
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Solaris™ Operating System and
ORACLE Relational Database
Management System
Performance Tuning

Ramesh Radhakrishnan, Sun Professional Services

Sun BluePrints™ OnLine—October 2003

Part No.: 817-3835-10
Revision A
Edition: October 2003

Please
Recycle

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Sun BluePrints, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service,
de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC
sont basés sur une architecture développée par Sun Microsystems, Inc.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Solaris™ Operating System and
ORACLE Relational Database
Management System Performance
Tuning

When a user experiences a performance problem, any one of the tiers used by the
application could be causing the problem. For example, in a Web-based application,
the problem could be in any one of the following tiers:

■ End User Desktop (Client Tier)

■ Web Server (Presentation Tier)

■ Application Server (Business Tier)

■ SQL Net/JDBC (Integration Tier)

■ ORACLE database (Resource Tier)

The problem could also be in any of the networks that connect these tiers together.

This article focuses on the performance problems at the Resource Tier (database
server). The assumption is that the database server is a Sun server running an
ORACLE Relational Database Management System (RDBMS). The article requires a
general knowledge of Solaris™ Operating System (Solaris OS) and Oracle RDBMS
system administration and is written for beginner- and intermediate-level system
administrators responsible for managing Sun systems, Sun's customer engineers,
and database administrators responsible for tuning Oracle databases.

The article covers the following topics:

■ “Solaris OS Performance Tuning” on page 2

■ “ORACLE Performance Tuning” on page 23
 1

Solaris OS Performance Tuning
This section covers the following topics:

■ High-Level Diagnosis” on page 2

■ Diagnosing and Tuning Application and Memory Related Performance Problems”
on page 3

■ Identifying CPU Level Bottlenecks” on page 19

■ Preferred Practices Related to Tuning Disk I/O Performance” on page 20

■ Tuning Swap Space” on page 22

High-Level Diagnosis
You should first try to determine whether or not there is a really a performance
problem. A few things to consider are:

1. If a system is overloaded (an unusually large number of users or transactions in an
On-Line Transaction Processing (OLTP) environment or a larger data set than normal
for batch processes), it needs more resources. These conditions do not necessarily
mean that there is a performance bottleneck.

2. Always collect and keep baseline numbers for user-perceived performance such
as:

- Time taken for key batch jobs to complete

- Response times for commonly used queries

- Overall system utilization levels

This data will help you verify if there is really a performance problem and, if so,
how bad the problem is.

3. If the users’ response time has increased, but the number of users and number of
transactions have not changed, there may be a bottleneck in the system or in the
application being used.

4. Someone seeing higher numbers in the output of a UNIX command does not
necessarily mean that there is a performance problem. Also, someone saying that the
system is “sluggish” also does not necessarily mean that there is a performance
problem.
2 Solaris OS Performance Tuning • October 2003

Before you start the tuning process, make sure you get a baseline of the current
performance of the database server. Documenting some hard numbers such as
current cache hit rate, current scan rates, and so on will help you understand how
much the tuning process improves performance.

The first step is gathering statistical data about the system behavior. Data gathering
can be done either with bundled utilities (mpstat, iostat, and so on) or the SE
Toolkit.

Download and install the SE Toolkit in /opt/RICHPse if it is not already installed.
The SE Toolkit is located at:

http://www.setoolkit.com/.

After you download and install the SE Toolkit, run the GUI-based executable as
follows:

Caution – Do not run SE in a production environment. It is ok to run it in a
development or test environment. If you have to run SE in a production
environment, run it as a non-root user.

This command brings up a very nice GUI interface to SE and immediately helps
identify resource shortages in the areas of memory, I/O, network, CPU utilization, or
other kernel resource contention such as “spin on mutexes” or other lock mechanisms.
Now you have a general idea of where in the system there are resource shortages, if
any. The SE GUI also allows you to drill down a little further and gives you more
diagnostic information. FIGURE 1 is a screenshot of the SE GUI. When you select any
item, you can find more details. For example, if Disk is red, selecting Disk shows you
the specific disks that are very busy.

Identifying a memory shortfall without the SE Toolkit is done by monitoring the
scan rate (sr) column of vmstat output. If the page scanner never runs (sr is zero),
memory is fine. If the page scanner is running, memory is running tight (this rule
applies only to Solaris 8 and Solaris 9 OSs).

Diagnosing and Tuning Application and Memory
Related Performance Problems
This section explains how to drill down further and investigate memory usage on
the system as it relates to applications’ performance. This is what you should do if
the SE Toolkit points to RAM shortages.

/opt/RICHPse/bin/se /opt/RICHPse/examples/zoom.se
 Solaris OS Performance Tuning 3

http://www.setoolkit.com/

▼ To Diagnose Memory-Related Problems
1. Try to identify the top two or three processes that are using a large portion of the

system resources such as CPU and memory. This identification can be done using
the toptool as follows:

FIGURE 1 SE Toolkit GUI

/opt/RICHPse/bin/se /opt/RICHPse/examples/toptool.se
4 Solaris OS Performance Tuning • October 2003

FIGURE 2 shows the toptool output.

FIGURE 2 Toptool Output
 Solaris OS Performance Tuning 5

At the top of this output you can see some pertinent information related to memory.
You can see the total physical memory on the system and the amount of available
memory. The list of processes is sorted by CPU usage. Observe the top few
processes. The SIZE column tells you the amount of memory that this process uses,
and the RSS column tells you the amount of resident memory (amount of physical
memory actually in use). The total process address space includes physical memory
allocated, Virtual Memory (VM) pages on disk and pages that have been allocated by
the application (for example, by malloc()), but have never been touched.

The CPU % column tells you the percentage of CPU that this process utilizes. Note
that the toptool output is sorted by CPU usage and not memory usage. Use this
information as an initial diagnosis of which application processes are major
consumers of the system resources.

A new top-like tool called prstat is bundled into Solaris 8 and Solaris 9 OS. This
tool is much better than toptool and is more useful for diagnosis as discussed in
the following paragraphs. CODE EXAMPLE 1 shows the output of prstat.

