
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
(650) 960-1300

http://www.sun.com/blueprints

Performance Forensics

Bob Sneed—SMI Performance and Availability
Engineering (PAE)

Sun BluePrints™ OnLine—December 2003

Part No. 817-4444-10
Revision 06, 12/9/03
Edition: December 2003



Please
Recycle

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, SunDocs, Sun Explorer, SunSolve Online, Java, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the US and other countries. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the Far and its supplements.

Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries. Mozilla is
a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, SunDocs, Sun Explorer, SunSolve Online, Java, et Solaris sont des marques de fabrique ou
des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

Netscape est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres pays. Mozilla est une marque de Netscape
Communications Corporation aux Etats-Unis et à d'autres pays.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.



Performance Forensics 1

Performance Forensics

The health care industry has well-established protocols for the triage, diagnosis, and
treatment of patient complaints, while resolution of system performance complaints
often seems to take a path that lacks any recognizable process or discipline.

This article draws from lessons and concepts of health care delivery to present ideas
for addressing system performance complaints with predictable and accurate results.
Specific tools from the Solaris™ Operating System (Solaris OS) are discussed.

Introduction
The treatment of illness and relief of discomfort has a wide and historic body of
knowledge and practice. We call those who are skilled in applying such knowledge
and practices doctors, and we trust them with our lives. In computer performance
analysis, the knowledge base is younger, and the practice less developed. We call
performance experts gurus, and we trust them with our computer systems.

How do gurus do what they do? It is not just a matter of expertise in using tools or
being very smart. It is mostly that they think and work very much like doctors.
Doctors share common elements of philosophy, education, experience1, and
established methods of problem solving. Modern medical practices ensure that
patients and caregivers know their roles, and it proceeds according to relatively
well-known processes and protocols. Analogies relating to medicine can provide a
familiar framework and perspective for both patients and caregivers in resolving
computer-performance issues and optimizing business computing objectives.

This article uses liberal doses of medical terminology and analogies as a means of
discussing a variety of performance analysis topics. The first sections of this article
are philosophical in nature, discussing some analogues between medicine and

1. Experience is the “Knowledge one possesses just after it was first needed.” (Anon)



2 Performance Forensics • December 2003

computer-performance analysis. Subsequent sections present practical information
on applying these analogies with tools and techniques for performance
troubleshooting and optimization in the Solaris OS environment.

Performance and Disease
Conspicuously broken bones are among the least challenging of medical problems
from a diagnostic perspective. Similarly, component failures in computer systems do
not usually present great diagnostic challenges. Clear markers from routine tests can
sometimes reveal disease (for example, high blood pressure and high cholesterol),
even though the patient has no current complaint. Similarly, good configuration
management and capacity-planning practices can prevent complaints from arising
with computer system performance complaints.

A bigger challenge for doctors is when the patient complaint is simply “I don’t feel
well,” which is analogous to computer-user complaints of a system being “too slow.”
In either case, the underlying problem could range from grave to trivial or could
even be psychosomatic. A disciplined approach and a wide breadth of knowledge
are particularly valuable for getting to the root of the problem.

For medical complaints, the top diagnostic priority is to exclude potentially lethal or
dangerous conditions. Events such as crashes, hangs, or other disruptive events
correlate with the medical notion of lethality. Past that, medical diagnostic processes
proceed in a predictable way, leading to a diagnosis and a treatment plan. Given that
the elements of computer systems are far less complex and diverse than those found
in the human body, there is no reason to believe that practices in troubleshooting
computer systems cannot match or exceed those found in medicine—without
requiring multiple millennia to mature.

Performance Forensics
The term forensics means “The science and practice of collection, analysis, and
presentation of information relating to a crime in a manner suitable for use in a court
of law.” Ultimate resolution of a performance issue2 can involve tuning, bug fixing,
upgrading, product enhancement, or re-architecting the entire solution, but first,
there needs to be a working diagnosis. The analytical process of diagnosis can
resemble the process by which medical scientists and detectives explore the
evidence, looking for clues.

2. A crime in this context.



Performance Forensics 3

When an issue is diagnosed for which there is no ready workaround or patch, the
process of getting it repaired can require nothing less than proving the case,
rigorously as one would in a court of law. Even the task of attributing the problem to
a specific vendor or component can require rigorous methodology.

In thinking about where to start in the quest for improved process and efficiency in
resolving performance issues, the place to start and end is clear: business
requirements.

Business Requirements
Complex systems can produce a veritable flood of performance-related data.
Systems administrators are naturally compelled to pore over these reams of data
looking to find something wrong or to discover opportunities for tuning or for
process improvement. All too often, the actual business performance metrics of the
system are not formally included in the data, and not included in the process.

While subsystem tuning often leads to improved business throughput, it can
occasionally backfire. For example, if improving the efficiency of one part of a
system increases the burden on some other part of the system to the point where it
becomes unstable, chaotic behavior can occur, possibly cascading through the entire
system.

The best measure of any system change is its impact on business requirements;
therefore, the principle objective of all tuning should be viewed in terms of business
requirements. Business requirements may be expressed in terms of service level
agreements (SLAs) or critical-to-quality3 (CTQ) measures. SLAs and CTQs may
comprise the substance of contractual agreements that feature penalties for
non-conformance.

For the performance analyst, it is adequate to view business requirements in three
principle categories:

■ Performance

Performance involves the primary metrics of how well a system is doing its job
(for example, transactions per unit time, time per transaction, or time required to
complete a specific set of tasks).

3. The term “critical-to-quality” is part of the Six Sigma techniques, which were developed primarily by
General Electric.



4 Performance Forensics • December 2003

■ Predictability

It is not enough for an average response time to be sub-second if there are too
many outliers or if outliers are long enough to result in complaints of
user-perceived outages. Long-running tasks are often required to predictably
complete in their prescribed operational “window”.

■ Price

Given an unlimited budget for time, equipment, and people, most business goals
can be met4. Computer systems make good business sense only when they deliver
the expected business value within budgets.

These three factors correlate directly with the famous engineering axiom: “Good,
Reliable, Cheap—pick any two.” Additional business metrics of headroom and
availability are often cited, but these are actually only variants of these three principle
business metrics.

