
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

C++ User’s Guide

Sun WorkShop 6

Part No. 806-3572-10
May 2000, Revision A

Please
Recycle

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape

Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks,

or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun f90/f95 is derived from Cray CF90™, a product of Silicon Graphics, Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et

écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de

caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications

Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont

utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres

pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Silicon Graphics, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6

Contents

Preface P-1

1. The C++ Compiler 1-1

1.1 Standards Conformance 1-1

1.2 Operating Environments 1-2

1.3 READMEs 1-2

1.4 Man Pages 1-3

1.5 Licensing 1-3

1.6 New Features of the C++ Compiler 1-4

1.7 C++ Utilities 1-5

1.8 Native-Language Support 1-5

2. Using the C++ Compiler 2-1

2.1 Getting Started 2-1

2.2 Invoking the Compiler 2-3

2.2.1 Command Syntax 2-3

2.2.2 File Name Conventions 2-4

2.2.3 Using Multiple Source Files 2-4

2.2.4 Compiling With Different Compiler Versions 2-5
Contents v

2.3 Compiling and Linking 2-6

2.3.1 Compile-Link Sequence 2-6

2.3.2 Separate Compiling and Linking 2-6

2.3.3 Consistent Compiling and Linking 2-7

2.3.4 Compiling for SPARC V9 2-8

2.3.5 Diagnosing the Compiler 2-8

2.3.6 Understanding the Compiler Organization 2-9

2.4 Memory Requirements 2-11

2.4.1 Swap Space Size 2-12

2.4.2 Increasing Swap Space 2-12

2.4.3 Control of Virtual Memory 2-12

2.4.4 Memory Requirements 2-13

2.5 Simplifying Commands 2-14

2.5.1 Using Aliases Within the C Shell 2-14

2.5.2 Using CCFLAGS to Specify Compile Options 2-14

2.5.3 Using make 2-15

3. C++ Compiler Options 3-1

3.1 Options Summarized by Function 3-2

3.1.1 Code Generation Options 3-2

3.1.2 Debugging Options 3-3

3.1.3 Floating-Point Options 3-4

3.1.4 Language Options 3-4

3.1.5 Library Options 3-5

3.1.6 Licensing Options 3-6

3.1.7 Obsolete Options 3-6

3.1.8 Output Options 3-6

3.1.9 Performance Options 3-7

3.1.10 Preprocessor Options 3-8

3.1.11 Profiling Options 3-9
vi C++ User’s Guide • May 2000

3.1.12 Reference Options 3-9

3.1.13 Source Options 3-9

3.1.14 Template Options 3-10

3.1.15 Thread Options 3-10

3.1.16 How Option Information Is Organized 3-11

3.2 Option Reference 3-12

3.2.1 –386 3-12

3.2.2 –486 3-12

3.2.3 –a 3-12

3.2.4 –Bbinding 3-12

3.2.5 –c 3-14

3.2.6 –cg[89|92] 3-14

3.2.7 –compat[=(4|5)] 3-15

3.2.8 +d 3-16

3.2.9 –Dname[=def] 3-16

3.2.10 –d(y|n) 3-18

3.2.11 –dalign 3-19

3.2.12 –dryrun 3-19

3.2.13 –E 3-20

3.2.14 +e(0|1) 3-21

3.2.15 –fast 3-22

3.2.16 –features =a[,...a] 3-24

3.2.17 –flags 3-26

3.2.18 –fnonstd 3-26

3.2.19 –fns[=(yes|no)] 3-27

3.2.20 –fprecision =p 3-28

3.2.21 –fround= r 3-30

3.2.22 –fsimple [=n] 3-30

3.2.23 –fstore 3-32

3.2.24 –ftrap= t[,...t] 3-32
Contents vii

3.2.25 –G 3-34

3.2.26 –g 3-35

3.2.27 –g0 3-36

3.2.28 –H 3-36

3.2.29 –help 3-36

3.2.30 –hname 3-36

3.2.31 –i 3-37

3.2.32 –I pathname 3-37

3.2.33 –instances =a 3-38

3.2.34 –keeptmp 3-39

3.2.35 –KPIC 3-39

3.2.36 –Kpic 3-39

3.2.37 –Ldir 3-39

3.2.38 –l lib 3-40

3.2.39 –libmieee 3-40

3.2.40 –libmil 3-40

3.2.41 –library= l[,...l] 3-41

3.2.42 –migration 3-43

3.2.43 –misalign 3-44

3.2.44 –mt 3-45

3.2.45 –native 3-45

3.2.46 –noex 3-46

3.2.47 –nofstore 3-46

3.2.48 –nolib 3-46

3.2.49 –nolibmil 3-46

3.2.50 –noqueue 3-46

3.2.51 –norunpath 3-47

3.2.52 –O 3-47

3.2.53 –Olevel 3-47

3.2.54 –o filename 3-48
viii C++ User’s Guide • May 2000

3.2.55 +p 3-48

3.2.56 –P 3-49

3.2.57 –p 3-49

3.2.58 –pentium 3-49

3.2.59 –pg 3-50

3.2.60 -PIC 3-50

3.2.61 –pic 3-50

3.2.62 –pta 3-50

3.2.63 –pti path 3-50

3.2.64 –pto 3-50

3.2.65 –ptr 3-51

3.2.66 –ptv 3-51

3.2.67 –Qoption phase option[,...option] 3-51

3.2.68 –qoption phase option 3-52

3.2.69 –qp 3-52

3.2.70 –Qproduce sourcetype 3-53

3.2.71 –qproduce sourcetype 3-53

3.2.72 –Rpathname[:...pathname] 3-53

3.2.73 –readme 3-54

3.2.74 –S 3-54

3.2.75 –s 3-54

3.2.76 –sb 3-54

3.2.77 –sbfast 3-54

3.2.78 –staticlib =l[,...l] 3-55

3.2.79 –temp= dir 3-56

3.2.80 –template =w[,...w] 3-57

3.2.81 –time 3-57

3.2.82 –Uname 3-57

3.2.83 –unroll= n 3-58

3.2.84 –V 3-58
Contents ix

3.2.85 –v 3-58

3.2.86 –vdelx 3-58

3.2.87 –verbose =v[,...v] 3-59

3.2.88 +w 3-59

3.2.89 +w2 3-60

3.2.90 –w 3-60

3.2.91 –xa 3-61

3.2.92 –xar 3-61

3.2.93 –xarch= isa 3-62

3.2.94 –xcache= c 3-66

3.2.95 -xcg89 3-68

3.2.96 –xcg92 3-68

3.2.97 –xchip= c 3-68

3.2.98 –xcode= a 3-70

3.2.99 -xcrossfile [=n] 3-71

3.2.100 –xF 3-72

3.2.101 –xhelp=flags 3-73

3.2.102 –xhelp=readme 3-73

3.2.103 –xildoff 3-73

3.2.104 –xildon 3-73

3.2.105 –xlibmieee 3-74

3.2.106 –xlibmil 3-74

3.2.107 –xlibmopt 3-74

3.2.108 –xlic_lib=sunperf 3-75

3.2.109 –xlicinfo 3-75

3.2.110 –Xm 3-76

3.2.111 –xM 3-76

3.2.112 –xM1 3-76

3.2.113 –xMerge 3-77

3.2.114 –xnolib 3-77
x C++ User’s Guide • May 2000

3.2.115 –xnolibmil 3-79

3.2.116 –xnolibmopt 3-79

3.2.117 –xOlevel 3-79

3.2.118 –xpg 3-82

3.2.119 -xprefetch [=a[, a]] 3-83

3.2.120 -xprofile= p 3-84

3.2.121 –xregs= r[,...r] 3-87

3.2.122 –xs 3-88

3.2.123 –xsafe=mem 3-88

3.2.124 –xsb 3-89

3.2.125 –xsbfast 3-89

3.2.126 –xspace 3-89

3.2.127 –xtarget= t 3-90

3.2.128 –xtime 3-96

3.2.129 –xunroll= n 3-96

3.2.130 -xvector [=(yes |no)] 3-96

3.2.131 –xwe 3-96

3.2.132 -z arg 3-97

3.2.133 –ztext 3-97

4. Compiling Templates 4-1

4.1 Verbose Compilation 4-1

4.2 Template Commands 4-1

4.3 Template Instance Placement and Linkage 4-2

4.3.1 External Instances 4-2

4.3.2 Static Instances 4-3

4.3.3 Global Instances 4-3

4.3.4 Explicit Instances 4-3

4.3.5 Semi-Explicit Instances 4-4
Contents xi

4.4 The Template Repository 4-4

4.4.1 Repository Structure 4-5

4.4.2 Writing to the Template Repository 4-5

4.4.3 Reading From Multiple Template Repositories 4-5

4.4.4 Sharing Template Repositories 4-5

4.5 Template Definition Searching 4-6

4.5.1 Source File Location Conventions 4-6

4.5.2 Definitions Search Path 4-6

4.6 Template Instance Automatic Consistency 4-7

4.7 Compile-Time Instantiation 4-7

4.8 Template Options File 4-7

4.8.1 Comments 4-8

4.8.2 Includes 4-8

4.8.3 Source File Extensions 4-9

4.8.4 Definition Source Locations 4-9

4.8.5 Template Specialization Entries 4-12

5. Using Libraries 5-1

5.1 The C Libraries 5-1

5.2 Libraries Provided With the C++ Compiler 5-2

5.2.1 C++ Library Descriptions 5-2

5.2.2 Default C++ Libraries 5-3

5.3 Related Library Options 5-4

5.4 Using Class Libraries 5-5

5.4.1 The iostream Library 5-5

5.4.2 The complex Library 5-6

5.4.3 Linking C++ Libraries 5-8

5.5 Statically Linking Standard Libraries 5-8

5.6 Using Shared Libraries 5-9
xii C++ User’s Guide • May 2000

5.7 Replacing the C++ Standard Library 5-11

5.7.1 What Can be Replaced 5-11

5.7.2 Installing the Replacement Library 5-12

5.7.3 Using the Replacement Library 5-12

5.7.4 Standard Header Implementation 5-13

6. Building Libraries 6-1

6.1 Understanding Libraries 6-1

6.2 Building Static (Archive) Libraries 6-2

6.3 Building Dynamic (Shared) Libraries 6-3

6.4 Building Shared Libraries That Contain Exceptions 6-4

6.5 Building Libraries for Private Use 6-4

6.6 Building Libraries for Public Use 6-5

6.7 Building a Library That Has a C API 6-5

6.8 Using dlopen to Access a C++ Library From a C Program 6-6

6.9 Building Multithreaded Libraries 6-6

Glossary Glossary-1

Index Index-1
Contents xiii

xiv C++ User’s Guide • May 2000

Tables

TABLE P-1 Typographic Conventions P-3

TABLE P-2 Shell Prompts P-4

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection P-6

TABLE P-4 Related Solaris Documentation P-9

TABLE P-5 Man Pages Related to C++ P-9

TABLE 2-1 File Name Suffixes Recognized by the C++ Compiler 2-4

TABLE 2-2 Components of the C++ Compilation System 2-11

TABLE 3-1 Option Syntax Format Examples 3-1

TABLE 3-2 Code Generation Options 3-2

TABLE 3-3 Debugging Options 3-3

TABLE 3-4 Floating-Point Options 3-4

TABLE 3-5 Language Options 3-4

TABLE 3-6 Library Options 3-5

TABLE 3-7 Licensing Options 3-6

TABLE 3-8 Obsolete Options 3-6

TABLE 3-9 Output Options 3-6

TABLE 3-10 Performance Options 3-7

TABLE 3-11 Preprocessor Options 3-8

TABLE 3-12 Profiling Options 3-9

TABLE 3-13 Reference Options 3-9
xv

TABLE 3-14 Source Options 3-9

TABLE 3-15 Template Options 3-10

TABLE 3-16 Thread Options 3-10

TABLE 3-17 Option Subsections 3-11

TABLE 3-18 SPARC and IA Predefined Symbols 3-16

TABLE 3-19 UNIX Predefined Symbols 3-17

TABLE 3-20 SPARC Predefined Symbols 3-17

TABLE 3-21 SPARC v9 Predefined Symbols 3-18

TABLE 3-22 IA Predefined Symbols 3-18

TABLE 3-23 -fast Expansion 3-22

TABLE 3-24 -features Options for Compatibility Mode and Standard Mode 3-24

TABLE 3-25 -features Options for Standard Mode Only 3-25

TABLE 3-26 -features Options for Compatibility Mode Only 3-25

TABLE 3-27 Compatibility Mode -library Options 3-41

TABLE 3-28 Standard Mode -library Options 3-41

TABLE 3-29 -xarch Values for SPARC Platforms 3-62

TABLE 3-30 -xarch Values for IA Platforms 3-65

TABLE 3-31 -xchip Options 3-69

TABLE 3-32 -xcode Options 3-70

TABLE 3-33 -xprofile Options 3-85

TABLE 3-34 SPARC Platform Names for -xtarget 3-90

TABLE 5-1 Libraries Shipped With the C++ Compiler 5-2

TABLE 5-2 Compiler Options for Linking C++ Libraries 5-8

TABLE 5-3 Header Search Examples 5-14
xvi C++ User’s Guide • May 2000

Preface

This manual instructs you in the use of the Sun WorkShop™ 6 C++ compiler, and

provides detailed information on command-line compiler options. This manual is

intended for programmers with a working knowledge of C++ and some

understanding of the Solaris™ operating environment and UNIX® commands.

Multiplatform Release

This Sun WorkShop release supports versions 2.6, 7, and 8 of the Solaris™ SPARC™
Platform Edition and Solaris Intel Platform Edition Operating Environments.

Note – In this document, the term “IA” refers to the Intel 32-bit processor

architecture, which includes the Pentium, Pentium Pro, and Pentium II, Pentium II

Xeon, Celeron, Pentium III, and Pentium III Xeon processors and compatible

microprocessor chips made by AMD and Cyrix.

Access to Sun WorkShop Development

Tools

Because Sun WorkShop product components and man pages do not install into the

standard /usr/bin/ and /usr/share/man directories, you must change your

PATHand MANPATHenvironment variables to enable access to Sun WorkShop

compilers and tools.
P-1

To determine if you need to set your PATHenvironment variable:

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the paths, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the paths, set your PATHenvironment variable

by following the instructions in this section.

To determine if you need to set your MANPATHenvironment variable:

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in this

section for setting your MANPATHenvironment variable.

Note – The information in this section assumes that your Sun WorkShop 6 products

were installed in the /opt directory. If your Sun WorkShop software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

The PATHand MANPATHvariables should be set in your home .cshrc file if you are

using the C shell or in your home .profile file if you are using the Bourne or Korn

shells:

■ To use Sun WorkShop commands, add the following to your PATHvariable:

/opt/SUNWspro/bin

■ To access Sun WorkShop man pages with the mancommand, add the following to

your MANPATHvariable:

/opt/SUNWspro/man

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 Installation Guide or your system

administrator.

% echo $PATH

% man workshop
P-2 C++ User’s Guide • May 2000

How This Book Is Organized

This book contains the following chapters:

Chapter 1, “The C++ Compiler,” gives an overview of the C++ compiler.

Chapter 2, “Using the C++ Compiler,” provides instructions for invoking the

compiler and generally discusses the compilation process.

Chapter 3, “C++ Compiler Options,” explains the C++ compiler options in detail

and provides task-oriented option groupings.

Chapter 4, “Compiling Templates,” discusses the use of templates, including

template compilation, definition searching, and instance linkage.

Chapter 5, “Using Libraries,” explains how to use the many C++ libraries.

Chapter 6, “Building Libraries,” reviews the library-building process.

The Glossary defines the terms used in this book.

Typographic Conventions

TABLE P-1 shows the typographic conventions that are used in Sun WorkShop

documentation.

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.
Preface P-3

Shell Prompts

TABLE P-2 shows the default system prompt and superuser prompt for the C shell,

Bourne shell, and Korn shell.

AaBbCc123 Command-line placeholder text;

replace with a real name or

value

To delete a file, type rm filename.

[] Square brackets contain

arguments that are optional

–compat[= n]

() Parentheses contain a set of

choices for a required option

–d(y|n)

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be used at one

time

–d(y|n)

... The ellipsis indicates omission

in a series

–features= a1[, ...an]

% The percent sign indicates the

word has a special meaning

–ftrap=%all,no%division

TABLE P-2 Shell Prompts

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #

TABLE P-1 Typographic Conventions (Continued)

Typeface Meaning Examples
P-4 C++ User’s Guide • May 2000

Related Documentation

You can access documentation related to the subject matter of this book in the

following ways:

■ Through the Internet at the docs.sun.com sm Web site. You can search for a

specific book title or you can browse by subject, document collection, or product

at the following Web site:

http://docs.sun.com

■ Through the installed Sun WorkShop products on your local system or
network. Sun WorkShop 6 HTML documents (manuals, online help, man pages,

component readme files, and release notes) are available with your installed Sun

WorkShop 6 products. To access the HTML documentation, do one of the

following:

■ In any Sun WorkShop or Sun WorkShop™ TeamWare window, choose

Help ➤ About Documentation.

■ In your Netscape™ Communicator 4.0 or compatible version browser, open the

following file:

/opt/SUNWspro/docs/index.html

(If your Sun WorkShop software is not installed in the /opt directory, ask your

system administrator for the equivalent path on your system.) Your browser

displays an index of Sun WorkShop 6 HTML documents. To open a document in

the index, click the document’s title.
Preface P-5

Document Collections

TABLE P-3 lists related Sun WorkShop 6 manuals by document collection.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection

Document Collection Document Title Description

Forte™ Developer 6 /

Sun WorkShop 6 Release

Documents

About Sun WorkShop 6
Documentation

Describes the documentation

available with this Sun

WorkShop release and how to

access it.

What’s New in Sun
WorkShop 6

Provides information about the

new features in the current and

previous release of Sun

WorkShop.

Sun WorkShop 6 Release
Notes

Contains installation details

and other information that was

not available until immediately

before the final release of Sun

WorkShop 6. This document

complements the information

that is available in the

component readme files.

Forte Developer 6 /

Sun WorkShop 6

Analyzing Program
Performance With Sun
WorkShop 6

Explains how to use the new

Sampling Collector and

Sampling Analyzer (with

examples and a discussion of

advanced profiling topics) and

includes information about the

command-line analysis tool

er_print , the LoopTool and

LoopReport utilities, and UNIX

profiling tools prof , gprof ,

and tcov .

Debugging a Program With
dbx

Provides information on using

dbx commands to debug a

program with references to

how the same debugging

operations can be performed

using the Sun WorkShop

Debugging window.

Introduction to Sun
WorkShop

Acquaints you with the basic

program development features

of the Sun WorkShop

integrated programming

environment.
P-6 C++ User’s Guide • May 2000

Forte™ C 6 /

Sun WorkShop 6 Compilers

C

C User’s Guide Describes the C compiler

options, Sun-specific

capabilities such as pragmas,

the lint tool, parallelization,

migration to a 64-bit operating

system, and ANSI/ISO-

compliant C.

Forte™ C++ 6 /

Sun WorkShop 6 Compilers

C++

C++ Library Reference Describes the C++ libraries,

including C++ Standard

Library, Tools.h++ class library,

Sun WorkShop Memory

Monitor, Iostream, and

Complex.

C++ Migration Guide Provides guidance on

migrating code to this version

of the Sun WorkShop C++

compiler.

C++ Programming Guide Explains how to use the new

features to write more efficient

programs and covers

templates, exception handling,

runtime type identification,

cast operations, performance,

and multithreaded programs.

C++ User’s Guide Provides information on

command-line options and

how to use the compiler.

Sun WorkShop Memory
Monitor User’s Manual

Describes how the Sun

WorkShop Memory Monitor

solves the problems of memory

management in C and C++.

This manual is only available

through your installed product

(see /opt/SUNWspro/docs/
index.html) and not at the

docs.sun.com Web site.

Forte™ for High

Performance Computing 6 /

Sun WorkShop 6 Compilers

Fortran 77/95

Fortran Library Reference Provides details about the

library routines supplied with

the Fortran compiler.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection (Continued)

Document Collection Document Title Description
Preface P-7

Fortran Programming Guide Discusses issues relating to

input/output, libraries,

program analysis, debugging,

and performance.

Fortran User’s Guide Provides information on

command-line options and

how to use the compilers.

FORTRAN 77 Language
Reference

Provides a complete language

reference.

Interval Arithmetic
Programming Reference

Describes the intrinsic

INTERVAL data type supported

by the Fortran 95 compiler.

Forte™ TeamWare 6 /

Sun WorkShop TeamWare 6

Sun WorkShop TeamWare 6
User’s Guide

Describes how to use the Sun

WorkShop TeamWare code

management tools.

Forte Developer 6/

Sun WorkShop Visual 6

Sun WorkShop Visual User’s
Guide

Describes how to use Visual to

create C++ and Java™

graphical user interfaces.

Forte™ / Sun Performance

Library 6

Sun Performance Library
Reference

Discusses the optimized library

of subroutines and functions

used to perform computational

linear algebra and fast Fourier

transforms.

Sun Performance Library
User’s Guide

Describes how to use the Sun-

specific features of the Sun

Performance Library, which is

a collection of subroutines and

functions used to solve linear

algebra problems.

Numerical Computation

Guide

Numerical Computation
Guide

Describes issues regarding the

numerical accuracy of floating-

point computations.

Standard Library 2 Standard C++ Class Library
Reference

Provides details on the

Standard C++ Library.

Standard C++ Library
User’s Guide

Describes how to use the

Standard C++ Library.

Tools.h++ 7 Tools.h++ Class Library
Reference

Provides details on the

Tools.h++ class library.

Tools.h++ User’s Guide Discusses use of the C++

classes for enhancing the

efficiency of your programs.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection (Continued)

Document Collection Document Title Description
P-8 C++ User’s Guide • May 2000

TABLE P-4 describes related Solaris documentation available through the

docs.sun.com Web site.

Man Pages

The C++ Library Reference lists the man pages that are available for the C++ libraries.

TABLE P-5 lists other man pages that are related to C++.

TABLE P-4 Related Solaris Documentation

Document Collection Document Title Description

Solaris Software Developer Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker and the objects on which

they operate.

Programming Utilities Guide Provides information for

developers about the special

built-in programming tools

that are available in the Solaris

operating environment.

TABLE P-5 Man Pages Related to C++

Title Description

c++filt Copies each file name in sequence and writes it in the standard

output after decoding symbols that look like C++ demangled

names.

dem Demangles one or more C++ names that you specify

fbe Creates object files from assembly language source files.

fpversion Prints information about the system CPU and FPU

gprof Produces execution profile of a program

ild Links incrementally, allowing insertion of modified object code into

a previously built executable

inline Expands assembler inline procedure calls

lex Generates lexical analysis programs

rpcgen Generates C/C++ code to implement an RPC protocol

sigfpe Allows signal handling for specific SIGFPE codes

stdarg Handles variable argument list
Preface P-9

READMEFile

The READMEfile highlights important information about the compiler, including:

■ New and changed features

■ Software incompatibilities

■ Current software bugs

■ Information discovered after the manuals were printed

To view the text version of the C++ compiler READMEfile, type the following at a

command prompt:

To access the HTML version of the README, in your Netscape Communicator 4.0 or

compatible version browser, open the following file:

/opt/SUNWspro/docs/index.html

(If your Sun WorkShop software is not installed in the /opt directory, ask your

system administrator for the equivalent path on your system.) Your browser

displays an index of Sun WorkShop 6 HTML documents. To open the README,find

its entry in the index, then click the title.

Commercially Available Books

The following is a partial list of available books on the C++ language.

The C++ Standard Library, Nicolai Josuttis (Addison-Wesley, 1999).

Generic Programming and the STL, Matthew Austern, (Addison-Wesley, 1999).

varargs Handles variable argument list

version Displays version identification of object file or binary

yacc Converts a context-free grammar into a set of tables for a simple

automaton that executes an LALR(1) parsing algorithm

example% CC -xhelp=readme

TABLE P-5 Man Pages Related to C++ (Continued)

Title Description
P-10 C++ User’s Guide • May 2000

Standard C++ IOStreams and Locales, Angelika Langer and Klaus Kreft (Addison-

Wesley, 2000).

Thinking in C++, Volume 1, Second Edition, Bruce Eckel (Prentice Hall, 2000).

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup

(Addison-Wesley, 1990).

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard

Helm, Ralph Johnson and John Vlissides, (Addison-Wesley, 1995).

C++ Primer, Third Edition, Stanley B. Lippman and Josee Lajoie (Addison-Wesley,

1998).

Effective C++—50 Ways to Improve Your Programs and Designs, Second Edition, Scott

Meyers (Addison-Wesley, 1998).

More Effective C++—35 Ways to Improve Your Programs and Designs, Scott Meyers

(Addison-Wesley, 1996).
Preface P-11

P-12 C++ User’s Guide • May 2000

CHAPTER 1

The C++ Compiler

This chapter provides a brief conceptual overview of Sun™ C++ and the C++

compiler.

1.1 Standards Conformance
The C++ compiler (CC) supports the ISO International Standard for C++, ISO IS

14882:1998, Programming Language—C++. The READMEfile that accompanies the

current release describes any departures from requirements in the standard.

On SPARC™ platforms, the compiler provides support for the optimization-

exploiting features of SPARC V8 and SPARC V9, including the UltraSPARC™

implementation. These features are defined in the SPARC Architecture Manuals,

Version 8 (ISBN 0-13-825001-4), and Version 9 (ISBN 0-13-099227-5), published by

Prentice-Hall for SPARC International.

In this document, “Standard” means conforming to the versions of the standards

listed above. “Nonstandard” or “Extension” refers to features that go beyond these

versions of these standards.

The responsible standards bodies may revise these standards from time to time. The

versions of the applicable standards to which the C++ compiler conforms may be

revised or replaced, resulting in features in future releases of the Sun C++ compiler

that create incompatibilities with earlier releases.
1-1

1.2 Operating Environments
The C++ compiler (CC) integrates with other Sun development tools, such as Sun

WorkShop™ and the C compiler. The Sun C++ compiler and its runtime library are

part of Sun Visual WorkShop™ C++. You can use these components to develop

threaded applications in multiprocessor Solaris™ 2.6, Solaris 7, and in Solaris 8

operating environments.

Note – For Solaris 7, the name of the operating environment is Solaris 7, but code

and path or package path names might use Solaris 2.7 or SunOS™ 5.7. Always

follow the code or path as it is written.

The Sun WorkShop 6 C++ compiler is available in the Solaris 2.6, Solaris 7, and

Solaris 8 operating environments on SPARC and IA devices.

Note – Features that are unique to a particular operating environment or hardware

platform are so indicated. However, most aspects of the compilers on these systems

are the same, including functionality, behavior, and features. The multiprocessor

features are available as part of the Sun WorkShop on the SPARC platform with

Solaris 2.6, Solaris 7, and Solaris 8 software, and require a Sun WorkShop license.

See the C++ READMEfiles for details.

1.3 READMEs
The READMEsdirectory contains files that describe new features, software

incompatibilities, bugs, and information that was discovered after the manuals were

printed. In a default installation, the READMEfiles are in /opt/SUNWspro/READMEs .

The READMEfiles for all compilers are easily accessed by the -xhelp=readme
command-line option. For example, CC -xhelp=readme displays the C++ README
file directly.

To access the HTML version of a README, in your Netscape Communicator 4.0 or

compatible version browser, open the following file:

/opt/SUNWspro/docs/index.html
1-2 C++ User’s Guide • May 2000

(If your Sun WorkShop software is not installed in the /opt directory, ask your

system administrator for the equivalent path on your system.) Your browser

displays an index of Sun WorkShop 6 HTML documents. To open a README,find its

entry in the index, then click its title.

1.4 Man Pages
Online manual (man) pages provide immediate documentation about a command,

function, subroutine, or collection of such things.

You can display a man page by running the command:

Throughout the C++ documentation, man page references appear with the topic

name and man section number: CC(1) is accessed with man CC. Other sections,

denoted by ieee_flags (3M) for example, are accessed using the -s option on the

man command:

1.5 Licensing
The C++ compiler uses network licensing, as described in the Sun WorkShop
Installation and Licensing Reference.

If you invoke the compiler, and a license is available, the compiler starts. If no

license is available, your request for a license is put in a queue, and your compiler

continues when a license becomes available. A single license can be used for any

number of simultaneous compiles by a single user on a single machine.

