
Automating Initial Setup
and Management of
Sun Fire� V20z and V40z
Servers

Jacques Bessoudo, Network Systems Group

Sun BluePrintsTM OnLine
June 2005

Part No. 819-2798-10
Revision 3.2,
Edition: June 2005

Please
Recycle

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, Sun Fire, Java, Netra, and Solaris are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

AMD, Opteron, the AMD logo, the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry.
Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK
GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En
particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à l’adresse http://
www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de
Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Certaines parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque enregistree
aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, Sun Fire, Java, Netra et Solaris sont des marques
de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de
Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

 1

Automating Initial Setup and
Management of Sun Fire™ V20z and
V40z Servers

Many compute- and network-centric applications can benefit from pools or grids of smaller,
horizontally-scaled servers due to thier lower initial cost, flexibility, scalability, and
performance for certain tasks. However, installing and managing tens or hundreds of servers
in a consistent manner can be time consuming and prone to errors that further increase the
time required to manage large pools of servers. Fortunately, many administrative tasks can be
easily automated using the integrated service processor in the Sun Fire V20z and V40z
servers..

There are three areas of setup and management of the Sun Fire V20z and V40z server’s
service processor that are usually performed manually — where automated scripts can save
time and can eliminate errors:

! Service processor setup

! Service processor management

! Server (BIOS) and service processor firmware updates

This article describes a method for helping system administrators save time by automating
these processes and running them on multiple systems simultaneously. It details the steps for
creating scripts to automate these tasks and run them in parallel and includes examples of
several of the more common tasks. The article contains the following sections:

! “Communicating with Sun’s Servers Based on AMD Opteron™ Processors Using the
Service Processor” on page 2 provides details on daisy-chaining systems together and
defines the service processor.

! “Creating Expect Scripts” on page 7 includes an introduction to the autoexpect tool and
instructions for creating an interactive script.

! “Managing Multiple Servers Simultaneously” on page 14 describes how to use a spawner
script to manage multiple servers at the same time.

2 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

! “Updating Servers and Service Processor Firmware” on page 16 provides a full script for
automating these tasks.

! “Appendix A: Connecting a Laptop to the Service Processor” on page 26 provides
detailed steps on connecting a laptop to the serial port via the Solaris™ Operating System,
Linux, and Windows.

! “Appendix B: Connecting a Terminal Concentrator to the Serial Port” on page 29.

Typographic Conventions

Table 1-1 defines the typographic conventions used in this article.

Communicating with Sun’s Servers Based on
AMD Opteron Processors Using the Service
Processor
Once all of the servers are installed in the rack or racks, the next step is to install cables to
each of the nodes. The minimum cables required are power and network cables, but some
deployments might also require serial connections to the console ports. In most cases,
network cables are needed for the 2-gigabit Ethernet platform interfaces and for the remote
management interface.

TABLE 1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories — on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What is typed, when contrasted
with on-screen computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
There are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text —
replace with a real name or value

To delete a file, type rm filename.

 Communicating with Sun’s Servers Based on AMD Opteron Processors Using the Service Processor 3

In Sun Fire V20z and V40z servers, the service processors (SPs) can be daisy chained. By
using cross-over cables from one service processor to the next, all of the SPs can be managed
from one console. Daisy chaining also requires fewer switch ports to connect to all of the
SPs. This is illustrated in Figure 1.

FIGURE 1 Daisy Chaining Service Processors

Caution – Performance degradation can occur if the cross-over cables are less than
1 meter. Redundant connections to the management network are strongly recommended since
removal of power to a unit breaks the chain.

RJ-45 cross-over cables must be used to interconnect the servers. Cables can be connected to
either the top or bottom SP port. To configure servers in a daisy chain, connect the first and
last server in the chain to different switches.

Managed spanning-tree capable switches are required to redundantly connect both the top
and bottom of the chain. If the switch is not capable of spanning-tree discovery, then only
connect either to the top or the bottom of the chain, but not both.

The Service Processor

The Sun Fire V20z and V40z servers include a dedicated service processor (SP) for operating
system independence and system management availability. The SP enables remote control of
server operations such as boot, shutdown, and reboot of the server’s operating system,
halting the server’s boot process in BIOS, and upgrading the BIOS. The SP is powered via
auxiliary power so that it is available even when the platform is powered down.

The Sun Fire V20z and V40z servers support both in-band and out-of-band management. In-
band refers to traffic that follows the same path as the normal data, using the gigabit Ethernet
ports and the running operating system. Out-of-band refers to the traffic that travels on a

4 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

separate media than the data, using the dedicated 10/100 MB management ports and the SP.
Access to the SP is available via its private LAN connection (default) or the serial port
connector on the back of the system.

Many environments require that the SP is available on the serial port at all times. For
example, a server farm may require that the operating system (OS) be re-initiated every
24 hours. If the SP is available via the serial port, it is convenient to reboot the system and
re-load the OS. By default, the SP is available on the serial port. If the behavior is modified
after the server is unpacked, then the serial port can present the platform console directly
(BIOS upon boot, for example).

An option to force the SP to be available on the serial port is accomplished by installing a
jumper on the motherboard's jumper labeled J19, which is located next to the PCI slot on the
back of the server (note that for the Sun Fire V40z server the power supplies must be
removed to access jumper J19).

After the jumper is installed, a null modem serial cable can be connected to the DB-9 port on
the back of the system, enabling the administrator to manage the SP from a laptop or from a
workstation directly connected to the system. For more information on how to connect a
workstation or laptop to the serial port of the Sun Fire V20z and V40z servers, please refer
to Appendix A.

