
Solutions and Examples for System Administrators

Cricket Liu

DNS & BIND
Cookbook

DNS and BIND Cookbook
Cricket Liu
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Chapter 2 CHAPTER 2

Zone Data
2.0 Introduction
With 27 different tiles in an English Scrabble set (“A” through “Z” plus the blanks)
and 7 tiles in a rack, you can draw billions of different combinations. And with over
100,000 words in the Official Word List, you can assemble a lot of words from
almost any of those combinations.

In DNS, there are fewer than 300 possible types of resource records, and of those,
only a handful could be called common. Still, you can do a remarkable variety of
interesting things with those records.

All resource records, when written in plain text (as they’d appear in a zone data file),
share the following format:

[owner] [TTL] [class] <type> <RDATA>

The fields in square brackets (“[” and “]”) are optional, while the fields between
angle brackets (“<” and “>”) are mandatory. Recipe 2.1 explains what happens
when you leave out one or more of those fields.

The RDATA field often consists of multiple subfields. The number of subfields
required depends upon the type of record. For example, SOA records take seven
RDATA subfields, while A and NS records need just one.

A zone data file contains the resource records attached to all of the domain names in
a zone. A zone’s primary master name server loads the zone data file, and the zone’s
slaves transfer the zone data from the primary master.

2.1 Creating a Zone Data File

Problem
You need to create a data file for a zone.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

23

Solution
Using your favorite editor, create a file in the primary master name server’s working
directory. Name the file after the zone whose resource records it will contain. For
example, for the foo.example zone, you might call the zone data file db.foo.example.

Begin the file with a $TTL control statement.* This tells other name servers (not
those authoritative for the zone) how long they may cache records from this zone by
specifying the zone’s default time to live. You can specify the value as an integer
number of seconds or as a scaled value: an integer followed by s for seconds, m for
minutes, h for hours, d for days or w for weeks. For example, you can specify a time
to live of one day with either:

$TTL 86400

or:

$TTL 1d

You can even concatenate two scaled values, like so:

$TTL 1d12h

Time to live values between one hour and one day are common.

Next, add an SOA record for the zone. The SOA record contains information about
the whole zone, including how often the zone’s slave name servers should check to
see whether the zone has changed. The SOA record begins with the zone’s domain
name, a specification of the zone’s class (which is almost always IN, for Internet),
and the type mnemonic SOA. After the type, the SOA record requires seven fields:

The MNAME field
Specify the domain name of the zone’s primary master name server.

The RNAME field
Specify an email address at which the administrator of the zone can be reached.
Substitute a dot (“.”) for the “@” in the email address.

The zone’s serial number
If you’ll only be changing the zone manually, by editing the zone data file, con-
sider using the format YYYYMMDDVV, where YYYY is the year, MM is the
numeric month (from 1 to 12), DD is the date, and VV is a two-digit version
number that starts at 00. This will give you a handy indicator of when you last
updated the zone.

The zone’s refresh value
This specifies how frequently slave name servers for the zone should check their
master name server to see whether the zone’s serial number has been incre-
mented (indicating that the zone has changed). This value isn’t particularly
important if you use the NOTIFY mechanism, which enables your primary

* Assuming you’re running a version of BIND newer than 8.2—and you should be.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Zone Data

master name server to tell slaves when the zone changes, but values between one
hour and three hours are common.

The zone’s retry value
This specifies how often the zone’s slave name servers should check their master
name server after a check of the serial number has failed. As with refresh, this
isn’t that important if you use NOTIFY, but values between 15 minutes and 1
hour are common.

The zone’s expire value
This specifies how long the zone’s slave name servers will continue responding if
they’re unable to reach their master name server to find out the current serial
number. Since this determines how long your slaves will answer queries for data
in the zone in the event of an outage, you should make it fairly long. Values of
several weeks to a month are common.

The zone’s negative caching time to live value
This determines how long other name servers can cache negative answers given
out by the zone’s authoritative name servers. One such negative answer is
NXDOMAIN, which indicates that the domain name the remote name server
looked up doesn’t exist in the zone. This value should be fairly low, between 15
minutes and 3 hours.

Here’s a sample SOA record for the foo.example zone:

foo.example. IN SOA ns1.foo.example. (
 hostmaster.foo.example.
 2002040700
 1h
 15m
 30d
 1h)

Since we ran out of room for the record on the first line, we ended the line with “(”,
which tells the name server to treat all text between the “(” and a successive “)” as
though it were on a single line. (We could also have just kept typing the whole
record on a single line, but that would have been hard to read.)

Finally, add NS records listing the domain names of the authoritative name servers
for the zone. You probably specified these name servers when you registered your
domain name.

foo.example. IN NS ns1.foo.example.
foo.example. IN NS ns2.foo.example.
foo.example. IN NS ns.isp.net.

Discussion
The domain names in the resource records all end in dots to keep the name server
from appending the origin to them. The default origin for a zone data file is just the
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.1 Creating a Zone Data File | 25

domain name of the zone, which in this case is foo.example, so we could have writ-
ten the SOA record as:

@ IN SOA ns1 (
 hostmaster
 2002040700
 1h
 15m
 30d
 1h)

(“@” is short for “the current origin.”)

