STATISTIC) z_statistic,
STATS MW TEST
(cust _gender, amount_sold, 'ONE_SIDED SIG) one_sided_p_val ue
FROM sh. custonmers ¢, sh.sales s
VWHERE c. cust _id = s.cust_id,;

Z_STATI STI C ONE_SI DED_P_VALUE

Functions 5-163

STATS_ONE_WAY_ANOVA

-1.4011509 . 080584471

STATS_ONE_WAY_ANOVA

Syntax

4 SUM_SQUARES_BETWEEN |—\

—| SUM_SQUARES_WITHIN |—

DF_BETWEEN
DF_WITHIN

-| MEAN_SQUARES_BETWEEN |_

-| MEAN_SQUARES_WITHIN |—

SIG

—{ STATS_ONE_WAY_ANOVA @_)

Purpose

The one-way analysis of variance function (STATS_ONE_WAY_ANOVA) tests differences
in means (for groups or variables) for statistical significance by comparing two
different estimates of variance. One estimate is based on the variances within each
group or category. This is known as the mean squares within or mean square error.
The other estimate is based on the variances among the means of the groups. This is
known as the mean squares between. If the means of the groups are significantly
different, then the mean squares between will be larger than expected and will not
match the mean squares within. If the mean squares of the groups are consistent, then
the two variance estimates will be about the same.

STATS_ONE_WAY_ANOVA takes three arguments: two expressions and a return value
of type VARCHAR2. expr 1 is an independent or grouping variable that divides the
data into a set of groups. expr 2 is a dependent variable (a numeric expression)
containing the values corresponding to each member of a group. The function returns
one number, determined by the value of the third argument. If you omit the third
argument, the default is SI G The meaning of the return values is shown in Table 5-8.

Table 5-8 STATS_ONE_WAY_ANOVA Return Values

Return Value Meaning

SUM_SQUARES BETEEN Sum of squares between groups

SUM_SQUARES W THI N Sum of squares within groups

DF_BETWEEN Degree of freedom between groups

DF_W THI N Degree of freedom within groups

VEAN_SQUARES BETWEEN Mean squares between groups

VEAN_SQUARES W THI N Mean squares within groups

F_RATI O Ratio of the mean squares between to the mean squares within
(MSB/MSW)
SI G Significance

5-164 Oracle Database SQL Reference

STATS_T_TEST_*

The significance of one-way analysis of variance is determined by obtaining the
one-tailed significance of an f-test on the ratio of the mean squares between and the
mean squares within. The f-test should use one-tailed significance, because the mean
squares between can be only equal to or larger than the mean squares within.
Therefore, the significance returned by STATS ONE_WAY_ANOVA is the probability
that the differences between the groups happened by chance--a number between 0 and
1. The smaller the number, the greater the significance of the difference between the
groups. Please refer to the STATS_F_TEST on page 5-160 for information on
performing an f-test.

STATS_ONE_WAY_ANOVA Example The following example determines the
significance of the differences in mean sales within an income level and differences in
mean sales between income levels. The results, p_values close to zero, indicate that, for
both men and women, the difference in the amount of goods sold across different
income levels is significant.

SELECT cust _gender,
STATS_ONE_WAY_ANOVA(cust _incone_l evel, amount_sold, 'F RATIO) f _ratio,
STATS_ONE_WAY_ANOVA(cust _i ncone_l evel, amount_sold, 'SIG) p_val ue
FROM sh. custoners ¢, sh.sales s
WHERE c.cust_id = s.cust_id
GROUP BY cust_gender;

C F.RATIO P VALUE

M 9.2865001 6.7139E-17

STATS T TEST *
The t-test functions are:
« STATS T _TEST_ONE: A one-sample t-test

« STATS T_TEST_PAI RED: A two-sample, paired t-test (also known as a crossed
t-test)

« STATS T_TEST_| NDEP: A t-test of two independent groups with the same
variance (pooled variances)

« STATS T_TEST_I| NDEPU: A t-test of two independent groups with unequal
variance (unpooled variances)

Syntax

stats_t_test::=

STATS_T_TEST_INDEP

STATS_T_TEST_INDEPU

STATS_T_TEST ONE

STATS_T_TEST_PAIRED

Functions 5-165

STATS_T_TEST_ONE

Purpose

The t-test measures the significance of a difference of means. You can use it to compare
the means of two groups or the means of one group with a constant. The STATS T_
TEST_* functions take three arguments: two expressions and a return value of type
VARCHAR2. The functions return one number, determined by the value of the third
argument. If you omit the third argument, the default is TWD_SI DED_SI G. The
meaning of the return values is shown in Table 5-9.

Table 5-9 STATS_T_TEST_* Return Values

Return Value Meaning

STATI STI C The observed value of t

DF Degree of freedom

ONE_SI DED SI G One-tailed significance of t
TWO SI DED SI G Two-tailed significance of t

The significance of the observed value of t is the probability that the value of t would
have been obtained by chance--a number between 0 and 1. The smaller the value, the
more significant the difference between the means.

The degree of freedom depends on the type of t-test that resulted in the observed
value of t. For example, for a one-sample t-test (STATS_T_TEST_ONE), the degree of
freedom is the number of observations in the sample minus 1.

STATS_T_TEST ONE

In the STATS_T_TEST_ONE function, expr 1 is the sample and expr 2 is the constant
mean against which the sample mean is compared. This function obtains the value of t
by dividing the difference between the sample mean and the known mean by the
standard error of the mean (rather than the standard error of the difference of the
means, as for STATS_T_TEST_PAI RED).

STATS_T_TEST_ONE Example The following example determines the significance of
the difference between the average list price and the constant value 60:

SELECT AVG prod_list_price) group_nean,
STATS T_TEST_ONE(prod_list_price, 60, 'STATISTIC) t_observed,
STATS T_TEST_ONE(prod_list_price, 60) two_sided_p_val ue
FROM sh. product s;

GROUP_NMEAN T_OBSERVED TWO S| DED_P_VALUE

139. 545556 2. 32107746 . 023158537

STATS_T_TEST PAIRED

In the STATS T_TEST_PAI RED function, expr 1 and expr 2 are the two samples
whose means are being compared. This function obtains the value of t by dividing the
difference between the sample means by the standard error of the difference of the
means (rather than the standard error of the mean, as for STATS T _TEST_ONE).

STATS_T_TEST INDEP and STATS_T_TEST_INDEPU

In the STATS_T_TEST_| NDEP and STATS_T_TEST_| NDEPU functions, expr 1 is the
grouping column and expr 2 is the sample of values. The pooled variances version

5-166 Oracle Database SQL Reference

STATS_T_TEST_*

(STATS_T_TEST_| NDEP) tests whether the means are the same or different for two
distributions that have similar variances. The unpooled variances version (STATS T_
TEST_| NDEPU) tests whether the means are the same or different even if the two
distributions are known to have significantly different variances.

Before using these functions, it is advisable to determine whether the variances of the
samples are significantly different. If they are, then the data may come from
distributions with different shapes, and the difference of the means may not be very
useful. You can perform an f-test to determine the difference of the variances. If they
are not significantly different, use STATS T_TEST | NDEP. If they are significantly
different, use STATS T_TEST | NDEPU. Please refer to STATS_F_TEST on page 5-160
for information on performing an f-test.

STATS T _TEST_INDEP Example The following example determines the significance
of the difference between the average sales to men and women where the distributions
are assumed to have similar (pooled) variances:

SELECT SUBSTR(cust _incorme_l evel, 1, 22) incone_level,

AVQ DECODE(cust _gender, 'M, anount_sold, null)) sold_to_nen,
AVQE DECODE(cust _gender, 'F', anount_sold, null)) sold_to_wonen,
STATS_T_TEST_| NDEP(cust _gender, ampunt_sol d, ' STATISTIC) t_observed,
STATS_T_TEST_| NDEP(cust _gender, amount _sol d) two_si ded_p_val ue

FROM sh. custoners ¢, sh.sales s

VWHERE c.cust_id = s.cust_id

CGROUP BY ROLLUP(cust _income_| evel);

| NCOVE_LEVEL SOLD_TO MEN SOLD TO WOVEN T_OBSERVED TWO S| DED P_VALUE
A Bel ow 30, 000 105.28349 99.4281447 -1. 9880629 . 046811482
B: 30,000 - 49,999 102.59651 109.829642 3.04330875 . 002341053
C 50,000 - 69,999 105.627588 110.127931 2. 36148671 . 018204221
D 70,000 - 89, 999 106. 630299 110. 47287 2. 28496443 . 022316997
E: 90,000 - 109, 999 103.396741 101.610416 - 1. 2544577 . 209677823
F: 110,000 - 129, 999 106.76476 105.981312 -. 60444998 . 545545304
G 130,000 - 149,999 108. 877532 107. 31377 -. 85298245 . 393671218
H 150,000 - 169,999 110.987258 107.152191 -1.9062363 . 056622983
I: 170,000 - 189,999 102. 808238 107. 43556 2. 18477851 . 028908566
J: 190,000 - 249,999 108.040564 115.343356 2.58313425 . 009794516
K: 250,000 - 299,999 112.377993 108.196097 - 1.4107871 . 158316973
L: 300,000 and above 120.970235 112.216342 -2.0642868 . 039003862

107. 121845 113. 80441 . 686144393 . 492670059

106. 663769 107.276386 1. 08013499 . 280082357

14 rows sel ected.

STATS T _TEST_INDEPU Example The following example determines the
significance of the difference between the average sales to men and women where the
distributions are known to have significantly different (unpooled) variances:

SELECT SUBSTR(cust _i ncome_| evel, 1, 22) incone_|level,

AVQ@ DECODE(cust _gender, 'M, anount_sold, null)) sold_to_nen,
AVQ DECODE(cust _gender, 'F', anount_sold, null)) sold_to wonen,
STATS_T_TEST_| NDEPU(cust _gender, anount_sol d, ' STATISTIC) t_observed,
STATS_T_TEST_| NDEPU(cust _gender, anmount_sol d) two_sided_p_val ue

FROM sh. custoners ¢, sh.sales s

WHERE c.cust _id = s.cust_id

GROUP BY ROLLUP(cust _income_| evel);

~— —

| NCOVE_LEVEL SOLD_TO MEN SOLD TO WOVEN T_OBSERVED TWO S| DED P_VALUE

Functions 5-167

STATS_WSR_TEST

A Bel ow 30, 000 105. 28349 99. 4281447 -2. 0542592 . 039964704
B: 30,000 - 49,999 102. 59651 109. 829642 2.96922332 . 002987742
C. 50,000 - 69,999 105. 627588 110. 127931 2. 3496854 . 018792277
D: 70,000 - 89,999 106. 630299 110. 47287 2. 26839281 . 023307831
E: 90,000 - 109,999 103. 396741 101. 610416 -1. 2603509 . 207545662
F: 110,000 - 129,999 106. 76476 105. 981312 -. 60580011 . 544648553
G 130,000 - 149,999 108. 877532 107. 31377 -. 85219781 . 394107755
H 150,000 - 169, 999 110. 987258 107. 152191 -1.9451486 . 051762624
I: 170,000 - 189,999 102. 808238 107. 43556 2. 14966921 . 031587875
J: 190,000 - 249,999 108. 040564 115. 343356 2.54749867 . 010854966
K: 250,000 - 299, 999 112. 377993 108. 196097 -1.4115514 . 158091676
L: 300,000 and above 120. 970235 112. 216342 -2.0726194 . 038225611

107. 121845 113. 80441 . 689462437 . 490595765

106. 663769 107. 276386 1.07853782 . 280794207

14 rows sel ected.

STATS_WSR_TEST

Syntax

STATISTIC
I ONE_SIDED_SIG l
l TWO_SIDED_SIG '

Bl 0GR 0L Gz o

Purpose

STATS _WSR _TEST is a Wilcoxon Signed Ranks test of paired samples to determine
whether the median of the differences between the samples is significantly different
from zero. The absolute values of the differences are ordered and assigned ranks. Then
the null hypothesis states that the sum of the ranks of the positive differences is equal
to the sum of the ranks of the negative differences.

This function takes three arguments: expr 1 and expr 2 are the two samples being
analyzed, and the third argument is a return value of type VARCHAR2. If you omit the
third argument, the default is TWO_SI DED_SI G The meaning of the return values is
shown in Table 5-10.

Table 5-10 STATS WSR_TEST_ * Return Values

Return Value Meaning

STATI STIC The observed value of Z
ONE_SI DED_SI G One-tailed significance of Z
TWO SIDED SIG Two-tailed significance of Z

5-168 Oracle Database SQL Reference

STDDEV

STDDEV

Syntax

DISTINCT

/el OVER P@{analytic_clausem
< DO

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

STDDEV returns the sample standard deviation of expr, a set of numbers. You can use
it as both an aggregate and analytic function. It differs from STDDEV_SAMP in that
STDDEV returns zero when it has only 1 row of input data, whereas STDDEV_SAMP
returns null.

Oracle Database calculates the standard deviation as the square root of the variance
defined for the VARI ANCE aggregate function.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

If you specify DI STI NCT, then you can specify only the query_partition_cl ause
of theanal yti c_cl ause. Theorder by cl ause andw ndow ng_cl ause are not
allowed.

See Also:

« "Aggregate Functions" on page 5-8, VARIANCE on page 5-215,
and STDDEV_SAMP on page 5-171

« "About SQL Expressions" on page 6-1 for information on valid
forms of expr

Aggregate Examples
The following example returns the standard deviation of the salaries in the sample
hr . enpl oyees table:

SELECT STDDEV(sal ary) "Deviation"
FROM enpl oyees;

Devi ation

3909. 36575

Analytic Examples

The query in the following example returns the cumulative standard deviation of the
salaries in Department 80 in the sample table hr . enpl oyees, ordered by hire_
dat e:

SELECT | ast _nane, salary,
STDDEV(sal ary) OVER (ORDER BY hire_date) "StdDev"

Functions 5-169

STDDEV_POP

FROM enpl oyees
WHERE departnent _id = 30;

LAST_NAME SALARY St dDev
Raphael y 11000 0
Khoo 3100 5586. 14357
Tobi as 2800 4650. 0896
Bai da 2900 4035. 26125
H nmuro 2600 3649. 2465
Col nenar es 2500 3362. 58829
STDDEV_POP
Syntax

EER OGS0

See Also: "Analytic Functions” on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

STDDEV_POP computes the population standard deviation and returns the square root
of the population variance. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

This function is the same as the square root of the VAR_POP function. When VAR _POP
returns null, this function returns null.

See Also:

« "Aggregate Functions" on page 5-8 and VAR_POP on page 5-213

« "About SQL Expressions" on page 6-1 for information on valid
forms of expr

Aggregate Example
The following example returns the population and sample standard deviations of the
amount of sales in the sample table sh. sal es:

SELECT STDDEV_POP(anount _sol d) "Pop",
STDDEV_SAMP(anpunt _sol d) " Sanp"
FROM sal es;

896. 355151 896. 355592

5-170 Oracle Database SQL Reference

STDDEV_SAMP

Analytic Example

The following example returns the population standard deviations of salaries in the
sample hr . enpl oyees table by department:

SELECT department _id, last_nane, salary,
STDDEV_POP(sal ary) OVER (PARTI TI ON BY departnent _id) AS pop_std
FROM enpl oyees;

DEPARTMENT_| D LAST_NAMVE SALARY POP_STD
10 Whal en 4400 0
20 Hartstein 13000 3500
20 Coyal 6000 3500
100 Sciarra 7700 1644.18166
100 Urman 7800 1644.18166
100 Popp 6900 1644.18166
110 Hi ggens 12000 1850
110 Getz 8300 1850

STDDEV_SAMP

Syntax

[—>| OVER F@»{analytic_clausem
STDDEV_SAMP o)

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

STDDEV_SAMP computes the cumulative sample standard deviation and returns the
square root of the sample variance. You can use it as both an aggregate and analytic
function.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

This function is same as the square root of the VAR_SAMP function. When VAR _SAMP
returns null, this function returns null.

See Also:
« "Aggregate Functions" on page 5-8 and VAR_SAMP on page 5-215

« "About SQL Expressions" on page 6-1 for information on valid
forms of expr

Aggregate Example
Please refer to the aggregate example for STDDEV_POP on page 5-170.

Functions 5-171

SUBSTR

SUBSTR

Analytic Example

The following example returns the sample standard deviation of salaries in the
enpl oyees table by department:

SELECT departnent _id, last_nane, hire_date, salary,
STDDEV_SAMP(sal ary) OVER (PARTI TI ON BY departnent_id
ORDER BY hire_date
ROWS BETWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW AS cum sdev
FROM enpl oyees;

DEPARTMENT_| D LAST_NAME H RE_DATE SALARY CUM SDEV
10 Whal en 17- SEP- 87 4400
20 Hartstein 17- FEB- 96 13000
20 Goyal 17- AUG 97 6000 4949. 74747
30 Raphael y 07- DEC- 94 11000
30 Khoo 18- MAY- 95 3100 5586. 14357
30 Tobi as 24-JUL- 97 2800 4650. 0896
30 Baida 24- DEC- 97 2900 4035. 26125
100 Chen 28- SEP- 97 8200 2003. 33056
100 Sciarra 30- SEP- 97 7700 1925. 91969
100 Urman 07- MAR- 98 7800 1785. 49713
100 Popp 07- DEC- 99 6900 1801. 11077
110 Hi ggens 07- JUN- 94 12000
110 Getz 07- JUN- 94 8300 2616. 29509

Syntax

substr::=

Purpose

The SUBSTR functions return a portion of char , beginning at character posi ti on,
subst ri ng_I engt h characters long. SUBSTR calculates lengths using characters as
defined by the input character set. SUBSTRB uses bytes instead of characters. SUBSTRC
uses Unicode complete characters. SUBSTR2 uses UCS2 code points. SUBSTR4 uses
UCS4 code points.

° substring_length

position

« IfpositionisO,thenitis treated as 1.

« Ifposition is positive, then Oracle Database counts from the beginning of char
to find the first character.

« Ifposi tion is negative, then Oracle counts backward from the end of char .

« Ifsubstring_| engt h is omitted, then Oracle returns all characters to the end of
char . If substring_| engt his less than 1, then Oracle returns null.

5-172 Oracle Database SQL Reference

SUM

SUM

char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. Both posi ti on and substri ng_| engt h must be of datatype NUVBER, or
any datatype that can be implicitly converted to NUMBER, and must resolve to an
integer. The return value is the same datatype as char . Floating-point numbers passed
as arguments to SUBSTR are automatically converted to integers.

See Also: Oracle Database Globalization Support Guide for more
information about SUBSTR functions and length semantics in different
locales

Examples
The following example returns several specified substrings of "ABCDEFG":

SELECT SUBSTR(' ABCDEFG , 3,4) "Substring"
FROM DUAL;

Substring

SELECT SUBSTR(' ABCDEFG , -5, 4) "Substring"
FROM DUAL;

Substring

Assume a double-byte database character set:

SELECT SUBSTRB(' ABCDEFG ,5,4.2) "Substring with bytes"
FROM DUAL;

Substring with bytes

Syntax

| DISTINCT I
ALL

OVER F@»{analytic_clause}%
(expr ()) ﬂ

See Also: "Analytic Functions” on page 5-9 for information on
syntax, semantics, and restrictions

suM (¢

Purpose
SUMreturns the sum of values of expr . You can use it as an aggregate or analytic
function.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

Functions 5-173

SUM

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

If you specify DI STI NCT, then you can specify only the query_partiti on_cl ause
of theanal yti c_cl ause. Theorder by cl ause andw ndow ng_cl ause are not
allowed.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example

The following example calculates the sum of all salaries in the sample hr . enpl oyees
table:

SELECT SUM sal ary) "Total"
FROM enpl oyees;

691400

Analytic Example

The following example calculates, for each manager in the sample table

hr . enpl oyees, a cumulative total of salaries of employees who answer to that
manager that are equal to or less than the current salary. You can see that Raphaely
and Cambrault have the same cumulative total. This is because Raphaely and
Cambrault have the identical salaries, so Oracle Database adds together their salary
values and applies the same cumulative total to both rows.

SELECT manager _id, |ast_nane, salary,
SUM sal ary) OVER (PARTI TI ON BY manager _i d ORDER BY sal ary
RANGE UNBOUNDED PRECEDI NG | _csum

FROM enpl oyees;

MANAGER_| D LAST_NAME SALARY L_CSum
100 Mourgos 5800 5800
100 Vol | man 6500 12300
100 Kaufling 7900 20200
100 Weiss 8000 28200
100 Fripp 8200 36400
100 Zl ot key 10500 46900
100 Raphael y 11000 68900
100 Canbraul t 11000 68900
100 Errazuriz 12000 80900
149 Tayl or 8600 30200
149 Hutton 8800 39000
149 Abel 11000 50000
201 Fay 6000 6000
205 Getz 8300 8300

Ki ng 24000 24000

5-174 Oracle Database SQL Reference

SYS_CONTEXT

SYS_CONNECT BY_PATH

Syntax
—] SYS_CONNECT_BY_PATH |e@—><column
Purpose

SYS CONNECT_BY_PATHis valid only in hierarchical queries. It returns the path of a
column value from root to node, with column values separated by char for each row
returned by CONNECT BY condition.