CODE EXAMPLE 1 prstat Output

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
102602 root 5240K 4328K cpu0 60 -20 29:02:17 9.2% nfsd/44
100438 root 3304K 2448K sleep 59 0 1:23:22 0.7% in.routed/1
102682 root 9384K 9088K sleep 59 0 1:14:07 0.6% mibiisa/7
100420 root 2496K 1368K sleep 58 0 0:28:51 0.3% in.mpathd/1
102650 root 47M 46M sleep 59 0 5:24:37 0.3% iCald.pl6+RPATH/2
100502 root 2912K 2320K sleep 54 0 0:49:59 0.2% rpc.rstatd/1
472925 jackaa 5824K 4984K sleep 59 0 0:00:02 0.2% imapd-daemon/1
468294 michely 3552K 2792K sleep 59 0 0:00:05 0.1% imapd-daemon/1
100542 root 8880K 6656K sleep 59 0 6:46:42 0.1% automountd/3
100520 root 2464K 1880K sleep 59 0 0:16:10 0.1% lockd/11
482764 rmc 1848K 1376K sleep 40 0 0:00:00 0.1% ksh/1
100497 root 4888K 3512K sleep 59 0 0:09:27 0.1% in.named/1
100468 root 4912K 3408K sleep 58 0 0:14:14 0.1% rpcbind/1
442441 chrish 6544K 5728K sleep 55 0 0:00:26 0.1% imapd-daemon/1
326502 joemil 20M 19M sleep 59 0 0:03:01 0.1% imapd-daemon/1
359054 ellisonl 9640K 8808K sleep 59 0 0:03:44 0.0% imapd-daemon/1
221207 cpullela 13M 12M sleep 59 0 0:01:04 0.0% imapd-daemon/1
482780 rmc 4728K 4352K cpu8 30 0 0:00:00 0.0% prstat/1
101278 root 4472K 2112K sleep 59 0 0:06:35 0.0% sendmail-8.12.8/1
436716 root 4480K 3096K sleep 59 0 0:00:54 0.0% in.ftpd/1
481974 macaccia 7032K 6216K sleep 59 0 0:00:36 0.0% imapd-daemon/1
467156 root 7312K 5976K sleep 59 0 0:00:05 0.0% nwadmin/1
482761 ravindra 3296K 2456K sleep 59 0 0:00:00 0.0% imapd-daemon/1
482664 root 4488K 3144K sleep 59 0 0:00:00 0.0% in.ftpd/1
473114 morteza 3800K 2992K sleep 49 0 0:00:03 0.0% imapd-daemon/1
477846 saraseth 5696K 4864K sleep 59 0 0:00:05 0.0% imapd-daemon/1
100573 root 7720K 6456K sleep 59 0 0:06:02 0.0% nscd/43
6 Solaris OS Performance Tuning • October 2003

By default, prstat lists the processes running on a system, sorted by CPU
utilization. Note the numbers in the TIME column to see if a process has been
running longer than it should. In this output, each process is not broken down into
light weight processes (LWPs). Only the number of LWPs per process appears
following a "/" after the process name in the last column. LWPs and their
corresponding kernel threads allow multiple streams of execution within a single
VM environment. The advantage of using LWPs is that they do not require VM
context switches.

Note – An LWP is a virtual execution environment for each kernel thread within a
process. It allows each kernel thread within a process to make system calls
independent of other kernel threads within the same process.

The prststat -L output (CODE EXAMPLE 2) shows each LWP for a multi-threaded
process. This will allow you to find out for sure if an application in question is
multithreaded and is taking advantage of multiple CPUs on the system.

482557 paterson 3448K 2616K sleep 59 0 0:00:00 0.0% imapd-daemon/1
227647 jparcel 6272K 5504K sleep 59 0 0:00:36 0.0% imapd-daemon/1
199783 janani 13M 12M sleep 59 0 0:00:49 0.0% imapd-daemon/1
482628 root 5144K 2888K sleep 59 0 0:00:00 0.0% sendmail-8.12.8/1
464130 lucysa 18M 17M sleep 59 0 0:01:23 0.0% imapd-daemon/1
225182 rascal 17M 16M sleep 59 0 0:02:10 0.0% imapd-daemon/1
482284 root 5136K 4168K sleep 29 10 0:00:03 0.0% nsrmmdbd/1
459115 bkerr 18M 17M sleep 59 0 0:00:57 0.0% imapd-daemon/1
482631 root 2912K 1632K sleep 59 0 0:00:00 0.0% mail.local/1

CODE EXAMPLE 2 prstat -L Output

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/LWPID
481965 clamb 14M 11M cpu8 0 0 0:00:29 2.4% imapd-daemon/1
100542 root 8880K 6656K sleep 59 0 3:09:25 2.3% automountd/1
483323 asd 7720K 6376K cpu9 60 0 0:00:02 0.9% imapd-daemon/1
102650 root 47M 46M sleep 59 0 2:07:15 0.5% iCald.pl6+RPATH/2
100438 root 3304K 2448K sleep 59 0 1:23:26 0.3% in.routed/1
458482 ktheisen 15M 14M sleep 59 0 0:01:14 0.2% imapd-daemon/1
102602 root 5240K 4328K sleep 60 -20 0:01:14 0.2% nfsd/657
102602 root 5240K 4328K sleep 60 -20 0:01:19 0.2% nfsd/650
102602 root 5240K 4328K sleep 60 -20 0:03:20 0.2% nfsd/616
102602 root 5240K 4328K sleep 60 -20 0:00:54 0.2% nfsd/662
479728 bubbva 3904K 3096K sleep 59 0 0:00:05 0.2% imapd-daemon/1
102602 root 5240K 4328K sleep 60 -20 0:01:20 0.2% nfsd/656
102602 root 5240K 4328K sleep 60 -20 0:03:22 0.2% nfsd/610
102602 root 5240K 4328K sleep 60 -20 0:06:55 0.2% nfsd/582

CODE EXAMPLE 1 prstat Output (Continued)

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 Solaris OS Performance Tuning 7

The prstat -m output (CODE EXAMPLE 3) includes the percentage of time a process
spends in system traps, text page faults, data page faults, waiting for user locks, and
waiting for CPU time. This will give you more information about where a slow
application is using its time. This may get you closer to answer the question "Why is
the application slow?”