Since these first several resource records in the zone are all attached to the same
domain name (foo.example, in our example), you can specify the domain name for just
the first of them and begin the rest of the records with whitespace (spaces or tabs):

@ IN SOA ns1 (
 hostmaster
 2002040700
 1h
 15m
 30d
 1h)

 IN NS ns1.foo.example.
 IN NS ns2.foo.example.
 IN NS ns.isp.net.

The name server interprets records that begin with whitespace as belonging to the
most recently specified domain name.

See Also
Recipe 1.14 for creating a named.conf file, Recipe 1.15 for configuring a primary mas-
ter name server, and Chapter 4 of DNS and BIND.

2.2 Adding a Host

Problem
You need to add a host to DNS.

Solution
Add an A and a PTR record for the host to the appropriate zones (which are almost
certainly two different zones: a forward-mapping and a reverse-mapping zone). For
example, to add a host called host.foo.example with the IP address 10.0.0.1 to DNS,
you could add this record to the foo.example zone data file:

host.foo.example. IN A 10.0.0.1
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Zone Data

And you’d add this record to the zone data file for the reverse-mapping zone, which
might be 10.in-addr.arpa, 0.10.in-addr.arpa, or 0.0.10.in-addr.arpa, depending on
how you break up administration of your reverse-mapping domain:

1.0.0.10.in-addr.arpa. IN PTR host.foo.example.

Discussion
You’re free to take advantage of the origin in the file to abbreviate the resource
records. For example, if you’re adding the A record to a line in the zone data file in
which the origin is foo.example, you can write:

host IN A 10.0.0.1

If you’re adding the PTR record on a line in which the origin is 0.0.10.in-addr.arpa,
you can write:

10 IN PTR host.foo.example.

Since the default class is IN, for Internet, you can leave out the IN, too.

It’s important to add PTR records for your hosts. Without PTR records, your hosts’
addresses won’t map to domain names, so they won’t be able to access services that
require reverse mapping, and your network management software may not identify
them automatically.

You may also want to add other records for the host. If the host’s domain name
might appear on the right side of an email address, add an MX record specifying
where mail addressed to the host should be delivered.

See Also
Recipe 2.4, for how to add an MX record; Recipe 2.9 to limit how long the records
can be cached, Recipe 2.10 to learn how to handle multihomed hosts, and Chapter 4
of DNS and BIND.

2.3 Adding an Alias

Problem
You need to create an alias from one domain name to another.

Solution
Add a CNAME record to the zone that the alias belongs in. For example, to make a.
foo.example an alias for b.bar.example, add this CNAME record to the foo.example
zone data file:

a.foo.example. IN CNAME b.bar.example.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.3 Adding an Alias | 27

Discussion
Note that a CNAME record makes the alias equivalent to the target of the alias. Que-
ries for any types of record attached to the alias will end up as queries for the same
type of record, but attached to the domain name the alias points to. Consequently,
you can’t add any other types of records to a domain name that is an alias.

You also shouldn’t use aliases on the right side of other types of records, such as NS
and MX records. The consumers of NS and MX records—name servers and mail
servers, respectively—don’t expect aliases on the right side and therefore don’t pro-
cess them correctly. The only kind of record that allows an alias on the right side is
the CNAME record itself: You can point an alias to another alias, as long as the alias
chain ends at a non-alias domain name. Make sure the chain isn’t more than eight
links long, though, and beware alias loops.

Finally, note that the CNAME record belongs in the zone that contains the domain
name of the alias, not the target of the alias.

See Also
Recipe 2.6 to learn how to set up virtual web hosts; and Chapter 4 and the “Using
CNAME Records” section of Chapter 16 in DNS and BIND.

2.4 Adding a Mail Destination

Problem
You need to add a mail destination to DNS.

Solution
Add one or more MX records to the zone that contains the domain name of the mail
destination. The MX records specify the mail server or servers that accept mail
addressed to that mail destination. Each MX record requires a preference value that
tells mailers sending mail the order in which to contact the destination’s mail serv-
ers. The lower the preference value, the more preferred the mail server.

For example, to tell mailers to send mail addressed to foo.example (such as an email
message addressed to hostmaster@foo.example) to mail.foo.example, and smtp.isp.net
only if mail.foo.example isn’t up or isn’t accepting connections, add these MX
records to the foo.example zone data file:

foo.example. IN MX 0 mail.foo.example.
foo.example. IN MX 10 smtp.isp.net.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Zone Data

Discussion
The preference value is an unsigned, 16-bit number, so between 0 and 65535. The
magnitude of the number isn’t important: the preference value doesn’t represent any
particular units. What’s important is that the preference values for a domain name’s
MX records, taken together, tell a sending mailer the order in which it should use the
destination’s mail servers.

Most mailers will spread the load randomly among mail servers listed at the same
preference value. This can come in handy with popular mail destinations: You can
list a number of mail servers at the most preferred preference value and sending mail-
ers will distribute the delivery of your mail among those mail servers.

The mail server must be specified as a single domain name, not an IP address. If you
use an IP address on the right side of an MX record, mailers—expecting a domain
name there—will try to look up the IP address as a domain name. This causes unnec-
essary queries to the root name servers, and fails to return an IP address, anyway.

It’s up to you (or your fellow postmasters) to configure the mail servers to accept
mail addressed to the destination. Make sure the most preferred mail exchangers
understand that the mail destination is local, and make sure less preferred mail
exchangers are configured to relay mail addressed to the destination.