Both col umm and char can be any of the datatypes CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. The string returned is of VARCHAR2 datatype and is in the same character
setas col umm.

See Also: "Hierarchical Queries" on page 9-2 for more information
about hierarchical queries and CONNECT BY conditions

Examples

The following example returns the path of employee names from employee Kochhar
to all employees of Kochhar (and their employees):

SELECT LPAD("' ', 2*level-1)||SYS_CONNECT_BY_PATH(I| ast_nane, '/') "Path"
FROM enpl oyees
START WTH | ast _name = ' Kochhar'
CONNECT BY PRI OR enpl oyee_id = manager _i d;

/ Kochhar

/ Kochhar/ Gr eenberg
| Kochhar/ G- eenber g/ Favi et
/ Kochhar / G- eenber g/ Chen
/ Kochhar/ Greenber g/ Sci arra
/ Kochhar / Gr eenber g/ Ur man
/ Kochhar / G- eenber g/ Popp

/ Kochhar / Whal en

/ Kochhar/ Mavri s

| Kochhar / Baer

/ Kochhar/ Hi ggi ns
/ Kochhar/ Hi ggins/ G etz

SYS_CONTEXT

Syntax

O
EREIE 010 G 101010 i 0%

Purpose

SYS_CONTEXT returns the value of par anmet er associated with the context
namespace. You can use this function in both SQL and PL/SQL statements.

For nanmespace and par anet er, you can specify either a string or an expression that
resolves to a string designating a namespace or an attribute. The context nanmespace

Functions 5-175

SYS_CONTEXT

must already have been created, and the associated par armet er and its value must
also have been set using the DBMS_SESSI ON.set _cont ext procedure. The
nanmespace must be a valid SQL identifier. The par amet er name can be any string. It
is not case sensitive, but it cannot exceed 30 bytes in length.

The datatype of the return value is VARCHAR2. The default maximum size of the return
value is 256 bytes. You can override this default by specifying the optional | engt h
parameter, which must be a NUMBER or a value that can be implicitly converted to
NUMBER. The valid range of values is 1 to 4000 bytes. If you specify an invalid value,
then Oracle Database ignores it and uses the default.

Oracle provides a built-in namespace called USERENV, which describes the current
session. The predefined parameters of namespace USERENV are listed in Table 5-11 on
page 5-177.

See Also:

« Oracle Database Application Developer's Guide - Fundamentals for
information on using the application context feature in your
application development

« CREATE CONTEXT on page 14-9 for information on creating
user-defined context namespaces

» Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_SESSI ON.set _cont ext procedure

Examples
The following statement returns the name of the user who logged onto the database:
CONNECT OH CE
SELECT SYS_CONTEXT (' USERENV', ' SESSI ON_USER)
FROM DUAL;

SYS_CONTEXT (' USERENV' , ' SESSI ON_USER')

The following hypothetical example returns the group number that was set as the
value for the attribute gr oup_no in the PL/SQL package that was associated with the
context hr _apps when hr _apps was created:

SELECT SYS_CONTEXT (' hr_apps', 'group_no') "User G oup"
FROM DUAL;

5-176 Oracle Database SQL Reference

SYS_CONTEXT

Table 5-11 Predefined Parameters of Namespace USERENV

Parameter

Return Value

ACTI ON

Identifies the position in the module (application name) and is set through the
DBMS_APPLI CATI ON_I NFOpackage or OCI.

AUDI TED_CURSORI D

Returns the cursor ID of the SQL that triggered the audit. This parameter is not
valid in a fine-grained auditing environment. If you specify it in such an
environment, Oracle Database always returns NULL.

AUTHENTI CATED _
I DENTI TY

Returns the identity used in authentication. In the list that follows, the type of user
is followed by the value returned:

« Kerberos-authenticated enterprise user: kerberos principal name

« Kerberos-authenticated external user : kerberos principal name; same as the
schema name

« SSL-authenticated enterprise user: the DN in the user’s PKI certificate
= SSL-authenticated external user: the DN in the user's PKI certificate
« Password-authenticated enterprise user: nickname; same as the login name

. Password-authenticated database user: the database username; same as the
schema name

« OS-authenticated external user: the external operating system user name
« Radius/DCE-authenticated external user: the schema name

« Proxy with DN : Oracle Internet Directory DN of the client

« Proxy with certificate: certificate DN of the client

« Proxy with username: database user name if client is a local database user;
nickname if client is an enterprise user.

« SYSDBA/SYSOPER using Password File: login name
« SYSDBA/SYSOPER using OS authentication: operating system user name

AUTHENTI CATI ON_DATA

Data being used to authenticate the login user. For X.503 certificate authenticated
sessions, this field returns the context of the certificate in HEX2 format.

Note: You can change the return value of the AUTHENTI CATI ON_DATA attribute
using the | engt h parameter of the syntax. Values of up to 4000 are accepted. This is
the only attribute of USERENV for which Oracle Database implements such a change.

AUTHENTI CATI ON_

Returns the method of authentication. In the list that follows, the type of user is

VETHOD followed by the method returned:
« Password-authenticated enterprise user, local database user, or
SYSDBA/SYSOPER using Password File; proxy with username using
password: PASSWORD
« Kerberos-authenticated enterprise or external user: KERBEROS
« SSL-authenticated enterprise or external user: SSL
« Radius-authenticated external user: RADIUS
« OS-authenticated external user or SYSDBA/SYSOPER: OS
« DCE-authenticated external user: DCE
« Proxy with certificate, DN, or username without using password: NONE
You can use | DENTI FI CATI ON_TYPE to distinguish between external and
enterprise users when the authentication method is Password, Kerberos, or SSL.
BG JOB I D Job ID of the current session if it was established by an Oracle Database background

process. Null if the session was not established by a background process.

Functions 5-177

SYS_CONTEXT

Table 5-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter

Return Value

CLI ENT_I DENTI FI ER

Returns an identifier that is set by the application through the DBMS _

SESSI ON. SET_I| DENTI FI ER procedure, the OCI attribute OCl _ATTR_CL| ENT_

| DENTI FI ER, or the Java class

Oracl e.jdbc. Oracl eConnection.setClientldentifier.Thisattribute is
used by various database components to identify lightweight application users who
authenticate as the same database user.

CLI ENT_I NFO

Returns up to 64 bytes of user session information that can be stored by an
application using the DBVS_APPLI CATI ON_| NFOpackage.

CURRENT_BI ND

The bind variables for fine-grained auditing.

CURRENT_SCHENVA

Name of the default schema being used in the current schema. This value can be
changed during the session with an ALTER SESSI ON SET CURRENT_SCHENA
statement.

CURRENT_SCHEMNAI D

Identifier of the default schema being used in the current session.

CURRENT_SQL
CURRENT_SQLn

CURRENT _SQL returns the first 4K bytes of the current SQL that triggered the
fine-grained auditing event. The CURRENT_SQLn attributes return subsequent
4K-byte increments, where n can be an integer from 1 to 7, inclusive. CURRENT _
SQL1 returns bytes 4K to 8K; CURRENT _SQL2 returns bytes 8K to 12K, and so forth.
You can specify these attributes only inside the event handler for the fine-grained
auditing feature.

CURRENT_SQL_LENGTH

The length of the current SQL statement that triggers fine-grained audit or row-level
security (RLS) policy functions or event handlers. Valid only inside the function or
event handler.

DB_DOVAI N Domain of the database as specified in the DB_DOVAI Ninitialization parameter.
DB_NAME Name of the database as specified in the DB_NAME initialization parameter.

DB_UNI QUE_NAME Name of the database as specified in the DB_UNI QUE_NAME initialization parameter.
ENTRYI D The current audit entry number. The audit entryid sequence is shared between

fine-grained audit records and regular audit records. You cannot use this attribute in
distributed SQL statements.

ENTERPRI SE_I DENTI TY

Returns the user's enterprise-wide identity:
« For enterprise users: the Oracle Internet Directory DN.

« Forexternal users: the external identity (Kerberos principal name, Radius and
DCE schema names, OS user name, Certificate DN).

« Forlocal users and SYSDBA/SYSOPER logins: NULL.
The value of the attribute differs by proxy method:
« For a proxy with DN: the Oracle Internet Directory DN of the client

« For a proxy with certificate: the certificate DN of the client for external users;
the Oracle Internet Directory DN for global users

« For a proxy with username: the Oracle Internet Directory DN if the client is an
enterprise users; NULL if the client is a local database user.

FG JOB ID

Job ID of the current session if it was established by a client foreground process.
Null if the session was not established by a foreground process.

GLOBAL_CONTEXT _

Returns the number being used in the System Global Area by the globally accessed

MEMORY context.

GLOBAL_U D Returns the global user ID from Oracle Internet Directory for Enterprise User
Security (EUS) logins; returns null for all other logins.

HOST Name of the host machine from which the client has connected.

5-178 Oracle Database SQL Reference

SYS_CONTEXT

Table 5-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter

Return Value

| DENTI FI CATI ON_TYPE

Returns the way the user's schema was created in the database. Specifically, it
reflects the | DENTI FI ED clause in the CREATE/ALTER USER syntax. In the list that
follows, the syntax used during schema creation is followed by the identification
type returned:

« | DENTI FI EDBY passwor d: LOCAL

= | DENTI FI ED EXTERNALLY: EXTERNAL

« | DENTI FI ED GLOBALLY: GLOBAL SHARED

« | DENTI FI EDGLOBALLY AS DN: GLOBAL PRIVATE

| NSTANCE The instance identification number of the current instance.

I NSTANCE_NAME The name of the instance.

| P_ADDRESS IP address of the machine from which the client is connected.

| SDBA Returns TRUE if the user has been authenticated as having DBA privileges either
through the operating system or through a password file.

LANG The ISO abbreviation for the language name, a shorter form than the existing
'LANGUAGE' parameter.

LANGUAGE The language and territory currently used by your session, along with the database
character set, in this form:
language_territory.characterset

MODULE The application name (module) set through the DBMS_APPLI CATI ON_I NFO

package or OCI.

NETWORK_PROTOCCL

Network protocol being used for communication, as specified in the
'PROTOCOL=pr ot ocol ' portion of the connect string.

NLS_CALENDAR

The current calendar of the current session.

NLS_CURRENCY

The currency of the current session.

NLS_DATE_FORVAT

The date format for the session.

NLS DATE_LANGUAGE

The language used for expressing dates.

NLS_SORT Bl NARY or the linguistic sort basis.
NLS_TERRI TORY The territory of the current session.
OS_USER Operating system user name of the client process that initiated the database session.

POLI CY_I NVOKER

The invoker of row-level security (RLS) policy functions.

PROXY_ENTERPRI SE_
| DENTI TY

Returns the Oracle Internet Directory DN when the proxy user is an enterprise user.

PROXY_GLOBAL_UI D

Returns the global user ID from Oracle Internet Directory for Enterprise User
Security (EUS) proxy users; returns NULL for all other proxy users.

PROXY_USER Name of the database user who opened the current session on behalf of SESSI ON_
USER.

PROXY_USERI D Identifier of the database user who opened the current session on behalf of
SESSI ON_USER

SERVER_HOST The host name of the machine on which the instance is running.

SERVI CE_NAVE The name of the service to which a given session is connected.

SESSI ON_USER

For enterprises users, returns the schema. For other users, returns the database user
name by which the current user is authenticated. This value remains the same
throughout the duration of the session.

Functions 5-179

SYS_DBURIGEN

Table 5-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

SESSI ON_USERI D Identifier of the database user name by which the current user is authenticated.

SESSI ONI D The auditing session identifier. You cannot use this attribute in distributed SQL
statements.

SID The session number (different from the session ID).

STATEMENTI D The auditing statement identifier. STATEMENTI D represents the number of SQL

statements audited in a given session.

TERM NAL The operating system identifier for the client of the current session. In distributed
SQL statements, this attribute returns the identifier for your local session. In a
distributed environment, this is supported only for remote SELECT statements, not
for remote | NSERT, UPDATE, or DELETE operations. (The return length of this
parameter may vary by operating system.)

Table 5-12 lists the parameters of namespace USERENV that have been deprecated.
Oracle suggests that you use the alternatives suggested in the Comments column.

Table 5-12 Deprecated Parameters of Namespace USERENV

Parameter Comments

AUTHENTI CATI ON_TYPE This parameter returned a value indicating how the user was authenticated. The same
information is now available from the new AUTHENTI| CATI ON_METHOD parameter
combined with | DENTI FI CATI ON_TYPE.

CURRENT _USER Use the SESSI ON_USER parameter instead.
CURRENT_USERI D Use the SESSI ON_USERI D parameter instead.
EXTERNAL _NAMVE This parameter returned the external name of the user. More complete information

can now be obtained from the AUTHENTI CATED_| DENTI TY and ENTERPRI SE_
| DENTI TY parameter.

SYS_DBURIGEN

Syntax

Purpose

SYS DBURI Gen takes as its argument one or more columns or attributes, and
optionally a rowid, and generates a URL of datatype DBURI Type to a particular
column or row object. You can then use the URL to retrieve an XML document from
the database.

M

N

@ | OO0
0}

All columns or attributes referenced must reside in the same table. They must perform
the function of a primary key. That is, they need not actually match the primary key of
the table, but they must reference a unique value. If you specify multiple columns,
then all but the final column identify the row in the database, and the last column
specified identifies the column within the row.

5-180 Oracle Database SQL Reference

SYS_EXTRACT_UTC

By default the URL points to a formatted XML document. If you want the URL to
point only to the text of the document, then specify the optional 't ext () .

Note: In this XML context, the lowercase t ext is a keyword, not a
syntactic placeholder.

If the table or view containing the columns or attributes does not have a schema
specified in the context of the query, then Oracle Database interprets the table or view
name as a public synonym.

See Also: Oracle XML Developers Kit Programmer*s Guide for
information on the URI Type datatype and XML documents in the
database

Examples

The following example uses the SYS_DBURI Gen function to generate a URL of
datatype DBURI Type to the ermai | column of the row in the sample table
hr . enpl oyees where the enpl oyee_i d = 206:

SELECT SYS_DBURI GEN(enpl oyee_i d, email)
FROM enpl oyees
WHERE enpl oyee_id = 206;

SYS_DBURI GEN(EMPLOYEE_| D, EMAI L) (URL, SPARE)

DBURI TYPE(' / PUBLI C/ EMPLOYEES/ ROW EMPLOYEE_| D='" 206" ']/ EMAI L', NULL)

SYS_EXTRACT _UTC

Syntax
—J| svs_ExTRACT_UTC F@»@atetime_with_timezone)»@»

Purpose

SYS EXTRACT_UTCextracts the UTC (Coordinated Universal Time--formerly
Greenwich Mean Time) from a datetime value with time zone offset or time zone
region name.

Examples

The following example extracts the UTC from a specified datetime:

SELECT SYS_EXTRACT_UTC(TI MESTAVP ' 2000- 03-28 11:30: 00. 00 -08: 00")
FROVI DUAL;

SYS_EXTRACT_UTC(TI MESTAMP' 2000- 03-2811: 30: 00. 00- 08: 00")

28- MAR-00 07.30.00 PM

Functions 5-181

SYS_GUID

SYS_GUID

Syntax
OO

Purpose

SYS_GUI Dgenerates and returns a globally unique identifier (RAWvalue) made up of
16 bytes. On most platforms, the generated identifier consists of a host identifier, a
process or thread identifier of the process or thread invoking the function, and a
nonrepeating value (sequence of bytes) for that process or thread.

Examples

The following example adds a column to the sample table hr . | ocat i ons, inserts
unique identifiers into each row, and returns the 32-character hexadecimal
representation of the 16-byte RAWvalue of the global unique identifier:

ALTER TABLE | ocations ADD (uid_col RAW32));
UPDATE | ocations SET uid_col = SYS QU I);
SELECT | ocation_id, uid_col FROMIocations;

LOCATI ON_I D Ul D_COL

1000 7CD5B7769DF75CEFE034080020825436
1100 7CD5B7769DF85CEFE034080020825436
1200 7CD5B7769DF95CEFE034080020825436
1300 7CD5B7769DFASCEFE034080020825436

SYS_TYPEID

Syntax
—>| SYS_TYPEID P@»Cobject_type_value)a@»

Purpose

SYS_TYPEI Dreturns the typeid of the most specific type of the operand. This value is
used primarily to identify the type-discriminant column underlying a substitutable
column. For example, you can use the value returned by SYS_TYPEI Dto build an
index on the type-discriminant column.

You can use this function only on object type operands. All final root object types--that
is, final types not belonging to a type hierarchy--have a null typeid. Oracle Database
assigns to all types belonging to a type hierarchy a unique non-null typeid.

See Also: Oracle Database Application Developer's Guide -
Object-Relational Features for more information on typeids

Examples

The following examples use the tables per sons and books, which are created in
"Substitutable Table and Column Examples” on page 16-51. Both tables in turn use the
per son_t type, which is created in "Type Hierarchy Example™ on page 17-17. The first

5-182 Oracle Database SQL Reference

SYS_XMLAGG

query returns the most specific types of the object instances stored in the per sons
table.

SELECT name, SYS TYPEI D(VALUE(p)) "Type_id" FROM persons p;

NAMVE Type_id
Bob 01
Joe 02
Tim 03

The next query returns the most specific types of authors stored in the table books:

SELECT b.title, b.author.nanme, SYS TYPEI D(author)
"Type_I D' FROM books b;

TITLE AUTHOR. NAME Type_I D
An Aut obi ogr aphy Bob 01
Busi ness Rul es Joe 02
M xi ng School and Work Tim 03

You can use the SYS_TYPEI D function to create an index on the type-discriminant
column of a table. For an example, see "Indexing on Substitutable Columns: Examples"
on page 14-78.

SYS XMLAGG
Syntax
DIz 0o TacACAvl
Purpose

SYS_ XM_Agg aggregates all of the XML documents or fragments represented by expr
and produces a single XML document. It adds a new enclosing element with a default
name ROASET. If you want to format the XML document differently, then specify f nt ,
which is an instance of the XM_LFor mat object.

See Also:

« SYS_XMLGEN on page 5-184 and "XML Format Model" on
page 2-67 for using the attributes of the XMLFor mat type to
format SYS_XM_Agg results

« Oracle Database Concepts and Oracle XML Developer's Kit
Programmer's Guide for information on XML types and their use

Examples

The following example uses the SYS XM_Gen function to generate an XML document
for each row of the sample table enpl oyees where the employee's last name begins
with the letter R, and then aggregates all of the rows into a single XML document in
the default enclosing element ROWSET:

SELECT SYS_XM.AGE SYS_XM.GEN(| ast _nane))
FROM enpl oyees
WHERE | ast _name LIKE ' R%;

Functions 5-183

SYS_XMLGEN

SYS_XMLAGE SYS_XM_GEN(LAST_NAME))
<ROWBET>
<LAST_NAME>Raphael y</ LAST_NAME>
<LAST_NAME>Roger s</ LAST_NAME>
<LAST_NAVME>Raj s</ LAST_NAME>
<LAST_NAME>Russel | </ LAST_NAME>

dron
SYS XMLGEN
Syntax
0F
Purpose

SYS XM_Gen takes an expression that evaluates to a particular row and column of the
database, and returns an instance of type XMLType containing an XML document. The
expr can be a scalar value, a user-defined type, or an XMLType instance.

« Ifexpr isascalar value, then the function returns an XML element containing the
scalar value.

« Ifexpr isatype, then the function maps the user-defined type attributes to XML
elements.

« Ifexpr isan XMLType instance, then the function encloses the document in an
XML element whose default tag name is ROV

By default the elements of the XML document match the elements of expr . For
example, if expr resolves to a column name, then the enclosing XML element will be
the same column name. If you want to format the XML document differently, then
specify f nt , which is an instance of the XM_For nat object.

See Also:

« "XML Format Model" on page 2-67 for a description of the
XM_For mat type and how to use its attributes to format SYS_
XM_Gen results

« Oracle Database Concepts and Oracle XML Developer*s Kit
Programmer*s Guide for information on XML types and their use

Examples

The following example retrieves the employee email ID from the sample table

oe. enpl oyees where the enpl oyee_i d value is 205, and generates an instance of
an XMLType containing an XML document with an EMAI L element.