Headroom is the concept of having some extra performance capacity to provide
confidence that a system’s performance will remain adequate throughout its
intended design life. Business management must have confidence not only that a
system will do what it was designed to do, but also that it will be able to
accommodate forecasted business growth. In addition, systems must not grossly
malfunction when driven beyond their nominal design point. Encountering the need
for unbudgeted upgrades is bad. Headroom is rarely indicated with any accuracy by
simple metrics such as “percent idle CPU”. The most effective means of assessing
headroom is by test-to-scale and test-to-fail techniques.

Availability issues can be viewed as either performance or predictability issues,
where performance drops to zero. Availability can also encompass performance
issues such as cluster failover or reboot time.

In practice, making the right tradeoffs in these categories is the key to business
success. Optimizing non-business metrics is not necessarily folly, but it can be
wasteful to optimize factors that produce no gains in business terms5.

Medical Analogues
It would be easy to dwell too long on colorful analogies between medicine and
performance analysis, so we will try to be brief here. For some of the medical terms
given here, only the medical image is discussed, leaving the reader to relate the
principle to prevailing practices in performance analysis.

4. Business goals are sometimes laid out, but sometimes unattainable due to constraints of physics, such as the
speed of light.

5. In the contemporary mythology of “Star Trek,” the otherwise loathsome Ferengi aliens regard it as high crime
to “engage in unprofitable pursuits.”



Performance Forensics 5

Philosophy
Medical doctors usually subscribe to some variant of the Hippocratic Oath. It can be
a very quick and worthwhile exercise to look up the oath on the Internet and give it
a full reading. Upon reading the oath, most will be happy that doctors are guided by
it, and many may wish for similar disciplines to spread to other fields.

Process and Protocol
From the writings of Hippocrates (around 400 BCE), it is clear that the distinct topics
of medical practice and medical science have had a very long time to mature.

Modern doctors are subject to an enormous body of laws and ethical constraints, and
they have well established paths for escalating patient issues. Much of the medical
process is defined and monitored by medical professional organizations and
license-granting agencies. Medical process and protocol are aimed at improving the
timeliness and consistency of results, as well as towards managing costs.

In the computer industry, structured problem solving methodologies, such as the
Kepner-Tregoe and Six Sigma methods, are seeing a great rise in popularity.
Widespread adoption of these methods might rapidly mature the practice of
computing to rival long-established medical processes in terms of timely positive
outcomes and cost containment.

Roles
In Section One of Aphorisms, Hippocrates wrote that “Life is short, and Art long; the
crisis fleeting; experience perilous, and decision difficult. The physician must be prepared to
do what is right himself, but also to make the patient, the attendants, and the externals
cooperate.” While the roles of the doctor and patient are certainly preeminent, the
roles of nurses, emergency medical technicians, and administrative staff are also
very well established.

In computing, there are often many diverse players invested in performance issues,
ranging from executive management to the application owners and operations staff.
Frequently, the scenario is further complicated by the involvement of multiple
vendors. The performance analyst should be prepared to act as the physician, but
there is rarely any clear protocol for coordinating the activities of all of these parties!



6 Performance Forensics • December 2003

Primary Care
Total health care costs are minimized by a good program of preventative medicine.
Thomas Edison is commonly quoted as forecasting that “The doctor of the future will
give no medicine, but instead will interest his patients in the care of the human frame, in
diet, and in the causes and prevention of disease.” Quality of life depends greatly on the
skill of the primary health care provider, who should take a holistic approach to
patient well-being.

Emergency Care
The first order of business in a medical crisis is to stabilize the patient. Then, the
doctor must assess the proximate cause and potential severity of the patient’s
condition. Attention is focused on patients in rough order of the severity of their
complaints during the process of triage. Priorities are also influenced by the
likelihood of a favorable outcome. Detailed diagnosis and treatment is usually left to
an appropriate specialist, while lesser complaints might be quickly solved with a
bandage or some aspirin. The accuracy of the approximate diagnosis made during
triage can have a significant impact on the overall time to resolution. Hospital
emergency rooms deliver great consistency in handling crises, but are not geared
towards delivering holistic or total patient care.

Science and Causality
There is some art in the accomplished diagnostician’s practice of weighing clinical
signs in the context of a patient’s history and in the light of the diagnostician’s
medical training and experience. One might say that neither medical science nor
computer science is an exact science. However, no matter if the science is exact or
not, what distinguishes credible diagnostic hypotheses from guesswork is the notion
of a plausible chain of causality.

In the absence of a clear chain of causality, guesswork may sometimes succeed at
alleviating symptoms, but such guesswork does not tend to yield confidence that the
correct issues have been identified and repaired. Just as the over-prescription of
antibiotics can lead to insidious drug-resistant strains of disease, failure to make
accurate diagnoses with computer systems can delay the identification and repair of
latent issues. The motivations to make accurate diagnoses are strong, and the
dangers of treating symptoms are universal. Of course, notwithstanding clear
causality, proper diet and exercise will predictably lead to a reduced frequency of
complaints.



Performance Forensics 7

Specialization and Collaboration
The complexities of medicine and computer technology each require specialization
as a practical matter. The Hippocratic Oath essentially mandates collaboration as a
corresponding ethical matter. While a licensed general practitioner of medicine will
at least know what all of the specialties are, this is not so consistently the case among
the general practitioners of computer technology.

So What?
The analogues between medicine and performance analysis are so sweeping that we
may as well just borrow liberally from the medical language. That is just what we
will do going forward.

Lab Tests and Record Keeping
Patients typically spend less time with the doctor than the doctor’s organization
spends on the patient’s file. Indeed, patients are not generally allowed to actually see
a doctor until their file is complete.

Lab Tests
Because medical diagnostic tests have real costs associated with them, they are
ordered sparingly by doctors based on clinical signs. In computing, tests are cheap
and easily automated so that vast quantities of data can be easily gathered.

