»
2 Sun

microsystems

C++ User’'s Guide

Sun™ ONE Studio 8

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054 U.S.A.
650-960-1300

Part No. 817-0926-10
May 2003, Revision A

Send comments about this document to: docf eedback@un. com

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://ww. sun. cont pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology;, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Forte, Java, Solaris, iPlanet, NetBeans, and docs.sun.com are trademarks or registered trademarks of Sun
Mlcrosystems Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and
other countries.

Sunf 90/f 95 is derived in part from Cray CF90™, a product of Cray Inc.

I'i bdwar f and | i dr edbl ack are Copyright 2000 Silicon Graphics Inc. and are available under the GNU Lesser General Public License from
http://ww. sgi.com

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS I1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
ahttp://ww. sun. con pat ent s etun ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et
dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, parquelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il yen a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Forte, Java, Solaris, iPlanet, NetBeans, et docs.sun.com sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-
Unis et dans d’autres pays.

Sunf 90/f 95 est deriveé d’une part de Cray CF90™, un produit de Cray Inc.

I'i bdwar f etl i dr edbl ack sont Copyright 2000 Silicon Graphics Inc., et sont disponible sur GNU General Public License a
http://ww. sgi.com

LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

K‘m

Adobe PostScript

Contents

Part |

Before You Begin xxvii

How This Book Is Organized xxvii

Typographic Conventions xxviii

Shell Prompts xxix

Accessing Compiler Collection Tools and Man Pages xxix
Accessing Compiler Collection Documentation Xxxi
Accessing Related Solaris Documentation xxxiii
Accessing C++ Related Man Pages xxxiii
Commercially Available Books xxxiv

Resources for Developers xxxv

Contacting Sun Technical Support xxxv

Sun Welcomes Your Comments XXXv
C++ Compiler

The C++ Compiler 1-1

1.1 Standards Conformance 1-1
1.2 C++ Readme File 1-1

1.3 Man Pages 1-2

1.4 Licensing 1-3

1.5 New Features of the C++ Compiler 1-3

15.1 General Enhancements 1-3

1.5.2 Faster Compilation 1-5

15.3 Easier Porting 1-7

1.5.4 Improved Performance 1-7

15,5 Added Warning and Error Controls 1-9
1.6 C++ Utilities 1-10
1.7 Native-Language Support 1-10

2. Using the C++ Compiler 2-1
2.1 Getting Started 2-1
2.2 Invoking the Compiler 2-3
2.21 Command Syntax 2-3
2.2.2 File Name Conventions 2-4
2.2.3 Using Multiple Source Files 2-5
2.3 Compiling With Different Compiler Versions 2-5
2.4 Compiling and Linking 2-6
2.4.1 Compile-Link Sequence 2-6
2.4.2 Separate Compiling and Linking 2-7
2.4.3 Consistent Compiling and Linking 2-7
2.4.4 Compiling for SPARC V9 2-8
2.45 Diagnosing the Compiler 2-8
2.4.6 Understanding the Compiler Organization 2-9
2.5 Preprocessing Directives and Names 2-10
251 Pragmas 2-11
2.5.2 Macros With a Variable Number of Arguments 2-11
2.5.3 Predefined Names 2-12
254 #error 2-12
2.6 Memory Requirements 2-12

iv. C++ User's Guide « May 2003

2.7

2.6.1 Swap Space Size 2-12

2.6.2 Increasing Swap Space 2-13

2.6.3 Control of Virtual Memory 2-13

2.6.4 Memory Requirements 2-14

Simplifying Commands 2-14

2.7.1 Using Aliases Within the C Shell 2-15

2.7.2 Using CCFLAGS to Specify Compile Options 2-15
2.7.3 Using nake 2-15

Using the C++ Compiler Options 3-1

3.1
3.2
3.3

Syntax 3-1

General Guidelines 3-2

Options Summarized by Function 3-2

3.3.1 Code Generation Options 3-3

3.3.2 Compile-Time Performance Options 3-4
3.3.3 Debugging Options 3-4

3.3.4 Floating-Point Options 3-5

3.3.5 Language Options 3-6

3.3.6 Library Options 3-6

3.3.7 Licensing Options 3-8

3.3.8 Obsolete Options 3-8

3.3.9 Output Options 3-8

3.3.10 Run-Time Performance Options 3-10
3.3.11 Preprocessor Options 3-11

3.3.12 Profiling Options 3-12

3.3.13 Reference Options 3-12

3.3.14 Source Options 3-12

3.3.15 Template Options 3-13

3.3.16 Thread Options 3-13

Contents

Part Il Writing C++ Programs

4. Language Extensions 4-1
4.1 Linker Scoping 4-1
4.2 Thread-Local Storage 4-3
4.3 Overriding With Less Restrictive Virtual Functions 4-3
4.4 Making Forward Declarations of enumTypes and Variables 4-4
45 Using Incomplete enumTypes 4-5
4.6 Using an enumName as a Scope Qualifier 4-5
4.7 Using Anonymous st ruct Declarations 4-6
4.8 Passing the Address of an Anonymous Class Instance 4-7
4.9 Declaring a Static Namespace-Scope Function as a Class Friend 4-8

4.10 Using the Predefined __f unc__ Symbol for Function Name 4-9

5. Program Organization 5-1
51 Header Files 5-1
5.1.1 Language-Adaptable Header Files 5-1
5.1.2 Ildempotent Header Files 5-3
5.2 Template Definitions 5-3
5.2.1 Template Definitions Included 5-3
5.2.2 Template Definitions Separate 5-4

6. Creating and Using Templates 6-1

6.1 Function Templates 6-1
6.1.1 Function Template Declaration 6-1
6.1.2 Function Template Definition 6-2
6.1.3 Function Template Use 6-2

6.2 Class Templates 6-3
6.2.1 Class Template Declaration 6-3
6.2.2 Class Template Definition 6-3

vi C++ User's Guide « May 2003

6.3

6.4
6.5
6.6

6.7

6.2.3 Class Template Member Definitions 6-4

6.2.4 Class Template Use 6-5

Template Instantiation 6-6

6.3.1 Implicit Template Instantiation 6-6

6.3.2 Explicit Template Instantiation 6-6

Template Composition 6-8

Default Template Parameters 6-9

Template Specialization 6-9

6.6.1 Template Specialization Declaration 6-9

6.6.2 Template Specialization Definition 6-10

6.6.3 Template Specialization Use and Instantiation 6-10
6.6.4 Partial Specialization 6-10

Template Problem Areas 6-11

6.7.1 Nonlocal Name Resolution and Instantiation 6-11
6.7.2 Local Types as Template Arguments 6-13

6.7.3 Friend Declarations of Template Functions 6-14

6.7.4 Using Qualified Names Within Template Definitions 6-16
6.7.5 Nesting Template Declarations 6-16

6.7.6 Referencing Static Variables and Static Functions 6-17

6.7.7 Building Multiple Programs Using Templates in the Same
Directory 6-17

7. Compiling Templates 7-1

7.1
7.2

Verbose Compilation 7-1

Template Instantiation 7-1

7.2.1 Generated Instances 7-2

7.2.2 Whole-Class Instantiation 7-2
7.2.3 Compile-Time Instantiation 7-2

7.24 Template Instance Placement and Linkage 7-3

Contents

Vii

viii

7.3

7.4

7.5

7.6

External Instances 7-3

7.3.1 Static Instances 7-5

7.3.2 Global Instances 7-5

7.3.3 Explicit Instances 7-6

7.3.4 Semi-Explicit Instances 7-6

The Template Repository 7-7

7.4.1 Repository Structure 7-7

7.4.2 Writing to the Template Repository 7-7

7.4.3 Reading From Multiple Template Repositories 7-8
7.4.4 Sharing Template Repositories 7-8

7.45 Template Instance Automatic Consistency With -i nst ance=
extern 7-8

Template Definition Searching 7-9

7.5.1 Source File Location Conventions 7-9
7.5.2 Definitions Search Path 7-9

Template Options File 7-10

7.6.1 Comments 7-10

7.6.2 Includes 7-10

7.6.3 Source File Extensions 7-11

7.6.4 Definition Source Locations 7-11

7.6.5 Template Specialization Entries 7-14

8. Exception Handling 8-1

8.1
8.2
8.3
8.4
8.5
8.6

Synchronous and Asynchronous Exceptions 8-1

Specifying Runtime Errors 8-2

Disabling Exceptions 8-2

Using Runtime Functions and Predefined Exceptions 8-3
Mixing Exceptions With Signals and Setj np/Longj np 8-4
Building Shared Libraries That Have Exceptions 8-5

C++ User’'s Guide * May 2003

10.

11.

Cast Operations 9-1

9.1
9.2
9.3
9.4

const_cast 9-2

reinterpret_cast 9-2

static_cast 94

Dynamic Casts 9-4

9.4.1 Casting Up the Hierarchy 9-5

9.4.2 Castingtovoi d* 9-5

9.4.3 Casting Down or Across the Hierarchy 9-5

Improving Program Performance 10-1

10.1
10.2
10.3
10.4

10.5

Avoiding Temporary Objects 10-1

Using Inline Functions 10-2

Using Default Operators 10-3

Using Value Classes 10-3

10.4.1 Choosing to Pass Classes Directly 10-4

10.4.2 Passing Classes Directly on Various Processors 10-5

Cache Member Variables 10-5

Building Multithreaded Programs 11-1

11.1

11.2
11.3
11.4

Building Multithreaded Programs 11-1

11.1.1 Indicating Multithreaded Compilation 11-2

11.1.2 Using C++ Support Libraries With Threads and Signals 11-2
Using Exceptions in a Multithreaded Program 11-3

Sharing C++ Standard Library Objects Between Threads 11-3

Using Classic lostreams in a Multithreading Environment 11-6
11.4.1 Organization of the MT-Safe i ost r eamLibrary 11-6

11.4.2 Interface Changes to the i ost r eamLibrary 11-13

11.4.3 Global and Static Data 11-15

11.4.4 Sequence Execution 11-16

Contents

11.45 Object Locks 11-16

11.4.6 MT-Safe Classes 11-18

11.4.7 Object Destruction 11-19
11.4.8 An Example Application 11-20

Part 11l Libraries

12. Using Libraries 12-1

12.1 The C Libraries 12-1

12.2 Libraries Provided With the C++ Compiler 12-2
12.2.1 C++ Library Descriptions 12-3
12.2.2 Accessing the C++ Library Man Pages 12-4
12.2.3 Default C++ Libraries 12-5

12.3 Related Library Options 12-5

12.4 Using Class Libraries 12-7
1241 Thei ostreamLibrary 12-7
12.4.2 The conpl ex Library 12-8
12.4.3 Linking C++ Libraries 12-10

12,5 Statically Linking Standard Libraries 12-10

12.6 Using Shared Libraries 12-11

12.7 Replacing the C++ Standard Library 12-13
12.7.1 What Can Be Replaced 12-13
12.7.2 What Cannot Be Replaced 12-14
12.7.3 Installing the Replacement Library 12-14
12.7.4 Using the Replacement Library 12-14
12.7.5 Standard Header Implementation 12-15

13. Using The C++ Standard Library 13-1
13.1 C++ Standard Library Header Files 13-2
13.2 C++ Standard Library Man Pages 13-3

X C++ User's Guide » May 2003

14.

13.3 STLport 13-16

Using the Classic i ost r eamLibrary 14-1
14.1 Predefinedi ostreans 14-1
14.2 Basic Structure of i ost r eaminteraction 14-2
14.3 Using the Classici ost r eamLibrary 14-3
14.3.1 Output Usingi ostream 14-4
14.3.2 InputUsingi ostream 14-7
14.3.3 Defining Your Own Extraction Operators 14-7
14.3.4 Using the char * Extractor 14-8
14.3.5 Reading Any Single Character 14-9
14.3.6 Binary Input 14-9
14.3.7 Peeking at Input 14-9
14.3.8 Extracting Whitespace 14-10
14.3.9 Handling Input Errors 14-10
14.3.10 Usingi ostreans Withstdi o 14-11
144 Creatingi ostreans 14-11
14.4.1 Dealing With Files Using Class f stream 14-11
145 Assignment of i ostreanms 14-15
14.6 Format Control 14-15
14.7 Manipulators 14-15
14.7.1 Using Plain Manipulators 14-17
14.7.2 Parameterized Manipulators 14-18
148 Strstreans:iostreans for Arrays 14-20
149 Stdiobufs:iostreans for stdi o Files 14-20
14.10 Streanbufs 14-20
14.10.1 Working With St r eanbuf s 14-20
14.10.2 Using Streanbufs 14-21
14.11 i ost reamMan Pages 14-22

Contents

Xi

Xii

14.12 i ostreamTerminology 14-24

15. Using the Complex Arithmetic Library 14-1

151

15.2

15.3
15.4
155
15.6
15.7
15.8

The Complex Library 14-1

15.1.1 Using the Complex Library 14-2
Type conpl ex 14-2

15.2.1 Constructors of Class conpl ex 14-2
15.2.2 Arithmetic Operators 14-3
Mathematical Functions 14-4

Error Handling 14-6

Input and Output 14-7

Mixed-Mode Arithmetic 14-8
Efficiency 14-9

Complex Man Pages 14-10

16. Building Libraries 15-1

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Understanding Libraries 15-1

Building Static (Archive) Libraries 15-2

Building Dynamic (Shared) Libraries 15-3

Building Shared Libraries That Contain Exceptions 15-4
Building Libraries for Private Use 15-4

Building Libraries for Public Use 15-5

Building a Library That Has a C APl 15-5

Using dl open to Access a C++ Library From a C Program

Part IV Appendixes

A. C++ Compiler Options A-1

Al
A2

How Option Information Is Organized A-2

Option Reference A-3

C++ User’'s Guide « May 2003

15-6

A2l
A.2.2
A.23
A.24
A25
A.2.6
A.2.7
A.2.8
A.2.9
A.2.10
A211
A.212
A.2.13
A.2.14
A.2.15
A.2.16
A2.17
A.2.18
A.2.19
A.2.20
A.2.21
A.2.22
A.2.23
A.2.24
A.2.25
A.2.26
A.2.27
A.2.28

-386 A-3

-486 A-3

-a A-3

—Bbinding A-3

-c A5

—-cg{89| 92} A-6
—conpat [={4]5}] A-6
+d A-7

- D[Jname[=def] A-8
—d{yn} A-10
—dalign A-11
—dryrun A-11

-E A-11

+e{0]1} A-13
-errof f [=t] A-13
-errtags[=a] A-15
-errwarn[=t] A-15
—fast A-17
—features=a[,a.] A-19
-filt [=ilter[, filter...]] A-23
—flags A-25
—fnonstd A-26
—fns[={yes|no}] A-26
—fprecision=p A-28
—fround=r A-29
—fsi mpl e[=n] A-30
—fstore A-31
—ftrap=t[,t.] A-32

Contents

Xiii

A.2.29
A.2.30
A.231
A.2.32
A.2.33
A.2.34
A.2.35
A.2.36
A.2.37
A.2.38
A.2.39
A.2.40
A.2.41
A.2.42
A.2.43
A.2.44
A.2.45
A.2.46
A.2.47
A.2.48
A.2.49
A.2.50
A.2.51
A.2.52
A.2.53
A.2.54
A.2.55
A.2.56

xiv. C++ User's Guide « May 2003

-G A-33
-g A-34

—-g0 A-36

-H A-36

—h[Jname A-36

—hel p A-37

- | pathname A-37

-1- A-38

-i A-40

-inline A-40

—i nstances=a A-40
—i nstlib=filename A-41
—-KPI C A-42

—Kpic A-43
—keeptmp A-43
—Lpath A-43

—llib A-44

—libmi eece A-44
—libml| A-44
-library=I[,I..] A-45
-nt A-49
—mgration A-49

—-m salign A-50

-nr [, string] A-50

-m A-51

—native A-52

—-noex A-52

—nof store A-52

A.2.57
A.2.58
A.2.59
A.2.60
A.2.61
A.2.62
A.2.63
A.2.64
A.2.65
A.2.66
A.2.67
A.2.68
A.2.69
A.2.70
A.2.71
A.2.72
A.2.73
A.2.74
A.2.75
A.2.76
A.2.77
A.2.78
A.2.79
A.2.80
A.2.81
A.2.82
A.2.83
A.2.84

—-nolib A-52

—nol i bmi | A-52
—noqueue A-52
—norunpath A-53

-0 A-53

—Olevel A-53

—o filename A-53

+p A-bH4

-P A-55

—p A-55

—pentium A-55

—-pg A-55

-PIC A-56

—-pic A-56

—pta A-56

—pti path A-56

—pto A-56

—ptr A-57

—ptv A-57

—Qopt i on phase option[,option...] A-57
—gopt i on phase option A-58
—gqp A-58

—Qor oduce sourcetype A-58
—gpr oduce sourcetype A-59
—Rpathname[: pathname...] A-59
—readne A-60

-S A-60

-s A-60

Contents

XV

A.285 —sb A-60

A.2.86 —sbfast A-60

A287 -staticlib=I[,I...] A-61
A.2.88 —tenp=path A-63

A.2.89 -t enpl at e=opt[, opt...] A-63
A.290 —tine A-65

A.291 —-Uname A-65

A.292 —unroll=n A-65

A.293 -V A-66

A294 —v A-66

A295 —vdel x A-66

A.2.96 —verbose=v[,v...] A-66
A.2.97 +w A-67

A.2.98 +w2 A-68

A.299 —-w A-68

A.2.100 - Xm A-69

A.2.101 -xa A-69

A.2.102 - xal i as_| evel [=n] A-70
A.2.103 —xar [=q] A-72

A.2.104 —xar ch=isa A-73
A.2.105 - xbui I ti n[={%l | |%one}] A-78
A.2.106 —xcache=c A-79

A.2.107 -xcg89 A-81

A.2.108 -xcg92 A-81
A.2.109 - xchar [=z0] A-82
A.2.110 - xcheck[=i] A-83
A.2.111 - xchi p=c A-84

A.2.112 —xcode=a A-85

Xxvi C++ User's Guide « May 2003

A.2.113 - xcrossfil e[=n] A-87

A.2.114 - xdunpmacr os[=value[, value...]] A-89
A.2.115 -xe A-93

A.2.116 —xF[=v[,v...]] A-93

A.2.117 —xhel p=fl ags A-94

A.2.118 —xhel p=readne A-94
A.2119-xia A-95

A.2.120 —xi | dof f A-96

A.2.121 —xil don A-96

A.2.122 - xi nl i ne[=func_spec[, func_spec...]] A-96
A.2.123 - xi po[={0]1]2}] A-98

A.2.124 - xj obs=n A-101

A.2.125 - x| ang=language[, language] A-101
A.2.126 - x| dscope={v} A-103

A.2.127 —xI i bmi eee A-104

A2.128 —xlibm | A-105

A.2.129 —xI i bnopt A-105
A.2.130—xlic_lib=sunperf A-106
A.2.131—xlicinfo A-107

A.2.132 - x| i nkopt [=level]] A-107

A.2.133 —xM A-108

A.2.134 - xML A-109

A.2.135 -xMerge A-109

A.2.136 - xnemal i gn=ab A-110

A.2.137 - xnat i veconnect [=i] A-111
A.2.138 —xnol i b A-113

A.2.139 —xnol i bm | A-115

A.2.140 —xnol i bnopt A-115

Contents

XVii

A.2.141 - xOlevel A-115

A.2.142 - xopenmp[=i] A-118

A.2.143 - xpagesi ze=n A-120

A.2.144 - xpagesi ze_heap=n A-121
A.2.145 - xpagesi ze_stack=n A-122
A.2.146 - xpch=v A-122

A.2.147 - xpchst op=file A-126

A.2.148 —xpg A-127

A.2.149 - xport 64[=(v)] A-127

A.2.150 - xpr ef et ch[=a[, a...]] A-131
A.2.151 - xprefetch_I| evel [=i] A-133
A.2.152 - xprofile=p A-134

A.2.153 - xprofil e_i rcache[=path] A-137
A.2.154 - xprofil e_pathmap A-137
A.2.155 —xr egs=r[, r..] A-138

A.2.156 —xs A-140

A.2.157 —xsaf e=nem A-140

A.2.158 —xsb A-141

A.2.159 —xsbf ast A-141

A.2.160 —xspace A-141

A.2.161 —xt arget =t A-141

A.2.162 - xt hreadvar [=0] A-148

A.2.163 —xtime A-150

A.2.164 - xtri graphs[={yes|no}] A-150
A.2.165 —xunrol =n A-151

A.2.166 - xustr={ascii _utf16_ushort |no} A-152
A.2.167 - xvi s[={yes|no}] A-153
A.2.168 —xwe A-153

xviii ~ C++ User's Guide ¢« May 2003

A.2.169 - z[Jarg A-153

B. Pragmas Q-1

B.1 PragmaForms Q-1

B.2 Pragma Reference Q-2

B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6
B.2.7
B.2.8
B.2.9
B.2.10
B.2.11
B.2.12
B.2.13
B.2.14
B.2.15
B.2.16

#pragmaalign Q-3

#pragma does_not _read_gl obal _data Q-4
#pragma does _not _return Q-4

#pragma does_not_wite global _data Q-5
#pragma dunpmacros Q-5

#pragma end_dunpnmacros Q-7
#pragmafini Q-7

#pragma hdrstop Q-8

#pragmai dent Q-8

#pragmainit Q-8

#pragmano_si de_effect Q-9

#pragma pack(n) Q-9

#pragmararely called Q-11
#pragmareturns_new nenory Q-12
#pragma unknown_control _flow Q-12

#pragma weak Q-13

Glossary Glossary-1

Index Index-1

Contents

XiX

XX C++ User's Guide * May 2003

Tables

TABLE P-1

TABLE P-2

TABLE 2-1

TABLE 2-2

TABLE 3-1

TABLE 3-2

TABLE 3-3

TABLE 3-4

TABLE 3-5

TABLE 3-6

TABLE 3-7

TABLE 3-8

TABLE 3-9

TABLE 3-10

TABLE 3-11

TABLE 3-12

TABLE 3-13

TABLE 3-14

TABLE 3-15

TABLE 3-16

Typeface Conventions xxviii

Code Conventions xxviii

File Name Suffixes Recognized by the C++ Compiler
Components of the C++ Compilation System 2-10
Option Syntax Format Examples 3-1

Code Generation Options 3-3

Compile-Time Performance Options 3-4
Debugging Options 3-4

Floating-Point Options 3-5

Language Options 3-6

Library Options 3-6

Licensing Options 3-8

Obsolete Options 3-8

Output Options 3-8

Run-Time Performance Options 3-10
Preprocessor Options 3-11

Profiling Options 3-12

Reference Options 3-12

Source Options 3-12

Template Options 3-13

2-4

XXi

TABLE 3-17 Thread Options 3-13

TABLE 4-1 Declaration Specifiers 4-2

TABLE 10-1 Passing of Structs and Unions by Architecture 10-5
TABLE11-1 i ostreamOiriginal Core Classes 11-7

TABLE 11-2 MT-Safe Reentrant Public Functions 11-8

TABLE 12-1 Libraries Shipped With the C++ Compiler 12-2
TABLE 122 Compiler Options for Linking C++ Libraries 12-10
TABLE 12-3 Header Search Examples 12-16

TABLE13-1 C++ Standard Library Header Files 13-2

TABLE 13-2 Man Pages for C++ Standard Library 13-3

TABLE 14-1 i ost r eamRoutine Header Files 14-3
TABLE 142 i ost r eamPredefined Manipulators 14-16
TABLE 14-3 i ost r eamMan Pages Overview 14-22
TABLE 14-4 i oSt reamTerminology 14-24

TABLE 15-1 Complex Arithmetic Library Functions 14-5

TABLE 152 Complex Mathematical and Trigonometric Functions 14-5

TABLE 15-3 Complex Arithmetic Library Functions Default Error Handling 14-7
TABLE 15-4 Man Pages for Type conpl ex 14-10

TABLE A-1 Option Syntax Format Examples A-1

TABLE A-2 Option Subsections A-2

TABLE A-3 Predefined Macros A-9

TABLE A-4 The -errof f Values A-14

TABLE A-5 The - errwar n Values A-16

TABLE A-6 The - f ast Expansion A-17

TABLE A-7 The - f eat ur es Values for Compatibility Mode and Standard Mode A-19
TABLE A-8 The - f eat ur es Values for Standard Mode Only A-21

TABLE A-9 The - f eat ur es Values for Compatibility Mode Only A-21
TABLEA-10 The-filt Values A-23

TABLEA-11 The -fns Values A-27

TABLEA-12 The-fprecision Values A-28

xxii C++ User's Guide ¢« May 2003

TABLE A-13

TABLE A-14

TABLE A-15

TABLE A-16

TABLE A-17

TABLE A-18

TABLE A-19

TABLE A-20

TABLE A-21

TABLE A-22

TABLE A-23

TABLE A-24

TABLE A-25

TABLE A-26

TABLE A-27

TABLE A-28

TABLE A-29

TABLE A-30

TABLE A-31

TABLE A-32

TABLE A-33

TABLE A-34

TABLE A-35

TABLE A-36

TABLE A-37

TABLE A-38

TABLE A-39

TABLE A-40

TABLE A-41

TABLE A-42

The - fround Values A-29

The - f si nmpl e Values A-30

The -ftrap Values A-32

The -i nst ances Values A-41

The - | i brary Values for Compatibility Mode A-45
The - | i br ary Values for Standard Mode A-45
The - Qopt i on Values A-57

The - Qor oduce Values A-59
The-staticlib Values A-61

The -t enpl at e Values A-63

The - ver bose Values A-67

The - xar ch Values for SPARC Platforms A-74
The - xar ch Values for IA Platforms A-77

The - xcache Values A-80

The - xchar Values A-82

The - xcheck Values A-83

The - xchi p Values A-84

The - xcode Values A-86

The - xcrossfil e Values A-88

The - xdunmpmacr os Values A-89

The - xF Values A-94

The - xi nl i ne Values A-97

The - xi po Values A-99

The - x| dscope Values A-103

The - xI i nkopt Values A-107

The - xmemal i gn Alignment and Behavior Values A-110
Examples of - xmermal i gn A-111

The - xnati veconnect Values A-112

The - xopennp Values A-119

The - xport 64 Values A-127

Tables

xxiii

TABLE A-43

TABLE A-44

TABLE A-45

TABLE A-46

TABLE A-47

TABLE A-48

TABLE A-49

TABLE 16-1

TABLE A-50

TABLE B-1

TABLE B-2

The - xpr ef et ch Values A-131

The - xprefecth_| evel Values A-134

The - xr egs Values A-139

- Xt ar get Values for SPARC Platforms A-142
SPARC Platform Names for - xt ar get A-143

- xt ar get Values for IA Platforms A-147

- Xt ar get Expansions on Intel Architecture A-147
The - xt hr eadvar Values A-149

The - xt ri graphs Values A-150

Strictest Alignment by Platform Q-10

Storage Sizes and Default Alignments in Bytes Q-11

xxiv C++ User's Guide « May 2003

Code Samples

CODE EXAMPLE 6-1

CODE EXAMPLE 6-2

CODE EXAMPLE 7-1

CODE EXAMPLE 7-2

CODE EXAMPLE 7-3

CODE EXAMPLE 7-4

CODE EXAMPLE 7-5

CODE EXAMPLE 7-6

CODE EXAMPLE 7-7

CODE EXAMPLE 7-8

CODE EXAMPLE 7-9

CODE EXAMPLE 7-10

CODE EXAMPLE 11-1

CODE EXAMPLE 11-2

CODE EXAMPLE 11-3

CODE EXAMPLE 11-4

CODE EXAMPLE 11-5

CODE EXAMPLE 11-6

CODE EXAMPLE 11-7

CODE EXAMPLE 11-8

Example of Local Type as Template Argument Problem 6-13
Example of Friend Declaration Problem 6-14

Redundant Definition Entry 7-12

Definition of Static Data Members and Use of Simple Names 7-12
Template Member Function Definition 7-12

Definition of Template Functions in Different Source Files 7-13
nocheck Option 7-13

speci al Entry 7-14

Example of When speci al Entry Should Be Used 7-14
Overloading speci al Entries 7-15

Specializing a Template Class 7-15

Specializing a Static Template Class Member 7-15

Checking Error State 11-9

Calling gcount 11-10

User-Defined I/O Operations 11-10

Disabling MT-Safety 11-11

Switching to MT-Unsafe 11-12

Using Synchronization With MT-Unsafe Objects 11-12

New Classes 11-13

New Class Hierarchy 11-13

XXV

CODE EXAMPLE 11-9

CODE EXAMPLE 11-10

CODE EXAMPLE 11-11

CODE EXAMPLE 11-12

CODE EXAMPLE 11-13

CODE EXAMPLE 14-1

CODE EXAMPLE A-1

CODE EXAMPLE A-2

New Functions 11-14

Example of Using Locking Operations 11-17

Making I/O Operation and Error Checking Atomic 11-18
Destroying a Shared Object 11-19

Using i ost r eamObjects in an MT-Safe Way 11-20

st ri ng Extraction Operator 14-7

Preprocessor Example Program f 0o. cc A-12

Preprocessor Output of f 00. cc Using - E Option A-12

XXvi C++ User's Guide « May 2003

Before You Begin

This manual instructs you in the use of the C++ compiler for the Sun™ Open
Network Environment (Sun ONE) Studio 8, Compiler Collection, and provides
detailed information on command-line compiler options. This manual is intended
for programmers with a working knowledge of C++ and some understanding of the
Solaris™ operating environment and UNIX® commands.

How This Book Is Organized

This manual covers the following topics:

C++ Compiler. Chapter 1 provides introductory material about the compiler, such as
standards conformance and new features.Chapter 2 explains how to use the
compiler and Chapter 3 discusses how to use the compiler’s command line options.

Writing C++ Programs. Chapter 4 discusses how to compile nonstandard code that
is commonly accepted by other C++ compilers. Chapter 5 makes suggestions for
setting up and organizing header files and template definitions. Chapter 6 discusses
how to create and use templates and Chapter 7 explains various options for
compiling templates. Exception handling is discussed in Chapter 8 and information
about cast operations is provided in Chapter 9. Chapter 10 discusses performance
techniques that strongly affect the C++ compiler. Chapter 11 provides information
about building multithreaded programs.

Libraries. Chapter 12 explains how to use the libraries that are provided with the
compiler. The C++ standard library is discussed in Chapter 13, the classic i ost r eam
library (for compatibility mode) is discussed in Chapter 14, and the complex
arithmetic library (for compatibility mode) is discussed in Chapter 15. Chapter 16
provides information about building libraries.

XXVii

Compiler Options. Appendix A provides in-depth information about the compiler

options.

Typographic Conventions

TABLEP-1 Typeface Conventions
Typeface Meaning Examples
AaBbCc123 The names of commands, files, Edit your . | ogi n file.
and directories; on-screen Usel s -a to list all files.
computer output % You have il .
AaBbCc123 What you type, when contrasted % su
with on-screen computer output Passwor d:
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.
words to be emphasized These are called class options.
You must be superuser to do this.
AaBbCc123 Command-line placeholder text; To delete a file, type r mfilename.
replace with a real name or value
TABLE P-2 Code Conventions
Code
Symbol Meaning Notation Code Example
[1] Brackets contain arguments an] A, O
that are optional.
{} Braces contain a set of choices d{y| n} dy
for a required option.
| The “pipe” or “bar” symbol B{ dynami c| stati c} Bstatic

separates arguments, only one
of which may be chosen.

The colon, like the comma, is Rlocal/libs:/U a
sometimes used to separate

arguments.

Rdir[: dir]

The ellipsis indicates omission
in a series.

xi nli ne=fl],...fn] xi nl i ne=al pha, dos

xxviii C++ User's Guide « May 2003

Shell Prompts

Shell Prompt

C shell machine-name%
C shell superuser machine-name#
Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #

Accessing Compiler Collection Tools and
Man Pages

The compiler collection components and man pages are not installed into the
standard / usr/ bi n/ and/ usr/ shar e/ man directories. To access the compilers and
tools, you must have the compiler collection component directory in your PATH
environment variable. To access the man pages, you must have the compiler
collection man page directory in your MANPATH environment variable.

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the nan(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note — The information in this section assumes that your Sun ONE Studio compiler
collection components are installed in the / opt directory. If your software is not
installed in the / opt directory, ask your system administrator for the equivalent
path on your system.

Accessing the Compilers and Tools

Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

Before You Begin xxXix

v To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

% echo $PATH

2. Review the output to find a string of paths that contain / opt / SUNWpr o/ bi n/ .

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

v To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home . cshrc file. If you are using the
Bourne shell or Korn shell, edit your home . profi | e file.

2. Add the following to your PATH environment variable.
/ opt / SUNWpr o/ bi n

Accessing the Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

v To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

% man dbx

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

xxX C++ User's Guide ¢« May 2003

v To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home . cshrc file. If you are using the
Bourne shell or Korn shell, edit your home . profi | e file.

2. Add the following to your MANPATH environment variable.
/ opt/ SUNWpr o/ man

Accessing Compiler Collection
Documentation

You can access the documentation at the following locations:

= The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/ SUNWspro/ docs/index. htm .

If your software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.

= Most manuals are available from the docs. sun. com™ web site. The following
titles are available through your installed software only:

« Standard C++ Library Class Reference
« Standard C++ Library User’s Guide

« Tools.h++ Class Library Reference

« Tools.h++ User’s Guide

= The release notes are available from the docs. sun. comweb site.

The docs. sun. comweb site (htt p: // docs. sun. con) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note — Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.

Before You Begin ~ xxxi

XXXii

Documentation in Accessible Formats

The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the / opt directory, ask your system administrator for the equivalent path on your
system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party HTML at http://docs. sun. com
manuals)

Third-party manuals: HTML in the installed software through the documentation
« Standard C++ Library Class index atfi | e:/opt/ SUNVpr o/ docs/ i ndex. ht m

Reference

= Standard C++ Library
User’s Guide

« Tools.h++ Class Library
Reference

« Tools.h++ User’s Guide

Readmes and man pages HTML in the installed software through the documentation
index atfil e:/opt/ SUN\pro/ docs/i ndex. htm

Release notes HTML at htt p: //docs. sun. com

Related Compiler Collection Documentation

The following table describes related documentation that is available at
file:/opt/ SUN\Wpro/docs/index. html and http://docs. sun. com If your
software is not installed in the / opt directory, ask your system administrator for the
equivalent path on your system.

Document Title Description

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

C++ User’s Guide » May 2003

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs. sun. comweb site.

Document Collection

Document Title

Description

Solaris Reference Manual
Collection

Solaris Software Developer
Collection

Solaris Software Developer
Collection

See the titles of man page
sections.

Linker and Libraries Guide

Multithreaded Programming
Guide

Provides information about the
Solaris operating environment.

Describes the operations of the
Solaris link-editor and runtime
linker.

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Accessing C++ Related Man Pages

This manual provides lists of the man pages that are available for the C++ libraries.
The following table lists other man pages that are related to C++.

Title Description

c++filt Copies each file name in sequence and writes it in the standard
output after decoding symbols that look like C++ demangled names

dem Demangles one or more C++ names that you specify

f be Creates object files from assembly language source files

f pversi on Prints information about the system CPU and FPU

gpr of Produces execution profile of a program

ild Links incrementally, allowing insertion of modified object code into

a previously built executable

Before You Begin

XXXiii

Title Description

inline Expands assembler inline procedure calls

| ex Generates lexical analysis programs

rpcgen Generates C/C++ code to implement an RPC protocol

si gf pe Allows signal handling for specific SIGFPE codes

stdarg Handles variable argument list

varar gs Handles variable argument list

version Displays version identification of object file or binary

yacc Converts a context-free grammar into a set of tables for a simple

automaton that executes an LALR(1) parsing algorithm

Commercially Available Books

The following is a partial list of available books on the C++ language.

The C++ Programming Language 3rd edition, Bjarne Stroustrup (Addison-Wesley,
1997).

The C++ Standard Library, Nicolai Josuttis (Addison-Wesley, 1999).
Generic Programming and the STL, Matthew Austern (Addison-Wesley, 1999).

Standard C++ 10Streams and Locales, Angelika Langer and Klaus Kreft (Addison-
Wesley, 2000).

Thinking in C++, Volume 1, Second Edition, Bruce Eckel (Prentice Hall, 2000).

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup,
(Addison-Wesley, 1990).

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides (Addison-Wesley, 1995).

C++ Primer, Third Edition, Stanley B. Lippman and Josee Lajoie (Addison-Wesley,
1998).

Effective C++—50 Ways to Improve Your Programs and Designs, Second Edition, Scott
Meyers (Addison-Wesley, 1998).

More Effective C++—35 Ways to Improve Your Programs and Designs, Scott Meyers
(Addison-Wesley, 1996).

xxxiv C++ User’'s Guide « May 2003

Resources for Developers

Visit htt p: // www. sun. coni devel oper s/ st udi o and click the Compiler
Collection link to find these frequently updated resources:

Articles on programming techniques and best practices
A knowledge base of short programming tips

Documentation of compiler collection components, as well as corrections to the
documentation that is installed with your software

Information on support levels
User forums

Downloadable code samples
New technology previews

You can find additional resources for developers at
http://ww. sun. com devel opers/.

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in this
document, go to:

http://ww. sun. com servi ce/ contacting

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docf eedback@un. com

Please include the part number (817-0926-10) of the document in the subject line of
your email.

Before You Begin xxxv

xxxvi C++ User's Guide « May 2003

eart | C++ Compiler

CHAPTER 1

The C++ Compiler

This chapter provides a brief conceptual overview of the C++ compiler.

1.1

Standards Conformance

The C++ compiler (CC) supports the ISO International Standard for C++, ISO IS
14882:1998, Programming Language—C++. The readme file that accompanies the
current release describes any departures from requirements in the standard.

On SPARC™ platforms, the compiler provides support for the
optimization-exploiting features of SPARC V8 and SPARC V9, including the
UltraSPARC™ implementation. These features are defined in the SPARC Architecture
Manuals, Version 8 (ISBN 0-13-825001-4), and Version 9 (ISBN 0-13-099227-5),
published by Prentice-Hall for SPARC International.

In this document, “Standard” means conforming to the versions of the standards
listed above. “Nonstandard” or “Extension” refers to features that go beyond these
versions of these standards.

The responsible standards bodies may revise these standards from time to time. The
versions of the applicable standards to which the C++ compiler conforms may be
revised or replaced, resulting in features in future releases of the Sun C++ compiler
that create incompatibilities with earlier releases.

1.2

C++ Readme File

The C++ compiler’s readme file highlights important information about the
compiler, including:

1-1

= Information discovered after the manuals were printed
= New and changed features

= Software corrections

= Problems and workarounds

= Limitations and incompatibilities

= Shippable libraries

= Standards not implemented

To view the text version of the C++ readme file, type the following at a command
prompt:

exanpl e% CC - xhel p=r eadne

To access the HTML version of the readme, in your Netscape Communicator 4.0 or
compatible version browser, open the following file:

/ opt/ SUNWpr o/ docs/ i ndex. ht m

(If your C++ compiler-software is not installed in the / opt directory, ask your
system administrator for the equivalent path on your system.) Your browser
displays an index of HTML documents. To open the readme, find its entry in the
index, then click the title.

1.3 Man Pages

Online manual (man) pages provide immediate documentation about a command,
function, subroutine, or collection of such things.

You can display a man page by running the command:

exanpl e% man topic

Throughout the C++ documentation, man page references appear with the topic
name and man section number: CC(1) is accessed with man CC. Other sections,
denoted by i eee_f | ags(3M) for example, are accessed using the - s option on the
man command:

exanmpl e% nman -s 3Mieee_fl ags

1-2 C++ User's Guide » May 2003

1.4

Licensing

The C++ compiler uses network licensing, as described in the Installation Guide.

If you invoke the compiler, and a license is available, the compiler starts. A single
license can be used for any number of simultaneous compiles by a single user on a
single machine.

To run C++ and the various utilities, several licenses might be required, depending
on the package you have purchased.

1.5

1.5.1

New Features of the C++ Compiler

The C++ compiler introduces the following new features in this release.

General Enhancements

= Template cache no longer needed: - i nst ances

This release of the C++ compiler improves template instantiation significantly.
Programs that use the default template instantiation model are no longer
restricted from building more than one program in a directory.

Most programs that rely on an alternate instantiation model, such as
-i nst ances=st at i ¢, can now use the new default instantiation model.

The improvements and changes to template instantiation will either improve
compile time by avoiding a template cache, or reduce executable size by avoiding
duplicate static functions.

For details, see “—i nst ances=a” on page A-40.

= Linker mapfiles no longer needed for variable scoping: - x| dscope

There are now two different ways you can control the exporting of symbols in
dynamic libraries. This facility is called linker scoping, and has been supported
by linker mapfiles for some time. First, you can now embed new declaration
specifiers in code.

By embedding __gl obal , __synbol i c, and __hi dden directly in code, you no
longer need to use mapfiles. Second, you can override the default setting for
variable scopping by specifying - x| dscope at the command line.

Chapter 1 The C++ Compiler 1-3

1-4

See “- x| dscope={v}” on page A-103. The declaration specifiers are detailed in
“Linker Scoping” on page 4-1.

Powerful new diagnostics for macros: - xdunmpnacr os

This release introduces two new pragmas and a new compiler option designed to
help you track the behavior of macros in your application. This includes macros
defined in system headers.

You can use the - xdunpnacr os option at the command line to see the macro
definitions and also to see where macros are defined, undefined, and used in your
program. To narrow your focus, use the new dunpnmacr os and end_dunpnacr 0s
pragmas directly in the source.

See “- xdunmpnacr os[=value][, value...]]” on page A-89, “#pr agma dunpnacr 0s”
on page B-5. and “#pragma end_dunpracr os” on page B-7.

Support for VIS[tm] Developers Kit: - xvi s (SPARC)

Use the - xvi s=[yes | no] option when you are using the assembly-language
templates defined in the VIS instruction set Software Developers Kit (VSDK). The
default is - xvi s=no.

The VIS instruction set is an extension to the SPARC v9 instruction set. Even
though the UltraSPARC processors are 64-bit, there are many cases, especially in
multimedia applications, when the data are limited to eight or 16 bits in size. The
VIS instructions can process four 16-bit data with one instruction so they greatly
improve the performance of applications that handle new media such as imaging,
linear algebra, signal processing, audio, video and networking.

For more information on the VSDK, see http://www.sun.com/processors/vis .
See “- xvi s[={yes |no}]” on page A-153.

Support for C99 runtime libraries and environment: - x| ang=c99

On operating systems that support the C99 standard (ISO/IEC 9899:1999,
Programming Language - C), - xI ang=c99 specifies C99 runtime behavior for C
and C++ code that invokes C library functions. Some C99 behavior, like the C
complex type, depends on the use of the - xc99=%al | option with the C
compiler, and some behavior, like printf, does not.

Note — C99 support is not available in compat mode (- conpat =4).

See “- x| ang=language|[, language]” on page A-101.
Support for UTF-16 string literals: -xustr

Specify - xustr=asci i _utf16_ushort if you need to support an
internationalized application that uses 1SO10646 UTF-16 string literals. In other
words, use this option if your code contains a string literal composed of
sixteen-bit characters. Without this option, the compiler neither produces nor
recognizes sixteen-bit character string literals. This option enables recognition of

C++ User’'s Guide « May 2003

the U"ASCII_string” string literals as an array of type unsigned short. Since such
strings are not yet part of any standard, this option enables recognition of
non-standard C++.

See “-xustr={ascii_utf16_ushort |no}” on page A-152.
Expanded support for OpenMP: - xopennp

The C++ compiler continues its implementation of the OpenMP interface for
explicit parallelization.

The compiler has expanded OpenMP functionality to allow the following:

« Class objects are permitted in OpenMP data clauses.
« OpenMP pragmas are permitted in class member functions.

See “- xopennp[=i]” on page A-118 for more information about the compiler
command for OpenMP. See OpenMP API User’s Guide for more information about
the OpenMP C++ application program interface (API) for building
multiprocessing applications.

Improved - xprofi | e (SPARC)
The - xpr of i | e option offers the following improvements:

« Support for profiling shared libraries
« Thread-safe profile collection using -xprofile=collect -mt
« Improved support for profiling multiple programs in a single profile directory.

With - xpr of i | e=use, the compiler can now find profile data in profile
directories that contain data for multiple object files with nonunique basenames.
For cases where the compiler is unable to find an object file’s profile data, the
compiler provides a new option - xpr of i | e_pat hmap=collect-prefix: use-prefix.

See “- xprofil e=p” on page A-134 and “- xpr of i | e_pat hmap” on page A-137.

1.5.2 Faster Compilation

Speeding up syntax checking: - xe

When you specify - xe, the compiler checks only for syntax and semantic errors
and does not produce any object code.

Use the - xe option if you do not need the object files produced by compilation.
For example, if you are trying to isolate the cause of an error message by deleting
sections of code, you can speed the edit and compile cycle by using - xe.

See “- xe” on page A-93.
Faster profiling with - xprofil e_i rcache

Use - xprofil e_i r cache[=path] with - xpr of i | e=col | ect Juse to improve
compilation time during the use phase by reusing compilation data saved from
the collect phase.

Chapter 1 The C++ Compiler 1-5

1-6

With large programs, compilation time in the use phase can improve significantly
because the intermediate data is saved. Note that the saved data could increase
disk space requirements considerably.

See “- xprofil e_i rcache[=path]” on page A-137.
Stopping redundant template instantiations: - i nst | i b=filename

Use - i nst | i b=filename to inhibit the generation of template instances that are
duplicated in a library and the current object. In general, if your program shares
large numbers of instances with libraries, try - i nst | i b=filename and see whether
or not compilation time improves.

See “—i nst | i b=filename” on page A-41.
Generating functions with -t enpl at e=geni nl i nef uncs

Usually, the C++ compiler will not generate an inline template function unless the
function is called and cannot be inlined. However, you can specify

-tenpl at e=geni nl i nef uncs and the compiler instantiates inline member
functions of the explicitly instantiated class template which were not generated
previously. Linkage for these functions is local in all cases.

See “~t enpl at e=opt[, opt...]” on page A-63.
Precpompiled headers, - xpch

This release of the compiler introduces the new precompiled-header feature. The
precompiled-header file is designed to reduce compile time for applications
whose source files share a common set of include files containing a large amount
of source code. A precompiled header works by collecting information about a
sequence of header files from one source file, and then using that information
when recompiling that source file, and when compiling other source files that
have the same sequence of headers. You can take advantage of this feature
through the - xpch and - xpchst op options in combination with the #pr agnma
hdr st op directive.

See “- xpch=v” on page A-122, “- xpchst op=file” on page A-126, and “#pr agnma
hdr st op” on page B-8.

Using multiple processors with - xj obs=n (SPARC)

Specify the - xj obs=n option to set how many processes the compiler creates to

complete its work. This option can reduce the build time on a multi-cpu machine.
Currently, - xj obs works only with the - xi po option. When you specify

- Xj obs=n, the interprocedural optimizer uses n as the maximum number of code
generator instances it can invoke to compile different files.

See “- xj obs=n" on page A-101.

C++ User’'s Guide « May 2003

1.5.3 Easier Porting

Simplify porting: - xnmemal i gn

Use the - xmenal i gn option to control the assumptions the compiler makes about
the alignment of data. By controlling the code generated for potentially
misaligned memory accesses and by controlling program behavior in the event of
a misaligned access, you can more easily port your code to the Solaris operating
environment.

See “- xmemal i gn=ab” on page A-110.

Setting the sign of char: - xchar

The - xchar [={si gned]s Junsi gned] u}] option is provided solely for the
purpose of easing the migration of code from systems where the char type is
defined as unsigned. Do not use this option unless you are migrating from such a
system. Only code that relies on the sign of a char type needs to be rewritten to
explicitly specify signed or unsigned.

See “- xchar [=0]” on page A-82.

Debugging ported code: - xport 64

Use the new - xpor t 64 option to help you port code to a 64-bit environment.
Specifically, this option warns against problems such as truncation of values
(including pointers), sign extension, and changes to bit-packing that are common

when you port code from a 32-bit architecture such as V7 (ILP32) to a 64-bit
architecture such as V9 (LP64).

See “- xport 64[=(Vv)]” on page A-127.

1.5.4 Improved Performance

Improving run-time with linker supported thread-local storage of data:
- xt hreadvar (SPARC)

Use the new linker supported thread-local storage facility of the compiler to do
the following:

« Utilize a fast implementation for the POSIX interfaces for allocating
thread-specific data.

« Convert multi-process programs to multi-thread programs.

« Port Windows applications using thread-local storage to the Solaris operating
environment.

« Utilize a fast implementation for the threadprivate variables in OpenMP.

Thread-local storage is now available in the compiler through the declaration of
thread-local variables. The declaration consists of a normal variable declaration
with the addition of the variable specifier __t hr ead and the command line
option - xt hr eadvar.

Chapter 1 The C++ Compiler 1-7

1-8

See “- xt hr eadvar [=0]” on page A-148. The declaration specifiers are detailed in
“Thread-Local Storage” on page 4-3.

Improving run-time by reducing page faults: - xF

Use the new functionality of - XF to enable the optimal reordering of variables
and functions by the linker. This can help solve the following problems which
negatively impact run-time performance:

« Cache and page contention caused by unrelated variables that are near each
other in memory.

« Unnecessarily large work-set size as a result of related variables which are not
near each other in memory.

« Unnecessarily large work-set size as a result of unused copies of weak
variables that decrease the effective data density.

See “—xF[=v[, v...]]” on page A-93.
Improving run-time with new pragmas

The C++ compiler now supports four new pragmas that you can use to help
improve the optimization of your code:

« “#pragma does_not _read_gl obal _dat a” on page B-4
« “#pragnma does_not _return” on page B-4

« “#pragnma does_not_write_gl obal _data” on page B-5
« “#pragmararely_call ed” on page B-11

See “Pragmas” on page B-1.
Improving run-time with the link-time optimizer: - x| i nkopt

The C++ compiler can now perform link-time optimization on relocatable object
files when you specify the - x| i nkopt command.

Specify - x| i nkopt and the compiler performs some additional optimizations at
link time without modifying the .o files that are linked. The optimizations appear
only in the executable program. The - x| i nkopt option is most effective when
you use it to compile the whole program, and with profile feedback.

See “- x| i nkopt [=level]” on page A-107.
Improving run-time with - xpagesi ze=n (SPARC)

Use the - xpagesi ze=n option to set the preferred page size for the stack and the
heap. n can be 8K, 64K, 512K, 4M 32M 256M 2G 16G or def aul t. You must
specify a valid page size for the Solaris operating environment on the target
platform, as returned by get pagesi ze(3C). If you do not specify a valid page
size, the request is silently ignored at run-time. You can use prmap(1) or

mem nf 0(2) to determine page size of the target platform.

C++ User’'s Guide « May 2003

1.5.5

Note — This feature is only available on the Solaris 9 operating environment. A
program compiled with this option will not link in earlier Solaris operating
environments.

This option is a macro for - xpagesi ze_st ack and - xpagesi ze_heap.

See “- xpagesi ze=n" on page A-120, “- xpagesi ze_heap=n” on page A-121,
and “- xpagesi ze_st ack=n" on page A-122.

Added Warning and Error Controls

Filtering warning messages with - err of f

Use the new - er r of f option to suppress warning messages from the compiler
front-end. Note that neither error messages nor messages from the driver are
affected. You can also use - er r of f to single out a particular warning message so
that either it alone is suppressed or it alone is issued.

For example, - er r of f =tag suppresses the warning message specified by this tag.
On the other hand, - er r of f =%al | ,no%tag suppresses all warning messages
except the messages identified by tag. You can display the tag for a warning
message by using the - errt ags=yes option.

See “- err of f [=t]” on page A-13.

Aborting compilation with - errtags and - errwarn

Use the - errtags and - err war n compiler options to stop compilation if the
compiler issues a particular warning. Set - er rt ags=yes to find the tag for a

particular warning and then specify - er r war n=tag where tag is the unique
identifier returned by - errt ags for a particular warning message.

You can also abort compilation if any warning is issued by specifying
-errwarn=%al | .

See “-errtags[=a]” on page A-15 and “- er r war n[=t]” on page A-15.
Improved filtering for standard-library names with -filt=[no% stdlib

The-filt=[no% stdlib option is set by default and simplifies names from the
standard library in both the linker and compiler error messages. This makes it
easier for you to recognize the name of standard-library functions. Specify
-filt=no%stdli b disable this filtering.

See “-fil t [=filter[, filter...]]” on page A-23.

Chapter 1 The C++ Compiler 1-9

1.6

C++ Utilities

The following C++ utilities are now incorporated into traditional UNIX® tools and
are bundled with the UNIX operating system:

| ex—Generates programs used in simple lexical analysis of text
yacc—Generates a C function to parse the input stream according to syntax
pr of —Produces an execution profile of modules in a program

gpr of —Profiles program runtime performance by procedure

t cov—Profiles program runtime performance by statement

See Program Performance Analysis Tools and associated man pages for further
information on these UNIX tools.

1.7

1-10

Native-Language Support

This release of C++ supports the development of applications in languages other
than English, including most European languages and Japanese. As a result, you can
easily switch your application from one native language to another. This feature is
known as internationalization.

In general, the C++ compiler implements internationalization as follows:

C++ recognizes ASCII characters from international keyboards (in other words, it
has keyboard independence and is 8-bit clean).

C++ allows the printing of some messages in the native language.
C++ allows native-language characters in comments, strings, and data.

C++ supports only Extended UNIX Character (EUC) compliant character sets - a
character set in which every null byte in a string is the null character and every
byte in the string with the ascii value of '/’ is the '/’ character.

Variable names cannot be internationalized and must be in the English character set.

You can change your application from one native language to another by setting the
locale. For information on this and other native-language support features, see the
operating environment documentation.

C++ User’s Guide » May 2003

CHAPTER 2

Using the C++ Compiler

This chapter describes how to use the C++ compiler.

The principal use of any compiler is to transform a program written in a high-level
language like C++ into a data file that is executable by the target computer
hardware. You can use the C++ compiler to:

= Transform source files into relocatable binary (. o) files, to be linked later into an
executable file, a static (archive) library (. a) file (using —xar), or a dynamic
(shared) library (. so) file

= Link or relink object files or library files (or both) into an executable file
= Compile an executable file with runtime debugging enabled (- g)

= Compile an executable file with runtime statement or procedure-level profiling
(- P9)

2.1 Getting Started

This section gives you a brief overview of how to use the C++ compiler to compile
and run C++ programs. See Appendix A for a full reference to the command-line
options.

Note — The command-line examples in this chapter show CC usages. Printed output
might be slightly different.

The basic steps for building and running a C++ program involve:

1. Using an editor to create a C++ source file with one of the valid suffixes listed in
TABLE 2-1

2. Invoking the compiler to produce an executable file

2-1

2-2

3. Launching the program into execution by typing the name of the executable file

The following program displays a message on the screen:

exanpl e% cat greetings.cc
#i ncl ude <i ostreanp
int min() {
std::cout << “Real programmers wite C++!” << std::endl;
return O;
}
exanpl e% CC greetings. cc
exanpl e% a. out
Real progranmers wite C++!
exanpl e%

In this example, CC compiles the source file gr eet i ngs. cc and, by default,
compiles the executable program onto the file, a. out . To launch the program, type
the name of the executable file, a. out , at the command prompt.

Traditionally, UNIX compilers name the executable file a. out . It can be awkward to
have each compilation write to the same file. Moreover, if such a file already exists,
it will be overwritten the next time you run the compiler. Instead, use the - o
compiler option to specify the name of the executable output file, as in the following
example:

exanpl e% CC —o greetings greetings.C

In this example, the - o option tells the compiler to write the executable code to the
file gr eet i ngs. (It is common to give a program consisting of a single source file
the name of the source file without the suffix.)

Alternatively, you could rename the default a. out file using the mv command after
each compilation. Either way, run the program by typing the name of the
executable file:

exanpl e% gr eeti ngs
Real programrers wite C++!
exanpl e%

C++ User’'s Guide « May 2003

2.2

2.2.1

Invoking the Compiler

The remainder of this chapter discuss the conventions used by the CC command,
compiler source line directives, and other issues concerning the use of the compiler.

Command Syntax

The general syntax of a compiler command line is as follows:

CC [options] [source-files] [object-files] [libraries]

An option is an option keyword prefixed by either a dash (=) or a plus sign (+). Some
options take arguments.

In general, the processing of the compiler options is from left to right, allowing
selective overriding of macro options (options that include other options). In most
cases, if you specify the same option more than once, the rightmost assignment
overrides and there is no accumulation. Note the following exceptions:

= All linker options and the -features, -l -1,-L,-library, —pti, -R
-staticlib,-U -verbose, - xdunpnacr os, and - xpr ef et ch options
accumulate, they do not override.

= All —U options are processed after all —D options.

Source files, object files, and libraries are compiled and linked in the order in which
they appear on the command line.

In the following example, CC is used to compile two source files (gr owt h. Cand
fft.C) to produce an executable file named gr owt h with runtime debugging
enabled:

exanpl e% CC -g -0 growh growh.C fft.C

Chapter 2 Using the C++ Compiler 2-3

2.2.2 File Name Conventions

The suffix attached to a file name appearing on the command line determines how
the compiler processes the file. A file name with a suffix other than those listed in
the following table, or without a suffix, is passed to the linker.

TABLE 2-1 File Name Suffixes Recognized by the C++ Compiler

Suffix Language Action

.C C++ Compile as C++ source files, put object files in current
directory; default name of object file is that of the source but
with an . o suffix.

.C C++ Same action as . ¢ suffix.

.cc C++ Same action as . ¢ suffix.

.cpp C++ Same action as . ¢ suffix.

. CXX C++ Same action as . ¢ suffix.

.CH+ C++ Same action as . ¢ suffix.

i C++ Preprocessor output file treated as C++ source file. Same
action as . ¢ suffix.

.S Assembler Assemble source files using the assembler.

.S Assembler Assemble source files using both the C language
preprocessor and the assembler.

Jil Inline Process assembly inline-template files for inline expansion.

expansion The compiler will use templates to expand inline calls to

selected routines. (Inline-template files are special assembler
files. See the i nl i ne(1) man page.)

.0 Object files Pass object files through to the linker.
.a Static Pass object library names to the linker.
(archive)
library
.so Dynamic Pass names of shared objects to the linker.
so.n (shared)
library

2-4 C++ User's Guide » May 2003

2.2.3

Using Multiple Source Files

The C++ compiler accepts multiple source files on the command line. A single
source file compiled by the compiler, together with any files that it directly or
indirectly supports, is referred to as a compilation unit. C++ treats each source as a
separate compilation unit.

2.3

Compiling With Different Compiler
\ersions

Beginning with the C++ 5.1 compiler, the compiler marks a template cache directory
with a string that identifies the template cache’s version.

This compiler does not use the cache by default. It only uses the cache if you specify
-i nst ances=ext er n. If the compiler makes use of the cache, it checks the cache
directory’s version and issues error messages whenever it encounters cache version
problems. Future C++ compilers will also check cache versions. For example, a
future compiler that has a different template cache version identification and that
processes a cache directory produced by this release of the compiler might issue an
error that is similar to the following message:

Tenpl at e Dat abase at ./SunWs_cache is inconpatible with
this compiler

Similarly, the compiler issues an error if it encounters a cache directory that was
produced by a later version of the compiler.

Although the template cache directories produced by the C++ 5.0 compiler are not
marked with version identifiers, the current compiler processes the 5.0 cache
directories without an error or a warning. The compiler converts the 5.0 cache
directories to the directory format that it uses.

The C++ 5.0 compiler cannot use a cache directory that is produced by a later release
of the compiler. The C++ 5.0 compiler is not capable of recognizing format
differences and it will issue an assertion when it encounters a cache directory that is
produced by the C++ 5.1 compiler or by a later release.

When you upgrade your compiler, it is always good practice to clean the cache. Run
CCadmi n - cl ean on every directory that contains a template cache directory (in
most cases, a template cache directory is named SunW5_cache) . Alternatively, you

Chapter 2 Using the C++ Compiler 2-5

canuserm-rf SunW5_cache. For up-to-date instructions on how to clear the
template, see the article ‘Upgrading Your C++ Compiler’ at
http://forte.sun.con slscc/articles/index.htm.

2.4

2.4.1

Compiling and Linking

This section describes some aspects of compiling and linking programs. In the
following example, CCis used to compile three source files and to link the object files
to produce an executable file named prgrm

exanmpl e% CC filel.cc file2.cc file3.cc -0 prgrm

Compile-Link Sequence

In the previous example, the compiler automatically generates the loader object files
(filel.o,file2.0andfil e3.0)and then invokes the system linker to create the
executable program for the file prgrm

After compilation, the object files (fil el. 0, fil e2. 0,andfil e3. 0) remain. This
convention permits you to easily relink and recompile your files.

Note — If only one source file is compiled and a program is linked in the same
operation, the corresponding . o file is deleted automatically. To preserve all . o files,
do not compile and link in the same operation unless more than one source file gets
compiled.

If the compilation fails, you will receive a message for each error. No . o files are
generated for those source files with errors, and no executable program is written.

2-6 C++ User’'s Guide » May 2003

2.4.2

2.4.3

Separate Compiling and Linking

You can compile and link in separate steps. The - ¢ option compiles source files and
generates . 0 object files, but does not create an executable. Without the - ¢ option,

the compiler invokes the linker. By splitting the compile and link steps, a complete
recompilation is not needed just to fix one file. The following example shows how to

compile one file and link with others in separate steps:

exampl e% CC -c filel.cc Make new object file
exampl e% CC -o prgrmfilel.o file2.0 file3.0 Make executable file

Be sure that the link step lists all the object files needed to make the complete
program. If any object files are missing from this step, the link will fail with
“undefined external reference” errors (missing routines).

Consistent Compiling and Linking

If you do compile and link in separate steps, consistent compiling and linking is
critical when using the following compiler options:

= -B

= -conpat

=« —fast

= -

= -g0

« -library

= -msalign
-

= -p

n -Xa

= -xarch

= —xcg92 and - xcg89
= -Xi po

= -Xpagesi ze
= -Xpg

« -xprofile
= -Xxtarget

If you compile any subprogram using any of these options, be sure to link using the

same option as well:

= Inthe case of the -l i brary, -fast, - xtarget, and - xar ch options, you must

be sure to include the linker options that would have been passed if you had
compiled and linked together.

Chapter 2 Using the C++ Compiler

2-7

2.4.4

2.4.5

= With - p, - xpg, and - xpr of i | e, including the option in one phase and excluding
it from the other phase will not affect the correctness of the program, but you will
not be able to do profiling.

= With - g and - g0, including the option in one phase and excluding it from the
other phase will not affect the correctness of the program, but it will affect the
ability to debug the program. Any module that is not compiled with either of
these options, but is linked with - g or - g0 will not be prepared properly for
debugging. Note that compiling the module that contains the function mai n with
the -g option or the - g0 option is usually necessary for debugging.

In the following example, the programs are compiled using the - xcg92 compiler
option. This option is a macro for - xt ar get =ss1000 and expands to: - xar ch=
v8 -xchi p=super -xcache=16/64/4:1024/64/ 1.

exanpl e% CC -c¢ -xcg92 sbr.cc
exanpl e% CC -c -xcg92 smain. cc
exanpl e% CC -xcg92 sbr.o snmain.o

If the program uses templates, it is possible that some templates will get instantiated
at link time. In that case the command line options from the last line (the link line)
will be used to compile the instantiated templates.

Compiling for SPARC V9

The compilation, linking, and execution of 64-bit objects is supported only in a V9
SPARC, Solaris 7 operating environment or Solaris 8 operating environment with a
64-bit kernel running. Compilation for 64-bit is indicated by the —xar ch=v9, —
xar ch=v9a, and - xar ch=v9b options.

Diagnosing the Compiler

You can use the —ver bose option to display helpful information while compiling a
program, such as the names and version numbers of the programs that it invokes
and the command line for each compilation phase.

Any arguments on the command line that the compiler does not recognize are
interpreted as linker options, object program file names, or library names.
The basic distinctions are:

= Unrecognized options, which are preceded by a dash (-) or a plus sign (+),
generate warnings.

2-8 C++ User’'s Guide » May 2003

2.4.6

= Unrecognized nonoptions, which are not preceded by a dash or a plus sign,
generate no warnings. (However, they are passed to the linker. If the linker does
not recognize them, they generate linker error messages.)

In the following example, note that - bi t is not recognized by CC and the option is
passed on to the linker (I d), which tries to interpret it. Because single letter | d
options can be strung together, the linker sees -bit as-b -i -t, all of which are
legitimate | d options. This might not be what you intend or expect:

exampl e% CC -bit nove. cc <- -bit isnota recognized CC option

CC. Warning: Option -bit passed to Id, if Idis invoked, ignored
ot herw se

In the next example, the user intended to type the CCoption - f ast but omitted the
leading dash. The compiler again passes the argument to the linker, which in turn
interprets it as a file name:

exanpl e% CC fast nove. cc <- The user meant to type - f ast
nmove. CC.

Id: fatal: file fast: cannot open file; errno=2

Id: fatal: File processing errors. No output witten to a.out

Understanding the Compiler Organization

The C++ compiler package consists of a front end, optimizer, code generator,
assembler, template pre-linker, and link editor. The CC command invokes each of
these components automatically unless you use command-line options to specify
otherwise.

Because any of these components may generate an error, and the components
perform different tasks, it may be helpful to identify the component that generates
an error. Use the - v and - dr yr un options to help with this.

Chapter 2 Using the C++ Compiler 2-9

As shown in the following table, input files to the various compiler components
have different file name suffixes. The suffix establishes the kind of compilation that
is done. Refer to TABLE 2-1 for the meanings of the file suffixes.

TABLE 2-2 Components of the C++ Compilation System

Component Description Notes on Use

ccfe Front end (compiler preprocessor and compiler)

i ropt SPARC: Code optimizer -x(Q2-5], - f ast

i r2hf IA: Intermediate language translator -x(Q2-5], - f ast

inline SPARC: Inline expansion of assembly language . il file specified
templates

ube_i pa IA: Interprocedural analyzer -xcrossfil e=1 with

-xO4, - x0b, or - f ast

f be Assembler

cg SPARC: Code generator, inliner, assembler

ube IA: Code generator -x(Q2-5], - f ast

Cd i nk Template pre-linker

I d Nonincremental link editor

ild Incremental link editor -g,-Xxildon

Note — In this document, the term “IA” refers to the Intel 32-bit processor
architecture, which includes the Pentium, Pentium Pro, and Pentium Il, Pentium Il
Xeon, Celeron, Pentium IlI, and Pentium Ill Xeon processors and compatible
microprocessor chips made by AMD and Cyrix.

2.5

2-10

Preprocessing Directives and Names

This section discusses information about preprocessing directives that is specific to

the C++ compi

C++ User’s Guide « May 2003

ler.

2.5.1

2.5.2

Pragmas

The preprocessor keyword pr agma is part of the C++ standard, but the form,
content, and meaning of pragmas is different for every compiler. See Appendix B for
a list of the pragmas that the C++ compiler recognizes.

Macros With a Variable Number of Arguments

The C++ compiler accepts #def i ne preprocessor directives of the following form.

#define identifier (...) replacement_list
#define identifier (identifier_list, ...) replacement_list

If the macro parameter list ends with an ellipsis, an invocation of the macro is
allowed to have more arguments than there are macro parameters. The additional
arguments are collected into a single string, including commas, that can be
referenced by the name __ VA _ARGS__ in the macro replacement list. The following
example demonstrates how to use a variable-argument-list macro.

#define debug(...) fprintf(stderr, __VA ARGS_)

#define showlist(...) puts(#__VA ARGS)

#define report(test, ...) ((test)?puts(#test):\
printf(__VA ARGS_))

debug(“Fl ag”);

debug(“X = %\ n”, X);

show i st (The first, second, and third itens.);

report(x>y, “x is %l but yis %", x, y);

which results in the following:

fprintf(stderr, “Flag”);

fprintf(stderr, “X = %\ n”, x);

puts(“The first, second, and third itens.”);
((x>y)?puts(“x>y”):printf(“x is % but y is %", X, y));

Chapter 2 Using the C++ Compiler 2-11

2.5.3

2.5.4

Predefined Names

TABLE A-3 in the appendix shows the predefined macros. You can use these values in
such preprocessor conditionals as #i f def . The +p option prevents the automatic
definition of the sun, uni x, spar c, and i 386 predefined macros.

#err or

The #error directive no longer continues compilation after issuing a warning. The
previous behavior of the directive was to issue a warning and continue compilation.
The new behavior, consistent with other compilers, is to issue an error message and
immediately halt compilation. The compiler quits and reports the failure.

2.6

2.6.1

Memory Requirements

The amount of memory a compilation requires depends on several parameters,
including:

= Size of each procedure

= Level of optimization

= Limits set for virtual memory
= Size of the disk swap file

On the SPARC platform, if the optimizer runs out of memory, it tries to recover by
retrying the current procedure at a lower level of optimization. The optimizer then
resumes subsequent routines at the original level specified in the - xOevel option on
the command line.

If you compile a single source file that contains many routines, the compiler might
run out of memory or swap space. If the compiler runs out of memory, try reducing
the level of optimization. Alternately, split multiple-routine source files into files
with one routine per file.

Swap Space Size

The swap - s command displays available swap space. See the swap(1M) man page
for more information.

2-12 C++ User's Guide « May 2003

2.6.2

2.6.3

The following example demonstrates the use of the swap command:

exampl e% swap -s
total: 40236k bytes allocated + 7280k reserved = 47516k used,
1058708k avail abl e

Increasing Swap Space

Use nkfi | e(1M) and swap (1M) to increase the size of the swap space on a
workstation. (You must become superuser to do this.) The nkf i | e command creates
a file of a specific size, and swap - a adds the file to the system swap space:

exanpl e# nkfile -v 90m /hone/ swapfile
/ home/ swapfile 94317840 bytes
exanpl e# /usr/sbin/swap -a /honme/swapfile

Control of Virtual Memory

Compiling very large routines (thousands of lines of code in a single procedure) at
- X8 or higher can require a large amount of memory. In such cases, performance of
the system might degrade. You can control this by limiting the amount of virtual
memory available to a single process.

To limit virtual memory in an sh shell, use the ul i m t command. See the sh(1)
man page for more information.

The following example shows how to limit virtual memory to 16 Mbytes:

exanpl e$ ulimt -d 16000

In acsh shell, use the I i m t command to limit virtual memory. See the csh(1) man
page for more information.

The next example also shows how to limit virtual memory to 16 Mbytes:

exanple% |limt datasize 16M

Each of these examples causes the optimizer to try to recover at 16 Mbytes of data
space.

Chapter 2 Using the C++ Compiler 2-13

2.6.4

The limit on virtual memory cannot be greater than the system’s total available swap
space and, in practice, must be small enough to permit normal use of the system
while a large compilation is in progress.

Be sure that no compilation consumes more than half the swap space.
With 32 Mbytes of swap space, use the following commands:

In an sh shell:

exanple$ ulinmt -d 16000

In a csh shell:

exampl e% limt datasize 16M

The best setting depends on the degree of optimization requested and the amount of
real memory and virtual memory available.

Memory Requirements

A workstation should have at least 64 megabytes of memory; 128 Mbytes are
recommended.

To determine the actual real memory, use the following command:

exanpl e% / usr/ sbin/dnesg | grep mem
mem = 655360K (0x28000000)
avai | mem = 602476544

2.7

Simplifying Commands

You can simplify complicated compiler commands by defining special shell aliases,
using the CCFLAGS environment variable, or by using make.

2-14 C++ User's Guide « May 2003

2.7.1

2.1.2

2.1.3

Using Aliases Within the C Shell

The following example defines an alias for a command with frequently used options.

exanmpl e% alias CCfx "CC -fast -xnolibml"

The next example uses the alias CCf x.

exanpl e% CCf x any. C

The command CCf x is now the same as:

exanmpl e% CC -fast -xnolibm | any.C

Using CCFLAGS to Specify Compile Options
You can specify options by setting the CCFLAGS variable.