102602 root 5240K 4328K sleep 60 -20 0:06:27 0.2% nfsd/593
102602 root 5240K 4328K sleep 60 -20 0:03:09 0.2% nfsd/619
102602 root 5240K 4328K sleep 60 -20 0:01:20 0.2% nfsd/654
102602 root 5240K 4328K sleep 60 -20 0:01:19 0.2% nfsd/652
102602 root 5240K 4328K sleep 60 -20 0:01:19 0.2% nfsd/651
102602 root 5240K 4328K sleep 60 -20 0:00:54 0.2% nfsd/664
102602 root 5240K 4328K sleep 60 -20 0:01:20 0.2% nfsd/655
102602 root 5240K 4328K sleep 60 -20 0:03:21 0.2% nfsd/609
102602 root 5240K 4328K sleep 60 -20 0:07:04 0.2% nfsd/559
100502 root 2912K 2320K sleep 59 0 0:50:02 0.2% rpc.rstatd/1
102602 root 5240K 4328K sleep 60 -20 0:00:54 0.2% nfsd/661
102602 root 5240K 4328K sleep 60 -20 0:06:28 0.2% nfsd/598
102602 root 5240K 4328K sleep 60 -20 0:00:54 0.2% nfsd/659
102602 root 5240K 4328K cpu16 60 -20 0:06:02 0.2% nfsd/602
102602 root 5240K 4328K sleep 60 -20 0:01:15 0.2% nfsd/647
102602 root 5240K 4328K sleep 60 -20 0:05:37 0.2% nfsd/604
102602 root 5240K 4328K sleep 60 -20 0:01:29 0.2% nfsd/645
102602 root 5240K 4328K sleep 60 -20 0:01:30 0.2% nfsd/640
102602 root 5240K 4328K sleep 60 -20 0:07:53 0.2% nfsd/422
102602 root 5240K 4328K sleep 60 -20 0:06:33 0.2% nfsd/601
102602 root 5240K 4328K sleep 60 -20 0:06:36 0.2% nfsd/578
102602 root 5240K 4328K sleep 60 -20 0:01:15 0.2% nfsd/649
 534 root 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 15 0 15 0 httpd/1
Total: 163 processes, 275 lwps, load averages: 0.07, 0.07, 0.07

CODE EXAMPLE 3 prstat -m Output

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP
 739 root 0.3 0.3 0.0 0.0 0.0 0.0 99 0.0 126 3 345 5 Xsun/1
 15611 root 0.1 0.3 0.0 0.0 0.0 0.0 100 0.0 23 0 381 0 prstat/1
 1125 tlc 0.3 0.0 0.0 0.0 0.0 0.0 100 0.0 29 0 116 0 gnome-panel/1
 15553 rmc 0.1 0.2 0.0 0.0 0.0 0.0 100 0.0 24 0 381 0 prstat/1
 5591 tlc 0.1 0.0 0.0 0.0 0.0 33 66 0.0 206 0 1K 0 mozilla-bin/6
 1121 tlc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.1 50 0 230 0 metacity/1
 2107 rmc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 25 0 36 0 gnome-termin/1
 478 root 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 17 0 14 0 squid/1
 798 root 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 11 0 23 0 Xsun/1
 1145 tlc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 25 1 34 0 mixer_applet/1
 1141 rmc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 25 0 32 0 mixer_applet/1
 1119 tlc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 5 0 40 0 gnome-smprox/1

CODE EXAMPLE 2 prstat -L Output (Continued)

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/LWPID
8 Solaris OS Performance Tuning • October 2003

The prstat -t output (CODE EXAMPLE 4) lists the CPU and memory resource usage
summary for each user. This is also very useful to determine where the resource
consumption is. As an example, if an application is slowed down because a single
user has issued a complex and inefficient query.

 1127 tlc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 7 0 29 0 nautilus/3
 1105 rmc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 7 0 27 0 nautilus/3
 713 root 0.0 0.0 0.0 0.0 0.0 85 15 0.0 2 0 100 0 mibiisa/7
 174 root 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 5 0 50 5 ipmon/1
 1055 tlc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 5 0 30 0 dsdm/1
 15493 rmc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 2 0 4 0 rlogin/1
 1103 rmc 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 6 0 4 0 gnome-panel/1
 1025 tlc 0.0 0.0 0.0 0.0 0.0 20 80 0.0 29 0 45 0 utaudio/5

CODE EXAMPLE 4 prstat -t Output

NPROC USERNAME SIZE RSS MEMORY TIME CPU
 128 root 446M 333M 1.4% 47:14:23 11%
 2 measter 6600K 5016K 0.0% 0:00:07 0.2%
 1 clamb 9152K 8344K 0.0% 0:02:14 0.1%
 2 rmc 7192K 6440K 0.0% 0:00:00 0.1%
 1 bricker 5776K 4952K 0.0% 0:00:20 0.1%
 2 asd 10M 8696K 0.0% 0:00:01 0.1%
 1 fredz 7760K 6944K 0.0% 0:00:05 0.1%
 2 jenks 8576K 6904K 0.0% 0:00:01 0.1%
 1 muffin 15M 14M 0.1% 0:01:26 0.1%
 1 dte 3800K 3016K 0.0% 0:00:04 0.0%
 2 adjg 8672K 7040K 0.0% 0:00:03 0.0%
 3 msw 14M 10M 0.0% 0:00:00 0.0%
 1 welza 4032K 3248K 0.0% 0:00:29 0.0%
 2 kimc 7848K 6344K 0.0% 0:00:25 0.0%
 4 jcmartin 13M 9904K 0.0% 0:00:03 0.0%
 1 rascal 17M 16M 0.1% 0:02:11 0.0%
 1 rab 3288K 2632K 0.0% 0:02:11 0.0%
 1 gjmurphy 3232K 2392K 0.0% 0:00:00 0.0%
 1 ktheisen 15M 14M 0.1% 0:01:16 0.0%
 1 nagendra 3232K 2400K 0.0% 0:00:00 0.0%
 2 ayong 8320K 6832K 0.0% 0:00:02 0.0%
Total: 711 processes, 902 lwps, load averages: 3.84, 4.30, 4.37

CODE EXAMPLE 3 prstat -m Output (Continued)

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP
 Solaris OS Performance Tuning 9

2. Next, try to find out if there is a real memory crunch on this system.

At this point, it is assumed that there is a performance problem perceived by the
application users, or an application developer has found out that some batch
processes are running slower than usual.

Run vmstat. In Solaris 8 OS and above, if the scan rate (sr column) is very high, you
have a real memory shortage. In older versions of the Solaris OS (before Solaris 8), in
addition to non-zero scan rates, if you see physical disk I/Os to the swap device,
you have a real memory shortage.

A scan rate of a few hundred pages for a few seconds cannot be considered as high
on a server with 128 gigabytes of real memory that is using a 16-megabyte memory
page size. Conversely, a scan rate of a few hundred pages is high for a server with
eight gigabytes of real memory that is using a 1-megabyte memory page size.

On systems running Solaris OS versions older than Solaris 8, if priority paging is not
turned on, the high scan rate may result in application pages currently being used to
be paged out by the page scanner and the freed up memory could be used to cache
file system pages. By turning on priority paging, (priority paging is obsoleted in the
Solaris 8 and Solaris 9 OSs by the new cyclic VM page cache) pages associated with
executables, shared libraries, and application process memory are given the highest
priority and file cache pages are given the lowest priority. This method prevents
application pages from being paged out by the page scanner until there is a real
memory shortage.

Caution – DO NOT use set priority_paging=1 on systems running Solaris 8
OS and above.

If the vmstat output shows high scan rates, further diagnosis can be done using
vmstat -p (Solaris 8 OS and above) to find out if the pageouts are very high for
application pages (which is bad for application performance) or for file cache pages.