If the SP is not available on the serial port, it might be because the default settings have been
changed. If this is the case, it must be configured using the LAN-based interface.
To configure the SP over the LAN port, the interface must be connected to a DHCP enabled
network, where the SP can acquire an IP address. Once the IP address is configured it is
displayed on the front panel LCD. Another procedure to set up the IP address is to enter the
IP address using the LCD panel. These procedures are detailed in the Sun Fire V20z and
V40z Servers Installation Guide.

As an alternative, if a terminal concentrator (otherwise known as Network Access Server) is
used, the administrator can access a number of SPs as soon as power is applied to the
servers.

The settings for the terminal concentrator or terminal software are:

Baud rate: 115200

Data bits: 8

Parity: None

Stop bits: 1

Flow control: Off

More information on connecting a terminal concentrator to the serial port is contained in
Appendix B.

 Communicating with Sun’s Servers Based on AMD Opteron Processors Using the Service Processor 5

Once the settings are correct on either the software or the terminal concentrator, a connection
to the SP can be established. Below is an example of a terminal connection to a Sun Fire
V40z server from a Solaris server connected to the SP. The output below the tip command
is the boot sequence that is generated when power is applied to the server.

bash-2.05# tip -115200 /dev/term/a
PPCBOOT Starting

CPU: XPC860xxZPnnD4 at 64 MHz: 4 kB I-Cache 4 kB D-Cache FEC
present
Board: Service Processor Stage 1 - Rev. 0
DRAM: 64 MB
FLASH: 16 MB
In: serial
Out: serial
Err: serial
Product_ID = 0xef (239)
PPCBOOT revision = V2.1.0.16
Board_Revision = 0x04 (4)
PRS revision = 0x0e (14)
Hit any key to stop autoboot: 0
Booting image at 40080000 ...
 Image Name: 2.4 kernel for sp
 Image Type: PowerPC Linux Kernel Image (gzip compressed)
 Data Size: 668721 Bytes = 653 kB = 0 MB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
 Uncompressing Kernel Image ... OK
Loading RAMDisk Image at 40180000 ...

.

.

Freeing unused kernel memory: 60k init
INIT: version 2.78 booting
Mounting local filesystems...
Booted from ramdisk..
Service Processor GPIO driver, ver. V2.1.0.16
Service Processor I2C driver, ver. V2.1.0.16
Service Processor HAD/PRS driver, ver. V2.1.0.16
Configuring iptables
Hostname: localhost.localdomain
Setting up IP spoofing protection: rp_filter.
Disable TCP/IP Explicit Congestion Notification: done.
Configuring network interfaces: done.
Starting portmap daemon: portmap.

6 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

After the SP is loaded, the administrator can proceed to login as the setup user in order to
add the top level administrator to the SP as shown below. A setup account is included with
each server. This setup account does not have a password. When logging into the SP for the
first time using the setup account, the user is prompted to define the initial manager account
with a password and an optional public key.

This is an important step, as failure to secure the SP with a user name and password when
the server is first deployed can expose the server to security and availability risks through the
SP network interface.

Note – An operating system can be installed on the server without configuring the SP or the
Network Share Volume (NSV). However, if the SP and NSV setup is not performed, it is not
possible to use the remote management capabilities or the diagnostics of the system.

Creating Expect Scripts
The setup task, as well as others, can be captured with little effort by using a tool called
autoexpect, enabling setup to be automated for many servers.

INIT: Entering runlevel: 2
Starting metalog for logging services
Starting internet superserver: inetd.
Starting system management applications...
Starting OpenBSD Secure Shell server: sshd.

localhost login:

localhost login: setup
Enter the name of the first manager level user: admin
Password:
Confirm password:
Enter the user's public key or press ENTER for no key:

Successfully added the manager level user.

localhost login:

 Creating Expect Scripts 7

Brief Introduction to Autoexpect

Autoexpect is a tool written by Don Libes from the National Institute of Standards and
Technology and is available to users from http://expect.nist.gov/. Autoexpect is included with
recent distributions of expect.

The instructions to use autoexpect are simple. The user starts autoexpect and runs a
command or series of commands. Autoexpect generates a script called script.exp in the
directory specified (current directory is default). The automatically generated expect script
includes all of the commands issued to accomplish a task and keeps track of all of the
responses from the server.

Once script.exp is generated, the user can edit it to modify the details that might be
different when accessing multiple hosts. Key things to look for are unique text strings, such
as dates and hostnames.

Creating an Automated Script

In order to create the script using autoexpect, the user must interact with the SP in a natural
way, issuing the commands necessary to carry out a specific task. In the following example,
a simple interaction with the SP over the LAN configures the initial user admin:

[admin@localhost]$ autoexpect
autoexpect started, file is script.exp
[admin@localhost]$ ssh -l setup 10.6.164.16

Sun Microsystems
IPMI v1.5 Service Processor

Version: V2.1.0.16
Enter the name of the first manager level user: admin
Password:
Confirm password:
Enter the user's public key or press ENTER for no key:

Successfully added the manager level user.
Connection to 10.6.164.16 closed by remote host.
Connection to 10.6.164.16 closed.
[admin@localhost]$ exit
autoexpect done, file is script.exp
[admin@localhost]$

8 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

The output of this exercise includes all of the comments and parameters that autoexpect
generates for the benefit of the user. The resulting script.exp looks like this:

#!/usr/bin/expect -f
#
This Expect script was generated by autoexpect on Thu Feb 3 15:19:40 2005
Expect and autoexpect were both written by Don Libes, NIST.
#
Note that autoexpect does not guarantee a working script. It
necessarily has to guess about certain things. Two reasons a script
might fail are:
#
1) timing - A surprising number of programs (rn, ksh, zsh, telnet,
etc.) and devices discard or ignore keystrokes that arrive “too
quickly” after prompts. If the new script is hanging up at
one spot, try adding a short sleep just before the previous send.
Setting “force_conservative” to 1 (see below) makes Expect do this
automatically - pausing briefly before sending each character. This
pacifies every program I know of. The -c flag makes the script do
this in the first place. The -C flag allows the user to define a
character to toggle this mode off and on.
set force_conservative 0;# set to 1 to force conservative mode even if
 ;# script wasn't run conservatively originally
if {$force_conservative} {
 set send_slow {1 .1}
 proc send {ignore arg} {
 sleep .1
 exp_send -s -- $arg
 }
}
#
2) differing output - Some programs produce different output each time
they run. The “date” command is an obvious example. Another is
ftp, if it produces throughput statistics at the end of a file
transfer. If this causes a problem, delete these patterns or replace
them with wildcards. An alternative is to use the -p flag (for
“prompt”) which makes Expect only look for the last line of output
(i.e., the prompt). The -P flag allows the users to define a character to
toggle this mode off and on.
#
Read the man page for more info.
#
-Don
spawn $env(SHELL)
match_max 100000
expect -exact "]0;admin@localhost\[admin@localhost\]\$“
send -- “ssh -l setup 10.6.164.16\r”

 Creating Expect Scripts 9

After a draft script is generated, it can be modified to include details that are required and
cleaned up to avoid details that are not needed. In the following examples, the scripts are
generated using the -p flag of autoexpect for clarity. The -p flag tells autoexpect to consider
only the prompt before interaction, instead of all of the lines that come up after the command
is issued.

Often, when a command is executed, different output can be expected from the terminal. For
example, if the ssh command is run and the target host has never been accessed from the
current administration console before, the following prompt appears:

expect -exact “ssh -l setup 10.6.164.16\r
\r
Sun Microsystems\r
IPMI v1.5 Service Processor\r
\r
Version: V2.1.0.16\r
Enter the name of the first manager level user: “
send -- “admin\r”
expect -exact “admin\r
Password: “
send -- “demopasswd\r”
expect -exact “\r
Confirm password: “
send -- “demopasswd\r”
expect -exact “\r
Enter the user's public key or press ENTER for no key: “
send -- “\r”
expect -exact “\r
\r
Successfully added the manager level user.\r
Connection to 10.6.164.16 closed by remote host.\r\r
Connection to 10.6.164.16 closed.\r\r
]0;admin@localhost\[admin@localhost\]\$“
set timeout -1

The authenticity of host '<ip address (<hostname>)' can't be
established.
RSA key fingerprint is
a9:9f:c2:21:97:e9:e2:62:d0:5f:94:64:8c:08:2c:1c.
Are you sure you want to continue connecting (yes/no)?

10 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

In these cases, expect provides a way to branch into options of expected output as shown
below:

This way, if the target host has never been used from the administration host, expect replies
that the target host should be added to the list of known_hosts. If the target host has
already been used, then the appropriate response is sent to the target host.

The final results, with the changes discussed above, are shown in the following scrips. The
first example uses the IP address as a target host for LAN-based connectivity to the SP.

expect {
 “^*(yes/no)?” {send -- “yes\r”; exp_continue}
 “^*level user:“ {send -- “setup\r”}
 }

#!/usr/bin/expect -f

set force_conservative 0 ;# set to 1 to force conservative mode even if
 ;# script wasn't run conservatively originally
if {$force_conservative} {
 set send_slow {1 .1}
 proc send {ignore arg} {
 sleep .1
 exp_send -s -- $arg
 }
}

set timeout -1
spawn $env(SHELL)
match_max 100000
expect -exact "\$
send -- “ssh -l setup <IP address of the SP>\r”
expect {
 “^*(yes/no)?” {send -- “yes\r”; exp_continue}
 “^*level user:“ {send -- “admin\r”}
 }
expect -exact “Password: “
send -- “demopass\r”
expect -exact “Confirm password: “
send -- “demopass\r”
expect -exact “Enter the user's public key or press ENTER for no key: “
send -- “\r”
expect -exact “\$“
expect eof

 Creating Expect Scripts 11

If the server's serial port is attached to a terminal concentrator, it requires a different script
that includes the IP and port requirements of the terminal concentrator. Note in this case that
the script does not need to branch between two different options before connecting to the
host because it employs plain telnet to the terminal concentrator.

#!/usr/bin/expect -f

set force_conservative 0 ;# set to 1 to force conservative mode even if
 ;# script wasn't run conservatively originally
if {$force_conservative} {
 set send_slow {1 .1}
 proc send {ignore arg} {
 sleep .1
 exp_send -s -- $arg
 }
}

set timeout -1
spawn $env(SHELL)
match_max 100000
expect -exact “\$“
send -- “telnet <TC's IP address> <port number>\r”
expect -exact “”
send -- “\r”
send -- “\r”
expect -exact “login: “
send -- “\r”
expect -exact “login: “
send -- “setup\r”
expect -exact “Enter the name of the first manager level user: “
send -- “admin\r”
expect -exact “Password: “
send -- “demopasswd\r”
expect -exact “Confirm password: “
send -- “demopasswd\r”
expect -exact “Enter the user's public key or press ENTER for no key: “
send -- “\r”
expect -exact “login: “
send -- “^]”
expect -exact “telnet> “
send -- “quit\r”
expect -exact “\$“
expect eof

12 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

By setting up the initial user, the administrator can now login to setup all of the preferences
in the SP. For example, typical deployments that use the SP’s serial port for initial
configuration normally setup the IP address of the SP’s network interface with a variation of
the following command:

Data centers that have DHCP enabled in the management network use the command below to
instruct the system to find a DHCP server for an address:

This is a simple procedure, but when it must to be implemented across many servers it can
become a time-consuming exercise. There are several methods to automate this process,
which are described below.