The CCFLAGS variable can be used explicitly in the command line. The following
example shows how to set CCFLAGS (C Shell):

exanpl e% set env CCFLAGS ' -xQ2 -xsb'

The next example uses CCFLAGS explicitly.

exanpl e% CC $CCFLAGS any. cc

When you use nake, if the CCFLAGS variable is set as in the preceding example and
the makefile’s compilation rules are implicit, then invoking make will result in a
compilation equivalent to:

CC -x@2 -xsb files...

Using make

The make utility is a very powerful program development tool that you can easily
use with all Sun compilers. See the make(1S) man page for additional information.

Chapter 2 Using the C++ Compiler 2-15

2.7.3.1

2.7.3.2

2.7.3.3

Using CCFLAGS Within make

When you are using the implicit compilation rules of the makefile (that is, there is no
C++ compile line), the make program uses CCFLAGS automatically.

Adding a Suffix to Your Makefile

You can incorporate different file suffixes into C++ by adding them to your makefile.
The following example adds . cpp as a valid suffix for C++ files. Add the SUFFI XES
macro to your makefile:

SUFFI XES: .cpp .cpp~
(This line can be located anywhere in the makefile.)

Add the following lines to your makefile. Indented lines must start with a tab.

. cpp:
$(LINK. cc) -0 $@ $< $(LDLIBS)
. cpp~:

$(CET) $(GFLAGS) -p $< > $*.cpp

$(LINK. cc) -0 $@%$*. cpp $(LDLIBS)
. cpp. o:

$(COWPI LE. cc) $(OUTPUT_OPTI ON) $<
. Cpp~. O:

$(CET) $(GFLAGS) -p $< > $*.cpp

$(COVPI LE. cc) $(OUTPUT_OPTI ON) $<
. cpp. a:

$(COWPI LE. cc) -0 $% $<

$(COWPI LE. cc) -xar $@ $%

$(RV $%
. cpp~. a:

$(CET) $(GFLAGS) -p $< > $*.cpp

$(COWPI LE. cc) -0 $% $<

$(COWPI LE. cc) -xar $@ $%

$(RVM $%

Using make With Standard Library Header Files

The standard library file names do not have . h suffixes. Instead, they are named
i stream f st ream and so forth. In addition, the template source files are named
i stream cc, f stream cc, and so forth.

2-16 C++ User's Guide « May 2003

If, in the Solaris 2.6 operating environment or Solaris 7 operating environment, you
include a standard library header, such as <i st r ean, in your program and your
makefile has . KEEP_STATE, you may encounter problems. For example, if you
include <i st r ean®, the nake utility thinks that i st r eamis an executable and uses
the default rules to build i st r eamfrom i st r eam cc resulting in very misleading
error messages. (Both i streamand istream cc are installed under the C++
include files directory). One solution is to use dmake in serial mode (dmake - m
seri al) instead of using the make utility. An immediate work around is to use
make with the - r option. The - r option disables the default make rules. This
solution may break the build process. A third solution is to not use the

. KEEP_STATE target.

Chapter 2 Using the C++ Compiler 2-17

2-18 C++ User's Guide « May 2003

CHAPTER 3

Using the C++ Compiler Options

This chapter explains how to use the command-line C++ compiler options and then
summarizes their use by function. Detailed explanations of the options are provided
in Appendix A.

3.1

Syntax

The following table shows examples of typical option syntax formats that are used in
this book.

TABLE 3-1 Option Syntax Format Examples

Syntax Format Example
-option -E

—opt i onvalue —I pathname
—opt i on=value —-xunrol | =4
—option value -0 filename

Parentheses, braces, brackets, pipe characters, and ellipses are metacharacters used in
the descriptions of the options and are not part of the options themselves. See the
typographical conventions in “Before You Begin” at the front of this manual for a
detailed explanation of the usage syntax.

3-1

3.2

General Guidelines

Some general guidelines for the C++ compiler options are:

The —I lib option links with library | i blib. a (or | i blib. so) . It is always safer to
put —I lib after the source and object files to ensure the order in which libraries are
searched.

In general, processing of the compiler options is from left to right (with the
exception that —U options are processed after all —D options), allowing selective
overriding of macro options (options that include other options). This rule does
not apply to linker options.

The -features, -l -1,-L,-library, —pti,—-R -staticlib,-U -verbose,
and - xpr ef et ch options accumulate, they do not override.

The - D option accumulates, However, multiple - D options for the same name
override each other.

Source files, object files, and libraries are compiled and linked in the order in which
they appear on the command line.

3.3

Options Summarized by Function

In this section, the compiler options are grouped by function to provide a quick
reference. For a detailed description of each option, refer to Appendix A.

The options apply to all platforms except as noted; features that are unique to the
Solaris SPARC Platform Edition operating environment are identified as SPARC, and
the features that are unique to the Solaris Intel Platform Edition operating
environment are identified as IA.

3-2 C++ User's Guide « May 2003

3.3.1

Code Generation Options

The following code generation options are listed in alphabetical order.

TABLE 3-2 Code Generation Options

Option Action

—conpat Sets the major release compatibility mode of the compiler.
+e{ 0| 1} Controls virtual table generation.

-9 Compiles for use with the debugger.

—KPI C Produces position-independent code.

—Kpi c Produces position-independent code.

—nt Compiles and links for multithreaded code.

—xcode=a Specifies the code address space.

—-xMer ge Merges the data segment with the text segment.

+w Identifies code that might have unintended consequences.
+W2 Emits all the warnings emitted by +w plus warnings about

technical violations that are probably harmless, but that might
reduce the maximum portability of your program.

- Xregs The compiler can generate faster code if it has more registers
available for temporary storage (scratch registers). This option
makes available additional scratch registers that might not
always be appropriate.

-z arg Linker option.

Chapter 3 Using the C++ Compiler Options

3-3

3.3.2 Compile-Time Performance Options

The following compile-time performance options are listed in alphabetical order

TABLE 3-3 Compile-Time Performance Options

Option Action

—instlib Inhibits the generation of template instances that are already
present in the designated library.

—Xj obs Sets the number of processes the compiler can create to complete
its work.

—-xpch May reduce compile time for applications whose source files
share a common set of include files.

—xpchst op Specifies the last include file to be considered in creating a

—xprofile_ircache

—xprofile_pathmap

pre-compiled header file with - xpch.

(SPARC) Reuses compilation data saved during
-xprofile=collect.

(SPARC) Support for multiple programs or shared libraries in a
single profile directory.

3.3.3 Debugging Options

The following debugging options are listed in alphabetical order.

TABLE 3-4 Debugging Options

Option Action

+d Does not expand C++ inline functions.

—dryrun Shows options passed by the driver to the compiler, but does not
compile.

-E Runs only the preprocessor on the C++ source files and sends result
to st dout . Does not compile.

-9 Compiles for use with the debugger.

-g0 Compiles for debugging, but doesn’t disable inlining.

—-H Prints path names of included files.

—keept nmp Retains temporary files created during compilation.

—migration Explains where to get information about migrating from earlier

compilers.

3-4 C++ User's Guide « May 2003

3.3.4

TABLE 3-4 Debugging Options (Continued)

Option Action

-P Only preprocesses source; outputs to . i file.

—Qoption Passes an option directly to a compilation phase.

—readne Displays the content of the online READVE file.

-s Strips the symbol table out of the executable file, thus preventing the
ability to debug code.

—t enp=dir Defines directory for temporary files.

—ver bose=vlist
-xcheck

- xdunpmacr 0s

-xe
—xhel p=f | ags
—xi | dof f
—xi | don

—Xport 64

—XS
—xsb

—xsbf ast

Controls compiler verbosity.
Adds a runtime check for stack overflow.

Prints information about macros such as definition, location defined
and undefined, and locations used.

Only checks for syntax and semantic errors.
Displays a summary list of compiler options.
Turns off the Incremental Linker.

Turns on the Incremental Linker.

Warns against common problems during a port from a 32-bit
architecture to a 64-bit architecture.

Allows debugging with dbx without object (. 0) files.
Produces table information for the source browser.

Produces only source browser information, no compilation.

Floating-Point Options

The following floating-point options are listed in alphabetical order.

TABLE 3-5

Floating-Point Options

Option

Action

—fns[={no| yes}]

—f preci si on=p
—f round=r
—f si npl e=n

—fstore

Disables or enables the SPARC nonstandard floating-point mode.

IA: Sets floating-point precision mode.
Sets IEEE rounding mode in effect at startup.
Sets floating-point optimization preferences.

IA: Forces precision of floating-point expressions.

Chapter 3 Using the C++ Compiler Options

3-5

TABLE 3-5 Floating-Point Options (Continued)

Option Action

—f t rap=tlst Sets IEEE trapping mode in effect at startup.

—nof store IA: Disables forced precision of expression.

—xl'i b eee Causes | i bmto return IEEE 754 values for math routines in

exceptional cases.

3.35 Language Options

The following language options are listed in alphabetical order.

TABLE 3-6 Language Options

Option Action

—conpat Sets the major release compatibility mode of the compiler.

—f eat ur es=alst Enables or disables various C++ language features.

- xchar Eases the migration of code from systems where the char type is
defined as unsigned.

—x| dscope Controls the default linker scope of variable and function
definitions to create faster and safer shared libraries.

—xt hr eadvar (SPARC) Changes the default thread-local storage access mode.

-xtrigraphs Enables recognition of trigraph sequences.

—-Xxustr Enables recognition of string literals composed of sixteen-bit
characters.

3.3.6 Library Options

The following library linking options are listed in alphabetical order.

TABLE 3-7 Library Options

Option Action

—Bbinding Requests symbolic, dynamic, or static library linking.

—d{y| n} Allows or disallows dynamic libraries for the entire
executable.

-G Builds a dynamic shared library instead of an executable file.

3-6 C++ User's Guide « May 2003

TABLE 3-7 Library Options (Continued)

Option Action

—hname Assigns a name to the generated dynamic shared library.

—i Tells | d(1) to ignore any LD_LI BRARY_PATH setting.

—Ldir Adds dir to the list of directories to be searched for libraries.

= lib Adds | i blib. a or | i blib. so to the linker’s library search list.

—li brary=llst Forces inclusion of specific libraries and associated files into
compilation and linking.

—nt Compiles and links for multithreaded code.

—nor unpat h Does not build path for libraries into executable.

—Rplst Builds dynamic library search paths into the executable file.

—staticlib=llst
—xar

- xbui I ti n[=opt]

-Xi a

- xl ang=I[,1]

—xI i bm eee

—xI i bm |

—xI i bnopt

-xlic_lib=sunperf

-xnat i veconnect

—xnol i b
—xnol i bm |
—xnol i bropt

Indicates which C++ libraries are to be linked statically.
Creates archive libraries.

Enables or disables better optimization of standard library
calls

Links the appropriate interval arithmetic libraries and sets a
suitable floating-point environment.

Includes the appropriate runtime libraries and ensures the
proper runtime environment for the specified language.

Causes | i bmto return IEEE 754 values for math routines in
exceptional cases.

Inlines selected | i bmlibrary routines for optimization.
Uses library of optimized math routines.

(SPARC) Links in the Sun Performance Library™. Note that
for C++, - | i brary=sunperf is the preferable method for
linking in this library.

Includes interface information inside object files and
subsequent shared libraries so that the shared library can
interface with code written in the Java™ programming
language.

Disables linking with default system libraries.
Cancels —xI i bmi | on the command line.

Does not use the math routine library.

Chapter 3 Using the C++ Compiler Options ~ 3-7

3.3.7 Licensing Options

The following licensing options are listed in alphabetical order.

TABLE 3-8 Licensing Options

Option

Action

—xlic_lib=sunperf

—xlicinfo

(SPARC) Links in the Sun Performance Library™. Note that for
C++, -l i brary=sunperf is the preferable method for linking in
this library.

Shows license server information.

3.3.8 Obsolete Options

The following options are obsolete or will become obsolete.

TABLE 3-9 Obsolete Options

Option Action

-library=%al | Obsolete option that will be removed in a future release.

—noqueue Disables license queueing.

-ptr Ignored by the compiler. A future release of the compiler may reuse
this option using a different behavior.

—vdel x Obsolete option that will be removed in a future release.

3.3.9 Output Options

The following output options are listed in alphabetical order.

TABLE 3-10 Output Options

Option Action

—C Compiles only; produces object (. o) files, but suppresses linking.

—dryrun Shows options passed by the driver to the compiler, but does not
compile.

-E Runs only the preprocessor on the C++ source files and sends

result to st dout . Does not compile.

3-8 C++ User's Guide « May 2003

TABLE 3-10 Output Options (Continued)

Option Action

-erroff Suppresses compiler warning messages.

-errtags Displays the message tag for each warning message.

-errwarn If the indicated warning message is issued, cc exits with a failure
status.

-filt Suppresses the filtering that the compiler applies to linker error
messages.

-G Builds a dynamic shared library instead of an executable file.

—-H Prints path names of included files.

—migration Explains where to get information about migrating from earlier
compilers.

—o filename Sets name of the output or executable file to filename.

-P Only preprocesses source; outputs to . i file.

—Qpr oduce sourcetype

-s
—ver bose=vist
+W
-w

- xdunpmacr os

- Xe

—xhel p=f | ags
—xhel p=r eadme
—XM

—xML

—xsb
—xsbf ast
—Xxtine
—Xwe

-z arg

Causes the CC driver to produce output of the type sourcetype.
Strips the symbol table out of the executable file.

Controls compiler verbosity.

Prints extra warnings where necessary.

Suppresses warning messages.

Prints information about macros such as definition, location
defined and undefined, and locations used.

Performs only syntax and semantic checking on the source file,
but does not produce any object or executable code.

Displays a summary list of compiler options
Displays the contents of the online README file.
Outputs makefile dependency information.

Generates dependency information, but excludes
[usr/include.

Produces table information for the source browser.

Produces only source browser information, no compilation.
Reports execution time for each compilation phase.

Converts all warnings to errors by returning non-zero exit status.

Linker option.

Chapter 3 Using the C++ Compiler Options

3-9

3.3.10

Run-Time Performance Options

The following run-time performance options are listed in alphabetical order.

TABLE 3-11 Run-Time Performance Options

Option Action

—f ast Selects a combination of compilation options for optimum
execution speed for some programs.

-g Instructs both the compiler and the linker to prepare the program
for performance analysis (and for debugging).

-s Strips the symbol table out of the executable.

-xalias_|evel

—xar ch=isa

- xbui I ti n[=opt]
—xcache=c
—-xcg89

—xcg92

—xchi p=c

—xF

- Xi nl i ne=flst

- Xi po
=xIibml
—xI i bnopt
—xI i nkopt

—xmenmal i gn=ab

—xnol i bm |
—xnol i bropt
—xOlevel
—Xxpagesi ze

- Xxpagesi ze_heap

Enables the compiler to perform type-based alias analysis and
optimizations.

Specifies target architecture instruction set.

Enables or disables better optimization of standard library calls
(SPARC) Defines target cache properties for the optimizer.
Compiles for generic SPARC architecture.

Compiles for SPARC V8 architecture.

Specifies target processor chip.

Enables linker reordering of functions and variables.

Specifies which user-written routines can be inlined by the
optimizer

Performs interprocedural optimizations.
Inlines selected | i bmlibrary routines for optimization.
Uses a library of optimized math routines.

(SPARC) Performs link-time optimization on the resulting
executable or dynamic library over and above any optimizations in
the object files.

Specify maximum assumed memory alignment and behavior of
misaligned data accesses.

Cancels —xI i bmi | on the command line.

Does not use the math routine library.

Specifies optimization level to level.

Sets the preferred page size for the stack and the heap.

Sets the preferred page size for the heap.

3-10 C++ User’'s Guide « May 2003

3.3.11

TABLE 3-11 Run-Time Performance Options (Continued)

Option Action

- Xxpagesi ze_stack Sets the preferred page size for the stack.

- xpr ef et ch[=lst] (SPARC) Enables prefetch instructions on architectures that
support prefetch.

-xprefetch_| evel Control the aggressiveness of automatic insertion of prefetch
instructions as set by - xpr ef et ch=aut o

—xprofile (SPARC) Collects or optimizes using runtime profiling data.

—Xr egs=rlst (SPARC) Controls scratch register use.

—xsaf e=mem (SPARC) Allows no memory-based traps.

—-Xxspace (SPARC) Does not allow optimizations that increase code size.

—xt ar get =t Specifies a target instruction set and optimization system.

—xt hr eadvar (SPARC) Changes the default thread-local storage access mode.

—xunrol | =n Enables unrolling of loops where possible.

—XVi S (SPARC) Enables compiler recognition of the assembly-language

templates defined in the VIS™ instruction set

Preprocessor Options

The following preprocessor options are listed in alphabetical order.

TABLE 3-12 Preprocessor Options

Option Action

—Dname[=def] Defines symbol name to the preprocessor.

-E Runs only the preprocessor on the C++ source files and sends result
to st dout . Does not compile.

-H Prints path names of included files.

-P Only preprocesses source; outputs to . i file.

—Uname Deletes initial definition of preprocessor symbol name.

-XxM Outputs makefile dependency information.

—xML Generates dependency information, but excludes / usr /i ncl ude.

Chapter 3 Using the C++ Compiler Options ~ 3-11

3.3.12 Profiling Options

The following profiling options are listed in alphabetical order.

TABLE 3-13 Profiling Options

Option Action

-p Prepares the object code to collect data for profiling using pr of .
-xa Generates code for profiling.

-Xpg Compiles for profiling with the gpr of profiler.

—xprofile (SPARC) Collects or optimizes using runtime profiling data.

3.3.13 Reference Options

The following options provide a quick reference to compiler information.

TABLE 3-14 Reference Options

Option Action

—migration Explains where to get information about migrating from earlier
compilers.

—xhel p=f1 ags Displays a summary list of compiler options.

—xhel p=r eadne Displays the contents of the online READVE file.

3.3.14 Source Options

The following source options are listed in alphabetical order.

TABLE 3-15 Source Options

Option Action
-H Prints path names of included files.
—| pathname Adds pathname to the i ncl ude file search path.

-1- Changes the include-file search rules
—XxM Outputs makefile dependency information.

—xML Generates dependency information, but excludes / usr /i ncl ude.

3-12 C++ User’'s Guide « May 2003

3.3.15

3.3.16

Template Options

The following template options are listed in alphabetical order.

TABLE 3-16 Template Options

Option Action

—i nstances=a Controls the placement and linkage of template instances.

—pt i path Specifies an additional search directory for the template source.
—t enpl at e=wilst Enables or disables various template options.

Thread Options

The following thread options are listed in alphabetical order.

TABLE 3-17 Thread Options

Option Action

—nt Compiles and links for multithreaded code.

—-xsaf e=mem (SPARC) Allows no memory-based traps.

—xt hr eadvar (SPARC) Changes the default thread-local storage access mode.

Chapter 3 Using the C++ Compiler Options

3-13

3-14 C++ User’'s Guide « May 2003

art 11 Writing C++ Programs

CHAPTER 4

Language Extensions

This chapter documents the language extentions specific to this compiler.
Appendix B also provides implementation specific information. The compiler does
not recognize some of the features described in this chapter unless you specify
certain compiler options on the command line. The relevent compiler options are
listed in each section as appropriate.

The - f eat ur es=ext ensi ons option enables you to compile nonstandard code that
is commonly accepted by other C++ compilers. You can use this option when you
must compile invalid code and you are not permitted to modify the code to make it
valid.

This chapter describes the language extensions that the compiler supports when you
use the - f eat ur es=ext ensi ons options.

Note — You can easily turn each supported instance of invalid code into valid code
that all compilers will accept. If you are allowed to make the code valid, you should
do so instead of using this option. Using the - f eat ur es=ext ensi ons option
perpetuates invalid code that will be rejected by some compilers.

4.1

Linker Scoping

Use the following declaration specifiers to help hide declarations and definitions of
extern symbols. The scoping restraints you specify for a static archive or an object
file will not take effect until the file is linked into a shared library or an executible.
Despite this, the compiler can still perform some optimization given the presence of
the linker scoping specifiers.

4-1

4-2

By using these specifiers, you no longer need to use mapfiles for linker scoping. You
can also control the default setting for variable scoping by specifying - x| dscope on
the command line.

For more information, see “- x| dscope={v}” on page A-103.

TABLE 4-1 Declaration Specifiers

Value Meaning

__gl obal Symbol definitions have global linker scoping and is the least
restrictive linker scoping. All references to the symbol bind to the
definition in the first dynamic load module that defines the symbol.
This linker scoping is the current linker scoping for extern symbols.

__synbolic Symbol definitions have symbolic linker scoping and is more
restrictive than global linker scoping. All references to the symbol
from within the dynamic load module being linked bind to the
symbol defined within the module. Outside of the module, the
symbol appears as though it were global. This linker scoping
corresponds to the linker option - Bsynbol i c. Although you cannot
use - Bsynbol i ¢ with C++ libraries, you can use the __synbol i c
specifier without causing problems. See | d(1) for more information
on the linker.

__hi dden Symbol definitions have hidden linker scoping. Hidden linker
scoping is more restrictive than symbolic and global linker scoping.
All references within a dynamic load module bind to a definition
within that module. The symbol will not be visible outside of the
module.

A symbol definition may be redeclared with a more restrictive specifier, but may not
be redeclared with a less restrictive specifier. A symbol may not be declared with a
different specifier once the symbol has been defined.

__gl obal is the least restrictive scoping, __synbol i c is more restrictive, and
__hi dden is the most restrictive scoping.

All virtual functions must be visible to all compilation units that include the class
definition because the declaration of virtual functions affects the construction and
interpretation of virtual tables.

You can apply the linker scoping specifiers to struct, class, and union declarations
and definitions because C++ classes may require generation of implicit information,
such as virtual tables and run-time type information. The specifier, in this case,
follows the struct, class, or union keyword. Such an application implies the same
linker scoping for all its implicit members.

C++ User’'s Guide « May 2003

4.2

Thread-Local Storage

Take advantage of thread-local storage by declaring thread-local variables. A
thread-local variable declaration consists of a normal variable declaration with the
addition of the declaration specifier __t hr ead. For more information, see

“- xt hr eadvar [=0]” on page A-148.

You must include the __t hr ead specifier in the first declaration of the thread
variable.

You can only declare variables of static duration with the __t hr ead specifier.
Variables with static duration include file global, file static, function local static, and
class static member. You should not declare variables with dynamic or automatic
duration with the __t hr ead specifier. A thread variable may have a static initializer,
but it may not have a dynamic initializer. For example, __threadint x = 4; is
permitted, but __threadint x =f(); isnot. A thread variable should not have a
type with non-trival constructors and destructors. In particular, a thread variable
may not have type st d: : stri ng.

Variables that you declare with the __t hr ead specifier are bound as they would be
without the __t hr ead specifier.

The address-of operator (&) for a thread variable is evaluated at run time and
returns the address of the current thread’s variable. Therefore, the address of a
thread variable is not a constant. As a consequence, static-duration variables are
dynamically initialized when set to the address of a thread variable.

The address of a thread variable is stable for the lifetime of the corresponding
thread. Any thread in the process can freely use the address of a thread variable
during the variable’s lifetime. You cannot use a thread variable’s address after its
thread terminates. All addresses of a thread’s variables are invalid after the thread’s
termination.

4.3

Overriding With Less Restrictive Virtual
Functions

The C++ standard says that an overriding virtual function must not be less
restrictive in the exceptions it allows than any function it overrides. It can have the
same restrictions or be more restrictive. Note that the absence of an exception
specification allows any exception.

Chapter 4 Language Extensions 4-3

Suppose, for example, that you call a function through a pointer to a base class. If
the function has an exception specification, you can count on no other exceptions
being thrown. If the overriding function has a less-restrictive specification, an
unexpected exception could be thrown, which can result in bizarre program
behavior followed by a program abort. This is the reason for the rule.

When you use - f eat ur es=ext ensi ons, the compiler will allow overriding
functions with less-restrictive exception specifications.

4.4

Making Forward Declarations of enum
Types and Variables

When you use - f eat ur es=ext ensi ons, the compiler allows the forward
declaration of enumtypes and variables. In addition, the compiler allows the
declaration of a variable with an incomplete enum type. The compiler will always
assume an incomplete enumtype to have the same size and range as type i nt on the
current platform.

The following two lines show an example of invalid code that will compile when
you use the - f eat ur es=ext ensi ons option.

enumE; // invalid: forward decl aration of enum not all owed
E e; /1 invalid: type E is inconplete

Because enumdefinitions cannot reference one another, and no enumdefinition can
cross-reference another type, the forward declaration of an enumeration type is
never necessary. To make the code valid, you can always provide the full definition
of the enumbefore it is used.

Note — On 64-bit architectures, it is possible for an enumto require a size that is
larger than type i nt. If that is the case, and if the forward declaration and the
definition are visible in the same compilation, the compiler will emit an error. If the
actual size is not the assumed size and the compiler does not see the discrepancy, the
code will compile and link, but might not run properly. Mysterious program
behavior can occur, particularly if an 8-byte value is stored in a 4-byte variable.

4-4 C++ User's Guide « May 2003

4.5

Using Incomplete enumTypes

When you use - f eat ur es=ext ensi ons, incomplete enumtypes are taken as
forward declarations. For example, the following invalid code will compile when
you use the - f eat ur es=ext ensi ons option.

typedef enumE F; // invalid, Eis inconplete

As noted previously, you can always include the definition of an enumtype before it
is used.

4.6

Using an enumName as a Scope
Qualifier

Because an enumdeclaration does not introduce a scope, an enumname cannot be
used as a scope qualifier. For example, the following code is invalid.

enum E { el, e2, e3};
int i = E:el; // invalid: Eis not a scope nane

To compile this invalid code, use the - f eat ur es=ext ensi ons option. The
- f eat ur es=ext ensi ons option instructs the compiler to ignore a scope qualifier if
it is the name of an enumtype.

To make the code valid, remove the invalid qualifier E: : .

Note — Use of this option increases the possibility of typographical errors yielding
incorrect programs that compile without error messages.

Chapter 4 Language Extensions 4-5

4.7

4-6

Using Anonymous st r uct Declarations

An anonymous struct declaration is a declaration that declares neither a tag for the
struct, nor an object or t ypedef name. Anonymous structs are not allowed in C++.

The - f eat ur es=ext ensi ons option allows the use of an anonymous st r uct
declaration, but only as member of a union.

The following code is an example of an invalid anonymous st r uct declaration that
compiles when you use the - f eat ur es=ext ensi ons option.

uni on U {
struct {
int a;
doubl e b;
}; /1 invalid: anonynous struct
struct {
char* c;
unsi gned d;
}; /1 invalid: anonymous struct

b

The names of the st ruct members are visible without qualification by a st ruct
member name. Given the definition of U in this code example, you can write:

U u;
u.a = 1;

Anonymous structs are subject to the same limitations as anonymous unions.

C++ User’'s Guide « May 2003

Note that you can make the code valid by giving a name to each struct, such as:

union U {
struct {
int a;
doubl e b;
}A
struct {
char* c;
unsi gned d;
} B

u
LA.a = 1;

cCc™

4.8

Passing the Address of an Anonymous
Class Instance

You are not allowed to take the address of a temporary variable. For example, the
following code is invalid because it takes the address of a variable created by a
constructor call. However, the compiler accepts this invalid code when you use the
- f eat ur es=ext ensi ons option.

class C{
public:
Clint);
b
void f1(Cr);
int main()

{
}

f1(&X(2)); // invalid

Note that you can make this code valid by using an explicit variable.

Cc(2);
f1(&c);

Chapter 4 Language Extensions 4-7

The temporary object is destroyed when the function returns. Ensuring that the
address of the temporary variable is not retained is the programmer’s responsibility.
In addition, the data that is stored in the temporary variable (for example, by f 1) is
lost when the temporary variable is destroyed.

4.9

4-8

Declaring a Static Namespace-Scope
Function as a Class Friend

The following code is invalid.

class A {
friend static void foo(<args>);

Because a class name has external linkage and all definitions must be identical,
friend functions must also have external linkage. However, when you use the
- f eat ur es=ext ensi ons option, the compiler to accepts this code.

Presumably the programmer’s intent with this invalid code was to provide a
nonmember “helper” function in the implementation file for class A. You can get the
same effect by making f oo a static member function. You can make it private if you
do not want clients to call the function.

Note — If you use this extension, your class can be “hijacked” by any client. Any
client can include the class header, then define its own static function f oo, which
will automatically be a friend of the class. The effect will be as if you made all
members of the class public.

C++ User’'s Guide « May 2003

4.10

Using the Predefined __ func__ Symbol
for Function Name

When you use - f eat ur es=ext ensi ons, the compiler implicitly declares the
identifier __func__ in each function as a static array of const char. If the program
uses the identifier, the compiler also provides the following definition where
function-name is the unadorned name of the function. Class membership,
namespaces, and overloading are not reflected in the name.

static const char _ _func__[] = "function-name";

For example, consider the following code fragment.

#i ncl ude <stdio. h>
voi d nyfunc(voi d)
{
printf("%\n", _ func_);

}

Each time the function is called, it will print the following to the standard output
stream.

nyfunc

Chapter 4 Language Extensions 4-9

4-10 C++ User’'s Guide « May 2003

CHAPTER 5

Program Organization

The file organization of a C++ program requires more care than is typical for a C
program. This chapter describes how to set up your header files and your template
definitions.

5.1

5.1.1

Header Files

Creating an effective header file can be difficult. Often your header file must adapt
to different versions of both C and C++. To accommodate templates, make sure your
header file is tolerant of multiple inclusions (idempotent).

Language-Adaptable Header Files

You might need to develop header files for inclusion in both C and C++ programs.
However, Kernighan and Ritchie C (K&R C), also known as “classic C,” ANSI C,
Annotated Reference Manual C++ (ARM C++), and ISO C++ sometimes require
different declarations or definitions for the same program element within a single
header file. (See the C++ Migration Guide for additional information on the variations
between languages and versions.) To make header files acceptable to all these
standards, you might need to use conditional compilation based on the existence or
value of the preprocessor macros __STDC __ and __cpl uspl us.

5-1

5-2

The macro ___STDC__is not defined in K&R C, but is defined in both ANSI C and
C++. Use this macro to separate K&R C code from ANSI C or C++ code. This macro
is most useful for separating prototyped from nonprototyped function definitions.

#ifdef _ STDC

int function(char*,...); /1 C++ & ANSI C declaration
#el se

int function(); /1 K&R C

#endi f

The macro __cpl uspl us is not defined in C, but is defined in C++.

Note — Early versions of C++ defined the macro c_pl uspl us instead of
__cpl uspl us. The macro c_pl uspl us is no longer defined.

Use the definition of the __cpl uspl us macro to separate C and C++. This macro is
most useful in guarding the specification of an ext ern “ C’ interface for function
declarations, as shown in the following example. To prevent inconsistent
specification of ext ern “ C’, never place an #i ncl ude directive within the scope of
an extern “C’ linkage specification.

#i ncl ude “header.h”
/1 ... other include files ...
#i f defined(__cpl uspl us)
extern “C {
#endi f
int g1();
int g2();
int g3()
#i f defined(__cpl uspl us)

}
#endi f

In ARM C++, the __cpl uspl us macro has a value of 1. In ISO C++, the macro has
the value 199711L (the year and month of the standard expressed as a | ong
constant). Use the value of this macro to separate ARM C++ from ISO C++. The
macro value is most useful for guarding changes in template syntax.

/1 tenplate function specialization
#if __cplusplus < 199711L

int power(int,int); /1 ARM C++
#el se
tenplate <> int power(int,int); /1 1SO C++
#endi f

C++ User’'s Guide « May 2003

5.1.2

Idempotent Header Files

Your header files should be idempotent. That is, the effect of including a header file
many times should be exactly the same as including the header file only once. This
property is especially important for templates. You can best accomplish
idempotency by setting preprocessor conditions that prevent the body of your
header file from appearing more than once.

#i f ndef HEADER H
#defi ne HEADER_H

/* contents of header file */
#endi f

5.2

5.2.1

Template Definitions

You can organize your template definitions in two ways: with definitions included
and with definitions separated. The definitions-included organization allows greater
control over template compilation.

Template Definitions Included

When you put the declarations and definitions for a template within the file that
uses the template, the organization is definitions-included. For example:

mai n. cc tenpl at e <cl ass Nunber > Nunber tw ce(Nunber original);
tenpl ate <cl ass Nunber > Nunber tw ce(Nunber original)
{ return original + original; }
int main()
{ return twice<int>(-3); }

Chapter 5 Program Organization 5-3

5.2.2

When a file using a template includes a file that contains both the template’s
declaration and the template’s definition, the file that uses the template also has the
definitions-included organization. For example:

twice.h #i fndef TWCE H
#define TWCE_H
tenpl ate <cl ass Nunmber> Nunber twi ce(Nunber origi nal
)
tenpl ate <cl ass Nunber> Nunber
twi ce(Number original)
{ return original + original; }

#endi f
mai n. cc #include “tw ce. h”
int main()

{ return twice(-3); }

Note — It is very important to make your template headers idempotent. (See
Section 5.1.2, “ldempotent Header Files” on page 5-3.)

Template Definitions Separate

Another way to organize template definitions is to keep the definitions in template
definition files, as shown in the following example.

twice.h #i f ndef TWCE_H
#define TWCE H
tenpl ate <cl ass Nunmber> Nunber twi ce
(Number original);
#endi f

tw ce.cc tenpl ate <cl ass Nunber> Nunber twice
(Nurber original)
{ return original + original; }

mai n. cc #i nclude “tw ce. h”
int main()
{ return twice<int>(-3); }

5-4 C++ User's Guide » May 2003

Template definition files must not include any non-idempotent header files and often
need not include any header files at all. (See Section 5.1.2, “Idempotent Header
Files” on page 5-3.) Note that not all compilers support the definitions-separate
model for templates.

Because a separate definitions file is a header file, it might be included implicitly in
many files. It therefore should not contain any function or variable definitions,
unless they are part of a template definition. A separate definitions file can include
type definitions, including typedefs.

Note — Although source-file extensions for template definition files are commonly
used (thatis,. c,.C,.cc,.cpp,.Cxx, or. c++), template definition files are header
files. The compiler includes them automatically if necessary. Template definition files
should not be compiled independently.

If you place template declarations in one file and template definitions in another file,
you have to be very careful how you construct the definition file, what you name it,
and where you put it. You might also need to identify explicitly to the compiler the
location of the definitions. Refer to Section 7.5, “Template Definition Searching” on
page 7-9” for information about the template definition search rules.

Chapter 5 Program Organization 5-5

5-6 C++ User's Guide » May 2003

CHAPTER 6

Creating and Using Templates

Templates make it possible for you to write a single body of code that applies to a
wide range of types in a type-safe manner. This chapter introduces template
concepts and terminology in the context of function templates, discusses the more
complicated (and more powerful) class templates, and describes the composition of
templates. Also discussed are template instantiation, default template parameters,
and template specialization. The chapter concludes with a discussion of potential
problem areas for templates.

6.1

6.1.1

Function Templates

A function template describes a set of related functions that differ only by the types
of their arguments or return values.

Function Template Declaration

You must declare a template before you can use it. A declaration, as in the following
example, provides enough information to use the template, but not enough
information to implement the template.

tenpl ate <cl ass Nunber> Nunber twi ce(Nunber original);

In this example, Number is a template parameter; it specifies the range of functions that
the template describes. More specifically, Number is a template type parameter, and its
use within the template definition stands for a type determined at the location where
the template is used.

6-1

6.1.2

6.1.3

Function Template Definition

If you declare a template, you must also define it. A definition provides enough
information to implement the template. The following example defines the template
declared in the previous example.

tenpl ate <cl ass Nunber> Nunber twi ce(Nunber original)
{ return original + original; }

Because template definitions often appear in header files, a template definition
might be repeated in several compilation units. All definitions, however, must be the
same. This restriction is called the One-Definition Rule.

The compiler does not support expressions involving non-type template parameters
in the function parameter list, as shown in the following example.

/| Expressions with non-type tenpl ate paraneters

/1 in the function parameter list are not supported
tenplate<int 1> void foo(nytype<2*1>) { ... }
tenplate<int |, int J> void foo(int a[l+J]) { ... }

Function Template Use

Once declared, templates can be used like any other function. Their use consists of
naming the template and providing function arguments. The compiler can infer the
template type arguments from the function argument types. For example, you can
use the previously declared template as follows.

doubl e twi cedoubl e(double item)
{ return twice(item); }

If a template argument cannot be inferred from the function argument types, it must
be supplied where the function is called. For example:

tenpl ate<class T> T func(); // no function argunents
int k = func<int>(); // tenplate argunent supplied explicitly

6-2 C++ User's Guide » May 2003

6.2

6.2.1

6.2.2

Class Templates

A class template describes a set of related classes or data types that differ only by
types, by integral values, by pointers or references to variables with global linkage,
or by a combination thereof. Class templates are particularly useful in describing
generic, but type-safe, data structures.

Class Template Declaration

A class template declaration provides only the name of the class and its template
arguments. Such a declaration is an incomplete class template.

The following example is a template declaration for a class named Ar r ay that takes
any type as an argument.

tenmpl ate <cl ass El enk class Array;

This template is for a class named St ri ng that takes an unsi gned i nt as an
argument.

tenpl ate <unsi gned Size> class String;

Class Template Definition

A class template definition must declare the class data and function members, as in
the following examples.

tenpl ate <class Elenr class Array {
El ent dat a;
int size;
publi c:
Array(int sz);
int GetSize();
El em& operator[](int idx);

Chapter 6 Creating and Using Templates 6-3

6.2.3

6.2.3.1

tenpl ate <unsigned Size> class String {
char data[Si ze];
static int overfl ows;

public:
String(char *initial);
int length();

b

Unlike function templates, class templates can have both type parameters (such as
cl ass El em) and expression parameters (such as unsi gned Si ze). An expression
parameter can be:

= A value that has an integral type or enumeration
= A pointer or a reference to an object

= A pointer or a reference to a function

= A pointer to a class member function

Class Template Member Definitions

The full definition of a class template requires definitions for its function members
and static data members. Dynamic (nonstatic) data members are sufficiently defined
by the class template declaration.

Function Member Definitions

The definition of a template function member consists of the template parameter
specification followed by a function definition. The function identifier is qualified by
the class template’s class name and the template arguments. The following example
shows definitions of two function members of the Ar r ay class template, which has a
template parameter specification of t enpl at e <cl ass El enm. Each function
identifier is qualified by the template class name and the template argument
Array<El enp.

templ ate <class Elenr Array<Elenms::Array(int sz)
{ size = sz; data = new Elen]f size]; }

tenpl ate <class Elenr int Array<Elenp::CetSize()
{ return size; }

6-4 C++ User's Guide » May 2003

6.2.3.2

6.2.4

This example shows definitions of function members of the St ri ng class template.

#i ncl ude <string. h>
tenmpl ate <unsi gned Size> int String<Size>::length()
{ int len = 0;
while (len < Size & data[len] !'="'"\0") |en++;
return len; }

tenpl at e <unsi gned Size> String<Size>: :String(char *initial)
{ strncpy(data, initial, Size);
if (length() == Size) overflows++; }

Static Data Member Definitions

The definition of a template static data member consists of the template parameter
specification followed by a variable definition, where the variable identifier is
gualified by the class template name and its template actual arguments.

tenpl ate <unsigned Size> int String<Size>: :overflows = 0;

Class Template Use

A template class can be used wherever a type can be used. Specifying a template
class consists of providing the values for the template name and arguments. The
declaration in the following example creates the variable i nt _ar r ay based upon
the Arr ay template. The variable’s class declaration and its set of methods are just
like those in the Arr ay template except that El emis replaced with i nt (see
Section 6.3, “Template Instantiation” on page 6-6).

Array<int> int_array(100);

The declaration in this example creates the short _stri ng variable using the
Stri ng template.

String<8> short_string("hello");

Chapter 6 Creating and Using Templates 6-5

You can use template class member functions as you would any other member
function.

int x = int_array.GetSize();

int x = short_string.length();

6.3

6.3.1

6.3.2

Template Instantiation

Template instantiation involves generating a concrete class or function (instance) for a
particular combination of template arguments. For example, the compiler generates
a class for Array<i nt > and a different class for Ar r ay<doubl e>. The new classes
are defined by substituting the template arguments for the template parameters in
the definition of the template class. In the Ar r ay<i nt > example, shown in the
preceding “Class Templates” section, the compiler substitutes i nt wherever El em
appears.

Implicit Template Instantiation

The use of a template function or template class introduces the need for an instance.
If that instance does not already exist, the compiler implicitly instantiates the
template for that combination of template arguments.

Explicit Template Instantiation

The compiler implicitly instantiates templates only for those combinations of
template arguments that are actually used. This approach may be inappropriate for
the construction of libraries that provide templates. C++ provides a facility to
explicitly instantiate templates, as seen in the following examples.

6-6 C++ User's Guide » May 2003

6.3.2.1

6.3.2.2

6.3.2.3

Explicit Instantiation of Template Functions

To instantiate a template function explicitly, follow the t enpl at e keyword by a
declaration (not definition) for the function, with the function identifier followed
the template arguments.

by

tenplate float tw ce<float>(float original);

Template arguments may be omitted when the compiler can infer them.

tenplate int twice(int original);

Explicit Instantiation of Template Classes

To instantiate a template class explicitly, follow the t enpl at e keyword by a
declaration (not definition) for the class, with the class identifier followed by the
template arguments.

tenpl ate class Array<char >;

templ ate class String<19>;

When you explicitly instantiate a class, all of its members are also instantiated.

Explicit Instantiation of Template Class Function Members

To explicitly instantiate a template class function member, follow the t enpl at e
keyword by a declaration (not definition) for the function, with the function
identifier qualified by the template class, followed by the template arguments.

template int Array<char>::GetSize();

template int String<19>::length();

Chapter 6 Creating and Using Templates

6-7

6.3.2.4

Explicit Instantiation of Template Class Static Data Members

To explicitly instantiate a template class static data member, follow the t enpl at e
keyword by a declaration (not definition) for the member, with the member
identifier qualified by the template class, followed by the template argument.

tenplate int String<19>::overfl ows;

6.4

Template Composition

You can use templates in a nested manner. This is particularly useful when defining
generic functions over generic data structures, as in the standard C++ library. For
example, a template sort function may be declared over a template array class:

tenpl ate <class Elenr void sort(Array<Elenr);

and defined as:

tenpl ate <class Elenr void sort(Array<Elen> store)
{ int numelems = store.CetSize();
for (int i =0; i < numelens-1; i++)
for (int j =i+l; j < numelens; j++)
if (store[j-1] > store[j])
{ Elemtenmp = store[j];
store[j] = store[j-1];
store[j-1] =temp; } }

The preceding example defines a sort function over the predeclared Arr ay class
template objects. The next example shows the actual use of the sort function.

Array<int> int_array(100); /1 construct an array of ints
sort(int_array); /1 sort it

6-8 C++ User's Guide » May 2003

6.5

Default Template Parameters

You can give default values to template parameters for class templates (but not
function templates).

tenpl ate <class Elem = int> class Array;
tenpl ate <unsi gned Size = 100> class String;

If a template parameter has a default value, all parameters after it must also have
default values. A template parameter can have only one default value.

6.6

6.6.1

Template Specialization

There may be performance advantages to treating some combinations of template
arguments as a special case, as in the following examples for t wi ce. Alternatively, a
template description might fail to work for a set of its possible arguments, as in the
following examples for sort . Template specialization allows you to define
alternative implementations for a given combination of actual template arguments.
The template specialization overrides the default instantiation.

Template Specialization Declaration

You must declare a specialization before any use of that combination of template
arguments. The following examples declare specialized implementations of twice
and sort.

tenmpl ate <> unsigned tw ce<unsi gned>(unsigned original);

tenpl ate <> sort<char*>(Array<char*> store);

You can omit the template arguments if the compiler can unambiguously determine
them. For example:

tenpl ate <> unsigned twi ce(unsigned original);

Chapter 6 Creating and Using Templates 6-9

6.6.2

6.6.3

6.6.4

tenplate <> sort(Array<char*> store);

Template Specialization Definition

You must define all template specializations that you declare. The following
examples define the functions declared in the preceding section.

tenpl ate <> unsigned tw ce<unsi gned>(unsigned original)
{ return original << 1; }

#i ncl ude <string. h>
tenmpl ate <> void sort<char*>(Array<char*> store)
{ int numelenms = store. GetSize();
for (int i =0; i < numelens-1; i++)
for (int j =i+l; j < numelens;, j++)
if (strcmp(store[j-1], store[j]) > 0)
{ char *tenp = store[j];
store[j] = store[j-1];
store[j-1] =temp; } }

Template Specialization Use and Instantiation

A specialization is used and instantiated just as any other template, except that the
definition of a completely specialized template is also an instantiation.

Partial Specialization

In the previous examples, the templates are fully specialized. That is, they define an
implementation for specific template arguments. A template can also be partially
specialized, meaning that only some of the template parameters are specified, or that
one or more parameters are limited to certain categories of type. The resulting
partial specialization is itself still a template. For example, the following code
sample shows a primary template and a full specialization of that template.

template<class T, class U> class A{ ... }; //primary tenplate
tenmpl ate<> class A<int, double> { ... }; //specialization

6-10 C++ User's Guide « May 2003

The following code shows examples of partial specialization of the primary
template.

tenpl ate<class U> class A<int> { ... }; /1 Exanple 1
tenpl ate<class T, class U> class A<T*> { ... }; // Exanple 2
tenpl ate<cl ass T> class A<T**, char> { ... }; /1 Exanple 3

= Example 1 provides a special template definition for cases when the first template
parameter is type i nt .

= Example 2 provides a special template definition for cases when the first template
parameter is any pointer type.

= Example 3 provides a special template definition for cases when the first template
parameter is pointer-to-pointer of any type, and the second template parameter is
type char.

6.7

6.7.1

Template Problem Areas

This section describes problems you might encounter when using templates.

Nonlocal Name Resolution and Instantiation

Sometimes a template definition uses names that are not defined by the template
arguments or within the template itself. If so, the compiler resolves the name from
the scope enclosing the template, which could be the context at the point of
definition, or at the point of instantiation. A name can have different meanings in
different places, yielding different resolutions.

Name resolution is complex. Consequently, you should not rely on nonlocal names,
except those provided in a pervasive global environment. That is, use only nonlocal
names that are declared and defined the same way everywhere. In the following

example, the template function convert er uses the nonlocal names i nt er medi ary
and t enpor ary. These names have different definitions in usel. cc and use2. cc,

Chapter 6 Creating and Using Templates 6-11

6-12

and will probably yield different results under different compilers. For templates to
work reliably, all nonlocal names (i nt er medi ary and t enpor ary in this case)
must have the same definition everywhere.

use_common. h /1 Common tenplate definition
tenpl ate <cl ass Source, class Target>
Target converter(Source source)
{ tenporary = (internediary)source;
return (Target)tenporary; }

usel. cc typedef int internediary;
int tenporary;

#i ncl ude "use_conmmon. h"

use2. cc t ypedef doubl e internmediary;
unsigned int tenmporary;

#i ncl ude "use_conmon. h"

A common use of nonlocal names is the use of the ci n and cout streams within a
template. Few programmers really want to pass the stream as a template parameter,
so they refer to a global variable. However, ci n and cout must have the same
definition everywhere.

C++ User’s Guide « May 2003

6.7.2

Local Types as Template Arguments

The template instantiation system relies on type-name equivalence to determine
which templates need to be instantiated or reinstantiated. Thus local types can cause
serious problems when used as template arguments. Beware of creating similar
problems in your code. For example:

CODE EXAMPLE 6-1

Example of Local Type as Template Argument Problem

array. h

array. cc

filel.cc

file2.cc

tenpl ate <cl ass Type> class Array {

Type* dat a;
i nt si ze;
publi c:

Array(int sz);
int GetSize();
3

tenpl ate <cl ass Type> Array<Type>::Array(int sz)
{ size = sz; data = new Type[size]; }

tenmpl ate <cl ass Type> int Array<Type>::CGetSize()
{ return size;}

#i nclude "array. h"
struct Foo { int data; };
Array<Foo> Fil elDat a(10);

#i nclude "array. h"
struct Foo { double data; };
Array<Foo> Fil e2Dat a(20);

The Foo type as registered in fi | el. cc is not the same as the Foo type registered
infile2. cc. Using local types in this way could lead to errors and unexpected

results.

Chapter 6 Creating and Using Templates 6-13

6.7.3

6-14

Friend Declarations of Template Functions

Templates must be declared before they are used. A friend declaration constitutes a
use of the template, not a declaration of the template. A true template declaration
must precede the friend declaration. For example, when the compilation system
attempts to link the produced object file for the following example, it generates an
undefined error for the oper at or << function, which is not instantiated.

CODE EXAMPLE 6-2 Example of Friend Declaration Problem

array. h

array. cc

mai n. cc

/'l generates undefined error for the operator<< function
#i f ndef ARRAY_H

#defi ne ARRAY H

#i ncl ude <i osfwd>

tenpl ate<cl ass T> class array {

int size;
public:

array();

friend std:: ostream&

oper ator<<(std::ostream& const array<T>&)

}s
#endi f

#i ncl ude <stdlib. h>
#i ncl ude <i ostreanr

tenpl ate<class T> array<T>::array() { size = 1024; }

tenpl at e<cl ass T>

std::ostream&

operat or<<(std::ostream& out, const array<T>& rhs)
{ return out << '[’ << rhs.size << ']’; }

#i ncl ude <i ostreanr
#i ncl ude "array. h"

int main()
{
std:: cout
<< "creating an array of int... " << std::flush;
array<int> foo;
std::cout << "done\n";
std::cout << foo << std::endl;
return O;
}

C++ User’s Guide « May 2003

Note that there is no error message during compilation because the compiler reads
the following as the declaration of a normal function that is a f ri end of the arr ay
class.

friend ostream& operator<<(ostrean& const array<T>&);

Because oper at or << is really a template function, you need to supply a template
declaration for prior to the declaration of t enpl at e cl ass ar r ay. However,
because oper at or << has a parameter of t ype arr ay<T>, you must precede the
function declaration with a declaration of arr ay<T>. The file arr ay. h must look
like this:

#i f ndef ARRAY_H
#define ARRAY_H
#i ncl ude <i osfwd>

/1l the next two |lines declare operator<< as a tenplate function
tenpl at e<cl ass T> cl ass array;
tenpl at e<cl ass T>

std::ostream& operator<<(std::ostream& const array<T>&);

tenpl at e<cl ass T> class array {

int size;
public:

array();

friend std::ostream&

operator<< <T> (std::ostream& const array<T>&);

b
#endi f

Chapter 6 Creating and Using Templates 6-15

6.7.4

6.7.5

Using Qualified Names Within Template
Definitions

The C++ standard requires types with qualified names that depend upon template
arguments to be explicitly noted as type names with the t ypenamne keyword. This is
true even if the compiler can “know” that it should be a type. The comments in the
following example show the types with qualified names that require the t ypenane
keyword.

struct sinple {
typedef int a_type;
static int a_datum
b
int sinple::a _datum= 0; // not a type
tenpl ate <class T> struct paranetric {
typedef T a_type;
static T a_datum

b
templ ate <class T> T paranetric<T>::a_datum= 0; /1 not a type
tenpl ate <class T> struct exanple {
static typenane T::a_type variabl el; /1 dependent
static typenane paranetric<T>::a_type variable2; // dependent
static sinple::a_type variabl e3; /'l not dependent
b
templ ate <class T> typenane T::a_type /'l dependent
exanpl e<T>::variablel = 0; /'l not a type
tenpl ate <class T> typenane paranetric<T>.:a_type // dependent
exanpl e<T>::variabl e2 = 0; /1 not a type
tenmpl ate <class T> sinple::a_type /'l not dependent
exanpl e<T>::variabl e3 = 0; /'l not a type

Nesting Template Declarations

Because the “>>" character sequence is interpreted as the right-shift operator, you
must be careful when you use one template declaration inside another. Make sure
you separate adjacent “>" characters with at least one blank space.

For example, the following ill-formed statement:

Il ill-fornmed statenent
Array<String<10>> short_string_array(100); // >> = right-shift

6-16 C++ User's Guide « May 2003

6.7.6

6.7.7

is interpreted as:

Array<String<l0 >> short_string_array(100);

The correct syntax is:

Array<String<l10> > short_string_array(100);

Referencing Static Variables and Static Functions

Within a template definition, the compiler does not support referencing an object or
function that is declared static at global scope or in a namespace. If multiple
instances are generated, the One-Definition Rule (C++ standard section 3.2) is
violated, because each instance refers to a different object. The usual failure
indication is missing symbols at link time.

If you want a single object to be shared by all template instantiations, then make the
object a nonstatic member of a named namespace. If you want a different object for
each instantiation of a template class, then make the object a static member of the
template class. If you want a different object for each instantiation of a template
function, then make the object local to the function.

Building Multiple Programs Using Templates in
the Same Directory

If you are building more than one program using templates, it’s advisable to build
them in separate directories. If you want to build in the same directory then you
should clean the repository between the different builds. This avoids any
unpredictable errors. For more information see “Sharing Template Repositories” on
page 7-8.

Chapter 6 Creating and Using Templates 6-17

Consider the following example with make files a. cc, b. cc, x. h, and x. cc.

that this example is meaningful only if you specify - i nst ances=ext er n:

Note

$(CCC) -I. -instances=extern -c a.cc
$(CCC) -instances=extern -o a a.o

b:
$(CCC) -I. -instances=extern -c b.cc
$(CCC) -instances=extern -o b b.o

cl ean:
[bin/frm-rf SunWs _cache *.0 a b

X. h

tenpl ate <class T> class X {
public:

int open();

int create();

static int variable;

b

X. CC
tenplate <class T> int X<T>::create() {

return variabl e;

}

tenplate <class T> int X<T>::open() {
return vari able ;

}

template <class T> int X<T>::variable = 1;

C++ User’s Guide « May 2003

a.cc
#i nclude "x. h"
mai n()
{
X<i nt> tenpl;

templ. open();
tenpl.create();

b.cc
#i ncl ude "x. h"
mai n()
{
X<int> tenpl;

tenpl.create();
}

If you build both a and b, add a make clean between the two builds. The following
commands result in an error:

exanpl e% nmake a
exanpl e% nmake b

The following commands will not produce any error:

exanpl e% nmake a
exanpl e% nake cl ean
exanmpl e% nmake b

Chapter 6 Creating and Using Templates 6-19

6-20 C++ User's Guide « May 2003

CHAPTER 7

Compiling Templates

Template compilation requires the C++ compiler to do more than traditional UNIX
compilers have done. The C++ compiler must generate object code for template
instances on an as-needed basis. It might share template instances among separate
compilations using a template repository. It might accept some template compilation
options. It must locate template definitions in separate source files and maintain
consistency between template instances and mainline code.

7.1

Verbose Compilation

When given the flag - ver bose=t enpl at e, the C++ compiler notifies you of
significant events during template compilation. Conversely, the compiler does not
notify you when given the default, - ver bose=no0% enpl at e. The +w option might
give other indications of potential problems when template instantiation occurs.

7.2

Template Instantiation

The CCadm n(1) command administers the template repository. For example,
changes in your program can render some instantiations superfluous, thus wasting
storage space. The CCadmi n —cl ean command (formerly pt cl ean) clears out all
instantiations and associated data. Instantiations are recreated only when needed.

7-1

7.2.1

1.2.2

7.2.3

Generated Instances

The compiler treats inline template functions as inline functions for the purposes of
template instance generation. The compiler manages them as it does other inline
functions, and the descriptions in this chapter do not apply to template inline
functions.

Whole-Class Instantiation

The compiler usually instantiates members of template classes independently of
other members, so that the compiler instantiates only members that are used within
the program. Methods written solely for use through a debugger will therefore not
normally be instantiated.

There are two means to ensure that debugging members are available to the
debugger.

= First, write a non-template function that uses the template class instance members
that are otherwise unused. This function need not be called.

= Second, use the -t enpl at e=whol ecl ass compiler option, which instructs the
compiler to instantiate all non-template non-inline members of a template class if
any of those same members are instantiated.

The ISO C++ Standard permits developers to write template classes for which all
members may not be legal with a given template argument. As long as the illegal
members are not instantiated, the program is still well formed. The 1ISO C++
Standard Library uses this technique. However, the - t enpl at e=whol ecl ass
option instantiates all members, and hence cannot be used with such template
classes when instantiated with the problematic template arguments.

Compile-Time Instantiation

Instantiation is the process by which a C++ compiler creates a usable function or
object from a template. The C++ compiler uses compile-time instantiation, which
forces instantiations to occur when the reference to the template is being compiled.
The advantages of compile-time instantiation are:

= Debugging is much easier—error messages occur within context, allowing the
compiler to give a complete traceback to the point of reference.

= Template instantiations are always up-to-date.
= The overall compilation time, including the link phase, is reduced.

7-2 C++ User's Guide » May 2003

7.2.4

Templates can be instantiated multiple times if source files reside in different
directories or if you use libraries with template symbols.

Template Instance Placement and Linkage

Beginning with version 5.5 of Sun’s C++ compiler, instances go into special address
sections, and the linker recognizes and discards duplicates. You can instruct the
compiler to use one of five instance placement and linkage methods: external, static,
global, explicit, and semi-explicit.

= External instances are suitable for most program development and perform best
when the following is true:

« The set of instances in the program is small, but each compilation unit
references a large subset of the instances.

« There are few instances referenced in more than one or two compilation units.
= Static, deprecated - see below.

= Global instances, the default, are suitable for all development, and perform best
when objects reference a variety of instances.

= Explicit instances are suitable for some carefully controlled application
compilation environments.

= Semi-explicit instances require slightly less controlled compilation environments
but produce larger object files and have restricted uses.

This section discusses the five instance placement and linkage methods. Additional
information about generating instances can be found in Section 6.3, “Template
Instantiation” on page 6-6.

7.3

External Instances

With the external instances method, all instances are placed within the template
repository. The compiler ensures that exactly one consistent template instance exists;
instances are neither undefined nor multiply defined. Templates are reinstantiated
only when necessary. For non-debug code, the total size of all object files (including
any within the template cache) may be smaller with - i nst ances=ext er n than
with - i nst ances=gl obal .

Template instances receive global linkage in the repository. Instances are referenced
from the current compilation unit with external linkage.

Chapter 7 Compiling Templates 7-3

7.3.0.1

Note — If you are compiling and linking in separate steps and you specify
-i nst ance=ext er n for the compilation step, you must also specify it for the link
step.

The disadvantage of this method is that the cache is subject to corruption, and must
be cleared whenever changing programs or making significant program changes.
The cache is a bottleneck for parallel compilation, as when using dmake because
access to the cache must be restricted to one compilation at a time. Also, you can
only build one program within a directory.

It can take longer to determine whether a valid template instance is already in the
cache than just to create the instance in the main object file and discard it later if
needed.

Specify external linkage with the —+nst ances=ext er n option.

Because instances are stored within the template repository, you must use the CC
command to link C++ objects that use external instances into programs.

If you wish to create a library that contains all template instances that it uses, use the
CC command with the —xar option. Do not use the ar command. For example:

exanpl e% CC —xar -instances=extern —o libmain.a a.o b.o c.o

See Chapter 16 for more information.

Possible Cache Conflicts

Do not run different compiler versions in the same directory due to possible cache
conflicts when you specify - i nst ance=ext er n. Consider the following when you
use the - i nst ances=ext er n template model:

= Do not create unrelated binaries in the same directory. Any binaries (.0, .a, .s0,
executable programs) created in the same directory should be related, in that
names of all objects, functions, and types common to two or more object files have
identical definitions.

= It is safe to run multiple compilations simultaneously in the same directory, such
as when using drrake. It is not safe to run any compilations or link steps at the
same time as another link step. "Link step" means any operation that creates a
library or executable program. Be sure that dependencies in a makefile do not
allow anything to run in parallel with a link step.

7-4 C++ User's Guide » May 2003

7.3.1

7.3.2

Static Instances

Note — The -i nst ances=st at i ¢ option is deprecated. There is no longer any
reason to use -i nst ances=st ati c, because - i nst ances=gl obal now gives you
all the advantages of st at i ¢ without the disadvantages. This option was provided
in earlier compilers to overcome problems that do not exist in C++ 5.5.

With the static instances method, all instances are placed within the current
compilation unit. As a consequence, templates are reinstantiated during each
recompilation; instances are not saved to the template repository.

The advantage of this method is that it can help with debugging by ensuring that the
instances called from a compilation unit are compiled with that compilation unit,
and are thus debugable. With - i nst ances=gl obal , you don’t have that guarantee.

The disadvantage of this method is that it does not follow language semantics and
makes substantially larger objects and executables.

Instances receive static linkage. These instances will not be visible or usable outside
the current compilation unit. As a result, templates might have identical
instantiations in several object files. Because multiple instances produce
unnecessarily large programs, static instance linkage is suitable only for small
programs, where templates are unlikely to be multiply instantiated.

Compilation is potentially faster with static instances, so this method might also be
suitable during Fix-and-Continue debugging. (See Debugging a Program With dbx.)

Note — If your program depends on sharing template instances (such as static data
members of template classes or template functions) across compilation units, do not
use the static instances method. Your program will not work properly.

Specify static instance linkage with the —+nst ances=st at i ¢ compiler option.

Global Instances

Unlike previous compiler releases, it is no longer necessary to guard against
multiple copies of a global instance.

The advantage of this method is that incorrect source code commonly accepted by
other compilers is now also accepted in this mode. In particular, references to static
variables from within a template instances are not legal, but commonly accepted.

Chapter 7 Compiling Templates 7-5

7.3.3

7.3.4

The disadvantage of this method is that individual object files may be larger, due to
copies of template instances in multiple files. If you compile some object files for
debug using the - g option, and some without, it is hard to predict whether you will
get a debug or non-debug version of a template instance linked into the program.

Template instances receive global linkage. These instances are visible and usable
outside the current compilation unit.

Specify global instances with the —+nst ances=gl obal option (this is the default).

Explicit Instances

In the explicit instances method, instances are generated only for templates that are
explicitly instantiated. Implicit instantiations are not satisfied. Instances are placed
within the current compilation unit. As a consequence, templates are reinstantiated
during each recompilation; they are not saved to the template repository.

The advantage of this method is that you no longer need to ensure that only one
explicit instance is ever generated. You have the least amount of template
compilation and smallest object sizes.

The disadvantage is that you must perform all instantiation manually.

Template instances receive global linkage. These instances are visible and usable
outside the current compilation unit. The linker recognizes and discards duplicates.

Specify explicit instances with the —+nst ances=expl i ci t option.

Semi-Explicit Instances

When you use the semi-explicit instances method, instances are generated only for
templates that are explicitly instantiated or implicitly instantiated within the body of
a template. Instances required by explicitly-created instances are generated
automatically but given internal (static) linkage. Implicit instantiations in the
mainline code are not satisfied. Instances are placed within the current compilation
unit. As a consequence, templates are reinstantiated during each recompilation; they
are not saved to the template repository.

Instances receive global linkage. These instances are visible and usable outside the
current compilation unit. The linker recognizes and discards duplicates.

Specify semi-explicit instances with the —+nst ances=semi expl i ci t option.

7-6 C++ User's Guide » May 2003

7.4

7.4.1

7.4.2

The Template Repository

The template repository stores template instances between separate compilations so
that template instances are compiled only when it is necessary. The template
repository contains all nonsource files needed for template instantiation when using
the external instances method. The repository is not used for other kinds of
instances.

Repository Structure

The template repository is contained, by default, within a cache directory called
SunWS_cache.

The cache directory is contained within the directory in which the object files are
placed. You can change the name of the cache directory by setting the
SUNWS_CACHE_NAME environment variable. Note that the value of the
SUNWS_CACHE_NANVE variable must be a directory name and not a path name. This is
because the compiler automatically places the template cache directory under the
object file directory so the compiler already has a path.

Writing to the Template Repository

When the compiler must store template instances, it stores them within the template
repository corresponding to the output file. For example, the following command
line writes the object file to . / sub/ a. o and writes template instances into the
repository contained within . / sub/ SunWs_cache. If the cache directory does not
exist, and the compiler needs to instantiate a template, the compiler will create the
directory.

exanpl e% CC -0 sub/a.o a.cc

Chapter 7 Compiling Templates 7-7

7.4.3

7.4.4

7.4.5

Reading From Multiple Template Repositories

The compiler reads from the template repositories corresponding to the object files
that it reads. That is, the following command line reads from

./ subl/ SunWs_cache and ./ sub2/ SunWs_cache, and, if necessary, writes to

./ SunWs_cache.

exanpl e% CC subl/a.o sub2/b.o

Sharing Template Repositories

Templates that are within a repository must not violate the one-definition rule of the
ISO C++ standard. That is, a template must have the same source in all uses of the
template. Violating this rule produces undefined behavior.

The simplest, though most conservative, way to ensure that the rule is not violated is
to build only one program or library within any one directory. Two unrelated
programs might use the same type name or external name to mean different things.
If the programs share a template repository, template definitions could conflict, thus
yielding unpredictable results.

Template Instance Automatic Consistency With
-i nstance=extern

The template repository manager ensures that the states of the instances in the
repository are consistent and up-to-date with your source files when you specify
-i nstances=extern.

For example, if your source files are compiled with the —g option (debugging on),
the files you need from the database are also compiled with —g.

In addition, the template repository tracks changes in your compilation. For
example, if you have the —BDEBUG flag set to define the name DEBUG, the database
tracks this. If you omit this flag on a subsequent compile, the compiler reinstantiates
those templates on which this dependency is set.

7-8 C++ User's Guide » May 2003

7.5

7.5.1

7.5.2

Template Definition Searching

When you use the definitions-separate template organization, template definitions
are not available in the current compilation unit, and the compiler must search for
the definition. This section describes how the compiler locates the definition.

Definition searching is somewhat complex and prone to error. Therefore, you should
use the definitions-included template file organization if possible. Doing so helps
you avoid definition searching altogether. See Section 5.2.1, “Template Definitions
Included” on page 5-3.

Note — If you use the -t enpl at e=no%ext def option, the compiler will not search
for separate source files.

Source File Location Conventions

Without the specific directions provided with an options file, the compiler uses a
Cf r ont -style method to locate template definition files. This method requires that
the template definition file contain the same base name as the template declaration
file. This method also requires that the template definition file be on the current

i ncl ude path. For example, if the template function f oo() is located in f 0o. h, the
matching template definition file should be named f 00. cc or some other
recognizable source-file extension (. C, . c, . cc, . cpp, . CXX, or . c++). The template
definition file must be located in one of the normal i ncl ude directories or in the
same directory as its matching header file.

Definitions Search Path

As an alternative to the normal search path set with —I , you can specify a search
directory for template definition files with the option —pt i directory. Multiple - pt i
flags define multiple search directories—that is, a search path. If you use

- pt i directory, the compiler looks for template definition files on this path and
ignores the -1 flag. Since the —pt i directory flag complicates the search rules for
source files, use the —I option instead of the —pt i directory option.

Chapter 7 Compiling Templates 7-9

7.6

7.6.1

7.6.2

Template Options File

The template options file is a user-provided optional file that contains the options
needed to locate template definitions and to control instance recompilation. In
addition, the options file provides features for controlling template specialization
and explicit instantiation. However, because the C++ compiler now supports the
syntax required to declare specializations and explicit instantiation in the source
code, you should not use these features.

Note — The template options file will not be supported in future releases of the C++
compiler.

The options file is named CC_t npl _opt and resides within the SunWs_confi g
directory. The options file is an ASCII text file containing a number of entries. An
entry consists of a keyword followed by expected text and terminated with a
semicolon (;). Entries can span multiple lines, although the keywords cannot be split.

Comments

Comments start with a # character and extend to the end of the line. Text within a
comment is ignored.

Conment text is ignored until the end of the |ine.

Includes

You may share options files among several template databases by including the
options files. This facility is particularly useful when building libraries containing
templates. During processing, the specified options file is textually included in the
current options file. You can have more than one i ncl ude statement and place them
anywhere in the options file. The options files can also be nested.

i ncl ude "options-file";

7-10 C++ User's Guide « May 2003

7.6.3

7.6.4

Source File Extensions

You can specify different source file extensions for the compiler to search for when
the compiler is using its default Cf r ont -style source-file-locator mechanism. The
format is:

ext ensi ons "ext-list";

The ext-list is a list of extensions for valid source files in a space-separated format
such as:

extensions ".CC .c .cc .cpp";

In the absence of this entry from the options file, the valid extensions for which the
compiler searches are . cc, . c,.cpp,.C, .cxx,and . c++.

Definition Source Locations

You can explicitly specify the locations of definition source files using the
definiti on option file entry. Use the definition entry when the template
declaration and definition file names do not follow the standard Cf r ont -style
conventions. The entry syntax is:

definition name in "file-1",["file-2" ..., "file-n"] [nocheck "options"];

The name field indicates the template for which the option entry is valid. Only one
definition entry per name is allowed. That name must be a simple name; qualified
names are not allowed. Parentheses, return types, and parameter lists are not
allowed. Regardless of the return type or parameters, only the name itself counts. As
a consequence, a definition entry may apply to several (possibly overloaded)
templates.

The "file-n" list field specifies the files that contain the template definitions. The
search for the files uses the definition search path. The file names must be enclosed in
qguotes ("). Multiple files are available because the simple template name may refer
to different templates defined in different files, or because a single template may
have definitions in multiple files. For example, if f unc is defined in three files, then
those three files must be listed in the definition entry.

The nocheck field is described at the end of this section.

Chapter 7 Compiling Templates ~ 7-11

In the following example, the compiler locates the template function f oo in f 0o. cc,
and instantiates it. In this case, the definition entry is redundant with the default
search.

CODE EXAMPLE 7-1 Redundant Definition Entry

foo. cc tenplate <class T> T foo(Tt) { }

CC tnpl _opt definition foo in "foo.cc";

The following example shows the definition of static data members and the use of
simple names.

CODE EXAMPLE 7-2 Definition of Static Data Members and Use of Simple Names

foo.h tenplate <class T> class foo { static T* fooref; };

foo_statics.cc #i ncl ude "foo.h"
tenplate <class T> T* foo<T>::fooref =0

CC_t npl _opt definition fooref in "foo_statics.cc";

The name provided for the definition of f oor ef is a simple name and not a
gualified name (such as f oo: : f oor ef) . The reason for the definition entry is that
the file name is not f 0o. cc (or some other recognizable extension) and cannot be
located using the default Cf r ont -style search rules.

The following example shows the definition of a template member function. As the
example shows, member functions are handled exactly like static member
initializers.

CODE EXAMPLE 7-3 Template Member Function Definition

foo.h tenplate <class T> class foo { T* foofunc(T); };

foo_funcs.cc #i ncl ude “foo.h”
tenplate <class T> T* foo<T>::foofunc(T t) {}

CC_t npl _opt definition foofunc in "foo_funcs.cc";

7-12 C++ User's Guide « May 2003

CODE EXAMPLE 7-4

The following example shows the definition of template functions in two different
source files.

Definition of Template Functions in Different Source Files

foo.h

fool. cc

foo2.cc

CC_t npl _opt

tenpl ate <class T> class foo {
T* func(Tt);
T* func(Tt, T x);
b
#i ncl ude "foo. h"
template <class T> T* foo<T>::func(Tt) { }

#i ncl ude "foo. h"
tenplate <class T> T* foo<T>::func(Tt, Tx) {}

definition func in "fool.cc", "foo2.cc";

CODE EXAMPLE 7-5

In this example, the compiler must be able to find both of the definitions of the
overloaded function f unc() . The definition entry tells the compiler where to find
the appropriate function definitions.

Sometimes recompiling is unnecessary when certain compilation flags change. You
can avoid unnecessary recompilation using the nocheck field of the defi ni ti on
option file entry, which tells the compiler and template database manager to ignore
certain options when checking dependencies. If you do not want the compiler to
reinstantiate a template function because of the addition or deletion of a specific
command-line flag, use the nocheck flag. The entry syntax is:

definition name in "file-1"[, "file-2" ..., "file-n"] [nocheck "options"];

The options must be enclosed in quotes (" ").

