
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

http://www.sun.com/blueprints

Kerberos Network Security in

the Solaris™ Operating

Environment

By Wyllys Ingersoll - SOE Network Security

Sun BluePrints™ OnLine - October 2001

Part No.: 816-1952-10
Revision 1.1, 10/30/01
Edition: October 2001

Please

Recycle

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Sun Enterprise Authentication Mechanism, and Solaris are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, Sun Enterprise Authentication Mechanism, et Solaris sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Kerberos Network Security in the
Solaris™ Operating Environment

Kerberos is a network authentication protocol designed to provide strong

authentication for client/server applications by using secret-key cryptography.

Originally developed at the Massachusetts Institute of Technology, it has been

included as part of the Solaris™ Operating Environment (Solaris OE) to provide

strong authentication for Solaris OE network applications.

In addition to providing a secure authentication protocol, Kerberos also offers the

ability to add privacy support (encrypted data streams) for remote applications such

as telnet , ftp , rsh , rlogin , and other common UNIX® network applications. In

the Solaris OE, Kerberos can also be used to provide strong authentication and

privacy support for Network File System (NFS) filesystems, allowing secure and

private file sharing across the network.

Because of its widespread acceptance and implementation in other operating

systems, including Windows 2000, HP-UX, and Linux, the Kerberos authentication

protocol can interoperate in a heterogeneous environment allowing users on

machines running one OS to securely authenticate themselves on hosts of a different

OS.

This article describes how to securely configure Kerberos in the Solaris OE beyond

what is described in the online documentation or what is distributed with the

Kerberos software.

Obtaining Kerberos Software

Kerberos software is available for Solaris OE versions 2.6, 7, and 8 in a separate

package called the Sun Enterprise Authentication Mechanism™ software. For Solaris

2.6 and Solaris 7 OE, Sun Enterprise Authentication Mechanism software is included
1

as part of the Solaris™ Easy Access Server 3.0 (Solaris EAS) package. For Solaris 8

OE, the Sun Enterprise Authentication Mechanism software package is available

with the Solaris 8 OE Admin Pack.

For Solaris 2.6 and Solaris 7 OE, the Sun Enterprise Authentication Mechanism

software is available as part of the Solaris Easy Access Server 3.0 (Solaris EAS)

package. Details about the package are here:

http://www.sun.com/software/solaris/7/ds/ds-seas . It can be ordered

from your local Sun sales representative, authorized reseller, and Solaris OEM

Partners. This package is not available for download.

For Solaris 8 OE systems, Sun Enterprise Authentication Mechanism software is

available in the Solaris 8 OE Admin Pack, available for download from

http://www.sun.com/bigadmin/content/adminPack/index.html .

All of these Sun Enterprise Authentication Mechanism software distributions are

based on the MIT KRB5 Release version 1.0. The client programs in these

distributions are compatible with later MIT releases (1.1, 1.2) as well as with other

implementations that are compliant with the standard.

Adding Encryption Support Modules

The Sun Enterprise Authentication Mechanism software packages available for

download for Solaris 8 OE provides only the authentication mechanisms, no data-

encryption functionality is provided. Kerberos provides a secure authentication

mechanism by definition, but most Kerberos distributions also provide the ability for

users to exchange their data privately and securely as well. The privacy enhancing

packages are available for Solaris 8 OE in a separate, downloadable package called

the “Solaris Encryption Pack” (available at http://www.sun.com/solaris/
encryption). It is strongly recommended that all sites wishing to incorporate

Kerberos security, download the encryption pack and install it. The privacy support

provided by the encryption pack greatly enhances the security offered by the Sun

Enterprise Authentication Mechanism software package because it enables users to

use encrypted remote applications such as telnet , ftp , and rlogin , and also

allows systems to use the NFS protocol with privacy protection. Additionally, the

encryption package is necessary to secure administrative tools such as kpasswd and

kadmin so that the principal database may be administered securely.
2 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

Installing and Securing the Kerberos
Servers

The Kerberos Key Distribution Center (KDC) is a trusted server that issues Kerberos

“tickets” to clients and servers to communicate securely. A Kerberos “ticket” is a

block of data which is presented as the users credentials when attempting to access

a Kerberized service. A ticket contains information about the user’s identity and a

temporary encryption key, all encrypted in the server’s private key. In the Kerberos

environment, any entity that is defined to have a Kerberos identity is referred to as a

“principal.”

A principal may be an entry for a particular user, host, or service (such as NFS or

FTP) that is to interact with the KDC. Most commonly, the KDC server system also

runs the Kerberos Administration Daemon, which handles administrative

commands such as adding/deleting/modifying principals in the Kerberos database.

Typically, the KDC, the admin server, and the database are all on the same machine,

but they can be separated if necessary. Some environments may require that multiple

realms be configured with master KDCs and slave KDCs for each realm. The

principles applied for securing each realm and KDC should be applied to all realms

and KDCs in the network to ensure that there isn’t a single “weak link” in the chain.

One of the first steps to take when initializing your Kerberos database, is to create it

using the kdb5_util command. When running this command, the user has the

choice to create a stash file or not. The stash file is a local copy of the master key

that resides on the KDC’s local disk. The master key contained in the stash file is

generated from the master password that the user enters when first creating the

KDC database. The stash file is used to authenticate the KDC to itself automatically

before starting the kadmind and krb5kdc daemons (e.g., as part of the machine's

boot sequence).

If a stash file is not used when the database is created, then the administrator who

starts up the krb5kdc process will have to manually enter the Master Key

(password) every time they start the process. This may seem like a typical tradeoff

between convenience and security, but if the rest of the system is sufficiently

hardened and protected, then very little security is lost by having the master key

stored in the protected stash file. It is recommended that at least 1 slave KDC

server be installed for each realm to ensure that a backup is available in the event

that the master server becomes unavailable and that slave KDC be configured with

the same level of security as the master.

Currently, the Sun Enterprise Authentication Mechanism utility, kdb5_util , can

create 3 types of keys, DES-CBC-CRC, DES-CBC-MD5, and DES-CBC-RAW. “DES-
CBC” means “DES encryption with Cipher block chaining” and the CRC, MD5, and

RAW designators refer to the checksum algorithm that is used. By default, the key
Installing and Securing the Kerberos Servers 3

created will be DES-CBC-CRC, which is the default encryption type for the KDC. The

type of key created is specified on the command line with the -k option (see

kdb5_util (1M) man page). Choose the password for your stash file very carefully

as this password can be used in the future to decrypt the master key and modify the

database. The password may be up to 1024 characters long and may include any

combination of letters, numbers, punctuation, and spaces.