Notwithstanding the low direct cost of collecting performance data, it should still be
done only as clinical signs warrant. The main hazard of computer performance
monitoring lies in the fact that it is not totally free. The mechanics of measurement
can significantly skew the system being measured. This is sometimes referred to as
probe effect or sometimes as a Heisenburg effect. Just ask anyone who has ever been
wired up for a sleep study, and they will likely testify that it was among the worst
night’s sleep they ever had!

The degree to which a workload can be skewed by monitoring depends on the
intrusiveness of the tools being used and the degree to which they are used. The
impact of monitoring particular components of a very complex system varies
depending on how the monitored component relates to other components in the
overall work flow. Keeping the effect of measurement overhead aligned with



8 Performance Forensics • December 2003

strategic goals and tradeoffs is part of the art of choosing appropriate
instrumentation. There are various strategic motivations for use of performance
monitoring tools:

■ Health monitoring (establishing norms for a workload and using them to detect
when operations become abnormal)

■ Capacity planning (gathering data to help forecast when additional capacity will
be needed)

■ Gaining insight (discovering opportunities for optimization or formulating
hypotheses for making high-level architectural decisions)

■ Diagnosing (accurately discovering the root cause of a performance problem)

Tools and techniques used for health monitoring and capacity planning purposes
should not be expected to provide much value in the pursuit of gaining insight or
diagnosing. Conversely, incorrect or excessive use of tools for gaining insight or
diagnosis can seriously skew the data used for health monitoring and capacity
planning. It is not uncommon to diagnose that excessive monitoring lies at the root
of performance complaints. Benchmarks tend to yield their best results with little or
no monitoring activities competing for resources.

Record Keeping
Every item in a medical patient folder has a clear purpose:

■ Basic patient data, including contact and billing information

■ Drug allergies and current medications

■ History of complaints, diagnoses, treatments, and ongoing conditions

■ Results of routine physicals

■ Lab reports

■ Referrals and reports from other doctors

In contrast, there is a noteworthy lack of standard practices in building a similar
folder for computer systems. Perhaps such a file should contain, at a minimum:

■ Basic customer data, including contact and billing information

■ Configuration information, not only for the system itself, but also for key
applications

■ History of complaints, diagnoses, treatments, and ongoing conditions

■ Routinely monitored data

■ Special test reports, including the conditions under which they were obtained

■ Reports and findings of consultants and system administrators



Performance Forensics 9

A frequently recommended practice in systems management is to record any and all
system changes in a central change log. This is a good way to capture the system
history, but it can be difficult to determine the system’s state at any given point in
time without keeping periodic snapshots of its configuration state. One principle
method of acquiring system configuration data from the Solaris OS is the Sun™
Explorer tool, which is freely downloadable from SunSolve OnlineSM program site at
http://sunsolve.sun.com .

Run with the defaults, the Sun Explorer software can be quite intrusive on a system
running a production workload, but its usage can be tailored to be less intrusive to
fit the occasion. Among the data it collects are:

■ /etc/system and other /etc files

■ Details of the storage stack, down to the disk firmware level, when possible

■ showrev -p and pkginfo -l output, which can be fed into the patchdiag tool for
patch analysis

The patchdiag tool is available on the SunSolve Online program site.

The Sun Explorer software collects its outputs in a simple file hierarchy, which is
easily navigated both by humans and automated system-analysis tools.

One of the biggest challenges in data collection is the observation and the logging of
real business metrics and first-order indicators of business performance. The value of
archival configuration and operational data is limited if it cannot be correlated with
actual business throughput.

Traps and Pitfalls
Many patterns of error in performance work are so commonplace that they warrant
a separate article on performance analysis traps and pitfalls. Some of the most
common errors are discussed briefly here, with the moral that not everyone should
aspire to be a doctor.

Statistics: Cache Hit Rate
Simple statistical findings often contradict instinct and intuition. Consider this
simple question: “What is the practical difference between a 95 percent cache hit rate
and a 96 percent cache hit rate?” I have asked this question in numerous meetings
with customers and in front of multiple user-group audiences. Consistently, the
correct answer never comes from the audiences. That is partly because it is a trick
question. Intuitive answers like “one percent” and “not much” are wrong. The
correct answer, at least in principle6, is a whopping 20 percent!



10 Performance Forensics • December 2003

Why? Mainly because of what statisticians call sample error. What one should care
about most in cache behavior is the miss rate, not the hit rate. For example, in the case
of database I/O, each database cache miss results in what the database will view as
a physical I/O operation7. If all of the I/O is the result of a 5 percent miss rate when
the hit rate is 95 percent, then lowering the miss rate from 5 percent to 4 percent
lowers the demand for I/O (at least for the reads) by 20 percent.

High cache hit rates might be the result of extensive unnecessary references
involving the cache under consideration8. The best I/O, as they say, is one you never
need to do.

Statistics: Averages and Percentages
“Did you hear the one about the statistician who drowned in a pool that was one
inch deep, on average?”

Averages, in general, have limited analytical utility. Effects such as queuing for
resources tend to be masked in proportion to the time interval over which the
observations are averaged. For example, if ten operations started at the same
moment and they all completed within one second, one would report this as “ten per
second”. However, the same experiment would be reported as “one per second” if
measured over a 10 second interval. Also, if the ten operations needed to queue for a
resource, the latency of each operation would depend on its time spent waiting in
the queue. The same operations would each see a lower latency if they did not need
to wait through a queue.

Even “100 percent busy” is not necessarily a useful metric. One can be 100 percent
busy doing something useful, or 100 percent busy doing something of low strategic
priority. Doctors can be 100 percent busy on the golf course. You can be 100 percent
busy being efficient, or 100 percent busy being inefficient. Just as setting priorities
and working efficiently are key to maximizing one’s personal utility, they are also
key concepts in managing computer resource utilization.

Statistics: “Type III” Error
Apart from the common notions of sample error, mathematical error, or logical error,
statisticians commonly speak of two types of errors: Type I and Type II. A Type I
error involves someone erroneously rejecting the correct answer, and a Type II error
involves someone erroneously accepting the incorrect answer. In a 1957 article titled

6. Reported hit rates might not cover all categories of application I/O; thus, they can be misleading.

7. This is true at least as far as the database is concerned. Reads might in fact be found in the filesystem cache
rather than causing a real physical I/O.