In the following example, the compiler locates the template function f oo in f 0o. cc,
and instantiates it. If a reinstantiation check is later required, the compiler will
ignore the - g option.

nocheck Option

foo.cc

CC_t npl _opt

tenplate <class T> T foo(Tt) {}

definition foo in "foo.cc" nocheck "-g";

Chapter 7 Compiling Templates 7-13

7.6.5 Template Specialization Entries

Until recently, the C++ language provided no mechanism for specializing templates,
so each compiler provided its own mechanism. This section describes the
specialization of templates using the mechanism of previous versions of the C++
compilers. This mechanism is only supported in compatibility mode (- conpat [=4]).

The speci al entry tells the compiler that a given function is a specialization and
should not be instantiated when the compiler encounters the function. When using
the compile-time instantiation method, use speci al entries in the options file to
preregister the specializations. The syntax is:

speci al declaration;

The declaration is a legal C++-style declaration without return types. For example:

CODE EXAMPLE 7-6 speci al Entry

foo.h tenplate <class T> T foo(Tt) { };
nmai n. cc #i ncl ude "foo. h"
CC_t npl _opt speci al foo(int);

The preceding options file informs the compiler that the template function f oo()
should not be instantiated for the type i nt, and that a specialized version is
provided by the user. Without that entry in the options file, the function may be
instantiated unnecessarily, resulting in errors:

CODE EXAMPLE 7-7 Example of When speci al Entry Should Be Used

foo.h tenplate <classT> T foo(Tt) { returnt +1t; }

file.cc #i ncl ude "foo. h"
int func() { return foo(10); }

mai n. cc #i ncl ude "foo. h"
int foo(int i) { returni * i; } // the specialization
int min() { int x =foo(10); int y = func();
return 0; }

In the preceding example, when the compiler compiles nai n. cc, the specialized
version of f 00 is correctly used because the compiler has seen its definition. When
file.cc is compiled, however, the compiler instantiates its own version of f 00
because it doesn't know f 00 exists in mai n. cc. In most cases, this process results in

7-14 C++ User's Guide « May 2003

a multiply-defined symbol during the link, but in some cases (especially libraries),
the wrong function may be used, resulting in runtime errors. If you use specialized
versions of a function, you should register those specializations.

The speci al entries can be overloaded, as in this example:

CODE EXAMPLE 7-8 Overloading speci al Entries

foo.h tenplate <classT> T foo(Tt) {}

mai n. cc #i ncl ude "foo. h"
i nt foo(int i) {
char* foo(char* p) {

[E—

CC_t npl _opt special foo(int);
speci al foo(char*);

To specialize a template class, include the template arguments in the speci al entry:

CODE EXAMPLE 7-9 Specializing a Template Class

foo.h tenmpl ate <class T> class Foo { ... various nenbers ... };

mai n. cc #i nclude "foo.h"
int min() { Foo<int> bar; return 0; }

CC tnpl _opt speci al class Foo<int>;

If a template class member is a static member, you must include the keyword
st ati ¢ in your specialization entry:

CODE EXAMPLE 7-10 Specializing a Static Template Class Member

foo.h tenpl ate <class T> class Foo { public: static T func(T);
s
mai n. cc #i ncl ude "foo.h"

int min() { Foo<int> bar; return O; }

CC_t npl _opt special static Foo<int>::func(int);

Chapter 7 Compiling Templates 7-15

7-16 C++ User's Guide « May 2003

CHAPTER 8

Exception Handling

This chapter discusses the C++ compiler’s implementation of exception handling.
Additional information can be found in Section 11.2, “Using Exceptions in a
Multithreaded Program” on page 11-3. For more information on exception handling,
see The C++ Programming Language, Third Edition, by Bjarne Stroustrup (Addison-
Wesley, 1997).

8.1

Synchronous and Asynchronous
Exceptions

Exception handling is designed to support only synchronous exceptions, such as
array range checks. The term synchronous exception means that exceptions can be
originated only from t hr ow expressions.

The C++ standard supports synchronous exception handling with a termination
model. Termination means that once an exception is thrown, control never returns to
the throw point.

Exception handling is not designed to directly handle asynchronous exceptions such
as keyboard interrupts. However, you can make exception handling work in the
presence of asynchronous events if you are careful. For instance, to make exception
handling work with signals, you can write a signal handler that sets a global
variable, and create another routine that polls the value of that variable at regular
intervals and throws an exception when the value changes. You cannot throw an
exception from a signal handler.

8-1

8.2

Specifying Runtime Errors

There are five runtime error messages associated with exceptions:

= No handler for the exception

= Unexpected exception thrown

= An exception can only be re-thrown in a handler

= During stack unwinding, a destructor must handle its own exception
= Out of memory

When errors are detected at runtime, the error message displays the type of the
current exception and one of the five error messages. By default, the predefined
function t er mi nat e() is called, which then calls abort ().

The compiler uses the information provided in the exception specification to
optimize code production. For example, table entries for functions that do not throw
exceptions are suppressed, and runtime checking for exception specifications of
functions is eliminated wherever possible.

8.3

Disabling Exceptions

If you know that exceptions are not used in a program, you can use the compiler
option - f eat ur es=no%except to suppress generation of code that supports
exception handling. The use of the option results in slightly smaller code size and
faster code execution. However, when files compiled with exceptions disabled are
linked to files using exceptions, some local objects in the files compiled with
exceptions disabled are not destroyed when exceptions occur. By default, the
compiler generates code to support exception handling. Unless the time and space
overhead is important, it is usually better to leave exceptions enabled.

Note — Because the C++ standard library, dynam c_cast, and the default operator
new require exceptions, you should not turn off exceptions when you compile in
standard mode (the default mode).

8-2 C++ User's Guide « May 2003

8.4

Using Runtime Functions and
Predefined Exceptions

The standard header <except i on> provides the classes and exception-related
functions specified in the C++ standard. You can access this header only when
compiling in standard mode (compiler default mode, or with option - conpat =5).
The following excerpt shows the <except i on> header file declarations.

/| standard header <exception>
nanespace std {
cl ass exception {
exception() throw();
exception(const exception& throw);
exception& operator=(const exception& throw);
virtual ~exception() throw();
virtual const char* what() const throw();
b
cl ass bad_exception: public exception { ... };
/'l Unexpected excepti on handling
typedef void (*unexpected_handler)();
unexpect ed_handl er
set _unexpect ed(unexpect ed_handl er) throw();
voi d unexpected();
/1 Term nation handling
typedef void (*term nate_handler)();
term nate_handl er set_term nate(term nate_handl er)
throw();
void term nate();
bool uncaught _exception() throw);

The standard class except i on is the base class for all exceptions thrown by selected
language constructs or by the C++ standard library. An object of type excepti on
can be constructed, copied, and destroyed without generating an exception. The
virtual member function what () returns a character string that describes the
exception.

Chapter 8 Exception Handling 8-3

For compatibility with exceptions as used in C++ release 4.2, the header

<excepti on. h>is also provided for use in standard mode. This header allows for a
transition to standard C++ code and contains declarations that are not part of
standard C++. Update your code to follow the C++ standard (using <excepti on>
instead of <excepti on. h>) as development schedules permit.

/'l header <exception.h> used for transition
#i ncl ude <exception>

#i ncl ude <new>

usi ng std::exception;

usi ng std::bad_exception;

usi ng std::set_unexpected;

usi ng std::unexpected,;

using std::set_terninate;

using std::terninate;

typedef std::exception xmsg;

typedef std::bad_exception xunexpect ed;
typedef std::bad_alloc xall oc;

In compatibility mode (—eonpat [=4]), header <except i on> is not available, and
header <except i on. h> refers to the same header provided with C++ release 4.2. It
is not reproduced here.

8.5

Mixing Exceptions With Signals and
Setj np/Longj np

You can use the set j np/1 ongj np functions in a program where exceptions can
occur, as long as they do not interact.

All the rules for using exceptions and set j np/1 ongj np separately apply. In
addition, a | ongj np from point A to point B is valid only if an exception thrown at
A and caught at B would have the same effect. In particular, you must not | ongj np
into or out of a try-block or catch-block (directly or indirectly), or | ongj np past the
initialization or non-trivial destruction of auto variables or temporary variables.

You cannot throw an exception from a signal handler.

8-4 C++ User's Guide « May 2003

8.6 Building Shared Libraries That Have
Exceptions

Never use - Bsynbol i ¢ with programs containing C++ code, use linker map files
instead. With - Bsynbol i c, references in different modules can bind to different
copies of what is supposed to be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of
something, their addresses won’t compare equal, and the exception mechanism can
fail because the exception mechanism relies on comparing what are supposed to be
unique addresses.

When shared libraries are opened with dl open, you must use RTLD_GLOBAL for
exceptions to work.

Chapter 8 Exception Handling 8-5

8-6 C++ User's Guide « May 2003

CHAPTER 9

Cast Operations

This chapter discusses the newer cast operators in the C++ standard: const _cast,
rei nterpret_cast,static_cast, and dynam c_cast . A cast converts an object
or value from one type to another.

These cast operations provide finer control than previous cast operations. The
dynami c_cast <> operator provides a way to check the actual type of a pointer to a
polymorphic class. You can search with a text editor for all new-style casts (search
for _cast), whereas finding old-style casts required syntactic analysis.

Otherwise, the new casts all perform a subset of the casts allowed by the classic cast
notation. For example, const _cast <i nt *>(v) could be written (i nt *) v. The new
casts simply categorize the variety of operations available to express your intent
more clearly and allow the compiler to provide better checking.

The cast operators are always enabled. They cannot be disabled.

9-1

9.1

const _cast

The expression const _cast <T>(v) can be used to change the const orvol atile
qualifiers of pointers or references. (Among new-style casts, only const _cast <>
can remove const qualifiers.) T must be a pointer, reference, or pointer-to-member

type.

class A
{
public:
virtual void f();
int i;
3
extern const volatile int* cvip;
extern int* ip;
voi d use_of _const_cast()

{

const A al;

const _cast<A&>(al).f(); /'l renove const
ip = const_cast<int*> (cvip); /1 remove const and volatile
}

9.2

9-2

rei nterpret cast

The expression r ei nt er pr et _cast <T>(v) changes the interpretation of the value
of the expression v. It can be used to convert between pointer and integer types,
between unrelated pointer types, between pointer-to-member types, and between
pointer-to-function types.

Usage of the rei nt er pret _cast operator can have undefined or implementation-
dependent results. The following points describe the only ensured behavior:

= A pointer to a data object or to a function (but not a pointer to member) can be
converted to any integer type large enough to contain it. (Type | ong is always
large enough to contain a pointer value on the architectures supported by the C++
compiler.) When converted back to the original type, the pointer value will
compare equal to the original pointer.

= A pointer to a (nonmember) function can be converted to a pointer to a different
(nonmember) function type. If converted back to the original type, the pointer
value will compare equal to the original pointer.

C++ User’'s Guide « May 2003

A pointer to an object can be converted to a pointer to a different object type,
provided that the new type has alignment requirements no stricter than the
original type. When converted back to the original type, the pointer value will
compare equal to the original pointer.

An lvalue of type T1 can be converted to a type “reference to T2” if an expression
of type “pointer to T1” can be converted to type “pointer to T2” with a reinterpret
cast.

An rvalue of type “pointer to member of X of type T1” can be explicitly converted
to an rvalue of type “pointer to member of Y of type T2” if T1 and T2 are both
function types or both object types.

In all allowed cases, a null pointer of one type remains a null pointer when
converted to a null pointer of a different type.

The rei nt erpret _cast operator cannot be used to cast away const ; use
const _cast for that purpose.

The rei nt erpret_cast operator should not be used to convert between
pointers to different classes that are in the same class hierarchy; use a static or
dynamic cast for that purpose. (r ei nt er pret _cast does not perform the
adjustments that might be needed.) This is illustrated in the following example:

class A{ int a; public: A(); };
class B: public A{ int b, c; };
voi d use_of _reinterpret_cast()
{
A al;
long | = reinterpret_cast<long>(&al);
A* ap = reinterpret_cast<A*>(l); /1 safe
B* bp = reinterpret_cast<B*>(&al); /'l unsafe
const A az;
ap = reinterpret_cast<A*>(&2); [// error, const renoved
}

Chapter 9 Cast Operations 9-3

9.3 static_cast

The expression st ati c_cast <T>(v) converts the value of the expression v to type
T. It can be used for any type conversion that is allowed implicitly. In addition, any
value can be cast to voi d, and any implicit conversion can be reversed if that cast
would be legal as an old-style cast.

class B { ... }

class C: public B{ ... };

enumE { first=1, second=2, third=3 };
voi d use_of _static_cast(C" cl1)

{
B* bp = c1; /1 inplicit conversion
C* c2 = static_cast<C*>(bp); // reverse inplicit conversion
int i = second, /1 inplicit conversion
E e = static_cast<E>(i); /1 reverse inplicit conversion
}

The st ati c_cast operator cannot be used to cast away const. You can use
stati c_cast to cast “down” a hierarchy (from a base to a derived pointer or
reference), but the conversion is not checked; the result might not be usable. A
stati c_cast cannot be used to cast down from a virtual base class.

9.4 Dynamic Casts

9-4

A pointer (or reference) to a class can actually point (refer) to any class derived from
that class. Occasionally, it may be desirable to obtain a pointer to the fully derived
class, or to some other subobject of the complete object. The dynamic cast provides
this facility.

Note — When compiling in compatibility mode (- conpat [=4]), you must compile
with - f eatures=rtti if your program uses dynamic casts.

The dynamic type cast converts a pointer (or reference) to one class T1 into a pointer
(reference) to another class T2. T1 and T2 must be part of the same hierarchy, the
classes must be accessible (via public derivation), and the conversion must not be

C++ User’'s Guide « May 2003

94.1

9.4.2

9.4.3

ambiguous. In addition, unless the conversion is from a derived class to one of its
base classes, the smallest part of the hierarchy enclosing both T1 and T2 must be
polymorphic (have at least one virtual function).

In the expression dynami c_cast <T>(v), v is the expression to be cast, and T is the
type to which it should be cast. T must be a pointer or reference to a complete class
type (one for which a definition is visible), or a pointer to cv voi d, where cv is an
empty string, const, vol ati |l e, or const vol atil e.

Casting Up the Hierarchy

When casting up the hierarchy, if T points (or refers) to a base class of the type
pointed (referred) to by v, the conversion is equivalent to st ati c_cast <T>(v).

Casting to voi d*

If T is voi d*, the result is a pointer to the complete object. That is, v might point to
one of the base classes of some complete object. In that case, the result of

dynami c_cast <voi d*>(v) isthe same as if you converted v down the hierarchy to
the type of the complete object (whatever that is) and then to voi d*.

When casting to voi d*, the hierarchy must be polymorphic (have virtual functions).

Casting Down or Across the Hierarchy

When casting down or across the hierarchy, the hierarchy must be polymorphic
(have virtual functions). The result is checked at runtime.

The conversion from v to T is not always possible when casting down or across a
hierarchy. For example, the attempted conversion might be ambiguous, T might be
inaccessible, or v might not point (or refer) to an object of the necessary type. If the
runtime check fails and T is a pointer type, the value of the cast expression is a null
pointer of type T. If T is a reference type, nothing is returned (there are no null
references in C++), and the standard exception st d: : bad_cast is thrown.

Chapter 9 Cast Operations 9-5

For example, this example of public derivation succeeds:

#i ncl ude <assert. h>
#i nclude <stddef.h> // for NULL

class A{ public: virtual void f(); };
class B { public: virtual void g(); };
class AB : public virtual A public B { };

voi d sinple_dynanmi c_casts()

{
AB ab;
B* bp = &ab; /1 no casts needed
A* ap = &ab;
AB& abr = dynami c_cast <AB&>(*bp); // succeeds
ap = dynami c_cast <A*>(bp); assert(ap != NULL);
bp = dynam c_cast <B*>(ap); assert(bp !'= NULL);
ap = dynam c_cast <A*>(&abr); assert(ap != NULL);
bp = dynami c_cast <B*>(&abr); assert(bp !'= NULL);
}

whereas this example fails because base class B is inaccessible.

#i ncl ude <assert. h>
#i nclude <stddef.h> // for NULL
#i ncl ude <typei nfo>

class A{ public: virtual void f() { } };
class B { public: virtual void g() { } };
class AB : public virtual A private B {

I

voi d attenpted_casts()

{
AB ab;
B* bp = (B*)&ab; // C-style cast needed to break protection
A* ap = dynamic_cast<A*>(bp); // fails, B is inaccessible
assert(ap == NULL);
try {

AB& abr = dynami c_cast <AB&>(*bp); // fails, B is inaccessible

}

catch(const std::bad_cast& {
return; // failed reference cast caught here

}

assert(0); // should not get here

9-6 C++ User's Guide » May 2003

In the presence of virtual inheritance and multiple inheritance of a single base class,
the actual dynamic cast must be able to identify a unique match. If the match is not
unique, the cast fails. For example, given the additional class definitions:

class AB_ B : public AB, public B { };
class AB B _AB : public AB_B, public AB { };
Example:
voi d conpl ex_dynam c_casts()
{
AB B _AB ab_b__ab;
A*ap = &ab_b__ab;
/1 okay: finds unique A statically
AB*abp = dynam c_cast <AB*>(ap);
/1 fails: anbi guous
assert(abp == NULL);
/1 STATIC ERROR AB _B* ab_bp = (AB_B*)ap;
/1 not a dynam c cast
AB _B*ab_bp = dynani c_cast <AB_B*>(ap);
/1 dynam c one is okay
assert(ab_bp !'= NULL);
}

The null-pointer error return of dynani c_cast is useful as a condition between two
bodies of code—one to handle the cast if the type guess is correct, and one if it is not.

voi d using_dynam c_cast(A* ap)
{
if (AB *abp = dynani c_cast <AB*>(ap))
{ /1 abp is non-null,
/1 so ap was a pointer to an AB object
/1 go ahead and use abp
process_AB(abp); }
el se
{ /1 abp is null,
/1 so ap was NOT a pointer to an AB object
/1 do not use abp
process_not _AB(ap);

}

Chapter 9 Cast Operations 9-7

In compatibility mode (- conpat [=4]), if runtime type information has not been
enabled with the - f eat ures=rtti compiler option, the compiler converts
dynam c_cast tostatic_cast and issues a warning.

If exceptions have been disabled, the compiler converts dynami c_cast <T&> to
stati c_cast <T&> and issues a warning. (A dynamic_cast to a reference type
requires an exception to be thrown if the conversion is found at run time to be
invalid.). For information about exceptions, see Chapter 8.

Dynamic cast is necessarily slower than an appropriate design pattern, such as
conversion by virtual functions. See Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma (Addison-Wesley, 1994).

9-8 C++ User's Guide » May 2003

CHAPTER 10

Improving Program Performance

You can improve the performance of C++ functions by writing those functions in a
manner that helps the compiler do a better job of optimizing them. Many books have
been written on software performance in general and C++ in particular. For
example, see C++ Programming Style by Tom Cargill (Addison-Wesley, 1992), Writing
Efficient Programs by Jon Louis Bentley (Prentice-Hall, 1982), Efficient C++:
Performance Programming Techniques by Dov Bulka and David Mayhew (Addison-
Wesley, 2000), and Effective C++—50 Ways to Improve Your Programs and Designs,
Second Edition, by Scott Meyers, (Addison-Wesley, 1998). This chapter does not
repeat such valuable information, but discusses only those performance techniques
that strongly affect the C++ compiler.

10.1

Avoiding Temporary Objects

C++ functions often produce implicit temporary objects, each of which must be
created and destroyed. For non-trivial classes, the creation and destruction of
temporary objects can be expensive in terms of processing time and memory usage.
The C++ compiler does eliminate some temporary objects, but it cannot eliminate all
of them.

Write functions to minimize the number of temporary objects as long as your
programs remain comprehensible. Techniques include using explicit variables rather
than implicit temporary objects and using reference parameters rather than value
parameters. Another technique is to implement and use operations such as += rather
than implementing and using only + and =. For example, the first line below
introduces a temporary object for the result of a + b, while the second line does not.

Tx =a+b;
TX(a); x += b;

10-1

10.2

Using Inline Functions

Calls to small and quick functions can be smaller and quicker when expanded inline
than when called normally. Conversely, calls to large or slow functions can be larger
and slower when expanded inline than when branched to. Furthermore, all calls to
an inline function must be recompiled whenever the function definition changes.
Consequently, the decision to use inline functions requires considerable care.

Do not use inline functions when you anticipate changes to the function definition
and recompiling all callers is expensive. Otherwise, use inline functions when the
code to expand the function inline is smaller than the code to call the function or the
application performs significantly faster with the function inline.

The compiler cannot inline all function calls, so making the most effective use of
function inlining may require some source changes. Use the +w option to learn when
function inlining does not occur. In the following situations, the compiler will not
inline the function:

= The function contains difficult control constructs, such as loops, switch
statements, and try/catch statements. Many times these functions execute the
difficult control constructs infrequently. To inline such a function, split the
function into two parts, an inner part that contains the difficult control constructs
and an outer part that decides whether or not to call the inner part. This
technique of separating the infrequent part from the frequent part of a function
can improve performance even when the compiler can inline the full function.

= The inline function body is large or complicated. Apparently simple function
bodies may be complicated because of calls to other inline functions within the
body, or because of implicit constructor and destructor calls (as often occurs in
constructors and destructors for derived classes). For such functions, inline
expansion rarely provides significant performance improvement, and the function
is best left uninlined.

= The arguments to an inline function call are large or complicated. The compiler is
particularly sensitive when the object for an inline member function call is itself
the result of an inline function call. To inline functions with complicated
arguments, simply compute the function arguments into local variables and then
pass the variables to the function.

10-2 C++ User's Guide « May 2003

10.3

Using Default Operators

If a class definition does not declare a parameterless constructor, a copy constructor,
a copy assignment operator, or a destructor, the compiler will implicitly declare
them. These are called default operators. A C-like struct has these default operators.
When the compiler builds a default operator, it knows a great deal about the work
that needs to be done and can produce very good code. This code is often much
faster than user-written code because the compiler can take advantage of assembly-
level facilities while the programmer usually cannot. So, when the default operators
do what is needed, the program should not declare user-defined versions of these
operators.

Default operators are inline functions, so do not use default operators when inline
functions are inappropriate (see the previous section). Otherwise, default operators
are appropriate when:

= The user-written parameterless constructor would only call parameterless
constructors for its base objects and member variables. Primitive types effectively
have “do nothing” parameterless constructors.

= The user-written copy constructor would simply copy all base objects and
member variables.

= The user-written copy assignment operator would simply copy all base objects
and member variables.

= The user-written destructor would be empty.

Some C++ programming texts suggest that class programmers always define all
operators so that any reader of the code will know that the class programmer did
not forget to consider the semantics of the default operators. Obviously, this advice
interferes with the optimization discussed above. The resolution of the conflict is to
place a comment in the code stating that the class is using the default operator.

10.4

Using Value Classes

C++ classes, including structures and unions, are passed and returned by value. For
Plain-Old-Data (POD) classes, the C++ compiler is required to pass the struct as
would the C compiler. Objects of these classes are passed directly. For objects of
classes with user-defined copy constructors, the compiler is effectively required to
construct a copy of the object, pass a pointer to the copy, and destruct the copy after
the return. Objects of these classes are passed indirectly. For classes that fall between
these two requirements, the compiler can choose. However, this choice affects binary
compatibility, so the compiler must choose consistently for every class.

Chapter 10 Improving Program Performance 10-3

For most compilers, passing objects directly can result in faster execution. This
execution improvement is particularly noticeable with small value classes, such as
complex numbers or probability values. You can sometimes improve program
efficiency by designing classes that are more likely to be passed directly than
indirectly.

In compatibility mode (- conpat [=4]), a class is passed indirectly if it has any one
of the following:

= A user-defined constructor

= A virtual function

= A virtual base class

= A base that is passed indirectly

= A non-static data member that is passed indirectly

Otherwise, the class is passed directly.
In standard mode (the default mode), a class is passed indirectly if it has any one of
the following:

= A user-defined copy constructor

= A user-defined destructor

= A base that is passed indirectly

= A non-static data member that is passed indirectly

Otherwise, the class is passed directly.

10.4.1 Choosing to Pass Classes Directly

To maximize the chance that a class will be passed directly:
= Use default constructors, especially the default copy constructor, where possible.

= Use the default destructor where possible. The default destructor is not virtual,
therefore a class with a default destructor should generally not be a base class.

= Avoid virtual functions and virtual bases.

10-4 C++ User's Guide « May 2003

10.4.2

Passing Classes Directly on Various Processors

Classes (and unions) that are passed directly by the C++ compiler are passed exactly
as the C compiler would pass a struct (or union). However, C++ structs and unions
are passed differently on different architectures.

TABLE 10-1 Passing of Structs and Unions by Architecture

Architecture Description

SPARC V7/V8 Structs and unions are passed and returned by allocating storage within
the caller and passing a pointer to that storage. (That is, all structs and
unions are passed by reference.)

SPARC V9 Structs with a size no greater than 16 bytes (32 bytes) are passed
(returned) in registers. Unions and all other structs are passed and
returned by allocating storage within the caller and passing a pointer to
that storage. (That is, small structs are passed in registers; unions and
large structs are passed by reference.) As a consequence, small value
classes are passed as efficiently as primitive types.

IA platforms Structs and unions are passed by allocating space on the stack and
copying the argument onto the stack. Structs and unions are returned by
allocating a temporary object in the caller's frame and passing the address
of the temporary object as an implicit first parameter.

10.5

Cache Member Variables

Accessing member variables is a common operation in C++ member functions.

The compiler must often load member variables from memory through the t hi s
pointer. Because values are being loaded through a pointer, the compiler sometimes
cannot determine when a second load must be performed or whether the value
loaded before is still valid. In these cases, the compiler must choose the safe, but
slow, approach and reload the member variable each time it is accessed.

You can avoid unnecessary memory reloads by explicitly caching the values of
member variables in local variables, as follows:

= Declare a local variable and initialize it with the value of the member variable.
= Use the local variable in place of the member variable throughout the function.

= If the local variable changes, assign the final value of the local variable to the
member variable. However, this optimization may yield undesired results if the
member function calls another member function on that object.

Chapter 10 Improving Program Performance 10-5

10-6

This optimization is most productive when the values can reside in registers, as is
the case with primitive types. The optimization may also be productive for memory-
based values because the reduced aliasing gives the compiler more opportunity to
optimize.

This optimization may be counter-productive if the member variable is often passed
by reference, either explicitly or implicitly.

On occasion, the desired semantics of a class requires explicit caching of member
variables, for instance when there is a potential alias between the current object and
one of the member function’s arguments. For example:

conpl ex& operator*= (conpl ex& | eft, conplex& right)

{
left.real = left.real * right.real + left.imag * right.inmag;
left.inmag = left.real * right.imag + left.inage * right.real;

}

will yield unintended results when called with:

X* =X;

C++ User’s Guide « May 2003

CHAPTER 11

Building Multithreaded Programs

This chapter explains how to build multithreaded programs. It also discusses the use
of exceptions, explains how to share C++ Standard Library objects across threads,
and describes how to use classic (old) iostreams in a multithreading environment.

For more information about multithreading, see the Multithreaded Programming
Guide, the Tools.h++ User’s Guide, and the Standard C++ Library User’s Guide.

11.1

Building Multithreaded Programs

All libraries shipped with the C++ compiler are multithreading-safe. If you want to
build a multithreaded application, or if you want to link your application to a
multithreaded library, you must compile and link your program with the —nt
option. This option passes —D_REENTRANT to the preprocessor and passes —I t hr ead
in the correct order to | d. For compatibility mode (—conpat [=4]), the —mt option
ensures that | i bt hr ead is linked before | i bC. For standard mode (the default
mode), the - mt option ensures that | i bt hr ead is linked before | i bCr un.

Do not link your application directly with —I t hr ead because this causes
I'i bt hr ead to be linked in an incorrect order.

The following example shows the correct way to build a multithreaded application
when the compilation and linking are done in separate steps:

exanmpl e% CC -c -nt myprog. cc
exanpl e% CC -nt nyprog. o

11-1

11.1.1

11.1.2

The following example shows the wrong way to build a multithreaded application:

exampl e% CC -c -nt nyprog.o
exampl e% CC nyprog. o -1l thread <-libthread is linked incorrectly

Indicating Multithreaded Compilation

You can check whether an application is linked to | i bt hr ead or not by using the
| dd command:

exanmpl e% CC -nt nyprog. cc
exanmpl e% | dd a. out

libmso.1 => fusr/lib/libmso.1
libCrun.so.1 => fusr/lib/libCrun.so.1
l'i bw.so.1 => fusr/lib/libw so.1
libthread.so.1 => /usr/lib/libthread. so.1
libc.so.1 => fusr/lib/libc.so.1
libdl.so.1 => fusr/lib/libdl.so.1

Using C++ Support Libraries With Threads and
Signals

The C++ support libraries, | i bCrun, | i bi ostream i bCstd, and | i bCare
multithread safe but are not async safe. This means that in a multithreaded
application, functions available in the support libraries should not be used in signal
handlers. Doing so can result in a deadlock situation.

It is not safe to use the following in a signal handler in a multithreaded application:

= |ostreams
= newand del et e expressions
= Exceptions

11-2 C++ User's Guide « May 2003

11.2

Using Exceptions in a Multithreaded
Program

The current exception-handling implementation is safe for multithreading;
exceptions in one thread do not interfere with exceptions in other threads. However,
you cannot use exceptions to communicate across threads; an exception thrown from
one thread cannot be caught in another.

Each thread can set its own t er mi nat e() or unexpect ed() function. Calling

set _term nate() or set _unexpect ed() in one thread affects only the
exceptions in that thread. The default function for t er mi nat e() is abort () for the
main thread, and t hr _exi t () for other threads (see Section 8.2, “Specifying
Runtime Errors” on page 8-2).

Note — Thread cancellation (pt hr ead_cancel (3T)) results in the destruction of
automatic (local nonstatic) objects on the stack. When a thread is cancelled, the
execution of local destructors is interleaved with the execution of cleanup routines
that the user has registered with pt hr ead_cl eanup_push() . The local objects for
functions called after a particular cleanup routine is registered are destroyed before
that routine is executed.

11.3

Sharing C++ Standard Library Objects
Between Threads

The C++ Standard Library (I i bCst d), which is multithread-safe, makes sure that
the internals of the library work properly in a multithreading environment. You will
still need to lock around any library objects that you yourself share between threads
(except for i ost reans and | ocal e objects).

For example, if you instantiate a string, then create a new thread and pass that string
to the thread by reference, then you must lock around write access to that string,
since you are explicitly sharing the one string object between threads. (The facilities
provided by the library to accomplish this task are described below.)

On the other hand, if you pass the string to the new thread by value, you do not
need to worry about locking, even though the strings in the two different threads
may be sharing a representation through Rogue Wave’s “copy on write” technology.

Chapter 11 Building Multithreaded Programs ~ 11-3

11-4

The library handles that locking automatically. You are only required to lock when
making an object available to multiple threads explicitly, either by passing references
between threads or by using global or static objects.

The following describes the locking (synchronization) mechanism used internally in
the C++ Standard Library to ensure correct behavior in the presence of multiple
threads.

Two synchronization classes provide mechanisms for achieving multithreaded
safety; RWSTDMut ex and _RWSTDGuar d.

The _RWSTDMut ex class provides a platform-independent locking mechanism
through the following member functions:

= void acquire()—Acquires a lock on self, or blocks until such a lock can be
obtained.

= void rel ease()—Releases a lock on self.

cl ass _RWSTDMWut ex

{

public:
_RWSTDMUt ex ()
~ RWSTDMut ex ();
void acquire ();
voi d rel ease ();

b

The _RWSTDGuar d class is a convenience wrapper class that encapsulates an object
of _RWSTDMut ex class. An _RWSTDCGuar d object attempts to acquire the
encapsulated mutex in its constructor (throwing an exception of type
::thread_error, derived from st d: : excepti on on error), and releases the
mutex in its destructor (the destructor never throws an exception).

class _RWSTDCGuard

{

public:
_RWsTDCGuar d (_RWSTDMut ex&) ;
~ RWsTDGuard ();

b

Additionally, you can use the macro _RWSTD_MTI_GUARD(nut ex) (formerly

_ STDGUARD) to conditionally create an object of the _ RWSTDGuar d class in
multithread builds. The object guards the remainder of the code block in which it is
defined from being executed by multiple threads simultaneously. In single-threaded
builds the macro expands into an empty expression.

C++ User’s Guide « May 2003

The following example illustrates the use of these mechanisms.

#i ncl ude <rw st dnmut ex. h>

/1

/1 An integer shared anong multiple threads.
I

int |;

/1

/1 A mutex used to synchronize updates to I.
I

_RWSTDMUt ex | _mut ex;

I
/1l Increment | by one. Uses an _RWSTDMutex directly.
I

void increnment_I ()

{
I _mutex.acquire(); // Lock the mutex.
| ++;
I _nutex.release(); // Unlock the nutex.
}
11
/! Decrement | by one. Uses an _RWSTDCuard.
I
voi d decrenent _|I ()
{
_RWsTDGuard guard(l_mutex); [// Acquire the lock on |_nutex.
- ;
I
/1 The lock on | is rel eased when destructor is called on guard.
I
}

Chapter 11 Building Multithreaded Programs ~ 11-5

11.4

11.4.1

Using Classic lostreams in a
Multithreading Environment

This section describes how to use the i ost r eamclasses of the | i bC and

I i bi ostreamlibraries for input-output (I1/0) in a multithreaded environment. It
also provides examples of how to extend functionality of the library by deriving
from the i ost r eamclasses. This section is not a guide for writing multithreaded
code in C++, however.

The discussion here applies only to the old iostreams (I i bCand | i bi ostr eamn) and
does not apply to | i bCst d, the new iostream that is part of the C++ Standard
Library.

The i ost r eamlibrary allows its interfaces to be used by applications in a
multithreaded environment by programs that utilize the multithreading capabilities
when running version 2.6, 7, or 8 of the Solaris operating environment. Applications
that utilize the single-threaded capabilities of previous versions of the library are not
affected.

A library is defined to be MT-safe if it works correctly in an environment with
threads. Generally, this “correctness” means that all of its public functions are
reentrant. The i ost r eamlibrary provides protection against multiple threads that
attempt to modify the state of objects (that is, instances of a C++ class) shared by
more than one thread. However, the scope of MT-safety for an i ost r eamobject is
confined to the period in which the object’s public member function is executing.

Note — An application is not automatically guaranteed to be MT-safe because it uses
MT-safe objects from the | i bC library. An application is defined to be MT-safe only
when it executes as expected in a multithreaded environment.

Organization of the MT-Safe i ost r eamLibrary

The organization of the MT-safe i ost r eamlibrary is slightly different from other
versions of the i ost r eamlibrary. The exported interface of the library refers to the
public and protected member functions of the i ost r eamclasses and the set of base
classes available, and is consistent with other versions; however, the class hierarchy
is different. See Section 11.4.2, “Interface Changes to the i ost r eamLibrary” on
page 11-13 for details.

11-6 C++ User's Guide « May 2003

The original core classes have been renamed with the prefix unsaf e_. TABLE 11-1
lists the classes that are the core of the i ost r eampackage.

TABLE 11-1 i 0ost r eamOriginal Core Classes

Class Description

stream MI The base class for MT-safe classes.

st r eanbuf The base class for buffers.

unsafe_i os A class that contains state variables that are common to the

various stream classes; for example, error and formatting state.

unsafe_i stream A class that supports formatted and unformatted conversion
from sequences of characters retrieved from the st r eanbuf s.

unsaf e_ostream A class that supports formatted and unformatted conversion to
sequences of characters stored into the st r eanbuf s.

unsaf e_i ostream A class that combines unsaf e_i st reamand unsaf e_ost ream
classes for bidirectional operations.

Each MT-safe class is derived from the base class st r eam MI. Each MT-safe class,
except st r eanmbuf , is also derived from the existing unsaf e_ base class. Here are
some examples:

class streanbuf: public streamMr { ... };
class ios: virtual public unsafe_ios, public stream Ml { ... };
class istream virtual public ios, public unsafe_istream{ ... };

The class st r eam M provides the mutual exclusion (mutex) locks required to make
each i ost r eamclass MT-safe; it also provides a facility that dynamically enables
and disables the locks so that the MT-safe property can be dynamically changed. The
basic functionality for 1/0 conversion and buffer management are organized into
the unsaf e_ classes; the MT-safe additions to the library are confined to the derived
classes. The MT-safe version of each class contains the same protected and public
member functions as the unsaf e_ base class. Each member function in the
MT-safe version class acts as a wrapper that locks the object, calls the same function
in the unsaf e_ base class, and unlocks the object.

Note — The class st r eanbuf is not derived from an unsafe class. The public and
protected member functions of class st r eanbuf are reentrant by locking. Unlocked
versions, suffixed with _unl ocked, are also provided.

Chapter 11 Building Multithreaded Programs ~ 11-7

11411

Public Conversion Routines

A set of reentrant public functions that are MT-safe have been added to the
i ost r eaminterface. A user-specified buffer is an additional argument to each
function. These functions are described as follows.

TABLE 11-2 MT-Safe Reentrant Public Functions

Function Description

char *oct_r (char *buf, Returns a pointer to the ASCII string that represents the
int buflen, number in octal. A width of nonzero is assumed to be
long num the field width for formatting. The returned value is not
. . uaranteed to point to the beginning of the user-
int wdth) 9 P 9 9

char

*hex_r (char *buf,

provided buffer.

Returns a pointer to the ASCII string that represents the

int buflen, number in hexadecimal. A width of nonzero is assumed
long num to be the field width for formatting. The returned value
. . is not guaranteed to point to the beginning of the user-
Int width) provided buffer.

char *dec_r (char *buf, Returns a pointer to the ASCII string that represents the
int buflen, number in decimal. A width of nonzero is assumed to
long num be the field width for formatting. The returned value is
. . not guaranteed to point to the beginning of the user-
int wdth)

char

*chr_r (char *buf,

provided buffer.

Returns a pointer to the ASCII string that contains

int buflen, character chr. If the width is nonzero, the string
long num contains wi dt h blanks followed by chr. The returned
.) value is not guaranteed to point to the beginning of the
int width) user-provided buffer.

char *formr (char *buf, Returns a pointer of the string formatted by spri ntf,
int buflen, using the format string f or mat and any remaining
long num arguments. The buffer must have sufficient space to
. . contain the formatted string.
int wdth)

Note — The public conversion routines of the i ost r eamlibrary (oct , hex, dec, chr,
and f or) that are present to ensure compatibility with an earlier version of | i bC
are not MT-safe.

11-8 C++ User's Guide « May 2003

11.4.1.2

11.4.1.3

Compiling and Linking With the MT-Safe | i bC Library

When you build an application that uses the i ost r eamclasses of the | i bClibrary to
run in a multithreaded environment, compile and link the source code of the
application using the - nt option. This option passes - D_REENTRANT to the
preprocessor and - | t hr ead to the linker.

Note — Use - nt (rather than - | t hr ead) to link with | i bCand | i bt hr ead. This
option ensures proper linking order of the libraries. Using - | t hr ead improperly
could cause your application to work incorrectly.

Single-threaded applications that use i ost r eamclasses do not require special
compiler or linker options. By default, the compiler links with the | i bC library.

MT-Safe i ost r eamRestrictions

The restricted definition of MT-safety for the i ost r eamlibrary means that a number
of programming idioms used with i ost r eamare unsafe in a multithreaded
environment using shared i ost r eamobjects.

Checking Error State

To be MT-safe, error checking must occur in a critical region with the 1/0 operation
that causes the error. The following example illustrates how to check for errors:

CODE EXAMPLE 11-1 Checking Error State

#i ncl ude <i ostream h>
enumiostate { 1ok, 1Ceof, ICrail };
i ostate read_nunber(istream& istr, int& num
{
stream | ocker sl (istr, stream.|ocker::lock_now);
istr >> num
if (istr.eof()) return | Ceof;
if (istr.fail()) return IOail;
return | Ook;
}

Chapter 11 Building Multithreaded Programs ~ 11-9

11-10

In this example, the constructor of the st r eam | ocker object sl locks thei stream
object i st r. The destructor of sl , called at the termination of r ead_nunber,
unlocks i str.

Obtaining Characters Extracted by Last Unformatted Input Operation

To be MT-safe, the gcount function must be called within a thread that has
exclusive use of the i st r eamobject for the period that includes the execution of the
last input operation and gcount call. The following example shows a call to
gcount :

CODE EXAMPLE 11-2 Calling gcount

#i ncl ude <i ostream h>
#i ncl ude <rl ocks. h>
void fetch_line(istream& istr, char* line, int& |inecount)

{

stream | ocker sl (istr, stream.|ocker::|ock_defer);

sl.lock(); // lock the streamistr
istr >> line;

linecount = istr.gcount();
sl.unlock(); // unlock istr

}

In this example, the | ock and unl ock member functions of class st ream | ocker
define a mutual exclusion region in the program.

User-Defined 1/0 Operations

To be MT-safe, 1/0 operations defined for a user-defined type that involve a specific
ordering of separate operations must be locked to define a critical region. The
following example shows a user-defined 1/0 operation:

CODE EXAMPLE 11-3 User-Defined 1/0 Operations

#i ncl ude <rl ocks. h>
#i ncl ude <i ostream h>
class nystream public istream {

/'l other definitions...
i nt getRecord(char* name, int& id, float& gpa);

C++ User’'s Guide « May 2003

11.4.1.4

CODE EXAMPLE 11-3 User-Defined I/0 Operations (Continued)

b

int mystream:getRecord(char* name, int& id, float& gpa)
{

stream | ocker sl (this, stream.|ocker::Iock_now);
*this >> nane;
*this >> id;

*this >> gpa;

return this->fail () == 0;

Reducing Performance Overhead of MT-Safe Classes

Using the MT-safe classes in this version of the | i bC library results in some amount
of performance overhead, even in a single-threaded application; however, if you use
the unsaf e_ classes of | i bC, this overhead can be avoided.

The scope resolution operator can be used to execute member functions of the base
unsaf e_ classes; for example:

cout.unsafe_ostream:put('4');

cin.unsafe_istream:read(buf, len);

Note — The unsaf e_ classes cannot be safely used in multithreaded applications.

Instead of using unsaf e_ classes, you can make the cout and ci n objects unsaf e
and then use the normal operations. A slight performance deterioration results. The
following example shows how to use unsaf e cout and ci n:

CODE EXAMPLE 11-4 Disabling MT-Safety

#i ncl ude <i ostream h>

//disable nt-safety
cout.set_safe_fl ag(stream M: : unsaf e_obj ect);

Chapter 11 Building Multithreaded Programs ~ 11-11

11-12

CODE EXAMPLE 11-4 Disabling MT-Safety (Continued)

//disable nt-safety
cin.set_safe_flag(stream M. :unsafe_object);
cout.put(‘4');

cin.read(buf, len);

When an i ost r eamobject is MT-safe, mutex locking is provided to protect the
object's member variables. This locking adds unnecessary overhead to an application
that only executes in a single-threaded environment. To improve performance, you
can dynamically switch an i ost r eamobject to and from MT-safety. The following
example makes an i ost r eamobject MT-unsafe:

CODE EXAMPLE 11-5 Switching to MT-Unsafe

fs.set_safe_flag(stream Mr::unsafe_object);// disable MI-safety
do various i/o operations

You can safely use an MT-unsafe stream in code where an iostream is not shared by
threads; for example, in a program that has only one thread, or in a program where
each iostream is private to a thread.

If you explicitly insert synchronization into the program, you can also safely use
MT-unsafe i ost r eans in an environment where an i ost r eamis shared by threads.
The following example illustrates the technique:

CODE EXAMPLE 11-6 Using Synchronization With MT-Unsafe Objects

generic_l ock() ;

fs.set_safe_flag(stream M: : unsafe_object)
do various i/o operations

generic_unl ock() ;

where the generi c_| ock and generi c_unl ock functions can be any
synchronization mechanism that uses such primitives as mutex, semaphores, or
reader/writer locks.

Note — The st ream | ocker class provided by the | i bC library is the preferred
mechanism for this purpose.

See Section 11.4.5, “Object Locks” on page 11-16 for more information.

C++ User’'s Guide « May 2003

11.4.2

Interface Changes to the i ost r eamLibrary

This section describes the interface changes made to the i ost r eamlibrary to make it

MT-Safe.

11.4.2.1 The New Classes

The following table lists the new classes added to the | i bCinterfaces.

CODE EXAMPLE 11-7 New Classes

stream Mr

stream | ocker
unsafe_ios

unsafe_i stream

unsaf e_ostream

unsaf e_i ostream
unsaf e_fstreanbase
unsaf e_strstreanbase

11.4.2.2 The New Class Hierarchy

The following table lists the new class hierarchy added to the i ost r eaminterfaces.

CODE EXAMPLE 11-8

New Class Hierarchy

{ .-}

cl ass streanbuf public stream Ml { ... };

class unsafe_ios { ... };

class ios : virtual public unsafe_ios, public stream M { ... };

cl ass unsafe_fstreanbase : virtual public unsafe_ios { ... };

class fstreanbase : virtual public ios, public unsafe_fstreanbase
{ ... h

cl ass unsafe_strstreanbase : virtual public unsafe_ios { ... };

class strstreanbase : virtual public ios, public

unsaf e_strstreanbase {

class unsafe_istream: virtual public unsafe_ios { ... };

class unsafe_ostream: virtual public unsafe_ios { ... };

class istream: virtual public ios, public unsafe_istream{ ... };

class ostream: virtual public ios, public unsafe_ostream{ ... };

cl ass unsafe_iostream: public unsafe_istream public unsafe_ostream

Chapter 11 Building Multithreaded Programs ~ 11-13

11.4.2.3

The New Functions

The following table lists the new functions added to the i ost r eaminterfaces.

CODE EXAMPLE 11-9 New Functions

cl ass streanbuf {
public:
int sgetc_unl ocked();
voi d sget n_unl ocked(char *, int);
i nt snextc_unl ocked();
i nt sbunpc_unl ocked();
voi d stossc_unl ocked();
int in_avail_unl ocked();
i nt sputbackc_unl ocked(char);
i nt sputc_unl ocked(int);
i nt sputn_unl ocked(const char *, int);
int out_waiting_unlocked();
pr ot ect ed:
char* base_unl ocked();
char* ebuf _unl ocked();
int bl en_unl ocked();
char* pbase_unl ocked();
char* eback_unl ocked();
char* gptr_unl ocked();
char* egptr_unl ocked();
char* pptr_unl ocked();
voi d setp_unl ocked(char*, char*);
voi d setg_unl ocked(char*, char*, char*);
voi d pbunp_unl ocked(int);
voi d gbunp_unl ocked(int);
voi d setb_unl ocked(char*, char*, int);
i nt unbuffered_unl ocked();
char *epptr_unl ocked();
voi d unbuffered_unl ocked(int);
int allocate_unlocked(int);

I

class filebuf : public streanmbuf {
public:
int is_open_unlocked();
filebuf* close_unl ocked();
fil ebuf* open_unl ocked(const char*, int, int =
fil ebuf::openprot);

11-14 C++ User's Guide « May 2003

11.4.3

CODE EXAMPLE 11-9 New Functions (Continued)

filebuf* attach_unl ocked(int);

h

class strstreanbuf : public streanbuf {
public:

int freeze_unl ocked();
char* str_unl ocked();

h

unsaf e_ostrean& endl (unsaf e_ostreanmg);
unsaf e_ostrean®& ends(unsaf e_ostreang);
unsaf e_ostrean®& fl ush(unsafe_ostrean®);
unsaf e_i strean& ws(unsafe_i streang);
unsaf e_i 0s& dec(unsafe_i 0s&);

unsaf e_i 0s& hex(unsafe_i 0s&);

unsaf e_i 0s& oct (unsafe_i 0s&);

char* dec_r (char* buf, int buflen, long num int wdth)

char* hex_r (char* buf, int buflen, long num int wdth)

char* oct_r (char* buf, int buflen, long num int width)

char* chr_r (char* buf, int buflen, long chr, int wdth)

char* str_r (char* buf, int buflen, const char* format, int width
= 0);

char* formr (char* buf, int buflen, const char* format, ...)

Global and Static Data

Global and static data in a multithreaded application are not safely shared among
threads. Although threads execute independently, they share access to global and
static objects within the process. If one thread modifies such a shared object, all the
other threads within the process observe the change, making it difficult to maintain
state over time. In C++, class objects (instances of a class) maintain state by the
values in their member variables. If a class object is shared, it is vulnerable to
changes made by other threads.

When a multithreaded application uses the i ost r eamlibrary and includes

i ost ream h, the standard streams—cout, ci n, cerr, and cl og— are, by default,
defined as global shared objects. Since the i ost r eamlibrary is MT-safe, it protects
the state of its shared objects from access or change by another thread while a

Chapter 11 Building Multithreaded Programs ~ 11-15

11.4.4

11.4.5

member function of an i ost r eamobject is executing. However, the scope of
MT-safety for an object is confined to the period in which the object’s public member
function is executing. For example,

int c;
cin.get(c);

gets the next character in the get buffer and updates the buffer pointer in ThreadA.
However, if the next instruction in ThreadA is another get call, the | i bClibrary does
not guarantee to return the next character in the sequence. It is not guaranteed
because, for example, ThreadB may have also executed the get call in the intervening
period between the two get calls made in ThreadA.

See Section 11.4.5, “Object Locks” on page 11-16 for strategies for dealing with the
problems of shared objects and multithreading.

Sequence Execution

Frequently, when i ost r eamobjects are used, a sequence of 1/0 operations must be
MT-safe. For example, the code:

cout << " Error nessage:" << errstring[err_nunber] << "\n";

involves the execution of three member functions of the cout stream object. Since
cout is a shared object, the sequence must be executed atomically as a critical
section to work correctly in a multithreaded environment. To perform a sequence of
operations on an i ost r eamclass object atomically, you must use some form of
locking.

The | i bClibrary now provides the st r eam | ocker class for locking operations on
an i ost r eamobject. See Section 11.4.5, “Object Locks” on page 11-16 for information
about the st ream | ocker class.

Object Locks

The simplest strategy for dealing with the problems of shared objects and
multithreading is to avoid the issue by ensuring that i ost r eamobijects are local to a
thread. For example,

= Declare objects locally within a thread’s entry function.

11-16 C++ User's Guide « May 2003

11.45.1

= Declare objects in thread-specific data. (For information on how to use thread
specific data, see the t hr _keycr eat e(3T) man page.)

= Dedicate a stream object to a particular thread. The object thread is pri vat e by
convention.

However, in many cases, such as default shared standard stream objects, it is not
possible to make the objects local to a thread, and an alternative strategy is required.

To perform a sequence of operations on an i ost r eamclass object atomically, you
must use some form of locking. Locking adds some overhead even to a
single-threaded application. The decision whether to add locking or make

i ost r eamobijects private to a thread depends on the thread model chosen for the
application: Are the threads to be independent or cooperating?

= If each independent thread is to produce or consume data using its own
i ost r eamobject, the i ost r eamobjects are private to their respective threads
and locking is not required.

= If the threads are to cooperate (that is, they are to share the same i ost r eam
object), then access to the shared object must be synchronized and some form of
locking must be used to make sequential operations atomic.

Class st ream | ocker

The i ost r eamlibrary provides the st r eam | ocker class for locking a series of
operations on an i ost r eamobject. You can, therefore, minimize the performance
overhead incurred by dynamically enabling or disabling locking in i ost r eam
objects.

Objects of class st ream | ocker can be used to make a sequence of operations on a
stream object atomic. For example, the code shown in the example below seeks to
find a position in a file and reads the next block of data.

CODE EXAMPLE 11-10 Example of Using Locking Operations

#i ncl ude <fstream h>
#i ncl ude <rl ocks. h>

voi d | ock_example (fstream& fs)
{
const int len = 128;
char buf[len];
int offset = 48;
stream | ocker s_l|ock(fs, stream.| ocker::|ock_now);
.11 open file

Chapter 11 Building Multithreaded Programs ~ 11-17

11.4.6

CODE EXAMPLE 11-10 Example of Using Locking Operations (Continued)

fs.seekg(offset, ios::beg);
fs.read(buf, |en);

}

In this example, the constructor for the st ream | ocker object defines the
beginning of a mutual exclusion region in which only one thread can execute at a
time. The destructor, called after the return from the function, defines the end of the
mutual exclusion region. The st r eam | ocker object ensures that both the seek to a
particular offset in a file and the read from the file are performed together,
atomically, and that ThreadB cannot change the file offset before the original ThreadA
reads the file.

An alternative way to use a st r eam | ocker object is to explicitly define the mutual
exclusion region. In the following example, to make the 1/0 operation and
subsequent error checking atomic, | ock and unl ock member function calls of a
vbst ream | ocker object are used.

CODE EXAMPLE 11-11 Making 170 Operation and Error Checking Atomic

{

stream | ocker file_l ck(openfile_stream
stream | ocker:: | ock_defer);

file_lck.lock(); [// lock openfile_stream
openfile_stream << "Value: " << int_value << "\n";
if(!openfile_streanm ({
file_error("Qutput of value failed\n");
return;

}

file_lck.unlock(); // unlock openfile_stream

}

For more information, see the st r eam | ocker (3CC4) man page.

MT-Safe Classes

You can extend or specialize the functionality of the i ost r eamclasses by deriving
new classes. If objects instantiated from the derived classes will be used in a
multithreaded environment, the classes must be MT-safe.

Considerations when deriving MT-safe classes include:

11-18 C++ User's Guide « May 2003

= Making a class object MT-safe by protecting the internal state of the object from
multiple-thread modification. To do this, serialize access to member variables in
public and protected member functions with mutex locks.

= Making a sequence of calls to member functions of an MT-safe base class atomic,
using a st ream_| ocker object.

= Avoiding locking overhead by using the _unl ocked member functions of
st r eanbuf within critical regions defined by st ream | ocker objects.

= Locking the public virtual functions of class st r eambuf in case the functions are
called directly by an application. These functions are: xsget n, under f | ow
pbackfail , xsput n, over fl ow seekof f, and seekpos.

= Extending the formatting state of an i os object by using the member functions
i wor d and pwor d in class i os. However, a problem can occur if more than one
thread is sharing the same index to an i wor d or pwor d function. To make the
threads MT-safe, use an appropriate locking scheme.

= Locking member functions that return the value of a member variable greater in
size than a char.

11.4.7 Object Destruction

Before an i ost r eamobiject that is shared by several threads is deleted, the main
thread must verify that the subthreads are finished with the shared object. The
following example shows how to safely destroy a shared object.

CODE EXAMPLE 11-12 Destroying a Shared Object

#i ncl ude <fstream h>
#i ncl ude <t hread. h>
fstreant fp;

voi d *process_rtn(voi d*)

{
/'l body of sub-threads which uses fp...
}
void mul ti_process(const char* filename, int nunthreads)
{
fp = new fstream(filenane, ios::in); // create fstream
obj ect

/] before creating threads.
/] create threads
for (int i=0; i<nunthreads; i++)
thr_create(0, STACKSIZE, process_rtn, 0, 0, 0);

Chapter 11 Building Multithreaded Programs ~ 11-19

CODE EXAMPLE 11-12 Destroying a Shared Object (Continued)

// wait for threads to finish
for (int i=0; i<nunthreads; i++)
thr _join(0, 0, 0);

delete fp; /1 del ete fstreamobject
after

fp = NULL; /1 all threads have
conpl et ed.
}

11.4.8 An Example Application

The following code provides an example of a multiply-threaded application that
uses i ost r eamobjects from the | i bC library in an MT-safe way.

The example application creates up to 255 threads. Each thread reads a different
input file, one line at a time, and outputs the line to an output file, using the

standard output stream, cout . The output file, which is shared by all threads, is
tagged with a value that indicates which thread performed the output operation.

CODE EXAMPLE 11-13 Using i ost r eamObjects in an MT-Safe Way

/] create tagged thread data

/1l the output file is of the form

/1 <tag><string of data>\n

/1l where tag is an integer value in a unsigned char.

/1 Allows up to 255 threads to be run in this application
/'l <string of data> is any printable characters

/1 Because tag is an integer value witten as char,

/'l you need to use od to look at the output file, suggest:
/1 od -c out.file |nore

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <thread. h>

struct thread_args {
char* fil enane;

11-20 C++ User's Guide « May 2003

CODE EXAMPLE 11-13 Using i ost r eamObjects in an MT-Safe Way (Continued)

int thread_tag;
b

const int thread bufsize = 256;

/'l entry routine for each thread
voi d* ThreadDuti es(voi d* v) {
/1 obtain argunents for this thread
thread_args* tt = (thread_args*)v;
char ibuf[thread_bufsize];
/1 open thread input file
ifstreaminstr(tt->fil enane);
stream | ocker | ockout (cout, stream.| ocker::|ock_defer);
while(1l) {
/! read a line at a tine
instr.getline(ibuf, thread_bufsize - 1, '"\n’);
if(instr.eof())
br eak;
/1l lock cout streamso the i/o operation is atonic
| ockout . | ock();
// tag line and send to cout
cout << (unsigned char)tt->thread_tag << ibuf << "\n";
| ockout . unl ock();

}

return O;

}

int main(int argc, char** argv) ({

[/l argv: 1+ list of filenames per thread

if(argc < 2) {
cout << “usage: " << argv[0] << " <files..>\n";
exit(l);

}

int numthreads = argc - 1;

int total _tags = O;

/1 array of thread_ids
thread_t created_threads[thread_bufsize];
[/l array of arguments to thread entry routine
thread_args thr_args[thread_bufsize];
int i;
for(i =0; i < numthreads; i++) {
thr_args[i].filename = argv[1l + i];

Chapter 11 Building Multithreaded Programs

11-21

11-22

CODE EXAMPLE 11-13 Using i ost r eamObjects in an MT-Safe Way (Continued)

/] assign a tag to a thread - a value | ess than 256

thr_args[i].thread_tag = total _tags++;

/'l create threads

thr_create(0, 0, ThreadDuties, & hr_args[i],
THR_SUSPENDED, &created_threads[i]);

}

for(i = 0; i < numthreads; i++) {
thr_continue(created_threads[i]);

}

for(i = 0; i < numthreads; i++) {
thr_join(created_threads[i], 0, 0);

}

return O;

C++ User’'s Guide « May 2003

eart [Il Libraries

CHAPTER 12

Using Libraries

Libraries provide a way to share code among several applications and a way to
reduce the complexity of very large applications. The C++ compiler gives you access
to a variety of libraries. This chapter explains how to use these libraries.

12.1

The C Libraries

The Solaris operating environment comes with several libraries installed in
/usr/|ib. Most of these libraries have a C interface. Of these, the | i bc, | i bm and
I i bwlibraries are linked by the CC driver by default. The library | i bt hr ead is
linked if you use the —nt option. To link any other system library, use the
appropriate —| option at link time. For example, to link the | i bdemangl e library,
pass —| demangl e on the CC command line at link time:

exanmpl e% CC text.c -Ildenmangle

The C++ compiler has its own runtime support libraries. All C++ applications are
linked to these libraries by the CC driver. The C++ compiler also comes with several
other useful libraries, as explained in the following section.

12-1

12.2

Libraries Provided With the C++
Compiler

Several libraries are shipped with the C++ compiler. Some of these libraries are
available only in compatibility mode (—conpat =4), some are available only in the
standard mode (—conpat =5), and some are available in both modes. The | i bgc and
| i bdemangl e libraries have a C interface and can be linked to an application in
either mode.

The following table lists the libraries that are shipped with the C++ compiler and the
modes in which they are available.

TABLE 12-1 Libraries Shipped With the C++ Compiler

Library Description Available Modes
I'i bstl port STLport implementation of the —conpat =5
standard library.

l'ibstlport_dbg STLport library for debug mode —conpat =5

Ii bCrun C++ runtime —conpat =5

libCstd C++ standard library —conpat =5

|'i bi ostream Classic i ostreans —conpat =5

l'i bC C++ runtime, classic i ost r eans —conpat =4

I'i bconpl ex conpl ex library —conpat =4

I'i brwt ool Tool s. h++ 7 —conpat =4, —conpat =5
I'i brwt ool _dbg Debug-enabled Tool s. h++ 7 —conpat =4, —conpat =5
I'i bgc Garbage collection C interface

I'i bdemangl e Demangling C interface

Note — Do not redefine or modify any of the configuration macros for STLport,
Rogue Wave or Sun Microsystems C++ libraries. The libraries are configured and
built in a way that works with the C++ compiler. libCstd and Tool.h++ are
configured to inter-operate so modifying the configuration macros results in
programs that will not compile, will not link, or do not run properly.

12-2 C++ User's Guide « May 2003

12.2.1 C++ Library Descriptions

A brief description of each of these libraries follows.

[i bCrun: This library contains the runtime support needed by the compiler in
the standard mode (—conpat =5). It provides support for new/del et e,
exceptions, and RTTI.

I i bCst d: This is the C++ standard library. In particular, it includes i ost r eans.
If you have existing sources that use the classic i ost r eans and you want to
make use of the standard i ost r eans, you have to modify your sources to
conform to the new interface. See the C++ Standard Library Reference online
manual for details. You can access this manual by pointing your web browser to:

file:/opt/ SUN\Wspro/ docs/index. ht m

If your compiler software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.

I i bi ost ream This is the classic iostreams library built with —conpat =5. If you
have existing sources that use the classic iostreams and you want to compile these
sources with the standard mode (—conpat =5), you can use | i bi ostream
without modifying your sources. Use —| i br ar y=i ost r eamto get this library.

Note — Much of the standard library depends on using standard iostreams. Using
classic iostreams in the same program can cause problems.

I i bC: This is the library needed in compatibility mode (—conpat =4). It contains
the C++ runtime support as well as the classic iostreams.

I i bconpl ex: This library provides complex arithmetic in compatibility mode
(- conpat =4). In the standard mode, the complex arithmetic functionality is
available in | i bCst d.

libstlport: Thisisthe STLport implementation of the C++ standard library.
You can use this library instead of the default | i bCst d by specifying the option
-li brary=stl port4. However, you cannot use | i bst| port and li bCstd in
the same program. You must compile and link everything, including imported
libraries, using one or the other exclusively.

i brwt ool (Tool s. h++): Tools.h++ is a C++ foundation class library from
RogueWave. Version 7 of this library is provided with this release. This library is
available in classic-iostreams form (- | i br ar y=r wt ool s7) and
standard-iostreams form (- | i br ar y=r wt ool s7_st d). For further information
about this library, see the following online documentation.

» Tools.h++ User’s Guide (Version 7)
« Tools.h++ Class Library Reference (Version 7)

Chapter 12 Using Libraries 12-3

12.2.2

You can access this documentation by pointing your web browser to:

file:/opt/ SUN\\pro/docs/index. htm

If your compiler software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.

= |ibgc: This library is used in deployment mode or garbage collection mode.
Simply linking with the | i bgc library automatically and permanently fixes a
program’s memory leaks. When you link your program with the | i bgc library,
you can program without calling f r ee or del et e while otherwise programming
normally.

Additional information can be found in the gcFi xPr emat ur eFr ees(3) and
gclnitialize(3) man pages.

= | i bdemangl e: This library is used for demangling C++ mangled names.

Accessing the C++ Library Man Pages

The man pages associated with the libraries described in this section are located in:

= /opt/SUNWpro/ man/ manl
=« /opt/ SUNWpro/ man/ nan3

= /opt/ SUNWpro/ man/ man3C++
= /opt/ SUNWpr o/ man/ man3cc4

Note — If your compiler software is not installed in the / opt directory, ask your
system administrator for the equivalent path on your system.

To access these man pages, ensure that your MANPATH includes

[opt/ SUNWpr o/ man (or the equivalent path on your system for the compiler
software). For instructions on setting your MANPATH, see “Accessing Compiler
Collection Documentation” on page -xxxi in “Before You Begin” at the front of this
book.

To access man pages for the C++ libraries, type:

exanpl e% man library-name

To access man pages for version 4.2 of the C++ libraries, type:

exanpl e% man -s 3CC4 library-name

12-4 C++ User's Guide « May 2003

12.2.3

You can also access the man pages by pointing your browser to:

file:/opt/ SUN\\pro/docs/index. htm

Default C++ Libraries

Some of the C++ libraries are linked by default by the CC driver, while others need
to be linked explicitly. In the standard mode, the following libraries are linked by
default by the CCdriver:

-1 Cstd -1Crun -Im-lw -lc
In compatibility mode (- conpat), the following libraries are linked by default:
-IC -Im-lw -lc

See “-li brary=I[, I...]” on page A-45 for more information.

12.3

Related Library Options

The CCdriver provides several options to help you use libraries.

= Use the —| option to specify a library to be linked.

= Use the —L option to specify a directory to be searched for the library.
= Use the - nt option compile and link multithreaded code.

= Use the - xi a option to link the interval arithmetic libraries.

= Use the - x| ang option to link Fortran runtime libraries.

= Use the —I i brary option to specify the following libraries that are shipped with
the Sun C++ compiler:

« libCrun

« libGCstd

« |ibiostream
« libC

« |ibcompl ex

« libstlport,!|ibstlport_dbg
« librwtool,librw ool _dbg
« libgc

Chapter 12 Using Libraries 12-5

12-6

Note — To use the classic-iostreams form of | i br wt ool , use the
-1i brary=rw ool s7 option. To use the standard-iostreams form of | i br wt ool ,
use the -1 i brary=rw ool s7_st d option.

A library that is specified using both —I| i brary and —st ati cl i b options will be
linked statically. Some examples:

= The following command links the classic-iostreams form of Tool s. h++ version 7
and | i bi ostreamlibraries dynamically.

exampl e% CC test.cc -library=rwtool s7,iostream

= The following command links the | i bgc library statically.

exampl e% CC test.cc -library=gc -staticlib=gc

= The following command compiles t est . cc in compatibility mode and links
| i bCstatically. Because | i bC is linked by default in compatibility mode, you are
not required to specify this library using the —I i br ary option.

exampl e% CC test.cc -conpat=4 -staticlib=libC

= The following command excludes the libraries | i bCrun and | i bCst d, which
would otherwise be included by default.

exampl e% CC test.cc -1ibrary=no%Crun, no%Cst d

By default, CC links various sets of system libraries depending on the command line
options. If you specify - xnol i b (or - nol i b), CC links only those libraries that are
specified explicitly with the -1 option on the command line. (When - xnol i b or
-nol i b is used, the -1 i brary option is ignored, if present.)

The —R option allows you to build dynamic library search paths into the executable
file. At execution time, the runtime linker searches these paths for the shared
libraries needed by the application. The CC driver passes —R/ opt / SUNWspro/|lib
to | d by default (if the compiler is installed in the standard location). You can use
- nor unpat h to disable building the default path for shared libraries into the
executable.

C++ User’s Guide « May 2003

12.4

12.4.1

Using Class Libraries

Generally, two steps are involved in using a class library:
1. Include the appropriate header in your source code.

2. Link your program with the object library.

The i ostr eamLibrary

The C++ compiler provides two implementations of iostreams:

= Classic iostreams. This term refers to the iostreams library shipped with the C++
4.0, 4.0.1, 4.1, and 4.2 compilers, and earlier with the cf r ont -based 3.0.1
compiler. There is no standard for this library, but a lot of existing code uses it.
This library is part of | i bCin compatibility mode and is also available in
I i bi ost reamin the standard mode.

» Standard iostreams. This is part of the C++ standard library, | i bCst d, and is
available only in standard mode. It is neither binary- nor source-compatible with
the classic iostreams library.

If you have existing C++ sources, your code might look like the following example,
which uses classic iostreams.

/1l file progl.cc
#i ncl ude <i ostream h>

int main() {
cout << "Hello, world!'" << endl;
return O;

The following command compiles in compatibility mode and links pr ogl. cc into
an executable program called pr ogl. The classic iostream library is part of | i bC,
which is linked by default in compatibility mode.

exanpl e% CC - conpat progl.cc -o progl

Chapter 12 Using Libraries 12-7

12.4.2

The next example uses standard iostreams.

/1 file prog2.cc
#i ncl ude <i ostreanp

int main() {
std::cout << "Hello, world!" << std::endl;
return O;

The following command compiles and links pr og2. cc into an executable program
called pr og2. The program is compiled in standard mode and | i bCst d, which
includes the standard iostream library, is linked by default.

exampl e% CC prog2.cc -0 prog2

For more information about | i bCst d, see Chapter 13. For more information about
libiostream, see Chapter 14.

For a full discussion of compilation modes, see the C++ Migration Guide.

The conpl ex Library

The standard library provides a templatized complex library that is similar to the
complex library provided with the C++ 4.2 compiler. If you compile in standard
mode, you must use <conpl ex> instead of <conpl ex. h>. You cannot use
<conpl ex> in compatibility mode.

In compatibility mode, you must explicitly ask for the complex library when linking.
In standard mode, the complex library is included in | i bCst d, and is linked by
default.

There is no conpl ex. h header for standard mode. In C++ 4.2, “complex” is the
name of a class, but in standard C++, “complex” is the name of a template. It is not
possible to provide typedefs that allow old code to work unchanged. Therefore, code

12-8 C++ User's Guide « May 2003

written for 4.2 that uses complex numbers will need some straightforward editing to
work with the standard library. For example, the following code was written for 4.2
and will compile in compatibility mode.

/1 file exl.cc (conpatibility node)
#i ncl ude <i ostream h>
#i ncl ude <conpl ex. h>

int main()
{
complex z = x * vy;
cout << "x=" << x << ", y=" <<y << "

, z=" << z << endl;

The following example compiles and links ex1. cc in compatibility mode, and then
executes the program.

exanpl e% CC -conpat exl1.cc -1ibrary=conpl ex
exanpl e% a. out

x=(3, 3), y=(4, 4), z=(0, 24)

Here is ex1. cc rewritten as ex2. cc to compile in standard mode:

/1 file ex2.cc (exl.cc rewitten for standard node)
#i ncl ude <i ostreanr

#i ncl ude <conpl ex>

usi ng std::conpl ex;

int main()
{
conpl ex<doubl e> x(3,3), y(4,4);
conpl ex<double> z = x * vy;
std::cout << "Xx=" << X << ", y=' <<y << ", z=" << 7z <<
std::endl;

The following example compiles and links the rewritten ex2. cc in standard mode,
and then executes the program.

% CC ex2.cc
% a. out

x=(3,3), y=(4,4), z=(0, 24)

Chapter 12 Using Libraries 12-9

For more information about using the complex arithmetic library, see Chapter 15.

12.4.3 Linking C++ Libraries

The following table shows the compiler options for linking the C++ libraries. See
Section A.2.48, “- 1 i brary=I[, I...]” on page A-45 for more information.

TABLE 12-2 Compiler Options for Linking C++ Libraries

Library Compile Mode Option
Classic i ostream —conpat =4 None needed
—conpat =5 -library=i ostream
conpl ex —conpat =4 -li brary=conpl ex
- conpat =5 None needed
Tool s. h++ version 7 —conpat =4 -library=rwool s7
—conpat =5 -library=rw ool s7,iostream

-library=rwtool s7_std

Tool s. h++ version 7 debug —conpat =4 -library=rw ool s7_dbg
—conpat =5 -library=rwool s7_dbg, i ostream
-library=rwool s7_std_dbg
Garbage collection —conpat =4 -library=gc
—conpat =5 -library=gc
STLport version 4 —conpat =5 -library=stlport4
STLport version 4 debug —conpat =5 -library=stlport4_dbg

12.5 Statically Linking Standard Libraries

The CCdriver links in shared versions of several libraries by default, including | i bc
and | i bm by passing a - | lib option for each of the default libraries to the linker.
(See Section 12.2.3, “Default C++ Libraries” on page 12-5 for the list of default
libraries for compatibility mode and standard mode.)

12-10 C++ User's Guide « May 2003

If you want any of these default libraries to be linked statically, you can use the
-1i brary option along with the —st at i cl i b option to link a C++ library statically.
This alternative is much easier than the one described earlier. For example:

exampl e% CC test.c -staticlib=Crun

In this example, the - 1 i br ary option is not explicitly included in the command. In
this case the -1 i br ary option is not necessary because the default setting for
-library is Cstd, Crun in standard mode (the default mode).