The following is an example of creating a stash file:

Notice the use of the -s argument to create the stash file. The location of the stash
file is in the /var/krb5 (not configurable). The stash file will appear with the

following mode and ownership settings:

Note – The directory used to store the stash file and the database SHOULD NOT

be shared or exported. More information on how to harden the KDC system is

covered later in this article.

Secure Settings in the KDC Configuration File

The KDC and Administration daemons both read configuration information from

/etc/krb5/kdc.conf . This file contains KDC specific parameters that govern

overall behavior for the KDC and for specific realms. The parameters in the

kdc.conf file are explained in detail in both the kdc.conf (4) man page and in the

Sun Enterprise Authentication Mechanism 1.01 documentation at

http://docs.sun.com .

The kdc.conf parameters describe locations of various files and ports to use for

accessing the KDC and the administration daemon. These parameters generally do

not need to be changed, and doing so does not result in any added security.

However, there are some parameters that may be adjusted to enhance the overall

security of the KDC. The following are some examples of adjustable parameters that

enhance security.

kdc1 # /usr/krb5/sbin/kdb5_util create -r BLUEPRINTS.SUN.COM -s
Initializing database '/var/krb5/principal' for realm 'BLUEPRINTS.SUN.COM'
master key name 'K/M@BLUEPRINTS.SUN.COM'
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key: <type the key>
Re-enter KDC database master key to verify: <type it again>

-rw------- 1 root other 14 Feb 22 14:28 .k5.BLUEPRINTS.SUN.COM
4 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

■ kdc_ports

Defines the ports that the KDC will listen on to receive requests. The standard

port for Kerberos V5 is 88. 750 is included and commonly used to support

older clients that still use the default port designated for Kerberos V4. Solaris

OE still listens on port 750 for backwards compatibility. This is not considered

a security risk.

■ max_life

Defines the maximum lifetime of a ticket, and defaults to 8 hours. In

environments where it is desirable to have users re-authenticate frequently and

to reduce the chance of having a principal's credentials stolen, this value

should be lowered. The recommended value is 8 hours.

■ max_renewable_life

Defines the period of time from when a ticket is issued that it may be

“renewed” (using kinit -R). The standard value here is 7 days. To disable

renewable tickets, this value may be set to 0 days, 0 hrs, 0 min. The

recommended value is 7d 0h 0m 0s.

■ default_principal_expiration

A Kerberos principal is any unique identity to which Kerberos can assign a

ticket. In the case of users, it is the same as the UNIX system user name. The

default lifetime of any principal in the realm, may be defined in the kdc.conf
file with this option. This should be used only if the realm will contain

temporary principals, otherwise the administrator will have to constantly be

renewing principals. Usually, this setting is left undefined and principals do

not expire. This is not insecure as long as the administrator is vigilant about

removing principals for users that no longer need access to the systems.

■ supported_enctypes

The encryption types supported by the KDC may be defined with this option.

At this time, Sun Enterprise Authentication Mechanism software only supports

des-cbc-crc:normal encryption type but in the future this may be used to

ensure that only strong cryptographic ciphers are used.

■ dict_file

The location of a dictionary file containing strings that are not allowed as

passwords. A principal with any password policy (see below) will not be able

to use words found in this dictionary file. This is not defined by default. Using

a dictionary file is a good way to prevent users from creating trivial passwords

to protect their accounts and thus helps avoid one of the most common

weaknesses in a computer network—guessable passwords. The KDC will only

check passwords against the dictionary for principals which have a password

policy association, so it is good practice to have at least 1 simple policy

associated with all principals in the realm.
Installing and Securing the Kerberos Servers 5

The Solaris OE has a default system dictionary that is used by the spell
program that may also be used by the KDC as a dictionary of common

passwords. The location of this file is: /usr/share/lib/dict/words . Other

dictionaries may be substituted, the format is 1 word or phrase per line.

The following is a SEAM /etc/krb5/kdc.conf example with suggested settings:

Access Control

The Kerberos administration server allows for granular control of the administrative

commands by use of an ACL file (/etc/krb5/kadm5.acl). The syntax for the ACL

file allows for wildcarding of principal names so that it is not necessary to list every

single administrator in the ACL file. This feature should be used with great care. The

ACLs used by Kerberos allow privileges to be broken down into very precise

functions that each administrator can perform. If a certain administrator only needs

to be allowed to have read-access to the database then that person should not be

granted full admin privileges. Below is a list of the privileges allowed:

■ a – Allows the addition of principals or policies in the database.

■ A – Prohibits the addition of principals or policies in the database.

■ d – Allows the deletion of principals or policies in the database.

■ D – Prohibits the deletion of principals or policies in the database.

■ m– Allows the modification of principals or policies in the database.

#
Copyright (c) 1998-2001 by Sun Microsystems, Inc.
All rights reserved.
#
#ident "@(#)kdc.conf 1.2 98/08/17 SMI"

[kdcdefaults]
kdc_ports = 88,750

[realms]
BLUEPRINTS.SUN.COM = {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal
admin_keytab = /etc/krb5/kadm5.keytab
acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749
max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s
dict_file = /usr/share/lib/dict/words

}

6 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

■ M– Prohibits the modification of principals or policies in the database.

■ c – Allows the changing of passwords for principals in the database.

■ C – Prohibits the changing of passwords for principals in the database.

■ i – Allows inquiries to the database.

■ I – Prohibits inquiries to the database.

■ l – Allows the listing of principals or policies in the database.

■ L – Prohibits the listing of principals or policies in the database.

■ * – Short for all privileges (admcil).

■ x – Short for all privileges (admcil), and is identical to "* ".

Adding Administrators

After the ACLs are set up, actual administrator principals should be added to the

system. It is strongly recommended that administrative users have separate

“/admin ” principals to use only when administering the system. For example, user

“Joe” would have 2 principals in the database - joe@REALMand

joe/admin@REALM . The /admin principal would only be used when administering

the system, not for getting ticket-granting-tickets (TGTs) to access remote services.

Using the /admin principal only for administrative purposes minimizes the chance

of someone walking up to Joe’s unattended terminal and performing unauthorized

administrative commands on the KDC.