SELECT SYS_XMLGEN(enmi |)
FROM enpl oyees
WHERE enpl oyee_id = 205;

SYS XMLGEN(EMAI L)

<EMAI L>SHI GG NS</ EMAI L>

5-184 Oracle Database SQL Reference

SYSTIMESTAMP

SYSDATE

Syntax

Purpose

SYSDATE returns the current date and time set for the operating system on which the
database resides. The datatype of the returned value is DATE, and the format returned
depends on the value of the NLS_DATE_FORMAT initialization parameter. The function
requires no arguments. In distributed SQL statements, this function returns the date
and time set for the operating system of your local database. You cannot use this
function in the condition of a CHECK constraint.

Examples
The following example returns the current operating system date and time:
SELECT TO CHAR

(SYSDATE, ' MM DD- YYYY HH24: M :SS') "NOW
FROM DUAL,;

04-13-2001 09:45:51

SYSTIMESTAMP

Syntax

Purpose

SYSTI MESTAMP returns the system date, including fractional seconds and time zone,
of the system on which the database resides. The return type is TI MESTAVMP W TH
TI ME ZONE.

Examples
The following example returns the system timestamp:

SELECT SYSTI MESTAMP FROM DUAL;

SYSTI MESTAWP

28- MAR- 00 12. 38.55.538741 PM -08: 00

The following example shows how to explicitly specify fractional seconds:

SELECT TO_CHAR(SYSTI MESTAMP, ' SSSSS. FF') FROM DUAL;
TO_CHAR(SYSTI ME

55615. 449255

Functions 5-185

TAN

TAN

TANH

Syntax
0,0:0

Purpose

TAN returns the tangent of n (an angle expressed in radians).

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _

FLOAT, then the function returns Bl NARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the tangent of 135 degrees:

SELECT TAN(135 * 3. 14159265359/ 180)
"Tangent of 135 degrees" FROM DUAL;

Tangent of 135 degrees

Syntax
0,00

Purpose

TANH returns the hyperbolic tangent of n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is Bl NARY _

FLOAT, then the function returns Bl NARY _DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following example returns the hyperbolic tangent of .5:

SELECT TANH(.5) "Hyperbolic tangent of .5"
FROV DUAL;

Hyperbolic tangent of .5

. 462117157

5-186 Oracle Database SQL Reference

TO_BINARY_DOUBLE

TIMESTAMP_TO_SCN

Syntax
—|{ TIMESTAMP_TO_SCN |—>®—>(timestamp>—>@->

Purpose

TI MESTAMP_TO_SCNtakes as an argument a timestamp value and returns the
approximate system change number (SCN) associated with that timestamp. The
returned value is of datatype NUMBER. This function is useful any time you want to
know the SCN associated with a particular timestamp.

See Also: SCN_TO_TIMESTAMP on page 5-153 for information on
converting SCNs to timestamp

Examples

The following example inserts a row into the oe. or der s table and then uses
TI MESTAMP_TO_SCNto determine the system change number of the insert operation.
(The actual SCN returned will differ on each system.)

I NSERT | NTO orders (order_id, order_date, customer_id, order_total)
VALUES (5000, SYSTI MESTAMWP, 188, 2345);
1 row created.

COWM T,
Commit conpl ete.

SELECT TI MESTAMP_TO SCN(order _date) FROM orders
WHERE order _id = 5000;

TI MESTAMP_TO_SCN(ORDER_DATE)

574100

TO_BINARY_DOUBLE

Syntax

OO0
A .

—J{ TO_BINARY_DOUBLE P@»@ @

Purpose
TO_BI NARY_DOUBLE returns a double-precision floating-point number.

« expr can be a character string or a numeric value of type NUVBER, Bl NARY _
FLOAT, or Bl NARY_DOUBLE. If expr is Bl NARY_DOUBLE, then the function
returns expr .

« Theoptional 'f m 'and 'nl spar am arguments are valid only if expr is a character
string. They serve the same purpose as for the TO_CHAR (number) function.

— The case-insensitive string 'l NF' is converted to positive infinity.

— The case-insensitive string '-I NF' is converted to negative identity.

Functions 5-187

TO_BINARY_FLOAT

— The case-insensitive string ‘NaN is converted to NaN (not a number).

You cannot use a floating-point number format element (F, f , D, or d) in a character
string expr.

Conversions from character strings or NUVBER to Bl NARY_DOUBLE can be inexact,
because the NUMBER and character types use decimal precision to represent the
numeric value, and Bl NARY_DOUBLE uses binary precision.

Conversions from Bl NARY_FLOAT to Bl NARY_DOUBLE are exact.

See Also: TO_CHAR (number) on page 5-192 and "Floating-Point
Numbers" on page 2-11

Examples
The examples that follow are based on a table with three columns, each with a
different numeric datatype:

CREATE TABLE fl oat _poi nt _deno
(dec_num NUMBER(10, 2), bin_doubl e BI NARY_DOUBLE, bin_float BI NARY_FLOAT);

I NSERT | NTO f I oat _poi nt _dero
VALUES (1234.56, 1234. 56, 1234. 56) ;

SELECT * FROM fl oat _poi nt _deno;

DEC_NUM BI N_DOUBLE BI N_FLOAT

1234.56 1.235E+003 1.235E+003
The following example converts a value of datatype NUVBER to a value of datatype
Bl NARY_DOUBLE:

SELECT dec_num TO_BI NARY_DOUBLE(dec_num
FROM f | oat _poi nt _deno;

DEC_NUM TO Bl NARY_DOUBLE(DEC_NUM

1234. 56 1. 235E+003

The following example compares extracted dump information from the dec_numand
bi n_doubl e columns:

SELECT DUMP(dec_nun) "Decimal ",
DUMP(bi n_doubl) " Doubl e"
FROM f | oat _poi nt _deno;

Typ=2 Len=4: 194,13,35,57 Typ=101 Len=8: 192, 147,74, 61, 112, 163, 215, 10

TO_BINARY_FLOAT

Syntax

OO
O N

—J{ TO_BINARY_FLOAT @@ @»

5-188 Oracle Database SQL Reference

TO_CHAR (character)

Purpose
TO_BI NARY_FLQAT returns a single-precision floating-point number.

« expr can be a character string or a numeric value of type NUMBER, Bl NARY_
FLQOAT, or Bl NARY_DOUBLE. If expr is Bl NARY_FLCOAT, then the function returns
expr.

« The optional 'f mt "and 'nl spar am arguments are valid only if expr is a character
string. They serve the same purpose as for the TO_CHAR (number) function.

— The incase-sensitive string 'l NF' is converted to positive infinity.
— The incase-sensitive string -1 NF' is converted to negative identity.
— The incase-sensitive string 'NaN' is converted to NaN (not a number).

You cannot use a floating-point number format element (F, f , D, or d) in a character
string expr .

Conversions from character strings or NUMBER to Bl NARY_FLQOAT can be inexact,
because the NUMBER and character types use decimal precision to represent the
numeric value and Bl NARY_FLOAT uses binary precision.

Conversions from Bl NARY_DOUBLE to Bl NARY_FLOAT are inexact if the Bl NARY_
DOUBLE value uses more bits of precision than supported by the Bl NARY _FLOAT.

See Also: TO_CHAR (number) on page 5-192 and "Floating-Point
Numbers" on page 2-11

Examples

Using table f | oat _poi nt _deno created for TO_BINARY_DOUBLE on page 5-187,
the following example converts a value of datatype NUMBER to a value of datatype
Bl NARY_FLOAT:

SELECT dec_num TO BI NARY_FLOAT(dec_num)
FROM f | oat _poi nt _deno;

DEC_NUM TO_BI NARY_FLOAT(DEC_NUM)

1234. 56 1. 235E+003

TO_CHAR (character)

Syntax

to_char_char::=

Purpose

TO_CHAR (character) converts NCHAR, NVARCHAR2, CLOB, or NCLOB data to the
database character set.

Functions 5-189

TO_CHAR (datetime)

When you use this function to convert a character LOB into the database character set,
if the LOB value to be converted is larger than the target type, then the database
returns an error.

You can use this function in conjunction with any of the XML functions to generate a
date in the database format rather than the XML Schema standard format.
See Also:

« Oracle XML DB Developer*s Guide for information about formatting
of XML dates and timestamps, including examples

« "XML Functions" on page 5-7 for a listing of the XML function

Examples
The following example interprets a simple string as character data:

SELECT TO CHAR(' 01110') FROM DUAL;

Compare this example with the first example for TO_CHAR (number) on page 5-192.

The following example converts some CLOB data from the pm pri nt _nedi a table to
the database character set:

SELECT TO CHAR(ad_sourcetext) FROM print_nedi a
WHERE product _id = 2268;

TO_CHAR(AD_SOURCETEXT)

kkkkkkhhhdhhkhkkhkhkhhhhdddhrhkhhrd

TI GER2 2268. .. Standard Hayes Conpatibl e Modem

Product ID: 2268

The #1 selling nodemin the universe! Tiger2's modemincludes call nanagement
and Internet voicing. Make real-tinme full duplex phone calls at the sane tine

.)
you' re online.
IR SRS S SRS SRR SRR EEEEEEEEEEEEEEEESES]

TO_CHAR (datetime)

Syntax

to_char_date::=

OO0
PO \

interval

EE0 0}

Pu rpose

TO_CHAR (datetime) converts a datetime or interval value of DATE, TI MESTAMP,

TI MESTAMP W THTI ME ZONE, or TI MESTAMP W THLOCAL TI ME ZONE datatype to a
value of VARCHAR?2 datatype in the format specified by the date format f nt . If you
omit f nt , then dat e is converted to a VARCHARZ value as follows:

5-190 Oracle Database SQL Reference

TO_CHAR (datetime)

« DATE values are converted to values in the default date format.

« TI MESTAWP and TI MESTAMP W THLOCAL Tl ME ZONE values are converted to
values in the default timestamp format.

« TI MESTAMP W THTI ME ZONE values are converted to values in the default
timestamp with time zone format.

Please refer to "Format Models" on page 2-54 for information on datetime formats.

The' nl sparam argument specifies the language in which month and day names
and abbreviations are returned. This argument can have this form:

" NLS_DATE_LANGUAGE = | anguage'

If you omit' nl spar am , then this function uses the default date language for your
session.

Examples
The following example uses this table:

CREATE TABLE date_tab (
ts_col TI MESTAWP,
tsltz_col TI MESTAMP W TH LOCAL TI ME ZONE,
tstz_col TI MESTAMP W TH TI ME ZONE) ;

The example shows the results of applying TO_CHARto different TI MESTAMP
datatypes. The result for a TI MESTAMP W TH LOCAL TI ME ZONE column is sensitive to
session time zone, whereas the results for the TI MESTAMP and TI MESTAMP W TH

Tl ME ZONE columns are not sensitive to session time zone:

ALTER SESSI ON SET TIME_ZONE = '-8:00';
I NSERT | NTO date_tab VALUES (
TI MESTAMP' 1999- 12- 01 10: 00: 00",
TI MESTAMP' 1999- 12- 01 10: 00: 00",
TI MESTAMP' 1999- 12- 01 10: 00: 00') ;
I NSERT | NTO date_tab VALUES (
TI MESTAMP' 1999- 12- 02 10: 00: 00 - 8: 00",
TI MESTAMP' 1999- 12- 02 10: 00: 00 - 8: 00",
TI MESTAVP' 1999- 12- 02 10: 00: 00 - 8: 00') ;

SELECT TO CHAR(ts_col, ' DD MON YYYY HH24: M : SSxFF'),
TO CHAR(tstz_col, ' DD MON YYYY HH24: M : SSXFF TZH. TZM)
FROM dat e_t ab;

TO_CHAR(TS_COL, ' DD- MON- YYYYHH2 TO CHAR(TSTZ_COL, ' DD- MON- YYYYHH24: M :

01- DEC- 1999 10: 00: 00 01- DEG- 1999 10: 00: 00. 000000 -08: 00
02- DEC- 1999 10: 00: 00 02- DEG- 1999 10: 00: 00. 000000 -08: 00

SELECT SESSI ONTI MEZONE,
TO CHAR(tsltz_col, ' DD MON- YYYY HH24: M : SSxFF')
FROM dat e_t ab;

SESSI ONTI MEZONE TO_CHAR(TSLTZ_CQL, ' DD- MON- YYYY

-08: 00 01- DEC-1999 10: 00: 00. 000000
-08: 00 02- DEC-1999 10: 00: 00. 000000

ALTER SESSI ON SET TIME_ZONE = '-5:00';
SELECT TO CHAR(ts_col, ' DD-MON-YYYY HH24: M : SSXFF'),

Functions 5-191

TO_CHAR (number)

TO CHAR(tstz_col, ' DD MON-YYYY HH24: M : SSxFF TZH TZM)
FROM dat e_t ab;

TO CHAR(TS_COL, ' DD- MON- YYYYHH2 TO CHAR(TSTZ_COL, ' DD- MON YYYYHH24: M :

01- DEC- 1999 10: 00: 00. 000000 01- DEC- 1999 10: 00: 00. 000000 -08: 00
02- DEC- 1999 10: 00: 00. 000000 02- DEC- 1999 10: 00: 00. 000000 -08: 00

SELECT SESS| ONTI MEZONE,
TO CHAR(tsl tz_col, ' DD MON-YYYY HH24: M : SSxFF')

FROM dat e_t ab;
SESSI ONTI MEZONE TO CHAR(TSLTZ_CQL, ' DD- MON- YYYY
-05: 00 01- DEC- 1999 13: 00: 00. 000000
-05: 00 02- DEG- 1999 13: 00: 00. 000000

TO_CHAR (number)

Syntax

to_char_number::=

nisparam
O® (DAOoisparam))
Lo»

Purpose

TO_CHAR (number) converts n to a value of VARCHAR2 datatype, using the optional
number format f nt . The value n can be of type NUVBER, Bl NARY_FLOAT, or Bl NARY_
DOUBLE. If you omit f nt , then n is converted to a VARCHAR2 value exactly long
enough to hold its significant digits.

Please refer to "Format Models" on page 2-54 for information on number formats.

The' nl spar am argument specifies these characters that are returned by number
format elements:

» Decimal character

« Group separator

« Local currency symbol

« International currency symbol
This argument can have this form:

" NLS_NUMERI C_CHARACTERS = ''dg"’
NLS_CURRENCY = '"text"'
NLS | SO CURRENCY = territory '

The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters. Within the quoted string,
you must use two single quotation marks around the parameter values. Ten characters
are available for the currency symbol.

If you omit' nl spar am or any one of the parameters, then this function uses the
default parameter values for your session.

5-192 Oracle Database SQL Reference

TO_CLOB

TO_CLOB

Examples
The following statement uses implicit conversion to combine a string and a number
into a number:

SELECT TO CHAR(' 01110' + 1) FROM dual ;

ToC

1111

Compare this example with the first example for TO_CHAR (character) on page 5-189.

In the next example, the output is blank padded to the left of the currency symbol.

SELECT TO_CHAR(- 10000, ' L99G999D99M ') " Ampunt "
FROM DUAL;

$10, 000. 00-

SELECT TO_CHAR(-10000, ' L99G999D99M ' ,
"NLS_NUMERI C_CHARACTERS = '",.""'
NLS_CURRENCY = ' " AusDol lars'" ') "Amount"

FROM DUAL,;

AusDol | ar s10. 000, 00-

In the optional number format f nt , L designates local currency symbol and M
designates a trailing minus sign. See Table 2-17, " Matching Character Data and
Format Models with the FX Format Model Modifier" on page 2-65 for a complete
listing of number format elements.

Syntax

(0668 (O
@

Purpose

TO_CLOB converts NCLOB values in a LOB column or other character strings to CLOB
values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR?Z,

CL OB, or NCLOB. Oracle Database executes this function by converting the underlying
LOB data from the national character set to the database character set.

Examples

The following statement converts NCLOB data from the sample pm pri nt _nedi a
table to CLOB and inserts it into a CLOB column, replacing existing data in that column.

UPDATE PRI NT_MEDI A
SET AD_FINALTEXT = TO CLOB (AD_FLTEXTN);

Functions 5-193

TO_DATE

TO_DATE

Syntax

[TO_DATE | char @

Purpose

TO_DATE converts char of CHAR, VARCHAR2, NCHAR, or N\VARCHAR2 datatype to a
value of DATE datatype. The f nt is a datetime model format specifying the format of
char . If you omit f nt , then char must be in the default date format. If f nt is J, for
Julian, then char must be an integer.

Note: This function does not convert data to any of the other
datetime datatypes. For information on other datetime conversions,
please refer to TO_TIMESTAMP on page 5-200, TO_TIMESTAMP_TZ
on page 5-201, TO_DSINTERVAL on page 5-195, and TO_
YMINTERVAL on page 5-202.

The default date format is determined implicitly by the NLS_TERRI TORY initialization
parameter or can be set explicitly by the NLS_DATE_FORNMAT parameter.

The' nl sparam argument has the same purpose in this function as in the TO_CHAR
function for date conversion.

Do not use the TO_DATE function with a DATE value for the char argument. The first
two digits of the returned DATE value can differ from the original char , depending on
f nt or the default date format.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datetime Format Models" on page 2-58 and "Datatype
Comparison Rules" on page 2-37 for more information

Examples
The following example converts a character string into a date:
SELECT TO _DATE(
"January 15, 1989, 11:00 A M",
"Month dd, YYYY, HHM AM"',
' NLS_DATE_LANGUAGE = Anerican')
FROM DUAL;

15- JAN- 89

The value returned reflects the default date format if the NLS_TERRI TORY parameter
is set to 'AMERI CA'. Different NLS_TERRI TORY values result in different default date
formats:

ALTER SESSI ON SET NLS_TERRI TORY = ' KOREAN ;

SELECT TO_DATE(

5-194 Oracle Database SQL Reference

TO_LOB

"January 15, 1989, 11:00 A M',

"Month dd, YYYY, HHM AM',
"NLS_DATE_LANGUAGE = Anerican')
FROM DUAL;

89/ 01/ 15

TO_DSINTERVAL

TO_LOB

Syntax

nisparam
O G SACACAC=UCRY Y

Purpose

TO_DSI NTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR?2 datatype to an | NTERVAL DAY TO SECOND value.

« char isthe character string to be converted.

« Theonly valid nl spar amyou can specify in this function is NLS_NUVMERI C_
CHARACTERS. This argument can have the form:

NLS_NUMERI C_CHARACTERS = "dg"

where d and g represent the decimal character and group separator respectively.
Neither character can be a space.

Examples

The following example selects from the enpl oyees table the employees who had
worked for the company for at least 100 days on January 1, 1990:

SELECT enpl oyee_id, |ast_nane FROM enpl oyees
VHERE hire_date + TO DSI NTERVAL(' 100 10: 00: 00")
<= DATE ' 1990-01-01';

EMPLOYEE_| D LAST NAME

100 King
101 Kochhar
200 Whal en

Syntax
© O

Purpose

TO_LOB converts LONGor LONGRAW values in the column | ong_col umm to LOB
values. You can apply this function only to a LONG or LONG RAWcolumn, and only in
the select list of a subquery in an | NSERT statement.

Functions 5-195

TO_MULTI_BYTE

Before using this function, you must create a LOB column to receive the converted
LONG values. To convert LONG values, create a CLOB column. To convert LONGRAW
values, create a BLOB column.

You cannot use the TO_LOB function to convert a LONGcolumn to a LOB column in the
subquery of a CREATE TABLE ... AS SELECT statement if you are creating an
index-organized table. Instead, create the index-organized table without the LONG
column, and then use the TO_LOB function in an | NSERT ... AS SELECT statement.

See Also:

« thenodify_col _properties clause of ALTER TABLE on
page 12-2 for an alternative method of converting LONG columns
to LOB

« INSERT on page 18-51 for information on the subquery of an
| NSERT statement

Example
The following syntax shows how to use the TO_LOB function on your LONGdata in a
hypothetical table ol d_t abl e:

CREATE TABLE new table (coll, col2, ... lob_col CLOB);
I NSERT | NTO new_table (select o.coll, o.col2, ... TOLOB(o.0ld_|long_col)
FROM ol d_t abl e o;

TO_MULTI_BYTE

Syntax
© 90

Purpose

TO _MULTI _BYTE returns char with all of its single-byte characters converted to their
corresponding multibyte characters. char can be of datatype CHAR, VARCHARZ,
NCHAR, or NVARCHARZ2. The value returned is in the same datatype as char .