Alternately, you can use the - xnol i b compiler option. With the - xnol i b option,
the driver does not pass any - | options to | d; you must pass these options yourself.
The following example shows how you would link statically with | i bCr un, and
dynamically with I i bw | i bm and | i bc in the Solaris 2.6, Solaris 7, or Solaris 8
operating environment;

exanmpl e% CC test.c —xnolib -l Cstd —Bstatic -l Crun \
—Bdynamic —Im-lw —lcx —-lc

The order of the - | options is important. The —| Cstd, -l Crun, -1 m-1w and
- | cx options appear before - | c.

Note — The - | cx option does not exist on the 1A platform.

Some CC options link to other libraries. These library links are also suppressed by

- xnol i b. For example, using the - mt option causes the CCdriver to pass - | t hr ead
to | d. However, if you use both —nt and —xnol i b, the CC driver does not pass

-l thread to | d. See Section A.2.138, “—xnol i b on page A-113 for more
information. See Linker and Libraries Guide for more information about | d.

12.6

Using Shared Libraries

The following shared libraries are included with the C++ compiler:

= |ibCrun.so

= |ibC so

= |ibconpl ex. so
= libstlport.so
= |librwtool.so
= libgc.so

Chapter 12 Using Libraries 12-11

12-12

= |ibgc_dbg. so
= |ibCstd.so
= |ibiostream so

The occurrence of each shared object linked with the program is recorded in the
resulting executable (a. out file); this information is used by | d. so to perform
dynamic link editing at runtime. Because the work of incorporating the library code
into an address space is deferred, the runtime behavior of the program using a
shared library is sensitive to an environment change—that is, moving a library from
one directory to another. For example, if your program is linked with

I i bconpl ex.so.5in/opt/SUNWspro/lib,andtheli bconpl ex. so. 5 library is
later moved into / opt 2/ SUNWpr o/ | i b, the following message is displayed when
you run the binary code:

I d.so: |ibconplex.so.5: not found

You can still run the old binary code without recompiling it by setting the
environment variable LD_LI BRARY_PATH to the new library directory.

In a C shell:

exanpl e% setenv LD LI BRARY_PATH \
/ opt 2/ SUNWpr o/ release/ | i b: ${ LD_LI BRARY_PATH}

In a Bourne shell:

exanpl e$ LD LI BRARY_PATH=\
/ opt 2/ SUNWpr o/ release/ | i b: ${ LD_LI BRARY_PATH}
exanpl e$ export LD LI BRARY_PATH

Note — release is specific for each release of the compiler software.

The LD _LI BRARY_PATH has a list of directories, usually separated by colons. When
you run a C++ program, the dynamic loader searches the directories in
LD LI BRARY_PATH before it searches the default directories.

Use the | dd command as shown in the following example to see which libraries are
linked dynamically in your executable:

exampl e% | dd a. out

C++ User’'s Guide « May 2003

This step should rarely be necessary, because the shared libraries are seldom moved.

Note — When shared libraries are opened with dl open, RTLD_G_OBAL must be
used for exceptions to work.

See Linker and Libraries Guide for more information on using shared libraries.

12.7

12.7.1

Replacing the C++ Standard Library

Replacing the standard library that is distributed with the compiler is risky, and
good results are not guaranteed. The basic operation is to disable the standard
headers and library supplied with the compiler, and to specify the directories where
the new header files and library are found, as well as the name of the library itself.

The compiler supports the STLport implementation of the standard library. See
“STLport” on page 13-16 for more information.

What Can Be Replaced

You can replace most of the standard library and its associated headers. The replaced
library is | i bCst d, and the associated headers are listed in the following table:

<al gorithnk <bitset> <conpl ex> <deque> <fstream <functi onal >

<i omani p> <i 0s> <i osfwd> <i ostrean> <istreanr <iterator> <linmts>
<list> <local e> <map> <menory> <numeri c> <ostrean> <queue> <set>
<sstreamp <stack> <stdexcept> <streanbuf> <string> <strstreanp
<utility> <val array> <vector>

The replaceable part of the library consists of what is loosely known as “STL”, plus
the string classes, the iostream classes, and their helper classes. Because these classes
and headers are interdependent, replacing just a portion of them is unlikely to work.
You should replace all of the headers and all of | i bCst d if you replace any part.

Chapter 12 Using Libraries 12-13

12.7.2

12.7.3

12.7.4

What Cannot Be Replaced

The standard headers <except i on>, <new>, and <t ypei nf 0> are tied tightly to
the compiler itself and to | i bCr un, and cannot reliably be replaced. The library

I i bCrun contains many “helper” functions that the compiler depends on, and
cannot be replaced.

The 17 standard headers inherited from C (<stdl i b. h>, <st di 0. h>, <stri ng. h>,
and so forth) are tied tightly to the Solaris operating environment and the basic
Solaris runtime library | i bc, and cannot reliably be replaced. The C++ versions of
those headers (<cst dl i b>, <cst di 0>, <cst ri ng>, and so forth) are tied tightly to
the basic C versions and cannot reliably be replaced.

Installing the Replacement Library

To install the replacement library, you must first decide on the locations for the
replacement headers and on the replacement for | i bCst d. For purposes of
discussion, assume the headers are placed in / opt/ mycst d/ i ncl ude and the
library is placed in / opt/ nycstd/ 1 i b. Assume the library is called | i bryCst d. a.
(It is often convenient if the library name starts with “l i b”.)

Using the Replacement Library

On each compilation, use the -1 option to point to the location where the headers
are installed. In addition, use the - | i br ar y=no%Cst d option to prevent finding the
compiler’s own versions of the | i bCst d headers. For example:

exanpl e% CC -1/opt/nycstd/include -1ibrary=no%Cstd ... (compile)

During compiling, the -1 i br ar y=no%Cst d option prevents searching the directory
where the compiler’s own version of these headers is located.

On each program or library link, use the - | i br ar y=no%Cst d option to prevent
finding the compiler’s own | i bCst d, the - L option to point to the directory where
the replacement library is, and the - I option to specify the replacement library.
Example:

exanpl e% CC -1ibrary=no%Cstd -L/opt/mycstd/lib -InyCstd ... (link)

12-14 C++ User's Guide « May 2003

12.7.5

Alternatively, you can use the full path name of the library directly, and omit using
the - L and -1 options. For example:

exampl e% CC -l i brary=no%Cstd /opt/nycstd/lib/libnyCstd.a ... (link)

During linking, the - I i br ar y=no%Cst d option prevents linking the compiler’s own
version of | i bCst d.

Standard Header Implementation

C has 17 standard headers (<st di 0. h>, <stri ng. h>, <stdl i b. h>, and others).
These headers are delivered as part of the Solaris operating environment, in the
directory / usr/i ncl ude. C++ has those same headers, with the added requirement
that the various declared names appear in both the global namespace and in
namespace st d. On versions of the Solaris operating environment prior to version 8,
the C++ compiler supplies its own versions of these headers instead of replacing
those in the / usr /i ncl ude directory.

C++ also has a second version of each of the C standard headers (<cst di 0>,
<cstring>, and <cst dl i b>, and others) with the various declared names
appearing only in namespace st d. Finally, C++ adds 32 of its own standard headers
(<string>, <utility>, <i ostrean, and others).

The obvious implementation of the standard headers would use the name found in
C++ source code as the name of a text file to be included. For example, the standard
headers <st ri ng> (or <stri ng. h>) would refer to a file named st ri ng (or

st ring. h) in some directory. That obvious implementation has the following
drawbacks:

= You cannot search for just header files or create a makef i | e rule for the header
files if they do not have file name suffixes.

=« If you put-1/usr/include on the compiler command line, you do not get the
correct version of the standard C headers on Solaris 2.6 and Solaris 7 operating
environments because / usr /i ncl ude is searched before the compiler’s own
include directory is searched.

= If you have a directory or executable program named st ri ng, it might
erroneously be found instead of the standard header file.

= On versions of the Solaris operating environment prior to the Solaris 8 operating
environment, the default dependencies for makefiles when . KEEP_STATE is
enabled can result in attempts to replace standard headers with an executable
program. (A file without a suffix is assumed by default to be a program to be
built.)

Chapter 12 Using Libraries 12-15

12.7.5.1

To solve these problems, the compiler i ncl ude directory contains a file with the
same name as the header, along with a symbolic link to it that has the unique suffix
. SUNWCCh (SUNWis the prefix for all compiler-related packages, CC is the C++
compiler, and h is the usual suffix for header files). When you specify <st ri ng>, the
compiler rewrites it to <st r i ng. SUNWCCh> and searches for that name. The suffixed
name will be found only in the compiler’s own i ncl ude directory. If the file so
found is a symbolic link (which it normally is), the compiler dereferences the link
exactly once and uses the result (st ri ng in this case) as the file name for error
messages and debugger references. The compiler uses the suffixed name when
emitting file dependency information.

The name rewriting occurs only for the two forms of the 17 standard C headers and
the 32 standard C++ headers, only when they appear in angle brackets and without
any path specified. If you use quotes instead of angle brackets, specify any path
components, or specify some other header, no rewriting occurs.

The following table illustrates common situations.

TABLE 12-3 Header Search Examples

Source Code Compiler Searches For Comments

<string> string. SUNWCCh C++ string templates
<cstring> cstring. SUNWCCh C++ version of Cstring. h
<string. h> string.h. SUMCCh Cstring.h

<fcntl. h> fcentl.h Not a standard C or C++ header
"string" string Double-quotation marks, not angle brackets
<..lstring> ../string Path specified

If the compiler does not find header. SUNWCCh, the compiler restarts the search
looking for the name as provided in the #i ncl ude directive. For example, given the
directive #i ncl ude <st ri ng>, the compiler attempts to find a file named

st ri ng. SUNWCCh. If that search fails, the compiler looks for a file named st ri ng.

Replacing Standard C++ Headers

Because of the search algorithm described in Section 12.7.5, “Standard Header
Implementation” on page 12-15, you do not need to supply SUNWCCh versions of the
replacement headers described in Section 12.7.3, “Installing the Replacement
Library” on page 12-14. But you might run into some of the described problems. If

12-16 C++ User's Guide « May 2003

12.7.5.2

so, the recommended solution is to add symbolic links having the suffix . SUNWCCh
for each of the unsuffixed headers. That is, for file uti | i ty, you would run the
command

exampl e% |In -s utility utility. SUNWCCh

When the compiler looks first for uti | i ty. SUNWCCh, it will find it, and not be
confused by any other file or directory called utility.

Replacing Standard C Headers

Replacing the standard C headers is not supported. If you nevertheless wish to
provide your own versions of standard headers, the recommended procedure is as
follows:

= Put all the replacement headers in one directory.

= Create a . SUNWCCh symbolic link to each of the replacement headers in that
directory.

= Cause the directory that contains the replacement headers to be searched by using
the - 1 directives on each invocation of the compiler.

For example, suppose you have replacements for <st di 0. h> and <cst di 0>. Put
the files st di 0. h and cst di o in directory / nypr oj ect/ myhdr. In that directory,
run these commands:

exanmpl e% | n -s stdio.h stdio.h. SUNWCCh
exampl e% In -s cstdio cstdi o. SUN\WCCh

Use the option - 1 / nypr oj ect/ mydi r on every compilation.

Caveats:

= If you replace any C headers, you must replace them in pairs. For example, if you
replace <t i me. h>, you should also replace <ct i me>.

= Replacement headers must have the same effects as the versions being replaced.
That is, the various runtime libraries such as | i bCrun, I'i bC, 1 i bCstd, |i bc,
and | i br wt ool are built using the definitions in the standard headers. If your
replacements do not match, your program is unlikely to work.

Chapter 12 Using Libraries 12-17

12-18 C++ User's Guide « May 2003

CHAPTER 13

Using The C++ Standard Library

When compiling in default (standard) mode, the compiler has access to the complete
library specified by the C++ standard. The library components include what is
informally known as the Standard Template Library (STL), as well as the following
components.

= string classes

= numeric classes

= the standard version of stream 1/0 classes
= basic memory allocation

= exception classes

= run-time type information

The term STL does not have a formal definition, but is usually understood to include
containers, iterators, and algorithms. The following subset of the standard library
headers can be thought of as comprising the STL.

<al gorit hnmp
<deque>
<iterator>
<list>
<map>
<menory>

= <queue>

= <set>

= <stack>

= <utility>
=« <vector>

The C++ standard library (I i bCst d) is based on the RogueWave™ Standard C++
Library, Version 2. This library is available only for the default mode (- conpat =5) of
the compiler and is not supported with use of the - conpat [=4] option.

The C++ compiler also supports STLport’s Standard Library implementation version
45.3.11 bCst d is still the default library, but STLport’s product is available as an
alternative. See Section 13.3, “STLport” on page 13-16 for more information.

131

If you need to use your own version of the C++ standard library instead of one of
the versions that is supplied with the compiler, you can do so by specifying the

-1i brary=no%Cst d option. Replacing the standard library that is distributed with
the compiler is risky, and good results are not guaranteed. For more information, see
Section 12.7, “Replacing the C++ Standard Library” on page 12-13.

For details about the standard library, see the Standard C++ Library User’s Guide and

the Standard C++ Class Library Reference. “Accessing Compiler Collection
Documentation” on page -xxxi in “Before You Begin” at the front of this book
contains information about accessing this documentation. For a list of available
books about the C++ standard library see “Commercially Available Books” on
page -xxxiv in “Before You Begin.”

13.1

C++ Standard Library Header Files

TABLE 13-1 lists the headers for the complete standard library along with a brief

description of each.

TABLE 13-1 C++ Standard Library Header Files

Header File

Description

<al gori t hme
<bi t set >
<conpl ex>
<deque>
<exception>
<fstreanr
<functi onal >
<i omani p>
<i 0s>

<i osfwd>

<i ostreanp
<i streanp
<iterator>
<limts>

<list>

Standard algorithms that operate on containers
Fixed-size sequences of bits

The numeric type representing complex numbers
Sequences supporting addition and removal at each end
Predefined exception classes

Stream 170 on files

Function objects

i ost reammanipulators

i ost r eambase classes

Forward declarations of i ost r eamclasses

Basic stream 1/0 functionality

Input 1/0 streams

Class for traversing a sequence
Properties of numeric types

Ordered sequences

13-2 C++ User's Guide « May 2003

TABLE 13-1 C++ Standard Library Header Files (Continued)

Header File Description

<l ocal e> Support for internationalization

<map> Associative containers with key/value pairs

<menory> Special memory allocators

<new> Basic memory allocation and deallocation

<nuneric> Generalized numeric operations

<ostreanr Output 1/0 streams

<queue> Sequences supporting addition at the head and removal at the tail
<set > Associative container with unique keys

<sstreanr Stream 170 using an in-memory string as source or sink
<stack> Sequences supporting addition and removal at the head

<st dexcept >

<st r eanmbuf >

<string>
<t ypei nf 0>
<utility>

<val array>

<vector >

Additional standard exception classes

Buffer classes for iostreams

Sequences of characters

Run-time type identification

Comparison operators

Value arrays useful for numeric programming

Sequences supporting random access

13.2

C++ Standard Library Man Pages

TABLE 13-2 lists the documentation available for each of the components of the

standard library.

TABLE 13-2 Man Pages for C++ Standard Library

Man Page

Overview

Al gorithns

Associ ati ve_Cont ai ners

Bidirectional _Iterators

Generic algorithms for performing various operations
on containers and sequences

Ordered containers

An iterator that can both read and write and can
traverse a container in both directions

Chapter 13 Using The C++ Standard Library 13-3

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page

Overview

Cont ai ners

Forward_Iterators

Function_Obj ects

Heap_Operati ons

Input_Iterators

Insert _Iterators

Iterators

Negat or s

Qperators

Qut put _Iterators

Predi cat es

Random Access_Iterators

Sequences

Stream |terators

__distance_type

__iterator_category

__reverse_bi _iterator

accunul ate

adj acent _di fference

adj acent _find

A standard template library (STL) collection

A forward-moving iterator that can both read and
write

Object with an oper at or () defined

See entries for make_heap, pop_heap, push_heap
and sort _heap

A read-only, forward moving iterator

An iterator adaptor that allows an iterator to insert
into a container rather than overwrite elements in the
container

Pointer generalizations for traversal and modification
of collections

Function adaptors and function objects used to reverse
the sense of predicate function objects

Operators for the C++ Standard Template Library
Output

A write-only, forward moving iterator

A function or a function object that returns a boolean
(true/false) value or an integer value

An iterator that reads, writes, and allows random
access to a container

A container that organizes a set of sequences

Includes iterator capabilities for ostreams and istreams
that allow generic algorithms to be used directly on
streams

Determines the type of distance used by an iterator—
obsolete

Determines the category to which an iterator
belongs—obsolete

An iterator that traverses a collection backwards

Accumulates all elements within a range into a single
value

Outputs a sequence of the differences between each
adjacent pair of elements in a range

Find the first adjacent pair of elements in a sequence
that are equivalent

C++ User’s Guide « May 2003

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview

advance Moves an iterator forward or backward (if available)
by a certain distance

al | ocat or The default allocator object for storage management in
Standard Library containers

auto_ptr A simple, smart pointer class

back_insert_iterator

back_inserter

basi c_fil ebuf

basic_fstream

basic_ifstream

basi c_i os

basi c_i ostream

basic_i stream

basi c_i stringstream

basi c_of stream

basi c_ostream

basi c_ostringstream

basi c_st reanmbuf

basic_string

basi c_stri ngbuf

An insert iterator used to insert items at the end of a
collection

An insert iterator used to insert items at the end of a
collection

Class that associates the input or output sequence with
a file

Supports reading and writing of named files or devices
associated with a file descriptor

Supports reading from named files or other devices
associated with a file descriptor

A base class that includes the common functions
required by all streams

Assists in formatting and interpreting sequences of
characters controlled by a stream buffer

Assists in reading and interpreting input from
sequences controlled by a stream buffer

Supports reading objects of class
basi c_string<charT,traits, All ocat or> from
an array in memory

Supports writing into named files or other devices
associated with a file descriptor

Assists in formatting and writing output to sequences
controlled by a stream buffer

Supports writing objects of class
basi c_string<charT,traits, All ocator>

Abstract base class for deriving various stream buffers
to facilitate control of character sequences

A templatized class for handling sequences of
character-like entities

Associates the input or output sequence with a
sequence of arbitrary characters

Chapter 13 Using The C++ Standard Library 13-5

13-6

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page

Overview

basi c_stringstream

b
b

nary_function

nary_negat e

bi nary_search
bi nd1st

bi nd2nd

bi nder 1st

bi nder 2nd
bi t set

cerr

char _traits

cl og

codecvt

codecvt _bynanme

collate
col | at e_bynanme

conpare

conpl ex

copy
copy_backward

count

count _if

Supports writing and reading objects of class
basi c_string<charT,traits, All ocator>toor
from an array in memory

Base class for creating binary function objects

A function object that returns the complement of the
result of its binary predicate

Performs a binary search for a value on a container

Templatized utilities to bind values to function objects
Templatized utilities to bind values to function objects
Templatized utilities to bind values to function objects
Templatized utilities to bind values to function objects

A template class and related functions for storing and
manipulating fixed-size sequences of bits

Controls output to an unbuffered stream buffer
associated with the object stderr declared in <cst di 0>

A traits class with types and operations for the
basi c_stri ng container and iostream classes

Controls input from a stream buffer associated with
the object stdin declared in <cst di 0>

Controls output to a stream buffer associated with the
object stderr declared in <cst di 0>

A code conversion facet

A facet that includes code set conversion classification
facilities based on the named locales

A string collation, comparison, and hashing facet
A string collation, comparison, and hashing facet

A binary function or a function object that returns true
or false

C++ complex number library
Copies a range of elements
Copies a range of elements

Count the number of elements in a container that
satisfy a given condition

Count the number of elements in a container that
satisfy a given condition

C++ User’s Guide « May 2003

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview

cout Controls output to a stream buffer associated with the
object stdout declared in <cst di 0>

ctype A facet that includes character classification facilities

ctype_bynane

deque

di st ance

di vi des

equal

equal _range

equal _to

exception

facets

fil ebuf

fill
fill _n
find
find_end

find_first_of

find_if
for_each
f pos

front _insert_iterator

A facet that includes character classification facilities
based on the named locales

A sequence that supports random access iterators and
efficient insertion/deletion at both beginning and end

Computes the distance between two iterators

Returns the result of dividing its first argument by its
second

Compares two ranges for equality

Finds the largest subrange in a collection into which a
given value can be inserted without violating the
ordering of the collection

A binary function object that returns true if its first
argument equals its second

A class that supports logic and runtime errors

A family of classes used to encapsulate categories of
locale functionality

Class that associates the input or output sequence with
a file

Initializes a range with a given value
Initializes a range with a given value
Finds an occurrence of value in a sequence

Finds the last occurrence of a sub-sequence in a
sequence

Finds the first occurrence of any value from one
sequence in another sequence

Finds an occurrence of a value in a sequence that
satisfies a specified predicate

Applies a function to each element in a range
Maintains position information for the iostream classes

An insert iterator used to insert items at the beginning
of a collection

Chapter 13 Using The C++ Standard Library ~ 13-7

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page

Overview

front _inserter

fstream

generate

generate_n

get _tenporary_buffer

greater

great er _equal

gslice

gslice_array

has_f acet

i fstream

ncl udes

ndi rect _array

nner _pr oduct

npl ace_mer ge

nsert _iterator

nserter

os_base

osfwd

An insert iterator used to insert items at the beginning
of a collection

Supports reading and writing of named files or devices
associated with a file descriptor

Initialize a container with values produced by a
value-generator class

Initialize a container with values produced by a
value-generator class

Pointer based primitive for handling memory

A binary function object that returns true if its first
argument is greater than its second

A binary function object that returns true if its first
argument is greater than or equal to its second

A numeric array class used to represent a generalized
slice from an array

A numeric array class used to represent a BLAS-like
slice from a valarray

A function template used to determine if a locale has a
given facet

Supports reading from named files or other devices
associated with a file descriptor

A basic set of operation for sorted sequences

A numeric array class used to represent elements
selected from a valarray

Computes the inner product A X B of two ranges A
and B

Merges two sorted sequences into one

An insert iterator used to insert items into a collection
rather than overwrite the collection

An insert iterator used to insert items into a collection
rather than overwrite the collection

A base class that includes the common functions
required by all streams

Defines member types and maintains data for classes
that inherit from it

Declares the input/output library template classes and
specializes them for wide and tiny characters

C++ User’s Guide « May 2003

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview

i sal num Determines if a character is alphabetic or numeric
i sal pha Determines if a character is alphabetic
iscntrl Determines if a character is a control character
isdigit Determines if a character is a decimal digit

i sgraph Determines if a character is a graphic character
i sl ower Determines whether a character is lower case

i sprint Determines if a character is printable

i spunct Determines if a character is punctuation

i sspace Determines if a character is a space

i stream Assists in reading and interpreting input from

stream.terator

streanbuf _iterator

stringstream

strstream

supper

sxdi gi t
iter_swap
iterator
iterator traits

| ess

| ess_equal

| exi cogr aphi cal _conpare
limts

list

| ocal e

sequences controlled by a stream buffer

A stream iterator that has iterator capabilities for
istreams

Reads successive characters from the stream buffer for
which it was constructed

Supports reading objects of class
basi c_string<charT,traits, Al ocator>
from an array in memory

Reads characters from an array in memory
Determines whether a character is upper case
Determines whether a character is a hexadecimal digit
Exchanges values in two locations

A base iterator class

Returns basic information about an iterator

A binary function object that returns true if tis first
argument is less than its second

A binary function object that returns true if its first
argument is less than or equal to its second

Compares two ranges lexicographically
Refer to numeric_limts
A sequence that supports bidirectional iterators

A localization class containing a polymorphic set of
facets

Chapter 13 Using The C++ Standard Library 13-9

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page

Overview

| ogi cal _and

| ogi cal _not

| ogi cal _or

| ower _bound

make_heap

map

mask_array

max
max_el enent

mem fun

mem funl

mem fun_ref

mem fun_refl

nmer ge
messages
nmessages_bynane
mn

m n_el enent

m nus

m smat ch

nodul us

nmoney_get

A binary function object that returns true if both of its
arguments are true

A unary function object that returns true if its
argument is false

A binary function object that returns true if either of its
arguments are true

Determines the first valid position for an element in a
sorted container

Creates a heap

An associative container with access to non-key values
using unique keys

A numeric array class that gives a masked view of a
valarray

Finds and returns the maximum of a pair of values
Finds the maximum value in a range

Function objects that adapt a pointer to a member
function, to take the place of a global function

Function objects that adapt a pointer to a member
function, to take the place of a global function

Function objects that adapt a pointer to a member
function, to take the place of a global function

Function objects that adapt a pointer to a member
function, to take the place of a global function

Merges two sorted sequences into a third sequence
Messaging facets

Messaging facets

Finds and returns the minimum of a pair of values
Finds the minimum value in a range

Returns the result of subtracting its second argument
from its first

Compares elements from two sequences and returns
the first two elements that don't match each other

Returns the remainder obtained by dividing the first
argument by the second argument

Monetary formatting facet for input

C++ User’'s Guide « May 2003

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview
noney_put Monetary formatting facet for output
noneypunct Monetary punctuation facets

moneypunct _bynane

mul ti map

mul tiplies

mul tiset

negat e

next _pernutation

not 1

not 2

not _equal _to

nt h_el enent

num get

num put
nuneric_limts
nunpunct
nunpunct _bynane

of stream

ostream

ostream.iterator

ostreanbuf _iterator

Monetary punctuation facets

An associative container that gives access to non-key
values using keys

A binary function object that returns the result of
multiplying its first and second arguments

An associative container that allows fast access to
stored key values

Unary function object that returns the negation of its
argument

Generates successive permutations of a sequence based
on an ordering function

A function adaptor used to reverse the sense of a
unary predicate function object

A function adaptor used to reverse the sense of a
binary predicate function object

A binary function object that returns true if its first
argument is not equal to its second

Rearranges a collection so that all elements lower in
sorted order than the nth element come before it and
all elements higher in sorter order than the nth element
come after it

A numeric formatting facet for input

A numeric formatting facet for output

A class for representing information about scalar types
A numeric punctuation facet

A numeric punctuation facet

Supports writing into named files or other devices
associated with a file descriptor

Assists in formatting and writing output to sequences
controlled by a stream buffer

Stream iterators allow for use of iterators with
ostreams and istreams

Writes successive characters onto the stream buffer
object from which it was constructed

Chapter 13 Using The C++ Standard Library ~ 13-11

TABLE 13-2

Man Pages for C++ Standard Library (Continued)

Man Page

Overview

ostringstream

ostrstream
pair

partial _sort

partial _sort_copy

partial _sum

partition

permut ati on

pl us

pointer _to_binary _function

pointer_to_unary_function

pop_heap

prev_pernutation

priority_queue

ptr_fun

push_heap

queue

random shuffle

raw_storage_iterator

renove

Supports writing objects of class
basi c_string<charT,traits, All ocator>

Writes to an array in memory
A template for heterogeneous pairs of values

Templatized algorithm for sorting collections of
entities

Templatized algorithm for sorting collections of
entities

Calculates successive partial sums of a range of values

Places all of the entities that satisfy the given predicate
before all of the entities that do not

Generates successive permutations of a sequence based
on an ordering function

A binary function object that returns the result of
adding its first and second arguments

A function object that adapts a pointer to a binary
function, to take the place of a bi nary_functi on

A function object class that adapts a pointer to a
function, to take the place of a unary_functi on

Moves the largest element off the heap

Generates successive permutations of a sequence based
on an ordering function

A container adapter that behaves like a priority queue

A function that is overloaded to adapt a pointer to a
function, to take the place of a function

Places a new element into a heap

A container adaptor that behaves like a queue (first in,
first out)

Randomly shuffles elements of a collection

Enables iterator-based algorithms to store results into
uninitialized memory

Moves desired elements to the front of a container, and
returns an iterator that describes where the sequence of
desired elements ends

C++ User’'s Guide « May 2003

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview

renove_copy Moves desired elements to the front of a container, and
returns an iterator that describes where the sequence of
desired elements ends

renove_copy_i f Moves desired elements to the front of a container, and
returns an iterator that describes where the sequence of
desired elements ends

remove_i f Moves desired elements to the front of a container, and
returns an iterator that describes where the sequence of
desired elements ends

repl ace Substitutes elements in a collection with new values
repl ace_copy Substitutes elements in a collection with new values,
and moves the revised sequence into result
replace_copy_if Substitutes elements in a collection with new values,
and moves the revised sequence into result
replace_if Substitutes elements in a collection with new values
return_tenporary_buffer A pointer-based primitive for handling memory
reverse Reverses the order of elements in a collection
reverse_copy Reverses the order of elements in a collection while
copying them to a new collection
reverse_iterator An iterator that traverses a collection backwards
rotate Swaps the segment that contains elements from first

through middle-1 with the segment that contains the
elements from middle through last

rotate_copy Swaps the segment that contains elements from first
through middle-1 with the segment that contains the
elements from middle through last

search Finds a sub-sequence within a sequence of values that
is element-wise equal to the values in an indicated
range

search_n Finds a sub-sequence within a sequence of values that
is element-wise equal to the values in an indicated
range

set An associative container that supports unique keys

set _difference A basic set operation for constructing a sorted
difference

set _intersection A basic set operation for constructing a sorted

intersection

Chapter 13 Using The C++ Standard Library 13-13

13-14

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page

Overview

set _symmetric_difference

set _uni on

slice

slice_array

smani p

smani p_fill

sort

sort_heap

stabl e_partition

stabl e_sort

st ack

st r eambuf

string

st ri ngbuf

stringstream

strstream

st rstreanbuf

swap

swap_r anges

A basic set operation for constructing a sorted
symmetric difference

A basic set operation for constructing a sorted union

A numeric array class for representing a BLAS-like
slice from an array

A numeric array class for representing a BLAS-like
slice from a valarray

Helper classes used to implement parameterized
manipulators

Helper classes used to implement parameterized
manipulators

A templatized algorithm for sorting collections of
entities

Converts a heap into a sorted collection

Places all of the entities that satisfy the given predicate
before all of the entities that do not, while maintaining
the relative order of elements in each group

A templatized algorithm for sorting collections of
entities

A container adapter that behaves like a stack (last in,
first out)

Abstract base class for deriving various stream buffers
to facilitate control of character sequences

A typedef for basi c_stri ng<char,
char _traits<char>, al | ocat or <char >>

Associates the input or output sequence with a
sequence of arbitrary characters

Supports writing and reading objects of class
basi c_string<charT,traits, Al ocator>
to/from an array in memory

Reads and writes to an array in memory

Associates either the input sequence or the output
sequence with a tiny character array whose elements
store arbitrary values

Exchanges values

Exchanges a range of values in one location with those
in another

C++ User’'s Guide « May 2003

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page

Overview

time_get

ti me_get _bynane

time_put

ti me_put _bynane

t ol ower
t oupper

transform

unary_function

unary_negat e

uninitialized_copy

uninitialized fill

uninitialized fill_n

uni que

uni que_copy

upper _bound

use_facet
val arr ay
vect or

weerr

wel og

A time formatting facet for input

A time formatting facet for input, based on the named
locales

A time formatting facet for output

A time formatting facet for output, based on the
named locales

Converts a character to lower case.
Converts a character to upper case

Applies an operation to a range of values in a
collection and stores the result

A base class for creating unary function objects

A function object that returns the complement of the
result of its unary predicate

An algorithm that uses construct to copy values from
one range to another location

An algorithm that uses the construct algorithm for
setting values in a collection

An algorithm that uses the construct algorithm for
setting values in a collection

Removes consecutive duplicates from a range of values
and places the resulting unique values into the result

Removes consecutive duplicates from a range of values
and places the resulting unique values into the result

Determines the last valid position for a value in a
sorted container

A template function used to obtain a facet
An optimized array class for numeric operations
A sequence that supports random access iterators

Controls output to an unbuffered stream buffer
associated with the object stderr declared in <cst di 0>

Controls input from a stream buffer associated with
the object stdin declared in <cst di 0>

Controls output to a stream buffer associated with the
object stderr declared in <cst di 0>

Chapter 13 Using The C++ Standard Library 13-15

TABLE 13-2 Man Pages for C++ Standard Library (Continued)

Man Page Overview

wecout Controls output to a stream buffer associated with the
object stdout declared in <cst di 0>

wfi | ebuf Class that associates the input or output sequence with
a file

wf st ream Supports reading and writing of named files or devices
associated with a file descriptor

wi f stream Supports reading from named files or other devices
associated with a file descriptor

Wi 0S A base class that includes the common functions
required by all streams

Wi stream Assists in reading and interpreting input from

wi stringstream

wof st ream

wost r eam

wost ri ngstream

wst r eanbuf

wstring

wst ri ngbuf

sequences controlled by a stream buffer

Supports reading objects of class
basi c_string<charT,traits, All ocator>
from an array in memory

Supports writing into named files or other devices
associated with a file descriptor

Assists in formatting and writing output to sequences
controlled by a stream buffer

Supports writing objects of class
basi c_string<charT,traits, Al l ocator>

Abstract base class for deriving various stream buffers
to facilitate control of character sequences

A typedef for basi c_stri ng<wchar _t,
char _traits<wchar _t >, al |l ocat or<wchar _t >>

Associates the input or output sequence with a
sequence of arbitrary characters

13.3

13-16

STLport

Use the STLport implementation of the standard library if you wish to use an
alternative standard library to | i bCst d. You can issue the following compiler
option to turn off | i bCst d and use the STLport library instead:

» -library=stlport4

See Section A.2.48, “- | i brary=I[, I...]” on page A-45 for more information.

C++ User’'s Guide « May 2003

This release includes both a static archive called | i bst| port. a and a dynamic
library called | i bst| port. so.

Consider the following information before you decide whether or not you are going
to use the STLport implementation:

STLport is an open source product and does not guarantee compatibility across
different releases. In other words, compiling with a future version of STLport may
break applications compiled with STLport 4.5.3. It also might not be possible to
link binaries compiled using STLport 4.5.3 with binaries compiled using a future
version of STLport.

The st | port4, Cstd and i ost reamlibraries provide their own implementation
of 1/0 streams. Specifying more than one of these with the - | i br ary option can
result in undefined program behavior.

Future releases of the compiler might not include STLport4. They might include
only a later version of STLport. The compiler option -1 i brary=st| port 4 might
not be available in future releases, but could be replaced by an option referring to
a later STLport version.

Tools.h++ is not supported with STLport.

STLport is binary incompatible with the default | i bCst d. If you use the STLport
implementation of the standard library, then you must compile and link all files,
including third-party libraries, with the option - | i brary=st| port 4. This
means, for example, that you cannot use the STLport implementation and the
C++ interval math library | i bCsuni rmat h together. The reason for this is that

I i bCsuni mat h was compiled with the default library headers, not with STLport.

If you decide to use the STLport implementation, be certain to include header
files that your code implicitly references. The standard headers are allowed, but
not required, to include one another as part of the implementation.

You cannot use the STLport implementation if you compile with - conpat =4.

Chapter 13 Using The C++ Standard Library ~ 13-17

13-18

The following test case does not compile with STLport because the code in the
test case makes unportable assumptions about the library implementation. In
particular, it assumes that either <vect or > or <i ost r ean® automatically include
<i t erat or >, which is not a valid assumption.

#i ncl ude <vector>

#i ncl ude <i ostreanr

usi ng namespace std;

int main ()

{
vector <int> vl (10);
vector <int> v3 (vl.size());
for (int i =0; i <vl.size (); i++)

{vi[i] =1i; v3[i] =1i;}

vector <int> v2(vl.size ());
copy_backward (v1.begin (), vl.end (), v2.end ());
ostream.iterator<int> iter (cout, " ");
copy (v2.begin (), v2.end (), iter);
cout << endl;
return O;

}

To fix the problem, include <i t er at or > in the source.

C++ User’'s Guide « May 2003

CHAPTER 14

Using the Classic i ost r eamLibrary

C++, like C, has no built-in input or output statements. Instead, 1/0 facilities are
provided by a library. The C++ compiler provides both the classic implementation
and the ISO standard implementation of the i ost r eamclasses.

= In compatibility mode (- conpat [=4]), the classic i ost r eamclasses are
contained in | i bC.

= In standard mode (default mode), the classic i ost r eamclasses are contained in
I i bi ostream Use | i bi ost r eamwhen you have source code that uses the
classic i ost r eamclasses and you want to compile the source in standard mode.
To use the classic i ost r eamfacilities in standard mode, include the i ost ream h
header file and compile using the - | i br ar y=i ost r eamoption.

= The standard i ost r eamclasses are available only in standard mode, and are
contained in the C++ standard library, | i bCst d.

This chapter provides an introduction to the classic i ost r eamlibrary and provides
examples of its use. This chapter does not provide a complete description of the

i ost reamlibrary. See the i ost r eamlibrary man pages for more details. To access
the classic i ost r eamman pages type:

exanpl e% man -s 3CC4 name

14.1

Predefined | ostr eans

There are four predefined i ostr eans:

= Ci n, connected to standard input
= cout, connected to standard output
= cerr, connected to standard error
= cl og, connected to standard error

14-1

The predefined i ost r eans are fully buffered, except for cer r. See Section 14.3.1,
“Output Using i ost r eani’ on page 14-4 and Section 14.3.2, “Input Using
i ost reani’ on page 14-7.

14.2

Basic Structure of i ost r eamlInteraction

By including the i ost r eamlibrary, a program can use any number of input or
output streams. Each stream has some source or sink, which may be one of the
following:

= Standard input

= Standard output

= Standard error

= Afile

= An array of characters

A stream can be restricted to input or output, or a single stream can allow both input
and output. The i ost r eamlibrary implements these streams using two processing
layers.

= The lower layer implements sequences, which are simply streams of characters.
These sequences are implemented by the st r eanbuf class, or by classes derived
from it.

= The upper layer performs formatting operations on sequences. These formatting
operations are implemented by the i st r eamand ost r eamclasses, which have as
a member an object of a type derived from class st r eanbuf . An additional class,
i ost ream is for streams on which both input and output can be performed.

Standard input, output, and error are handled by special class objects derived from
classi st reamor ostream

The i f stream of stream and f st r eamclasses, which are derived from i st ream
ost ream and i ost r eamrespectively, handle input and output with files.

The i strstream ostrstream and strstreamclasses, which are derived from
i stream ostream and i ost r eamrespectively, handle input and output to and
from arrays of characters.

When you open an input or output stream, you create an object of one of these
types, and associate the st r earbuf member of the stream with a device or file. You
generally do this association through the stream constructor, so you don’t work with
the st reanbuf directly. The i ost r eamlibrary predefines stream objects for the
standard input, standard output, and error output, so you don’t have to create your
own objects for those streams.

14-2 C++ User's Guide « May 2003

You use operators or i ost r eammember functions to insert data into a stream
(output) or extract data from a stream (input), and to control the format of data that
you insert or extract.

When you want to insert and extract a new data type—one of your classes—you
generally overload the insertion and extraction operators.

14.3

Using the Classic i ost r eamLibrary

To use routines from the classic i ost r eamlibrary, you must include the header files
for the part of the library you need. The header files are described in the following
table.

TABLE 14-1 i ost r eamRoutine Header Files

Header File Description
iostreamh Declares basic features of i ost r eamlibrary.
fstreamh Declares i ost r eans and st r eanbuf s specialized to files. Includes
i ostream h.
strstreamh Declares i ostr eans and st r eanbuf s specialized to character arrays.

Includes i ost ream h.

i omani p. h Declares manipulators: values you insert into or extract from
i ostreans to have different effects. Includes i ost r eam h.

stdi ostream h (obsolete) Declares i ost r eans and st r eanbuf s specialized to use
st di o FI LEs. Includes i ost r eam h.

streamh (obsolete) Includes i ostream h, f stream h, i omani p. h, and
st di ostream h. For compatibility with old-style streams from C++
version 1.2.

You usually do not need all of these header files in your program. Include only the

ones that contain the declarations you need. In compatibility mode (- conpat [=4]),
the classic i ost r eamlibrary is part of | i bC, and is linked automatically by the CC

driver. In standard mode (the default), | i bi ost r eamcontains the classic i ost r eam
library.

Chapter 14 Using the Classic i ost reamLibrary 14-3

14.3.1

Output Using i ost r eam

Output using i ost r eamusually relies on the overloaded left-shift operator (<<)
which, in the context of i ost r eam is called the insertion operator. To output a value
to standard output, you insert the value in the predefined output stream cout . For
example, given a value soneVal ue, you send it to standard output with a statement
like:

cout << soneVal ue;

The insertion operator is overloaded for all built-in types, and the value represented
by soneVal ue is converted to its proper output representation. If, for example,
someVal ue is a f | oat value, the << operator converts the value to the proper
sequence of digits with a decimal point. Where it inserts f | oat values on the output
stream, << is called the float inserter. In general, given a type X, << is called the X
inserter. The format of output and how you can control it is discussed in the

i 0s(3CC4) man page.

The i ost r eamlibrary does not support user-defined types. If you define types that
you want to output in your own way, you must define an inserter (that is, overload
the << operator) to handle them correctly.

The << operator can be applied repetitively. To insert two values on cout, you can
use a statement like the one in the following example:

cout << sonmeVal ue << anot her Val ue;

The output from the above example will show no space between the two values. So
you may want to write the code this way:

cout << soneVal ue << << anot her Val ue;

The << operator has the precedence of the left shift operator (its built-in meaning).
As with other operators, you can always use parentheses to specify the order of
action. It is often a good idea to use parentheses to avoid problems of precedence. Of
the following four statements, the first two are equivalent, but the last two are not.

cout << atb; // + has higher precedence than <<
cout << (a+h);

cout << (a&y);!/! << has precedence higher than &
cout << a&y; [// probably an error: (cout << a) &y

14-4 C++ User's Guide « May 2003

14.3.1.1 Defining Your Own Insertion Operator

The following example defines a st ri ng class:

#i nclude <stdlib. h>
#i ncl ude <i ostream h>

class string {
private:
char* dat a;
size_t size;

public:
/I (functions not rel evant here)
friend ostream& operator<<(ostrean& const string&);
friend i stream& operator>>(istrean&, string&);

b

The insertion and extraction operators must in this case be defined as friends
because the data part of the stri ng class is pri vat e.

ostrean& operator<< (ostream& ostr, const string& output)
{ return ostr << output.data; }

Here is the definition of oper at or << overloaded for use with st ri ngs.

cout << stringl << string2;

oper at or << takes ost r ean& (that is, a reference to an ost r eanj as its first
argument and returns the same ost r eam making it possible to combine insertions
in one statement.

14.3.1.2 Handling Output Errors

Generally, you don’t have to check for errors when you overload oper at or <<
because the i ost r eamlibrary is arranged to propagate errors.

When an error occurs, the i ost r eamwhere it occurred enters an error state. Bits in
the i ost r eands state are set according to the general category of the error. The
inserters defined in i ost r eamignore attempts to insert data into any stream that is
in an error state, so such attempts do not change the i ost r eands state.

Chapter 14 Using the Classic i ost reamLibrary 14-5

14.3.1.3

In general, the recommended way to handle errors is to periodically check the state
of the output stream in some central place. If there is an error, you should handle it
in some way. This chapter assumes that you define a function er r or, which takes a
string and aborts the program. err or is not a predefined function. See

Section 14.3.9, “Handling Input Errors” on page 14-10 for an example of an err or
function. You can examine the state of an i ost r eamwith the operator ! , which
returns a nonzero value if the i ostr eamis in an error state. For example:

if ('cout) error("output error");

There is another way to test for errors. The i os class defines oper at or voi d *(),
so it returns a NULL pointer when there is an error. You can use a statement like:

if (cout << x) return; // return if successful

You can also use the function good, a member of i os:

if (cout.good()) return ; // return if successful

The error bits are declared in the enum

enumio_state { goodbit=0, eofbit=1, failbit=2,
badbi t =4, hardf ai | =0x80} ;

For details on the error functions, see the i ost r eamman pages.

Flushing

As with most 1/0 libraries, i ost r eamoften accumulates output and sends it on in
larger and generally more efficient chunks. If you want to flush the buffer, you
simply insert the special value f | ush. For example:

cout << "This needs to get out inmediately." << flush ;

f I ush is an example of a kind of object known as a manipulator, which is a value that
can be inserted into an i ost r eamto have some effect other than causing output of
its value. It is really a function that takes an ostream& or i st r ean& argument and
returns its argument after performing some actions on it (see Section 14.7,
“Manipulators” on page 14-15).

14-6 C++ User's Guide « May 2003

14.3.1.4

14.3.2

14.3.3

Binary Output

To obtain output in the raw binary form of a value, use the member function wi te
as shown in the following example. This example shows the output in the raw
binary form of x.

cout.wite((char*)&x, sizeof(x));

The previous example violates type discipline by converting & to char *. Doing so
is normally harmless, but if the type of x is a class with pointers, virtual member
functions, or one that requires nontrivial constructor actions, the value written by
the above example cannot be read back in properly.

Input Using i ost r eam

Input using i ost r eamis similar to output. You use the extraction operator >> and
you can string together extractions the way you can with insertions. For example:

cin >>a > b ;

This statement gets two values from standard input. As with other overloaded
operators, the extractors used depend on the types of a and b (and two different
extractors are used if a and b have different types). The format of input and how
you can control it is discussed in some detail in the i 0s(3CC4) man page. In general,
leading whitespace characters (spaces, newlines, tabs, form-feeds, and so on) are
ignored.

Defining Your Own Extraction Operators

When you want input for a new type, you overload the extraction operator for it,
just as you overload the insertion operator for output.

Class st ri ng defines its extraction operator in the following code example:

CODE EXAMPLE 14-1 st ri ng Extraction Operator

i stream& operator>> (istream& istr, string& input)

{

const int maxline = 256;
char hol der [maxline];

Chapter 14 Using the Classic i ostreamLibrary 14-7

14.3.4

CODE EXAMPLE 14-1 st ri ng Extraction Operator (Continued)

istr.get(holder, maxline, ‘\n’);
i nput = hol der;
return istr;

}

The get function reads characters from the input stream i st r and stores them in
hol der until max!| i ne- 1 characters have been read, or a new line is encountered, or
EOF, whichever happens first. The data in hol der is then null-terminated. Finally,
the characters in hol der are copied into the target string.

By convention, an extractor converts characters from its first argument (in this case,
i stream&i str), stores them in its second argument, which is always a reference,
and returns its first argument. The second argument must be a reference because an
extractor is meant to store the input value in its second argument.

Using the char * Extractor

This predefined extractor is mentioned here because it can cause problems. Use it
like this:

char x[50];
cin >> x;

This extractor skips leading whitespace and extracts characters and copies them to x
until it reaches another whitespace character. It then completes the string with a
terminating null (0) character. Be careful, because input can overflow the given array.

You must also be sure the pointer points to allocated storage. For example, here is a
common error:

char * p; // not initialized

cin >> p;

There is no telling where the input data will be stored, and it may cause your
program to abort.

14-8 C++ User's Guide « May 2003

14.3.5

14.3.6

14.3.7

Reading Any Single Character

In addition to using the char extractor, you can get a single character with either
form of the get member function. For example:

char c;
cin.get(c); // leaves ¢ unchanged if input fails

int b;
b =cin.get(); // sets b to EOF if input fails

Note — Unlike the other extractors, the char extractor does not skip leading
whitespace.

Here is a way to skip only blanks, stopping on a tab, newline, or any other character:

int a;

do {
a =cin.get();
}

while(a=="");

Binary Input

If you need to read binary values (such as those written with the member function
wri t e), you can use the r ead member function. The following example shows how
to input the raw binary form of x using the r ead member function, and is the
inverse of the earlier example that uses wri t e.

cin.read((char*)&x, sizeof(x));

Peeking at Input

You can use the peek member function to look at the next character in the stream
without extracting it. For example:

if (cin.peek() !'=1c) return O;

Chapter 14 Using the Classic i ost reamLibrary 14-9

14.3.8

14.3.9

Extracting Whitespace

By default, the i ost r eamextractors skip leading whitespace. You can turn off the
skip flag to prevent this from happening. The following example turns off whitespace
skipping from ci n, then turns it back on:

cin.unsetf(ios::skipws); // turn off whitespace skipping

cin.setf(ios::skipws); // turn it on again

You can use the i ost r eammanipulator ws to remove leading whitespace from the
i ost r eam whether or not skipping is enabled. The following example shows how
to remove the leading whitespace from i ostreami str:

istr >> ws;

Handling Input Errors

By convention, an extractor whose first argument has a nonzero error state should
not extract anything from the input stream and should not clear any error bits. An
extractor that fails should set at least one error bit.

As with output errors, you should check the error state periodically and take some
action, such as aborting, when you find a nonzero state. The ! operator tests the
error state of an i ost r eam For example, the following code produces an input error
if you type alphabetic characters for input:

#i ncl ude <stdlib. h>

#i ncl ude <i ostream h>

void error (const char* nessage) ({
cerr << nessage << "\n" ;
exit(1l);

}

int main() {
cout << "Enter sone characters: ";
int bad;
cin >> bad;
if ('cin) error("aborted due to input error");
cout << "If you see this, not an error." << "\n";
return O;

14-10 C++ User's Guide « May 2003

14.3.10

Class i os has member functions that you can use for error handling. See the man
pages for details.

Using i ost reans With stdi o

You can use st di o with C++ programs, but problems can occur when you mix

i ost reans and st di o in the same standard stream within a program. For example,
if you write to both st dout and cout, independent buffering occurs and produces
unexpected results. The problem is worse if you input from both st di n and ci n,
since independent buffering may turn the input into trash.

To eliminate this problem with standard input, standard output and standard error,
use the following instruction before performing any input or output. It connects all
the predefined i ost r eans with the corresponding predefined st di o FI LEs.

ios::sync_with_stdio();

Such a connection is not the default because there is a significant performance
penalty when the predefined streams are made unbuffered as part of the connection.
You can use both st di o and i ost r eans in the same program applied to different
files. That is, you can write to st dout using st di o routines and write to other files
attached to i ost reams. You can open st di o FI LEs for input and also read from
ci n so long as you don’t also try to read from st di n.

14.4

14.4.1

Creatingi ostr eans

To read or write a stream other than the predefined i ost r eans, you need to create
your own i ost r eam In general, that means creating objects of types defined in the
i ost reamlibrary. This section discusses the various types available.

Dealing With Files Using Class f st r eam

Dealing with files is similar to dealing with standard input and standard output;
classes i f stream of st ream and f st r eamare derived from classes i st ream
ost ream and i ost r eam respectively. As derived classes, they inherit the insertion
and extraction operations (along with the other member functions) and also have
members and constructors for use with files.

Chapter 14 Using the Classic i ostreamLibrary 14-11

14411

14-12

Include the file f st ream h to use any of the f st reans. Use an i f st r eamwhen
you only want to perform input, an of st r eamfor output only, and an f st r eamfor
a stream on which you want to perform both input and output. Use the name of the
file as the constructor argument.

For example, copy the file t hi sFi | e to the file t hat Fi | e as in the following
example:

ifstreamfronFile("thisFile");
i f ('fronFile)

error("unable to open "thisFile for input");
of streamtoFile ("thatFile");
if ('toFile)

error("unable to open "thatFile for output");
char c ;
while (toFile & fronFile.get(c)) toFile.put(c);

This code:

Creates an i f st r eamobject called f r onFi | e with a default mode of i 0s::in
and connects it to t hi sFi | e. It opens t hi sFil e.

Checks the error state of the new i f st r eamobject and, if it is in a failed state,
calls the er r or function, which must be defined elsewhere in the program.

Creates an of st r eamobject called t oFi | e with a default mode of i os: : out and
connects ittothat Fi | e.

Checks the error state of t oFi | e as above.
Creates a char variable to hold the data while it is passed.
Copies the contents of f ronFi | e to t oFi | e one character at a time.

Note — It is, of course, undesirable to copy a file this way, one character at a time.
This code is provided just as an example of using f st r eans. You should instead
insert the st r eanbuf associated with the input stream into the output stream. See
Section 14.10, “St r eanbuf s” on page 14-20, and the man page sbuf pub(3CC4).

Open Mode

The mode is constructed by or -ing bits from the enumerated type open_node,
which is a public type of class i os and has the definition:

enum open_node {bi nary=0, in=1, out=2, ate=4, app=8, trunc=0x10,
nocr eat e=0x20, norepl ace=0x40};

C++ User’'s Guide « May 2003

14.4.1.2

14.4.1.3

14.4.1.4

Note — The bi nary flag is not needed on UNIX, but is provided for compatibility
with systems that do need it. Portable code should use the bi nary flag when
opening binary files.

You can open a file for both input and output. For example, the following code
opens file soneNamne for both input and output, attaching it to the f st r eamvariable
i nout Fi | e.

fstreaminoutFil e("someNanme", ios::inlios::out);

Declaring an f st r eamWithout Specifying a File

You can declare an f st r eamwithout specifying a file and open the file later. For
example, the following creates the of st r eamt oFi | e for writing.

of stream t oFi | e;
toFil e. open(argv[1], ios::out);

Opening and Closing Files

You can close the f st r eamand then open it with another file. For example, to
process a list of files provided on the command line:

ifstreaminfile;
for (char** f = &argv[1]; *f; ++f) {
infile.open(*f, ios::in);

infile.close();

Opening a File Using a File Descriptor

If you know a file descriptor, such as the integer 1 for standard output, you can open
it like this:

of streamoutfil e;
outfile.attach(1);

Chapter 14 Using the Classic i ost r eamLibrary 14-13

When you open a file by providing its name to one of the f st r eamconstructors or
by using the open function, the file is automatically closed when the f st r eamis
destroyed (by a del et e or when it goes out of scope). When you at t ach a file to an
f st ream it is not automatically closed.

14.4.1.5 Repositioning Within a File

You can alter the reading and writing position in a file. Several tools are supplied for
this purpose.

= Streanpos is a type that can record a position in an i ostream

= tellg(tellp) isanistream(ostrean) member function that reports the file
position. Since i st r eamand ost r eamare the parent classes of fstreamtellg
and t el | p can also be invoked as a member function of the f st r eamclass.

= seekg (seekp) isanistream(ostreanm) member function that finds a given
position.

= The seek_di r enumspecifies relative positions for use with seek.

enum seek_dir { beg=0, cur=1l, end=2 };

For example, given an f streamakFi | e:

streanpos original = aFile.tellp(); //save current position
aFil e.seekp(0, ios::end); //reposition to end of file
aFile << x; //wite a value to file

aFil e. seekp(original); /lreturn to original position

seekg (seekp) can take one or two parameters. When it has two parameters, the
first is a position relative to the position indicated by the seek_di r value given as
the second parameter. For example:

aFil e. seekp(-10, ios::end);

moves to 10 bytes from the end while

aFil e. seekp(10, ios::cur);

moves to 10 bytes forward from the current position.

14-14 C++ User's Guide « May 2003

Note — Arbitrary seeks on text streams are not portable, but you can always return
to a previously saved st r eanpos value.

14.5

Assignment of i ost r eans

i ost reans does not allow assignment of one stream to another.

The problem with copying a stream object is that there are then two versions of the
state information, such as a pointer to the current write position within an output
file, which can be changed independently. As a result, problems could occur.

14.6

Format Control

Format control is discussed in detail in the in the man page i 0s(3CC4).

14.7

Manipulators

Manipulators are values that you can insert into or extract from i ost r eans to have
special effects.

Parameterized manipulators are manipulators that take one or more parameters.

Because manipulators are ordinary identifiers, and therefore use up possible names,
i ost r eamdoesn’t define them for every possible function. A number of
manipulators are discussed with member functions in other parts of this chapter.

There are 13 predefined manipulators, as described in TABLE 14-2. When using that
table, assume the following:

= i hastypel ong.

= n has typeint.

= C has type char.

= istr isan input stream.
= Ostr is an output stream.

Chapter 14 Using the Classic i ost r eamLibrary 14-15

14-16

TABLE 14-2

i ost r eamPredefined Manipulators

Predefined Manipulator

Description

1 ostr
2 ostr
3 ostr
4 ostr
5 ostr
6 ostr
7 istr
8 ostr

istr
9 ostr
10 ostr

istr
11 ostr

istr
12 ostr

istr
13 ostr

istr

<< dec, istr >> dec
<< end

<< ends

<< flush

<< hex, istr >> hex
<< oct, istr >> oct
>> WS

<< set base(n),

>> set base(n)

<< setw(n), istr >>setw(n)
<< resetiosflags(i),

>> resetiosflags(i)

<<
>>

setiosflags(i),
setiosflags(i)

<< setfill(c),
>> setfill(c)
<< setprecision(n),

>> set precision(n)

Makes the integer conversion base 10.

Inserts a newline character (' \ n') and
invokes ostream : fl ush().

Inserts a null (0) character. Useful
when dealing with st rst r eans.

Invokes ostream : fl ush().
Makes the integer conversion base 16.
Make the integer conversion base 8.

Extracts whitespace characters (skips
whitespace) until a non-whitespace
character is found (which is left in
istr).

Sets the conversion base to n (0, 8, 10,
16 only).

Invokes i os: : wi dt h(n). Sets the
field width to n.

Clears the flags bitvector according to
the bits setini .

Sets the flags bitvector according to the
bits setini .

Sets the fill character (for padding a
field) to c.

Sets the floating-point precision to n
digits.

To use predefined manipulators, you must include the file i omani p. h in your

program.

You can define your own manipulators. There are two basic types of manipulator:

= Plain manipulator—Takes an i st r ean®&, ost r ean®, or i 0s& argument, operates
on the stream, and then returns its argument.

= Parameterized manipulator—Takes an i st r ean®, ost r eam, or i 0s& argument,
one additional argument (the parameter), operates on the stream, and then
returns its stream argument.

C++ User’'s Guide « May 2003

14.7.1 Using Plain Manipulators

A plain manipulator is a function that:

= Takes a reference to a stream
= Operates on it in some way
= Returns its argument

The shift operators taking (a pointer to) such a function are predefined for

i ost r eamns, so the function can be put in a sequence of input or output operators.
The shift operator calls the function rather than trying to read or write a value. An
example of a t ab manipulator that inserts a t ab in an ost r eamis:

ostreanm& tab(ostream& os) {
return os << '\t’' ;

}

cout << x << tab <<y ;

This is an elaborate way to achieve the following:

const char tab = "\t';

cout << x << tab << y;

Chapter 14 Using the Classic i ost reamLibrary 14-17

14.7.2

The following code is another example, which cannot be accomplished with a simple
constant. Suppose you want to turn whitespace skipping on and off for an input
stream. You can use separate calls toi os:: setf and i os:: unsetf to turn the
ski pws flag on and off, or you could define two manipulators.

#i ncl ude <i ostream h>

#i ncl ude <i omani p. h>

i stream& ski pon(istream & s) {
is.setf(ios::skipws, ios::skipws);
return is;

}

i strean®& ski poff(istream& is) ({
i s.unsetf(ios::skipws);

return is;
}
int main ()
{ .
int Xx,vy;
cin >> skipon >> x >> skipoff >>vy;
return 1;
}

Parameterized Manipulators

One of the parameterized manipulators that is included in i omani p. hissetfill.
setfill sets the character that is used to fill out field widths. It is implemented as
shown in the following example:

[/file setfill.cc
#i ncl ude<i ostream h>
#i ncl ude<i omani p. h>

//the private manipul at or

static ios& sfill(ios& i, int f) {
ifill(f);
return i;

}

//the public applicator
smani p_int setfill(int f) {
return smanip_int(sfill, f);

}

A parameterized manipulator is implemented in two parts:

14-18 C++ User's Guide « May 2003

= The manipulator. It takes an extra parameter. In the previous code example, it takes
an extra i nt parameter. You cannot place this manipulator function in a sequence
of input or output operations, since there is no shift operator defined for it.
Instead, you must use an auxiliary function, the applicator.

= The applicator. It calls the manipulator. The applicator is a global function, and
you make a prototype for it available in a header file. Usually the manipulator is
a static function in the file containing the source code for the applicator. The
manipulator is called only by the applicator, and if you make it static, you keep
its name out of the global address space.

Several classes are defined in the header file i omani p. h. Each class holds the
address of a manipulator function and the value of one parameter. The i omani p
classes are described in the man page mani p(3CC4). The previous example uses the
smani p_i nt class, which works with an i os. Because it works with an i os, it also
works with an i st r eamand an ost r eam The previous example also uses a second
parameter of type i nt .

The applicator creates and returns a class object. In the previous code example the
class object is an smani p_i nt, and it contains the manipulator and the i nt
argument to the applicator. The i omani p. h header file defines the shift operators
for this class. When the applicator function set fi | | appears in a sequence of input
or output operations, the applicator function is called, and it returns a class. The
shift operator acts on the class to call the manipulator function with its parameter
value, which is stored in the class.

In the following example, the manipulator pri nt _hex:

= Puts the output stream into the hex mode.
= Inserts a | ong value into the stream.
= Restores the conversion mode of the stream.

The class omani p_| ong is used because this code example is for output only, and it
operates on a | ong rather than an i nt:

#i ncl ude <i ostream h>

#i ncl ude <i omani p. h>

static ostrean& xfield(ostream& os, long v) {
| ong save = os.setf(ios::hex, ios::basefield);
0s << v,
os.setf(save, ios::basefield);
return os;

}
omani p_l ong print_hex(long v) {
return omani p_l ong(xfield, v);
}

Chapter 14 Using the Classic i ost r eamLibrary 14-19

14.8

Strstreans:i ostreans for Arrays

See the st r st r eam(3CC4) man page.

14.9

St di obuf s:1 ostreans for st di o Files

See the st di obuf (3CC4) man page.

14.10

14.10.1

St r eanbuf s

i ost r eans are the formatting part of a two-part (input or output) system. The other
part of the system is made up of st r eanmbuf s, which deal in input or output of
unformatted streams of characters.

You usually use st r eanbuf s through i ost r eans, so you don’t have to worry
about the details of st r eanbuf s. You can use st r eanbuf s directly if you choose to,
for example, if you need to improve efficiency or to get around the error handling or
formatting built into i ostr eans.

Working With St r eanbuf s

A st reanbuf consists of a stream or sequence of characters and one or two pointers
into that sequence. Each pointer points between two characters. (Pointers cannot
actually point between characters, but it is helpful to think of them that way.) There
are two kinds of st r eanbuf pointers:

= A put pointer, which points just before the position where the next character will
be stored

= A get pointer, which points just before the next character to be fetched

A streanbuf can have one or both of these pointers.

14-20 C++ User’'s Guide » May 2003

14.10.1.1

14.10.2

Position of Pointers

The positions of the pointers and the contents of the sequences can be manipulated
in various ways. Whether or not both pointers move when manipulated depends on
the kind of st r eanbuf used. Generally, with queue-like st r eanbuf s, the get and
put pointers move independently; with file-like st r eanbuf s the get and put
pointers always move together. A st r st reamis an example of a queue-like stream;
an f st reamis an example of a file-like stream.

Using St r eanbuf s

You never create an actual st r eambuf object, but only objects of classes derived
from class st r eanbuf . Examples are fi | ebuf and st rstreanbuf, which are
described in man pages f i | ebuf (3CC4) and ssbuf (3), respectively. Advanced users
may want to derive their own classes from st r eanbuf to provide an interface to a
special device or to provide other than basic buffering. Man pages sbuf pub(3CC4)
and sbuf pr ot (3CC4) discuss how to do this.

Apart from creating your own special kind of st r eanbuf , you may want to access
the st r eanbuf associated with an i ost r eamto access the public member
functions, as described in the man pages referenced above. In addition, each

i ost r eamhas a defined inserter and extractor which takes a st r eanbuf pointer.
When a st r eanbuf is inserted or extracted, the entire stream is copied.

Here is another way to do the file copy discussed earlier, with the error checking
omitted for clarity:

ifstreamfronFile("thisFile");
of streamtoFile ("thatFile");
toFile << fronFile.rdbuf();

We open the input and output files as before. Every i ost r eamclass has a member
function r dbuf that returns a pointer to the st r eanbuf object associated with it. In
the case of an f st r eam the st r eanbuf object is type fi | ebuf. The entire file
associated with f r onfi | e is copied (inserted into) the file associated with t oFi | e.
The last line could also be written like this:

fronFile >> toFile.rdbuf();

The source file is then extracted into the destination. The two methods are entirely
equivalent.

Chapter 14 Using the Classic i ost reamLibrary 14-21

14.11

14-22

| ost r eamMan Pages

A number of C++ man pages give details of the i ost r eamlibrary. The following
table gives an overview of what is in each man page.

To access a classic i ost r eamlibrary man page, type:

exanmpl e% man -s 3CC4 name

TABLE 14-3 i 0st r eamMan Pages Overview

Man Page Overview

fil ebuf Details the public interface for the class f i | ebuf, which is derived from
st reanbuf and is specialized for use with files. See the sbuf pub(3CC4)
and sbuf pr ot (3CC4) man pages for details of features inherited from class
st reanbuf. Use the fi | ebuf class through class f st r eam

fstream Details specialized member functions of classes i f st r eam of st r eam and
f st r eam which are specialized versions of i st r eam ost r eam and
i ost r eamfor use with files.

i os Details parts of class i os, which functions as a base class for i ost r eans. It
contains state data common to all streams.

ios.intro Gives an introduction to and overview of i ost r eans.

i stream Details the following:
= Member functions for class i st r eam which supports interpretation of

characters fetched from a st r eanbuf

= |Input formatting
= Positioning functions described as part of class ost r eam
= Some related functions
= Related manipulators

mani p Describes the input and output manipulators defined in the i ost r eam
library.

ostream Details the following:

= Member functions for class ost r eam which supports interpretation of
characters written to a st r eanbuf

= Output formatting

= Positioning functions described as part of class ost r eam
= Some related functions

= Related manipulators

C++ User’'s Guide « May 2003

TABLE 14-3

i ost r eamMan Pages Overview (Continued)

Man Page

Overview

sbuf pr ot

sbuf pub

sshuf

st di obuf

strstream

Describes the interface needed by programmers who are coding a class
derived from class st r eanbuf . Also refer to the sbuf pub(3CC4) man page
because some public functions are not discussed in the sbuf pr ot (3CC4)
man page.

Details the public interface of class st r eanbuf , in particular, the public
member functions of st r eanbuf . This man page contains the information
needed to manipulate a st r eanbuf -type object directly, or to find out
about functions that classes derived from st r eanbuf inherit from it. If you
want to derive a class from st r eanbuf , also see the sbuf pr ot (3CC4) man
page.

Details the specialized public interface of class st r st r eanbuf , which is
derived from st r eanbuf and specialized for dealing with arrays of
characters. See the sbuf pub(3CC4) man page for details of features
inherited from class st r eanbuf .

Contains a minimal description of class st di obuf, which is derived from
st r eanbuf and specialized for dealing with st di o FI LEs. See the

sbuf pub(3CC4) man page for details of features inherited from class
streanbuf .

Details the specialized member functions of st r st r eans, which are
implemented by a set of classes derived from the i ost r eamclasses and
specialized for dealing with arrays of characters.

Chapter 14 Using the Classic i ost r eamLibrary 14-23

14.12

14-24

| ost r eamTerminology

The i ost r eamlibrary descriptions often use terms similar to terms from general
programming, but with specialized meanings. The following table defines these
terms as they are used in discussing the i ost r eamlibrary.

TABLE 14-4 i 0StreamTerminology

i ostreamTerm

Definition

Buffer

Extraction

Fstream

Insertion
i ostream

i ostream
library

Stream

St r eanbuf

Strstream

A word with two meanings, one specific to the i ost r eampackage and one
more generally applied to input and output.

When referring specifically to the i ost r eamlibrary, a buffer is an object of
the type defined by the class st r eambuf .

A buffer, generally, is a block of memory used to make efficient transfer of
characters for input of output. With buffered 1/0, the actual transfer of
characters is delayed until the buffer is full or forcibly flushed.

An unbuffered buffer refers to a st r eanbuf where there is no buffer in the
general sense defined above. This chapter avoids use of the term buffer to
refer to st r eanbuf s. However, the man pages and other C++
documentation do use the term buffer to mean st r eanbuf s.

The process of taking input from an i ost r eam

An input or output stream specialized for use with files. Refers specifically
to a class derived from class i ost r eamwhen printed in couri er font.

The process of sending output into an i ostr eam
Generally, an input or output stream.

The library implemented by the include files i ost ream h, f st ream h,
strstream h, i omani p. h, and st di ost r eam h. Because i ost r eamis
an object-oriented library, you should extend it. So, some of what you can
do with the i ost r eamlibrary is not implemented.

Aniostream fstream strstream or user-defined stream in general.

A buffer that contains a sequence of characters with a put or get pointer, or
both. When printed in couri er font, it means the particular class.
Otherwise, it refers generally to any object of class st r eanbuf or a class
derived from st r eanbuf . Any stream object contains an object, or a
pointer to an object, of a type derived from st r eanbuf .

An i ost r eamspecialized for use with character arrays. It refers to the
specific class when printed in couri er font.

C++ User’'s Guide « May 2003

CHAPTER 15

Using the Complex Arithmetic
Library

Complex numbers are numbers made up of a real part and an imaginary part. For
example:

N W+
£

PP w
+ + N

In the degenerate case, 0 + 3i is an entirely imaginary number generally written as
3i,and 5 + 0i is an entirely real number generally written as 5. You can represent
complex numbers using the conpl ex data type.

Note — The complex arithmetic library (I i bconpl ex) is available only for
compatibility mode (- conpat [=4]). In standard mode (the default mode), complex
number classes with similar functionality are included with the C++ Standard
Library | i bCst d.

15.1

The Complex Library

The complex arithmetic library implements a complex number data type as a new
data type and provides:

Operators

Mathematical functions (defined for the built-in numerical types)
Extensions (for iostreams that allow input and output of complex numbers)
Error handling mechanisms

15-1

15.1.1

Complex numbers can also be represented as an absolute value (or magnitude) and an
argument (or angle). The library provides functions to convert between the real and
imaginary (Cartesian) representation and the magnitude and angle (polar)
representation.

The complex conjugate of a number has the opposite sign in its imaginary part.

Using the Complex Library

To use the complex library, include the header file conpl ex. h in your program, and
compile and link with the - I i br ar y=conpl ex option.

15.2

15.2.1

Type conpl ex

The complex arithmetic library defines one class: class conpl ex. An object of class
conpl ex can hold a single complex number. The complex number is constructed of
two parts:

= The real part
= The imaginary part

cl ass conpl ex {
double re, im

}s

The value of an object of class conpl ex is a pair of doubl e values. The first value
represents the real part; the second value represents the imaginary part.

Constructors of Class conpl ex

There are two constructors for conpl ex. Their definitions are:

conpl ex:: conplex(){ re=0.0; im=0.0; }

conpl ex: : conpl ex(doubl e r, double i 0.0) { re=r; inri; }

15-2 C++ User's Guide « May 2003

15.2.2

If you declare a complex variable without specifying parameters, the first
constructor is used and the variable is initialized, so that both parts are 0. The
following example creates a complex variable whose real and imaginary parts are
both 0:

conpl ex aConp;

You can give either one or two parameters. In either case, the second constructor is
used. When you give only one parameter, that parameter is taken as the value for
the real part and the imaginary part is set to 0. For example:

conpl ex aConp(4.533);

creates a complex variable with the following value:

4.533 + 0i

If you give two values, the first value is taken as the value of the real part and the
second as the value of the imaginary part. For example:

conpl ex aConp(8.999, 2.333);

creates a complex variable with the following value:

8.999 + 2.333i

You can also create a complex number using the pol ar function, which is provided
in the complex arithmetic library (see Section 15.3, “Mathematical Functions” on
page 15-4). The pol ar function creates a complex value given the polar coordinates
magnitude and angle.

There is no destructor for type conpl ex.

Arithmetic Operators

The complex arithmetic library defines all the basic arithmetic operators. Specifically,
the following operators work in the usual way and with the usual precedence:

+ - / * =

Chapter 15 Using the Complex Arithmetic Library ~ 15-3

The subtraction operator (-) has its usual binary and unary meanings.

In addition, you can use the following operators in the usual way:

= Addition assign operator (+=)

= Subtraction assign operator (- =)

= Multiplication assign operator (* =)
= Division assign operator (/ =)

However, the preceding four operators do not produce values that you can use in
expressions. For example, the following expressions do not work:

conplex a, b;

if ((a+=2)==0) {...}; // illegal
b =a*=b; // illegal

You can also use the equality operator (==) and the inequality operator (! =) in their
regular meaning.

