
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 USA
650 960-1300

http://www.sun.com/blueprints

Establishing an

Architectural Model

By John V. Nguyen - Sun Professional Services
Sun BluePrints™ OnLine - February 2002

Part No.: 816-4597-10
Revision 1.1, 03/11/02
Edition: February 2002

Please

Recycle

Copyright 2002 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Solstice Backup, iPlanet, JumpStart, and Solaris are trademarks or registered trademarks

of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other countries,

exclusively licensed through X/Open Company, Ltd. Ultra is a trademark or registered trademark of Sun Microsystems, Inc. in the United

States and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, Solstice Backup, iPlanet, JumpStart, et Solaris sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une marque enregistree

aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd. Ultra sont des marques déposées ou enregistrées de

Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

1

Establishing an Architectural Model

Editor’s Note – This article is the complete third chapter of the Sun BluePrints™

book, “Designing ISP Architectures”, by John V. Nguyen (ISBN 0-13-045496-6),

which is available through www.sun.com/books, amazon.com, fatbrain.com and

Barnes & Noble bookstores.

This chapter introduces an architectural model as a framework for designing an ISP

architecture. The model is based upon our experience and Sun best practices for

designing ISP architectures. For architects who want it, the first two sections of this

chapter provide background and definitions of concepts and components necessary

for understanding an architectural model.

This chapter contains the following topics:

■ “Understanding the Model” on page 2

■ “Identifying Key Components” on page 3

■ “Applying Architectural Principles” on page 9

■ “Applying the Model to FijiNet” on page 18

Also, building upon the information in Chapter 2, this chapter shows how to apply

the architectural model and principles to design requirements.

2 Establishing an Architectural Model • February 2002

Understanding the Model

An ISP architectural model provides a design framework for ISP architectures,

which are often complex and comprised of multiple components requiring careful

consideration and design. When designing an architecture, it is helpful to use or

create a model, then apply all the requirements, assumptions, and design trade offs.

The model presented here is from our point of view, based upon experience in

design and resulting best practices. Although there are many other architectural

models, principles, and ways of approaching a design, for purposes of

demonstration we focus on selected key components and principles. We advise you

to determine which attributes and principals are most appropriate for your design,

from a larger pool of architectural design standards.

FIGURE 1 shows a sample architectural model. In the center of the model are key

components. Surrounding these key components in smaller circles are architectural

principles.

FIGURE 1 ISP Architectural Model

As shown in the figure, key components serve as the core for the architectural

design. In the outer layer, architectural principles provide structure and

considerations for making design decisions, then adhering to a design.

Scalability

Open
System

Manageability

Availability

Reliability

Adaptability

Security

Performance

ISP
Services

Operating
Environment

Operating
Platform

Identifying Key Components 3

Identifying Key Components

After analyzing business and functional requirements (see Chapter 2), the initial step

in modeling an ISP architecture is to identify key components.

In general, key components are uniform among most designs; at the minimum, there

should be ISP services running within an operating environment on an operating

platform. As shown in FIGURE 1, the core of this model consists of ISP services,

operating environment, and operating platform.

Tip – The differences in a design are typically in the selection of services, an

operating environment, and the operating platform, all of which are based on

business requirements and preferences.

ISP Services

ISP services are usually categorized into four types: basic services, value-added

services, infrastructure services, and operation and management services. The

following paragraphs describe each of these.

4 Establishing an Architectural Model • February 2002

Basic Services

Basic services are common services offered by ISPs to residential and business

subscribers. As shown in FIGURE 2, basic services are email, web hosting, and

Internet news. Although not listed, Internet access and FTP (file transfer protocol)

are considered basic services; they are required for connectivity and content uploads,

respectively.

FIGURE 2 Basic Services

Internet News Post news on the Internet

Web Hosting Host personal web pages

Email Send and receive email

Email
Web

Hosting

Internet
News

Identifying Key Components 5

Value-Added Services

Value-added services are special services offered to provide additional value to

existing subscribers, to attract new subscribers, and to differentiate services from

those offered by competitors. FIGURE 3 shows a sample of value-added services an

ISP might offer.

FIGURE 3 Value-Added Services

What constitutes value-added services varies among ISPs and changes quickly as

competitors follow leaders. Samples of value-added services are calendar, search

engine, WebMail, IRC, SMS, and address book.