Any single-byte characters in char that have no multibyte equivalents appear in the
output string as single-byte characters. This function is useful only if your database
character set contains both single-byte and multibyte characters.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples

The following example illustrates converting from a single byte Ato a multibyte Ain
UTFS:

SELECT dunp(TO MULTI _BYTE('A')) FROM DUAL;
DUVP(TO_MULTI _BYTE(' A'))

Typ=1 Len=3: 239, 188, 161

5-196 Oracle Database SQL Reference

TO_NCHAR (datetime)

TO_NCHAR (character)

Syntax

to_nchar_char::=

_ (ODA()(nisparam))
ﬁ@*@ \

0

Purpose

TO_NCHAR (character) converts a character string, CLOB, or NCLOB value from the
database character set to the national character set. This function is equivalent to the
TRANSLATE ... USI NG function with a USI NGclause in the national character set.

See Also: "Data Conversion" on page 2-40 and TRANSLATE ...
USING on page 5-203

Examples

The following example converts NCLOB data from the pm pri nt _medi a table to the
national character set:

SELECT TO NCHAR(ad_fltextn) FROM print_nedia
WHERE product _id = 3106;

TO _NCHAR(AD_FLTEXTN)

TIGER2 Tastaturen...weltweit fuehrend in Conputer-Ergononie.

TIGER2 3106 Tastatur

Product Nummer: 3106

Nur 39 EURO

Die Tastatur KB 101/ CHDE ist eine Standard PC/ AT Tastatur mt 102 Tasten. Tasta
turbel egung: Schwei zer deut sch.

. NEU. Kommt mit ergonom scher Schaunstof funterl age.

. Extraflache und ergonim sch-gekni ckte Versionen verfugbar auf Anfrage.

. Lieferbar in Elfenbein, Rot oder Schwarz.

TO_NCHAR (datetime)

Syntax

to_nchar_date::=

_ AO0@O
i m
O)

TO_NCHAR
® 0}

Purpose

TO_NCHAR (datetime) converts a datetime or interval value of DATE, TI MESTAMP,
TI MESTAMP W THTI ME ZONE, TI MESTAMP W THLOCAL Tl ME ZONE, | NTERVAL

Functions 5-197

TO_NCHAR (number)

MONTHTOYEAR, or | NTERVAL DAY TO SECOND datatype from the database character
set to the national character set.

Examples

The following example converts the or der _dat e of all orders whose status is 9 to the
national character set:

SELECT TO NCHAR(or der _date) FROM orders
WHERE order_status > 9;

TO_NCHAR(ORDER DATE)

14- SEP-99 08. 53. 40. 223345 AM
13- SEP-99 09. 19. 00. 654279 AM
27-JUN-00 08.53. 32. 335522 PM
26-JUN-00 09.19. 43. 190089 PM
06- DEC-99 01. 22. 34. 225609 PM

TO_NCHAR (number)

Syntax

to_nchar_number::=

nisparam
O® (DAOotsparam))
Lo»

Purpose

TO_NCHAR (number) converts n to a string in the national character set. The value n
can be of type NUMBER, Bl NARY_FLQAT, or Bl NARY_DOUBLE. The function returns a
value of the same type as the argument. The optional f nt and ' nl spar an
corresponding to n can be of DATE, TI MESTAMP, TI MESTAMP W THTI ME ZONE,

TI MESTAMP W THLOCAL Tl ME ZONE, | NTERVAL MONTH TOYEAR, or | NTERVAL DAY
TOSECOND datatype.

Examples

The following example converts the cust oner _i d values from the sample table
oe. or der s to the national character set:

SELECT TO NCHAR(customer_id) "NCHAR Customer | D' FROM orders
WHERE order _status > 9;

NCHAR _Cust oner _I D

5-198 Oracle Database SQL Reference

TO_NUMBER

TO_NCLOB

TO _NUMBER

Syntax
TO_NCLOB H
[Tocioe (D

Purpose

TO_NCLOB converts CLOB values in a LOB column or other character strings to NCLOB
values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHARZ,

CL OB, or NCLOB. Oracle Database implements this function by converting the
character set of char from the database character set to the national character set.

Examples
The following example inserts some character data into an NCLOB column of the
pm print _nedi a table by first converting the data with the TO_NCLOB function:

I NSERT I NTO print_media (product_id, ad_id, ad_fltextn)
VALUES (3502, 31001,
TO_NCLOB(' Pl acehol der for new product description'));

Syntax

@ O0EDO

Purpose

TO_NUMBER converts expr to a value of NUMBER datatype. The expr can be a

Bl NARY_FLQOAT or Bl NARY_DOUBLE value or a value of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype containing a number in the format specified by the optional
format model f nt .

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples
The following examples convert character string data into a number:
UPDATE enpl oyees SET salary = salary +

TO_NUMBER(' 100. 00", ' 9(999D99")
WHERE | ast _name = ' Perkins';

The' nl sparam argument in this function has the same purpose as it does in the
TO_CHAR function for number conversions. Please refer to TO_CHAR (number) on
page 5-192 for more information.

SELECT TO _NUMBER(' - AusDol | ars100', ' L9G99D99" ,
" NLS_NUMERI C_CHARACTERS = "', .""

Functions 5-199

TO_SINGLE_BYTE

NLS_CURRENCY = '"AusDol lars"’

TO_SINGLE_BYTE

Syntax
OEDQ

Purpose

TO_SI NGLE_BYTE returns char with all of its multibyte characters converted to their
corresponding single-byte characters. char can be of datatype CHAR, VARCHARZ,
NCHAR, or N\VARCHAR2. The value returned is in the same datatype as char .

Any multibyte characters in char that have no single-byte equivalents appear in the
output as multibyte characters. This function is useful only if your database character
set contains both single-byte and multibyte characters.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples

The following example illustrates going from a multibyte A in UTF8 to a single byte
ASCII A:

SELECT TO S| NGLE_BYTE(CHR(15711393)) FROM DUAL;
.

A

TO_TIMESTAMP

Syntax

[TO_TIMESTAMP | char @

Purpose
TO_TI MESTAMP converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 datatype
to a value of TI MESTAMP datatype.

The optional f nt specifies the format of char . If you omit f mt , then char must be in
the default format of the TI MESTAMP datatype, which is determined by the NLS _

TI MESTAMP_FORMAT initialization parameter. The optional ' nl spar am argument
has the same purpose in this function as in the TO_CHAR function for date conversion.

5-200 Oracle Database SQL Reference

TO_TIMESTAMP_TZ

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples
The following example converts a character string to a timestamp. The character string
is not in the default TI MESTAMP format, so the format mask must be specified:

SELECT TO_TI MESTAWP (' 10- Sep-02 14:10:10.123000', ' DD- Mon-RR HH24: M : SS. FF')
FROM DUAL;

TO_TI MESTAMP(" 10- SEP-0214: 10: 10. 123000’ , ' DD- MON- RRHH24: M : SS. FF')

10- SEP-02 02. 10. 10. 123000000 PM

See Also: NLS Tl MESTAMP_FORMAT parameter for information on
the default TI MESTAMP format and "Datetime Format Models" on
page 2-58 for information on specifying the format mask

TO_TIMESTAMP_TZ

Syntax

(DAOatsparam))
(D

—] TO_TIMESTAWP_TZ @@ 1 @
Purpose

TO_TI MESTAMP_TZ converts char of CHAR, VARCHAR2, NCHAR, or N\VARCHAR2
datatype to a value of TI MESTAMP W THTI ME ZONE datatype.

Note: This function does not convert character strings to TI MESTAMP
W THLOCAL TI ME ZONE. To do this, use a CAST function, as shown in
CAST on page 5-24.

The optional f nt specifies the format of char . If you omit f nt , then char must be in
the default format of the TI MESTAMP W TH Tl ME ZONE datatype. The optional

' nl spar am has the same purpose in this function as in the TO_CHAR function for
date conversion.

Examples
The following example converts a character string to a value of TI MESTAMP W TH
TI ME ZONE:

SELECT TO_TI MESTAMP_TZ(' 1999-12-01 11:00:00 -8:00',
"YYYY-MV DD HH: M : SS TZH TZM ') FROM DUAL;

TO_TI MESTAMP_TZ(' 1999- 12-0111: 00: 00- 08: 00", ' YYYY- M\t DDHH: M : SSTZH: TZM)

01- DEC-99 11.00. 00. 000000000 AM -08:00

Functions 5-201

TO_YMINTERVAL

The following example casts a null column in a UNI ON operation as TI MESTAMP W TH
LOCAL TI ME ZONE using the sample tables oe. or der _i t ens and oe. or der s:

SELECT order_id, line_itemid,
CAST(NULL AS TI MESTAMP W TH LOCAL TIME ZONE) order_date
FROM or der _i tens

UNI ON

SELECT order _id, to_nunber(null), order_date
FROM or ders;

ORDER | D LI NE_| TEM | D ORDER DATE

2354 1
2354 2
2354 3
2354 4
2354 5
2354 6
2354 7
2354 8
2354 9
2354 10
2354 11
2354 12
2354 13
2354 14-JUL- 00 05. 18. 23. 234567 PM
2355 1
2355 2

TO_YMINTERVAL

Syntax
D@0
Purpose

TO_YM NTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to an | NTERVAL YEAR TOMONTH type, where char is the
character string to be converted.

Examples

The following example calculates for each employee in the sample hr . enpl oyees
table a date one year two months after the hire date:

SELECT hire_date, hire_date + TO YM NTERVAL(' 01-02') "14 nonths"
FROM enpl oyees;

H RE_DATE 14 nont hs
17-JUN-87 17- AUG 88
21- SEP-89 21- NOV-90
13- JAN-93 13- MAR-94
03-JAN-90 03- MAR-91
21- MAY-91 21-JUL-92

5-202 Oracle Database SQL Reference

TRANSLATE ... USING

TRANSLATE

TRANSLATE

Syntax
[TRANSLATE (D@0 D(iam sig) D(ia s ()

Purpose

TRANSLATE returns expr with all occurrences of each character infrom stri ng
replaced by its corresponding character int o_st ri ng. Characters in expr that are
notinfrom string are not replaced. If expr is a character string, then you must
enclose it in single quotation marks. The argument f r om st ri ng can contain more
characters thant o_st ri ng. In this case, the extra characters at the end of f rom_
st ri ng have no corresponding characters int o_st ri ng. If these extra characters
appear in char, then they are removed from the return value.

You cannot use an empty string fort o_st ri ng to remove all charactersinfrom_
st ri ng from the return value. Oracle Database interprets the empty string as null,
and if this function has a null argument, then it returns null.

TRANSLATE provides functionality related to that provided by the REPLACE function.
REPLACE lets you substitute a single string for another single string, as well as remove
character strings. TRANSLATE lets you make several single-character, one-to-one
substitutions in one operation.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information and REPLACE on page 5-147

Examples

The following statement translates a book title into a string that could be used (for
example) as a filename. The f r om st ri ng contains four characters: a space, asterisk,
slash, and apostrophe (with an extra apostrophe as the escape character). Thet o_

st ri ng contains only three underscores. This leaves the fourth character in the f rom_
st ri ng without a corresponding replacement, so apostrophes are dropped from the
returned value.

SELECT TRANSLATE(' SQL*Plus User''s Quide', ' */'"", '__ ') FROM DUAL;

TRANSLATE(" SQL* PLUSU

SQL_Plus_Users_Qui de

... USING
Syntax
TRANSLATE USING H
[TRANSLATE J+(0)~(char)-{ USiG |
Purpose

TRANSLATE ... USI NGconverts char into the character set specified for conversions
between the database character set and the national character set.

Functions 5-203

TRANSLATE ... USING

Note: The TRANSLATE ... USI NGfunction is supported primarily for
ANSI compatibility. Oracle recommends that you use the TO_CHAR
and TO_NCHAR functions, as appropriate, for converting data to the
database or national character set. TO_CHAR and TO_NCHAR can take
as arguments a greater variety of datatypes than TRANSLATE ...

USI NG which accepts only character data.

The char argument is the expression to be converted.

« Specifying the USI NG CHAR _CS argument converts char into the database
character set. The output datatype is VARCHAR2.

« Specifying the USI NGNCHAR_CS argument converts char into the national
character set. The output datatype is N\VARCHAR2.

This function is similar to the Oracle CONVERT function, but must be used instead of
CONVERT if either the input or the output datatype is being used as NCHAR or
NVARCHAR?. If the input contains UCS2 code points or backslash characters (\), then
use the UNI STR function.

See Also: CONVERT on page 5-37 and UNISTR on page 5-209

Examples

The following statements use data from the sample table oe. pr oduct _
descri pti ons to show the use of the TRANSLATE ... USI NG function:

CREATE TABLE translate_tab (char_col VARCHAR2(100),
nchar _col NVARCHAR2(50));
I NSERT INTO translate_tab
SELECT NULL, translated_nane
FROM product _descri ptions
WHERE product _id = 3501;

SELECT * FROM transl ate_t ab;

C per a SPNI X4.0 - Sys
Cpro SPNIX4.0 - Sys
Cfor SPNIX4.0 - Sys
Ctil SPNIX4.0 - Sys

UPDATE translate tab
SET char_col = TRANSLATE (nchar_col USING CHAR CS);

SELECT * FROM transl ate_t ab;

C per a SPNI X4.0 - Sys C per a SPNIX4.0 - Sys

C pro SPNIX4.0 - Sys C pro SPNI X4.0 - Sys
Cfor SPNIX4.0 - Sys C for SPNIX4.0 - Sys

Ctil SPNIX4.0 - Sys Ctil SPNIX4.0 - Sys

5-204 Oracle Database SQL Reference

TREAT

TREAT

Syntax

REF schema
@@y fEON

Purpose
TREAT changes the declared type of an expression.

You must have the EXECUTE object privilege on t ype to use this function.

« type must be some supertype or subtype of the declared type of expr . If the most
specific type of expr ist ype (or some subtype of t ype), then TREAT returns
expr . If the most specific type of expr is nott ype (or some subtype of t ype),
then TREAT returns NULL.

« You can specify REF only if the declared type of expr is a REF type.

« If the declared type of expr is a REF to a source type of expr, then t ype must be
some subtype or supertype of the source type of expr . If the most specific type of
DEREF(expr) ist ype (or a subtype of t ype), then TREAT returns expr . If the
most specific type of DEREF(expr) is nott ype (or a subtype of t ype), then TREAT
returns NULL.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information

Examples

The following statement uses the table oe. per sons, which is created in
"Substitutable Table and Column Examples" on page 16-51. That table is based on the
per son_t type, which is created in "Type Hierarchy Example" on page 17-17. The
example retrieves the salary attribute of all people in the per sons table, the value
being null for instances of people that are not employees.

SELECT name, TREAT(VALUE(p) AS enployee_t).salary salary
FROM persons p;

NAVE SALARY
Bob

Joe 100000
Tim 1000

You can use the TREAT function to create an index on the subtype attributes of a
substitutable column. For an example, see "Indexing on Substitutable Columns:
Examples" on page 14-78.

Functions 5-205

TRIM

TRIM

Syntax

<

TRAILING

trim_character

trim_source

Purpose

TRI Menables you to trim leading or trailing characters (or both) from a character
string. Ift ri m_character ortri m sour ce is a character literal, then you must
enclose it in single quotes.

If you specify LEADI NG then Oracle Database removes any leading characters
equaltotri m character.

If you specify TRAI LI NG then Oracle removes any trailing characters equal to
trimcharacter.

If you specify BOTHor none of the three, then Oracle removes leading and trailing
charactersequaltotri m character.

If you do not specify t ri m_char act er, then the default value is a blank space.

If you specify only t ri m_sour ce, then Oracle removes leading and trailing blank
spaces.

The function returns a value with datatype VARCHAR2. The maximum length of
the value is the length of t ri m_sour ce.

If eithertri m sourceortrimcharact er is null, then the TRI Mfunction
returns null.

Bothtrim character andtri m source can be any of the datatypes CHAR,
VARCHARZ2, NCHAR, NVARCHARZ2, CLOB, or NCLOB. The string returned is of VARCHAR2
datatype ift ri m_sour ce is a character datatype and a LOB iftri m sourceisa
LOB datatype. The return string is in the same character setastri m sour ce.

Examples

This example trims leading zeroes from the hire date of the employees in the hr
schema:

SELECT enpl oyee_i d,

TO _CHAR(TRI M LEADI NG 0 FROM hire_date))
FROM enpl oyees
WHERE departnent _id = 60;

EMPLOYEE | D TO CHAR(T

103 3-JAN-90
104 21- MAY-91
105 25-JUN-97
106 5- FEB-98
107 7-FEB-99

5-206 Oracle Database SQL Reference

TRUNC (date)

TRUNC (number)

Syntax

trunc_number::=
o Y g,

Purpose

The TRUNC (number) function returns nl truncated to n2 decimal places. If n2 is
omitted, then n1l is truncated to 0 places. n2 can be negative to truncate (make zero)
n2 digits left of the decimal point.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If you omit n2, then the
function returns the same datatype as the numeric datatype of the argument. If you
include n2, then the function returns NUVBER

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

Examples
The following examples truncate numbers:

SELECT TRUNC(15.79,1) "Truncate" FROM DUAL,

Truncat e

SELECT TRUNC(15.79,-1) "Truncate" FROV DUAL;

Truncat e

TRUNC (date)

Syntax

trunc_date::=

FEo@L 2P,

Purpose

The TRUNC (date) function returns dat e with the time portion of the day truncated to
the unit specified by the format model f nt . The value returned is always of datatype
DATE, even if you specify a different datetime datatype for dat e. If you omit f nt , then
dat e is truncated to the nearest day. Please refer to "ROUND and TRUNC Date
Functions" on page 5-234 for the permitted format models to use inf nt .

Functions 5-207

TZ_OFFSET

TZ_OFFSET

Examples

The following example truncates a date:

SELECT TRUNC(TO DATE(' 27- OCT-92',' DD- MON-YY'), ' YEAR)
"New Year" FROM DUAL;

New Year

01- JAN-92

Syntax

|I time_zone_name I.

SESSIONTIMEZONE

TZ_OFFSET

DBTMEZONE

Purpose

TZ_OFFSET returns the time zone offset corresponding to the argument based on the
date the statement is executed. You can enter a valid time zone name, a time zone
offset from UTC (which simply returns itself), or the keyword SESSI ONTI MEZONE or
DBTI MEZONE. For a listing of valid values fort i ne_zone_nane, query the TZNAME
column of the V$TI MEZONE_NAMES dynamic performance view.

Note: Timezone region names are needed by the daylight savings
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight savings
support until you provide a path to the complete (larger) file by

way of the ORA_TZFI LE environment variable.

Examples

The following example returns the time zone offset of the US/Eastern time zone from

UTC:
SELECT TZ_OFFSET(' US/Eastern') FROM DUAL;

5-208 Oracle Database SQL Reference

UNISTR

uID

UNISTR

Syntax

uiD

Purpose

Ul Dreturns an integer that uniquely identifies the session user (the user who logged
on).

Examples
The following example returns the UID of the current user:

SELECT U D FROM DUAL;

Syntax
OG0
Purpose

UNI STRtakes as its argument a text literal or an expression that resolves to character
data and returns it in the national character set. The national character set of the
database can be either AL16UTF16 or UTF8. UNI STR provides support for Unicode
string literals by letting you specify the Unicode encoding value of characters in the
string. This is useful, for example, for inserting data into NCHAR columns.

The Unicode encoding value has the form "\xxxx' where "xxxx' is the hexadecimal
value of a character in UCS-2 encoding format. Supplementary characters are encoded
as two code units, the first from the high-surrogates range (U+D800 to U+DBFF), and
the second from the low-surrogates range (U+DCO00 to U+DFFF). To include the
backslash in the string itself, precede it with another backslash (\\).

For portability and data preservation, Oracle recommends that in the UNI STR string
argument you specify only ASCII characters and the Unicode encoding values.

See Also: Oracle Database Globalization Support Guide for information
on Unicode and national character sets

Examples

The following example passes both ASCII characters and Unicode encoding values to
the UNI STR function, which returns the string in the national character set:

SELECT UNI STR(" abc\ 00e5\ 00f 1\ 00f 6') FROM DUAL;
UNI STR

abcafio

Functions 5-209

UPDATEXML

UPDATEXML

Syntax

)) O
UPDATEXML o XMLType_instance ‘ XPath_string ° value_expr @-)

Purpose

UPDATEXM. takes as arguments an XMLType instance and an XPath-value pair and
returns an XM_Ty pe instance with the updated value. If XPat h_st ri ng is an XML
element, then the corresponding val ue_expr must be an XMLType instance. If
XPat h_st ri ng is an attribute or text node, then the val ue_expr can be any scalar
datatype. You can specify an absolute XPat h_st ri ng with an initial slash or a
relative XPat h_st r i ng by omitting the initial slash. If you omit the initial slash, the
context of the relative path defaults to the root node. The datatypes of the target of
each XPat h_st ri ng and its corresponding val ue_expr must match. The optional
nanespace_st ri ng must resolve to a VARCHAR?2 value that specifies a default
mapping or namespace mapping for prefixes, which Oracle Database uses when
evaluating the XPath expression(s).