See Also
RFC 2821 for authoritative information on SMTP and use of MX records, and
Chapter 5 of DNS and BIND.

2.5 Making the Domain Name of Your Zone
Point to Your Web Server

Problem
You want the domain name of your zone to point to your web server.

Solution
Add an A record to the domain name of your zone pointing to the IP address of your
web server:

foo.example. IN A 10.0.0.1
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.5 Making the Domain Name of Your Zone Point to Your Web Server | 29

Discussion
Adding such an A record lets people specify just http://foo.example/ (leaving out the
leading “www”) when accessing your web site. Several popular web sites publish
their URLs in this form, including CNN.

Many people try to solve this problem by adding a CNAME record to the domain
name of the zone, rather than an A record:

foo.example. IN CNAME www.foo.example.

This, however, is illegal because it violates the dictum that an alias have no records
other than a CNAME record associated with it.

If you have multiple web servers, you can add multiple A records for the domain
name of your zone:

foo.example. IN A 10.0.0.1
foo.example. IN A 10.0.0.2
foo.example. IN A 10.0.0.3

The records are given out in round robin order, by default, as described in Recipe 2.7.

See Also
Recipe 2.3 for more information on CNAME records, Recipe 2.6 for pointing a
domain name at a particular URL, not just a particular web server, and Recipe 2.7,
for a description of round robin.

2.6 Pointing a Domain Name to a Particular URL

Problem
You want people who access one of your domain names to reach a particular URL.

Solution
Add an A record to the zone to which the domain name belongs, pointing to the IP
address of the web server:

mylink.foo.example. IN A 10.0.0.1

Then configure the web server to direct browsers requesting http://mylink.foo.example
to the appropriate directory on your web server.

Discussion
Most of this solution is configured on the web server using a facility called “virtual
hosts.” The web server needs to associate your domain name, when it appears in the
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Zone Data

HTTP/1.1 “Host” header, with a particular “document root,” a directory in the web
server’s document tree.

If the domain name of the web server is in a zone run by someone else, or you
already have a domain name in your zone pointing to the address of the web server,
you can use a CNAME record instead of an A record:

mylink.foo.example. IN CNAME www.isp.net.

This way, if the IP address of the web server changes, your domain name will con-
tinue to point to the right place.

Of course, if someone else runs the web server, you’ll need their cooperation to set
up the association between mylink.foo.example and the appropriate directory.

See Also
Recipe 2.5 for pointing a domain name at a web server, the Apache Software Foun-
dation’s online documents on virtual hosts at http://httpd.apache.org/docs/vhosts/
name-based.html and http://httpd.apache.org/docs-2.0/vhosts/, and “HTTP/1.1 Vir-
tual Hosts” in Chapter 3 of Apache: The Definitive Guide.

2.7 Setting Up Round Robin Load Distribution

Problem
You want to set up round robin for a domain name.

Solution
Just add multiple A records to the domain name. For example:

www.foo.example. IN A 10.0.0.1
www.foo.example. IN A 10.0.0.2
www.foo.example. IN A 10.0.0.3

In successive answers to queries for www.foo.example’s address, the foo.example
name servers will rotate the order in which they return the A records, moving the
first A record to the end of the list after each response.

Discussion
All modern name servers give out resource records in round robin order by default.
Only very old name servers (before BIND 4.9) don’t support round robin.

Remember that round robin isn’t load balancing. The name server has no idea how
busy the web servers that serve www.foo.example’s content are, or even whether
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.7 Setting Up Round Robin Load Distribution | 31

they’re all responding. If the name server at 10.0.0.1 were to crash, the name server
would still give out its address first a third of the time. For true load balancing, you
need something more than just DNS.

See Also
Recipe 3.18 for details on how round robin works and how to disable it.

2.8 Adding a Domain Name in a Subdomain
Without Creating a New Zone

Problem
You want to add a domain name in a subdomain of your zone, but don’t want to cre-
ate a new zone and delegate it from your current zone.

Solution
Just add the records associated with the new domain name, specifying the subdo-
main in the domain name. For example, to add the domain name a.b.foo.example to
the foo.example zone, you could add this record to the foo.example zone data file:

a.b.foo.example. IN A 10.0.0.4

Doing this implicitly creates the subdomain b.foo.example and the domain name
a.b.foo.example. The subdomain b.foo.example is part of the foo.example zone (as
is the domain name a.b.foo.example), and will be included in transfers of the zone
to slave name servers.

If the origin in the zone data file is foo.example, the default, you can also write the
record as:

a.b IN A 10.0.0.4

Discussion
Sometimes the solution to a problem is just the most obvious of the possibilities.
That’s the case both with setting up round robin and with this problem. But many
administrators—even the very experienced—aren’t accustomed to adding domain
names to their zones that have multiple labels to the left of their zones’ domain
names. They think of the domain names in their zones as always having the format
host.domain-name-of-zone, rather than any number of labels ending in the domain
name of the zone.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Zone Data

See Also
For more on intrazone subdomains, see “Creating a Subdomain in the Parent’s
Zone” in Chapter 9 of DNS and BIND. If you do want to delegate the subdomain
and create a new zone, see Recipe 6.1.

2.9 Preventing Remote Name Servers
from Caching a Resource Record

Problem
You want to prevent remote name servers from caching one or more records in your
zone.