Kerberos principals may be differentiated by the “instance” part of their principal

name. In the case of user principals, the most common instance identifier is

/admin . It is standard practice in Kerberos to differentiate user principals by

defining some to be /admin instances and others to have no specific instance

identifier (e.g. joe/admin@REALM versus joe@REALM). Those with the /admin
instance identifier are assumed to have administrative privileges defined in the ACL

file and should only be used for administrative purposes. A principal with an

/admin identifier which does not match up with any entries in the ACL file will not

be granted any administrative privileges, it will be treated as a non-privileged user

principal. Also, user principals with the /admin identifier are given separate

passwords and separate permissions from the non-admin principal for the same

user.
Installing and Securing the Kerberos Servers 7

The following is a sample /etc/krb5/kadm5.acl file:

It is highly recommended that this file (kadm5.acl) be tightly controlled and that

users be granted only the privileges that they need to perform their assigned tasks

and nothing more.

Creating Host Keys

Creating host keys for systems in the realm such as slave KDCs is done the same

way that creating user principal’s is done. However, the -randkey option should

ALWAYS be used so that no one ever knows the actual key for the hosts. Host

principals are almost always stored in the keytab file to be used by root-owned

processes that wish to act as Kerberos services for the local host. It is rarely

necessary for anyone to actually know the password for a host principal since the

key is stored safely in the keytab and is only accessible by root-owned processes,

never by actual users.

The following is an example of creating a host key:

When creating keytab files, the keys should always be extracted from the KDC on

the same machine where the keytab is to reside using the ktadd command from a

kadmin session. If this is not feasible, then take great care in transferring the keytab
file from one machine to the next. A malicious attacker who posesses the contents of

the keytab file could use these keys from the file in order to gain access to another

user or service’s credentials. Having the keys would then allow the attacker to

#
Copyright (c) 1998, by Sun Microsystems, Inc.
All rights reserved.
#
#ident"@(#)kadm5.acl1.398/08/19 SMI"

joe/admin is given full administrative privilege
joe/admin@BLUEPRINTS.SUN.COM *

#
jane/admin user is allowed to query the database (d), listing
principals
(l), and changing user passwords (c)
#
jane/admin@BLUEPRINTS.SUN.COM dlc

kadmin: addprinc -randkey host/birdie.blueprints.sun.com
Principal "host/birdie.blueprints.sun.com@BLUEPRINTS.SUN.COM" created.
8 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

impersonate whatever principal that the key represented and further compromise

the security of that Kerberos realm. Some suggestions for transferring the keytab
are to use Kerberized, encrypted ftp transfers, or to use the secure file transfer

programs scp or sftp offered with the SSH package (http://www.openssh.org).

Another safe method is to place the keytab on a removable disk, and hand deliver

it to the destination.

Since hand delivery does not scale well for large installations, using the Kerberized

ftp daemon that comes with the Sun Enterprise Authentication Mechanism

software package is perhaps the most convenient and secure method available.

Synchronizing Clocks

All servers participating in the Kerberos realm need to have their system clocks

synchronized to within a configurable time limit (default 300 seconds). The safest,

most secure way to systematically synchronize the clocks on a network of Kerberos

servers is by using the Network Time Protocol (NTP) service. Solaris OE comes with

NTP client and NTP server software (SUNWntpu package). See the ntpdate (1M)

and xntpd (1M) man pages for more information on the individual commands. For

more information on configuring NTP, see the Sun BluePrints™ OnLine NTP articles

posted at:

“Using NTP to Control and Synchronize System Clocks - Part I: Introduction to NTP”
(July 2001)

http://www.sun.com/blueprints/0701/NTP.pdf

“Using NTP to Control and Synchronize System Clocks - Part II: Basic NTP
Administration and Architecture” (August 2001)

http://www.sun.com/blueprints/0801/NTPpt2.pdf

“Using NTP to Control and Synchronize System Clocks - Part III: NTP Monitoring and
Troubleshooting” (September 2001)

http://www.sun.com/blueprints/0901/NTPpt3.pdf

It is critical that the time be synchronized in a secure manner. A simple denial of

service attack on either a client or a server would involve just skewing the time on

that system to be outside of the configured clock skew value, which would then

prevent anyone from acquiring TGTs from that system or accessing Kerberized

services on that system. The default clock-skew value of 5 minutes is the maximum

recommended value.

The online (http://docs.sun.com) Sun Enterprise Authentication Mechanism

software 1.01 documentation has a very good section on synchronizing clocks using

NTP in Kerberos environments at:

http://docs.sun.com:80/ab2/coll.384.2/@Ab2CollView?Ab2Lang=C&Ab2Enc=iso-8859-1
Installing and Securing the Kerberos Servers 9

The NTP infrastructure must also be secured, including the use of server hardening

for the NTP server and application of NTP security features. Using the Solaris

Security Toolkit software (formerly known as JASS) with the secure.driver script

to create a minimal system and then installing just the necessary NTP software is

one such method. The Solaris Security Toolkit software is available at:

http://www.sun.com/security/jass/

Documentation on the Solaris Security Toolkit software is available at:

http://www.sun.com/security/blueprints

Establishing Password Policies

Kerberos allows the administrator to define password policies that may be applied

to some or all of the user principals in the realm. A password policy contains

definitions for the following parameters:

■ Minimum Password Length – The number of characters in the password, for which

the recommended value is 8.

■ Maximum Password Classes – The number of different character “classes” that must

be used to make up the password. Letters, numbers, and punctuation are the 3

classes and valid values are 1, 2, and 3. The recommended value is 2.

■ Saved Password History – The number of previous passwords that have been used

by the principal and cannot be reused. The recommended value is 3.

■ Minimum Password Lifetime (secs) – The minimum time that the password must be

used before it can be changed. The recommended value is 3600 (1 hour).

■ Maximum Password Lifetime (secs) – The maximum time that the password can be

used before it must be changed. The recommended value is 7776000 (90 days).

These values can be set as a group and stored as a single policy. Different policies

can be defined for different principals. It is recommended that the minimum

password length be set to at least 8 and that at least 2 classes be required. Since most

people tend to choose easy to remember, easy to type passwords, it is a good idea to

at least set up policies to encourage slightly more difficult to guess passwords

through the use of these parameters. Setting the Maximum Password Lifetime value

may be helpful in some environments to force people to change their passwords

periodically. The period is up to the local administrator according to the overriding

corporate security policy used at that particular site. Setting the Saved Password

History value combined with the Minimum Password Lifetime value, will prevent

people from simply switching their password several times until they get back to

their original or “favorite” password.

The maximum password length supported is 255 characters, unlike the UNIX

password database which only supports up to 8 characters. Passwords are stored in

the KDC encrypted database using the KDC default encryption method,
10 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

DES-CBC-CRC. In order to prevent password guessing attacks, it is recommended

that users choose long passwords or passphrases. The 255 character limit allows one

to choose a small sentence or easy to remember phrase instead of a simple 1-word

password.