If you update an XML element to null, Oracle removes the attributes and children of
the element, and the element becomes empty. If you update the text node of an
element to null, Oracle removes the text value of the element, and the element itself
remains but is empty.

In most cases, this function materializes an XML document in memory and updates
the value. However, UPDATEXM. is optimized for UPDATE statements on
object-relational columns so that the function updates the value directly in the column.
This optimization requires the following conditions:

« The XM_Type_i nst ance must be the same as the column in the UPDATE ... SET
clause.

« The XPat h_stri ng must resolve to scalar content.

Examples

The following example updates to 4 the number of docks in the San Francisco
warehouse in the sample schema OE, which has a war ehouse_spec column of type
XM.Type:

SELECT war ehouse_nane,
EXTRACT(war ehouse_spec, '/Warehouse/ Docks')
"Nurmber of Docks"
FROM war ehouses
WHERE war ehouse_nane = ' San Franci sco';

WAREHOUSE NAMVE Nunmber of Docks

San Franci sco <Docks>1</ Docks>
UPDATE war ehouses SET war ehouse_spec =
UPDATEXM_(war ehouse_spec,
" | \War ehouse/ Docks/ text ()", 4)
WHERE war ehouse_nane = ' San Franci sco';

1 row updat ed.

5-210 Oracle Database SQL Reference

USER

UPPER

USER

SELECT war ehouse_nane,
EXTRACT(war ehouse_spec, '/\arehouse/ Docks')
"Nurber of Docks"
FROM war ehouses
WHERE war ehouse_nane = ' San Francisco';

WAREHOUSE NAME Nurmber of Docks
San Franci sco <Docks>4</ Docks>
Syntax

0:CH:0
Purpose

UPPER returns char , with all letters uppercase. char can be any of the datatypes
CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The return value is the same
datatype as char . The database sets the case of the characters based on the binary
mapping defined for the underlying character set. For linguistic-sensitive uppercase,
please refer to NLS_UPPER on page 5-106.

Examples
The following example returns each employee’s last name in uppercase:

SELECT UPPER(| ast _name) "Uppercase"
FROM enpl oyees;

Syntax

Purpose

USER returns the name of the session user (the user who logged on) with the datatype
VARCHAR2. Oracle Database compares values of this function with blank-padded
comparison semantics.

In a distributed SQL statement, the Ul D and USER functions together identify the user
on your local database. You cannot use these functions in the condition of a CHECK
constraint.

Examples
The following example returns the current user and the user's UID:

SELECT USER, U D FROM DUAL,;

Functions 5-211

USERENV

USERENV
Syntax
0.0 9:0
Purpose

Note: USERENV is a legacy function that is retained for backward
compatibility. Oracle recommends that you use the SYS_CONTEXT
function with the built-in USERENV namespace for current
functionality. See SYS_CONTEXT on page 5-175 for more information.

USERENV returns information about the current session. This information can be
useful for writing an application-specific audit trail table or for determining the
language-specific characters currently used by your session. You cannot use USERENV
in the condition of a CHECK constraint. Table 5-13 describes the values for the

par anet er argument.

All calls to USERENV return VARCHARZ2 data except for calls with the SESSI ONI D and
ENTRYI D parameters, which return NUMBER

Table 5-13 Parameters of the USERENV Function

Parameter Return Value

CLI ENT_I NFO CLI ENT_I NFOreturns up to 64 bytes of user session information that
can be stored by an application using the DBVMS_APPLI CATI ON_I NFO
package.

Caution: Some commercial applications may be using this context
value. Please refer to the applicable documentation for those
applications to determine what restrictions they may impose on use of
this context area.

See Also:
« Oracle Database Concepts for more information on application
context
« CREATE CONTEXT on page 14-9 and SYS_CONTEXT on
page 5-175
ENTRYI D The current audit entry number. The audit entryid sequence is shared

between fine-grained audit records and regular audit records. You
cannot use this attribute in distributed SQL statements.

| SDBA | SDBA returns "TRUE' if the user has been authenticated as having
DBA privileges either through the operating system or through a
password file.

LANG LANG returns the 1SO abbreviation for the language name, a shorter
form than the existing 'LANGUAGE' parameter.

LANGUAGE LANGUAGE returns the language and territory used by the current
session along with the database character set in this form:

| anguage_territory. characterset

SESSI ONI D SESSI ONI D returns the auditing session identifier. You cannot specify
this parameter in distributed SQL statements.

5-212 Oracle Database SQL Reference

VAR_POP

VALUE

VAR_POP

Table 5-13 (Cont.) Parameters of the USERENV Function

Parameter Return Value

TERM NAL TERM NAL returns the operating system identifier for the terminal of
the current session. In distributed SQL statements, this parameter
returns the identifier for your local session. In a distributed
environment, this parameter is supported only for remote SELECT
statements, not for remote | NSERT, UPDATE, or DELETE operations.

Examples
The following example returns the LANGUAGE parameter of the current session:

SELECT USERENV(' LANGUAGE) "Language" FROM DUAL;

Language

AVERI CAN_AMERI CA. WE8I SCB859P1

Syntax
—>| VALUE |—>@-><correlation_variable)—>@—>

Purpose

VAL UE takes as its argument a correlation variable (table alias) associated with a row
of an object table and returns object instances stored in the object table. The type of the
object instances is the same type as the object table.

Examples
The following example uses the sample table oe. per sons, which is created in
"Substitutable Table and Column Examples" on page 16-51:

SELECT VALUE(p) FROM persons p;

VALUE(P) (NAME, SSN)

PERSON T(' Bob', 1234)
EMPLOYEE_T(' Joe', 32456, 12, 100000)
PART TIME_EMP_T(' Tim, 5678, 13, 1000, 20)

See Also: "IS OF type Condition" on page 7-23 for information on
using | S OF type conditions with the VALUE function

Syntax

f—)| OVER |—>@e| analytic_clause %

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Functions 5-213

VAR_POP

Purpose

VAR_POP returns the population variance of a set of numbers after discarding the nulls
in this set. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

If the function is applied to an empty set, then it returns null. The function makes the
following calculation:

(SUM expr?) - SUMexpr)? / COUNT(expr)) / COUNT(expr)

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example

The following example returns the population variance of the salaries in the
enpl oyees table:

SELECT VAR POP(sal ary) FROM enpl oyees;

VAR POP(SALARY)

15140307.5

Analytic Example

The following example calculates the cumulative population and sample variances in
the sh. sal es table of the monthly sales in 1998:

SELECT t. cal endar _nont h_desc,
VAR _POP(SUM s. anount _sol d))
OVER (ORDER BY t.cal endar _nonth_desc) "Var_Pop",
VAR_SAMP(SUM s. amount _sol d))
OVER (ORDER BY t.cal endar _nont h_desc) "Var_Sanp"
FROMsales s, times t
VWHERE s.tinme_id = t.time_id AND t.cal endar_year = 1998
GROUP BY t. cal endar _nont h_desc;

CALENDAR Var_Pop Var_Sanp

1998-01 0

1998-02 6.1321E+11 1.2264E+12
1998-03 4.7058E+11 7.0587E+11
1998-04 4.6929E+11 6. 2572E+11
1998-05 1.5524E+12 1.9405E+12
1998-06 2.3711E+12 2. 8453E+12
1998-07 3. 7464E+12 4. 3708E+12
1998-08 3. 7852E+12 4. 3260E+12
1998-09 3.5753E+12 4. 0222E+12
1998-10 3.4343E+12 3. 8159E+12
1998-11 3.4245E+12 3. 7669E+12
1998-12 4.8937E+12 5. 3386E+12

5-214 Oracle Database SQL Reference

VARIANCE

VAR_SAMP

VARIANCE

Syntax

ﬂ OVER F@—>| analytic_clause %

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

VAR_SAMP returns the sample variance of a set of numbers after discarding the nulls in
this set. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

If the function is applied to an empty set, then it returns null. The function makes the
following calculation:

(SUMexpr?) - SUMexpr)? / COUNT(expr)) / (COUNT(expr) - 1)

This function is similar to VARI ANCE, except that given an input set of one element,
VARI ANCE returns 0 and VAR_SANMP returns null.

See Also: "About SQL Expressions” on page 6-1 for information on
valid forms of expr and "Aggregate Functions” on page 5-8

Aggregate Example

The following example returns the sample variance of the salaries in the sample
enpl oyees table.

SELECT VAR SAMP(sal ary) FROM enpl oyees;
VAR_SAVP(SALARY)

15283140. 5

Analytic Example
Please refer to the analytic example for VAR_POP on page 5-213.

Syntax

DISTINCT

-
ALL

[e| OVER F@»{analytic_clausem
< @O

Functions 5-215

VARIANCE

See Also: "Analytic Functions” on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

VARI ANCE returns the variance of expr . You can use it as an aggregate or analytic
function.

Oracle Database calculates the variance of expr as follows:
« 0if the number of rows in expr =1
« VAR _SAMP if the number of rows in expr >1

If you specify DI STI NCT, then you can specify only the query_partiti on_cl ause
of theanal yti c_cl ause. The order _by_cl ause and wi ndowi ng_cl ause are not
allowed.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on

page 2-40 for more information on implicit conversion, "About SQL
Expressions” on page 6-1 for information on valid forms of expr and
"Aggregate Functions" on page 5-8

Aggregate Example

The following example calculates the variance of all salaries in the sample enpl oyees
table:

SELECT VARI ANCE(sal ary) "Variance"
FROM enpl oyees;

Vari ance

15283140.5

Analytic Example

The following example returns the cumulative variance of salary values in Department
30 ordered by hire date.

SELECT | ast_nane, salary, VAR ANCE(sal ary)
OVER (ORDER BY hire_date) "Variance"
FROM enpl oyees
WHERE departnment _id = 30;

LAST_NAME SALARY Variance
Raphael y 11000 0
Khoo 3100 31205000
Tobi as 2800 21623333.3
Bai da 2900 16283333.3
H nuro 2600 13317000
Col menar es 2500 11307000

5-216 Oracle Database SQL Reference

WIDTH_BUCKET

VSIZE

Syntax
OO

Purpose
VSI ZE returns the number of bytes in the internal representation of expr . If expr is
null, then this function returns null.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information

Examples
The following example returns the number of bytes in the | ast _nane column of the
employees in department 10:

SELECT | ast _nane, VSIZE (last_nane) "BYTES"
FROM enpl oyees
VWHERE departnent _id = 10;

WIDTH_BUCKET

Syntax
OICDIO G0, D6 CXTED IO
Purpose

W DTH_BUCKET lets you construct equiwidth histograms, in which the histogram
range is divided into intervals that have identical size. (Compare this function with
NTI LE, which creates equiheight histograms.) Ideally each bucket is a closed-open
interval of the real number line. For example, a bucket can be assigned to scores
between 10.00 and 19.999... to indicate that 10 is included in the interval and 20 is
excluded. This is sometimes denoted [10, 20).

For a given expression, W DTH_BUCKET returns the bucket number into which the
value of this expression would fall after being evaluated.

« expr isthe expression for which the histogram is being created. This expression
must evaluate to a numeric or datetime value or to a value that can be implicitly
converted to a numeric or datetime value. If expr evaluates to null, then the
expression returns null.

« mn_val ue and max_val ue are expressions that resolve to the end points of the
acceptable range for expr . Both of these expressions must also evaluate to
numeric or datetime values, and neither can evaluate to null.

« num bucket s is an expression that resolves to a constant indicating the number
of buckets. This expression must evaluate to a positive integer.

Functions 5-217

WIDTH_BUCKET

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-40 for more information on implicit conversion

When needed, Oracle Database creates an underflow bucket numbered 0 and an
overflow bucket numbered num bucket s+1. These buckets handle values less than
m n_val ue and more than max_val ue and are helpful in checking the
reasonableness of endpoints.

Examples

The following example creates a ten-bucket histogram onthecredit _I i mi t column
for customers in Switzerland in the sample table oe. cust oner s and returns the
bucket number ("Credit Group") for each customer. Customers with credit limits
greater than the maximum value are assigned to the overflow bucket, 11:

SELECT customer _id, cust_last_nane, credit_linmt,
W DTH BUCKET(credit_limt, 100, 5000, 10) "Credit G oup"
FROM cust oners WHERE nls_territory = ' SWTZERLAND
ORDER BY "Credit G oup";

CUSTOVER | D CUST_LAST NAME CREDIT_LIMT Credit Goup
825 Dreyfuss 500 1
826 Barkin 500 1
853 Palin 400 1
827 Si egel 500 1
843 Qates 700 2
844 Julius 700 2
835 Eastwood 1200 3
840 Elliott 1400 3
842 Stern 1400 3
841 Boyer 1400 3
837 Stanton 1200 3
836 Berenger 1200 3
848 d nos 1800 4
849 Kaur usnaki 1800 4
828 M nnel li 2300 5
829 Hunt er 2300 5
852 Tanner 2300 5
851 Brown 2300 5
850 Fi nney 2300 5
830 Dutt 3500 7
831 Bel Ceddes 3500 7
832 Spacek 3500 7
838 Ni chol son 3500 7
839 Johnson 3500 7
833 Mrani s 3500 7
834 ldle 3500 7
845 Fawcett 5000 11
846 Brando 5000 11
847 Streep 5000 11

5-218 Oracle Database SQL Reference

XMLAGG

XMLAGG

Syntax

order_by_clause
XMLAGG [()s(XMLType_instance @->

Purpose

XMLAgg is an aggregate function. It takes a collection of XML fragments and returns an
aggregated XML document. Any arguments that return null are dropped from the
result.

XMLAgg is similar to SYS_XM_Agg except that XMLAgg returns a collection of nodes
but it does not accept formatting using the XMLFor mat object. Also, XMLAgg does not
enclose the output in an element tag as does SYS XM_Agg.

Within the or der _by_cl ause, Oracle Database does not interpret number literals as
column positions, as it does in other uses of this clause, but simply as number literals.

See Also: XMLELEMENT on page 5-223 and SYS_XMLAGG on
page 5-183

Examples
The following example produces a Depar t nent element containing Enpl oyee
elements with employee job ID and last name as the contents of the elements:

SELECT XM_ELEMENT(" Depart nent ",
XMLAGG(XMLELEMENT(" Enpl oyee",

e.job_id||" "||e.last_name)
ORDER BY | ast_nane))
as "Dept_list"

FROM enpl oyees e
WHERE e. departnent _id = 30;

Dept _I i st

<Depart ment >
<Enpl oyee>PU_CLERK Bai da</ Enpl oyee>
<Enpl oyee>PU_CLERK Col menar es</ Enpl oyee>
<Enmpl oyee>PU_CLERK Hi nur o</ Enpl oyee>
<Enpl oyee>PU_CLERK Khoo</ Enpl oyee>
<Enpl oyee>PU_MAN Raphael y</ Enpl oyee>
<Enpl oyee>PU_CLERK Tobi as</ Enpl oyee>

</ Depart nent >

The result is a single row, because XM_Agg aggregates the rows. You can use the
GROUP BY clause to group the returned set of rows into multiple groups:

SELECT XMLELEMENT(" Depart nent ",
XM_LAGE XMLELEMENT(" Enpl oyee", e.job_id||" '|]|e.last_nane)))
AS "Dept_list"
FROM enpl oyees e
CGROUP BY e. departnent _id;

Dept _I i st

<Depart ment >
<Enpl oyee>AD_ASST Wal en</ Enpl oyee>

Functions 5-219

XMLCDATA

</ Depart nment >

<Depart ment >
<Enpl oyee>MK_MAN Har t st ei n</ Enpl oyee>
<Enpl oyee>MK_REP Fay</ Enpl oyee>

</ Depart nment >

<Depart ment >
<Enpl oyee>PU_MAN Raphael y</ Enpl oyee>
<Enmpl oyee>PU_CLERK Khoo</ Enpl oyee>
<Enpl oyee>PU_CLERK Tobi as</ Enpl oyee>
<Enpl oyee>PU_CLERK Bai da</ Enpl oyee>
<Enmpl oyee>PU_CLERK Col menar es</ Enpl oyee>
<Enpl oyee>PU_CLERK Hi nur o</ Enpl oyee>

</ Depart nent >

XMLCDATA

Syntax
—>| XMLCDATA P@»Cvalue_expr)»@»

Purpose

XM_CDat a generates a CDATA section by evaluating val ue_expr . The val ue_expr
must resolve to a string. The value returned by the function takes the following form:

<! [CDATA[string]]>

If the resulting value is not a valid XML CDATA section, then the function returns an
error.

The following conditions apply to XM_CDat a:
« Theval ue_expr cannot contain the substring]] >.

« Ifval ue_expr evaluates to null, then the function returns null.

See Also: Oracle XML DB Developer's Guide for more information on
this function

Examples
The following statement uses the DUAL table to illustrate the syntax of XMLCDat a:

SELECT XMLELEMENT(" Pur chaseQOrder",
XMLAt tri butes(dumry as "pono"),
XM.Cdat a("' <! DOCTYPE po_dom group [
<! ELEMENT po_dom gr oup(st udent _nane) *>
<I ELEMENT po_purch_nane (#PCDATA) >
<! ATTLI ST po_nane po_no | D #REQUI RED>
<! ATTLI ST po_nane trust_1 | DREF #l MPLI ED>
< ATTLI ST po_nane trust_2 | DREF #l MPLI ED>
1>)) "XM.CData" FROM DUAL;

<Pur chaseQrder pono="X"><![CDATA
<! DOCTYPE po_dom group [

5-220 Oracle Database SQL Reference

XMLCOLATTVAL

<! ELEMENT po_dom group(student _name) *>
<! ELEMENT po_purch_nane (#PCDATA) >
<! ATTLI ST po_name po_no | D #REQUI RED>
<I ATTLI ST po_name trust_1 | DREF #l MPLI ED>
<I ATTLI ST po_name trust_2 | DREF #l MPLI ED>
1>

11>

</ Pur chaseQOr der >

XMLCOLATTVAL

Syntax

M\
)
|
XMLCOLATTVAL value_expr @

Purpose

XM_Col Att Val creates an XML fragment and then expands the resulting XML so that
each XML fragment has the name col umm with the attribute nane. You can use the AS
c_al i as clause to change the value of the nane attribute to something other than the
column name.

You must specify a value for val ue_expr . If val ue_expr is null, then no element is
returned.

Restriction on XMLColAttVal You cannot specify an object type column for val ue_
expr.

Examples

The following example creates an Enp element for a subset of employees, with nested
enpl oyee_i d, | ast _nane, and sal ary elements as the contents of Enp. Each
nested element is named col umm and has a nane attribute with the column name as
the attribute value:

SELECT XMLELEMENT(" Enp",
XMLCOLATTVAL(e. enpl oyee_id, e.last_nanme, e.salary)) "Enp El enent”
FROM enpl oyees e
WHERE enpl oyee_id = 204;

Enp El enent

<Enp>
<col um nanme="EMPLOYEE_| D' >204</ col um>
<col um nanme="LAST_NAME" >Baer </ col urm>
<col um nanme="SALARY" >10000</ col urm>

</ Enp>

Please refer to the example for XMLFOREST on page 5-225 to compare the output of
these two functions.

Functions 5-221

XMLCOMMENT

XMLCOMMENT

Syntax
—{ XMLCOMMENT F@{value_expr}e@»

Purpose

XM.Conmmrent generates an XML comment using an evaluated result of val ue_expr.
The val ue_expr must resolve to a string. It cannot contain two consecutive dashes
(hyphens). The value returned by the function takes the following form:

<l--string-->
If val ue_expr resolves to null, then the function returns null.

See Also: Oracle XML DB Developer's Guide for more information on
this function

Examples
The following example uses the DUAL table to illustrate the XMLComment syntax:

SELECT XMLCOMMENT(" Or der Anal ysi sConp inported, reconfigured, disassenbled)
AS " XMLCOMMVENT" FROM DUAL;

<!'--OrderAnal ysi sConp inported, reconfigured, disassenbled-->

XMLCONCAT
Syntax
e
[iconcar 1) O
Purpose

XM_Concat takes as input a series of XMLType instances, concatenates the series of
elements for each row, and returns the concatenated series. XM_Concat is the inverse
of XMLSequence.

Null expressions are dropped from the result. If all the value expressions are null, then
the function returns null.