To run C++ and the various utilities, several licenses might be required, depending

on the package you have purchased.

example% man topic

example% man -s 3M ieee_flags
Chapter 1 The C++ Compiler 1-3

1.6 New Features of the C++ Compiler
The Sun WorkShop 6 C++ compiler offers the following new features:

■ Compliance with the C++ ISO standard, including:

■ Class template partial specialization

■ Explicit function template arguments

■ Member templates

■ Sub-aggregate initialization

■ Extern inline functions

■ Ordering of static variable destruction

■ Definitions-separate template organization allowed for all -instances options

■ Prefetch instructions

The following features were introduced in version 5.0 of the C++ compiler:

■ Implementation of the following C++ ISO standards:

■ Namespaces and Koenig lookup

■ Type bool
■ Array new and array delete
■ Extended support for templates

■ The C++ standard library

■ Covariant return types on virtual functions

■ Compatibility with C++ 4.0, 4.01, 4.1, and 4.2

■ Sun WorkShop Memory Monitor for garbage collection and identifying memory

leaks

■ SPARC V9 support on Solaris 7 and Solaris 8 operating environments

■ Binary and source compatibility features to aid a smooth transition to ISO C++

■ Multithread-safe C++ standard library

The C++ compiler package also includes:

■ Online READMEfiles containing new or changed features, latest known software

and documentation bugs, and other late-breaking information

■ Man pages that concisely describe a user command or library function

■ The C++ name demangling tool set (dem and c++filt)

■ Tools.h++ class library to simplify your programming
1-4 C++ User’s Guide • May 2000

1.7 C++ Utilities
The following C++ utilities are now incorporated into traditional UNIX® tools and

are bundled with the UNIX operating system:

■ lex —Generates programs used in simple lexical analysis of text

■ yacc —Generates a C function to parse the input stream according to syntax

■ prof —Produces an execution profile of modules in a program

■ gprof —Profiles program runtime performance by procedure

■ tcov —Profiles program runtime performance by statement

See Analyzing Program Performance With Sun WorkShop and associated man pages for

further information on these UNIX tools.

1.8 Native-Language Support
This release of C++ supports the development of applications in languages other

than English, including most European languages and Japanese. As a result, you can

easily switch your application from one native language to another. This feature is

known as internationalization.

In general, the C++ compiler implements internationalization as follows:

■ C++ recognizes ASCII characters from international keyboards (in other words, it

has keyboard independence and is 8-bit clean).

■ C++ allows the printing of some messages in the native language.

■ C++ allows native-language characters in comments, strings, and data.

Variable names cannot be internationalized and must be in the English character set.

You can change your application from one native language to another by setting the

locale. For information on this and other native-language support features, see the

operating environment documentation.
Chapter 1 The C++ Compiler 1-5

1-6 C++ User’s Guide • May 2000

CHAPTER 2

Using the C++ Compiler

This chapter describes how to use the C++ compiler.

The principal use of any compiler is to transform a program written in a high-level

language like C++ into a data file that is executable by the target computer

hardware. You can use the C++ compiler to:

■ Transform source files into relocatable binary (.o) files, to be linked later into an

executable file, a static (archive) library (.a) file (using –xar), or a dynamic

(shared) library (.so) file

■ Link or relink object files or library files (or both) into an executable file

■ Compile an executable file with runtime debugging enabled (-g)

■ Compile an executable file with runtime statement or procedure-level profiling

(-pg)

2.1 Getting Started
This section gives you a brief overview of how to use the C++ compiler to compile

and run C++ programs. See Chapter 3 for a full reference to command-line options.

Note – The command-line examples in this chapter show CCusages. Printed output

might be slightly different.

The basic steps for building and running a C++ program involve:

1. Using an editor to create a C++ source file with one of the valid suffixes listed in

TABLE 2-1 on page 2-4

2. Invoking the compiler to produce an executable file
2-1

3. Launching the program into execution by typing the name of the executable file

The following program displays a message on the screen:

In this example, CCcompiles the source file greetings.cc and, by default,

compiles the executable program onto the file, a.out . To launch the program, type

the name of the executable file, a.out , at the command prompt.

Traditionally, UNIX compilers name the executable file a.out . It can be awkward to

have each compilation write to the same file. Moreover, if such a file already exists,

it will be overwritten the next time you run the compiler. Instead, use the -o
compiler option to specify the name of the executable output file, as in the following

example:

In this example, the -o option tells the compiler to write the executable code to the

file greetings . (It is common to give a program consisting of a single source file

the name of the source file without the suffix.)

Alternatively, you could rename the default a.out file using the mv command after

each compilation. Either way, run the program by typing the name of the

executable file:

example% cat greetings.cc
#include <iostream>

 int main() {
 std::cout << “Real programmers write C++!” << std::endl;
 return 0;
 }
example% CC greetings.cc
example% a.out
 Real programmers write C++!
example%

example% CC –o greetings greetings.C

example% greetings
Real programmers write C++!
example%
2-2 C++ User’s Guide • May 2000

2.2 Invoking the Compiler
The remainder of this chapter discuss the conventions used by the CCcommand,

compiler source line directives, and other issues concerning the use of the compiler.

2.2.1 Command Syntax

The general syntax of a compiler command line is as follows:

An option is an option keyword prefixed by either a dash (–) or a plus sign (+). Some

options take arguments.

In general, the processing of the compiler options is from left to right, allowing

selective overriding of macro options (options that include other options). In most

cases, if you specify the same option more than once, the rightmost assignment

overrides and there is no accumulation. Note the following exceptions:

■ All linker options and the –I , –L , –pti , and –R options accumulate, they do not

override.

■ All –U options are processed after all –D options.

Source files, object files, and libraries are compiled and linked in the order in which

they appear on the command line.

In the following example, CCis used to compile two source files (growth.C and

fft.C) to produce an executable file named growth with runtime debugging

enabled:

CC [options] [source- files] [object- files] [libraries]

example% CC -g -o growth growth.C fft.C
Chapter 2 Using the C++ Compiler 2-3

2.2.2 File Name Conventions

The suffix attached to a file name appearing on the command line determines how

the compiler processes the file. A file name with a suffix other than those listed in

the following table, or without a suffix, is passed to the linker.

2.2.3 Using Multiple Source Files

The C++ compiler accepts multiple source files on the command line. A single

source file compiled by the compiler, together with any files that it directly or

indirectly supports, is referred to as a compilation unit. C++ treats each source as a

separate compilation unit. A single source file can contain any number of procedures

(main program, function, module, and so on). There are advantages to organizing an

TABLE 2-1 File Name Suffixes Recognized by the C++ Compiler

Suffix Language Action

.c C++ Compile as C++ source files, put object files in current

directory; default name of object file is that of the source but

with an .o suffix.

.C C++ Same action as .c suffix.

.cc C++ Same action as .c suffix.

.cpp C++ Same action as .c suffix.

.cxx C++ Same action as .c suffix.

.i C++ Preprocessor output file treated as C++ source file. Same

action as .c suffix.

.s Assembler Assemble source files using the assembler.

.S Assembler Assemble source files using both the C language

preprocessor and the assembler.

.il Inline

expansion

Process assembly inline-template files for inline expansion.

The compiler will use templates to expand inline calls to

selected routines. (Inline-template files are special assembler

files. See the inline (1) man page.)

.o Object files Pass object files through to the linker.

.a Static

(archive)

library

Pass object library names to the linker.

.so

.so .n
Dynamic

(shared)

library

Pass names of shared objects to the linker.
2-4 C++ User’s Guide • May 2000

application with one procedure per file, as there are for gathering procedures that

work together into a single file. Some of these are described in C++ Programming
Guide.

2.2.4 Compiling With Different Compiler Versions

Beginning with the Sun WorkShop 6 C++ compiler, the compiler marks a template

cache directory with a string that identifies the template cache’s version.

This compiler checks the cache directory’s version and issues error messages

whenever it encounters cache version problems. Future Sun WorkShop C++

compilers will also check cache versions. For example, a future compiler that has a

different template cache version identification and that processes a cache directory

produced by this release of the compiler might issue the following error:

Similarly, this release of the compiler will issue an error if it encounters a cache

directory that was produced by a later version of the compiler.

Although the template cache directories produced by the Sun WorkShop C++

compiler 5.0 are not marked with version identifiers, the Sun WorkShop 6 C++

compiler processes the 5.0 cache directories without an error or a warning. The Sun

WorkShop 6 C++ compiler converts the 5.0 cache directories to the directory format

used by the Sun WorkShop 6 C++ compiler.

The Sun WorkShop C++ compiler 5.0 cannot use a cache directory that is produced

by the Sun WorkShop 6 C++ compiler or by a later release. The Sun WorkShop C++

compiler 5.0 is not capable of recognizing format differences and it will issue an

assertion when it encounters a cache directory that is produced by the Sun

WorkShop 6 C++ compiler or by a later release.

When upgrading compilers, it is always good practice to run CCadmin -clean on

every directory that contains a template cache directory (in most cases, a template

cache directory is named SunWS_cache) . Alternately, you can use rm -rf
SunWS_cache.

SunWS_cache: Error: Database version mismatch
/SunWS_cache/CC_version
Chapter 2 Using the C++ Compiler 2-5

2.3 Compiling and Linking
This section describes some aspects of compiling and linking programs. In the

following example, CCis used to compile three source files and to link the object files

to produce an executable file named prgrm .

2.3.1 Compile-Link Sequence

In the previous example, the compiler automatically generates the loader object files

(file1.o , file2.o and file3.o) and then invokes the system linker to create the

executable program for the file prgrm.

After compilation, the object files (file1.o, file2.o, and file3.o) remain. This

convention permits you to easily relink and recompile your files.

Note – If only one source file is compiled and a program is linked in the same

operation, the corresponding .o file is deleted automatically. To preserve all .o files,

do not compile and link in the same operation unless more than one source file gets

compiled.

If the compilation fails, you will receive a message for each error. No .o files are

generated for those source files with errors, and no executable program is written.

2.3.2 Separate Compiling and Linking

You can compile and link in separate steps. The -c option compiles source files and

generates .o object files, but does not create an executable. Without the -c option,

the compiler invokes the linker. By splitting the compile and link steps, a complete

recompilation is not needed just to fix one file. The following example shows how to

compile one file and link with others in separate steps:

example% CC file1.cc file2.cc file3.cc -o prgrm

example% CC -c file1.cc Make new object file
example% CC -o prgrm file1.o file2.o file3.o Make executable file
2-6 C++ User’s Guide • May 2000

Be sure that the link step lists all the object files needed to make the complete

program. If any object files are missing from this step, the link will fail with

“undefined external reference” errors (missing routines).

2.3.3 Consistent Compiling and Linking

If you do compile and link in separate steps, consistent compiling and linking is

critical when using the following compiler options:

■ –fast
■ -g
■ -g0
■ -library
■ -misalign
■ -mt
■ -p
■ -xa
■ -xarch =isa
■ –xcg92 and -xcg89
■ -xpg
■ -xprofile
■ -xtarget= t
■ -xvector or -xvector=yes

If you compile any subprogram using any of these options, be sure to link using the

same option as well:

■ In the case of the -library , -fast , and -xarch options, you must be sure to

include the linker options that would have been passed if you had compiled and

linked together.

■ With -p , -xpg and -xprofile , including the option in one phase and excluding

it from the other phase will not affect the correctness of the program, but you will

not be able to do profiling.

■ With -g and -g0 , including the option in one phase and excluding it from the

other phase will not affect the correctness of the program, but the program will

not be prepared properly for debugging.

In the following example, the programs are compiled using the -xcg92 compiler

option. This option is a macro for -xtarget=ss1000 and expands to:

-xarch=v8 -xchip=super -xcache=16/64/4:1024/64/1 .

 example% CC -c -xcg92 sbr.cc
 example% CC -c -xcg92 smain.cc
 example% CC -xcg92 sbr.o smain.o
Chapter 2 Using the C++ Compiler 2-7

If the program uses templates, it is possible that some templates will get instantiated

at link time. In that case the command line options from the last line (the link line)

will be used to compile the instantiated templates.

2.3.4 Compiling for SPARC V9

The compilation, linking, and execution of 64-bit objects is supported only in a V9

SPARC, Solaris 7 or Solaris 8 environment with a 64-bit kernel running. Compilation

for 64-bit is indicated by the –xarch=v9 , –xarch=v9a , and -xarch=v9b options.

2.3.5 Diagnosing the Compiler

You can use the –verbose option to display helpful information while compiling a

program. See Chapter 3 for more information.

Any arguments on the command line that the compiler does not recognize are

interpreted as linker options, object program file names, or library names.

The basic distinctions are:

■ Unrecognized options, which are preceded by a dash (–) or a plus sign (+),

generate warnings.

■ Unrecognized nonoptions, which are not preceded by a dash or a plus sign,

generate no warnings. (However, they are passed to the linker. If the linker does

not recognize them, they generate linker error messages.)

In the following example, note that -bit is not recognized by CCand the option is

passed on to the linker (ld), which tries to interpret it. Because single letter ld
options can be strung together, the linker sees -bit as -b -i -t , all of which are

legitimate ld options. This might not be what you intend or expect:

example% CC -bit move.cc <- -bit is not a recognized CC option

CC: Warning: Option -bit passed to ld, if ld is invoked, ignored
otherwise
2-8 C++ User’s Guide • May 2000

In the next example, the user intended to type the CCoption -fast but omitted the

leading dash. The compiler again passes the argument to the linker, which in turn

interprets it as a file name:

2.3.6 Understanding the Compiler Organization

The C++ compiler package consists of a front end, optimizer, code generator,

assembler, template pre-linker, and link editor. The CCcommand invokes each of

these components automatically unless you use command-line options to specify

otherwise. FIGURE 2-1 shows the order in which the components are invoked by the

compiler.

Because any of these components may generate an error, and the components

perform different tasks, it may be helpful to identify the component that generates

an error.

example% CC fast move.cc <- The user meant to type -fast
move.CC:
ld: fatal: file fast: cannot open file; errno=2
ld: fatal: File processing errors. No output written to a.out
Chapter 2 Using the C++ Compiler 2-9

FIGURE 2-1 The Compilation Process

CC

a.out

C++ source and
header files

Front end

Optimizer
(optional)

Link editor

Code

 Assembler

Template
pre-linker

(IA only)

(ccfe)

(iropt*)

generator
(cg,codegen*)

(CClink)

(ld) or (ild)

(fbe) (.o files)

(.s files)

Object files and
libraries,
archive (.a) and
shared (.so) libraries

Note:Solid lines denote that the compiler
calls each component. Dotted lines denote
the flow of data.

(Sun IR†)

(.il files)

(.s files)
(Translates Sun IR)

Standalone Inliner

†Sun IR = Sun’s Intermediate Representation

(Sun IR*)

Inline templates

Assembly files

*iropt andcg/codegen are invoked only
with the-O option.yabe is invoked with-g .

C++ source
(.C,.cc,.cpp,.cxx)

(Optional)

Intermediate Language
Translator (xcg386)

(IA only)
2-10 C++ User’s Guide • May 2000

As shown in the following table, input files to the various compiler components

have different file name suffixes. The suffix establishes the kind of compilation that

is done. Refer to TABLE 2-1 on page 2-4 for the meanings of the file suffixes.

2.4 Memory Requirements
The amount of memory a compilation requires depends on several parameters,

including:

■ Size of each procedure

■ Level of optimization

■ Limits set for virtual memory

■ Size of the disk swap file

On the SPARC platform, if the optimizer runs out of memory, it tries to recover by

retrying the current procedure at a lower level of optimization. The optimizer then

resumes subsequent routines at the original level specified in the -xO level option on

the command line.

If you compile a single source file that contains many routines, the compiler might

run out of memory or swap space. If the compiler runs out of memory, try reducing

the level of optimization. Alternately, split multiple-routine source files into files

with one routine per file.

TABLE 2-2 Components of the C++ Compilation System

Component Description Notes on Use

ccfe Front end (compiler preprocessor and compiler)

iropt (SPARC) Code optimizer -xO[2-5] , -fast

xcg386 (IA) Intermediate language translator Always invoked

inline (SPARC) Inline expansion of assembly language

templates

.il file specified

mwinline (IA) Automatic inline expansion of functions -xO4

fbe Assembler

cg (SPARC) Code generator, inliner, assembler

codegen (IA) Code generator

CClink Template pre-linker

ld Non-incremental link editor

ild Incremental link editor -g , -xildon
Chapter 2 Using the C++ Compiler 2-11

2.4.1 Swap Space Size

The swap -s command displays available swap space. See the swap(1M) man page

for more information.

The following example demonstrates the use of the swap command:

2.4.2 Increasing Swap Space

Use mkfile (1M) and swap (1M) to increase the size of the swap space on a

workstation. (You must become superuser to do this.) The mkfile command creates

a file of a specific size, and swap -a adds the file to the system swap space:

2.4.3 Control of Virtual Memory

Compiling very large routines (thousands of lines of code in a single procedure) at

-xO3 or higher can require an unreasonable amount of memory. In such cases,

performance of the system might degrade. You can control this by limiting the

amount of virtual memory available to a single process.

To limit virtual memory in an sh shell, use the ulimit command. See the sh (1)

man page for more information.

The following example shows how to limit virtual memory to 16 Mbytes:

In a csh shell, use the limit command to limit virtual memory. See the csh (1) man

page for more information.

example% swap -s
total: 40236k bytes allocated + 7280k reserved = 47516k used,
1058708k available

 example# mkfile -v 90m /home/swapfile
 /home/swapfile 94317840 bytes
 example# /usr/sbin/swap -a /home/swapfile

 example$ ulimit -d 16000
2-12 C++ User’s Guide • May 2000

The next example also shows how to limit virtual memory to 16 Mbytes:

Each of these examples causes the optimizer to try to recover at 16 Mbytes of data

space.

The limit on virtual memory cannot be greater than the system’s total available swap

space and, in practice, must be small enough to permit normal use of the system

while a large compilation is in progress.

Be sure that no compilation consumes more than half the swap space.

With 32 Mbytes of swap space, use the following commands:

In an sh shell:

In a csh shell:

The best setting depends on the degree of optimization requested and the amount of

real memory and virtual memory available.

2.4.4 Memory Requirements

A workstation should have at least 24 megabytes of memory; 32 Mbytes are

recommended.

To determine the actual real memory, use the following command:

 example% limit datasize 16M

example$ ulimit -d 16000

example% limit datasize 16M

example% /usr/sbin/dmesg | grep mem
mem = 655360K (0x28000000)
avail mem = 602476544
Chapter 2 Using the C++ Compiler 2-13

2.5 Simplifying Commands
You can simplify complicated compiler commands by defining special shell aliases,

using the CCFLAGSenvironment variable, or by using make.

2.5.1 Using Aliases Within the C Shell

The following example defines an alias for a command with frequently used options.

The next example uses the alias CCfx .

The command CCfx is now the same as:

2.5.2 Using CCFLAGSto Specify Compile Options

You can specify options by setting the CCFLAGSvariable.

The CCFLAGSvariable can be used explicitly in the command line. The following

example shows how to set CCFLAGS(C Shell):

The next example uses CCFLAGSexplicitly.

example% alias CCfx "CC -fast -xnolibmil"

example% CCfx any.C

example% CC -fast -xnolibmil any.C

 example% setenv CCFLAGS '-xO2 -xsb'

 example% CC $CCFLAGS any.cc
2-14 C++ User’s Guide • May 2000

When you use make, if the CCFLAGSvariable is set as in the preceding example and

the makefile’s compilation rules are implicit, then invoking make will result in a

compilation equivalent to:

CC -xO2 -xsb files...

2.5.3 Using make

The make utility is a very powerful program development tool that you can easily

use with all Sun compilers. See the make(1S) man page for additional information.

2.5.3.1 Using CCFLAGSWithin make

When you are using the implicit compilation rules of the makefile (that is, there is no

C++ compile line), the make program uses CCFLAGSautomatically.

2.5.3.2 Adding a Suffix to Your Makefile

You can incorporate different file suffixes into C++ by adding them to your makefile.

The following example adds .cpp as a valid suffix for C++ files. Add the SUFFIXES
macro to your makefile:

SUFFIXES: .cpp .cpp~

(This line can be located anywhere in the makefile.)
Chapter 2 Using the C++ Compiler 2-15

Add the following lines to your makefile. Indented lines must start with a tab.

2.5.3.3 Using make With Standard Library Header Files

The standard library file names do not have .h suffixes. Instead, they are named

istream , fstream , and so forth. In addition, the template source files are named

istream.cc , fstream.cc , and so forth.

If, in the Solaris 2.6 or 7 operating environment, you include a standard library

header, such as <istream> , in your program and your makefile has .KEEP_STATE,

you may encounter problems. For example, if you include <istream> , the make
utility thinks that istream is an executable and uses the default rules to build

istream from istream.cc resulting in very misleading error messages. (Both

istream and istream.cc are installed under the C++ include files directory). One

solution is to use dmake in serial mode (dmake -m serial) instead of using the

make utility. An immediate work around is to use make with the -r option. The -r
option disables the default make rules. This solution may break the build process. A

third solution is to not use the .KEEP_STATE target.

.cpp:
 $(LINK.cc) -o $@ $< $(LDLIBS)
.cpp~:
 $(GET) $(GFLAGS) -p $< > $*.cpp
 $(LINK.cc) -o $@ $*.cpp $(LDLIBS)
.cpp.o:
 $(COMPILE.cc) $(OUTPUT_OPTION) $<
.cpp~.o:
 $(GET) $(GFLAGS) -p $< > $*.cpp
 $(COMPILE.cc) $(OUTPUT_OPTION) $<
.cpp.a:
 $(COMPILE.cc) -o $% $<
 $(COMPILE.cc) -xar $@ $%
 $(RM) $%
.cpp~.a:
 $(GET) $(GFLAGS) -p $< > $*.cpp
 $(COMPILE.cc) -o $% $<
 $(COMPILE.cc) -xar $@ $%
 $(RM) $%
2-16 C++ User’s Guide • May 2000

CHAPTER 3

C++ Compiler Options

This chapter details the command-line options for the CCcompiler running under

Solaris 2.6, Solaris 7, and Solaris 8. The features described apply to all platforms

except as noted; features unique to one platform are identified as SPARC or IA. See

“Multiplatform Release” in the preface for more information.

The following table shows examples of typical option syntax formats.

The typographical conventions in TABLE P-1 are used in this section of the manual to

describe individual options.

Parentheses, braces, brackets, pipe characters, and ellipses are metacharacters used in

the descriptions of the options and are not part of the options themselves.

Some general guidelines for options are:

■ The –l lib option links with library lib lib.a (or lib lib.so) . It is always safer to

put –l lib after the source and object files to ensure the order in which libraries are

searched.

■ In general, processing of the compiler options is from left to right (with the

exception that –U options are processed after all –D options), allowing selective

overriding of macro options (options that include other options). This rule does

not apply to linker options.

■ The –I , –L , –pti , and –R options accumulate, they do not override.

Source files, object files, and libraries are compiled and linked in the order in which

they appear on the command line.

TABLE 3-1 Option Syntax Format Examples

Syntax Format Example

option –E

–option value –I pathname

–option= value –xunroll=4

–option value –o filename
3-1

3.1 Options Summarized by Function
In this section, the compiler options are grouped by function to provide a quick

reference.

3.1.1 Code Generation Options

The following code generation options are listed in alphabetical order.

TABLE 3-2 Code Generation Options

Action Option

Sets the major release compatibility mode of the compiler. –compat

Does not expand C++ inline functions. +d

Controls virtual table generation. +e(0|1)

Compiles for use with the debugger. –g

Produces position-independent code. –KPIC

Produces position-independent code. –Kpic

Compiles and links for multithreaded code. –mt

Specifies the code address space. –xcode= a

Merges the data segment with the text segment. –xMerge

Linker option. -z arg
3-2 C++ User’s Guide • May 2000

3.1.2 Debugging Options

The following debugging options are listed in alphabetical order.

TABLE 3-3 Debugging Options

Action Option

Does not expand C++ inline functions. +d

Shows options passed by the driver to the compiler, but does not

compile.

–dryrun

Runs only the preprocessor on the C++ source files and sends

result to stdout . Does not compile.

–E

Compiles for use with the debugger. –g

Compiles for debugging, but doesn’t disable inlining. –g0

Prints path names of included files. –H

Retains temporary files created during compilation. –keeptmp

Explains where to get information about migrating from earlier

compilers.

–migration

Only preprocesses source; outputs to .i file. –P

Passes an option directly to a compilation phase. –Qoption

Displays the content of the online READMEfile. –readme

Strips the symbol table out of the executable file. –s

Defines directory for temporary files. –temp= dir

Controls compiler verbosity. –verbose= vlst

Displays a summary list of compiler options. –xhelp=flags

Turns off the Incremental Linker. –xildoff

Turns on the Incremental Linker. –xildon

Allows debugging with dbx without object (.o) files. –xs

Produces table information for the WorkShop source code browser. –xsb

Produces only source browser information, no compilation. –xsbfast
Chapter 3 C++ Compiler Options 3-3

3.1.3 Floating-Point Options

The following floating-point options are listed in alphabetical order.

3.1.4 Language Options

The following language options are listed in alphabetical order.

TABLE 3-4 Floating-Point Options

Action Option

Disables or enables the SPARC nonstandard floating-point

mode.

–fns[=(no|yes)]

IA: Sets floating-point precision mode. –fprecision= p

Sets IEEE rounding mode in effect at startup. –fround= r

Sets floating-point optimization preferences. –fsimple= n

IA: Forces precision of floating-point expressions. –fstore

Sets IEEE trapping mode in effect at startup. –ftrap= tlst

IA: Disables forced precision of expression. –nofstore

Causes libm to return IEEE 754 values for math routines in

exceptional cases.

–xlibmieee

TABLE 3-5 Language Options

Action Option

Sets the major release compatibility mode of the compiler. –compat

Enables or disables various C++ language features. –features= alst
3-4 C++ User’s Guide • May 2000

3.1.5 Library Options

The following library linking options are listed in alphabetical order.

TABLE 3-6 Library Options

Action Option

Requests symbolic, dynamic, or static library linking. –Bbinding

Allows or disallows dynamic libraries for the entire

executable.

–d(y|n)

Builds a dynamic shared library instead of an executable

file.

–G

Assigns a name to the generated dynamic shared library. –hname

Tells ld (1) to ignore any LD_LIBRARY_PATH setting. –i

Adds dir to the list of directories to be searched for libraries. –Ldir

Adds lib lib.a or lib lib.so to the linker’s library search

list.

–l lib

Forces inclusion of specific libraries and associated files into

compilation and linking.

–library= llst

Compiles and links for multithreaded code. –mt

Does not build path for libraries into executable. –norunpath

Builds dynamic library search paths into the executable file. –Rplst

Indicates which C++ libraries are to be linked statically. –staticlib= llst

Creates archive libraries. –xar

Causes libm to return IEEE 754 values for math routines in

exceptional cases.

–xlibmieee

Inlines selected libm library routines for optimization. –xlibmil

Uses library of optimized math routines. –xlibmopt

SPARC: Links in the Sun Performance Library™. -xlic_lib=sunperflib

Disables linking with default system libraries. –xnolib

Cancels –xlibmil on the command line. –xnolibmil

Does not use the math routine library. –xnolibmopt

Forces fatal error if relocations remain against non-writable,

allocatable sections.

–ztext
Chapter 3 C++ Compiler Options 3-5

3.1.6 Licensing Options

The following licensing options are listed in alphabetical order.

3.1.7 Obsolete Options

The following options are obsolete or will become obsolete.

3.1.8 Output Options

The following output options are listed in alphabetical order.

TABLE 3-7 Licensing Options

Action Option

Disables license queueing. –noqueue

SPARC: Links in the Sun Performance Library. –xlic_lib=sunperf

Shows license server information. –xlicinfo

TABLE 3-8 Obsolete Options

Action Option

Ignored by the compiler. A future release of the compiler may

reuse this option using a different behavior.

-ptr

Obsolete option that will be removed in future release. –vdelx

TABLE 3-9 Output Options

Action Option

Compiles only; produces object (.o) files, but suppresses linking. –c

Shows options passed by the driver to the compiler, but does not

compile.

–dryrun

Runs only the preprocessor on the C++ source files and sends

result to stdout . Does not compile.

–E

Builds a dynamic shared library instead of an executable file. –G

Prints path names of included files. –H
3-6 C++ User’s Guide • May 2000

3.1.9 Performance Options

The following performance options are listed in alphabetical order.

Explains where to get information about migrating from earlier

compilers.

–migration

Sets name of the output or executable file to filename. –o filename

Only preprocesses source; outputs to .i file. –P

Causes the CC driver to produce output of the type sourcetype. –Qproduce sourcetype

Strips the symbol table out of the executable file. –s

Controls compiler verbosity. –verbose= vlst

Prints extra warnings where necessary. +w

Suppresses warning messages. –w

Displays a summary list of compiler options –xhelp=flags

Displays the contents of the online READMEfile. –xhelp=readme

Outputs makefile dependency information. –xM

Generates dependency information, but excludes

/usr/include .

–xM1

Produces table information for the WorkShop source code

browser.

–xsb

Produces only source browser information, no compilation. –xsbfast

Reports execution time for each compilation phase. –xtime

Converts all warnings to errors by returning non-zero exit status. –xwe

Linker option. -z arg

TABLE 3-10 Performance Options

Action Option

Selects a combination of compilation options for optimum execution

speed.

–fast

Strips the symbol table out of the executable. –s

Specifies target architecture instruction set. –xarch= isa

SPARC: Defines target cache properties for the optimizer. –xcache= c

TABLE 3-9 Output Options (Continued)

Action Option
Chapter 3 C++ Compiler Options 3-7

3.1.10 Preprocessor Options

The following preprocessor options are listed in alphabetical order.