Also, recall that it is possible to use a dictionary file that can be used to prevent

users from choosing common, easy to guess words (see the previous section on

configuring the KDC). The dictionary file is only used when a principal has a policy

association, so it is highly recommended that at least 1 policy be in affect for all

principals in the realm.

The following is an example password policy creation:

The above example created a password policy called goodpwds which enforces a

maximum password lifetime of 90 days, minimum length of 8 characters, a

minimum of 2 different character classes (letters, numbers, punctuation), and a

password history of 3.

To apply this policy to an existing user, modify the following:

usage : add_policy [options] policy
options are:

[-maxlife time] [-minlife time] [-minlength length]
[-minclasses number] [-history number]

kadmin : addpol -minlife "1 hour" -maxlife "90 days" -minlength 8
-minclasses 2 -history 3 goodpwds
kadmin : getpol goodpwds
Policy: goodpwds
Maximum password life: 7776000
Minimum password life: 3600
Minimum password length: 8
Minimum number of password character classes: 2
Number of old keys kept: 3
Reference count: 0

kadmin: modprinc -policy goodpwds joe
Principal "joe@BLUEPRINTS.SUN.COM" modified.
Installing and Securing the Kerberos Servers 11

To modify the default policy that is applied to all user principal’s in a REALM,

change the following:

The Reference count value indicates how many principals are configured to use

the policy.

Note – The “default” policy is automatically applied to all new principals that are

NOT given the same password as the principal name when they are created. Any

account with a policy assigned to it will also use the dictionary (defined in the

dict_file parameter in /etc/krb5/kdc.conf) to check for common passwords.

Hardening the KDCs

Since the KDC holds the database (usually) and the keys to access that database, it is

critical that the KDC system be secured and monitored closely. The techniques and

recommendations described in the Sun BluePrints OnLine article, “Solaris Operating
Environment Security™ - Updated for Solaris 8 Operating Environment” (April 2001)

located at http://www.sun.com/blueprints/0401/security-updt1.pdf ,
should be studied and applied to the KDC wherever applicable In addition, the

documentation for Sun Enterprise Authentication Mechanism software installation

at docs.sun.com has a section on Increasing Security that should be read and

applied. It is best to only allow secure shells such as SSH

(http://www.openssh.org) or Kerberized telnet access with privacy

protection.

Users accessing the system with Kerberized telnet clients must use the option to

enable encryption of the telnet session traffic to further protect the privacy of the

session. If console access is not a practical solution for administrators to use for

accessing the system to do KDC troubleshooting, Secure Shell (SSH) access should

be considered as a safe way to access the KDC remotely. Non-encrypted remote

kadmin: modpol -maxlife "90 days" -minlife "1 hour" -minlength 8
-minclasses 2 -history 3 default
kadmin: getpol default
Policy: default
Maximum password life: 7776000
Minimum password life: 3600
Minimum password length: 8
Minimum number of password character classes: 2
Number of old keys kept: 3
Reference count: 1
12 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

access over the network to the KDC MUST BE avoided at all costs, because this

would expose all passwords used to network sniffer attacks and could thus

compromise the entire KDC.

Below is output from a system installed using the Solaris Security Toolkit software

(JASS) secure.driver script and running a KDC and Kerberos Administration

server. This system also uses SSH for secure network access to administer the KDC.

This output indicates that the KDC is only offering service to the necessary Kerberos

ports (88 - kerberos, 749 - kerberos-adm) along with the SSH service on port 22.

Port 88 and 750 are both used by the Kerberos KDC. Port 750 is provided for

backwards compatibility with older clients. Port 88 is the new, standard, default

KDC port (see http://www.iana.org/assignments/port-numbers).

If the host is also configured to allow Kerberized log in and telnet sessions then

the output may also contain these lines:

UDP: IPv4
Local Address Remote Address State

-------------------- -------------------- -------
*.kerberos Idle
*.750 Idle
. Unbound

TCP: IPv4
Local Address Remote Address Swind Send-Q Rwind Recv-Q State
------------- -------------- ----- ------ ----- ------ -------

. *.* 0 0 24576 0 IDLE
*.22 *.* 0 0 24576 0 LISTEN
*.22 *.* 0 0 24576 0 LISTEN
*.kerberos-adm *.* 0 0 24576 0 LISTEN
. *.* 0 0 24576 0 IDLE

Active UNIX domain sockets
Address Type Vnode Conn Local Addr Remote Addr
30000969dd8 stream-ord 3000096f320 00000000 /var/spool/prngd/pool

*.eklogin *.* 0 0 24576 0 LISTEN
*.telnet *.* 0 0 24576 0 LISTEN
Installing and Securing the Kerberos Servers 13

It is not likely that an ftp daemon should be necessary on a KDC system, except in

the case where keytab files are being transferred between the master KDC and a

slave. In this situation, the Kerberized ftp daemon is recommended and users

should be sure to use the encryption option to ensure the privacy of the transfer.

Information on configuring the inetd.conf file for these services is in the online

Sun Enterprise Authentication Mechanism software documentation in the How to
Restrict Access to the KDC section at:

http://docs.sun.com:80/ab2/coll.384.2@Ab2CollView?Ab2Lang=C&Ab2Enc=iso-8859-1

The following is a minimal KDC inetd.conf file:

#
Kerberos V5 Warning Message Daemon (optional)
#
100134/1 tli rpc/ticotsord wait root /usr/lib/krb5/ktkt_warnd ktkt_warnd

#
GSS Daemon
(only needed if sharing kerberos-protected NFS mounts)
100234/1 tli rpc/ticotsord wait root /usr/lib/gss/gssd gssd

#
Kerberized login daemon
-k = allow kerberos authentication
-e = force encrypted sessions
-c = Require Kerberos V5 clients to present a cryptographic
checksum of initial connection information like the
name of the user that the client is trying to access in
the initial authenticator.
#
eklogin stream tcp nowait root /usr/krb5/lib/rlogind rlogind -k -c -e

#
Simple Kerberos authenticated login (no encryption)
- less secure the ’eklogin’
- uncomment to enable.
#
#klogin stream tcp nowait root /usr/krb5/lib/rlogind rlogind -k -c

#
Kerberized telnet daemon
-a user = Only allow connections when remote user can provide valid
Kerberos authentication information to identify the user and
is allowed access to account without providing password.
In some situations it is good to allow non-kerberized
access for situations where the KDC is unreachable or
unavailable for some reason.
#
telnet stream tcp nowait root /usr/krb5/lib/telnetd telnetd -a user