When you mix real and complex numbers in an arithmetic expression, C++ uses the
complex operator function and converts the real values to complex values.

15.3

Mathematical Functions

The complex arithmetic library provides a number of mathematical functions. Some
are peculiar to complex numbers; the rest are complex-number versions of functions
in the standard C mathematical library.

All of these functions produce a result for every possible argument. If a function
cannot produce a mathematically acceptable result, it calls conpl ex_err or and
returns some suitable value. In particular, the functions try to avoid actual overflow
and call conpl ex_error with a message instead. The following tables describe the
remainder of the complex arithmetic library functions.

Note — The implementation of the sqrt and at an2 functions is aligned with the
C99 csqrt Annex G specification.

15-4 C++ User's Guide « May 2003

TABLE 15-1 Complex Arithmetic Library Functions

Complex Arithmetic Library Function

Description

doubl e abs(const conpl ex)

doubl e arg(const conpl ex)

compl ex conj (const conpl ex)

doubl e imag(const conpl ex&)

doubl e norn(const conpl ex)

conpl ex pol ar (doubl e mag, doubl e ang=0. 0)

doubl e real (const conpl ex&)

Returns the magnitude of a
complex number.

Returns the angle of a complex
number.

Returns the complex conjugate of
its argument.

Returns the imaginary part of a
complex number.

Returns the square of the
magnitude of its argument. Faster
than abs, but more likely to cause
an overflow. For comparing
magnitudes.

Takes a pair of polar coordinates
that represent the magnitude and
angle of a complex number and
returns the corresponding complex
number.

Returns the real part of a complex
number.

TABLE 152 Complex Mathematical and Trigonometric Functions

Complex Arithmetic Library Function

Description

conpl ex acos(const conpl ex)

conpl ex asi n(const conpl ex)

conpl ex atan(const conpl ex)

conpl ex cos(const conpl ex)

conpl ex cosh(const conpl ex)

conpl ex exp(const conpl ex)

Returns the angle whose cosine is
its argument.

Returns the angle whose sine is its
argument.

Returns the angle whose tangent is
its argument.

Returns the cosine of its argument.

Returns the hyperbolic cosine of its
argument.

Computes e* *x, where e is the
base of the natural logarithms, and
X is the argument given to exp.

Chapter 15 Using the Complex Arithmetic Library ~ 15-5

TABLE 152 Complex Mathematical and Trigonometric Functions (Continued)

Complex Arithmetic Library Function Description

conpl ex | og(const conpl ex) Returns the natural logarithm of its
argument.

conpl ex | 0gl0(const conplex) Returns the common logarithm of

its argument.

conpl ex pow(double b, const conplex exp) Takes two arguments: pow b, exp) .
conpl ex pow(const conplex b, int exp) It raises b to the power of exp.
conpl ex pow(const conplex b, double exp)
conpl ex pow(const conplex b, const

conpl ex exp)

conpl ex sin(const conpl ex) Returns the sine of its argument.

conpl ex sinh(const conpl ex) Returns the hyperbolic sine of its
argument.

conmpl ex sqrt(const conpl ex) Returns the square root of its
argument.

conpl ex tan(const conpl ex) Returns the tangent of its argument.

conpl ex tanh(const conpl ex) Returns the hyperbolic tangent of

its argument.

15.4

Error Handling

The complex library has these definitions for error handling:

extern int errno;
class c_exception { ... };
int conplex_error(c_exception&);

The external variable err no is the global error state from the C library. err no can
take on the values listed in the standard header er r no. h (see the man page
perror (3)). No function sets er r no to zero, but many functions set it to other
values.

To determine whether a particular operation fails:

1. Set errno to zero before the operation.

2. Test the operation.

15-6 C++ User's Guide « May 2003

The function conpl ex_err or takes a reference to type c_excepti on and is called
by the following complex arithmetic library functions:

= exp
" |Og
= | 0gl0
= Sinh
= cosh

The default version of conpl ex_error returns zero. This return of zero means that
the default error handling takes place. You can provide your own replacement
function conpl ex_error that performs other error handling. Error handling is
described in the man page cpl xer r (3CC4).

Default error handling is described in the man pages cpl xt ri g(3CC4) and
cpl xexp(3CC4) It is also summarized in the following table.

TABLE 15-3 Complex Arithmetic Library Functions Default Error Handling

Complex Arithmetic

Library Function Default Error Handling Summary

exp If overflow occurs, sets er r no to ERANGE and returns a huge complex
number.

I og, lo0glo If the argument is zero, sets er r no to EDOMand returns a huge

complex number.

sinh, cosh If the imaginary part of the argument causes overflow, returns a
complex zero. If the real part causes overflow, returns a huge complex
number. In either case, sets er r no to ERANGE.

15.5

Input and Output

The complex arithmetic library provides default extractors and inserters for complex
numbers, as shown in the following example:

ostream& oper at or<<(ostream& const conplex&); //inserter
i stream& operator>>(istream®, conplex&); //extractor

For basic information on extractors and inserters, see Section 14.2, “Basic Structure of
i ost r eamlInteraction” on page 14-2 and Section 14.3.1, “Output Using i ost r eant’
on page 14-4.

Chapter 15 Using the Complex Arithmetic Library ~ 15-7

For input, the complex extractor >> extracts a pair of numbers (surrounded by
parentheses and separated by a comma) from the input stream and reads them into
a complex object. The first number is taken as the value of the real part; the second
as the value of the imaginary part. For example, given the declaration and input
statement:

conpl ex Xx;
cin >> x;

and the input (3. 45, 5), the value of x is equivalent to 3. 45 + 5. 0i . The reverse
is true for inserters. Given conpl ex x(3.45, 5), cout <<x prints (3. 45, 5).

The input usually consists of a pair of numbers in parentheses separated by a
comma; white space is optional. If you provide a single number, with or without
parentheses and white space, the extractor sets the imaginary part of the number to
zero. Do not include the symbol i in the input text.

The inserter inserts the values of the real and imaginary parts enclosed in
parentheses and separated by a comma. It does not include the symbol i . The two
values are treated as doubl es.

15.6

Mixed-Mode Arithmetic

Type conpl ex is designed to fit in with the built-in arithmetic types in mixed-mode
expressions. Arithmetic types are silently converted to type conpl ex, and there are
conpl ex versions of the arithmetic operators and most mathematical functions. For
example:

int i, j;

doubl e x, vy;

conplex a, b;

a =sin((b+i)/y) + x/j;

The expression b+i is mixed-mode. Integer i is converted to type conpl ex via the
constructor conpl ex: : conpl ex(doubl e, doubl e=0), the integer first being
converted to type doubl e. The result is to be divided by y, a doubl e, so y is also
converted to conpl ex and the complex divide operation is used. The quotient is
thus type conpl ex, so the complex sine routine is called, yielding another conpl ex
result, and so on.

15-8 C++ User's Guide « May 2003

Not all arithmetic operations and conversions are implicit, or even defined, however.
For example, complex numbers are not well-ordered, mathematically speaking, and
complex numbers can be compared for equality only.

conplex a, b;
a==m"nb /I XK
al="hb, /I XK
a < b; // error: operator < cannot be applied to type conpl ex
a >=b; // error: operator >= cannot be applied to type conpl ex

Similarly, there is no automatic conversion from type conpl ex to any other type,
because the concept is not well-defined. You can specify whether you want the real
part, imaginary part, or magnitude, for example.

conpl ex a;

doubl e f(double);

f(abs(a)); // K

f(a); /1 error: no match for f(conplex)

15.7

Efficiency

The design of the conpl ex class addresses efficiency concerns.
The simplest functions are declared i nl i ne to eliminate function call overhead.

Several overloaded versions of functions are provided when that makes a difference.
For example, the pow function has versions that take exponents of type doubl e and
i nt as well as conpl ex, since the computations for the former are much simpler.

The standard C math library header mat h. h is included automatically when you
include conpl ex. h. The C++ overloading rules then result in efficient evaluation of
expressions like this:

doubl e x;
conplex x = sqrt(x);

In this example, the standard math function sqrt (doubl e) is called, and the result
is converted to type conpl ex, rather than converting to type conpl ex first and then
calling sqrt (conpl ex) . This result falls right out of the overload resolution rules,
and is precisely the result you want.

Chapter 15 Using the Complex Arithmetic Library ~ 15-9

15.8 Complex Man Pages

The remaining documentation of the complex arithmetic library consists of the man
pages listed in the following table.

TABLE 15-4 Man Pages for Type conpl ex

Man Page Overview

cpl x.intro(3C4) General introduction to the complex arithmetic library
cart pol (3CC4) Cartesian and polar functions

cpl xerr (3CC4) Error-handling functions

cpl xexp(3CC4) Exponential, log, and square root functions

cpl xops(3CC4) Arithmetic operator functions

cpl xtrig(3C4) Trigonometric functions

15-10 C++ User's Guide « May 2003

CHAPTER 16

Building Libraries

This chapter explains how to build your own libraries.

16.1

Understanding Libraries

Libraries provide two benefits. First, they provide a way to share code among
several applications. If you have such code, you can create a library with it and link
the library with any application that needs it. Second, libraries provide a way to
reduce the complexity of very large applications. Such applications can build and
maintain relatively independent portions as libraries and so reduce the burden on
programmers working on other portions.

Building a library simply means creating . o files (by compiling your code with the
- ¢ option) and combining the . o files into a library using the CC command. You can
build two kinds of libraries, static (archive) libraries and dynamic (shared) libraries.

With static (archive) libraries, objects within the library are linked into the program’s
executable file at link time. Only those . o files from the library that are needed by
the application are linked into the executable. The name of a static (archive) library
generally ends with a . a suffix.

With dynamic (shared) libraries, objects within the library are not linked into the
program’s executable file, but rather the linker notes in the executable that the
program depends on the library. When the program is executed, the system loads
the dynamic libraries that the program requires. If two programs that use the same
dynamic library execute at the same time, the operating system shares the library
among the programs. The name of a dynamic (shared) library ends with a . so
suffix.

Linking dynamically with shared libraries has several advantages over linking
statically with archive libraries:

16-1

= The size of the executable is smaller.

= Significant portions of code can be shared among programs at runtime, reducing
the amount of memory use.

= The library can be replaced at runtime without relinking with the application.
(This is the primary mechanism that enables programs to take advantage of many
improvements in the Solaris operating environment without requiring relinking
and redistribution of programs.)

= The shared library can be loaded at runtime, using the dl open() function call.

However, dynamic libraries have some disadvantages:
= Runtime linking has an execution-time cost.

= Distributing a program that uses dynamic libraries might require simultaneous
distribution of the libraries it uses.

= Moving a shared library to a different location can prevent the system from
finding the library and executing the program. (The environment variable
LD LI BRARY_PATH helps overcome this problem.)

16.2

Building Static (Archive) Libraries

The mechanism for building static (archive) libraries is similar to that of building an
executable. A collection of object (. 0) files can be combined into a single library
using the —xar option of CC.

You should build static (archive) libraries using CC - xar instead of using the ar
command directly. The C++ language generally requires that the compiler maintain
more information than can be accommodated with traditional . o files, particularly
template instances. The —xar option ensures that all necessary information,
including template instances, is included in the library. You might not be able to
accomplish this in a normal programming environment since make might not know
which template files are actually created and referenced. Without CC - xar,
referenced template instances might not be included in the library, as required. For
example:

%CC -c foo.cc # Conpile main file, tenpl ates objects are created.
% CC -xar -0 foo.a foo.o # Gather all objects into a library.

16-2 C++ User's Guide « May 2003

The —xar flag causes CC to create a static (archive) library. The —o directive is
required to name the newly created library. The compiler examines the object files on
the command line, cross-references the object files with those known to the template
repository, and adds those templates required by the user’s object files (along with
the main object files themselves) to the archive.

Note — Use the - xar flag for creating or updating an existing archive only. Do not
use it to maintain an archive. The - xar option is equivalent to ar -cr.

It is a good idea to have only one function in each . o file. If you are linking with an
archive, an entire . o file from the archive is linked into your application when a
symbol is needed from that particular . o file. Having one function in each . o file
ensures that only those symbols needed by the application will be linked from the
archive.

16.3

Building Dynamic (Shared) Libraries

Dynamic (shared) libraries are built the same way as static (archive) libraries, except
that you use —Ginstead of —xar on the command line.

You should not use | d directly. As with static libraries, the CCcommand ensures that
all the necessary template instances from the template repository are included in the
library if you are using templates. All static constructors in a dynamic library that is
linked to an application are called before mai n() is executed and all static
destructors are called after mai n() exits. If a shared library is opened using

dl open(), all static constructors are executed at dl open() and all static destructors
are executed at dl cl ose().

You should use CC - Gto build a dynamic library. When you use | d (the link-editor)
or cc (the C compiler) to build a dynamic library, exceptions might not work and the
global variables that are defined in the library are not initialized.

To build a dynamic (shared) library, you must create relocatable object files by
compiling each object with the —Kpi ¢ or —KPI C option of CC. You can then build a
dynamic library with these relocatable object files. If you get any bizarre link
failures, you might have forgotten to compile some objects with —Kpi ¢ or —KPI C.

To build a C++ dynamic library named | i bf 0o. so that contains objects from source
files| srcl.cc and | src2. cc, type:

% CC -G -0 libfoo.so -h libfoo.so -Kpic Isrcl.cc Isrc2.cc

Chapter 16 Building Libraries 16-3

The - Goption specifies the construction of a dynamic library. The - o option specifies
the file name for the library. The - h option specifies a name for the shared library.
The - Kpi ¢ option specifies that the object files are to be position-independent.

Note — The CC - Gcommand does not pass any - | options to | d. If you want the
shared library to have a dependency on another shared library, you must pass the
necessary - | option on the command line. For example, if you want the shared
library to be dependent upon | i bCr un. so, you must pass - | Cr un on the command
line.

16.4

Building Shared Libraries That Contain
Exceptions

Never use - Bsynbol i ¢ with programs containing C++ code, use linker map files
instead. With - Bsynbol i c, references in different modules can bind to different
copies of what is supposed to be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of
something, their addresses won’t compare equal, and the exception mechanism can
fail because the exception mechanism relies on comparing what are supposed to be
unique addresses.

When shared libraries are opened using dl open(), you must use RTLD G.OBAL
for exceptions to work.

16.5

Building Libraries for Private Use

When an organization builds a library for internal use only, the library can be built
with options that are not advised for more general use. In particular, the library need
not comply with the system’s application binary interface (ABI). For example, the
library can be compiled with the - f ast option to improve its performance on a
known architecture. Likewise, it can be compiled with the - xr egs=f | oat option to
improve performance.

16-4 C++ User's Guide ¢« May 2003

16.6

Building Libraries for Public Use

When an organization builds a library for use by other organizations, the
management of the libraries, platform generality, and other issues become
significant. A simple test for whether or not a library is public is to ask if the
application programmer can recompile the library easily. Public libraries should be
built in conformance with the system’s application binary interface (ABI). In general,
this means that any processor-specific options should be avoided. (For example, do
not use —f ast or —xt ar get .)

The SPARC ABI reserves some registers exclusively for applications. For V7 and V8,
these registers are %g2, ¥%g3, and ¥g4. For V9, these registers are %g2 and %g3. Since
most compilations are for applications, the C++ compiler, by default, uses these
registers for scratch registers, improving program performance. However, use of
these registers in a public library is generally not compliant with the SPARC ABI.
When building a library for public use, compile all objects with the - xr egs=
no%appl option to ensure that the application registers are not used.

16.7

Building a Library That Has a C API

If you want to build a library that is written in C++ but that can be used with a C
program, you must create a C API (application programming interface). To do this,
make all the exported functions ext ern " C'. Note that this can be done only for
global functions and not for member functions.

If a C-interface library needs C++ run-time support and you are linking with cc, then
you must also link your application with either | i bC (compatibility mode) or

I i bCrun (standard mode) when you use the C-interface library. (If the C-interface
library does not need C++ run-time support, then you do not have to link with | i bC
or | i bCrun.) The steps for linking differ for archived and shared libraries.

When providing an archived C-interface library, you must provide instructions on
how to use the library.

= If the C-interface library was built with CC in standard mode (the default), add
-1 Crun to the cc command line when using the C-interface library.

= If the C-interface library was built with CC in compatibility mode (- conpat), add
-1 C to the cc command line when using the C-interface library.

Chapter 16 Building Libraries 16-5

When providing a shared C-interface library you must create a dependency on | i bC
or | i bCrun at the time that you build the library. When the shared library has the
correct dependency, you do not need to add - | Cor - | Crun to the command line
when you use the library.

= If you are building the C-interface library in compatibility mode (- conpat), add
- | Cto the CC command line when you build the library.

= If you are building the C-interface library in standard mode (the default), add
-1 Crun to the CC command line when you build the library.

If you want to remove any dependency on the C++ runtime libraries, you should

enforce the following coding rules in your library sources:

= Do not use any form of newor del et e unless you provide your own
corresponding versions.

= Do not use exceptions.
= Do not use runtime type information (RTTI).

16.8

16-6

Using dl open to Access a C++ Library
From a C Program

If you want to use dl open() to open a C++ shared library from a C program, make
sure that the shared library has a dependency on the appropriate C++ runtime
(I'i bC. so. 5 for - conpat =4, or|li bCrun. so. 1 for - conpat =5).

To do this, add - | Cfor - conpat =4 or add - Crun for - conpat =5 to the command
line when building the shared library. For example:

exampl e% CC -G -conmpat=4 ... -IC
exampl e% CC -G -conpat=5 ... -1Crun

If the shared library uses exceptions and does not have a dependency on the C++
runtime library, your C program might behave erratically.

Note — When shared libraries are opened with dl open(), RTLD_G.OBAL must be
used for exceptions to work.

C++ User’s Guide « May 2003

rart IV Appendixes

APPENDIX A

C++ Compiler Options

This appendix details the command-line options for the CC compiler running under
the Solaris 7 and Solaris 8 operating environments. The features described apply to
all platforms except as noted; features that are unique to the Solaris SPARC Platform
Edition operating environment are identified as SPARC, and the features that are
unique to the Solaris Intel Platform Edition operating environment are identified as
1A.

The following table shows examples of typical option syntax formats.

TABLEA-1 Option Syntax Format Examples

Syntax Format Example
-option -E

—opt i onvalue —| pathname
—opt i on=value —xunrol | =4
—option value —o0 filename

The typographical conventions that are listed in “Before You Begin” at the front of
this manual are used in this section of the manual to describe individual options.

Parentheses, braces, brackets, pipe characters, and ellipses are metacharacters used in
the descriptions of the options and are not part of the options themselves.

A-1

Al

A-2

How Option Information Is Organized

To help you find information, compiler option descriptions are separated into the
following subsections. If the option is one that is replaced by or identical to some
other option, see the description of the other option for full details.

TABLEA-2 Option Subsections

Subsection

Contents

Option Definition

Values

Defaults

Expansions
Examples

Interactions

Warnings

See also

“Replace with” “Same as”

A short definition immediately follows each option. (There is no
heading for this category.)

If the option has one or more values, this section defines each
value.

If the option has a primary or secondary default value, it is
stated here.

The primary default is the option value in effect if the option is
not specified. For example, if —conpat is not specified, the
default is —conpat =5.

The secondary default is the option in effect if the option is
specified, but no value is given. For example, if —conpat is
specified without a value, the default is - conpat =4.

If the option has a macro expansion, it is shown in this section.
If an example is needed to illustrate the option, it is given here.

If the option interacts with other options, the relationship is
discussed here.

If there are cautions regarding use of the option, they are noted
here, as are actions that might cause unexpected behavior.

This section contains references to further information in other
options or documents.

If an option has become obsolete and has been replaced by
another option, the replacement option is noted here. Options
described this way may not be supported in future releases.
If there are two options with the same general meaning and
purpose, the preferred option is referenced here. For example,
“Same as - X0’ indicates that - xOis the preferred option.

C++ User’s Guide « May 2003

A2

A2l

A2.2

A.2.3

A24

Option Reference

—386

IA: Same as —xt ar get =386. This option is provided for backward compatibility only.

—486

IA: Same as —xt ar get =486. This option is provided for backward compatibility only.

—a

Same as —xa.

—Bbinding

Specifies whether a library binding for linking is synbol i ¢, dynam ¢ (shared), or
st ati ¢ (nonshared).

You can use the —B option several times on a command line. This option is passed to
the linker, | d.

Note — On the Solaris 7 and Solaris 8 platforms, not all libraries are available as
static libraries.

Appendix A C++ Compiler Options A-3

Values

binding must be one of the following:

Value of binding Meaning

dynani c Directs the link editor to look for | i blib. so (shared) files, and if
they are not found, to look for | i blib. a (static, nonshared) files. Use
this option if you want shared library bindings for linking.

static Directs the link editor to look only for I i blib. a (static, nonshared)
files. Use this option if you want nonshared library bindings for
linking.

synbolic Forces symbols to be resolved within a shared library if possible,

even when a symbol is already defined elsewhere.
See the | d(1) man page.

(No space is allowed between —B and the binding value.)

Defaults

If -B is not specified, —Bdynani ¢ is assumed.

Interactions
To link the C++ default libraries statically, use the —st ati cl i b option.

The - Bst at i ¢ and - Bdynam c options affect the linking of the libraries that are
provided by default. To ensure that the default libraries are linked dynamically, the
last use of —B should be —Bdynani c.

In a 64-bit environment, many system libraries are available only as shared dynamic
libraries. These include | i bmsoand | ibc.so (libmaandlibc.a are not
provided). As a result, - Bst at i ¢ and - dn may cause linking errors in 64-bit Solaris
operating environments. Applications must link with the dynamic libraries in these
cases.

Examples

The following compiler command links | i bfoo. a even if | i bfoo. so exists; all other
libraries are linked dynamically:

exanpl e% CC a.0 —Bstatic —| foo —Bdynanmi c

A-4 C++ User's Guide « May 2003

A.2.5

Warnings

Never use -Bsymbolic with programs containing C++ code, use linker map files
instead.

With -Bsymbolic, references in different modules can bind to different copies of what
is supposed to be one global object.

The exception mechanism relies on comparing addresses. If you have two copies of
something, their addresses won’t compare equal, and the exception mechanism can
fail because the exception mechanism relies on comparing what are supposed to be
unique addresses.

If you compile and link in separate steps and are using the - Bbinding option, you
must include the option in the link step.

See also

—nolib,-staticlib,l| d(l), Section 12.5, “Statically Linking Standard Libraries”
on page 12-10, Linker and Libraries Guide

—C
Compile only; produce object . o files, but suppress linking.

This option directs the CC driver to suppress linking with | d and produce a . o file
for each source file. If you specify only one source file on the command line, then
you can explicitly name the object file with the - o option.

Examples
If you enter CC -c¢ x. cc, the x. o object file is generated.

If you enter CC -c x.cc -0 Yy.o,they. o object file is generated.

Warnings

When the compiler produces object code for an input file (. c, . i), the compiler
always produces a . o file in the working directory. If you suppress the linking step,
the . o files are not removed.

Appendix A C++ Compiler Options A-5

A.2.6

A2.7

See also

—o filename, —xe

—cg{89| 92}

Same as —xcg{89]| 92}.

—conpat [={4]5}]

Sets the major release compatibility mode of the compiler. This option controls the
__SUNPRO_CC_COWPAT and __cpl uspl us macros.

The C++ compiler has two principal modes. The compatibility mode accepts ARM
semantics and language defined by the 4.2 compiler. The standard mode accepts
constructs according to the ANSI/ZISO standard. These two modes are incompatible
with each other because the ANSI/ISO standard forces significant, incompatible
changes in name mangling, vtable layout, and other ABI details. These two modes
are differentiated by the —conpat option as shown in the following values.

Values

The - conpat option can have the following values.

Value Meaning

—conpat =4 (Compatibility mode) Set language and binary compatibility to that of the
4.0.1, 4.1, and 4.2 compilers. Set the __cpl uspl us preprocessor macro to 1
and the __SUNPRO_CC_COWVPAT preprocessor macro to 4.

—conpat =5 (Standard mode) Set language and binary compatibility to ANSI/ISO
standard mode. Set the __cpl uspl us preprocessor macro to 199711L and
the __ SUNPRO_CC_COWPAT preprocessor macro to 5.

Defaults
If the —conpat option is not specified, —conpat =5 is assumed.
If only —conpat is specified, —conpat =4 is assumed.

Regardless of the —conpat setting, __ SUNPRO_CC is set to 0x550.

A-6 C++ User's Guide « May 2003

A.2.8

Interactions
You cannot use the standard libraries in compatibility mode (- conpat [=4]).

Use of —conpat [=4] with any of the following options is not supported.

= -Bsynbol i ¢ when the library has exceptions in it
« -features=[no%strictdestrorder

« -features=[noUtnplife

s -library=[no%i ostream

= -library=[no%Cstd

= -library=[no%Crun

= -|ibrary=[no%rw ool s7_std
= -Xarch=nativeb4, - xar ch=generi c64, - xar ch=v9, - xar ch=v9a, or
- xarch=v9b

Use of —conpat =5 with any of the following options is not supported.

+e

f eat ur es=[no%ar r aynew
f eat ures=[no%explicit

f eat ur es=[no%nanespace
features=[no%rtti

= |ibrary=[no%conpl ex

= library=[no%libC

= -vdel x

Warnings

When building a shared library in compatibility mode (- corrpat [=4]), do not use
-Bsymbolic if the library has exceptions in it. Exceptions that should be caught might
be missed.

See also

C++ Migration Guide

+d

Does not expand C++ inline functions.

Under the C++ language rules, a C++ inline function is a function for which one of
the following statements is true.

= The function is defined using the i nl i ne keyword,
= The function is defined (not just declared) inside a class definition

Appendix A C++ Compiler Options ~ A-7

A.2.9

= The function is a compiler-generated class member function

Under the C++ language rules, the compiler can choose whether actually to inline a
call to an inline function. The C++ compiler inlines calls to an inline function unless:

= The function is too complex,
= The +d option is selected, or
= The - g option is selected

Examples

By default, the compiler may inline the functions f () and menf 2() in the following
code example. In addition, the class has a default compiler-generated constructor
and destructor that the compiler may inline. When you use +d, the compiler will not
inline f () and C: : nf 2(), the constructor, and the destructor.

inline int f() { return O; } // may be inlined

class C {

int nf1(); // not inlined unless inline definition cones |ater
int nf2() { return O; } // may be inlined

H

Interactions
This option is automatically turned on when you specify —g, the debugging option.
The —g0 debugging option does not turn on +d.

The +d option has no effect on the automatic inlining that is performed when you
use - x4 or - xCo.

See also

_gor _g

- D[Jname[=def]
Defines the macro symbol name to the preprocessor.

Using this option is equivalent to including a #def i ne directive at the beginning of
the source. You can use multiple - D options.

A-8 C++ User's Guide « May 2003

Values

The following table shows the predefined macros. You can use these values in such

preprocessor conditionals as #i f def .

TABLE A-3 Predefined Macros

Type Macro Name Notes
SPARC and IA __ARRAYNEW ___ARRAYNEWIs defined if the “array”
forms of operators newand del et e
are enabled. See
-features=[no% arr aynew for
more information.
_BOOL _BOOL is defined if type bool is

__BUILTIN_VA ARG | NCR

__cplusplus
__DATE _
__FILE _
__LINE__
STDC

__sun

sun

__SUNPRO_CC=0x550

__SUNPRO_CC_COWPAT=4 or
__SUNPRO_CC_COMPAT=5

__SVR4
_ TIME__

__'"uname -s’_’uname —r’

__unix

enabled. See - f eat ur es=[no% bool
for more information.

For the __builtin_all oca,
__builtin_va_alist, and
__builtin_va_arg_incr keywords
in varargs.h, stdarg.h, and
sys/varargs. h.

See Interactions.

The value of __SUNPRO_CC indicates
the release number of the compiler

See Section A.2.7, “~conpat [={4]|5}]”
on page A-6

Where uname -s is the output of
unanme -s and uname -r is the output
of unane -r with the invalid
characters, such as periods (.), replaced
by underscores, asin - D__SunCS_5_7
and -D__SunCsS_5_8.

Appendix A C++ Compiler Options

A-9

A.2.10

TABLE A-3 Predefined Macros (Continued)

Type Macro Name Notes
uni x See Interactions.
SPARC __sparc
sparc See Interactions.
SPARC v9 ___sparcv9 64-bit compilation modes only
1A __i386
i 386 See Interactions.
UNIX _WCHAR T

If you do not use =def, name is defined as 1.

Interactions

If +p is used, sun, uni x, spar c, and i 386 are not defined.

See also

-uU

—d{y In}

Allows or disallows dynamic libraries for the entire executable.
This option is passed to | d.

This option can appear only once on the command line.

Values

Value Meaning

-dy Specifies dynamic linking in the link editor.
—dn Specifies static linking in the link editor.

A-10 C++ User's Guide » May 2003

A.211

A.2.12

A.2.13

Defaults

If no - d option is specified, —dy is assumed.

Interactions

In a 64-bit environment, many system libraries are available only as shared dynamic
libraries. These include | i bm soandlibc.so (libmaandlibc.a are not
provided). As a result, - Bst ati ¢ and - dn may cause linking errors in 64-bit Solaris
operating environments. Applications must link with the dynamic libraries in these
cases.

See also

[d(1), Linker and Libraries Guide

—dal i gn
- dal i gn is equivalent to - xmenal i gn=8s. See “- xnmenal i gn=ab” on page A-110

for more information.

Warnings

If you compile one program unit with —dal i gn, compile all units of a program with
- dal i gn, or you might get unexpected results.

—dryrun
Shows the subcommands built by driver, but does not compile.

This option directs the driver CC to show, but not execute, the subcommands
constructed by the compilation driver.

—E

Runs the preprocessor on source files; does not compile.

Appendix A C++ Compiler Options ~ A-11

Directs the CC driver to run only the preprocessor on C++ source files, and to send
the result to st dout (standard output). No compilation is done; no . o files are
generated.

This option causes preprocessor-type line number information to be included in the
output.

Examples

This option is useful for determining the changes made by the preprocessor. For
example, the following program, f 00. cc, generates the output shown in
CODE EXAMPLE A-2.

CODE EXAMPLE A-1 Preprocessor Example Program f 0o. cc

#1f __cplusplus < 199711L

int power(int, int);

#el se

tenplate <> int power(int, int);
#endi f

int min () {
int x;
x=power (2, 10);

}

CODE EXAMPLE A-2 Preprocessor Output of f 00. cc Using - E Option

exanpl e% CC - E foo. cc
#4 "foo.cc"
tenplate < > int power (int , int) ;

int min () {
int x ;

X = power (2, 10) ;
}

Warnings

Output from this option is not supported as input to the C++ compiler when
templates are used.

A-12 C++ User’'s Guide » May 2003

A.2.14

A.2.15

See also

-P

+e{0]1}
Controls virtual table generation in compatibility mode (- conpat [=4]) . Invalid and

ignored when in standard mode (the default mode).

Values

The +e option can have the following values.

Value Meaning

0 Suppresses the generation of virtual tables and creates external
references to those that are needed.

1 Creates virtual tables for all defined classes with virtual functions.

Interactions

When you compile with this option, also use the —f eat ur es=no%except option.
Otherwise, the compiler generates virtual tables for internal types used in exception
handling.

If template classes have virtual functions, ensuring that the compiler generates all
needed virtual tables, but does not duplicate these tables, might not be possible.

See also

C++ Migration Guide

-errof f [=t]

This command suppresses C++ compiler warning messages and has no effect on
error messages.

Appendix A C++ Compiler Options A-13

A-14

Values

t is a comma-separated list that consists of one or more of the following: tag, no%ag,
%l | , %one. Order is important; for example, %al | , no%ag suppresses all warning
messages except tag. The following table lists the - er r of f values:

TABLE A-4 The - errof f Values

Value Meaning

tag Suppresses the warning message specified by this tag. You can display
the tag for a message by using the - errt ags=yes option.

no%ag Enables the warning message specified by this tag.

%al | Suppresses all warning messages.

%mone Enables all warning messages (default).

Defaults

The default is - er r of f =%mone. Specifying - er r of f is equivalent to specifying
-errof f =%l | .

Examples

For example, - er r of f =tag suppresses the warning message specified by this tag.
On the other hand, - er r of f =%al | ,no%tag suppresses all warning messages except
the messages identified by tag.

You can display the tag for a warning message by using the - errt ags=yes option.

Warnings

Only warning messages from the C++ compiler front-end that display a tag when
the - errt ags option is used can be suppressed with the - err of f option.

See Also

-errtags, -errwarn

C++ User’'s Guide « May 2003

A.2.16

A.2.17

-errtags[=4]

Displays the message tag for each warning message of the C++ compiler front-end
that can be suppressed with the - er r of f option or made a fatal warning with the
- er rwar n option.

Values and Defaults

a can be either yes or no. The default is - er rt ags=no. Specifying - errt ags is
equivalent to specifying - er rt ags=yes.

Warnings
Messages from the C++ compiler driver and other components of the compilation

system do not have error tags, and cannot be suppressed with - er r of f or made
fatal with - er rwar n.

See Also

-erroff,-errwarn

- errwar n[=t]

Use - er rwar n to cause the C++ compiler to exit with a failure status for the given
warning messages.

Values

t is a comma-separated list that consists of one or more of the following: tag, no%ag,
%l | , %one. Order is important; for example %al | , no%ag causes cc to exit with a
fatal status if any warning except tag is issued.

Appendix A C++ Compiler Options A-15

A-16

The following table details the - er r war n values:

TABLEA-5 The - errwar n Values

Value Meaning

tag Cause CCto exit with a fatal status if the message specified by this tag is issued
as a warning message. Has no effect if tag is not issued.

no%ag Prevent CC from exiting with a fatal status if the message specified by tag is
issued only as a warning message. Has no effect if the message specified by tag
is not issued. Use this option to revert a warning message that was previously
specified by this option with tag or %al | from causing cc to exit with a fatal
status when issued as a warning message.

%al | Cause CC to exit with a fatal status if any warning messages are issued. %al |
can be followed by no%ag to exempt specific warning messages from this
behavior.

%one Prevents any warning message from causing CC to exit with a fatal status

should any warning message be issued.

Defaults

The default is - er r war n=%one. If you specify - err war n alone, it is equivalent to
-errwarn=%al | .

Warnings

Only warning messages from the C++ compiler front-end that display a tag when
the - errt ags option is used can be specified with the - er r war n option to cause
the compiler to exit with a failure status.

The warning messages generated by the C++ compiler change from release to release
as the compiler error checking improves and features are added. Code that compiles
using - errwar n=%al | without error may not compile without error in the next
release of the compiler.

See Also

-erroff,-errtags

C++ User’'s Guide « May 2003

A.2.18

—f ast

Optimizes for speed of execution using a selection of options.

This option is a macro that selects a combination of compilation options for
optimum execution speed on the machine upon which the code is compiled.

Expansions

This option provides near maximum performance for many applications by
expanding to the following compilation options.

TABLEA-6 The - f ast Expansion

Option SPARC IA
—fns X X

—f si npl e=2 X

—ftrap=%one X

—-nof store

—xarch

—xI i bm |

X X X X X

—xI i bnopt
—xmenal i gn
—x0b

—xt arget=native

X X X X X X X

xX X X

-xbui l tin=%al |

Interactions

The - f ast macro expands into compilation options that may affect other specified
options. For example, in the following command, the expansion of the - f ast macro
includes - xt ar get =nat i ve which reverts - xar ch to one of the 32-bit architecture
options.

Incorrect:

exanmpl e% CC - xarch=v9 -fast test.cc

Appendix A C++ Compiler Options A-17

A-18

Correct:

exampl e% CC -fast -xarch=v9 test.cc

See the description for each option to determine possible interactions.

The code generation option, the optimization level, the optimization of built-in
functions, and the use of inline template files can be overridden by subsequent
options (see examples). The optimization level that you specify overrides a
previously set optimization level.

The —f ast option includes —f ns —f t r ap=%none; that is, this option turns off all
trapping.

Examples

The following compiler command results in an optimization level of —xC3.

exanmpl e% CC —fast —xO8

The following compiler command results in an optimization level of —xCb.

exanmpl e% CC - xO3 —f ast

Warnings

If you compile and link in separate steps, the - f ast option must appear in both the
compile command and the link command.

Code that is compiled with the - f ast option is not portable. For example, using the
following command on an UltraSPARC 11l system generates a binary that will not
execute on an UltraSPARC Il system.

exampl e% CC -fast test.cc

Do not use this option for programs that depend on IEEE standard floating-point
arithmetic; different numerical results, premature program termination, or
unexpected SIGFPE signals can occur.

In previous SPARC releases, the - f ast macro expanded to - f si npl e=1. Now it
expands to - f si npl e=2.

C++ User’'s Guide « May 2003

A.2.19

In previous releases, the - f ast macro expanded to - xO4. Now it expands to - x(5.

Note — In previous SPARC releases, the —f ast macro option included —f nonst d;
now it does not. Nonstandard floating-point mode is not initialized by —f ast . See
the Numerical Computation Guide, i eee_sun(3M).

See also

-fns,-fsinple,-ftrap=%one,-xlibmnl,-nofstore,-x05, -xlibnopt,
-xtarget=native

—f eat ur es=3], a...]

Enables/disables various C++ language features named in a comma-separated list.

Values

In both compatibility mode (- conpat [=4]) and standard mode (the default mode),
a can have the following values.

TABLEA-7 The - f eat ur es Values for Compatibility Mode and Standard Mode

Value of a Meaning
%al | All the - f eat ur es options that are valid for the specified mode.
[no%al t spel | [Do not] Recognize alternative token spellings (for example,

“and” for “&&”). The default is no%al t spel | in compatibility
mode and al t spel | in standard mode.

[no%anachr oni sns [Do not] Allow anachronistic constructs. When disabled (that is,
- f eat ur es=no%anachr oni sns), no anachronistic constructs are
allowed. The default is anachr oni sis.

[no%bool [Do not] Allow the bool type and literals. When enabled, the
macro _BOOL=1. When not enabled, the macro is not defined. The
default is no%bool in compatibility mode and bool

in standard mode.

[no%const st ri ngs [Do not] Put literal strings in read-only memory. The default is
no%onst st ri ngs in compatibility mode and const st ri ngs in
standard mode.

Appendix A C++ Compiler Options A-19

A-20

TABLEA-7 The - f eat ur es Values for Compatibility Mode and Standard Mode

Value of a

Meaning

[no%except

[no%export

[no%extensions

[no% i ddol | ar

[no% | ocal f or

[no% mut abl e

[no% split_init

[no% transitions

%none

[Do not] Allow C++ exceptions. When C++ exceptions are
disabled (that is, - f eat ur es=no%except), a throw-specification
on a function is accepted but ignored; the compiler does not
generate exception code. Note that the keywords t ry, t hr ow and
cat ch are always reserved. See Section 8.3, “Disabling
Exceptions” on page 8-2. The default is except .

[Do not] Recognize the keyword expor t. The default is
no%export in compatibility mode and export in standard mode.

[Do not] allow nonstandard code that is commonly accepted by
other C++ compilers. See Chapter 4 for an explanation of the
invalid code that is accepted by the compiler when you use the
- f eat ur es=ext ensi ons option. The default is

no%ext ensi ons.

[Do not] Allow a $ symbol as a noninitial identifier character. The
default is no% ddol | ar.

[Do not] Use new local-scope rules for the f or statement. The
default is no% ocal f or in compatibility mode and | ocal f or in
standard mode.

[Do not] Recognize the keyword nut abl e. The default is
no%rut abl e in compatibility mode and rmut abl e in standard
mode.

[Do not] Put initializers for nonlocal static objects into individual
functions. When you use - f eat ures=no%plit_init, the
compiler puts all the initializers in one function. Using
-features=no%split_init minimizes code size at the possible
expense of compile time. The defaultissplit_init.

[Do not] allow ARM language constructs that are problematic in
standard C++ and that may cause the program to behave
differently than expected or that may be rejected by future
compilers. When you use - f eat ur es=no% r ansi ti ons, the
compiler treats these as errors. When you use
-features=transitions instandard mode, the compiler issues
warnings about these constructs instead of error messages. When
you use - f eat ur es=t ransi ti ons in compatibility mode

(- conpat [=4]), the compiler displays the warnings about these
constructs only if +wor +w2 is specified. The following constructs
are considered to be transition errors: redefining a template after it
was used, omitting the t ypenane directive when it is needed in a
template definition, and implicitly declaring type i nt . The set of
transition errors may change in a future release. The default is
transitions.

Turn off all the features that can be turned off for the specified
mode.

C++ User’'s Guide « May 2003

In standard mode (the default mode), a can have the following additional values.

TABLEA-8 The - f eat ur es Values for Standard Mode Only

Value of a Meaning

[no% strictdestrorder [Do not] Follow the requirements specified by the C++
standard regarding the order of the destruction of objects
with static storage duration. The default is
strictdestrorder.

[no%tnplife [Do not] Clean up the temporary objects that are created by
an expression at the end of the full expression, as defined in
the ANSI/ISO C++ Standard. (When
-features=no% nplife isin effect, most temporary
objects are cleaned up at the end of their block.) The default
isno% nplife.

In compatibility mode (- conpat [=4]), a can have the following additional values.

TABLEA-9 The - f eat ur es Values for Compatibility Mode Only

Value of a Meaning

[no% arr aynew [Do not] Recognize array forms of operator new and
operator delete (for example,
operator new [] (void*)). When enabled, the macro
__ARRAYNEWEL. When not enabled, the macro is not defined.
The default is no%ar r aynew

[no% explicit [Do not] Recognize the keyword expl i ci t. The default is
no%explicit.

[no% namespace [Do not] Recognize the keywords namespace and usi ng.
The default is no%hanmespace.
The purpose of - f eat ur es=nanmespace is to aid in
converting code to standard mode. By enabling this option,
you get error messages if you use these keywords as
identifiers. The keyword recognition options allow you to
find uses of the added keywords without having to compile
in standard mode.

[no%rtti [Do not] Allow runtime type information (RTTI). RTTI must
be enabled to use the dynami c¢_cast <> and t ypei d
operators. The defaultis no% tti .

Appendix A C++ Compiler Options A-21

A-22

Note — The [no% cast op setting is allowed for compatibility with makefiles
written for the C++ 4.2 compiler, but has no affect on compiler versions 5.0, 5.1, 5.2
and 5.3. The new style casts (const _cast, dynam c_cast, rei nterpret_cast,
and st ati c_cast) are always recognized and cannot be disabled.

Defaults

If —f eat ur es is not specified, the following is assumed:
= Compatibility mode (- conpat [=4])

—f eat ur es=%one, anachr oni snms, except,split_init,transitions

= Standard mode (the default mode)

—features=%al | , no% ddol | ar, no%ext ensi ons

Interactions
This option accumulates instead of overrides.

Use of the following in standard mode (the default) is not compatible with the
standard libraries and headers:

= no%bool

= no%except

= no%mut abl e
= no%explicit

In compatibility mode (- conpat [=4]), the - f eat ur es=t r ansi t i ons option has no
effect unless you specify the +w option or the +w2 option.

Warnings

The behavior of a program might change when you use the - f eat ures=tnplife
option. Testing whether the program works both with and without the
-features=tnplife option is one way to test the program’s portability.

C++ User’'s Guide « May 2003

A.2.20

The compiler assumes - f eat ures=spl it _i nit by default. If you use the

- f eat ur es=%one option to turn off other features, you may find it desirable to
turn the splitting of initializers into separate functions back on by using

-f eat ures=%one, split_init instead.

See also

Chapter 4 and the C++ Migration Guide

~fi |t [=filter[, filter...]]

Controls the filtering that the compiler normally applies to linker and compiler error
messages.

Values

filter must be one of the following values.

TABLEA-10 The -filt Values

Value of filter Meaning

[no%errors [Do not] Show the C++ explanations of the linker error messages.
The suppression of the explanations is useful when the linker
diagnostics are provided directly to another tool.

[no%names [Do not] Demangle the C++ mangled linker names.

[no%r et urns [Do not] Demangle the return types of functions. Suppression of this
type of demangling helps you to identify function names more
quickly, but note that in the case of co-variant returns some
functions differ only in the return type.

[no%stdlib [Do not] Simplify names from the standard library in both the linker
and compiler error messages. This makes it easier for you to
recognize the names of standard library template types.

%al | Equivalentto -filt=errors, nanes, returns, stdlib. Thisis
the default behavior.

%one Equivalent to
-filt=no%rrors, no%manes, no% et urns, no¥%tdlib.

Appendix A C++ Compiler Options A-23

Defaults

If you do not specify the - fi | t option, or if you specify - fi | t without any values,
then the compiler assumes - fi |l t =%al | .

Examples

The following examples show the effects of compiling this code with the - fi | t
option.

I/ filt_deno.cc
class type {
public:
virtual ~type(); // no definition provided

b
int main()
{

type t;
}

When you compile the code without the - fi | t option, the compiler assumes
-filt=errors, nanes, returns, stdli b and displays the standard output.

exanpl e% CC filt_deno. cc

Undef i ned first referenced
synbol infile

type:: ~type() filt_deno.o

type::__vthl filt_deno.o

[Hnt: try checking whether the first non-inlined, non-pure
virtual function of class type is defined]

Id: fatal: Synbol referencing errors. No output witten to a.out

The following command suppresses the demangling of the of the C++ mangled
linker names and suppresses the C++ explanations of linker errors.

exanpl e% CC -filt=no%anes, no%rrors filt_deno.cc

Undefi ned first referenced
synbol infile

__1cEtype2T6M v_ filt_deno.o

__1cEtypeG__vtbl _ filt_deno.o

Id: fatal: Synbol referencing errors. No output witten to a.out

A-24 C++ User’'s Guide » May 2003

Now consider this code:

#i ncl ude <string>
#include <list>

int main()
{

std::list<int> |;

std::string s(l); // error here
}

Here’s the output when you specify - fi |l t =no%stdl i b:

Error: Cannot use std::list<int, std::allocator<int>> to
initialize

std: : basic_string<char, std::char_traits<char>,

std::all ocat or <char >>.

Here’s the output when you specify -fil t=stdl i b:

Error: Cannot use std::list<int>to initialize std::string .

Interactions

When you specify no%manes, neither r et ur ns nor no% et ur ns has an effect. That
is, the following options are equivalent:

« -filt=no%anes
= -filt=no%anes, no% et urns
« -filt=no%anes, returns

A.221 —fl ags

Same as —xhel p=f1| ags.

Appendix A C++ Compiler Options A-25

A.2.22

A.2.23

—f nonstd

Causes hardware traps to be enabled for floating-point overflow, division by zero,

and invalid operations exceptions. These results are converted into SIGFPE signals;
if the program has no SIGFPE handler, it terminates with a memory dump (unless

you limit the core dump size to 0).

SPARC: In addition, - f nonst d selects SPARC nonstandard floating point.

Defaults

If —f nonst d is not specified, IEEE 754 floating-point arithmetic exceptions do not
abort the program, and underflows are gradual.

Expansions
IA: - f nonst d expands to - f t r ap=cormon.

SPARC: - f nonst d expands to - f ns - f t r ap=conmon.

See also

—f ns, —f t rap=common, Numerical Computation Guide.

—f ns[={yes | no}]
SPARC: Enables/disables the SPARC nonstandard floating-point mode.

-fns=yes (or - f ns) causes the nonstandard floating point mode to be enabled
when a program begins execution.

This option provides a way of toggling the use of nonstandard or standard
floating-point mode following some other macro option that includes —f ns, such as
—f ast. (See “Examples.”)

On some SPARC devices, the nonstandard floating-point mode disables “gradual
underflow,” causing tiny results to be flushed to zero rather than to produce
subnormal numbers. It also causes subnormal operands to be silently replaced by
zero.

On those SPARC devices that do not support gradual underflow and subnormal
numbers in hardware, - f ns=yes (or - f ns) can significantly improve the
performance of some programs.

A-26 C++ User’'s Guide » May 2003

Values

The - f ns option can have the following values.

TABLE A-11 The - f ns Values

Value Meaning

yes Selects nonstandard floating-point mode
no Selects standard floating-point mode
Defaults

If - f ns is not specified, the nonstandard floating point mode is not enabled
automatically. Standard IEEE 754 floating-point computation takes place—that is,
underflows are gradual.

If only —f ns is specified, —f ns=yes is assumed.

Examples

In the following example, - f ast expands to several options, one of which is
- f ns=yes which selects nonstandard floating-point mode. The subsequent
- f ns=no option overrides the initial setting and selects floating-point mode.

exanmpl e% CC foo.cc -fast -fns=no

Warnings

When nonstandard mode is enabled, floating-point arithmetic can produce results
that do not conform to the requirements of the IEEE 754 standard.

If you compile one routine with the - f ns option, then compile all routines of the
program with the —f ns option; otherwise, you might get unexpected results.

This option is effective only on SPARC devices, and only if used when compiling the
main program. On IA devices, the option is ignored.

Use of the —f ns=yes (or - f ns) option might generate the following message if your
program experiences a floating-point error normally managed by the IEEE
floating-point trap handlers:

Appendix A C++ Compiler Options ~ A-27

A.2.24

See also

Numerical Computation Guide, i eee_sun(3M)

—f pr eci si on=p
IA: Sets the non-default floating-point precision mode.

The —f pr eci si on option sets the rounding precision mode bits in the Floating
Point Control Word. These bits control the precision to which the results of basic
arithmetic operations (add, subtract, multiply, divide, and square root) are rounded.

Values

p must be one of the following values.

TABLE A-12 The - f preci si on Values

Value of p Meaning

single Rounds to an IEEE single-precision value.
doubl e Rounds to an IEEE double-precision value.
ext ended Rounds to the maximum precision available.

If p is si ngl e or doubl e, this option causes the rounding precision mode to be set
to si ngl e or doubl e precision, respectively, when a program begins execution. If p
is ext ended or the —f pr eci si on option is not used, the rounding precision mode
remains at the ext ended precision.

The si ngl e precision rounding mode causes results to be rounded to 24 significant
bits, and doubl e precision rounding mode causes results to be rounded to 53
significant bits. In the default ext ended precision mode, results are rounded to 64
significant bits. This mode controls only the precision to which results in registers
are rounded, and it does not affect the range. All results in register are rounded
using the full range of the extended double format. Results that are stored in
memory are rounded to both the range and precision of the destination format,
however.

The nominal precision of the f | oat type is si ngl e. The nominal precision of the
| ong doubl e type is ext ended.

A-28 C++ User’'s Guide » May 2003

A.2.25

Defaults

When the —f pr eci si on option is not specified, the rounding precision mode
defaults to ext ended.

Warnings

This option is effective only on IA devices and only if used when compiling the
main program. On SPARC devices, this option is ignored.

—f round=r

Sets the IEEE rounding mode in effect at startup.

This option sets the IEEE 754 rounding mode that:

= Can be used by the compiler in evaluating constant expressions
= Is established at runtime during the program initialization

The meanings are the same as those for the i eee_f | ags subroutine, which can be
used to change the mode at runtime.

Values

r must be one of the following values.

TABLE A-13 The - f r ound Values

Value of r Meaning

near est Rounds towards the nearest number and breaks ties to even numbers.
tozero Rounds to zero.

negative Rounds to negative infinity.

positive Rounds to positive infinity.

Defaults

When the —f r ound option is not specified, the rounding mode defaults to
- fround=near est .

Appendix A C++ Compiler Options A-29

Warnings

If you compile one routine with —f r ound=r, compile all routines of the program
with the same —f r ound=r option; otherwise, you might get unexpected results.

This option is effective only if used when compiling the main program.

A.2.26 —f sinpl e[=n]
Selects floating-point optimization preferences.

This option allows the optimizer to make simplifying assumptions concerning
floating-point arithmetic.

Values

If n is present, it must be 0, 1, or 2.

TABLE A-14 The - f si npl e Values

Value of n Meaning
0 Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.
1 Allow conservative simplification. The resulting code does not strictly

conform to IEEE 754, but numeric results of most programs are unchanged.

With - f si npl e=1, the optimizer can assume the following:

= |EEE754 default rounding/trapping modes do not change after process
initialization.

= Computation producing no visible result other than potential floating-point
exceptions can be deleted.

= Computation with infinities or NaNs as operands needs to propagate NaNs
to their results; that is, x*0 can be replaced by 0.

= Computations do not depend on sign of zero.

With - f si npl e=1, the optimizer is not allowed to optimize completely

without regard to roundoff or exceptions. In particular, a floating-point

computation cannot be replaced by one that produces different results when

rounding modes are held constant at runtime.

2 Permit aggressive floating-point optimization that can cause many programs
to produce different numeric results due to changes in rounding. For example,
permit the optimizer to replace all computations of x/y in a given loop with
x*z, where x/ y is guaranteed to be evaluated at least once in the loop z=1/y,
and the values of y and z are known to have constant values during execution
of the loop.

A-30 C++ User's Guide » May 2003

Defaults
If —f si npl e is not designated, the compiler uses - f si npl e=0.

If - f si npl e is designated but no value is given for n, the compiler uses
- fsi npl e=1.

Interactions

-fast implies —f si npl e=2.

Warnings

This option can break IEEE 754 conformance.

See also

-fast

A.2.27 —fstore

IA: This option causes the compiler to convert the value of a floating-point
expression or function to the type on the left side of an assignment rather than leave
the value in a register when the following is true:

= The expression or function is assigned to a variable.
= The expression is cast to a shorter floating-point type.

To turn off this option, use the —nof st or e option.

Warnings

Due to roundoffs and truncation, the results can be different from those that are
generated from the register values.

See also

—nof store

Appendix A C++ Compiler Options A-31

A.2.28 —ftrap=t[,t.]

Sets the IEEE trapping mode in effect at startup.

This option sets the IEEE 754 trapping modes that are established at program
initialization, but does not install a SI GFPE handler. You can use i eee_handl er to
simultaneously enable traps and install a SIGFPE handler. When more than one
value is used, the list is processed sequentially from left to right.

Values

t can be one of the following values.

TABLE A-15 The - ft rap Values

Value of t Meaning

[no% di vi si on [Do not] Trap on division by zero.
[no% i nexact [Do not] Trap on inexact result.
[no%invalid [Do not] Trap on invalid operation.
[no% overfl ow [Do not] Trap on overflow.

[no% underfl ow [Do not] Trap on underflow.

%al | Trap on all of the above.
%mone Trap on none of the above.
conmon Trap on invalid, division by zero, and overflow.

Note that the [no% form of the option is used only to modify the meaning of the
%l | and conmon values, and must be used with one of these values, as shown in
the example. The [no% form of the option by itself does not explicitly cause a
particular trap to be disabled.

If you want to enable the IEEE traps, - f t r ap=conmon is the recommended setting.

Defaults

If —f t rap is not specified, the —f t r ap=%one value is assumed. (Traps are not
enabled automatically.)

A-32 C++ User’'s Guide » May 2003

A.2.29

Examples

When one or more terms are given, the list is processed sequentially from left to
right, thus —f t rap=%al | , no% nexact means to set all traps except inexact.

Interactions

The mode can be changed at runtime with i eee_handl| er (3M).

Warnings

If you compile one routine with —f t r ap=t, compile all routines of the program with
the same - f t r ap=t option; otherwise, you might get unexpected results.

Use the - f t rap=i nexact trap with caution. Use of —f t r ap=i nexact results in the
trap being issued whenever a floating-point value cannot be represented exactly. For
example, the following statement generates this condition:

x =1.0/ 3.0;

This option is effective only if used when compiling the main program. Be cautious
when using this option. If you wish to enable the IEEE traps, use —f t r ap=cormmon.

See also

i eee_handl er (3M) man page

Build a dynamic shared library instead of an executable file.

All source files specified in the command line are compiled with - Kpi ¢ by default.

When building a shared library that uses templates, it is necessary in most cases to
include in the shared library those template functions that are instantiated in the
template data base. Using this option automatically adds those templates to the
shared library as needed.

Appendix A C++ Compiler Options A-33

A.2.30

Interactions

The following options are passed to | d if —c (the compile-only option) is not
specified:

] —dy
« G
« -R
Warnings

Do not use | d - Gto build shared libraries; use CC - G. The CC driver automatically
passes several options to | d that are needed for C++.

When you use the - G option, the compiler does not pass any default - | options to
| d. If you want the shared library to have a dependency on another shared library,
you must pass the necessary - | option on the command line. For example, if you
want the shared library to be dependent upon | i bCr un, you must pass - | Crun on
the command line.

See also

-dy, -Kpic, -xcode=pi cl3, -xildoff, —ztext, |d(1) man page, Section 16.3,
“Building Dynamic (Shared) Libraries” on page 16-3.

Produces additional symbol table information for debugging with dbx(1) or the

Debugger and for analysis with the Performance Analyzer anal yzer (1).

Instructs both the compiler and the linker to prepare the file or program for
debugging and for performance analysis.
The tasks include:

= Producing detailed information, known as stabs, in the symbol table of the object
files and the executable

= Producing some “helper functions,” which the debugger can call to implement
some of its features

= Disabling the inline generation of functions
= Disabling certain levels of optimization

A-34 C++ User’'s Guide » May 2003

Interactions

If you use this option with —xQOlevel (or its equivalent options, such as - O), you will
get limited debugging information. For more information, see Section A.2.141,
“- xOlevel” on page A-115.

If you use this option and the optimization level is - X3 or lower, the compiler
provides best-effort symbolic information with almost full optimization. Tail-call
optimization and back-end inlining are disabled.

If you use this option and the optimization level is - xO4 or higher, the compiler
provides best-effort symbolic information with full optimization.

When you specify this option, the +d option is specified automatically.

This option makes —xi | don the default incremental linker option in order to speed
up the compile-edit-debug cycle.

This option invokes i | d in place of | d unless any of the following are true:

= The —Goption is present
= The —xi | dof f option is present
= Any source files are named on the command line

To use the full capabilities of the Performance Analyzer, compile with the - g option.
While some performance analysis features do not require - g, you must compile with
- g to view annotated source, some function level information, and compiler
commentary messages. See the anal yzer (1) man page and “Compiling Your
Program for Data Collection and Analysis” in Program Performance Analysis Tools for
more information.

The commentary messages that are generated with - g describe the optimizations
and transformations that the compiler made while compiling your program. Use the
er _src(1) command to display the messages, which are interleaved with the source
code.

Warnings

If you compile and link your program in separate steps, then including the - g
option in one step and excluding it from the other step will not affect the correctness
of the program, but it will affect the ability to debug the program. Any module that
is not compiled with - g (or - g0), but is linked with - g (or - g0) will not be prepared
properly for debugging. Note that compiling the module that contains the function
mai n with the - g option (or the - g0 option) is usually necessary for debugging.

Appendix A C++ Compiler Options A-35

A.2.31

A.2.32

A.2.33

See also

+d, —g0, —xil doff, —xil don, —xs, anal yzer (1) man page, er _sr c(1) man
page, | d(1) man page, Debugging a Program With dbx (for details about stabs),
Program Performance Analysis Tools.

_go
Compiles and links for debugging, but does not disable inlining.

This option is the same as —g, except that +d is disabled.

See also

+d, —g, —xildon, Debugging a Program With dbx

Prints path names of included files.

On the standard error output (st derr), this option prints, one per line, the path
name of each #i ncl ude file contained in the current compilation.

—h[Jname

Assigns the name name to the generated dynamic shared library. This is a loader
option, passed to | d. In general, the name after - h should be exactly the same as the
one after —o. A space between the —h and name is optional.

The compile-time loader assigns the specified name to the shared dynamic library
you are creating. It records the name in the library file as the intrinsic name of the
library. If there is no —hname option, then no intrinsic name is recorded in the library
file.

Every executable file has a list of shared library files that are needed. When the
runtime linker links the library into an executable file, the linker copies the intrinsic
name from the library into that list of needed shared library files. If there is no
intrinsic name of a shared library, then the linker copies the path of the shared
library file instead.

A-36 C++ User's Guide » May 2003

A.2.34

A.2.35

Examples

exampl e% CC -G -0 libx.so.1 -h libx.so.1 a.o b.o c.o

—hel p

Same as - xhel p=f| ags.

- | pathname

Add pathname to the #i ncl ude file search path.

This option adds pathname to the list of directories that are searched for #i ncl ude
files with relative file names (those that do not begin with a slash).

The compiler searches for quote-included files (of the form #i ncl ude "f 0co. h") in
this order.

1. In the directory containing the source
2. In the directories named with - | options, if any

3. In the i ncl ude directories for compiler-provided C++ header files, ANSI C
header files, and special-purpose files

4. In the / usr /i ncl ude directory

The compiler searches for bracket-included files (of the form #i ncl ude <f 0o. h>) in
this order.

1. In the directories named with - | options, if any

2. In the i ncl ude directories for compiler-provided C++ header files, ANSI C
header files, and special-purpose files

3. Inthe /usr/i ncl ude directory

Note — If the spelling matches the name of a standard header file, also refer to
Section 12.7.5, “Standard Header Implementation” on page 12-15.

Appendix A C++ Compiler Options A-37

A.2.36

Interactions
The -1 - option allows you to override the default search rules.

If you specify -1 i br ar y=no%Cst d, then the compiler does not include in its search
path the compiler-provided header files that are associated with the C++ standard
libraries. See Section 12.7, “Replacing the C++ Standard Library” on page 12-13.

If —pti path is not used, the compiler looks for template files in —I pathname.
Use —I pathname instead of —pt i path.

This option accumulates instead of overrides.

See also

-] -
Change the include-file search rules to the following:

For include files of the form #i ncl ude "f 0o. h", search the directories in the
following order.

1. The directories named with -1 options (both before and after -1 -)

2. The directories for compiler-provided C++ header files, ANSI C header files, and
special-purpose files

3. The /usr/incl ude directory

For include files of the form #i ncl ude <f 0o. h>, search the directories in the
following order.

1. The directories named in the - | options that appear after - | -

2. The directories for compiler-provided C++ header files, ANSI C header files, and
special-purpose files

3. The /usr/incl ude directory

Note — If the name of the include file matches the name of a standard header, also
refer to Section 12.7.5, “Standard Header Implementation” on page 12-15.

A-38 C++ User’'s Guide » May 2003

Examples

The following example shows the results of using - | - when compiling pr og. cc.

prog. cc #i ncl ude "a. h"
#i ncl ude <b. h>
#i nclude "c. h"

c.h #ifndef _CH1
#define _CH1
int cl;

#endi f

inc/a.h #i fndef _A H

#define A H
#include "c. h"
int a;

#endi f

inc/b.h #i fndef _B H
#define _B H
#i ncl ude <c. h>
int b;
#endi f

inc/c.h #ifndef _CH2
#define CH 2
int c2;
#endi f

The following command shows the default behavior of searching the current
directory (the directory of the including file) for include statements of the form

#i ncl ude "f 0o. h". When processing the #i ncl ude "c. h" statementini nc/ a. h,
the compiler includes the c. h header file from the i nc subdirectory. When
processing the #i ncl ude "c. h" statement in pr og. cc, the compiler includes the
c. h file from the directory containing pr og. cc. Note that the - H option instructs
the compiler to print the paths of the included files.

exampl e% CC -c -linc -H prog.cc

inc/a.h

inc/c.h
inc/b.h

inc/c.h
c.h

Appendix A C++ Compiler Options A-39

A.2.37

A.2.38

A.2.39

The next command shows the effect of the - | - option. The compiler does not look in
the including directory first when it processes statements of the form #i ncl ude
"foo. h". Instead, it searches the directories named by the - I options in the order
that they appear in the command line. When processing the #i ncl ude "c. h"
statement in i nc/ a. h, the compiler includes the . / c. h header file instead of the

i nc/ c. h header file.

exampl e% CC -c -1. -1- -linc -H prog.cc
inc/a.h
./c.h
inc/b.h
inc/c.h
./c.h

Interactions

When - | - appears in the command line, the compiler never searches the current
directory, unless the directory is listed explicitly in a - | directive. This effect applies
even for include statements of the form #i ncl ude "f oo. h".

Warnings

Only the first - 1 - in a command line causes the described behavior.

Tells the linker, | d, to ignore any LD_LI BRARY_PATH setting.

-inline

Same as - Xi nl i ne.

—1 nst ances=a

Controls the placement and linkage of template instances.

A-40 C++ User’'s Guide » May 2003

A.2.40

Values

a must be one of the following values.

TABLE A-16 The -i nst ances Values

Value of a Meaning

explicit Places explicitly instantiated instances into the current object file and
gives them global linkage. Does not generate any other needed
instances.

extern Places all needed instances into the template repository and gives
them global linkage. (If an instance in the repository is out of date, it
is reinstantiated.)

gl obal Places all needed instances into the current object file and gives them

sem explicit

static

global linkage.

Places explicitly instantiated instances into the current object file and
gives them global linkage. Places all instances needed by the explicit
instances into the current object file and gives them global linkage.
Does not generate any other needed instances.

Places all needed instances into the current object file and gives them
static linkage.

Defaults

If —i nst ances is not specified, —i nst ances=gl obal is assumed.

See also

Section 7.2.4, “Template Instance Placement and Linkage” on page 7-3.

—i nst | i b=filename

Use this option to inhibit the generation of template instances that are duplicated in
a library, either shared or static, and the current object. In general, if your program
shares large numbers of instances with libraries, try - i nst | i b=filename and see
whether or not compilation time improves.

Appendix A C++ Compiler Options A-41

A.2.41

Values:

Use the filename argument to specify the library that you know contains the existing
template instances. The filename argument must contain a forward slash '/’
character. For paths relative to the current directory, use dot-slash *./’.

Defaults:

The - i nst | i b=filename option has no default and is only used if you specify it. This
option can be specified multiple times and accumulates.

Example:

Assume that the | i bf oo. a and | i bbar . so libraries instantiate many template
instances that are shared with your source file a. cc. Adding -i nst | i b=filename
and specifying the libraries helps reduce compile time by avoiding the redundancy.

exanmpl e% CC -c -instlib=./libfoo.a -instlib=./libbar.so a.cc

Interactions:

When you compile with - g, if the library specified with - i nst | i b=filename is not
compiled with - g, those template instances will not be debugable. The workaround
is to avoid - i nst | i b=filename when you use - g.

The - L path is not searched to find the named library.

Warning

If you specify a library with -i nst|i b, you must link with that library.

See Also:

-tenpl at e, -i nst ances, -pti

—KPI C

SPARC: Same as —xcode=pi c32.

IA: Same as —Kpi c.

A-42 C++ User’'s Guide » May 2003

A.2.42

A.2.43

A.2.44

Use this option to compile source files when building a shared library. Each
reference to a global datum is generated as a dereference of a pointer in the global
offset table. Each function call is generated in pc-relative addressing mode through a
procedure linkage table.

—Kpi ¢
SPARC: Same as —xcode=pi c13.

IA: Compiles with position-independent code.

Use this option to compile source files when building a shared library. Each
reference to a global datum is generated as a dereference of a pointer in the global
offset table. Each function call is generated in pc-relative addressing mode through a
procedure linkage table.

—keept np
Retains temporary files created during compilation.

Along with —ver bose=di ags, this option is useful for debugging.

See also

-v, -verbose

—L path
Adds path to list of directories to search for libraries.

This option is passed to | d. The directory that is named by path is searched before
compiler-provided directories.

Interactions

This option accumulates instead of overrides.

Appendix A C++ Compiler Options A-43

A.2.45

A.2.46

A.2.47

—1 lib
Adds library i blib. a or I i blib. so to the linker’s list of search libraries.

This option is passed to | d. Normal libraries have names such as | i blib. a or

I i blib. so, wheretheli b and. a or. so parts are required. You should specify the
lib part with this option. Put as many libraries as you want on a single command
line; they are searched in the order specified with —Ldir.

Use this option after your object file name.

Interactions
This option accumulates instead of overrides.

It is always safer to put —I x after the list of sources and objects to insure that libraries
are searched in the correct order.

Warnings

To ensure proper library linking order, you must use - nt , rather than - | t hr ead, to
link with I i bt hr ead.

If you are using POSIX threads, you must link with the - nt and - | pt hr ead
options. The - mt option is necessary because | i bCrun (standard mode) and | i bC
(compatibility mode) need | i bt hr ead for a multithreaded application.

See also

—Ldir, -nt, Chapter 12, and Tools.h++ Class Library Reference

—l i bm eee
Same as —x!| i bni eee.
—libml

Same as —x| i bm | .

A-44 C++ User’'s Guide » May 2003

A.248 -library=Il[,I.]

Incorporates specified CC-provided libraries into compilation and linking.

Values

For compatibility mode (—conpat [=4]), | must be one of the following values.

TABLE A-17 The - | i brary Values for Compatibility Mode

Value of | Meaning

[no% f 77 Deprecated. Do not use. Use - x| ang=f 77.

[no% f 90 Deprecated. Do not use. Use - x| ang=f 90.

[no% f 95 Deprecated. Do not use. Use - x| ang=f 95.

[no% r wt ool s7 [Do not] Use classic-iostreams Tool s. h++ version 7.

[no% rwt ool s7_dbg [Do not] Use debug-enabled Tool s. h++ version 7.

[no% conpl ex [Do not] Use | i bconpl ex for complex arithmetic.
[no% i nterval Deprecated. Do not use. Use - xi a.

[no% i bC [Do not] Use | i bC, the C++ support library.

[no% gc [Do not] Use | i bgc, garbage collection.

[no% sunper f SPARC: [Do not] Use the Sun Performance Library™
%al | Deprecated. - | i brary=%al | is the same as specifying

-library=f77,f90, rwt ool s7, conpl ex, interval, gc.
Note that the | i bClibrary always is included unless it is
specifically excluded using - 1 i br ar y=no% i bC. See the Warnings
section for additional information.

%mone Use no C++ libraries except for | i bC.

For standard mode (the default mode), | must be one of the following:

TABLEA-18 The -1i brary Values for Standard Mode

Value of | Meaning

[no% f 77 Deprecated. Do not use. Use - x| ang=f 77.

[no% f 90 Deprecated. Do not use. Use - x| ang=f 90.

[no% f 95 Deprecated. Do not use. Use - x| ang=f 95.

[no% r wt ool s7 [Do not] Use classic-iostreams Tool s. h++ version 7.

Appendix A C++ Compiler Options ~ A-45

A-46

TABLE A-18 The - | i brary Values for Standard Mode (Continued)

Value of |

Meaning

[no% rwt ool s7_dbg

[no% rwt ool s7_std

[no% rwt ool s7_st d_dbg

[no% i nterval
[no% i ostream

[no% Cstd

[no% Crun

[no% gc
[no% st port4

[no% st port4_dbg

[no% sunper f

[Do not] Use debug-enabled Tool s. h++ version 7.
[Do not] Use standard-iostreams Tool s. h++ version 7.

[Do not] Use debug-enabled standard-iostreams Tool s. h++
version 7.

Deprecated. Do not use. Use - xi a.
[Do not] Use | i bi ost r eam the classic iostreams library.

[Do not] Use | i bCst d, the C++ standard library. [Do not]
Include the compiler-provided C++ standard library header
files.

[Do not] Use | i bCrun, the C++ runtime library.
[Do not] Use | i bgc, garbage collection.

[Do not] Use STLport’s Standard Library implementation
version 4.5.3 instead of the default | i bCst d. For more
information about using STLport’s implementation, see
“STLport” on page 13-16.

[Do not] Use STLport’s debug-enabled library.
SPARC: [Do not] Use the Sun Performance Library™,

%al | Deprecated. - | i brary=%al | is the same as specifying
-library=f77,f90, rw ool s7,gc, i nterval,iostream
Cst d. Note that the | i bCr un library always is included
unless it is specifically excluded using - | i br ar y=no%Cr un.
See the Warnings section for additional information.

%one Use no C++ libraries, except for I i bCrun.

Defaults

= Compatibility mode (—conpat [=4])

If -l i brary is not specified, -1 i br ar y=%0ne is assumed.

The | i bC library always is included unless it is specifically excluded using
-library=no% i bC.

= Standard mode (the default mode)

If -l i brary is not specified, - | i br ar y=%one, Cst d is assumed.

The |'i bCst d library always is included unless it is specifically excluded using
-li brary=%one or-Ilibrary=no%Cstdor-I|ibrary=stlport4.