Calendar Schedule appointments

Search Engine Online search capabilities

WebMail Email via web browser

IR Chat Internet relay chat (IRC)

Short Messaging Service Send text messages via short

messaging service (SMS)

Address Book Personal address book

Calendar

IR Chat

Address
Book

Search
Engine

Short
Messaging

Service
WebMail

6 Establishing an Architectural Model • February 2002

DNS

LDAPDHCP

NTP

RADIUS

To add value, these services enhance a user’s experience and provide tools that users

want conveniently at their fingertips. Large ISPs today are aiming to be one-stop

portals for everything from web surfing to online shopping.

As new services become more common, many ISPs subsequently convert value-

added services to basic services.

Infrastructure Services

Infrastructure services are services that are absolutely critical to support other ISP

services running within an infrastructure. These services run in the background and

are transparent to users. Infrastructure services are the workhorses of infrastructure

functions. FIGURE 4 shows the minimum required infrastructure services.

FIGURE 4 Infrastructure Services

DNS Domain name system is for name resolution.

LDAP Lightweight directory access protocol (LDAP) is for authentication and

authorization.

RADIUS Remote access dial-in user service (RADIUS) is for remote access

authentication.

NTP Network time protocol (NTP) is for time synchronization.

DHCP Dynamic host configuration protocol (DHCP) is for dynamic host

configurations for client systems.

Identifying Key Components 7

Operation and Management Services

Operation and management services are services that allow system administrators to

maintain an environment and provide business continuity through uptime. These

services are critical to the operation and management of an ISP. Routine tasks such

as performing nightly backups, changing tapes, restarting services, installing

software patches and upgrades, and monitoring ensure that the environment is

working well.

FIGURE 5 shows operation and management services. Although these services are

technically a form of infrastructure services and play a support role within an

infrastructure, one or more of these services might not be an absolute requirement,

depending upon an ISP’s business requirements.

FIGURE 5 Operation and Management Services

JumpStart Automates system installation and management tasks.

Monitoring Monitors system utilization, intrusions, service availability, etc.

Provisioning The two categories of provisioning are user and services. User provisioning

consists of new user registration, care, and billing. Service provisioning

consists of installing new software, patch updates, and software upgrades.

Back Up Nightly backup for data protection and disaster recovery.

Back Up

JumpStart

Provisioning

Monitoring

8 Establishing an Architectural Model • February 2002

Operating Environment

An operating environment (OE) consists of an operating system (OS) and bundled

tools and applications to provide a total solution with seamless integration. Most

vendors offer a wide selection of packages for their OS, with different tools and

applications.

Note – Most Internet tools are developed in UNIX® before they are ported to other

platforms, which may be a consideration when choosing an OE.

Most vendors include applications with an OE. These applications can be

commercial, open source, or a combination of both. Commercial applications are

usually high-end applications for enterprise environments, and licensing for these

applications varies among vendors. Open source applications are usually lower-end

applications with limited functionality and features, and licensing agreements are

commonly provided under general public license (GPL).

Operating Platform

An operating platform is the underlying hardware platform that supports the

operating environment. This hardware includes network equipment, enterprise

servers, storage, etc.

Applying Architectural Principles 9

Applying Architectural Principles

Supporting key components of the sample ISP architectural model are architectural

principles, as shown earlier and again in FIGURE 6. Architectural principles are major

design considerations that help you qualify advantages and disadvantages of each

design option, so that you arrive at a solution that best fits business requirements,

functional requirements, and available technology.

FIGURE 6 ISP Architectural Model

We categorize architectural principles into eight areas: scalability, availability,

reliability, manageability, adaptability, security, performance, and open system.

Although there are other design principles you might need to use or consider, we

focus on these as most critical.

Consider each of these principles (and any others that apply) when evaluating

design issues and trade-offs for key components. For example, apply scalability to

different layers within an architecture. You could address it at the network, system,

and application layers. Failing to address scalability at each layer could result in

nonoptimal scalability for an architecture.

Scalability

Open
System

Manageability

Availability

Reliability

Adaptability

Security

Performance

ISP
Services

Operating
Environment

Operating
Platform

10 Establishing an Architectural Model • February 2002

Ultimately, some architectural principles may not apply to your design. However,

it’s important initially to consider them as part of the design process, especially for

large-scale environments with higher levels of complexity. For example, if cost is a

significant design constraint, then adding expensive layers of redundancy to

enhance availability is most likely not applicable.