Compiles for generic SPARC architecture. –xcg89

Compiles for SPARC V8 architecture. –xcg92

Specifies target processor chip. –xchip= c

Enables linker reordering of functions. –xF

Inlines selected libm library routines for optimization. –xlibmil

Uses a library of optimized math routines. –xlibmopt

Cancels –xlibmil on the command line. –xnolibmil

Does not use the math routine library. –xnolibmopt

Specifies optimization level to level. –xOlevel

SPARC: Controls scratch register use. –xregs= rlst

SPARC: Allows no memory-based traps. –xsafe=mem

SPARC: Does not allow optimizations that increase code size. –xspace

Specifies a target instruction set and optimization system. –xtarget= t

Enables unrolling of loops where possible. –xunroll= n

TABLE 3-11 Preprocessor Options

Action Option

Defines symbol name to the preprocessor. –Dname[= def]

Runs only the preprocessor on the C++ source files and sends result

to stdout . Does not compile.

–E

Only preprocesses source; outputs to .i file. –P

Deletes initial definition of preprocessor symbol name. –Uname

Outputs makefile dependency information. –xM

Generates dependency information, but excludes

/usr/include .

–xM1

TABLE 3-10 Performance Options (Continued)

Action Option
3-8 C++ User’s Guide • May 2000

3.1.11 Profiling Options

The following profiling options are listed in alphabetical order.

3.1.12 Reference Options

The following options provide a quick reference to compiler information.

3.1.13 Source Options

The following source options are listed in alphabetical order.

TABLE 3-12 Profiling Options

Action Option

Prepares the object code to collect data for profiling using prof . –p

Generates code for profiling. –xa

Compiles for profiling with the gprof profiler. –xpg

Collects or optimizes using runtime profiling data. –xprofile=tcov

TABLE 3-13 Reference Options

Action Option

Explains where to get information about migrating from earlier

compilers.

–migration

Displays a summary list of compiler options. –xhelp=flags

Displays the contents of the online READMEfile. –xhelp=readme

TABLE 3-14 Source Options

Action Option

Adds pathname to the include file search path. –I pathname

Outputs makefile dependency information. –xM

Generates dependency information, but excludes /usr/include . –xM1
Chapter 3 C++ Compiler Options 3-9

3.1.14 Template Options

The following template options are listed in alphabetical order.

3.1.15 Thread Options

The following thread options are listed in alphabetical order.

TABLE 3-15 Template Options

Action Option

Controls the placement and linkage of template instances. –instances= a

Specifies an additional search directory for the template source. –pti path

Enables or disables various template options. –template= wlst

TABLE 3-16 Thread Options

Action Option

Compiles and links for multithreaded code. –mt

SPARC: Allows no memory-based traps. –xsafe=mem
3-10 C++ User’s Guide • May 2000

3.1.16 How Option Information Is Organized

To help you find information, compiler option descriptions are separated into the

following subsections. If the option is one that is replaced by or identical to some

other option, see the description of the other option for full details.

TABLE 3-17 Option Subsections

Subsection Contents

Option Definition A short definition immediately follows each option. (There is no

heading for this category.)

Values If the option has one or more values, this section defines each

value.

Defaults If the option has a primary or secondary default value, it is

stated here.

The primary default is the option value in effect if the option is

not specified. For example, if –compat is not specified, the

default is –compat=5 .

The secondary default is the option in effect if the option is

specified, but no value is given. For example, if –compat is

specified without a value, the default is -compat=4 .

Expansions If the option has a macro expansion, it is shown in this section.

Examples If an example is needed to illustrate the option, it is given here.

Interactions If the option interacts with other options, the relationship is

discussed here.

Warnings If there are cautions regarding use of the option, they are noted

here, as are actions that might cause unexpected behavior.

See also This section contains references to further information in other

options or documents.

“Replace with”

“Same as”

If an option has become obsolete and has been replaced by

another option, the replacement option is noted here. Options

described this way may not be supported in future releases.

If there are two options with the same general meaning and

purpose, the preferred option is referenced here. For example,

“Same as -xO ” indicates that -xO is the preferred option.
Chapter 3 C++ Compiler Options 3-11

3.2 Option Reference

3.2.1 –386

IA: Same as –xtarget=386 . This option is provided for backward compatibility only.

3.2.2 –486

IA: Same as –xtarget=486 . This option is provided for backward compatibility only.

3.2.3 –a

Same as –xa.

3.2.4 –Bbinding
Specifies whether a library binding for linking is symbolic, dynamic (shared), or static
(nonshared).

You can use the –B option to toggle several times on a command line. This option is

passed to the linker, ld .

Note – On the Solaris 7 and Solaris 8 platforms, not all libraries are available as

static libraries.
3-12 C++ User’s Guide • May 2000

Values

binding must be one of the following:

(No space is allowed between –B and the binding value.)

Defaults

If –B is not specified, –Bdynamic is assumed.

Interactions

To link the C++ default libraries statically, use the –staticlib option.

The -Bstatic and -Bdynamic options affect the linking of the libraries that are

provided by default. To ensure that the default libraries are linked dynamically, the

last use of –B should be –Bdynamic.

Examples

The following compiler command links lib foo.a even if lib foo.so exists; all other

libraries are linked dynamically:

Warnings

If you compile and link in separate steps and are using the -B binding option, you

must include the option in the link step.

Value of binding Meaning

dynamic Directs the link editor to look for lib lib.so (shared) files, and if

they are not found, to look for lib lib.a (static, nonshared) files. Use

this option if you want shared library bindings for linking.

static Directs the link editor to look only for lib lib.a (static, nonshared)

files. Use this option if you want nonshared library bindings for

linking.

symbolic See the ld (1) man page.

example% CC a.o –Bstatic –lfoo –Bdynamic
Chapter 3 C++ Compiler Options 3-13

When building a shared library in compatibility mode (-compat[=4]), do not use

-Bsymbolic if the library has exceptions in it. Exceptions that should be caught might

be missed.

See also

–nolib , –staticlib , ld (1), Section 5.5 “Statically Linking Standard Libraries,”

Linker and Libraries Guide

3.2.5 –c

Compile only; produce object .o files, but suppress linking.

This option directs the CCdriver to suppress linking with ld and produce a .o file

for each source file. If you specify only one source file on the command line, then

you can explicitly name the object file with the -o option.

Examples

If you enter CC -c x.cc , the x.o object file is generated.

If you enter CC -c x.cc -o y.o , the y.o object file is generated.

Warnings

When the compiler produces object code for an input file (.c , .i), the compiler

always produces a .o file in the working directory. If you suppress the linking step,

the .o files are not removed.

See also

–o filename

3.2.6 –cg[89|92]

Same as –xcg[89|92] .
3-14 C++ User’s Guide • May 2000

3.2.7 –compat[=(4|5)]

Sets the major release compatibility mode of the compiler. This option controls the

__SUNPRO_CC_COMPATand __cplusplus macros.

The C++ compiler has two principal modes. The compatibility mode accepts ARM

semantics and language defined by the 4.2 compiler. The standard mode accepts

constructs according to the ANSI/ISO standard. These two modes are incompatible

with each other because the ANSI/ISO standard forces significant, incompatible

changes in name mangling, vtable layout, and other ABI details. These two modes

are differentiated by the –compat option as shown in the following values.

Values

The -compat option can have the following values.

Defaults

If the –compat option is not specified, –compat =5 is assumed.

If only –compat is specified, –compat=4 is assumed.

Regardless of the –compat setting, __SUNPRO_CCis set to 0x510 .

Interactions

Use of –compat[=4] with -xarch=v9 , -xarch=v9a , or -xarch=v9b is not

supported.

See also

C++ Migration Guide

Value Meaning

–compat=4 (Compatibility mode) Set language and binary compatibility to that of

the 4.0.1, 4.1, and 4.2 compilers. Set the __cplusplus preprocessor

macro to 1 and the __SUNPRO_CC_COMPATpreprocessor macro to 4.

–compat=5 (Standard mode) Set language and binary compatibility to ANSI/ISO

standard mode. Set the __cplusplus preprocessor macro to 199711L

and the __SUNPRO_CC_COMPATpreprocessor macro to 5.
Chapter 3 C++ Compiler Options 3-15

3.2.8 +d

Does not expand C++ inline functions.

Interactions

This option is automatically turned on when you specify –g , the debugging option.

The –g0 debugging option does not turn on +d.

See also

–g0 , –g

3.2.9 –Dname[=def]
Defines the macro symbol name to the preprocessor.

Using this option is equivalent to including a #define directive at the beginning of

the source. You can use multiple -D options.

Values

The following tables show the predefined macros. You can use these values in such

preprocessor conditionals as #ifdef .

TABLE 3-18 SPARC and IA Predefined Symbols

Name Note

__ARRAYNEW __ARRAYNEWis defined if the “array” forms of

operators new and delete are enabled. See

-features=[no%]arraynew for more information.

_BOOL _BOOL is defined if type bool is enabled. See

-features=[no%]bool for more information.

__BUILTIN_VA_ARG_INCR For the __builtin_alloca ,

__builtin_va_alist, and

__builtin_va_arg_incr keywords in

varargs.h, stdarg.h , and sys/varargs.h.

__cplusplus

__DATE__
3-16 C++ User’s Guide • May 2000

__FILE__

__LINE__

__STDC__

__sun

sun See Interactions.

__SUNPRO_CC=0x510 The value of __SUNPRO_CCindicates the release

number of the compiler

__SUNPRO_CC_COMPAT=(4|5) See Section 3.2.7 “–compat[=(4|5)] ” on page 3-15

__SVR4

__TIME__

__’ uname –s’_’uname –r’ Where uname -s is the output of uname –s and

uname -r is the output of uname -r with the invalid

characters, such as periods (.), replaced by

underscores, as in -D __SunOS_5_7 and

-D __SunOS_5_8.

__unix

unix See Interactions.

TABLE 3-19 UNIX Predefined Symbols

Name Note

_WCHAR_T

TABLE 3-20 SPARC Predefined Symbols

Name Note

__sparc 32-bit compilation modes only

sparc See Interactions.

TABLE 3-18 SPARC and IA Predefined Symbols (Continued)

Name Note
Chapter 3 C++ Compiler Options 3-17

Defaults

If you do not use =def, name is defined as 1.

Interactions

If +p is used, sun , unix , sparc , and i386 are not defined.

See also

–U

3.2.10 –d(y|n)

Allows or disallows dynamic libraries for the entire executable.

This option is passed to ld .

This option can appear only once on the command line.

TABLE 3-21 SPARC v9 Predefined Symbols

Name Note

__sparcv9 64-bit compilation modes only

TABLE 3-22 IA Predefined Symbols

Name Note

__i386

i386 See Interactions.
3-18 C++ User’s Guide • May 2000

Values

Defaults

If no -d option is specified, –dy is assumed.

See also

ld (1), Linker and Libraries Guide

3.2.11 –dalign

SPARC: Generates double-word load and store instructions whenever possible

for improved performance.

This option assumes that all double type data are double-word aligned.

Warnings

If you compile one program unit with –dalign , compile all units of a program with

-dalign , or you might get unexpected results.

3.2.12 –dryrun

Shows commands built by driver, but does not compile.

This option directs the driver CCto show, but not execute, the subcommands

constructed by the compilation driver.

Value Meaning

-dy Specifies dynamic linking in the link editor.

–dn Specifies static linking in the link editor.
Chapter 3 C++ Compiler Options 3-19

3.2.13 –E

Runs the preprocessor on source files; does not compile.

Directs the CCdriver to run only the preprocessor on C++ source files, and to send

the result to stdout (standard output). No compilation is done; no .o files are

generated.

This option causes preprocessor-type line number information to be included in the

output.

Examples

This option is useful for determining the changes made by the preprocessor. For

example, the following program, foo.cc , generates the output shown in

CODE EXAMPLE 3-2.

CODE EXAMPLE 3-1 foo.cc

#if __cplusplus < 199711L
int power(int, int);
#else
template <> int power(int, int);
#endif

int main () {
 int x;
 x=power(2, 10);
}

CODE EXAMPLE 3-2 Output of foo.cc Using -E Option

example% CC -E foo.cc
#4 "foo.cc"
template < > int power (int , int) ;

int main () {
int x ;
x = power (2 , 10) ;
}

3-20 C++ User’s Guide • May 2000

Warnings

Output from this option is not supported as input to the C++ compiler when

templates are used.

See also

–P

3.2.14 +e(0|1)

Controls virtual table generation in compatibility mode (-compat[=4]) . Invalid

and ignored when in standard mode (the default mode).

Values

The +e option can have the following values.

Interactions

When you compile with this option, also use the –features=no%except option.

Otherwise, the compiler generates virtual tables for internal types used in exception

handling.

See also

C++ Migration Guide

Value Meaning

0 Suppresses the generation of virtual tables and creates external

references to those that are needed.

1 Creates virtual tables for all defined classes with virtual functions.
Chapter 3 C++ Compiler Options 3-21

3.2.15 –fast

Optimizes for speed of execution using a selection of options.

This option is a macro that selects a combination of compilation options for

optimum execution speed on the machine upon which the code is compiled.

Expansions

This option provides near maximum performance for many applications by

expanding to the following compilation options.

Interactions

The -fast macro expands into compilation options that may affect other specified

options. For example, in the following command, the expansion of the -fast macro

includes -xtarget=native which reverts -xarch to one of the 32-bit architecture

options.

Incorrect:

TABLE 3-23 -fast Expansion

Option SPARC IA

–dalign X -

–fns X -

–fsimple=2 X -

–ftrap=%none X X

–nofstore - X

–xlibmil X X

–xlibmopt X X

–xO5 X X

–xtarget=native X X

example% CC -xarch=v9 -fast test.cc
3-22 C++ User’s Guide • May 2000

Correct:

See the description for each option to determine possible interactions.

The code generation option, optimization level, and use of inline template files can

be overridden by subsequent options (see examples). The optimization level that

you specify overrides a previously set optimization level.

The –fast option includes –fns –ftrap=%none ; that is, this option turns off all

trapping.

Examples

The following compiler command results in an optimization level of –xO3.

The following compiler command results in an optimization level of –xO5.

Warnings

Code that is compiled with the -fast option is not portable. For example, using the

following command on an UltraSPARC-III system generates a binary that will not

execute on an UltraSPARC-II system.

Do not use this option for programs that depend on IEEE standard floating-point

arithmetic; different numerical results, premature program termination, or

unexpected SIGFPE signals can occur.

In previous SPARC releases, the -fast macro expanded to -fsimple=1 . Now it

expands to -fsimple=2 .

In previous releases, the -fast macro expanded to -xO4 . Now it expands to -xO5 .

example% CC -fast -xarch=v9 test.cc

example% CC –fast –xO3

example% CC -xO3 –fast

example% CC -fast test.cc
Chapter 3 C++ Compiler Options 3-23

Note – In previous SPARC releases, the –fast macro option included –fnonstd;
now it does not. Nonstandard floating-point mode is not initialized by –fast . See

the Numerical Computation Guide, ieee_sun (3M).

See also

-dalign , -fns , -fsimple , -ftrap=%none , -libmil , -nofstore , -xO5 ,

-xlibmopt , -xtarget=native

3.2.16 –features =a[,...a]

Enables/disables various C++ language features named in a comma-separated list.

Values

In both compatibility mode (-compat[=4]) and standard mode (the default mode),
a can have the following values.

TABLE 3-24 -features Options for Compatibility Mode and Standard Mode

Value of a Meaning

%all All the -features options that are valid for the specified

mode.

[no%]altspell [Do not] Recognize alternative token spellings (for example,

“and” for “&&”).

[no%]anachronisms [Do not] Allow anachronistic constructs. When disabled (that

is, -features=no%anachronisms), no anachronistic

constructs are allowed.

[no%]bool [Do not] Allow the bool type and literals. When enabled, the

macro _BOOL=1. When not enabled, the macro is not defined.

[no%]conststrings [Do not] Put literal strings in read-only memory.

[no%]except [Do not] Allow C++ exceptions. When C++ exceptions are

disabled (that is, -features=no%except), a throw-

specification on a function is accepted but ignored; the

compiler does not generate exception code. Note that the

keywords try , throw , and catch are always reserved.

[no%]export [Do not] Recognize the keyword export .

[no%]iddollar [Do not] Allow a $ as a non-initial identifier character.
3-24 C++ User’s Guide • May 2000

In standard mode (the default mode), a can have the following additional values.

In compatibility mode (-compat[=4]), a can have the following additional values.

Note – The [no%]castop setting is allowed for compatibility with makefiles

written for the C++ 4.2 compiler, but has no affect on the 5.0 and Sun WorkShop 6

C++ compilers. The new style casts (const_cast , dynamic_cast ,

reinterpret_cast , and static_cast) are always recognized and cannot be

disabled.

[no%]localfor [Do not] Use new local-scope rules for the for statement.

[no%]mutable [Do not] Recognize the keyword mutable .

%none Turn off all the features that can be turned off for the

specified mode.

TABLE 3-25 -features Options for Standard Mode Only

Value of a Meaning

[no%]strictdestrorder [Do not] Follow the requirements specified by the C++

standard regarding the order of the destruction of objects

with static storage duration.

TABLE 3-26 -features Options for Compatibility Mode Only

Value of a Meaning

[no%]arraynew [Do not] Recognize array forms of operator new and

operator delete (for example,

operator ne w [] (void*)). When enabled, the macro

__ARRAYNEW=1. When not enabled, the macro is not defined.

[no%]explicit [Do not] Recognize the keyword explicit .

[no%]namespace [Do not] Recognize the keywords namespace and using .

[no%]rtti [Do not] Allow runtime type information (RTTI). RTTI must

be enabled to use the dynamic_cast<> and typeid
operators. For more information see “Runtime Type

Identification” in the C++ Programming Guide.

TABLE 3-24 -features Options for Compatibility Mode and Standard Mode (Continued)

Value of a Meaning
Chapter 3 C++ Compiler Options 3-25

Defaults

If –features is not specified, the following is assumed:

■ Compatibility mode (-compat[=4])

■ Standard mode (the default mode)

See also

C++ Migration Guide

3.2.17 –flags

Same as –xhelp=flags .

3.2.18 –fnonstd

IA: Causes nonstandard initialization of floating–point hardware.

In addition, the –fnonstd option causes hardware traps to be enabled for floating-

point overflow, division by zero, and invalid operations exceptions. These results are

converted into SIGFPE signals; if the program has no SIGFPE handler, it terminates

with a memory dump (unless you limit the core dump size to 0).

Defaults

If –fnonstd is not specified, IEEE 754 floating-point arithmetic exceptions do not

abort the program, and underflows are gradual.

See also

–fns , –ftrap=common , Numerical Computation Guide.

–features=%none,anachronisms,except

–features=%all,no%iddollar
3-26 C++ User’s Guide • May 2000

3.2.19 –fns[=(yes|no)]

SPARC: Enables/disables the SPARC nonstandard floating-point mode.

-fns=yes (or -fns) causes the nonstandard floating point mode to be enabled

when a program begins execution.

This option provides a way of toggling the use of nonstandard or standard floating-

point mode following some other macro option that includes –fns , such as –fast .

(See “Examples.”)

On some SPARC devices, the nonstandard floating-point mode disables “gradual

underflow,” causing tiny results to be flushed to zero rather than to produce

subnormal numbers. It also causes subnormal operands to be silently replaced by

zero.

On those SPARC devices that do not support gradual underflow and subnormal

numbers in hardware, -fns=yes (or -fns) can significantly improve the

performance of some programs.

Values

The -fns option can have the following values.

Defaults

If -fns is not specified, the nonstandard floating point mode is not enabled

automatically. Standard IEEE 754 floating-point computation takes place—that is,

underflows are gradual.

If only –fns is specified, –fns=yes is assumed.

Value Meaning

yes Selects nonstandard floating-point mode

no Selects standard floating-point mode
Chapter 3 C++ Compiler Options 3-27

Examples

In the following example, -fast expands to several options, one of which is

-fns=yes which selects nonstandard floating-point mode. The subsequent

-fns=no option overrides the initial setting and selects floating-point mode.

Warnings

When nonstandard mode is enabled, floating-point arithmetic can produce results

that do not conform to the requirements of the IEEE 754 standard.

If you compile one routine with the -fns option, then compile all routines of the

program with the –fns option; otherwise, you might get unexpected results.

This option is effective only on SPARC devices, and only if used when compiling the

main program. On IA devices, the option is ignored.

Use of the –fns=yes (or -fns) option might generate the following message if your

program experiences a floating-point error normally managed by the IEEE floating-

point trap handlers:

See also

Numerical Computation Guide, ieee_sun (3M)

3.2.20 –fprecision =p
IA: Sets the non-default floating-point precision mode.

The –fprecision option sets the rounding precision mode bits in the Floating

Point Control Word. These bits control the precision to which the results of basic

arithmetic operations (add, subtract, multiply, divide, and square root) are rounded.

example% CC foo.cc -fast -fns=no
3-28 C++ User’s Guide • May 2000

Values

p must be one of the following values.

If p is single or double , this option causes the rounding precision mode to be set

to single or double precision, respectively, when a program begins execution. If p
is extended or the –fprecision option is not used, the rounding precision mode

remains at the extended precision.

The single precision rounding mode causes results to be rounded to 24 significant

bits, and double precision rounding mode causes results to be rounded to 53

significant bits. In the default extended precision mode, results are rounded to 64

significant bits. This mode controls only the precision to which results in registers

are rounded, and it does not affect the range. All results in register are rounded

using the full range of the extended double format. Results that are stored in

memory are rounded to both the range and precision of the destination format,

however.

The nominal precision of the float type is single . The nominal precision of the

long double type is extended .

Defaults

When the –fprecision option is not specified, the rounding precision mode

defaults to extended .

Warnings

This option is effective only on IA devices and only if used when compiling the

main program. On SPARC devices, this option is ignored.

Value of p Meaning

single Rounds to an IEEE single-precision value.

double Rounds to an IEEE double-precision value.

extended Rounds to the maximum precision available.
Chapter 3 C++ Compiler Options 3-29

3.2.21 –fround= r
Sets the IEEE rounding mode in effect at startup.

This option sets the IEEE 754 rounding mode that:

■ Can be used by the compiler in evaluating constant expressions

■ Is established at runtime during the program initialization

The meanings are the same as those for the ieee_flags subroutine, which can be

used to change the mode at runtime.

Values

r must be one of the following values.

Defaults

When the –fround option is not specified, the rounding mode defaults to

-fround=nearest.

Warnings

If you compile one routine with –fround= r, compile all routines of the program

with the same –fround= r option; otherwise, you might get unexpected results.

This option is effective only if used when compiling the main program.

3.2.22 –fsimple [=n]

Selects floating-point optimization preferences.

This option allows the optimizer to make simplifying assumptions concerning

floating-point arithmetic.

Value of r Meaning

nearest Rounds towards the nearest number and breaks ties to even numbers.

tozero Rounds to zero.

negative Rounds to negative infinity.

positive Rounds to positive infinity.
3-30 C++ User’s Guide • May 2000

Values

If n is present, it must be 0, 1, or 2.

Defaults

If –fsimple is not designated, the compiler uses -fsimple=0.

If -fsimple is designated but no value is given for n, the compiler uses

-fsimple=1.

Interactions

-fast implies –fsimple=2 .

Warnings

This option can break IEEE 754 conformance.

Value of n Meaning

0 Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.

1 Allow conservative simplification. The resulting code does not strictly

conform to IEEE 754, but numeric results of most programs are unchanged.

With -fsimple=1 , the optimizer can assume the following:

• IEEE754 default rounding/trapping modes do not change after process

initialization.

• Computation producing no visible result other than potential floating-point

exceptions can be deleted.

• Computation with infinities or NaNs as operands needs to propagate NaNs

to their results; that is, x*0 can be replaced by 0.

• Computations do not depend on sign of zero.

With -fsimple=1 , the optimizer is not allowed to optimize completely

without regard to roundoff or exceptions. In particular, a floating-point

computation cannot be replaced by one that produces different results when

rounding modes are held constant at runtime.

2 Permit aggressive floating-point optimization that can cause many programs

to produce different numeric results due to changes in rounding. For example,

permit the optimizer to replace all computations of x/y in a given loop with

x*z , where x/y is guaranteed to be evaluated at least once in the loop z=1/y ,

and the values of y and z are known to have constant values during execution

of the loop.
Chapter 3 C++ Compiler Options 3-31

See also

-fast

3.2.23 –fstore

IA: This option causes the compiler to convert the value of a floating-point

expression or function to the type on the left side of an assignment rather than leave

the value in a register when the following is true:

■ The expression or function is assigned to a variable.

■ The expression is cast to a shorter floating-point type.

To turn off this option, use the –nofstore option.

Warnings

Due to roundoffs and truncation, the results can be different from those that are

generated from the register values.

See also

–nofstore

3.2.24 –ftrap= t[,...t]
Sets the IEEE trapping mode in effect at startup.

This option sets the IEEE 754 trapping modes that are established at program

initialization, but does not install a SIGFPE handler. You can use ieee_handler to

simultaneously enable traps and install a SIGFPE handler. When more than one

value is used, the list is processed sequentially from left to right.
3-32 C++ User’s Guide • May 2000

Values

t can be one of the following values.

Note that the [no%] form of the option is used only to modify the meaning of the

%all and commonvalues, and must be used with one of these values, as shown in

the example. The [no%] form of the option by itself does not explicitly cause a

particular trap to be disabled.

If you want to enable the IEEE traps, -ftrap=common is the recommended setting.

Defaults

If –ftrap is not specified, the –ftrap=%none value is assumed. (Traps are not

enabled automatically.)

Examples

When one or more terms are given, the list is processed sequentially from left to

right, thus –ftrap=%all,no%inexact means to set all traps except inexact.

Interactions

The mode can be changed at runtime with ieee_handler (3M).

Value of t Meaning

[no%]division [Do not] Trap on division by zero.

[no%]inexact [Do not] Trap on inexact result.

[no%]invalid [Do not] Trap on invalid operation.

[no%]overflow [Do not] Trap on overflow.

[no%]underflow [Do not] Trap on underflow.

%all Trap on all of the above.

%none Trap on none of the above.

common Trap on invalid, division by zero, and overflow.
Chapter 3 C++ Compiler Options 3-33

Warnings

If you compile one routine with –ftrap= t, compile all routines of the program with

the same -ftrap= t option; otherwise, you might get unexpected results.

Use the -ftrap=inexact trap with caution. Use of –ftrap=inexact results in the

trap being issued whenever a floating-point value cannot be represented exactly. For

example, the following statement generates this condition:

This option is effective only if used when compiling the main program. Be cautious

when using this option. If you wish to enable the IEEE traps, use –ftrap=common .

See also

ieee_handler (3M) man page

3.2.25 –G

Build a dynamic shared library instead of an executable file.

All source files specified in the command line are compiled with -Kpic by default.

When building a shared library that uses templates, it is necessary in most cases to

include in the shared library those template functions that are instantiated in the

template data base. Using this option automatically adds those templates to the

shared library as needed.

Interactions

The following options are passed to ld if –c (the compile-only option) is not

specified:

■ –dy
■ –G
■ –R

Warnings

Do not use ld -G to build shared libraries; use CC -G. The CCdriver automatically

passes several options to ld that are needed for C++.

x = 1.0 / 3.0;
3-34 C++ User’s Guide • May 2000

See also

-dy, -Kpic, -xcode=pic13, -xildoff, –ztext, ld(1) man page,

C++ Library Reference.

3.2.26 –g

Instructs both the compiler and the linker to prepare the file or program for

debugging.

The tasks include:

■ Producing detailed information, known as stabs, in the symbol table of the object

files and the executable

■ Producing some “helper functions,” which the debugger can call to implement

some of its features

■ Disabling the inline generation of functions

■ Disabling certain levels of optimization

Interactions

If you use this option with –xOlevel, you will get limited debugging information. For

more information, see Section 3.2.117 “–xOlevel” on page 3-79.

If you use this option and the optimization level is -xO3 or lower, the compiler

provides best-effort symbolic information with almost full optimization. Tail-call

optimization and back-end inlining are disabled.

If you use this option and the optimization level is -xO4 or higher, the compiler

provides best-effort symbolic information with full optimization.

When you specify this option, the +d option is specified automatically.

This option makes –xildon the default incremental linker option in order to speed

up the compile-edit-debug cycle.

This option invokes ild in place of ld unless any of the following are true:

■ The –G option is present

■ The –xildoff option is present

■ Any source files are named on the command line
Chapter 3 C++ Compiler Options 3-35

See also

+d, –g0, –xildoff, –xildon, –xs, ld (1) man page, Debugging a Program
With dbx (for details about stabs)

3.2.27 –g0

Compiles and links for debugging, but does not disable inlining.

This option is the same as –g , except that +d is disabled.

See also

+d, –g, –xildon, Debugging a Program With dbx

3.2.28 –H

Prints path names of included files.

On the standard error output (stderr) , this option prints, one per line, the path

name of each #include file contained in the current compilation.

3.2.29 –help

Same as -xhelp=flags .

3.2.30 –hname
Assigns the name name to the generated dynamic shared library. This is a loader

option, passed to ld . In general, the name after -h should be exactly the same as the

one after –o . A space between the –h and name is optional.

The compile-time loader assigns the specified name to the shared dynamic library

you are creating. It records the name in the library file as the intrinsic name of the

library. If there is no –hname option, then no intrinsic name is recorded in the library

file.
3-36 C++ User’s Guide • May 2000

Every executable file has a list of shared library files that are needed. When the

runtime linker links the library into an executable file, the linker copies the intrinsic

name from the library into that list of needed shared library files. If there is no

intrinsic name of a shared library, then the linker copies the path of the shared

library file instead.