#
Set up the daemon for propogating the Kerberos database
Uncomment this ONLY if there are slave KDCs for the domain(s)
served by the local KDC.
#krb5_prop stream tcp nowait root /usr/krb5/lib/kpropd kpropd
14 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

The previous example allows only Kerberos authenticated telnet sessions or

Kerberos protected rlogin sessions (with encryption) for remote access. The

ktkt_kwarnd and gssd services are also allowed. ktkt_kwarnd is used to send

out alerts to users when their credentials are about to expire. gssd is a user mode

daemon that operates between the kernel rpc and the Generic Security Service

Application Program Interface (GSS-API) to generate and validate GSS-API security

tokens. gssd is needed when Kerberos protected NFS disks are being mounted or

shared (see NFS section below). If Kerberos is not used for NFS mounts, then the

gssd service may be removed from the /etc/inetd.conf file.

We strongly recommend that hosts have an empty /etc/hosts.equiv file and that

there not be a .rhosts file in root’s home directory. Kerberos-authenticated root

access may be granted to specific Kerberos principals by placing those principals in

the file .k5login in root’s home directory. This is useful to allow a non-root

principal from another system to log in to the local system as root without providing

the root principal’s password (as long as the remote user has valid Kerberos

credentials). This is a dangerous feature that should be used sparingly and only if

absolutely necessary. Allowing anyone to access the root account without any

authentication on the local system is dangerous. Anyone with a principal in the root

user’s .k5login file becomes a potential target for attack. Guessable passwords,

unexpired local tickets, unattended terminals, letting someone else” borrow” a shell

for a minute (and other social engineering attacks) could all be used to subvert the

remote account in order to gain easy root access to the actual target system.

The .k5login file may be used by any user who wishes to grant access to their

account to another user with valid credentials. This can be both useful and

dangerous depending on the situation. It is useful because it allows a user to grant

access to his own account without giving away the password; however, it leaves that

account vulnerable to attack by anyone who can gain access to the accounts that are

being granted access. For example, suppose Joe has an entry for Jane in his

.k5login file, and Jane authenticates and gets a valid TGT and then leaves her

terminal for a while. Anyone who has access to Jane’s terminal can then log into

Joe’s account without authenticating as either user because Jane left her terminal

with valid credentials still cached, and Joe trusts Jane implicitly by granting her

access to his account by leaving an entry in his .k5login file. Using the .k5login
file should be discouraged if at all possible.

Finally, disks on the KDC must not be exported, especially the ones which contain

the Kerberos database, stash file, or keytab file. All of these items should be kept

locally and should only be readable by root.

Brief Summary of Securing Kerberos Servers

1. Remove unnecessary services from the /etc/inetd.conf file.

2. Remove the /etc/hosts.equiv file.
Installing and Securing the Kerberos Servers 15

3. Monitor any root owned .k5login files carefully (remove them if possible).

4. Do not export disks containing the KDC database, ACL file, or stash file.

Backing Up a KDC

Backups of a KDC system should be made regularly or according to local policy.

However, backups should exclude the /etc/krb5/krb5.keytab file. If the local

policy requires that backups be done over a network, then these backups should be

secured either through the use of encryption or possibly by utilizing a separate

network interface that is only used for backup purposes and is not exposed to the

same traffic as the non-backup network traffic. Backup storage media should always

be kept in a secure, fireproof location.

Monitor the KDC

Once the KDC is configured and running, it should be continually and vigilantly

monitored. The Solaris Fingerprint Database (sfpDB) is a good starting point for

monitoring the files on a system. Refer to the Sun BluePrints OnLine article, “The
Solaris™ Fingerprint Database: A Security Tool for Solaris Operating Environment Files”
(May 2001) located at http://www.sun.com/blueprints/0501/
Fingerprint.pdf for more information on the sfpDB . Other tools such as tripwire
(http://tripwire.com) and swatch (http://oit.ucsb.edu/~eta/swatch)

can be used to monitor changes in the filesystem and in the log files. The logcheck
utility (http://psionic.com/abacus/logcheck) is also a good tool for

monitoring activity logged on your system. The Sun Enterprise Authentication

Mechanism software KDC logs information into the /var/krb5/kdc.log file, but

this location can be modified in the /etc/krb5/krb5.conf file, in the logging
section. By default, the /etc/krb5/krb5.conf file is defined as follows:

The KDC log file should have read/write permissions for the root user only, as

follows:

[logging]
default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log

-rw------ 1 root other 75025 May 30 17:55 /var/krb5/kdc.log
16 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

Securing Client Systems

Many of the principals used to secure the KDCs can be applied to securing the hosts

on the network that will be members of the Kerberos realm. Host-based security

modifications should be applied to all systems in the Kerberos realm to further

enhance the overall security of the network. Following the instructions mentioned in

the Sun BluePrints OnLine, Solaris Security Toolkit software (formerly referred to as

JASS) articles, is an excellent way to ensure that all of the systems are sufficiently

hardened in a uniform matter. Disallowing remote access to any non-secure protocol

is recommended here as it is for the KDC. This is important for protecting the

sensitive keytab files that may be present on the client.

Authentication with PAM and Kerberos

The Solaris OE ships with a Kerberos V5 module for PAM that can be used by both

Kerberized and non-Kerberized applications (e.g. CDE) for authentication, account,

session, and password management. When using the PAM-KRB5module with the

Kerberized daemons such as ktelnetd , krshd , or krlogind , the acceptor option

should be used. This prevents the PAM module from obtaining the initial TGT. The

Kerberized daemon will automatically perform this step upon successful

authentication.

When using the PAM-KRB5module for non-Kerberized applications such as the

normal telnetd or rlogind , the try_first_pass option can be used to only

request authentication using the first password that the user provides, regardless of

the PAM module being used. Thus, if the PAM modules are stacked so that

PAM-KRB5is used before PAM-UNIX, the same password would be tried for both

modules instead of prompting the user for a new one for each module. It is

important to note that using non-Kerberized applications with the PAM_KRB5
module will expose the users password to network snooping attacks because the

password is still passed over the wire in the clear. The password is only protected on

the network when the client has valid credentials (e.g., a TGT) locally before

attempting to authenticate to a remote server which supports Kerberos for

authentication. In that situation, only the protected Kerberos credentials are passed

over the wire, not the clear text password itself.