Solution
Give the record (or records) an explicit—and low—time to live (TTL). For example,
to keep other name servers from caching your web server’s addresses, you could add
these A records to the zone data file:

www.foo.example. 1 IN A 10.0.0.1
www.foo.example. 1 IN A 10.0.0.2
www.foo.example. 1 IN A 10.0.0.3

Specify the explicit TTL between the domain name owner of the record and the class
field. By default, the value is an integer number of seconds. You can also use a scaled
value, as you would in the $TTL control statement.

Discussion
Note that the TTLs for the three www.foo.example A records are the same; that’s no
accident. If you were to use different TTLs for records in the same RRset (of the
same type, and attached to the same domain name), a remote name server might age
only some of them out, leading to unpredictable results. Consequently, modern
name servers notice this misconfiguration and “trim” mismatched TTLs within a sin-
gle RRset to the smallest TTL of the group.

Why did I use a TTL of one instead of zero? After all, a zero TTL would seem to say,
“Don’t cache this record.” Unfortunately, TTLs of zero tickle a bug in some older
name servers, which age out the records before returning them to the resolver that
initiated the query. D’oh!
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.9 Preventing Remote Name Servers from Caching a Resource Record | 33

See Also
Recipe 2.1 for the syntax of scaled values, and “Changing TTLs” in Chapter 8 of
DNS and BIND.

2.10 Adding a Multihomed Host

Problem
You want to add a multihomed host to DNS.

Solution
Add multiple A records to the host’s domain name, one per IP address. For exam-
ple, for a file server with two network interfaces, you might add these records:

fs.foo.example. IN A 10.0.0.9
fs.foo.example. IN A 192.168.0.9

To handle reverse mapping for the host, add one PTR record to each of the appropri-
ate two reverse-mapping zones:

9.0.0.10.in-addr.arpa. IN PTR fs.foo.example.

and

9.0.168.192.in-addr.arpa. IN PTR fs.foo.example.

Discussion
Clients looking up the address of fs.foo.example will see both IP addresses, and can
choose which one to use (though most clients will just use the first address returned).
Remember that, by default, they’ll be returned in round robin order.

For troubleshooting purposes, you may want to add two more A records, each of
which maps to just one of your multihomed host’s addresses. For example:

fs-eth0.foo.example. IN A 10.0.0.9
fs-eth1.foo.example. IN A 192.168.0.9

This lets you test whether a particular network interface on the file server is up, by
pinging fs-eth0.foo.example, for instance. You probably shouldn’t add PTR records
mapping the addresses back to these interface-specific names, though: most soft-
ware can’t handle multiple reverse mappings for a single IP address.

See Also
Recipe 2.7 for the behavior of round robin, and Chapter 4 of DNS and BIND.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Zone Data

2.11 Updating a Name Server’s Root Hints File

Problem
You need to update a name server’s root hints file.

Solution
FTP a copy of the most recent root hints file from ftp.rs.internic.net. It’s called
named.root, in the directory domain.

Discussion
The root hints file, which tells a name server the domain names and addresses of the
root name servers, doesn’t need to be updated often. The “current” version dates to
August 1997, and the file can be slightly out-of-date without causing adverse effects.
Still, you should probably check every six months or so to see if it’s changed.

If you do download a new root hints file, remember to change the name of the file to
whatever you have defined in your zone statement for the root hints, and then reload
the name server.

See Also
“The Root Hints Data” in Chapter 4 and “Keeping the Root Hints Current” in Chap-
ter 7 of DNS and BIND.

2.12 Using a Single Data File for Multiple Zones

Problem
You want to use a single data file for multiple zones.

Solution
Create a “template” zone data file. Make sure that all of the owner names of records
in the zone are “@” (short for the origin) or relative; that is, written without a trail-
ing dot. For example:

@ IN SOA ns1.isp.net. hostmaster.isp.net. (
 2002040900
 3600
 900
 604800
 3600)
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.12 Using a Single Data File for Multiple Zones | 35

 IN NS ns1.isp.net.
 IN NS ns2.isp.net.

 IN MX smtp.isp.net.

 IN A 192.168.0.99

www IN CNAME @

Add zone statements to your name server’s named.conf file, configuring it as primary
master for the various zones, and specifying the “template” zone data file in the file
substatement each time. For example:

zone "foo.example" {
 type master;
 file "db.template";
};

zone "bar.example" {
 type master;
 file "db.template";
};

zone "baz.example" {
 type master;
 file "db.template";
};

Since each zone statement sets the default origin to the domain name of the zone in
the data file, the SOA record and NS records will always end up attached to the right
domain name, and the rest of the records will end up “translated” into the zone.

Discussion
This technique will only work if all of the zones are very similar—nearly identical, in
fact. The zones must contain the same number and mix of records, and the records
in the zones can only differ by the domain name of the zone. For example, if the
domain name www.foo.example is an alias for a.foo.example in the foo.example zone,
then www.bar.example will be an alias for a.bar.example in the bar.example zone.

The name server must be the primary master for all of the zones; there’s no way to
set up an equivalent slave name server that uses the same backup zone data file for
all of its zones, since name servers write fully qualified domain names to backup
zone data files.

Also, none of the zones can be dynamically updated, since dynamic updates to a
zone would cause the name server to rewrite the zone data file, and the rewritten
zone data file would also contain fully qualified domain names.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Zone Data

See Also
Recipe 2.1 for understanding the default origin of a zone data file.