8. Regarding Oracle, see Cary Millsap in the References section.



Performance Forensics 11

“Errors of the Third Kind in Statistical Consulting,” Kimball introduced a third type
of error (Type III) to describe the more common occurrence of producing the correct
answer—to the wrong question!

As discussed previously, the primary metrics of system performance come in terms
of business requirements. Solving any perceived “problem” that does not correspond
with a business requirement usually results in wasted effort. In the abundance of
statistics and raw data that flow from complex systems, there are many
opportunities to stray from the path of useful analysis.

For example, some tools report a statistic called wait I/O (%wio), which is a peculiar
attempt to characterize some of a system’s idle CPU time as being attributable to
delays from disk I/O. Apart from the obvious flaw of not including network I/O
delays in the calculation, the engineering units of “average percent of a CPU” makes
very little sense at all. The method used to calculate this statistic has varied between
Solaris OS releases, but none of the methods is backed by any concrete body of
science. There is active discussion in the Sun engineering community that
contemplates removing the wait I/O statistic entirely from the Solaris OS. The utility
of this statistic is extremely limited. Mainly though, analysts must know that %wio is
idle time. Whenever %wio is reported, actual idle CPU time must be calculated as
either (%wio + %idle ) or (100 - %usr - %sys).

Another not-so-useful statistic is the load average reported by the w(1) and uptime (1)
commands. This metric was conceived long ago as a simple “vital sign” to indicate
whether or not available CPU was meeting all demands. It is calculated as a moving
average of the sum of the run queue depth (number of threads waiting for the CPU)
plus the number of currently running threads. Apart from the previously mentioned
problems with averages in general (compounded by being moving), this statistic has
the disturbing characteristic that different favorable system tuning measures can
variously drive it either up or down. For example:

■ Improving disk I/O should cause more threads to be compute-ready more often,
thus increasing this metric and likely advancing business throughput.

■ Increasing contention for some resource can cause this metric to rise, but result in
a net reduction in business throughput.

This is not to say that wait I/O and load average are not useful indicators of changes in
system load, but they are certainly not metrics that should be specifically targeted as
tuning goals!

Public Health
Public health is not so much a matter of medicine as it is of statistics. Doctors tend to
know “what’s going around,” and they combine this knowledge with clinical signs
to make accurate diagnoses. A common error of otherwise accomplished analysts
lies in attempting to diagnose issues from low-level system statistics before



12 Performance Forensics • December 2003

thoroughly reviewing configuration parameters and researching “what’s going
around.” Often, problems can be easily spotted as deviations from best practices or
absence of a program patch. Identification of public health issues requires a view
beyond what a typical end-user or consultant can directly attain.

Logic and Causality
It is easy to suspect that a bad outcome might be linked to events immediately
preceding it, but to jump to such a conclusion would be to commit the common
logical fallacy called “Post hoc, ergo propter hoc” (in Latin). This error is perhaps the
most frequently committed of all. In English, this translates to “After that, therefore
because of that,” which scientists often express as “Correlation does not imply causation.”

Complaints such as “We upgraded to the Solaris 8 OS, and now we have a problem”
almost invariably have nothing to do with Solaris 8 OS. System upgrades often
involve upgrades to other components, such as third-party storage hardware and
software, and sometimes, they involve application software upgrades. In addition,
upgrades occasionally involve application-migration process errors.

Accurate and timely diagnoses sometimes require full disclosure of historical factors
(the patient file) and are usually accelerated by keeping focused on hypotheses that
exhibit plausible chains of causality.

Experiment Design
A common troubleshooting technique is to vary one parameter with all other things
held equal, then to reverse changes which produce no gain. Imagine applying this
strategy to maximizing flow through a hose with three kinks in it!

Experiment design is a major topic among scientists and statisticians. Good
experiments test pertinent hypotheses that are formed from a reasonable
understanding of how the system works and an awareness of factors that might not
be controllable. This can be as much art as science. When done wrong, huge amounts
of time can be wasted by solving the wrong problem and perhaps even exacerbating
the real problem.



Performance Forensics 13

Where Does the Time Go?
Performance issues are all about time. Successful performance sleuths start from the
perspective that “You can always tell where the time is going.” Armed with a broad
collection of tools, they set out to determine where the time is going. Then, they drill
down on why the time is going wherever it is going. Knowing where the time can go
is essential to accurately diagnosing where the time is actually going. Here, we break
it down, starting with CPU usage.

At a high level of analysis, CPU cycles can be separated into various broad
categories. These categories are not mutually exclusive.

■ Application code

The application code is the main logic of a program, which could be expressed in
languages as diverse as C, C++, Java™, SQL, Perl, or ABAP.

■ Interpreter code

Interpreter code is the implementation of the engine interpreting the application
code, such as a C compiler, a Java runtime environment, or a database engine.

■ System calls

The efficiency of system-call implementations are clearly in the domain of the
operating system vendor, but unnecessary calls to the system might originate
from a variety of places.

■ Library calls

Whether library calls involve system-supplied libraries or application libraries,
the fact that they are contained in libraries offers a chance for adding
instrumentation.

At a lower level of analysis, CPU cycles are often attributed as:

■ User (%usr )

User cycles represent the amount of CPU cycles used in the user mode. This
includes the time spent for some system calls when their logic does not require
switching to kernel mode.

■ System (%sys)

System cycles represent the amount of CPU cycles used in the kernel mode. This
includes time spent in the OS kernel due to system calls from processes, as well as
due to kernel internal operations such as servicing hardware events.



14 Performance Forensics • December 2003

■ Interrupts

Prior to the release of the Solaris 9 OS, time spent in interrupt handlers was not
attributed as either system or user time. Whether or not interrupt processing is
observable, it will certainly account for some percentage of actual CPU usage. The
servicing of some interface cards, such as gigabit ethernet cards, can consume a
large proportion of a CPU.

It is noteworthy that the precision of CPU usage attribution in the Solaris OS is not
100 percent accurate. The quality of time accounting in the Solaris OS is under
continuous improvement and will vary between software releases.

Some low-level phenomena in a system can help explain CPU consumption in the
previously described categories. Analysis of these events is largely in the domain of
gurus, but tools are evolving that can digest this information into metrics that can be
used by a broader range of analysts.