Note – This option is not available before the Solaris 8 OS. In the Solaris 7 OS, this
option is available as memstat, a simple command -line utility.

CODE EXAMPLE 5 shows the output of vmstat -p. In addition to overall paging
statistics, it breaks down page-ins, page-outs, and pages freed for executable and
library pages, anonymous pages (application heap and stack), and file pages.

CODE EXAMPLE 5 vmstat -p Output

<hostname>:/home/rramesh 3 % vmstat -p 5 10
 memory page executable anonymous filesystem
 swap free re mf fr de sr epi epo epf api apo apf fpi fpo fpf
 48781328 2016832 60 1546 28 0 16 9 0 1 7 13 14 46 11 13
 40812320 242936 13 3417 27 0 0 2 0 0 2 0 0 158 27 27
10 Solaris OS Performance Tuning • October 2003

3. For a more detailed analysis of memory usage, install the MemTool program.

This program is available at:

http://www.solarisinternals.com/si/tools/memtool/index.php.

This tool comes with several utilities and also has a GUI interface. After you install
memtool, run the prtmem utility. This utility generates an overall breakdown of the
memory layout on your system. For example, running prtmem on a system produces
the following output:

In this system, the Solaris OS uses one gigabyte of memory for kernel pages. Oracle
and other applications use 12 gigabytes. Because the Oracle application is very I/O
intensive, most of the remaining memory is used to cache file-system pages.

Note – This is true only if the Oracle data files reside on file systems. This is not true
if the Oracle database is on a raw device, or if direct I/O is turned on for the file
systems in which the Oracle data files exists.

This output gives you a clear idea of how memory usage is distributed in this
system.

Use caution while using memtool on a production system. Occasionally it could
cause system panics if there are patch incompatibilities on the system.

 40812384 237768 33 2043 65 0 0 2 0 0 0 0 0 18 65 65
 40811960 235752 71 1571 2 0 0 0 0 0 13 0 0 752 2 2
 40808736 229576 7 2305 3 0 0 8 0 0 513 0 0 32 3 3
 40806672 227608 198 3074 10 0 0 125 0 0 304 0 0 363 10 10

Total Real Memory - 40 GBytes
Application Memory - 12 GBytes
Kernel Memory - 1 GBytes
File System Cache Memory - 26 GBytes
Free Memory - 1 GBytes

CODE EXAMPLE 5 vmstat -p Output (Continued)

<hostname>:/home/rramesh 3 % vmstat -p 5 10
 Solaris OS Performance Tuning 11

http://www.solarisinternals.com/si/tools/memtool/index.php

An alternative to memtool’s prtmem command in the Solaris 9 OS is the ::memstat
dcmd that is integrated into mdb (CODE EXAMPLE 6).

4. Run the memtool GUI using the following command:

The memtool GUI has three types of displays—Process Memory, Process Matrix, and
VFS Memory. First select the Process Memory display from the display type list.
FIGURE 3 shows this display.

You will see a list of processes. For each process, the virtual column tells you the
total virtual memory (RAM plus swap space) used by that process. The resident
column tells you how much actual physical memory is used by the process. The
shared column tells you how much resident memory is shared with other processes.
For example, a shared library used by several processes. Finally, the private column
tells you how much of the resident memory is used only by this process. This
information is useful to determine how much real memory is used by this process.

5. Click the Process Matrix tab on the Display type.

The resulting display can be used to look at the virtual memory address space used
by each process. FIGURE 4 shows this display. The process matrix shows the
relationship between processes and their memory mapped files. Within a process's
address space you can see the breakdowns of memory used by the various libraries
and by heap (private, application allocated memory). This gives you more details
about where the memory usage is located.

CODE EXAMPLE 6 mdb Output

mdb -k
Loading modules: [unix krtld genunix ip ufs_log logindmux ptm cpc sppp ipc
random nfs]
> ::memstat
Page Summary Pages MB %Tot
------------ ---------------- ---------------- ----
Kernel 4550 35 15%
Anon 13416 104 44%
Exec and libs 9222 72 30%
Page cache 2945 23 10%
Free (cachelist) 433 3 1%
Free (freelist) 114 0 0%

Total 30680 239

/opt/RMCmem/bin/memtool &
12 Solaris OS Performance Tuning • October 2003

FIGURE 3 Process Memory Display
 Solaris OS Performance Tuning 13

FIGURE 4 Process Matrix Display
14 Solaris OS Performance Tuning • October 2003

6. Click on the VFS memory tab.

This displays the list of files that are being cached by the file system cache. FIGURE 5
shows this display. Note that all remaining memory not used by any process is
automatically used for caching file-system pages.

FIGURE 5 VFS Memory Display
 Solaris OS Performance Tuning 15

So far you have seen how to use memtool to get detailed breakdowns of memory
usage in the system. When used effectively, you can determine the reasons for
memory shortage, which is usually caused either by very high application loads or
poor application programming. Also, it is possible that the system may not be
configured with enough memory for the amount of load on the system. You can
identify memory leaks in an application by carefully observing the “private”
column. If the number keeps growing indefinitely, it is possible that the application
has a memory leak.

Intimate Shared Memory

Now you should investigate to see if Intimate Shared Memory (ISM) has been
turned on. ISM is a performance-enhancing feature that can be used on systems that
use shared memory. This feature is useful only if the application uses shared
memory extensively.

ISM has the following key advantages and, in some cases, can boost performance by
100 percent or more:

■ In addition to letting applications share the same real-memory segment, ISM locks
the pages in real memory and prevents them from being paged out to disk.

■ ISM causes all application processes to share the same memory segment and the page
table entries (PTEs) for that segment. This results in fewer lookups in the address
translation tables, which are used to translate virtual-memory addresses to real-
memory addresses.

■ ISM also uses a four-megabyte (large) page size, which decreases the number of
address translations per application.

How do you determine whether or not an application is using ISM? Unfortunately,
in Solaris OS versions prior to version 8, this information is not easy to determine.
For example, there is no single command that will tell you this, but here is a simple
four-step process that will help.

1. Find the PID of the application process by using ps -ef | more.

2. Use pmap -x PID to find out if the application is using shared memory.

The third column is labeled Shared; if this column has a significant number of
kilobytes for the corresponding row where the application name is found, this
application uses shared memory. For example, there are other processes sharing the
same memory segment.