See Also: XMLSEQUENCE on page 5-229

Examples
The following example creates XML elements for the first and last names of a subset of
employees, and then concatenates and returns those elements:

SELECT XMLCONCAT(XMLELEMENT("First", e.first_nane),
XMLELEMENT("Last", e.last_nanme)) AS "Result"
FROM enpl oyees e
WHERE e. enpl oyee_id > 202;

5-222 Oracle Database SQL Reference

XMLELEMENT

<Fi rst >Susan</ Fi rst >
<Last >Mavri s</ Last >

<Fi r st >Her mann</ Fi r st >
<Last >Baer </ Last >

<Fi rst>Shel | ey</ Fi rst>
<Last >Hi ggi ns</ Last >

<First>WIIiank/First>
<Last >@ et z</ Last >

4 rows sel ected.

XMLELEMENT

Syntax

XMLELEMENT

_ JROLCIED) \
@ 3 identifier) @-)

XML_attributes_clause::=

)\
N\
XMLATTRIBUTES value_expr @—)

Purpose

XMLEI enent takes an element name fori denti fi er, an optional collection of
attributes for the element, and arguments that make up the content of the element. It
returns an instance of type XMLType. XMLEl enment is similar to SYS_XM_Gen except
that XMLEI enent can include attributes in the XML returned, but it does not accept
formatting using the XM_For nat object.

The XMLEI enment function is typically nested to produce an XML document with a
nested structure, as in the example in the following section.

You must specify a value for i denti fi er, which Oracle Database uses as the
enclosing tag. The identifier can be up to 4000 characters and does not have to be a
column name or column reference. It cannot be an expression or null.

The objects that make up the element content follow the XMLATTRI BUTES keyword. In
the XM__attri but es_cl ause, if the val ue_expr is null, then no attribute is
created for that value expression. The type of val ue_expr cannot be an object type or
collection. If you specify an alias for val ue_expr using the AS clause, the c_al i as
can be up to 4000 characters.

For the optional val ue_expr that follows the XM__at t ri but es_cl ause in the
diagram:

Functions 5-223

XMLELEMENT

« Ifval ue_expr is ascalar expression, then you can omit the AS clause, and Oracle
uses the column name as the element name.

« Ifval ue_expr is an object type or collection, then the AS clause is mandatory,
and Oracle uses the specified ¢_al i as as the enclosing tag.

« Ifval ue_expr is null, then no element is created for that value expression.

See Also: SYS_XMLGEN on page 5-184

Examples

The following example produces an Enp element for a series of employees, with
nested elements that provide the employee's name and hire date:

SELECT XMLELEMENT(" Enp", XMLELEMENT("Nane",
e.job_id||" "||e.last_nane),
XMLELEMENT("Hi redate", e.hire_date)) as "Result"
FROM enpl oyees e WHERE enpl oyee_id > 200;

<Enp>
<Name>MK_MAN Har t st ei n</ Name>
<Hi r edat e>17- FEB- 96</ Hi r edat e>
</ Enp>

<Enp>

<Name>MK_REP Fay</ Nane>

<Hi redat e>17- AUG 97</ Hi r edat e>
</ Enp>

<Enp>

<Nane>HR_REP Mavri s</ Name>

<Hi redat e>07- JUN- 94</ Hi r edat >
</ Enp>

<Enp>

<Name>PR_REP Baer </ Nane>

<Hi redat e>07- JUN- 94</ Hi r edat e>
</ Enp>

<Enp>
<Nane>AC_MZR Hi ggi ns</ Nane>
<Hi redat e>07- JUN- 94</ Hi r edat e>
</ Enp>

<Enp>
<Nane>AC_ACCOUNT G et z</ Nane>
<Hi r edat e>07- JUN- 94</ Hi r edat e>
</ Enp>

6 rows selected.

The following similar example uses the XMLEl enent function with the XM._
attri but es_cl ause to create nested XML elements with attribute values for the
top-level element:

SELECT XMLELEMENT(" Enp",
XMLATTRI BUTES(e. enpl oyee_id AS "I D', e.last_nane),
XMLELEMENT(" Dept ", e.department_id),
XMLELEMENT(" Sal ary", e.salary)) AS "Enp El ement”

5-224 Oracle Database SQL Reference

XMLFOREST

FROM enpl oyees e
WHERE e. enpl oyee_id = 206;

Enp El enent

<Enp | D="206" LAST_NAME="G etz">
<Dept >110</ Dept >
<Sal ary>8300</ Sal ar y>

</ Enp>

Notice that the ASi dent i fi er clause was not specified for the | ast _nane column.
As a result, the XML returned uses the column name | ast _nane as the default.

Finally, the next example uses a subquery within the XM__at t ri but es_cl ause to
retrieve information from another table into the attributes of an element:

SELECT XMLELEMENT("Enp", XM.ATTRI BUTES(e. enpl oyee_id, e.last_nane),
XMLELEMENT(" Dept ", XM.ATTRI BUTES(e. depart ment _i d,
(SELECT d. departnent _name FROM departnents d
WHERE d. department _id = e.department _id) as "Dept_name")),
XMLELEMENT("sal ary", e.salary),
XMLELEMENT("Hi redate", e.hire_date)) AS "Enp El ement”
FROM enpl oyees e
WHERE enpl oyee_id = 205;

Enp El enent

<Enp EMPLOYEE_| D="205" LAST_NAME="Hi ggi ns">
<Dept DEPARTMENT_| D="110" Dept_name="Accounting"/>
<sal ary>12000</ sal ary>
<H redat e>07- JUN- 94</ Hi r edat e>

</ Enp>

XMLFOREST

Syntax

XMLFOREST value_expr @

Purpose

XM_For est converts each of its argument parameters to XML, and then returns an
XML fragment that is the concatenation of these converted arguments.

M)
EE

« Ifval ue_expr isa scalar expression, then you can omit the AS clause, and Oracle
Database uses the column name as the element name.

« Ifval ue_expr isan object type or collection, then the AS clause is mandatory,
and Oracle uses the specified c_al i as as the enclosing tag. The c_al i as can be
up to 4000 characters.

« Ifval ue_expr isnull, then no element is created for that val ue_expr.
Examples

The following example creates an Enp element for a subset of employees, with nested
enpl oyee_i d, | ast _nane, and sal ary elements as the contents of Enp:

Functions 5-225

XMLPARSE

XMLPARSE

SELECT XMLELEMENT(" Enp",
XMLFOREST(e. enpl oyee_id, e.last_nane, e.salary))
"Enp El enent”
FROM enpl oyees e WHERE enpl oyee_i d = 204;

Enp El enent

<Enp>
<EMPLOYEE_| D>204</ EMPLOYEE | D>
<LAST_NAME>Baer </ LAST_NAME>
<SALARY>10000</ SALARY>

</ Enp>

Please refer to the example for XMLCOLATTVAL on page 5-221 to compare the output
of these two functions.

Syntax

_ o DOCUMENT WELLFORMED O_)
XMLPARSE H value_expr)
CONTENT

Purpose

XM_Par se parses and generates an XML instance from the evaluated result of val ue_
expr.The val ue_expr must resolve to a string. If val ue_expr resolves to null, then
the function returns null.

« If you specify DOCUMENT, then val ue_expr must resolve to a singly rooted XML
document.

« If you specify CONTENT, then val ue_expr must resolve to a valid XML value.

« When you specify WVELLFORMED, you are guaranteeing that val ue_expr resolves
to a well-formed XML document, so the database does not perform validity checks
to ensure that the input is well formed.

See Also: Oracle XML DB Developer's Guide for more information on
this function

Examples
The following example uses the DUAL table to illustrate the syntax of XMLPar se:

SELECT XM_PARSE(CONTENT ' 124 <pur chaseOrder poNo="12435">
<cust omer Name> Acre Ent er pri ses</ cust oner Nane>
<i t emN0>32987457</ i t enNo>
</ pur chaseCr der >'

VELLFORMVED) AS PO FROM DUAL;

124 <purchaseOrder poNo="12435">
<cust omer Name> Acre Ent er pri ses</ cust oner Name>
<i t emN0>32987457</ i t emNo>
</ pur chaseCr der >

5-226 Oracle Database SQL Reference

XMLQUERY

XMLPI

XMLQUERY

Syntax

-NAME -value_expr
(0 e AW S @

Purpose

XMLPI generates an XML processing instruction using i dent i f i er and optionally
the evaluated result of val ue_expr . A processing instruction is commonly used to
provide to an application information that is associated with all or part of an XML
document. The application uses the processing instruction to determine how best to
process the XML document.

The optional val ue_expr must resolve to a string. If you omit val ue_expr, then a
zero-length string is the default. The value returned by the function takes this form:

<?identifier string?>

XMLPI is subject to the following restrictions:

« Theidentifier mustbeavalid target for a processing instruction.
« You cannot specify xm in any case combination fori denti fi er.

« Theidentifier cannotcontain the consecutive characters ?>.

See Also: Oracle XML DB Developer's Guide for more information on
this function

Examples
The following statement uses the DUAL table to illustrate the use of the XMLPI syntax:

SELECT XMLPI (NAME " Order anal ysi sConp”, 'inported, reconfigured, disassenbled)
AS "XM.PI'" FROV DUAL;

<?Order anal ysisConp inported, reconfigured, disassenbled?>

The following fragment instructs the application (for example, a browser) to display
the XML document using the cascading stylesheet t est . css:

<?xnm -styl esheet type="text/css" href="test.css"?>

Syntax

XML_passing_clause
—] XMLQUERY |->®{XQuery_strin) { RETURNING [CONTENT |->@->

9)

Functions 5-227

XMLQUERY

XML_passing_clause::=

M
N\

_ [shEe |
(‘expr)

—>| PASSING

Purpose

XMLQUERY lets you query XML data in SQL statements. It takes an XQuery expression
as a string literal, an optional context item, and other bind variables and returns the
result of evaluating the XQuery expression using these input values.

« XQuery_stringisacomplete XQuery expression, including prolog.

« Theexpr inthe XM__passi ng_cl ause is an expression returning an XMLType
that is used as the context for evaluating the XQuery expression. You can specify
only one expr in the PASSI NGclause without an identifier. The result of
evaluating each expr is bound to the corresponding identifier in the XQuery_
string. Ifany expr thatis not followed by an AS clause, then the result of
evaluating that expression is used as the context item for evaluating the XQuery_
string.

« RETURNI NG CONTENT indicates that the result from the XQuery evaluation is
either an XML 1.0 document or a document fragment conforming to the XML 1.0
semantics.

See Also: Oracle XML DB Developer's Guide for more information on
this function

Examples

The following statement specifies the war ehouse_spec column of the

oe. war ehouses table in the XML_passi ng_cl ause as a context item. The statement
returns specific information about the warehouses with area greater than 50K.

SELECT war ehouse_nane,
EXTRACTVALUE(war ehouse_spec, ' /Warheouse/ Area’),

XM_Quer y(

"for $i in /Wrehouse
where $i/Area > 50000
return <Detail s>

<Docks nume"{$i/Docks}"/>
<Rai | >

if ($i/RailAccess = "Y") then "true" else "false"

</Rai | >

</ Detail s> PASSI NG war ehouse_spec RETURNI NG CONTENT) "Bi g_war ehouses"”
FROM war ehouses;

WAREHOUSE | D Area Bi g_war ehouses
1 25000
2 50000
3 85700 <Det ai | s><Docks></ Docks><Rai | >f al se</ Rai | ></ Det ai | s>
4 103000 <Det ai | s><Docks nun¥"3"></ Docks><Rai | >t rue</ Rai | ></ Det ai | s>

5-228 Oracle Database SQL Reference

XMLSEQUENCE

XMLROOT

Syntax

f@-){ STANDALONE
|
oo (O s A VeRson

Purpose

XMLRQOOT lets you create a new XML value by providing version and standalone
properties in the XML root information (prolog) of an existing XML value. If the

val ue_expr already has a prolog, then the database returns an error. If the input is
null, then the function returns null.

The value returned takes the following form:

<?xm version = "version" [STANDALONE = "{yes | no}"]1?>

« Thefirstval ue_expr specifies the XML value for which you are providing
prolog information.

« Inthe VERSI ONclause, val ue_expr must resolve to a string representing a valid
XML version. If you specify NOVALUE for VERSI ON, then the version defaults to
1.0.

« If you omit the optional STANDALONE clause, or if you specify it with NOVALUE,
then the standalone property is absent from the value returned by the function.

Examples
The following statement uses the DUAL table to illustrate the syntax of XM_ROOT:

SELECT XMLROOT (XM.Type(' <poi d>143598</ poi d>'), VERSION ' 1.0', STANDALONE YES)
AS " XMLROOT" FROM DUAL;

<?xm version="1.0" standal one="yes"?>
<poi d>143598</ poi d>

XMLSEQUENCE

Syntax

XMLType_instance

sys_refcursor_instance

XMLSEQUENCE

Purpose
XM.Sequence has two forms;

= The first form takes as input an XMLType instance and returns a varray of the
top-level nodes in the XM_Type.

Functions 5-229

XMLSEQUENCE

« The second form takes as input a REFCURSCR instance, with an optional instance
of the XMLFor mat object, and returns as an XMLSequence type an XML
document for each row of the cursor.

Because XM_Sequence returns a collection of XMLType, you can use this function in a
TABLE clause to unnest the collection values into multiple rows, which can in turn be
further processed in the SQL query.

See Also: Oracle XML DB Developer's Guide for more information on
this function

Examples

The following example shows how XM_Sequence divides up an XML document with
multiple elements into VARRAY single-element documents. In this example, the TABLE
keyword instructs Oracle Database to consider the collection a table value that can be
used in the FROMclause of the subquery:

SELECT EXTRACT(war ehouse_spec, '/Warehouse') as "Warehouse"
FROM war ehouses WHERE war ehouse_nanme = ' San Francisco';

\War ehouse
<\War ehouse>
<Bui | di ng>Rent ed</ Bui | di ng>
<Ar ea>50000</ Ar ea>
<Docks>1</ Docks>
<DockType>Si de | oad</ DockType>
<Mt er Access>Y</ Wat er Access>
<Rai | Access>N</ Rai | Access>
<Par ki ng>Lot </ Par ki ng>
<Vd earance>12 ft</VC earance>
</ \War ehouse>

1 row sel ect ed.

SELECT VALUE(p)
FROM war ehouses w,
TABLE(XMLSEQUENCE(EXTRACT(war ehouse_spec, '/Warehouse/*'))) p
WHERE w. war ehouse_nane = ' San Franci sco';

VALUE(P)

<Bui | di ng>Rent ed</ Bui | di ng>
<Ar ea>50000</ Ar ea>

<Docks>1</ Docks>

<DockType>Si de | oad</ DockType>
<\t er Access>Y</ Wt er Access>
<Rai | Access>N</ Rai | Access>
<Par ki ng>Lot </ Par ki ng>

<Vd earance>12 ft</VJd earance>

8 rows sel ected.

5-230 Oracle Database SQL Reference

XMLTABLE

XMLSERIALIZE

XMLTABLE

Syntax

DOCUMENT
XMLSERIALIZE |(() H value_expr @
CONTENT

Purpose
XM_Ser i al i ze creates a string or LOB containing the contents of val ue_expr .

« If you specify DOCUMENT, then the val ue_expr must be a valid XML document.

« If you specify CONTENT, then the val ue_expr need not be a singly rooted XML
document. However it must be valid XML content.

« Thedat at ype specified can be a string type (VARCHAR2 or VARCHAR, but not
NVARCHAR or NVARCHAR?) or CLOB . The default is CLOB.

See Also: Oracle XML DB Developer's Guide for more information on
this function

Examples

The following statement uses the DUAL table to illustrate the syntax of
XM.Seri al i ze:

SELECT XMLSERI ALl ZE(CONTENT XMLTYPE(’ <Omer >G andco</ Oaner>"))
FROM DUAL;

Syntax

[»CXM L_namespaces_clausem
XMLTABLE |5(({xouery_string){xMLTABLE_options)@

XML_namespaces_clause::=

XMLNAMESPACES (

M\
N\
P

GG |
o

XMLTABLE_options::=

XML_passing_clause f—)| COLUMNS

XML_table_column

XML_passing_clause::=

M)
N\

—>| PASSING

_ |
(expr)

Functions 5-231

XMLTABLE

XML_table_column::=

FOR |->| ORDINALITY |

column

datatype

|
e AT [

Purpose
XM_Tabl e maps the result of an XQuery evaluation into relational rows and columns.

You can query the result returned by the function as a virtual relational table using
SQL.

The XMLNAMESPACES clause contains a set of XML namespace declarations. These
declarations are referenced by the XQuery expression (the evaluated XQuery

st ri ng), which computes the row, and by the XPath expression in the PATH
clause of XM__t abl e_col um, which computes the columns for the entire
XM_Tabl e function. If you want to use qualified names in the PATH expressions of
the COLUMNS clause, then you need to specify the XM_NAMESPACES clause.

XQuery_stringisacomplete XQuery expression and can include prolog
declarations.

The expr in the XM__passi ng_cl ause is an expression returning an XMLType
that is used as the context for evaluating the XQuery expression. You can specify
only one expr in the PASSI NGclause without an identifier. The result of
evaluating each expr is bound to the corresponding identifier in the XQuery_
string. Ifany expr thatis not followed by an AS clause, then the result of
evaluating that expression is used as the context item for evaluating the XQuery_
string.

The optional COLUMNS clause defines the columns of the virtual table to be created
by XM_Tabl e.

— If you omit the COLUMWNS clause, then XMLTabl e returns a row with a single
XML.Type pseudocolumn named COLUVN_VALUE.

— FORORDI NALI TY specifies that column is to be a column of generated row
numbers. There must be at most one FOR ORDI NALI TY clause. It is created as
a NUMBER column.

— The optional PATH clause specifies that the portion of the XQuery result that is
addressed by XPath expression string is to be used as the column content. If
you omit PATH, then the XPath expression column is assumed. For example:

XM.Tabl e(... COLUWS xyz

is equivalent to

XM.Tabl e(... COLUWNS xyz PATH ' XYZ')

You can use different PATH clauses to split the XQuery result into different
virtual-table columns.

— The optional DEFAULT clause specifies the value to use when the PATH
expression results in an empty sequence. Its expr is an XQuery expression
that is evaluated to produce the default value.

See Also: Oracle XML DB Developer's Guide for more information on
the XMLTabl e function, including additional examples, and on
XQuery in general

5-232 Oracle Database SQL Reference

XMLTRANSFORM

Examples

The following example converts the result of applying the XQuery ' / War ehouse' to
each value in the war ehouse_spec column of the war ehouses table into a virtual
relational table with columns WAt er and Rai | :

SELECT war ehouse_nane war ehouse,
war ehouse2. "Water", warehouse2."Rail"
FROM war ehouses,
XMLTABLE(' / Wr ehouse'
PASSI NG war ehouses. war ehouse_spec
COLUWNS
"Water" varchar2(6) PATH '/Warehouse/ Wt er Access',
"Rai|" varchar2(6) PATH '/Warehouse/ Rail Access')
war ehouse?;

Sout hl ake, Texas Y
San Francisco Y
New Jer sey N
Seattle, Washington N

XMLTRANSFORM

Syntax
—{ XMLTRANSFORM @{XMLType_instance}O{XMLType_instance)a@»

Purpose

XM_Tr ansf or mtakes as arguments an XMLType instance and an XSL style sheet,
which is itself a form of XMLType instance. It applies the style sheet to the instance and
returns an XMLType.

This function is useful for organizing data according to a style sheet as you are
retrieving it from the database.

See Also: Oracle XML DB Developer's Guide for more information on
this function

Examples

The XMLTr ansf or mfunction requires the existence of an XSL style sheet. Here is an
example of a very simple style sheet that alphabetizes elements within a node:

CREATE TABLE xsl _tab (col 1 XM.TYPE);

I NSERT INTO xsl| _tab VALUES (
XM.TYPE. creat exn (
'<?xm version="1.0"?>
<xsl:styl esheet version="1.0" xm ns:xsl="http://ww. w3.org/ 1999/ XSL/ Transforni' >
<xsl :out put encodi ng="utf-8"/>
<l-- al phabetizes an xm tree -->
<xsl:tenplate match="*">
<xsl : copy>
<xsl:apply-tenplates select="*|text()">
<xsl:sort select="name(.)" data-type="text" order="ascending"/>
</ xsl : appl y-tenpl at es>

Functions 5-233

ROUND and TRUNC Date Functions

</ xsl : copy>
</xsl:tenpl ate>
<xsl:template match="text()">
<xsl :val ue-of sel ect="nornalize-space(.)"/>
</xsl:tenpl ate>
</ xsl:stylesheet> '));

1 row created.

