
Getting Started With Crossbow

Pre-requisites

• Solaris Nevada build 81 or Solaris Express Developer Release
• Nemo-compliant networking card(bge, e1000g, xge, nxge, …)
• bfu and acr scripts
• Solaris Networking Virtualization bfu archives

Table of Contents

• Virtualizing the Networking Devices
• Bandwidth Management
• IP Instances, Exclusive Zones
• CPU Resources with Network Virtualization

Virtualizing the Networking Devices
A single physical networking card is presented as multiple virtual cards, which are called vnics.

A vnic acts like any networking device. It has its own MAC address. An IP interface may be plumbed
over a vnic, which can then be assigned an IPv4 or IPv6 address.

Example:

• List the physical links on the system:

dladm show-link
bge0 type: non-vlan mtu: 1500 device: bge0
ath0 type: non-vlan mtu: 1500 device: ath0

• Create a virtual NIC over bge0:

dladm create-vnic -d bge0 1
dladm show-vnic
LINK OVER SPEED MACADDRESS MACADDRTYPE
vnic1 bge0 0 Mbps 2:8:20:22:51:dc random

Note that a random MAC address was automatically assigned to the VNIC. The VNIC and its MAC
address will persist if the host is rebooted.

• A new data link is created:

dladm show-link
bge0 type: non-vlan mtu: 1500 device: bge0
ath0 type: non-vlan mtu: 1500 device: ath0
vnic1 type: non-vlan mtu: 1500 device: vnic1

• Bring up an IP interface on vnic1:

ifconfig vnic1 plumb
ifconfig vnic1 dhcp start
ifconfig vnic1
vnic1: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS>
 mtu 1500 index 4
 inet 129.146.109.26 netmask fffffe00 broadcast 129.146.109.255
 ether 2:8:20:22:51:dc

http://www.opensolaris.org/os/project/crossbow/Docs/getting-started/#Virtualizing_the_Networking_Devices
http://www.opensolaris.org/os/project/crossbow/Docs/getting-started/#CPU_Resources_with_Network_Virtualization
http://www.opensolaris.org/os/project/crossbow/Docs/getting-started/#IP_Instances_and_Exclusive_Zones
http://www.opensolaris.org/os/project/crossbow/Docs/getting-started/#Bandwidth_Management

Now, the virtual NIC is visible to all classical network monitoring tools, such as netstat(1M):

 # netstat -ian
 Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis
Queue
 lo0 8232 127.0.0.0 127.0.0.1 1624 0 1624 0 0 0
 lo0 8232 127.0.0.0 127.0.0.1 0 N/A 1618 N/A N/A 0
 ath0 1500 10.192.0.0 10.192.11.51 19036 0 3857 0 0 0
 ath0 1500 10.192.0.0 10.192.11.51 17468 N/A 3805 N/A N/A 0
 vnic1 1500 129.146.108.0 129.146.109.26 371 0 12 0 0 0
 vnic1 1500 129.146.108.0 129.146.109.26 10 N/A 3 N/A N/A 0

Bandwidth Management
The bandwidth may be limited for a whole VNIC by specifying the maxbw property (expressed in Mbps)
when the vnic is created:

dladm create-vnic -d bge0 -p maxbw=15 3
dladm show-vnic
LINK OVER SPEED MACADDRESS MACADDRTYPE
vnic1 bge0 0 Mbps 2:8:20:22:51:dc random
vnic3 bge0 0 Mbps 2:8:20:41:c2:71 random
dladm show-linkprop -p maxbw vnic3
LINK PROPERTY VALUE DEFAULT POSSIBLE
vnic3 maxbw 15 — —

A bandwidth limit can also be set on an existing data-link such as a physical NIC or an existing VNIC:

dladm set-linkprop -p maxbw=300 bge0
dladm show-linkprop -p maxbw bge0
LINK PROPERTY VALUE DEFAULT POSSIBLE
bge0 maxbw 300 — —

A finer grain limit could be set on a per-transport or on a per-protocol basis, on top of any data-link. For
that we use the new command flowadm(1m) to create a new flow of packets defined by the description of
the packets matching the flow (transport, local_port, etc …). The limit on the bandwidth that can be used
by that flow is specified using the maxbw flow property.

flowadm add-flow -l vnic2 -a transport=tcp tcp_flow
flowadm set-flowprop -p maxbw=100 tcp_flow
flowadm show-flow
flow name flow attributes policy attributes

tcp_flow v4:tcp (L) 100 Mbps

Incoming and outgoing TCP packets will be subject to a maximum of 100Mbps of throughput. Other
traffic will use all remaining bandwidth available for vnic1.

We can observe the accumulated statistics about the packets used by the tcp_flow, by running kstat in the
global zone:

 bash-3.00# kstat -n tcp_flow
 module: unix instance: 0

 name: tcp_flow class: flow
 crtime 29.903360333
 ierrors 0
 ipackets 10177
 obytes 0
 oerrors 0
 opackets 0

 rbytes 550094
 snaptime 17969.794047786

Per-flow bandwidth utilization may also be monitored in real time by invoking netstat -K.