2.13 Using Multiple Data Files for a Single Zone

Problem
You want to break a zone into multiple data files, possibly to organize the large num-
ber of resource records logically.

Solution
Use the $INCLUDE control statement in your top-level zone data file, which inter-
polates the contents of another file. For example, to include the contents of the file
db.foo.example.hosts into the data file for the zone foo.example, you could use this
$INCLUDE control statement:

$INCLUDE db.foo.example.hosts

Discussion
The origin in the included file is, by default, the same as the origin in the file that
includes it. If you’d like to change the origin in the included file, specify the new ori-
gin as the second argument to the $INCLUDE control statement:

$INCLUDE db.subdomain.foo.example.hosts subdomain.foo.example

On the line after the $INCLUDE statement, the origin reverts to its previous setting.

See Also
Recipe 2.8, which explains how to create a subdomain within the same zone.

2.14 Resetting Your Zone’s Serial Number

Problem
You need to reset your serial number to some low value, possibly because you inad-
vertently added a digit to it.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.14 Resetting Your Zone’s Serial Number | 37

Solution
If you’ve accidentally incremented your serial number to a value larger than 232 – 1
(4,294,967,295), first find out what your current serial number is—because it proba-
bly isn’t what you think it is (the serial number is only 32 bits large). The easiest way
to do this is to use a query tool, such as dig, to look up your zone’s SOA record:

$ dig soa foo.example

; <<>> DiG 9.2.1 <<>> soa foo.example
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4335
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:
;foo.example. IN SOA

;; ANSWER SECTION:
foo.example. 86400 IN SOA ns1.foo.example. hostmaster.foo.
example. 2002021239 3600 900 2592000 3600

If the current serial number is less than 2,147,483,647, add 2,147,483,647 to the
serial number. Wait for all of your zone’s slave name servers to pick up the new ver-
sion of the zone (if you’re using NOTIFY, that shouldn’t take long). Then set the
serial number to your target.

If the current serial number is larger than 2,147,483,647, just set the serial number to
the number you want.

Discussion
Whahuh? Why on Earth does this work?

Name servers compare serial numbers using sequence space arithmetic, which ain’t
your grandpa’s ’rithmetic. In sequence space arithmetic, you have a finite set of inte-
gers, but each number has a “next” number. After 0 comes 1, then 2, all the way to
4,294,967,295 (232 – 1). The next number after 4,294,967,295 is 0. Think of it like a
clock: The hour after 1:00 is 2:00, and the hour after 12:00 is 1:00.

Half of the numbers are larger than any given number, and the other half are smaller.
With a set of 232 possible serial numbers, half (231 – 1, actually) are larger than any
given serial number, and half are smaller.

Consider the serial number 1,000,000,000. The next 231 – 1 serial numbers,
1,000,000,001 through 3,147,483,647, are larger. The 231 – 1 serial numbers after
that, 3,147,483,648 through 4,294,967,295 (232 – 1) and 0 to 999,999,999, are
smaller. Yes, Alice, in the world of serial numbers, 3,147,483,648 is smaller than
1,000,000,000.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Zone Data

So when you add 2,147,483,647 (231 – 1) to a serial number, you’re actually adding
the largest increment possible—add a larger number and the result will actually be
smaller than the old serial number, and your zone’s slaves won’t transfer the zone.

Once all the slaves have the new zone, you can simply set the serial number to the serial
number you want, which is now considered larger than the current serial number.

If you’re not comfortable with this New Math, try out the script reset_serial.pl,
included in the tar file that accompanies this book (see the Preface for where to get
it). reset_serial.pl takes as arguments your current serial number and the serial num-
ber you want to get to, and tells you how to get there.

There’s also a brute force method for resetting your serial number: set the serial
number to your target in the zone data file. Then delete your zone’s backup data files
on all of your slaves and restart named. Your slave name servers won’t have any
choice but to transfer the zone, regardless of its serial number.

This won’t work if you don’t have administrative control of all of your slaves, of
course, and it has all the elegance of using a flat-head screwdriver as a chisel.

See Also
“Starting Over with a New Serial Number” in Chapter 7 of DNS and BIND, and RFC
1982 for an explanation of serial number arithmetic.

2.15 Making Manual Changes to a Dynamically
Updated Zone

Problem
You want to edit a zone data file by hand, but the zone is dynamically updated.

Solution
On a BIND 8 name server, stop the name server with ndc stop, delete the zone’s
dynamic update log file (whose name is the name of the zone data file with .log
appended, by default) and the IXFR log file, if any (whose name is the zone data file’s
plus .ixfr). Then edit the zone data file and start the name server.

On a BIND 9 name server, stop the name server with rndc stop, delete the zone’s
journal file (whose name is the zone data file’s with .jnl on the end), edit the zone
data file and start the name server again.

On a BIND 9.3.0 or newer name server, you can freeze the zone with rndc freeze, edit
the zone data file, and unfreeze the zone with rndc unfreeze.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.15 Making Manual Changes to a Dynamically Updated Zone | 39

Discussion
With dynamic zones, it’s better to make all changes to the zone using dynamic
updates. However, sometimes that’s just not practical.