3. Find the process table slot for this PID.

Start the crash utility as the root user. Then type p to find out the slot number in the
first column for the corresponding PID in the third column. Then type p slot # to
confirm the slot number.
16 Solaris OS Performance Tuning • October 2003

4. Find out what segment driver this process is using to map the shared memory
segment.

Type -f slot # from Step 2. This command lists the address space for this process. The
sixth column lists the segment driver used to map this segment into the address
space. If the driver used by this application is segvn_ops, the application does not
use ISM. If the driver used is segspt_shm, this application is using ISM. This driver
applies Oracle applications too. Solaris 8 OS and above, the pmap utility displays
ISM segments in a process address space.

In the Solaris 8 OS, it is easy to find out whether or not a process is using ISM. Find
the PID of the process, then type the following command

Look for the segspt_shm driver in the shared column. If this driver is being used,
ISM is being used.

Detecting Memory Leaks

Sometimes legacy applications have memory leaks, and the customer may already
suspect this. To confirm whether or not an application has a memory leak, use the
following procedure.

1. Find the PID of the application process and run pmap -x PID.

2. Look at the column labelled Mapped file.

Under this column, look for the heap segment.

3. Find the corresponding entry in the Private column.

This is the heap size of the application. The heap size corresponds to the amount
of memory allocated by the application through malloc.

For applications that have memory leaks, the heap size will continue to grow
indefinitely at different rates based on how serious the leak is. Running pmap
repeatedly can help detect memory leaks.

Note – In some applications, the heap size will grow to a large number immediately
after startup, and then reach a steady-state value. In that case, it does not constitute
a memory leak.

pmap -x PID
 Solaris OS Performance Tuning 17

Once a memory leak is confirmed, there are several tools you can use to further
narrow down the root cause. You can use the truss command to trace through all
the system calls executed by the application, and to identify the behavior of the
application during the leak. At this point, further understanding of the application is
required.

The following is example for a hard-to-detect memory leak problem that was
encountered at a customer site. The customer's application was loading rows from a
database table into a fixed-size array. The application developer thought that the
length of the row could never exceed a certain number x based on recent activity, so
the developer fixed the size of the array to x. But when the system went into
production, there were other Internet-based systems that updated the database with
row lengths longer than the value x. This situation resulted in a memory out-of-
bounds error.

Memory Tuning Preferred Practices

1. For the Solaris 7 OS, explicitly turn on priority paging to improve application
performance. Set the following tuning parameter in the /etc/system file:

This parameter should not be set for Solaris OS versions 8 and above because the file
system pages are considered separately and can be freed without the page scanner.
This reduces the possibility of severe paging problems.

2. Page-outs are normal if the database is on a UFS file system. Using direct I/O (by
setting the forcedirectio while mounting the database file systems) and
bypassing the file system cache may improve database performance significantly,
but this should be done only for file systems in which database files and redo log
files exist. If direct I/O is used and there is not enough database buffer cache, it may
even decrease the performance by moving the problem from double buffering to a
lack of database buffer cache. So, this performance tuning must be planned carefully,
and the database buffer cache should be sized properly. The direct I/O option
should not be used for other file systems used by other applications because they
still need the UFS buffer cache.

2. Make sure that ISM is turned on at the database level for database servers. ISM
will prevent database pages from being paged out.

3. Move applications, other than the database, to other servers if they are high-
resource consumers.

4. Add more memory to your system only if:

■ You are certain that you are already using direct I/O for the database.

set priority_paging=1 (Solaris 7 Only)
18 Solaris OS Performance Tuning • October 2003

■ You have low database level cache hit rates

■ You need more memory to increase the Oracle system global area (SGA) size (by
increasing the database buffers)

Identifying CPU Level Bottlenecks
The SE Toolkit helps you identify whether there are CPU bottlenecks. If the
runqueue size (r column) is large in the output of vmstat, it is generally not good,
but for a system with a large number of CPUs, this may be normal. If the blocked on
I/O (b column) has a high number, it is not a CPU issue, but rather a disk I/O issue.

By default, running toptool (see “High-Level Diagnosis” on page 2) sorts the
output based on CPU utilization. At the top of this output, you can see the top few
applications with heavy CPU usage. You can use the mpstat utility to check CPU
utilizations. Sometimes, even when all of the CPUs on a system show some
percentage of idle time, you can get a multiprocessor overload message from the SE
Toolkit utilities. This message further indicates that there are too many spins on
mutex locks.

The mutex locking mechanism in the Solaris OS is used to share certain resources.
Traditionally, if a process needs a mutex lock, it will either spin or block. If a
process spins, it essentially wastes CPU cycles but does not get context switched
out. If it blocks, it gets context switched out but lets other processes use the CPU
cycles without wasting them. The disadvantage of this is that the blocked
processes have to be context switched back into the CPU, which may result in
several wasted CPU cycles.

To take care of this problem, the adaptive mutex feature was introduced in Solaris
OS version 2.6. With this feature, if a process needs a mutex lock, and if the process
holding it is already running on another CPU, this process will spin, otherwise it
will block.

On a customer's system, running lockstat to further analyze the spin on mutexes
showed that there were a total of 96,921 adaptive mutex locks at the time of the 5-
second snapshot. There were actually 8,000 mutex stalls per second.

The top lock (highest number of locks held) was for ph_mutex+0xe8. The caller was
page_create_va+0x694. The lock count for this particular lock was 50,223.

Note – At this point, the page_create_va kernel routine must be further
investigated. This gets into the realm of the kernel developers at Sun. You can defer
to Sun support services to escalate the problem so it can be brought to the attention
of Sun's kernel engineers.
 Solaris OS Performance Tuning 19

You can also use the truss system call to trace a process. If truss shows a high
number of lseek system calls being used, it indicates that the application is using
the read() and/or write() system call.

To reduce the number of system calls, the preferred practice is to use the pread()
and pwrite() system calls which do not need an lseek.

Preferred Practices Related to CPU Performance

1. Use the vmstat output r column to find the run queue size. Use this information
and the number of CPUs on the system to find out if the run queue size is really
too high.

2. Use toptool or prstat to find out the top few processes using most of the
resources. If any of them are not database processes, see if you can move them to
other systems.

3. Use prstat with various options as discussed in “To Diagnose Memory-Related
Problems” on page 4.

4. Use Solaris OS dynamic reconfiguration (DR) to add resources to the system.
Adding resources is possible only on high-end Sun systems using dynamic
system domains, and only if there is an open slot in which to add another system
board.

Preferred Practices Related to Tuning Disk I/O
Performance
Run the statit program on your system for a few minutes. The statit
program is available at:

Http://www.solarisdatabases.com/#Utilities

1. When VERITAS volumes striped out of several disk drives are used to store
Oracle data, it will not be clear from the output of iostat or statit whether the
I/O load balancing is good enough. In that case, you must ensure that the
VERITAS volumes are load balanced properly. This can be done by running
vxstat, which is available in the VxVM binaries directory. Run vxstat by
entering:

vxstat
20 Solaris OS Performance Tuning • October 2003

Http://www.solarisdatabases.com/#Utilities

The output looks as follows:

If the last two columns, namely the average read and write times in milliseconds is
too high for some volumes, compared to all the other volumes, balancing the I/O
evenly across all volumes may be required.