In a Kerberized network environment, it is recommended that Kerberos

authentication be tested before reverting back to UNIX system passwd/shadow

authentication. This helps facilitate a single-signon environment; in addition, once a

user is authenticated by PAM-KRB5, or by the Kerberized network daemon, that user

automatically has a TGT that can then be used to access other network applications

without re-entering a password (see pam_krb5 (5) man page).
Securing Client Systems 17

It is also recommended to configure systems to use the Kerberized telnet client

(/usr/krb5/lib/telnetd) instead of the normal default telnet daemon

(/usr/sbin/in.telnetd). The Kerberized telnet daemon uses Kerberos

authentication as its primary authentication method and also supports having

encrypted sessions.

The following is an example of the /etc/pam.conf file Kerberos entries:

The Kerberized telnetd automatically uses Kerberos authentication, so it is not

necessary to have a PAM_KRB5module in the stack. With the acceptor option, the

PAM_KRB5module will not prompt for the password if the user has already

successfully authenticated or has a valid TGT. Stacking in this manner allows the

PAM_UNIXmodule to be used ONLY when the PAM_KRB5authentication fails. To

allow access in the event that the KDC is not available or cannot be reached from the

client system for some reason, having the PAM_UNIXmodule included as an optional

authentication method is a good idea. This will allow users with a local account to

use their UNIX system password to gain access if all else fails. This fallback PAM

module should only be uncommented if this is absolutely necessary.

The following is an example of the PAM_UNIXand PAM_KRB5entries in the

/etc/pam.conf file:

The previous example indicates that the standard telnetd is to try to use

PAM_KRB5to authenticate the user and if that fails, revert to standard UNIX system

authentication. The try_first_pass option could be used with the PAM_KRB5
module to force the same password to be used for both mechanisms. Again, stacking

the PAM_UNIXmodule after the PAM_KRB5module is only desirable if absolutely

necessary as a fallback in case of problems with the Kerberos configuration.

Note – The Kerberos ftp daemon does not use PAM for authentication.

ktelnet auth sufficient /usr/lib/security/$ISA/pam_krb5.so.1 acceptor
ktelnet auth optional /usr/lib/security/$ISA/pam_unix.so.1

telnet auth sufficient /usr/lib/security/$ISA/pam_krb5.so.1
telnet auth required /usr/lib/security/$ISA/pam_unix.so.1
18 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

Kerberos Options

The /etc/krb5/krb5.conf file contains information that all Kerberos applications

use to determine what server to talk to and what realm they are participating in.

Configuring the krb5.conf file is covered in the Sun Enterprise Authentication

Mechanism software installation guide.

The appdefaults section in the krb5.conf file contains parameters that control

the behavior of many Kerberos client tools. Each tool may have its own section in

either the appdefaults section of the krb5.conf file.

Many of the applications that use the appdefaults section, use the same options;

however, they may be set in different ways for each client application. This section

provides a list of the most common appdefault parameters and how they affect

the Kerberos applications.

Common Options Affecting Kerberos Client

Applications

The following options may be used in the specific client sections of all the supported

client applications. Their meaning is the same with each application, and thus is

described here rather than repeated in each client-specific section below.

■ renewable [true/false] – Renew the TGT as long as it has not expired. true
indicates that tickets created will be renewable by the user. Renewing a ticket

simply extends the life of the ticket by the maximum ticket lifetime allowed for

that system. The max_life value is defined and enforced by the KDC itself and

is a parameter in the /etc/krb5/kdc.conf file on the KDC. Tickets are renewed

by using the kinit client with the -R option, a password is not required to renew

a ticket as long as it remains valid and within the max_renewable_life time

period.

■ forwardable [true/false] – Issue forwardable TGTs to users. If true is set,

the local TGT is forwarded to other Kerberized network services on the network

and used to access additional Kerberos services without reauthenticating.

■ forward [true/false] – Forward a copy of the users credentials (TGT) to the

remote server after authenticating. The forwarded credentials cannot be

forwarded beyond the remote server. This differs from the forwardable option

above because the local credentials are only usable on the remote server, beyond

that point, they are non-forwardable.

■ encrypt [true/false] – Encrypt all traffic between the client and the remote

server.
Kerberos Options 19

Kerberos Client Applications

The following Kerberos applications may have their behavior modified through the

user of options set in the appdefaults section of the /etc/krb5/krb5.conf file

or by using various command line arguments. These clients and their configuration

settings are described below.

kinit

The kinit client is used by people who want to obtain a TGT from the KDC. The

/etc/krb5/krb5.conf file supports the following kinit options: renewable ,

forwardable , and proxiable .

■ proxiable [true/false] – kinit may request that the KDC issue a ticket

that may be used by the remote service to perform a remote request on the users

behalf. An example of this is that a print service client can give the print server a

proxy to access the client’s files on a particular file server in order to satisfy a

print request.

telnet

The Kerberos telnet client has many command line arguments that control its

behavior, refer to the man page for complete information. However, there are several

interesting security issues involving the Kerberized telnet client.

The telnet client will use a session key even after the service ticket which it was

derived from has expired. This means that the telnet session remains active even

after the ticket originally used to gain access, is no longer valid. This is insecure in a

strict environment, however, the tradeoff between ease-of-use and strict security

tends to lean in favor of ease-of-use in this situation. It is recommended that the

telnet connection be re-initialized periodically by disconnecting and reconnecting

with a new ticket. The overall lifetime of a ticket is defined by the KDC

(/etc/krb5/kdc.conf), normally defined to be 8 hours.

The telnet client allows the user to forward a copy of the credentials (TGT) used to

authenticate to the remote system using the -f and -F command line options. The

-f option sends a non-forwardable copy of the local TGT to the remote system so

that the user may access Kerberized NFS mounts or other local Kerberized services

on that system only. The -F option sends a forwardable TGT to the remote system so

that the TGT could be used from the remote system to gain further access to other

remote Kerberos services beyond that point. -F is a superset of -f . If the

Forwardable and/or forward options are set to false in the krb5.conf file,

these command line arguments may be used to override those settings, thus giving

individuals the control over whether and how their credentials are forwarded.
20 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

The -x option should be used to turn on encryption for the data stream. This will

further protect the session from eavesdroppers. If the telnet server does not

support encryption, the session will be closed. The /etc/krb5/krb5.conf file

supports the following telnet options: forward , forwardable , encrypt , and

autologin .