The problem is that, with most BIND name servers, if you edit a zone data file while
the name server is running, you can lose your changes. When you restart the name
server (reloading dynamic zones doesn’t work), the name server will rewrite the zone
data file if it has received any dynamic updates to the zone that haven’t yet been writ-
ten to the zone data file. What happens to your changes? Poof! They disappear with-
out a trace, like so many dot-coms. You need to stop the name server before editing
the zone data file. And that means your name server may miss dynamic updates
while you’re manually editing the zone data file, so be quick about it!

Also, when you edit the zone data file manually, the changes you make don’t get
entered into the dynamic update log—the .log file, for BIND 8, and the .jnl file for
BIND 9. When the name server loads the zone data file and then checks the content
of the log file, it discovers a gap: It’s missing the record of the last change, the one
you made manually. So you have to delete the log file before loading.

The price of deleting the log file is that your zone’s slaves won’t be able to get an
incremental zone transfer on their next try, since the record of the last change—nec-
essary to get them up-to-date—is missing. They’ll request an incremental zone trans-
fer but receive a full zone transfer instead.

The BIND 9.3.0 name server has two new rndc commands, freeze and unfreeze,
which allow you to suspend and resume the processing of dynamic updates to a
zone. freeze also deletes the log file. So you can rndc freeze the zone, edit the zone
data file, then rndc unfreeze.

See Also
Recipe 5.19, to learn how to use the nsupdate program to modify a zone.

2.16 Moving a Host

Problem
You want to move a host from one address to another.

Solution
At least one TTL before the move, reduce the TTL on the host’s A record and PTR
record to a low number, like 60 seconds. For example, say you’re planning on mov-
ing the host z.foo.example. If its current A record looks like this:

z.foo.example. 86400 IN A 192.168.0.254
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Zone Data

Reduce the TTL at least a day (86,400 seconds) ahead of time, like this:

z.foo.example. 60 IN A 192.168.0.254

At the same time, reduce the TTL on the host’s PTR record:

254.0.168.192.in-addr.arpa. 60 IN PTR z.foo.example.

Then, after you’ve moved the host, change the A record to reflect the host’s new
address and restore the TTL:

z.foo.example. 86400 IN A 10.0.0.254

Delete the old PTR record and add one (to the appropriate zone data file!) for the
new address:

254.0.0.10.in-addr.arpa. 86400 IN PTR z.foo.example.

Discussion
You need to reduce the TTL on the old records ahead of time to keep name servers
from caching them just before the move. If you left the TTL alone, a remote name
server could cache the old address just before you made the change, and it would
take some time for that record to time out. If you don’t use NOTIFY, you should
also add in the refresh time of the zones the records are in, since it could take that
long for the lower TTL records to make it out to all of your slaves.

This technique applies to more than just A and PTR records, of course. You could
just as easily use it to change MX records or any other record type. If it’s a name
server you’re moving, however, or you need to change your zone’s NS records, see
Recipes 6.6 and 6.7.

Notice that the new PTR record may well belong in a different zone data file than the
old one.

See Also
Recipe 2.9, for an explanation how to reduce the TTL on a single record; Recipes 6.6
and 6.7, for moving a name server and changing all of a zone’s name servers; and
“Changing TTLs” in Chapter 8 of DNS and BIND.

2.17 Mapping Any Domain Name in a Zone
to a Single IP Address

Problem
You want to map every domain name in a zone to a single IP address.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.17 Mapping Any Domain Name in a Zone to a Single IP Address | 41

Solution
Add an A record to the zone attached to the wildcard domain name. For example:

*.foo.example. IN A 10.0.0.1

Discussion
Technically, this record doesn’t map every domain name in the zone to 10.0.0.1. In
fact, the wildcard domain name doesn’t apply to domain names in the zone data file.
Say you also had the domain name ns1.foo.example in the foo.example zone:

ns1.foo.example. IN A 192.168.0.1

The wildcard domain name wouldn’t match queries for the address of ns1.foo.
example, which is probably a good thing, since ns1.foo.example has a different
address. The wildcard domain name wouldn’t apply to domain names that own
other types of records, either. For example, you might have this record in the zone:

text.foo.example. IN TXT "Text comment"

Queries for the address of text.foo.example would return an empty answer, because
text.foo.example has no addresses.

So what does the wildcard domain name apply to? Queries for domain names in the
zone that don’t appear in the zone data file, which means any domain name you can
think of that ends in foo.example, doesn’t appear in the foo.example zone data file,
and isn’t part of a delegated subdomain of foo.example.

Wildcard domain names can own other types of records, too. Take, for example, this
CNAME record:

*.foo.example. IN CNAME foo.example.

This creates aliases from any domain name in the zone without explicit records
attached to the domain name foo.example. So iif you leave out explicit records for
www.foo.example, someone looking up www.foo.example would find that domain
name is an alias for foo.example. Someone looking up zaphod.beeblebrox.foo.example
would find that it, too, is an alias for foo.example—assuming you didn’t have any
records attached to the domain name zaphod.beeblebrox.foo.example, that is. So you
might think of a wildcard as a “default” domain name for a zone: any explicit
domain name in the zone has only the records you give it, but the wildcard applies to
every other domain name in the zone.

As the zaphod.beeblebrox.foo.example example suggests, wildcards can match more
than one label. In fact, a wildcard matches zero or more labels. The wildcard domain
name in the CNAME record wouldn’t match just foo.example, though, since even at
zero labels, *.foo.example has one more dot than foo.example.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Zone Data

See Also
“Wildcards” in Chapter 16 of DNS and BIND.