2. For Online Transaction Processing (OLTP), Disk I/O utilization greater than 60
percent and disk response time (srv-ms output from running statit) greater
than 35 milliseconds is not good.

3. For DSS, in addition to the OLTP numbers, if many other I/O requests are queued
(as seen in the wait queue length in the output of statit), that is, if queueing
time contributes to response time, it is not good.

4. The iostat -p output shows disk statistics at the partition level, this information is
useful to find out which data file is responsible for a performance problem. If you are
using the VERITAS Volume Manager, using iostat is not very useful. Instead, use
vxstat; it will give you information about volumes that are associated with high
I/O.

5. Increasing the stripe width (the number of disks used to create a volume)
improves performance.

6. Try not to have more than one volume associated with a database on the same disk.

7. Increase the database buffer cache size in addition to using direct I/O.

OPERATIONS BLOCKS AVG TIME(ms)
TYP NAME READ WRITE READ WRITE READ WRITE

Fri Jul 25 17:46:27 2003
vol disk01 6130656 804432 265482998 75692270 3.1 7.0
vol disk02 11581349 761603 471784276 75035712 2.8 7.4
vol disk03 17430583 19262819 3127664814 810497081 15.1 3.3
vol disk04 17223344 20607064 3076194388 985526668 14.8 3.7
vol disk05 18016195 19362227 3165996510 847390081 14.3 3.5
vol disk06 18052481 21862803 3154963120 1016905958 14.4 3.6
vol disk07 18120065 19020421 3146701564 788101424 13.2 3.6
vol disk08 18157402 20811471 3133572096 956931071 14.0 3.9
vol disk09 17510325 18539485 3092326865 753458786 13.9 3.6
vol disk10 17663278 19499439 3114184122 831997766 13.5 3.9
vol disk11 17285112 17906006 3111502168 664347037 13.7 3.6
vol disk12 17045511 19081933 3093295772 758543460 14.9 3.8
vol disk13 11857014 20131782 3106909298 651882491 21.7 3.2
vol disk14 15490428 35125035 3299428944 1252929805 18.9 2.6
vol disk15 14723793 33604499 3217815302 1140042147 20.7 2.4
vol disk16 14935665 35615012 3227176072 1308088459 20.5 2.6
vol disk17 71 31527 520 63346 3.5 1.4
 Solaris OS Performance Tuning 21

8. Use more disk controllers and disk spindles for each data file.

Tuning Swap Space
Solaris OS version 8 and above have a new redesigned virtual memory (VM) system. A new
utility called prtswap, which is part of memtool can be found in
/opt/RMCMem/bin/prtswap. Running prtswap on the customer's system discussed
previously produces the following output:

Consider this output. The total physical memory configured on this system is 40
gigabytes. The total physical swap space (swap space on disk) configured on this
system is 28.359 gigabytes as shown in Physical Swap Configured. The sum of the
total physical memory (RAM) and the Physical Swap Configured will be the Total
Virtual Swap on this system, shown in Virtual Swap Total as 40 + 28.359 = 68.359
gigabytes. The new virtual memory system considers all of the real memory and all
of the swap space as one big virtual memory address space.

Note that Physical Swap Free on this system is 28.289 gigabytes. This means 28.359-
28.289 gigabytes = 0.07 gigabytes, that is, only 70 megabytes of actual disk swap is
being used, or only 70 megabytes of pages have been paged out to disk. This tells
you that this system is not paging out too much.

The Virtual Swap Reserved is 12 gigabytes. This is the same as the application memory
size shown in the prtmem output. This is because for each application page a
corresponding backing storage is reserved on disk even though it is not being used. This
storage is just in case the system reaches critical shortage and the page has to be copied
out to disk during a write.

On the customer's system, when running vmstat, the scan rate shown in the sr column is
very high, on the order of 3000+ pages per second. This does not necessarily indicate a
problem, because they have set the fastscan parameter in the /etc/system file on
this system to the maximum allowable. This makes sense because they are using the file
system extensively for I/O to the database, the page scanner has to scan 26 gigabytes of
file-system cache pages as fast as possible to get the best possible file system performance.

Virtual Swap Total 68.359 GBytes

Virtual Swap Reserved 12 GBytes

Free 56.359 GBytes

Physical Swap Configured 28.359 GBytes

Physical Swap Free 28.289 GBytes
22 Solaris OS Performance Tuning • October 2003

If the scan rate is too high, it is likely that the database is running on the Unix File System
(UFS) without direct I/O. At a minimum, the redo log files should be on direct I/O, and if
the SGA buffer cache is large enough, the data files should also be on direct I/O.

Preferred Practices Related to Swap Space

Make sure that there is enough backing storage for application pages in memory.

ORACLE Performance Tuning
ORACLE has been working on improving the performance of the Oracle databases
at a feverish pace, as evidenced by several recent new versions of the software.
Oracle realized that customers had started using Oracle for very large (multiple-
terabyte) databases. To help customers maintain and tune these large databases, the
company has come up with several self-tuning features in Oracle9i.

This section discusses the latest tools available to tune Oracle up to the latest release
of Oracle8i.

The first thing to check when tuning Oracle is making sure ISM is turned on. In
Oracle version 8.0.x, this can be done by setting the init.ora parameter
use_ism=true. In Oracle 8.1.x, ISM is turned on by default, so no action is needed.
If you are still not sure if the system you are tuning has ISM turned or not for the
Oracle database, follow the procedure outlined in “Intimate Shared Memory” on
Page 12. The advantages of using ISM are also clearly outlined in that section.

Collecting and Analyzing Oracle Performance Data

This section discusses how to tune the Oracle database if you suspect a performance
issue. and outlines two methods of collecting Oracle performance data. The first
method uses SQL queries to collect data from the well-known v$ Oracle tables such
as v$system_event, v$latch, and so on. The second method uses Oracle-supplied
utilities such as utlbstat and utlestat (formerly known as bstat and estat) to
collect Oracle performance data.
 ORACLE Performance Tuning 23

Method 1

In this method, you start by looking at the alert log for the last few days for the
Oracle database instance for which performance data is being collected. Often the
database administrator for the system can tell you where it resides.

Look for anything unusual in the alert log. This requires a good understanding of
how the Oracle SGA works to be able to glean relevant information. In the alert log,
you may notice too many log switches;. For example, there is approximately one log
switch every 35 seconds or so, and there are some messages indicating that the
archiver cannot keep up.