Examples

3.2.31 –i

Tells the linker, ld, to ignore any LD_LIBRARY_PATHsetting.

3.2.32 –I pathname
Add pathname to the #include file search path.

This option adds pathname to the list of directories that are searched for #include
files with relative file names (those that do not begin with a slash).

The preprocessor searches for #include files in the following order:

1. For include statements of the form #include "foo.h" (where quotation marks

are used), the directory containing the source file is searched

2. For include statements of the form #include <foo.h> (where angle brackets

are used), the directory containing the source file is not searched

3. The directories named with -I options, if any

4. The directories for compiler-provided C++ header files, ANSI C header files, and

special-purpose files

5. The /usr/include directory

Note – The standard headers are treated differently. For more information, see

Section 5.7.4 “Standard Header Implementation” on page 5-13.

example% CC -G -o libx.so.1 -h libx.so.1 a.o b.o c.o
Chapter 3 C++ Compiler Options 3-37

Interactions

If –pti path is not used, the compiler looks for template files in –I pathname.

Use –I pathname instead of –pti path.

3.2.33 –instances =a
Controls the placement and linkage of template instances.

Values

a must be one of the following values.

Defaults

If –instances is not specified, –instances=extern is assumed.

See also

Chapter 4

Value of a Meaning

explicit Places explicitly instantiated instances into the current object file and

gives them global linkage. Does not generate any other needed

instances.

extern Places all needed instances into the template repository and gives

them global linkage. (If an instance in the repository is out of date, it

is reinstantiated.)

global Places all needed instances into the current object file and gives them

global linkage.

semiexplicit Places explicitly instantiated instances into the current object file and

gives them global linkage. Places all instances needed by the explicit

instances into the current object file and gives them static linkage.

Does not generate any other needed instances.

static Places all needed instances into the current object file and gives them

static linkage.
3-38 C++ User’s Guide • May 2000

3.2.34 –keeptmp

Retains temporary files created during compilation.

Along with –verbose=diags , this option is useful for debugging.

See also

–v, –verbose

3.2.35 –KPIC

SPARC: Same as –xcode=pic32.

IA: Same as –Kpic .

3.2.36 –Kpic

SPARC: Same as –xcode=pic13.

IA: Compiles with position-independent code.

Use this option to compile source files when building a shared library. Each

reference to a global datum is generated as a dereference of a pointer in the global

offset table. Each function call is generated in pc-relative addressing mode through a

procedure linkage table.

3.2.37 –Ldir
Adds dir to list of directories to search for libraries.

This option is passed to ld . The directory dir is searched before compiler-provided

directories.
Chapter 3 C++ Compiler Options 3-39

3.2.38 –l lib
Adds library lib lib.a or lib lib.so to the linker’s list of search libraries.

This option is passed to ld. Normal libraries have names such as lib lib.a or

lib lib.so , where the lib and .a or .so parts are required. You should specify the

lib part with this option. Put as many libraries as you want on a single command

line; they are searched in the order specified with –Ldir.

Use this option after your object file name.

Interactions

It is always safer to put –l x after the list of sources and objects to insure that libraries

are searched in the correct order.

Warnings

To ensure proper library linking order, you must use -mt , rather than -lthread , to

link with libthread .

If you are using POSIX threads, you must link with the -mt and -lpthread
options. The -mt option is necessary because libCrun (standard mode) and libC
(compatibility mode) need libthread for a multithreaded application.

See also

–Ldir,-mt, C++ Library Reference, and Tools.h++ Class Library Reference

3.2.39 –libmieee

Same as –xlibmieee .

3.2.40 –libmil

Same as –xlibmil .
3-40 C++ User’s Guide • May 2000

3.2.41 –library= l[,...l]
Incorporates specified CC-provided libraries into compilation and linking.

Values

For compatibility mode (–compat[=4]), l must be one of the following values.

For standard mode (the default mode), l must be one of the following:

TABLE 3-27 Compatibility Mode -library Options

Value of l Meaning

[no%]rwtools7 [Do not] Use Tools.h++ version 7.

[no%]rwtools7_dbg [Do not] Use debug-enabled Tools.h++ version 7.

[no%]complex [Do not] Use libcomplex for complex arithmetic.

[no%]libC [Do not] Use libC , the C++ support library.

[no%]gc [Do not] Use libgc , garbage collection.

[no%]gc_dbg [Do not] Use debug-enabled libgc , garbage collection.

%all -library=%all is the same as specifying

-library=%none,rwtools7,complex,gc,libC.

%none Use no C++ libraries.

TABLE 3-28 Standard Mode -library Options

Value of l Meaning

[no%]rwtools7 [Do not] Use Tools.h++ version 7.

[no%]rwtools7_dbg [Do not] Use debug-enabled Tools.h++ version 7.

[no%]iostream [Do not] Use libiostream , the classic iostreams library.

[no%]Cstd [Do not] Use libCstd , the C++ standard library. [Do not]

Include the compiler-provided Cstd header files.

[no%]Crun [Do not] Use libCrun , the C++ runtime library.

[no%]gc [Do not] Use libgc , garbage collection.
Chapter 3 C++ Compiler Options 3-41

Defaults
■ Compatibility mode (–compat[=4])

■ If –library is not specified, -library=%none,libC is assumed.

■ The libC library always is included unless it is specifically excluded using

-library=%none or -library=no%libC .

■ Standard mode (the default mode)

■ If –library is not specified, -library=%none,Cstd ,Crun is assumed.

■ The libCstd library always is included unless it is specifically excluded using

-library=%none or -library=no%Cstd .

■ The libCrun library always is included unless it is specifically excluded using

-library=no%Crun .

Examples

To link in standard mode without any C++ libraries (except libCrun), use:

To include the Rogue Wave tools.h++ version 7 library and the iostream library

in standard mode:

Interactions

If a library is specified with -library , the proper –I paths are set during

compilation. The proper –L,–Y P, –R paths and –l options are set during linking.

[no%]gc_dbg [Do not] Use debug-enabled libgc , garbage collection.

%all -library=%all is the same as specifying

-library=%none ,rwtools7 ,gc,iostream ,Cstd,Crun

%none Use no C++ libraries, except for libCrun.

example% CC -library=%none

example% CC –library=rwtools7,iostream

TABLE 3-28 Standard Mode -library Options (Continued)

Value of l Meaning
3-42 C++ User’s Guide • May 2000

Use of the -library option ensures that the -l options for the specified libraries

are emitted in the right order. For example, the -l options are passed to ld in the

order -lrwtool -liostream for both -library=rwtools7,iostream and

-library=iostream,rwtools7 .

The specified libraries are linked before the system support libraries are linked.

Only one Rogue Wave tools library can be used at a time.

The Rogue Wave Tools.h ++ version 7 library is built with classic iostreams.

Therefore, when you include the Rogue Wave tools library in standard mode, you

must also include libiostream . For more information, see the C++ Migration
Guide.

If you include both libCstd and libiostream , you must be careful to not use the

old and new forms of iostreams (for example, cout and std::cout) within a

program to access the same file. Mixing standard iostreams and classic iostreams in

the same program is likely to cause problems if the same file is accessed from both

classic and standard iostream code.

Programs linking neither libC nor libCrun might not use all features of the C++

language.

If -xnolib is specified, -library is ignored.

Warnings

The set of libraries is not stable and might change from release to release.

See also

–I , –l , –R, –staticlib , –xnolib , Section 2.5.3.3 “Using make With Standard

Library Header Files,” C++ Library Reference, Tools.h++ User’s Guide, Tools.h++ Class
Library Reference, Standard C++ Class Library Reference.

For information on using the -library=no%cstd option to enable use of your own

C++ standard library, see Section 5.7 “Replacing the C++ Standard Library” on

page 5-11.

3.2.42 –migration

Explains where to get information about migrating source code that was built for

earlier versions of the compiler.
Chapter 3 C++ Compiler Options 3-43

3.2.43 –misalign

SPARC: Permits misaligned data, which would otherwise generate an error, in

memory. This is shown in the following code:

This option informs the compiler that some data in your program is not properly

aligned. Thus, very conservative loads and stores must be used for any data that

might be misaligned, that is, one byte at a time. Using this option may cause

significant degradation in runtime performance. The amount of degradation is

application dependent.

Interactions

When using #pragma pack on a SPARC platform to pack denser than the type’s

default alignment, the -misalign option must be specified for both the compilation

and the linking of the application.

Misaligned data is handled by a trap mechanism that is provided by ld at runtime.

If an optimization flag (-x0[1|2|3|4|5] or an equivalent flag) is used with the

-misalign option, the additional instructions required for alignment of misaligned

data are inserted into the resulting object file and will not generate runtime

misalignment traps.

Warnings

If possible, do not link aligned and misaligned parts of the program.

If compilation and linking are performed in separate steps, the –misalign option

must appear in both the compile and link commands.

char b[100];
int f(int * ar) {
return *(int *) (b +2) + *ar;
}

3-44 C++ User’s Guide • May 2000

3.2.44 –mt

Compiles and links for multithreaded code.

This option:

■ Passes -D_REENTRANTto the preprocessor

■ Passes -lthread in the correct order to ld

■ Ensures that, for standard mode (the default mode), libthread is linked before

libCrun

■ Ensures that, for compatibility mode (-compat), libthread is linked before

libC

The -mt option is required if the application or libraries are multithreaded.

Warnings

To ensure proper library linking order, you must use this option, rather than

-lthread , to link with libthread .

If you are using POSIX threads, you must link with the -mt and -lpthread
options. The -mt option is necessary because libCrun (standard mode) and libC
(compatibility mode) need libthread for a multithreaded application.

If you compile and link in separate steps and you compile with -mt , be sure to link

with -mt , as shown in the following example, or you might get unexpected results.

See also

–xnolib , C++ Programming Guide, Multithreaded Programming Guide, Linker and
Libraries Guide, C++ Library Reference

3.2.45 –native

Same as –xtarget=native .

example% CC -c -mt myprog.cc
example% CC -mt myprog.o
Chapter 3 C++ Compiler Options 3-45

3.2.46 –noex

Same as –features=no%except .

3.2.47 –nofstore

IA:

This option does not force the value of a floating-point expression or function to the

type on the left side of an assignment, but leaves the value in a register when either

of the following are true:

■ The expression or function is assigned to a variable

or

■ The expression or function is cast to a shorter floating-point type

See also

–fstore

3.2.48 –nolib

Same as –xnolib .

3.2.49 –nolibmil

Same as –xnolibmil .

3.2.50 –noqueue

Disables license queueing.

If no license is available, this option returns without queuing your request and

without compiling. A nonzero status is returned for testing makefiles.
3-46 C++ User’s Guide • May 2000

3.2.51 –norunpath

Does not build a runtime search path for shared libraries into the executable.

If an executable file uses shared libraries, then the compiler normally builds in a

path that points the runtime linker to those shared libraries. To do so, the compiler

passes the –R option to ld . The path depends on the directory where you have

installed the compiler.

This option is helpful if you have installed the compiler in some nonstandard

location, and you ship an executable file to your customers. Your customers do not

have to work with that nonstandard location.

Interactions

If you use any shared libraries under the compiler installed area (the default location

is /opt/SUNWspro/lib) and you also use –norunpath , then you should either use

the –R option at link time or set the environment variable LD_LIBRARY_PATHat

runtime to specify the location of the shared libraries. Doing so allows the runtime

linker to find the shared libraries.

3.2.52 –O

Same as –xO2.

3.2.53 –Olevel
Same as –xOlevel.
Chapter 3 C++ Compiler Options 3-47

3.2.54 –o filename
Sets the name of the output file or the executable file to filename.

Interactions

When the compiler must store template instances, it stores them in the template

repository in the output file’s directory. For example, the following command writes

the object file to ./sub/a.o and writes template instances into the repository

contained within ./sub/SunWS_cache .

The compiler reads from the template repositories corresponding to the object files

that it reads. For example, the following command reads from

./sub1/SunWS_Cache and ./sub2/SunWS_cache , and, if necessary, writes to

./SunWS_cache .

For more information, see Section 4.4 “The Template Repository.”

Warnings

The filename must have the appropriate suffix for the type of file to be produced by

the compilation. It cannot be the same file as the source file, since the CCdriver does

not overwrite the source file.

3.2.55 +p

Ignore non-standard preprocessor asserts.

Defaults

If +p is not present, the compiler recognizes non-standard preprocessor asserts.

example% CC -o sub/a.o a.cc

example% CC sub1/a.o sub2/b.o
3-48 C++ User’s Guide • May 2000

Interactions

If +p is used, the following macros are not defined:

■ sun
■ unix
■ sparc
■ i386

3.2.56 –P

Only preprocesses source; does not compile. (Outputs a file with a .i suffix)

This option does not include preprocessor-type line number information in the

output.

See also

–E

3.2.57 –p

Prepares object code to collect data for profiling with prof .

This option invokes a runtime recording mechanism that produces a mon.out file at

normal termination.

See also

–xpg , -xprofile , analyzer (1) man page, Analyzing Program Performance With Sun
WorkShop.

3.2.58 –pentium

IA: Replace with –xtarget=pentium .
Chapter 3 C++ Compiler Options 3-49

3.2.59 –pg

Same as –xpg .

3.2.60 -PIC

SPARC: Same as –xcode=pic32.

IA: Same as –Kpic .

3.2.61 –pic

SPARC: Same as –xcode=pic13.

IA: Same as -Kpic .

3.2.62 –pta

Same as –template=wholeclass .

3.2.63 –pti path
Specifies an additional search directory for template source.

This option is an alternative to the normal search path set by –I pathname. If the

-pti path option is used, the compiler looks for template definition files on this path

and ignores the –I pathname option.

Using the –I pathname option instead of –pti path produces less confusion.

See also

–I pathname

3.2.64 –pto

Same as –instances=static .
3-50 C++ User’s Guide • May 2000

3.2.65 –ptr

This option is obsolete and is ignored by the compiler.

Warnings

Even though the -ptr option is ignored, you should remove -ptr from all

compilation commands because, in a later release, it may be reused with a different

behavior.

See also

For information about repository directories, see Section 4.4 “The Template

Repository.”

3.2.66 –ptv

Same as –verbose=template.

3.2.67 –Qoption phase option[,...option]

Passes option to the compilation phase.

To pass multiple options, specify them in order as a comma-separated list.

Values

phase must have one of the following values.

SPARC IA

ccfe ccfe

iropt cg386

cg codegen

CClink CClink

ld ld
Chapter 3 C++ Compiler Options 3-51

Examples

In the following command line, when ld is invoked by the CCdriver, –Qoption
passes the –i and –m options to ld :

Warnings

Be careful to avoid unintended effects. For example,

is interpreted as

The correct usage is

3.2.68 –qoption phase option
Same as –Qoption .

3.2.69 –qp

Same as –p.

example% CC -Qoption ld -i,-m test.c

-Qoption ccfe -features=bool,castop

-Qoption ccfe -features=bool -Qoption ccfe castop

-Qoption ccfe -features=bool,-features=castop
3-52 C++ User’s Guide • May 2000

3.2.70 –Qproduce sourcetype
Causes the CCdriver to produce output of the type sourcetype.

Sourcetype suffixes are defined below.

3.2.71 –qproduce sourcetype
Same as –Qproduce .

3.2.72 –Rpathname[:...pathname]
Builds dynamic library search paths into the executable file.

You can have more than one pathname, such as -R/path1:/path2 .

This option is passed to ld .

Defaults

If the -R option is not present, the library search path that is recorded in the output

object and passed to the runtime linker depends upon the target architecture

instruction specified by the -xarch option (when -xarch is not present,

-xarch=generic is assumed).

In a default installation, install-directory is /opt .

Suffix Meaning

.i Preprocessed C++ source from ccfe

.o Object file from cg , the code generator

.s Assembler source from cg

-xarch Value Default Library Search Path

v9 , v9a , or v9b install_directory/SUNWspro/lib/v9

All other values install_directory/SUNWspro/lib
Chapter 3 C++ Compiler Options 3-53

Interactions

If the LD_RUN_PATHenvironment variable is defined and the –R option is specified,

then the path from –R is scanned and the path from LD_RUN_PATHis ignored.

See also

–norunpath, Linker and Libraries Guide

3.2.73 –readme

Same as -xhelp=readme .

3.2.74 –S

Compiles and generates only assembly code.

This option causes the CCdriver to compile the program and output an assembly

source file, without assembling the program. The assembly source file is named with

a .s suffix.

3.2.75 –s

Strips the symbol table from the executable file.

This option removes all symbol information from output executable files. This

option is passed to ld .

3.2.76 –sb

Replace with –xsb .

3.2.77 –sbfast

Same as –xsbfast .
3-54 C++ User’s Guide • May 2000

3.2.78 –staticlib =l[,...l]
Indicates which C++ libraries specified in the -library option (including its

defaults) are to be linked statically.

Values

l must be one of the following values.

Defaults

If –staticlib is not specified, –staticlib=%none is assumed.

Examples

The following command line links libCrun statically because Crun is a default

value for –library :

However, the following command line does not link libgc because libgc is not

linked unless explicitly specified with the -library option:

To link libgc statically, use the following command:

Value of l Meaning

[no%] library See –library for the allowable values for library.

%all All libraries specified in the -library option are linked

statically.

%none Link no libraries specified in the –library option,

statically.

example% CC –staticlib=Crun (correct)

example% CC –staticlib=gc (incorrect)

example% CC -library=gc -staticlib=gc (correct)
Chapter 3 C++ Compiler Options 3-55

With the following command, the librwtool library is linked dynamically. Because

librwtool is not a default library and is not selected using the -library option,

-staticlib has no effect:

This command links the librwtool library statically:

Interactions

The -staticlib option only works for C++ libraries that are selected explicitly

with the -library option or that are selected implicitly by default. In compatibility

mode (-compat=[4]), libC is selected by default. In standard mode (the default

mode), Cstd and Crun are selected by default.

When using -xarch=v9 , -xarch=v9a , or -xarch=v9b , some C++ libraries are not

available as static libraries.

Warnings

The set of allowable values for library is not stable and might change from release to

release.

See also

-library , Section 5.5 “Statically Linking Standard Libraries”

3.2.79 –temp= dir
Defines directory for temporary files.

This option sets the name of the directory for temporary files, generated during the

compilation process, to dir.

example% CC -lrwtool -library=iostream \
-staticlib=rwtools7 (incorrect)

example% CC -library=rwtools7,iostream -staticlib=rwtools7 (correct)
3-56 C++ User’s Guide • May 2000

See also

–keeptmp

3.2.80 –template =w[,...w]

Enables/disables various template options.

Values

w must be one of the following values.

Defaults

If the -template option is not specified, -template=no%wholeclass,extdef is

assumed.

3.2.81 –time

Same as –xtime.

3.2.82 –Uname
Deletes initial definition of the preprocessor symbol name.

This option removes any initial definition of the macro symbol name created by -D
on the command line including those implicitly placed there by the CCdriver. It has

no effect on any other predefined macros, nor any macro definitions in source files.

You can specify multiple -U options on the command line.

Value of w Meaning

[no%]wholeclass [Do not] Instantiate a whole template class, rather than only those

functions that are used. You must reference at least one member of

the class; otherwise, the compiler does not instantiate any members

for the class.

[no%]extdef [Do not] Search for template definitions in separate source files.
Chapter 3 C++ Compiler Options 3-57

Interactions

All -U options are processed after any -D options that are present.

3.2.83 –unroll= n
Same as –xunroll= n.

3.2.84 –V

Same as –verbose=version.

3.2.85 –v

Same as –verbose=diags .

3.2.86 –vdelx

Compatibility mode only (–compat[=4]):

For expressions using delete[] , this option generates a call to the runtime library

function _vector_deletex_ instead of generating a call to _vector_delete_ .

The function _vector_delete_ takes two arguments: the pointer to be deleted and

the size of each array element.

The function _vector_deletex_ behaves the same as _vector_delete_ except

that it takes a third argument: the address of the destructor for the class. This third

argument is not used by the function, but is provided to be used by third-party

vendors.

Default

The compiler generates a call to _vector_delete_ for expressions using

delete[] .
3-58 C++ User’s Guide • May 2000

Warnings

This is an obsolete option that will be removed in future releases. Don’t use this

option unless you have bought some software from a third-party vendor and the

vendor recommends using this option.

3.2.87 –verbose =v[,...v]

Controls compiler verbosity.

Values

v must be one of the following values.

You can specify more than one option, for example, –verbose=template ,diags .

Defaults

If –verbose is not specified, –verbose=%none is assumed.

3.2.88 +w

Identifies code that might have unintended consequences.

This option generates additional warnings about questionable constructs that are:

Value of v Meaning

[no%]diags [Do not] Print the command line for each compilation pass.

[no%]template [Do not] Turn on the template instantiation verbose mode

(sometimes called the “verify” mode). The verbose mode displays

each phase of instantiation as it occurs during compilation.

[no%]version [Do not] Direct the CCdriver to print the names and version

numbers of the programs it invokes.

%all Invokes all of the above.

%none -verbose=%none is the same as

-verbose=no%template,no%diags,no%version .
Chapter 3 C++ Compiler Options 3-59

■ Nonportable

■ Likely to be mistakes

■ Inefficient

Defaults

If +w is not specified, the compiler warns about constructs that are almost certainly

problems.

See also

–w, +w2

3.2.89 +w2

Emits all the warnings emitted by +w plus warnings about technical violations that

are probably harmless, but that might reduce the maximum portability of your

program.

Warnings

Some Solaris and C++ standard header files result in warnings when compiled with

+w2.

See also

+w

3.2.90 –w

Suppresses most warning messages.

This option causes the compiler not to print warning messages. However, some

warnings, particularly warnings regarding serious anachronisms, cannot be

suppressed.
3-60 C++ User’s Guide • May 2000

See also

+w

3.2.91 –xa

Generates code for profiling.

If set at compile time, the TCOVDIR environment variable specifies the directory

where the coverage (.d) files are located. If this variable is not set, then the coverage

(.d) files remain in the same directory as the source files.

Use this option only for backward compatibility with old coverage files.

Interactions

The –xprofile=tcov option and the –xa option are compatible in a single

executable. That is, you can link a program that contains some files that have been

compiled with –xprofile=tcov , and others that have been compiled with –xa .

You cannot compile a single file with both options.

The –xa option is incompatible with –g .

Warnings

If you compile and link in separate steps and you compile with -xa , be sure to link

with –xa , or you might get unexpected results.

See also

–xprofile=tcov , tcov (1) man page, Analyzing Program Performance With Sun
WorkShop

3.2.92 –xar

Creates archive libraries.

When building a C++ archive that uses templates, it is necessary in most cases to

include in the archive those template functions that are instantiated in the template

database. Using this option automatically adds those templates to the archive as

needed.
Chapter 3 C++ Compiler Options 3-61

Examples

The following command line archives the template functions contained in the library

and object files.

Warnings

Do not add .o files from the template database on the command line.

Do not use the ar command directly for building archives. Use CC –xar to ensure

that template instantiations are automatically included in the archive.

See also

Chapter 6

3.2.93 –xarch= isa
Specifies the target instruction set architecture (ISA).

This option limits the code generated by the compiler to the instructions of the

specified instruction set architecture by allowing only the specified set of

instructions. This option does not guarantee use of any target–specific instructions.

Values

For SPARC platforms:

TABLE 3-29 gives the details for each of the -xarch keywords on SPARC platforms.

example% CC -xar -o libmain.a a.o b.o c.o

TABLE 3-29 -xarch Values for SPARC Platforms

Value of isa Meaning

generic Compile for good performance on most systems.
This is the default. This option uses the best instruction set for good

performance on most processors without major performance degradation on

any of them. With each new release, the definition of “best” instruction set may

be adjusted, if appropriate.
3-62 C++ User’s Guide • May 2000

native Compile for good performance on this system.
This is the default for the -fast option. The compiler chooses the appropriate

setting for the current system processor it is running on.

v7 Compile for the SPARC-V7 ISA.
Enables the compiler to generate code for good performance on the V7 ISA.

This is equivalent to using the best instruction set for good performance on the

V8 ISA, but without integer mul and div instructions, and the fsmuld
instruction.

Examples: SPARCstation 1, SPARCstation 2

v8a Compile for the V8a version of the SPARC-V8 ISA.
By definition, V8a means the V8 ISA, but without the fsmuld instruction.

This option enables the compiler to generate code for good performance on the

V8a ISA.

Example: Any system based on the microSPARC I chip architecture

v8 Compile for the SPARC-V8 ISA.
Enables the compiler to generate code for good performance on the V8

architecture.

Example: SPARCstation 10

v8plus Compile for the V8plus version of the SPARC-V9 ISA.
By definition, V8plus means the V9 ISA, but limited to the 32–bit subset defined

by the V8plus ISA specification, without the Visual Instruction Set (VIS), and

without other implementation-specific ISA extensions.

• This option enables the compiler to generate code for good performance on

the V8plus ISA.

• The resulting object code is in SPARC-V8+ ELF32 format and only executes in

a Solaris UltraSPARC environment—it does not run on a V7 or V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusa Compile for the V8plusa version of the SPARC-V9 ISA.
By definition, V8plusa means the V8plus architecture, plus the Visual

Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.

• This option enables the compiler to generate code for good performance on

the UltraSPARC architecture, but limited to the 32–bit subset defined by the

V8plus specification.

• The resulting object code is in SPARC-V8+ ELF32 format and only executes in

a Solaris UltraSPARC environment—it does not run on a V7 or V8 processor.

Example: Any system based on the UltraSPARC chip architecture

TABLE 3-29 -xarch Values for SPARC Platforms (Continued)

Value of isa Meaning
Chapter 3 C++ Compiler Options 3-63

Also note the following:

■ SPARC instruction set architectures V7, V8, and V8a are all binary compatible.

v8plusb Compile for the V8plusb version of the SPARC-V8plus ISA with
UltraSPARC-III extensions.
Enables the compiler to generate object code for the UltraSPARC architecture,

plus the Visual Instruction Set (VIS) version 2.0, and with UltraSPARC-III

extensions.

• The resulting object code is in SPARC-V8+ ELF32 format and executes only in

a Solaris UltraSPARC-III environment.

• Compiling with this option uses the best instruction set for good

performance on the UltraSPARC-III architecture.

v9 Compile for the SPARC–V9 ISA.
Enables the compiler to generate code for good performance on the V9 SPARC

architecture.

• The resulting .o object files are in ELF64 format and can only be linked with

other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit kernel.

• –xarch=v9 is only available when compiling in a 64–bit enabled Solaris

environment.

v9a Compile for the SPARC–V9 ISA with UltraSPARC extensions.
Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions

specific to UltraSPARC processors, and enables the compiler to generate code

for good performance on the V9 SPARC architecture.

• The resulting .o object files are in ELF64 format and can only be linked with

other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit kernel.

• –xarch=v9a is only available when compiling in a 64–bit enabled Solaris

operating environment.

v9b Compile for the SPARC-V9 ISA with UltraSPARC-III extensions.
Adds UltraSPARC-III extensions and VIS version 2.0 to the V9a version of the

SPARC-V9 ISA. Compiling with this option uses the best instruction set for

good performance in a Solaris UltraSPARC-III environment.

• The resulting object code is in SPARC-V9 ELF64 format and can only be

linked with other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC-III processor

running a 64–bit enabled Solaris operating environment with the 64–bit kernel.

• –xarch=v9b is only available when compiling in a 64–bit enabled Solaris

operating environment.

TABLE 3-29 -xarch Values for SPARC Platforms (Continued)

Value of isa Meaning
3-64 C++ User’s Guide • May 2000

■ Object binary files (.o) compiled with v8plus and v8plusa can be linked and

can execute together, but only on a SPARC V8plusa compatible platform.

■ Object binary files (.o) compiled with v8plus , v8plusa , and v8plusb can be

linked and can execute together, but only on a SPARC V8plusb compatible

platform.

■ -xarch values v9 , v9a , and v9b are only available on UltraSPARC 64–bit Solaris

environments.

■ Object binary files (.o) compiled with v9 and v9a can be linked and can execute

together, but will run only on a SPARC V9a compatible platform.

■ Object binary files (.o) compiled with v9 , v9a , and v9b can be linked and can

execute together, but will run only on a SPARC V9b compatible platform.

For any particular choice, the generated executable may run much more slowly on

earlier architectures. Also, although quad-precision (REAL*16 and long double)

floating-point instructions are available in many of these instruction set

architectures, the compiler does not use these instructions in the code it generates.

For IA platforms:

TABLE 3-30 gives the details for each of the -xarch keywords on IA platforms.

Defaults

If –xarch =isa is not specified, –xarch=generic is assumed.

TABLE 3-30 -xarch Values for IA Platforms

Value of isa Meaning

generic Compile for good performance on most systems. This is the default.

This option uses the best instruction set for good performance on most

processors without major performance degradation on any of them.

With each new release, the definition of “best” instruction set may be

adjusted, if appropriate.

386 generic and 386 are equivalent in this release.