The next example uses the xsl _t ab XSL style sheet to alphabetize the elements in one
war ehouse_spec of the sample table oe. war ehouses:

SELECT XMLTRANSFORM w. war ehouse_spec, x.col 1). Get C obVal ()
FROM war ehouses w, xsl _tab x
VWHERE w. war ehouse_nanme = ' San Francisco';

XMLTRANSFORM W WAREHOUSE_SPEC, X. COL1) . GETCLOBVAL()
<\War ehouse>
<Ar ea>50000</ Ar ea>
<Bui | di ng>Rent ed</ Bui | di ng>
<DockType>Si de | oad</ DockType>
<Docks>1</ Docks>
<Par ki ng>Lot </ Par ki ng>
<Rai | Access>N</ Rai | Access>
<Vd earance>12 ft</VC earance>
<Wat er Access>Y</ Wt er Access>
</ \\ar ehouse>

ROUND and TRUNC Date Functions

Table 5-14 lists the format models you can use with the ROUND and TRUNC date
functions and the units to which they round and truncate dates. The default model,
‘DD, returns the date rounded or truncated to the day with a time of midnight.

Table 5-14 Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

CcC One greater than the first two digits of a four-digit year
SCcC

SYYYY Year (rounds up on July 1)
YYYY

YEAR

SYEAR

YYY

YY

Y

I YYY 1SO Year
Y

Y

I

Q Quarter (rounds up on the sixteenth day of the second month of the
quarter)

MONTH Month (rounds up on the sixteenth day)

5-234 Oracle Database SQL Reference

User-Defined Functions

Table 5-14 (Cont.) Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

W Same day of the week as the first day of the year
W Same day of the week as the first day of the ISO year
W Same day of the week as the first day of the month
DDD Day

DD

J

DAY Starting day of the week

DY

D

HH Hour

HH12

HH24

M Minute

The starting day of the week used by the format models DAY, DY, and D is specified
implicitly by the initialization parameter NLS_TERRI TORY.

See Also: Oracle Database Reference and Oracle Database Globalization
Support Guide for information on this parameter

User-Defined Functions

You can write user-defined functions in PL/SQL or Java to provide functionality that
is not available in SQL or SQL built-in functions. User-defined functions can appear in
a SQL statement anywhere SQL functions can appear, that is, wherever an expression
can occur.

For example, user-defined functions can be used in the following:
« The select list of a SELECT statement

« The condition of a WHERE clause

« CONNECT BY, START W TH, ORDER BY, and GROUP BY clauses
« The VALUES clause of an | NSERT statement

« The SET clause of an UPDATE statement

Note: Oracle SQL does not support calling of functions with
Boolean parameters or returns. Therefore, if your user-defined
functions will be called from SQL statements, you must design
them to return numbers (0 or 1) or character strings (TRUE’ or
'FALSE").

Functions 5-235

Prerequisites

Prerequisites

user_defined_function::=

-package
. (. function

user_defined_operator

DISTINCT

expr

(OO (O

The optional expression list must match attributes of the function, package, or
operator.

Restriction on User-defined Functions The DI STI NCT and ALL keywords are valid
only with a user-defined aggregate function.

See Also:

» CREATE FUNCTION on page 14-47 for information on creating
functions, including restrictions on user-defined functions

« Oracle Database Application Developer's Guide - Fundamentals for a
complete discussion of the creation and use of user functions

User-defined functions must be created as top-level functions or declared with a
package specification before they can be named within a SQL statement.

To use a user function in a SQL expression, you must own or have EXECUTE privilege
on the user function. To query a view defined with a user function, you must have
SELECT privileges on the view. No separate EXECUTE privileges are needed to select
from the view.

See Also: CREATE FUNCTION on page 14-47 for information on
creating top-level functions and CREATE PACKAGE on page 15-39 for
information on specifying packaged functions

Name Precedence

Within a SQL statement, the names of database columns take precedence over the
names of functions with no parameters. For example, if the Human Resources
manager creates the following two objects in the hr schema:

CREATE TABLE new enps (new_sal NUMBER, ...);
CREATE FUNCTI ON new_sal RETURN NUMBER IS BEG N ... END;

then in the following two statements, the reference to new_sal refers to the column
new_enps. new_sal :

SELECT new_sal FROM new_enps;

SELECT new_enps. new_sal FROM new_enps;

To access the function new_sal , you would enter:

SELECT hr.new_sal FROM new_enps;

Here are some sample calls to user functions that are allowed in SQL expressions:

5-236 Oracle Database SQL Reference

User-Defined Functions

circle_area (radius)
payrol | .tax_rate (enpno)
hr. enpl oyees. tax_rate (dependent, enpno)@ enote

Example To call thet ax_r at e user function from schema hr , execute it against the
ss_no and sal columnsintax_t abl e, specify the following:

SELECT hr.tax_rate (ss_no, sal)
I NTO i ncone_t ax
FROM tax_tabl e WHERE ss_no = tax_id;

The | NTOclause is PL/SQL that lets you place the results into the variable i ncone_
t ax.

Naming Conventions
If only one of the optional schema or package names is given, then the first identifier
can be either a schema name or a package name. For example, to determine whether
PAYROLL in the reference PAYROLL.TAX RATE is a schema or package name, Oracle
Database proceeds as follows:

1. Check for the PAYROLL package in the current schema.

2. If a PAYROLL package is not found, then look for a schema name PAYROLL that
contains a top-level TAX_RATE function. If no such function is found, then return
an error.

3. Ifthe PAYROLL package is found in the current schema, then look for a TAX_RATE
function in the PAYRCLL package. If no such function is found, then return an
error.

You can also refer to a stored top-level function using any synonym that you have
defined for it.

Functions 5-237

Name Precedence

5-238 Oracle Database SQL Reference

6

Expressions

This chapter describes how to combine values, operators, and functions into
expressions.

This chapter includes these sections:

About SQL Expressions
Simple Expressions
Compound Expressions
CASE Expressions

CURSOR Expressions
Datetime Expressions
Function Expressions
Interval Expressions

Object Access Expressions
Scalar Subquery Expressions
Model Expressions

Type Constructor Expressions
Variable Expressions

Expression Lists

About SQL Expressions

An expression is a combination of one or more values, operators, and SQL functions
that evaluates to a value. An expression generally assumes the datatype of its
components.

Note: The combined values of the NLS_COWP and NLS_SORT
initialization parameters determine the rules by which characters are
sorted and compared. If the NLS_COWP parameter is set to

LI NGUI STI Cfor your database, then all entities in this chapter will be
interpreted according to the rules specified by the NLS _SORT
parameter. Please refer to Oracle Database Globalization Support Guide
for more information on these parameters.

Expressions 6-1

About SQL Expressions

This simple expression evaluates to 4 and has datatype NUVBER (the same datatype as
its components):

2*2

The following expression is an example of a more complex expression that uses both
functions and operators. The expression adds seven days to the current date, removes
the time component from the sum, and converts the result to CHAR datatype:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

« The select list of the SELECT statement

« Acondition of the WHERE clause and HAVI NG clause

« The CONNECT BY, START W TH, and ORDER BY clauses
« The VALUES clause of the | NSERT statement

« The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string' St h' in
this UPDATE statement SET clause:

SET last_nane = 'Snith';

This SET clause has the expression | Nl TCAP(l ast _nane) instead of the quoted string
'Smith":

SET | ast_nane = | NI TCAP(| ast _nane);

Expressions have several forms, as shown in the following syntax:
expr::=
simple_expression
compound_expression
case_expression
Ccursor_expression
datetime_expression

function_expression

interval_expression

i

I~
K=)
D
Q
51
QD
(=]
(=]
D
(2]
wm
[¢]
x
=}
5
@D
(2]
[%]
o
\T)

—(scalar_subquery_expression)—

!

model_expression

—(type_constructor_expression)—

variable_expression

|

Oracle Database does not accept all forms of expressions in all parts of all SQL
statements. Please refer to the individual SQL statements in Chapter 10 through
Chapter 19 for information on restrictions on the expressions in that statement.

6-2 Oracle Database SQL Reference

Compound Expressions

You must use appropriate expression notation whenever expr appears in conditions,
SQL functions, or SQL statements in other parts of this reference. The sections that
follow describe and provide examples of the various forms of expressions.

Simple Expressions

A simple expression specifies a column, pseudocolumn, constant, sequence number, or
null.

simple_expression::=

guery_name

(&
view

ROWID

)

:

—| ROWNUM
—(string)
)—(number) —

CURRVAL
O
NULL

A

In addition to the schema of a user, schena can also be "PUBLI C" (double quotation
marks required), in which case it must qualify a public synonym for a table, view, or
materialized view. Qualifying a public synonym with "PUBLI C" is supported only in
data manipulation language (DML) statements, not data definition language (DDL)
statements.

You can specify RON D only with a table, not with a view or materialized view. NCHAR
and NVARCHARZ are not valid pseudocolumn datatypes.

See Also: Chapter 3, "Pseudocolumns” for more information on
pseudocolumns and subquery_factoring_clause on page 19-11 for
information on query_nane

Some valid simple expressions are:

enpl oyees. | ast _name

"this is a text string'
10

Nthis is an NCHAR string'

Compound Expressions

A compound expression specifies a combination of other expressions.

Expressions 6-3

CASE Expressions

compound_expression::=

You can use any built-in function as an expression ("Function Expressions” on

page 6-9). However, in a compound expression, some combinations of functions are
inappropriate and are rejected. For example, the LENGTH function is inappropriate
within an aggregate function.

The PRI OR operator is used in CONNECT BY clauses of hierarchical queries.

See Also: "Operator Precedence" on page 4-2 and "Hierarchical
Queries" on page 9-2

Some valid compound expressions are;

("CLARK' || "SMTH)

LENGTH(' MOOSE') * 57

SQRT(144) + 72
my_fun(TO_CHAR(sysdat e, ' DD- MMM YY"))

CASE Expressions

CASE expressions let you use | F ... THEN... ELSE logic in SQL statements without
having to invoke procedures. The syntax is:

simple_case_expressionh
CASE >|| END |—>

searched_case_expression

simple_case_expression::=

WHEN |—>(comparison_expr>a| THEN |—>Cretum_expr>)—>

searched_case_expression::=

ﬂii WHEN |e(condition>9| THEN |e(return_expr>)—>
else _clause::=

6-4 Oracle Database SQL Reference

CASE Expressions

In a simple CASE expression, Oracle Database searches for the first WHEN ... THEN pair
for which expr is equal to conpari son_expr and returnsr et ur n_expr . If none of
the WHEN ... THEN pairs meet this condition, and an ELSE clause exists, then Oracle
returns el se_expr . Otherwise, Oracle returns null. You cannot specify the literal
NULL for every r et ur n_expr and the el se_expr.

In a searched CASE expression, Oracle searches from left to right until it finds an
occurrence of condi t i on that is true, and then returns r et ur n_expr. If no

condi ti on is found to be true, and an ELSE clause exists, Oracle returns el se_expr.
Otherwise, Oracle returns null.

Oracle Database uses short-circuit evaluation. That is, for a simple CASE expression,
the database evaluates each conpari son_expr value only before comparing it to
expr, rather than evaluating all conpar i son_expr values before comparing any of
them with expr . Consequently, Oracle never evaluates a conpari son_expr ifa
previous conpari son_expr is equal to expr . For a searched CASE expression, the
database evaluates each condi t i on to determine whether it is true, and never
evaluates a condi t i on if the previous condi t i on was true.

For a simple CASE expression, the expr and all conpari son_expr values must
either have the same datatype (CHAR, VARCHAR2, NCHAR, or N\VARCHAR2, NUMBER,
Bl NARY_FLQOAT, or Bl NARY_DOUBLE) or must all have a numeric datatype. If all
expressions have a numeric datatype, then Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that
datatype, and returns that datatype.

For both simple and searched CASE expressions, all of the r et ur n_expr s must either
have the same datatype (CHAR, VARCHAR2, NCHAR, or N\VARCHAR2, NUMBER, Bl NARY _
FLOAT, or Bl NARY_DOUBLE) or must all have a numeric datatype. If all return
expressions have a numeric datatype, then Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that
datatype, and returns that datatype.

The maximum number of arguments in a CASE expression is 255. All expressions
count toward this limit, including the initial expression of a simple CASE expression
and the optional ELSE expression. Each WHEN ... THEN pair counts as two arguments.
To avoid exceeding this limit, you can nest CASE expressions so thattheret urn_
expr itself is a CASE expression.

See Also:

« Table 2-10, " Implicit Type Conversion Matrix" on page 2-40 for
more information on implicit conversion

« "Numeric Precedence" on page 2-13 for information on numeric
precedence

« COALESCE on page 5-34 and NULLIF on page 5-107 for
alternative forms of CASE logic

« Oracle Database Data Warehousing Guide for examples using various
forms of the CASE expression

Simple CASE Example For each customer in the sample oe. cust oner s table, the
following statement lists the credit limit as "Low" if it equals $100, "High" if it equals
$5000, and "Medium" if it equals anything else.

SELECT cust | ast_nane,
CASE credit_limt WHEN 100 THEN ' Low
WHEN 5000 THEN ' H gh'
ELSE ' Medi um END

Expressions 6-5

CURSOR Expressions

FROM cust oner s;

CUST_LAST_NAME CASECR
Bogart Medi um
Nol te Medi um
Loren Medi um
Queney Medi um

Searched CASE Example The following statement finds the average salary of the
employees in the sample table oe. enpl oyees, using $2000 as the lowest salary
possible:

SELECT AVG CASE WHEN e.salary > 2000 THEN e.sal ary
ELSE 2000 END) "Average Sal ary" FROM enpl oyees e;

Average Sal ary

6461. 68224

CURSOR Expressions

A CURSOR expression returns a nested cursor. This form of expression is equivalent to
the PL/SQL REF CURSOR and can be passed as a REF CURSOR argument to a function.

—>| CURSOR P@{subquery)s@—)

A nested cursor is implicitly opened when the cursor expression is evaluated. For
example, if the cursor expression appears in a select list, a nested cursor will be
opened for each row fetched by the query. The nested cursor is closed only when:

« The nested cursor is explicitly closed by the user

« The parent cursor is reexecuted

« The parent cursor is closed

« The parent cursor is cancelled

« An error arises during fetch on one of its parent cursors (it is closed as part of the
clean-up)

Restrictions on CURSOR Expressions

« If the enclosing statement is not a SELECT statement, nested cursors can appear
only as REF CURSOR arguments of a procedure.

« If the enclosing statement is a SELECT statement, nested cursors can also appear in
the outermost select list of the query specification or in the outermost select list of
another nested cursor.

« Nested cursors cannot appear in views.

=« You cannot perform Bl ND and EXECUTE operations on nested cursors.
Examples The following example shows the use of a CURSOR expression in the
select list of a query:

SELECT departnent _name, CURSOR(SELECT sal ary, comm ssion_pct
FROM enpl oyees e
WHERE e. department _id = d. departnent _id)

6-6 Oracle Database SQL Reference

Datetime Expressions

FROM departnents d;

The next example shows the use of a CURSCR expression as a function argument. The
example begins by creating a function in the sample OE schema that can accept the
REF CURSOR argument. (The PL/SQL function body is shown in italics.)

CREATE FUNCTI ON f(cur SYS_REFCURSOR, ngr_hiredate DATE)
RETURN NUMBER | S
enp_hi redat e DATE;
bef ore nunber :=0;
after nunber: =0;
begin
| oop
fetch cur into enp_hiredate;
exit when cur ¥NOTFOUND;
if enp_hiredate > ngr_hiredate then
after:=after+1;
el se
bef ore: =bef ore+1;
end if;
end | oop;
close cur;
if before > after then
return 1;
el se
return O;
end if;
end,
/

The function accepts a cursor and a date. The function expects the cursor to be a query
returning a set of dates. The following query uses the function to find those managers
in the sample enpl oyees table, most of whose employees were hired before the
manager.

SELECT el.last_name FROM enpl oyees el
VHERE f (
CURSOR(SELECT e2. hire_date FROM enpl oyees e2
WHERE el. enpl oyee_id = e2. manager _i d),
el.hire_date) = 1;

LAST_NAVE

Mbur gos
Canbr aul t
Zl ot key
H ggens

Datetime Expressions

A datetime expression yields a value of one of the datetime datatypes.

Expressions 6-7

Datetime Expressions

datetime_expression::=

/| LOCAL

—><datetime_value_expr>e| AT |+

\| TIME |->| ZONE

Adat eti me_val ue_expr can be a datetime column or a compound expression that
yields a datetime value. Datetimes and intervals can be combined according to the
rules defined in Table 2-5 on page 2-20. The three combinations that yield datetime
values are valid in a datetime expression.

If you specify AT LOCAL, Oracle uses the current session time zone.
The settings for AT TI ME ZONE are interpreted as follows:
« Thestring' (+]| -) HH: MM specifies a time zone as an offset from UTC.

« DBTI MEZONE: Oracle uses the database time zone established (explicitly or by
default) during database creation.

« SESSI ONTI MEZONE: Oracle uses the session time zone established by default or in
the most recent ALTER SESSI ON statement.

« time_zone_name: Oracle returns the dat eti me_val ue_expr in the time zone
indicated by ti me_zone_nare. For a listing of valid time zone names, query the
V$TI MEZONE_NAMES dynamic performance view.

Note: Timezone region names are needed by the daylight savings
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight savings
support until you provide a path to the complete (larger) file by
way of the ORA_TZFI LE environment variable.

See Also:

« Oracle Database Administrator's Guide for more information about
setting the ORA_TZFI LE environment variable

« Oracle Database Globalization Support Guide. for a complete listing
of the timezone region names in both files

« Oracle Database Reference for information on the dynamic
performance views

« expr:Ifexpr returns a character string with a valid time zone format, Oracle
returns the input in that time zone. Otherwise, Oracle returns an error.

6-8 Oracle Database SQL Reference

Interval Expressions

Example The following example converts the datetime value of one time zone to
another time zone:

SELECT FROM TZ(CAST(TO DATE(' 1999-12- 01 11:00: 00",
"YYYY-M DD HH M :SS') AS TI MESTAMP), ' Areri ca/ New York')
AT TIME ZONE ' Anerical/ Los_Angel es' "West Coast Tine"
FROM DUAL;

West Coast Tine

01- DEC-99 08. 00. 00. 000000 AM AVERI CA/ LOS_ANGELES

Function Expressions

You can use any built-in SQL function or user-defined function as an expression. Some
valid built-in function expressions are:

LENGTH(' BLAKE)
ROUND(1234. 567*43)
SYSDATE

See Also: "SQL Functions” on page 5-1 and "Aggregate Functions”
on page 5-8 for information on built-in functions

A user-defined function expression specifies a call to:

« A function in an Oracle-supplied package (see Oracle Database PL/SQL Packages and
Types Reference)

« A function in a user-defined package or type or in a standalone user-defined
function (see "User-Defined Functions" on page 5-235)

« A user-defined function or operator (see CREATE OPERATOR on page 15-32,
CREATE FUNCTION on page 14-47, and Oracle Database Data Cartridge Developer’s
Guide)

Some valid user-defined function expressions are:

circle_area(radius)

payrol | .tax_rate(enmpno)

hr. enpl oyees. corm pct (dependents, enpno) @ enot e
DBMS_LOB. get | engt h(col uim_nane)

ny_function(Dl STINCT a_col umm)

Restriction on User-Defined Function Expressions You cannot pass arguments of
object type or XM_Ty pe to remote functions and procedures.

Interval Expressions

An interval expression yields a value of | NTERVAL YEAR TOMONTH or | NTERVAL DAY
TO SECOND.

Expressions 6-9

Object Access Expressions

interval_expression::=

interval_value_expr

Ieadmg f|eId |_precision fe@—(fractlonal second premsmn%
>|I |—>| SECOND
Ieadmg fleld |_precision }_>
YEAR ﬁl |—>| MONTH

Thei nterval _val ue_expr can be the value of an | NTERVAL column or a
compound expression that yields an interval value. Datetimes and intervals can be
combined according to the rules defined in Table 2-5 on page 2-20. The six
combinations that yield interval values are valid in an interval expression.

Both| eadi ng field precisionandfracti onal _second_preci si oncanbe
any integer from 0 to 9. If you omit the | eadi ng_fi el d_pr eci si on for either DAY
or YEAR, then Oracle Database uses the default value of 2. If you omit the
fractional _second_preci si on for second, then the database uses the default
value of 6. If the value returned by a query contains more digits that the default
precision, then Oracle Database returns an error. Therefore, it is good practice to
specify a precision that you know will be at least as large as any value returned by the
query.