Scalability

Scalability is the ability to add additional resources, for example, routers, switches,

servers, memory, disks, and CPUs to an architecture without redesigning it. A good

design takes into account the need for scalability so that, within reason, as a business

grows and user demand increases, new computing resources can be added on

demand. Some customers have a clear idea of their plans for growth and indicate

such at the beginning, while others may need you to suggest and build in scalability,

based upon your interpretation of their current and future business requirements.

When you address scalability, we recommend using the following scaling models,

depending upon which one is applicable to your design. These are simplified models

that address scaling for both hardware and software at the same time during the

architecture design process.

Both models apply to key components. Each major component within an

infrastructure, for example, network, system, application, storage, etc., has its own

scaling model.

TABLE 1 Scaling Model for Servers

Scaling
Model

Vertical Horizontal

System
Type:

Single Large System Multiple Small Systems

Software
Type:

Multithreaded applications Single-threaded applications

To Scale: Add CPU, memory, disk, and I/O Add additional systems

Applying Architectural Principles 11

Vertical Scalability

Multithreaded applications are more complex in their scaling model. Typically, the

first line of scaling within a single system for a multithreaded application within a

single system is to achieve the maximum vertical scalability by adding more

resources such as CPU, memory, and I/O. Vertical scaling is appropriate for

applications that scale well within a single large server, such as database servers.

Tip – Scale multithreaded applications vertically first. When maximum vertical

scaling is achieved, scale the same applications using horizontal scaling techniques,

for example, running the applications on multiple boxes behind a load balancer.

Horizontal Scalability

For single-threaded applications, the model for scaling is horizontal. In this model, a

vertical scaling limitation of the server is replaced with a much more scalable load

distribution paradigm. This technique is deployed at a system level by adding more

servers to increase scalability.

Tip – Unlike multithreaded applications, single-threaded applications do not

achieve optimal benefits from vertical scaling. For example, adding more memory

benefits single-threaded applications; however, adding another CPU does not.

Scaling horizontally can be done by running multiple instances on multiple boxes

behind a load balancer.

In contrast to availability, which is designed for failover, the purpose of multiple

system redundancy in scalability is to provide a model for adding resources to

increase capacity.

12 Establishing an Architectural Model • February 2002

Availability

Availability has many definitions within Internet architectures. In this book, it means

that resources and access to those resources are available upon request. Availability

design is predicated on the removal of any single point-of-failure within an

architecture to ensure a desired level of uptime. This uptime is usually expressed in

percentages and often referred as the “number of 9s.” For example, most mission

critical systems have a desired uptime of “five 9s,” meaning that the system is

available 99.999 percent of the time.

We determined allowable downtime by using the following formula:1

where MTBF is mean time between failure and MTTR is mean time to repair.

For marketing reasons, many ISPs calculate the level of availability over a 12-month

period instead of monthly. (This practice yields an overall higher average level of

availability than calculating it monthly, because monthly calculations fluctuate from

month to month.)

We calculate the availability monthly because system administrators typically

perform maintenance monthly; therefore, monthly calculations are more beneficial

for determining allowable downtime to perform maintenance and upgrades. This

practice is fairly universal for system administrators of ISPs. Other reasons for

calculating it on a monthly basis:

■ Revenue, usage, stats, spending, etc. are done monthly.

■ Waiting for one year to find out the level of availability is unrealistic.

TABLE 2 Availability Levels

Uptime Percentage Nines Allowable Downtime Per Month

99.9999 6 0.043 minute

99.999 5 0.43 minute

99.99 4 4.30 minutes

99.9 3 43 minutes

99 2 7.2 hours

1. Priscilla Oppenheimer, Top-Down Network Design, Cisco Press®, 1999.

Availability
MTBF

MTBF MTTR+
---------------------------------------=

Applying Architectural Principles 13

A primary attribute of availability design is redundant hardware/software within

the architecture, such as network, server, application, and storage.

Tip – Design in such a way that if a component fails, it does not cause the entire

architecture to fail. To achieve this design objective, design using a modular

approach, allowing components to be replaced at any time without affecting the

availability of the system.

The four layers, covered in the following paragraphs, are as follows:

■ Network layer

■ System layer

■ Application layer

■ Data layer

Network Layer

At the network layer, availability can be achieved with redundant physical links to

the Internet. This redundancy ensures that if there is a link failure, for example, due

to hardware failure, access is still available via a surviving link. In addition,

redundant network components such as routers, switches, load balancers, and

firewalls are necessary to ensure access availability in the event of hardware failure.

To enhance reliability at the network layer, remove all single points-of-failure from

the network.