If the serial interface is available, the easiest way to configure the server with an IP address
is to write an expect script that performs the initial setup of the SP. With this script, all the of
IP addresses can be assigned according to the physical location of the node in the datacenter
or rack.

localhost $ sp set ip static -i 192.168.0.1 -n 255.255.255.0 -g
192.168.0.251

localhost $ sp set ip dhcp

#!/usr/bin/expect -f

set force_conservative 1 ;# set to 1 to force conservative mode even if
 ;# script wasn't run conservatively originally
if {$force_conservative} {
 set send_slow {1 .1}
 proc send {ignore arg} {
 sleep .1
 exp_send -s -- $arg
 }
}

set timeout -1
spawn $env(SHELL)
match_max 100000
expect -exact “\$“
send -- “telnet <TC's IP address> <port number>\r”
expect -exact “”
send -- “\r”
send -- “\r”
expect -exact “login: “
send -- “\r”

 Managing Multiple Servers Simultaneously 13

Managing Multiple Servers Simultaneously
The scripts detailed above, while saving time and errors by automating a task, are still
performed on one SP at a time. It is possible to further automate the process by spawning
multiple scripts in parallel, enabling multiple systems to be setup simultaneously. The
following spawner script launches a number of processes at the same time.

This script is written in perl, but if perl is not available, a spawner script can also be written
in any shell since the script does not require any perl-specific functionality. It is possible to
improve these scripts by using the expect libraries in perl, but for introductory purposes it is
much easier to maintain the expect scripts running independently from the perl code.

With a spawner script and some well-written expect scripts that execute different actions on
the server, an administrator can construct a complete toolkit for managing a cluster of
servers.

expect -exact “login: “
send -- “admin\r”
expect -exact “Password: “
send -- “demopasswd\r”
expect -exact “\$“
send -- “sp set ip static -i 192.168.0.1 -n 255.255.255.0 -g 192.168.0.251
-W\r”
expect -exact “\$“
send -- “exit\r”
expect -exact “login: “
send -- “#”
expect -exact “telnet> “
send -- “quit\r”
expect -exact “\$“
send -- “#”
expect eof

#!/usr/bin/perl

for ($i=1;$i<=128;$i++) {
 print “192.168.0.$i \n”;
 system (“<expect program name> 192.168.0.$i &”);
}

14 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

For example, one function that can be easily automated is powering servers on and off. In the
following example, the spawner script calls the poweron script with a parameter that is the IP
addresses of the SPs the users needs to control. Note that one of the parameters to launch the
expect script is 'on'. By running the same script with the 'off' parameter, all of the servers in
the IP range are turned off. Writing the expect scripts to accept parameters makes them more
versatile and can result in fewer scripts.

In order to avoid confusion among different hosts, the -exact tags added after each expect
command are removed, providing more flexibility in the hostnames the SPs or management
consoles might have. The following expect script is called powercontrol.exp and
should reside in the same directory as the spawner script above:

#!/usr/bin/perl

for ($i=1;$i<=128;$i++) {
 print “192.168.0.$i \n”;
 system (“./powercontrol.exp on 192.168.0.$i admin
demopasswd &”);
}

#!/usr/bin/expect --

set timeout -1

set action [lindex $argv 0]
set spip [lindex $argv 1]
set userid [lindex $argv 2]
set password [lindex $argv 3]

spawn $env(SHELL)
match_max 100000
expect “^*\$”
send -- “ssh -l $userid $spip\r”
expect {
 “^*(yes/no)?” {send -- “yes\r”; exp_continue}
 “^*password: “ {send -- “$password\r”}
 }
expect “^* \$“
send -- “platform set power state $action\r”
expect “^* \$“
send -- “exit\r”
expect “^*\$“
send -- “”
expect eof

 Updating Servers and Service Processor Firmware 15

Updating Servers and Service Processor
Firmware
It is occasionally necessary to update the BIOS of the system and/or the SP firmware. This is
a manual process that must be performed carefully in order to maintain the integrity of the
system. A full firmware update of the BIOS and the SP firmware can be accomplished safely,
quickly, automatically, and simultaneously on multiple systems by creating small expect
scripts that perform certain actions to configure or update pieces of the BIOS or SP.

The following example is a full script that updates the firmware (SP, BIOS, PPC, etc.) on a
number of Sun Fire V20z servers. It is based on the principles outlined in previous sections
of this article. In order for the script to work properly, a specific file system structure is
required on the launch server to accommodate the paths, as shown in Table 2. The script can
be modified to match the paths in a particular environment.

This script requires that the directory where the firmware resides (called nsvpath in the
script) must be exported using NFS with at least read permissions. In addition, the IP
addresses of the target SPs must previously assigned in order for the script to be run on the
range of addresses to update.