■ Traps

The Solaris 9 OS introduces the trapstat (1M) tool for reporting on time spent in
low-level service routines including traps9 and interrupts. Traps occur for low-
level events such as delays in remapping memory accesses or handling certain
numerical exceptions.

■ Esoterica

Tools like busstat (1M) and cpustat (1M) can be used to report on low-level
counters embedded in the CPU or system architecture. Useful analysis with these
tools requires very specific knowledge of low-level architectural factors.

Elapsed time, which is not attributable simply to CPU usage, might be attributed to
the following categories:

■ I/O delays

All I/O is very slow compared to CPU speeds.

■ Scheduling delays

Scheduling delays involve the allocation of and contention for CPU resources.
This factor is not nearly as well understood as I/O and memory factors, and it can
be very difficult to model, forecast, and comprehend.

■ Memory delays

Whether at the CPU chip level or due to page faults at the virtual memory
abstraction layer, delays in memory access ensue when a memory reference
cannot be immediately satisfied from the nearest cache.

9. SeeThe SPARC Architecture Manual, Version 9 by Weaver and Germond in the References section and similar
publications.



Performance Forensics 15

■ Protocol delays

Protocols such as TCP/IP may stall on protocol events such as message
acknowledgements or retransmissions.

■ Synchronization delays

Applications use a variety of mechanisms to coordinate their activities. These
mechanisms range from inefficient file system-based schemes (for example, based
on lockf (3C)) to more generally efficient techniques, such as machine-optimized
mutual-exclusion locking mechanisms (that is, mutexes 10). Among the methods
used to attain low latency in lock acquisition is the spin lock or busy wait, which is
basically a form of polling.

These delays are not necessarily mutually exclusive, and they overlap with the
previous categories of time attribution. For example, memory delays might count
against %usr or %sys and might relate to the traps and esoterica mentioned above.
I/O latencies can include significant CPU and protocol latencies.

Having a complete overview of where the time can go can be most helpful in
formulating diagnostic strategies.

Diagnostic Strategies
Rapid and accurate diagnoses can be critical to controlling costs. Given the high
stakes common in commercial computing, the importance of diagnostic strategy
deserves some special attention. Rapid problem resolution can prevent lost revenues
arising from inadequate system performance. Accurate analyses can prevent the
waste of time and money that can result from undisciplined approaches. For
example, system upgrades undertaken without proper analysis, often called
“throwing iron at the problem,” can be very disappointing when the extra iron fails
to solve the actual performance bottleneck.

As in medicine, the shortest path to an accurate diagnosis lies in the timely
consideration and exclusion of both the grave and the mundane, and in timely
referrals to appropriate specialists. Following a systematic high-level diagnostic
strategy can help speed this process. The following questions represent one possible
process-oriented high-level strategy for performance diagnosis:

■ Is the system correctly configured?

■ Have appropriate best practices been applied?

■ Has appropriate research into candidate bugs been performed, and have the
appropriate patches and updates been applied?

10.See Solaris Internals by Mauro and McDougall in the References section.



16 Performance Forensics • December 2003

■ Is the performance complaint based on reasonable expectations and valid
experiment design, backed by good science?

■ If a resource is saturated, can more resources be added, or are there options to
decrease demand?

■ What resources are under contention?

■ Where is the time going?

■ Why is the time going wherever it is going?

Each of these questions can be augmented by asking if the services of a specialist are
needed. A detailed diagnostic outline could fill volumes, but the best diagnosticians
do not have, want, or need a highly detailed or rigid process. They merely combine
their knowledge, experience, and skills to find problems and fix them. If they
determine that the problem is outside their expertise, they make an appropriate
referral.

Any strategy that succeeds will be celebrated at the time of victory, whether or not
the strategy was philosophically defensible. There are innumerable cases in which
trial-and-error strategies will work out well, especially when executed by highly
experienced and knowledgeable practitioners. Well-informed hunches and lucky
guesses that pan out are undeniably strategically efficient, but as strategies, they are
not characteristically predictable.

Much of what is written on system tuning is commonly arranged by subsystem (for
example, CPU, disk I/O, and messaging), as in the imminently practical and proven
approach described in Chapter 21 of Configuring and Tuning Databases on the
SOLARIS Platform by Allan Packer. Packer’s strategy is exemplary of a classical
functionally-oriented approach.

At a functional level, tuning and troubleshooting techniques share a great deal in
terms of tools and knowledge base. While system tuning is characteristically a
trial-and-error process, it is generally preferred that troubleshooting techniques
converge on root causes with maximum determinism and minimal experimentation.
The success of system tuning is measured in terms of empirical results. Drill-down
troubleshooting might lead to discovery of a previously undiagnosed issue for
which no empirical payoff might exist until the issue is repaired.

A simple three-step functionally-oriented strategy11 that is equally applicable to
tuning or troubleshooting is to ask:

1. Is the system working or waiting for something?

2. If it is working, is it working intelligently and efficiently?

3. If it is waiting, can the thing it is waiting for be made faster, or can you decrease
dependence on that thing?

11.Thanks to Jim Viscusi of Oracle Corporation.



Performance Forensics 17

High-level diagnostic strategies are useful as road maps for diagnostic efforts and
lay solid foundations for rational problem-solving.

Regardless of the strategy used, there will commonly be challenges to successful
execution. For example, a challenge faced by doctors and performance analysts alike
is patients who are convinced they have provided all the data needed to make their
diagnosis. Diplomacy may be required to extract from the patient or customer
whatever data is actually needed.

Root Causes
The root causes of bad performance are just as diverse as the spectrum of illnesses
ranging from the common cold to incurable fatal diseases. As in medicine,
knowledge of the relative likelihood of various diagnoses has some bearing on the
process used for diagnosis.

The process of troubleshooting most frequently reveals root causes that are more
closely analogous to the common cold than the rare fatal disease. The common cold
is usually diagnosed with no lab tests whatsoever, but rather by the presence or
absence of clinical signs, and consideration of the season and the locale. Just as
doctors do not invest in culturing the virus that causes the common cold, much of
the effort that gets invested in performance analysis could be avoided by beginning
with basic symptom-matching diagnostic techniques.