486 Compile for the Intel PentiumPro chip.

pentium 486 and pentium are equivalent in this release.

pentium_pro 486 and pentium_pro are equivalent in this release.
Chapter 3 C++ Compiler Options 3-65

Interactions

Although this option can be used alone, it is part of the expansion of the -xtarget
option and may be used to override the –xarch value that is set by a specific

-xtarget option. For example, -xtarget=ultra2 expands to -xarch=v8
-xchip=ultra2 -xcache=15/32/1:512/64/1 . In the following command

-xarch=v8plusb overrides the -xarch=v8 that is set by the expansion of

-xtarget=ultra2 .

Use of –compat[=4] with -xarch=v9 , -xarch=v9a , or -xarch=v9b is not

supported.

Warnings

If this option is used with optimization, the appropriate choice can provide good

performance of the executable on the specified architecture. An inappropriate choice,

however, might result in serious degradation of performance or in a binary program

that is not executable on the intended target platform.

3.2.94 –xcache= c
SPARC: Defines cache properties for use by the optimizer.

This option specifies the cache properties that the optimizer can use. It does not

guarantee that any particular cache property is used.

Note – Although this option can be used alone, it is part of the expansion of the

-xtarget option; its primary use is to override a value supplied by the -xtarget
option.

example% CC -xtarget=ultra2 -xarch=v8plusb foo.cc
3-66 C++ User’s Guide • May 2000

Values

c must be one of the following values.

The definitions of the cache properties, si/li/ai, are as follows:

For example, i=1 designates level 1 cache properties, s1/ l1/ a1.

Defaults

If –xcache is not specified, the default –xcache=generic is assumed. This value

directs the compiler to use cache properties for good performance on most SPARC

processors, without major performance degradation on any of them.

Examples

–xcache=16/32/4:1024/32/1 specifies the following:

Value of c Meaning

generic Defines the cache properties for good performance on most

SPARC processors

s1/l1/a1 Defines level 1 cache properties

s1/l1/a1:s2/l2/a2 Defines level 1 and 2 cache properties

s1/l1/a1:s2/l2/a2:s3/l3/a3 Defines level 1, 2, and 3 cache properties

Property Definition

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

Level 1 Cache Has Level 2 Cache Has

16 Kbytes 1024 Kbytes

32 bytes line size 32 bytes line size

4-way associativity Direct mapping associativity
Chapter 3 C++ Compiler Options 3-67

See also

–xtarget =t

3.2.95 -xcg89

Same as -xtarget=ss2 .

Warnings

If you compile and link in separate steps and you compile with -xcg89 , be sure to

link with the same option, or you might get unexpected results.

3.2.96 –xcg92

Same as -xtarget=ss1000 .

Warnings

If you compile and link in separate steps and you compile with -xcg92 , be sure to

link with the same option, or you might get unexpected results.

3.2.97 –xchip= c
Specifies target processor for use by the optimizer.

The –xchip option specifies timing properties by specifying the target processor.

This option affects:

■ The ordering of instructions—that is, scheduling

■ The way the compiler uses branches

■ The instructions to use in cases where semantically equivalent alternatives are

available

Note – Although this option can be used alone, it is part of the expansion of the

-xtarget option; its primary use is to override a value supplied by the -xtarget
option.
3-68 C++ User’s Guide • May 2000

Values

c must be one of the following values.

TABLE 3-31 -xchip Options

Platform Value of c Optimize for

SPARC generic Using timing properties for good

performance on most SPARC processors

SPARC old Using timing properties of

processors earlier than the

SuperSPARC chip

SPARC super Using timing properties of the SuperSPARC

chip

SPARC super2 Using timing properties of the SuperSPARC

II chip

SPARC micro Using timing properties of the microSPARC

chip

SPARC micro2 Using timing properties of the microSPARC

II chip

SPARC hyper Using timing properties of the hyperSPARC

chip

SPARC hyper2 Using timing properties of the hyperSPARC

II chip

SPARC powerup Using timing properties of the Weitek

PowerUp chip

SPARC ultra Using timing properties of the UltraSPARC I

chip

SPARC ultra2 Using timing properties of the UltraSPARC II

chip

SPARC ultra2i Using timing properties of the UltraSPARC

IIi chip

SPARC ultra3 Using timing properties of the UltraSPARC

III chip

IA generic Using timing properties of most IA

processors

IA 386 Using timing properties of the Intel 386 chip
Chapter 3 C++ Compiler Options 3-69

Defaults

On most SPARC processors, generic is the default value that directs the compiler

to use the best timing properties for good performance without major performance

degradation on any of the processors.

3.2.98 –xcode= a
SPARC: Specifies the code address space.

Values

a must be one of the following values.

IA 486 Using timing properties of the Intel 486 chip

IA pentium Using timing properties of the Intel Pentium

chip

IA pentium_pro Using timing properties of the Intel Pentium

Pro chip

TABLE 3-32 -xcode Options

Value of a Meaning

abs32 Generates 32-bit absolute addresses, which are fast, but have limited

range. Code + data + bss size is limited to 2**32 bytes.

abs44 SPARC: Generates 44-bit absolute addresses, which have moderate

speed and moderate range. Code + data + bss size is limited to 2**44

bytes. Available only on 64-bit architectures:

–xarch=(v9|v9a|v9b)

TABLE 3-31 -xchip Options (Continued)

Platform Value of c Optimize for
3-70 C++ User’s Guide • May 2000

Defaults

For SPARC V8 and V7 processors, the default is –xcode=abs32 .

For SPARC and UltraSPARC processors, when you use –xarch= (v9 |v9a |v9b), the

default is –xcode=abs64 .

3.2.99 -xcrossfile [=n]

SPARC: Enables optimization and inlining across source files.

Values

n must be one of the following values.

Normally the scope of the compiler’s analysis is limited to each separate file on the

command line. For example, when the -xO4 option is passed, automatic inlining is

limited to subprograms defined and referenced within the same source file.

With -xcrossfile or -xcrossfile=1 , the compiler analyzes all the files named

on the command line as if they had been concatenated into a single source file.

abs64 SPARC: Generates 64-bit absolute addresses, which are slow, but

have full range. Available only on 64-bit architectures:

–xarch=(v9|v9a|v9b)

pic13 Generates position-independent code (small model), which is fast,

but has limited range. Equivalent to –Kpic . Permits references to at

most 2**11 unique external symbols on 32-bit architectures; 2**10 on

64-bit.

pic32 Generates position-independent code (large model), which is slow,

but has full range. Equivalent to –KPIC . Permits references to at

most 2**30 unique external symbols on 32-bit architectures; 2**29 on

64-bit.

Value of n Meaning

0 Do not perform cross-file optimizations or cross-file inlining.

1 Perform optimization and inlining across source files.

TABLE 3-32 -xcode Options (Continued)

Value of a Meaning
Chapter 3 C++ Compiler Options 3-71

Defaults

If -xcrossfile is not specified, -xcrossfile=0 is assumed and no cross-file

optimizations or inlining are performed.

-xcrossfile is the same as-xcrossfile=1 .

Interactions

The -xcrossfile option is effective only when it is used with -xO4 or -xO5 .

Warnings

The files produced from this compilation are interdependent due to possible

inlining, and must be used as a unit when they are linked into a program. If any one

routine is changed and the files recompiled, they must all be recompiled. As a result,

using this option affects the construction of makefiles.

3.2.100 –xF

If you compile with the -xF option and then run the Analyzer, you can generate a

map file that shows an optimized order for the functions. A subsequent link to build

the executable file can be directed to use that map by using the linker –Mmapfile
option. It places each function from the executable file into a separate section.

Reordering the subprograms in memory is useful only when the application text

page fault time is consuming a large percentage of the application time. Otherwise,

reordering might not improve the overall performance of the application.

Interactions

The –xF option is only supported with –features=no%except (–noex).

See also

analyzer (1), debugger (1), ld (1) man pages
3-72 C++ User’s Guide • May 2000

3.2.101 –xhelp=flags

Displays a brief description of each compiler option.

3.2.102 –xhelp=readme

Displays contents of the online READMEfile.

The READMEfile is paged by the command specified in the environment variable,

PAGER. If PAGERis not set, the default paging command is more .

3.2.103 –xildoff

Turns off the incremental linker.

Defaults

This option is assumed if you do not use the –g option. It is also assumed if you do
use the –G option, or name any source file on the command line. Override this

default by using the -xildon option.

See also

–xildon , ild (1) man page, ld (1) man page, Incremental Link Editor Guide

3.2.104 –xildon

Turns on the incremental linker.

This option is assumed if you use –g and not –G, and you do not name any source

file on the command line. Override this default by using the -xildoff option.

See also

–xildoff , ild (1) man page, ld (1) man page, Incremental Link Editor Guide
Chapter 3 C++ Compiler Options 3-73

3.2.105 –xlibmieee

Causes libm to return IEEE 754 values for math routines in exceptional cases.

The default behavior of libm is XPG-compliant.

See also

Numerical Computation Guide

3.2.106 –xlibmil

Inlines selected libm library routines for optimization.

Note – This option does not affect C++ inline functions.

There are inline templates for some of the libm library routines. This option selects

those inline templates that produce the fastest executables for the floating-point

option and platform currently being used.

Interactions

This option is implied by the –fast option.

See also

-fast , Numerical Computation Guide

3.2.107 –xlibmopt

Uses library of optimized math routines.

This option uses a math routine library optimized for performance and usually

generates faster code. The results might be slightly different from those produced by

the normal math library; if so, they usually differ in the last bit.

The order on the command line for this library option is not significant.
3-74 C++ User’s Guide • May 2000

Interactions

This option is implied by the –fast option.

See also

–fast , –xnolibmopt

3.2.108 –xlic_lib=sunperf

SPARC: Links in the Sun Performance Library™.

This option, like –l , should appear at the end of the command line, after source or

object files.

See also

performance_library README

3.2.109 –xlicinfo

Shows license server information.

This option returns the license-server name and the user ID for each user who has a

license checked out. When you use this option, the compiler is not invoked, and a

license is not checked out.

If a conflicting option is used, the latest one on the command line takes precedence,

and a warning is issued.

Examples

Do not compile; report license information:

example% CC –c –xlicinfo any.cc
Chapter 3 C++ Compiler Options 3-75

Compile; do not report license information:

3.2.110 –Xm

Same as –features=iddollar .

3.2.111 –xM

Outputs makefile dependency information.

Examples

The program foo.cc contains the following statement:

When foo.c is compiled with the -xM , the output includes the following line:

See also

make(1S) (for details about makefiles and dependencies)

3.2.112 –xM1

Generates dependency information, but excludes /usr/include .

This is the same as –xM, except that this option does not report dependencies for the

/usr/include header files.

example% CC –xlicinfo –c any.cc

#include "foo.h"

foo.o : foo.h
3-76 C++ User’s Guide • May 2000

3.2.113 –xMerge

SPARC: Merges the data segment with the text segment.

The data in the object file is read-only and is shared between processes, unless you

link with ld -N .

See also

ld (1) man page

3.2.114 –xnolib

Disables linking with default system libraries.

Normally (without this option), the C++ compiler links with several system libraries

to support C++ programs. With this option, the –l lib options to link the default

system support libraries are not passed to ld .

Normally, the compiler links with the system support libraries in the following

order:

■ Standard mode (default mode):

■ Compatibility mode (-compat):

The order of the -l options is significant. The -lm , -lw , and -lcx options must

appear before -lc .

Note – If the -mt compiler option is specified, the compiler normally links with

-lthread just before it links with -lm.

To determine which system support libraries will be linked by default, compile with

the -dryrun option. For example, the output from the following command:

-lCstd -lCrun -lm -lw -lcx -lc

-lC -lm -lw -lcx -lc

example% CC foo.cc -xarch=v9 -dryrun
Chapter 3 C++ Compiler Options 3-77

Includes the following in the output:

Note that when -xarch=v9 is specified, -lcx is not linked.

Examples

For minimal compilation to meet the C application binary interface (that is, a C++

program with only C support required), use:

To link libm statically into a single-threaded application with the generic

architecure instruction set, use:

■ Standard mode:

■ Compatibility mode:

Interactions

Some static system libraries, such as libm.a and libc.a , are not available when

linking with -xarch=v9 , -xarch=v9a or -xarch=v9b .

If you specify –xnolib , you must manually link all required system support

libraries in the given order. You must link the system support libraries last.

If -xnolib is specified, -library is ignored.

Warnings

Many C++ language features require the use of libC (compatibility mode) or

libCrun (standard mode).

-lCstd -lCrun -lm -lw -lc

example% CC –xnolib test.cc –lc

example% CC -xnolib test.cc -lCstd -lCrun -Bstatic -lm \
-Bdynamic -lw -lcx -lc

example% CC -compat -xnolib test.cc -lC -Bstatic -lm \
-Bdynamic -lw -lcx -lc
3-78 C++ User’s Guide • May 2000

This set of system support libraries is not stable and might change from release to

release.

In 64-bit compilation modes, –lcx is not present.

See also

–library , –staticlib , –l

3.2.115 –xnolibmil

Cancels –xlibmil on the command line.

Use this option with –fast to override linking with the optimized math library.

3.2.116 –xnolibmopt

Does not use the math routine library.

Examples

Use this option after the –fast option on the command line, as in this example:

3.2.117 –xOlevel
Specifies optimization level. In general, program execution speed depends on level

of optimization. The higher the level of optimization, the faster the speed.

If -xO level is not specified, only a very basic level of optimization (limited to local

common subexpression elimination and dead code analysis) is performed. A

program’s performance might be significantly improved when it is compiled with an

optimization level. Use of –xO2 (or the equivalent options -O and -O2) is

recommended for most programs.

Generally, the higher the level of optimization with which a program is compiled,

the better the runtime performance. However, higher optimization levels can result

in increased compilation time and larger executable files.

example% CC –fast –xnolibmopt
Chapter 3 C++ Compiler Options 3-79

In a few cases, –xO2 might perform better than the others, and –xO3 might

outperform –xO4. Try compiling with each level to see if you have one of these rare

cases.

If the optimizer runs out of memory, it tries to recover by retrying the current

procedure at a lower level of optimization. The optimizer resumes subsequent

procedures at the original level specified in the –xOlevel option.

There are five levels that you can use with –xO. The following sections describe how

they operate on the SPARC platform and the IA platform.

Values

On the SPARC Platform:

■ –xO1 does only the minimum amount of optimization (peephole), which is

postpass, assembly-level optimization. Do not use –xO1 unless using –xO2 or –
xO3 results in excessive compilation time, or you are running out of swap space.

■ –xO2 does basic local and global optimization, which includes:

■ Induction-variable elimination

■ Local and global common-subexpression elimination

■ Algebraic simplification

■ Copy propagation

■ Constant propagation

■ Loop-invariant optimization

■ Register allocation

■ Basic block merging

■ Tail recursion elimination

■ Dead-code elimination

■ Tail-call elimination

■ Complicated expression expansion

This level does not optimize references or definitions for external or indirect

variables. In general, this level results in minimum code size.

Note – The -O options is equivalent to the -xO2 option.

■ –xO3, in addition to optimizations performed at the –xO2 level, also optimizes

references and definitions for external variables. This level does not trace the

effects of pointer assignments. When compiling either device drivers that are not

properly protected by volatile or programs that modify external variables from

within signal handlers, use –xO2. In general, –xO3 results in increased code size.

If you are running out of swap space, use –xO2.
3-80 C++ User’s Guide • May 2000

■ –xO4 does automatic inlining of functions contained in the same file in addition

to performing –xO3 optimizations. This automatic inlining usually improves

execution speed but sometimes makes it worse. In general, this level results in

increased code size.

■ –xO5 generates the highest level of optimization. It is suitable only for the small

fraction of a program that uses the largest fraction of computer time. This level

uses optimization algorithms that take more compilation time or that do not have

as high a certainty of improving execution time. Optimization at this level is more

likely to improve performance if it is done with profile feedback. See

Section 3.2.120 “-xprofile= p.”

On the IA Platform:

■ –xO1 preloads arguments from memory and causes cross jumping (tail merging),

as well as the single pass of the default optimization.

■ –xO2 schedules both high- and low-level instructions and performs improved

spill analysis, loop memory-reference elimination, register lifetime analysis,

enhanced register allocation, global common subexpression elimination, as well

as the optimization done by level 1.

■ –xO3 performs loop strength reduction and inlining, as well as the optimization

done by level 2.

■ –xO4 performs architecture-specific optimization, as well as the optimization

done by level 3.

■ –xO5 generates the highest level of optimization. It uses optimization algorithms

that take more compilation time or that do not have as high a certainty of

improving execution time.

Interactions

If you use -g or -g0 and the optimization level is -xO3 or lower, the compiler

provides best-effort symbolic information with almost full optimization. Tail-call

optimization and back-end inlining are disabled.

If you use -g or -g0 and the optimization level is -xO4 or higher, the compiler

provides best-effort symbolic information with full optimization.

Debugging with –g does not suppress –xOlevel, but –xOlevel limits –g in certain

ways. For example, the –xOlevel options reduce the utility of debugging so that you

cannot display variables from dbx , but you can still use the dbx where command to

get a symbolic traceback. For more information, see Debugging a Program With dbx.

The -xcrossfile option is effective only if it is used with -xO4 or -xO5 .
Chapter 3 C++ Compiler Options 3-81

Warnings

If you optimize at –xO3 or –xO4 with very large procedures (thousands of lines of

code in a single procedure), the optimizer might require an unreasonable amount of

memory. In such cases, machine performance can be degraded.

To prevent this degradation from taking place, use the limit command to limit the

amount of virtual memory available to a single process (see the csh (1) man page).

For example, to limit virtual memory to 16 megabytes:

This command causes the optimizer to try to recover if it reaches 16 megabytes of

data space.

The limit cannot be greater than the total available swap space of the machine, and

should be small enough to permit normal use of the machine while a large

compilation is in progress.

The best setting for data size depends on the degree of optimization requested, the

amount of real memory, and virtual memory available.

To find the actual swap space, type: swap –l

To find the actual real memory, type: dmesg | grep mem

See also

–fast , -xcrossfile= n, –xprofile= p, csh (1) man page

3.2.118 –xpg

The –xpg option compiles self-profiling code to collect data for profiling with gprof .

This option invokes a runtime recording mechanism that produces a gmon.out file

when the program normally terminates.

Warnings

If you compile and link separately, and you compile with –xpg , be sure to link with

–xpg .

example% limit datasize 16M
3-82 C++ User’s Guide • May 2000

See also

–xprofile= p, analyzer (1) man page, Analyzing Program Performance With Sun
WorkShop.

3.2.119 -xprefetch [=a[, a]]

SPARC: Enable prefetch instructions on those architectures that support prefetch,

such as UltraSPARC II (-xarch=v8plus , v8plusa , v9plusb , v9 , v9a , or v9b)

a must be one of the following values.

Defaults

If -xprefetch is not specified, -xprefetch=no%auto,explicit is assumed.

If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.

The default of no%auto is assumed unless explicitly overridden with the use of

-xprefetch without any arguments or with an argument of auto or yes . For

example, -xprefetch=explicit is the same as

-xprefetch=explicit,no%auto .

The default of explicit is assumed unless explicitly overridden with an argument

of no%explicit or an argument of no . For example, -xprefetch=auto is the

same as -xprefetch=auto,explicit .

Value Meaning

auto Enable automatic generation of prefetch instructions

no%auto Disable automatic generation of prefetch instructions

explicit Enable explicit prefetch macros

no%explicit Disable explicit prefetch macros

yes -xprefetch=yes is the same as -xprefetch=auto,explicit

no -xprefetch=no is the same as

-xprefetch=no%auto,no%explicit
Chapter 3 C++ Compiler Options 3-83

Interactions

The sun_prefetch.h header file provides the macros for specifying explicit

prefetch instructions. The prefetches will be approximately at the place in the

executable that corresponds to where the macros appear.

To use the explicit prefetch instructions, you must be on the correct architecture,

include sun_prefetch.h , and either exclude -xprefetch from the compiler

command or use -xprefetch=explicit or -xprefetch=yes .

If you call the macros and include the sun_prefetch. h header file, but pass

-xprefetch=no%explicit or -xprefetch=no , the explicit prefetches will not

appear in your executable.

With -xprefetch , -xprefetch=auto , and -xprefetch=yes , the compiler is free

to insert prefetch instructions into the code it generates. This may result in a

performance improvement on architectures that support prefetch.

Warnings

Explicit prefetching should only be used under special circumstances that are

supported by measurements.

3.2.120 -xprofile= p
Collects or optimizes with runtime profiling data.

This option causes execution frequency data to be collected and saved during the

execution. The data can then be used in subsequent runs to improve performance.

This option is valid only when a level of optimization is specified.
3-84 C++ User’s Guide • May 2000

Values

p must be one of the following values.

TABLE 3-33 -xprofile Options

Value of p Meaning

collect[: name] Collects and saves execution frequency for later use by the optimizer

with –xprofile=use . The compiler generates code to measure

statement execution frequency. The name is the name of the program

that is being analyzed. The name is optional and, if not specified, is

assumed to be a.out .

At runtime, a program compiled with –xprofile=collect: name
creates the subdirectory name.profile to hold the runtime feedback

information. Data is written to the file feedback in this subdirectory.

If you run the program several times, the execution frequency data

accumulates in the feedback file; that is, output from prior runs is

not lost.

use[: name] Uses execution frequency data to optimize strategically. The name is

the name of the executable that is being analyzed. The name is

optional and, if not specified, is assumed to be a.out .

The program is optimized by using the execution frequency data

previously generated and saved in feedback files that were written

by a previous execution of the program compiled with

-xprofile=collect.

The source files and other compiler options must be exactly the same

as those used for the compilation that created the compiled program

that generated the feedback file. If compiled with

-xprofile=collect: name, the same program name, name, must

appear in the optimizing compilation: -xprofile=use :name.
Chapter 3 C++ Compiler Options 3-85

Interactions

The –xprofile=tcov and the -xa options are compatible in a single executable. That

is, you can link a program that contains some files that have been compiled with

-xprofile=tcov and other files compiled with -xa . You cannot compile a single file

with both options.

The code coverage report produced by -xprofile=tcov can be unreliable if there

is inlining of functions due to use of -xO4 .

Warnings

If compilation and linking are performed in separate steps, the same –xprofile

option must appear in the compile as well as the link step.

See also

-xa , tcov (1) man page, Analyzing Program Performance With Sun WorkShop

tcov Basic block coverage analysis using the new style tcov .

This option is the new style of basic block profiling for tcov. It has

similar functionality to the –xa option, but correctly collects data for

programs that have source code in header files or make use of C++

templates. Code instrumentation is similar to that of the -xa option,

but .d files are no longer generated. Instead, a single file is

generated, the name of which is based on the final executable. For

example, if the program is run out of /foo/bar/myprog.profile ,

then the data file is stored in

/foo/bar/myprog.profile/myprog.tcovd .

When running tcov , you must pass it the –x option to force it to use

the new style of data. If you do not pass -x , tcov uses the old .d
files by default, and produces unexpected output.

Unlike the –xa option, the TCOVDIRenvironment variable has no

effect at compile time. However, its value is used at program

runtime.

TABLE 3-33 -xprofile Options (Continued)

Value of p Meaning
3-86 C++ User’s Guide • May 2000

3.2.121 –xregs= r[,...r]

SPARC: Controls scratch register usage.

The compiler can generate faster code if it has more registers available for temporary

storage (scratch registers). This option makes available additional scratch registers

that might not always be appropriate.

Values

r must be one of the following values. The meaning of each value depends upon the

-xarch setting.

Defaults

If –xregs is not specified, –xregs=appl,float is assumed.

Examples

To compile an application program using all available scratch registers, use

-xregs=appl,float .

To compile non-floating-point code that is sensitive to context switch, use

-xregs=no%appl,no%float .

Value of r Meaning

[no%]appl [Does not] Allow use of registers g2, g3, and g4 (v8 , v8a)

[Does not] Allow use of registers g2, g3, and g4 (v8plus , v8plusa ,

v8plusb)

[Does not] Allow use of registers g2, g3 (v9 , v9a , v9b)

In the SPARC ABI, these registers are described as application
registers. Using these registers can increase performance because

fewer load and store instructions are needed. However, such use

can conflict with programs that use the registers for other purposes.

[no%]float [Does not] Allow use of floating-point registers as specified in the

SPARC ABI.

You can use the floating-point registers even if the program contains

no floating point code.

With the no%float option a source program cannot contain any

floating-point code.
Chapter 3 C++ Compiler Options 3-87

See also

SPARC V7/V8 ABI, SPARC V9 ABI

3.2.122 –xs

Allows debugging by dbx without object (.o) files.

This option disables Auto-Read for dbx . Use this option if you cannot keep the .o
files. This option passes the -s option to the assembler.

No Auto-Read is the older way of loading symbol tables. It places all symbol tables

for dbx in the executable file. The linker links more slowly, and dbx initializes more

slowly.

Auto-Read is the newer and default way of loading symbol tables. With Auto-Read

the information is placed in the .o files, so that dbx loads the symbol table

information only if it is needed. Hence the linker links faster, and dbx initializes

faster.

With –xs , if you move executables to another directory, you do not have to move the

object (.o) files to use dbx .

Without –xs , if you move the executables to another directory, you must move both

the source files and the object (.o) files to use dbx .

3.2.123 –xsafe=mem

SPARC: Allows no memory–based traps to occur.

This option grants permission to use the speculative load instruction on V9

machines.

Interactions

This option is only effective if used with –xO5 optimization when -xarch=v8plus ,

v8plusa , v8plusb , v9 , v9a , or v9b is specified.
3-88 C++ User’s Guide • May 2000

Warnings

You should use this option only if you can safely assert that no memory-based traps

occur in your program. For most programs, this assertion is appropriate and can be

safely made. For a program that explicitly forces memory-based traps to handle

exceptional conditions, this assertion is not safe.

3.2.124 –xsb

Produces information for the Sun WorkShop source browser.

This option causes the CCdriver to generate extra symbol table information in the

SunWS_cache subdirectory for the source browser.

See also

–xsbfast

3.2.125 –xsbfast

Produces only source browser information, no compilation.

This option runs only the ccfe phase to generate extra symbol table information in

the SunWS_cache subdirectory for the source browser. No object file is generated.

See also

–xsb

3.2.126 –xspace

SPARC: Does not allow optimizations that increase code size.
Chapter 3 C++ Compiler Options 3-89

3.2.127 –xtarget= t
Specifies the target platform for instruction set and optimization.

The performance of some programs can benefit by providing the compiler with an

accurate description of the target computer hardware. When program performance

is critical, the proper specification of the target hardware could be very important.

This is especially true when running on the newer SPARC processors. However, for

most programs and older SPARC processors, the performance gain is negligible and

a generic specification is sufficient.

Values

For SPARC platforms:

On SPARC platforms, t must be one of the following values.

The following table details the -xtarget SPARC platform names and their

expansions.

Value of t Meaning

native Gets the best performance on the host system.

The compiler generates code optimized for the host system. It

determines the available architecture, chip, and cache properties of

the machine on which the compiler is running.

generic Gets the best performance for generic architecture, chip, and cache.

The compiler expands –xtarget=generic to:

–xarch=generic –xchip=generic –xcache=generic
This is the default value.

platform-name Gets the best performance for the specified platform.

Select a SPARC platform name from TABLE 3-34.

TABLE 3-34 SPARC Platform Names for -xtarget

-xtarget= -xarch -xchip -xcache

generic generic generic generic

cs6400 v8 super 16/32/4:2048/64/1

entr150 v8 ultra 16/32/1:512/64/1

entr2 v8 ultra 16/32/1:512/64/1
3-90 C++ User’s Guide • May 2000

entr2/1170 v8 ultra 16/32/1:512/64/1

entr2/1200 v8 ultra 16/32/1:512/64/1

entr2/2170 v8 ultra 16/32/1:512/64/1

entr2/2200 v8 ultra 16/32/1:512/64/1

entr3000 v8 ultra 16/32/1:512/64/1

entr4000 v8 ultra 16/32/1:512/64/1

entr5000 v8 ultra 16/32/1:512/64/1

entr6000 v8 ultra 16/32/1:512/64/1

sc2000 v8 super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ss1 v7 old 64/16/1

ss10 v8 super 16/32/4

ss10/20 v8 super 16/32/4

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/402 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/412 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1

ss10/612 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

TABLE 3-34 SPARC Platform Names for -xtarget (Continued)

-xtarget= -xarch -xchip -xcache
Chapter 3 C++ Compiler Options 3-91

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss1000 v8 super 16/32/4:1024/32/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

ss20 v8 super 16/32/4:1024/32/1

ss20/151 v8 hyper 512/64/1

ss20/152 v8 hyper 512/64/1

ss20/50 v8 super 16/32/4

ss20/502 v8 super 16/32/4

ss20/51 v8 super 16/32/4:1024/32/1

ss20/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/712 v8 super2 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss2p v7 powerup 64/32/1

ss4 v8a micro2 8/16/1

ss4/110 v8a micro2 8/16/1

ss4/85 v8a micro2 8/16/1

ss5 v8a micro2 8/16/1

ss5/110 v8a micro2 8/16/1

ss5/85 v8a micro2 8/16/1

ss600/120 v7 old 64/32/1

TABLE 3-34 SPARC Platform Names for -xtarget (Continued)

-xtarget= -xarch -xchip -xcache
3-92 C++ User’s Guide • May 2000

ss600/140 v7 old 64/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/16/1

ssslc v7 old 64/16/1

ssvyger v8a micro2 8/16/1

sun4/110 v7 old 2/16/1

sun4/15 v8a micro 2/16/1

sun4/150 v7 old 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

sun4/30 v8a micro 2/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/40 v7 old 64/16/1

sun4/470 v7 old 128/32/1

TABLE 3-34 SPARC Platform Names for -xtarget (Continued)

-xtarget= -xarch -xchip -xcache
Chapter 3 C++ Compiler Options 3-93

For IA platforms:

On IA platforms, –xtarget accepts the following values:

■ native or generic

■ 386—Directs the compiler to generate code for the best performance on the Intel

80386 microprocessor.