The |'i bCrun library always is included unless it is specifically excluded using
-1i brary=no%Cr un.

C++ User’'s Guide « May 2003

Examples

To link in standard mode without any C++ libraries (except | i bCr un), use:

exanpl e% CC -1 i brary=%one

To include the classic-iostreams Rogue Wave t ool s. h++ library in standard mode:

exanpl e% CC -l i brary=rwt ool s7,i ostream

To include the standard-iostreams Rogue Wave t ool s. h++ library in standard
mode:

exanpl e% CC -1i brary=rw ool s7_std

To include the classic-iostreams Rogue Wave t ool s. h++ library in compatibility
mode:

exanpl e% CC -conpat -1ibrary=rw ool s7

Interactions

If a library is specified with - | i br ary, the proper —I paths are set during
compilation. The proper —L, =Y P, —R paths and —| options are set during linking.

This option accumulates instead of overrides.

When you use the interval arithmetic libraries, you must include one of the
following libraries: I i bC, | i bCstd, or | i bi ostream

Use of the - | i br ary option ensures that the - | options for the specified libraries
are emitted in the right order. For example, the -1 options are passed to | d in the
order - | rwt ool -1i ostreamfor both -1i brary=rw ool s7,i ostreamand
-li brary=i ostream rw ool s7.

The specified libraries are linked before the system support libraries are linked.

You cannot use - | i brary=sunperf and -xlic_li b=sunperf on the same
command line.

You cannot use - | i brary=stl port4 and-1|i brary=Cst d on the same command
line.

Appendix A C++ Compiler Options A-47

A-48

Only one Rogue Wave tools library can be used at a time and you cannot use any
Rogue Wave tools library with -1 i brary=st| port 4.

When you include the classic-iostreams Rogue Wave tools library in standard mode
(the default mode), you must also include | i bi ost r eam(see the C++ Migration
Guide for additional information). You can use the standard-iostreams Rogue Wave
tools library in standard mode only. The following command examples show both
valid and invalid use of the Rogue Wave t ool s. h++ library options.

% CC -conpat -library=rwtools foo.cc <--valid

% CC -conpat -library=rwtools_std foo.cc <--invalid

% CC -library=rwtools,iostreamfoo.cc <-- valid, classic iostreams
% CC -library=rwtools foo.cc <--invalid

% CC -library=rwtools_std foo.cc <-- valid, standard iostreams
% CC -library=rwtool s_std,iostreamfoo.cc <--invalid

If you include both | i bCst d and | i bi ost r eam you must be careful to not use the
old and new forms of iostreams (for example, cout and st d: : cout) within a
program to access the same file. Mixing standard iostreams and classic iostreams in
the same program is likely to cause problems if the same file is accessed from both
classic and standard iostream code.

Programs linking neither | i bC nor I i bCr un might not use all features of the C++
language.

If - xnol i b is specified, - | i brary is ignored.

Warnings

If you compile and link in separate steps, the set of - | i br ar y options that appear in
the compile command must appear in the link command.

The st port 4, Cstd and i ost r eamlibraries provide their own implementation of
1/0 streams. Specifying more than one of these with the - | i br ar y option can result
in undefined program behavior. For more information about using STLport’s
implementation, see “STLport” on page 13-16.

The set of libraries is not stable and might change from release to release.

We recommend against using the -1 i brary=%al | option because:

= The exact set of libraries that will be included by using this command may vary
from release to release.

= You might not get a library you were expecting.

C++ User’'s Guide « May 2003

A.2.49

A.2.50

= You might get a library you were not expecting.

= Others developers who look at the makefile command line will not know what
you were expecting to link.

= This option will be removed in a future release of the compiler.

See also

-l,-l,-R —=staticlib,-xia,-xlang, —xnol i b, Chapter 12, Chapter 13,
Chapter 14, Section 2.7.3.3, “Using make With Standard Library Header Files” on
page 2-16, Tools.h++ User’s Guide, Tools.h++ Class Library Reference, Standard C++ Class
Library Reference, C++ Interval Arithmetic Programming Reference.

For information on using the - | i br ar y=no%st d option to enable use of your own
C++ standard library, see Section 12.7, “Replacing the C++ Standard Library” on
page 12-13.

-NT
Removes duplicate strings from the .comment section of the object file. If the string

contains blanks, the string must be enclosed in quotation marks. When you use the
-t option, the nts - ¢ command is invoked.

—m gration

Explains where to get information about migrating source code that was built for
earlier versions of the compiler.

Note — This option might cease to exist in the next release.

Appendix A C++ Compiler Options ~ A-49

A.251

A.2.52

—m sal i gn

SPARC: Permits misaligned data, which would otherwise generate an error, in
memory. This is shown in the following code:

char b[100];
int f(int * ar) {
return *(int *) (b +2) + *ar;

}

This option informs the compiler that some data in your program is not properly
aligned. Thus, very conservative loads and stores must be used for any data that
might be misaligned, that is, one byte at a time. Using this option may cause
significant degradation in runtime performance. The amount of degradation is
application dependent.

Interactions

When using #pr agma pack on a SPARC platform to pack denser than the type’s
default alignment, the - mi sal i gn option must be specified for both the compilation
and the linking of the application.

Misaligned data is handled by a trap mechanism that is provided by | d at runtime.
If an optimization flag (- xO[1]2]3]4]5} or an equivalent flag) is used with the
-m sal i gn option, the additional instructions required for alignment of misaligned
data are inserted into the resulting object file and will not generate runtime
misalignment traps.

Warnings
If possible, do not link aligned and misaligned parts of the program.

If compilation and linking are performed in separate steps, the —ni sal i gn option
must appear in both the compile and link commands.

- nr [, string]

Removes all strings from the . conmrent section of the object file and, if string is
supplied, places string in that section. If the string contains blanks, the string must
be enclosed in quotation marks.When you use this option, the command

nts - d [- a string] is invoked.

A-50 C++ User’'s Guide » May 2003

A.2.53

Interactions

This option is not valid when either - S, - xsbf ast, or - sbf ast is specified.

—mt

Compiles and links for multithreaded code.
This option:

= Passes - D_REENTRANT to the preprocessor

= Passes - | t hr ead in the correct order to Id

= Ensures that, for standard mode (the default mode), | i bt hr ead is linked before
i bCrun

= Ensures that, for compatibility mode (- conpat), | i bt hr ead is linked before
libC

The - nt option is required if the application or libraries are multithreaded.

Warnings

To ensure proper library linking order, you must use this option, rather than
-1 thread, to link with | i bt hr ead.

If you are using POSIX threads, you must link with the - nt and - | pt hr ead
options. The - mt option is necessary because | i bCrun (standard mode) and | i bC
(compatibility mode) need | i bt hr ead for a multithreaded application.

If you compile and link in separate steps and you compile with - nt , be sure to link
with - nt, as shown in the following example, or you might get unexpected results.

exampl e% CC -c -nt myprog. cc
exanpl e% CC -nt nyprog. o

If you are mixing parallel Fortran objects with C++ objects, the link line must specify
the - nt option.

See also

—xnol i b, Chapter 11, Multithreaded Programming Guide, Linker and Libraries Guide

Appendix A C++ Compiler Options A-51

A.2.54

A.2.55

A.2.56

A.2.57

A.2.58

A.2.59

—nati ve

Same as —xt ar get =nati ve.

—noex

Same as —f eat ur es=no%except .

—nof store

IA: Disables forced precision of an expression.

This option does not force the value of a floating-point expression or function to the
type on the left side of an assignment, but leaves the value in a register when either
of the following are true:

= The expression or function is assigned to a variable
or

= The expression or function is cast to a shorter floating-point type

See also

—fstore

—nolib

Same as —xnol i b.

—nol i bm |

Same as —xnol i bm | .

—noqueue

Disables license queueing.

A-52 C++ User’'s Guide » May 2003

If no license is available, this option returns without queuing your request and
without compiling. A nonzero status is returned for testing makefiles.

A.2.60 —norunpath

Does not build a runtime search path for shared libraries into the executable.

If an executable file uses shared libraries, then the compiler normally builds in a
path that points the runtime linker to those shared libraries. To do so, the compiler
passes the —R option to | d. The path depends on the directory where you have
installed the compiler.

This option is recommended for building executables that will be shipped to
customers who may have a different path for the shared libraries that are used by
the program.

Interactions

If you use any shared libraries under the compiler installed area (the default location
is/ opt / SUNWpr o/ | i b) and you also use —nor unpat h, then you should either use
the —R option at link time or set the environment variable LD_LI BRARY_PATH at
runtime to specify the location of the shared libraries. Doing so allows the runtime
linker to find the shared libraries.

A261 -O

Same as —x (2.

A.2.62 —Olevel

Same as —xOlevel.

A.2.63 —0 filename

Sets the name of the output file or the executable file to filename.

Appendix A C++ Compiler Options A-53

A.2.64

Interactions

When the compiler must store template instances, it stores them in the template
repository in the output file’s directory. For example, the following command writes
the object file to . / sub/ a. o and writes template instances into the repository
contained within . / sub/ SunW5_cache.

exanpl e% CC -0 sub/a.o a.cc

The compiler reads from the template repositories corresponding to the object files
that it reads. For example, the following command reads from

./ subl/ SunWs_Cache and . / sub2/ SunWs_cache, and, if necessary, writes to

./ SunWs_cache.

exanpl e% CC subl/a.o sub2/b.o

For more information, see Section 7.4, “The Template Repository” on page 7-7.

Warnings

The filename must have the appropriate suffix for the type of file to be produced by
the compilation. It cannot be the same file as the source file, since the CC driver does
not overwrite the source file.

P

Ignore nonstandard preprocessor asserts.

Defaults

If +p is not present, the compiler recognizes nonstandard preprocessor asserts.

Interactions

If +p is used, the following macros are not defined:

= Sun

= Uni x
= sparc
= i 386

A-54 C++ User’'s Guide » May 2003

A.2.65

A.2.66

A.2.67

A.2.68

Only preprocesses source; does not compile. (Outputs a file with a . i suffix.)

This option does not include preprocessor-type line number information in the
output.

See also

-E

Prepares object code to collect data for profiling with pr of .

This option invokes a runtime recording mechanism that produces a non. out file at
normal termination.

Warnings

If you compile and link in separate steps, the - p option must appear in both the
compile command and the link command. Including - p in one step and excluding it
from the other step will not affect the correctness of the program, but you will not be
able to do profiling.

See also

—Xpg, - xprofil e, anal yzer (1) man page, Program Performance Analysis Tools.

—penti um

IA: Replace with —xt ar get =penti um

—p9g

Same as —xpg.

Appendix A C++ Compiler Options A-55

A269 -PIC

SPARC: Same as —xcode=pi c32.

IA: Same as —Kpi c.

A270 —pic
SPARC: Same as —xcode=pi c13.

IA: Same as - Kpi c.

A271 —pta

Same as —t enpl at e=whol ecl ass.

A.2.72 —pti path

Specifies an additional search directory for template source.

This option is an alternative to the normal search path set by —I pathname. If the
- pt i path option is used, the compiler looks for template definition files on this path
and ignores the —I pathname option.

Using the —I pathname option instead of —pt i path produces less confusion.

Interactions

This option accumulates instead of overrides.

See also

—| pathname

A2173 —pto

Same as —i nst ances=stati c.

A-56 C++ User’'s Guide » May 2003

A.2.74

A.2.75

A.2.76

—ptr

This option is obsolete and is ignored by the compiler.

Warnings
Even though the - pt r option is ignored, you should remove - pt r from all

compilation commands because, in a later release, it may be reused with a different
behavior.

See also

For information about repository directories, see Section 7.4, “The Template
Repository” on page 7-7.

—pt v

Same as —ver bose=t enpl at e.

—Qopt i on phase option[,option...]
Passes option to the compilation phase.

To pass multiple options, specify them in order as a comma-separated list.

Values

phase must have one of the following values.

TABLE A-19 The - Qopti on Values

SPARC IA

ccfe ccfe

i ropt cg386
cg codegen
Cd i nk Cd i nk
Id Id

Appendix A C++ Compiler Options A-57

Examples

In the following command line, when | d is invoked by the CC driver, —Qopt i on
passes the —i and —m options to | d.

exanpl e% CC - Qoption Id -i,-mtest.c

Warnings

Be careful to avoid unintended effects. For example,

-Qoption ccfe -features=bool,iddoll ar

is interpreted as

-Qoption ccfe -features=bool -Qoption ccfe iddollar

The correct usage is

-Qoption ccfe -features=bool, -features=iddol | ar

A.2.77 —qgopti on phase option

Same as —Qopt i on.

A2.78 —qgp

Same as -p.

A.2.79 —Qor oduce sourcetype

Causes the CC driver to produce output of the type sourcetype.

A-58 C++ User’'s Guide » May 2003

A.2.80

A.2.81

Sourcetype suffixes are defined below.

TABLE A-20 The - Qor oduce Values

Suffix Meaning

i Preprocessed C++ source from ccf e
.0 Object file the code generator

.S Assembler source from cg

—qgpr oduce sourcetype

Same as —Qpr oduce.

—Rpathname[: pathname...]

Builds dynamic library search paths into the executable file.

This option is passed to | d.

Defaults

If the - Roption is not present, the library search path that is recorded in the output
object and passed to the runtime linker depends upon the target architecture
instruction specified by the - xar ch option (when - xar ch is not present,

- xar ch=generi c is assumed).

- xar ch Value Default Library Search Path
v9, v9a, or vob install-directory/ SUNWspro/ | i b/ v9
All other values install-directory/ SUNWspro/ | ib

In a default installation, install-directory is / opt .

Interactions

This option accumulates instead of overrides.

Appendix A C++ Compiler Options A-59

A.2.82

A.2.83

A.2.84

A.2.85

A.2.86

If the LD_RUN_PATH environment variable is defined and the —R option is specified,
then the path from —Ris scanned and the path from LD _RUN_PATH is ignored.

See also

—nor unpat h, Linker and Libraries Guide

—r eadne

Same as - xhel p=r eadne.

Compiles and generates only assembly code.

This option causes the CC driver to compile the program and output an assembly
source file, without assembling the program. The assembly source file is named with
a . s suffix.

—S

Strips the symbol table from the executable file.

This option removes all symbol information from output executable files. This
option is passed to | d.

—sb

Replace with —xsb.

—sbf ast

Same as —xsbf ast .

A-60 C++ User's Guide » May 2003

A287 -staticlib=I[I...]

Indicates which C++ libraries specified in the -1 i br ary option (including its
defaults), which libraries specified in the - x| ang option, and which libraries
specified by use of the - xi a option are to be linked statically.

Values

I must be one of the following values.

TABLE A-21 The -stati cli b Values

Value of | Meaning

[no% library [Do not] link library statically. The valid values for library are all the valid
values for -1 i brary (except %al | and %none), all the valid values for
-xl ang, and i nt erval (to be used in conjunction with - xi a).

%al | Statically link all the libraries specified in the - | i brary opti on, all the
libraries specified in the - x| ang option, and, if - Xi a is specified in the
command line, the interval libraries.

%one Link no libraries specified in the -1 i br ary option and the - x| ang
option statically. If - xi a is specified in the command line, link no
interval libraries statically.

Defaults

If —st ati cl i b is not specified, —st ati cl i b=%one is assumed.

Examples

The following command line links | i bCr un statically because Cr un is a default
value for —library:

exanpl e% CC —stati cl i b=Cr un (correct)

However, the following command line does not link | i bgc because | i bgc is not
linked unless explicitly specified with the -1 i br ary option:

exanpl e% CC —st ati cl i b=gc (incorrect)

Appendix A C++ Compiler Options A-61

A-62

To link | i bgc statically, use the following command:

exanmpl e% CC -l ibrary=gc -staticlib=gc (correct)

With the following command, the | i br wt ool library is linked dynamically. Because
i brwt ool is not a default library and is not selected using the - | i br ary option,
-staticlib has no effect:

exampl e% CC -l rw ool -1library=iostream\
-staticlib=rwtool s7 (incorrect)

This command links the | i br wt ool library statically:

exampl e% CC -l i brary=rwt ool s7,iostream -staticlib=rw ool s7 (correct)

This command will link the Sun Performance Libraries dynamically because
-1i brary=sunperf must be used in conjunction with - stati cl i b=sunperf in
order for the - st ati cl i b option to have an effect on the linking of these libraries:

exanpl e% CC -xlic_lib=sunperf -staticlib=sunperf (incorrect)

This command links the Sun Performance Libraries statically:

exanpl e% CC -1i brary=sunperf -staticlib=sunperf (correct)

Interactions
This option accumulates instead of overrides.

The - stati cli b option only works for the C++ libraries that are selected explicitly
with the - xi a option, the - xI ang option, and the - | i br ary option, in addition to
the C++ libraries that are selected implicitly by default. In compatibility mode
(-conpat =[4]), | i bCis selected by default. In standard mode (the default mode),
Cst d and Cr un are selected by default.

When using - xar ch=v9, - xar ch=v9a, or - xar ch=v9b (or equivalent 64-bit
architecture options), some C++ libraries are not available as static libraries.

C++ User’'s Guide « May 2003

A.2.88

A.2.89

Warnings

The set of allowable values for library is not stable and might change from release to
release.

See also

-1i brary, Section 12.5, “Statically Linking Standard Libraries” on page 12-10

—t enp=path
Defines the directory for temporary files.

This option sets the path name of the directory for storing the temporary files that
are generated during the compilation process.

See also

—keept np

—t enpl at e=opt|, opt...]

Enables/disables various template options.

Values

opt must be one of the following values.

TABLEA-22 The -t enpl at e Values

Value of opt Meaning

[no% ext def [Do not] Search for template definitions in separate source files.

0% geni nl i nefuncs 0 no enerate unreferenced inline member functions for
noY | f D t] G t fi dinl ber funct fi
explicitly instantiated class templates.

[no% whol ecl ass [Do not] Instantiate a whole template class, rather than only
those functions that are used. You must reference at least one
member of the class; otherwise, the compiler does not
instantiate any members for the class.

Appendix A C++ Compiler Options A-63

A-64

Defaults

If the - t enpl at e option is not specified, - t enpl at e=no%whol ecl ass, ext def is
assumed.

Examples

Consider the following code:

exanpl e% cat Exanpl e. cc
tenplate <class T> struct S {
void inf() {}
static void snf() {}
H

tenplate class S <int>;
int main() {

}

exanpl e%

When you specify - t enpl at e=geni nl i nef uncs, even though the two member
functions of S are not called in the program, they are generated in the object file.

exanpl e% CC -c -tenpl at e=geni nli nefuncs Exanpl e. cc
exanpl e% nm - C Exanpl e. o

Exanpl e. o:

[ndex] Value Size Type Bind Oher Shndx Nane

[5] 0 0 NOTY G.OB O ABS _ fsr_init_value

[1] 0 0 FILE LOCL © ABS b.c

[4] 16 32 FUNC G.OB O 2 mai n

[3] 104 24 FUNC LOCL O 2 void S<int>::inf()
[__1cBS4C _Dinf6M v_]

[2] 64 20 FUNC LOCL O 2 voi d S<int>::snf()

[1cBS4G _Dsnf6F v_]

See also

“Whole-Class Instantiation” on page 7-2, “Template Definition Searching” on
page 7-9

C++ User’'s Guide « May 2003

A.2.90

A.2.91

A.2.92

—tine

Same as —xt i ne.

—Uname

Deletes initial definition of the preprocessor symbol name.

This option removes any initial definition of the macro symbol name created by - D
on the command line including those implicitly placed there by the CC driver. This
option has no effect on any other predefined macros, nor on macro definitions in
source files.

To see the - D options that are placed on the command line by the CCdriver, add the
- dryrun option to your command line.

Examples

The following command undefines the predefined symbol __sun. Preprocessor
statements in f 00. cc such as #i f def (_sun) will sense that the symbol is
undefined.

exanpl e% CC -U__sun foo. cc

Interactions
You can specify multiple - U options on the command line.

All - U options are processed after any - D options that are present. That is, if the
same name is specified for both - D and - U on the command line, name is undefined,
regardless of the order the options appear.

See also

-D

—unrol | =n

Same as —xunr ol | =n.

Appendix A C++ Compiler Options A-65

A.2.93

A.2.94

A.2.95

A.2.96

-V

Same as —ver bose=ver si on.

-V

Same as —ver bose=di ags.

—vdel x

Compatibility mode only (—compat [=4]):

For expressions using del et e[], this option generates a call to the runtime library
function _vect or _del et ex_ instead of generating a call to _vector _del ete_.
The function _vect or _del et e_ takes two arguments: the pointer to be deleted and
the size of each array element.

The function _vect or _del et ex_ behaves the same as _vect or _del et e_ except
that it takes a third argument: the address of the destructor for the class. This third
argument is not used by the function, but is provided to be used by third-party
vendors.

Default

The compiler generates a call to _vect or _del et e_ for expressions using
delete[].

Warnings
This is an obsolete option that will be removed in future releases. Don’t use this

option unless you have bought some software from a third-party vendor and the
vendor recommends using this option.

—ver bose=v][, v...]

Controls compiler verbosity.

A-66 C++ User's Guide » May 2003

A.2.97

Values

v must be one of the following values.

TABLE A-23 The - ver bose Values

Value of v Meaning
[no% di ags [Do not] Print the command line for each compilation pass.
[no% t enpl ate [Do not] Turn on the template instantiation ver bose mode

(sometimes called the “verify” mode). The ver bose mode displays
each phase of instantiation as it occurs during compilation.

[no% versi on [Do not] Direct the CC driver to print the names and version
numbers of the programs it invokes.

%al | Invokes all of the above.

%mone - ver bose=%one is the same as

-ver bose=no% enpl at e, no%li ags, no%er si on.

Defaults

If —ver bose is not specified, —ver bose=%one is assumed.

Interactions

This option accumulates instead of overrides.

+WwW

Identifies code that might have unintended consequences. The +w option no longer
generates a warning if a function is too large to inline or if a declared program
element is unused. These warnings do not identify real problems in the source, and
were thus inappropriate to some development environments. Removing these
warnings from +w enables more aggressive use of +win those environments. These
warnings are still available with the +w2 option.

This option generates additional warnings about questionable constructs that are:

= Nonportable
= Likely to be mistakes
= Inefficient

Appendix A C++ Compiler Options A-67

A.2.98

A.2.99

Defaults

If +wis not specified, the compiler warns about constructs that are almost certainly
problems.

Interactions

Some C++ standard headers result in warnings when compiled with +w

See also

-w, +w2

+W2

Emits all the warnings emitted by +w plus warnings about technical violations that
are probably harmless, but that might reduce the maximum portability of your
program.

The +w2 option no longer warns about the use of implementation-dependent
constructs in the system header files. Because the system header files are the
implementation, the warning was inappropriate. Removing these warnings from
+w?2 enables more aggressive use of the option.

Warnings

Some Solaris and C++ standard header files result in warnings when compiled with
+W2.

See also

+wW

—-W

Suppresses most warning messages.

A-68 C++ User's Guide » May 2003

A.2.100

A.2.101

This option causes the compiler not to print warning messages. However, some
warnings, particularly warnings regarding serious anachronisms, cannot be
suppressed.

See also

+wW

—Xm

Same as —f eat ur es=i ddol | ar.

—Xa

Generates code for profiling.

If set at compile time, the TCOVDI R environment variable specifies the directory
where the coverage (. d) files are located. If this variable is not set, then the coverage
(. d) files remain in the same directory as the sour ce files.

Use this option only for backward compatibility with old coverage files.

Interactions

The —xpr of i | e=t cov option and the —xa option are compatible in a single
executable. That is, you can link a program that contains some files that have been
compiled with —xprofi | e=t cov, and others that have been compiled with —xa.
You cannot compile a single file with both options.

The —xa option is incompatible with —g.

Warnings

If you compile and link in separate steps and you compile with - xa, be sure to link
with —xa, or you might get unexpected results.

See also

—xprofil e=tcov,tcov(l) man page, Program Performance Analysis Tools.

Appendix A C++ Compiler Options A-69

A.2.102 -xalias_|evel [=n]

(SPARC) The C++ compiler can perform type-based alias-analysis and optimizations
when you specify the following command:

= -Xxalias_level[=n]
where n is any, si npl e, or conpati bl e.
= -Xxalias_|evel =any

At this level of analysis, the compiler assumes that any type may alias any other
type. However, despite this assumption, some optimization is possible.

= -xalias_level =sinple

The compiler assumes that simple types are not aliased. Specifically, a storage
object with a dynamic type that is one of the following simple types:

char short int long int float

signed char unsigned short int unsigned long int double

unsigned char int long long int long double

wchar_t unsigned int unsigned long long int enumeration types

data pointer types function pointer data member pointer function member
types types pointer types

is only accessed through lvalues of the following types:
« The dynamic type of the object

« Aconstant orvol ati |l e qualified version of the dynamic type of the object,
a type that is the signed or unsigned type corresponding to the dynamic type
of the object

« A type that is the signed or unsigned type corresponding to a const ant or
vol ati | e qualified version of the dynamic type of the object

= An aggregate or union type that includes one of the aforementioned types
among its members (including, recursively, a member of a subaggregate or
contained union)

« A char or unsigned char type
= -Xxalias_|level =compatible

The compiler assumes that layout-incompatible types are not aliased. A storage
object is only accessed through Ivalues of the following types:

« The dynamic type of the object

A-70 C++ User’'s Guide » May 2003

A const ant or vol ati | e qualified version of the dynamic type of the object,
a type that is the signed or unsigned type which corresponds to the dynamic
type of the object

A type that is the signed or unsigned type which corresponds to the const ant
or vol ati | e qualified version of the dynamic type of the object

An aggregate or union type that includes one of the aforementioned types
among its members (including, recursively, a member of a subaggregate or
contained union)

A type that is (possibly const ant or vol ati | e qualified) base class type of
the dynamic type of the object

A char or unsigned char type.

The compiler assumes that the types of all references are layout compatible with
the dynamic type of the corresponding storage object. Two types are
layout-compatible under the following conditions:

If two types are the same type, then they are layout-compatible types.

If two types differ only in constant or volatile qualification, then they are
layout-compatible types.

For each of the signed integer types, there exists a corresponding (but
different) unsigned integer type. These corresponding types are layout
compatible.

Two enumeration types are layout-compatible if they have the same
underlying type.

Two Plain Old Data (POD) struct types are layout compatible if they have the
same number of members, and corresponding members (in order) have layout
compatible types.

Two POD union types are layout compatible if they have the same number of
members, and corresponding members (in any order) have layout compatible

types.

References may be non-layout-compatible with the dynamic type of the storage
object under limited circumstances:

If a POD union contains two or more POD structs that share a common initial
sequence, and if the POD union object currently contains one of those POD
structs, it is permitted to inspect the common initial part of any of them. Two
POD structs share a common initial sequence if corresponding members have
layout compatible types and, as applicable to bit fields, the same widths, for a
sequence of one or more initial members.

A pointer to a POD struct object, suitably converted using a reinterpret_cast,
points to its initial member, or if that member is a bit field, to the unit in which
it resides.

Appendix A C++ Compiler Options A-71

A.2.103

Defaults

If you do not specify - xal i as_| evel , the compiler sets the option to
- xal i as_| evel =any. If you specify - xal i as_| evel but do not provide a value,
the compiler sets the option to - xal i as_| evel =conpati bl e.

Interactions

The compiler does not perform type-based alias analysis at optimization level - xQ2
and below.

Warning

If you are using r ei nt er pret _cast or an equivalent old-style cast, the program
may violate the assumptions of the analysis. Also, union type punning, as shown in
the following example, violates the assumptions of the analysis.

uni on bi t bucket {
int i;

float f;

b

int bitsof (float f){
bi t bucket var;

var. f=3.6;
return var.i;
}

—Xar

Creates archive libraries.

When building a C++ archive that uses templates, it is necessary in most cases to
include in the archive those template functions that are instantiated in the template
database. Using this option automatically adds those templates to the archive as
needed.

Values

Specify - xar to invokes ar - c-r and create an archive from scratch.

A-72 C++ User’'s Guide » May 2003

A.2.104

Examples

The following command line archives the template functions contained in the library
and object files.

exampl e% CC -xar -o libmain.a a.o b.o c.o

Warnings
Do not add . o files from the template database on the command line.

Do not use the ar command directly for building archives. Use CC —xar to ensure
that template instantiations are automatically included in the archive.

See also

ar(1), Chapter 16

—xar ch=isa
Specifies the target instruction set architecture (ISA).

This option limits the code generated by the compiler to the instructions of the
specified instruction set architecture. This option does not guarantee use of any
target-specific instructions. However, use of this option may affect the portability of
a binary program.

Values

For SPARC platforms:

Appendix A C++ Compiler Options A-73

A-74

TABLE A-24 gives the details for each of the - xar ch keywords on SPARC platforms.

TABLE A-24 The - xar ch Values for SPARC Platforms

Value of isa Meaning

generic Produce 32-bit object binaries for good performance on most
systems. This is the default. This option uses the best instruction set for
good performance on most processors without major performance
degradation on any of them. With each new release, the definition of “best”
instruction set may be adjusted, if appropriate. Currently, this is equivalent
to - xar ch=v7.

generic64 Produce 64-bit object binaries for good performance on most
64-bit platform architectures. This option uses the best instruction set for
good performance on Solaris operating environments with 64-bit kernels,
without major performance degradation on any of them. With each new
release, the definition of “best” instruction set may be adjusted, if
appropriate. Currently, this is equivalent to -xarch=v9.

native Produce 32-bit object binaries for good performance on this
system. This is the default for the - f ast option. The compiler chooses the
appropriate setting for the system on which the processor is running.

native64 Produce 64-bit object binaries for good performance on this
system. The compiler chooses the appropriate setting for producing 64-bit
binaries for the system on which the processor is running.

v7 Compile for the SPARC-V7 ISA. Enables the compiler to generate code
for good performance on the V7 ISA. This is equivalent to using the best
instruction set for good performance on the V8 ISA, but without integer nul
and di v instructions, and the f srrul d instruction.

Examples: SPARCstation 1, SPARCstation 2

v8a Compile for the V8a version of the SPARC-V8 ISA. By definition,
V8a means the V8 ISA, but without the f srrul d instruction. This option
enables the compiler to generate code for good performance on the V8a ISA.

Example: Any system based on the microSPARC | chip architecture

v8 Compile for the SPARC-V8 ISA. Enables the compiler to generate code
for good performance on the V8 architecture.

Example: SPARCstation 10

C++ User’'s Guide « May 2003

TABLE A-24 The - xar ch Values for SPARC Platforms (Continued)

Value of isa Meaning

v8pl us Compile for the V8plus version of the SPARC-V9 ISA.

By definition, V8plus means the V9 ISA, but limited to the 32-bit subset

defined by the V8plus ISA specification, without the Visual Instruction Set

(VIS), and without other implementation-specific ISA extensions.

= This option enables the compiler to generate code for good performance
on the V8plus ISA.

= The resulting object code is in SPARC-V8+ ELF32 format and only
executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8pl usa Compile for the V8plusa version of the SPARC-V9 ISA.

By definition, V8plusa means the V8plus architecture, plus the Visual

Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.

= This option enables the compiler to generate code for good performance
on the UltraSPARC architecture, but limited to the 32-bit subset defined
by the V8plus specification.

= The resulting object code is in SPARC-V8+ ELF32 format and only
executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8pl usb Compile for the V8plusb version of the SPARC-V8plus ISA with

UltraSPARC |11 extensions. Enables the compiler to generate object code

for the UltraSPARC architecture, plus the Visual Instruction Set (VIS) version

2.0, and with UltraSPARC Il extensions.

= The resulting object code is in SPARC-V8+ ELF32 format and executes
only in a Solaris UltraSPARC Ill environment.

= Compiling with this option uses the best instruction set for good
performance on the UltraSPARC Ill architecture.

Appendix A C++ Compiler Options A-75

A-76

TABLE A-24 The - xar ch Values for SPARC Platforms (Continued)
Value of isa Meaning
v9 Compile for the SPARC-V9 ISA. Enables the compiler to generate code
for good performance on the V9 SPARC architecture.
= The resulting . o object files are in ELF64 format and can only be linked
with other SPARC-V9 object files in the same format.
= The resulting executable can only be run on an UltraSPARC processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.
= —xar ch=v9 is only available when compiling in a 64-bit enabled Solaris
environment.
v9a Compile for the SPARC-V9 ISA with UltraSPARC extensions.
Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions
specific to UltraSPARC processors, and enables the compiler to generate
code for good performance on the V9 SPARC architecture.
= The resulting . o object files are in ELF64 format and can only be linked
with other SPARC-V9 object files in the same format.
= The resulting executable can only be run on an UltraSPARC processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.
= —xar ch=v9a is only available when compiling in a 64-bit enabled Solaris
operating environment.
v9b Compile for the SPARC-V9 ISA with UltraSPARC I1I extensions.

Adds UltraSPARC Il1 extensions and VIS version 2.0 to the V9a version of

the SPARC-V9 ISA. Compiling with this option uses the best instruction set

for good performance in a Solaris UltraSPARC Ill environment.

= The resulting object code is in SPARC-V9 ELF64 format and can only be
linked with other SPARC-V9 object files in the same format.

= The resulting executable can only be run on an UltraSPARC Ill processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.

= —xar ch=v9b is only available when compiling in a 64-bit enabled Solaris
operating environment.

Also note the following:

SPARC instruction set architectures V7, V8, and V8a are all binary compatible.

Object binary files (. 0) compiled with v8pl us and v8pl usa can be linked and
can execute together, but only on a SPARC V8plusa compatible platform.

Obiject binary files (. 0) compiled with v8pl us, v8pl usa, and v8pl usb can be
linked and can execute together, but only on a SPARC V8plusb compatible

platform.

- xar ch values generi c64, nati ve64, v9, v9a, and v9b are only available on
UltraSPARC 64-bit Solaris operating environments.

C++ User’'s Guide « May 2003

= Object binary files (. 0) compiled with generi c64, nati ve64, v9 and v9a can be
linked and can execute together, but will run only on a SPARC V9a compatible
platform.

= Object binary files (. 0) compiled with generi c64, nati ve64, v9, v9a, and v9b
can be linked and can execute together, but will run only on a SPARC V9b
compatible platform.

For any particular choice, the generated executable may run much more slowly on
earlier architectures. Also, although quad-precision (REAL* 16 and | ong doubl €)
floating-point instructions are available in many of these instruction set
architectures, the compiler does not use these instructions in the code it generates.

For 1A platforms;

TABLE A-25 gives the details for each of the - xar ch keywords on IA platforms.

TABLE A-25 The - xar ch Values for |A Platforms

Value of isa Meaning

generic Compile for good performance on most systems. This is the default.
This option uses the best instruction set for good performance on most
processors without major performance degradation on any of them.
With each new release, the definition of “best” instruction set may be
adjusted, if appropriate.

386 generi c and 386 are equivalent in this release.
pentiumpro Limits the instruction set to the pentium_pro architecture.
Defaults

If —xar ch=isa is not specified, —xar ch=generi c is assumed.

Interactions

Although this option can be used alone, it is part of the expansion of the - xt ar get
option and may be used to override the —xar ch value that is set by a specific

- Xt ar get option. For example, - xt ar get =ul t r a2 expands to - xar ch=v8pl usa
-xchi p=ul tra2 - xcache=16/ 32/ 1: 512/ 64/ 1. In the following command

- xar ch=v8pl usb overrides the - xar ch=v8pl usa that is set by the expansion of
-xtarget=ultra2.

exanmpl e% CC - xt arget=ul tra2 -xarch=v8plusb foo.cc

Appendix A C++ Compiler Options A-77

A.2.105

Use of —conpat [=4] with - xar ch=generi c64, - xar ch=nat i ve64, - xar ch=v9,
- xar ch=v9a, or - xar ch=v9b is not supported.

Warnings

If you use this option with optimization, the appropriate choice can provide good
performance of the executable on the specified architecture. An inappropriate choice,
however, might result in serious degradation of performance or in a binary program
that is not executable on the intended target platform.

If you compile and link in separate steps, make sure you specify the same value for
- xar ch in both steps.

-xbui I tin[={%l | |%%0ne}]
Enables or disables better optimization of standard library calls.

By default, the functions declared in standard library headers are treated as ordinary
functions by the compiler. However, some of those functions can be recognized as
“intrinsic” or “built-in” by the compiler. When treated as a built-in, the compiler can
generate more efficient code. For example, the compiler can recognize that some
functions have no side effects, and always return the same output given the same
input. Some functions can be generated inline directly by the compiler.

The - xbui I ti n=%al | option asks the compiler to recognize as many of the built-in
standard functions as possible. The exact list of recognized functions varies with the
version of the compiler code generator.

The - xbui | ti n=%one option results in the default compiler behavior, and the
compiler does not do any special optimizations for built-in functions.

Defaults

If the - xbui | ti n option is not specified, then the compiler assumes
- xbui I ti n=%one.

If only - xbui | ti n is specified, then the compiler assumes - xbui | ti n=%al | .

Interactions

The expansion of the macro - f ast includes - xbui | ti n=%al | .

A-78 C++ User’'s Guide » May 2003

A.2.106

Examples

The following compiler command requests special handling of the standard library
calls.

exanmpl e% CC -xbuiltin -c foo.cc

The following compiler command request that there be no special handling of the
standard library calls. Note that the expansion of the macro - f ast includes
-xbuil tin=%al | .

exanpl e% CC -fast -xbuiltin=%one -c foo.cc

—xXcache=c

SPARC: Defines cache properties for use by the optimizer.

This option specifies the cache properties that the optimizer can use. It does not
guarantee that any particular cache property is used.

Note — Although this option can be used alone, it is part of the expansion of the
- Xt ar get option; its primary use is to override a value supplied by the - xt ar get
option.

Appendix A C++ Compiler Options A-79

Values

¢ must be one of the following values.

TABLE A-26 The - xcache Values

Value of ¢ Meaning

generic This is the default value which directs the compiler to use
cache properties for good performance on most x86 and
SPARC processors, without major performance degradation
on any of them.
With each new release, these best timing properties will be
adjusted, if appropriate.

native Set the parameters for the best performance on the host
environment.

sl/l1/al Defines level 1 cache properties

sl/11/al:s2/12/a2 Defines level 1 and 2 cache properties

s1/11/al:s2/12/a2:s3/13/a3 Defines level 1, 2, and 3 cache properties

The definitions of the cache properties, si/li/ai, are as follows:

Property Definition

Si The size of the data cache at level i, in kilobytes
li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

For example, i=1 designates level 1 cache properties, s1/ 11/ al.

Defaults
If —xcache is not specified, the default —xcache=generi c is assumed. This value

directs the compiler to use cache properties for good performance on most SPARC
processors, without major performance degradation on any of them.

A-80 C++ User's Guide » May 2003

Examples

—xcache=16/ 32/ 4: 1024/ 32/ 1 specifies the following:

Level 1 Cache Has Level 2 Cache Has

16 Kbytes 1024 Kbytes

32 bytes line size 32 bytes line size

4-way associativity Direct mapping associativity
See also

—xt ar get =t

A.2.107 -xcg89

Same as - xt ar get =ss2.

Warnings

If you compile and link in separate steps and you compile with - xcg89, be sure to
link with the same option, or you might get unexpected results.

A.2.108 —xcg92

Same as - xt ar get =ss1000.

Warnings

If you compile and link in separate steps and you compile with - xcg92, be sure to
link with the same option, or you might get unexpected results.

Appendix A C++ Compiler Options A-81

A.2.109

- Xchar [=0]
The option is provided solely for the purpose of easing the migration of code from
systems where the char type is defined as unsigned. Unless you are migrating from

such a system, do not use this option. Only code that relies on the sign of a char type
needs to be rewritten to explicitly specify signed or unsigned.

Values

You can substitute one of the following for o:

TABLE A-27 The - xchar Values

Value Meaning

si gned Treat character constants and variables declared as char as signed.
This impacts the behavior of compiled code, it does not affect the
behavior of library routines.

S Equivalent to si gned

unsi gned Treat character constants and variables declared as char as unsigned.
This impacts the behavior of compiled code, it does not affect the
behavior of library routines.

u Equivalent to unsi gned

Defaults

If you do not specify - xchar, the compiler assumes - xchar =s.

If you specify - xchar, but do not specify a value, the compiler assumes - xchar =s.

Interactions

The - xchar option changes the range of values for the type char only for code
compiled with - xchar. This option does not change the range of values for type
char in any system routine or header file. In particular, the value of CHAR_MAX and
CHAR_M N, as defined by | i m t s. h, do not change when this option is specified.
Therefore, CHAR_MAX and CHAR_M N no longer represent the range of values
encodable in a plain char.

A-82 C++ User's Guide » May 2003

A.2.110

Warnings

If you use - xchar, be particularly careful when you compare a char against a
predefined system macro because the value in the macro may be signed. This is most
common for any routine that returns an error code which is accessed through a
macro. Error codes are typically negative values so when you compare a char against
the value from such a macro, the result is always false. A negative number can never
be equal to any value of an unsigned type.

It is strongly recommended that you never use - xchar to compile routines for any
interface exported through a library. The Solaris ABI specifies type char as signed,
and system libraries behave accordingly. The effect of making char unsigned has not
been extensively tested with system libraries. Instead of using this option, modify
your code so that it does not depend on whether type char is signed or unsigned.
The sign of type char varies among compilers and operating systems.

- Xxcheck][=i]

SPARC: Compiling with - xcheck=st kovf adds a runtime check for stack overflow
of the main thread in a singly-threaded program as well as slave-thread stacks in a
multithreaded program. If a stack overflow is detected, a SI GSEGV is generated. If

your application needs to handle a SI GSEGV caused by a stack overflow differently
than it handles other address-space violations, see si gal t st ack(2).

Values

i must be one of the following:

TABLE A-28 The - xcheck Values

Value Meaning

%all Perform all checks.

%none Perform no checks.

st kovf Turns on stack-overflow checking.
no%t kovf Turns off stack-overflow checking.
Defaults

If you do not specify - xcheck, the compiler defaults to - xcheck=%one.

Appendix A C++ Compiler Options A-83

A.2.111

If you specify -xcheck without any arguments, the compiler defaults to
- xcheck=%one.

The - xcheck option does not accumulate on the command line. The compiler sets
the flag in accordance with the last occurrence of the command.

- Xchi p=c

Specifies target processor for use by the optimizer.

The —xchi p option specifies timing properties by specifying the target processor.
This option affects:

= The ordering of instructions—that is, scheduling

= The way the compiler uses branches

= The instructions to use in cases where semantically equivalent alternatives are
available

Note — Although this option can be used alone, it is part of the expansion of the
- xt ar get option; its primary use is to override a value supplied by the - xt ar get
option.

Values

¢ must be one of the following values.

TABLE A-29 The - xchi p Values

Platform Value of ¢ Optimize for Using Timing Properties
SPARC generic For good performance on most SPARC processors
native For good performance on the system on which the compiler is
running
old Of processors earlier than the

SuperSPARC processor

super Of the SuperSPARC processor
super 2 Of the SuperSPARC Il processor
mcro Of the microSPARC processor
m cro2 Of the microSPARC Il processor
hyper Of the hyperSPARC processor

A-84 C++ User's Guide » May 2003

A.2.112

TABLE A-29 The - xchi p Values

Platform Value of ¢

Optimize for Using Timing Properties

hyper 2
power up
ultra
ultra2
ul tra2e
ul tra2i
ultra3
ul tra3cu
1A generic
386
486
pentium

pentium pro

Of the hyperSPARC Il processor
Of the Weitek PowerUp processor
Of the UltraSPARC processor

Of the UltraSPARC Il processor
Of the UltraSPARC lle processor
Of the UltraSPARC lli processor
Of the UltraSPARC Il1 processor
Of the UltraSPARC Il Cu processor
Of most IA processors

Of the Intel 386 processor

Of the Intel 486 processor

Of the Intel Pentium processor

Of the Intel Pentium Pro processor

Defaults

On most SPARC processors, gener i ¢ is the default value that directs the compiler
to use the best timing properties for good performance without major performance
degradation on any of the processors.

—xcode=a

SPARC: Specifies the code address space.

Note — It is highly recommended that you build shared objects by specifying

- xcode=pi c13 or - xcode=pi c32. It is possible to build workable shared objects
with - xarch=v9 -xcode=abs64 and with - xar ch=v8 - xcode=abs32, but these

will be inefficient. Shared objects built with - xar ch=v9 - xcode=abs32 or

- xar ch=v9 - xcode=abs44 will not work.

Appendix A C++ Compiler Options

A-85

A-86

Values

a must be one of the following values.

TABLE A-30 The -

xcode Values

Value of a

Meaning

abs32

abs44

abs64

pi c13

pi c32

Generates 32-bit absolute addresses, which are fast, but have limited
range. Code + data + bss size is limited to 2**32 bytes.

SPARC: Generates 44-bit absolute addresses, which have moderate
speed and moderate range. Code + data + bss size is limited to 2**44
bytes. Available only on 64-bit architectures:

—xar ch={v9]v9a]v9ob}

SPARC: Generates 64-bit absolute addresses, which are slow, but
have full range. Available only on 64-bit architectures:

—xarch={v9|v9al]v9|generic64|nati ve64}

Generates position-independent code (small model), which is fast,
but has limited range. Equivalent to —Kpi c. Permits references to at
most 2**11 unique external symbols on 32-bit architectures; 2**10 on
64-bit.

Generates position-independent code (large model), which is slow,
but has full range. Equivalent to —KPI C. Permits references to at
most 2**30 unique external symbols on 32-bit architectures; 2**29 on
64-bit.

Defaults

For SPARC V8 and V7 processors, the default is —xcode=abs32.

For SPARC and

—xar ch={v9]v9alv9b]generi c64|nati ve64}, the default is —xcode=abs64.

There are two nominal performance costs with —xcode=pi c13 and —xcode=pi c32

on SPARC:

= A routine compiled with either —xcode=pi c13 or —-xcode=pi ¢32 executes a few

UltraSPARC processors, when you use

extra instructions upon entry to set a register to point at a table

(_GLOBAL_OFFSET_TABLE) used for accessing a shared library’s global or static

variables.

= Each access to a global or static variable involves an extra indirect memory
reference through _GLOBAL_OFFSET_TABLE . If the compile is done with
- xcode=pi c32, there are two additional instructions per global and static
memory reference.

C++ User’'s Guide « May 2003

A.2.113

When considering the above costs, remember that the use of - xcode=pi c13 and

- xcode=pi c¢32 can significantly reduce system memory requirements, due to the
effect of library code sharing. Every page of code in a shared library compiled

- xcode=pi c13 or —xcode=pi c32 can be shared by every process that uses the
library. If a page of code in a shared library contains even a single non-pi c (that is,
absolute) memory reference, the page becomes nonsharable, and a copy of the page
must be created each time a program using the library is executed.

The easiest way to tell whether or not a .o file has been compiled with
- xcode=pi c13 or —xcode=pi ¢32 is with the nmcommand:

% nmfile. o | grep _GLOBAL_OFFSET_TABLE U _GLOBAL_OFFSET_TABLE_

A .o file containing position-independent code contains an unresolved external
reference to _GLOBAL_OFFSET_TABLE _, as indicated by the letter U.

To determine whether to use —xcode=pi c13 or —xcode=pi c32, use nmto identify
the number of distinct global and static variables used or defined in the library. If the
size of _GLOBAL_COFFSET_TABLE is under 8,192 bytes, you can use - Kpi c.
Otherwise, you must use —xcode=pi c32.

Warnings

When you compile and link in separate steps, you must use the same - xar ch option
in the compile step and the link step.

-xcrossfil e[=n]

SPARC: Enables optimization and inlining across source files. - xcr ossfi | e works
at compile time and involves only the files that appear on the compilation command.
Consider the following command-line example:

exanmpl e% CC - xcrossfile -xO4 -¢c fl.cc f2.cc
exanmpl e% CC - xcrossfile -xO4 -c f3.cc f4.cc

Cross-module optimizations occur between files f 1. cc and f 2. cc, and between
f3. cc and f 4. cc. No optimizations occur between f 1. cc and f 3. cc or f 4. cc.

Appendix A C++ Compiler Options A-87

A-88

Values

n must be one of the following values.

TABLE A-31 The - xcrossfi | e Values

Value of n Meaning
0 Do not perform cross-file optimizations or cross-file inlining.
1 Perform optimization and inlining across source files.

Normally the scope of the compiler’s analysis is limited to each separate file on the
command line. For example, when the - xO4 option is passed, automatic inlining is
limited to subprograms defined and referenced within the same source file.

With - xcrossfil e or - xcrossfil e=1, the compiler analyzes all the files named
on the command line as if they had been concatenated into a single source file.

Defaults

If - xcrossfil e is not specified, - xcrossfi | e=0 is assumed and no cross-file
optimizations or inlining are performed.

-xcrossfil eis the same as - xcrossfil e=1.

Interactions

The - xcrossfi | e option is effective only when it is used with - xO4 or - x (5.

Warnings

The files produced from this compilation are interdependent due to possible
inlining, and must be used as a unit when they are linked into a program. If any one
routine is changed and the files recompiled, they must all be recompiled. As a result,
using this option affects the construction of makefiles.

See Also

- x|l dscope

C++ User’'s Guide « May 2003

A.2.114 - xdunpmacr os[=value[, value...]]

Use this option when you want to see how macros are behaving in your program.
This option provides information such as macro defines, undefines, and instances of
usage. It prints output to the standard error (st der r), based on the order macros are
processed. The - xdunpnacr os option is in effect through the end of the file or until
it is overridden by the dunpracr os or end_dunpnacr os pragma. See “#pr agnma
dunpracr os” on page B-5.

Values

You can substitute the following arguments in place of value:

TABLE A-32 The - xdunpmacr os Values

Value Meaning

[no%qdef s [Do not] Print all macro defines

[no%undef s [Do not] Print all macro undefines

[no%use [Do not] Print information about macros used

[no%gl oc [Do not] Print location (path name and line number) also for def s,
undef s, and use

[no%conds [Do not] Print use information for macros used in conditional
directives

[no¥sys [Do not] Print all macros defines, undefines, and use information for

macros in system header files

%al | Sets the option to
- xdunmpnacr os=def s, undef s, use, | oc, conds, sys. A good
way to use this argument is in conjunction with the [no% form of
the other arguments. For example, - xdunpnacr os=%al | , no%ys
would exclude system header macros from the output but still
provide information for all other macros.

% one Do not print any macro information

The option values accumulate so specifying - xdunprmacr os=sys
- xdunmpmacr os=undef s has the same effect as - xdunpnmacr os=undef s, sys.

Note — The sub-options | oc, conds, and sys are qualifiers for def s, undef s and
use options. By themselves, | oc, conds, and sys have no effect. For example,
- xdunmpmacr os=l oc, conds, sys has no effect.

Appendix A C++ Compiler Options A-89

Defaults

If you specify - xdunpnacr os without any arguments, it means
- xdunmpmacr os=def s, undef s, sys. If you do not specify - xdunpracr os, it
defaults to - xdunpmacr os=%one.

Examples

If you use the option - xdunpnmacr os=use, no% oc, the name of each macro that is
used is printed only once. However, if you want more detail, use the option

- xdunmpmacr os=use, | oc so the location and macro name is printed every time a
macro is used.

Consider the following file t . c:

exanmple%cat t.c

#i f def FOO

#undef FQOO

#defi ne COVMPUTE(a, b) a+b
#el se

#defi ne COWUTE(a,b) a-b
#endi f

int n COWPUTE(5, 2) ;

int j = COWPUTE(7,1);

#i f COWPUTE(8,3) + NN + MM
int k =0;

#endi f

A-90 C++ User's Guide » May 2003

The following examples show the output for file t . ¢ based on the def s, undef s,
sys, and | oc arguments.

exampl e% CC -c - xdunmpmacros -DFOO t.c

#def i
#def i
#def i
#def i
#def i

ne SunCS 5 7 1

ne __ SUNPRO_CC 0x550
ne unix 1

ne sun 1

ne sparc 1

#define _ sparc 1

#define __unix 1

#define __sun 1

#define __BU LTIN_VA ARG INCR 1
#define __SVR4 1

#define __ SUNPRO CC COWPAT 5
#define _ SUN PREFETCH 1
#define FOO 1

#undef FOO

#define COWUTE(a, b) a + b

exanpl e% CC -c¢ - xdunpmacr os=def s, undefs,l oc -DFOO -UBAR t. c
command |ine: #define _ Sun0S 5 7 1

command |ine: #define __ SUNPRO CC 0x550
comrand |ine: #define unix 1

conmmand |ine: #define sun 1

command |ine: #define sparc 1

conmand |ine: #define __sparc 1

command |ine: #define __unix 1

command line: #define __sun 1

command |ine: #define __ BULTIN_ VA ARG INCR 1
command |ine: #define __SVR4 1

command |ine: #define __ SUNPRO CC_COWPAT 5
command |ine: #define __ SUN PREFETCH 1
conmand |ine: #define FOO 1

comrand |ine: #undef BAR

t.c,
t.c,

line 2: #undef FQO
line 3: #define COMPUTE(a, b) a + b

Appendix A C++ Compiler Options A-91

A-92

The following examples show how the use, | oc, and conds arguments report
macro behavior in file t . c:

exanmpl e% CC -c - xdunpmacros=use t.c
used macro COVPUTE

exanpl €% CC -c - xdunpnacros=use,loc t.c
t.c, line 7: used macro COWPUTE
t.c, line 8 used macro COVPUTE

exanpl e% CC -c - xdunpmacr os=use, conds t.c
used macro FOO

used nmacro COVPUTE

used macro NN

used macro WM

exanpl e% CC -c - xdunpmacr os=use, conds,loc t.c

t.c, line 1. used macro FOO
t.c, line 7: used macro COWPUTE
t.c, line 8: used macro COVPUTE
t.c, line 9: used macro COVPUTE
t.c, line 9: used macro NN

t.c, line 9: used macro WM

Consider the file y. c:

exanpl e% cat y.c
#define X 1
#define Y X
#define Z Y

int a = Z

Here is the output from - xdunprmacr os=use, | oc based on the macros iny. c:

exanpl e% CC -c - xdunpmacr os=use,loc y.c
y.c, line 4: used macro Z
y.c, line 4: used macro Y
y.c, line 4: used macro X
See Also

Use the dunpracr os pragma and the end_dunpnacr os pragma when you want to
override the scope of - xdunpnacr os.

C++ User’'s Guide « May 2003

A.2.115

A.2.116

- Xeé

Checks only for syntax and semantic errors. When you specify - xe, the compiler
does not produce any object code. The output for - xe is directed to st derr.

Use the - xe option if you do not need the object files produced by compilation. For
example, if you are trying to isolate the cause of an error message by deleting
sections of code, you can speed the edit and compile cycle by using - xe.

See Also

—C

—XF[:V[,V. .]]
Enables optimal reordering of functions and variables by the linker.

This option instructs the compiler to place functions and/or data variables into
separate section fragments, which enables the linker, using directions in a mapfile
specified by the linker’s - Moption, to reorder these sections to optimize program
performance. Generally, this optimization is only effective when page fault time
constitutes a significant fraction of program run time.

Reording of variables can help solve the following problems which negatively

impact run-time performance:

= Cache and page contention caused by unrelated variables that are near each other
in memory.

= Unnecessarily large work-set size as a result of related variables which are not
near each other in memory.

= Unnecessarily large work-set size as a result of unused copies of weak variables
that decrease the effective data density.

Reordering variables and functions for optimal performance requires the following
operations:

. Compiling and linking with - xF.

. Following the instructions in the "Program Performance Analysis Tools" manual

regarding how to generate a mapfile for functions or following the instructions in
the "Linker and Libraries Guide" regarding how to generate a mapfile for data.

. Relinking with the new mapfile by using the linker’s - Moption.

. Re-executing under the Analyzer to verify improvement.

Appendix A C++ Compiler Options A-93

Values

v can be one or more of the following:

TABLE A-33 The - xF Values

Value Meaning

[no%]func [Do not] fragment functions into separate sections.

[no%]gbldata [Do not] fragment global data (variables with external linkage) into
separate sections.

[no%]icldata [Do not] fragment local data (variables with internal linkage) into
separate sections.

%all Fragment functions, global data, and local data.

%none Fragment nothing.

Defaults

If you do not specify - xF, the default is - xF=%mone. If you specify - xF without any
arguments, the default is - xF=%one, f unc.

Interactions

Using - xF=I cl dat a inhibits some address calculation optimizations, so you should
only use this flag when it is experimentally justified.

See also

anal yzer (1), debugger (1), | d(1) man pages

A.2.117 -xhel p=fl ags

Displays a brief description of each compiler option.

A.2.118 -xhel p=readne

Displays contents of the online r eadne file.

A-94 C++ User’'s Guide » May 2003

A.2.119

The r eadne file is paged by the command specified in the environment variable,
PAGER. If PAGER is not set, the default paging command is nor e.

-Xl a

SPARC: Links the appropriate interval arithmetic libraries and sets a suitable
floating-point environment.

Note — The C++ interval arithmetic library is compatible with interval arithmetic as
implemented in the Fortran compiler.

Expansions

The - xi a option is a macro that expands to - f si npl e=0 - ft rap=%one - f ns=no
-library=interval.

Interactions
To use the interval arithmetic libraries, include <suni nt erval . h>.

When you use the interval arithmetic libraries, you must include one of the
following libraries: | i bC, Cst d, or i ostreans. See - | i brary for information on
including these libraries.

Warnings

If you use intervals and you specify different values for -fsi npl e, -ftrap, or
- f ns, then your program may have incorrect behavior.

C++ interval arithmetic is experimental and evolving. The specifics may change
from release to release.

See also

C++ Interval Arithmetic Programming Reference, Interval Arithmetic Solves Nonlinear
Problems While Providing Guaranteed Results
(http://ww. sun.com forte/info/features/intervals.htm), -library

Appendix A C++ Compiler Options A-95

A.2.120

A.2.121

A.2.122

—Xi | dof f

Turns off the incremental linker.

Defaults

This option is assumed if you do not use the —g option. It is also assumed if you do
use the —G option, or name any source file on the command line. Override this
default by using the - xi | don option.

See also

—Xi | don, i 1 d(1) man page, | d(1) man page, “Incremental Link Editor” in the C
User’s Guide

—XI | don

Turns on the incremental linker.

This option is assumed if you use —g and not —G, and you do not name any source
file on the command line. Override this default by using the - xi | dof f option.

See also

—xi I dof f, i1 d(1l) man page, | d(1) man page, “Incremental Link Editor” in the
C User’s Guide

- xi nl i ne[=func_spec[, func_spec...]]

Specifies which user-written routines can be inlined by the optimizer at - xO3 levels
or higher.

A-96 C++ User’'s Guide » May 2003

Values

func_spec must be one of the following values.

TABLE A-34 The - xi nl i ne Values

Value of func_spec Meaning

%aut o Enable automatic inlining at optimization levels - xO4 or higher. This
argument tells the optimizer that it can inline functions of its
choosing. Note that without the %aut o specification, automatic
inlining is normally turned off when explicit inlining is specified on
the command line by - xi nl i ne=[no%func_name...

func_name Strongly request that the optimizer inline the function. If the
function is not declared as extern "C", the value of func_name must
be mangled. You can use the nmcommand on the executable file to
find the mangled function names. For functions declared as extern
"C", the names are not mangled by the compiler.

no%unc_name When you prefix the name of a routine on the list with no% the
inlining of that routine is inhibited. The rule about mangled names
for func_name applies to no%unc_name as well.

Only routines in the file being compiled are considered for inlining unless you use
- xcrossfil e[=1]. The optimizer decides which of these routines are appropriate
for inlining.

Defaults
If the - xi nl i ne option is not specified, the compiler assumes - xi nl i ne=%aut o.

If - xi nl i ne=is specified with no arguments, no functions are inlined, regardless of
the optimization level.

Examples

To enable automatic inlining while disabling inlining of the function declared
i nt foo(), use

example% CC - x0b6 -xi nline=%aut o, no% 1cDf oo6F i _ -c a.cc

Appendix A C++ Compiler Options A-97

A.2.123

To strongly request the inlining of the function declared as i nt f oo(), and to make
all other functions as the candidates for inlining, use

example% CC -x0b6 -xinline=%uto, _1cDfoo6F i _ -c a.cc

To strongly request the inlining of the function declared as int foo(), and to not allow
inlining of any other functions, use

example% CC -x0b -xinline=__1cDfoo6F i _ -c a.cc

Interactions

The - xi nl i ne option has no effect for optimization levels below - xG3. At - xO4 and
higher, the optimizer decides which functions should be inlined, and does so

without the - xi nl i ne option being specified. At - xO4 and higher, the compiler also
attempts to determine which functions will improve performance if they are inlined.

A routine is not inlined if any of the following conditions apply. No warnings will be
omitted.

= Optimization is less than - xC3
= The routine cannot be found
= Inlining it is not profitable or safe

= The source is not in the file being compiled, or, if you use - xcr ossfi | e[=1], the
source is not in the files named on the command line

Warnings

If you force the inlining of a function with - xi nl i ne, you might actually diminish
performance.

See Also

-xldscope

- Xi po[={0]1]2}]

Performs interprocedural optimizations.

A-98 C++ User’'s Guide » May 2003

The - xi po option performs whole-program optimizations by invoking an
interprocedural analysis pass. Unlike - xcr ossfi | e, - xi po performs optimizations
across all object files in the link step, and the optimizations are not limited to just the
source files on the compile command.

The - xi po option is particularly useful when compiling and linking large multifile
applications. Object files compiled with this flag have analysis information compiled
within them that enables interprocedural analysis across source and precompiled
program files. However, analysis and optimization is limited to the object files
compiled with - xi po, and does not extend to object files on libraries.

Values

The - xi po option can have the following values.

TABLE A-35 The - xi po Values

Value Meaning

0 Do not perform interprocedural optimizations

1 Perform interprocedural optimizations

2 Perform interprocedural aliasing analysis as well as optimizations of

memory allocation and layout to improve cache performance

Defaults
If - xi po is not specified, - xi po=0 is assumed.

If only - xi po is specified, - xi po=1 is assumed.

Examples

The following example compiles and links in the same step.

exampl e% CC -xi po -xO4 -0 prog partl.cc part2.cc part3.cc

The optimizer performs crossfile inlining across all three source files. This is done in
the final link step, so the compilation of the source files need not all take place in a
single compilation and could be over a number of separate compilations, each
specifying the - xi po option.

Appendix A C++ Compiler Options A-99

A-100

The following example compiles and links in separate steps.

exampl e% CC -xi po -xO4 -c partl.cc part2.cc
exampl e% CC -xi po -xO4 -c part3.cc
exanmpl e% CC -xi po -xO4 -0 prog partl.o part2.0 part3.o0

The object files created in the compile steps have additional analysis information
compiled within them to permit crossfile optimizations to take place at the link step.

Interactions
The - xi po option requires at least optimization level - x4,

You cannot use both the - xi po option and the - xcr ossfi | e option in the same
compiler command line.

Warnings

When compiling and linking are performed in separate steps, - xi po must be
specified in both steps to be effective.

Obijects that are compiled without - xi po can be linked freely with objects that are
compiled with - xi po.

Libraries do not participate in crossfile interprocedural analysis, even when they are
compiled with - xi po, as shown in this example.

exanpl e% CC - xi po -xO4 one.cc two.cc three.cc
exampl e% CC -xar -0 nylib.a one.o two.o three.o

exanmpl e% CC -xi po -xO4 -0 nyprog main.cc four.cc nylib.a

In this example, interprocedural optimizations will be performed between one. cc,
two. cc and t hr ee. cc, and between mai n. cc and f our . cc, but not between

mai n. cc or f our. cc and the routines in nyl i b. a. (The first compilation may
generate warnings about undefined symbols, but the interprocedural optimizations
will be performed because it is a compile and link step.)

The - xi po option generates significantly larger object files due to the additional
information needed to perform optimizations across files. However, this additional
information does not become part of the final executable binary file. Any increase in
the size of the executable program will be due to the additional optimizations
performed.

C++ User’s Guide « May 2003

A.2.124

A.2.125

See Also

- Xj obs

- Xj obs=n

Specify the - xj obs option to set how many processes the compiler creates to
complete its work. This option can reduce the build time on a multi-cpu machine.
Currently, - xj obs works only with the - xi po option. When you specify - xj obs=n,
the interprocedural optimizer uses n as the maximum number of code generator
instances it can invoke to compile different files.

Values

You must always specify - xj obs with a value. Otherwise an error diagnostic is
issued and compilation aborts.

Generally, a safe value for n is 1.5 multiplied by the number of available processors.
Using a value that is many times the number of available processors can degrade
performance because of context switching overheads among spawned jobs. Also,
using a very high number can exhaust the limits of system resources such as swap
space.

Defaults

Multiple instances of - xj obs on the command line override each other until the
right-most instance is reached.

Examples

The following example compiles more quickly on a system with two processors than
the same command without the - xj obs option.

exanpl e% CC -xi po -xO4 -xjobs=3 tl.cc t2.cc t3.cc

- x| ang=Ilanguage[, language]

Includes the appropriate runtime libraries and ensures the proper runtime
environment for the specified language.

Appendix A C++ Compiler Options A-101

A-102

Values
language must be either f 77, f 90, or f 95.

The f 90 and f 95 arguments are equivalent.

Interactions

The - xI ang=f 90 and - x| ang=f 95 options imply - | i br ar y=f 90, and the

- xlI ang=f 77 option implies - | i br ar y=f 77. However, the - | i brary=f 77 and
-1i brary=f 90 options are not sufficient for mixed-language linking because only
the - x| ang option ensures the proper runtime environment.

To determine which driver to use for mixed-language linking, use the following
language hierarchy:

1. C++

2. Fortran 95 (or Fortran 90)
3. Fortran 77

4. Cor C99

When linking Fortran 95, Fortran 77, and C++ object files together, use the driver of
the highest language. For example, use the following C++ compiler command to link
C++ and Fortran 95 obiject files.

exanpl e% CC - x|l ang=f95 ...

To link Fortran 95 and Fortran 77 object files, use the Fortran 95 driver, as follows.

exanpl e% f 95 -xlang=f77 ...

You cannot use the - xI ang option and the - xI i ¢c_I i b option in the same compiler
command. If you are using - x| ang and you need to link in the Sun Performance
Libraries, use -1 i br ar y=sunper f instead.

Warnings
Do not use - xnol i b with - xI ang.

If you are mixing parallel Fortran objects with C++ objects, the link line must specify
the - nt flag.

C++ User’s Guide « May 2003

A.2.126

See also

-library, -staticlib

- Xl dscope={v}

Specify the - x| dscope option to change the default linker scoping for the definition
of extern symbols. Changing the default can result in faster and safer shared
libraries and executables because the implementation are better hidden.

Values

v must be one of the following:

TABLE A-36 The - x| dscope Values

Value

Meaning

gl obal

synbolic

hi dden

Global linker scoping is the least restrictive linker scoping. All
references to the symbol bind to the definition in the first dynamic
load module that defines the symbol. This linker scoping is the
current linker scoping for extern symbols.

Symbolic linker scoping and is more restrictive than global linker
scoping. All references to the symbol from within the dynamic load
module being linked bind to the symbol defined within the module.
Outside of the module, the symbol appears as though it is global.
This linker scoping corresponds to the linker option - Bsynbol i c.
Although you cannot use - Bsynbol i ¢ with C++ libraries, you can
use the - x| dscope=synbol i ¢ without causing problems. See | d(1)
for more information on the linker.

Hidden linker scoping is more restrictive than symbolic and global
linker scoping. All references within a dynamic load module bind to
a definition within that module. The symbol will not be visible
outside of the module.

Defaults

If you do not specify - x| dscope, the compiler assumes - x| dscope=gl obal . If you
specify - x| dscope without any values, the compiler issues an error. Multiple
instances of this option on the command line override each other until the right most

instance is reached.

Appendix A C++ Compiler Options ~ A-103

A.2.127

Warning

If you intend to allow a client to override a function in a library, you must be sure
that the function is not generated inline during the library build. The compiler
inlines a function if you specify the function name with - xi nl i ne, if you compile at
- x4 or higher in which case inlining can happen automatically, if you use the inline
specifier, or if you are using cross-file optimization.

For example, suppose library ABC has a default allocator function that can be used
by library clients, and is also used internally in the library:

voi d* ABC all ocator(size_t size) { return malloc(size); }

If you build the library at - xO4 or higher, the compiler inlines calls to

ABC_al | ocat or that occur in library components. If a library client wants to
replace ABC _al | ocat or with a customized version, the replacement will not occur
in library components that called ABC_al | ocat or. The final program will include
different versions of the function.

Library functions declared with the __hi dden or __synbol i ¢ specifiers can be
generated inline when building the library. They are not supposed to be overridden
by clients. See “Thread-Local Storage” on page 4-3.

Library functions declared with the __gl obal specifier, should not be declared
inline, and should be protected from inlining by use of the - xi nl i ne compiler
option.

See Also

-xinline, -xOQ -xcrossfile

—x|l1 bm eee

Causes | i bmto return IEEE 754 values for math routines in exceptional cases.

The default behavior of | i bmis XPG-compliant.

See also

Numerical Computation Guide

A-104 C++ User's Guide « May 2003

A.2.128

A.2.129

—x1ibm |

Inlines selected | i bmlibrary routines for optimization.

Note — This option does not affect C++ inline functions.

There are inline templates for some of the | i bmlibrary routines. This option selects
those inline templates that produce the fastest executables for the floating-point
option and platform currently being used.

Interactions

This option is implied by the —f ast option.

See also

- f ast, Numerical Computation Guide

—xI i brnopt
Uses library of optimized math routines.

This option uses a math routine library optimized for performance and usually
generates faster code. The results might be slightly different from those produced by
the normal math library; if so, they usually differ in the last bit.

The order on the command line for this library option is not significant.

Interactions

This option is implied by the —f ast option.

See also

—fast, —xnol i bnopt

Appendix A C++ Compiler Options ~ A-105

A.2.130

—xl'ic_lib=sunperf
SPARC: Links in the Sun Performance Library™.

This option, like —I , should appear at the end of the command line, after source or
object files.

Note — The - | i brary=sunperf option is recommended for linking the Sun
Performance Library because this option ensures that the libraries are linked in the
correct order. In addition, the - | i br ar y=sunper f option is not position dependent
(it can appear anywhere on the command line), and it enables you to use
-staticli b to statically link the Sun Performance Library. The - st ati cl i b option
is more convenient to use than the - Bstatic -xlic_|i b=sunperf -Bdynam c
combination.

Interactions

You cannot use the - x| ang option and the - xI i ¢_I i b option in the same compiler
command. If you are using - x| ang and you need to link in the Sun Performance
Library, use - | i brary=sunperf instead.

You cannot use - | i brary=sunperf and -xlic_lib=sunperf in the same
compiler command.

The recommended method for statically linking the Sun Performance Library is to
use the -1 i brary=sunperf and -staticl i b=sunperf options, as in the
following example.

exanmpl €% CC -l i brary=sunperf -staticlib=sunperf ... (recommended)

If you choose to use the - xl i c_I i b=sunperf option instead of
-li brary=sunperf, then use the - Bst at i ¢ option, as shown in the following
example.

%CC ... -Bstatic -xlic_lib=sunperf -Bdynamc ...

See also

-li brary and the perfornmance_I i brary readme

A-106 C++ User's Guide « May 2003

A.2.131

A.2.132

—xlicinfo
Shows license server information.

This option returns the license-server name and the user ID for each user who has a
license checked out.

- Xl i nkopt [=level]

Instructs the compiler to perform link-time optimization on the resulting executable
or dynamic library over and above any optimizations in the object files. These
optimizations are performed at link time by analyzing the object binary code. The
object files are not rewritten but the resulting executable code may differ from the
original object codes.

You must use - x| i nkopt on at least some of the compilation commands for
- xl i nkopt to be useful at link time. The optimizer can still perform some limited
optimizations on object binaries that are not compiled with - x| i nkopt .

- xI'i nkopt optimizes code coming from static libraries that appear on the compiler
command line, but it skips and does not optimize code coming from shared
(dynamic) libraries that appear on the command line. You can also use - x| i nkopt
when you build shared libraries (compiling with -G).