18 Performance Forensics • December 2003

The following categories of root causes should not require intense analysis to
diagnose, and should therefore be considered at the earliest phases of diagnostic
efforts. There is no simple policy for making these considerations before delving
deep into low-level root cause analysis techniques, but much of the time and effort
that gets consumed in performance troubleshooting could be saved by doing so.

■ Best practice deviations

Just as 80 percent of disease might be avoided by good habits of diet and exercise,
a similar rate of performance complaints can be traced back to deviations from
known best practices. Uninformed decisions regarding system feature selections
or failure to make appropriate space-versus-speed tradeoffs can often be quickly
diagnosed by inspection. It is vastly preferable to diagnose these by examination
of configuration parameters than to discover them from low-level technical
analysis or sifting through reams of data.

■ Known bugs

By some estimates, 80 percent of all reported bugs have been previously reported.
Often, bug reports already on file indicate workarounds or availability of product
patches. For known issues with no workaround or patch, the best path to getting
them repaired involves building a business case by raising escalations against the
appropriate bugs or RFEs.

■ Errors in experiment design and data interpretation

Claims of performance problems sometimes arise from psychological factors
doctors routinely encounter, such as hypochondria or anxiety. Sometimes,
ostensibly alarming data will turn out to be benign, and some symptoms will turn
out to be of no consequence. Much effort can sometimes be saved be conducting a
“sanity check” before investing too heavily in additional data collection and
analysis. This involves making a preliminary assessment that the problem is real,
and establishing realistic expectations regarding performance goals.

■ Resource saturation

This is a major category of initial diagnosis, but more often, it is merely an
indicator of a need for tuning, rather than a root cause. A 100-percent-busy issue
is often the result of avoidable inefficiencies, so one should not rush to judgment
over the inadequacy of the resource itself.

The preceding categories are somewhat of a mixture of science and art, but they
should be properly evaluated before investing in detailed low-level root cause
analyses.



Performance Forensics 19

Whether or not the root causes of a complaint have been previously identified and
characterized, they will fall into a finite set of categories. Knowledge of the number
and nature of the categories can help guide diagnostic reasoning processes. Medical
texts often arrange diseases into familiar categories, such as viral, bacterial, genetic,
and psychological. Here is an attempt to enumerate the general categories of root
causes for computer performance issues.

■ Bad algorithms

Intuition leads many people to think that bad or inappropriate algorithms are at
the heart of performance issues, more often than they actually are. Still, this is a
major category of diagnosis. Some algorithms have issues scaling with data
volumes, while others have issues scaling to meet ever-increasing demands for
scaling through parallelism. Diagnosis of the former might require a detailed
analysis of execution profiles using programming tools, and the latter might be
diagnosed from looking for contention symptoms. Of course, to say an algorithm
is “bad” is rather broad-ranging, and the subsequent categories listed here
enumerate some particular types of badness.

■ Resource contention

Given that resource-sharing issues can occur in various kernel subsystems, as well
as in application software and layered, third-party software, you might need to
look in many places to locate resource contention. At high-levels of resource
utilization, the relative priority of resource consumers becomes an interesting
topic. Failure to prioritize and failure to tune are common diagnostic findings. In
this context, a resource is not simply a CPU, memory, or an I/O device. It also
extends to mechanisms such as locks or latches used to coordinate access to
shared resources. Queuing and polling for scarce resources can account for
considerable clock time, and they can also account for a considerable percentage
of overall CPU utilization.

■ Serialization

When it is possible for pieces of a computing workload to be processed
concurrently, but concurrency does not occur, the work is said to proceed serially.
Missed opportunities for concurrent processing might arise from laziness or
ignorance on behalf of a programmer, constraints on program development
schedules, or non-optimal configuration and tuning choices. In some cases,
unintended serialization will be diagnosed as a bug.

■ Latency effects

When an operation is highly iterated and not decomposed into parallel
operations, the time per iteration is of particular interest. While this notion is
obvious in cases of computational loops, latency effects in the areas of memory
references, disk I/O, and network I/O are often found at the root of many
performance complaints.



20 Performance Forensics • December 2003

■ Hardware failures

Failed or failing system components can lead to poor overall performance.
Certain modes of failure might not be immediately apparent, though most failures
will result in an error message being logged somewhere.

■ Common inefficiencies

Any book on programming optimization techniques will likely feature a long list
of common programming inefficiencies. Among these are major categories like
memory leaks, along with common inefficiencies such as repeatedly evaluating
the length of a string, poorly chosen buffer sizes, or too much time spent
managing memory. Doing unnecessary work counts as a major category,
especially when it involves inefficiencies in the underlying system. For example,
some versions of the Solaris OS have slow getcwd (3C) and fsync (3C)
performance (see BugIDs 4707713 and 4841161 for getcwd and BugID 4336082 for
fsync ).

■ Esoteric inefficiencies

Sometimes, the root cause of performance issues lies at very low levels in the
system, involving factors with which most analysts have no concrete grasp. For
instance, you might observe a low-level instrumentation issue in the system
architecture or the CPU itself. As systems evolve toward chip multiprocessing,
you can expect the subject of low-level efficiency to become an increasingly hot
topic.

What really defines a performance topic as esoteric is the talent, experience, and tools
required to troubleshoot it. Many simple problems will appear difficult to the
practitioner who lacks the right experience. Some difficult problems will require the
services of authentic gurus to diagnose. The steady advance of performance analysis
tools will inevitably reduce the mystique of these factors.

Selected Tools and Techniques
This section contains a survey of helpful tools for performance diagnosis, along with
a description of features for each tool. Each tool has some value for gaining insight
into how things work and where the time is going. Many of the tools are useful for
routine monitoring and tuning activities. We start with two important yet often
overlooked categories, then discuss tools specific to the Solaris OS.



Performance Forensics 21

Application-Specific Instrumentation
Most major application components (for example, database engines, transaction
monitors, and web servers) feature facilities for performance monitoring and
logging. These facilities are an obvious place to look for clues, and they often include
metrics that can be tightly correlated with actual business goals. One should also
consider these metrics in the overall scheme of health monitoring and capacity
planning activities.