2.18 Adding Similar Records

Problem
You want to add a number of records that differ only slightly.

Solution
Use the $GENERATE control statement to specify a template that the name server
will use to generate a group of similar records. For example, to add a series of PTR
records that differ only by a single digit, you could use this $GENERATE control
statement:

$GENERATE 11-20 $.0.168.192.in-addr.arpa. PTR dhcp-$.foo.example.

Your BIND name server will read the range (11–20) and it will also read the tem-
plate ($.0.168.192.in-addr.arpa. PTR dhcp-$.foo.example.) from the $GENERATE
control statement. Then it will iterate through the range, replacing any dollar signs
(“$”) in the template with the current value, creating 10 PTR records:

11.0.168.192.in-addr.arpa. PTR dhcp-11.foo.example.
12.0.168.192.in-addr.arpa. PTR dhcp-12.foo.example.
13.0.168.192.in-addr.arpa. PTR dhcp-13.foo.example.
...
20.0.168.192.in-addr.arpa. PTR dhcp-20.foo.example.

Discussion
$GENERATE supports a limited set of record types: A, AAAA, CNAME, DNAME,
NS and PTR. Also, the template can’t contain a TTL or a class field, just a type.

If you want to get fancy, you can also step through the range using the range format
start-stop/range. So 0–100/2 would count from 0 to 100 by twos.

BIND 8.2 introduced $GENERATE to the world. BIND 9.1.0 introduced
$GENERATE to the BIND 9 releases.

Note that, unlike the $INCLUDE and $ORIGIN control statements, $GENERATE is
only supported by BIND name servers; you can’t use it in a zone data file on a
Microsoft DNS Server, for example.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.18 Adding Similar Records | 43

See Also
“Subnetting on a Non-Octet Boundary” in Chapter 9 of DNS and BIND, and Section
6.3.6 of the BIND 9 Administrator Reference Manual.

2.19 Making Your Services Easy to Find

Problem
You want to make it easy for users to find the services you offer.

Solution
Give your servers “functional” domain names. For example, most users will expect
to find an organization’s FTP server at the domain name ftp.domain-name-of-zone. In
most cases, the domain name can be an alias for the canonical name of the host run-
ning the service; that’s not possible with name servers or mail servers, though.

Other common functional domain names include:

domain-name-of-zone
The zone’s domain name, by convention, owns one or more A records that point
to the organization’s web server, and one or more MX records that tell mailers
where to deliver mail addressed to the organization’s users.

imap.domain-name-of-zone
An IMAP mail server.

mail.domain-name-of-zone
An SMTP mail server. Note that this domain name can’t be an alias; it must own
an A record. Moreover, the mail server must recognize itself as this domain name
in order to prevent mail loops.

ns[N].domain-name-of-zone
The authoritative name servers for your zone. Since there are often more than
one, use an integer to distinguish between them: ns1, ns2, etc. Or, for the
unapologetically geeky, ns0, ns1, etc. Note that these domain names can’t be
aliases; they must own A records.

ntp.domain-name-of-zone
An NTP (Network Time Protocol) server. If you have more than one, disambigu-
ate them by using ntp1, ntp2, etc.

pop.domain-name-of-zone
A POP mail server.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Zone Data

smtp.domain-name-of-zone
An alternative to mail.domain-name-of-zone. As with mail.domain-name-of-zone,
this must own an A record.

www.domain-name-of-zone
This convention is so common it’s almost not worth discussing, but most users
expect to find an organization’s web site here.

Discussion
One big benefit of using functional domain names is that you can move a service from
one host to another by changing only the A or CNAME record for the functional
domain name, and without changing the configuration of every client of that service.
For example, if you moved your NTP server from a.foo.example to b.foo.example, you
could just change the ntp.foo.example CNAME record to:

ntp.foo.example. IN CNAME b.foo.example.

Assuming you’d configured your NTP clients to refer to your NTP server by the
domain name ntp.foo.example, you wouldn’t have to make any changes to your cli-
ents’ configuration.

The domain names of mail servers and name servers are special because of the way
they’re used. The domain name of a name server will usually appear in an NS record,
delegating a zone to that name server. A name server sending that NS record in a refer-
ral will only add A records for the name server’s domain name to the response. If the
domain name owns a CNAME record, the name server won’t find it.

Likewise, mail servers sending mail to your email addresses expect to find A records
for the mail servers you list in your MX records. If you use CNAME records, they
won’t find the address they’re after.

Also, if one of your backup mail servers receives the email, it will “trim” the list of
MX records by removing itself and any less-preferred mail servers. If it doesn’t recog-
nize itself in the list because you’ve used an alias in an MX record, it may try to send
mail to itself, or to a less-preferred mail server.

2.20 Storing the Location of a Host in DNS

Problem
You want to store the location of a host in your zone data.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.20 Storing the Location of a Host in DNS | 45

Solution
Depending on what you mean by “location,” add either a TXT or LOC record to the
host’s domain name.