In our example with tcp_flow, this is a snapshot of the real-time output screen, while running netperf
between two zones, one attached to vnic1 and the other to vnic2:

 Flow Link iKb/s oKb/s iPk/s oPk/s

 vnic1 bge0 106236.18 534.43 9068.56 1266.79
 vnic2 bge0 534.89 106235.75 1267.78 9067.58
 vnic3 bge0 0.46 0.00 0.98 0.00
 vnic4 bge0 0.46 0.00 0.98 0.00
 tcp_flow vnic2 428.95 0.00 1016.77 0.00

 Totals 13400.12 13346.27 11355.07 10334.38

IP Instances and Zones
A zone with an exclusive IP stack has its own instance of the global tables and variables used in the
TCP/IP stack. This allows a zone to be connected to a separate LAN or VLAN without sharing any
networking state or policies with other zones. The zone with its exclusive IP instance has its own IP
routing table, ARP table, IPsec policies and security associations, IP Filter rules, TCP/IP ndd tunables, etc.

To create a zone with an exclusive IP instance, set ip-type=exclusive in zonecfg(1M).

Since an exclusive zone has control over its ARP and IP internal structures, an IP address does not need to
be set for the zone by the global zone administrator any more. Simply pick a physical interface to be
assigned to the zone, or specify a VNIC which you previously created using dladm(1M).

The following is a sample of zonecfg input:

 create -b
 set zonepath=/export/home/Zones/z3
 set autoboot=false
 set ip-type=exclusive
 add inherit-pkg-dir
 set dir=/lib
 end
 add inherit-pkg-dir
 set dir=/platform
 end
 add inherit-pkg-dir
 set dir=/sbin
 end
 add inherit-pkg-dir
 set dir=/usr
 end
 add inherit-pkg-dir
 set dir=/opt
 end
 add inherit-pkg-dir
 set dir=/etc/crypto
 end
 add net
 set physical=vnic3
 end

Copy it into a file (e.g. /var/tmp/zcfg.in).

http://www.freebsd.org/projects/netperf/index.html

Then run:

zonecfg -z z3 -f /var/tmp/zcfg.in

(Note: the following output is normal)

z3: No such zone configured Use 'create' to begin configuring a new zone.

zoneadm will now show the newly created zone 'z3' in a configured state:

 # zoneadm list -cv
 ID NAME STATUS PATH BRAND IP

 0 global running / native shared
 1 z1 running /export/home/Zones/z1 native excl

 2 z2 running /export/home/Zones/z2 native excl

 - z3 configured /export/home/Zones/z3 native excl

Note the 'excl' under the 'IP' column indicating an exclusive IP instance for the zone z3.

The zone needs to be installed:

 bash-3.00# zoneadm -z z3 install

Note: depending on the CPU speed, the installation may take around 10 minutes.

 bash-3.00# zoneadm list -cv
 ID NAME STATUS PATH BRAND IP

 0 global running / native shared
 1 z1 running /export/home/Zones/z1 native excl

 2 z2 running /export/home/Zones/z2 native excl

 - z3 installed /export/home/Zones/z3 native excl

Boot the zone:

 bash-3.00# zoneadm -z z3 boot

and connect to the zone's console by running zlogin -C z3, and initialize the naming services. You will
have the usual interactive post installation dialog, set the hostname (zone's name), the time zone, the
zone's root password, etc ..

The zone is now ready. You may bring up the network on the zone:

 z3 console login: root
 Password:
 Feb 15 10:43:55 z3 login: ROOT LOGIN /dev/console
 Sun Microsystems Inc. SunOS 5.11 snv_55 October 2007
 #
 # zonename
 z3
 #
 # ifconfig -a plumb
 # ifconfig -a
 lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index
1
 inet 127.0.0.1 netmask ff000000
 vnic3: flags=201000842<BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 2
 inet 0.0.0.0 netmask 0
 ether 2:8:20:41:c2:71

Note: dladm show-link cannot yet be run from a non global zone. However, ifconfig -a will plumb all non
loopback interfaces that were assigned to the zone by the global zone administrator.

 # ifconfig vnic3 1.1.1.3/24 up
 # ifconfig -a
 lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index
1
 inet 127.0.0.1 netmask ff000000
 vnic3: flags=201000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1500 index 2
 inet 1.1.1.3 netmask ffffff00 broadcast 1.1.1.255
 ether 2:8:20:41:c2:71

 # netstat -rn

 Routing Table: IPv4
 Destination Gateway Flags Ref Use Interface

 1.1.1.0 1.1.1.3 U 1 1 vnic3

 224.0.0.0 127.0.0.1 U 1 0 lo0

 127.0.0.1 127.0.0.1 UH 1 36 lo0

The zone can now communicate with other hosts on the network.

 # ping 1.1.1.1
 1.1.1.1 is alive

Note: Just like a single zoned system, /etc/hostname.vnic3 or /etc/dhcp.vnic3 can be used to have the
network automatically initialized with a static or dynamic IP address upon reboot of the zone.