Values

level sets the level of optimizations performed, and must be 0, 1, or 2. The
optimization levels are:

TABLE A-37 The - xI i nkopt Values

Link Optimizer Setting Behavior

0 The link optimizer is disabled. (This is the default.)

1 Perform optimizations based on control flow analysis, including
instruction cache coloring and branch optimizations, at link time.

2 Perform additional data flow analysis, including dead-code
elimination and address computation simplification, at link time.

If you compile in separate steps, - x| i nkopt must appear on both compile and link
steps:

exampl e% cc -c -xlinkopt a.c b.c
exampl e% cc -o nmyprog -xlinkopt=2 a.o

Appendix A C++ Compiler Options A-107

A.2.133

Note that the level parameter is only used when the compiler is linking. In the
example above, the link optimizer level is 2 even though the object binaries are
compiled with an implied level of 1.

Defaults

Specifying - x| i nkopt without a level parameter implies - x| i nkopt =1.

Interactions

This option is most effective when you use it to compile the whole program, and
with profile feedback. Profiling reveals the most and least used parts of the code and
building directs the optimizer to focus its effort accordingly. This is particularly
important with large applications where optimal placement of code performed at
link time can reduce instruction cache misses. Typically, this compiles as follows:

exampl e% cc -0 progt -x0b -xprofile=collect:prog file.c
exanpl e% pr ogt
exanmpl e% cc -o prog -xCb -xprofil e=use:prog -xlinkopt file.c

For details on using profile feedback, see “- xpr of i | e=p” on page A-134.

Warnings

You cannot use the link-time link optimizer with the incremental linker, i | d.
- xli nkopt sets the default linker to be | d. If you enable the incremental linker
explicitly with - xi | don and also specify - xI i nkopt, - xI i nkopt is disabled.

Do not use the - zconpr el oc linker option when you compile with - x| i nkopt .

Note that compiling with this option increases link time slightly. Object file sizes also
increase, but the size of the executable remains the same. Compiling with

- xl i nkopt and - g increases the size of the executable by including debugging
information.

—XxXM

Runs only the preprocessor on the named C++ programs, requesting that it generate
makefile dependencies and send the result to the standard output (see make(1) for
details about make files and dependencies).

A-108 C++ User's Guide « May 2003

A.2.134

A.2.135

Examples

For example:

#i ncl ude <uni std. h>
voi d mai n(voi d)

{}

generates this output:

e.c
/usr/include/unistd.h
/usr/include/sys/types.h
/usr/include/ sys/ machtypes. h
/usr/includel/ sys/select.h
/usr/include/sys/tine.h
/usr/includel/sys/types.h
/usr/include/sys/time.h
/usr/include/sys/unistd. h

©®®0®0D00®D0
000000 O0O0O0

See also

make(1S) (for details about makefiles and dependencies)

- XML
This option is the same as —xM except that it does not report dependencies for the

/usr/incl ude header files, and it does not report dependencies for
compiler-supplied header files.

—xMer ge
SPARC: Merges the data segment with the text segment.

The data in the object file is read-only and is shared between processes, unless you
link with I d - N.

Appendix A C++ Compiler Options A-109

See also

I d(1) man page

A.2.136 -xmenal i gn=ab

A-110

Use the - xmenal i gn option to control the assumptions the compiler makes about

the alignment of data. By controlling the code generated for potentially misaligned
memory accesses and by controlling program behavior in the event of a misaligned
access, you can more easily port your code to SPARC.

Specify the maximum assumed memory alignment and behavior of misaligned data
accesses. There must be a value for both a (alignment) and b (behavior). a specifies
the maximum assumed memory alignment and b specifies the behavior for
misaligned memory accesses.

For memory accesses where the alignment is determinable at compile time, the
compiler generates the appropriate load/store instruction sequence for that
alignment of data.

For memory accesses where the alignment cannot be determined at compile time,
the compiler must assume an alignment to generate the needed load/store sequence.

Values

The following table lists the alignment and behavior values for - xmemal i gn

TABLE A-38 The - xnmemal i gn Alignment and Behavior Values

a b

1 Assume at most 1 byte alignment. i Interpret access and continue execution.

2 Assume at most 2 byte alignment. s Raise signal SIGBUS.

4 Assume at most 4 byte alignment. f Raise signal SIGBUS for alignments less

8 A " ¢ 8 bvie ali " or equal to 4,otherwise interpret access
ssume at mos yte afighment. and continue execution.

16 Assume at most 16 byte alignment

Defaults

Here are the default values for - xnenal i gn. The following default values only
apply when no - xnenal i gn flag is present:

C++ User’s Guide « May 2003

A.2.137

= -Xxmemal gi n=4s when - xar ch has the value generi c, v7, v8, v8a, v8pl us,
v8pl usa.

= -xmemal i gn=8s when - xar ch has the value v9, v9a.

Here is the default when - xnmenal i gn flag is present but no value is given:
= -xmemal i gn=1i for all - xar ch values.

Examples

The following table shows how you can use - xnmenal i gn to handle different
alignment situations.

TABLE A-39 Examples of - xnenmal i gn

Command Situation

-xmemal i gn=1s There are many misaligned accesses so trap handling is too
slow.

- xmemal i gn=8i There are occasional, intentional, misaligned accesses in code
that is otherwise correct.

-xmemal i gn=8s There should be no misaligned accesses in the program.

-xmemal i n=2s You want to check for possible odd-byte accesses.

- xmemal i gn=2i You want to check for possible odd-byte access and you want

the program to work.

- Xnat i veconnect [=i]

Use the - xnat i veconnect option when you want to include interface information
inside object files and subsequent shared libraries so that the shared library can
interface with code written in the Java™ programming language (Java code). You
must also include - xnat i veconnect when you build the shared library with - G

When you compile with - xnat i veconnect, you are providing the maximum,
external, visibility of the native code interfaces. The Native Connector Tool (NCT)
enables the automatic generation of Java code and Java Native Interface (JNI) code.
Using - xnat i veconnect with NCT can make functions in C++ shared libraries
callable from Java code. For more information on how to use the NCT, see the online
help.

Appendix A C++ Compiler Options A-111

Values

i must be one of the following:

TABLE A-40 The - xnati veconnect Values

Value Meaning

%all Generates all of the different data described under the individual
options of - xnat i veconnet .

%none Generates none of the different data described under the individual
options of - xnat i veconnet .

[no%]inlines Forces the generation of out-of-line instances of referenced inline
functions. This provides the native connector with an externally
visible way to call the inline functions. The normal inlining of these
functions at call sites is unaffected

[no%]interfaces Forces the generation of Binary Interface Descriptors (BIDS)

Defaults

= If you do not specify - xnat i veconnect , the compiler sets the option to
- xnat i veconnect =%none.

= If you specify only - xnat i veconnect , the compiler sets the option to
-xnati veconnect =i nlines,interfaces.

= This option does not accumulate. The compiler uses the last setting that is
specified. For example, if you specify the following:

CC -xnativeconnect=inlines first.o -xnativeconnect=interfaces
second.o -O -G -0 library.so

the compiler sets the option to - xnat i veconnect =no% nl i nes, i nt er f aces.

Warnings

Do not compile with - conpat =4 if you plan to use -xnativeconnect. Remember that
if you specify - conpat without any arguments, the compiler sets it to - conpat =4.
If you do not specify -compat, the compiler sets it to - conpat =5. You can also
explicitly set the compatibility mode by issuing - conpat =5.

A-112 C++ User's Guide « May 2003

A.2.138

—xnolib

Disables linking with default system libraries.

Normally (without this option), the C++ compiler links with several system libraries
to support C++ programs. With this option, the —I lib options to link the default
system support libraries are not passed to | d.

Normally, the compiler links with the system support libraries in the following
order:

= Standard mode (default mode):

-ICstd -1 Crun -Im-lw-lcx -lc

= Compatibility mode (-conpat):

-IC-Im-lw-lcx -lc

The order of the - | options is significant. The -1 m -1 w and - |1 cx options must
appear before -1 c.

Note — If the - mt compiler option is specified, the compiler normally links with
-1 t hr ead just before it links with -1 m

To determine which system support libraries will be linked by default, compile with
the - dr yr un option. For example, the output from the following command:

exanpl e% CC foo.cc -xarch=v9 -dryrun

Includes the following in the output:

-1 Cstd -1 Crun -Im-lw-lc

Note that when - xar ch=v9 is specified, - | cx is not linked.

Appendix A C++ Compiler Options A-113

A-114

Examples

For minimal compilation to meet the C application binary interface (that is, a C++
program with only C support required), use:

exanpl e% CC —xnolib test.cc —lc

To link | i bmstatically into a single-threaded application with the generic
architecture instruction set, use:

= Standard mode:

exanpl e% CC -xnolib test.cc -1Cstd -1 Crun -Bstatic -Im\
-Bdynanmic -lw-lcx -lc

= Compatibility mode:

exanpl e% CC -conpat -xnolib test.cc -1C -Bstatic -Im\
-Bdynamic -lw-lcx -lc

Interactions

Some static system libraries, such as | i bm a and | i bc. a, are not available when
linking with - xar ch=v9, - xar ch=v9a or - xar ch=v9b.

If you specify —xnol i b, you must manually link all required system support
libraries in the given order. You must link the system support libraries last.

If - xnol i b is specified, - | i brary is ignored.

Warnings

Many C++ language features require the use of | i bC (compatibility mode) or
I i bCrun (standard mode).

This set of system support libraries is not stable and might change from release to
release.

In 64-bit compilation modes, —I cx is not present.

C++ User’s Guide « May 2003

A.2.139

A.2.140

A.2.141

See also

—library,—staticlib, -l

—xnol i bm |
Cancels —xI i bm | on the command line.

Use this option with —f ast to override linking with the optimized math library.

—xnol i bnopt

Does not use the math routine library.

Examples

Use this option after the —f ast option on the command line, as in this example:

exanpl e% CC —fast —xnol i brnopt

- xOevel

Specifies optimization level; note the uppercase letter O followed by the digit 1, 2, 3,
4, or 5. In general, program execution speed depends on the level of optimization.
The higher the level of optimization, the better the runtime performance. However,
higher optimization levels can result in increased compilation time and larger
executable files.

In a few cases, —xO2 might perform better than the others, and —x03 might
outperform —x 4. Try compiling with each level to see if you have one of these rare
cases.

If the optimizer runs out of memory, it tries to recover by retrying the current
procedure at a lower level of optimization. The optimizer resumes subsequent
procedures at the original level specified in the —xOevel option.

There are five levels that you can use with —xQ. The following sections describe how
they operate on the SPARC platform and the x86 platform.

Appendix A C++ Compiler Options A-115

Values

On the SPARC Platform:

= —XOL does only the minimum amount of optimization (peephole), which is
postpass, assembly-level optimization. Do not use - xOL unless using - xQ2 or
- X8 results in excessive compilation time, or you are running out of swap space.

= —XO2 does basic local and global optimization, which includes:

« Induction-variable elimination

« Local and global common-subexpression elimination
« Algebraic simplification

« Copy propagation

« Constant propagation

« Loop-invariant optimization

« Register allocation

« Basic block merging

« Tail recursion elimination

« Dead-code elimination

« Tail-call elimination

« Complicated expression expansion

This level does not optimize references or definitions for external or indirect
variables.

The - Ooption is equivalent to the - xQ2 option.

= —XxOB, in addition to optimizations performed at the —xQ2 level, also optimizes
references and definitions for external variables. This level does not trace the
effects of pointer assignments. When compiling either device drivers that are not
properly protected by vol at i | e or programs that modify external variables from
within signal handlers, use —xQ2. In general, this level results in increased code
size unless combined with the - xspace option.

= —XO4 does automatic inlining of functions contained in the same file in addition
to performing —x O3 optimizations. This automatic inlining usually improves
execution speed but sometimes makes it worse. In general, this level results in
increased code size unless combined with the - xspace option.

= —xOb generates the highest level of optimization. It is suitable only for the small
fraction of a program that uses the largest fraction of computer time. This level
uses optimization algorithms that take more compilation time or that do not have
as high a certainty of improving execution time. Optimization at this level is more
likely to improve performance if it is done with profile feedback. See
Section A.2.152, “- xpr of i | e=p” on page A-134.

On the x84 Platform:

= —XOL does basic optimization. This includes algebraic simplification, register
allocation, basic block merging, dead code and store elimination, and peephole
optimization.

A-116 C++ User's Guide « May 2003

= —XO2 performs local common subexpression elimination, local copy and constant
propagation, and tail recursion elimination, as well as the optimization done by
level 1.

= —XxO8 performs global common subexpression elimination, global copy and
constant propagation, loop strength reduction, induction variable elimination,
and loop-variant optimization, as well as the optimization done by level 2.

= —XO4 does automatic inlining of functions contained in the same file as well as the
optimization done by level 3. This automatic inlining usually improves execution
speed, but sometimes makes it worse. This level also frees the frame pointer
registration (ebp) for general purpose use. In general this level results in
increased code size.

= —XCb generates the highest level of optimization. It uses optimization algorithms
that take more compilation time or that do not have as high a certainty of
improving execution time.

Interactions

If you use - g or - g0 and the optimization level is - x3 or lower, the compiler
provides best-effort symbolic information with almost full optimization. Tail-call
optimization and back-end inlining are disabled.

If you use - g or - g0 and the optimization level is - xO4 or higher, the compiler
provides best-effort symbolic information with full optimization.

Debugging with - g does not suppress —xOlevel, but —xClevel limits —g in certain

ways. For example, the —xOevel options reduce the utility of debugging so that you
cannot display variables from dbx, but you can still use the dbx wher e command to
get a symbolic traceback. For more information, see Debugging a Program With dbx.

The - xcrossfi | e option is effective only if it is used with - xO4 or - x(5.

The - xi nl i ne option has no effect for optimization levels below - x(33. At - x4, the
optimizer decides which functions should be inlined, and does so regardless of
whether you specify the - xi nl i ne option. At - xO4, the compiler also attempts to
determine which functions will improve performance if they are inlined. If you force
the inlining of a function with - xi nl i ne, you might actually diminish performance.

Defaults
The default is no optimization. However, this is only possible if you do not specify

an optimization level. If you specify an optimization level, there is no option for
turning optimization off.

Appendix A C++ Compiler Options A-117

A.2.142

If you are trying to avoid setting an optimization level, be sure not to specify any
option that implies an optimization level. For example, - f ast is a macro option that
sets optimization at - x06. All other options that imply an optimization level give a
warning message that optimization has been set. The only way to compile without
any optimization is to delete all options from the command line or make file that
specify an optimization level.

Warnings

If you optimize at —xO8 or —xO4 with very large procedures (thousands of lines of
code in a single procedure), the optimizer might require an unreasonable amount of
memory. In such cases, machine performance can be degraded.

To prevent this degradation from taking place, use the I i m t command to limit the
amount of virtual memory available to a single process (see the csh(1) man page).
For example, to limit virtual memory to 16 megabytes:

exampl e% linmt datasize 16M

This command causes the optimizer to try to recover if it reaches 16 megabytes of
data space.

The limit cannot be greater than the total available swap space of the machine, and
should be small enough to permit normal use of the machine while a large
compilation is in progress.

The best setting for data size depends on the degree of optimization requested, the
amount of real memory, and virtual memory available.

To find the actual swap space, type: swap -l

To find the actual real memory, type: dnesg | grep nem

See also

-xl dscope —fast,-xcrossfil e=n, —xprofil e=p, csh(1) man page

- xopennp[=i]

SPARC: Use the - xopennp option to enable explicit parallelization with OpenMP
directives. The implementation includes a set of source code directives, run-time
library routines, and environment variables.

A-118 C++ User's Guide « May 2003

Values

The following table lists the values for i:

TABLE A-41 The - xopennp Values

Values of i Meaning

parallel Enables recognition of OpenMP pragmas. The minimum
optimization level under - xopennp=par al | el is - x03. The
compiler changes the optimization from a lower level to - x03 if
necessary and issues a warning .

stubs Disables recognition of OpenMP pragmas, links to stub library
routines and does not change the optimization levels. Use this
option if your application makes explicit calls to the OpenMP
runtime library routines and you want to compile it to execute
serially. The - xopennp=st ubs command also defines the _ OPENMP
preprocessor token.

none Disables recognition of OpenMP pragma, does not change the
optimization level of your program, and does not predefine any
preprocessor tokens.

Defaults
If you do not specify - xopennp, the compiler sets the option to - xopennp=none.

If you specify - xopennp, but without an argument, the compiler sets the option to
- xopennp=paral | el .

Warnings

The default for - xopennp might change in future releases. You can avoid warning
messages by explicitly specifying an appropriate optimization.

If you compile and link in separate steps, also specify - xopennp on the link step.
This is especially important when you compile libraries that contain OpenMP
directives.

See also

For a complete summary of the OpenMP Fortran 95, C, and C++ application
program interface (API) for building multiprocessing applications, see the OpenMP
API User’s Guide.

Appendix A C++ Compiler Options A-119

A.2.143

- Xpagesi ze=n

(SPARC) Sets the preferred page size for the stack and the heap.

Values

The n value must be one of the following: 8K, 64K, 512K, 4M 32M 256M 2G 16G, or
defaul t.

You must specify a valid page size for the Solaris operating environment on the
target platform, as returned by get pagesi ze(3C). If you do not specify a valid
pagesize, the request is silently ignored at run-time. The Solaris operating
environment offers no guarantee that the page size request will be honored.

You can use pmap(1) or meni nf 0(2) to determine page size of the target platform.

Note — This feature is not available on the Solaris 7 and Solaris 8 operating
environments. A program compiled with this option will not link on the Solaris 7
and Solaris 8 operating environments.

Defaults

If you specify - xpagesi ze=def aul t, the Solaris operating environment sets the
page size. - xpagesi ze without an argument is the equivalent to
- xpagesi ze=def aul t .

Expansions

This option is a macro for - xpagesi ze_heap and - xpagesi ze_st ack. These two
options accept the same arguments as - xpagesi ze: 8K, 64K, 512K, 4M 32M 256M
2G 16G or def aul t. You can set them both with the same value by specifying

- Xpagesi ze or you can specify them individually with different values.

Warnings

The - xpagesi ze option has no effect unless you use it at compile time and at link
time.

A-120 C++ User's Guide « May 2003

A.2.144

See Also

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to npss. so. 1 with the equivalent options, or running the
Solaris 9 command ppgsz(1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.

- Xpagesi ze_heap=n

(SPARC) Set the page size in memory for the heap.

Values

n can be 8K, 64K, 512K, 4M 32M 256M 2G, 16G, or def aul t . You must specify a
valid page size for the Solaris operating environment on the target platform, as
returned by get pagesi ze(3C). If you do not specify a valid page size, the request is
silently ignored at run-time.

You can use pmap(1) or mem nf 0(2) to determine page size at the target platform.

Note — This feature is not available on Solaris 7 and Solaris 8 operating
environments. A program compiled with this option will not link on the Solaris 7
and Solaris 8 operating environments.

Defaults

If you specify - xpagesi ze_heap=def aul t, the Solaris operating environment sets
the page size. - xpagesi ze_heap without an argument is the equivalent to
- xpagesi ze_heap=defaul t.

See Also

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to npss. so. 1 with the equivalent options, or running the
Solaris 9 command ppgsz(1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.

Appendix A C++ Compiler Options A-121

A.2.145

A.2.146

- Xpagesi ze_st ack=n

(SPARC) Set the page size in memory for the stack.

Values

n can be 8K, 64K, 512K, 4M 32M 256M 2G, 16G, or def aul t . You must specify a
valid page size for the Solaris operating environment on the target platform, as
returned by get pagesi ze(3C). If you do not specify a valid page size, the request is
silently ignored at run-time.

You can use pmap(1) or mem nf o(2) to determine page size at the target platform.

Note — This feature is not available on Solaris 7 and Solaris 8 operating
environments. A program compiled with this option will not link on the Solaris 7
and Solaris 8 operating environments.

Defaults

If you specify - xpagesi ze_st ack=def aul t, the Solaris operating environment
sets the page size. - xpagesi ze_st ack without an argument is the equivalent to
- xpagesi ze_st ack=def aul t .

See Also

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to npss. so. 1 with the equivalent options, or running the
Solaris 9 command ppgsz (1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.

- Xpch=v

This compiler option activates the precompiled-header feature. The
precompiled-header feature may reduce compile time for applications whose source
files share a common set of include files containing a large amount of source code.
The compiler collects information about a sequence of header files from one source
file, and then uses that information when recompiling that source file, and when
compiling other source files that have the same sequence of headers. The

A-122 C++ User's Guide « May 2003

information that the compiler collects is stored in a precompiled-header file. You can
take advantage of this feature through the - xpch and - xpchst op options in
combination with the #pr agma hdr st op directive.

See Also:

= “-xpchst op=file” on page A-126
= “hdrstop” on page 2-13

Creating a Precompiled-Header File

When you specify - xpch=y, v can be col | ect : pch_filename or use: pch_filename.
The first time you use - xpch, you must specify the col | ect mode. The compilation
command that specifies - xpch=col | ect must only specify one source file. In the
following example, the - xpch option creates a precompiled-header file called
nyheader . Cpch based on the source file a. cc:

CC -xpch=col | ect: nyheader a.cc

A valid precompiled-header filename always has the suffix .Cpch. When you specify
pch_filename, you can add the suffix or let the compiler add it for you. For example,
if you specify cc -xpch=col |l ect: foo a.cc, the precompiled-header file is
called f 0o. Cpch.

When you create a precompiled-header file, pick a source file that contains the
common sequence of include files across all the source files with which the
precompiled-header file is to be used. The common sequence of include files must be
identical across these source files. Remember, only one source filename value is legal
in col | ect mode. For example, CC - xpch=col | ect: foo bar. cc is valid,
whereas CC - xpch=col | ect: foo bar. cc foobar. cc is invalid because it
specifies two source files.

Using A Precompiled-Header File

Specify - xpch=use: pch_filename to use a precompiled-header file. You can specify

any number of source files with the same sequence of include files as the source file
that was used to create the precompiled-header file. For example, your command in
use mode could look like this: CC - xpch=use: f oo. Cpch f 00. c bar. cc

f oobar. cc.

You should only use an existing precompiled-header file if the following is true. If
any of the following is not true, you should recreate the precompiled-header file:

= The compiler that you are using to access the precompiled-header file is the same
as the compiler that created the precompiled-header file. A precompiled-header
file created by one version of the compiler may not be usable by another version
of the compiler, including differences caused by installed patches.

Appendix A C++ Compiler Options A-123

= Except for the - xpch option, the compiler options you specify with - xpch=use
must match the options that were specified when the precompiled-header file was
created.

= The set of included headers you specify with - xpch=use is identical to the set of
headers that were specified when the precompile header was created.

= The contents of the included headers that you specify with - xpch=use is
identical to the contents of the included headers that were specified when the
precompiled header was created.

= The current directory (that is, the directory in which the compilation is occurring
and attempting to use a given precompiled-header file) is the same as the
directory in which the precompiled-header file was created.

= The initial sequence of pre-processing directives, including #i ncl ude directives,
in the file you specified with - xpch=col | ect are the same as the sequence of
pre-processing directives in the files you specify with - xpch=use.

In order to share a precompiled-header file across multiple source files, those source
files must share a common set of include files as their initial sequence of tokens. This
initial sequence of tokens is known as the viable prefix. The viable prefix must be
interpreted consistently across all the source files that use the same
precompiled-header file.

The viable prefix begins with the first token of each source file and ends with the
either a #pr agma hdr st op or the last token of the #i ncl ude directive for the
header file named in the - xpchst op option.

The viable prefix of a source file can only be comprised of comments and any of the
following pre-processor directives:

#i ncl ude

#iflifdef/ifndef/elselelif/endif

#def i ne/ undef

#ident (if identical, passed through as is)

#pragma (if identical)

Any of these may reference macros. The #el se, #el i f, and #endi f directives must
match within the viable prefix.

Within the viable prefix of each file that shares a precompiled-header file, each
corresponding #def i ne and #undef directive must reference the same symbol (in
the case of #def i ne, each one must reference the same value). Their order of
appearance within each viable prefix must be the same as well. Each corresponding
pragma must also be the same and appear in the same order across all the files
sharing a precompiled header.

A header file that is incorporated into a precompiled-header file must not violate the
following. The results of compiling a program that violate any of these constraints is
undefined.

A-124 C++ User's Guide « May 2003

The header file must not contain function and variable definitions.

The header file must not use __ DATE__ and __TI ME__. Use of these
pre-processor macros can generate unpredictable results.

The header file must not contain #pr agma hdr st op.

The header file must not use __LINE__and __FI LE__ in the viable prefix. It is

allowed touse __ LINE__and __FILE__ inincluded headers.

How to Modify make Files

Here are possible approaches to modifying your make files in order to incorporate

- xpch into your builds.

= You can use the implicit make rules by using an auxiliary CCFLAGS variable and
the KEEP_STATE facility of both make and dnake. The precompiled header is

produced as a separate, independent step.

. KEEP_STATE :
CCFLAGS AUX = -O etc
CCFLAGS = - xpch=use: shared $(CCFLAGS_AUX)
shared. Cpch : foo.cc
$(CCC) -xpch=col |l ect:shared $(CCFLAGS_AUX) foo.cc
a.out : foo.o ping.o pong.o
$(CCC) foo.0 ping.o pong.o

You can also define your own compilation rule instead of trying to use an
auxiliary CCFLAGS.

. KEEP_STATE :
.SUFFI XES : .0 .ccC
%o : %cc shared. Cpch
$(CCC) -xpch=use: shared $(CCFLAGS) -c $<
shared. Cpch : foo.cc
$(CCC) -xpch=col |l ect:shared $(CCFLAGS) foo.cc -xe
a.out : foo.o0 ping.o pong.o
$(CCC) foo.0 ping.o pong.o

Appendix A C++ Compiler Options

A-125

= You can produce the precompiled header as a side effect of regular compilation,
and without using KEEP_STATE, but this approach requires explicit compilation
commands.

shared. Cpch + foo.0 : foo.cc bar.h

$(CCC) -xpch=col | ect:shared foo.cc $(CCFLAGS) -c
ping.o : ping.cc shared. Coch bar.h

$(CCC) -xpch=use: shared ping.cc $(CCFLAGS) -c¢
pong. o : pong.cc shared. Cpch bar.h

$(CCC) -xpch=use: shared pong.cc $(CCFLAGS) -c
a.out : foo.o ping.o pong.o

$(CCC) foo.0 ping.o pong.o

A.2.147 - xpchst op=file

Use the - xpchst op=file option to specify the last include file to be considered in
creating the precompile-header file with the - xpch option. Using - xpchst op on the
command line is equivalent to placing a hdr st op pragma after the first
include-directive that references file in each of the source files that you specify with
the cc command.

In the following example, the - xpchst op option specifies that the viable prefix for
the precompiled header file ends with the include of pr oj ect header . h. Therefore,
pri vat eheader. h is not a part of the viable prefix.

exampl e% cat a. cc
#i ncl ude <stdio. h>
#i ncl ude <strings. h>
#i ncl ude "proj ect header. h"
#i ncl ude "privat eheader. h"

exanpl e% CC - xpch=col | ect: foo. Cpch a. cc - xpchst op=pr oj ect header. h
-C

See also

- xpch, pragma hdr st op

A-126 C++ User's Guide « May 2003

A.2.148

A.2.149

—XPg

The —xpg option compiles self-profiling code to collect data for profiling with gpr of .
This option invokes a runtime recording mechanism that produces a gnon. out file
when the program normally terminates.

Warnings

If you compile and link separately, and you compile with —xpg, be sure to link with
—Xpg.

See also

—xprofil e=p, anal yzer (1) man page, Program Performance Analysis Tools.

-xport64[=(v)]

Use this option to help you debug code you are porting to a 64-bit environment.
Specifically, this option warns against problems such as truncation of types
(including pointers), sign extension, and changes to bit-packing that are common
when code is ported from a 32-bit architecture such as V7 to a 64-bit architecture
such as V9.

Values

The following table lists the valid values for v:

TABLE A-42 The - xport 64 Values

Values of v Meaning

no Generate no warnings related to the porting of code from a 32 bit
environment to a 64 bit environment.

implicit Generate warning only for implicit conversions. Do not generate
warnings when an explicit cast is present.

full Generate all warnings related to the porting of code from a 32 bit
environment to a 64 bit environment. This includes warnings for
truncation of 64-bit values, sign-extension to 64 bits under ISO
value-preserving rules, and changes to packing of bitfields.

Appendix A C++ Compiler Options ~ A-127

Defaults

If you do not specify - xpor t 64, the default is - xpor t 64=no. If you specify
- xpor t 64, but do not specify a flag, the default is - xport 64=f ul | .

Examples

This section provides examples of code that can cause truncation of type, sign
extension and changes to bit-packing.

Checking for the Truncation of 64-bit Values

When you port to a 64-bit architecture such as V9, your data may be truncated. The
truncation could happen implicitly, by assignment, at initialization, or by an explicit
cast. The difference of two pointers is the typedef ptrdi ff _t, which is a 32-bit
integer type in 32-bit mode, and a 64-bit integer type in 64-bit mode. The truncation
of a long to a smaller size integral type generates a warning as in the following
example.

exanpl e% cat testl.c
int x[10];

int diff = &[10] - &x[5]; //warn

exanpl e% CC -c -xarch=v9 -Qoption ccfe -xport64=full testl.c
"testl.c", line 3: Warning: Conversion of 64-bit type value to
"int" causes truncation.

1 Warning(s) detected.

exanpl e%

Use - xport 64=i npl i ci t to disable truncation warnings in 64bit compilation mode
when an explicit cast is the cause of data truncation.

exampl e% CC -c -xarch=v9 -Qoption ccfe -xport64=inplicit testl.c
"testl.c", line 3: Warning: Conversion of 64-bit type value to
"int" causes truncation.

1 Warning(s) detected.

exanmpl e%

A-128 C++ User's Guide « May 2003

Another common issue that arises from porting to a 64-bit architecture is the
truncation of a pointer. This is always an error in C++. An operation such as casting
a pointer to an int which causes such a truncation results in an error diagnostic in V9
when you specify - xport 64.

exanpl e% cat test2.c
char* p;
int main() {
p =(char*) (((unsigned int)p) & OxFF); // -xarch=v9 error

return O;
}
exanpl e% CC -c -xarch=v9 - Qoption ccfe -xport64=full test2.c
"test2.c", line 3: Error: Cannot cast fromchar* to unsigned.
1 Error(s) detected.
exanmpl e%

Checking for Sign Extension

You can also use the - xpor t 64 option to check for situations in which the normal
ISO C value-preserving rules allow for the extension of the sign of a signed-integral
value in an expression of unsigned-integral type. Such sign extensions can cause
subtle run-time bugs.

exampl e% cat test3.c
int i=-1;
voi d prono(unsigned long |I) { }

int main() {
unsigned long |I;

| =1i; [/ warn

prono(i); /1 warn
}
exanpl e% CC -c -xarch=v9 -Qoption ccfe -xport64=full test3.c
"test3.c", line 6: Warning: Sign extension from"int" to 64-bit
i nteger.
"test3.c", line 7: Warning: Sign extension from"int" to 64-bit
i nteger.

2 Warni ng(s) detected.

Appendix A C++ Compiler Options A-129

Checking for Changes to Packing of Bitfields

Use - xpor t 64 to generate warnings against long bitfields. In the presence of such
bitfields, packing of the bitfields might drastically change. Any program which relies
on assumptions regarding the way bitfields are packed needs to be reviewed before
a successful port can take place to a 64-bit architecture.

exanpl e% cat test4.c
#i ncl ude <stdio. h>

uni on U {
struct S {
unsi gned | ong b1l: 20;
unsi gned | ong b2: 20;

} s

I ong buf[2];
Py

int main() {
u.s. bl = OXFFFFF;

u.s. b2 = OXFFFFF;
printf(" u.buf[0] = %x u.buf[1] = %x\n", u.buf[0], u.buf[1]);
return O;
}
exanpl e%
Output in V9:

exampl e% u. buf[0] = ffffffffff000000 wu.buf[1l] =0

Output in V7:

exampl e% u. buf[0] = fffff000 wu.buf[1l] = fffff000
exanmpl e% CC -c -xarch=v9 -Qoption ccfe -xport64 test4d.c

"test4.c", line 5: Warning: 64-bit type bitfield may change
bitfield packing within structure or union.
"test4.c", line 6: Warning: 64-bit type bitfield nay change

bitfield packing within structure or union.
2 Warni ng(s) detected.
exanpl e%

A-130 C++ User's Guide « May 2003

A.2.150

Warnings

Note that warnings are generated only when you compile in 64-bit mode by
specifying options such as - ar ch=generi c64, or - xar ch=v9.

See Also

“—xar ch=isa” on page A-73.

- xpr ef et ch[=a][, a...]]

SPARC: Enable prefetch instructions on those architectures that support prefetch,
such as UltraSPARC Il (- xar ch=v8pl us, v8pl usa, v9pl usb, v9, v9a, or v9b)

a must be one of the following values.

TABLE A-43 The - xpr ef et ch Values

Value Meaning

aut o Enable automatic generation of prefetch instructions
no%aut o Disable automatic generation of prefetch instructions
explicit Enable explicit prefetch macros

no%explicit Disable explicit prefetch macros

| at x: factor Adjust the compiler’s assumed prefetch-to-load and

prefetch-to-store latencies by the specified factor. The factor must be
a positive floating-point or integer number.

yes - xpr ef et ch=yes is the same as - xpr ef et ch=aut o, explicit

no - xpr ef et ch=no is the same as
- xpr ef et ch=no%aut o, no%explicit

With - xpr ef et ch, - xpr ef et ch=aut o, and - xpr ef et ch=yes, the compiler is free
to insert prefetch instructions into the code it generates. This may result in a
performance improvement on architectures that support prefetch.

If you are running computationally intensive codes on large multiprocessors, you
might find it advantageous to use - xpr ef et ch=l at x: factor. This option instructs
the code generator to adjust the default latency time between a prefetch and its
associated load or store by the specified factor.

Appendix A C++ Compiler Options A-131

A-132

The prefetch latency is the hardware delay between the execution of a prefetch
instruction and the time the data being prefetched is available in the cache. The
compiler assumes a prefetch latency value when determining how far apart to place
a prefetch instruction and the load or store instruction that uses the prefetched data.

Note — The assumed latency between a prefetch and a load may not be the same as
the assumed latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide
range of machines and applications. This tuning may not always be optimal. For
memory-intensive applications, especially applications intended to run on large
multiprocessors, you may be able to obtain better performance by increasing the
prefetch latency values. To increase the values, use a factor that is greater than 1
(one). A value between .5 and 2.0 will most likely provide the maximum
performance.

For applications with datasets that reside entirely within the external cache, you may
be able to obtain better performance by decreasing the prefetch latency values. To
decrease the values, use a factor that is less than 1 (one).

To use the - xpr ef et ch=| at x: factor option, start with a factor value near 1.0 and
run performance tests against the application. Then increase or decrease the factor,
as appropriate, and run the performance tests again. Continue adjusting the factor
and running the performance tests until you achieve optimum performance. When
you increase or decrease the factor in small steps, you will see no performance
difference for a few steps, then a sudden difference, then it will level off again.

Defaults

If - xpr ef et ch is not specified, - xpr ef et ch=no%aut o, expl i ci t is assumed.
If only - xpr ef et ch is specified, - xpr ef et ch=aut o, expl i ci t is assumed.

The default of no%aut o is assumed unless explicitly overridden with the use of
- xpr ef et ch without any arguments or with an argument of aut o or yes. For
example, - xpr ef et ch=expl i ci t is the same as

- xpr ef et ch=expl i ci t, no%aut o.

The default of expl i ci t is assumed unless explicitly overridden with an argument
of no%explicit or an argument of no. For example, - xpr ef et ch=aut o is the
same as - xpr ef et ch=aut o, explicit.

If automatic prefetching is enabled, such as with - xpr ef et ch or - xpr ef et ch=yes,
but a latency factor is not specified, then - xpr ef et ch=I at x: 1. 0 is assumed.

C++ User’s Guide « May 2003

A.2.151

Interactions
This option accumulates instead of overrides.

The sun_pr ef et ch. h header file provides the macros for specifying explicit
prefetch instructions. The prefetches will be approximately at the place in the
executable that corresponds to where the macros appear.

To use the explicit prefetch instructions, you must be on the correct architecture,
include sun_pr ef et ch. h, and either exclude - xpr ef et ch from the compiler
command or use - xprefetch, - xprefetch=auto, explicit,
-xprefetch=explicit or-xprefetch=yes.

If you call the macros and include the sun_pr ef et ch. h header file, but pass
- xpref et ch=no%explicit or-xprefetch=no, the explicit prefetches will not
appear in your executable.

The use of | at x: factor is valid only when automatic prefetching is enabled. That is,
| at x: factor is ignored unless you use it in conjunction with yes or aut o, as in
- xpr ef et ch=yes, | at x: factor.

Warnings

Explicit prefetching should only be used under special circumstances that are
supported by measurements.

Because the compiler tunes the prefetch mechanism for optimal performance across
a wide range of machines and applications, you should only use

- xpr ef et ch=l at x: factor when the performance tests indicate there is a clear
benefit. The assumed prefetch latencies may change from release to release.
Therefore, retesting the effect of the latency factor on performance whenever
switching to a different release is highly recommended.

-xprefetch_|evel [=i]

Use the new - xpr ef et ch_I evel =i option to control the aggressiveness of the
automatic insertion of prefetch instructions as determined with - xpr ef et ch=aut o.
The compiler becomes more aggressive, or in other words, introduces more
prefetches, with each higher, level of - xpr ef et ch_I evel .

The appropriate value for - xpr ef et ch_| evel depends on the number of cache
misses your application has. Higher - xpr ef et ch_| evel values have the potential
to improve the performance of applications with a high number of cache misses.

Appendix A C++ Compiler Options A-133

A.2.152

Values

i must be one of 1, 2, or 3.

TABLE A-44 The - xprefecth_| evel Values

Value Meaning
1 Enables automatic generation of prefetch instructions.
2 Targets additional loops, beyond those targeted at

-xprefetch_| evel =1, for prefetch insertion. Additional
prefetches may be inserted beyond those that were inserted at
-xprefetch_Il evel =1.

3 Targets additional loops, beyond those targeted at
-xprefetch_| evel =2, for prefetch insertion. Additional
prefetches may be inserted beyond those that were inserted at
-xprefetch_Il evel =2,

Defaults

The default is - xpr ef et ch_| evel =2 when you specify - xpr ef et ch=aut o.

Interactions

This option is effective only when it is compiled with - xpr ef et ch=aut o, with
optimization level 3 or greater (- x(3), and on a platform that supports prefetch
(v8pl us, v8pl usa, v9, v9a, v9b, generi c64, nati veb4).

-xprofile=p

Use this option to first collect and save execution-frequency data so that you can
then use the data in subsequent runs to improve performance. This option is only
valid when you specify optimization at level - xQ2 or above.

Compiling with high optimization levels (for example - x05) is enhanced by
providing the compiler with runtime-performance feedback. In order to produce
runtime-performance feedback, you must compile with - xpr of i | e=col | ect, run
the executable against a typical data set, and then recompile at the highest
optimization level and with - xpr of i | e=use.

Profile collection is safe for multithreaded applications. That is, profiling a program
that does its own multitasking (- nt) produces accurate results. This option is only
valid when you specify optimization at level - xQ2 or above.

A-134 C++ User's Guide « May 2003

Values

p must be one of the following values.

col | ect [: name]

Collects and saves execution frequency for later use by the optimizer with
—xprof il e=use. The compiler generates code to measure statement execution
frequency.

The name is the name of the program that is being analyzed. The name is optional
and, if not specified, is assumed to be a. out .

At runtime, a program compiled with —xpr of i | e=col | ect : name creates the
subdirectory name. pr of i | e to hold the runtime feedback information. Data is
written to the file f eedback in this subdirectory. You can use the
$SUN_PROFDATA and $SUN_PROFDATA DI Renvironment variables to change the
location of the feedback information. See the Interactions section for more
information.

If you run the program several times, the execution frequency data accumulates
in the f eedback file; that is, output from prior runs is not lost.

If you are compiling and linking in separate steps, make sure that any object files
compiled with - xprof i | e=col | ect are also linked with - xpr of i | e=col | ect.

usel[: name]

The program is optimized by using the executions-frequency data generated and
saved in the f eedback files from a previous execution of the program that was
compiled with —xprofi | e=col | ect.

The name is the name of the executable that is being analyzed. The name is
optional and, if not specified, is assumed to be a. out .

Except for the - xpr of i | e option which changes from - xpr of i | e=col | ect to
- xprofi | e=use, the source files and other compiler options must be exactly the
same as those used for the compilation that created the compiled program which
in turn generated the f eedback file. The same version of the compiler must be
used for both the collect build and the use build as well. If compiled with
-xprofil e=col | ect: name, the same program name name must appear in the
optimizing compilation: - xpr of i | e=use: name.

The association between an object file and its profile data is based on the UNIX
pathname of the object file when it is compiled with - xprofi | e=col | ect . In
some circumstances, the compiler will not associate an object file with its profile
data: the object file has no profile data because it was not previously compiled
with - xprofi | e=col | ect, the object file is not linked in a program with
-xprofil e=col | ect, the program has never been executed.

The compiler can also become confused if an object file was previously compiled
in a different directory with - xpr of i | e=col | ect and this object file shares a
common basename with other object files compiled with - xprofi | e=col | ect
but they cannot be uniquely identified by the names of their containing

Appendix A C++ Compiler Options A-135

directories. In this case, even if the object file has profile data, the compiler will
not be able to find it in the feedback directory when the object file is recompiled
with - xprofi | ezuse.

All of these situations cause the compiler to loose the association between an
object file and its profile data. Therefor, if an object file has profile data but the
compiler is unable to associate it with the object file’s pathname when you specify
-xprofil e=use, use the - xprofi | e_pat hmap option to identify correct
directory. See “- xpr of i | e_pat hnap” on page A-137

= tcov
Basic block coverage analysis using the new style t cov.

This option is the new style of basic block profiling for t cov. It has similar
functionality to the —xa option, but correctly collects data for programs that have
source code in header files or make use of C++ templates. Code instrumentation
is similar to that of the - xa option, but. d files are no longer generated. Instead,
a single file is generated, the name of which is based on the final executable. For
example, if the program is run out of / f oo/ bar/ mypr og. profi |l e, then the
data file is stored in / f oo/ bar/ nypr og. profil e/ nyprog.tcovd.

When running t cov, you must pass it the —x option to force it to use the new
style of data. If you do not pass - x, t cov uses the old . d files by default, and
produces unexpected output.

Unlike the —xa option, the TCOVDI R environment variable has no effect at
compile time. However, its value is used at program runtime.

Interactions

The —xpr of i | e=t cov and the - xa options are compatible in a single executable.
That is, you can link a program that contains some files that have been compiled
with - xpr of i | e=t cov and other files compiled with - xa. You cannot compile a
single file with both options.

The code coverage report produced by - xpr of i | e=t cov can be unreliable if there
is inlining of functions due to the use of - xi nl i ne or - xM4.

You can set the environment variables $SUN_PROFDATA and $SUN_PROFDATA DI R
to control where a program that is compiled with - xpr of i | e=col | ect puts the
profile data. If these variables are not set, the profile data is written to

name. prof i | e/ f eedback in the current directory (name is the name of the
executable or the name specified in the - xpr of i | e=col | ect : name flag). If these
variables are set, the - xpr of i | e=col | ect data is written to

$SUN_PROFDATA DI R/ $SUN_PROFDATA.

The $SUN_PROFDATA and $SUN_PROFDATA_DI R environment variables similarly
control the path and names of the profile data files written by tcov. See the t cov(1)
man page for more information.

A-136 C++ User's Guide « May 2003

A.2.153

A.2.154

Warnings

If you compile and link in separate steps, the same - xpr of i | e option must appear
in both the compile command and the link command. Including - xpr of i | e in one
step and excluding it from the other step will not affect the correctness of the
program, but you will not be able to do profiling.

See also

- xa, t cov(1l) man page, Program Performance Analysis Tools.

-xprofile_ircache[=path]

Use - xprofi | e_i r cache[=path] with - xprofi | e=col | ect Juse to improve
compilation time during the use phase by reusing compilation data saved from the
col | ect phase.

With large programs, compilation time in the use phase can improve significantly
because the intermediate data is saved. Note that the saved data could increase disk
space requirements considerably.

When you use - xprofi | e_i r cache[=path], path overrides the location where the

cached files are saved. By default, these files are saved in the same directory as the
object file. Specifying a path is useful when the col | ect and use phases happen in
two different directories. Here’s a typical sequence of commands:

exanpl e% CC -x0b -xprofil e=collect -xprofile_ircache tl.cc t2.cc
exanpl e% a. out /'l run collects feedback data
exampl e% CC -xOb -xprofil e=use -xprofile_ircache tl.cc t2.cc

-xprofil e _pat hmap

Use the - xprof i | e_pat hmap=collect_prefix:use_prefix option when you are also
specifying the - xpr of i | e=use command. Use - xpr of i | e_pat hnmap when both of
the following are true and the compiler is unable to find profile data for an object file
that is compiled with - xpr of i | e=use.

= You are compiling the object file with - xpr of i | e=use in a directory that is
different from the directory in which the object file was previously compiled with
-xprofile=collect.

= Your object files share a common basename in the profile but are distinguished
from each other by their location in different directories.

Appendix A C++ Compiler Options ~ A-137

A.2.155

The collect-prefix is the prefix of the UNIX pathname of a directory tree in which
object files were compiled using - xpr of i | e=col | ect .

The use-prefix is the prefix of the UNIX pathname of a directory tree in which object
files are to be compiled using - xpr of i | e=use.

If you specify multiple instances of - xpr of i | e_pat hrmmap, the compiler processes
them in the order of their occurrence. Each use-prefix specified by an instance of
-xprofil e_pat hmap is compared with the object file pathname until either a
matching use-prefix is identified or the last specified use-prefix is found not to match
the object file pathname.

—Xregs=ri[, r...]
SPARC: Controls scratch register usage.

The compiler can generate faster code if it has more registers available for temporary
storage (scratch registers). This option makes available additional scratch registers
that might not always be appropriate.

A-138 C++ User's Guide « May 2003

Values

r must be one of the following values. The meaning of each value depends upon the

- xar ch setting.

TABLE A-45 The - xr egs Values

Value of r Meaning

[no% appl [Does not] Allow the compiler to generate code using the application
registers as scratch registers. The application registers are:
02, g3, g4 (v8a, v8, v8plus, v8plusa, v8plusb)
g2, g3 (v9, v9a, vab)
It is strongly recommended that all system software and libraries be
compiled using - xr eg=no%appl . System software (including
shared libraries) must preserve these registers’ values for the
application. Their use is intended to be controlled by the compilation
system and must be consistent throughout the application.
or more information on SPARC instruction sets, see “—xar ch=isa”
on page A-73.
In the SPARC ABI, these registers are described as application
registers. Using these registers can increase performance because
fewer | oad and st or e instructions are needed. However, such use
can conflict with programs that use the registers for other purposes.

[no% f | oat [Does not] Allow the compiler to generate code by using the
floating-point registers as scratch registers for integer values. Use of
floating-point values may use these registers regardless of this
option. If - xr egs=no0% | oat, a source program cannot contain any
floating-point code.

Defaults

If —xr egs is not specified, —xr egs=appl , f| oat is assumed.

Examples

To compile an application program using all available scratch registers, use
- xregs=appl , fl oat.

To compile non-floating-point code that is sensitive to context switch, use
- Xregs=no%appl , no% | oat .

Appendix A C++ Compiler Options A-139

A.2.156

A.2.157

See also

SPARC V7/V8 ABI, SPARC V9 ABI

—XS

Allows debugging by dbx without object (. o) files.

This option disables Auto-Read for dbx. Use this option if you cannot keep the . 0
files. This option passes the - s option to the assembler.

No Auto-Read is the older way of loading symbol tables. It places all symbol tables
for dbx in the executable file. Consequently, the linker links more slowly, and dbx
initializes more slowly.

Auto-Read is the newer and default way of loading symbol tables. With Auto-Read
the information is placed in the . o files, so that dbx loads the symbol table
information only if it is needed. Hence the linker links faster, and dbx initializes
faster.

With —xs, if you move executables to another directory, you do not have to move the
object (. o) files to use dbx.

Without —xs, if you move the executables to another directory, you must move both
the source files and the object (. 0) files to use dbx.

—xsaf e=nem

SPARC: Allows the compiler to assume that no memory protection violations occur.

This option allows the compiler to use the nonfaulting load instruction in the SPARC
V9 architecture.

Interactions

This option is effective only when it is used with —x06 optimization and
- xar ch=v8pl us, v8pl usa, v8pl usbh, v9, v9a, or vIb is specified.

Warnings

Because nonfaulting loads do not cause a trap when a fault such as address
misalignment or segmentation violation occurs, you should use this option only for
programs in which such faults cannot occur. Because few programs incur

A-140 C++ User's Guide « May 2003

A.2.158

A.2.159

A.2.160

A.2.161

memory-based traps, you can safely use this option for most programs. Do not use
this option for programs that explicitly depend on memory-based traps to handle
exceptional conditions.

—Xsb

This option causes the CC driver to generate extra symbol table information in the
SunW5_cache subdirectory for the source browser.

See also

—xsbf ast

—Xsbf ast

Produces only source browser information, no compilation.

This option runs only the ccf e phase to generate extra symbol table information in
the SunW5_cache subdirectory for the source browser. No object file is generated.

See also

—xsb

—Xspace

SPARC: Does not allow optimizations that increase code size.

—xt ar get =t
Specifies the target platform for instruction set and optimization.

The performance of some programs can benefit by providing the compiler with an
accurate description of the target computer hardware. When program performance
is critical, the proper specification of the target hardware could be very important.
This is especially true when running on the newer SPARC processors. However, for
most programs and older SPARC processors, the performance gain is negligible and
a generic specification is sufficient.

Appendix A C++ Compiler Options ~ A-141

A-142

Each specific value for - xt ar get expands into a specific set of values for the

- xar ch, - xchi p, and - xcache options. Use the f pver si on(1) command to
determine the expansion of - xt ar get =nat i ve on a running system. See TABLE A-46
for the values.

For example, - xt ar get =sun4/ 15 is equivalent to: - xar ch=v8a - xchi p=m cro
-xcache=2/16/ 1.

Note — The expansion of - xt ar get for a specific host platform might not expand to
the same - xar ch, - xchi p, or - xcache settings as - xt ar get =nat i ve when
compiling on that platform.

Values
For SPARC platforms:

On SPARC platforms, t must be one of the following values.

TABLE A-46 - xt ar get Values for SPARC Platforms

Value of t Meaning

native Gets the best performance on the host system. The compiler
generates code optimized for the host system. It determines the
available architecture, chip, and cache properties of the machine on
which the compiler is running.

native64 Gets the best performance for 64-bit object binaries on the host
system. The compiler generates 64-bit object binaries optimized for
the host system. It determines the available 64-bit architecture, chip,
and cache properties of the machine on which the compiler is
running.

generic Gets the best performance for generic architecture, chip, and cache.
The compiler expands —xt ar get =generi c to:
—xar ch=generi c —xchi p=generic —-xcache=generi c.
This is the default value.

generic64 Sets the parameters for the best performance of 64-bit object binaries
over most 64-bit platform architectures.

platform-name Gets the best performance for the specified platform. Select a SPARC
platform name from TABLE A-47.

C++ User’s Guide « May 2003

The following table details the - xt ar get SPARC platform names and their

expansions.

TABLE A-47 SPARC Platform Names for - xt ar get

-Xtarget= -xarch -xchip -xcache

generic generic generic generic

€cs6400 v8pl usa super 16/ 32/ 4: 2048/ 64/ 1
entr 150 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2 v8plusa ultra 16/ 32/ 1:512/ 64/ 1
entr2/1170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2/1200 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2/2170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2/ 2200 v8plusa ultra 16/ 32/1:512/ 64/ 1
ent r 3000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 4000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 5000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 6000 v8pl usa ultra 16/ 32/ 1:512/ 64/ 1
sc2000 v8pl usa super 16/ 32/ 4: 2048/ 64/ 1
sol b5 v7 ol d 128/ 32/ 1

sol b6 v8 super 16/ 32/ 4: 1024/ 32/ 1
ssl v7 ol d 64/ 16/ 1

ss10 v8 super 16/ 32/ 4

ss10/ 20 v8 super 16/ 32/ 4

ss10/ 30 v8 super 16/ 32/ 4

ss10/ 40 v8 super 16/ 32/ 4

ss10/ 402 v8 super 16/ 32/ 4

ss10/ 41 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 412 v8 super 16/ 32/ 4: 1024/ 32/ 1
s$s10/ 50 v8 super 16/ 32/ 4

ss10/51 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1

Appendix A C++ Compiler Options

A-143

A-144

TABLE A-47 SPARC Platform Names for - xt ar get (Continued)

-Xtarget= -xarch -xchip -xcache

ss10/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/71 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss10/ 712 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss10/ hsl11l v8 hyper 256/ 64/ 1

ss10/ hs12 v8 hyper 256/ 64/ 1

ss10/ hs14 v8 hyper 256/ 64/ 1

ss10/ hs21 v8 hyper 256/ 64/ 1

ss10/ hs22 v8 hyper 256/ 64/ 1

ss1000 v8 super 16/ 32/ 4: 1024/ 32/ 1
sslpl us v7 old 64/ 16/ 1

ss2 v7 old 64/ 32/ 1

ss20 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 151 v8 hyper 512/ 64/ 1

$520/ 152 v8 hyper 512/ 64/ 1

s$s20/ 50 v8 super 16/ 32/ 4

ss20/ 502 v8 super 16/ 32/ 4

ss20/ 51 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 71 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss20/ 712 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss20/ hs11l v8 hyper 256/ 64/ 1

ss20/ hs12 v8 hyper 256/ 64/ 1

ss20/ hs14 v8 hyper 256/ 64/ 1

ss20/ hs21 v8 hyper 256/ 64/ 1

ss20/ hs22 v8 hyper 256/ 64/ 1

ss2p v7 power up 64/ 32/ 1

ss4 v8a m cro2 8/16/1

C++ User’s Guide « May 2003

TABLE A-47 SPARC Platform Names for - xt ar get (Continued)

-Xtarget= -xarch -xchip -xcache

ss4/110 v8a m cro2 8/16/1

ss4/ 85 v8a m cro2 8/16/1

ss5 v8a m cro2 8/16/1

ss5/ 110 v8a m cro2 8/16/1

ss5/ 85 v8a m cro2 8/16/1

$s600/ 120 v7 ol d 64/ 32/ 1

$s600/ 140 v7 ol d 64/ 32/ 1

ss600/ 41 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 412 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 51 v8 super 16/ 32/ 4: 1024/ 32/ 1
s$s600/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1
s$s600/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
ssel ¢ v7 old 64/ 32/ 1

ssi pc v7 old 64/ 16/ 1

SSi px v7 old 64/ 32/ 1

sslc v8a mcro 2/16/1

sslt v7 old 64/ 32/ 1

ssl x v8a mcro 2/16/1

ssl x2 v8a m cro2 8/16/1

ssslc v7 old 64/ 16/ 1

ssvyger v8a m cro2 8/16/1

sun4/ 110 v7 old 2/16/1

sun4/ 15 v8a mcro 2/16/1

sun4/ 150 v7 ol d 2/16/1

sun4/ 20 v7 ol d 64/ 16/ 1

sun4/ 25 v7 old 64/ 32/ 1

sun4/ 260 v7 old 128/ 16/ 1

sun4/ 280 v7 ol d 128/16/1

Appendix A C++ Compiler Options

A-145

A-146

TABLE A-47 SPARC Platform Names for - xt ar get (Continued)

-Xtarget= -xarch -xchip -xcache

sun4/ 30 v8a mcro 2/16/1

sun4/ 330 v7 ol d 128/16/1

sun4/ 370 v7 ol d 128/16/1

sun4/ 390 v7 old 128/ 16/ 1

sun4/ 40 v7 old 64/ 16/ 1

sun4/ 470 v7 ol d 128/32/1

sun4/ 490 v7 ol d 128/32/1

sun4/ 50 v7 old 64/ 32/ 1

sun4/ 60 v7 old 64/ 16/ 1

sun4/ 630 v7 ol d 64/ 32/ 1

sun4/ 65 v7 ol d 64/ 16/ 1

sun4/ 670 v7 old 64/ 32/ 1

sun4/ 690 v7 old 64/ 32/ 1

sun4/ 75 v7 ol d 64/ 32/ 1

ultra v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tral/ 140 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ultral/ 170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tral/ 200 v8pl usa ultra 16/ 32/1:512/ 64/ 1
ultra2 v8pl usa ultra2 16/ 32/ 1: 512/ 64/ 1
ultra2/ 1170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tra2/ 1200 v8pl usa ultra 16/ 32/ 1: 1024/ 64/ 1
ul tra2/ 1300 v8pl usa ultra2 16/ 32/ 1: 2048/ 64/ 1
ul tra2/ 2170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tra2/ 2200 v8pl usa ultra 16/ 32/ 1: 1024/ 64/ 1
ul tra2/ 2300 v8pl usa ultra2 16/ 32/ 1: 2048/ 64/ 1
ul tra2e v8pl usa ultra2e 16/ 32/ 1: 256/ 64/ 4
ultra2i v8pl usa ul tra2i 16/ 32/ 1:512/ 64/ 1
ultra3 v8pl usa ultra3 64/ 32/ 4: 8192/ 512/ 1
ul tra3cu v8pl usa ultra3cu 64/32/4:8192/512/2

For IA platforms:

C++ User’s Guide « May 2003

On IA platforms, t must be one of the following values.

TABLE A-48 - Xt ar get Values for IA Platforms

Value of t Meaning

generic Gets the best performance for generic architecture, chip, and cache.
This is the default value.

native Gets the best performance on the host system.

386 Directs the compiler to generate code for the best performance on the
Intel 80386 microprocessor.

486 Directs the compiler to generate code for the best performance on the
Intel 80486 microprocessor.

pentium Directs the compiler to generate code for the best performance on the
Pentium microprocessor.

pentium pro Directs the compiler to generate code for the best performance on the
Pentium Pro microprocessor.

The following table lists the —xt ar get values for the Intel Architecture:

TABLE A-49 - xt ar get Expansions on Intel Architecture

-xtarget= -xarch -xchip -xcache

generic generic generic generic
386 386 386 generic
486 386 486 generic
pentium 386 pentium generic

pentiumpro pentium pro pentium pro generic

Defaults

On both SPARC and IA devices, if —xt ar get is not specified, —xt ar get =generi c
is assumed.

Expansions

The —xt ar get option is a macro that permits a quick and easy specification of the
- xar ch, —=xchi p, and —xcache combinations that occur on commercially purchased
platforms. The only meaning of —xt ar get is in its expansion.

Appendix A C++ Compiler Options A-147

A.2.162

Examples

- xt ar get =sun4/ 15 means - xar ch=v8a -xchi p=mi cro -xcache=2/16/ 1.

Interactions

Compilation for SPARC V9 architecture indicated by the - xar ch=v9|v9a]v9b
option. Setting —xt ar get =ul tra or ul t r a2 is not necessary or sufficient. If

- xt ar get is specified, the —xar ch=v9, v9a, or v9b option must appear after the
- xt ar get . For example:

-xarch=v9 -xtarget=ultra

expands to the following and reverts the - xar ch value to v8.

-xarch=v9 -xarch=v8 -xchip=ultra -xcache=16/32/1:512/64/1

The correct method is to specify - xar ch after - xt ar get . For example:

—xtarget=ultra —xarch=v9

Warnings

When you compile and link in separate steps, you must use the same - xt ar get
settings in the compile step and the link step.

- Xt hr eadvar [=0]

(SPARC) Specify - xt hr eadvar to control the implementation of thread local
variables. Use this option in conjunction with the __t hr ead declaration specifier to
take advantage of the compiler’s thread-local storage facility. After you declare the
thread variables with the __ thread specifier, specify - xt hr eadvar to enable the use
of thread-local storage with position dependent code (non-PIC code) in dynamic
(shared) libraries. For more information on how to use __t hr ead, see “Thread-Local
Storage” on page 4-3.

A-148 C++ User's Guide « May 2003

Values

0 must be one of the following:

TABLE 16-1 The - xt hr eadvar Values

Value of r Meaning

[no% dynami c [Do not] Compile variables for dynamic loading. Access to thread
variables is significantly faster when - xt hr eadvar =no%dynami ¢
but you cannot use the object file within a dynamic library. That is,
you cannot use the object file in an executable file.

Defaults

If you do not specify - xt hr eadvar, the default used by the compiler depends upon
whether or not position-independent code is enabled. If position-independent code
is enabled, the option is set to - xt hr eadvar =dynani c. If position-independent
code is disabled, the option is set to - xt hr eadvar =no%gynanmni c.

If you specify -xthreadvar but do not specify any arguments, the option is set to
- Xt hr eadvar =dynanmi c.

Interactions
Using thread variables on different versions of Solaris software requires different
options on the command line.

= On Solaris 8 software, objects that use __thread must be compiled with -mt and
must be linked with -nt -L/usr/lib/lwp-R usr/lib/lwp.

= On Solaris 9 software, objects that use __t hr ead must be compiled and linked
with - nt .

Warnings

If there is non-position-independent code within a dynamic library, you must specify
- xt hr eadvar.

The linker cannot support the thread-variable equivalent of non-PIC code in
dynamic libraries. Non-PIC thread variables are significantly faster, and hence
should be the default for executables.

Appendix A C++ Compiler Options A-149

A.2.163

A.2.164

See Also

- xcode, - KPI C, - Kpi ¢

—xti me

Causes the CC driver to report execution time for the various compilation passes.

-xtri graphs[={yes|no}]

Enables or disables recognition of trigraph sequences as defined by the ISO/ANSI C
standard.

If your source code has a literal string containing question marks (?) that the
compiler is interpreting as a trigraph sequence, you can use the - xtri gr aph=no
suboption to turn off the recognition of trigraph sequences.

Values

You can specify one of the following two values for - xt ri gr aphs:

TABLEA-50 The - xtri graphs Values

Value Meaning

yes Enables recognition of trigraph sequences throughout the compilation unit
no Disables recognition of trigraph sequences throughout the compilation unit
Defaults

When you do not include the - xt ri gr aphs option on the command line, the
compiler assumes - xt ri gr aphs=yes.

If only - xtri graphs is specified, the compiler assumes - xt ri gr aphs=yes.

A-150 C++ User's Guide « May 2003

Examples

Consider the following example source file named t ri gr aphs_denp. cc.

#i ncl ude <stdio. h>

int main ()

{
(void) printf("(\?\?) in a string appears as (??)\n");
return O;

}

Here is the output if you compile this code with - xt ri gr aphs=yes.

exanpl e% CC -xtri graphs=yes trigraphs_denp. cc
exanpl e% a. out
(??) in a string appears as (]

Here is the output if you compile this code with - xt ri gr aphs=no.

exanpl e% CC -xtri graphs=no trigraphs_deno. cc
exanpl e% a. out
(??) in a string appears as (??)

See also

For information on trigraphs, see the C User’s Guide chapter about transitioning to
ANSI/ISO C.

A.2.165 —xunrol |l =n

Enables unrolling of loops where possible.

This option specifies whether or not the compiler optimizes (unrolls) loops.

Values

When n is 1, it is a suggestion to the compiler to not unroll loops.

Appendix A C++ Compiler Options A-151

A.2.166

When n is an integer greater than 1, —unr ol | =n causes the compiler to unroll loops
n times.

-xustr={ascii _utfl6 ushort |no}

Use this option if your code contains string literals that you want the compiler to
convert to UTF-16 strings in the object file. Without this option, the compiler neither
produces nor recognizes sixteen-bit character string literals. This option enables
recognition of the U"ASCII_string” string literals as an array of unsigned short int.
Since such strings are not yet part of any standard, this option enables recognition of
non-standard C++.

Not all files have to be compiled with this option.

Values

Specify - xustr=ascii _utf16_ushort if you need to support an internationalized
application that uses 1SO10646 UTF-16 string literals. You can turn off compiler
recognition of U"ASCII_string" string literals by specifying - xust r =no. The
right-most instance of this option on the command line overrides all previous
instances.

You can specify - xustr=ascii _ustf16_ushort without also specifying a
U"ASCII_string" string literal. It is not an error to do so.

Defaults

The default is - xust r =no. If you specify - xust r without an argument, the
compiler won’t accept it and instead issues a warning. The default can change if the
C or C++ standards define a meaning for the syntax.

Example

The following example shows a string literal in quotes that is prepended by U. It
also shows a command line that specifies - xust r

exampl e% cat file.cc

const unsigned short *foo = U'foo";

const unsigned short bar[] = U'bar";

const unsigned short *fun() { return U'fun" };
exanpl e% CC - xustr=ascii_utfl6_ushort file.cc -c

A-152 C++ User's Guide « May 2003

A.2.167

A.2.168

A.2.169

Warnings

Sixteen-bit character-literals are not supported.

- Xvi s[={yes | no}]

(SPARC) Use the - xvi s=[yes |no] command when you are using the
assembly-language templates defined in the VIS™ instruction-set Software
Developers Kit (VSDK).

The VIS instruction set is an extension to the SPARC V9 instruction set. Even though
the UltraSPARC processors are 64-bit, there are many cases, especially in multimedia
applications, when the data are limited to eight or 16 bits in size. The VIS
instructions can process four 16-bit data with one instruction so they greatly
improve the performance of applications that handle new media such as imaging,
linear algebra, signal processing, audio, video and networking.

Defaults

The default is - xvi s=no. Specifying - xvi s is equivalent to specifying - xvi s=yes.

See Also

For more information on the VSDK, see
http://ww. sun. com processors/vis/.

—XwWe

Converts all warnings to errors by returning nonzero exit status.

- z[Jarg

Link editor option. For more information, see the | d(1) man page and the Solaris
Linker and Libraries Guide.

Appendix A C++ Compiler Options A-153

A-154 C++ User's Guide « May 2003

APPENDIX B

Pragmas

This appendix describes the C++ compiler pragmas. A pragma is a compiler directive
that allows you to provide additional information to the compiler. This information
can change compilation details that are not otherwise under your control. For
example, the pack pragma affects the layout of data within a structure. Compiler
pragmas are also called directives.

The preprocessor keyword pr agma is part of the C++ standard, but the form,
content, and meaning of pragmas is different for every compiler. No pragmas are
defined by the C++ standard.

Note — Code that depends on pragmas is not portable.

B.1

Pragma Forms

The various forms of a C++ compiler pragma are:

#pragma keyword
#pragma keyword (a[, a] ...) [, keyword (a[, a] ...) 1] ,...
#pragma sun keyword

The variable keyword identifies the specific directive; a indicates an argument.

B-1

B.2 Pragma Reference

This section describes the pragma keywords that are recognized by the C++
compiler.

= align

Makes the parameter variables memory-aligned to a specified number of bytes,
overriding the default.

= does_not_read_gl obal _data

Asserts that the specified list of functions do not read global data directly or
indirectly.

=« does_not_return
Asserts to the compiler that the calls to the specified functions will not return.
= does_not_wite_global data

Asserts that the specified list of functions do not write global data directly or
indirectly.

= dunp_nmacros
Provides information regarding the use of macros in code.
= end_dunpmacr os
Marks the end of a dunp_macr os pragma.
« fini
Marks a specified function as a finalization function.
= hdrstop
Identifies the end of the viable source prefix for precompiled headers.
= ident
Places a specified string in the . corment section of the executable.
m init
Marks a specified function as an initialization function.
= no_side_effect
Indicates that a function does not change any persistent state.
= pack (n)

Controls the layout of structure offsets. The value of n is a number—o, 1, 2, 4, or
8—that specifies the worst-case alignment desired for any structure member.

B-2 C++ User's Guide ¢« May 2003

B.2.1

rarely_called
Indicates to the compiler that the specified functions are rarely called.
returns_new_nenory

Asserts that each named function returns the address of newly allocated memory
and that the pointer does not alias with any other pointer.

unknown_control _fl ow

Specifies a list of routines that violate the usual control flow properties of
procedure calls.

weak

Defines weak symbol bindings.

#pragma al i gn

#pragma al i gn integer(variable [, variable. . .])

Use al i gn to make the listed variables memory-aligned to integer bytes, overriding
the default. The following limitations apply:

integer must be a power of 2 between 1 and 128; valid values are 1, 2, 4, 8, 16, 32,
64, and 128.

variable is a global or static variable; it cannot be a local variable or a class
member variable.

If the specified alignment is smaller than the default, the default is used.

The pragma line must appear before the declaration of the variables that it
mentions; otherwise, it is ignored.

Any variable mentioned on the pragma line but not declared in the code
following the pragma line is ignored. Variables in the following example are
properly declared.

#pragma align 64 (aninteger, astring, astruct)
i nt ani nteger;

static char astring[256];

struct S {int a; char *b;} astruct;

Appendix B Pragmas B-3

B.2.2

B.2.3

When #pr agma al i gn is used inside a namespace, mangled names must be used.
For example, in the following code, the #pr agnma al i gn statement will have no
effect. To correct the problem, replace a, b, and c in the #pr agna al i gn statement
with their mangled names.

nanespace foo {
#pragma align 8 (a, b, ¢)
static char a;
static char b;
static char c;

#pragma does _not read gl obal data

#pragma does_not _read_gl obal _dat a(funcname [, funcname])

This pragma asserts that the specified routines do not read global data directly or
indirectly. This allows for better optimization of code around calls to such routines.
In particular, assignment statements or stores could be moved around such calls.

This pragma is permitted only after the prototype for the specified functions are
declared. If the assertion about global access is not true, then the behavior of the
program is undefined.

If the function name is overloaded, the most recently declared function is chosen.

#pragna does_not _return

#pragma does_not _ret urn(funcname [, funcname])

This pragma is an assertion to the compiler that the calls to the specified routines
will not return. This allows the compiler to perform optimizations consistent with
that assumption. For example, register life-times terminate at the call sites which in
turn allows more optimizations.

If the specified function does return, then the behavior of the program is undefined.

If the function name is overloaded, the most recently declared function is chosen.

B-4 C++ User's Guide « May 2003

B.2.4

B.2.5

This pragma is permitted only after the prototype for the specified functions are
declared as the following example shows:

extern void exit(int);
#pragnma does_not _return(exit)

extern void __assert(int);
#pragma does_not _return(__assert)

#pragma does _not _wite gl obal data

#pragma does_not_wtie_gl obal _data(funcname[, funcname])

This pragma asserts that the specified list of routines do not write global data
directly or indirectly. This allows for better optimization of code around calls to such
routines. In particular, assignment statements or stores could be moved around such
calls.

This pragma is permitted only after the prototype for the specified functions are
declared. If the assertion about global access is not true, then the behavior of the
program is undefined.

If the function name is overloaded, the most recently declared function is chosen.

#pragnma dunpnacr os

#pragma dunpmacr os (value[, value. . .])

Use this pragma when you want to see how macros are behaving in your program.
This pragma provides information such as macro defines, undefines, and instances
of usage. It prints output to the standard error (st der r) based on the order macros

Appendix B Pragmas B-5

B-6

are processed. The dunpmacr os pragma is in effect through the end of the file or
until it reaches a #pr agma end_dunpnacr 0. See “#pragnma end_dunpnacr os” on
page B-7. You can substitute the following arguments in place of value:

Value Meaning

defs Print all macro defines

undefs Print all macro undefines

use Print information about the macros used

loc Print location (path name and line number) also for def s, undef s,
and use

conds Print use information for macros used in conditional directives

sys Print all macros defines, undefines, and use information for macros

in system header files

Note — The sub-options | oc, conds, and sys are qualifiers for def s, undef s and
use options. By themselves,| oc, conds, and sys have no effect. For example,
#pragma dunpnacr os=l oc, conds, sys has no effect.

The dunpnmacr os pragma has the same effect as the command line option, however,
the pragma overrides the command line option. See
“- xdunpmacr os[=value[, value...]]” on page A-89.