■ autologin [true/false] – This parameter tells the client to try and attempt to

log in without prompting the user for a user name. The local user name is passed

on to the remote system in the telnet negotiations.

rlogin /rsh

The Kerberos rlogin and rsh clients behave much the same as their non-

Kerberized equivalents. Because of this, it is recommended that—if they are required

to be included in the network—files such as /etc/hosts.equiv and .rhosts in

the root user’s directory be removed. The Kerberized versions have the added

benefit of using Kerberos protocol for authentication and can also use Kerberos to

protect the privacy of the session using encryption.

Similar to telnet described previously, these clients will use a session key after the

service ticket which it was derived from has expired. Thus for maximum security,

the rlogin /rsh session should be re-initialized periodically. rlogin also uses the

-f , -F , and -x options in the same fashion as the telnet client. The

/etc/krb5/krb5.conf file supports the following rlogin options: forward ,

forwardable , and encrypt .

Command line options override configuration file settings. For example, if the rsh
section in the krb5.conf file indicates encrypt false , but the -x option was

used on the command line, an encrypted session will be used.

rcp

Kerberized rcp can be used to transfer files securely between systems using

Kerberos authentication and encryption (with the -x command line option). It does

not prompt for passwords, the user must already have a valid TGT before using rcp
if they wish to use the encryption feature. However, beware if the -x option is not

used and no local credentials are available, the rcp session will revert to the

standard, non-Kerberized (and insecure) rcp behavior. It is highly recommended

that users always use the -x option when using the Kerberized rcp client.The

/etc/krb5/krb5.conf file supports the encrypt [true/false] option.
Kerberos Options 21

login

The Kerberos login program (login.krb5) is forked from a successful

authentication by the Kerberized telnet daemon or the Kerberized rlogin
daemon. Note that this Kerberos login daemon is separate from the standard

Solaris OE login daemon and thus, the standard Solaris OE features such as BSM

auditing are not yet supported when using this daemon. The

/etc/krb5/krb5.conf file supports the krb5_get_tickets [true/false]
option.

If this option is set to true , then the login program will generate a new Kerberos

ticket (TGT) for the user upon proper authentication.

ftp

The SEAM version of the ftp client uses the GSSAPI [RFC 2743] with Kerberos V5

as the default mechanism. This means that it uses Kerberos authentication and

(optionally) encryption through the Kerberos V5 GSS mechanism. The only

Kerberos-related command line options are -f and -m. The -f option is the same as

described above for telnet (there is no need for a -F option). -m allows the user to

specify an alternative GSS mechanism if so desired, the default is to use the

kerberos_v5 mechanism.

The protection level used for the data transfer can be set using the protect
command at the ftp prompt. Sun Enterprise Authentication Mechanism software

ftp supports the following protection levels:

■ clear – unprotected, unencrypted transmission

■ safe – data is integrity protected using cryptographic checksums

■ private – data is transmitted with confidentiality and integrity using encryption

The following is an example of the private protection level:

It is recommended that users set the protection level to private for all data transfers.

The ftp client program does not support or reference the krb5.conf file to find

any optional parameters. All ftp client options are passed on the command line. See

the man page for the Kerberized ftp client, ftp (1).

ftp> protect private
200 Protection level set to Private.
22 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

The following is an example of the appdefaults section in the

/etc/krb5/krb5.conf file:

Kerberos Remote Application Server Behavior

Kerberized remote application servers such as telnetd , ftpd , rlogind , and rshd
also have command line arguments that govern their behavior. Below is an

abbreviated list of the arguments that they support which relate directly to their

security.

[appdefaults]
kinit = {

renewable = true
forwardable= true
proxiable = false

}
rlogin = {

renewable = true
forwardable= true
encrypt = true

}
rsh = {

renewable = true
forwardable= true
encrypt = true

}
rcp = {

encrypt = true
}
telnet = {

autologin = true
renewable = true
forwardable= true

}
login = {

krb5_get_tickets = true
}

Kerberos Options 23

telnetd
■ -a [authmode]

Where authmode can be one of the following options: debug , user ,

valid , other , none , or off —which are described as follows:

■ debug

Turns on authentication debugging code.

■ user

Only allow connections when the remote user can provide valid authentication

information to identify the remote user, and is allowed access to the specified

account without providing a password. This is the recommended setting as it

forces the user to present valid kerberos credentials and does not involve

having the user enter a password that would pass over the network in the

clear.

■ valid

Only allow connections when the remote user can provide valid authentication

information to identify the remote user. The login (1) command will provide

any additional user verification needed if the remote user is not allowed

automatic access to the specified account.

■ other

The same as specifying valid (above).

■ none

DEFAULT state—authentication information is not required. If none is

presented, the login (1) program will provide the necessary authentication.

■ off

This disables the authentication code. All authentication is then handled

through the PAM framework.

■ -X [authtype]

This argument disables the use of the indicated authtype .
24 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

rlogind

The Kerberized remote login daemon that services rlogin requests.

The following security related options are supported. For a full list of command line

arguments, see the man page, rlogin (1M).

■ -k , -5 (REQUIRED)

Allow Kerberos authentication (version 5). In Sun Enterprise Authentication

Mechanism software, this is the only authentication mode supported so one of

these two options must be used.

■ -e , -E , -x , -X (RECOMMENDED)

Create an encrypted session. Note that all of these options have the same effect, so

the user should only choose one.

■ -c (RECOMMENDED)

Require Kerberos clients to present a cryptographic checksum of the initial

connection information. This provides extra security by preventing an attacker

from changing the initial connection information.

■ -i

Ignore authenticator checksums.

■ -p

Prompt for password if any authentication check fails.

■ -P

Prompt for password regardless of authentication check.

ftpd

ftpd is the Kerberized FTP daemon. It should be noted that this daemon is

Kerberized through the use of the GSSAPI interface. The Kerberos GSSAPI

mechanism is then used to perform authentication and privacy support if requested

by the client.

■ -a

Only permit anonymous or Kerberos authenticated connections. One can set this

behavior by either providing the -a option on the command line of

/usr/krb5/lib/ftpd , or by inserting a line of the form, AUTH=1, into the

/etc/default/ftpd file.
Kerberos Options 25

Other Kerberos Services

This section discusses the NFS security services offered with Kerberos.

NFS

Solaris OE offers the ability to share filesystems over NFS with optional security

modes (see nfssec (5) man page). Without the Sun Enterprise Authentication

Mechanism software package, the only security mode available is Diffie-Helmen

(sec=dh in the nfssec.conf file). This is sometimes known as “SecureNFS.” The

Solaris 8 OE with the Sun Enterprise Authentication Mechanism software Kerberos

package provides additional security modes for disks shared using the NFS protocol.