Back to the global zone:

 bash-3.00# ifconfig -a
 lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
 ath0: flags=201004843<UP,BROADCAST,RUNNING,MULTICAST,DHCP,IPv4,CoS> mtu 1500 index 3
 inet 192.168.1.132 netmask ffffff00 broadcast 192.168.1.255
 ether 0:b:6b:4d:b1:4
 bash-3.00#
 bash-3.00# netstat -rn

 Routing Table: IPv4
 Destination Gateway Flags Ref Use Interface

 default 192.168.1.1 UG 1 45 ath0

 192.168.1.0 192.168.1.132 U 1 4 ath0

 224.0.0.0 192.168.1.132 U 1 0 ath0

 127.0.0.1 127.0.0.1 UH 2 68 lo0

The IP interface 'vnic3' is not exposed to the global zone, or other zones.

Further details about IP instances may be found in the Presentation to OpenSolaris User Group and the IP
instances Architecture.

http://www.opensolaris.org/os/project/crossbow/Docs/si-interfaces.pdf
http://www.opensolaris.org/os/project/crossbow/Docs/si-interfaces.pdf
http://www.opensolaris.org/os/project/crossbow/Docs/ipinstances-sug1.pdf

CPU Resources with Network Virtualization
NICs and VNICs may be bound to a subset of the processors available on a system. When such binding is
established, most of the packet processing will be executed on the bound CPUs.

This feature is particularly useful for deeper separation of the CPU resources between zones and
containers. It extends that separation to account for most of the CPU cycles spent anonymously in the
networking subsystem on behalf of a zone.

The example below illustrates a setup that shows the difference in CPU utilization when this feature is in
use.

The NIC will still interrupt a system defined CPU(s), which are currently not under the virtualization
control. However, incoming packets are quickly dispatched to be processed by a CPU from the zone's
processor set.

The instructions for creating a CPU resource pool with 4 CPUs out of a T-10000 multi-core system are
described here

Configure a zone work1zone with an exclusive IP stack, and connect it to a vnic called vnic1, as described
above. (In this example, we use vnic1 over bge1, which was assigned by the system to interrupt the CPU
8).

Assign the work1-pool pool to work1zone:

 # zonecfg -z work1zone set pool=work1-pool

Reboot work1zone so that it binds to the new pool:

 # zlogin work1zone init 6

Running iperf between the work1zone container and an external host, will actually show that processors
4-7 are mainly used. Most CPUs outside that set are occasionally used at a 5% or less of the time, for
other internal load. This is the expected behavior because the application (and all its system calls) are
actually hosted by the container.

 CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 106 277 175 0 0 0 2 0 0 0 1 0 99
 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 100
 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 100
 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 100
 4 0 0 0 3765 0 7496 7 76 355 0 4556 2 19 0 79
 5 0 0 0 3590 0 7175 7 77 336 0 4310 2 19 0 80
 6 0 0 0 1504 0 3009 3 15 137 0 1912 1 8 0 92
 7 0 0 0 1108 8 2196 1 6 91 0 1394 1 6 0 94
 8 0 0 7247 7711 7706 9 0 0 860 0 0 0 56 0 44
 …
 22 0 0 9114 6688 0 13659 0 0 1176 0 0 0 64 0 36
 23 0 0 0 3 0 5 0 0 0 0 1 0 0 0 100

CPU # 22 was being used at 64% of the time, all inside the system. That is the cost of processing
incoming packets for work1zone. That cost is being charged to a CPU that is not member of the processor
set that the container is assigned to.

To minimize the unfair utilization of CPU resources induced by work1zone inbound traffic, vnic1 needs
to be also "bound" to the CPUs of work1-pset:

From the global zone, run:

 # dladm set-linkprop -p cpus=4,5,6,7 vnic1

http://sourceforge.net/projects/iperf
http://www.opensolaris.org/os/project/crossbow/CrossbowBeta/FeaturesOverview/PoolSetup.txt

A second experiment with iperf shows:

 CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 118 270 168 0 0 0 1 0 0 0 0 0 100
 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 100
 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 100
 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 100
 4 0 0 2370 4477 0 9045 30 95 623 0 2799 1 33 0 66
 5 0 0 2702 4630 0 9366 26 88 608 0 2331 1 32 0 67
 6 0 0 2995 4459 0 9017 27 83 737 0 1778 1 34 0 65
 7 0 0 0 3225 5 6491 3 51 167 0 4494 2 20 0 79
 8 0 0 7574 7587 7574 26 0 1 2767 0 5 0 51 0 49
 …
 22 0 0 1243 1088 0 2175 0 0 344 0 4 0 2 0 98
 23 0 0 2 8 0 15 0 0 1 0 0 0 0 0 100

Note in particular: . CPUs 4-7 idle time decreased, and their sys time has increased since they work more
to handle work1zone's packets. . CPU #22 is barely working at 2% instead of the previous 64%.

	Getting Started With Crossbow
	Pre-requisites
	Table of Contents

	Virtualizing the Networking Devices
	Bandwidth Management
	IP Instances and Zones
	CPU Resources with Network Virtualization