■ 486—Directs the compiler to generate code for the best performance on the Intel

80486 microprocessor.

■ pentium —Directs the compiler to generate code for the best performance on the

Pentium or Pentium Pro microprocessor.

sun4/490 v7 old 128/32/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

sun4/630 v7 old 64/32/1

sun4/65 v7 old 64/16/1

sun4/670 v7 old 64/32/1

sun4/690 v7 old 64/32/1

sun4/75 v7 old 64/32/1

ultra v8 ultra 16/32/1:512/64/1

ultra1/140 v8 ultra 16/32/1:512/64/1

ultra1/170 v8 ultra 16/32/1:512/64/1

ultra1/200 v8 ultra 16/32/1:512/64/1

ultra2 v8 ultra2 16/32/1:512/64/1

ultra2/1170 v8 ultra 16/32/1:512/64/1

ultra2/1200 v8 ultra 16/32/1:1024/64/1

ultra2/1300 v8 ultra2 16/32/1:2048/64/1

ultra2/2170 v8 ultra 16/32/1:512/64/1

ultra2/2200 v8 ultra 16/32/1:1024/64/1

ultra2/2300 v8 ultra2 16/32/1:2048/64/1

ultra2i v8 ultra2i 16/32/1:512/64/1

ultra3 v8 ultra3 64/32/4:8192/256/1

TABLE 3-34 SPARC Platform Names for -xtarget (Continued)

-xtarget= -xarch -xchip -xcache
3-94 C++ User’s Guide • May 2000

■ pentium_pro —Directs the compiler to generate code for the best performance on

the Pentium Pro microprocessor.

Defaults

On both SPARC and IA devices, if –xtarget is not specified, –xtarget=generic is

assumed.

Expansions

The –xtarget option is a macro that permits a quick and easy specification of the

-xarch , –xchip , and –xcache combinations that occur on commercially purchased

platforms. The only meaning of –xtarget is in its expansion.

Examples

-xtarget=sun4/15 means -xarch=v8a -xchip=micro -xcache=2/16/1

Interactions

Compilation for SPARC V9 architecture indicated by the -xarch=v9 |v9a |v9b
option. Setting –xtarget=ultra or ultra2 is not necessary or sufficient. If

-xtarget is specified, the –xarch=v9 , v9a , or v9b option must appear after the

-xtarget . For example:

expands to the following and reverts the -xarch value to v8 .

The correct method is to specify -xarch after -xtarget . For example:

-xarch=v9 -xtarget=ultra

-xarch=v9 -xarch=v8 -xchip=ultra -xcache=16/32/1:512/64/1

–xtarget=ultra –xarch=v9
Chapter 3 C++ Compiler Options 3-95

3.2.128 –xtime

Causes the CCdriver to report execution time for the various compilation passes.

3.2.129 –xunroll= n
Enables unrolling of loops where possible.

This option specifies whether or not the compiler optimizes (unrolls) loops.

Values

When n is 1, it is a suggestion to the compiler to not unroll loops.

When n is an integer greater than 1, –unroll= n causes the compiler to unroll loops n
times.

3.2.130 -xvector [=(yes |no)]

SPARC: Enable automatic calls to the SPARC vector library functions.

Defaults

The compiler defaults to -xvector=no . Specifying -xvector by itself defaults to

-xvector=yes .

Warnings

If you compile and link in separate steps, you must use the same -xvector settings

in each step.

3.2.131 –xwe

Converts all warnings to errors by returning nonzero exit status.
3-96 C++ User’s Guide • May 2000

3.2.132 -z arg
Link editor option. For more information, see the ld (1) man page and the Solaris

Linker and Libraries Guide.

3.2.133 –ztext

Forces a fatal error if any relocations remain against nonwritable, allocatable

sections.

This option is passed to the linker.
Chapter 3 C++ Compiler Options 3-97

3-98 C++ User’s Guide • May 2000

CHAPTER 4

Compiling Templates

Template compilation requires the C++ compiler to do more than traditional UNIX

compilers have done. The C++ compiler must generate object code for template

instances on an as-needed basis. It might share template instances among separate

compilations using a template repository. It might accept some template compilation

options. It must locate template definitions in separate source files and maintain

consistency between template instances and mainline code.

4.1 Verbose Compilation
When given the flag —verbose=template , the C++ compiler notifies you of

significant events during template compilation. Conversely, the compiler does not

notify you when given the default, —verbose=no%template . The +w option might

give other indications of potential problems when template instantiation occurs.

4.2 Template Commands
The CCadmin(1) command administers the template repository. For example,

changes in your program can render some instantiations superfluous, thus wasting

storage space. The CCadmin –clean command (formerly ptclean) clears out all

instantiations and associated data. Instantiations are recreated only when needed.
4-1

4.3 Template Instance Placement and
Linkage
You can instruct the compiler to use one of five instance placement and linkage

methods: external, static, global, explicit, and semi-explicit.

■ External instances are suitable for all development and provide the best overall

template compilation.

■ Static instances are suitable for very small programs or debugging and have

restricted uses.

■ Global instances are suitable for some library construction.

■ Explicit instances are suitable for some carefully controlled application

compilation environments.

■ Semi-explicit instances require slightly less controlled compilation environments

but produce larger object files and have restricted uses.

You should use the external instances method, which is the default, unless there is a

very good reason to do otherwise. See the C++ Programming Guide for further

information.

4.3.1 External Instances

With the external instances method, all instances are placed within the template

repository. The compiler ensures that exactly one consistent template instance exists;

instances are neither undefined nor multiply defined. Templates are reinstantiated

only when necessary.

Template instances receive global linkage in the repository. Instances are referenced

from the current compilation unit with external linkage.

Specify external linkage with the —instances=extern option (the default option).

Because instances are stored within the template repository, you must use the CC
command to link C++ objects that use external instances into programs.

If you wish to create a library that contains all template instances that it uses, use the

CCcommand with the —xar option. Do not use the ar command. For example:

See Chapter 6 for more information.

example% CC –xar –o libmain.a a.o b.o c.o
4-2 C++ User’s Guide • May 2000

4.3.2 Static Instances

With the static instances method, all instances are placed within the current

compilation unit. As a consequence, templates are reinstantiated during each

recompilation; instances are not saved to the template repository.

Instances receive static linkage. These instances will not be visible or usable outside

the current compilation unit. As a result, templates might have identical

instantiations in several object files. This has the following undesirable

consequences:

■ Multiple instances produce unnecessarily large programs. (Static instance linkage

is therefore suitable only for small programs, where templates are unlikely to be

multiply instantiated.)

■ Templates that contain static variables have many copies of the variable, and this

is an unavoidable violation of the C++ standard. Therefore, use of static instances

is not supported with static variables within templates.

Compilation is potentially faster with static instances, so this method might also be

suitable during Fix-and-Continue debugging. (See Debugging a Program With dbx .)

Specify static instance linkage with the —instances=static compiler option.

4.3.3 Global Instances

With the global instances method, all instances are placed within the current

compilation unit. As a consequence, templates are reinstantiated during each

recompilation; they are not saved to the template repository.

Template instances receive global linkage. These instances are visible and usable

outside the current compilation unit. As a consequence, instantiation in more than

one compilation unit results in multiple symbol definition errors during linking. The

global instances method is therefore suitable only when you know that instances

will not be repeated.

Specify global instances with the —instances=global option.

4.3.4 Explicit Instances

In the explicit instances method, instances are generated only for templates that are

explicitly instantiated. Implicit instantiations are not satisfied. Instances are placed

within the current compilation unit. As a consequence, templates are reinstantiated

during each recompilation; they are not saved to the template repository.
Chapter 4 Compiling Templates 4-3

Template instances receive global linkage. These instances are visible and usable

outside the current compilation unit. Multiple explicit instantiations within a

program result in multiple symbol definition errors during linking. The explicit

instances method is therefore suitable only when you know that instances are not

repeated, such as when you construct libraries with explicit instantiation.

Specify explicit instances with the —instances=explicit option.

4.3.5 Semi-Explicit Instances

When you use the semi-explicit instances method, instances are generated only for

templates that are explicitly instantiated or implicitly instantiated within the body of

a template. Implicit instantiations in the mainline code are not satisfied. Instances

are placed within the current compilation unit. As a consequence, templates are

reinstantiated during each recompilation; they are not saved to the template

repository.

Explicit instances receive global linkage. These instances are visible and usable

outside the current compilation unit. Multiple explicit instantiations within a

program result in multiple symbol definition errors during linking.The semi-explicit

instances method is therefore suitable only when you know that explicit instances

will not be repeated, such as when you construct libraries with explicit instantiation.

Implicit instances used from within the bodies of explicit instances receive static

linkage. These instances are not visible outside the current compilation unit. As a

result, templates can have identical instantiations in several object files. This has two

undesirable consequences:

■ Multiple instances produce unnecessarily large programs. (Semi-explicit instance

linkage is therefore suitable only for programs where template bodies do not

cause multiple instantiations.)

■ Templates that contain static variables have many copies of the variable; this is an

unavoidable violation of the C++ standard. Therefore, use of the semi-explicit

instances method is not supported with static variables within templates.

Specify semi-explicit instances with the —instances=semiexplicit option.

4.4 The Template Repository
The template repository stores template instances between separate compilations so

that template instances are compiled only when necessary. The template repository

contains all nonsource files needed for template instantiation when using the

external instances method. The repository is not used for other kinds of instances.
4-4 C++ User’s Guide • May 2000

4.4.1 Repository Structure

The template repository is contained, by default, within the Sun WorkShop cache

directory (SunWS_cache). The Sun WorkShop cache directory is contained within

the directory in which the output files will be placed. You can change the name of

the cache directory by setting the SUNWS_CACHE_NAMEenvironment variable.

4.4.2 Writing to the Template Repository

When the compiler must store template instances, it stores them within the template

repository corresponding to the output file. That is, this command line:

writes the object file to ./sub/a.o and writes template instances into the repository

contained within ./sub/SunWS_cache . If the cache directory does not exist, and

the compiler needs to instantiate a template, the directory is created for you.

4.4.3 Reading From Multiple Template Repositories

The compiler reads from the template repositories corresponding to the object files

that it reads. That is, this command line:

reads from ./sub1/SunWS_cache and ./sub2/SunWS_cache , and, if necessary,

writes to ./SunWS_cache .

4.4.4 Sharing Template Repositories

Templates that are within a repository must not violate the one-definition rule of the

ISO/ANSI C++ standard. That is, a template must have the same source in all uses

of the template. Violating this rule produces undefined behavior. The simplest,

though most conservative, way to ensure the rule is not violated is to build only one

program or library within any one directory.

example% CC -o sub/a.o a.cc

example% CC sub1/a.o sub2/b.o
Chapter 4 Compiling Templates 4-5

4.5 Template Definition Searching
When you use the definitions-separate template organization, template definitions

are not available in the current compilation unit, and the compiler must search for

the definition. This section describes how the compiler locates the definition.

Definition searching is somewhat complex and prone to error. Therefore, you should

use the definitions-included template file organization if possible. Doing so helps

you avoid definition searching altogether. See the C++ Programming Guide.

Note – If you use the -template=no%extdef option, the compiler will not search

for separate source files.

4.5.1 Source File Location Conventions

Without the specific directions provided with an options file, the compiler uses a

Cfront -style method to locate template definition files. This method requires that

the template definition file contain the same base name as the template declaration

file. This method also requires that the template definition file be on the current

include path. For example, if the template function foo() is located in foo.h , the

matching template definition file should be named foo.cc or some other

recognizable source-file extension (.C , .c , .cc , .cpp , or .cxx). The template

definition file must be located in one of the normal include directories or in the

same directory as its matching header file.

4.5.2 Definitions Search Path

As an alternative to the normal search path set with –I , you can specify a search

directory for template definition files with the option –pti directory. Multiple -pti
flags define multiple search directories—that is, a search path. If you use

-pti directory, the compiler looks for template definition files on this path and

ignores the –I flag. Since the –pti directory flag complicates the search rules for

source files, use the –I option instead of the –pti directory option.
4-6 C++ User’s Guide • May 2000

4.6 Template Instance Automatic
Consistency
The template repository manager ensures that the states of the instances in the

repository are consistent and up-to-date with your source files.

For example, if your source files are compiled with the –g option (debugging on),

the files you need from the database are also compiled with –g .

In addition, the template repository tracks changes in your compilation. For

example, if you have the —DDEBUGflag set to define the name DEBUG, the database

tracks this. If you omit this flag on a subsequent compile, the compiler reinstantiates

those templates on which this dependency is set.

4.7 Compile-Time Instantiation
Instantiation is the process by which a C++ compiler creates a usable function or

object from a template. The Sun WorkShop 6 C++ compiler uses compile-time

instantiation, which forces instantiations to occur when the reference to the template

is being compiled.

The advantages of compile-time instantiation are:

■ Debugging is much easier—error messages occur within context, allowing the

compiler to give a complete traceback to the point of reference.

■ Template instantiations are always up-to-date.

■ The overall compilation time, including the link phase, is reduced.

Templates can be instantiated multiple times if source files reside in different

directories or if you use libraries with template symbols.

4.8 Template Options File
The template options file is a user-provided optional file that contains the options

needed to locate template definitions and to control instance recompilation. In

addition, the options file provides features for controlling template specialization
Chapter 4 Compiling Templates 4-7

and explicit instantiation. However, because the C++ compiler now supports the

syntax required to declare specializations and explicit instantiation in the source

code, you should not use these features.

Note – The template options file may not be supported in future releases of the C++

compiler.

The options file is named CC_tmpl_opt and resides within the SunWS_config
directory. This directory name may be changed using the SUNWS_CONFIG_NAME
environment variable.

The options file is an ASCII text file containing a number of entries. An entry

consists of a keyword followed by expected text and terminated with a semicolon (;).

Entries can span multiple lines, although the keywords cannot be split.

4.8.1 Comments

Comments start with a # character and extend to the end of the line. Text within a

comment is ignored.

4.8.2 Includes

You may share options files among several template databases by including the

options files. This facility is particularly useful when building libraries containing

templates. During processing, the specified options file is textually included in the

current options file. You can have more than one include statement and place them

anywhere in the options file. The options files can also be nested.

Comment text is ignored until the end of the line.

include " options-file";
4-8 C++ User’s Guide • May 2000

4.8.3 Source File Extensions

You can specify different source file extensions for the compiler to search for when

the compiler is using its default Cfront -style source-file-locator mechanism. The

format is:

The ext-list is a list of extensions for valid source files in a space-separated format

such as:

In the absence of this entry from the options file, the valid extensions for which the

compiler searches are .cc , .c , .cpp , .C, and .cxx .

4.8.4 Definition Source Locations

You can explicitly specify the locations of definition source files using the

definition option file entry. Use the definition entry when the template

declaration and definition file names do not follow the standard Cfront -style

conventions. The entry syntax is:

The name field indicates the template for which the option entry is valid. Only one
definition entry per name is allowed. That name must be a simple name; qualified

names are not allowed. Parentheses, return types, and parameter lists are not

allowed. Regardless of the return type or parameters, only the name itself counts. As

a consequence, a definition entry may apply to several (possibly overloaded)

templates.

The "file-n" list field specifies the files that contain the template definitions. The

search for the files uses the definition search path. The file names must be enclosed in

quotes (" "). Multiple files are available because the simple template name may refer

to different templates defined in different files, or because a single template may

have definitions in multiple files. For example, if func is defined in three files, then

those three files must be listed in the definition entry.

The nocheck field is described at the end of this section.

extensions " ext-list";

extensions ".CC .c .cc .cpp";

definition name in " file-1",[" file-2" ..., " file-n"] [nocheck " options"];
Chapter 4 Compiling Templates 4-9

In the following example, the compiler locates the template function foo in foo.cc ,

and instantiates it. In this case, the definition entry is redundant with the default

search.

The following example shows the definition of static data members and the use of

simple names.

The name provided for the definition of fooref is a simple name and not a

qualified name (such as foo::fooref) . The reason for the definition entry is that

the file name is not foo.cc (or some other recognizable extension) and cannot be

located using the default Cfront -style search rules.

The following example shows the definition of a template member function. As the

example shows, member functions are handled exactly like static member

initializers.

CODE EXAMPLE 4-1 Redundant Definition Entry

foo.cc template <class T> T foo(T t) { }

CC_tmpl_opt definition foo in "foo.cc";

CODE EXAMPLE 4-2 Definition of Static Data Members and Use of Simple Names

foo.h template <class T> class foo { static T* fooref; };

foo_statics.cc #include "foo.h"
template <class T> T* foo<T>::fooref = 0

CC_tmpl_opt definition fooref in "foo_statics.cc";

CODE EXAMPLE 4-3 Template Member Function Definition

foo.h template <class T> class foo { T* foofunc(T); };

foo_funcs.cc #include “foo.h”
template <class T> T* foo<T>::foofunc(T t) {}

CC_tmpl_opt definition foofunc in "foo_funcs.cc";
4-10 C++ User’s Guide • May 2000

The following example shows the definition of template functions in two different

source files.

In this example, the compiler must be able to find both of the definitions of the

overloaded function func() . The definition entry tells the compiler where to find

the appropriate function definitions.

Sometimes recompiling is unnecessary when certain compilation flags change. You

can avoid unnecessary recompilation using the nocheck field of the definition
option file entry, which tells the compiler and template database manager to ignore

certain options when checking dependencies. If you do not want the compiler to

reinstantiate a template function because of the addition or deletion of a specific

command-line flag, use the nocheck flag. The entry syntax is:

The options must be enclosed in quotes (" ").

In the following example, the compiler locates the template function foo in foo.cc ,

and instantiates it. If a reinstantiation check is later required, the compiler will

ignore the -g option.

CODE EXAMPLE 4-4 Definition of Template Functions in Different Source Files

foo.h template <class T> class foo {
 T* func(T t);
 T* func(T t, T x);
};

foo1.cc #include "foo.h"
template <class T> T* foo<T>::func(T t) { }

foo2.cc #include "foo.h"
template <class T> T* foo<T>::func(T t, T x) { }

CC_tmpl_opt definition func in "foo1.cc", "foo2.cc";

definition name in " file-1"[, " file-2" ..., " file-n"] [nocheck " options"];

CODE EXAMPLE 4-5 nocheck Option

foo.cc template <class T> T foo(T t) {}

CC_tmpl_opt definition foo in "foo.cc" nocheck "-g";
Chapter 4 Compiling Templates 4-11

4.8.5 Template Specialization Entries

Until recently, the C++ language provided no mechanism for specializing templates,

so each compiler provided its own mechanism. This section describes the

specialization of templates using the mechanism of previous versions of the C++

compilers. This mechanism is only supported in compatibility mode (-compat [=4]).

The special entry tells the compiler that a given function is a specialization and

should not be instantiated when the compiler encounters the function. When using

the compile-time instantiation method, use special entries in the options file to

preregister the specializations. The syntax is:

The declaration is a legal C++-style declaration without return types. For example:

The preceding options file informs the compiler that the template function foo()
should not be instantiated for the type int , and that a specialized version is

provided by the user. Without that entry in the options file, the function may be

instantiated unnecessarily, resulting in errors:

special declaration;

CODE EXAMPLE 4-6 special Entry

foo.h template <class T> T foo(T t) { };

main.cc #include "foo.h"

CC_tmpl_opt special foo(int);

CODE EXAMPLE 4-7 Example of When special Entry Should be Used

foo.h template <classT> T foo(T t) { return t + t; }

file.cc #include "foo.h"
int func() { return foo(10); }

main.cc #include "foo.h"
int foo(int i) { return i * i; } // the specialization
int main() { int x = foo(10); int y = func();
return 0; }
4-12 C++ User’s Guide • May 2000

In the preceding example, when the compiler compiles main.cc , the specialized

version of foo is correctly used because the compiler has seen its definition. When

file.cc is compiled, however, the compiler instantiates its own version of foo
because it doesn't know foo exists in main.cc . In most cases, this process results in

a multiply-defined symbol during the link, but in some cases (especially libraries),

the wrong function may be used, resulting in runtime errors. If you use specialized

versions of a function, you should register those specializations.

The special entries can be overloaded, as in this example:

To specialize a template class, include the template arguments in the special entry:

If a template class member is a static member, you must include the keyword

static in your specialization entry:

CODE EXAMPLE 4-8 Overloading special Entries

foo.h template <classT> T foo(T t) {}

main.cc #include "foo.h"
int foo(int i) {}
char* foo(char* p) {}

CC_tmpl_opt special foo(int);
special foo(char*);

CODE EXAMPLE 4-9 Specializing a Template Class

foo.h template <class T> class Foo { ... various members ... };

main.cc #include "foo.h"
int main() { Foo<int> bar; return 0; }

CC_tmpl_opt special class Foo<int>;

CODE EXAMPLE 4-10 Specializing a Static Template Class Member

foo.h template <class T> class Foo { public: static T func(T);
};

main.cc #include "foo.h"
int main() { Foo<int> bar; return 0; }

CC_tmpl_opt special static Foo<int>::func(int);
Chapter 4 Compiling Templates 4-13

4-14 C++ User’s Guide • May 2000

CHAPTER 5

Using Libraries

Libraries provide a way to share code among several applications and a way to

reduce the complexity of very large applications. The Sun WorkShop C++ compiler

gives you access to a variety of libraries. This chapter explains how to use these

libraries.

5.1 The C Libraries
The Solaris operating environment comes with several libraries installed in

/usr/lib . Most of these libraries have a C interface. Of these, the libc , libm , and

libw libraries are linked by the CCdriver by default. The library libthread is

linked if you use the –mt option. To link any other system library, use the

appropriate –l option at link time. For example, to link the libdemangle library,

pass –ldemangle on the CCcommand line at link time:

The Sun WorkShop 6 C++ compiler has its own runtime support libraries. All C++

applications are linked to these libraries by the CCdriver. The C++ compiler also

comes with several other useful libraries, as explained in the following section.

example% CC text.c -ldemangle
5-1

5.2 Libraries Provided With the C++
Compiler
Several libraries are shipped with the C++ compiler. Some of these libraries are

available only in compatibility mode (–compat=4), some are available only in the

standard mode (–compat=5), and some are available in both modes. The libgc and

libdemangle libraries have a C interface and can be linked to an application in

either mode.

The following table lists the libraries that are shipped with the C++ compiler and the

modes in which they are available.

5.2.1 C++ Library Descriptions

A brief description of each of these libraries follows.

■ libCrun : This library contains the runtime support needed by the compiler in

the standard mode (–compat=5). It provides support for new/delete ,

exceptions, and RTTI.

TABLE 5-1 Libraries Shipped With the C++ Compiler

Library Description Available Modes

libCrun C++ runtime –compat=5

libCstd C++ standard library –compat=5

libiostream Classic iostreams –compat=5

libC C++ runtime, classic iostreams –compat=4

libcomplex complex library –compat=4

librwtool Tools.h++ 7 –compat=4 , –compat=5

librwtool_dbg Debug-enabled Tools.h++ 7 –compat=5

libgc Garbage collection C interface

libgc_dbg Debug-enabled garbage collection -compat=4 , -compat=5
C interface

libdemangle Demangling C interface
5-2 C++ User’s Guide • May 2000

■ libCstd : This is the C++ standard library. In particular, it includes iostreams .

If you have existing sources that use the classic iostreams and you want to

make use of the standard iostreams , you have to modify your sources to

conform to the new interface. See the C++ Standard Library Reference manual for

details.

■ libiostream : This is the classic iostreams library built with –compat=5 . If you

have existing sources that use the classic iostreams and you want to compile these

sources with the standard mode (–compat=5), you can use libiostream
without modifying your sources. Use –library=iostream to get this library.

■ libC : This is the library needed in compatibility mode (–compat=4). It contains

the C++ runtime support as well as the classic iostreams.

■ libcomplex : This library provides complex arithmetic in compatibility mode

(-compat=4). In the standard mode, the complex arithmetic functionality is

available in libCstd .

■ librwtool : (Tools.h++ 7) This is Rogue Wave’s Tools.h++ version 7 library.

■ libgc : This is the garbage collection library (a component of Sun WorkShop

Memory Monitor). You can access documentation about this library by launching

the Memory Monitor or by pointing your web browser to:

file: install-directory/SUNWspro/docs/index.html

Replace install-directory with the path to your Sun WorkShop installation

directory. In a default installation, install-directory is /opt .

■ libdemangle : This library is used for demangling C++ mangled names.

5.2.2 Default C++ Libraries

Some of the C++ libraries are linked by default by the CCdriver, while others need

to be linked explicitly. In the standard mode, the following libraries are linked by

default by the CCdriver:

-lCstd -lCrun -lm -lw -lcx -lc

In compatibility mode (-compat), the following libraries are linked by default:

-lC -lm -lw -lcx -lc

See Section 3.2.41 “–library= l[,...l]” on page 3-41 for more information.
Chapter 5 Using Libraries 5-3

5.3 Related Library Options
The CCdriver provides several options to help you use libraries.

■ Use the –l option to specify a library to be linked.

■ Use the –L option to specify a directory to be searched for the library.

■ Use the –library option to specify the following libraries that are shipped with

the Sun C++ compiler:

■ libCrun
■ libCstd
■ libiostream
■ libC
■ libcomplex
■ librwtool , librwtool_dbg
■ libgc , libgc_dbg

A library that is specified using both –library and –staticlib options will be

linked statically. Some examples:

■ The following command links the Tools.h++ version 7 and libiostream
libraries dynamically.

■ The following command links the libgc library statically.

■ The following command compiles test.cc in compatibility mode and links

libC statically. Because libC is linked by default in compatibility mode, you are

not required to specify this library using the –library option.

■ The following command excludes the libraries libCrun and libCstd , which

would otherwise be included by default.

example% CC test.cc -library=rwtools7,iostream

example% CC test.cc -library=gc -staticlib=gc

example% CC test.cc -compat=4 -staticlib=libC

example% CC test.cc -library=no%Crun,no%Cstd
5-4 C++ User’s Guide • May 2000

By default, CClinks various sets of system libraries depending on the command line

options. If you specify -xnolib (or -nolib), CClinks only those libraries that are

specified explicitly with the -l option on the command line. (When -xnolib or

-nolib is used, the -library option is ignored, if present.)

The –R option allows you to build dynamic library search paths into the executable

file. At execution time, the runtime linker searches these paths for the shared

libraries needed by the application. The CCdriver passes –R/opt/SUNWspro/lib
to ld by default (if the compiler is installed in the standard location). You can use

-norunpath to disable building the default path for shared libraries into the

executable.

5.4 Using Class Libraries
Generally, two steps are involved in using a class library:

1. Include the appropriate header in your source code.

2. Link your program with the object library.

5.4.1 The iostream Library

The Sun Workshop 6 C++ compiler provides two implementations of iostreams:

■ Classic iostreams. This term refers to the iostreams library shipped with the C++

4.0, 4.0.1, 4.1, and 4.2 compilers, and earlier with the cfront -based 3.0.1

compiler. There is no standard for this library, but a lot of existing code uses it.

This library is part of libC in compatibility mode and is also available in

libiostream in the standard mode.

■ Standard iostreams. This is part of the C++ standard library, libCstd , and is

available only in standard mode. It is neither binary- nor source-compatible with

the classic iostreams library.
Chapter 5 Using Libraries 5-5

If you have existing C++ sources, your code might look like the following example,

which uses classic iostreams.

The following command compiles in compatibility mode and links prog1.cc into

an executable program called prog1 . The classic iostream library is part of libC ,

which is linked by default in compatibility mode.

The next example uses standard iostreams.

The following command compiles and links prog2.cc into an executable program

called prog2 . The program is compiled in standard mode and libCstd , which

includes the standard iostream library, is linked by default.

5.4.2 The complex Library

The standard library provides a templatized complex library that is similar to the

complex library provided with the C++ 4.2 compiler. If you compile in standard

mode, you must use <complex> instead of <complex.h> . You cannot use

<complex> in compatibility mode.

// file prog1.cc
#include <iostream.h>

int main() {
 cout << "Hello, world!" << endl;
 return 0;
}

example% CC -compat prog1.cc -o prog1

// file prog2.cc
#include <iostream>

int main() {
 std::cout << "Hello, world!" << std::endl;
 return 0;
}

example% CC prog2.cc -o prog2
5-6 C++ User’s Guide • May 2000

In compatibility mode, you must explicitly ask for the complex library when linking.

In standard mode, the complex library is included in libCstd, and is linked by

default.