A log switch occurs when the log writer (LGWR) process in Oracle has completed filling up
a redo log file group and starts writing to a new one. A redo log file group consists of mirror
files for a redo log file. Most systems, and one customer's system in particular, have the
log_check_point_timeout interval set to a value to ensure that a checkpoint does not
take place in between log switches—this is good for this system. The log switches are quite
frequent and, during each one, the checkpoint process (CKPT) causes the DBWR process to
write all the dirty database buffer contents to a database file. You should investigate the
reason for the frequent redo log switches.

First you may want to confirm that the log switch is indeed a performance
bottleneck on this system. Run a simple query to check for event waits that will tell
you if the DBWR or LGWR is waiting on anything. The DBWR is the Oracle database
writer process. This process reads the Oracle buffers in the SGA (in real memory)
and writes them to database files on disk. The LGWR is the log writer process, which
reads the redo log buffers in memory and writes them to redo log files on disk.

Here is the query:

The output of this query lists various event waits. Look at each one of these event
waits. The average wait time is reported in centiseconds (1/100th of a second), but
the author has converted the averages to milliseconds in this document.

Select event, total_waits, time_waited
From v$system_event
Where event like `%file%'
Order by total_waits desc;
24 ORACLE Performance Tuning • October 2003

Event Wait 1
Event: Log file switch completion

The logfile switch completion is taking a long time because there are too many
log switches. A log switch takes place when a redo log file is full and the next redo
log file has to be used. The redo log files are too small (only 50 megabytes each) for
a 1.6 terabyte database. Although there are eight redo log groups, there is not
enough time for the archiver (ARCH) to finish its work (copying redo log files to
archive log files), and this results in waits for redo-log-switch completion.

Recommendations:

The following methods are ways to fix this problem.

■ Increase the redo log file sizes to 500 megabytes each and check if the log-switch
times have improved; if not, increase them to one gigabyte each. One possible side
effect of making the log files too large, is that, if the database crashes just before a
log switch, the time to recover the database will be higher. This is because, in this
case, the log checkpoint interval is set to checkpoint only during log switches and
there are no checkpoints in between log switches. To resolve this problem, the log
checkpoint interval can be tuned so that there will be a couple of additional
checkpoints in between log switches. There is always a trade off between increasing
and decreasing the frequency of checkpoints. Increasing the frequency of checkpoints
results in more writes to disks which will affect database performance. Decreasing
the frequency of checkpoints will affect the time to recover the database.

■ Increase the number of ARCH processes so that archive logging can go on in parallel.

■ Separate the archive log, redo log, and data files on different physical disk spindles
and disk controllers.

■ Disable redo logging and archive logging on certain tables (for example, the
temporary table space). This feature (no logging) can be used to turn off archive
logging when large tables are being loaded.

Total waits: 801

Total time waited: 78613 (1/100th of a second)

Average time waited: 981 ms
(786130 ms / 801 = 981ms)
 ORACLE Performance Tuning 25

Event Wait 2
Event: Db file sequential read

Note – An average wait time of 15 milliseconds or more is considered poor response
time for read requests on a cached read/write system. So this is within the range.

Event Wait 3
Event: Log File Sync

Note – This wait event occurs when a commit is issued, and the session must wait
for the redo buffer entry to be written to disk to guarantee that instance failure will
not roll back the segment. Since the average wait time is higher than 15 milliseconds,
this is considered poor performance.

Recommendations:

The following measures will help alleviate this problem.

■ Make sure the redo log files and the data files are not on the same physical disk
spindle or disk controller.

■ Ensure that the redo log files are striped across several disks.

■ Ensure that the redo log mirrors are on separate physical disk spindles.

■ Make sure there is enough cache in your storage arrays.

Although the DBA is able to separate the files across different logical volumes
presented, it is possible that the underlying physical disk spindle/controller is the
same.

 Total waits: 8547549

 Time waited: 3245440

 Average wait time per event: 3.79 ms

 Total waits: 135871

 Time waited: 320101

 Average time waited per event: 23.5 ms
26 ORACLE Performance Tuning • October 2003

Note – The following naming scheme for presenting the volumes to the DBA is
suggested. All volumes coming out of the same physical disk could be given the
same prefix, so that the DBA will clearly know whether or not any two volumes are
on the same physical disk.

Example:

Physical disk A, Physical disk B, Physical disk C, each 36 gigabytes in size.

VolA1, VolA2, VolA3 from disk A
VolB1, VolB2, VolB3 from disk B
VolC1, VolC2, VolC3 from disk C

Note – This naming scheme looks simple, but if striping is used, it can become more
complex when each volume is pieced together by using parts of disks A, B and C.

For example:

VolABC1 from disk A, disk B and disk C
VolABC2 from disk A, disk B and disk C
VolDEF1 from disk D, disk E and disk F
VolDEF2 from disk D, disk E and disk F

Event Wait 4
Events: DB File Parallel write, DB File Single write, DB file
Parallel read

Average Wait Times in order: 182 milliseconds, 28.4
milliseconds, 220 milliseconds

Recommendation:

All of these values are too high and are affecting performance on this system. The solution
is to balance the I/O across several faster disk spindles and disk controllers.
 ORACLE Performance Tuning 27

Event Wait 5
Event: Redo log space requests

A non-zero value for this column in the v$system_event view means that the redo
buffer size is not big enough.

Recommendation:

Increase the redo buffer size. Currently it is at one megabyte. It should be at 128
kilobytes times the number of CPUs, or 128 kilobytes, x 40 = 5 megabytes.

Tuning Redo Buffer Latches

First, issue the following query to find out if there are any waits on allocation
latches.

Oracle has only one allocation latch per instance. On this system, the wait on
allocation latch is still very high. According to the DBA, in this version of Oracle, the
init.ora parameters log_small_entry_max_size=0 and
log_simultaneous_copies=0 (2x the number of CPUs) are not supported.
Tuning these parameters sets up 80 copy latches to remove the bottleneck of having
just one allocation latch.

Recommendation:

Generally, the recommendation is to make the instance use 80 copy latches instead of
one allocation latch. Check with Oracle to find out how to implement this in the
latest version of Oracle.

Data Dictionary Cache and Library Cache Misses

Recommendation

Increase the SGA size and also increase the shared_pool size to improve the hit
rate on the data dictionary caches and library caches.

Select name,
 Sum (gets) "Gets"
 Sum (misses) "Misses"
 Sum (immediate_gets) "IM_GETS"
 Sum (immediate_misses) "IM_MISSES"
 Sum (average_wait) "AVERAGE_WAIT"
 From v$latch
 Where name like `%redo%'
 Group by name;
28 ORACLE Performance Tuning • October 2003

Method 2

This method involves running tools supplied by Oracle for data collection,
utlbstat and utlestat. The utlbstat script gathers the initial performance
statistics. The utlestat component gathers performance statistics at the end of an
observation period.