The level of security provided may be configured by the exporting server through

the use of the sec= option (see share (1M) man page). The three levels of Kerberos

protection provided are:

■ krb5 – Kerberos authentication

■ krb5i – Kerberos authentication with integrity

■ krb5p – Kerberos authentication with integrity and privacy

krb5p is the most secure because it not only authenticates and ensures the integrity

of the share, but also encrypts all the NFS data between the client and server. krb5i
authenticates the user and verifies the integrity of the packets with cryptographic

checksums (MD5), but does not encrypt the actual data. krb5 simply authenticates

the user by verifying that the user has a valid TGT before allowing access to the NFS

share.

The Sun Enterprise Authentication Mechanism software guide at

http: //docs.sun.com , mentions that the root principal may be added to the local

keytab file in order to make mounting the Kerberized, NFS file systems possible on

client systems. This makes it easier for users to mount these file systems without

having to know the root principal’s password (which should NOT be the same as the

system root user password). However, if the automount daemon is being used to

control NFS mounts, it is safer to not have the root principal in the client system

keytab file. Users will then be forced to have valid credentials for their own

principal in order to access the Kerberized NFS mounted disks instead of using the

root principal credentials in the keytab file. Having root in the keytab is also a

slight security risk as it could possibly be compromised, thus granting the attacker

access to the root principal. In theory, a root principal is no more privileged than a

non-root principal from the KDC’s point of view; however, quite often the root
26 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

principal is directly associated with the actual root user on the system and should

thus be afforded higher protection than normal principals. TABLE 1 lists an example

of NFS mounting options.

The following is a sample configuration file (/etc/dfs/dfstab) for exporting disks

with Kerberos protection:

Note that multiple security modes may be specified for a particular disk, so that

clients who do not want full protection can choose one of the other modes, by using

the following command:

The first mode listed is the default, but if a client requests one of the other modes, it

will be allowed.

The automount program can also be configured to automatically mount disks with

Kerberos protection. The following is an example entry from the

/etc/auto _master file:

On the NFS client system, the user performing the mount operation must have a

valid TGT in order to mount the Kerberos protected disk. It is recommended that the

automount daemon [man page - automount (1M)] be used for mounting of

Kerberos protected disks because it will allow any individual user with a valid TGT

to mount or read a Kerberos protected share. The alternative is to have remote disks

mounted by the root user, but this requires the root user to have a valid TGT. The

root user can get a TGT by requesting one as itself (i.e., with a root principal in the

database, run kinit while logged in as root) or as another user (i.e., kinit

TABLE 1 NFS Mounting Options

NFS Mounting Options Comments

direct ‘mount’ command Must have ‘root’ privilege to execute this command

automount Users must have valid Kerberos credentials in order to

access automounted shares which have Kerberos

protection

share -F nfs -o sec=krb5p -d "KRB5 protected share" /export/krb5

share -F nfs -o sec=krb5p:krb5i:krb5 -d "KRB5 protected share" /export/krb5

/home auto_home -nosuid,sec=krb5p
Other Kerberos Services 27

someuser while logged in as root) and use that TGT for the mount command. Once

a Kerberos protected share is mounted by root, only users with valid TGTs will have

access to that space.

The recommended method is to configure the automount program to do all mounts

that users will need. Only users with valid TGTs will be able to access the protected

mounts.

Summary

Adding Kerberos to a network can increase the overall security available to the users

and administrators of that network. Remote sessions can be securely authenticated

and encrypted, shared disks can be secured and encrypted across the network. In

addition, Kerberos allows the database of user and service principals to be managed

securely from any machine which supports the Sun Enterprise Authentication

Mechanism software Kerberos protocol. SEAM is interoperable with other RFC 1510

compliant Kerberos implementations such as MIT Krb5 and some MS Windows

2000 Active Directory services. Adopting the practices recommended in this article

will further secure the Sun Enterprise Authentication Mechanism software

infrastructure to help ensure a safer network environment.

References
■ Sun BluePrints OnLine Security Articles

http://www.sun.com/security/blueprints/

■ Solaris Security Toolkit (JASS)

http://www.sun.com/security/jass

■ Sun Security Products & Solutions,

http://www.sun.com/security

■ Sun Enterprise Authentication Mechanism information,

http://www.sun.com/software/solaris/ds/ds-seam

■ SEAM Documentation

http://docs.sun.com:80/ab2/coll.384.2/
@Ab2CollView?Ab2Lang=C&Ab2Enc=iso-8859-1

■ MIT Kerberos Home Page
28 Kerberos Network Security in the Solaris™ Operating Environment • October 2001

http://web.mit.edu/kerberos/www/

■ Lance Spitzner’s Hardening Solaris Guide

http://www.enteract.com/~lspitz/armoring.html

■ Tripwire

http://www.tripwire.com

■ SWATCH

http://www.oit.ucsb.edu/~eta/swatch

■ Logcheck

http://www.psionic.com/abacus/logcheck

■ OpenSSH

http://www.openssh.org

Author’s Bio: Wyllys Ingersol

The author has worked in the network security field for over 6 years. Since joining Sun in 2000, he has
worked in the network security group developing Kerberos software for Solaris. Prior to joining Sun he
worked as a developer on a commercial firewall product used by many Fortune 100 companies including
banks, financial service institutions, and engineering consulting companies.
Author’s Bio: Wyllys Ingersol 29

	Kerberos Network Security in the Solaris™ Operating Environment
	By Wyllys Ingersoll - SOE Network Security
	Sun BluePrints™ OnLine - October 2001
	Kerberos Network Security in the Solaris™ Operating Environment

	Obtaining Kerberos Software
	Adding Encryption Support Modules

	Installing and Securing the Kerberos Servers
	Secure Settings in the KDC Configuration File
	Access Control
	Adding Administrators
	Creating Host Keys
	Synchronizing Clocks
	Establishing Password Policies
	Hardening the KDCs
	Brief Summary of Securing Kerberos Servers

	Backing Up a KDC
	Monitor the KDC

	Securing Client Systems
	Authentication with PAM and Kerberos

	Kerberos Options
	Common Options Affecting Kerberos Client Applications
	Kerberos Client Applications
	kinit
	telnet
	rlogin/rsh
	rcp
	login
	ftp
	Kerberos Remote Application Server Behavior
	telnetd
	rlogind
	ftpd

	Other Kerberos Services
	NFS
	TABLE�1 NFS Mounting Options

	Summary
	References
	Author’s Bio: Wyllys Ingersol