There is no complex.h header for standard mode. In C++ 4.2, “complex” is the

name of a class, but in standard C++, “complex” is the name of a template. It is not

possible to provide typedefs that allow old code to work unchanged. Therefore, code

written for 4.2 that uses complex numbers will need some straightforward editing to

work with the standard library. For example, the following code was written for 4.2

and will compile in compatibility mode.

The following example compiles and links ex1.cc in compatibility mode, and then

executes the program.

Here is ex1.cc rewritten as ex2.cc to compile in standard mode:

// file ex1.cc (compatibility mode)
#include <iostream.h>
#include <complex.h>

int main()
{

complex x(3,3), y(4,4);
complex z = x * y;
cout << "x=" << x << ", y=" << y << ", z=" << z << endl;

}

example% CC -compat ex1.cc -library=complex
example% a.out
x=(3, 3), y=(4, 4), z=(0, 24)

// file ex2.cc (ex1.cc rewritten for standard mode)
#include <iostream>
#include <complex>

int main()
{

 std::complex<double> x(3,3), y(4,4);
 std::complex<double> z = x * y;
 std::cout << "x=" << x << ", y=" << y << ", z=" << z <<

std::endl;
}

Chapter 5 Using Libraries 5-7

The following example compiles and links the rewritten ex2.cc in standard mode,

and then executes the program.

5.4.3 Linking C++ Libraries

The following table shows the compiler options for linking the C++ libraries. See

Section 3.2.41 “–library= l[,...l]” on page 3-41 for more information.

5.5 Statically Linking Standard Libraries
The CCdriver links in shared versions of several libraries by default, including libc
and libm , by passing a -l lib option for each of the default libraries to the linker.
(See Section 5.2.2 “Default C++ Libraries” for the list of default libraries for

compatibility mode and standard mode.)

% CC ex2.cc
% a.out
x=(3,3), y=(4,4), z=(0,24)

TABLE 5-2 Compiler Options for Linking C++ Libraries

Library Compile Mode Option

Classic iostream –compat=4
–compat=5

None needed

-library=iostream

complex –compat=4
-compat=5

-library=complex
None needed

Tools.h++ version 7 –compat=4
–compat=5

-library=rwtool7
-library=rwtool7,iostream

Tools.h++ version 7 debug –compat=4
–compat=5

-library=rwtool7_dbg
-library=rwtool7_dbg,iostream

Garbage collection –compat=4
–compat=5

-library=gc
-library=gc

Garbage collection debug –compat=4
–compat=5

-library=gc_dbg
-library=gc_dbg
5-8 C++ User’s Guide • May 2000

If you want any of these default libraries to be linked statically, you can use the

-library option along with the –staticlib option to link a C++ library statically.

This alternative is much easier than the one described earlier. For example:

In this example, the -library option is not explicitly included in the command. In

this case the -library option is not necessary because the default setting for

-library is %none,Cstd,Crun in standard mode (the default mode).

Alternately, you can use the -xnolib compiler option. With the -xnolib option,

the driver does not pass any -l options to ld ; you must pass these options yourself.

The following example shows how you would link statically with libCrun , and

dynamically with libw , libm , and libc in the Solaris 2.6, Solaris 7, or Solaris 8

environment:

The order of the -l options is important. The –lCstd, –lCrun , -lm , -lw , and

-lcx options appear before -lc .

Note – The -lcx option does not exist on the IA platform.

Some CCoptions link to other libraries. These library links are also suppressed by

-xnolib . For example, using the -mt option causes the CCdriver to pass -lthread
to ld . However, if you use both –mt and –xnolib , the CCdriver does not pass

-lthread to ld . See Section 3.2.114 “–xnolib ” for more information. See Linker and
Libraries Guide for more information about ld .

5.6 Using Shared Libraries
The following shared libraries are included with the C++ compiler:

■ libCrun.so.1
■ libC.so.5
■ libcomplex.so.5
■ librwtool.so.2
■ libgc.so.1
■ libgc_dbg.so.1

example% CC test.c -staticlib=Crun

example% CC test.c –xnolib –lCstd –Bstatic –lCrun \
–Bdynamic –lm –lw –lcx –lc
Chapter 5 Using Libraries 5-9

The occurrence of each shared object linked with the program is recorded in the

resulting executable (a.out file); this information is used by ld.so to perform

dynamic link editing at runtime. Because the work of incorporating the library code

into an address space is deferred, the runtime behavior of the program using a

shared library is sensitive to an environment change—that is, moving a library from

one directory to another. For example, if your program is linked with

libcomplex.so.5 in /opt/SUNWspro/ release/lib , and the libcomplex.so.5
library is later moved into /opt2/SUNWspro/ release/lib , the following message is

displayed when you run the binary code:

You can still run the old binary code without recompiling it by setting the

environment variable LD_LIBRARY_PATHto the new library directory.

In a C shell:

In a Bourne shell:

Note – release is specific for each release of Sun WorkShop.

The LD_LIBRARY_PATHhas a list of directories, usually separated by colons. When

you run a C++ program, the dynamic loader searches the directories in

LD_LIBRARY_PATHbefore it searches the default directories.

Use the ldd command as shown in the following example to see which libraries are

linked dynamically in your executable:

This step should rarely be necessary, because the shared libraries are seldom moved.

ld.so: libcomplex.so.5: not found

example% setenv LD_LIBRARY_PATH \
/opt2/SUNWspro/ release/lib:${LD_LIBRARY_PATH}

example$ LD_LIBRARY_PATH=\
/opt2/SUNWspro/ release/lib:${LD_LIBRARY_PATH}
example$ export LD_LIBRARY_PATH

example% ldd a.out
5-10 C++ User’s Guide • May 2000

Note – When shared libraries are opened with dlopen , RTLD_GLOBALmust be

used for exceptions to work.

See Linker and Libraries Guide for more information on using shared libraries.

5.7 Replacing the C++ Standard Library
Replacing the standard library that is distributed with the compiler is risky, and

good results are not guaranteed. If you want to use a different version of the C++

standard library for reasons of performance, features, or compatibility with other

systems, WorkShop 6 C++ provides the means to do so. The basic operation is to

disable the standard headers and library supplied with the compiler, and to specify

the directories where the new header files and library are found, as well as the name

of the library itself.

5.7.1 What Can be Replaced

You can replace most of the standard library and its associated headers. The replaced

library is libCstd , and the associated headers are listed in the following table:

The replaceable part of the library consists of what is loosely known as “STL”, plus

the string classes, the iostream classes, and their helper classes. Because these classes

and headers are interdependent, replacing just a portion of them is unlikely to work.

You should replace all of the headers and all of libCstd if you replace any part.

The standard headers <exception> , <new>, and <typeinfo> are tied tightly to

the compiler itself and to libCrun , and cannot reliably be replaced. The library

libCrun contains many “helper” functions that the compiler depends on, and

cannot be replaced.

<algorithm> <bitset> <complex> <deque> <fstream <functional>
<iomanip> <ios> <iosfwd> <iostream> <istream> <iterator> <limits>
<list> <locale> <map> <memory> <numeric> <ostream> <queue> <set>
<sstream> <stack> <stdexcept> <streambuf> <string> <strstream>
<utility> <valarray> <vector>
Chapter 5 Using Libraries 5-11

The 17 standard headers inherited from C (<stdlib.h> , <stdio.h> , <string.h> ,

and so forth) are tied tightly to the Solaris operating environment and the basic

Solaris runtime library libc , and cannot reliably be replaced. The C++ versions of

those headers (<cstdlib> , <cstdio> , <cstring> , and so forth) are tied tightly to

the basic C versions and cannot reliably be replaced.

5.7.2 Installing the Replacement Library

To install the replacement library, you must first decide on the locations for the

replacement headers and on the replacement for libCstd . For purposes of

discussion, assume the headers are placed in /opt/mycstd/include and the

library is placed in /opt/mycstd/lib . Assume the library is called libmyCstd.a .

(It is often convenient if the library name starts with “lib ”.)

5.7.3 Using the Replacement Library

On each compilation, use the -I option to point to the location where the headers

are installed. In addition, use the -library=no%Cstd option to prevent finding the

compiler’s own versions of the libCstd headers. For example:

During compiling, the -library=no%Cstd option prevents searching the directory

where the compiler’s own version of these headers is located.

On each program or library link, use the -library=no%Cstd option to prevent

finding the compiler’s own libCstd , the -L option to point to the directory where

the replacement library is, and the -l option to specify the replacement library.

Example:

Alternatively, you can use the full path name of the library directly, and omit using

the -L and -l options. For example:

During linking, the -library=no%Cstd option prevents linking the compiler’s own

version of libCstd .

example% CC -I/opt/mycstd/include -library=no%Cstd ... (compile)

example% CC -library=no%Cstd -L/opt/mycstd/lib -lmyCstd ... (link)

example% CC -library=no%Cstd /opt/mycstd/lib/libmyCstd.a ... (link)
5-12 C++ User’s Guide • May 2000

5.7.4 Standard Header Implementation

C has 17 standard headers (<stdio.h> , <string.h> , <stdlib.h> , and others).

These headers are delivered as part of the Solaris operating environment, in the

directory /usr/include . C++ has those same headers, with the added requirement

that the various declared names appear in both the global namespace and in

namespace std . On versions of the Solaris operating environment prior to Solaris 8,

the C++ compiler supplies its own versions of these headers instead of replacing

those in the /usr/include directory.

C++ also has a second version of each of the C standard headers (<cstdio> ,

<cstring> , and <cstdlib> , and others) with the various declared names

appearing only in namespace std . Finally, C++ adds 32 of its own standard headers

(<string> , <utility> , <iostream> , and others).

The obvious implementation of the standard headers would use the name found in

C++ source code as the name of a text file to be included. For example, the standard

headers <string> (or <string.h>) would refer to a file named string (or

string.h) in some directory. That obvious implementation has the following

drawbacks:

■ You cannot search for just header files or create a makefile rule for the header

files if they do not have file name suffixes.

■ If you put -I/usr/include on the compiler command line, you do not get the

correct version of the standard C headers on Solaris 2.6 and Solaris 7 operating

environments because /usr/include is searched before the compiler’s own

include directory is searched.

■ If you have a directory or executable program named string , it might

erroneously be found instead of the standard header file.

■ On versions of the Solaris operating environment prior to Solaris 8, the default

dependencies for makefiles when .KEEP_STATE is enabled can result in attempts

to replace standard headers with an executable program. (A file without a suffix is

assumed by default to be a program to be built.)

To solve these problems, the compiler include directory contains a file with the

same name as the header, along with a symbolic link to it that has the unique suffix

.SUNWCCh(SUNWis the prefix for all compiler-related packages, CCis the C++

compiler, and h is the usual suffix for header files). When you specify <string> , the

compiler rewrites it to <string.SUNWCCh> and searches for that name. The suffixed

name will be found only in the compiler’s own include directory. If the file so

found is a symbolic link (which it normally is), the compiler dereferences the link

exactly once and uses the result (string in this case) as the file name for error

messages and debugger references. The compiler uses the suffixed name when

emitting file dependency information.
Chapter 5 Using Libraries 5-13

The name rewriting occurs only for the two forms of the 17 standard C headers and

the 32 standard C++ headers, only when they appear in angle brackets and without

any path specified. If you use quotes instead of angle brackets, specify any path

components, or specify some other header, no rewriting occurs.

The following table illustrates common situations.

If the compiler does not find header.SUNWCCh, the compiler restarts the search

looking for the name as provided in the #include directive. For example, given the

directive #include <string> , the compiler attempts to find a file named

string.SUNWCCh . If that search fails, the compiler looks for a file named string .

5.7.4.1 Replacing Standard C++ Headers

Because of the search algorithm described in Section 5.7.4 “Standard Header

Implementation,” you do not need to supply SUNWCChversions of the replacement

headers described in Section 5.7.2 “Installing the Replacement Library.” But you

might run into some of the described problems. If so, the recommended solution is

to add symbolic links having the suffix .SUNWCChfor each of the unsuffixed

headers. That is, for file utility , you would run the command

When the compiler looks first for utility.SUNWCCh , it will find it, and not be

confused by any other file or directory called utility .

TABLE 5-3 Header Search Examples

Source Code Compiler Searches for Comments

<string> string.SUNWCCh C++ string templates

<cstring> cstring.SUNWCCh C++ version of C string.h

<string.h> string.h.SUNWCCh C string.h

<fcntl.h> fcntl.h Not a standard C or C++ header

"string" string Double-quotation marks, not

angle brackets

<../string> ../string Path specified

example% ln -s utility utility.SUNWCCh
5-14 C++ User’s Guide • May 2000

5.7.4.2 Replacing Standard C Headers

Replacing the standard C headers is not supported. If you nevertheless wish to

provide your own versions of standard headers, the recommended procedure is as

follows:

■ Put all the replacement headers in one directory.

■ Create a .SUNWCChsymbolic link to each of the replacement headers in that

directory.

■ Cause the directory that contains the replacement headers to be searched by using

the -I directives on each invocation of the compiler.

For example, suppose you have replacements for <stdio.h> and <cstdio> . Put

the files stdio.h and cstdio in directory /myproject/myhdr . In that directory,

run these commands:

Use the option -I/myproject/mydir on every compilation.

Caveats:
■ If you replace any C headers, you must replace them in pairs. For example, if you

replace <time.h> , you should also replace <ctime> .

■ Replacement headers must have the same effects as the versions being replaced.

That is, the various runtime libraries such as libCrun , libC , libCstd , libc ,

and librwtool are built using the definitions in the standard headers. If your

replacements do not match, your program is unlikely to work.

example% ln -s stdio.h stdio.h.SUNWCCh
example% ln -s cstdio cstdio.SUNWCCh
Chapter 5 Using Libraries 5-15

5-16 C++ User’s Guide • May 2000

CHAPTER 6

Building Libraries

This chapter explains how to build your own libraries.

6.1 Understanding Libraries
Libraries provide two benefits. First, they provide a way to share code among

several applications. If you have such code, you can create a library with it and link

the library with any application that needs it. Second, libraries provide a way to

reduce the complexity of very large applications. Such applications can build and

maintain relatively independent portions as libraries and so reduce the burden on

programmers working on other portions.

Building a library simply means creating .o files (by compiling your code with the

-c option) and combining the .o files into a library using the CCcommand. You can

build two kinds of libraries, static (archive) libraries and dynamic (shared) libraries.

With static (archive) libraries, objects within the library are linked into the program’s

executable file at link time. Only those .o files from the library that are needed by

the application are linked into the executable. The name of a static (archive) library

generally ends with a .a suffix.

With dynamic (shared) libraries, objects within the library are not linked into the

program’s executable file, but rather the linker notes in the executable that the

program depends on the library. When the program is executed, the system loads

the dynamic libraries that the program requires. If two programs that use the same

dynamic library execute at the same time, the operating system shares the library

among the programs. The name of a dynamic (shared) library ends with a .so
suffix.

Linking dynamically with shared libraries has several advantages over linking

statically with archive libraries:
6-1

■ The size of the executable is smaller.

■ Significant portions of code can be shared among programs at runtime, reducing

the amount of memory use.

■ The library can be replaced at runtime without relinking with the application.

(This is the primary mechanism that enables programs to take advantage of many

improvements in the Solaris environment without requiring relinking and

redistribution of programs.)

■ The shared library can be loaded at runtime, using the dlopen() function call.

However, dynamic libraries have some disadvantages:

■ Runtime linking has an execution-time cost.

■ Distributing a program that uses dynamic libraries might require simultaneous

distribution of the libraries it uses.

■ Moving a shared library to a different location can prevent the system from

finding the library and executing the program. (The environment variable

LD_LIBRARY_PATHhelps overcome this problem.)

6.2 Building Static (Archive) Libraries
The mechanism for building static (archive) libraries is similar to that of building an

executable. A collection of object (.o) files can be combined into a single library

using the –xar option of CC.

You should build static (archive) libraries using CC -xar instead of using the ar
command directly. The C++ language generally requires that the compiler maintain

more information than can be accommodated with traditional .o files, particularly

template instances. The –xar option ensures that all necessary information,

including template instances, is included in the library. You might not be able to

accomplish this in a normal programming environment since make might not know

which template files are actually created and referenced. Without CC -xar ,

referenced template instances might not be included in the library, as required. For

example:

% CC -c foo.cc # Compile main file, templates objects are created.
% CC -xar -o foo.a foo.o # Gather all objects into a library.
6-2 C++ User’s Guide • May 2000

The –xar flag causes CCto create a static (archive) library. The –o directive is

required to name the newly created library. The compiler examines the object files on

the command line, cross-references the object files with those known to the template

repository, and adds those templates required by the user’s object files (along with

the main object files themselves) to the archive.

Note – Use the -xar flag for creating or updating an existing archive only. Do not

use it to maintain an archive. The -xar option is equivalent to ar -cr .

It is a good idea to have only one function in each .o file. If you are linking with an

archive, an entire .o file from the archive is linked into your application when a

symbol is needed from that particular .o file. Having one function in each .o file

ensures that only those symbols needed by the application will be linked from the

archive.

6.3 Building Dynamic (Shared) Libraries
Dynamic (shared) libraries are built the same way as static (archive) libraries, except

that you use –G instead of –xar on the command line.

You should not use ld directly. As with static libraries, the CCcommand ensures that

all the necessary template instances from the template repository are included in the

library if you are using templates. Furthermore, the C++ compiler does not initialize

global variables if they are defined in a dynamic library, unless the library is built

correctly. All static constructors in a dynamic library that is linked to an application

are called before main() is executed and all static destructors are called after main()
exits. If a shared library is opened using dlopen() , all static constructors are

executed at dlopen() and all static destructors are executed at dlclose() . Finally,

exceptions might not work, unless you use the CC -G command to build the

dynamic library.

To build a dynamic (shared) library, you must create relocatable object files by

compiling each object with the –Kpic or –KPIC option of CC. You can then build a

dynamic library with these relocatable object files. If you get any bizarre link

failures, you might have forgotten to compile some objects with –Kpic or –KPIC .

To build a C++ dynamic library named libfoo.so that contains objects from source

files lsrc1.cc and lsrc2.cc, type:

% CC -G -o libfoo.so -h libfoo.so -Kpic lsrc1.cc lsrc2.cc
Chapter 6 Building Libraries 6-3

The -G option specifies the construction of a dynamic library. The -o option specifies

the file name for the library. The -h option specifies a name for the shared library.

The -Kpic option specifies that the object files are to be position-independent.

Note – The CC -G command does not pass any -l options to ld . If you want the

shared library to have a dependency on another shared library, you must pass the

necessary -l option on the command line. For example, if you want the shared

library to be dependent upon libCrun.so , you must pass -lCrun on the command

line.

6.4 Building Shared Libraries That Contain
Exceptions
When shared libraries are opened using dlopen(), you must use RTLD_GLOBAL
for exceptions to work.

Note – When building shared libraries that contain exceptions, do not pass the

option –Bsymbolic to ld . Exceptions that should be caught might be missed.

6.5 Building Libraries for Private Use
When an organization builds a library for internal use only, the library can be built

with options that are not advised for more general use. In particular, the library need

not comply with the system’s application binary interface (ABI). For example, the

library can be compiled with the -fast option to improve its performance on a

known architecture. Likewise, it can be compiled with the -xregs=float option to

improve performance.
6-4 C++ User’s Guide • May 2000

6.6 Building Libraries for Public Use
When an organization builds a library for use by other organizations, the

management of the libraries, platform generality, and other issues become

significant. A simple test for whether or not a library is public is to ask if the

application programmer can recompile the library easily. Public libraries should be

built in conformance with the system’s application binary interface (ABI). In general,

this means that any processor-specific options should be avoided. (For example, do

not use –fast or –xtarget .)

The SPARC ABI reserves some registers exclusively for applications. For V7 and V8,

these registers are %g2, %g3, and %g4. For V9, these registers are %g2and %g3. Since

most compilations are for applications, the C++ compiler, by default, uses these

registers for scratch registers, improving program performance. However, use of

these registers in a public library is generally not compliant with the SPARC ABI.

When building a library for public use, compile all objects with the

-xregs=no%appl option to ensure that the application registers are not used.

6.7 Building a Library That Has a C API
If you want to build a library that is written in C++ but that can be used with a C

program, you must create a C API (application programming interface). To do this,

make all the exported functions extern "C". Note that this can be done only for

global functions and not for member functions.

If you also want to remove any dependency on the C++ runtime libraries, you

should enforce the following coding rules in your library sources:

■ Do not use any form of new or delete unless you provide your own

corresponding versions.

■ Do not use exceptions.

■ Do not use runtime type information (RTTI).
Chapter 6 Building Libraries 6-5

6.8 Using dlopen to Access a C++ Library
From a C Program
If you want to use dlopen() to open a C++ shared library from a C program, make

sure that the shared library has a dependency on the appropriate C++ runtime

(libC.so.5 for -compat=4, or libCrun.so.1 for -compat=5).

To do this, add -lC for -compat=4 or add -lCrun for -compat=5 to the command

line when building the shared library. For example:

If the shared library uses exceptions and does not have a dependency on the C++

runtime library, your C program might behave erratically.

Note – When shared libraries are opened with dlopen() , RTLD_GLOBALmust be

used for exceptions to work.

6.9 Building Multithreaded Libraries
For information about building multithreaded libraries, refer to the C++
Programming Guide.

example% CC -G -compat=4 ... -lC
example% CC -G -compat=5 ... -lCrun
6-6 C++ User’s Guide • May 2000

Glossary

ABI See application binary interface.

abstract class A class that contains one or more abstract methods, and therefore can never be

instantiated. Abstract classes are defined so that other classes can extend them

and make them concrete by implementing the abstract methods.

abstract method A method that has no implementation.

ANSI C American National Standards Institute’s definition of the C programming

language. It is the same as the ISO definition. See ISO.

ANSI/ISO C++ The American National Standards Institute and the ISO standard for the C++

programming language. See ISO.

application binary
interface The binary system interface between compiled applications and the operating

system on which they run.

array A data structure that stores a collection of values of a single data type

consecutively in memory. Each value is accessed by its position in the array.

base class See inheritance.

binary compatibility The ability to link object files that are compiled by one release while using a

compiler of a different release.

binding Associating a function call with a specific function definition. More generally,

associating a name with a particular entity.

cfront A C++ to C compiler program that translates C++ to C source code, which in

turn can be compiled by a standard C compiler.

class A user-defined data type consisting of named data elements (which may be of

different types), and a set of operations that can be performed with the data.

class template A template that describes a set of classes or related data types.
Glossary-1

class variable A data item associated with a particular class as a whole, not with particular

instances of the class. Class variables are defined in class definitions. Also

called static field. See also instance variable.

compiler option An instruction to the compiler that changes its behavior. For example, the

-g option tells the compiler to generate data for the debugger. Synonyms: flag,

switch.

constructor A special class member function that is automatically called by the compiler

whenever a class object is created to ensure the initialization of that object’s

instance variables. The constructor must always have the same name as the

class to which it belongs. See destructor.

data member An element of a class that is data, as opposed to a function or type definition.

data type The mechanism that allows the representation of, for example, characters,

integers, or floating-point numbers. The type determines the storage that is

allocated to a variable and the operations that can be performed on the

variable.

derived class See inheritance.

destructor A special class member function that is automatically called by the compiler

whenever a class object is destroyed or the operator delete is applied to a

class pointer. The destructor must always have the same name as the class to

which it belongs, preceded by a tilde (~). See constructor.

dynamic binding Connection of the function call to the function body at runtime. Occurs only

with virtual functions. Also called late binding, runtime binding.

dynamic cast A safe method of converting a pointer or reference from its declared type to

any type that is consistent with the dynamic type to which it refers.

dynamic type The actual type of an object that is accessed by a pointer or reference that

might have a different declared type.

early binding See static binding.

ELF file Executable and Linking Format file, which is produced by the compiler.

exception An error occurring in the normal flow of a program that prevents the program

from continuing. Some reasons for errors include memory exhaustion or

division by zero.

exception handler Code specifically written to deal with errors, and that is invoked automatically

when an exception occurs for which the handler has been registered.

exception handling An error recovery process that is designed to intercept and prevent errors.

During the execution of a program, if a synchronous error is detected, control

of the program returns to an exception handler that was registered at an earlier

point in the execution, and the code containing the error is bypassed.

flag See compiler option.
Glossary-2 C++ User’s Guide • May 2000

function overloading Giving the same name, but different argument types and numbers, to different

functions. Also called functional polymorphism.

functional
polymorphism See function overloading.

function prototype A declaration that describes the function’s interface with the rest of the

program.

function template A mechanism that allows you to write a single function that you can then use

as a model, or pattern, for writing related functions.

idempotent The property of a header file that including it many times in one translation

unit has the same effect as including it once.

incremental linker A linker that creates a new executable file by linking only the changed .o files

to the previous executable.

inheritance A feature of object-oriented programming that allows the programmer to

derive new classes (derived classes) from existing ones (base classes). There are

three kinds of inheritance: public, protected, and private.

inline function A function that replaces the function call with the actual function code.

instantiation The process by which a C++ compiler creates a usable function or object

(instance) from a template.

instance variable Any item of data that is associated with a particular object. Each instance of a

class has its own copy of the instance variables defined in the class. Also called

field. See also class variable.

ISO International Organization for Standardization.

K&R C The de facto C programming language standard that was developed by Brian

Kernighan and Dennis Ritchie before ANSI C.

keyword A word that has unique meaning in a programming language, and that can be

used only in a specialized context in that language.

late binding See dynamic binding.

linker The tool that connects object code and libraries to form a complete, executable

program.

local variable A data item known within a block, but inaccessible to code outside the block.

For example, any variable defined within a method is a local variable and

cannot be used outside the method.

locale A set of conventions that are unique to a geographical area and/or language,

such as date, time, and monetary format.
Glossary-3

lvalue An expression that designates a location in memory at which a variable’s data

value is stored. Also, the instance of a variable that appears to the left of the

assignment operator.

mangle See name mangling.

member function An element of a class that is a function, as opposed to a data definition or type

definition.

method In some object-oriented languages, another name for a member function.

multiple inheritance Inheritance of a derived class directly from more than one base class.

multithreading The software technology that enables the development of parallel applications,

whether on single- or multiple-processor systems.

name mangling In C++, many functions can share the same name, so name alone is not

sufficient to distinguish different functions. The compiler solves this problem

by name mangling—creating a unique name for the function that consists of

some combination of the function name and its parameters—to enable type-

safe linkage. Also called name decoration.

namespace A mechanism that controls the scope of global names by allowing the global

space to be divided into uniquely named scopes.

operator overloading The ability to use the same operator notation to produce different outcomes. A

special form of function overloading.

optimization The process of improving the efficiency of the object code that is generated by

the compiler.

option See compiler option.

overloading To give the same name to more than one function or operator.

polymorphism The ability of a pointer or reference to refer to objects whose dynamic type is

different from the declared pointer or reference type.

pragma A compiler preprocessor directive, or special comment, that instructs the

compiler to take a specific action.

runtime binding See dynamic binding.

runtime type
identification (RTTI) A mechanism that provides a standard method for a program to determine an

object type during runtime.

rvalue The variable that is located to the right of an assignment operator. The rvalue

can be read but not altered.

scope The range over which an action or definition applies.

stab A symbol table entry that is generated in the object code. The same format is

used in both a.out files and ELF files to contain debugging information.
Glossary-4 C++ User’s Guide • May 2000

stack A data storage method by which data can be added to or removed from only

the top of the stack, using a last-in, first-out strategy.

static binding Connection of a function call to a function body at compile time. Also called

early binding.

subroutine A function. In Fortran, a function that does not return a value.

switch See compiler option.

symbol A name or label that denotes some program entity.

symbol table A list of all identifiers that are present when a program is compiled, their

locations in the program, and their attributes. The compiler uses this table to

interpret uses of identifiers.

template database A directory containing all configuration files that are needed to handle and

instantiate the templates that are required by a program.

template options file A user-provided file containing options for the compilation of templates, as

well as source location and other information. The template options file is

deprecated and should not be used.

template
specialization A specialized instance of a class template member function that overrides the

default instantiation when the default cannot handle a given type adequately.

trapping Interception of an action, such as program execution, in order to take other

action. The interception causes the temporary suspension of microprocessor

operations and transfers program control to another source.

type A description of the ways in which a symbol can be used. The basic types are

integer and float . All other types are constructed from these basic types by

collecting them into arrays or structures, or by adding modifiers such as

pointer-to or constant attributes.

variable An item of data named by an identifier. Each variable has a type, such as int
or void , and a scope. See also class variable, instance variable, local variable.