For version 2.2.0.6 of the firmware, first download and uncompress the firmware, that is in
the file called nsv_V2_2_0_6.zip to the update system and unzip the file under a new folder
(in this example the path is /export/nsv2.2/). Within that folder make two additional folders,
one called “v20z” and one called “v40z”. In those folders download the nsv-v20z-bios-
fw_V2_2_0_6h.zip and nsv-v40z-bios-fw_V2_2_0_6h.zip respectively, and uncompress
them. This sets up the environment to allow for Sun Fire V20z and V40z platform update.
These file below are the main files that should be in the directories::

TABLE 2 Update Script Path Structure

Path Description

/usr/bin Location of the Java™ executable (configurable in spawner
script)

/export/scripts Spawner script goes here

/export/scripts/expect Expect scripts go here

/export/scripts/output Where the update status is logged

/export/nsv2.2 Where the firmware resides (configurable in spawner script)

/export/nsv2.2/v20z Firmware for the Sun Fire V20z server

/export/nsv2.2/v40z Firmware for the Sun Fire V40z server

16 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

As root, share the /export directory using NFS. To do this, edit the /etc/dfs/dfstab
file and add the following entry:

Restart the NFS server using the following command as root:

The next step is to edit the spawner script to reflect the correct network settings and desired
preferences. These changes include a number of variables that may be left as default, but
some should change as they are different in every case. Here are a few suggestions of
settings that may need to be changed:

! The path to the expect executable needs to be correct in all of the expect scripts in
order to run.

! Once the update system is setup, it is possible to reset all of the server SPs to factory
defaults in order to have a consistent way of logging in to the SPs and running the update
commands. If there is already a standard login and password for the SPs, they need to be
configured in the spawner script.

! If only one SP is to be updated, simply assign the same value to both the $first and
$last variables in the spawner script. This forces the script to only run once.

Files included in this paper:
/export/scripts/update
/export/scripts/expect/update2.sp
/export/scripts/expect/update3.sp
/export/scripts/expect/setup.sp

Files downloaded from http://www.sun.com/
/export/nsv2.2/v20z/sw_images/platform/firmware/bios/V1.32.7.2/swinventory.xml
/export/nsv2.2/v20z/sw_images/platform/firmware/bios/V1.32.7.2/bios.sp
/export/nsv2.2/v20z/sw_images/sp/spbase/V2.2.0.18/swinventory.xml
/export/nsv2.2/v20z/sw_images/sp/spbase/V2.2.0.18/install.image

/export/nsv2.2/v40z/sw_images/platform/firmware/bios/V2.32.8.2/swinventory.xml
/export/nsv2.2/v40z/sw_images/platform/firmware/bios/V2.32.8.2/bios.sp
/export/nsv2.2/v40z/sw_images/sp/spbase/V2.2.0.18/swinventory.xml
/export/nsv2.2/v40z/sw_images/sp/spbase/V2.2.0.18/install.image

/export/nsv2.2/update_server/V2.2.0.6/swinventory.xml
/export/nsv2.2/update_server/V2.2.0.6/updateServer.jar
/export/nsv2.2/update_server/V2.2.0.6/updateServer.config

share -F nfs /export

/etc/init.d/nfs.server restart

 Updating Servers and Service Processor Firmware 17

The full spawner script is below. As stated in the script, it should be launched on the update
Network Share Volume (NSV) server. The NSV files must be installed on the NSV server
and the NSV server must have perl, Java Runtime Environment (JRE) 1.4.2 or later, and
expect installed. For more information on updating the BIOS, refer to the SunSolve™ article
“How to Update Sun Fire V20/40z SP and Platform Firmware/BIOS”, Document ID: 79931.

#!/usr/bin/perl
Service Processor Update utility
#
Purpose: The purpose of this script is to give an example of how to write
a script that updates the firmware (SP, BIOS, PPC, ...) on a number
of Sun Fire V20z/V40z servers.
#
This utility is provided as-is and is not supported in anyway.
#
Usage: Modify the variables below to match the environment
and launch the script on the update (NSV) server.
#
Requirements: The NSV files must be downloaded and extracted on the NSV
server.
The latest NSV files can be downloaded from these URLs:
http://www.sun.com/servers/entry/v20z/downloads.html
http://www.sun.com/servers/entry/v40z/downloads.html
The NSV server must have perl, JRE 1.4.2 or later and expect installed.
#
This script was written for the Sun Fire V20z and will not fully update
the V40z (The PRS is not updated).
#
-=-
Modify the variables below before launching the script

NOTE: Make sure to leave a colon ';' at the end of each variable assignment
#
Network information
#
Network that the Service Processors are connected to
#

$network="10.6.164.0";

IP range
#
IP range assigned to the Service Processors, provide first and last IP
#
$first=15;
$last=15;

18 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

SP Authentication info
#
Authentication to be used to log on the Service Processors
$firstsetup = "yes" if the SPs need to be initialized or "no" if the first
setup has already been done. If the SP have already been initialized
use $manager and $password to provide the login and password that the SPs
have been initialized with. If the SP have never been setup or if they have
been reset to default settings, use $manager and $password to provide
the new login and password to be created on the SPs.
#

$firstsetup="yes";
$manager="sun";
$password="sun";

Update server information
$serverip is the IP address of the update (NSV) server that the SP will
connect to. This server must be running JRE 1.4.2 or later and this script.
$javabinpath is the path to the java executable. If configured, make sure
sure there is a trailing "/". Leave blank if already in path.
$nsvpath is the path where the NSV software distribution has been unzipped
#
$serverip="129.146.75.253";
$javabinpath="/usr/bin/";
$nsvpath="/export/nsv2.2/";
File names of the version images to be installed
The filenames and paths below are documented in the update procedure
available for download with the NSV files.
$ppcupdate is the PPCboot Update file name including the PATH relative
to the NSV folder ($nsvpath declared above). Must start with a '/'
$picupdate is the PIC revision. Same format as the $ppcupdate.
$spversion is the SP revision. It is used in the path, the filename
is always the same.
$portnumber is the port number to be used for the spupdate connection and
the range for this parameter is 49152 - 65535.
$bios is the BIOS revision. It is used in the path, the filename is
always the same.
#
$platform="v20z";
$spversion="V2.2.0.18";
$portnumber="50000";
$bios="V1.32.7.2";
#