Here is a five-step process to collect data using these tools.

1. Choose the correct time slice.

This involves deciding when to collect data. For example, if you are tuning an online
transaction processing (OLTP) database, you may want to choose peak hours of
usage when the most users are logged in and are issuing transactions. On the other
hand, in the case of a decision support system (DSS) on which loads of the database
take place for a few hours at night, those will be the hours best suited to run the
tools.

2. Check the initialization parameter file.

Set the init.ora parameter timed_statistics=true. If you are not able to
restart the database, use the following command to change it online:

3. Turn on utlbstat at the appropriate starting time.

4. Run utlestat at the end of the data-collection period.

5. Analyze the output.

You can use the output from running these tools can be used to conduct most of the
analysis outlined in “Method 1” on page 24.

Alan Packer states in his book, Configuring & Tuning Databases on the Solaris Platform:

Oracle 8.1.6 also introduces the statspack scripts. With statspack, more
data is collected and some useful ratios are precalculated. Refer to
$ORACLE_HOME/rdbms/admin/spdoc.txt in the Oracle9i release and
$ORACLE_HOME/rdbms/admin/statspack.doc in the Oracle8i release
to learn how to install statspack.

Alter system set timed_statistics=true

Svrmgrl> $Oracle_HOME/admin/utlbstat

Svrmgrl> $Oracle_HOME/admin/utlestat
 ORACLE Performance Tuning 29

After installing statspack using the spcreate.sql script (Oracle 9i) or the
statscre.sql (Oracle 8i), create snapshots as the “use sqldba” using the following
commands:

To create a report, run the spreport.sql script (Oracle 9i) or the statsrep.sql
(Oracle8i). The following example shows the appropriate syntax for Oracle 9i

This script prompts for the IDs of the two previously created snapshots and, after
prompting for a report file name, creates a report based on the activity occurring
between the two snapshots.

Method 3

A GUI-based tool called ”Spotlight on Oracle” from Quest Software does all the
queries for you and shows you all the problem areas, such as top sessions, inefficient
SQLs, wait on locks, latches, disk I/O, and other events. This software reduces the
complexity of setting up the queries and scripts. It also increases accuracy. This
software recommends appropriate corrective actions to alleviate performance
bottlenecks. It is located at:

http://www.quest.com/quest_central/qco/performance_diagnostics/.

FIGURE 6 shows top sessions. The Session Details tab of the Top Sessions drill down
lists all users connected to the Oracle database. User V31 is selected in the Top
Sessions screen shown here, so session details on that connection are displayed in
the bottom panel.

FIGURE 7 shows an inefficient SQL statement. The Top SQL drill down shows full SQL
text and performance statistics for the SQL statement highlighted. From this window, you
can also read a detailed explanation plan, which helps you pinpoint resource usage.

FIGURE 8 shows various activities including wait events. The Activity drill down
shown here displays the Activity Summary tab, showing an overview of the activity
on the database you are monitoring.

FIGURE 9 shows the disk I/O waits. The I/O Summary tab of the I/O drill down
shows various indicators of I/O requests, such as total I/O rates and times as well as
specific I/O rates per tablespace. This information summary is useful for isolating
bottlenecks in disk and cache systems.

SQL> Connect perfstat/perfstat
SQL> execute statspack.snap;

SQL> @?/rdbms/admin/spreport
30 ORACLE Performance Tuning • October 2003

http://www.quest.com/quest_central/qco/performance_diagnostics/

FIGURE 6 Top Sessions
 ORACLE Performance Tuning 31

FIGURE 7 Inefficient SQL Statement
32 ORACLE Performance Tuning • October 2003

FIGURE 8 Activity Summary
 ORACLE Performance Tuning 33

FIGURE 9 Disk I/O Waits

About the Author
Ramesh Radhakrishnan has been an IT Architect and Consultant at Sun
Microsystems for the past four years. He conducts availability and architecture
assessments and designs IT environments for several of Sun's mission critical
customers. He is also called by customers to conduct performance analysis and
patch management. He is the author of the Sun BluePrints OnLine article “A Patch
Management Strategy in the Solaris OE.”
34 About the Author • October 2003

Before joining Sun, Ramesh worked as a system administrator, IT consultant, and
ClearCase Consultant. He has a Master's degree in Computer Science from Old
Dominion University. Over the years he has gained experience in the areas of backup
and recovery architecture, disaster recovery architecture, and IT processes, along
with many other IT infrastructure management areas.

Recently Ramesh was part of a team that developed an architecture basics course for
Sun engineers. He is currently working on obtaining his IT Service Management
(ITSM) Master's Certification.

References
[1] Mauro, Jim and McDougall, Richard. Solaris Internals—Core Kernel Architecture,
Sun Microsystems Press ISBN No. 0-13-022496-0

To access this book online, go to:
http://www.sun.com/books/catalog/mauro_mcdougall.xml

[2] Sneed, Bob. “Sun/Oracle Best Practices,” Sun BluePrints Online, January 2001

[3] Packer, Allan, Configuring & Tuning Databases on the Solaris Platform, Sun
Microsystems Press ISBN No. 0-13-083417-2

To access this book online, go to:
http://www.sun.com/books/catalog/packer.xml

[4] Cockcroft, Adrian and Pettit, Richard, Sun Performance and Tuning—Java and the
Internet, Second Edition, Sun Microsystems Press ISBN No. 0-13-095249-4

Acknowledgements
We would like to acknowledge the contributions of Jim Mauro, Ted Persky, Allan
Packer, Gamini Bulumulle, all of SMI, and David Berney and Scott Brye, both of
Quest Software, to this article.
 References 35

http://www.sun.com/books/catalog/mauro_mcdougall.xm
http://www.sun.com/books/catalog/packer.xml

36 Acknowledgements • October 2003

	Solaris™ Operating System and ORACLE Relational Database Management System Performance Tuning
	Solaris OS Performance Tuning
	High-Level Diagnosis
	Diagnosing and Tuning Application and Memory Related Performance Problems
	To Diagnose Memory-Related Problems
	Intimate Shared Memory
	Detecting Memory Leaks
	Memory Tuning Preferred Practices

	Identifying CPU Level Bottlenecks
	Preferred Practices Related to CPU Performance

	Preferred Practices Related to Tuning Disk I/O Performance
	Tuning Swap Space
	Preferred Practices Related to Swap Space

	ORACLE Performance Tuning
	Method 1
	Method 2
	Method 3

	About the Author
	References
	Acknowledgements