Log Files
It can be very embarrassing to find a log file with reams of errors and warnings
indicating an obvious problem just after great effort has been expended discovering
the same problem by indirect means. It is good practice to be fully familiar with the
logging capabilities of various components, and fully aware of how they are
configured.

On many occasions, the rate of diagnostic logging, the size of a log file, or contention
for log file writing has been the root cause of a broader performance issue. There are
often cases where turning up the diagnostic level only exacerbates an existing
performance complaint.

ps (1)
In the Solaris OS, the ps (1) command includes features that are frequently
overlooked by many users. In particular, the -o option allows selection of a specific
set of column headings. For example, you can use the following command to gain
insight into the thread-level priorities of all of the threads on a system:

$ ps -e -o pid,ppid,lwp,nlwp,class,pri,args



22 Performance Forensics • December 2003

The Solaris OS also offers a Berkeley UNIX version of the ps command, invoked as
/usr/ucb/ps . The man page is available by typing man -s 1b ps . One trick unique to
the Berkeley version of ps is the ability to show the command arguments of each
process by using multiple -w options, as in the following example:

This command can sometimes help in shedding light on why a process is using
excessive resources.

vmstat (1), mpstat (1), and netstat (1)
The stat commands comprise the largest category of performance monitoring tools,
and they continue to evolve. For example, in the Solaris 8 OS, the addition of the -p
option to the venerable vmstat (1) command greatly simplifies the observation of
paging-related phenomena. Among the most useful top-level monitoring tools is
mpstat (1). Some information reported by netstat (1) with the -s option is not
readily available elsewhere. These tools are basic to spotting CPU, network, and
memory utilization issues. They are the workhorses of system management and are
covered well by most books pertaining to UNIX systems management.

prstat (1)
At first glance, prstat (1) appears to be a poor substitute for the top 12 command.
However, prstat has considerable diagnostic capabilities, while top has next to
none. Two of the most interesting capabilities of prstat are its ability to do thread-
level monitoring with the -L option and its ability to display microstate accounting
data with the -m option. These features establish prstat as an important tool for
forming hypotheses regarding root causes of performance issues.

Microstate accounting provides detailed information (optionally, at the thread level)
on the breakdown of wall-clock time. As reported by prstat , the microstates are:

■ USR(percentage of time in non-trap user mode CPU mode)

■ SYS (percentage of time in kernel mode CPU mode)

■ TRP (percentage of time in user-mode trap handlers)

■ TFL (percentage of time waiting for text-page faults)

■ DFL (percentage of time waiting for data-page faults)

$ /usr/ucb/ps -www

12.The top command is a shareware program that is not included in the Solaris OS. The Solaris OS includes
sdtprocess , which is an X Windows-based alternative to the top command.



Performance Forensics 23

■ LCK (percentage of time waiting on user-mode locks)

■ SLP (percentage of time sleeping for other causes)

■ LAT (percentage of time waiting for CPU)

In addition, microstate data includes some rate data of great interest for performance
analysis:

■ VCX(Voluntary ConteXt switches, rate at which a process or thread surrenders its
CPU prior to consuming its time quantum)

■ ICX (Involuntary ConteXt switches, rate at which a process or thread has its CPU
stolen by expiration of its time quantum or due to preemption by a higher-
priority thread)

■ SCL (rate of system calls)

■ SIG (rate of signal events)

Indeed, prstat is one of the most useful tools for gaining insight into where the
time is going at both the process and thread levels.

iostat (1M)
The iostat command is one of the most commonly used, and perhaps least well-
understood, of the stat commands. Much of the data reported by iostat is also
available from sar (1M) or kstat (1M), but the format of iostat output is the most
convenient and widely used for monitoring or investigating disk I/O.

My own preferred iostat usage is usually iostat -xnzTd , where:

■ x (which returns extended device statistics)

■ n (which returns more useful device names)

■ z (which eliminates rows with all zeroes)

■ -Td (which timestamps each report interval)

Digesting reams of iostat data can be a wearisome task, but tools have been
developed that post-process data in this format. One extremely useful tool is an
awk(1) script called iobal (see Smith in the References section). This handy tool
summarizes iostat data in terms of bandwidth (megabytes per second) or I/O per
second, and optionally, it lists the top ten most active targets. Recent versions also do
controller aggregation (as iostat does with the -C option); thus, you can easily
assess controller utilization from iostat data that was not collected with the -C
option.



24 Performance Forensics • December 2003

truss (1)
The primary capability of truss (1) is observing all of the system calls emanating
from a process. Over time, truss (1) has been enhanced to provide a great deal of
other functionality. In some cases, the functionality overlaps the capabilities of
sotruss (1) and apptrace (1), but truss (1) has the ability to attach to an already
running process.

Caution – truss (1) is intrusive on the monitored process. Depending on the
options, the intrusiveness can range from slight to severe.

Running truss -c -p pid against a process for a brief interval, then interrupting it
(for example, with Ctrl+C ), gives a concise summary of the frequency of systems
calls and their average execution times. This can be quite handy for finding system-
call hot spots, or on some occasions, bringing system-call implementation efficiency
into question.

The -c , -d , and -D options are among the handiest features of truss (1). The ability
of truss (1) to calculate timestamps with the -d option and time deltas with the -D
option can be quite useful for finding out where the time is going. However, be
aware that the time deltas are easily misinterpreted. It is easy to think that the time
delta between two reported events represents the time required by the former event,
but in fact, the time delta includes any and all compute time between reported
events. In addition, because truss (1) has a significant probe effect inherent in the
timing data, taking the timing data too literally would not be appropriate.

lockstat (1M)
lockstat (1M) is a very versatile tool for gaining significant insights into where the
hots spots are in the system with respect to locking activity. Hot locks are a basic
indicator of contention in a system. As a “starter incantation,” one might try the
following command:

This command tabulates the top 64 lock events in several categories over a period of
10 seconds. When using this command, you can safely ignore any error messages
about “too many records.” The right-hand column in the output consists of cryptic
programming symbols. Although a programmer can extract more information from
this data than a non-programmer, the symbols are usually named so that they give
good clues as to where the system is busy.