 Updating Servers and Service Processor Firmware 19

#
DO NOT MODIFY ANYTHING BELOW THIS LINE UNLESS YOU KNOW WHAT YOU ARE DOING
-=-
$network =~ s/\.0//;

$test=`ps -fea|grep java|grep -i update |grep -v grep |wc -l`;
chomp $test;
$test=~s/ //g;
if ($test == 1) {
 print "Killing previously running java server to avoid conflicts\n\n";
 system "kill -9 `ps -fea|grep java|grep -i update|grep -v kill |sed -e
's/ []*/ /g'|cut -d' ' -f2`";
}

#
Remove the fingerprint for the RSA key from the known_hosts file
#
for ($i=$first;$i<=$last;$i++) {

`grep -v $network.$i $ENV{HOME}/.ssh/known_hosts > $ENV{HOME}/.ssh/
known_hosts.new`;

`mv $ENV{HOME}/.ssh/known_hosts.new $ENV{HOME}/.ssh/known_hosts`;
}

#
Do we need to do initial setup on the SP's?
#

if ($firstsetup eq "yes") {
 for ($i=$first;$i<=$last;$i++) {
 print "Setting up SP $network.$i \n";
 system ("./expect/setup.sp $network.$i $manager $password >
output/update/setup.$network.$i.out &");
 }
print "Waiting for initial setup of the SPs to complete\n";
while ($test != 2) {
 print ".";
 $test=(`ps -fea|grep setup|wc -l`);
 chomp $test;
 $test=~s/ //g;
 sleep 2;
}
print "\n";
sleep 15;
}
#
Run SP fw update on the SP
#

20 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

#
Start the server
#
print "Starting the java-based update server locally... \n\n";
system (`echo "$javabinpath/java -jar $nsvpath/update_server/V2.2.0.6/
updateServer.jar -f $nsvpath/$platform/sw_images/sp/spbase/$spversion/
install.image -p $portnumber" > output/update/jar.out`);

system (`$javabinpath/java -jar $nsvpath/update_server/V2.2.0.6/
updateServer.jar -f $nsvpath/$platform/sw_images/sp/spbase/$spversion/
install.image -p $portnumber >> output/update/jar.out &`);

sleep 5;
#
Launch the clients
#

print "Now running the service processor firmware update on the SPs\n\n";
for ($i=$first;$i<=$last;$i++) {
 print "$network.$i \n";
 system (`echo "*** Running SP fw update now ***" >> output/update/
$network.$i.out`);
 system ("./expect/update2.sp $network.$i $serverip $portnumber
$manager $password >> output/update/$network.$i.out &");
}
print "Waiting for SP firmware update to complete\n";
$test=0;
$nomachines=$last-$first+1;
while ($test != $nomachines) {
 print ".";
 $test=(`grep 'Update complete' output/update/jar.out|wc -l`);
 chomp $test;
 $test=~s/ //g;
 sleep 2;
}
print "\n";
print "Waiting for SPs to reboot\n";
sleep 30;
while ($test ne "alive") {
 print ".";
 $test=(`ping $network.$last | cut -d' ' -f3`);
 chop $test;
 sleep 5;
}
print "\n\n";

 Updating Servers and Service Processor Firmware 21

#
HERE WE HAVE TO KILL THE java SERVER!
#

system "kill -9 `ps -fea|grep java|grep -i update|grep -v grep|sed -e 's/ [
]*/ /g'|cut -d' ' -f2`";

#
Update the BIOS on the servers
#
print "Now updating the pic and the BIOS on the servers\n\n";
for ($i=$first;$i<=$last;$i++) {
 print "$network.$i \n";
 system (`echo "*** Running BIOS update now ***" >> output/update/
$network.$i.out`);
 system ("./expect/update3.sp $network.$i $bios $manager $password
$platform $nsvpath $serverip >> output/update/$network.$i.out &");
}
print "Waiting for BIOS update to complete\n";
while ($test != 2) {
 print ".";
 $test=(`ps -fea|grep -i update3|wc -l`);
 chomp $test;
 $test=~s/ //g;
 sleep 2;
}
print "\n";
print "Waiting for SP to reboot\n";
sleep 3;
while ($test ne "alive") {
 print ".";
 $test=(`ping $network.$last | cut -d' ' -f3`);
 chop $test;
 sleep 5;
}
print "\n\n";

22 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

setup.sp

The setup.sp script is used if an initial setup user is required for the SP..

#!/opt/csw/bin/expect --

set timeout -1

set spip [lindex $argv 0]
set userid [lindex $argv 1]
set password [lindex $argv 2]

spawn ssh -l setup $spip
expect {
 (yes/no) {send "yes\r"
 exp_continue}
 user: {send "$userid\r"
 }

assword: {exit}
 }
expect assword:
sleep 1
send "$password\r"
expect assword:
sleep 1
send "$password\r"
expect key:
sleep 2
send "\r"

 Updating Servers and Service Processor Firmware 23

update2.sp

The update2.sp script runs the sp update flash all subcommand. which updates
the entire SP flash image (kernel, base file system, and value add) as part of a major SP
software update. This command requires the Java Update Server and verifies its availability
before beginning the update process. Once verified, the SP is rebooted and the update
process is initiated. When completed, the SP is automatically rebooted using the updated
image.