The dunmpmacr os pragma does not nest so the following lines of code stop printing
macro information when the #pr agma end_dunpnacr os is processed:

#pragma dunpnacros (defs, undefs)
#pragma dunpnacros (defs, undefs)

#pragma end_dunpracr os

The effect of the dunpmacr os pragma is cumulative. The following lines

#pragma dunpmacr os(defs, undefs)
#pragma dunpmacr os(| oc)

have the same effect as

#pragma dunpmacros(defs, undefs, |oc)

C++ User’s Guide « May 2003

B.2.6

B.2.7

If you use the option #pr agma dunpnmacr os=use, no% oc, the name of each macro
that is used is printed only once. If you use the option #pr agma

dunprmacr os=use, | oc the location and macro name is printed every time a macro
is used.

#pragma end_dunpnacr os

#pragma end_dunpnacr os

This pragma marks the end of a dunpnacr os pr agnma and stops printing
information about macros. If you do not use an end_dunpnacr os pragma after a
dunprmacr os pragma, the dunpracr os pragma continues to generate output
through the end of the file.

#pragma fini

#pragma fini (identifier[, identifier. ..])

Use fi ni to mark identifier as a finalization function. Such functions are expected to
be of type voi d, to accept no arguments, and to be called either when a program
terminates under program control or when the containing shared object is removed
from memory. As with initialization functions, finalization functions are executed in
the order processed by the link editor.

In a source file, the functions specified in #pragma fi ni are executed after the
static destructors in that file. You must declare the identifiers before using them in
the pragma.

Appendix B Pragmas B-7

B.2.8

B.2.9

B.2.10

#pragma hdrstop

Embed the hdr st op pragma in your source-file headers to identify the end of the
viable source prefix. For example, consider the following files:

exanmpl e% cat a. cc
#i ncl ude "a. h"

#i nclude "b. h"
#include "c. h"

#i ncl ude <stdio. h>
#i ncl ude "d. h"

exampl e% cat b. cc
#i ncl ude "a. h"
#i ncl ude "b. h"
#i nclude "c. h"

The viable source prefix ends at c. h so you would insert a #pr agma hdr st op after
c. h in each file.

#pr agma hdr st op must only appear at the end of the viable prefix of a source file
that is specified with the CC command. Do not specify #pr agma hdr st op in any
include file.

See “- xpch=v” on page A-122 and “- xpchst op=file” on page A-126.

#pragnma i dent

#pragnma i dent string

Use i dent to place string in the . conmrent section of the executable.

#pragma i nit

#pragma i nit (identifier[, identifier. . .])

B-8 C++ User's Guide « May 2003

B.2.11

B.2.12

Use i ni t to mark identifier as an initialization function. Such functions are expected
to be of type voi d, to accept no arguments, and to be called while constructing the
memory image of the program at the start of execution. Initializers in a shared object
are executed during the operation that brings the shared object into memory, either
at program start up or during some dynamic loading operation, such as dl open() .
The only ordering of calls to initialization functions is the order in which they are
processed by the link editors, both static and dynamic.

Within a source file, the functions specified in #pragma i nit are executed after the
static constructors in that file. You must declare the identifiers before using them in
the pragma.

#pragma no_si de_effect

#pragma no_si de_ef fect (name[, name...])

Use no_si de_ef f ect to indicate that a function does not change any persistent
state. The pragma declares that the named functions have no side effects of any kind.
This means that the functions return result values that depend on the passed
arguments only. In addition, the functions and their called descendants:

= Do not access for reading or writing any part of the program state visible in the
caller at the point of the call.

= Do not perform 1/0.
= Do not change any part of the program state not visible at the point of the call.

The compiler can use this information when doing optimizations.

If the function does have side effects, the results of executing a program which calls
this function are undefined.

The name argument specifies the name of a function within the current translation
unit. The pragma must be in the same scope as the function and must appear after
the function declaration. The pragma must be before the function definition.

If the function is overloaded, the pragma applies to the last function that is defined.
If the last function that is defined does not have the same identifier, the program is
in error.

#pragnma pack(n)

Appendix B Pragmas B-9

B-10

#pragma pack([n])

Use pack to affect the packing of structure members.

If present, n must be 0 or a power of 2. A value of other than 0 instructs the compiler
to use the smaller of n-byte alignment and the platform’s natural alignment for the
data type. For example, the following directive causes the members of all structures
defined after the directive (and before subsequent pack directives) to be aligned no
more strictly than on 2-byte boundaries, even if the normal alignment would be on
4- or 8-byte boundaries.

#pragma pack(2)

When n is 0 or omitted, the member alignment reverts to the natural alignment
values.

If the value of n is the same as or greater than the strictest alignment on the
platform, the directive has the effect of natural alignment. The following table shows
the strictest alignment for each platform.

TABLEB-1 Strictest Alignment by Platform

Platform Strictest Alignment

1A 4
SPARC generic, V7, V8, V8a, V8plus, V8plusa, V8plusb 8
SPARC V9, V9a, V9b 16

A pack directive applies to all structure definitions which follow it, until the next
pack directive. If the same structure is defined in different translation units with
different packing, your program may fail in unpredictable ways. In particular, you
should not use a pack directive prior to including a header defining the interface of
a precompiled library. The recommended usage is to place the pack directive in
your program code, immediately before the structure to be packed, and to place
#pragma pack() immediately after the structure.

C++ User’'s Guide « May 2003

B.2.13

When using #pr agnma pack on a SPARC platform to pack denser than the type’s
default alignment, the - m sal i gn option must be specified for both the compilation
and the linking of the application. The following table shows the storage sizes and
default alignments of the integral data types.

TABLEB-2 Storage Sizes and Default Alignments in Bytes

SPARC V8 SPARC V9 1A
Type Size, Alignment Size, Alignment Size, Alignment
bool 1,1 1,1 1,1
char 1,1 1,1 1,1
short 2,2 2,2 2,2
wchar_t 4,4 4,4 4,4
int 4,4 4,4 4,4
long 4, 4 8,8 4,4
float 4,4 4,4 4,4
double 8,8 8,8 8,4
long double 16, 8 16, 16 12, 4
pointer to data 4,4 8,8 4,4
pointer to function 4,4 8,8 4,4
pointer to member data 4,4 8,8 4,4
pointer to member function 8,4 16, 8 8,4

#pragmararely call ed

#pragms rarely_cal | ed(funcname[, funcname])

This pragma provides a hint to the compiler that the specified functions are called
infrequently. This allows the compiler to perform profile-feedback style
optimizations on the call-sites of such routines without the overhead of a
profile-collections phase. Since this pragma is a suggestion, the compiler may not
perform any optimizations based on this pragma.

If the function name is overloaded, the most recently declared function is chosen.

Appendix B Pragmas B-11

The #pragma rar el y_cal | ed preprocessor directive is only permitted after the
prototype for the specified functions are declares. The following is an example of
#pragmararely_call ed:

extern void error (char *nessage);
#pragme rarely_call ed(error)

B.2.14 #pragna ret urns_new_nenory

#pragma returns_new_nmenory(name[, name. . .])

This pragma asserts that each named function returns the address of newly allocated
memory and that the pointer does not alias with any other pointer. This information
allows the optimizer to better track pointer values and to clarify memory location.
This results in improved scheduling and pipelining.

If the assertion is false, the results of executing a program which calls this function
are undefined.

The name argument specifies the name of a function within the current translation
unit. The pragma must be in the same scope as the function and must appear after
the function declaration. The pragma must be before the function definition.

If the function is overloaded, the pragma applies to the last function that is defined.
If the last function that is defined does not have the same identifier, the program is
in error.

If the function name is overloaded, the most recently declared function is chosen.

B.2.15 #pragma unknown_control _fl ow

B-12

#pragma unknown_control _fl ow name[, name. ..])

Use unknown_cont r ol _f | owto specify a list of routines that violate the usual
control flow properties of procedure calls. For example, the statement following a
call to setj np() can be reached from an arbitrary call to any other routine. The
statement is reached by a call to | ongj nmp() .

C++ User’'s Guide « May 2003

B.2.16

Because such routines render standard flowgraph analysis invalid, routines that call
them cannot be safely optimized; hence, they are compiled with the optimizer
disabled.

If the function name is overloaded, the most recently declared function is chosen.

#pragnma weak

#pragma weak namel[= name2]

Use weak to define a weak global symbol. This pragma is used mainly in source files
for building libraries. The linker does not warn you if it cannot resolve a weak
symbol.

The weak pragma can specify symbols in one of two forms:

= String form. The string must be the mangled name for a C++ variable or function.
The behavior for an invalid mangled name reference is unpredictable. The back
end may or may not produce an error for invalid mangled name references.
Regardless of whether it produces an error, the behavior of the back end when
invalid mangled names are used is unpredictable.

= ldentifier form. The identifier must be an unambiguous identifier for a C++
function that was previously declared in the compilation unit. The identifier form
cannot be used for variables. The front end (ccf e) will produce an error message
if it encounters an invalid identifier reference.

#pr agma weak name

In the form #pr agna weak name, the directive makes name a weak symbol. The
linker will not complain if it does not find a symbol definition for name. It also does
not complain about multiple weak definitions of the symbol. The linker simply takes
the first one it encounters.

If another compilation unit has a strong definition for the function or variable, name
will be linked to that. If there is no strong definition for name, the linker symbol will
have a value of 0.

The following directive defines pi ng to be a weak symbol. No error messages are
generated if the linker cannot find a definition for a symbol named pi ng.

#pragma weak ping

Appendix B Pragmas B-13

#pr agma weak namel = name2

In the form #pragma weak namel = name2, the symbol namel becomes a weak
reference to name2. If namel is not defined elsewhere, namel will have the value
name2. If namel is defined elsewhere, the linker uses that definition and ignores the
weak reference to name2. The following directive instructs the linker to resolve any
references to bar if it is defined anywhere in the program, and to f oo otherwise.

#pragma weak bar = foo

In the identifier form, name2 must be declared and defined within the current
compilation unit. For example:

extern void bar(int) {...}
extern void _bar(int);
#pragma weak _bar =bar

When you use the string form, the symbol does not need to be previously declared.
If both _bar and bar in the following example are ext ern " C', the functions do
not need to be declared. However, bar must be defined in the same object.

extern "C'" void bar(int) {...}
#pragma weak "_bar" = "bar"

Overloading Functions

When you use the identifier form, there must be exactly one function with the
specified name in scope at the pragma location. Attempting to use the identifier
form of #pr agma weak with an overloaded function is an error. For example:

int bar(int);
float bar(float);
#pragma weak bar /'l error, anbiguous function nane

To avoid the error, use the string form, as shown in the following example.

int bar(int);
float bar(float);
#pragma weak "__ 1cDbar6Fi _i _" // make float bar(int) weak

See the Solaris Linker and Libraries Guide for more information.

B-14 C++ User's Guide » May 2003

Glossary

ABI

abstract class

abstract method

ANSI C

ANSI/ISO C++

application binary
interface

array

base class

binary compatibility

binding

cfront

class

class template

See application binary interface.

A class that contains one or more abstract methods, and therefore can never be
instantiated. Abstract classes are defined so that other classes can extend them
and make them concrete by implementing the abstract methods.

A method that has no implementation.

American National Standards Institute’s definition of the C programming
language. It is the same as the I1SO definition. See 1SO.

The American National Standards Institute and the 1SO standard for the C++
programming language. See 1SO.

The binary system interface between compiled applications and the operating
system on which they run.

A data structure that stores a collection of values of a single data type
consecutively in memory. Each value is accessed by its position in the array.

See inheritance.

The ability to link object files that are compiled by one release while using a
compiler of a different release.

Associating a function call with a specific function definition. More generally,
associating a name with a particular entity.

A C++ to C compiler program that translates C++ to C source code, which in
turn can be compiled by a standard C compiler.

A user-defined data type consisting of named data elements (which may be of
different types), and a set of operations that can be performed with the data.

A template that describes a set of classes or related data types.

Glossary-1

Glossary-2

class variable

compiler option

constructor

data member

data type

derived class

destructor

dynamic binding

dynamic cast

dynamic type

early binding
ELF file

exception

exception handler

exception handling

flag

A data item associated with a particular class as a whole, not with particular
instances of the class. Class variables are defined in class definitions. Also
called static field. See also instance variable.

An instruction to the compiler that changes its behavior. For example, the - g
option tells the compiler to generate data for the debugger. Synonyms: flag,
switch.

A special class member function that is automatically called by the compiler
whenever a class object is created to ensure the initialization of that object’s
instance variables. The constructor must always have the same name as the
class to which it belongs. See destructor.

An element of a class that is data, as opposed to a function or type definition.

The mechanism that allows the representation of, for example, characters,
integers, or floating-point numbers. The type determines the storage that is
allocated to a variable and the operations that can be performed on the
variable.

See inheritance.

A special class member function that is automatically called by the compiler
whenever a class object is destroyed or the operator del et e is applied to a
class pointer. The destructor must always have the same name as the class to
which it belongs, preceded by a tilde (~). See constructor.

Connection of the function call to the function body at runtime. Occurs only
with virtual functions. Also called late binding, runtime binding.

A safe method of converting a pointer or reference from its declared type to
any type that is consistent with the dynamic type to which it refers.

The actual type of an object that is accessed by a pointer or reference that
might have a different declared type.

See static binding.
Executable and Linking Format file, which is produced by the compiler.

An error occurring in the normal flow of a program that prevents the program
from continuing. Some reasons for errors include memory exhaustion or
division by zero.

Code specifically written to deal with errors, and that is invoked automatically
when an exception occurs for which the handler has been registered.

An error recovery process that is designed to intercept and prevent errors.
During the execution of a program, if a synchronous error is detected, control
of the program returns to an exception handler that was registered at an earlier
point in the execution, and the code containing the error is bypassed.

See compiler option.

C++ User's Guide « May 2003

function overloading

functional

polymorphism

function prototype

function template

idempotent

incremental linker

inheritance

inline function

instantiation

instance variable

ISO

K&R C

keyword

late binding

linker

local variable

locale

Giving the same name, but different argument types and numbers, to different
functions. Also called functional polymorphism.

See function overloading.

A declaration that describes the function’s interface with the rest of the
program.

A mechanism that allows you to write a single function that you can then use
as a model, or pattern, for writing related functions.

The property of a header file that including it many times in one translation
unit has the same effect as including it once.

A linker that creates a new executable file by linking only the changed . o files
to the previous executable.

A feature of object-oriented programming that allows the programmer to
derive new classes (derived classes) from existing ones (base classes). There are
three kinds of inheritance: public, protected, and private.

A function that replaces the function call with the actual function code.

The process by which a C++ compiler creates a usable function or object
(instance) from a template.

Any item of data that is associated with a particular object. Each instance of a
class has its own copy of the instance variables defined in the class. Also called
field. See also class variable.

International Organization for Standardization.

The de facto C programming language standard that was developed by Brian
Kernighan and Dennis Ritchie before ANSI C.

A word that has unique meaning in a programming language, and that can be
used only in a specialized context in that language.

See dynamic binding.

The tool that connects object code and libraries to form a complete, executable
program.

A data item known within a block, but inaccessible to code outside the block.
For example, any variable defined within a method is a local variable and
cannot be used outside the method.

A set of conventions that are unique to a geographical area and/or language,
such as date, time, and monetary format.

Glossary-3

Glossary-4

lvalue

mangle

member function

method
multiple inheritance

multithreading

name mangling

namespace

operator overloading

optimization

option
overloading

polymorphism
pragma

runtime binding
runtime type
identification (RTTI)

rvalue

scope

stab

An expression that designates a location in memory at which a variable’s data
value is stored. Also, the instance of a variable that appears to the left of the
assignment operator.

See name mangling.

An element of a class that is a function, as opposed to a data definition or type
definition.

In some object-oriented languages, another name for a member function.
Inheritance of a derived class directly from more than one base class.

The software technology that enables the development of parallel applications,
whether on single- or multiple-processor systems.

In C++, many functions can share the same name, so name alone is not
sufficient to distinguish different functions. The compiler solves this problem
by name mangling—creating a unique name for the function that consists of
some combination of the function name and its parameters—to enable type-
safe linkage. Also called name decoration.

A mechanism that controls the scope of global names by allowing the global
space to be divided into uniquely named scopes.

The ability to use the same operator notation to produce different outcomes. A
special form of function overloading.

The process of improving the efficiency of the object code that is generated by
the compiler.

See compiler option.
To give the same name to more than one function or operator.

The ability of a pointer or reference to refer to objects whose dynamic type is
different from the declared pointer or reference type.

A compiler preprocessor directive, or special comment, that instructs the
compiler to take a specific action.

See dynamic binding.

A mechanism that provides a standard method for a program to determine an
object type during runtime.

The variable that is located to the right of an assignment operator. The rvalue
can be read but not altered.

The range over which an action or definition applies.

A symbol table entry that is generated in the object code. The same format is
used in both a. out files and ELF files to contain debugging information.

C++ User's Guide « May 2003

stack

static binding

subroutine
switch
symbol
symbol table

template database

template options file

template

specialization

trapping

type

variable

VTABLE

A data storage method by which data can be added to or removed from only
the top of the stack, using a last-in, first-out strategy.

Connection of a function call to a function body at compile time. Also called
early binding.

A function. In Fortran, a function that does not return a value.
See compiler option.
A name or label that denotes some program entity.

A list of all identifiers that are present when a program is compiled, their
locations in the program, and their attributes. The compiler uses this table to
interpret uses of identifiers.

A directory containing all configuration files that are needed to handle and
instantiate the templates that are required by a program.

A user-provided file containing options for the compilation of templates, as
well as source location and other information. The template options file is
deprecated and should not be used.

A specialized instance of a class template member function that overrides the
default instantiation when the default cannot handle a given type adequately.

Interception of an action, such as program execution, in order to take other
action. The interception causes the temporary suspension of microprocessor
operations and transfers program control to another source.

A description of the ways in which a symbol can be used. The basic types are
i nt eger and f 1 oat . All other types are constructed from these basic types by
collecting them into arrays or structures, or by adding modifiers such as
pointer-to or constant attributes.

An item of data named by an identifier. Each variable has a type, such as i nt
or voi d, and a scope. See also class variable, instance variable, local variable.

A table that is created by the compiler for each class that contains virtual
functions.

Glossary-5

Glossary-6 C++ User's Guide « May 2003

Index

SYMBOLS
! NOT operator, i ost r eam 14-6, 14-10
$ identifier, allowing as noninitial, A-20
<< insertion operator
conpl ex, 14-7
i ostream 14-4, 14-5
>> extraction operator
conpl ex, 14-7
i ostream 14-7
__global, 4-2
__hidden, 4-2
__SUNPRO_CC, A-6, A-9
__synbolic, 4-2
__thread, 4-3
_OPENMP preprocessor token, A-119

NUMERICS
- 386, compiler option, A-3
- 486, compiler option, A-3

A
- a, compiler option, A-3
. a, file name suffix, 15-1, 2—4
absolute value, complex numbers, 14-2
accessible documentation, 1-xxxii
aliases, simplifying commands with, 2-15
alignments

default, Q-11

strictest, Q-10
anachronisms, disallowing, A-19

angle, complex numbers, 14-2
anonymous class instance, passing, 4-7
applications
linking multithreaded, 11-1, 11-9
MT-safe, 11-6

using MT-safe i ost r eamobjects, 11-20 to 11-22
applicator, parameterized manipulators, 14-19

arithmetic library, complex, 14-1 to 14-10
__ARRAYNEWpredefined macro, A-9
assembler, compilation component, 2-10
assembly language templates, A-153
assignment, i ost r eam 14-15

B
- Bbinding, compiler option, 8-5, A-3to A-5
binary input, reading, 14-9
bool type and literals, allowing, A-19
_BOAL, predefined macro, A-9
buffer

defined, 14-24

flushing output, 14-6

__BUILTI N_VA_ARG | NCR, predefined macro, A-

9

C
C API (application programming interface)
creating libraries, 15-5
removing dependency on C++ runtime
libraries, 15-5

C standard library header files, replacing, 12-17

Index-1

C++ man pages, accessing, 1-xxxiii, 12-4, 12-5
C++ standard library, 12-2 to 12-3
components, 13-1to 13-16
man pages, 12-4, 13-3 to 13-16
replacing, 12-13 to 12-17
RogueWave version, 13-1
. c++, file name suffixes, 2-4
- ¢, compiler option, 2-7, A-5
. C, file name suffixes, 2-4
. ¢, file name suffixes, 2-4
c_excepti on, complex class, 14-6
C99 support, A-101
cache
directory, template, 2-5
used by optimizer, A-79
cast
const andvol atil e, 9-2
dynamic, 9-4
casting down, 9-5
casting tovoi d*, 9-5
casting up, 9-5
reinterpret_cast, 9-2
static_cast, 94
CC pr agma directives, Q-2
. cc, file name suffixes, 2-4
CC_t npl _opt, options file, 7-10
CCadm n command, 7-1
CCFLAGS, environment variable, 2-15
cerr standard stream, 11-15, 14-1
- cg, compiler option, A-6
char * extractor, 14-8 to 14-9
char, signedness of, A-82
characters, reading single, 14-9
ci n standard stream, 11-15, 14-1
class declaration specifier, 4-2
class instance, anonymous, 4-7
class libraries, using, 12-7 to 12-10
class templates, 6-3 to 6-6
See also templates
declaration, 6-3
definition, 6-3, 6-4
incomplete, 6-3
member, definition, 6-4
parameter, default, 6-9
static data members, 6-5
using, 6-5
classes
passing directly, 10-5
passing indirectly, 10-4

Index-2 C++ User's Guide « May 2003

cl og standard stream, 11-15, 14-1
code generation
inliner and assembler, compilation
component, 2-10
options, 3-3
code optimizer, compilation component, 2-10
command line
options, unrecognized, 2-8
recognized file suffixes, 2-4
- conpat
compiler option, A-6
default linked libraries, affect on, 12-5
- f eat ur es option, value restrictions, A-19
libraries, available modes for, 12-2
-1i brary option, value restrictions, A-45
linking C++ libraries, modes for, 12-10
compatibility mode
Seealso - conpat
i ostream 14-1
i bC, 14-1,14-3
I'i bcompl ex, 14-1
Tool s. h++, 12-3
compilation, memory requirements, 2-12 to 2-14
compiler
component invocation order, 2-9 to 2-10
diagnosing, 2-8 to 2-9
versions, incompatibility, 2-5
compilers, accessing, 1-xxix
compiling and linking, 2-6 to 2-7
conpl ex
compatibility mode, 14-1
constructors, 14-2 to 14-3
efficiency, 14-9
error handling, 14-6 to 14-7
header file, 14-2
input/output, 14-7 to 14-8
library, 12-2 to 12-3, 12-8 to 12-10, 14-1 to 14—
10
library, linking, 14-2
man pages, 14-10
mathematical functions, 14-4 to 14-6
mixed-mode, 14-8 to 14-9
operators, 14-3to 14-4
standard mode and | i bCst d, 14-1
trigonometric functions, 14-5 to 14-6
complex number data type, 14-1
conpl ex_error
definition, 14-6
message, 14-4

configuration macro, 12-2
conjugate of a number, 14-2
const _cast operator, 9-2
constant strings in read-only memory, A-19
constructors
conpl ex class, 14-2
i ostream 14-2
static, 15-3
copying
files, 14-21
stream objects, 14-15
cout , standard stream, 11-15, 14-1
__cpl uspl us, predefined macro, 5-1, A-6, A-9
. cpp, file name suffixes, 2-4
. cxX, file name suffixes, 2-4

D
- D, compiler option, 3-2, A-8to A-10
+d, compiler option, A-7
- d, compiler option, A-10
- D_REENTRANT, 11-9
- dal i gn, compiler option, A-11
data type, complex number, 14-1
__DATE__, predefined macro, A-9
- DDEBUG, 7-8
debugging
options, 3-4
preparing programs for, 2-8, A-35
without object files, A-140
dec, i ost r eam manipulator, 14-16
declaration specifiers
__global, 4-2
__hidden, 4-2
__synbolic, 4-2
__thread, 4-3
default libraries, static linking, 12-10
default operators, using, 10-3

def i ni ti on keyword, template options file, 7-11

definitions, searching template, 7-9
del et e array forms, recognizing, A-21
dependency
on C++ runtime libraries, removing, 15-6
shared library, 15-4
destructors, static, 15-3
dl cl ose(), function call, 15-3
dl open(), function call, 15-2, 15-4, 15-6
dmesg, actual real memory, 2-14

documentation index, 1-xxxi
documentation, accessing, 1-xxxi to 1-xxxii
doubl e, conpl ex value, 14-2

- dryrun, compiler option, 2-9, A-11

dynamic (shared) libraries, 12-11, 15-3, A-3, A-36

dynami c_cast operator, 9-4

E
- E compiler option, A-11to A-13
+e(0] 1), compiler option, A-13
EDOM er r no setting, 14-7
endl ,i ostr eam manipulator, 14-16
ends, i ost r eam manipulator, 14-16
enum
forward declarations, 4-4
incomplete, using, 4-5
scope qualifier, using name as, 4-5
environment variables
CCFLAGS, 2-15
LD LI BRARY_PATH, 12-12, 15-2
RTLD GLOBAL, 12-13
SUN_PROFDATA, A-135
SUN_PROFDATA DI R, A-135
SUNWS_CACHE_NAME, 7-7
ERANGE, er r no setting, 14-7
er r no, definition, 14-6 to 14-7
- errof f compiler option, A-13
error
bits, 14-6
checking, MT-safety, 11-9
state, i ost reans, 14-5
err or function, 14-6
error handling
conpl ex, 14-6to 14-7
input, 14-10to 14-11
error messages
compiler version incompatibility, 2-5
conpl ex_error, 14-4
linker, 2-7, 2-8
- errtags compiler option, A-15
- er rwar n compiler option, A-15
exceptions
and multithreading, 11-3
building shared libraries that have, 8-5
disabling, 8-2
disallowing, A-20
functions, in overriding, 4-3

Index-3

| ongj np and, 8-4

predefined, 8-3

setjnpand, 8-4

shared libraries, 15-4

signal handlers and, 8-4

standard class, 8-3

standard header, 8-3

trapping, A-32
explicit instances, 7-3to 7-6
explicit keyword, recognizing, A-21
export keyword, recognizing, A-20
extension features, 4-1 to 4-9

allowing nonstandard code, A-20

defined, 1-1
external

instances, 7-3

linkage, 7-3
extraction

char *, 14-8 to 14-9

defined, 14-24

operators, 14-7

user-defined i ost r eam 14-7 to 14-8

whitespace, 14-10

F
- fast, compiler option, A-17 to A-19
- f eat ur es, compiler option, 4-1 to 4-9, 8-2, 9-4,

A-19 to A-23
file descriptors, using, 14-13 to 14-14
file names

. SUNWCCh file name suffix, 12-16

suffixes, 2—-4

template definition files, 7-9
__FILE__, predefined macro, A-9
files

See also source files

C standard header files, 12-15

copying, 14-12,14-21

executable program, 2-6

multiple source, using, 2-5

object, 2-6, 3-2, 15-3

opening and closing, 14-13

repositioning, 14-14

standard library, 12-15

template options, 7-10

using f st r eans with, 14-11
-filt, compiler option, A-23

Index-4 C++ User's Guide « May 2003

finalization functions, Q-7
- f I ags, compiler option, A-25
float inserter, i ost r eamoutput, 14-4
floating point
invalid, A-32
options, 3-5
fl ush,i ostream manipulator, 14-6, 14-16
- f nonst d, compiler option, A-26
- f ns, compiler option, A-26
format control, i ostreans, 14-15
Fortran runtime libraries, linking, A-101
- f pr eci si on=p, compiler option, A-28 to A-29
front end, compilation component, 2-10
- f round=r, compiler option, A-29 to A-30
- f si mpl e=n, compiler option, A-30to A-31
- f st or e, compiler option, A-31
f st r eam defined, 14-2, 14-24
fstreamh
i ost r eamheader file, 14-3
using, 14-12
- ft rap, compiler option, A-32
__func__, identifier, 4-9
function
declaration specifier, 4-1
function templates, 6-1 to 6-7
See also templates
declaration, 6-1
definition, 6-2
using, 6-2
function-level reordering, A-93
functions
in dynamic (shared) libraries, 15-3
inlining by optimizer, A-96
MT-safe public, 11-8
overriding, 4-3
static, as class friend, 4-8
st reanbuf public virtual, 11-19
functions, name in __func__, 4-9

G
-G
dynamic library command, 15-3
option description, A-33 to A-34
-9
option description, A-34
compiling templates using, 7-8
garbage collection

libraries, 12-4, 12-10
get pointer, st r eanbuf , 14-20
get, char extractor, 14-9
global
data, in a multithreaded application, 11-15 to
11-16
instances, 7-3 to 7-5
linkage, 7-3 to 7-6
shared objects in MT application, 11-15
- gOoption description, A-36
gpr of , C++ utilities, 1-10

H
- H, compiler option, A-36
- h, compiler option, A-36
hardware architecture, A-141
header files
C standard, 12-15
conpl ex, 14-9
creating, 5-1
idempotency, 5-3
i ostream 11-15, 14-3, 14-16
language-adaptable, 5-1
standard library, 12-13, 13-2 to 13-3
heap, setting page size for, A-120
- hel p, compiler option, A-37
hex, i ost r eam manipulator, 14-16

|

- |, compiler option, 7-9, A-37

-1 -, compiler option, A-38

- i, compiler option, A-40

. i, file name suffixes, 2-4

1/0 library, 14-1

_ i 386, predefined macro, A-10

i 386, predefined macro, A-10

IA, defined, 2-10

idempotency, 5-1

i f st ream defined, 14-2

. i |, file name suffixes, 2-4

i ncl ude directories, template definition files, 7-9
i ncl ude files, search order, A-37, A-38

i ncl ude keyword, template options file, 7-10
incompatibility, compiler versions, 2-5
incremental link editor, compilation component, 2—

10
initialization function, Q-9
inline expansion, assembly language templates, 2—
10
inline functions
by optimizer, A-96
C++, when to use, 10-2
-inline,See-xinline
input
binary, 14-9
error handling, 14-10 to 14-11
i ostream 14-7
peeking at, 14-9
input/output, conpl ex, 14-1, 14-7 to 14-8
insertion
defined, 14-24
operator, 14-4to 14-5
instance methods
explicit, 7-6
global, 7-6
semi-explicit, 7-6
static, 7-5
template, 7-3
instance states, consistent, 7-8
- i nst ances=a, compiler option, 7-3 to 7-6, A-40
instantiation
options, 7-3 to 7-6
template class static data members, 6-8
template classes, 6-7
template function members, 6-7
template functions, 6-7
-instlib,compiler option, A-41
intermediate language translator, compilation
component, 2-10
internationalization, implementation, 1-10
interprocedural analyzer, 2-10
interprocedural optimizations, A-98
interval arithmetic libraries, linking, A-95
i omani p. h,i ostream header files, 14-3, 14-16
i ostream
classic iostreams, 12-3, 12-7, A-48
compatibility mode, 14-1
constructors, 14-2
copying, 14-15
creating, 14-11to 14-15
defined, 14-24
error bits, 14-6
error handling, 14-10
extending functionality, MT considerations, 11-

Index-5

18
flushing, 14-6
formats, 14-15
header files, 14-3
input, 14-7
library, 12-2,12-7 to 12-8, 12-10
using make with, 2-16
man pages, 14-1, 14-22
manipulators, 14-15
mixing old and new forms, A-48
MT-safe interface changes, 11-13
MT-safe reentrant functions, 11-8
MT-safe restrictions, 11-9
new class hierarchy for MT, 11-13
new MT interface functions, 11-14 to 11-15
output errors, 14-5 to 14-6
output to, 14-4
predefined, 14-1to 14-2
single-threaded applications, 11-9
standard iostreams, 12-3, 12-7, A-48
standard mode, 14-1, 14-3, A-48
stdi o, 14-11, 14-20
stream assignment, 14-15
structure, 14-2 to 14-3
terminology, 14-24
using, 14-3
i ostream h,i ost r eamheader file, 11-15, 14-3
ISO C++ standard
conformance, 1-1
one-definition rule, 6-17, 7-8
1SO10646 UTF-16 string literal, A-152
i st r eamclass, defined, 14-2
i strstreamclass, defined, 14-2

J
Java Native Interface, A-111
JNI, A-111

K

. KEEP_STATE, using with standard library header
files, 2-16

- keept np, compiler option, A-43

- KPI C, compiler option, 15-3, A-42

- Kpi ¢, compiler option, 15-3, A-43

Index-6 C++ User's Guide « May 2003

L
- L, compiler option, 12-5, A-43
-1, compiler option, 3-2, 12-1, 12-5, A-44
languages
C99 support, A-101
options, 3-6
support for native, 1-10
LD LI BRARY_PATHenvironment variable, 12-12,
15-2
| dd command, 12-12
left-shift operator
conpl ex, 14-7
i ostream 14-4
| ex, C++ utilities, 1-10
libC
compatibility mode, 14-1, 14-3
compiling and linking MT-safety, 11-9
library, 12-2 to 12-3
MT environment, using in, 11-6
new MT classes, 11-13
I'i be library, 12-1
I i bconpl ex, See conpl ex
I'i bCrun library, 11-1, 11-2, 12-2, 12-5, 15-4
| i bCst d library, See C++ standard library
| i bdemangl e library, 12-2 to 12-4
| i bgc library, 12-2
| i bi ostream Seei ostream
i bm
inline templates, A-105
library, 12-1
optimized version, A-105
-1i b eee, compiler option, A-44
-1i bm |, compiler option, A-44
libraries
C interface, 12-1
C++ compiler, provided with, 12-2
C++ standard, 13-1 to 13-16
class, using, 12-7
classici ost ream 14-1to 14-24
configuration macro, 12-2
dynamically linked, 12-12
interval arithmetic, A-95
linking options, 3-6, 12-10
linking order, 3-2
linking with - nt , 12-1
naming a shared library, A-36
optimized math, A-105
replacing, C++ standard library, 12-13 to 12-17
shared, 12-11 to 12-13, A-10

static, A-3
suffixes, 15-1
Sun Performance Library, linking, A-45, A-106
understanding, 15-1 to 15-2
using, 12-1to 12-13
libraries, building
dynamic (shared), 15-1 to 15-4
for private use, 15-4
for public use, 15-5
linking options, A-34
shared with exceptions, 15-4
static (archive), 15-1to 15-3
with C API, 15-5
-1i brary, compiler option, 12-5 to 12-6, 12-10,
12-11, A-45 to A-49
I'i brwt ool , See Tool s. h++
I'i bt hr ead library, 12-1
I'i bwlibrary, 12-1
licensing
information, A-107
options, 3-8
requirements, 1-3
l'imt,command, 2-13
__LINE__, predefined macro, A-9
linking
conpl ex library, 12-8 to 12-10
consistent with compilation, 2-7 to 2-8
disabling system libraries, A-113
dynamic (shared) libraries, 12-12, 15-2, A-3
faster, A-140
i ostreamlibrary, 12-8
libraries, 12-1, 12-5, 12-10
library options, 3-6
- m option, 11-9
MT-safe | i bClibrary, 11-9
separate from compilation, 2-7

static (archive) libraries, 12-6, 12-10, 15-1, A-3,

A-61to A-63

symbolic, 12-16

template instance methods, 7-3
link-time optimization, A-107
literal strings in read-only memory, A-19
local-scope rules, enabling and disabling, A-20
locking

See also st r eam_| ocker

mutex, 11-12, 11-19

object, 11-16 to 11-18

st reanbuf, 11-7
- | pt hr ead and POSIX, A-44

-l thread
suppressed by - xnol i b, 12-11
using - nt in place of, 11-1, 11-9

M

macros

See also individual macros under alphabetical listings

predefined, A-9
magnitude, complex numbers, 14-2
make command, 2-16
man pages
accessing, 1-2,12-4
C++ standard library, 13-3 to 13-16
conpl ex, 14-10
i ostream 14-1, 14-12, 14-15, 14-19
man pages, accessing, 1-xxix
manipulators
i ost reans, 14-15to 14-19
plain, 14-17
predefined, 14-16
MANPATH environment variable, setting, 1-xxxi
math library, optimized version, A-105
mat h. h, conpl ex header files, 14-9
mathematical functions, complex arithmetic
library, 14-4to 14-6
- nt, compiler option, A-49
member variables, caching, 10-5
memory requirements, 2-12 to 2-14
-m gration, compiler option, A-49
- m sal i gn, compiler option, A-50
mixed-language linking, A-101
mixed-mode, complex arithmetic library, 14-8 to
14-9
- nr, compiler option, A-50
- mt compiler option
and | i bt hr ead, 11-9
linking libraries, 12-1
option description, A-51
MT-safe
applications, 11-6
classes, considerations for deriving, 11-18
library, 11-6
object, 11-6
performance overhead, 11-11, 11-12
public functions, 11-8
multimedia types, handling of, A-153
multiple source files, using, 2-5

Index-7

multithreaded

application, 11-2

compilation, 11-2

exception-handling, 11-3
mut abl e keyword, recognizing, A-20
mutex locks, MT-safe classes, 11-12, 11-19
mutual exclusion region, defining a, 11-18

N

nanespace keyword, recognizing, A-21

Native Connector Tool (NCT), A-111

- nati ve, compiler option, A-52

native-language support, application
development, 1-10

NCT, A-111

newarray forms, recognizing, A-21

nocheck, flag, 7-13

- noex, compiler option, A-52

- nof st or e, compiler option, A-52

- nol i b, compiler option, 12-6, A-52

-nol i bm |, compiler option, A-52

nonincremental link editor, compilation
component, 2-10

nonstandard features, 4-1to 4-9
allowing nonstandard code, A-20
defined, 1-1

- noqueue, compiler option, A-52

- nor unpat h, compiler option, 12-6, A-53

numbers, complex, 14-1to 14-4

O

. o files
option suffixes, 2-4
preserving, 2-6

- O compiler option, A-53

- 0, compiler option, A-53

object files
linking order, 3-2
relocatable, 15-3

object thread, pri vat e, 11-17

objects
destruction of shared, 11-19
destruction order, A-21
global shared, 11-15
strategies for dealing with shared, 11-16

Index-8 C++ User's Guide « May 2003

stream | ocker, 11-19

temporary, 10-1

temporary, lifetime of, A-21

within library, when linked, 15-1
oct,i ostream manipulator, 14-16
of st r eamclass, 14-11
- Olevel, compiler option, A-53
operators

basic arithmetic, 14-3 to 14-4

conpl ex, 14-7

i ost ream 14-4, 14-5, 14-7 to 14-8

scope resolution, 11-11
optimization

at link time, A-107

levels, A-115

math library, A-105

options for, 3-10

target hardware, A-141
optimizer out of memory, 2-14
options

See also individual options under alphabetical listings

code generation, 3-3
debugging, 3-4
description subsections, A-2
expansion compilation, A-17
floating point, 3-5
language, 3-6
library, 12-5to 12-6
library linking, 3-6
licensing, 3-8
obsolete, 3-8, A-57
optimization, 3-10
output, 3-8, 3-9
performance, 3-10
preprocessor, 3-11
processing order, 2-3, 3-2
profiling, 3-12
reference, 3-12
source, 3-12
subprogram compilation, 2-7 to 2-8
syntax format, 3-1, A-1
template, 3-13, 7-10
template compilation, 7-4
thread, 3-13
unrecognized, 2-8
ost r eamclass, defined, 14-2
ostr st r eamclass, defined, 14-2
output, 14-1
binary, 14-7

buffer flushing, 14-6
cout, 144
flushing, 14-6
handling errors, 14-5
options, 3-8
over f | owfunction, st r eanbuf, 11-19
overhead, MT-safe class performance, 11-11, 11-12

P
- P, compiler option, A-55
- p, compiler option, A-55
+p, compiler option, A-54
page size, setting for stack or heap, A-120
parameterized manipulators, i ost r eans, 14-18to
14-19
PATH environment variable, setting, 1-xxx
peeking at input, 14-9
Pentium, A-147
- pent i um compiler option, A-55
performance
options, 3-10
overhead of MT-safe classes, 11-11, 11-12
- pg, compiler option, A-55
- Pl C, compiler option, A-56
- pi ¢, compiler option, A-56
placement, template instances, 7-3
plain manipulators, i ost r eans, 14-17 to 14-18
polar, complex number, 14-2
POSIX and - | pt hread, A-44
#pragma align, Q-3
#pragma does_not _read_gl obal _data, Q-4
#pragma does_not _return, Q-4
#pragma does_not _write_gl obal _data, Q-5
#pragma dunmpnacr os, Q-5
#pragma end_dunpnacr os, Q-7
#pragma fini, Q-7
#pragma i dent, Q-8
#pragma init, Q-9
#pragma no_si de_effect, Q-9
#pragma pack, Q-10
#pragma rarely_cal |l ed, Q-11
#pragma returns_new_nenory, Q-12
#pragma unknown_control _fl ow, Q-12
#pragma weak, Q-13
#pr agma keywords, Q-2 to Q-14
precedence, avoiding problems of, 14-4
precompiled-header file, A-123

predefined macros, A-9
predefined manipulators, i omani p. h, 14-16
prefetch instructions, enabling, A-131
preprocessor
defining macro to, A-8
options, 3-11
preserving signedness of chars, A-82
pri vat e, object thread, 11-17
processing order, options, 2-3
processor, specifying target, A-141
pr of , C++ utilities, 1-10
profiling options, 3-12, A-134
Programming Language—-C++, standards
conformance, 1-1
programs
basic building steps, 2-1to 2-2
building multithreaded, 11-1
- pt a, compiler option, A-56
pt cl ean command, 7-1
pt hread_cancel () function, 11-3
- pti, compiler option, 7-9, A-56
- pt o, compiler option, A-56
- pt r, compiler option, A-57
- pt v, compiler option, A-57
public functions, MT-safe, 11-8
put pointer, st r eanbuf, 14-20

Q

- Qopt i on, compiler option, A-57
- qopt i on, compiler option, A-58
- qp, compiler option, A-58

- Qor oduce, compiler option, A-58
- gpr oduce, compiler option, A-59

R

- R compiler option, 12-6, A-59 to A-60

r eadne file, 1-1

- r eadne, compiler option, A-60

real memory, display, 2-14

real numbers, complex, 14-1, 14-4
reference options, 3-12

rei nterpret_cast operator, 9-2, A-72
reorder functions, A-93

repositioning within afile, f st r eam 14-14
reseti osfl ags,i ost ream manipulator, 14-16

Index-9

restrictions, MT-safe i ost r eam 11-9
right-shift operator

conpl ex, 14-7

i ostream 14-7
RogueWave

See also Tool s. h++

C++ standard library, 13-1
RTLD_GLOBAL, environment variable, 12-13
rtti keyword, recognizing, A-21
runtime error messages, 8-2

S
- S, compiler option, A-60
- s, compiler option, A-60
. S, file name suffixes, 2-4
. s, file name suffixes, 2-4
- sh, compiler option, A-60
- sbf ast, compiler option, A-60
sbuf pub, man pages, 14-12
scope resolution operator, unsaf e_ classes, 11-11
search path
definitions, 7-9
dynamic library, 12-6
include files, defined, A-37
source options, 3-12

standard header implementation, 12-15 to 12-16

template options, 3-12
searching
template definition files, 7-9
semi-explicit instances, 7-3, 7-6
sequences, MT-safe execution of I/0
operations, 11-16
set _term nat e() function, 11-3
set _unexpect ed() function, 11-3
set base, i ost r eam manipulator, 14-16
setfill,iostream manipulator, 14-16
seti of | ags,i ostream manipulator, 14-16
set preci si on,i ost r eam manipulator, 14-16
set w i ost r eam manipulator, 14-16
shared libraries
accessing from a C program, 15-6
building, 15-3, A-33
building, with exceptions, 8-5
containing exceptions, 15-4
disallowing linking of, A-10
naming, A-36
shared objects, 11-16, 11-19

Index-10 C++ User's Guide « May 2003

shell prompts, 1-xxix
shell, limiting virtual memory in, 2-13
shift operators, i ostr eans, 14-17
signal handlers
and exceptions, 8-1
and multithreading, 11-2
signedness of chars, A-82
sizes, storage, Q-11
skip flag, i ost r eam 14-10
. so, file name suffix, 2-4, 15-1
. s0. n, file name suffix, 2—4
Solaris operating environment libraries, 12-1
source compiler options, 3-12
source files
linking order, 3-2
location conventions, 7-9
location definition, 7-11 to 7-13
template definition, 7-11
__spar c, predefined macro, A-10
spar c, predefined macro, A-10
__spar cv9, predefined macro, A-10
speci al , template compilation option, 7-14 to 7-
15
stack
setting page size for, A-120
Standard C++ Class Library Reference, 13-2
Standard C++ Library User’s Guide, 13-2
standard error, i ost r eans, 14-1
standard headers
implementing, 12-15
replacing, 12-16
standard input, i ostreans, 14-1
standard i ost r eamclasses, 14-1
standard mode
See also - conpat
i ostream 14-1, 14-3
i bCstd, 14-1
Tool s. h++, 12-3
standard output, i ostr eans, 14-1
standard streams, i ost r eam h, 11-15
Standard Template Library (STL), 13-1
standards, conformance, 1-1
static
functions, referencing, 6-17
objects, initializers for nonlocal, A-20
variables, referencing, 6-17
static (archive) libraries, 15-1
static data, in a multithreaded application, 11-15 to
11-16

static instances, 7-3 to 7-5
static linking
compiler provided libraries, 12-6, A-61 to A-63
default libraries, 12-10
library binding, A-3
template instances, 7-5
static template class member, 7-15
stati c_cast operator, 9-4
-staticlib, compiler option, 12-6, 12-11, A-61
to A-63
__STDC__, predefined macro, 5-1, A-9
stdio
st di obuf man pages, 14-20
withi ostreans, 14-11
st di ostream h,i ost r eam header file, 14-3
STL (Standard Template Library), components, 13-
1
storage sizes, Q-11
stream, defined, 14-24
stream h,i ost r eamheader file, 14-3
stream | ocker
man pages, 11-18
synchronization with MT-safe objects, 11-12
st r eanbuf
defined, 14-20, 14-24
get pointer, 14-20
locking, 11-7
man pages, 14-21
new functions, 11-14
public virtual functions, 11-19
put pointer, 14-20
gueue-like versus file-like, 14-21
using, 14-21
st reanpos, 14-14
string literal of U"..." form, A-152
strstreamdefined, 14-2, 14-24
strstream h,i ostr eamheader file, 14-3
st ruct, anonymous declarations, 4-6
structure declaration specifier, 4-2
subprograms, compilation options, 2-7 to 2-8
suffixes
. SUNWCCh, 12-16
command line file name, 2-4
files without, 12-15
library, 15-1
makefiles, 2-16
template definition files, 7-11
SUNPRO_CC_COWPAT=(4| 5) , predefined
macro, A-6, A-9

__sun, predefined macro, A-9
sun, predefined macro, A-9
__SUNPRQO_CC, predefined macro, A-9
. SUNWCCh file name suffix, 12-16
SunWS_cache, 7-7
SunWS_conf i g directory, 7-10
__SVRA4, predefined macro, A-9
swap -s,command, 2-12
swap space, 2-12 to 2-14
symbol declaration specifier, 4-1
symbol tables, executable file, A-60
symbols, See macros
syntax

CCcommands, 2-3

options, 3-1, A-1

T
t cov, C++ utilities, 1-10
- t enp=dir, compiler option, A-63
template definition
included, 5-3
search path, 7-9
separate, file, 7-9
template instantiation, 6-6
explicit, 6-6
function, 6-6
implicit, 6-6
whole-class, 7-2
template pre-linker, compilation component, 2-10
template problems, 6-11
friend declarations of template functions, 6-14
local types as arguments, 6-13
non-local name resolution and instantiation, 6-
11
static objects, referencing, 6-17
using qualified names in template definitions, 6—
16
-t enpl at e, compiler option, 7-2, 7-9, A-63 to A—
64
templates
cache directory, 2-5
commands, 7-1
compilation, 7-4
definitions-separate vs. definitions-included
organization, 7-9
inline, A-105
instance methods, 7-3, 7-8

Index-11

linking, 2-8
nested, 6-8
options, 3-13
partial specialization, 6-10
repositories, 7-7
sharing options files, 7-10
source files, 7-9, 7-11 to 7-13
specialization, 6-9
specialization entries, 7-14 to 7-15
Standard Template Library (STL), 13-1
static objects, referencing, 6-17
verbose compilation, 7-1
term nate() function, 11-3
thr _exit () function, 11-3
t hr _keycr eat e, man pages, 11-17
thread local storage of variables, 4-3
thread options, 3-13
- ti me, compiler option, A-65
__TIME__, predefined macro, A-9
token spellings, alternative, A-19
Tool s. h++
classic and standard iostreams, 12-3
compiler options, 12-10
debug library, 12-2
documentation, 12-3
standard and compatibility mode, 12-3
trapping mode, A-32
trigonometric functions, complex arithmetic
library, 14-5to 14-6
trigraph sequences, recognizing, A-150
typographic conventions, 1-xxviii

U
- U, compiler option, 3-2, A-65
ulimt,command, 2-13
__'uname-s’_"uname-r’, predefined macro, A-9
unexpect ed() function, 11-3
union declaration specifier, 4-2
UNIX tools, 1-10
__uni x, predefined macro, A-9
uni x, predefined macro, A-10
- unr ol | =n, compiler option, A-65
user-defined types

i ostream 14-4

MT-safe, 11-10 to 11-11

Index-12 C++ User's Guide « May 2003

V
-V, compiler option, A-66
- v, compiler option, 2-9, A-66
VA ARGS__ identifier, 2-11
value classes, using, 10-3
values

doubl e, 14-2

float, 14-4

flush, 14-6

inserting on cout , 14-4

| ong, 14-19

manipulator, 14-3, 14-19
variable argument lists, 2-11
variable declaration specifier, 4-1
variable, thread-local storage specifier, 4-3
- vdel x, compiler option, A-66

-ver bose, compiler option, 2-8, 7-1, A-66 to A-

67
viable prefix, A-124
virtual memory, limits, 2-13 to 2-14
VIS Software Developers Kit, A-153

W
+w compiler option, 7-1, A-67
+w2, compiler option, A-68
- w compiler option, A-68
warnings
anachronisms, A-69
C header replacement, 12-17
inefficient code, A-67
nonportable code, A-67

problematic ARM language constructs, A-20

suppressing, A—68

technical violations reducing portability, A—68

unrecognized arguments, 2-8
_WCHAR _T, predefined UNIX symbol, A-10

whitespace
extractors, 14-10
leading, 14-9

skipping, 14-10, 14-18
workstations, memory requirements, 2-14
Ws, i ost r eam manipulator, 14-10, 14-16

X
Xinserter,i ostream 14-4

- xa, compiler option, A-69 - xpr ef et ch, compiler option, A-131

-xal i as_| evel , compiler option, A-70 -xprefetch_l evel ,compiler option, A-133
- xar, compiler option, 7-4, 15-2 to 15-3, A-72 - xprofil e, compiler option, A-134 to A-137

- xar ch=isa, compiler option, A-73 to A-78 -xprofile_ircache, compiler option, A-137
- xbui | ti n, compiler option, A-78 - xprofil e_pat hmap, compiler option, A-137
- xcache=c, compiler option, A-79 to A-81 - Xr egs, compiler option, 15-5, A-138

- xcg89, compiler option, A-81 - xs, compiler option, A-140

- xcg92, compiler option, A-81 - xsaf e=nmem compiler option, A-140 to A-141
- xchar, compiler option, A-82 - xsh, compiler option, A-141

- xcheck, compiler option, A-83 - xsbf ast, compiler option, A-141

- xchi p=c, compiler option, A-84to A-85 - xspace, compiler option, A-141

- xcode=a, compiler option, A-85to A-86 - Xt ar get =t, compiler option, A-141 to A-148
-xcrossfil e, compiler option, A-87 - xhr eadvar, compiler option, A-148

- xdunpnacr os, compiler option, A-89 - xti me, compiler option, A-150

- xe, compiler option, A-93 - xtrigraphs, compiler option, A-150

- XF, compiler option, A-93 to A-94 - xunr ol | =n, compiler option, A-151

- xhel p=f | ags, compiler option, A-94 - xust r, compiler option, A-152

- xhel p=r eadme, compiler option, A-94 - Xvi s, compiler option, A-153

- xi a, compiler option, A-95 - xwe, compiler option, A-153

- xi | dof f, compiler option, A-96

- xi | don, compiler option, A-96

- xi nl i ne, compiler option, A-96

- Xi po, compiler option, A-98 Y

- Xj obs, compiler option, A-101 yacc, C++ utilities, 1-10

- x| ang, compiler option, A-101

- x| dscope, compiler option, 4-2, A-103

-xl'i bm eee, compiler option, A-104

-xl'i bm |, compiler option, A-105

- x| i bmopt , compiler option, A-105

-xlic_I'ib,compiler option, A-106

- xli ci nf o, compiler option, A-107

- x| i nkopt , compiler option, A-107

- Xm compiler option, A-69

- XM compiler option, A-108 to A-109

- XML, compiler option, A-109

- xmemal i gn, compiler option, A-110

- xMer ge, compiler option, A-109

- Xnati veconnet, compiler option, A-111

-xnol i b, compiler option, 12-6, 12-11, A-113 to
A-115

-xnol i bm | , compiler option, A-115

- xnol i bropt , compiler option, A-115

- xCOlevel, compiler option, A-115to A-118

- xopennp, compiler option, A-118

- Xpagesi ze, compiler option, A-120

- Xpagesi ze_heap, compiler option, A-121

- Xpagesi ze_st ack, compiler option, A-122

- Xpg, compiler option, A-127

- Xxpor t 64, compiler option, A-127

Z
-z arg, compiler option, A-153

Index-13

Index-14 C++ User's Guide « May 2003

	C++ User’s Guide
	Contents
	Tables
	Code Samples
	Before You Begin
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Accessing Compiler Collection Tools and Man Pages
	To Determine Whether You Need to Set Your PATH Environment Variable
	To Set Your PATH Environment Variable to Enable Access to the Compilers and Tools
	To Determine Whether You Need to Set Your MANPATH Environment Variable
	To Set Your MANPATH Environment Variable to Enable Access to the Man Pages

	Accessing Compiler Collection Documentation
	Accessing Related Solaris Documentation
	Accessing C++ Related Man Pages
	Commercially Available Books
	Resources for Developers
	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	I C++ Compiler
	The C++ Compiler
	1.1 Standards Conformance
	1.2 C++ Readme File
	1.3 Man Pages
	1.4 Licensing
	1.5 New Features of the C++ Compiler
	1.5.1 General Enhancements
	1.5.2 Faster Compilation
	1.5.3 Easier Porting
	1.5.4 Improved Performance
	1.5.5 Added Warning and Error Controls

	1.6 C++ Utilities
	1.7 Native-Language Support

	Using the C++ Compiler
	2.1 Getting Started
	2.2 Invoking the Compiler
	2.2.1 Command Syntax
	2.2.2 File Name Conventions
	2.2.3 Using Multiple Source Files

	2.3 Compiling With Different Compiler Versions
	2.4 Compiling and Linking
	2.4.1 Compile-Link Sequence
	2.4.2 Separate Compiling and Linking
	2.4.3 Consistent Compiling and Linking
	2.4.4 Compiling for SPARC V9
	2.4.5 Diagnosing the Compiler
	2.4.6 Understanding the Compiler Organization

	2.5 Preprocessing Directives and Names
	2.5.1 Pragmas
	2.5.2 Macros With a Variable Number of Arguments
	2.5.3 Predefined Names
	2.5.4 #error

	2.6 Memory Requirements
	2.6.1 Swap Space Size
	2.6.2 Increasing Swap Space
	2.6.3 Control of Virtual Memory
	2.6.4 Memory Requirements

	2.7 Simplifying Commands
	2.7.1 Using Aliases Within the C Shell
	2.7.2 Using CCFLAGS to Specify Compile Options
	2.7.3 Using make
	2.7.3.1 Using CCFLAGS Within make
	2.7.3.2 Adding a Suffix to Your Makefile
	2.7.3.3 Using make With Standard Library Header Files

	Using the C++ Compiler Options
	3.1 Syntax
	3.2 General Guidelines
	3.3 Options Summarized by Function
	3.3.1 Code Generation Options
	3.3.2 Compile-Time Performance Options
	3.3.3 Debugging Options
	3.3.4 Floating-Point Options
	3.3.5 Language Options
	3.3.6 Library Options
	3.3.7 Licensing Options
	3.3.8 Obsolete Options
	3.3.9 Output Options
	3.3.10 Run-Time Performance Options
	3.3.11 Preprocessor Options
	3.3.12 Profiling Options
	3.3.13 Reference Options
	3.3.14 Source Options
	3.3.15 Template Options
	3.3.16 Thread Options

	II Writing C++ Programs
	Language Extensions
	4.1 Linker Scoping
	4.2 Thread-Local Storage
	4.3 Overriding With Less Restrictive Virtual Functions
	4.4 Making Forward Declarations of enum Types and Variables
	4.5 Using Incomplete enum Types
	4.6 Using an enum Name as a Scope Qualifier
	4.7 Using Anonymous struct Declarations
	4.8 Passing the Address of an Anonymous Class Instance
	4.9 Declaring a Static Namespace-Scope Function as a Class Friend
	4.10 Using the Predefined __func__ Symbol for Function Name

	Program Organization
	5.1 Header Files
	5.1.1 Language-Adaptable Header Files
	5.1.2 Idempotent Header Files

	5.2 Template Definitions
	5.2.1 Template Definitions Included
	5.2.2 Template Definitions Separate

	Creating and Using Templates
	6.1 Function Templates
	6.1.1 Function Template Declaration
	6.1.2 Function Template Definition
	6.1.3 Function Template Use

	6.2 Class Templates
	6.2.1 Class Template Declaration
	6.2.2 Class Template Definition
	6.2.3 Class Template Member Definitions
	6.2.3.1 Function Member Definitions
	6.2.3.2 Static Data Member Definitions

	6.2.4 Class Template Use

	6.3 Template Instantiation
	6.3.1 Implicit Template Instantiation
	6.3.2 Explicit Template Instantiation
	6.3.2.1 Explicit Instantiation of Template Functions
	6.3.2.2 Explicit Instantiation of Template Classes
	6.3.2.3 Explicit Instantiation of Template Class Function Members
	6.3.2.4 Explicit Instantiation of Template Class Static Data Members

	6.4 Template Composition
	6.5 Default Template Parameters
	6.6 Template Specialization
	6.6.1 Template Specialization Declaration
	6.6.2 Template Specialization Definition
	6.6.3 Template Specialization Use and Instantiation
	6.6.4 Partial Specialization

	6.7 Template Problem Areas
	6.7.1 Nonlocal Name Resolution and Instantiation
	6.7.2 Local Types as Template Arguments
	6.7.3 Friend Declarations of Template Functions
	6.7.4 Using Qualified Names Within Template Definitions
	6.7.5 Nesting Template Declarations
	6.7.6 Referencing Static Variables and Static Functions
	6.7.7 Building Multiple Programs Using Templates in the Same Directory

	Compiling Templates
	7.1 Verbose Compilation
	7.2 Template Instantiation
	7.2.1 Generated Instances
	7.2.2 Whole-Class Instantiation
	7.2.3 Compile-Time Instantiation
	7.2.4 Template Instance Placement and Linkage

	7.3 External Instances
	7.3.0.1 Possible Cache Conflicts
	7.3.1 Static Instances
	7.3.2 Global Instances
	7.3.3 Explicit Instances
	7.3.4 Semi-Explicit Instances

	7.4 The Template Repository
	7.4.1 Repository Structure
	7.4.2 Writing to the Template Repository
	7.4.3 Reading From Multiple Template Repositories
	7.4.4 Sharing Template Repositories
	7.4.5 Template Instance Automatic Consistency With -instance=extern

	7.5 Template Definition Searching
	7.5.1 Source File Location Conventions
	7.5.2 Definitions Search Path

	7.6 Template Options File
	7.6.1 Comments
	7.6.2 Includes
	7.6.3 Source File Extensions
	7.6.4 Definition Source Locations
	7.6.5 Template Specialization Entries

	Exception Handling
	8.1 Synchronous and Asynchronous Exceptions
	8.2 Specifying Runtime Errors
	8.3 Disabling Exceptions
	8.4 Using Runtime Functions and Predefined Exceptions
	8.5 Mixing Exceptions With Signals and Setjmp/Longjmp
	8.6 Building Shared Libraries That Have Exceptions

	Cast Operations
	9.1 const_cast
	9.2 reinterpret_cast
	9.3 static_cast
	9.4 Dynamic Casts
	9.4.1 Casting Up the Hierarchy
	9.4.2 Casting to void*
	9.4.3 Casting Down or Across the Hierarchy

	Improving Program Performance
	10.1 Avoiding Temporary Objects
	10.2 Using Inline Functions
	10.3 Using Default Operators
	10.4 Using Value Classes
	10.4.1 Choosing to Pass Classes Directly
	10.4.2 Passing Classes Directly on Various Processors

	10.5 Cache Member Variables

	Building Multithreaded Programs
	11.1 Building Multithreaded Programs
	11.1.1 Indicating Multithreaded Compilation
	11.1.2 Using C++ Support Libraries With Threads and Signals

	11.2 Using Exceptions in a Multithreaded Program
	11.3 Sharing C++ Standard Library Objects Between Threads
	11.4 Using Classic Iostreams in a Multithreading Environment
	11.4.1 Organization of the MT�Safe iostream Library
	11.4.1.1 Public Conversion Routines
	11.4.1.2 Compiling and Linking With the MT�Safe libC Library
	11.4.1.3 MT�Safe iostream Restrictions
	11.4.1.4 Reducing Performance Overhead of MT-Safe Classes

	11.4.2 Interface Changes to the iostream Library
	11.4.2.1 The New Classes
	11.4.2.2 The New Class Hierarchy
	11.4.2.3 The New Functions

	11.4.3 Global and Static Data
	11.4.4 Sequence Execution
	11.4.5 Object Locks
	11.4.5.1 Class stream_locker

	11.4.6 MT-Safe Classes
	11.4.7 Object Destruction
	11.4.8 An Example Application

	III Libraries
	Using Libraries
	12.1 The C Libraries
	12.2 Libraries Provided With the C++ Compiler
	12.2.1 C++ Library Descriptions
	12.2.2 Accessing the C++ Library Man Pages
	12.2.3 Default C++ Libraries

	12.3 Related Library Options
	12.4 Using Class Libraries
	12.4.1 The iostream Library
	12.4.2 The complex Library
	12.4.3 Linking C++ Libraries

	12.5 Statically Linking Standard Libraries
	12.6 Using Shared Libraries
	12.7 Replacing the C++ Standard Library
	12.7.1 What Can Be Replaced
	12.7.2 What Cannot Be Replaced
	12.7.3 Installing the Replacement Library
	12.7.4 Using the Replacement Library
	12.7.5 Standard Header Implementation
	12.7.5.1 Replacing Standard C++ Headers
	12.7.5.2 Replacing Standard C Headers

	Using The C++ Standard Library
	13.1 C++ Standard Library Header Files
	13.2 C++ Standard Library Man Pages
	13.3 STLport

	Using the Classic iostream Library
	14.1 Predefined iostreams
	14.2 Basic Structure of iostream Interaction
	14.3 Using the Classic iostream Library
	14.3.1 Output Using iostream
	14.3.1.1 Defining Your Own Insertion Operator
	14.3.1.2 Handling Output Errors
	14.3.1.3 Flushing
	14.3.1.4 Binary Output

	14.3.2 Input Using iostream
	14.3.3 Defining Your Own Extraction Operators
	14.3.4 Using the char* Extractor
	14.3.5 Reading Any Single Character
	14.3.6 Binary Input
	14.3.7 Peeking at Input
	14.3.8 Extracting Whitespace
	14.3.9 Handling Input Errors
	14.3.10 Using iostreams With stdio

	14.4 Creating iostreams
	14.4.1 Dealing With Files Using Class fstream
	14.4.1.1 Open Mode
	14.4.1.2 Declaring an fstream Without Specifying a File
	14.4.1.3 Opening and Closing Files
	14.4.1.4 Opening a File Using a File Descriptor
	14.4.1.5 Repositioning Within a File

	14.5 Assignment of iostreams
	14.6 Format Control
	14.7 Manipulators
	14.7.1 Using Plain Manipulators
	14.7.2 Parameterized Manipulators

	14.8 Strstreams: iostreams for Arrays
	14.9 Stdiobufs: iostreams for stdio Files
	14.10 Streambufs
	14.10.1 Working With Streambufs
	14.10.1.1 Position of Pointers

	14.10.2 Using Streambufs

	14.11 iostream Man Pages
	14.12 iostream Terminology

	Using the Complex Arithmetic Library
	15.1 The Complex Library
	15.1.1 Using the Complex Library

	15.2 Type complex
	15.2.1 Constructors of Class complex
	15.2.2 Arithmetic Operators

	15.3 Mathematical Functions
	15.4 Error Handling
	15.5 Input and Output
	15.6 Mixed-Mode Arithmetic
	15.7 Efficiency
	15.8 Complex Man Pages

	Building Libraries
	16.1 Understanding Libraries
	16.2 Building Static (Archive) Libraries
	16.3 Building Dynamic (Shared) Libraries
	16.4 Building Shared Libraries That Contain Exceptions
	16.5 Building Libraries for Private Use
	16.6 Building Libraries for Public Use
	16.7 Building a Library That Has a C API
	16.8 Using dlopen to Access a C++ Library From a C Program

	IV Appendixes
	C++ Compiler Options
	A.1 How Option Information Is Organized
	A.2 Option Reference
	A.2.1 –386
	A.2.2 –486
	A.2.3 –a
	A.2.4 –Bbinding
	A.2.5 –c
	A.2.6 –cg{89|92}
	A.2.7 –compat[={4|5}]
	A.2.8 +d
	A.2.9 �D[]name[=def]
	A.2.10 –d{y|n}
	A.2.11 –dalign
	A.2.12 –dryrun
	A.2.13 –E
	A.2.14 +e{0|1}
	A.2.15 �erroff[=t]
	A.2.16 �errtags[=a]
	A.2.17 �errwarn[=t]
	A.2.18 –fast
	A.2.19 –features=a[,a...]
	A.2.20 �filt[=filter[,filter...]]
	A.2.21 –flags
	A.2.22 –fnonstd
	A.2.23 –fns[={yes|no}]
	A.2.24 –fprecision=p
	A.2.25 –fround=r
	A.2.26 –fsimple[=n]
	A.2.27 –fstore
	A.2.28 –ftrap=t[,t...]
	A.2.29 –G
	A.2.30 –g
	A.2.31 –g0
	A.2.32 –H
	A.2.33 –h[]name
	A.2.34 –help
	A.2.35 �Ipathname
	A.2.36 �I�
	A.2.37 –i
	A.2.38 �inline
	A.2.39 –instances=a
	A.2.40 –instlib=filename
	A.2.41 –KPIC
	A.2.42 –Kpic
	A.2.43 –keeptmp
	A.2.44 –Lpath
	A.2.45 –llib
	A.2.46 –libmieee
	A.2.47 –libmil
	A.2.48 �library=l[,l...]
	A.2.49 �mc
	A.2.50 –migration
	A.2.51 –misalign
	A.2.52 �mr[,string]
	A.2.53 –mt
	A.2.54 –native
	A.2.55 –noex
	A.2.56 –nofstore
	A.2.57 –nolib
	A.2.58 –nolibmil
	A.2.59 –noqueue
	A.2.60 –norunpath
	A.2.61 –O
	A.2.62 –Olevel
	A.2.63 –o filename
	A.2.64 +p
	A.2.65 –P
	A.2.66 –p
	A.2.67 –pentium
	A.2.68 –pg
	A.2.69 �PIC
	A.2.70 –pic
	A.2.71 –pta
	A.2.72 –ptipath
	A.2.73 –pto
	A.2.74 –ptr
	A.2.75 –ptv
	A.2.76 –Qoption phase option[,option…]
	A.2.77 –qoption phase option
	A.2.78 –qp
	A.2.79 –Qproduce sourcetype
	A.2.80 –qproduce sourcetype
	A.2.81 –Rpathname[:pathname…]
	A.2.82 –readme
	A.2.83 –S
	A.2.84 –s
	A.2.85 –sb
	A.2.86 –sbfast
	A.2.87 �staticlib=l[,l…]
	A.2.88 –temp=path
	A.2.89 –template=opt[,opt…]
	A.2.90 –time
	A.2.91 –Uname
	A.2.92 –unroll=n
	A.2.93 –V
	A.2.94 –v
	A.2.95 –vdelx
	A.2.96 –verbose=v[,v…]
	A.2.97 +w
	A.2.98 +w2
	A.2.99 –w
	A.2.100 –Xm
	A.2.101 –xa
	A.2.102 �xalias_level[=n]
	A.2.103 –xar
	A.2.104 –xarch=isa
	A.2.105 �xbuiltin[={%all|%none}]
	A.2.106 –xcache=c
	A.2.107 �xcg89
	A.2.108 –xcg92
	A.2.109 �xchar[=o]
	A.2.110 -xcheck[=i]
	A.2.111 �xchip=c
	A.2.112 –xcode=a
	A.2.113 �xcrossfile[=n]
	A.2.114 -xdumpmacros[=value[,value...]]
	A.2.115 �xe
	A.2.116 –xF[=v[,v...]]
	A.2.117 –xhelp=flags
	A.2.118 –xhelp=readme
	A.2.119 �xia
	A.2.120 –xildoff
	A.2.121 –xildon
	A.2.122 �xinline[=func_spec[,func_spec...]]
	A.2.123 �xipo[={0|1|2}]
	A.2.124 -xjobs=n
	A.2.125 �xlang=language[,language]
	A.2.126 -xldscope={v}
	A.2.127 –xlibmieee
	A.2.128 –xlibmil
	A.2.129 –xlibmopt
	A.2.130 –xlic_lib=sunperf
	A.2.131 –xlicinfo
	A.2.132 -xlinkopt[=level]
	A.2.133 –xM
	A.2.134 �xM1
	A.2.135 –xMerge
	A.2.136 -xmemalign=ab
	A.2.137 -xnativeconnect[=i]
	A.2.138 –xnolib
	A.2.139 –xnolibmil
	A.2.140 –xnolibmopt
	A.2.141 �xOlevel
	A.2.142 �xopenmp[=i]
	A.2.143 -xpagesize=n
	A.2.144 -xpagesize_heap=n
	A.2.145 -xpagesize_stack=n
	A.2.146 �xpch=v
	A.2.147 �xpchstop=file
	A.2.148 –xpg
	A.2.149 -xport64[=(v)]
	A.2.150 �xprefetch[=a[,a...]]
	A.2.151 -xprefetch_level[=i]
	A.2.152 �xprofile=p
	A.2.153 �xprofile_ircache[=path]
	A.2.154 -xprofile_pathmap
	A.2.155 –xregs=r[,r...]
	A.2.156 –xs
	A.2.157 –xsafe=mem
	A.2.158 –xsb
	A.2.159 –xsbfast
	A.2.160 –xspace
	A.2.161 –xtarget=t
	A.2.162 -xthreadvar[=o]
	A.2.163 –xtime
	A.2.164 �xtrigraphs[={yes|no}]
	A.2.165 –xunroll=n
	A.2.166 -xustr={ascii_utf16_ushort|no}
	A.2.167 �xvis[={yes|no}]
	A.2.168 –xwe
	A.2.169 �z[]arg

	Pragmas
	B.1 Pragma Forms
	B.2 Pragma Reference
	B.2.1 #pragma align
	B.2.2 #pragma does_not_read_global_data
	B.2.3 #pragma does_not_return
	B.2.4 #pragma does_not_write_global_data
	B.2.5 #pragma dumpmacros
	B.2.6 #pragma end_dumpmacros
	B.2.7 #pragma fini
	B.2.8 #pragma hdrstop
	B.2.9 #pragma ident
	B.2.10 #pragma init
	B.2.11 #pragma no_side_effect
	B.2.12 #pragma pack(n)
	B.2.13 #pragma rarely_called
	B.2.14 #pragma returns_new_memory
	B.2.15 #pragma unknown_control_flow
	B.2.16 #pragma weak

	Glossary
	Index