VTABLE A table that is created by the compiler for each class that contains virtual

functions.
Glossary-5

Glossary-6 C++ User’s Guide • May 2000

Index
NUMERICS
-386 , compiler option, 3-12

-486 , compiler option, 3-12

A
-a , compiler option, 3-12

.a , file name suffix, 6-1, 2-4

ABI (application binary interface), building

libraries, 6-4 to 6-5

aliases, defining, 2-14

API (application programming interface), building

libraries, 6-5

__ARRAYNEW, predefined macro, 3-16

assembler, compilationvR component, 2-11

Auto-Read, disabling for dbx , 3-88

B
-b binding, compiler option, 3-5, 3-12 to 3-14

_BOOL, predefined macro, 3-16

-Bsymbolic , compiler option, 6-4

__BUILTIN_VA_ARG_INCR, predefined

macro, 3-16

C
C headers, replacing, 5-15

C++ standard library, replacing, 5-11 to 5-15

-c , compiler option, 2-6, 3-6, 3-14

.C , file name suffixes, 2-4

.c , file name suffixes, 2-4

cache directory, template, 2-5

cache properties, defining, 3-66

caveats, C header replacement, 5-15

.cc , file name suffixes, 2-4

CC_tmpl_opt , options file, 4-8

CCadmin(1) command, 4-1

ccfe , compilation component, 2-11

CCFLAGS, environment variable, 2-14

CClink , compilation component, 2-11

cg , compilation component, 2-11

-cg[89|92] , compiler option, 3-14

class libraries, using, 5-5 to 5-8

code

generation options, 3-2

optimizer, 2-11

codegen , compilation component, 2-11

command line, recognized file suffixes, 2-4

-compat , compiler option, 3-2, 3-4, 3-15

compilation unit, multiple source files, 2-4 to 2-5

compilation, memory requirements, 2-11 to 2-13

compiler

component invocation order, 2-9 to 2-11

diagnosing, 2-8 to 2-9

new features, 1-4

compiling and linking, 2-6 to 2-7

complex library, 5-6 to 5-8

constructors, static, 6-3

__cplusplus , predefined macro, 3-16

.cpp , file name suffixes, 2-4

.cxx , file name suffixes, 2-4
Index-1

D
-D , compiler option, 3-1, 3-8, 3-16 to 3-18

+d, compiler option, 3-2, 3-3, 3-16

-d , compiler option, 3-5, 3-18

-dalign , compiler option, 3-19

__DATE__, predefined macro, 3-16

-DDEBUG, 4-7

debugging

compile-time instantiation, 4-7

Fix-and-Continue, 4-3

options, 3-2, 3-3

preparing programs for, 2-7

default libraries, static linking, 5-8

definition name, compiler option, 4-9

definitions, searching template, 4-6

dependency

on C++ runtime libraries, removing, 6-5

shared library, 6-4

destructors, static, 6-3

directories, changing names, 4-8

dlclose() , function call, 6-3

dlopen() , function call, 6-2, 6-4 to 6-6

dmesg, actual real memory, 2-13

-dryrun , compiler option, 3-3, 3-6, 3-19

dynamic (shared) libraries, 3-36, 6-1 to 6-4

E
-E

debugging options, 3-3

option description, 3-20 to 3-21

output options, 3-6

preprocessor options, 3-8

+e(0|1) , compiler option, 3-2, 3-21

environment variables

CCFLAGS, 2-14

LD_LIBRARY_PATH, 5-10, 6-2

RTLD_GLOBAL, 5-11, 6-4

SUNWS_CACHE_NAME, 4-5

SUNWS_CONFIG_NAME, 4-8

error messages

compiler version incompatibility, 2-5

failed links, 2-7

linker, 2-8

exceptions

shared libraries, 5-11, 6-4

trapping, 3-32

explicit instances, 4-2 to 4-4

extension features, defined, 1-1

extensions, source file, 4-9

external instances, 4-2

external linkage, 4-2

F
-fast , compiler option, 2-7, 3-7, 3-22 to 3-24

fbe , compilation component, 2-11

-features , compiler option, 3-4, 3-24 to 3-26

file names

.SUNWCCh file name suffix, 5-13 to 5-14

standard library, 2-16

suffixes, 2-4

template definition files, 4-6

__FILE__ , predefined macro, 3-17

files

See also source files

executable program, 2-6

multiple source, 2-4 to 2-5

object, 2-6, 3-1, 6-3

options, 4-6 to 4-9, 4-12

suffixes, 5-13

-flags , compiler option, 3-26

floating-point

options, 3-4

precision mode, 3-28

-fnonstd , compiler option, 3-26

-fns[=(yes|no)] , compiler option, 3-4, 3-27 to

3-28

-fprecision= p, compiler option, 3-4, 3-28 to 3-29

-fround= r, compiler option, 3-4, 3-30

-fsimple= n, compiler option, 3-4, 3-30 to 3-32

-fstore , compiler option, 3-4, 3-32

-ftrap , compiler option, 3-4, 3-32

functions, dynamic (shared) libraries, 6-3

G
-G

dynamic library command, 6-3 to 6-4

library option, 3-5

option description, 3-34 to 3-35

output option, 3-6

-g
code generation option, 3-2

compiling and linking with, 2-7
Index-2 C++ User’s Guide • May 2000

option description, 3-35

debugging option, 3-3

template compilation option, 4-7

garbage collection debug, compiler option, 5-8

garbage collection, compiler option, 5-8

global instances, 4-2 to 4-3

global linkage, 4-2 to 4-4

-gO
compiler option, 2-7

debugging option, 3-3

option description, 3-36

gprof , C++ utilities, 1-5

H
-H , compiler option, 3-3, 3-6, 3-36

hardware architecture, 3-90

headers, standard library, 5-11 to 5-15

-help , compiler option, 3-36

-h name, compiler option, 3-5, 3-36 to 3-37

I
-I , compiler option, 3-1, 3-9, 3-37, 4-6

-i , compiler option, 3-5, 3-37

.i , file name suffixes, 2-4

__i386 , predefined macro, 3-18

i386 , predefined macro, 3-18

.il , file name suffixes, 2-4

ild , compilation component, 2-11

implicit instances, 4-4

include directories, template definition files, 4-6

#include files, search order, 3-37

include statement, options files, 4-8

incompatibility, compiler versions, 2-5

inline templates, 3-74

inline , compilation component, 2-11

instances, template, 4-2 to 4-4, 4-7

-instances= a, compiler option, 3-10, 3-38

-instances=explicit , template compilation

option, 4-4

-instances=extern , template compilation

option, 4-2

-instances=global , template compilation

option, 4-3

-instances=semiexplicit , template

compilation option, 4-4

-instances=static , template compilation

option, 4-3

instantiation, compile-time versus link-time, 4-7

internationalization, implementation, 1-5

invalid floating-point, 3-32

iostream library, 5-5 to 5-6, 5-8

iostreams

accessing files, 3-43

classic, 5-3, 5-5

standard, 5-3, 5-5

using make with, 2-16

iropt , compliation component, 2-11

ISO International Standard for C++, standards

conformance, 1-1

ISO IS 14882:1998, standards conformance, 1-1

ISO/ANSI C++ standard, one-definition rule, 4-5

K
.KEEP_STATE, using with <istream> , 2-16

-keeptmp , compiler option, 3-3, 3-39

keywords, options file entries, 4-8

-KPIC , compiler option, 3-2, 3-39, 6-3

-Kpic , compiler option, 3-2, 3-39, 6-3

L
-L , compiler option, 3-1, 3-5, 3-39, 5-4

-l , compiler option, 3-1, 3-5, 3-40, 5-1, 5-4

languages

options, 3-4

support for native, 1-5

-lcx , option and IA platform, 5-9

ld , compilation component, 2-11

LD_LIBRARY_PATH environment variable, 5-10,

6-2

ldd command, 5-10

lex , C++ utilities, 1-5

libC library, 5-2 to 5-3

libc library, 5-1

libcomplex library, 5-2 to 5-3

libCrun library, 5-2

libCstd library, 5-2 to 5-3, 5-12

libdemangle library, 5-2 to 5-3

libgc library, 5-2 to 5-3

libgc_dbg library, 5-2

libiostream library, 5-2 to 5-3
Index-3

libm library, 5-1

-libmieee , compiler option, 3-40

-libmil , compiler option, 3-40

libraries

class, using, 5-5

dynamically linked, 5-10

execution order, 3-1

linking options, 3-5, 5-8

linking with -mt , 5-1

naming a shared library, 3-36

optimized math, 3-74

replacing C++ standard library, 5-11 to 5-15

shared, 3-18, 5-9 to 5-11

shipped with C++ compiler, 5-2

static, 3-12

suffixes, 6-1

understanding, 6-1 to 6-2

using, 5-1 to 5-11

libraries, building

dynamic (shared), 6-1 to 6-4

for private use, 6-4

for public use, 6-5

linking options, 3-5, 3-34

shared with exceptions, 6-4

static (archive), 6-1 to 6-3

with C API, 6-5

-library , compiler option, 2-7, 3-5, 3-41 to 3-43,

5-4 to 5-5, 5-8, 5-9, 5-12

compiler option, 5-12

librwtool library, 5-2 to 5-3

librwtool_dbg library, 5-2

libthread library, 5-1

libw library, 5-1

licensing

information, 3-75

options, 3-6

requirements, 1-3

limit , command, 2-12

__LINE__ , predefined macro, 3-17

linker, 3-88

linking

complex library, 5-6 to 5-8

consistent with compilation, 2-7 to 2-8

disabling system libraries, 3-77

dynamic, 5-10

dynamic (shared) libraries, 6-1 to 6-2

increasing speed of, 3-88

iostream library, 5-6, 5-8

libraries, 5-1, 5-3

library options, 3-5

separate from compilation, 2-6

static, 5-4, 5-8

static (archive) libraries, 6-1

symbolic, 5-13

template instances, 4-2 to 4-4

M
macros, predefined, 3-16 to 3-18

make command, 2-15 to 2-16

man pages

accessing, 1-3

sh(1) , 2-12

swap(1M) , 2-12

math library, optimized version, 3-74

memory, 2-11 to 2-13

-migration , compiler option, 3-3, 3-7, 3-9, 3-43

-misalign , compiler option, 2-7, 3-44

-mt compiler option

code generation option, 3-2

compiling and linking with, 2-7

library option, 3-5

linking libraries, 5-1

option description, 3-45

thread option, 3-10

multiplatform release, 1-2

mwinline , compilation component, 2-11

N
name rewriting, standard header

implementation, 5-14

names, changing directory, 4-8

-native , compiler option, 3-45

native-language support, application

development, 1-5

new/delete exceptions, 5-2

nocheck , flag, 4-11

-noex , compiler option, 3-46

-nofstore , compiler option, 3-4, 3-46

-nolib , compiler option, 3-46, 5-5

-nolibmil , compiler option, 3-46

nonoptions, unrecognized, 2-8

nonstandard features, defined, 1-1

-noqueue , compiler option, 3-6, 3-46

-norunpath , compiler option, 3-5, 3-47, 5-5
Index-4 C++ User’s Guide • May 2000

O
-o filename, compiler option, 3-7, 3-48

.o files

option suffixes, 2-4

preserving, 2-6

-O , compiler option, 3-47

object files

execution order, 3-1

relocatable, 6-3

objects, library, 6-1

-O level, compiler option, 3-47

operating environment, 1-2

optimization

levels, 3-79

math library, 3-74

target hardware, 3-90

optimizer out of memory, 2-13

options

See also individual options under alphabetical listings
code generation, 3-2

debugging, 3-3

description subsections, 3-11

expansion compilation, 3-22

files, 4-6 to 4-9, 4-12

floating-point, 3-4

keyword file entries, 4-8

language, 3-4

library, 5-4 to 5-5

library linking, 3-5

licensing, 3-6

obsolete, 3-6, 3-51

output, 3-6 to 3-7

performance, 3-7 to 3-8

preprocessor, 3-8

processing order, 2-3, 3-1

profiling, 3-9

reference, 3-9

source, 3-9

subprogram compilation, 2-7 to 2-8

syntax format, 3-1

template, 3-10

template compilation, 4-2 to 4-5

thread, 3-10

unrecognized, 2-8

output options, 3-6 to 3-7

overflow, 3-32

P
-P, compiler option, 3-3, 3-7, 3-8, 3-49

-p , compiler option, 2-7, 3-9, 3-49

+p, compiler option, 3-48

-pentium , compiler option, 3-49

performance options, 3-7 to 3-8

-pg , compiler option, 3-50

-PIC , compiler option, 3-50

-pic , compiler option, 3-50

placement, template instances, 4-2 to 4-4

preprocessor

defining macro to, 3-16

options, 3-8

processing, order of options, 2-3

processor, specifying target, 3-90

prof , C++ utilities, 1-5

profiling options, 3-9, 3-84

Programming Language–C++, standards

conformance, 1-1

programs, basic building steps, 2-1 to 2-2

-pta , compiler option, 3-50

ptclean command, 4-1

-pti , compiler option, 3-1, 3-10, 3-50, 4-6

-pto , compiler option, 3-50

-ptr , compiler option, 3-6, 3-51

-ptv , compiler option, 3-51

Q
-Qoption phase option[,…option], compiler

option, 3-3, 3-51 to 3-52

-qoption phase option[,…option], compiler

option, 3-52

-qp , compiler option, 3-52

-Qproduce sourcetype, compiler option, 3-7, 3-53

-qproduce sourcetype, compiler option, 3-53

R
-R , compiler option, 3-1, 3-5, 3-53 to 3-54, 5-5

-readme , compiler option, 3-3, 3-54

READMEs, 1-2, 1-4

real memory, display, 2-13

reference options, 3-9

release, Sun WorkShop, 5-10

RTLD_GLOBAL, environment variable, 5-11, 6-4

rule, one-definition, 4-5
Index-5

S
-S , compiler option, 3-54

-s , compiler option, 3-3, 3-7, 3-54

.S , file name suffixes, 2-4

.s , file name suffixes, 2-4

-sb , compiler option, 3-54

-sbfast , compiler option, 3-54

search path

definitions, 4-6

dynamic library, 5-5

searching

standard header implementation, 5-13 to 5-14

template definition files, 4-6

semi-explicit instances, 4-2, 4-4

sh(1) , man page, 2-12

shared libraries

accessing from a C program, 6-6

building, 3-34

containing exceptions, 6-4

disallow linking, 3-18

naming, 3-36

shell, limiting virtual memory in, 2-12

.so , file name suffix, 2-4, 6-1

.so. n, file name suffix, 2-4

Solaris platforms

code and path names, 1-2

libc library replacement, 5-12

libraries, 5-1

static library availability, 3-12

Solaris versions supported, P-1

source files

execution order, 3-1

location conventions, 4-6

location definition, 4-9 to 4-11

templates, 4-9

source options, 3-9

__sparc , predefined macro, 3-17

sparc , predefined macro, 3-17

__sparcv9 , predefined macro, 3-18

special , template compilation option, 4-12 to

4-13

standard C++ headers, replacing, 5-14

standard headers, implementation, 5-13 to 5-14

standard library, replacing the C++, 5-11 to 5-15

standards, conformance, 1-1

static (archive) libraries, 6-1

static instances, 4-2 to 4-3

static linking, 5-4

default libraries, 5-8

template instances, 4-3

static variables, 4-3 to 4-4

static , template class member

specialization, 4-13

-staticlib , compiler option, 3-5, 3-55 to 3-56,

5-4, 5-9

__STDC__, predefined macro, 3-17

string , standard header implementation, 5-13 to

5-14

subprograms, compilation options, 2-7 to 2-8

suffixes

.SUNWCCh, 5-13 to 5-14

command line file name, 2-4

files without, 5-13

library, 6-1

makefiles, 2-15 to 2-16

__SUNPRO_CC_COMPAT=(4|5), predefined

macro, 3-17

__sun , predefined macro, 3-17

sun , predefined macro, 3-17

__SUNPRO_CC=0x510, predefined macro, 3-17

.SUNWCCh file name suffix, 5-13 to 5-14

SunWS_cache, 4-5

SunWS_config directory, 4-8

__SVR4, predefined macro, 3-17

swap -s , command, 2-12

swap space, 2-12 to 2-13

swap(1M) , man pages, 2-12

symbols, executable files, 3-54

syntax

CC commands, 2-3

options, 3-1

T
tcov , C++ utilities, 1-5

-temp= dir, compiler option, 3-3, 3-56

template classes, specializing, 4-13

template compilation, 4-2 to 4-5, 4-7

template definition file, 4-6

template repositories, 4-4 to 4-5, 4-7

-template , compiler option, 3-10, 3-57, 4-6

templates

cache directory, 2-5

commands, 4-1
Index-6 C++ User’s Guide • May 2000

definitions-separate vs. definitions-included

organization, 4-6

inline, 3-74

instances, 4-2 to 4-4, 4-7

linking, 2-8

options, 3-10

sharing options files, 4-8

source files, 4-6, 4-9 to 4-11

specialization entries, 4-12 to 4-13

verbose compilation, 4-1

thread options, 3-10

-time , compiler option, 3-57

__TIME__ , predefined macro, 3-17

Tools.h++ version 7, compiler option, 5-8

Tools.h++ vertion 7 debug, compiler option, 5-8

trapping mode, 3-32

U
-U , compiler option, 3-1, 3-8, 3-57

ulimit , command, 2-12

__’uname-s’_’uname-r’, predefined macro, 3-17

underflow, 3-32

UNIX

predefined symbols, 3-17

tools, 1-5

__unix , predefined macro, 3-17

unix , predefined macro, 3-17

-unroll= n, compiler option, 3-58

utilities, UNIX tools, 1-5

V
-V, compiler option, 3-58

-v , compiler option, 3-58

variables

See also environment variables

static, 4-3 to 4-4

-vdelx , compiler option, 3-6, 3-58

-verbose , command line option, 2-8, 3-3, 3-7, 3-59

-verbose=no%template , template compilation

option, 4-1

-verbose=template , template compilation

option, 4-1

virtual memory, limits, 2-12 to 2-13

W
+w, compiler option, 4-1, 3-7, 3-59

+w2, compiler option, 3-60

-w, compiler option, 3-7, 3-60

warnings

C header replacement, 5-15

code portability, 3-23

unrecognized arguments, 2-8

_WCHAR_T, predefined UNIX symbol, 3-17

workstations, memory requirements, 2-13

X
-xa , compiler option, 2-7, 3-9, 3-61

-xar , compiler option, 3-5, 3-61, 4-2, 6-2 to 6-3

-xarch= isa, compiler option, 2-7, 3-7, 3-62 to 3-66

-xcache= c, compiler option, 3-7, 3-66 to 3-68

xcg386 , compilation component, 2-11

-xcg89 , compiler option, 2-7, 3-8, 3-68

-xcg92 , compiler option, 2-7, 3-8, 3-68

-xchip= c, compiler option, 3-8, 3-68 to 3-70

-xcode= a, compiler option, 3-2, 3-70 to 3-71

-xcrossfile [=n], compiler option, 3-71 to 3-72

-xF , compiler option, 3-8, 3-72

-xhelp=flags , compiler option, 3-3, 3-7, 3-9, 3-73

-xhelp=readme , compiler option, 3-7, 3-9, 3-73

-xildoff , compiler option, 3-3, 3-73

-xildon , compiler option, 3-3, 3-73

-xlibmieee , compiler option, 3-4, 3-5, 3-74

-xlibmil , compiler option, 3-5, 3-8, 3-74

-xlibmopt , compiler option, 3-5, 3-8, 3-74

-xlic_lib , compiler option, 3-5, 3-6, 3-75

-xlicinfo , compiler option, 3-6, 3-75 to 3-76

-Xm, compiler option, 3-76

-xM , compiler option, 3-7, 3-8, 3-9, 3-76

-xM1 , compiler option, 3-7, 3-8, 3-9, 3-76

-xMerge , compiler option, 3-2, 3-77

-xnolib , compiler option, 3-5, 3-77 to 3-79, 5-5,

5-9

-xnolibmil , compiler option, 3-5, 3-8, 3-79

-xnolibmopt , compiler option, 3-5, 3-8, 3-79

-xO level, compiler option, 3-8, 3-79 to 3-82

-xpg , compiler option, 2-7, 3-9, 3-82

-xprefetch [=a[,a]], compiler option, 3-83 to 3-84

-xprofile , compiler option, 2-7, 3-84 to 3-86

-xprofile=tcov , compiler option, 3-9

-xregs , compiler option, 3-8, 3-87

-xregs=no%appl , compiler option, 6-5
Index-7

-xs , compiler option, 3-3, 3-88

-xsafe=mem , compiler option, 3-8, 3-10, 3-88 to

3-89

-xsb , compiler option, 3-3, 3-7, 3-89

-xsbfast , compiler option, 3-3, 3-7, 3-89

-xspace , compiler option, 3-8, 3-89

-xtarget= t, compiler option, 2-7, 3-8, 3-90 to 3-95

-xtime , compiler option, 3-7, 3-96

-xunroll= n, compiler option, 3-8, 3-96

-xvector , compiler option, 2-7, 3-96

-xwe , compiler option, 3-7, 3-96

Y
yacc , C++ utilities, 1-5

Z
-z arg, compiler option, 3-2, 3-7, 3-97

-ztext , compiler option, 3-5, 3-97
Index-8 C++ User’s Guide • May 2000

	C++ User’s Guide
	Contents
	Tables
	Preface
	Multiplatform Release
	Access to Sun WorkShop Development Tools
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Document Collections
	Man Pages
	README File

	Commercially Available Books

	The C++ Compiler
	1.1 Standards Conformance
	1.2 Operating Environments
	1.3 READMEs
	1.4 Man Pages
	1.5 Licensing
	1.6 New Features of the C++ Compiler
	1.7 C++ Utilities
	1.8 Native-Language Support

	Using the C++ Compiler
	2.1 Getting Started
	2.2 Invoking the Compiler
	2.2.1 Command Syntax
	2.2.2 File Name Conventions
	2.2.3 Using Multiple Source Files
	2.2.4 Compiling With Different Compiler Versions

	2.3 Compiling and Linking
	2.3.1 Compile-Link Sequence
	2.3.2 Separate Compiling and Linking
	2.3.3 Consistent Compiling and Linking
	2.3.4 Compiling for SPARC V9
	2.3.5 Diagnosing the Compiler
	2.3.6 Understanding the Compiler Organization

	2.4 Memory Requirements
	2.4.1 Swap Space Size
	2.4.2 Increasing Swap Space
	2.4.3 Control of Virtual Memory
	2.4.4 Memory Requirements

	2.5 Simplifying Commands
	2.5.1 Using Aliases Within the C Shell
	2.5.2 Using CCFLAGS to Specify Compile Options
	2.5.3 Using make
	2.5.3.1 Using CCFLAGS Within make
	2.5.3.2 Adding a Suffix to Your Makefile
	2.5.3.3 Using make With Standard Library Header Files

	C++ Compiler Options
	3.1 Options Summarized by Function
	3.1.1 Code Generation Options
	3.1.2 Debugging Options
	3.1.3 Floating-Point Options
	3.1.4 Language Options
	3.1.5 Library Options
	3.1.6 Licensing Options
	3.1.7 Obsolete Options
	3.1.8 Output Options
	3.1.9 Performance Options
	3.1.10 Preprocessor Options
	3.1.11 Profiling Options
	3.1.12 Reference Options
	3.1.13 Source Options
	3.1.14 Template Options
	3.1.15 Thread Options
	3.1.16 How Option Information Is Organized

	3.2 Option Reference
	3.2.1 –386
	3.2.2 –486
	3.2.3 –a
	3.2.4 –Bbinding
	3.2.5 –c
	3.2.6 –cg[89|92]
	3.2.7 –compat[=(4|5)]
	3.2.8 +d
	3.2.9 –Dname[=def]
	3.2.10 –d(y|n)
	3.2.11 –dalign
	3.2.12 –dryrun
	3.2.13 –E
	3.2.14 +e(0|1)
	3.2.15 –fast
	3.2.16 –features=a[,...a]
	3.2.17 –flags
	3.2.18 –fnonstd
	3.2.19 –fns[=(yes|no)]
	3.2.20 –fprecision=p
	3.2.21 –fround=r
	3.2.22 –fsimple[=n]
	3.2.23 –fstore
	3.2.24 –ftrap=t[,...t]
	3.2.25 –G
	3.2.26 –g
	3.2.27 –g0
	3.2.28 –H
	3.2.29 –help
	3.2.30 –hname
	3.2.31 –i
	3.2.32 –Ipathname
	3.2.33 –instances=a
	3.2.34 –keeptmp
	3.2.35 –KPIC
	3.2.36 –Kpic
	3.2.37 –Ldir
	3.2.38 –llib
	3.2.39 –libmieee
	3.2.40 –libmil
	3.2.41 –library=l[,...l]
	3.2.42 –migration
	3.2.43 –misalign
	3.2.44 –mt
	3.2.45 –native
	3.2.46 –noex
	3.2.47 –nofstore
	3.2.48 –nolib
	3.2.49 –nolibmil
	3.2.50 –noqueue
	3.2.51 –norunpath
	3.2.52 –O
	3.2.53 –Olevel
	3.2.54 –o filename
	3.2.55 +p
	3.2.56 –P
	3.2.57 –p
	3.2.58 –pentium
	3.2.59 –pg
	3.2.60 �PIC
	3.2.61 –pic
	3.2.62 –pta
	3.2.63 –ptipath
	3.2.64 –pto
	3.2.65 –ptr
	3.2.66 –ptv
	3.2.67 –Qoption phase option[,...option]
	3.2.68 –qoption phase option
	3.2.69 –qp
	3.2.70 –Qproduce sourcetype
	3.2.71 –qproduce sourcetype
	3.2.72 –Rpathname[:...pathname]
	3.2.73 –readme
	3.2.74 –S
	3.2.75 –s
	3.2.76 –sb
	3.2.77 –sbfast
	3.2.78 –staticlib=l[,...l]
	3.2.79 –temp=dir
	3.2.80 –template=w[,...w]
	3.2.81 –time
	3.2.82 –Uname
	3.2.83 –unroll=n
	3.2.84 –V
	3.2.85 –v
	3.2.86 –vdelx
	3.2.87 –verbose=v[,...v]
	3.2.88 +w
	3.2.89 +w2
	3.2.90 –w
	3.2.91 –xa
	3.2.92 –xar
	3.2.93 –xarch=isa
	3.2.94 –xcache=c
	3.2.95 -xcg89
	3.2.96 –xcg92
	3.2.97 –xchip=c
	3.2.98 –xcode=a
	3.2.99 -xcrossfile[=n]
	3.2.100 –xF
	3.2.101 –xhelp=flags
	3.2.102 –xhelp=readme
	3.2.103 –xildoff
	3.2.104 –xildon
	3.2.105 –xlibmieee
	3.2.106 –xlibmil
	3.2.107 –xlibmopt
	3.2.108 –xlic_lib=sunperf
	3.2.109 –xlicinfo
	3.2.110 –Xm
	3.2.111 –xM
	3.2.112 –xM1
	3.2.113 –xMerge
	3.2.114 –xnolib
	3.2.115 –xnolibmil
	3.2.116 –xnolibmopt
	3.2.117 –xOlevel
	3.2.118 –xpg
	3.2.119 -xprefetch[=a[,a]]
	3.2.120 �xprofile=p
	3.2.121 –xregs=r[,...r]
	3.2.122 –xs
	3.2.123 –xsafe=mem
	3.2.124 –xsb
	3.2.125 –xsbfast
	3.2.126 –xspace
	3.2.127 –xtarget=t
	3.2.128 –xtime
	3.2.129 –xunroll=n
	3.2.130 �xvector[=(yes|no)]
	3.2.131 –xwe
	3.2.132 -z arg
	3.2.133 –ztext

	Compiling Templates
	4.1 Verbose Compilation
	4.2 Template Commands
	4.3 Template Instance Placement and Linkage
	4.3.1 External Instances
	4.3.2 Static Instances
	4.3.3 Global Instances
	4.3.4 Explicit Instances
	4.3.5 Semi-Explicit Instances

	4.4 The Template Repository
	4.4.1 Repository Structure
	4.4.2 Writing to the Template Repository
	4.4.3 Reading From Multiple Template Repositories
	4.4.4 Sharing Template Repositories

	4.5 Template Definition Searching
	4.5.1 Source File Location Conventions
	4.5.2 Definitions Search Path

	4.6 Template Instance Automatic Consistency
	4.7 Compile-Time Instantiation
	4.8 Template Options File
	4.8.1 Comments
	4.8.2 Includes
	4.8.3 Source File Extensions
	4.8.4 Definition Source Locations
	4.8.5 Template Specialization Entries

	Using Libraries
	5.1 The C Libraries
	5.2 Libraries Provided With the C++ Compiler
	5.2.1 C++ Library Descriptions
	5.2.2 Default C++ Libraries

	5.3 Related Library Options
	5.4 Using Class Libraries
	5.4.1 The iostream Library
	5.4.2 The complex Library
	5.4.3 Linking C++ Libraries

	5.5 Statically Linking Standard Libraries
	5.6 Using Shared Libraries
	5.7 Replacing the C++ Standard Library
	5.7.1 What Can be Replaced
	5.7.2 Installing the Replacement Library
	5.7.3 Using the Replacement Library
	5.7.4 Standard Header Implementation
	5.7.4.1 Replacing Standard C++ Headers
	5.7.4.2 Replacing Standard C Headers

	Building Libraries
	6.1 Understanding Libraries
	6.2 Building Static (Archive) Libraries
	6.3 Building Dynamic (Shared) Libraries
	6.4 Building Shared Libraries That Contain Exceptions
	6.5 Building Libraries for Private Use
	6.6 Building Libraries for Public Use
	6.7 Building a Library That Has a C API
	6.8 Using dlopen to Access a C++ Library From a C Program
	6.9 Building Multithreaded Libraries

	Glossary
	Index