$ lockstat -H -D64 sleep 10 > lockstat.out



Performance Forensics 25

The following list gives some examples:

■ ufs_ (the UFS file system)

■ va_ (virtual address primitives)

■ vx_ (something in the VERITAS software)

■ lwp_ (light-weight process [that is, thread] management)

■ cv_ (condition variables, synchronization primitives)

High lock dwell times or high lock iteration counts can have significant diagnostic
power by indicating what parts of the system are most active.

The nanosecond values reported by lockstat (1M) can take some getting used to. A
nanosecond is 10-9 seconds, so the first digit of a seven-digit nanosecond value is in
milliseconds (10-3 seconds).

kstat (1M)
The kstat (1M) command reports on statistics that are maintained by the lightweight
kstat facility within the Solaris OS kernel. The command interface is a bit awkward,
and kstat would be much improved by the addition of error messages when
incorrect arguments are used. Nevertheless, its ability to pull statistics by class or
module is very versatile and efficient, and kstat ) is now preferred over the
deprecated netstat -k command.

Because the kstat facility keeps only counts, it is useful to employ tools on top of
this interface to compute, log, and display rates. The most famously useful set of
tools for this purpose is the SE Toolkit by Adrian Cockcroft and Richard Pettit, which
is freely available from http://www.setoolkit.com .

trapstat (1M)
Introduced in the Solaris 9 8/03 OS release13, the trapstat (1M) command tabulates
and formats information about time spent handling certain low-level events. For
example, trapstat -t reports on the percentage of time spent in handling memory
management tasks.

High-percentage times spent in memory management can indicate memory stride
problems or opportunities for code optimization. Here again, the tool is largely in
the domain of gurus, but casual users can extract some useful information about
where the time is going.

13.An unsupported version exists for the Solaris 8 OS, but it has limited functionality.



26 Performance Forensics • December 2003

busstat (1M), cpustat (1M), and cputrack (1M)
These tools enable specialists to investigate issues previously described as being
esoteric. Productive use of these tools requires very specific low-level knowledge of
system components. Over time, other tools should evolve to automate some of the
analyses that are possible based on data from these tools.

Of particular interest are measurements of efficiency such as “cycles per instruction”
(CPI), which characterizes low-level overall CPU efficiency. A free tool to derive CPI
measures, called har , is available online from Sun’s Market Development
Engineering web site at http://www.sunmde.com/perf_tools/har .

Sun™ ONE Studio Developer Tools
Sun’s programming development suite includes tools for performance analysis. Of
particular interest is the ability to gather performance data from noninstrumented
binaries (collect ) and analyze the collected data either by command line
(er_print ) or GUI (analyzer ). Much of the information on the use of these tools is
available on the Internet. Search on the keywords “er_print collect analyzer ” to
find links to official sources, as well as a wide variety of how-to material.

The Sun ONE Studio developer tools are the tools of choice for identifying code
optimization targets and for measuring the impact of incremental code refinements.
It can be a very useful exercise, even for non-programmers, to get some firsthand
experience on the capabilities of these tools.

References
The following references were used in the development of this article:

■ Kimball, A.W. “Errors of the Third Kind in Statistical Consulting.” Journal of the
American Statistical Association, 52, pp 133-142, 1957.

■ Mauro, Jim and Richard McDougall. Solaris Internals. Prentice Hall, 2001,
ISBN 0-13-022496-0.

■ Millsap, Cary. “Why You Should Focus on LIOs Instead of PIOs.” 2001,
downloadable from http://www.hotsos.com (after free registration). Last seen
under a link called “Are you still using cache hit ratios?”

■ Packer, Allan Packer. Configuring and Tuning Databases on the SOLARIS Platform.
Sun Microsystems Press, 2002, ISBN 0-13-083417-3.



Performance Forensics 27

■ Smith, Robert. iobal , a handy awk(1) script for digesting iostat data, hosted on
the downloads page of http://solarisinternals.com/si/downloads/

■ Weaver, David L. and Tom Germond, Ed. The SPARC Architecture Manual,
Version 9. Prentice Hall, 1994. ISBN 0-13-099227-5.

Third-Party URLs
Third-party URLs are referenced in this document and provide additional, related
information.

Note – Sun is not responsible for the availability of third-party Web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance on any such
content, goods, or services that are available on or through such sites or resources.

Acknowledgments
I have many to thank for their varied inputs to the SuperG paper, on which this
article is based. Some have played multiple roles. Some guru colleagues whose
thought processes and techniques I aspire to document and emulate include Pallab
Bhattacharya, Phil Harman, and Paul Riethmuller. Some gurus who created useful
tools that make performance analysis easier for mere mortals and guru wannabes
include Adrian Cockcroft, Richard McDougall, Denis Sheahan, Rich Pettit (Adrian's
conspirator on the SE Toolkit), Bryan Cantrill (from Solaris OS kernel engineering),
and Bob Smith (a Sun colleague). Thanks to a gauntlet of reviewers, including Cecil
Jacobs, David Miller, Don Desrosiers, Jim Mauro, Jim Viscusi (from Oracle), Dave
Adams and Bob Kenny (from the CMG community), and Dan Barnett (from the Sun
BluePrints team). Thanks to my wife Janet for her artwork and editorial
assistance—and for always calling me to dinner.



28 Performance Forensics • December 2003

About the Author
Bob Sneed works in the Enterprise Applications Group (EAG) of the Commercial
Applications Engineering (CAE) team within Sun’s Performance and Availability
Engineering (PAE) organization. His group’s charter is to continuously improve the
competitive standing of key ISV applications in the Sun and Solaris OS environment.
Bob stays obsessed with system performance topics, often involving Oracle and
data-storage technologies. His recent focus has been on service delivery and
knowledge management pertinent to performance issues. Prior to joining Sun in
1997, he worked as a Sun ISV, a Sun reseller, and a Sun customer. His early career
experiences in real-time industrial controls and software portability engineering
helped shape his unique perspectives on database and system performance issues.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is: http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine web site
at: http://www.sun.com/blueprints/online.html