Note – For the Solaris™ Operating Environment (Solaris OE), IP multi-pathing

(IPMP) can be used to achieve redundant network connections from the same server

to multiple switches.

System Layer

At the system layer, availability is achieved with redundant servers in stand-alone or

cluster configurations.

For front-end servers such as those deployed in web farms, you can use load

balancers to ensure availability in the event that one or more servers fail to respond

to service requests.

In a cluster environment, two or more servers are configured to provide high

availability. The number of nodes configured in a cluster is dependent upon the

software and hardware. If one server fails, one of the surviving servers takes over

and responds to service requests.

14 Establishing an Architectural Model • February 2002

A fundamental difference between stand-alone servers and clustered servers is the

ability to maintain session states. If a stand-alone server fails while a session is

active, the connection has to be reestablished from the client. However, if a clustered

server fails, the session state and connection is maintained by a standby server.

Note – The cost of redundant servers and software licensing is extremely expensive

for small- to mid-size ISPs. However, without it, ISPs may lose subscribers and

revenue to competing ISPs because of subscriber dissatisfaction from service

interruptions. Subscriber expectations for availability and reliability are usually

high, and many competitors already offer high availability and reliability.

Application Layer

At the application layer, availability can be achieved with clustering and high

availability software. You can configure applications with clusters or high

availability to enhance availability in the event of service failure. Service failure and

restart can be automatically invoked through service failure detection and

monitoring. Also, you can enhance availability at the application layer by using a

load balancer with multiple servers.

Data Layer

At the data layer, availability can be achieved with redundant storage arrays

coupled with logical volumes. Redundant storage arrays allow data to be accessible

in the event of a controller or storage array failure. Logical volumes and RAID

(redundant array of independent disks) ensure data is accessible in the event of disk

failure.

At the data layer, RAID 0+1 (stripping and mirroring) or RAID 5 (stripping with

parity) achieves availability and reliability in case of disk failure. RAID 0+1 is a more

expensive solution because twice the hardware (storage arrays and disks) is needed.

However, the advantage is that no performance degradation occurs due to a disk

failure. RAID 5 can have performance degradation if a disk fails, because data has to

be rebuilt from parity.

Applying Architectural Principles 15

Reliability

Reliability is best defined from the perspective of end users. Users want network

services and servers to be available when they access them. Reliability for them is

consistency of service uptime and availability. To users, a system is reliable when

they do not frequently encounter busy signals on their modems, network connection

error messages, etc.

From an architect’s perspective, reliability is uptime and service response time for

users, so that a system is available when users access services.

For businesses today, especially service providers, reliability of service has

implications beyond customer satisfaction. Because service providers establish and

maintain their reputations based on availability and reliability of their services,

many of them require carrier-class grade high availability and reliability.

Tip – Reliability depends upon and is affected by the design for availability;

therefore, your design for an ISP architecture should balance a customer’s

requirements for both availability and reliability, within any constraints imposed by

customer or technology.

Dependent upon availability design, reliability is increased through an infrastructure

based on redundant servers. Functionally componentized architecture results in

more intrinsic redundancy and fewer inherent single points-of-failure. Furthermore,

any damage to an individual service is unlikely to impact other services.

The constructs of redundancy are useful in achieving many aspects of reliability,

scalability, and availability.

Manageability

Manageability addresses how an infrastructure can be managed during its life cycle.

The key to manageability is to keep an architecture design simple, yet effective. Meet

all functional and business requirements without adding complexity. If a design is

too complex and difficult to manage, there is more likelihood for operation and

management failure, and troubleshooting becomes more difficult and time

consuming. Also consider management tools, management plans, and methods of

monitoring services. Ensure that devices and components that need to be monitored

are managed. If a system goes down and there is nothing monitoring the device or

component causing the outage, customer satisfaction and subscriber satisfaction are

at risk, in addition to associated costs and potential loss of revenue.

16 Establishing an Architectural Model • February 2002

Adaptability

For any architecture, change during a life cycle is inevitable. An architecture must be

adaptable enough to accommodate growth and changes in technology, business, and

user needs. Within the customer’s financial constraints and growth plans, design an

architecture that allows for adaptability.

Modular architectures inherently support flexibility in two ways: individual

components are themselves easily augmented, and, because components are

independent, new components can be added without disturbing or revamping other

components within an architecture.

Security

From a larger perspective, security is a combination of processes, products, and

people. Security is achieved by establishing effective policies and implementing

procedures that enforce policies. Security policies are useless without control over

who has access to and can affect security on servers and services. Securing access

requires establishing an appropriate authentication regime.