For example, the following statement subtracts the value of the or der _dat e column
in the sample table or der s (a datetime value) from the system timestamp (another
datetime value) to yield an interval value expression. Because we do not know how
many days ago the oldest order was placed, we specify the maximum value of 9 for
the DAY lading field precision:

SELECT (SYSTI MESTAMP - order_date) DAY(9) TO SECOND FROM orders
WHERE order _id = 2458;

Object Access Expressions

An object access expression specifies attribute reference and method invocation.

object_access_expression::=

argument
Ao

The column parameter can be an object or REF column. If you specify expr , it must
resolve to an object type.

attribute

table alias column
' object_table_alias .‘

When a type's member function is invoked in the context of a SQL statement, if the
SELF argument is null, Oracle returns null and the function is not invoked.

6-10 Oracle Database SQL Reference

Model Expressions

Examples The following example creates a table based on the sample oe. or der _
i t em_t yp object type, and then shows how you would update and select from the
object column attributes.

CREATE TABLE short _orders (
sal es_rep VARCHAR2(25), itemorder_itemtyp);

UPDATE short_orders s SET sales_rep = 'Unassigned';

SELECT o.itemline_itemid, o.itemquantity FROM short_orders o;

Scalar Subquery Expressions

A scalar subquery expression is a subquery that returns exactly one column value
from one row. The value of the scalar subquery expression is the value of the select list
item of the subquery. If the subquery returns 0 rows, then the value of the scalar
subquery expression is NULL. If the subquery returns more than one row, then Oracle
returns an error.

You can use a scalar subquery expression in most syntax that calls for an expression
(expr). However, scalar subqueries are not valid expressions in the following places:

« As default values for columns

« As hash expressions for clusters

« Inthe RETURNI NGclause of DML statements

« As the basis of a function-based index

« In CHECK constraints

« In VWHEN conditions of CASE expressions

« In GROUP BY and HAVI NGclauses

« In START W THand CONNECT BY clauses

« Instatements that are unrelated to queries, such as CREATE PRCFI LE

Model Expressions

A model expression is used only in the nodel _cl ause of a SELECT statement and
then only on the right-hand side of a model rule. It yields a value for a cell in a
measure column previously defined in the nodel _cl ause. For additional
information, please refer to model_clause on page 19-23.

Expressions 6-11

Model Expressions

model_expression::=

O
H..

expr

measure_column

aggregate_function
single_column_for_loop
' multi_column_for_loop ‘

N analytic_function)

When you specify a measure column in a model expression, any conditions and
expressions you specify must resolve to single values.

When you specify an aggregate function in a model expression, the argument to the
function is a measure column that has been previously defined in the nodel _cl ause.
An aggregate function can be used only on the right-hand side of a model rule.

Specifying an analytic function on the right-hand side of the model rule lets you
express complex calculations directly in the nodel _cl ause. The following
restrictions apply when using an analytic function in a model expression:

« Analytic functions can be used only in an UPDATE rule.

« You cannot specify an analytic function on the right-hand side of the model rule if
the left-hand side of the rule contains a FORloop or an ORDER BY clause.

« The arguments in the OVER clause of the analytic function cannot contain an
aggregate.

« The arguments before the OVER clause of the analytic function cannot contain a
cell reference.

See Also: "The MODEL clause: Examples" on page 19-35 for an
example of using an analytic function on the right-hand side of a
model rule

When expr is itself a model expression, it is referred to as a nested cell reference. The
following restrictions apply to nested cell references:

« Only one level of nesting is allowed.
« A nested cell reference must be a single-cell reference.

« When AUTOVATI C ORDERis specified in the nodel _rul es_cl ause, a nested cell
reference can be used on the left-hand side of a model rule only if the measure
used in the nested cell reference is never updated for any cell in the spreadsheet
clause.

The model expressions shown below are based on the model _cl ause of the
following SELECT statement:

SELECT country, prod, year, s
FROM sal es_vi ew _ref

6-12 Oracle Database SQL Reference

Type Constructor Expressions

MCDEL
PARTI TI ON BY (country)
DI MENSI ON BY (prod, year)
MEASURES (sal e s)
| GNORE NAV
UNI QUE DI MENSI ON
RULES UPSERT SEQUENTI AL ORDER

(
s[prod="Muuse Pad', year=2000] =
s[' Mouse Pad', 1998] + s['Mouse Pad', 1999],
s[' Standard Muse', 2001] = s['Standard Muse', 2000]

)
ORDER BY country, prod, year;

The following model expression represents a single cell reference using symbolic
notation. It represents the sales of the Mouse Pad for the year 2000.

s[prod="Muse Pad', year=2000]

The following model expression represents a multiple cell reference using positional

notation, using the CV function. It represents the sales of the current value of the
dimension column pr od for the year 2001.

s[CV(prod), 2001]
The following model expression represents an aggregate function. It represents the
sum of sales of the Mouse Pad for the years between the current value of the

dimension column year less two and the current value of the dimension column
year less one.

SUM's)[' Mouse Pad',year BETWEEN CV()-2 AND CV()-1]

See Also: CV on page 5-49 and model_clause on page 19-23

Type Constructor Expressions

A type constructor expression specifies a call to a constructor method. The argument
to the type constructor is any expression. Type constructors can be invoked anywhere
functions are invoked.

type_constructor_expression::=

A type_name ¥ () @»

The NEWkeyword applies to constructors for object types but not for collection types.
It instructs Oracle to construct a new object by invoking an appropriate constructor.
The use of the NEWkeyword is optional, but it is good practice to specify it.

If t ype_nan® is an object type, then the expressions must be an ordered list, where
the first argument_is a value whose type matches the first attribute of the object type,
the second argument is a value whose type matches the second attribute of the object
type, and so on. The total number of arguments to the constructor must match the total
number of attributes of the object type.

If t ype_nane is a varray or nested table type, then the expression list can contain
zero or more arguments. Zero arguments implies construction of an empty collection.

Expressions 6-13

Variable Expressions

Otherwise, each argument corresponds to an element value whose type is the element
type of the collection type.

Restriction on Type Constructor Invocation In an invocation of a type constructor
method, the number of parameters (expr) specified cannot exceed 999, even if the
object type has more than 999 attributes. This limitation applies only when the
constructor is called from SQL. For calls from PL/SQL, the PL/SQL limitations apply.

See Also: Oracle Database Application Developer's Guide -
Object-Relational Features for additional information on constructor
methods and Oracle Database PL/SQL User's Guide and Reference for
information on PL/SQL limitations on calls to type constructors

Expression Example This example uses the cust _addr ess_t yp type in the sample
oe schema to show the use of an expression in the call to a constructor method (the
PL/SQL is shown in italics):

CREATE TYPE address_book_t AS TABLE OF cust _address_typ;
DECLARE
myaddr cust_address_typ := cust_address_typ(
'500 Oracle Parkway', 94065, 'Redwood Shores', 'CA','USA');
al l addr address_book_t := address_book_t();
BEG N
I NSERT | NTO cust onmers VALUES (
666999, 'Joe', 'Smth', nyaddr, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL);
END;
/

Subquery Example This example uses the war ehouse_t yp type in the sample
schema oe to illustrate the use of a subquery in the call to the constructor method.
CREATE TABLE war ehouse_t ab OF war ehouse_typ;

I NSERT | NTO war ehouse_t ab
VALUES (war ehouse_typ(101, 'new wh', 201));

CREATE TYPE facility typ AS OBJECT (
facility_id NUMVBER
war ehouse_ref REF warehouse_typ);

CREATE TABLE buildings (b_id NUMBER, building facility typ);
I NSERT | NTO bui | di ngs VALUES (10, facility_typ(102,
(SELECT REF(w) FROM warehouse_tab w

VWHERE war ehouse_name = 'new wh')));

SELECT b.b_id, b.building.facility_id "FACID",
DEREF(b. bui | di ng. war ehouse_ref) "WH' FROM bui | di ngs b;

BID FAC_ | D WH WAREHOUSE | D, WAREHOUSE_NAME, LOCATI ON | D)

Variable Expressions

A variable expression specifies a host variable with an optional indicator variable. This
form of expression can appear only in embedded SQL statements or SQL statements
processed in an Oracle Call Interface (OCI) program.

6-14 Oracle Database SQL Reference

Expression Lists

variable_expression::=

INDICATOR
: indicator_variable

Some valid variable expressions are:

:enpl oyee_nane | NDI CATCR : enpl oyee_nane_i ndi cat or _var
:department _| ocation

Expression Lists

An expression list is a combination of other expressions.

expression_list::=

Expression lists can appear in comparison and membership conditions and in GROUP
BY clauses of queries and subqueries.

Comparison and membership conditions appear in the conditions of WHERE clauses.
They can contain either one or more comma-delimited expressions or one or more sets
of expressions where each set contains one or more comma-delimited expressions. In
the latter case (multiple sets of expressions):

« Each set is bounded by parentheses
« Each set must contain the same number of expressions

« The number of expressions in each set must match the number of expressions
before the operator in the comparison condition or before the | Nkeyword in the
membership condition.

A comma-delimited list of expressions can contain no more than 1000 expressions. A
comma-delimited list of sets of expressions can contain any number of sets, but each
set can contain no more than 1000 expressions.

The following are some valid expression lists in conditions:

(10, 20, 40)
("SCOTT', 'BLAKE, 'TAYLOR)
(("Quy', "Hnuro', 'GHMIJIRO), ('Karen', 'Colnenares', 'KCOLMENA'))

In the third example, the number of expressions in each set must equal the number of
expressions in the first part of the condition. For example:

SELECT * FROM enpl oyees
VHERE (first_nane, |ast_nanme, email) IN
(("cuy', "Hmro, '"GHMRO), ('Karen', 'Col nenares', 'KCOLMENA'))

See Also: "Comparison Conditions" on page 7-4 and IN Condition
conditions on page 7-21

Expressions 6-15

Expression Lists

In a simple GROUP BY clause, you can use either the upper or lower form of expression
list:

SELECT department_id, M N(salary), MAX(salary) FROM enpl oyees
CGROUP BY departnent _id, salary;

SELECT departnent_id, MN(salary), MAX(salary) FROM enployees
CROUP BY (departnent _id, salary);

In ROLLUP, CUBE, and GROUPI NG SETS clauses of GROUP BY clauses, you can combine
individual expressions with sets of expressions in the same expression list. The
following example shows several valid grouping sets expression lists in one SQL
statement:

SELECT
prod_category, prod_subcategory, country_id, cust_city, count(*)
FROM products, sales, customers
WHERE sal es. prod_i d = products. prod_id
AND sal es. cust _i d=custoners. cust _id
AND sales.tine_id = '01-oct-00'
AND cust omers. cust _year _of _birth BETWEEN 1960 and 1970
GROUP BY GROUPI NG SETS
(
(prod_category, prod_subcategory, country_id, cust_city),
(prod_category, prod_subcategory, country_id),
(prod_category, prod_subcategory),
country_id

):
See Also: SELECT on page 19-4

6-16 Oracle Database SQL Reference

v

Conditions

A condition specifies a combination of one or more expressions and logical (Boolean)
operators and returns a value of TRUE, FALSE, or UNKNOMN.

This chapter contains the following sections:
« About SQL Conditions

« Comparison Conditions

« Floating-Point Conditions

« Logical Conditions

« Model Conditions

« Multiset Conditions

« Pattern-matching Conditions
« Range Conditions

« Null Conditions

« XML Conditions

« Compound Conditions

« EXISTS Condition

« [N Condition

« IS OF type Condition

About SQL Conditions

Conditions can have several forms, as shown in the following syntax.

Conditions 7-1

About SQL Conditions

condition::=
comparison_condition
floating_point_condition
logical_condition
model_condition

multiset_condition

il

—(pattern_matching_condition)—

——(range_condition >
null_condition
XML_condition
compound_condition
exists_condition

in_condition

b

is_of_type_condition

If you have installed Oracle Text, then you can create conditions with the built-in
operators that are part of that product, including CONTAI NS, CATSEARCH, and
MATCHES. For more information on these Oracle Text elements, please refer to Oracle
Text Reference.

If you are using Oracle Expression Filter, then you can create conditions with the
built-in EVALUATE operator that is part of that product. For more information, please
refer to Oracle Database Application Developer's Guide - Rules Manager and Expression
Filter.

The sections that follow describe the various forms of conditions. You must use
appropriate condition syntax whenever condi t i on appears in SQL statements.

You can use a condition in the WHERE clause of these statements:

« DELETE
« SELECT
« UPDATE

You can use a condition in any of these clauses of the SELECT statement:
ERE

« STARTWTH

« CONNECT BY

« HAVI NG

3

7-2 Oracle Database SQL Reference

About SQL Conditions

Note: The combined values of the NLS COWP and NLS_SORT
initialization parameters determine the rules by which characters are
sorted and compared. If the NLS_COWVP parameter is set to

LI NGUI STI Cfor your database, then all entities in this chapter will be
interpreted according to the rules specified by the NLS SORT
parameter. Please refer to Oracle Database Globalization Support Guide
for more information on these parameters.

A condition could be said to be of a logical datatype, although Oracle Database does
not formally support such a datatype.

The following simple condition always evaluates to TRUE:
1=1

The following more complex condition adds the sal ar y value to the comi ssi on_
pct value (substituting the value 0 for null) and determines whether the sum is
greater than the number constant 25000:

NVL(sal ary, 0) + NVL(salary + (salary*conm ssion_pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For
example, you can use the AND condition to combine two conditions:

(1=1) AND(5<7)

Here are some valid conditions:

name = 'SMTH

enpl oyees. departnent _id = departments. departnent _id
hire_date > ' 01- JAN 88'

job_id IN("SA MAN, 'SA REP')

sal ary BETWEEN 5000 AND 10000

conmi ssion_pct 1S NULL AND sal ary = 2100

See Also: The description of each statement in Chapter 10 through
Chapter 19 for the restrictions on the conditions in that statement

Condition Precedence

Precedence is the order in which Oracle Database evaluates different conditions in the
same expression. When evaluating an expression containing multiple conditions,
Oracle evaluates conditions with higher precedence before evaluating those with
lower precedence. Oracle evaluates conditions with equal precedence from left to right
within an expression.

Table 7-1 lists the levels of precedence among SQL condition from high to low.
Conditions listed on the same line have the same precedence. As the table indicates,
Oracle evaluates operators before conditions.

Table 7-1 SQL Condition Precedence

Type of Condition Purpose

SQL operators are evaluated before SQL See "Operator Precedence"” on page 4-2
conditions

= 1= < > <=, >= comparison

Conditions 7-3

Comparison Conditions

Table 7-1 (Cont.) SQL Condition Precedence

Type of Condition Purpose

I'S [NOT] NULL, LIKE, [NOT] BETVEEN, comparison
[NOT] IN, EXISTS, IS OF type

NOT exponentiation, logical negation
AND conjunction
OR disjunction

Comparison Conditions

Comparison conditions compare one expression with another. The result of such a
comparison can be TRUE, FALSE, or NULL.

Large objects (LOBs) are not supported in comparison conditions. However, you can
use PL/SQL programs for comparisons on CLOB data.

When comparing numeric expressions, Oracle uses numeric precedence to determine
whether the condition compares NUVBER, Bl NARY_FLOAT, or Bl NARY_DOUBLE
values. Please refer to "Numeric Precedence" on page 2-13 for information on numeric
precedence.

Two objects of nonscalar type are comparable if they are of the same named type and
there is a one-to-one correspondence between their elements. In addition, nested tables
of user-defined object types, even if their elements are comparable, must have MAP
methods defined on them to be used in equality or | N conditions.

See Also:

« map_order_func_declaration on page 17-23 for more information on
MAP methods

« Oracle Database PL/SQL User's Guide and Reference for the
requirements for comparing user-defined object types in PL/SQL

Table 7-2 lists comparison conditions.

Table 7-2 Comparison Conditions
Type of
Condition Purpose Example
= Equality test. SELECT *
FROM enpl oyees
VWHERE sal ary = 2500;
= Inequality test. Some forms of the inequality SELECT *
A= condition may be unavailable on some platforms. FROM enpl oyees
<> VWHERE sal ary != 2500;

Greater-than and less-than tests. SELECT * FROM enpl oyees
VWHERE sal ary > 2500;

SELECT * FROM enpl oyees
VWHERE sal ary < 2500;

7-4 Oracle Database SQL Reference

Comparison Conditions

Table 7-2 (Cont.) Comparison Conditions
Type of
Condition Purpose Example
>= Greater-than-or-equal-to and less-than-or-equal-to SELECT * FROM enpl oyees
tests. VWHERE sal ary >= 2500;
<= SELECT * FROM enpl oyees
WHERE sal ary <= 2500;
ANY Compares a value to each value in a list or returned SELECT * FROM enpl oyees
SOVE by a query. Must be preceded by =, I=, >, <, <=, >=, WHERE sal ary = ANY
Can be followed by any expression or subquery that (SELECT sal ary
returns one or more values. FROM enpl oyees
Evaluates to FALSE if the query returns no rows. WHERE department _id = 30);
ALL Compares a value to every value in a list or returned ~ SELECT * FROM enpl oyees

by a query. Must be preceded by =, I=, >, <, <=, >=.
Can be followed by any expression or subquery that
returns one or more values.

Evaluates to TRUE if the query returns no rows.

WHERE sal ary >=
ALL (1400, 3000);

Simple Comparison Conditions
A simple comparison condition specifies a comparison with expressions or subquery

results.

simple_comparison_condition::=

o8
&
&
&
108
108
&
&

Conditions 7-5

Comparison Conditions

If you use the lower form of this condition (with multiple expressions to the left of the
operator), then you must use the lower form of the expr essi on_I i st, and the
values returned by the subquery must match in number and datatype the expressions
inexpression_|ist.

See Also: "Expression Lists" on page 6-15 for more information
about combining expressions and SELECT on page 19-4 for
information about subqueries

Group Comparison Conditions

A group comparison condition specifies a comparison with any or all members in a list
or subquery.

group_comparison_condition::=

(G

d
lolellolelele

)
>

If you use the upper form of this condition (with a single expression to the left of the
operator), then you must use the upper form of expr essi on_I i st. If you use the
lower form of this condition (with multiple expressions to the left of the operator),
then you must use the lower form of expr essi on_I i st, and the expressions in each
expressi on_l i st must match in number and datatype the expressions to the left of
the operator.

See Also:
« "Expression Lists" on page 6-15
« SELECT on page 19-4

7-6 Oracle Database SQL Reference

Logical Conditions

Floating-Point Conditions

The floating-point conditions let you determine whether an expression is infinite or is
the undefined result of an operation (that is, is not a number or NaN).

floating_point_conditions::=

NAN

)

In both forms of floating-point condition, expr must resolve to a numeric datatype or
to any datatype that can be implicitly converted to a numeric datatype. Table 7-3
describes the floating-point conditions.

Table 7-3 Floating-Point Conditions

Type of
Condition Operation Example
I'S [NOT] Returns TRUE if expr is the special SELECT COUNT(*) FROM enpl oyees
NAN value NaNwhen NOT is not WHERE conmi ssion_pct |'S NOT NAN,
specified. Returns TRUE if expr is
not the special value NaNwhen NOT
is specified.
I'S [NOT] Returns TRUE if expr is the special SELECT | ast_nane FROM enpl oyees
I NFI NI TE value +I NF or -I NF when NOT is WHERE sal ary |'S NOT | NFI NI TE;

not specified. Returns TRUE if expr
is neither +1 NF nor -I NF when NOT
is specified.

See Also:

« "Floating-Point Numbers" on page 2-11 for more information on
the Oracle implementation of floating-point numbers

« "Implicit Data Conversion" on page 2-40 for more information on
how Oracle converts floating-point datatypes

Logical Conditions

A logical condition combines the results of two component conditions to produce a
single result based on them or to invert the result of a single condition. Table 7-4 lists
logical conditions.

Conditions 7-7

Logical Conditions

Table 7-4 Logical Conditions

Type of
Condition Operation Examples
NOT Returns TRUE if the following SELECT *
condition is FALSE. Returns FROM enpl oyees
FALSE if itis TRUE. Ifitis WHERE NOT (job_id I'S NULL);
UNKNOWN, then it remains SELECT * -
UNKNCOAR FROM enpl oyees
VHERE NOT
(sal ary BETWEEN 1000 AND 2000);
AND Returns TRUE if both component ~ SELECT *
conditions are TRUE. Returns FROM enpl oyees
FALSE if either is FALSE. VWHERE job id = ' PU CLERK'
Otherwise returns UNKNOAN. AND department_id = 30
R Returns TRUE if either component SELECT *
condition is TRUE. Returns FALSE ~ FROM enpl oyees
if both are FALSE. Otherwise WHERE job_id = ' PU CLERK
returns UNKNOWN. OR departnent_id = 10;

Table 7-5 shows the result of applying the NOT condition to an expression.

Table 7-5 NOT Truth Table

- TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Table 7-6 shows the results of combining the AND condition to two expressions.

Table 7-6 AND Truth Table

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FAL