#!/opt/csw/bin/expect --

set timeout -1

set spip [lindex $argv 0]
set serverip [lindex $argv 1]
set portnumber [lindex $argv 2]
set userid [lindex $argv 3]
set password [lindex $argv 4]

spawn ssh -l $userid $spip
expect {

(yes/no) {send "yes\r"
 exp_continue}

password: {send "$password\r"
 }

}
expect " \$ "
send "sp update flash all -i $serverip -p $portnumber\r"
expect {

" \$ " {send "exit\r"}
"Error." {sleep 2
 send "sp update flash all -i $serverip -p $portnumber\r"
 exp_continue}
}

24 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

update3.sp

The update3.sp script runs the command platform set os state update-
bios command to update the BIOS of the system. This command can take several minutes
to run. When the BIOS update completes, the server automatically shuts down.

#!/opt/csw/bin/expect --

set timeout -1

set spip [lindex $argv 0]
set bios [lindex $argv 1]
set userid [lindex $argv 2]
set password [lindex $argv 3]
set platform [lindex $argv 4]
set nsvpath [lindex $argv 5]
set serverip [lindex $argv 6]

spawn ssh -l $userid $spip
expect {

(yes/no) {send "yes\r"
 exp_continue}

password: {send "$password\r"
}

}
expect " \$ "
send "sp add mount -r $serverip:$nsvpath -l /mnt\r"
expect " \$ "
send "platform set power state off -f\r"
expect " \$ "
send "platform set os state update-bios /mnt/$platform/
sw_images/platform/firmware/bios/$bios/bios.sp\r"
expect " \$ "
send "exit\r"

 Summary 25

Summary
Although smaller, horizontally scalable servers such as the Sun Fire V20z and V40z servers
are more cost effective initially, it can be costly and time consuming to administer large
numbers of them manually. Any steps toward automating tasks that are usually performed
manually can help decrease the total cost of ownership of large pools of small servers, as
well as decrease downtime due to human error.

The expect and spawner scripts provided in this article are easy to create or modify and can
help administrators save time and effort by automating low-level repetitive tasks.

Appendix A: Connecting a Laptop to the
Service Processor
This appendix outlines the procedures for connecting a laptop to the service process via a
Solaris platform, a Linux platform, or a Windows platform. Laptop connectivity offers a
convenient way to learn how serial connections work, making it easier to connect a terminal
concentrator.

The following components are required to connect a laptop to the SP on a Sun Fire V20z or
V40z server:

! A cross-over serial cable (null modem)

! A laptop or workstation with a serial port or a laptop or workstation with a USB port and
a USB-to-serial adapter

! A communications software package such as:

! Minicom for Linux

! tip for Solaris OS

! Hyperterm for Windows

There are many combinations of adapters and cables that can be used to connect a laptop or
workstation to the serial port. The following combination is known to work:

! Two DB25-(male) to-DB9 (female) cables

! One DB25-(female) to-DB25 (female) null modem cable

! One USB-to-DB9 (male) adapter

Connect a DB25-to-DB9 connector to the null modem cable on both ends, and connect the
DB9 end of the USB-to-DB9 cable to one of the ends of the resulting cable.

26 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

Connecting via a Solaris Platform

The following steps detail how to connect to the serial port via a Solaris platform. Keep in
mind that not all USB-to-serial adapters work, so make sure the adapter is recognized by the
Solaris OS before attempting this connection. If the adapter is not recognized, it may be
necessary to use a workstation or laptop with a serial port.

1. Plug in the cable (not a USB-to-adapter) to the laptop on one end, and to the serial port of
the server on the other end. Open up a terminal window on the Solaris laptop and enter:

2. Press the ‘Enter’ key and the SP should return a prompt. The administration user can now
be configured.

Connecting via a Linux Platform

The following steps detail how to connect to the serial port via a Linux platform.

1. Determine how the kernel recognizes the USB-to-serial adapter. To do this, monitor the
/var/log/messages log with the following command as root:

2. Plug in the device and watch the output on the log file and look for a line that reads
something like:

This indicates that the serial device to use is ttyUSB0.

3. Configure the minicom communication software to use this serial device. As root, start
minicom in setup mode:

4. Go to ‘Serial port setup’ and type ‘A’ to correctly configure the serial device identified
above. For example: /dev/ttyUSB0.

tip -115200 /dev/term/a

tail -f /var/log/messages

Jan 4 17:28:01 localhost kernel: usb 3-2: PL-2303 converter now
attached to ttyUSB0

minicom -s

 Appendix A: Connecting a Laptop to the Service Processor 27

5. Change the ‘E’ setting to reflect the following settings:

! Speed: 115200

! Parity: None

! Data: 8

! Stopbits: 1

6. Press ‘Enter’ to exit.

7. Hardware and software flow control should be turned ‘off’. Go back to the
‘Configuration’ menu by pressing ‘Enter’ at the ‘Serial port setup’ menu.

8. Select the ‘Modem and dialing’ menu to clear the ‘init’ strings for modem
communications. Clear the ‘A’ and ‘B’ options from the menu and leave them blank. Press
‘Enter’ at the ‘Modem and dialing parameter setup’ menu to return to the
‘Configuration’ menu.

9. Select ‘Save setup as dfl’ to save these settings.

10. Run minicom with the new settings.

Connecting via a Windows Platform

The following steps detail how to connect to the serial port via a Windows platform.

1. Connect the USB-to serial-adapter to the laptop or workstation and the serial port.

2. Windows requires a driver disk for this device. Insert the provided CD in the drive and
inform the Wizard the driver for the new hardware is to be provided. Windows then
searches for the driver in the CD and identifies the new hardware as a USB-to serial-
device assigning it a COM port. For example, it could be COM5.

3. To determine which COM port is assigned to the USB-to-serial adapter, open the
Windows Device Manager (My Computer > properties > Hardware > device manager)
and look under ‘Ports (COM & LPT)’ and identify the USB-to serial-adapter or ‘bridge’
and which COM port is assigned to it.