From an architecture perspective, security is access to network, system, and data

resources.

■ At the network layer, security can be achieved with an access control list (ACL)

on routers, packet filters, firewalls, and network-based intrusion detection

systems (IDS).

■ At the system layer, security can be achieved with system hardening, access

permission, host-based IDSs, scanners, and file checkers.

■ At the data layer, security can be achieved with authentication and authorization.

Functional decomposition (separating functional components) contributes to

security by making it easy to build security around different components. In

addition, if one component is compromised, the security breach may be more easily

contained.

Adapting to evolving threats is a never-ending cycle of processes. The strategy of

responding to security threats has to evolve as potential intruders gain knowledge

and discover new attack techniques.

We recommend designing security strategies with great flexibility in approaches to

provide the best security against present and future threats.

Applying Architectural Principles 17

Performance

Although performance has multiple definitions, in this book we relate it to the

“expected” response time after a user requests a service. Depending upon an ISP’s

requirements, response time may be critical or noncritical, and these distinctions

may be further refined by service type.

Individual services use system resources, for example, memory, CPU, and I/O, in

different ways. A modular architecture provides the ability to independently

monitor and tune each service.

The causes of slow response times are many. For example, some common causes are

network latency, server degradation, and application responsiveness. Degradation at

any of these layers can result in poor overall performance.

A system is easier to tune when it is running only a few applications. When many

applications are running on a system, they must share resources, and tuning

becomes complicated and challenging.

Tip – Two products available from Sun are useful in managing resources: Solaris

Resource Manager and Solaris Bandwidth Manager. The Solaris Resource Manager

manages resources for users, groups, and enterprise applications. The Solaris

Bandwidth Manager controls bandwidth allocated to applications, users, and

organizations.

Open System

Ideally, design using an open system approach so that an architecture is not

dependent upon a single hardware or software vendor. An architecture is less

flexible when built upon proprietary specifications. Building upon a set of open

system standards that are accepted by a recognized consortium provides greater

flexibility for business changes and growth, such as adding users and services and

integrating new technology.

18 Establishing an Architectural Model • February 2002

Applying the Model to FijiNet

In this section, we apply the architectural model to FijiNet. We combine the

requirements, assumptions, and evaluation we formulated in Chapter 2 with the

model and principles presented in this chapter.

Identify Key Components for FijiNet

After evaluating the business and functional requirements, we identify key

components for FijiNet and find that they are in line with general design for ISP

architectures. The core components consist of ISP services, an operating

environment, and an operating platform.

ISP Services

FijiNet ISP services are basic, infrastructure, and operation and management

services. While value-added services are not offered initially, they may be offered in

the future.

Basic Services

FijiNet wants to offer basic services to residential subscribers. These services are

email, web hosting, and Internet news. FTP is available for content uploads.

Value-Added Services

FijiNet is not offering value-added services initially; however, they might offer them

in the near future.

Infrastructure Services

For FijiNet, all infrastructure services presented in the model apply (DNS, LDAP,

RADIUS, DHCP, and NTP). These services represent the workhorse of FijiNet’s

infrastructure.

Applying the Model to FijiNet 19

Operation and Management Services

Operation and management services for FijiNet are outsourced, including

provisioning (billing, registration, and customer care).

Note – Operation and management services are beyond the scope of this book.

Many resources are available, such as OSS Essential: Support System Solutions for
Service Providers.

Operating Environment

The operating environment for FijiNet is a reliable operating system comprised of

commercial and open source applications. To minimize cost, open source software is

used as much as possible. TABLE 3 lists components for FijiNet’s operating

environment.

TABLE 3 Operating Environment for FijiNet

Product Type Description

Solaris 8

Operating

Environment

Commercial Operating system

Cisco PIX Commercial Firewall appliance

Solstice

Backup™*

Commercial Backup software (bundled with Solaris 8 OE); free

usage for up to 200,000 entries

Amdocs Horizon

(formerly Solect

IAF Horizon)*

Commercial Billing system for service providers

iPlanet™

Directory Server

Commercial Directory software (bundled with Solaris 8 OE);

no charge for single server licenses

Steel-Belted

Radius

Commercial RADIUS software for service providers

DNS Open source DNS software (free with Solaris 8 OE)

DHCP Open source DHCP software (free with Solaris 8 OE)

NTP Open source NTP software (free with Solaris 8 OE)

sendmail Open source Mail software (free with Solaris 8 OE)

WUftp Open source LDAP-compliant FTP software (free/bundled

with Solaris 8 OE)

20 Establishing an Architectural Model • February 2002

*These products are applicable if an ISP manages billing and news services internally. If an ISP chooses to out-
source these services, then these software products are not needed.