Many administrators want to store a descriptive location for the host in DNS. For
example, you might want to specify that the host a.foo.example is in on your Building
20’s level C, near post C3K. To do that, you might add this TXT record to your zone:

a.foo.example. IN TXT "Building 20, level C, post C3K"

If, on the other hand, you’d like to specify the host’s geographical location (i.e., its
latitude, longitude, and altitude), you can add a LOC record to your zone. For exam-
ple, if a.foo.example is also at 40 degrees, 2 minutes, 0.373 seconds north latitude;
105 degrees, 17 minutes, 23.528 seconds west longitude; and 1,638 meters altitude,
you could add this LOC record to your zone:

a.foo.example. IN LOC 40 2 0.373 N 105 17 23.528 W 1638m

Discussion
The TXT record is enormously versatile, since you can put just about anything into
the RDATA. Just remember that only people who know to look up the TXT records
for a domain name will find the data you store there. Also, if you add multiple TXT
records to a domain name, there’s no guarantee of the order in which the name
server will return them.

The LOC record, on the other hand, is absolutely specialized: it only stores geo-
graphical location data. The format is exactly as I’ve shown it above, with separate
RDATA fields for degrees, minutes, and seconds, followed by N for north, S for
south, E for east, and W for west. And you can use negative elevation values if you
happen to use a colocation facility in Death Valley.

If you’re not sure what your hosts’ latitude, longitude, and altitude are and you can’t
persuade your boss that you need a new GPS receiver to find out, you can use Etak’s
Eagle Geocoder (www.geocode.com/eagle.html-ssi) or AirNav’s Airport Information,
(www.airnav.com/airports/) to find the values for your address or a nearby airport,
respectively.

See Also
For more information on LOC records, see the “Location” section of Chapter 16 of
DNS and BIND, RFC 1876, or Christopher Davis’s excellent web site at http://
www.ckdhr.com/dns-loc/.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Zone Data

2.21 Filtering a Host Table into Zone Data Files

Problem
You want to filter an existing host table, such as an /etc/hosts file, into zone data files.

Solution
Use a tool such as h2n to filter your host table into the corresponding zone data files.
With h2n, you specify the domain name of a forward-mapping zone to create as the
argument to the –d option and the networks associated with that zone as the argu-
ment to one or more –n options. For example, the following command would build
data files for the foo.example and 168.192.in-addr.arpa zones:

% h2n –d foo.example –n 192.168

These zone data files would each contain a SOA record and an NS record pointing
to the local host, as well as A records or PTR records for hosts in /etc/hosts on the
192.168/16 network. Additional options allow you to create other records, includ-
ing NS records pointing to other name servers.

Discussion
You can get a copy of h2n from the tar ball that accompanies DNS and BIND,
located at ftp.oreilly.com/published/oreilly/nutshell/dnsbind/dns.tar.Z. Also, Andris
Kalnozols of Hewlett-Packard has enhanced h2n significantly; he makes his souped-
up version available at ftp.hpl.hp.com/pub/h2n/h2n.tar.gz.

There are other tools available for filtering host table-format data into zone data files;
h2n is only one option. Take a look at the contents of bind-contrib.tar.gz, available in
the same directory as the latest BIND 8 release, for some of your options.

See Also
Recipe 1.11 for how to get a copy of BIND (or bind-contrib.tar.gz), and “Tools” in
Chapter 4 of DNS and BIND.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2.21 Filtering a Host Table into Zone Data Files | 47

	2.1 Creating a Zone Data File
	Problem
	Solution
	Discussion
	See Also

	2.2 Adding a Host
	Problem
	Solution
	Discussion
	See Also

	2.3 Adding an Alias
	Problem
	Solution
	Discussion
	See Also

	2.4 Adding a Mail Destination
	Problem
	Solution
	Discussion
	See Also

	2.5 Making the Domain Name of Your Zone Point to Your Web Server
	Problem
	Solution
	Discussion
	See Also

	2.6 Pointing a Domain Name to a Particular URL
	Problem
	Solution
	Discussion
	See Also

	2.7 Setting Up Round Robin Load Distribution
	Problem
	Solution
	Discussion
	See Also

	2.8 Adding a Domain Name in a Subdomain Without Creating a New Zone
	Problem
	Solution
	Discussion
	See Also

	2.9 Preventing Remote Name Servers from Caching a Resource Record
	Problem
	Solution
	Discussion
	See Also

	2.10 Adding a Multihomed Host
	Problem
	Solution
	Discussion
	See Also

	2.11 Updating a Name Server’s Root Hints File
	Problem
	Solution
	Discussion
	See Also

	2.12 Using a Single Data File for Multiple Zones
	Problem
	Solution
	Discussion
	See Also

	2.13 Using Multiple Data Files for a Single Zone
	Problem
	Solution
	Discussion
	See Also

	2.14 Resetting Your Zone’s Serial Number
	Problem
	Solution
	Discussion
	See Also

	2.15 Making Manual Changes to a Dynamically Updated Zone
	Problem
	Solution
	Discussion
	See Also

	2.16 Moving a Host
	Problem
	Solution
	Discussion
	See Also

	2.17 Mapping Any Domain Name in a Zone to a Single IP Address
	Problem
	Solution
	Discussion
	See Also

	2.18 Adding Similar Records
	Problem
	Solution
	Discussion
	See Also

	2.19 Making Your Services Easy to Find
	Problem
	Solution
	Discussion

	2.20 Storing the Location of a Host in DNS
	Problem
	Solution
	Discussion
	See Also

	 2.21 Filtering a Host Table into Zone Data Files
	Problem
	Solution
	Discussion
	See Also