4. Next, open Hyperterm and type a name for this connection. When the initial setup screen
opens up, go to the bottom combination box and change the setting to whichever COM
port was discovered in Step 3 and press OK.

minicom

28 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

5. Change the terminal settings to be:

! Speed: 115200

! Parity: None

! Data: 8

! Stopbits: 1

! Flow control: None

Communicating to the Service Processor

Once the laptop or workstation is configured correctly and the communications program is
running, make sure the server is turned off (the OS is not running) and the laptop or
workstation is connected to the serial port.

If the server is new and has never been configured, press ‘Enter’ to trigger the login prompt
for the SP. If the SP's serial port behavior has been modified, it is necessary to access the SP
via the SSH/LAN interface to configure the SP to access it from the serial port. This is
accomplished by issuing the following command to the SP:

Now press ‘Enter’ at the platform console to trigger a login prompt from the SP. If this is the
first time the SP is accessed, use the setup user to proceed with the initial setup of the SP.
Otherwise, simply login to the SP.

Appendix B: Connecting a Terminal
Concentrator to the Serial Port
A terminal concentrator can provide several benefits when managing multiple servers. For
example, a terminal concentrator can access the SP of a server without first assigning an IP
address to the server. A terminal concentrator can provide an always on out-of-band
connection to a number of servers.

The following components are required to connect a terminal concentrator to the serial port:

! DB-9 (female) to RJ-45 connector

! Rollover cable (flat, green cable that comes with CISCO terminal concentrator)

localhost$ platform set console -s sp -e -S <baud rate speed>

 Appendix B: Connecting a Terminal Concentrator to the Serial Port 29

1. Plug the DB-9 connector into the server's serial port and attach the rollover cable from the
connector to the terminal concentrator.

2. Access the terminal concentrator and make sure the settings for the port are:

! Speed: 115200

! Parity: None

! Data: 8

! Stopbits: 1

! Flow control: None

On CISCO terminal concentrators, the settings for the port should look like this:

smpk16-nts1#show line 97
 Tty Typ Tx/Rx A Modem Roty AccO AccI Uses Noise Overruns Int
 97 TTY 115200/115200- - - - - 13 22 1/2 -

Line 97, Location: “”, Type: “”
Length: 24 lines, Width: 80 columns
Baud rate (TX/RX) is 115200/115200, no parity, 1 stopbits, 8 databits
Status: Ready, Modem Speed Locked
Capabilities: EXEC Suppressed
Modem state: Ready
Modem hardware state: noCTS* noDSR* DTR RTS
Special Chars: Escape Hold Stop Start Disconnect Activation
 ^^x none - - none
Timeouts: Idle EXEC Idle Session Modem Answer Session Dispatch
 00:10:00 never none not set
 Idle Session Disconnect Warning
 never
 Login-sequence User Response
 00:00:30
 Autoselect Initial Wait
 not set
Modem type is unknown.
Session limit is not set.
Time since activation: 00:00:59
Editing is enabled.
History is enabled, history size is 10.
DNS resolution in show commands is enabled
Full user help is disabled
Allowed input transports are telnet.
Allowed output transports are pad v120 lapb-ta telnet rlogin.
Preferred transport is telnet.
No output characters are padded
No special data dispatching characters

30 Automating Initial Setup and Management of Sun Fire™ V20z and V40z Servers • June 2005

Once these settings are configured, the SP should be accessible via the terminal concentrator.
If there is no output from the console, make sure all the settings are correct. If there is still
no output, reboot the SP by either unplugging the power supplies and then plugging them
back in, or by accessing the SP via the LAN port and rebooting it using the command or by
press-and-holding the service processor's reset (||) button on the rear of the server:

About the Author
Jacques Bessoudo is the Technical Marketing Engineer Specialist on Field Engagement and
the blade platform. With Sun for seven years, Jacques started as a telco-oriented Systems
Engineer in the Mexico City sales office. He joined Technical Marketing with the Netra™
server group to support the field and sales development activities. He later joined the
Competitive Intelligence group providing technical insight on competitive platforms and
tracking/analyzing benchmark results, before moving to his current role.

References
Sun Fire V20z and V40z Server Architectures, A Technical White Paper, July 2004 (on
www.sun.com/servers/entry/v40z/arch-wp.pdf)

Sun Fire V20z and Sun Fire V40z Servers — Server Management Guide,
Part No. 817-5249-14 (on www.sun.com/products-n-solutions/hardware/
docs/Servers/Workgroup_Servers/Sun_Fire_V20z/index.html)

Sun Fire V20z and Sun Fire V40z Servers Installation Guide, Part No. 817-5246-15
(on www.sun.com/products-n-solutions/hardware/docs/Servers/
Workgroup_Servers/Sun_Fire_V20z/index.html)

How to Update Sun Fire V20/40z SP and Platform Firmware/BIOS, SunSolve ID: 79931
(on sunsolve.sun.com, insert ID into “Search Knowledgebase” search box)

localhost$ sp reboot

 Accessing SunSolve Online 31

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If
you live in the United States, Canada, Europe, or Japan, you can purchase documentation
sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com Web site enables access Sun technical documentation online, where it
is possible to browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com/

To reference Sun BluePrints™ OnLine articles, visit the Sun BluePrints OnLine Web site at:
http://www.sun.com/blueprints/online.html/

Accessing SunSolve Online
The sunsolve.sun.com Web site is a portal for support resources, features and articles,
product support sites, Sun alerts, and diagnostic tools. Sun support customers can access
even more information with their Sun support user name and password.