Operating Platform

The operating platform for FijiNet is comprised of high-performance enterprise

equipment (network, server, storage, etc.). Hardware was chosen based on FijiNet’s

requirements and cost constraints. The hardware supports an initial 10,000

subscribers and is scalable to 100,000 subscribers. TABLE 4 lists components for

FijiNet’s operating platform.

Note – The quantity for each component is provided with capacity planning in

Chapter 6.

WUimap Open source POP/IMAP (post office protocol/Internet mail

access protocol) Internet mail software (free/

bundled with Solaris 8 OE)

Apache Open source Web software (free/bundled with Solaris 8 OE)

INN* Open source News software (free/bundled with Solaris 8 OE)

OpenSSH Open source Secure SHell software

TABLE 4 Operating Platform for FijiNet

Product Vendor Description

Enterprise server Sun Microsystems Netra™ t1

Enterprise server Sun Microsystems Ultra™ 280R

Enterprise storage Sun Microsystems Sun StorEdge™ D1000

Enterprise library Sun Microsystems Sun StorEdge L280

Router Cisco Systems Cisco 2651

Switch Cisco Systems Cisco 3512XL

Firewall Cisco Systems Cisco PIX 525

Access server Cisco Systems AS5400

Console server Cisco Systems AS2511

TABLE 3 Operating Environment for FijiNet (Continued)

Product Type Description

Applying the Model to FijiNet 21

Apply Architectural Principles to FijiNet

We apply each of the principles to FijiNet’s requirements, our interpretation and

assumptions, and our evaluation. For detailed information supporting each of the

principles applied, refer to Chapter 2.

Scalability

Due to cost constraints, we specify the smallest possible hardware that can handle

the load. The architecture scales horizontally. Because of the smaller chassis size, the

system has limited vertical scalability. For scaling from 10,000 to 100,000 subscribers,

horizontal scaling is much more economical and flexible.

Availability

No redundancy is implemented, due to cost constraints. To provide a higher level of

data availability at an affordable cost, we implement RAID 0+1. FijiNet’s business

plan and case do not warrant investment in redundancy for high availability at this

time.

Reliability

The hardware we specify, enterprise server and storage, are very reliable. Although

the hardware reliability is very high, we acknowledge that a single chassis

component could fail, because there is no failover.

Manageability

We settle on a 2-tier architecture for FijiNet, to simplify the design. Due to cost, a

single-box solution is the best fit. We acknowledge that if FijiNet wants to implement

an N-tier architecture later, they need to implement a new architecture. A 2-tier

architecture with a single-box solution cannot be retrofitted or scaled to be an N-tier

architecture.

Adaptability

The architecture is based on open standards. We use no proprietary technology;

therefore, the architecture should be adaptable and integrate with any open systems,

standards-based technology. Also, the design is modular and should be adaptable to

changes with no reconfiguration or rearchitecting.

22 Establishing an Architectural Model • February 2002

Security

An ACL and packet filters provide a basic front-end filter at the router. We use a

premises firewall for access control. At the host level, operating system hardening

ensures proper file permission. For the Solaris OE, the Solaris Security Toolkit (JASS)

is available from Sun Microsystems for OS hardening.

Performance

Based on benchmark results for various infrastructure services such as DNS and

firewall, we are confident that FijiNet’s server can be load tested with a simulated

load. (Refer to Appendix F for benchmark data.) Note that without real user profile

and usage pattern data, it’s hard to predict actual load.

Open System

The architecture design for FijiNet uses open systems hardware and software based

on recognized industry standards.

Author’s Bio: John V. Nguyen

John V. Nguyen is a Senior Architect at Sun Microsystems working in Advanced Internet Practice
(Sun Professional Services). He has over 10 years experience in software engineering, systems
management, networking, security, and architecture design for large-scale service providers, portals,
and Internet datacenters. John is currently working on wireless technologies such as Location-Based
Services, Mobile Messaging, Wireless Portal, 3G Wireless Networks, and Wireless Intelligent
Networking. John holds a BS in Electrical Engineering, BS in Computer Science, and Ph.D. in
Computer Science.

